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Abstract

A pulse height analysis (PHA) system has been installed on the Alcator C-Mod mag-
netic confinement fusion experiment. The PHA utilizes a Si(Li) detector to measure
soft X-rays in the 1-30 keV range with an energy resolution on the order of 100eV. A
FASTComtec MCA-3 multichannel analyzer allows integration times of ims while the
PHA supports counting rates of up to 80kHz. The thermal electron temperature is
measured from the energy dependence of the intensity of the electron bremsstrahlung
spectrum. lVleasurements of line radiation allows the PHA to identify impurity ions
within each plasma shot. The result is a diagnostic that measures thermal electron
temperatures while aiding in the indentification of heavy (ZL12) impurities.
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Chapter 1

Introduction

Creating new and alternative energy sources to meet the ever-growing global demand

is one of the most difficult problems facing scientists and engineers today. Ever since

crude coal fired power plants blackened 19th century cities, new technologies have

emerged that have made electricity production cleaner and more efficient. Never-

theless, it seems that power production through conventional fossil fuel based tech-

nologies will never be sustainable. Creating power through nuclear fusion holds the

promise of yielding a clean and nearly inexhaustible source of power through manip-

ulating the same reactions that sustain the sun. Realizing this goal is not without

challenge as scientists all over the world have strived to create energy through fusion

for over fifty years.

The technique of magnetic confinement fusion studied in the Alcator C-Mod ex-

periment holds the best chance of realizing net power production. This paper details

the development of a new soft x-ray diagnostic in C-Mod to study the behavior of

electrons and impurity ions in the plasma. The overall goal is to utilize advances in

computerized signal processing elements to give researchers a between shot measure-

ment of the emissivity of the plasma in the energy range of 1 to 30 keV.

The first chapter gives some background to the development and implications of

nuclear fusion power. It then goes on to describe the operating goals of the PHA.

The second chapter gives a theoretical model of the emissivity of the plasma in the

soft x-ray range and considers the appropriate approximations based on the limi-



tations of the detector. The third chapter presents the PHA hardware along with

calibrations and limitations of the system. Chapter four gives some sample spectra

collected from plasma discharges and presents a comparision to the results from es-

tablished diagnostics. Finally, possibilities for future expansions of the PHA system

are discussed.

1.1 Background to Fusion Energy

While modern fossil fuel power plants are orders of magnitude cleaner than their

predecessors, the finite fossil fuel supply and the environmental impact from these

power stations calls into question the long term viability of energy from these sources.

The majority of power production in the United States comes from coal, widely

regarded as one of the dirtiest ways to generate power. Particulates, sulfur com-

pounds, and heavy metals emitted from coal power plants are difficult to mitigate.

Scrubbers can cut this pollution, but they add to the overall cost and complexity

of the power stations. While government regulations can force operators to install

these systems in the United States, countries in the developing world often lack this

technology or incentives to install it. In particular, China, which is undertaking a

massive expansion of their electrical production capacity through building new coal

power plants, is set to overtake the United States in net carbon dioxide output.

The current alternatives to fossil fuels all have their own drawbacks as well. While

producing little carbon, the massive Three Gorges Dam under construction on the

Yangtze in China has displaced over a million people from their homes and drasti-

cally altered the local ecology. Solar and wind power still cannot compete with the

economies of scale possible through fossil fuels. Public opposition to nuclear fission

power and concerns about proliferation have greatly curtailed the scale of nuclear

power production. In comparison to other methods of generating power, nuclear fu-

sion presents somewhat of an anomaly - power without appreciable carbon emissions

and a fuel as common as water.

The promise of energy through fusion is evident from the energy scales involved.



The chemical reactions in fossil fuel plants release energy on the scale of a few eV per

reaction. Fusion reactions typically release energy seven orders of magnitude greater.

Harnessing this energy source could revolutionize the way our society treats issues of

development and economic leverage.

With the construction of the next generation ITER experiment expected to begin

in 2008, research in fusion is on the verge of a great breakthrough in capabilities.

Barring any major catastrophes, the knowledge gained at ITER should put researchers

within striking range of building the first demonstration fusion power plant.

1.2 Progress in Fusion Research

With the advances of quantum mechanics in the early 20th century, physicists were

first able to describe accurately the reactions that powered the sun. Beginning in 1920,

Arthur Eddington advanced the idea that nuclear reactions, not chemical processes

or gravitational contraction, were responsible for the great energy source within the

sun. In the late 1930, Hans Bethe worked out the details of stellar nucleosynthesis and

showed that the CNO cycle and p-p chain were the mechanisms by which hydrogen

in the sun's core was converted into helium.

The next great advance in early fusion research came with the development of the

thermonuclear bomb. Edward Teller and Stanislaw Ulam were the chief contributers

to the design of a bomb which would produce the first artificial fusion reactions.

The 1951 Teller-Ulam design became the basis of future thermonuclear weapons.

While fusion can be produced with relative ease through detonating a thermonuclear

weapon, creating and maintaining the extreme temperatures and densities necessary

to produce fusion reactions are very difficult to do in a controlled manner.

The earliest efforts at creating a controlled nuclear fusion reaction centered on

toroidal devices using electric currents to generate magnetic fields. Pinch devices

dominated early research, but the inherent instabilities of these configurations pre-

sented a major hurdle to progress. These early efforts were also constrained by the

reality of the Cold War. Fusion power research was kept under close secrecy as it was



Figure 1-1: Cutaway of ITER device (published with permission of ITER)

largely a derivative of weapons research and itself a strategic asset.

Starting in 1958, the secrecy behind fusion research was lifted and a global effort

towards realizing controlled nuclear fusion began to form. In 1968, Andrei Sakharov

and his team unveiled the T-3 fusion experiment to the world. The novel device was

based on a tokamak and had operating parameters far and above any other experiment

in the world. Mainstream fusion research embraced the tokamak and construction of

large tokamak-based fusion experiments began around the world in the 1970s.

In 1975, the Alcator A experiment began operation in the MIT Francis Bitter

Magnet Laboratory. The experiment was conceived as a compact, high-field torus

able to probe plasmas at densities and temperatures out of the reach of the reach of

larger experiments. The facility was upgraded and in 1982 Alcator C went online.

Finally, the latest iteration, Alcator C-Mod began operation in 1993.

In 1985, the European Union, United States, Soviet Union, and Japan agreed to

collaborate on the construction of a next-generation fusion experiment. The exper-

iment, dubbed ITER, underwent various political and financial difficulties over the

next two decades owing to the diversity of the parties involved. The plan was final-

ized in November 2006 with construction to begin in 2008 and generation of the first



plasma around 2016.

1.3 The Magnetic Confinement Solution

The problem in designing a containment vessel for a fusing plasma comes from the ex-

treme operating parameters demanded of the device. For typical fusion experiments,

the containment vessels have to contain plasmas with temperatures in excess of 10

million degrees. Fortunately, plasmas lend themselves to be contained by electromag-

netic forces by nature of the charges of the constituents.

The early pinch devices use a single magnetic field to confine the plasma. Powerful

magnetic coils lining the chamber generate a toroidal field that pinches and guides

the plasma around the torus. The critical instability in a pinch device comes from a

cross drift. Inhomogeneities in the applied magnetic field and centrifugal forces act

on the plasma. As the plasma particles circulate around the torus, positively charged

ions will tend to drift towards the top of the device and electrons will collect on the

bottom.

These instabilities can be compensated for by applying an additional magnetic

field. In tokamaks, a current is introduced within the circulating plasma. This current

generates an additional poloidal field. The toroidal and poloidal fields superimpose

to generate a combined field that traps the plasma along helical field lines wrapping

around the torus.

Since the 1970s, tokamaks have been the mainstream of research into magnetically

confined fusion. Consequently the physics of tokamak confined plasmas is better

understood than any other configuration. With the exception of major breakthroughs

in other devices, tokamaks have the best chance of achieving power production in the

near future.



1.4 Nuclear Fusion Reactions

In the simplest terms, a nuclear fusion interaction occurs when two light nuclei com-

bine to form a heavier daughter nucleus. For this interaction to occur, the two nuclei

must have sufficient initial kinetic energies to overcome the Coulombic force of repul-

sion from their positively charged protons.

If the nuclei can overcome the Coulombic energy barrier and come to a very close

proximity, the nuclear force will dominate and pull the nuclei together forming a new

atom. For light elements, the resulting atom will be in a lower energy state and thus

some of the initial nuclear binding energy will be released in the form of energetic

particles and photons.

Since the Coulombic repulsion is proportional to Z2 and the strength of the nuclear

forces increases with the number of nucleons, the isotopes of hydrogen are an ideal

fuel for fusion reactions. Because of the low temperature and high cross section for

interaction, currently the most promising fusion reaction for study is that between

the two hydrogen isotopes deuterium and tritium.

3T +2 D __4 He + n

The D-T reaction produces 17.6 MeV of energy in the form of the kinetic energies

of the alpha particle and neutron. While the alpha particle can be contained using

electromagnetic fields, the neutron escapes the fusing plasma taking a fraction of the

reaction energy with it.

For a fusing plasma to be self-sustaining, the self-heating from collisions with the

energetic alphas must compensate for the energy losses from radiation, interactions

with the containment vessel, and other losses. A plasma at this state is said to be

ignited, no additional heating is necessary to sustain the reaction. Producing ignited

plasmas is one of the end goals of fusion research as power can be produced in the

steady state.



1.5 X-Ray Emissions

Critical to constructing a successful fusion experiment is understanding and managing

the power radiated from plasmas by high-energy photons. If we model the plasma

as a black body, the peak in intensity will come from soft x-rays. Measuring this

emission can yield information on the temperature and composition of the plasma.

The PHA diagnostic I have developed uses a high-range, low-resolution solid state

detector to measure the soft x-ray spectrum from plasmas in C-Mod. While the

Si(Li) detector used in the PHA system lacks the fine resolution of diffractometers,

the modest resolution allows the detector to monitor emission over a large energy

range.

PHA systems using solid-state detectors are nothing new to the Alcator exper-

iment. Some of the first work with PHA systems in Alcator was done by Rice et.

al.on Alcator A [1] and later on Alcator C [2]. Similar system are in use at JET [3],

HT-7 [4], and nearly every other tokamak experiment.

The strength of the current PHA system lies in the use of modern computerized

signal processing equipment, particularly the FastComtec MCA-3 multichannel an-

alyzer, paired with a software interface developed to automate data acquisition and

analysis. The new PHA system is a diagnostic that trades energy resolution for range

to give an overall description of soft x-ray radiation from plasma discharges. Fast

signal processing allows the PHA to operate continuously in real time across entire

plasma discharges.

1.5.1 Measurement Goals

The PHA system has two overall goal from measurements of the emissions in the soft

x-ray spectrum from 1 - 30 keV.

The first goal is to measure bremsstrahlung radiation from the interaction of free

electrons and ions in the plasma. Analysis of the bremsstrahlung spectra will give

a measure of the thermal electron temperature. This measurement will act as a

comparison to the values from established temperature measurements from electron



cyclotron radiation and Thomson scattering.

The second primary goal is to investigate the soft x-ray spectra from bound elec-

trons in ionized impurities within the plasma. While the resolution of the detector is

not sufficient to resolve the charge states of individual emitters, it will permit easy

identification of impurity species over a broad range of energies.

Time integration of the data collection will allow determination of when the plasma

takes on each impurity. Comparing these values to the measured electron temperature

across different plasmas will yield information on the temperature dependence of the

relative impurity emission rates.

The full spectrum from each discharge will give a measure of the relative abun-

dance of impurity species relative to baseline values. For a variety of different plasma

operating regimes a comparison will be done of the recorded impurity content and

electron temperature.

An additional goal comes in the detection of plasma collision with the containment

vessel. This will manifest itself as a sudden increase in the line strength of impurities

that make up the plasma facing components. The PHA system will support the

detection of these collisions.



Chapter 2

Soft X-Ray Emission

A theoretical description of the emission of soft x-rays in the 1-30 keV range can

be broken into three broad categories depending on the final and initial states of the

electrons. Free-free and free-bound electron radiation make up a radiation continuum

while bound-bound transitions manifest themselves as discrete line emissions. The

continuum radiation and line emissions will be treated seperately.

2.1 Continuum Electron Radiation

At temperatures above a few eV, the deuterium fuel inside the containment vessels is

ionized. As we go higher in temperature towards the few keV in C-Mod, impurities

within the plasma will ionize as well. We may divide the constituents of the plasma

into a few broad categories. The main component of the plasma is the ionized deu-

terium fuel. This ionization gives rise to two majority populations, the deuterium

nuclei and a collection of free electrons. In addition to the deuterium, there is also a

very small population of alpha particles from fusion reactions.

Understanding the behavior of electrons in the plasma is of key importance to a

successful fusion experiment. In particular, we may measure the interactions of free

electrons with impurities to yield information about the plasma. Radiative free elec-

tron interactions with impurities occur through two primary methods. An incoming

electron may collide and scatter off an ion, emitting a photon in the process. This



free-free electron interaction is known as bremsstrahlung radiation. Similarly, an ini-

tially free electron may collide with an impurity and enter into a bound state. The

radiation emitted from free-bound interactions of this type is called recombination

radiation.

For the range of x-ray energies visible through the detector, the bremsstrahlung

and recombination radiation will come from a population of thermal electrons. The

intensity of the bremsstrahlung spectrum will be dependent on the electron temper-

ature. The overall goal from the measurement of free-electron radiation will be to

arrive at a value for the electron temperature.

2.1.1 Bremsstrahlung Radiation

When a free electron collides and scatters off a positively charged ion, the electron

will undergo a deflection from its initial course. In the deflection the electron ex-

periences an acceleration. That acceleration causes the electron to emit radiation.

This characteristic bremsstrahlung radiation forms a continuum with the energy of

the emitted photon dependent on the initial energy of the electron, impact parameter

of the collision, and the charge of the ion

For a first approximation, we may treat the problem classically as a two body col-

lision. We have an electron with impact parameter b and initial velocity v0 scattering

off the Coloumbic potential of an ion of mass M and charge +Ze. Two unbound

orbits are possible, a parabolic orbit and a hyperbolic orbit. The path of the electron

is described by the orbit equation as

41reomevdb2

r(e) = Z 1co+ O) (2.1)
Ze2 (1 + E COS 0)

where e is the eccentricity given as

47rEomv2b
E 1+ Ze 2



and conservation of energy yields the relation

MV2 = Mý2 +(ý)2 Ze21/2mv = 1/2m 2 + 1/2mr() 2  (2.2)
47Eor"

Taking the interaction as a two body system suggests we use the dipole radiation

formula to get the radiated power. If we calculate the acceleration of the electron

from the orbit equation, we may then easily arrive at the dipole radiation spectrum

[5].

dE 4 e 2d - d21 (w)12, (2.3)dw/2r 3c3 4reo

e Ze
me M'

Here d is the non-dimensional strength of the electric dipole and /t is the reduced

mass of the electron-ion system.

Following [6], we can express if(w) as a Fourier transform of the acceleration if(t)

of the electron as described in our expressions for energy conservation and the orbit

equation. Solving the differential equation for r given in 2.2 using 2.1 and differen-

tiating yields an expression for if(t). Performing the Fourier transform on f(t) and

substituting this expression into (2.3) gives the following

dE 4 e2  2
d = -d2 J (t)etdt , (2.4)du 3c3 47reo -0

Finally, to find the total power emitted per unit frequency per volume for an electron

to interact with a collection of ions of density ni, we must multiply the above expres-

sion by nivj. Integrating over all values of the impact parameter gives the following

expression for the power spectrum

dP _ 4nivo e2 d2  2wbdb f(t)ewtdt (2.5)
dv c3 47EO ]o ] t

Evaluating these integrals gives a formula for the classical bremsstrahlung energy

spectrum which was first derived by Kramers [7]. In terms of Hankel functions of the



first kind, the full expression for the bremsstrahlung radiated power is

dP 2Z 2ir 2nid2  e2 )3
d- = 3cVo o iH (zvo)IH (w2o) (2.6)dv 3c3vo 47rco V2O

e
2

Vo0 = WCo ,
001

where vo is a non-dimensionalized frequency. This result can be expressed for the

case of an electron scattering off a stationary ion in somewhat simpler form as [6]

dP 327r2Z2ni (_e 2  3 7r/ uH ))- = -3iTn 2 - U90oHu9o(U9o)H u9o(U9o ) ,  (2.7)
dv 3 em c3vo 4wco / 4

iwb9o b9o Ze2

U90 --" O , 4bom 2  (2.8)
vo 4ercomevo

with boo as the impact parameter necessary for 90' scattering and ugo defined anal-

ogously to vo. Grouping the Hankel functions together with u into a new function

G(u) defined as

G(u) = 43 Hu(u)Hu(u) (2.9)

we can rewrite 2.7 as

dP 327r2 Z 2 ni(e 2  3

d-v 3/mcv - G(u90o), (2.10)dv 3 e c3vo (47rEO)

The non-dimensional factor G(u) is called the Gaunt factor after the work of J.A.

Gaunt [8]. Gaunt originally derived approximation functions to G(u) as corrections

to Kramer's derivation of the bremsstrahlung power spectrum to fit observations of

astronomical x-rays. However, Gaunt was unable to devise a correction that gave a

full agreement between Kramer's classical derivation and observations of high-energy

radiation. To arrive at a full description of bremsstrahlung radiation, we must intro-

duce quantumn mechanical corrections. These corrections are traditionally expressed

as modifications to the Gaunt factor to preserve the classical limit of Kramer's deriva-

tion.



Quantum Mechanical Bremsstrahlung

The first full quantum treatment of bremsstrahlung radiation was performed by Som-

merfeld and Maue in 1935 [9]. The derivation was based on two quantum numbers, 70

and 7f, representing the initial and final energy states of the free electron in a manner

analogous to the energy states of bound electrons in the Bohr model. We may define

these quantum numbers in terms of the ionization energy of hydrogen RY = -13.59

eV and the frequency of the emitted radiation v as

Z 2 R Y  1 2Z2 =Eo = = -m•mv, (2.11)710 2
1 1hv = Z2RY( - 1 (2.12)

rif 77i

The quantum mechanical Gaunt factor was given in 1939 by Sommerfeld[10] in the

form

G= 2 1(_ e2|,1 d IF (x) 2 (2.13)
(e~w7 - 1)(I - 2Tf)d

where F(x) is the ordinary hypergeometric function defined as

F(x) =2 Fi(Mro, Zqf; 1; -x) (2.14)
2

= 1+ lo X + (Zl 0 -_ T12) (Z /f T12) -+ ... ,

_ 
4 770'tlf(m; - 0) 2

To calculate the emissivity of the bremsstrahlung radiation, we return to our

expression for the differential power spectrum 2.10 and integrate over an appropriate

electron energy distribution. The emissivity comes from evaluating the integral

47r(v)) = f f(v)d v (2.15)/dP
Here the emissivity is in units of power / unit frequency volume solid angle. Con-

tinuum radiation in the soft x-ray range in Alcator has been observed from elec-



tron bremsstrahlung radiation[I]. Taking the electron energies to follow a Maxwell-

Boltzmann distribution and integrating over the initial electron velocity v0 we have

JO) 2 mG G(',VO)emv/2kT4 vd (2.16)

47rc() = A 2 GT Voo 2kT4X dvo (2.16)

32w2Z2ri (_ 2  3
A = 3v 2Z2 ° 4 ) (2.17).F30m2c vo 47co

Where I have grouped all the constants into a factor A with units of power per unit

frequency. Rewriting the integral in terms of Eo0 = 1/2mvy yields [6]

() = ne G(v, v)e - E o/kTdEo (2.18)c(v,) = 27r& 2rkTJ, kT

(2.19)

Using 2.11 and 2.12, we may rewrite the integral in the above expression in terms of

of the final electron energy

-h/k oGc , •  hi,')e-Ef/kT dE f

gff = e- h u / k T  G(v, Ef + v)e-E kT (2.20)

This quantity gff is called the Gaunt factor for free-free emission. This represents the

quantum mechanical correction for free-free electron interactions. Rewriting the total

bremsstrahlung power per unit frequency given in 2.16 in terms of this new factor,

we have

8irZ2 rue e2 m -h/TE(V) = 8rcZ2nin( C2 ) m -he v/kTgff (2.21)3 m v/ 2C 3 4-FEO 2xkTe

This expression gives the total bremsstrahlung power emitted from thermal electrons

in a Maxwellian plasma interacting with a single impurity species in terms of the ion

and electron densities, the plasma temperature, and the Gaunt factor for free-free

emission.

Even though we have an expression for the intensity of the emitted radiation in

closed form in 2.21, the presence of the hypergeometric function in gff makes this

expression difficult to use in practice. Fortunately, we can use an approximation in



place of the free-free Gaunt factor. For the range of x-ray energies likely to be seen

by the detector, replacing gff by (hv/kT)3 gives a very good approximation [1].

Observation of the bremsstrahlung spectrum from plasmas yields a continuum

spectrum with discontinuities which our formula for continuum radiation cannot ex-

plain. A correction for recombination radiation is needed to introduce the quantized

nature of the bound electron energy levels in the impurity ions.

2.1.2 Radiative Recombination

Radiative recombination is the process by which an initially free electron is captured

and put into a bound state by an impurity ion. Recombination radiation was first

discussed by Kramers [7] then Menzel and Pekeris[11] and expanded by Brussard and

Van de Hulst[12] and then Karzas and Latter[13]. Here I present an overview of the

calculation of the power spectrum from radiative recombination.

We can understand free-bound electron transitions in terms of transitions from

free hyperbolic orbits into bound elliptical ones. The process releases an energy which

can be expressed as

1 1AE 2 2 (2.22)

where n is the principle quantum number of the final bound state and ro is the

Sommerfeld quantum number for the free electron. The electron interaction with the

atom is dependent on the initial electron energy. For an electron with initial kinetic

energy Eo = 1/2mvy, recombination is only possible if the initial energy is less than

the energy of the bound state, E0 < Z 2R n 2 . If the opposite is true, the electron

will scatter off the ion and emit bremsstrahlung radiation.

For the case of electron recombination, we can rearrange 2.22 to give the allowed

energy spectrum.

Z2RAE= + Eo (2.23)
in

2



or, rewriting to give the radiation spectrum, we have

Z2 Ry
hv -Z2 + 1/2myv, (2.24)

The radiation spectrum will thus be a series of discrete jumps superimposed on the

bremsstrahlung continuum.

Following [6], we may arrive at a semi-classical estimate of the recombination

radiation by the correspondence principle. Assuming a parabolic collision, the radia-

tion spectrum from recombination should come completely from quantized radiation.

There will be no continuum, only a series of stepwise radiation bands. However,

the correspondence principle tells us that at the limit of high electron energy any

formula we derive for recombination radiation should reproduce the bremsstrahlung

continuum. Using this reasoning, each recombination level n should quantize the

bremsstrahlung continuum for some region near n. We can modify our expression for

the radiation spectrum to account for this by quantizing the bremsstrahlung contin-

uum using 2.24.

Around each level we take the condition that each discrete energy level covers

some range in the continuum. The recombination energy hu quantized by the nth

level is smeared out over a range given as

2 Z2R hv21/2mv2 < hv < 1/2mv 2  Z 1  (2.25)
(n + 1/2)2 + (n - 1/2)2'

The power emitted from the capture of an initially free electron into a bound state

n is then

P(n) = dP Vgn(V), (2.26)du

where we use the expression given in 2.21 for d in the classical limit.

dP 32w2Z 2ri ( 3d = A = 3v2_mcv °  ) (2.27)

du 30 c3 4eo24
24



The quantum mechanical calculations are encapsulated in the new Gaunt factor

g,(v). Calculations of this factor are similar to that of the free-free Gaunt factors

and amount to evaluating transition dipole matrix elements with final states that are

bound. Low-Z impurities present in the plasma, like carbon and oxygen, are likely

to be completely ionized. For low-Z impurities, calculations of the transition dipole

matrix elements are straightforward and the recombination radiation can be easily

calculated. Calculations of the Gaunt factor for partially ionized heavy impurities are

considerably more complex. In many cases it is easier to measure directly the radiation

spectrum from partially-ionized heavy-Z impurities than calculate the emitted power

from 2.26.

Using 2.25, the frequency range quantized by each level Av, is approximately

A =2Z2R
v = 2Z 2R (2.28)

hn 3

Substituting the expressions for Av. and dP into 2.26 gives

P(n, vo) = Ag(v) hn (2.29)

This is the power emitted from recombination radiation of an electron with initial

velocity v to the energy level n. To calculate the total power emitted from an as-

sembly of electrons, we must convolve the power spectrum with the electron energy

distribution and integrate over the electron velocity. However, since the recombina-

tion radiation is quantized by n and lacks a continuum to sum over, we can write the

recombination radiation contribution simply as

41rE(v) = Pn4v 2 ,d v  (2.30)dv'

Rearranging our expression for the radiation spectrum gives an alternate form for the

electron velocity in terms of the emitted photon energy and energy level of the final



bound state.

2 Z
v = -(hv- ) (2.31)

m n

Substituting this back into 2.30, the emissivity of the recombination radiation is then

e(v) = nA m e [2Z2  gn(h)eZR/nkT , (2.32)4---Tn[k•e-- gL vjn3

2.1.3 Combined Bremsstrahlung and Recombination Radia-

tion Emissivity

Comparing the emissivities from recombination and bremsstrahlung radiation, the

two emissivities have the same physical dependences. We can then set them equal up

to a constant [14].

e(')recomb = 6(V)brems(7 - 1) (2.33)

here the quantity (-y - 1) is equal to the term in square brackets in 2.32. Since the

total intensity of the continuum is I = I•brems + Irecomb, the factor 7y describes what

portion of the continuum comes from recombination radiation. This term is called the

x-ray enhancement factor and its behavior explains the finite steps in the continuum

from recombination radiation. As shown in 2-1, the continuum exhibits a series of

edges. Since there is a minimum photon energy from recombination corresponding to

an incoming electron at rest, the recombination radiation will exhibit a series of steps

at energies defined as the recombination edges. For increasing temperatures, "7 grows

smaller as more electrons are ejected from bound states in ions and the contribution

from bremsstrahlung grows greater. Comparing the recombination radiation inten-

sity to our previous expression for the bremsstrahlung intensity, we can express the

combined emissivity of the power radiated from bremsstrahlung and recombination
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Figure 2-1: Combined bremsstrahlung and recombination radiation spectrum from
carbon (after [15])

as

A m hi 2Z 2RY 2VnkE(4) = n, gk + kT- 3 gn (v) eZ2~ 2kT (2.34)

Radiative recombination varies more strongly with atomic charge than bremsstrahlung.

For recombination radiation, we have e oc Z 4 while bremsstrahlung power varies only

as Z 2. This result agrees with our conceptual picture of recombination radiation;

higher-Z impurities should more strongly attract electrons into bound states and

thus recombination radiation should be stronger in Z than bremsstrahlung.

We can write the combined bremsstrahlung and recombination radiation in terms

of a modification of the gaunt factor. The new combined gaunt factor is then [1]

g = g f + f,(T, hv) (2.35)

0i/n 2

f (T,hv) )=20 n0 gn(v), (2.36)
n=mi (hu)

Z2j~
O - Z 2  (2.37)kT



The expression is summed from the lowest quantum number n = mi(hv) which corre-

sponds to the lowest energy level the electron can be bound to and still emit a photon

of energy hv. We define this level as

mi(hv) - 1 < h )1/2 < mi(v) (2.38)
Z2 RY),< i

The exponential factor 9i in the expression for fi (T, hv) determines the relative

strength of the contribution from recombination radiation. For a typical electron

temperature of a few keV, the contribution from recombination with the major con-

stituents of the plasma (deuterium and helium) is negligible as 0i 10- 3 . However,

for impurities with Z > 10 we have 0 greater than 1 and recombination radiation

becomes a major contributer to the plasma radiation continuum.

Finally, summing over all impurity species gives the total emissivity from free

electron interactions.

8ii-Z2 n2 / 2 \ 3
e(u) = 8 ef ( e m e-hv/kT (gfIf + fi) (2.39)

3V/3M2 \ 4irco J 2irkTe(39

Zeff -= n-Z2  (2.40)
ne

where we define an effective charge Zeff that is characteristic of the entire plasma.

2.1.4 Profile Effects

With the expression for the combined bremsstrahlung and recombination emissivity,

we may calculate the total photon flux incident upon the detector. Emissivity is

defined as power per unit frequency volume solid angle. The differential form is

dP
de(u) - dVdQd= (2.41)

28



We know that the detector subtends a solid angle AQ. Multiplying through by 'Q

gives

AQde(v) = dP(242)
h dVd(hv) (2.42)

The incident power comes through a flux of N photons per second, each with an

energy of h'. Substituting in dP = hvdN/dT we have

AG hv dN/dtAQ() = h) dNdt (2.43)
h d(hv) dV

To simplify the problem, we may assume that the plasma cross section is circular.

Since the detector views the plasma through a chord of cross section dA, we can

replace the volume element with dV = dAdl. Here 1 is the length of the chord that

the detector sights along. The variable 1 is related to the toroidal parameter r by

12 = r 2 - d2 where d is the distance from the chord to the center of the torus. The

above relation becomes

Atcvd -  hv dN/dtAQ()dl h dNdt (2.44)
h d(hv) dA

The left hand side is the differential photon flux incident upon the detector from a

region of the plasma of thickness dl and cross sectional area dA. If we integrate over

1, the total photon flux in units of photons /(second cm 2 ) is

I(v) = Ah e(v)dl (2.45)

Following [1], we may calculate the incident photon flux by taking representative func-

tions for the parameters in 2.45 and performing the integration. Taking a parabolic

density profile, we may write nfe(l) as

T2 12 + d 2
ne(1) = no(1 - ) = n0(1 - 2+ ) (2.46)-1 a1



where no is the central plasma electron density and at is the limiter radius. The

temperature profile is assumed to be Gaussian and vary as

T(1) = Toe - r2 2 Toe(_ 2 +d)/a2  (2.47)

where a is the characteristic width of the temperature profile.

For a clean, hydrogenic plasma we have Zef = 1 and n (1) = ne(1). Using the

approximation gff(1) = (hv/kT(1))'/ 3 and assuming that recombination radiation is

negligible for a hydrogenic plasma, 2.45 takes the form

AA- m -IL hv )

I(V) = n e(1)2 e kT( kl ) (2.48)4x h 0 V27kT (1) kT (1)
Inserting the functions gives

1

AAQ• 2 m hv L •L 2 5(d2 + d 12 + d2

4 -h n  2rkTo kTo )expC5(/ 2 ±d2)() = o T a• )exp 6a2  + exp( 2 2 ))dl

The integration contains terms only dependent on the geometry of the detector and

will be constant between shots. Since the PHA is only concerned with the relative

itensities of the emission, we may absorb the integration into a constant. Dropping

all terms that are constant between shots yields an expression for the relative photon

flux incident upon the detector face
1

(V) oc Z2 2 1 hv •  -hv
I(n) oc Zo ko exp(- ) (2.49)kT To k To

2.1.5 Temperature Measurement

By measuring the relative bremsstrahlung intensity we can easily come to the central

electron temperature. Taking the logarithm of 2.49 gives

hzv 1 hv 1
log I(v) oc To-hv + log( -hv 21 log(kTo) + log(Z 2n2) + 1 o (2.50)kTo 3 kTo 2



where I have lumped together all the constants into the factor Io. For temperatures

above RY = 13.59eV and hv > kT the term v dominates the spectrum.

A semi-log plot of the intensity of the bremsstrahlung radiation against the energy

of the detected x-rays will give a straight line with the slope inversely proportional to

the electron temperature. Measurement of the bremsstrahlung spectrum will then be

our primary method of determining the central electron temperature. This measure-

ment is somewhat complicated by the presence of recombination radiation which will

in practice be measured alongside the thermal bremsstrahlung. As shown for carbon

in 2-1, the discontinuous recombination edges will distort the thermal bremsstrahlung

continuum and must be cut out during analysis.

2.1.6 Bound Electron Interactions

In addition to the free-free and free-bound electron interactions that are responsible

for the thermal continuum, electrons may transition between bound energy states.

The simplest case for line radiation is a hydrogenic atom. We may quantize the

electron energy levels using the Bohr model.

E= Z P  (2.51)
i n 2

An electron transition between two levels, nj and n2 , will then give emit a photon

with wavelength given by the Rydberg formula

he 1 1
= 2- (n2 n2)  (2.52)

Using this formula, we can make a first approximation to the range of impurities

species viewable by the detector. The energy range of the detector is from about 1

keV up to 30 keV. The strongest line radiation should come from K-alpha emission

due to electron transitions from the innermost K shell to the second L shell. We

can make the approximation that the remaining electron in the K shell will screen

the nuclear charge giving an effective charge of (Z - 1). Using the Rydberg formula,



an energy range of 1-30keV corresponds to K-alpha radiation from elements with

10 < Z < 55. Many constituents of the the plasma facing components fall into that

range. Line radiation is expected from A1, S, C1, As, Ti, Cr, Fe, Ni, Cu and Mo.

Radiative Transitions and the Einstein Coefficients

We may describe the emission of photons from bound electron transitions in terms

of the Einstein coefficients. For simplicity, consider a collection of a single impurity

species with two bound electron states. The lower state has a wave function 101 >

and the upper state is 102 >. The total impurity density is ni with nl of the atoms

in the lower state and n 2 in the upper energy state.

There are three different processes by which an electron may transition between

the two states. An electron initially in the upper state may spontaneously decay into

the lower state and emit a photon. If we assign this process a rate coefficient A2 1,

the total rate of spontaneous decay is given as n2 A 21 . Similarly, an electron in the

lower state may absorb a photon and be promoted to the higher state. The transition

rate for this process is described by another coefficient B12I(u) where I(u) is the

energy density of the electric field of the absorbed photon. The upward transition

rate is then njB 12I(v) Finally, an electron in the upper state may absorb a photon

and undergo stimulated emission. The rate coefficient for this process is B 21I(u) and

the downward transition rate is n2 B21I(V).

For the atoms to be in thermal equilibrium, the total upward transition rate must

be balanced by the downward rate of transitions. We can write this balance as

n 2A 21 + n2B 21I(V) = n1B 12I(u) (2.53)

Denoting the energy of the two states as El and E2, a downward transition releases

an energy

hv21 = E2- El (2.54)



At a temperature T, the number ratio of the two states is then

ni1 = e(E1/kT) = ehvl2/ k T  
(2.55)

n2 e - (E2/kT)

Solving the balance equation for I(v) gives

I() = A2 1  (2.56)
ehv12/kTB 12 - B 2 1

At thermal equilibrium we may take the electromagnetic energy density to be given

by the Planck radiation formula.

4hv3

I(v) = c3(eh/kT- 1) (2.57)
c3 (ehv/kT

Comparing these two expressions for I(v), we must have B12 = B 2 1 and A2 1 given as

8-xhv3
A21 - 3 B21B (2.58)

Using this rate coefficient, the emission coefficient for spontaneous emission from

this single transition is

hv2 1

=(v21) 421 n2A21¢(v21), (2.59)41r

where ¢(v21 is the line emission profile. While atomic transitions have very well

defined energies, the uncertainty principle and perturbations to the energy levels

broaden the emission profiles away from delta functions. To calculate the emission

coefficient from line radiation we will need an expression for the emission profile.

Emission Profiles

In the absence of broadening effects the profile from line emission would be sharply

centered around the transition frequency. The emission profile would be very well

described by a delta function. However, perturbations to the energy levels from



quantum effects, observation effects, and interactions with other atoms spread out

the emission profile. The two main broadening effects are natural broadening from

the uncertainty principle and Doppler broadening from the motion of the particles

in the plasma. The electric fields from nearby particles tends to perturb the energy

levels of the emitter through strak broadening. However, these effects are expected

to be too small to measure with the PHA detector.

Natural Line Broadening

The mean lifetime of the excited state determines the natural width of the line emis-

sion profile. The Einstein coefficients are defined in terms of transition probabilities

expressed in transitions per unit time. It follows that the lifetime of the excited state

1'2 >is inversely proportional to the transition rate.

1
- A21 (2.60)

The uncertainty principle gives the relation between the lifetime of the excited state

and the measurable spread in the energy of the line radiation.

AE = (2.61)
At

The natural width of the line emission profile will then be

1
Av- 2= At (2.62)27rAt

For the electrons in the excited state, the decay to the ground level is described in

terms of an exponential function

n2(t) = n2(O)e- ' / At (2.63)

so that the fraction of atoms in the excited state at time t is given as e- t/r. Performing

a Fourier transform on this quantity yields the fraction of ions in the excited state as



a function of the frequency.

2 f
f(V) = e-t/Ate-2ivtdt (2.64)(o=v:

Evaluating this integral gives the familiar Lorentzian distribution centered around

the spontaneous transmission at vK

1 1/2irAtf () = /2 t (2.65)7r (1/2wAt) 2 + (V)2

where f(v) is normalized so that f ". f(v)dv = 1. Finally, convolving the fractional

distribution of the energy states with the delta function model of the line emission

gives the line emission profile due to natural broadening.

1 Av
(v) = - (2.66)7r (Av) 2 + (V - V21)2 .66)

Doppler Broadening

In addition to the natural broadening from the uncertainty in the energy, a broadening

is introduced from the Doppler shift caused by the motion of the particles in the

plasma. For non-relativistic motion, the Doppler shift in the frequency v21 due to the

particle velocity v along the line of sight of the detector is

A V =v21
AV = V ,21  (2.67)cC

For the thermal particles in the plasma, the velocity distribution will be Maxwellian.

The fraction of atoms with velocity in the range v to v + dv with respect to the

detector is then

m -my 2

f (v)dv= exp(( 2 )dv, (2.68)
V2 Mk-T 2kT '



where m is the mass of the emitter ion at temperature T. Writing Av = v21 - v and

solving for v in 2.67 gives the particle velocity in terms of the shifted frequency.

v = (1 - )c  (2.69)
/21

Finally, substituting the above expression into 2.68 and convolving with the initial

assumption of a delta function emission profile gives the Doppler broadened line

emission profile in terms of frequencies. The distribution is thus a Gaussian centered

at the transition frequency v2 1

m xp(mc2 (V21- 2

¢b(u) = expkT 2z ) (2.70)( 2 7rkT kT 2v221

For hydrogenlike argon at 3.7 A, the lifetime of the excited state has been measured

as 3.54 x 10- 9 s [16]. The line broadening from the uncertainty principle is on the

order of 10-6 eV and negligible to the PHA.

Ion Temperature Measurement

Measurements of line radiation will encounter both Doppler and natural broadening.

The combined effects of these broadening mechanisms will be to create a new emission

profile. The convolution of the Lorentzian and Gaussian is a Voigt profile. Doppler

broadening is expected to dominate over the natural line width. The measured line

shape should. be approximately Gaussian.

We may arrive at an estimate of the ion temperatures by measuring the FWHM

of the Doppler broadened energy distributions. The FWHM of the Doppler energy

distribution is given as

hAV12 = 2V2 ln(2) ic hu21  (2.71)

olving for the temperature gives

kT= mC2 (hv112)2  (2.72)
8 ln(2) (hv)2
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For a typical ion temperature on the order of 1 keV and a transition energy of 10keV,

the Doppler broadened width will be on the order of 1 eV. Unfortunately, the overall

resolution of the detector is two orders of magnitude higher. Ion temperature diag-

nostics have traditionally used crystal spectrometers [17]. While measuring Doppler

shifts is out 'of reach for the current PHA system, future advances in detection equip-

ment should make ion temperature measurement a goal for subsequent PHA systems.

Combined Line Emission Profile

As stated before, Doppler broadening is expected to dominate over the natural line

width. However, the Doppler width is much smaller than the resolution of the detec-

tor. Since the broadening is too small to be recorded by the detector, we may discount

line broadening and treat the line emission profiles incident on the detector as delta

functions. The main source of broadening will come within the detector itself. Thus

the emissivity that the detector see will be simply

hi21
e(v 2 1) = rhivA21, (2.73)

47r

2.1.7 Impurity Line Radiation

If we assume the plasma is in coronal equilibrium, ions are promoted to excited states

by collisions with free electrons and downward transitions occur through spontaneous

emission. Here, I present the simpler case of collisional excitation. This occurs when

a free electron collides with an ion and promotes a bound electron to a higher state.

The excited bound electron then transitions downwards, emitting a characteristic

photon. We can arrive at an estimate of the emissivity from collisional excitation by

means of the Einstein coefficients.

Collisional Excitation

To calculate the emissivity of the line radiation we must first calculate the cross

section for excitation. For monoenergetic electrons, a collection of ni ions in the



lower energy state sees an incoming flux of nev electrons. For an interaction cross

section a 12, the total reaction rate per unit volume is then

Ro = nevnl12 (2.74)

Extending this to a Maxwellian population of thermal electrons, we must take the

velocity average of the reaction rate.

R =< Ro >= nenl al2v U2 f(v)d3 v, (2.75)

Here the lower limit of integration is the velocity v0 which corresponds to the incoming

electron having just enough energy to excite the bound electron to the next state.

The minimum velocity is defined as 1/2mv2 = hv 12.

With the line emission profile defined, we return to our expression for the emissiv-

ity 2.73. For an optically thin plasma, downward transitions from stimulated emission

can be taken as negligible. We can then rewrite the balance equation as

n2A21= nIB121(v) (2.76)

Since the collisional excitation rate is specified in 2.75, we can set R = nentB12I(v)

or

A21 = ne Ji 2v f (v)d3v (2.77)
n2

At temperature T, the ratio of the density of ions in each state is

1_• _ep-E12
n= exp( ) (2.78)

For an opticly thin plasma with a single two-state ion, in terms of the interaction

For an optically thin plasma with a single two-state ion, in terms of the interaction



cross section, the emissivity is

hv1 2  -hz 12  tc
1(v) = 4 neni exp( kT )  aU12vf(v)d 3v, (2.79)47r kT fUO

Following [6], we can arrive at a semi-classical estimate of the collisional excitation

cross section by approximating the electron-ion system as an electric dipole. For

collisional excitation, we can treat the perturbing electric field of the colliding electron

in very much the same way as we did for bremsstrahlung radiation. A collision

between a free electron and an ion has a certain chance of inducing an electron

transition that is related to the Einstein coefficient B 12. The interaction cross section

is

1 2 =B 12 7r Rao G (2.80)

where a0 is the Bohr radius, v is the velocity of the incoming electron, and G is the

usual Gaunt factor which encapsulates the quantum mechanical corrections. Contin-

uing our assumption of an electric dipole and dropping higher order contributions,

the transition probability B 12 can be written in terms of the dipole moment of the

system [18].

47rB2  2e 2 r 12 (2.81)
3coh2CB12- =3WC I < '021 )l > (.1

here the quantity I < 12 11I1> 12 is the the square of the magnitude of the dipole

moment for the transition and 7 is the sum of the position vectors of the all of the

interacting electrons.

For hydrogenic ions, we can easily calculate the magnitude of the transition dipole

moment. The heavier impurities in the plasma will only be partially ionized. Calcula-

tions of the transition dipole moment must take into account the complex interactions

between the transitioning electron and the rest of the bound electrons in the ion. In

addition, screening effects must be included to account for the fact that each electron

only sees a portion of the nuclear charge. The matrix elements for the transition dipole



moment for heavier ions are not well described analytically and must be measured

empirically.

We can express the cross section given in 2.80 in terms of classical oscillators.

We define the classical oscillator strength f12 as the ratio of the number of classical

oscillators to the number of ions in the upper level. For states that are weak emitters,

transitions occur infrequently and the ion can be treated as a state of relatively few

oscillators so f12 --+ 0. Conversely, strong transitions oscillate more readily and so

nearly all the electrons may be modeled as oscillators, f12 --+ 1. This ratio is given in

terms of the Einstein coefficients as

4wEo me
f12 ro m h12B12 (2.82)

The oscillator strengths are generally well known from empirical measurement and

are compiled by NIST. Using oscillator strengths in our calculations is advanta-

geous because they are unit-less quantities. Unlike the Einstein coefficients, oscillator

strengths merely describe the strength of the transition.

In terms of classical oscillators the cross section in 2.80 is then

e2 R, R,~ flG
e122  Ry Ry f12 (2.83)47rE 2a o 1/2mev 2 hv 12  v 3(

Which we can rewrite to recover the form originally given by van Regemorter [19] as

87 - R2 (hV12)812 =( 1a 2 G(v) (2.84)73= 1(hv12)2 1/2mev 2

The emission rate is then

647aoR3  m -h212 -mV2
R = f•2 kT exp kT) exp( 2kT)vG(v)dv (2.85)

Taking the Gaunt factor as small, we can perform the integration in the classical



limit. The integration yields

647r3 aRne m (m
R = 64 aO•ekTfl2 exp (282kT6)

hv 12 m 2.kT 2kT

The total emissivity is

M(v12 ) a 22 M:f2kTninT exp 2hV 2  (2.87)C(m2 M2 V2:rk:T kT

Dropping the constants yields the overall temperature dependence of the emissivity

e(v12 ) c nif12 exp ( h kT 2 ) V (2.88)

For a given transition, the emissivity is exponential for low temperatures and goes as

vT for kT > hV12.

The difficulty in measuring the throughput of the PHA system means that we

cannot in general measure absolute emissivities. However, measurements of the line

strength of each shot relative to a baseline will yield information on the relative im-

purity concentration. For each shot, we may use the the temperature found from

measuring the electron bremsstrahlung radiation to factor out the temperature de-

pendence of the emissivity. With the complicating effects of temperature factored

out, the relative ion density can be determined by the ratio of the measured line

strength to the baseline value.





Chapter 3

Detection and Signal Processing

Apparatus

Alcator C-Mod is a compact, high field tokamak with a major radius of 68 cm and a

minor radius of 22 cm. While the small size of C-Mod allows record high magnetic

fields, the compactness makes ensuring all the diagnostics have a view of the plasma

a rather difficult problem.

Ports on the outside of C-Mod allow for diagnostic access to the plasma. The soft

x-ray PHA diagnostic views the plasma through K Port. The PHA viewing chord is

nearly at the midpoint of the torus so the PHA sees a good portion of the central and

edge effects. Since so many diagnostics are packed around the device, a long beam

line was installed to carry the photons from the exit point at the K port flange to

where there was space to fit the detector.

A block diagram of the experimental apparatus is given in Figure 3-1. The left

most side indicates the connection to the K port flange. From the flange, a 2 3/4

inch stainless steel tube forms the beam line that carries the x-rays from the plasma.

Approximately 65 inches along the beam line, a slit was installed to collimate the

x-rays. From the pinhole aperture of the slit, the x-rays continue out another 60

inches until they encounter another collimating slit.

Since the beam line is in direct contact with the plasma, it is essential that the

interior be held at vacuum. An ion pump was attached to ensure that the beam line
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Figure 3-1: Block diagram of the apparatus.

stayed under vacuum. A convectron gauge provided measurement of the pressure

inside the beam line and confirmation of the vacuum. Access to the plasma was

controlled by a gate valve. After the beam line was pumped down and ensured to be

at the correct pressure, the gate valve was opened to give a view of the plasma.

After the second slit, the x-rays exit the beam line and encounter the detector, an

Ortec SLP series Si(Li) spectrometer. There is a small air gap between the end of the

beam line and the entrance to the detector. This gap allows the insertion of beryllium

foils to attenuate the signal. However, the air itself attenuates the x-ray signal and

thus must be included in calculations of the attenuation from the beryllium filters.

There is also an additional thickness of beryllium from the window of the detector.

After the x-rays move into the detector, they encounter the crystal element.

The individual x-rays are converted to proportional electric pulses by the detector.

The detector was biased with -1000 V from a Bertran high-voltage power supply. From

the detector, the signal entered an Ortec Model 259 preamplifier. The amplified signal

was then sent to a Canberra Model 2022 spectroscopy amplifier. The amplifier was set

to an amplification factor of 300 and a shaping constant of 0.5 ps. From the amplifier,

the signal was sent into the ADC input on the FAST Comtec MCA-3 multichannel

analyzer card. The MCA-3 card contains an integral ADC and is mounted in a PC.

Finally, the PC wrote each collected spectrum onto the main Alcator data servers.
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Figure 3-2: ORTEC SLP Silicon (Li) X-Ray Detector in PopTop Capsule. Adapted
from [20]

3.0.8 Semiconductor Radiation Detectors

The Ortec SLP series soft X-ray detector consists of a high-purity, lithium-drifted sil-

icon (Si(Li)) detector attached to an integral preamplifier. The detector and pream-

plifier are encapsulated in a PopTop capsule and are mounted to a liquid nitrogen

dewar. The detector views through a thin attenuating beryllium window. A diagram

of the detector and the supporting apparatus is given in Fig. 3-2.

When a photon enters the detector, it has a chance of interacting with one of the

silicon atoms in the crystal. If a silicon atom absorbs the incoming photon, electrons

may be promoted to an excited state and emit characteristic radiation. Alternatively,

a valance electron may gather enough energy to make a jump to the conduction

band in a process analogous to photoelectric absorption. The theoretical minimum

energy resolution of the detector is set by the band gap energy 6 of the crystal. If the

incoming photon has energy hi, the emitted electron will then have a kinetic energy

equal to E = hi - c.

The active region of the detector is sandwiched between a p-type and n-type

region. Electrons liberated by photoelectric absorption are swept out of the detector

by the bias voltage and enter into the signal processing chain.

9



Ion Drifting

The detection scheme described above requires that the active area of the detector is

neutral with an equal concentration of positive and negative charge carriers. Other-

wise, the prevailing charge carriers would dwarf the signal from incoming radiation.

For the simple p-n diode discussed above, the neutral depletion zone is typically too

small to interact with high energy radiation. A method to extend the neutral active

area is needed to measure penetrating radiation.

Simply sandwiching a non-doped, intrinsically neutral region of silicon between

the p and n-type areas of the diode would not work. The trace impurities present in

high-purity silicon tends to make it weakly p-type. To restore the neutrality of silicon,

electron donors must be introduced to balance the charge. Lithium ions are readily

absorbed by silicon to form interstitial impurities. A process called ion drifting allows

lithium to be introduced into the silicon crystal to balance the charge.

Ion drifting is the last stage of an intensive fabrication process to prepare the

detector element. The prepared silicon crystal is heated and lithium is allowed to

diffuse through one of the contact surfaces of the crystal. The thin surface region with

the interstitial lithium content becomes n-type. The introduction of the lithium ions

thus creates a p-n diode. A reverse bias is applied to the diode while the temperature

is slowly elevated. The elevated temperature increases the mobility of the lithium

ions while the electric field encourages the ions to drift further into the crystal. The

ions stop drifting when the local electric field is net neutral; the number of positive

charges from impurities is equal to the introduced negative charges from lithium. The

lithium ions thus arrange themselves to balance perfectly the silicon crystal to create

a wide neutral region that can more easily interact with high-energy radiation.

Particular care must be exercised when using a Si(Li) detector. As the drifting

process was accomplished by reverse biasing the detector, operating the detector with

a forward bias at room temperature will cause the lithium ions to drift back out of the

compensated region. To keep the lithium ions from escaping, the detector must be

cooled to cryogenic temperatures. At low temperatures, the thermal mobility of the
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Figure 3-3: Diagram of Si(Li) detector element. Adapted from [20]

lithium ions is reduced to the point where the bias voltage does not dislodge them.

A 30 L liquid nitrogen dewar is attached to the detector capsule for this purpose.

Detector Settings

An Ortec Model SLP-06180-P-S Si(Li) low-energy photon spectrometer was used to

measure the energy of the incoming x-rays. A high voltage bias of -1000V was supplied

to the detector. The power source was filtered by an Ortec 138L high voltage filter.

The sealed PopTop capsule maintained a vacuum to eliminate attenuation effects

from the air and protect the crystal. The FWHM of the detector was measured at

164eV for the 5.9 keV 55Fe Ka peak at an amplifier time constant of 10ps.

A diagram of the crystal element is given in Fig.3-3. The silicon crystal was in a

planar configuration with an active diameter of 6mm and a sensitive depth of 5.35mm.

The active area of the detector was 28mm. The crystal was coated with two absorbing

layers; a 0.02pm thick layer of gold and a 0.1ptm thick layer of silicon. The detector

viewed through a 0.0127 mm thick beryllium window.

3.0.9 Saturation and Pulse Pile-Up

The signal from the detector was fed into an Ortec Model 259 Pulsed-Optical-Feedback

preamplifier in a charge sensitive configuration. The maximum usable counting rate



of the preamplifier is the limiting factor of the detector for measuring high intensity

sources. The nominal limit for the preamplifier is an energy rate of 4000 MeV/s. For

the soft x-rays observed, the counting limit of the preamplifier is then on the order

of 400,000 counts/s.

However, the signal was observed to saturate at much lower counting rates, below

100,000 counts/s. This limit is attributable to the degradation of the signal baseline

coming from the detector. The ADC in the MCA-3 depends on receiving Gaussian

pulses from the amplifier. At higher count rates the baseline degrades making pulses

more difficult to discern. Without a clear baseline, the ADC in the MCA-3 fails to

register incoming pulses and the counting rate goes to zero.

A BNC B13H-1 tail pulse generator was used to assess the limits of the usable count

rate. The tail pulses were set to come in regularly with a rise time of .02ps a fall time

of .05 ps and. a width of 10ps. The shaping constant of the amplifier was set to 2ps. As

the counting rate increased above 100,000 counts/s, the waveform from the amplifier

changed. After each pulse, the baseline became negative before refcovering a short

time later. At rates approaching 200,000 counts/s, the baseline degraded to such a

point that amplifier output no longer resembled Gaussian pulses, rather a waveform

that resembled the merging of the Gaussians to form a sinusoidal wave train. At this

point, the ADC in the MCA-3 did not see any of the expected Gaussian pulses from

the amplifier. Although pulses were still entering the ADC from the amplifier, the

ADC could not make any sense of them and the counting rate dropped to zero.

While this measurement further refined the upper limit of the counting rate, the

true counting limit can only be assessed by introducing random pulses from an x-ray

source. Slowly moving source towards the detector will increase the count rate until

a precipitous drop occurs from saturation. Using a 55Fe source yields the maximum

usable count rate as 80,000 counts/s.

Photons normally enter the detector randomly spaced in time. When two pho-

tons enter the detector at nearly the same time, the resulting effect of pulse pile-up

can degrade the signal. From the detector, the two pulses enter the amplifier and

superimpose to form a combined signal. If two pulses of the same energy come into



the amplifier at the exact same time, the resulting combined pulse will have twice the

amplitude and will be recorded by the MCA as having twice the energy. In reality,

the amount of overlap of the two pulses is random. At high counting rates, pile-up

will create a secondary false photopeak at twice the energy of the actual peak. In

between the two peaks there will be a continuum from impartial overlap of the two

pulses. Higher order peaks are also possible from the coincidence of more than two

photons.

For an incoming photon to avoid pile-up, no other photons must enter the detector

within one time interval of the amplifier. At a counting rate of r and an amplifier

time constant of p, the probability of observing a time interval greater than A is given

as [21].

P(> p) = exp(-rp) (3.1)

The probability of two pulses piling up is then P(> u)2 . For a counting rate of 80,000

and an amplifier shaping constant of 2ps, the probability of pulse pileup is about 30

percent. Pileup may be avoided by decreasing the shaping constant of the amplifier

at the expense of energy resolution. As energy resolution isn't critical to the PHA, a

low time shaping was chosen to maximize performance at high count rates.

3.0.10 Attenuation Filters

To reduce the counting rate from the plasma to a measurable range, beryllium filters

were introduced into the beam line. Beryllium is particularly opaque to soft x-rays

and so makes an excellent attenuator. The attenuation from the beryllium filters is

dependent on the energy of the incoming photons. The filtered signal thus takes on

a line shape from the filters that must be subtracted from the signal.

A collimated beam of photons with initial intensity Io is incident upon a filter of

thickness 1. The emerging intensity is then given by

I = Io exp(- Al) (3.2)
p
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Figure 3-4: Fractional intensity of X-rays against incident energy for attenuation
through a 1 mm Be foil and 2 cm of air. Data from NIST [22]

The factor 1, or the mass attenuation coefficient, is a well known coefficient for eachP
element and is compiled by NIST. For a series of n absorbers, the above equation

takes the form

n

I = Ioexp(- il.) (3.3)
Pi

where 8 and 14 are the attenuation coefficients and thicknesses of the ith absorber.
Pi

For a beryllium filter and an air gap, the attenuation is simply the sum of the effects

from the beryllium and the constituents of the air. For a typical air gap and filter

thickness, a plot of the fractional intensity I/Io is given in Figure 3-4.

3.1 MCA Interface

The shaped and amplified pulses from the detector were then fed into a FAST Comtec

MCA-3 multichannel analyzer. The MCA formed the interface between the signal

detection electronics and the signal analysis software. The MCA operated as a PCI

card mounted in a PC running Microsoft Windows XP. The operation of the MCA

was controlled by the provided MCA interface software.

While the MCA interface software provided local control over the operation of the



MCA, an external software interface was needed to automate the data acquisition

process. Instead of responding to local user input, the FastComtec MCA interface

software was rewritten to respond to automated control from the main MDSplus tree.

Developing the automation process was not without difficulty as the MCA card only

supported systems running Microsoft Windows and the main computing environment

at C-Mod is Linux based.

At the start of a plasma shot, the MDSplus tree executed the PHA initialization

node. User defined configuration values were read from the MDSPLUS tree and the

configuration file was written to a directory on the PC. As the low-level MCA driver

interface was not responsive to configuration changes, a command was sent to the PC

to crash the MCA interface and reload the program. With the configured MCA ready

to take data, the next signal from the PHA branch of the MDSplus tree created a

dummy file in a local directory. The MCA interface software searched for the presence

of this file. When the file was present, the MCA was instructed to begin collection

of data and delete the dummy file. The final step came after a closing signal from

the MDSplus tree. The completed data set was written to the MDSplus tree and the

MCA software interface was reset.

3.1.1 MCA Settings

Some typical values for the MCA-3 configuration file are given here. The lower level

discriminator was set to 150 channels, the range was set to collect over the full 8192

channels. Each spectrum was time integrated with a live time preset of 10ms. The

time integration was repeated 128 times to capture the full plasma discharge. An

option in the configuration file allowed for collection of additional cycles of 128 time

intervals each. Adjustment of the live time preset required that the number of cycles

be changed accordingly to cover the enitre discharge.

The MCA-3 was configured to separate the collected spectrum into discrete time

intervals. The available listmode in the MCA-3 configuration settings allowed the time

integrated spectra to be laid seamlessly end to end in the MCA-3 onboard memory.

The listmode operated as follows. After the trigger came to begin collection, the



MCA would collect data over the full range of 8192 channels for a user defined length

of time, typically 10ms. After the first time interval was up, the MCA would move

ahead in the memory by 8192 channels and begin writing the next spectrum. This

process would repeat for a defined number of cycles, typically 128 to cover the entirety

of the plasma shot.

The MCA-3 onboard memory contained a 2 megabyte SRAM chip organized as

512k channels each with a 32 bit capacity. The card was able to write spectra into

the onboard memory buffer while simultaneously freeing capacity by dumping the old

data into the main memory of the PC with no additional dead time penalty. The fast

data processing of the MCA-3 card is critical to the time integration since the size of

a typical spectrum collected in this way is in excess of 3 MB. This capability allowed

for integration times tested down to below 1 ms.



Chapter 4

PHA Measurements

4.1 Energy Calibrations

The detector was calibrated using the photopeaks from a 50mCi 55 Fe source and

a 5 mCi 241Am source. The peaks in each spectrum were fitted to Gaussians and

compared to the known energy of the transitions. The energy spectrum from the

241Am source is given in Fig. 4-1. The combined calibration curve from the two

sources is shown in Fig. 4-2. A least squares fitting to the data yielded the energy

calibration of the detector.

Table 4.1: Reference transition energies
Peak Emitter Transition Energy [keV]

1 55Mn K-L 3 (Kai) 5.90
2 5 5aMn K-M 3  6.50
3 58Ni K-L 3  7.48
4 58Ni K-M3 8.26
5 237Np L3-M 1  11.87
6 237 Np L3-M 5  13.94
7 237Np L3-N1 16.11
8 237 Np L1-M2 17.06
9 237Np L2-M4 17.75

10 237Np L1-Ni 20.83
11 24 1 Am L2-N 2 21.51
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Figure 4-1: Calibration spectrum from 241Am source. The dotted line is the raw spec-
tra while the solid line is the calculated fit. The labeled photopeaks are summarized
in Table 4.1
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Figure 4-2: Calibration curve for detector apparatus with 55Fe and 241Am sources.



4.2 Plasma Measurements

A current limitation of the PHA system is that it doesn't behave predictably at

very high count rates. During the 2006 campaign, a large amount of time was spent

correcting the beryllium filters to allow the PHA to operate over an entire plasma

discharge without saturating and shutting down measurement. While the problem

was corrected by the end of the 2006 campaign, the PHA has system has not yet

taken any data with the corrected filters. Preliminary measurements taken during

calibration are available to assess the operation of the PHA. As the PHA shut down

when the plasma reached peak emissivity, the photopeaks from impurity radiation

are absent. However, determination of the line integrated electron temperature as

proof of principle is possible.

A preliminary measurement of the thermal electron spectrum is shown in Fig. 4-3.

The analysis gives an electron temperature of 2.06 keV. Distortion of the spectrum

from recombination radiation at around 2 eV and 3 eV is evident in this part of the

spectrum. However, there is insufficient resolution in the data set to identify the

recombination edges.

4.3 Conclusion

The development of a soft X-ray pulse height analysis diagnostic system has been

discussed. Measurements of the thermal electron bremsstrahlung radiation confirms

the theoretical dependences of intensity on incident x-ray energy. A preliminary

measurement of the electron temperature yields a value of 2.06 keV which is proof

of the capabilities of the PHA system. A late start in the plasma run campaign and

difficulties in installing the detector have frustrated efforts to perform more detailed

tests of the PHA diagnostic. Identification of the plasma impurity radiation will be

a task that is left to future researchers.
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Figure 4-3: Thermal Electron Spectrum Recorded by the PHA system. The dotted
line is the smoothed dataset and the solid line is the fit.
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