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Abstract

Experiments carried out with magnetically confined, high temperature plasmas have
revealed important effects that have yet to be justified by existing theory. In par-
ticular, there arises an anomalous particle inflow in the central region of the plasma
column. Experimental evidence suggests that this particle transport results from the
excitation of unstable, short wavelength modes driven by the electron temperature
gradient, but the validity of the existing theory is limited to the edge of the plasma
column. This thesis investigates the question of how microscopic, electron tempera-
ture gradient driven, micro-reconnecting modes may collectively give rise to particle
inflow in the central region of the plasma column by examining solutions to the mode
dispersion relation. Derivations of micro-reconnecting modes in both fluid and kinetic
theory are presented, and the resulting dispersion relation is analyzed.
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Chapter 1

Introduction

We begin this chapter with an outline of what will be presented in this thesis. The aim

of Chapter 1 is to contextualize the following work by communicating to the reader

the importance of anomalous transport processes in fusion-burning plasma research.

In the next section, we introduce the topic of controlled thermonuclear fusion, the

development of which provides the main impetus for this work.

Chapter 2 introduces the hydrodynamic description of plasma behavior and presents

a derivation of micro-reconnecting modes in the fluid approximation. The fluid deriva-

tion highlights many of the important orderings which characterize the regime in

which we are interested. In Chapter 3, kinetic theory is discussed and a more general

derivation of the modes in Chapter 2 is presented. The results of Chapters 2 and 3

are used in Chapter 4 to derive the dispersion relation. Analysis of this dispersion

relation in Chapter 4 will allow us to characterize mode stability and discuss the

implications of our results.

1.1 Background

The fundamental goal of thermonuclear fusion research is to devise a method by

which a plasma may be heated to ignition and confined at sufficiently high density

for a sufficiently long duration to satisfy the Lawson criterion. Because fusion-burning

plasma must be contained at energies typically in excess of 1 keV, the plasma cannot



be contained by material barriers, and the majority of present day research has focused

on the possibility of confining plasma with appropriately tuned magnetic fields.

The confinement scheme in which we are interested is the tokamak. Tokamaks

are axisymmetric tori which confine high-energy plasma in a helically winding mag-

netic field comprised of an externally generated toroidal component and a poloidal

component generated by the plasma current itself. Drift effects resulting from spa-

tial curvature and the gradient of the magnetic field necessitate helical winding to

suppress instabilities.

Magnetic confinement research has yielded significant advances in the past fifty

years, but there remain many experimentally observed phenomena which have yet to

be explained by theory. Among these phenomena, magnetic reconnection and anoma-

lous transport processes present a particular challenge to the understanding of plasma

behavior and the development of controlled fusion. Magnetic reconnection disturbs

the stability of ambient fields by the creation of magnetic islands as depicted in Figure

1-1. These islands join field lines from initially distinct domains and facilitate particle

and energy transport across the field.

1.2 Motivation

Previous work performed by Coppi and Spight [5] identified long wavelength, electro-

static ion-mixing modes facilitating the transport of ions and electrons against the

density gradient. The magnitude of the inflow depended on the finiteness of the lon-

gitudinal electron thermal conductivity which is a characteristic of collisional regimes

at the edge of the plasma column. In collisionless regimes, drift-tearing modes were

thought to be suppressed by the combined effects of Landau damping and the tem-

perature gradient, but even in experiments with low degrees of collisionality, magnetic

reconnection and anomalous transport have been observed [4]. Explaining the mech-

anism behind the generation of these instabilities would be a significant advance in

understanding the behaviors of space and laboratory plasmas.

In this thesis, we consider a class of short-wavelength, electromagnetic modes



Figure 1-1: Diagram depicting reconnection of field lines and formation of magnetic
islands.

driven by the electron temperature gradient and investigate the question of whether

these modes, known as micro-reconnecting modes in the literature, could be respon-

sible for the onset of the anomalous drift-tearing mode. These micro-reconnecting

modes are called such because they produce magnetic reconnection (islands) and tur-

bulence on distances on the order of the skin depth. It has been postulated [7] that

the excitation of a background of microscopic modes may collectively sustain the

larger drift-tearing modes which give rise to macroscopic anomalous transport and

magnetic reconnection in collisionless regimes. For this to happen, however, these

microscopic modes must be driven unstable, and the stability of these modes is what

we primarily seek to analyze.
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Chapter 2

Fluid Approximation

In this chapter, we discuss the consequences of modelling plasma as an electrically

conducting fluid. Applying concepts from fluid mechanics to the particular case of

a fluid composed of charged species yields the fluid equations which we may use to

describe plasma behavior in the appropriate limit. Using the fluid equations, we

derive an equation for the component of the vector potential along the prevailing

magnetic field.

2.1 Fluid Equations

The hydrodynamic regime is often characterized by the limit in which the ratio be-

tween the mean-free-path of particles and the relevant distance scale under consid-

eration is small, i.e. Amfp <« L. On scales where L dominates Amfp, collisions occur

frequently, and the system quickly settles into local thermodynamic equilibrium. In

this case, the system may be considered to populate local micro-states independently

and with equal probability, which is to say that the fundamental theorem of statisi-

cal mechanics applies. In the hydrodynamic limit, then, the system has well-defined

local properties, such as temperature, T(x, t) (measured in units of energy), density,

n(x, t), and flow velocity, u(x, t), which vary smoothly in space and in time. The



local equilibrium is described by a Maxwell-Boltzmann distribution

m•lv - u(x, t) 2-
fM(x, v, t) = Cn(x, t) exp [ U(x,t)1 2  (2.1)

[ 2T(x, t)

in which the local parameters n, u, and T, are determined by conservation laws to

be discussed shortly.

In the case of fully ionized plasma, mean-free-paths are typically very long. In this

case, a strong external magnetic field must serve to maintain the local Maxwellian

distribution and supply the "caging effect" that is characteristic of fluids [8]. The

fluid equations are then derived by taking moments of the local distribution, and the

derivation can be found in any textbook on the subject. The equations expressing

conservation of mass, momentum, and energy, are given by

on
- + V. - (nu) = 0 (2.2a)

mn ( +u.V u-=nq(E+ux B)-V(nT) (2.2b)

3n n - +U-V T-=-O. (2.2c)2 8£-

To linearize the equations in Eq.(2.2), we express the quantities of the plasma as

an equilibrium value plus a small perturbation as shown for the quantity, Q, here:

Q = Q(0) + ). (2.3)

In the following derivations, we will consider perturbative waves of the form

Q = Q(') exp [i(k. - x - wt)]. (2.4)

In particular, we are interested in the mode growth which can be identified with the

imaginary part of w.



2.2 Micro-Reconnecting Modes

We now present a fluid derivation [6] of the micro-reconnecting modes. For the

following derivation, we refer to a one-dimensional, plane-equilibrium configuration

and consider the motion of the electrons in which there is no applied electric field

and no particle flow at equilibrium, i.e. E(o) = u ) = 0. In this case, the equilibrium

density and temperature vary appreciably only in one direction which we will take

to be R. The external magnetic field is composed of a strong axial component with

weak shear, as given by

B = BO ^ + •L•r . (2.5)

The parameter L8 is called the shear length, and we take it to be large compared to

the dimensions of the system. The magnetic field described by Eq.(2.5) is useful in

investigating microscopic phenomena in toroidal plasmas, as the weak shear model

approximates the tokamak field on small distance scales. A graphical picture of the

sheared field is shown in Figure 2-1.

Figure 2-1: Graphic showing the direction of field lines given by Eq.(2.5) in sheared
slab geometry.

2.2.1 Parallel Momentum Conservation

Taking the scalar product of Eq.(2.2b) for the electrons with the unit vector b = B

we derive an equation for the component of the electron momentum parallel to the



local magnetic field:

• -,+b (uieat - Vue)) = -b - V(neTe) - eneb - E.

We expand the quantities in Eq.(2.6) with the expression given on the right-hand side

of Eq.(2.3). Ignoring higher-order terms, i.e. terms containing products of first-order

quantities, we find

S= -l V(n()T(o)) - b(o) V(ieTe( )) - b( ) - V(n(O)T()- enE)b(°) .at()
(2.7)

We would like to express b in terms of the perturbed vector potential A. We note

that B = V x (A(o) + A) and B (0 ) = V x A ( ) . We then find that

B= V x Ai = VAl x b(0 )+ AllV x b + V x b(O) + V x &AL. (2.8)

Recalling that b = B/B and B = B (O) + B, we find that

B(o) + t

(B(O)) 2 + 2B(o) 1/2

B (o) + B(o). B
~'1-
S B(O) (B(O)) 2

B (0)  B - b(0)(b(0 ) B)
= + B 0

B(0) B(O)
b(O) + - Bilb(0)

Sb B(O)

In the low-0 limit, the diamagnetic effect arising from A1 is negligible. Thus, we find

B(O)
B(o)

(2.9)

Henceforth, we will drop the superscript (0) from equilibrium quantities for notational

simplicity. Here, we express the perturbed electric field in Eq.(2.7) as E = -V1 -

Given Eq.(2.4), the equilibirum neutrality condition, n, = ni = n, and the1 8A
C at"

mene (b (2.6)

men(o)b(0)



plane configuration (b - VTe = 0 and b - Vn = 0) from the definition of the problem,

we find Eq.(2.7) becomes

dT dn
-iwmenrielj = -nbx' -Tebx-, -Teb.Vite-nb.VTe+en b . V - i-All (2.10)dx dx )c 2.0

where bi = b . k and iiell = fie - b. Neglecting A1 in Eq.(2.9), we can show

VAIl x bbx- B " (2.11)
B

In the plane equilibrium configuration we are considering, perturbations propagate

in the Y and idirections, i.e. k = kyk + k-i in Eq.(2.4). Here, we introduce the wave

vector component along the field

kl - k -b = kyb + kzbz.

and the following parameters:

_ kyc dTe
W*Te - eB dx

is the drift frequency associated with the electron temperature gradient and

(1I dTe I dn)-
(Tedx ) (n dx1

measures the ratio of the strengths of the temperature and density gradients. For

micro-reconnecting modes driven by the electron temperature gradient, we assume the

orderings 7e > 1 and W*Te > w. In the weak shear limit, we see that bz - kzby/ky _ 1,

and with the conditions 7e > 1 and w < W*Te, we may simplify Eq.(2.10) to obtain

kll Te kllTe e (klIcw + *Te (12
iell T he + I( + W All . (2.12)

W men w me mec W W



2.2.2 Ion Response

The short-wavelength modes we are considering have characteristic wavelengths much

smaller than the ion gyroradius, i.e. kpo >> 1, and thus, we may assume an

adiabatic ion response. This allows us the following quasineutrality condition:

en
ne - ni __-en. (2.13)Ti

Using quasineutrality, we may eliminate nie in Eq.(2.12) and find

-ki*Te Tee k~c (21
Uell  

k l Te e (1 + )4 + All (2.14)
w me mec W W

where we have introduced the parameter --T Te/Ti.

2.2.3 Perpendicular Momentum Conservation

To determine the perpendicular component of the electron momentum, we linearize

Eq.(2.2b) and take its cross product with b to obtain

menQelfie± = -b x V(nTe)-b x V(iiTe)-b x V(nTie)-enb x E+iwmenb X ue (2.15)

where Qe = e- is the electron gyrofrequency. Considering modes with frequen-meec

cies much slower than the gyrofrequency, w < Qe, we may ignore the last term in

Eq.(2.15). We recall now that E = -V4 - where I.i < All in the low-/3

limit, and also that equilibrium quantities vary only in x. With these considerations,

Eq.(2.15) becomes

c dTe +1 c dTe ne + le bxk (2.16)u -1+__x b Tel (2.16)
eB e e1 eBd n Ted

Te c C C
T b x Vfte - b x VTe + -b x VD. (2.17)

n eB eB B

Here, we use the quasineutrality condition in Eq.(2.13) to replace he with je in

Eq.(2.17), and expanding the vector cross products such that bz - kzby/ky - 1 and



b xx-- , we findB 49x

Uel i k [Te -(1+t ) (I
Bde

cd 1 dTe I dTe 1Se- __+T TeB e dx eTe dx 77e
+byc 1 dTe
B e (1

1 dTe
Ti dx

c dTe

eB dx

- ]

( 1+?e

1 oA,1
BOx

(2.18)

(2.19)

(2.20)

2.2.4 Ampere's Law

To eliminate f~ell in Eq.(2.14), we consider Ampere's law with current supplied by the

electrons.
4rne

Vx B= -- ue
C

(2.21)

Taking the scalar product of Eq.(2.21) with b to obtain an equation for the parallel

component and then linearizing yields

4rne
b - V x B + b -V x B = - iell

c
(2.22)

We have the identity V x V x A = V(V- A) - V 2A. In the Coulomb gauge, we have

V A = 0. Also, V 2b - b/L' which is small, so we may move b inside b - V 2A. We

also note that Vx B = ~i. With these considerations, we may write Eq.(2.22) as

47rne,',, • eld 2
dX2 A1l

k2L )I

Given the short transverse scales we are considering, we may take the limit

which yields
d2 21

[dx2 - I Al
4ixne -

C

(2.23)

.1 41

(2.24)

Eliminating i•'fl with Eq.(2.14) yields

kllc§ ce kc )
2ý_ ~(1 + 7)(D _ * Alld2 [d _ k2] All
w U w

(2.25)

-k( 1 + -I!

.. · · I |



where we have introduced the electron plasma frequency, wp,, given by

2 47rne
2

Wpe Meme

and the electron skin depth, de, given by

2e "

pe

2.2.5 Electron Mass Conservation

Linearizing Eq.(2.2a) and expanding the flow divergence yields

dn
-iwie + nV file + ue dx = 0.

dx
(2.26)

Using the quasineutrality condition in Eq.(2.13) and separating fie into parallel and

perpendicular components as fie = fiellb + fie±, we find

e Idniw-4 + b -Vell • + ielV-b+V e + Le•i -ex- c- 0
Ti n dx

(2.27)

In the limit in which c < 1, we may eliminate uiell with Eq.(2.24) to arrive at

Ckil e
W2pe me

d2

Id 2 _ k 2 1 dn
All+ V - fiei + Uex-- 0.

n dx
(2.28)

To eliminate the divergence term in Eq.(2.28), we refer to the expression for fiel given

in Eq.(2.20) and take its divergence. This yields

.WTe 1
V - ie = i e Te.

Te 7e
(2.29)

Replacing the divergence term in Eq.(2.28), we obtain

ckll e
w2e me

d2

dx2
WJTe 1

Te Te
1 dn

+ iuex--
n dx

(2.30)- k 2 All a We

Ti



2.2.6 Heat Transport

Linearizing Eq.(2.2c) in the limit in which the temperature gradient dominates the

density gradient (7e > 1) yields

i dTe_
Te --- l ex "

w dx (2.31)

Noting from Eq.(2.15) that the electric field contributes the dominant force term, we

take ifiex to be the x-component of the E x B drift. Thus, we have

k= +
flex = _ZkBc(I + T)4b (2.32)

and from Eq.(2.31), we derive

(2.33)

Given that we now have relations for both iex and Te in terms of d, we may solve

Eq.(2.30) for 1 in terms of All. In the limit 7e > 1, we find

S ckc 2  d 2

W Cs2 dX2 (2.34)

where we have introduced the electron sound velocity

2
2 -Ti

Cse -
me

Since we have all relations in terms of Al, we may eliminate all other variables from

Eq.(2.25) and taking the limit W*Te > w, we find

[w3 + klCeWTe(1 + )]d~ 2 + k 2 All + W*TeW 2 AII 0. (2.35)

In the case of weak magnetic shear and slow variation in x, Eq.(2.35) simplifies to

dk 2 w3 - W)Te 2 + k C2W Te(1 + Td k 2 0

Te - (1 + ) W*Te e.

- k2 All

(2.36)



which is the cubic dispersion relation in the fluid limit [4].



Chapter 3

Kinetic Theory

In this chapter, we explore a kinetic treatment [2] of the problem described in section

2.2. At higher-temperatures, as particle mean-free-paths lengthen and the "caging

effect" supplied by collisions and the confining field weakens, the fluid model loses

validity while kinetic effects become significant. The central region of the plasma

column is essentially collisionless, and for the particular modes we are studying, a

kinetic treatment provides a more general solution to the problem posed in chapter

2.

3.1 Phase Space

We recall here the distribution function f(x, v, t) which describes the distribution

of particles in position-velocity space at a given time. More explicitly, the number

of particles within the spatial volume element d3x located at x and with velocities

contained in the velocity volume element d3v at v at time t is given by f(x, v, t)d3xd3v.

In general, collisions lead to sharp changes in the phase space distribution over short

time intervals. In the collisionless limit then, particles flow continuously between

regions of phase space, and the distribution f is well-behaved in time. As a result,

we may now write a continuity equation for f as follows:

ofS+ Vx,v. - (fU) = 0 (3.1)



where U is the six-dimensional (six-vector) velocity vector U = (k, r) = (v, m), and

Vx,v is the six-dimensional del operator Vx,v = (Vx, V). To simplify notation, we

write V = Vx. Now we may expand the divergence term in Eq.(3.1) and obtain

Of F Vv -F
-+ V - (fv)+- - VVf +fv =0. (3.2)
at m m

Provided F does not depend on v, then Vv - F = 0, and the last term drops out

of Eq.(3.2). This is certainly true for electric forces, and it can be shown that the

Lorentz force, FL = q(E + v x B), satisfies the condition, Vv - FL = 0, though there

is an explicit v dependence in the magnetic force term. In the case of a plasma acted

upon by electric and magnetic fields, i.e. F = FL, and noting V - v = 0, we obtain

the Vlasov equation:

Of q- + v.-Vf +- q(E+vxB).Vvf =0. (3.3)
Ot m

3.2 Kinetic Effects

For plasma in a strong magnetic field, the gyroradii of individual particles are much

smaller than the characteristic length of the field, i.e. PL < L8 where PL is the Larmor

radius. In that case, we may consider Eq.(3.3) in the guiding center approximation

and derive the drift kinetic equation. Decomposing the guiding center motion into

motion parallel, vilb, and perpendicular, vGI, to the field yields the reduced phase-

space equation [2]:

+ V- VIl + vcGi f -Ell = 0. (3.4)at [B Me 19ll

The perturbed form of (3.4) for an initially plane configuration is given by

Of Of Bx Of Of e Of+ v + vl + cGx' + fV -VG - -Ell = 0. (3.5)
Ot Oxl B Ox 19Xme 0v11



From the definition of the perturbed magnetic field, we have

El= -ik 1 1@ + i-All
C

and applying the Coulomb gauge condition, we have

V - k = V-L + ikl 11Al = 0.

We may now rewrite (3.5) as

-iwf + ikllvllf + w+ () e ) f o+ i klli -c All m e a = 0v

Solving for f in Eq.(3.6) yields

e kllc- - wAlle

f = (k -wA;I
mec V -k fll

e kycDlI - kyvllDlAl

+11c w - kllVll

where we have introduced a new parameter, DI which is a measure of diffusion

along the field.

We now derive the parallel component of the perturbed flow velocity iI (x, t) by

taking a first moment of i over velocity space as follows:

1
1 = - v11 fdvil

-00

(3.8)

With Eq.(3.7), we may replace f in Eq.(3.8) with some simplifications to obtain

e

mec
(k c1 - wAll))1 00

n -oo,

WVl
W2 - kl2V2

11 11

8 f +?9 Of
0vil

meV2 kyDIl df
T11 WV11 Ox]

(3.9)

If we now take the equilibrium distribution as Maxwellian (recall Eq.(2.1)), that is,

f = fM, where we have

(3.10)fM = n() exp
[2x'T11 (x) /me],/ 2

B Ox
c. Of

(3.6)

af
Ox (3.7)

2' I (x)



then we may evaluate the derivatives in Eq.(3.9) to find

2
fM

W - W*Te (v
W2- k 2 V2

11 11
(3.11)

where we have simplified f in the limit le > 1 and introduced the function

rmevl 1
1- 2T11  2222

We now consider mode frequencies in the limit w2 >> k V . Again, we consider modes

in which the ion gyroradius is large and we may assume an adiabatic ion response.

Then we may apply the quasineutrality condition to find

4 _ Tj ki2e11l (3.12)
e w

and using Eq.(3.12) in Eq.(3.11), we obtain

e k 2C2 eO*
ell L- 1 - eAll (3.13)

where we have defined a new parameter, Qc, to express the integral in Eq.(3.1w).
where we have defined a new parameter, •2,, to express the integral in Eq.(3.11).

meVU

fM T11I
W*TeI (V2) - W

2 2 2 dvll.
w2 - k lvl

Recalling Ampere's Law as given in Eq.(2.24), we eliminate fill in Eq.(3.13), we find

1-+
2k 2 C ~- A11.-02 (3.15)

Note that in the limit given by k v2 < w2 2WTe, we find that ,Q* _ W*Te, and we

recover the cubic dispersion relation from Eq.(2.36) up to a constant factor - 1.

w2

n
-m0_oo (3.14)

e 1 n+f

d 2 d 2



Chapter 4

Analysis of Micro-Reconnecting

Modes

In this chapter, we investigate in detail the micro-reconnecting mode identified in

chapters 2 and 3. In particular, we derive the dispersion relation [3] and examine

mode stability. We also consider an approximation to the dispersion relation in the

fluid limit.

4.1 Dispersion Relation

To simplify notation, we define the wave number

kand the dimensionless integral parameter
and the dimensionless integral parameter

W*Te

Recalling Eq.(3.15), we derive the following quadratic form:

dA 1  + k2 /A 1 A2 A1 2 W*TW .0
( dx w3 + kscleW*TYF)

(4.1)



where brackets denote integration over the dimension of variation

1±0- dx.
J+oo

To simplify Eq.(4.1) and the integral for Yo° , we define the following quantities:

the electron thermal velocity, Vthe, and the fluid parameter, U:

2 2T1 _ cese
Vthe me 2

2k11 Vthe
U he

W*T

The parameter U expresses the fluid character of the plasma where U < 1 indicates

the fluid limit. With these definitions, Y0 takes the following form:

70 1 00 _( (£((2) _ ýD
= d( [exp(- 2)] 22§(2 )U 2 (4.2)

where

1L((2 = (2
2

The kinetic integral, Yoo, describes integration over the velocity parameter, vil, and

therefore includes the effects of Landau resonances. Given weak magnetic shear and

that the equilibrium quantities vary slowly in x, we may write

kil 2 kz
02 <<k2

Simplifying Eq.(4.1), we obtain

2T 2

k 2 d2 2 W*TW(k + (4.3)de  W3 + k 2V2sicT.O
21 2i "F



Introducing the following rescaled variables,

_ w

W*Te

ke - kde

the equation to be solved is

1 3 2 1OO - -+ U - 0. (4.4)
Too- k2 2

4.2 Limiting Case

In the limit of U -+ 0 (ideal fluid limit), we may evaluate the integral in Eq.(4.2)

using the identity f_-o exp(-t 2)t 2zdt = F(+). In the limit U -+ 0, we find . ~ 1,

and Eq.(4.4) reduces to the cubic in Eq.(2.36). In this limit, then, we examine the

following equation

f (-) = 3 -- + 2U = 0. (4.5)

ek 2

From the properties of cubics, we note that f(0) = 0 has at least one real root

for U > 0 and at most three depending on the value of the parameters ke and U.

Graphs of f(0) for various U and kP = 1.5 is shown in Figure 4-1. We would like

to determine the conditions at which the roots of f transition from real to complex.

First, we consider the cubic discriminant, A, given by the following:

A =- 2 U + 27U2. (4.6)
ek6 4

For A < 0, Eq.(4.5) has three, distinct, real roots. For A > 0, two of the roots are

complex and conjugate. Thus, the transition occurs at A = 0, and this gives the

condition
18

Uc = - (4.7)
k27

for U = Uc at the transition point.



Plot of Cubic for Various U

-1 -0.5 0 0.5
(0

Figure 4-1: Graphs of f(ýD) with k- = 1.5 shown for U = 0, U = Uc (critical value),
and U > Uc.

Alternatively, we now consider the first derivative of f to find its local minimum:

(4.8)
20

f'(3) = 32 .
e

It is clear that f achieves a local maximum at ,max = 0, and we take the second root

of Eq.(4.8), Comin = , to be the local minimum. Now the critical value of U at the

point of transition can be determined by solving f(Lmin) = 0 for U. We find this

value to be

U = Uc = -3in (4.9)

where Ue is the value given in Eq.(4.7). The trajectory of the roots in the complex

plane for increasing U is shown in Figure 4-2.



Trajectory of Roots for Increasing U

-0.

-0.

0 0.1 0.2 0.3 0.4
Real Part

0.5 0.6 0.7

Figure 4-2: Trajectory of roots of Eq.(4.5) which become complex as U increases from
0. Arrows indicate motion of roots.

4.3 General Case

Returning to the general case of U small, but finite, we define new variables:

k0 -2 U113
U113

koThis rescaling complicates the physical interpretation of our results as we will see in
This rescaling complicates the physical interpretation of our results as we will see in

the next section, but we sacrifice transparency for computational simplicity.

the definitions of C0 and k0 , Eq.(4.4) becomes

1 3 3~2 1

With

(4.10)

and Eq.(4.2) becomes

(4.11)= d( exp [_(2] 22 £(( 2 ) - U/3o



Besides yielding simpler equations, the definition of ko has the useful interpretation

of characterizing the roots of Eq.(4.4) in the limit of U -+ 0. The condition k2 > 1

gives the possibility of complex solutions to Eq.(4.10), and this possibility will now

be investigated.

4.4 Numerical Analysis

Here, we would like to determine values of oo that

Eq.(4.10) and Eq.(4.11) given values of ko and U. In

in finding complex values of Co in the first quadrant of

for w in Eq.(2.4) with positive imaginary parts indicate

the integral in Eq.(4.11), we define the parameter c

integral becomes

1 = x [ (1I(E) = +7 0 d( exp [-(2] 2( 2 1

simultaneously satisfy both

particular, we are interested

the complex plane, as values

unstable modes. To evaluate

U113, and in terms of e, the

$2) _ o. (4.12)

Here, we present the results of a code written in Mathematica which solves for Co

given values for k' and c. Trajectories of complex values of co satisfying Eq.(4.10)

and Eq.(4.11) in the first quadrant for fixed values of k0 and increasing e are depicted
n d k 2  - -1 -

in Figure 4-3. The trajectories cross as a result of the scaling o and k u= .

The parameters c = U1/3 and k2 are not independent in the sense that V = 2UC-1/3

must vary inversely with c in order to hold k2 fixed. We note that as E increases,

the growth rate given by the imaginary part of Co goes to 0, which is what we would

expect for decreasing Pe.

4.5 Approximation of

We would now like to approximate the integral in Eq.(4.12) in the case in which C is

small and &o is in the first quadrant of the complex plane (positive real and imaginary

parts). Defining a new parameter, ' , we see that ( has a negative imaginary

34
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Trajectories of Solutions in First Quadrant

t:
0
a..

E

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
Real Part

Figure 4-3: Trajectories of first-quadrant solutions for &o in Eq.(4.10) for E increasing
from 10-'. Arrow indicates direction of increasing E. Trajectories are plotted for

k2 = 3, 5, and 10.

part when &o is in the first quadrant. Writing the integral for F. in terms of ( yields,

1 - fL((2) _ 0.D3
I = exp [-( 2] 2( 1 d(.0d (4.13)

Naively, we might first try to approximate I by replacing the denominator with a

power series expansion for small '(2. Although ( 2 goes to infinity in the integral, we

might hope that the decaying exponential term, e-
c

2 , will suppress the contribution

of the large values of ( 2 for which 1(21 > 1. Expanding the denominator to second

order in E and applying the identity

j exp(-t2)t2zdt= L ( 1)
-OO 2

to integrate, we obtain

1 (_+( 1 o +2
I Joo [exp(-2)] 2 2( 2 - - O (2 + 4 )d(

71" 2 o cDo
_ 1 3 2 9062

= 3e - + )+ + 1. (4.14)
0 2 835
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In a more rigorous method, we recall that we are considering complex values of

Co in the first quadrant. Thus, we may write Co = reiO for some real, positive r, and

0 < 9 < . To simplify Eq.(4.13), we use the following identity:

1 f
1- i2 = -i exp [is(1 - 2)] ds. (4.15)

The integral on the RHS converges whenever ( has a negative imaginary part, and for

0o = rei ' in the first quadrant, we see that = ~• -i20 which is in the fourth quadrant

for 0 < ! and in the third quadrant for 0 > 2. Thus, ( has a negative imaginary

part, and Eq.(4.15) holds. Applying the identity in Eq.(4.13) gives a double integral,

and interchanging the order of integration yields the following:

I = eis exp [-(1 + is)(22] 2( 2 (C(( 2 ) - ý )d(ds. (4.16)
o -oo

We note here that the inner integration involves taking the second and fourth moments

of a Gaussian distribution which we will express as G 2 and G4 , respectively, according

to the following:

G > xn exp - ] dx. (4.17)G. a -o o°  2-a2

With a distribution of the form given in Eq.(4.17), we find G2 = a2, and G4 = 3a 4.

With these moments, the double integral in Eq.(4.13) simplifies to

I = -i ei 3 (1 + is) - 5 / 2  ( + 3)(1 +- is) - 3/2 ds. (4.18)

The Fourier-like integral in Eq.(4.18) may be expanded by integrating by parts. In-

tegrating the first term on the RHS of Eq.(4.18), we find

-i e?8 (1 + is)-~/2ds = - [e0s(1 +is() 5/ 2]0_ i e(1 + is)-7/2ds

= :-1 i1 eizs(1 + is)-7/2ds.
2 4 o

We note that each integration by parts produces an additional prefactor ý in front



of the integral remainder. Thus, for E < 1, the integral remainders diminish with

increasing powers of ý. If we then integrate Eq.(4.18) by parts and ignore terms of

higher order than E2 , we obtain

1 90E 2  3 2
I1+2• 3 8 Y- 2 (4.19)

which is the same approximation we found with our naive expansion of the denomi-

nator in Eq.(4.14).

4.6 Verification of Integral Approximation

To check the validity of the approximation for I in Eq.(4.19), we numerically inte-

grated (4.12) in Mathematica for values of e and 6o in the range e E [10 - 3 , 1] and

io = retiO with r = 1 and 0 e (0, f). As shown in the following figures, the real

(Figure 4-4) and imaginary (Figure 4-5) parts of the resulting values of integration

via Mathematica are plotted against c as a solid line, and the real imaginary parts of

the values given by the approximation in Eq.(4.19) are plotted as a dashed line.

Real Part of Integral vs. e

Ca0-
a,10"

0 0.2 0.4 0.6 0.8 1
E

Figure 4-4: Real part of I plotted against c with Co = e6 . Solid line is value of
integral given in Eq.(4.11) determined by Mathematica code. Dashed line is value of
the approximation given in Eq.(4.19).



Imaginary Part of Integral vs. E
0

-2

-4

C. -6

-10

-12

_1A

Rib

-I

- Mathematica
* . - Approximation

0 0.2 0.4 0.6 0.8 1
E

Figure 4-5: Imaginary part of I plotted against c with Co = e6 . Solid line is value of
integral given in Eq.(4.11) determined by Mathematica code. Dashed line is value of
the approximation given in Eq.(4.19).

4.7 Approximation of Dispersion Relation

Using the approximation for .F0 given in Eq.(4.19), we approximate the dispersion

relation in Eq.(4.10) by the following septic equation:

(3 45 22 45
(1±+qe)&O - q0g ( 2qe2~ 2e)c+ (!-3qe) . 4 -q22c

= -(0.20)

where q = 2-. To examine the validity of the approximation, we compare the

trajectory of the solution to the septic equation against the trajectories in Figure 4-3.

A comparison over the range over the range E E [10 - 3 , 1] is shown in Figure 4-6.



Trajectories of Solutions in First Quadrant

o..

r-CO
.C:

E

0.58 0.585 0.59 0.595 0.6 0.605 0.61
Real Part

Figure 4-6: Plot of trajectory of solution to Eq.(4.10) determined with Mathematica
code compared with trajectory of solution to Eq.(4.20) determined by approximation.
Solutions plotted for k2 = 3 and c E [10 - 3, 1]. Arrow indicates direction of increasing
C.





Chapter 5

Conclusions

In summary, we have investigated the stability of micro-reconnecting modes by de-

riving the dispersion relation in both the fluid and kinetic theory. We found that the

results of kinetic theory simplify to the results of fluid theory in the appropriate limit

and that the dispersion relation permits unstable values of w. The further question of

whether these background microinstabilities give rise to macroscopic particle trans-

port remains open to investigation. Future work may also approximate the kinetic

integral in Eq.(4.2) by making use of Eq.(4.19) derived in section 4.5 for small values

of the fluid parameter.

5.1 Future Directions of Research

As we have identified the modes as unstable, we are left with the problem of justifying

their interaction with the drift-tearing mode. This problem has been investigated and

discussed in [7] and [4]. An immediate extensions of the work in this thesis involves

the anomalous transport mentioned in Chapter 1.

In quasilinear theory, linear instabilities give rise to particle transport when den-

sity and velocity perturbations are not in phase. The results of Chapter 4 show that

there are conditions in which the micro-reconnecting modes are linearly unstable.

One clear extension of the work in this thesis would be to use the approximation

in Eq.(4.20) to derive a quasilinear estimate of the flow. This value could then be



compared with experimentally measured rates of anomalous transport.
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