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Abstract

The recombination of hydrogen at z - 800 - 1800 induces distortions to the Cos-
mic Microwave Background (CMB) spectrum. We present a careful calculation and
analysis of all of the main transitions occuring during this period in order to find the
electron density throughout recombination and its dependence on each process.

Our original motivation was to analyze the effects that Thomson scattering and
resonance scattering will have on recombination. However, while working on the
project, we found that first we had to thoroughly account for all of the atomic tran-
sitions. We present a new method for solving the system of equations throughout
the period of recombination. This method allows us to show the effect of individual
processes on the total ionization fraction.
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Chapter 1

Introduction

A simplistic model of the Cosmic Microwave Background (CMB) has two parts. 1)

Early on, the photons, baryons and electrons were in thermal equilibrium in a hot

dense plasma. The universe expanded and eventually the photons cooled enough that

they could no longer keep hydrogen ionized. This process transforms the background

plasma to a mainly neutral gas. 2) Since this decoupling the photons have been trav-

eling unimpeded. These photons redshift to become the observed Cosmic Microwave

Background (Scott & Smoot, 2004) and the effects of recombination can be seen in

the observed properties of the CMB.

The basic physical picture for cosmological recombination has not changed since

the early work of Peebles (1968) and Zel'dovich, Kurt and Sunyaev (1968). Peebles

helped create a detailed understanding of the recombination process that is still one

of the most important papers in the field . As the universe cools, it becomes matter

dominated around z - 104. At T - 4000 K, the radiation is no longer able to

maintain a high enough level of ionization to combine p+ and e- to form neutral H.

While the ionization potential of H is 13.6 eV, which is equivalent to a temperature

of 150,000 K, the high-energy tail of the Planck function is still doing the ionization

when the peak energy of the blackbody spectrum is below 13.6 eV.

There have been several refinements introduced since then, motivated by the in-

creased emphasis on obtaining an accurate recombination history as part of the calcu-

lation of CMB anisotropies. There has been a stronger focus on the distortions of the



photon spectrum because of the large abundance of photons over baryons. Seager,

Sasselov & Scott (1999,2000) expanded Peebles' and Zel'dovich's work and made very

careful calculations of the effect of recombination on an atomic level. They showed

that since the ratio of photons to baryons is so high, certain atomic transitions can

distort the photon background which in turn can play a part in affecting the entire

recombination process. They presented a detailed calculation of the whole recombi-

nation process, with no assumption of equilibrium among the energy levels. We hope

to reproduce such a calculation with a new method for solving such that we can show

the effect of each process on recombination.

Theoretical work done on this subject is so exciting at present because of the

observational measurements taken recently. From the Far-Infrared Absolute Spec-

trophotometer measurements on the COBE satellite, Mather et al (1999) showed

that the CMB is well modelled by a 2.725 ± .001 K blackbody, and that any deviation

from this spectrum around the peak are less than 50 parts per million of the peak

brightness. This fact is not only important for our calculations, but also shows that

we are now in what many cosmologists call the era of precision cosmology.

Hence, we could safely expect the various distortions produced by theorizing a

multi-level atom or looking at various collisional processes will be measured in near-

future experiments. In fact, the PLANCK satellite, which has been designed to have

ten times better instantaneous sensitivity and more than fifty times the angular reso-

lution of COBE, should be able to pinpoint the effect of many of the main processes.

This means that a detailed understanding of the physics of recombination is cru-

cial for calculating the distortion. The aim of this paper is to calculate all of the

main hydrogen transitions during the era of recombination and show their effect on

the electron ionization fraction of the universe. In chapter 2, we present the basic

cosmology during the era of recombination as well as an overview of the transitions

we will be studying. In chapter 3, we will calculate the bound-bound and bound-free

processes and compare our findings to the Peebles paper. In chapter 4, we will present

our methods for solving the atomic rate equations and in chapter 5, we will show our

results. In chapter 6, we will discuss including Thomson and Resonance Scattering



into our equations and finally, we will present our conclusions in the last chapter.





Chapter 2

Basic Cosmology

2.1 Expansion of the Universe

Around z - 104,or a = 1/(1 + z) P 10- , the universe becomes matter dominated, as

we can see by the Hubble factor H - i/a

H (a) 2 = H0
2 (Maeqa - 4 + Ma - 3 + QKa- 2 + hA) (2.1)

All the numerical results are made using the ACDM model, as given in Seager

(1999), with parameters: H0 = 71 km/s/Mpc = 2.3 x 10- 1' s-1; 2B = 0.046;

QM = 0. 3 ; QA = 0. 7 ; QK = 0; aeq = 5.1 x 10-'; To = 2.725 K. Here a~eq is the

expansion factor when matter and radiation are of equal strength and To is the present

background temperature as discussed earlier.

Around z - 1000, the effect of the radiation density on the Hubble parameter is

about 10% of the effect of the matter density so, like in Peebles calculation, we could

approximate the universe as completely matter dominated.

Since later in the paper we will be comparing our transition rates against the

Hubble rates, it is useful to plot the Hubble rate for the range of redshifts we are

studying.

If the universe was complete ionized, the number density of electrons would depend
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Figure 2-1: We show the Hubble rate given by
a matter dominated universe. The full Hubble

Eqn. 2.1 as well as the rate assuming
rate is the higher curve.

on the redshift as

ne - nOH(1 + z) 3 (2.2)

where the number density of electrons today, nOH = 9.83fbh 2m - 3 = .2163 m- 3. To

run our simulations, we must begin before the electron fraction drops noticeably below

1, which starts to happen around z = 1800.

The dependance of the photon temperature on redshift follows

T, = 2.725 (1 + z) K. (2.3)

and the temperature of matter is coupled to the photon temperature as

dTm 8U ne(1+ z) d T e (TM - Tt) + 2TM
dz 3H(z)mecne + n H + nHe

(2.4)

where U = aRTA, aR is the radiation constant and uT is the Thompson scattering

cross section. For our calculations, we ignore the difference between the temperature

-12
IU

lu

1n
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of matter and radiation and assume the matter temperature equals that of radiation.

2.2 Summary of All Interactions

The protons and electrons are bathed in a radiation in which there are 109 more

photons than baryons. The background radiation can be modelled fairly well by a

blackbody,
1

f(E, t) = fo (E/Ty) eE/ kT1 (2.5)
eE/T,y - 1

If there are distortions to the blackbody, we can rewrite f(E, t) as

f (E,t) = fo ( E1 A)(2.6)T-f (1 + A)

where A = A(E, t). We can find the total distortion to the blackbody by looking at

all of the processes taking place

df df =df N + df df df df df
dt dE dt dt dt dt (dt dZ + rs d f bb

where SZ: Sunyaev-Zel'dovich. rs: resonance scattering, if: free-free bf: bound-

free(photoionization). fb:free-bound(recombination). In Peebles calculations, he mainly

looks at bound-free and free-free processes in his approximation.

We will first look at the bound-bound, bound-free and free-bound processes. While

doing so, we will assume a perfect blackbody. After doing so, we will look at the

remaining processes including the Sunyaev-Zel'dovich effect and resonance scattering,

and discuss the effect they have.





Chapter 3

Bound-Bound and Bound Free

Transitions

3.1 Overview

The bound-bound, bound-free, and free-bound transitions that we will be calculating

can be summarized as:

1. Bound-bound transitions

* Permitted (e.g. 2p *- ls + 7)

* Forbidden (e.g 2s -+ ls + -1 + -Y2)

* Collisional (e.g. 2p +-+ 2s)

2. Bound-free transitions

e Recombination (p + e - (n, 1) + y)

* Photoionization to ((n, 1) + Y -- p + e)



3.2 Bound-Bound Permitted

3.2.1 Selection Rules

A hydrogen atom can only make a spontaneous transition from an energy state corre-

sponding to the quantum numbers n', 1', m' if the modulus squared of the associated

dipole moment is nonzero,

d2 = I(n, 1, m IexI n', i', m')12 + I(n, 1, m leyl n', ,', M) 2 + I(n, 1, m jezJ n', ', m')12 (3.1)

The spontaneous transitions between different energy levels of a hydrogen atom are

only possible provided

1'=1+l, (3.2)

m' =m, m 1 (3.3)

These are termed the selection rules for electric dipole transitions. For example, using

the wave-function of hydrogen in the 2p state and is state,

27

(1, 0,0 xi 2, 1, +1) = ao (3.4)
27

(1, 0, 0 1y 2 , 1, +l) = i 2ao (3.5)

27
(1, 0, 0 zl 2, 1,0) = V2- ao (3.6)

35

where a0 is the Bohr radius. All of the other possible 2P --+ 1S matrix elements are

zero because of the selection rules. The modulus squared of the dipole moment for

the 2P -- 1S transition takes the same value:

215
d2 =21 (eao )2  (3.7)310

for m = 0, 1, -1. The transition rate is independent of the quantum number m so

we should expect equal amounts of transitions to the m = 0, 1, -1 states. We can



apply the lesson that the transition rate is independent of m to all of our permitted

bound-bound transitions

3.2.2 Bound-Bound Absorption

Bound-bound absorption is the process wherein an electron is pumped to an excited

state by the absorption of a photon of appropriate energy. The 1 photon reaction we

will be studying is:

-y + (n, 1) -+ (n', 1') (3.8)

The likelihood of this happening must be proportional to the number of photons

available at the appropriate frequency. The rate per target multiplets is equal to the

flux multiplied by the cross section. The flux should have units of #cm-2s8- 1 and the

cross section should have units of cm 2

The photon number flux is given by

IL
cf p = -dvdQ, (3.9)

hv

where
1 1

f = e v + (3.10)
he 

-T ý(l+ 1

Since p = hv/c and d3p - p 2dpdQ,

1 v2cfd3p = h -dvd (3.11)

ek T(1+A) - 1 c2

We will have to be multiply the photon number flux by 2 because f denotes the

phase space distribution for each spin or polarization state.

There is a distribution of frequency values for which a photon can induce the

transition, with an associated probability distribution that can be plotted as a line

profile, which itself integrates to one.

O (v) dv = 1 (3.12)



Table 3.1: Oscillator strength f,,,

Initial level m:
Final Level: n

1
m=l(Lyman) m=2(Balmer)

-0.104
0.416
0.079
0.029
0.014
0.008

0.637
0.119
0.044
0.022

m=3(Paschen)
-0.0087
-0.284

0.841
0.151
0.056

The cross section is then:
e2a ( 4) 0 fosc ()4,Eomec (3.13)

where fose is the oscillator strenth. 2  has units of m 2 /s, k (v) has units of s so

the entire cross section has units of m2. This will then mean the flux multiplied by

the cross section has units of 1/s.

fm, can be approximated by following useful formula given in Omidvar and McAl-

lister, 1995,
26 1

F(m, n) (3.14)

where

F(m,n) = 1 - .17286 m21
• -. 0165 +A B - 4/ 3

m4/ 3
1 AB-2C

175 m 2 + O(1/m8/3 )

and A = 1 + 2, B = 1 -a 2
7 C = 3 - 4 2 + 3a 4, 

7 a = m/n. fmn is then given in

the following table, which agrees to within .5% of the values posted by Menzel and

Pekeris, 1935.

Finally the rate per target multiplet:

1 2 2
Rate = 2 E 1 e2 fsc, (v) d(vudQ

ekTy(+A) - 1 c 4comc
(3.16)

(3.15)



If we assume ¢ (v) acts as 6 (v) then we have a rate of:

1 v2  e2
Rate = 87r E c0km *c (3.17)

e k T
-y(

+ A )  
C2 1 40MeC

3.2.3 Bound-Bound Emission

For 1-photon Bound-Bound emission, there are spontaneous and stimulated transi-

tions.

Spontaneous: (n', 1') --+ (n, 1) + -y

Spontaneous emission is the process wherein an electron in an excited state sponta-

neously de-excites and emits a photon. Einstein used the principle of detailed balance

(i.e., as many absorptions as emission), with assumptions about the transitions and

comparison with the Planck law, to derive relations between the emission and ab-

sorption rates with time.

Anm is the transition probability per unit time for spontaneous emission. Anm is

given in the equation:

gnmAnm- 2h 3 e fnm (3.18)
c2 \0omechv

1-photon bound-bound emission produces line profile ¢ (v). The rate of photons

with freq. in v + dv is Anqm (L) dv x nmp where nmp is the number of atoms in the

upper level.

Stimulated: When Einstein equated the above absorption and emission pro-

cesses, he could not derive a form for the emission consistent with the Planck Law.

To do this, he had to add an additional term which accounted for emission processes

that were stimulated by interaction with a photon.

B 21J =The transition probability per unit time for stimulated emission. where

J = I1,f (v) dv (3.19)

and J, = f IdQ/ (4x). As discussed earlier, for very narrow line profiles, J - J,.



To derive the Einstein relations, we will use the first and second states and all the

terms for emission and absorption and put them into an expression which equates the

emission and absorption processes (i.e. Kirchoff's Law):

n =B12J n2A21 + n2B 21J (3.20)

Re-arranging these to solve for the emission intensity, J-bar gives:

A21
j B2S= B21 (3.21)

B2B21 ek 
1

Now this equation has the same form as Planck's Law. Equating them yields the

Einstein Relations:

gB12= g2B 2 1  (3.22)
2hi 3

A 21 = B 2 1  (3.23)

These equations relate microscopic inverse processes under equilibrium and are

also known as the "Detailed Balance Relations". Principle of Detailed Balance: In

equilibrium, the rate of every process equals the rate of the corresponding inverse

process.

Using the Einstein relation between A 21 and B21, to obtain B21 from A21 we

multiply the spontaneous rate by n (v) where n (v) is the number density of the

photons (not a blackbody).

Rate of photons => spontaneous + stimulated is then

Rate8 p,st = n 2A 21k (v) dv (1 + nY) (3.24)

so if we assume q (v) acts like a delta function,

Rnm = Anm(1 + n,). (3.25)



Table 3.2: Rate coefficient Amn(s - 1)

Initial level m:
Final Level: n m = 1(Lyman) m = 2(Balmer) m = 3(Paschen)

1
2 4.67 x 108
3 5.54 x 107 4.39 x 107
4 1.27 x 107 8.37 x 106 8.94 x 106
5 4.10 x 106 2.52 x 106 2.19 x 106

6 1.64 x 106 9.68 x 105 7.74 x 105

Amn = n e (7mn) mn (3.26)
gm C3 ) -o\ nm e )

where Umn is the frequency of the transition.

We can see a table of Anm for levels n = 1 to n = 6. This table shows the rates

going from atomic level to another, without an I dependence. Our calculations include

the 1 dependence.

Let us remember now that n, is dependent on the frequency and allows for a

deviation from the blackbody:

)(v, t) = ehvkT(1+A) - 1, A = A(v, t) (3.27)

To make our expression we simpler, we let

Amn = K gn (1/n 2 - 1/m 2)2 fmn (3.28)
9m

where K 3= C71') and v, is the frequency of the ground state energy level transi-\c
3 

EomeI/

tion to the continuum.

For the case of A21, 91 = 2, g2 = 6 and therefore

9 3
A2 1 = K x 1/3 x - x f21 = -Kf 21  (3.29)

16 16
3

R2p1s - 6 Kf 2 (1 + ny)n2p (3.30)

Now, f2 21, SO 16 therefore, comparing 12 to A21 we agree with the Einstein

Now, f12 = - f2j, so therefore, comparing B 12 to A21 we agree with the Einstein



relation

A 21  
2 h V  

12
gj c2

and we can express

A21n, = K•/ f21nlsny

where K and n, are given above.

We can check this by using detailed balance in equilibrium:

K(1+ n)n2p21 = -KJ21nln16216 1n, (3.33)

In equilibrium, n = and "= e- , n2p/n1s = 3e -x, and using these two

relations, this expression holds.

Therefore, for the lyman-alpha transitions, the total rate we have is:

RLymana = 3
+ 3K(1

16
+ nw)f 2ln 2p

- _K J21nKnll (3.34)

where K = v3 (2 e .C eomec

3.2.4 Peebles Assumptions

The total rate of states per time and volume changing due to bound-bound emission

is given by

ARm17, 1s = Amp,1is(1 + n)y)nml. (3.35)

Peebles(Eq. 19) states that

nml = n28(21 + 1)e- (E2- Em)/kT

nmi n2,21+(3.36)

where 1 = 1 for all p orbitals, B2 = 3.4 eV, and Bm is the binding energy of hydrogen

in the mth principal quantum number. In this picture, only the population of the

ground state of the atom is out of equilibrium with all other bound states. We should

(3.31)

(3.32)
A

Rls,2p - 2
g1

,,,_ n



note now that while we will not be using this expression, it will allow us to check our

results. Remembering 3.28, we can check the transition rate for each p state of the

hydrogen levels to the ls state, for k > 2,

Rmp,js = K(1 - 1/m 2)2fml x e-(E2-Em)/kT(1 + n.)n 28  (3-37)

From the transition rate given by Eq. 3.28

Ris,mp = grAminynis = K(1 - 1/m 2) 2fminynls (3.38)gi

Therefore the total rate of ls +- mp is:

R = K(1 - 1/m 2)2fml (e-(E2-Em)/kT(1 + ny)n 28 - n81nS) (3.39)

Let's check this using detailed balance

e-(E2-Em)/kT(I + nry)n2s = nn (3.40)

Now n./(1 + n,) = e- (E2- Em)/kT SO if n18 = n 28 in equilibrium then this expression

holds true.

For our calculations, we will be using Eqn. 3.17 for bound-bound absorption and

Eqn. 3.18 for bound-bound emission. We will be able to check our state populations

with the Peeble approximations.

3.3 Bound-Bound Forbidden

The equation for two photon decay, 2s l is + 71 + y72, is given by

Hs AH Hs). (3.41)R2ss = AH

where AH = 8.23s - 1. While this rate is much slower than the Lyman-alpha rate,

Peebles states that it is the two-photon rate that is the dominant rate during recom-



Table 3.3: Gaunt factor gbf

Level: n,l J is n2s n2p n3s n3p n3d n4,s n4p n4d n4f

gbf .7973 .9346 .8567 .1062 .1098 .7626 .1179 .1246 .1131 .6034

bination. Here we are neglecting two-photon absorption.

3.4 Photoionization and Direct Recombination

The Photoionization cross section is given by:

647r 9f (P)
ap = (aEMa2)W 003 (3.42)

where a = .529 x 10- 10 m, OEM = 1/137.04, hvo = 13.6 eV and gbf is the bound-free

gaunt factor given in the following table.

The gaunt factor has a v dependence so it should not be constant but we took the

values at ionization threshold, which should be a valid approximation. These values

were taken from Karzas and Latter, 1961. The rate for photoionization is then

o= 4 J ( v)
Rp =u apdv

87r 647r gbf (V.)3 n
- (aEMa ) 6 54 ( 3 dv (3.43)

C 33 n IV. V

For photoionization from 2s or 2p, hvoo = 3.4 eV. In figure 3-1, we show photoioniza-

tion rates for the lower atomic levels during recombination.

The recombination rate is given by

Ris = ainrnp (3.44)

We can use the Milne relation (Peebles, 1993) that

Jor 2p 2 2h2W2- _ 2p 2h2w2  (3.45)
Up p C2 2

30



Photolonization Coefficients

C-

0n

I-0)

-30

3oo
800 1000 1200 1400 1600 1800

Figure 3-1: We show the photoionization rates for ni, (bottom), n 2 , and n2p (top).
The rates for n2 , and n2p are extremely close, while nl, drops off significantly, past
the Hubble rate (shown by 'x').

to find the recombination coefficient a which is the product of the electron capture

cross section and the electron velocity, averaged over a thermal distribution (Peebles,

1993).

= (2/4+ 1)1 4 d-p2dpe-/2mkT p 2h 2W2 
2 1W3 (3.46)

(21rmkT)3/2 M c2p2  w3

The first factor here is the normalized probability distribution in the electron mo-

mentum. The photon energy is simply the sum of the electron kinetic energy and the

hydrogen atom binding energy Xi/n 2 such that hw = p 2 /2m + X, and X1 = 13.6eV.

So finally,
87rX 3 exl/(kTn

2) 0 dx -
a = (21 + 1) 2rT / , e-X

(27rmkT)3/2C2 fx/(kTn2) X (3.47)

If X1 is large compared to kT, the integral can be reasonable well approximated

by e-x/x.
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This would give, for the ground state,

87raph3kT

(27rmkT)3/2c2X1

2.07 x 10- 13cm 3 s1
= T1/2cm's

- I

T1/2

where T = 104T4 K. Peebles used this approximation in his calculations. He did not

include the bound-free gaunt factor and we should note that at T = 10000 K, this

expression has an accuracy within five percent. Also, it includes only recombinations

to the ground state. From detailed balance, if we are in equilibrium, we have:

S87rP= 1 o nBB(v)dv x nl, (3.48)
C -p V nenp

Peebles also refers to the recombination coefficients from "Radiative Recombina-

tion Coefficients of the Hydrogen Atom", by W.J. Boardman (1964). Boardman only

gives four values for recombination coefficients in our temperature range of interest

to interpolate for each atomic level. We also found one more temperature value from

Osterbrock, 1992, that matches the first three temperature values. These values are

at T = 1000 K, T = 3000 K, T = 5000 K, and T = 10000 K. We fit a cubic solution

to each set of four points. We plot our values as well as Boardman's in Figure 3-2.

We can see that the two sets of values match up very nicely, with at most a 5% error.

3.5 Collisional Transitions

In "On the Effect of Collisional Transitions on the Cosmological Hydrogen Recom-

bination Spectrum", Burgin, Kauts, and Shakhvorostova (2006) study the effect of

collisional 2s +-+ 2p transitions on the populations of the 2s and 2p states at the cos-

mological hydrogen recombination epoch and on the intensity of the recombination

Ha line. They show that the relative change in the cosmological Ha line intensity due

to collisional transitions does not exceed 10- . We will be able to test this conclusion.
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Burgin assumes a purely hydrogen plasma that recombines in a thermal radiation

field. The plasma kinetic temperature and the radiation temperature are assumed

to be equal, an assumption that we also hold. They find the collisional transition

rate coefficients from previous studies that calculate the transition probability when

an isolated hydrogen atom in the 2s state collided with a charged particle in the

straight-path approximation. The probability that the 2s -+ 2p transition will occur

was calculated in a quantum mechanical way.

They find that

1.81 x 10- 4

R2s,2p -1.81 x (ln(T) + 2.83) cm 3s - 1 x n~e (3.49)

and from detailed balance

1.81 x 10- 4

R2p,2s= 3 x (ln(T) + 2.83) cm3s - 1 x nTe (3.50)

3.6 Overall Equations

We show now the overall equations we will use for certain states. Compiling the

equations for each state is necessary for solving the system of equations with our

method.

* Overall equation for 1s.

dn

d- • Akl,ls(±l "ny)nkgkl
-- Z- A-k,lsnr il-nl8

g1 s
+ AHn2s

+ clsnenp

- Rpn1 s

- 3Hnj,



The rates for each line of the equation at T = 3000K above are: 108 s- 1,

10-10 s - 1, 8 s- 1, 10-13 s- 1, 10-15s - 1, 10-15s - 1.

* Overall equation for n 28.

dt= + ZAkl,28(1+ ny)nkl

- E Akl, 2 8nr gk n2
g2s

- AHn 28

+ a2snenp

- Rpn2 s

+ R2p,2sn2p

- R2s,2pn2s

- 3Hn28

* Overall equation for np

dnp
= - E aklnenpdt

+ ERpkrnkI

- 3Hnp

These are the overall equations for three states. Of course, there are many more

states, and we will have to collect equations in a similar fashion for all of them. The

majority of our states will have permitted bound-bound absorption, emission as well

as photoionization and recombination.

3.7 Rate Equations from Wong, Seager,Scott

We can compare our equations to those presented in the paper Spectral distortions to

the Cosmic Microwave Background from the recombination of hydrogen and helium,

by Wong, Seager, and Scott.



They present a system of four differential equations.

(1 + z)dn =(z) 1 [AR -s _ +
dz H(z)[APl s Is]+ 3ni

dnH(z) 1
(1+ z) - -2[InenfH Hs-n H

dz H (z)H

-AR2Hpis - s1s] + 3n2l;

dne(z) _ 1 r(1 -- z)d I nHs H  _neap H] + 3Ue;dz H (z)I
(1 + z)dp(Z) 1 H3H HnezpaH + 3n.dz H (Z) nsI *

(3.51)

(3.52)

(3.53)

(3.54)

Here the values of ni are the number density of the ith state, where ne and np are the

number density of electrons and protons respectively. ARj is the net bound-bound

rate between state i and j and the detailed form of ARHp and R- will be

discussed in the next subsection.

AR2Hpls is the net rate of photon production between the 2p and ls levels, i.e.

ARHp-ls = P12 (Hp R21 - nH 12) (3.55)

Here ni is the number density of hydrogen atoms having electrons in state i, the

upward and downward transition rates are

R 12  B12J,

and R 2 1 = A21+B21),

(3.56)

(3.57)

with A 21, B 12 and B 21 being the Einstein coefficients and P12 the Sobolev escape prob-

ability, which accounts for the redshifting of the Ly ca photons due to the expansion

of the Universe.

The only real difference between how we compute the n2p +-+ ns transition is their

Sobolev escape probability.



This Sobolev escape probability should not play that much of a difference. At

z = 1800, the probability is .998, so it has a negligible effect, and drops down to .002

at z = 1200. However, while this will make the rate A2 1 smaller, it is still so high

(10' s- 1) compared to the rates, that the overall effect will not be diminished.

They assume a blackbody and include the difference between matter temperature

and photon temperature, as given in Eq. (2.4). Seager states that this addition will

only begin to have an effect at small redshifts. The hubble rate given, 3H is included

within our rate equations.

In figure 3.7, we can see the results of the program RECFAST, which is a fortran

code based on Seager et. al's method.

Ionization Fraction from Recfast
U
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Figure 3-3: We show the ionization fraction xe with redshift produced by RECFAST.

Wong, Seager and Scott, however, do not include many of the processes that we

include. They only have photoionization from the n2, state and state that recombi-

nation only affects the n 2s state, because of a boltzmann distribution with the other

states. They do not include any atomic levels past n = 2 but make up for that using a

Case B recombination coefficient. Also, they do not include the n2p - n2, collisions.

While several of their approximations hold just as well as our approach, our
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method allows us to understand the effects of the individual processes. We will

also be able to test their various approximations.

It is worth mentioning now that there are certain processes that neither these

authors or we are looking at. We are not looking at two photon emission or absorption

from 3s, 4s, 5s ... . 2s.

Also, we are not looking at free-free processes, and the only collisional process we

are looking at is the one between 2s and 2p.

We are now ready to discuss our method for solving the system of rate equations.



Chapter 4

Solving the Atomic Rate Equations

To understand how to solve the atomic rate equations, let us first look at a system

with only the lyman-alpha transition,

dnj, = -4-A n - B n

dn2p
= -A 21n2p + B 12n1 8. (4.1)

This system has the general form,

dx -Ax+ By
=t xDy

41= Cx - Dy
dt (4.2)

which we can convert to

x )
Y/)

0)
- )

x,)
yf (4.3)

In many of our rate equations, the rate in one direction is much faster than the

other. In the lyman-alpha transition, the emission rate is a factor of 1/n-, greater

than the absorption rate.

xl X'(O)e-(Q-f3) 0
y'(O) (4.4)

12 2p 
12 1s



While Peebles assumes that there is thermal equilibrium, that one of the tran-

sitions is rapid, and that the photon spectrum is a blackbody, we will only assume

that the process is rapid and not there there is thermal equilibrium. Eliminating one

variable from our system of coefficients, we obtain the relationship between n2p/n18,

g2_p
glP n-Y(V21) n2p .921) _ 2 (4.5)

1 + n^ (V 2 1) n18

Similarly, if Lyman-,3 is very rapid,

g93p n 0( 1) n3p
- -- (4.6)

1 + ny(, 31) nli,

and therefore
n3_p n-(v 31) 1+ n,(v 21) (47)
n2p I + ny(v31) n (v21)

We can use this approximation instead of Peebles' approximations, and can check

Peebles by assuming nw = (ehu / kT- 1) - 1 .

Now, any process that goes fast will cause an equilibrium, however, the pairs must

go fast compared to the Hubble time. If they do not, there will be a disparity. We

see that past certain redshifts, the absorption rate is below the Hubble rate while the

emission rate is still well above it.

We must note also that the blackbody gives an understimate of the rate. If the

rate is fast with a blackbody then for sure it will be fast with more photons.

Our general strategy is to make a matrix of all of our atomic levels, and to compare

our fast processes with our slow processes. Certain processes might start out being

rapid, but since the # of photons goes down, the rates will decrease. We will leave

n', constant during one time step. Once we diagonalize, we will make the fast ones

go to equilibrium, and only retain small ones. In future work, we will need to treat

the photons as their own separate equations and employ the Kompaneets equation.

The Kompaneets equation will constantly take photons in and out of bins. We will

also then still need Thomson scattering, which should fix the photon spectrum and

could wash out spectral features.



The first step is then to make a matrix, C, containing all of the transition rates.

It will include all of the bound-bound, bound-free and free-bound transitions. We

will let A,, be the decay rate per upper atom including stimulated emission and B1 ,

be the absorption rate per lower atom including photon abundance. A,, and B1 , have

units of s - 1. Let ,3 photoionization rate per atom in state i; aine is the recombination

rate per proton to state i;

The matrix should be formed such that the matrix element Cj should hold the

transition rate producing state i from state j. For example, if we are looking at a

matrix with only np, ni, and n2p , we should have the following entries for C.

-onj, ne - On2p ne n1ns 1n2p

ans,,ne -Bls,2p - On,. A2p,1s

n2psne Bls,2p -A2p,ls - On2p

The first row and column correspond to np, the second row and column correspond

to nj, and the last to n2p. This matrix has the important property that all of the

elements in each column add up to 0. This signifies that the total number of protons

is conserved. If the rows, or columns, are linearly dependent, then the determinant

is 0. This means the matrix should have at least one eigenvalue equal to 0.

We will make this C matrix but with a more complete account of the atomic levels.

We will let N be a column vector whose entries (No, N1 , N 2 , N 3 ,...) are the number

densities of hydrogen nuclei in all forms, No =np p, N 1 = nl, N 2 = n 2 , N 3 = n2p,

etc. In practice, the vector is truncated to some finite length 1 + inmax (nmax + 1) by

including only states with principal quantum number up to nmax. Including all atomic

processes (bound-bound and bound-free), this vector evolves with time according to

(a3N) + a3CN = 0 (4.8)dt

where C(t) is a matrix. Conservation of protons implies EZ Cij = 0, i.e. adding the

rows of C gives zero. Note that Ci, = aine, the recombination rate to state i, is

proportional to ne = ny. Thus Eqn. 4.8 is nonlinear. However, this nonlinearity



presents no diffuculties for the solution method that follows. The rates also depend

on the photon occupation number, which must be separately specified. If the pho-

ton distribution is a blackbody, then the temperature T(t) must be specified. Either

way, Eqn. 4.8 must be integrated together with equations for other relevant quanti-

ties. Although the matrix C is not symmetric, it can be diagonalized by similarity

transformation

C = -SAS - 1 a3N = SN, (4.9)

where

A -- diagonal(0, AA, A2 , A3 ,...), 0 < R(Al1) R(A2) 5 1(A1) 5 ... , (4.10)

If S is unitary, then the eigenvalues should be real, but S is not unitary. We

have to make sure mathematica, the program we will be solving our system with,

allows for complex values. In practice, we found that while mathematica is able to

find complex eigenvalues, all eigenvalues of S are real, so this is not a problem. As

discussed before, there is always a zero mode, i.e., an eigenvector with eigenvalue 0,

because C is a singular matrix. In practice, there is only one zero mode and the

other eigenvalues are all real and negative (i.e. the evolution is damped and non-

oscillatory). Using Ei Ek CikSkj, it follow that E2 Sij = 0 for j = 0. We are free to

normalize the zero mode by E> Sio = 1. so that the zero-mode amplitude

No = a EN•N = nOH (4.11)
i

is conserved and equals the mean number density of hydrogen nuclei in all forms

today. We normalize all other eigenvectors by the condition

Soi = 1 for i #= 0 (4.12)

Substituting Eqn. 4.9 into Eqn. 4.8 gives

dN dS
dt + (A + R)N = O, R S - d (4.13)

dt dt



In practice, RPj - H, i.e. the eigenvectors of C change with a characterisitc

timescale of the Hubble time (the timescale for the photon and electron densities to

change). On the other hand, A-1 is typical of an atomic timescale, which for most or

all nonzero eigenvalues is orders of magnitude shorter than the Hubble time. Thus, all

fast modes quickly equilibrate with N•/noH - H/As < 1. In practice, for cosmological

recombination at most one mode is slow to equilibrate, i.e. H/A% < 1 for i > 1. In

this case, we can neglect NA for i > 1 and follow only one mode, 9 1, in addition to

the zero-mode. Eqn. 4.13 gives

dN1dt + (A1R1 1)Nl = -R 10ioN 0 . (4.14)

The formal solution of this equation, with initial conditions at to, is

N1 (t) = Ni e- (to,t) -_ t Rio(t')e-(t',t)dt'. (4.15)it0

where

p(to, t) = [A (t') + R 11 (t')] dt'. (4.16)

Eqn. 4.15 cannot be used without additional effort because the recombination rates

Cio, and therefore the rates Rio and R11, depend on n, = nr hence on a =

SloNo + SiN1 . The equation is therefore a nonlinear integral equation. It is solved

most easily by iteration.

1. Start at a sufficiently high temperature so that it is safe to assume Ni1 = 0

(check H/A1 < 1) and Sio = 0 for i > 0, hence Soo = 1. We begin our calculations at

z = 2000, where H/A - 10-18. We run our simulation all the way to z = 500.

2. At time t, solve for nTe, using a3n. = SoonOH + N1. Using this nTe and the appropriate

photon distribution, evaluate the matrix Cj, its eigenvalues and eigenvectors. The

results will be Soo # 1. Substitute back into a3ne = SoonOH + N 1 with fixed N1 (t) and

iterate to convergence. The result will give the eigenvectors Sij (t) and eigenvalues

Ai(t). Compute the inverse matrix (S-1)j.

3. Take a small timestep At so that a and the temperature change. With N9 held



constant, repeat step 2 to obtain the eigenvectors and eigenvalues at time t + At.

From these, estimate Rio and Rll at time t + !At using1 -

Ri l [(S-')1k(t) + (S-)1k(t + At)][Skj(t + At) - SkJ(t)]. (4.17)

(Note that the sum over k starts at k = 0.) We use a time step of z = 5 converted to

seconds by the Hubble time.

4. Use equation for one timestep to get a new estimate for N1 (t + At):

NVoRjo

Ni(t + At) = Ni(t)e-" - (A + Ril )(1 - e-"), pt = (A1 + Ri)At, (4.18)

where A1 is given by averaging A,(t) and Al(t + At) obtained from steps 2 and 3,

respectively. With the procedure it is safe to take a stepsize large enough that p > 1

as long as A1 + Rn11 and Ro10 change very little during the timestep.

5. Using this new estimate for Ni (t + At), repeat steps 3 and 4. Iterate them until

Ni(t + At) converges. Save A•1 (t+At), Sij(t + At) and Si-1 (t+At); they can overwrite

the previously stored values A1 (t), Sij (t) and Sjkl (t).

6. Increment At and repeat steps 3-5. Continue through recombiantion.

The one level atom is instructive. With only one bound state, there is a single

recombination rate e and photoionization rate /3. Simple calculations give

dp
A, = an +, Rio = ~-( ), Ril = 0. (4.19)

dt ane +/3

The solution depends on the interplay of three rates: an,, /3, and H. At high

redshift, B is the fastest rate leading to x, = a np/noH 1. As the temperate drops,

ane becomes the fastest rate and x, drops. Eventually H becomes the fastest rate

and x, freezes out at value around 10- 3. It is in this last stage that N1 plays a crucial

role. If only the zero mode is used, xP decreases steadily instead of levelling off.



Chapter

Results

5.1 Overall Results

Ionization Fraction for our Results and Recfast
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Figure 5-1:
line). Both
around z =

Our results (solid line) compared to the results of RECFAST (dashed
plots show similar features: a break away from a fully ionized universe
1500 and a levelling off around z = 800.

In figure 5.1, we see our final result for Xe compared with the result of RECFAST.

We notice that for both results, the ionization fractions begin to break away from

2000



1, or a fully ionized universe, around z = 1500. Our results show that the electron

density drops very quickly and will recombine to form n,18 . There is a large disparity

between our results and RECFAST, though. Our results seem to show that the effect

of recombination is much stronger than RECFAST says it is. While we are not sure

of the cause of this discrepancy, we can still proceed to analyze our results and in

the meantime try to understand what the effects of our method are versus those of

RECFAST.

5.2 Our method

The idea behind our iterative method is that we need not worry about modes that

are much more rapid than the Hubble time. This factor can be expressed as A/H.

Each eigenvalue corresponds to a certain eigenvector, or mode, and if the eigenvalues

are very fast, the corresponding process will go to equilibrium. In figure 5.2, we can

see A1/H and A2/H from our C matrix. We notice that A2/H never drops below

1015 , while A1/H drops below 1 at z - 1000. When this happens, the effect of the

addition of the one mode should kick in. Since A2 is not small, and our eigenvalues

are ordered, we can understand that only A0 and A1 are not rapid and are significant.

Since A1 is greater than 1 till z -. 1000, we should expect Xe when solving only

with the 0-mode and Xe when solving with the addition of the 1-mode to remain close

until z "- 1000. This is what we see, as can be seen in Fig. 5.2. Xe would continue

to decrease if it were not for the addition of the 1 mode. This addition causes the

ionization fraction to steady out and then level off by 10-6. Remembering Eqn. 4.18,

we can understand this level at 10-6 because eventually as Soo drops low enough,

then N1 > SOOnOH and N1 itself reaches about 10-13 or 10-6 x nOH.

While the 1-mode is very important, the 0-mode still gives us some very crucial

lessons about the populations of the various states. Fig. 5.2 shows Soo, S10, S20 and

S30 . Each one of these elements is a fraction of the total 0-mode proton population.

We can see that Soo, corresponding to np,, and So10, corresponding to n1,, make up the
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bulk of the proton population. At z - 1300, ni, grows larger than np. Interestingly,

it is around this point that n2s and n2p are greatest. We also should note that nis, n2s

and n2p all follow Peebles equilibrium assumption, given in Eqn. 3.36, very closely.

0-mode Fractions
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Figure 5-4: We see the 0-mode fractions for the states np (dashed), rnils(' x '), n2s
(lower solid line), n2p (higher solid line) corresponding to the S elements.

5.3 Understanding the effects of the various tran-

sitions

There are a couple ways we can understand the roles each transition plays during

recombination. First, we can run our simulation with and without various processes,

and second, we can compare different transition rates.

Let us first discuss the effect of changing our overall model of the atom. The

results thus far include are for an atom with 22 levels, from nj, all the way to n6f.

Now, we run our simulation with an atom that only goes up to n = 4. In Fig. 5.5,

shown by 'x', we see that the difference between Xe in this model and the 6-level model

reaches about a 4% difference at low redshift. Seager states that adding hundreds of
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levels makes about an overall difference of 10%, so we can generally agree with this

statement. We see though at higher redshifts, the difference is less than 1%, so until

z = 800, there is hardly a difference. We also observe a dip at z = 900. While there is

probably some reason for this, it is good to note now that there is a bit of inaccuracy

due to our convergence. The convergence of our xe values is 10-, so differences past

this value must be taken lightly. We plot two other models on Fig. 5.3. Shown by

the dashed line, we see the model assuming a case B recombination coefficient, or in

other words, not including the photoionization from, or the recombination to, the ls

state. We see that this has a 100% difference at z = 600 and fairly steadily climbs as

z descends. Peebles makes the assumption that one can use a case B recombination

coefficient, but this plot shows that at low redshift, there is a significant difference.

Lastly, by the solid line, we plot the model of the atom with no two photon decay

from n2s to ris. We see that the difference between this model and the model that

includes this transition is very small.

Difference between various models
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Figure 5-5: We show three different models of the atom. The
with an atomic level maximum at n = 4. The dashed line shows
no photoionization from, or recombination to, the ground state
assumes there is no two photon decay.

'x' shows a model
a model assuming
and the solid line
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To understand what are the significant factors in changing the ionization fraction,

we look at the rates of various processes. In Fig. 5.6, we see the photoionization rates

as well as the recombination rates as a result of our simulation. While the rates for

recombination and photoionization to the n,18 are very close, the photoionization rate

for n28 and n2p are much greater than the corresponding recombination rates. This

would mean that any protons that recombine to form n2p or n2, would be immediately

photoionized. However, there are other transitions that atom can make from the n = 2

states instead of photoionization. These transitions are spontaneous emission from

n2p and two photon decay from n2s~-

Photoionization and Recombination Coefficients

O'a-
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Figure 5-6: We show the recombination rates (dashed, with ni, at top, followed by
n2p then n2,), as well as the photoionization rates (solid), with n2p and n 28 together
at the top, and nl, at the bottom, as well as the Hubble rate.

Instead of comparing rates, let us now compare the rate of transitions per unit

volume, commonly called AR and in units of cm - 3. For example, for the spontaneous

emission from n 2p to n81, we will plot A 21 (1+nry)n2p. Therefore, this rate of transitions

will depend on the number of states to begin with. Let's focus on nj, since this level

ends up with all of the protons. Looking at a three-level effective atom, we have three



pairs of processes: photoionization/recombination, spontaneous emission/absorption

and two photon decay (we have no inverse process for two photon decay). First then,

let's plot the rate of transitions that cause nr, to grow and then we will plot the total

change of transitions between the inverse processes. We see this plot in Figure 5.7.

Transitions towards nls
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Figure 5-7: We show AR for recombination (denoted by 'x'),
from n2p (solid line) and two photon decay from n 2s (dashed).

spontaneous emission

We see that most of the transitions occur from spontaneous emission from n2p

and the number of these transitions are about 106 greater than the transitions from

n2s. However, of more importance is the process between the pairs. While the rate of

transitions from n2p is very fast, it could mean very little if the rate from nj, to n2p

is of equal magnitude. Therefore, we plot these three processes subtracted by their

inverse processes in Fig. 5.8.

We can see that there is no contribution from 2p -+ Is. This happens because the

two processes, A 21n2p and B 12nls reach equilibrium with each other and cancel each

other out. This means that both of these rates must always be fast compared to the

Hubble rate. We can see how this is true. A 21 is of the order of 10-8 and while nY, the

main factor of B 12 , reaches 10- 20 at low temperatures, B 12 will still be fast compared
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Figure 5-8: We show the magnitude of the process and its inverse for Photoioniza-
tion/Rec. (dashed), 2s +-+ ls (solid) and 2p +-+ ls (not seen, since it is zero).

to the Hubble time because it is basically A 21n,. This way of looking at the processes

may not always be right since we are multiplying the rate by the 0-mode population.

The 0-mode population is not the exact population of all the states, and if we did use

the whole population, we could see that this process falls out of equilibrium.

The two processes that we can clearly see have an effect are the recombina-

tion/photoionization as well as the two photon decay. We see that two photon decay

has always a smaller effect than the greater amount of recombination than photoion-

ization. This explains why when we took out two photon decay from our simulation,

we only saw an error of 10- 4. This does not explain though why we don't see even

more of an error when we use the Case B recombination coefficient. If recombination

and photoionization to the ground state is important, then we should expect more of

a difference (that being said, the difference did reach 100% at low redshift).

The underlying question we really want to answer is what are the main players

that affect xe. If we take out recombination to the ground state, then the only way

to reach the ground state is from two photon decay or from the downward transition



of a p state. We can see that if this was true, the two photon decay would be the

primary rate, which agrees with Peebles thinking.

We now return to the question of where we differ from RECFAST. Both Peebles

and Seager state that two photon decay is the dominant rate because the lyman

transitions go to equilibrium. We find that it is actually the recombination rate to

the ground state that dominates. What does not make sense about this though is

that when we take away this recombination, there is not that much of a difference.

There must be some process at work, whether it is a problem in the routine or what

not, that causes xe to drop so quickly and therefore this is why we are not really

seeing the effect of taking away two photon decay or recombination to the ground

state.





Chapter 6

Future Work

Our original motivation for this was to study scattering effects of the photon spectrum

on recombination. The two main processes that we would be looking at are Thomson

scattering and resonance scattering. Once we have settled the method described in

the focus of this paper, we will continue with our original goal.

6.0.1 The Sunyaev-Zel'dovich effect on the Frequency Spec-

trum

Our general method will be incorporating the various scattering effects into our cal-

culations of the atomic transitions. For each z, we solve the atomic rate equations

assuming a blackbody. This is an incorrect assumption. Certain processes will pro-

duce an abundancy of photons. For example, the two photon decay will produce

photons that are not reabsorbed in the opposite reaction. This will cause a distortion

to the blackbody. The blackbody, itself, will change due to the scattering effects.

The Sunyaev-Zel'dovich effect, as we see here, will effectively take photons in and

out of energy bins, thereby smoothing out the photon spectrum or causing further

distortions.

The Sunyaev-Zel'dovich effect can be expressed by the Kompaneets equation:(df 1 d df
nedf 1 d[ E4 f (1 + f) + kT- (6.1)dt sz mE2dE dE
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To understand the consequences of the Sunyaev-Zel'dovich effect, we will solve:

1 d
nleTmE 2 dE E 4 (f

Using x = kBT1+)kBTY(I+A)

1
f =eex -- 1

dfd= -f (1 + f)dx

and therefore:

dA E dA
dt a dE

(1 + A)2 n a T d

f (1 + f) mE 3 dE
E4f (1 + f) ( kT

Sk Te Ed 6.5)
(1 + A). (1 + A)2 dE)

For each time step, we will solve this equation, and use our new n, for all of our

rate equations.

df- HE d•dE (6.2)

(6.3)

(6.4)

(I+f)+kTdf)]



Chapter 7

Conclusions

In this paper, we carefully calculated the rates of various atomic transitions during

recombination. We looked at bound-bound transitions, bound-free transitions and

free-bound transitions. The difficulty in then solving all of these equations during

recombination is the disparity of rates in the equations. When one solves differential

equations, he must use a timescale equal to the fastest rate, but this rate is of the

order of 10' and will take a very long time to solve since we need to span Az = 1500.

Our method bypasses this problem by creating rate matrices and only accounting

for modes with a corresponding eigenvalue smaller than the Hubble time. We then

iterate our value of xe until convergence. Our results show what we should expect

from recombination. Around z = 1600 the universe is no longer fully ionized and x,

continues to drop until z = 800 or so. The reason we are able to see this levelling

off of xe is through the addition of the 1-mode. There is a large difference between,

though, between our results and the results of RECFAST. Our results show that

recombination produces a much steeper decline of xe than RECFAST does. We can

understand the effects of the individual processes by eliminating that process from

our simulation or look at the transition rates of the different processes. We used a

22-level atom (from ni, to n6 f) for our simulations and compared different scenarios

with the main one. We saw that taking away levels and only going to n = 4 changes

xe at low redshift by about 2%. We see that taking away two photon decay barely

has any effect and taking away ground state recombination/photoionization causes



a significant change at low redshift. We were able to look at the transition rates of

these processes to get a better idea of the effect each one is having. We saw that the

lyman-alpha transition goes to equilibrium whereas the two photon decay continually

produces n,18 states. We also saw that the difference between the recombination

transitions and photoionization transitions to the ground states remains significant

throughout recombination, and this could cause recombination to be much steeper

than Seager explained it to be. However, when we take away this recombination, we

see a similar effect, so we are forced to the conclusion that there is another factor

involved that is making xe drop like it does. Overall though, we are well on our way to

solving this system of rate equations in an original way that allows us to understand

the role of individual processes. After doing so, we will work on scattering effects of

the photon spectrum. This project has been a great success in gathering a detailed

understanding of recombination and should only get better in the near future.
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