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Abstract

This thesis consists of three chapters that investigate the complex relation between
security prices and trades of market participants.

In the first chapter, I study the evolution of stock prices after trades with different un-
derlying motives using a novel data set of portfolio transitions. Institutional specifics
allow me to identify portfolio transition purchases and sales as most likely induced by
informat;ion-related and liquidity-related factors, respectively. I find that purchases
permanently shift stock prices to new levels; moreover, these price changes are more
significant after large trades, trades in stocks with a high degree of information asym-
metry, and trades that reflect new rather than stale information. At the same time,
sales trigger only temporary price pressure effects that are reversed in the follow-
ing weeks. Thus, my findings provide supporting evidence for a long-standing tenet
of market microstructure stating that information-motivated and liquidity-motivated
transactions generate different price dynamics.

In the second chapter, I analyze the price dynamics in response to trades in more
detail; in particular, I focus on the properties of price impact. I explore the following
questions: (1) how the price impact coefficients relate to various stock characteristics
and differ across trading venues; (2) how they evolve during execution of multi-
trade "packages"; and (3) what functional form best describes price impact functions.
Regarding most of these questions, there exists an extensive theoretical literature
which provides interesting insights. Using a unique data set of portfolio transition
trades, I document a number of empirical facts about price impact, some of which can
not be easily explained by existing models. For instance, the price impact coefficients
relate positively to the market capitalization and to the amount of noise trading;
they increase during buy "packages" and decrease during sell "packages"; finally,
total price impact is concave in trade size, fitting well the square-root specification,
however, surprisingly, its permanent component is also non-linear.



In the last chapter, based on joint work with Jiang Wang, we study how security
prices affect trading strategies. The supply/demand of a security in the market is an
intertemporal, not a static, object and its dynamics is crucial in determining market
participants' trading behavior. We show that the dynamics of the supply/demand,
rather than its static properties, is of critical importance to the optimal trading
strategy of a given order. Using a limit-order-book market, we develop a simple
framework to model the dynamics of supply/demand and its impact on execution
cost. We demonstrate that the optimal execution strategy involves both discrete
and continuous trades, not only continuous trades as previous work suggested. The
cost savings from the optimal strategy over the simple continuous strategy can be
substantial. We also show that the predictions about the optimal trading behavior can
have interesting implications on the observed behavior of intraday volume, volatility
and prices.

Thesis Supervisor: Jiang Wang
Title: Mizuho Professor of Finance



Acknowledgments

Throughout the preparation of my thesis, I have been blessed to be surrounded by

wonderful people without whom its completion would have been impossible.

My advisors and professors at Sloan helped me find my calling and mature pro-

fessionally. They are the best people I could ever hope to learn from. I am especially

grateful to Professor Jiang Wang, under whose thoughtful and kind supervision I

have evolved from a rookie Ph.D. student to a stand-alone researcher. I extend a

very special thanks to Professor Steve Ross who sets for me the example of a man

with amazing intuition both in research and in life. I thank also Professor Jun Pan

for her valuable advices, and Professors Anna Pavlova and Dimitri Vayanos for their

encouragement and strong belief in my success.

I am very much indebted to Mark Krizman who has helped me find a fascinating

research area and who has introduced me to the curious world of the finance industry.

I am also grateful to my colleagues at Windham Capital for their support.

I thank my fellows at the Sloan Ph.D. program with whom I have been learn-

ing about finance and making my first steps into the professional world: Jack Bao,

Alex Edmans, Li He, Isil Irel, Jiro Kondo, Adam Kolasinski, Ioanid Rosu and Oleg

Rytchkov, among others. Our assistants, especially Sharon Cayley and Svetlana Suss-

man, made my stay at MIT run smoothly, and I am grateful to them.

Thanks to the remarkable environment of MIT, the recent years have been a stim-

ulating and exciting period of my life both in a professional and a social perspective.

I am grateful to all those who contributed to creating and maintaining this unique

academic world in conformity with the highest standards. Interaction with amazing

people of various origins, backgrounds and interests (a lot of whom have become my

dearest friends) has left its profound mark on my way of thinking.

There also exists another world to which I feel very attached. It is my home -

Moscow. My Russian friends, my relatives, my school teachers, and my professors

at MSU have contributed to shaping my personality at the earliest stages. A mere

knowledge that these people believed in me made the process of writing this thesis



much less painful.

Also, I especially thank Olivier. Throughout this endeavor, his support and opti-

mism have greatly helped me during hard times; he was also the first to share with

me the joy of delightful moments.

Finally, I dedicate this work to my wonderful family: my parents, my sister Olya

and my brother Nikola.



Contents

1 Information vs Liquidity: Evidence from Portfolio Transition Trades 15

1.1 Introduction .............. ... ........... .. 15

1.2 Hypotheses Development ............... . ... ...... . . 20

1.2.1 Institutional Details ..................... .. 20

1.2.2 Hypotheses .... ......... .. .. ..... . .. ... 22

1.3 Data Description ............................. 26

1.3.1 Data set of Portfolio Transitions . ................ 26

1.3.2 Supplementary Data ....................... 28

1.3.3 Summary Statistics: Portfolio Transitions . .......... 28

1.3.4 Summary Statistics: Transition Orders . ............ 30

1.4 Event Study .................. . .......... . . . . . . 31

1.4.1 Design of Tests .......................... 31

1.4.2 R esults . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 32

1.5 Discussion and Extensions ........................ 39

1.5.1 Alternative Explanations ................... .. 40

1.5.2 Price Dynamics and Trading Venues . ............. 41

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 43

2 The Price Impact Puzzles 65

2.1 Introduction ................... ........... .. 65

2.2 M ain Variables .............................. 70

2.3 Data Description ............................. 73

2.3.1 Data set of Portfolio Transitions . ................ 73

7



2.3.2 Summary Statistics ......

2.3.3 Supplementary Data .....

2.4 The Cross-Sectional Analysis .....

2.4.1 Motivation ......... . .

2.4.2 Price Impact and Stock Size .

2.4.3 Price Impact and Spread . . .

2.4.4 Regression Analysis ......

2.5 Price Impact Dynamics ........

2.5.1 Motivation ......... . .

2.5.2 Test Design and Results . . .

2.5.3 Discussion ......... . .

2.6 Price Impact Functions ........

2.6.1 Motivation . ..........

2.6.2 Test Design and Results . . .

. . . 75

. . . 75

. . . 76

. . . 76

. . . 77

. . . 80

. . . 80

. . . 84

. . . 84

. . . 85

. . . 87

. . . 90

. . . 90

. . . 91

2.6.3 Permanent and Temporary Price Impact . ...........

2.6.4 Non-Linear Price Impact Coefficients . .............

2.7 Conclusion .................................

3 Optimal Trading Strategy and Supply/Demand Dynamics (joint work

92

94

with Jiang Wang)

3.1 Introduction ................

3.2 Statement of the Problem ........

3.3 Limit Order Book and Supply/Demand

Dynamics .................

3.3.1 Limit Order Book (LOB) .....

3.3.2 Limit Order Book Dynamics . . .

3.3.3 Execution Cost ..........

3.4 Conventional Models As A Special Case

3.4.1 Conventional Setup ........

3.4.2 The Continuous-Time Limit . . .

109

. ... .. .. .. ... 109

.. .. .. ... .. .. 115

. ... .. .. .. ... 116

. .. ... .. .. ... 116

. . . . . . . . . . . . . 119

. ... .. .. .. ... 122

. . . . . . . . . . . . . 123

. .. .. ... .. .. . 124

. . . . . . . . . . . . 125



3.4.3 Temporary Price Impact

3.4.4 A Special Case of Our Framework . ............... 128

3.5 Discrete-Time Solution ................... ....... 129

3.6 Continuous-Time Solution ................... ..... 133

3.7 Optimal Execution Strategy and Cost . ................. 135

3.7.1 Properties of Optimal Execution Strategy . .......... 135

3.7.2 Minimum Execution Cost ................... . 139

3.7.3 Empirical Implications ................... ... 143

3.8 Extensions ................... ........... .. 144

3.8.1 Time Varying LOB Resiliency . ................. 145

3.8.2 Different Shapes for LOB ................... . 145

3.8.3 Risk Aversion ................... ........ 146

3.9 Conclusion ................... ........... .. 149

3.10 Appendix ................... ........... .. 150

3.10.1 Proof of Proposition 1 ................... ... 150

3.10.2 Proof of Proposition 2 ........... ......... . 151

3.10.3 Proof of Propositions 3 and 4 . ................. 153

126





List of Figures

1-1 Price Response to Large Transition Orders, Equally-Weighted Case . 61

1-2 Price Response to Large Transition Orders, Principle-Weighted Case. 62

1-3 Price Response to Large Transition Orders, Value-Weighted Case . 63

1-4 Price Response to All Transition Orders, Equally-Weighted Case . . . 64

3-1 The limit order book and its dynamics. . ................. 118

3-2 Optimal execution strategy with N discrete trading intervals...... 132

3-3 Profiles of the optimal execution strategy and ask price........ . 137

3-4 Optimal execution strategy vs. strategy from the conventional models. 143

3-5 Optimal execution strategies for different coefficients of risk aversion. 148





List of Tables

Identification Assumption: Target vs. Legacy Portfolios . .

Summary Statistics for Portfolio Transitions ........

Portfolio Transition Orders with Large OMT Trades ....

The Cumulative Average Abnormal Returns (CAARs) .

The CAARs and Information Asymmetry ...........

Correlation Matrices .....................

The CAARs: Purchases, Double Sort on Size and ANUM

The CAARs: Purchases, Double Sort on Size and SPREA

The CAARs: Purchases, Double Sort on Size and PIN . .

D

1.10 The CAARs and Past Returns . ...............

1.11 The CAARs and Trading Venues . .............

Summary Statistics ............

Price Impact and Market Capitalization

Price Impact and Percentage Spread

The Regression Analysis, Purchases

The Regression Analysis, Sales . . . . . .

Price Impact Dynamics . . . . . . . . . .

Price Impact Functions . . . . . . . . . .

Temporary and Permanent Price Impact

........ 101

. . . . . . . . 102

. . . . . . . . 103

. . . . . . . . 104

. . . . . . . . 105

. . . . . . . . 106

. . . . . . . . 107

. . . . . . . . 108

3.1 Profiles of the optimal execution strategy for different LOB resiliency. 141

3.2 Cost savings by the optimal execution strategy from the simple strategy. 142

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8





Chapter 1

Information vs Liquidity: Evidence

from Portfolio Transition Trades

1.1 Introduction

Different stock price patterns are expected in response to trades with different in-

formation content. Information-motivated trades shift security prices permanently to

new fundamental levels. In contrast, liquidity-motivated trades bring about only tem-

porary stock price deviations, which are expected to be promptly reversed.' Though

being at the very heart of market microstructure, these two patterns are difficult to

study. The main reason is that researchers usually do not observe the information

content behind transactions. In this paper, I study portfolio transition trades, among

which I identify the ones that are most likely driven either by private information or

by liquidity needs. I show that the price dynamics after these trades indeed crucially

depend on information content behind them.

This paper is one of the first academic studies to examine a phenomenon of port-

'The differential impact of these trades on return dynamics is emphasized in Wang (1994) and
Llorente et al. (2002). Similar intuition underlies the empirical models of Hasbrouck (1988, 1991).
Many theoretical studies analyze uninformed trading and return dynamics (e.g., Grossman and Miller
(1988), De Long et al.(1990), Campbell, Grossman and Wang (1993), Wurgler and Zhuravskaya
(2002), Earberis and Shleifer (2003), Chordia and Subrahmanyam (2004), Barberis, Shleifer, and
Wurgler (2005), and Greenwood (2005a, 2005b), Andrade et al.(2006)). Other papers study the
impact of informed trading on stock prices (e.g. Glosten and Milgroom (1985), Kyle (1985), Easley
and O'Hara (1987)).



folio transitions.2 Portfolio transitions are sizable and expensive transferring of funds

from legacy (i.e. existing) to target portfolios. They are undertaken by various money

management entities such as pension plans, insurance funds, endowments, and foun-

dations. The main reasons for these transactions are strategic changes in global asset

allocation, replacements of fund managers, and large cash inflows and outflows. They

are typically delegated to professional managers who help execute them in a cost-

efficient way. The study is based on a novel data set of transitions that are carried

out by the leading provider of portfolio transition services.

This unique data allows me to precisely identify large supply/demand shocks

caused by portfolio transitions and also to classify their information content. In

particular, based on the institutional details of how securities in legacy and target

portfolios are selected, I argue that on average, portfolio transition purchases are likely

to be information-motivated trades whereas portfolio transition sales are liquidity-

motivated ones.

I find that transition purchases change stock prices permanently upwards and that

prices remain at new levels over several subsequent months; for some classes of stocks,

even the price continuation is observed. In contrast, only temporary price pressure

effects are induced by transition sales, and initial price deviations are adjusted over

the following weeks. Extending my analysis, I show that the permanent price changes

are especially pronounced after purchases of stocks with a high degree of information

asymmetry, in which informed agents, by definition, have particularly substantial

information advantage. Furthermore, transition purchases containing new rather than

stale information, as indicated by past returns, have also stronger permanent effects

on the stock prices. These findings provide solid support to my main conclusion:

stock prices are indeed affected permanently by information-motivated trades and

only temporarily by liquidity-motivated ones.

My main identification assumption is based on the double-selection mechanism

2Although portfolio transition management is an important part of modern financial markets,
there are no academic papers that analyze this business per se. However, several papers study the
selection and termination of investment management firms by institutional investors, which might
induce portfolio transitions (Parwada and Yang (2004), Goyal and Wahal (2006)).



that underlies portfolio transitions: transitioned stocks are selected by fund man-

agers that are, in turn, chosen by asset owners. Of course, transition trades are

explicitly determined by hired and terminated fund managers, who choose securities

into target and legacy portfolios based on their assessment of stocks' favorable per-

spectives. Thus, sales of legacy portfolios do not reveal any negative information

about stocks. At the same time, purchases of target portfolios might be informative,

since they reflect the managers' choices out of numerous alternatives in the market.3

What further streghtens the identification assumption are decisions of asset owners

who hire and terminate fund managers, thus implicitly affecting the composition of

legacy and target portfolios. There is evidence that asset owners might have abili-

ties to select knowledgeable managers. For instance, in my sample, target portfolios

outperform legacy portfolios in post-transition months. Moreover, several studies em-

phasize that asset owners usually rely on fairly sophisticated tools in selecting fund

managers.4 Finally, Busse, Goyal, and Wahal (2006) point out that the predictability

in performance of institutional winners portfolios for up to one year enables asset

owners to benefit from picking winners.5 Consequently, transition purchases are most

likely determined by positive signals of skilled fund managers whereas transition sales

are merely uninformative liquidations of unskilled managers' positions.

In this paper, identification of supply and demand shocks is not subject to various

concerns that are frequently relevant in other studies. First, the trading intentions of

transition managers are set in advance; this contrasts with other studies in which ex

ante orders cannot be identified, and realized trades might be influenced by a variety

of investment styles and order-placement strategies. Second, the trading direction

is explicitly given, whereas it is often necessary to apply heuristic and not perfectly

3Yet, this argument is weakened in a light of inconclusive evidence on the stock-picking abilities
of fund managers. For instance, Lakonishok, Shleifer, and Vishny (1992), Coggin, Fabozzi, and
Rahman (1993), and Ibbotson and Kaplan (2000) offer evidence in favor of different opinions about
this issue.

4These choices of asset owners are thoroughly described in Del Guercio and Tkac (2002), Dishi,
Gallagher, and Parwada (2006), Goyal and Wahal (2006), Heisler et al.(2006), and Parwada and
Faff (2005).

5The performance persistence of institutional investment managers was also documented by Goyal
and Wahal (2006), Ferson and Khang (2002), and Tonks (2005).



precise algorithms for inferring a trade side. Third, the magnitude of shocks is ob-

served; however, researchers frequently have to find instruments for actual magnitude

of shocks. Fourth, the execution time of trades is specified at daily frequencies; in

contrast, additional assumptions about timing often have to be made. Fifth, transi-

tion trades occur at typical days, and prices dynamics are not affected by abnormal

market conditions, release of new information about stock fundamentals or changes

in stock characteristics. Sixth, a large cross-section of stocks is available for the anal-

ysis. The uniqueness of this data is obvious when it is compared to other studies

of supply/demand shocks, for instance, to the index inclusions/deletions studies. In

these studies, researchers find instruments for the shocks based on the stock index

weights and industry size, assume that all the rebalancing is done during events, and

hope that the results of tests for stocks that undergo index deletion/addition can be

reliably extrapolated onto the normal trading days.

This paper contributes to a strand of empirical literature that studies price dy-

namics in response to trades with different information content. Demand and supply

shocks are hard to identify, since only unsigned trading volume is usually observed. It

is even a more challenging task to distinguish between informative and uninformative

shocks. However, many studies have succeeded in overcoming these difficulties.

This work is related to the extensive empirical literature that analyzes how markets

absorb uninformative shocks. These studies can be categorized into several groups.

The first group examines security prices around rare events that are believed to trigger

uninformed trading.6 The second group uses observed variables, i.e., large unsigned

trading volume or signed order imbalances, as indicators of times with substantial

liquidity trading.' The third group focuses on prices after trades of particular agents

who are likely being uninformed. s Finally, other studies, ones most similar to my

6The examples are large-scale events, i.e., index inclusions and deletions (Garry and Goetzmann
(1986), Harris and Gurel (1986), Shleifer (1986), Kaul, Mehrotra and Morck (2000), Wurgler and
Zhuravskaya (2002), Chen, Noronha and Singhal (2004), Greenwood (2005a, 2005b) among others),
or small-scale events, i.e., catastrophic events (Froot and O'Connell (1999)).

7See Campbell, Grossman and Wang (1993), Llorente et al.(2002), Avramov, Chordia and Goyal
(2006) and Chordia, Roll and Subrahmanyam (2002, 2005), Chordia and Subrahmanyam (2004),
respectively.

8 The examples include trades of margin traders (Andrade, Chang and Seasholes (2005)) or trades



work, investigate specific trades of market participants that are not driven by private

information.9 Although many of these studies find that initial price deviations are

partially or completely reversed in time, the cases of permanent price changes or

even price continuation are documented as well. This inconclusive evidence might

be explained by various limitations inherent to most of the studies, such as either

rough identification of liquidity shocks, small cross-section of stocks, or atypical time

periods. As mentioned above, this paper avoids most of the concerns and analyzes

the price responses to liquidity shocks that are identified in a precise manner.

Less is known about the market's responses to information-motivated trades. Sev-

eral groups of market participants are believed to have information advantage over the

rest of the market. However, the analysis of how prices respond to their trades, while

often hindered by scarcity and limitations of available data, provides only mixed evi-

dence. For instance, stock prices respond only mildly to insider trading (Lakonishok

and Lee (2001)). Also, professional investment managers are often considered being

fairly sophisticated. Yet, the comprehensive analysis of the relationship between their

trades and security prices is fairly problematic: in the U.S., institutional holdings are

disclosed in SEC 13-F filings only on a quarterly basis, thus making it difficult to

disentangle whether institutional trades follow past returns, induce temporary price

pressure effects, or move prices permanently.

The results of this paper are consistent with findings on institutional trading that

are based on high frequency proprietary data sets. These studies often show that in-

stitutional purchases are followed by permanent price increases whereas institutional

sales create only transitory effects.10 Certainly, institutional buys are more likely

driven by information, and institutional sells are usually triggered by liquidity needs.

Moreover, the purchased securities reveal stronger signals of private information than

of individual investors (Kaniel, Saar, Titman (2005)).
9For instance, fire sales of fund managers (Coval and Stafford (2005)) or mergers-induced trading

of arbitrageurs (Mitchell, Pulvino and Stafford (2002)).
10 The examples include studies of block trading (Kraus and Stoll (1972), Holthausen, Leftwich,

and Mayers (1987, 1990), Keim and Madhavan (1996), Gemmill (1996)) and of institutional trading
(Chan and Lakonishok (1993, 1995), Keim and Madhavan (1997)). Somewhat similar patterns are
found in Campbell et al. (2005), who draw their conclusions based on both intraday TAQ and 13-F
data.



the sold ones do: the former are chosen as the best securities out of numerous alter-

natives available in the market, whereas the latter are selected as the worst among

the limited sample of securities in the current portfolios. Nevertheless, information

content of institutional trades is still hard to purge in an accurate manner. Thus,

more evidence on stock prices dynamics after information- and liquidity-motivated

trades would be valuable.

The paper is structured as follows. Section 2 states the hypotheses. Section 3

describes portfolio transitions data. Section 4 explains tests and provides the evi-

dence that supports the hypotheses. Section 5 discusses alternative explanations and

extends the results. Section 6 concludes.

1.2 Hypotheses Development

Researchers can rarely observe motivations behind trades. Portfolio transitions are

natural large-scale experiments that allow me to examine sizable demand and supply

shocks which, with a high probability, can be identified as either informative or un-

informative trades. Differences in their information content are expected to lead to

differences in the triggered price dynamics. I start this section with a discussion of the

portfolio transition industry that helps justify my main identification assumption: on

average, transition purchases are information-motivated trades, whereas transition

sales are liquidity-motivated ones. I then state my hypotheses that link portfolio

transition trades and subsequent return dynamics.

1.2.1 Institutional Details

The current academic knowledge about portfolio transitions is fairly limited. Since

my main identification argument is based on their complicated mechanisms, I briefly

discuss here interesting details of portfolio transition management industry.

Portfolio transitions are undertaken by institutional investors, such as corporate

and public pension plans, endowments, union plans, and foundations. In the present

study, these investors are referred to as asset owners. As professionals in the area of



investment management, they make asset allocation decisions on behalf of their plans'

beneficiaries. Typically, asset owners do not participate in the investment process

directly but choose to delegate their funds to external fund managers, who run large

funds and in turn have many institutional clients." For most of them, managers hold

portfolios with essentially the same composition of securities. 12 Interestingly, asset

owners closely monitor and frequently reshuffle their fund managers, thus creating

a fair amount of hiring and firing activity in the industry. Transferring of funds

from terminated managers to newly hired managers is the most common reason for

portfolio transitions. Also, transitions might be necessary when asset owners change

the asset mix, deploy new cash inflows, or disburse funds; most of these events trigger

large transfers of funds from legacy, i.e. existing, portfolios to target portfolios.

Every portfolio transition is unique. However, a typical portfolio transition is exe-

cuted along the following lines. First, the manager to be hired is informed a few days

or weeks in advance about the decision of the asset owner. Second, the manager to be

terminated is notified a day or two before the transition that funds will be withdrawn

from his management. To avoid front-running and to verify his actual holdings, he

is instructed to stop trading. Since portfolio transitions is a very complicated task

and, if poorly executed, might harm plans's excess annual returns, it is typically

delegated to the professional transition managers. These transition managers are ei-

ther pre-selected by the asset owner in advance or chosen through a bidding process.

Just before transition, they get to know the list of securities of terminated manager,

which is verified by a custodian, and the "wish" list of securities of hired manager.

Transition managers design, coordinate and execute portfolio transitions; upon the

completion, they issue a detailed post-trade report for their clients.

To minimize transaction costs, transition managers can use several different trad-

ing venues. These venues include internal crossing, external crossing, and open market

trading. Some trades are crossed internally against the stocks from other transition

"1In general, an asset owner employs about 10 fund managers; larger plans with over $1 billion
in assets might hire more than 20 fund managers. The average mandate size is around $50-$100
million, and fund managers have about 10-20 clients.

12This industry is a mirror image of retail investors and their mutual fund managers, but in
institutional setting.



mandates or against requests, submitted by an affiliated passive investment manage-

ment team. Some trades are carried out through various crossing networks such as

POSIT, LiquidNet, or Pipeline; these networks facilitate less expensive execution,

which is, however, uncertain and prone to information leakage. The rest are traded

directly through traditional markets.

Several details are worth mentioning. Terminated managers cannot use portfolio

transitions to get rid of the stocks with negative perspectives; the composition of

legacy portfolios is fixed with their current positions. At the same time, hired man-

agers have discretion to use portfolio transitions to tilt their positions towards stocks

with favorable perspectives; however, in practice, they usually recommend portfolios

that are very similar to the portfolios of their current clients.

1.2.2 Hypotheses

In the market, there exists a complicated relationship between returns, trades, and

underlying information. Market participants trade for a variety of reasons, and their

trades can be broadly classified as either information-motivated or liquidity-motivated

ones. These two are expected to generate different market's dynamics. On one

hand, information-motivated trades reveal new information and shift stock prices

permanently.l3 On the other hand, liquidity-driven trades induce temporary price

pressure effects: stock prices change in order to attract risk-averse counterparties,

and as liquidity providers are compensated for their services, these deviations reverse.

The asymmetry is emphasized in the theoretical work of Wang (1994) and Llorente et

al.(2002). It also underlies the empirical models of Hasbrouck (1988, 1991). However,

to design a study about these patterns is a challenging task, since information content

behind trades is typically unknown to researchers.

Remarkably, portfolio transition purchases can be classified as information-motivated

trades and portfolio transition sales - as liquidity-motivated ones. To justify this

claim, I consider separately the decisions of market participants who originate these

13If information is only partially impounded into prices, then even the return continuation can be
observed.



transactions: fund managers and asset owners.

First, terminated and hired fund managers explicitly determine legacy and target

portfolios by choosing securities out of numerous alternatives, available in the market.

Consequently, the composition of both portfolios reflects their positive assessment of

stocks' fundamentals. This implies that sales of legacy portfolios do not carry any

negative information. 14 Moreover, on average, purchases of target portfolios indicate

favorable perspectives of stocks which are chosen by hired managers among numerous

alternatives. Informativeness of purchases is further enforced by managers' ability to

use portfolio transitions to tilt their current portfolios towards better stocks. Yet,

their informativeness might be questioned, since there is no conclusive evidence about

the stock-picking abilities of fund managers.

Second, asset owners implicitly affect the composition of target and legacy port-

folios; they decide how to reshuffle their funds between various managers and asset

classes. As I discuss next, asset owners seem to have the manager-picking skills: they

delegate their funds to skilled managers and withdraw their funds from managers

with no abilities. Consequently, transition purchases are purchases of stocks, selected

by skilled hired managers; these are information-motivated trades. At the same time,

transition sales are liquidation of portfolios of unskilled terminated managers; these

are liquidity-motivated transactions.

The portfolio transition data set provides an opportunity to demonstrate that

asset owners might have the manager-picking abilities, which are at heart of my iden-

tification assumption. I implement the following procedure. I select 1,639 two-sided

transitions, representing shifts of funds between legacy and target portfolios. Based

on their snapshots right before and after transitions, I compare their performance in

post-transition period; more precisely, I analyze the differences between target and

legacy cumulative raw returns during six months, staring with the transition month.

Results in Table 1.1 show that, on average, target portfolios outperform legacy

portfolios in post-transition period. In the transition month, the difference between

14Similar argument can be found in Coval and Stafford (2005), who argue that fire sales of mutual
fund managers are unlikely be driven by information reasons.



target and legacy portfolios is about 30 bps, partially reflecting the triggered price

pressure effects. These initial deviations reverse in the subsequent months; however,

the average difference remains above 20 bps for up to half a year. I also split my

sample into small and large portfolio transitions and find that these patterns are

more pronounced for the larger ones. The reason might be that either asset owners,

responsible for allocation of larger funds, are more knowledgeable and spend more

resources when hiring new managers, or fund managers, responsible for managing

larger portfolios, are more skillful.

It is worth mentioning several observations. First, this difference in performance is

largely attributed to the price deviations in the transition month, when information,

known to hired managers, is being revealed to the market. If the transition month is

skipped, then no statistically significant difference between legacy and target portfo-

lios is observed. 15 Second, the discrepancy between legacy and target portfolios seems

to be fairly small to justify the costly changes in fund management (on average, total

transaction costs are about 25-30 bps). However, my analysis is based only on snap-

shots of holdings during transitions, and does not take in account possible portfolio

rebalancing in the post-transition period.

Several additional rationales support my identification assumption. The level of

expertise of asset owners in choosing fund managers is much higher than that of re-

tail investors in selecting mutual funds (Del Guercio and Tkac (2002), Heisler et al.

(2006)). For instance, the anecdotal evidence suggests that asset owners heavily rely

on the recommendations of professional consultants and spend lot of their resources

to evaluate and select fund managers. The hiring process usually includes several

stages, starting with an initial screening, which is based on past performance and its

consistency, and ending with several rounds of personal interviews, which help eval-

15Using a matched sample of firing and hiring decisions of asset owners, Goyal and Wahal (2006)
conclude that if asset owners had stayed with fired investment managers, their excess returns would
be larger than those actually delivered by newly hired managers. However, Goyal and Wahal (2006)
study the differences between the performance of hired and fired managers at much longer horizons.
Contradictive results might be also attributed to the nature of data, used in our studies: while this
study is based on the precise information about legacy and target portfolios, Goyal and Wahal (2006)
rely on the voluntarily disclosed information, public sources, and imperfect matching between hired
and fired managers.



uate qualitative characteristics of managers. Furthermore, Busse, Goyal and Wahal

(2006) point out that the tendency of asset owners to pick past winners might help

them to benefit from persistency of performance of institutional fund managers, at

least in the short-run; this short-run persistency was also documented in Goyal and

Wahal (2006), Ferson and Khang (2002), and in Tonks (2005).16

My identification assumption leads to the following hypothesis:

Hypothesis 1: On average, transition purchases are information-motivated trades,

and they shift stock prices permanently upwards. At the same time, transition sales

are liquidity-motivated trades, and they affect stock prices only temporarily.

Some transition purchases are expected to be especially informative. By defini-

tion, these are purchases of stocks with a high degree of information asymmetry, in

which informed traders have particularly substantial advantage over other market

participants. Thus, formally, my second hypothesis states the following:

Hypothesis 2: Transition purchases of stocks with a higher degree of information

asymmetry contin more information and lead to more substantial permanent price

adjustments.

By the nature of portfolio transitions, choices of stocks to be purchased are bound

to the current positions of hired managers. Some stocks in their portfolios were

bought recently based on information that has not been fully incorporated into stock

prices; the others were acquired long time ago based on the positive signals that have

been already fully reflected in the market. Consequently, transition purchases might

contain either new or stale information. It is important to disentangle these two cases,

since only unexpected components reveal new information and shift security prices

permanently (see Hasbrouck (1988, 1991)).

Certainly, the complete trading history of hired managers could reveal which of the

current holdings might be attributed either to stale or to new information. However,

16These findings contrast with the well-known lack of persistence in retail mutual funds industry,
and can be partially explained by more sticky and lumpy capital flows of institutional investors.



this data is unavailable. To get around this problem, I suggest using recent past

returns that might help identify these two groups of observations. Indeed, if past risk-

adjusted returns are high, then most likely favorable information has been already

revealed to other market participants and this has been reflected in the recent upward

price dynamics. In contrast, if past risk-adjusted returns are low, then information

content of transition purchases seems to be unknown to the market. This observation

leads to my next hypothesis, which relates transition purchases to past returns and

states the following:

Hypothesis 3: Transition purchases of stocks with high past returns contain only

latent information, and their permanent price impact is insignificant. In contrast,

transition purchases of stocks with low past returns contain new information, and

their permanent price impact is large.

To summarize, in this section I discuss several hypotheses about portfolio tran-

sition trades and the price dynamics that they are expected to generate. Next, I

describe the data set of portfolio transitions and design of my tests.

1.3 Data Description

1.3.1 Data set of Portfolio Transitions

In this study, I use a novel database of portfolio transitions. 17 Data is made available

by a leading provider of portfolio transition services, who supervises more than 30%

of stock transitions executed in the U.S. More precisely, after various filters, I consider

17There are several recent studies about selections and termination of fund managers by insti-
tutional investors, which are also closely related to portfolio transitions. In comparison with this
paper, other studies employ much less accurate and comprehensive data sets. Indeed, Parwada and
Yang (2004), Parwada and Faff (2005), and Dishi, Gallagher, and Parwada (2006) analyze data set
on the allocations and withdrawals of Australian pension plan investment management mandates
that is constructed based on the voluntary disclosures, public domain sources, pension plan reports,
and the investigation by a team of financial reporters. Similarly, Goyal and Wahal (2006) rely on
the data set of hiring and firing decisions that are voluntarily disclosed by fund managers to Mer-
cer Investment Consulting and Institutional Investor Publications, as well as articles published in
Pensions and Investments.



2,234 portfolio transitions with a trading volume of roughly $400 billion executed on

behalf of U.S. institutions from January 2001 to December 2005.

The portfolio transition data set is exceptionally detailed and clean. It is con-

structed from the actual post-transition reports built by transition managers for their

clients on a case-by-case basis; these reports were thoroughly discussed during port-

folio transitions. The data was further checked manually to avoid any potential

typographical errors and inaccuracies. As a result, it represents a reliable picture of

actual processes.

For each transition, I observe a post-trade execution report. Each report contains

two types of data: the general information and the more detailed description of

executed trades. The general information includes starting date, ending date, and the

base currency. Starting (ending) date denotes the day of the first (last) transaction.

Base currency is the trading currency of an asset owner. However, at the time when

this data set was constructed, mainly data on the transitions of U.S. clients was

available.

The information on executed trades specifies the number of shares traded, the

execution prices, the benchmark prices, as well as information on various transaction

costs. Since the implementation shortfall methodology is used for quality control, pre-

trade benchmarks are often employed. The execution prices and shares traded are

provided in aggregated form; all trade records are clustered at daily levels. Moreover,

they are further grouped according to execution methods. There are three different

execution methods: internal crossing, external crossing, and open market trading.

Thus, for each transition, each stock, each trading day and each trading venue, the

number of shares traded, the average execution price, and the pre-trade benchmark

price are specified. Also, in-kind transactions, or assets being part of both legacy

and target portfolios, are observed; availability of these transactions allows me to

reconstruct legacy and target portfolios.



1.3.2 Supplementary Data

I use standard CRSP database to get additional stock information: prices, returns,

volume, and shares outstanding. My sample includes ordinary common stocks (with

CRSP share codes of 10 and 11) listed on the New York Stock Exchange (NYSE),

the American Stock Exchange (Amex), and NASDAQ in the period of January 2001

through December 2005. Any derivative securities, such as ADRs, REITS, or closed-

end funds are excluded. The estimates of probability of information-motivated trad-

ing, PIN, are downloaded from Soeren Hvidkjaer's web site. I also use unadjusted

data from the Institutional Brokers Estimates System(I/B/E/S) to get the number

of analysts who follow stocks.

In order to eliminate records with potential errors and unrepresentative trades, I

have filtered out transitions with obviously wrong information or typographical errors

due to the storing and collecting methods. The stocks with missing CRSP informa-

tion, necessary to construct variables for the tests, are removed as well. Moreover, I

exclude low-priced stocks with prices below $1.

After filtering, I consider about 682,481 transition orders. About 274,244 orders

are at least partially executed through open markets; for 79,132 of these orders, the

fraction directed to open markets is larger than 1% of the average daily volume in the

previous month. Among them, there are 36,544 buy orders and 42,588 sell orders.

1.3.3 Summary Statistics: Portfolio Transitions

In this section, I describe a playing field and general characteristics of transitions,

which are analyzed in the paper.

Panel A of Table 1.2 provides a general description of portfolio transitions in

the sample. These transactions are large. For instance, during a typical transition,

about $50 million or more than a million shares in 133 various stocks are traded. The

distribution of transition size is skewed by several large observations; large transitions

involve several billions of dollar trading volume, and the maximum number of stocks,

traded in a particular transition, is as high as 3,669.



Panel B of Table 1.2 shows the distribution of transitions across the market capi-

talization groups."8 While about 70% of dollar value is executed in large stocks, only

1.5% is traded in small stocks; this disparity is less extreme, if instead the number

of stocks is considered, since trades in large stocks tend to be more sizable. The

observed dominance of large stocks in the sample is the result of numerous regulatory

restrictions, faced by institutional investors.

Portfolio transition orders are often split over several days. Usually, the execution

horizon is negotiated between transition managers, who suggest the optimal trading

time as a part of their pre-trade analysis, and their clients, who might have additional

constraints that require faster trading."9 Panel C of Table 1.2 describes the transition

durations, defined as the number of days between the first and the last trades in a

given transition. Interestingly, it takes from one up to 18 days to complete transitions.

About 56% of transitions are executed in one day, while most others are spread over

a week. If trading volume is considered, then only 26% of transitions are completed

in one diay; this is expected because more complex transitions typically require more

time to be executed.

Also, legacy portfolios are sold slightly faster than target portfolios are acquired

(results are not reported). These patterns are due to the agency-based approach,

followed by the transition team: it does not provide any additional capital but rather

finance purchases of target portfolios with the proceeds from sales of legacy portfo-

lios.20

To summarize, portfolio transitions are large and complicated transactions. A

typical size of a transition is about $50 million. It involves more than 100 stocks,

most of which are the large ones. Typically, transition orders are spread over different

trading venues and over time. It takes from one to 18 days to complete a transition;

about 56% of them are finished in one day, and 96% are executed over a week.

18Thresholds for size groups are based on the capitalization distribution of the NYSE stocks in
2003.

' 9 Often fund managers ask for quicker execution because they want to minimize the blackout
period during which the ability to trade is temporarily suspended.

20When quick turnaround are necessary or when costs must be known in advance, the principle-
based approach is used: the entire portfolio is sold to a broker who takes all risks of selling stocks
for a fixed pre-determined price.



1.3.4 Summary Statistics: Transition Orders

In this section, I describe the transition orders in individual securities: their main

characteristics and how they are split over time and different trading venues. I con-

sider a sample of transition orders, for which more than 1% of the average daily

volume is traded through open markets; the effects on security prices of disregarded

small trades is difficult to detect statistically.

Panel A of Table 1.3 shows summary statistics for the selected sample. Transi-

tion purchases and sales have similar characteristics. Their average size is typically

about $1 million: $0.1 million is common for both legacy and target portfolios, $0.5

million is traded though the open market, finally, $0.2 million is crossed externally

and internally, respectively. Definitely, these significant values might be influenced

by a few large orders. Transition orders account, on average, for about 6 bps of the

shares outstanding or for more than 14% of the average daily volume. At the same

time, the median values are much lower: roughly 2.8% of the average daily volume

and 1.5 bps of the shares outstanding, most of which is executed through the open

market trading.21

Transition orders are frequently split over several days. Panel B of Table 1.3

presents information on the distribution of trades over time. For each day relative to

the starting day of transition and trading venue, Panel B exhibits the average trade

size, normalized by the average daily volume in the previous month. Clearly, most

transition orders are executed during the first week, and especially during the first

two days. This is important for interpreting the results, presented in the next section.

Also, portfolio transition orders are executed more quickly than routine institutional

strategies.22 This observation highlights that portfolio transitions represent a unique

subset of institutional trades.

21To compare, the average daily turnover is about 40 bps at NYSE in 2005.
22For example, acknowledging a usual practice of splitting institutional orders, Chan and Lakon-

ishok (1995) reconstruct an ex ante institutional order looking at trading packages, or a sequence
of trades which is followed by a 5-day period when a manager stays out of the market. They show
that only about 20% of the value of institutional trading is executed in one day; meanwhile trading
packages, which take four and more days to complete, account for about a half of all institutional
trades. Related evidence can be found in Keim and Madhavan(1995).



1.4 Event Study

In this section, I test the hypotheses of Section 1.2.2 by analyzing the behavior of

stock prices after portfolio transition trades. I start with a detailed description of the

tests and then present the results.

1.4.1 Design of Tests

I follow the event-study approach to investigate the dynamics of prices after portfolio

transitions trades. First, I define the risk-adjusted returns, rid. The specification

of a correct risk-adjustment model is always problematic. I chose to adjust returns

for their exposure to three risk factors, as suggested in Fama and French (1992).

The composition of target and legacy portfolios might depend on the past returns;

therefore I augment the model by the momentum factor (see Carhart (1997)). For

each security and each month, I estimate the factor loadings using five pre-event years

of data with at least 24 monthly return observations. To correct for potential biases

due to non-synchronous trading, I apply a standard methodology: I regress monthly

excess stock returns on the contemporaneous market value-weighted excess return, a

size factor, a B/M factor and a momentum factor with their lags (see Dimson (1979)).

The size factor is a return on a portfolio that is long in small stocks and short in large

stocks. The B/M factor is a return on a portfolio that is long in stocks with high B/M

and short in stocks with low B/M. The momentum factor is a return on a portfolio

that is long in stocks with high past returns and short in stocks with low past returns.

Sensitivity to a factor is a sum of coefficients on the factor and its lagged value.

Second, I calculate the cumulative abnormal returns, CARs:

T

CARI, = r (1.1)
t=O

where radj is the risk-adjusted return of stock i at day t and T is a horizon. Both

short-term horizons, such as several days and weeks, as well as longer horizons such

as one, two, and three months are considered. The use of cumulative returns rather



than buy-and-hold returns is advocated by Fama (1998), who argues that the former

is subject to less severe biases.

Third, for each horizon T, the cumulative average abnormal returns, CAARs,

and their t-statistics are calculated following the Fama-McBeth procedure for data

grouped at monthly levels. This procedure allows one to correct for the cross-sectional

correlations between stock returns. Cross-sectional interdependence might be induced

either by general market dynamics or by portfolio trading; in both situations, contem-

poraneously traded stocks share similar characteristics. The example is a portfolio

transition of an asset owner who transfers funds from the large-stock into growth-

stock portfolios. T-statistics are further adjusted with the Newey-West procedure to

correct for intertemporal correlations. The number of lags is chosen by the automatic

bandwidth selection procedure. 2324

The first hypothesis emphasizes the distinctive patterns of the CAARs after tran-

sition purchases and sales. For purchases, the CAARs are expected to be shifted

upwards during transitions and then remain significantly positive at longer horizons.

For sales, the CAARs are predicted to deviate downwards but then reverse and be-

come insignificant at longer horizons. The results, presented below, support this

hypothesis.

1.4.2 Results

Test of Hypothesis 1

Figure 1-1 plots the cumulative average abnormal returns, CAARs, after large tran-

sition orders.25  Panel A of Table 1.4 quantifies the results. Returns are weighted

equally; horizons for up to three months are considered. Two main patterns are

23Results are similar, if other numbers of lags are used.
24Pooled regressions with clustering at time and security levels (or only time level) produce very

similar estimates of standard errors; if only clustering at security level is considered, then standard
errors are much smaller. Further discussion on panel data estimation can be found in Petersen
(2007).

25This sample includes orders during which more than 1% of the average daily volume in the
previous month is traded through open markets; the effects of these trades on security prices can be
more easily detected.



clearly observed. First, trades certainly affect the contemporaneous stock returns:

on average, during the first week, purchases are accompanied by 0.43%-increase in

stock prices, whereas sales coincide with 0.36%-decline in stock prices. Second, for

purchases and sales, price signatures exhibit a surprising asymmetry at longer hori-

zons. Typically, sales induce only temporary price pressure effects: the initial price

decline reverses and disappears in several weeks. In contrast, purchases move prices

permanently, and the gap between the CAARs after purchases and sales is about

0.40%. By and large, this finding supports the first hypothesis.

Figure 1-2 depicts the principle-weighted CAARs or, more precisely, returns weighted

with the size of open market trades, which are normalized by the average daily volume

in the previous month.2 6 This weighting scheme puts more weight onto potentially

more informative trades and leads to even stronger evidence of asymmetry: the dif-

ference between principle-weighted CAARs for purchases and sales is roughly 0.80%

in three months after portfolio transitions, which is twice as high as for the equally-

weighted case.

Panel B of Table 1.4 presents the CAARs' estimates for returns, weighted with

their market capitalizations in the previous month; Figure 1-3 graphically illustrates

the results. In this case, the price responses are quite different. First, the initial price

reaction is less significant than for the equally-weighted case; stock price increases

by only 0.17% for the stocks, acquired as part of target portfolios, and decreases by

0.25% for the stocks, sold as part of legacy portfolios. Second, at longer horizons,

no asymmetry between prices of sold and purchased stocks is observed: initial price

changes reverse and come back to the original pre-transition levels after a few weeks.

These patterns are comprehensible, since large and transparent securities are weighted

more heavily in this case and, while trading these securities, hired managers do not

have information advantage over other market participants.

Figure 1-4 presents the average price responses to the sample of all orders without

any restrictions. Again, although the temporary price deviations are observed, the

difference between sold and bought stocks at longer horizons is insignificant. These

26For each month, 1% of extreme observation of weights is truncated.



patterns are due to the numerous small trades that get the same weight but do not

affect security prices significantly.

It is worth mentioning that price pressure effects, which are created by transition

trades, are too significant to be explained by bid-ask bounce. The magnitude of

contemporaneous price impact is about 50bps for both purchases and sales (Figure

1-1). In fact, for stocks in this study, the typical percentage spread is roughly equal

to 20bps. Thus, only about 20% of temporary price deviation might be attributed to

bid-ask bounce.

Interestingly, the price pressure effects, created by trades of a particular market

participant rather than a segment of investors, might cause a substantial price impact

not only at daily but also at weekly and monthly frequencies. Since these shocks

represent only a small fraction of trading volume, this implies that the observed

intensive trading, which is largely attributed to noise trading, can not eliminate the

effects of one-sided order imbalances on securities prices.27

The evidence of long-lasting price pressure caused by portfolio transition sales is

related to several studies of institutional trades. For example, Coval and Stafford

(2005) have documented that mutual fund sales/purchases, triggered by flows in and

out of funds, create patterns of price pressure, which do not vanish for several quar-

ters. Jin and Scherbina (2006) point out that for three months following the man-

agerial change, sell-offs of recently hired fund managers might result in substantial

underperformance of the inherited losers relative to other momentum losers. Also,

Subrahmanyam (2006) shows that monthly order imbalances, constructed from intra-

day data, might affect stock returns for up to two months. 2 8

In summary, the study of stock prices around transition trades shows that the

contemporaneous stock prices deviate from the pre-trade levels. Moreover, on aver-

age, during transition sales, stock prices change only temporarily and reverse to the

original levels over the next several weeks; during transition purchases, stock prices

27In contrast, Chordia, Roll and Subrahmanyam (2005) document that even the aggregated in-
traday order imbalances are usually accommodated within the subsequent hour.

28However, Mitchell, Pulvino and Stafford (2002) describe the impact of the merger arbitrageurs'
trades on the stock prices; however, their price pressure effects are relatively short-lived.



are shifted to new levels permanently. These patterns clearly support Hypothesis 1.

Test of' Hypothesis 2

Hypothesis 2 states that transition purchases in stocks with higher levels of informa-

tion asymmetry are more informative and induce larger permanent price changes. In

order to test this hypothesis, I consider transition trades in stocks with high and low

information asymmetry and then examine their CAARs separately.

The information asymmetry of individual stocks is not directly observed. There is

no agreement on how to define its best proxy. For robustness, I use several measures

suggested in the previous literature. For instance, one of its proxies might be the

market capitalization: exposure of large stocks to information asymmetry is expected

to be much lower than that of small stocks. Empirical literature provides evidence

consistent with this claim; for example, Lo and McKinlay (1990) find that prices of

the stocks with smaller capitalization do not follow random walks, which would be

expected for the securities with no significant informed trading. The different patterns

of the equally-weighted and value-weighted CAARs, discussed in the previous section,

suggest that permanent price impact indeed tend to be more pronounced for small

stocks rather than for large ones. Further, in this section, I focus on other proxies of

information asymmetry.

The first proxy is the number of analysts who follow stocks or, in other words, the

number of individuals who produce information about firms, ANUM. I construct

these measures based on the monthly number of analysts who provide I/B/E/S with

their end-of-fiscal-year earnings forecast. The large number of analysts following

stocks enhances transparency regarding their perspectives and lessen the information

asymmetry. For instance, Brennan and Subrahmanaym (1995) and Easley, O'Hara

and Paperman (1998) argue that trading in stocks with the greater number of invest-

ment analysts is associated with the lower adverse selection costs; also, the initiations

of analyst coverage usually improve liquidity.

The second measure of information asymmetry is the percentage spread, SPREAD.

According to insights of the theoretical work, this proxy reflects the assessment of mar-



ket participants about how probable the trading against informed traders is. Thus,

stocks with the higher information asymmetry tend to have the larger percentage

spread.

The third measure of information asymmetry is the probability of information-

motivated trading, PIN, which is constructed based on the structural model of Easley

and O'Hara (1987, 1992). Easley et al. (1996) suggest the algorithm to estimate these

measures using intraday data. The higher the probability of information-motivated

trading is, the larger the degree of information asymmetry is expected. Consistent

with this claim, Easley et al. (1996) show that PIN is closely related to spread, which

is in turn tightly linked to the adverse selection costs of trading.

The suggested measures are noisy proxies for unobserved information asymmetry,

they are far from being perfect. Indeed, the strength and the exact functional form of

their cross-sectional relation with the degree of asymmetry are unknown. Moreover,

there are several additional concerns. For instance, Boehmer at al. (2006) show

that inaccuracies in trade classification lead to downward biases in the estimates of

PIN. The number of analysts, ANUM, is frequently not identified for the stocks with

potentially high information asymmetry, since these stocks are not regularly followed

by analysts. Nevertheless, I use these proxies to test Hypothesis 2.

To examine how the price dynamics depend on information asymmetry, I slightly

modify the event-study test, described in Section 1.4.1: each month, observations

are additionally sorted into three groups based on their information asymmetry, and

afterwards their CAARs are analyzed.

Table 1.5 shows the CAARs for two groups of stocks: ones with low and high

information asymmetry. For all three proxies, similar patterns are observed. First,

consistent with the previous results, after transition sales, the prices tend to come back

to pre-transition levels regardless of information asymmetry. Second, after transition

purchases, the price dynamics differ for the low and high information asymmetry

groups: for the former, only temporary price deviations are observed whereas for the

later, the initial price deviations are permanent and more significant. Interestingly,

in the latter case, stock prices even continue to increase in the post-event period, thus



indicating that information, originally known to hired managers, is being gradually

revealed, to other market participants.

Table 1.6 shows that proxies of information asymmetry are highly correlated with

the market capitalization. For instance, the correlation between the probability of

information-motivated trading, PIN, and stock size is about -0.60. Also, fewer ana-

lysts follow smaller stocks, and larger spreads are typically observed in their markets.

In order to clearly disentangle the effects of information asymmetry from the size

effects, I apply a double-sorting procedure. Each month, observations are first sorted

into three groups based on their stock capitalization. Within each size group, ob-

servations are further clustered into two sets according to the associated degree of

information asymmetry. Then, I test whether the permanent price impact patterns

differ across stocks within size groups.

Results in Table 1.7 confirm that the number of analysts, ANUM, is directly

linked to the long-run price dynamics even after controlling for stock size. First,

consistent with the previous findings, transition purchases induce permanent price

changes in small stocks but not in large stocks. More interestingly, if only small stocks

are considered, then long-run price changes are much more significant for stocks with

low ANUM than for those with high ANUM. For instance, in two and three months

after transitions in the former, the CAARs increase to about 1.96% and 2.21%, being

significant at 1% and 5% levels, respectively; at the same time, the corresponding

CAARs for the latter are only 0.73% and 0.42%, being statistically indistinguishable

from zero. Similar patterns are observed for the medium-size stocks. Thus, the

ANUM-sorting reveals the variations in the post-transition price dynamics that is

unrelated to size.29

Table 1.8 shows the results for a double sorting on size and the percentage spread,

SPREAD. Clearly, SPREAD is related to the stock price dynamics even after

controlling for stock size: indeed, for small stocks, purchases of stocks with large

SPREAD trigger permanent price shifts, at the same time, they bring about much

29The results for sales are not presented. As before, their CAARs are not statistically different
from zero at long horizons.



less significant price deviations for stocks with small SPREAD. Table 1.9 demon-

strates that a double sorting on size and PIN leads to the very similar conclusions

as well.

In this section, I show that transition purchases of stocks, traditionally considered

as being prone to high risk of information asymmetry, are associated with significant

and permanent upward shifts in prices; moreover, increasing price dynamics often

continue even in post-transition periods. The robustness of these patterns is checked

for various proxies of information asymmetry. Thus, the documented evidence is in

favor of Hypothesis 2.

Test of Hypothesis 3

In this section, I test Hypothesis 3: transition purchases that reflect stale information

(as shown by large abnormal past returns) have less significant permanent effects on

stock prices, whereas the opposite is expected to hold for transition purchases that

contain new information (as shown by low abnormal past returns).

To test this claim, I first sort observations into three groups based on their risk-

adjusted returns in the previous three months, Rad3 1. For instance, group "Low"

includes stocks with the bottom 33% of negative risk-adjusted past returns, and

group "High" includes stocks with the top 33% of positive risk-adjusted past returns.

Then, for each of these groups, I estimate the CAARs and their statistics following

the procedure, described in Section 1.4.1.30

Table 1.10 shows that, in fact, permanent effects of transition buy orders are

much more significant for the stocks with low past returns than for the ones with

high past returns. For the former, the CAARs are as high as 1.61% and 1.47% in

two and three months after portfolio transitions, respectively; at the same time, for

the latter, the triggered price effects are short-lived, and stock prices revert to their

pre-transition levels during the following weeks. Thus, only unanticipated trades

reveal new information and shift security prices permanently. At the same time,

30 If returns in the previous six months, Radi,-1, are considered or if stocks are split into three
groups according to their past returns, then the results are qualitatively similar.



for transition sales, the CAARs tend to decline for stocks with high pre-transition

returns and stay close to zero for stocks with low past returns. This is consistent with

information hypothesis, since the latter situations are more likely to occur during

replacement of fund managers which trigger uninformative redemptions of legacy

portfolios.

It is also worth mentioning the intriguing short-run patterns of the CAARs after

transition sales. Although their CAARs for both groups are insignificant in the long

run, the short-run market's dynamics are very different: for stocks with low past

returns, the sales have almost no significant effects on the stock prices; in contrast,

the price pressure effects triggered by the sales of stocks with high past returns last

for about a two weeks. These effects might be partially explained by the arguments

that are unrelated to specifics of portfolio transitions. For instance, Saar (2001)

claims that the information content of sales might depend on the past prices: their

permanent price impact increases after a long run-up in stock prices.31 If the market

cannot ex ante distinguish the portfolio transition trades from other transactions,

then this reasoning is applicable for the documented short-run price dynamics.

In this section, I present the supportive evidence for Hypothesis 3. Indeed, if stocks

are selected by hired managers based on the new information, then their purchases

create permanent price changes. However, if stocks are chosen by hired managers

for matching their current positions rather than for information reasons, then their

purchases do not change the long-run price dynamics.

1.5 Discussion and Extensions

In this section, I first discuss alternative explanations for the documented asymmetry

of price responses after transition purchases and sales and conclude that these expla-

nations are less plausible than the primary information hypothesis. Also, I extend my

31In his model, informed agents are short-sale constrained and, typically, cannot sell stocks even
if negative signals are received. Thus, information component of sales is small and demand only
insignificant price changes. However, a long run-up in the stock prices implies that informed agents
acquired stocks and are currently able to sell them; thus, the information content and permanent
price impact of sales increase.



analysis and demonstrate the price dynamics after transition orders executed through

the trading venues, other than the open market.

1.5.1 Alternative Explanations

Many effects are associated with portfolio transition trades and might contribute to

the following-up price dynamics.

First, if no perfect substitutes are available for securities, then their excess demand

and supply curves are not flattened by risk-averse arbitrageurs and trades induce

permanent effects on the prices.3 2 However, this could explain asymmetry between

purchases and sales only if it were harder to find a hedge for a short rather than for

a long position. Hence, the substitution hypothesis cannot explain the documented

patterns.

A second explanation might be that transition trades change the composition of

investors who hold the security: large purchases increase the institutional ownership.

Boehmer and Kelley (2005) show that stocks with greater institutional ownership

are priced more efficiently. In fact, the increase in the number of institutions that

hold the stock might increase the number of analysts following it and induce com-

petition among the informed traders. Both effects enhance efficiency, decrease the

future trading costs, and shift up the stock price following the transition purchases.

Also, large purchases might create block holders who closely monitor the firm and

contribute to the increase of its value. However, the transition trades analyzed in

this study are fairly insignificant to trigger these effects. Table 1.3 shows that the

average value of orders traded through the open market is about 3 bps of the shares

outstanding. In comparison, to find the effects on market efficiency, Boehmer and

Kelley (2005) analyze much larger 60-bp changes in the institutional holdings. Also,

it is unclear why the opposite effects are not observed for the transition sales. Hence,

the institutional ownership hypothesis is unlikely to explain the documented buy/sell

asymmetry either.

32See Garry and Goetzmann(1986), Shleifer(1986), Kaul, Mehrotra, Morck(2000), Wurgler and
Zhuravskaya(2002), among others.



Finally, another explanation might be that large transition trades change the

severity of short-sale constraints: purchases make the ownership more concentrated,

and also asset owners are usually reluctant to be engaged into short selling. These

two mechanisms might aggravate the short-sale constraints. Miller (1977) notes that

prices of constrained stocks may be inflated beyond fundamental levels since only

beliefs of optimistic investors are incorporated.33 Thus, the change in the severity

of short-sale constraints can explain the permanent price impact asymmetry after

transition buys and sells. However, the transition trades seem to be too small to

make this explanation plausible.

1.5.2 Price Dynamics and Trading Venues

In the main part, I analyze the price dynamics after transition trades executed through

traditional exchanges (open markets). In this section, I examine how security prices

evolve after the trades carried out through alternative trading venues: internal and

externa: crossing networks as well as in-kind transactions.

To minimize transaction costs, managers use various trading platforms to imple-

ment portfolio transitions. Some securities in legacy and target portfolios overlap;

these securities are transferred as in-kind transactions, obviously without any cost.

Other securities are traded in open markets; in the preceding sections, the effect

of these transactions on security prices is discussed in detail. Finally, some orders

are executed through non-conventional trading venues, internal and external crossing

networks, which help alleviate or completely remove transaction costs.

If transition companies succeed in attracting many transitions or, alternatively, are

affiliated with large passive asset management firms, then they have access to internal

pools of liquidity, against which they may cross fraction of their orders. These internal

crosses have neither transaction cost nor information leakage and therefore might

boost the competitive advantage of transition companies. Furthermore, some orders

33Duffie, Garleanu and Pedersen (2002) show that prices of constrained stocks can be inflated
even higher than the marginal valuation of the most optimistic investors, if they take into account
the potential profit to be made by lending stocks in the future.



might be directed to external crossing networks such as ITG's POSIT, LiquidNet,

or PipeLine. Ever since being introduced, these networks are valuable sources of

liquidity for institutional investors. Although they come in various forms and have

different clienteles, their primary goal is typically to facilitate efficient execution of

large orders. In these systems, orders are matched against each others at the prices

derived from primary markets. Though a full anonymity is not guaranteed, crossing

networks substantially reduce information leakage and help avoid bid-ask spread.34

Next, I examine the price dynamics triggered by transition orders which are ex-

ecuted through different trading systems. More precisely, I consider three groups of

orders: the orders executed entirely as internal crosses (39,639 orders), the orders

executed entirely through external networks (59,944 orders), and the orders trans-

ferred entirely as in-kind transactions (27,449 orders). These sets are based from the

original sample that includes only large orders accounting for more than 1% of the

average trading volume in the previous month.

Table 1.11 shows the CAARs after transition purchases and sales executed through

either internal and external crossing networks (Panel A and B, respectively) or as in-

kind transactions (Panel C). First, regardless of trading venue, the estimated CAARs

after both purchases and sales are statistically insignificant in post-transition peri-

ods. Perhaps, these transactions tend to reflect common benchmarks rather than

managers' bets on individual securities or mostly affect large stocks, in which hired

managers do not have information advantage over other market participants. Yet,

consistent with information hypothesis, security prices shift upwards after transition

purchases carried out through external crossing networks, though these changes are

not statistically significant too.

Second, the interesting patterns are observed after transactions in external cross-

ing networks in the short-run: on average, sales are associated with decline in stock

prices, whereas purchases are accompanied by the statistically significant price in-

crease. These pattern are surprising given that these networks have no price discov-

34See Ramistella (2006) for the recent overview of crossing networks.



ery mechanisms."3 Several explanations might be suggested. Certainly, these findings

might be explained by a selection bias: when prices move against the trading direc-

tion, the larger fraction of orders is directed to open markets, since the transaction

costs are not a concern anymore, if pre-transition benchmarks are used. Thus, ex-

ternal crosses are mostly used during adverse price changes and mechanically exhibit

price impact. Alternatively, external crossing networks can be subject to informa-

tion leakage, which is often brought up by practitioners during discussions of crossing

networks. However, it is difficult to differentiate the underlying mechanisms in data.

To summarize, the price behavior after trades executed through different trading

venues is broadly consistent with information hypothesis.

1.6 Conclusion

The main goal of this paper is to investigate how the market learns new information

and how it accommodates liquidity shocks. A unique data set of portfolio transitions

allows me to identify information-motivated and liquidity-motivated trades; more pre-

cisely, I argue that transition purchases contain private information whereas transition

sales are uninformative changes in supply. Consistently with market microstructure

beliefs, the analysis of price dynamics, triggered by these transactions, reveals the

asymmetric price signatures after the trades with different underlying motives. On

one hand, transition purchases permanently shift prices; moreover, information is of-

ten not fully revealed, and security prices continue to increase in the post-transition

period. These patterns are especially pronounced after large trades, trades in stocks

with high degree of information asymmetry, and trades that reflect new rather than

stale in:formation. On the other hand, transition sales induce only temporary price

pressure effects that reverse in the following weeks.

Asymmetric price dynamics after purchases of target portfolios and sales of legacy

portfolios allows for an alternative interpretation. Given that price dynamics reflect

35To remind, these orders are executed entirely though crossing networks and, consequently, the
price pressure effects can not be attributed to contemporaneous open market trades.



the information content of trades, these results show that a subset of money managers,

who manage target portfolios, do have the stock-picking abilities and can deliver

abnormal returns, at least in the short run after portfolio transitions. Moreover,

these results suggest that asset owners might be able to differentiate skilled managers

from the others. This is the novel and important evidence on investment strategies

of the largest institutional investors as well as investment managers. So far, the

behavior of these market participants has remained largely unexplored, mostly due

to the scarcity and limitations of available data; however, both the extent of assets

under their jurisdiction and their social importance are good reasons to learn more

about this subject.

The unanswered question is how the market learns information content of portfo-

lio transition trades or, more generally, of any other trades. Certainly, the execution

of these complicated transactions requires extensive communication between market

participants, which might be unobserved by researchers but crucial for information

dissemination. More detailed investigation of price dynamics during these transac-

tions might shed a light onto these issues.



References

Andrade, Sandro, Charles Chang and Mark Seasholes, 2006, Trading imbalances,
predictable reversals and cross-stock effects, Working paper.

Avramov, Doron, Tarun Chordia, and Amit Goyal, 2006, Liquidity and autocorre-
lations in individual stock returns, Journal of Finance 61, 2365-2394.

Barberis, Nicholas and Andrei Shleifer, 2003, Style investing, Journal of Financial
Economics 68, 161-199.

Barberis, Nicholas, Andrei Shleifer, and Jeff Wurgler, 2005, Comovement, Journal
of Financial Economics 75, 283-317.

Boehmer, Ekkehart, Joachim Grammig, and Erik Theissen, 2006, Estimating the
probability of informed trading - Does trade misclassification matter?, Working
Paper.

Boehmer, Ekkehart, and Eric Kelley, 2005, Institutional investors and the informa-
tional efficiency of prices, Working Paper.

Brennan, Michael, and Avanidhar Subrahmanyam, 1996, Market microstructure and
asset pricing: On the compensation for illiquidity in stock returns, Journal of
Financial Economics 41, 441-464.

Busse, Jeffrey, Amit Goyal, and Sunil Wahal, 2006, Performance Persistence in
Institutional Investment Management, Working Paper.

Cahart, Mark, 1997, On persistence in mutual fund performance, Journal of Finance
52, 57-82.

Campbell, John, Sanford, Grossman, and Jiang Wang, 1993, Trading volume and
serial correlation in stock returns, Quarterly Journal of Economics 108(4), 905-
939.

Campbell, John, Ramadorai, Tarun and Tuomo Vuolteenaho Tuomo, 2005, Caught
on tape: Institutional order flow and stock returns, NBER Working Paper No.
W11439.

Chan, Louis, and Josef Lakonishok, 1993, Institutional trades and intra-day stock
price behavior, Journal of Financial Economics 33, 173-199.

Chan, Louis, and Josef Lakonishok, 1995, The behavior of stock prices around in-
stitutional trades, Journal of Finance 50(4), 1147-1174.

Chen, Honghui, Gregory Noronha, and Vijay Singhal, 2004, The price response to
S&P 500 Index additions and deletions: evidence of asymmetry and a new
explanation, Journal of Finance 59, 1901-1929.



Chordia, Tarun, Richard Roll, and Avanidhar Subrahmanyam, 2002, Order imbal-
ance, liquidity, and market returns, Journal of Financial Economics 65 (1),
111-130.

Chordia, Tarun, Richard Roll, and Avanidhar Subrahmanyam, 2005, Liquidity and
market efficiency, Working paper, Emory University.

Chordia, Tarun and Avanidhar Subrahmanyam, 2004, Order imbalance and individ-
ual stock returns: theory and evidence, Journal of Financial Economics 72 (3),
485-518.

Coggin, Daniel, Frank Fabozzi, Shafiqur Rahman, 1993, The investment performance
of US equity pension fund managers: An empirical investigation, Journal of
Finance 48, 1039-55.

Coval, Joshua, and Erik Stafford, 2005, Asset fire sales (and purchases) in equity
markets, Harvard Business School Working Paper, No. 05-077.

De Long, Bradford, Andei Shleifer, Lawrence Summers and Robert Waldmann, 1990,
Noise trader risk in financial markets, Journal of Political Economy 98(4), 703-
738.

Del Guercio, Diane, and Paula Tkac, 2002, The determinants of the flow of funds of
managed portfolios: Mutual funds versus pension funds, Journal of Financial
and Quantitative Analysis 37, 523-557.

Dimson, Elroy, 1979, Risk measurement when shares are subject to infrequent trad-
ing, Journal of Financial Economics 5, 263-278.

Dishi, Elor, David Gallagher, and Jerry Parwada, 2006, Institutional investment
flows and fund manager turnover: Evidence from pension plan mandate, Work-
ing Paper.

Duffie, Darrell, Nicolae Garleanu, and Lasse Pedersen, 2002, Securities lending,
shorting, and pricing Journal of Financial Economics 66, 307-339.

Easley, David, and Maureen O'Hara, 1987, Price, trade size, and information in
securities markets, Journal of Financial Economics 19, 69-90.

Easley, David, and Maureen OHara, 1992, Time and the process of security price
adjustment, Journal of Finance 47, 577-606.

Easley, David, Nick Kiefer, Maureen OHara, Maureen, and Joseph Paperman, 1996,
Liquidity, information, and infrequently traded stocks, Journal of Finance 51,
1405-1436.

Easley, David, Maureen OHara, and Joseph Paperman, 1998, Financial analysts and
information-motivated trade, Journal of Financial Markets 1, 175-201.



Fama, Eugene, 1998, Market efficiency, long-term returns, and behavioral finance,
Journal of Financial Economics 49, 283-306.

Fama, Eugene, and Kenneth French, 1992, The cross-section of expected stock re-
turns, Journal of Finance 47(2), 427-465.

Fama, Eugene, and James MacBeth, 1973, Risk, return, and equilibrium: empirical
tests, Journal of Political Economy 81, 607-636.

Ferson, Wayne, and Kenneth Khang, 2002, Conditional performance measurement
using portfolio weights: Evidence for pension funds, Journal of Financial Eco-
nomics, 65, 249-282.

Froot, Kenneth, and Paul O'Connell, 1999, The pricing of US catastrophe reinsur-
ance, The Financing of Catastrophe Risk, 195-232.

Garry, Mark, and William Goetzmann, 1986, Does delisting from the S&P 500 affect
stock price? Financial Analysts Journal 42, 64-69.

Gemmill, Gordon, 1996, Transparency and liquidity: A study of block trades in the
London Stock Exchange under different publication rules, Journal of Finance
51, 1765-1790.

Glosten, Lawrence and Paul Milgrom, 1985, Bid, ask and transaction prices in a
specialist market with heterogeneously informed traders, Journal of Financial
Economics 14(1), 71-100.

Goyal, Amit, and Sunil Wahal, 2006, The selection and termination of investment
management firms by plan sponsors, Working Paper.

Greenwood, Robin, 2005a, Short- and long-term demand curves for stocks: theory
and evidence on the dynamics of arbitrage, Journal of Financial Economics
75(3), 607-649.

Greenwood, Robin, 2005b, A cross-sectional analysis of the excess comovement of
stock returns, Harvard Business School Working Paper, No. 05-069.

Grossman, Sanford, and Merton Miller, 1988, Liquidity and market structure, Jour-
nal of Finance 43(3), 617-637.

Harris, Lawrence, and Eitan Gurel, 1986, Price and volume effects associated with
changes in the SP500: New evidence for the existence of price pressure, Journal
of Finance 41, 851-60.

Hasbrouck, Joel, 1988, Trades, quotes, and information, Journal of Financial Eco-
nomics 22, 229-252.

Hasbrouck, Joel, 1991, Measuring the information content of stock trades, Journal
of Finance 46(1), 179-207.



Heisler, Jeffrey, Christopher Knittel, John Neumann, and Scott Stewart, 2006, Why
do institutional plan sponsors fire their investment managers? Working paper,
Boston University.

Holthausen, Robert, Richard Leftwich, and David Mayers, 1987, The effect of large
block transactions on security prices: A cross-sectional analysis, Journal of
Financial Economics 19(2), 237-67.

Holthausen, Robert, Richard Leftwich, and David Mayers, 1990, Large-block trans-
actions, the speed of response, and temporary and permanent stock-price effects,
Journal of Financial Economics 26(1), 71-95.

Ibbotson, Roger, and Paul Kaplan, 2000, Does asset allocation policy explain 40%,
90%, or 100 % of performance?, The Financial Analysts Journal 56(1), 26-33.

Jin, Li, and Anna Scherbina, 2005, Inheriting losers, Harvard Business School Work-
ing Paper.

Kaniel, Ron, Gideon Saar, and Sheridan Titman, 2004, Individual investor sentiment
and stock returns, Working paper, Duke University.

Kaul, Aditya, Vikas, Mehorta, and Randall Morck, 2000, Demand curves for stocks
do slope down: New evidence from an index weights adjustment, Journal of
Finance 55, 893-912.

Keim, Donald, and Madhavan, Ananth, 1995, Anatomy of the trading process em-
pirical evidence on the behavior of institutional traders, Journal of Financial
Economics 37(3), 371-398.

Keim, Donald, and Ananth Madhaven, 1996, The upstairs market for large-block
transactions: Analysis and measurement of price effects, Review of Financial
Studies 9(1), 1-36.

Keim, Donald, and Ananth Madhavan, 1997, Transactions costs and investment
style: an inter-exchange analysis of institutional equity trades, Journal of Fi-
nancial Economics 46(3), 265-292.

Kraus, Alan, and Hans Stoll, 1972, Price impacts of block trading on the New York
Stock Exchange, Journal of Finance 27, 569-588.

Kyle, Albert, 1985, Continuous auctions and insider trading, Econometrica 53(6),
1315-1336.

Lakonishok, Josef, and Inmoo Lee, 2001, Are insider trades informative?, Review of
Financial Studies, 14(1) 79-111.

Lakonishok, Josef, Andrei Shleifer, and Robert Vishny, 1992, The structure and
performance of the money management industry, Brookings Papers: Microeco-
nomics, 339-391.



Llorente, Guillermo, Roni Michaely, Gideon Saar, and Jiang Wang, 2002, Dynamic
volume-return relation of individual stocks, Review of Financial Studies 15,
1005-1047.

Lo, Andrew, and Craig MacKinlay, 1988, Stock market prices do not follow random
walks: Evidence from a simple specification test, Review of Financial Studies,
1, 41-66.

Miller, Edward, 1977, Risk, uncertainty, and divergence of opinion, Journal of Fi-
nance 32, 1151-1168.

Mitchell, Mark, Todd Pulvino, and Erik Stafford, 2004, Price pressure around merg-
ers, Journal of Finance 59, 31-63.

Parwada, Jerry, and Wenling Joey Yang, 2004, Stock market effects of institutional
investment flows: Evidence from Australian pension plan mandate changes,
Working Paper.

Parwada, Jerry, and Robert Faff, 2005, Pension plan investment management man-
dates: An empirical analysis of manager selection, Journal of Financial Services
Research, 77-98.

Petersen, Mitchell, 2007, Estimating standard errors in finance panel data sets:
Comparing approaches, Working Paper.

Ramistella, Alex, 2006, Crossing networks: Bringing back large block trades to
institutional trading, TowerGroup Working Paper.

Saar, Gideon, 2001, Price impact asymmetry of block trades: An institutional trad-
ing explanation, Review of Financial Studies 14, 1153-1181.

Shleifer, Andrei, 1986, Do demand curves for stocks slope down? Journal of Finance
41, 579-590.

Subrahmanyam, Avanidhar, 2006, Lagged order flows and returns: A longer-term
perspective, Working Paper.

Tonks, lan, 2005, Performance persistence of pension-fund managers," Journal of
Business, 78, 1917-1942.

Wang, Jiang, 1994, A Model of Competitive Stock Trading Volume, Journal of
Political Economy, 102(1), 127-168.

Wurgler, Jeffrey, and Ekaterina Zhuravskaya, 2002, Does arbitrage flatten demand
curves for stocks?, Journal of Business 75(4), 583-608.



Table 1.1: Identification Assumption: Target vs. Legacy Portfolios

All Transitions
Horizon A t-stat

Month
Month
Month
Month
Month
Month
Month

# Obs

0.31**
0.25**
0.22f
0.21
0.26
0.20
0.25

1639

(4.58)
(2.65)
(1.78)
(1.45)
(1.51)
(1.00)
(1.18)

Large Transitions
A t-stat

0.30**
0.27**
0.29*
0.22
0.22
0.24
0.26

(4.33)
(2.82)
(2.45)
(1.60)
(1.46)
(1.40)
(1.47)

819

Small Transitions
A t-stat

0.33**
0.23
0.15
0.19
0.29
0.17
0.24

(2.77)
(1.40)
(0.71)
(0.78)
(0.96)
(0.46)
(0.64)

820

Table 1.1 shows the average difference between cumulative raw returns of target
and legacy portfolios for two-sided transitions, A. Returns are cumulated start-
ing the month of portfolio transitions. Six subsequent months are considered.
Estimates for small and large transitions are shown separately. Small and large
transitions are defined based on the total size of legacy and target portfolios.
The threshold is about $100 million. T-statistics are presented in parentheses.
The sample ranges from January 2001 to December 2005. **is significance at
1% level, *is significance at 5% level, tis significance at 10% level.



Table 1.2: Summary Statistics for Portfolio Transitions

Panel A: Summary Statistics for Transitions

$Volume (000) #Shares (000) #Stocks

Mean 184,504 6,048 268
Median 53,359 1,837 133

25th 16,597 548 65
75th 149,513 5,152 314
Max 24336,138 881,040 3,669

Panel B: Split over Cap Quintiles

Cap Qnt

1(Small)
2
3
4

5(Large)

$Volume #Stocks

1.46% 8.60%
5.17% 14.30%
9.28% 16.97%

14.29% 20.66%
69.80% 39.46%

Panel C: Split over Time

Duration #Trans $Volume

1 day
2 days
3 days
4 days
5 days

6-10 days
11-18 days

55.71%
18.70%
10.22%
5.51%
3.12%
5.63%
1.12%

25.66%
18.98%
16.68%

8.76%
7.70%

18.41%
3.82%

Table 1.2 presents general information on the portfolio transitions: summary
statistics in Panel A, distribution of transition trades across different capital-
ization quintiles in Panel B, distribution of transition trades across time in
Panel C. Panel A shows average, median, standard deviation, maximum value
and minimum value for the dollar volume (in thousands), the number of shares
traded (in thousands) and the number of different stocks in transitions. Panel
B shows the distribution of the dollar volume and the number of stocks in tran-
sitions across different capitalization groups. Panel C presents the duration
of transitions and their dollar volume. Capitalization thresholds are calculated
based on NYSE stock capitalization quintiles. The sample ranges from January
2001 to December 2005.



Table 1.3: Portfolio Transition Orders with Large OMT Trades

Panel A: Summary Statistics of Transition Orders

Buy

$ Volume (000)

# Shrs (000)

# Shrs/ADV (%)

# Shrs/ShrOut (bp)

Mean
Median

Mean
Median

Mean
Median

OMT EC IC

512.37 208.57 219.52
150.80 0.00 0.00

20.55 9.42 8.38
7.33 0.00 0.00

6.96 3.56 2.39
2.83 0.00 0.00

Mean 2.89 1.46 1.07
Median 1.51 0.00 0.00

Sell

OMT EC IC

529.08 242.49
150.22 0.00

21.15 10.29
7.50 0.00

8.11 5.60
2.67 0.00

3.18 1.85
1.46 0.00

207.69
0.00

7.68
0.00

2.59
0.00

1.09
0.00

Panel B: Distribution of Transition Trades over Time

Time Horizon T

Od ld 2d 3d 4d 1w 2w >2w

Buy OMT 1.06 2.43 1.53 0.77 0.56 0.26 0.32
EC 0.68 1.07 0.67 0.42 0.32 0.16 0.20
IC 0.37 0.67 0.51 0.38 0.25 0.07 0.14

Sell OMT 1.50 2.21 1.54 0.96 0.66 0.39 0.69
EC 0.82 1.11 0.91 0.79 0.65 0.34 0.61
IC 0.52 0.78 0.46 0.31 0.22 0.11 0.13

In-Kind - 0.61

0.04 6.96
0.04 3.56
0.01 2.39

0.15 8.11
0.37 5.60
0.07 2.59

0.61

Table 1.3 presents descriptive statistics for portfolio transition orders. Panel
A shows summary statistics on portfolio transition orders and their distribu-
tion over various trading venues: open market (OMT), external crossing (EC)
and internal crossing (IC). For transition orders, the means and medians of
the following characteristics are reported: the dollar value (in thousands), the
number of shares (in thousands), the number of shares as a fraction of shares
outstanding (in bps), the number of shares as a fraction of average daily vol-
ume (ADV). Panel B shows the distribution of the portfolio transition trades
over time. For each day relative to starting day of transition, Table exhibits
the average trade size normalized by the average daily volume in the previous
month (in percents). In Panel B, Open market trades (OMT), external crossing
trades (EC), and internal crossing (IC) trades are considered separately. Data
is presented for buy and sell sides as well as in-kind transactions. All statis-
tics are calculated based on pooled data from January 2001 to December 2005.
Only transition orders during which execution more than 1% of average daily
volume is traded through open market trading are included in the sample.

52

In-Kind

105.12
0.00

3.40
0.00

0.61
0.00

0.28
0.00



Table 1.4: The Cumulative Average Abnormal Returns (CAARs)

Panel A: Stocks Weighted Equally, EW

Time Horizon T

Od Id 1w 2w Im 2m 3m

Buy 0.22** 0.35** 0.43** 0.30** 0.42* 0.41t 0.52
(4.97) (7.49) (7.08) (2.78) (2.41) (1.75) (1.19)

Sell -0.18** -0.39** -0.36** -0.10 0.02 -0.10 0.12
(-3.94) (-5.32) (-6.69) (-0.95) (0.09) (-0.44) (0.38)

A 0.41** 0.75** 0.82** 0.43** 0.44** 0.56* 0.39
(4.58) (6.60) (8.51) (3.70) (2.67) (2.51) (1.46)

Panel B: Stocks Weighted by Market Capitalization, VW

Time Horizon T

Od Id 1w 2w Im 2m 3m

Buy 0.03 0.07t 0.17* 0.00 0.03 -0.02 0.30
(0.95) (1.99) (2.03) (-0.03) (0.28) (-0.13) (0.93)

Sell -0.13** -0.25** -0.25** 0.02 -0.07 -0.08 -0.07
(-5.46) (-8.43) (-3.24) (0.19) (-0.43) (-0.30) (-0.15)

A 0.17** 0.34** 0.45** 0.03 0.12 0.08 0.35
(5.88) (16.28) (7.74) (0.21) (0.57) (0.34) (1.02)

Table 1.4 presents the cumulative average abnormal returns, CAART, for the
acquired (Buy) and sold (Sell) stocks for various horizons T starting the event
day 0 and up to three months. Returns are adjusted with the 4-factor model,
which includes three Fama-French factors and the momentum factor. Estimates
are calculated using the Fama-McBeth method for data grouped at monthly
frequencies. Equally-weighted and value-weighted schemas are considered. T-
statistics are adjusted with the Newey-West procedure and presented in paren-
theses. The sample ranges from January 2001 to December 2005. **is signifi-
cance at 1% level, *is significance at 5% level, tis significance at 10% level.



Table 1.5: The CAARs and Information Asymmetry

Panel A: Groups by Number of Analysts, ANUM

Od Id 1w 2w Im 2m 3m

Buy Low 0.32** 0.52** 0.53** 0.54** 0.61* 1.12** 1.01t
(4.20) (6.30) (3.55) (4.23) (2.01) (2.67) (1.89)

High 0.13** 0.21** 0.22** 0.18 -0.01 -0.15 -0.10
(4.20) (5.54) (2.98) (1.02) (-0.02) (-0.56) (-0.21)

Sell Low -0.22** -0.42** -0.35* -0.06 0.11 0.00 0.17
(-3.34) (-3.83) (-2.41) (0.14) (0.97) (0.44) (1.01)

High -0.13** -0.26** -0.25** -0.13 -0.17 -0.07 0.15
(-3.16) (-5.35) (-3.27) (-0.40) (-0.19) (0.02) (0.35)

Panel B: Groups by Percentage Spread, SPREAD

Od ld 1w 2w Im 2m 3m

Buy Low 0.13** 0.20** 0.30* 0.12 0.01 -0.06 -0.02
(4.44) (7.55) (2.35) (0.78) (0.07) (-0.20) (-0.06)

High 0.39** 0.69** 0.76** 0.79** 0.81* 1.31* 1.32
(3.86) (4.73) (3.39) (3.23) (2.22) (2.43) (1.47)

Sell Low -0.13** -0.28** -0.32** -0.13 -0.20 -0.23 -0.25
(-3.36) (-5.37) (-4.99) (-0.40) (-0.78) (-0.66) (-0.80)

High -0.26** -0.61** -0.58** -0.10 0. 4 5 t 0.52 0.60
(-3.22) (-4.13) (-4.97) (-0.33) (1.80) (1.15) (1.44)

Panel C: Groups by Probability of Informed Trading, PIN

Od ld 1w 2w Im 2m 3m

Buy Low 0.05 0.09t 0.09 0.36* 0 .4 1t  0.19 0.39
(1.26) (1.95) (0.67) (2.19) (1.79) (0.62) (0.94)

High 0.29** 0.47** 0.62** 0.74** 0.74** 1.01** 0.67
(5.09) (6.07) (4.80) (3.96) (2.99) (3.42) (1.46)

Sell Low -0.07 -0.14** -0.04 0.09 0.16 0.14 0.49
(-1.57) (-3.99) (-0.44) (0.86) (1.12) (0.69) (0.91)

High -0.20** -0.49** -0.50** 0.00 0.08 0.30 0.83
(-3.56) (-5.44) (-3.77) (-0.19) (0.18) (0.29) (1.09)

Table 1.5 shows the cumulative average abnormal returns, CAART, following
transition orders for the stock with different degrees of information asymmetry.
In Panel A, stocks are sorted based on the number of analysts following them.
In Panel B and Panel C, stocks are sorted based on the percentage spread
and the probability of informed trading, respectively. The "Low" ("High")
group includes stocks with bottom (top) 33% of ranked stocks. The estimates
are calculated following the Fama-McBeth procedure. T-statistics are adjusted
with the Newey-West methodology and presented in parentheses. Returns are
adjusted for risk with the 4-factor model. The sample ranges from January
2001 to December 2005. **is significance at 1% level, *is significance at 5%
level, tis significance at 10% level. 54



Table 1.6: Correlation Matrices

Panel A: Correlation Matrix for Transition Purchases

LN Cap SPREAD PIN ANUM
LN Cap 1 -0.50 -0.63 0.67

SPREAD 1 0.45 -0.34
PIN 1 -0.46

Panel B: Correlation Matrix for Transition Sales

LN Cap SPREAD PIN ANUM
LN Cap 1 -0.52 -0.62 0.66

SPREAD 1 0.46 -0.35
PIN 1 -0.45

Table 1.6 shows the correlations between stock characteristics. These character-
istics include the natural logarithm of the market capitalization (in millions),
the percentage spread, the probability of informed trading, and the number
of analysts following stocks. All estimates are calculated following the Fama-
McBeth procedure with observations grouped at monthly levels. Samples of
transition purchases and sales are considered separately (Panel A and B). The
sample ranges from January 2001 to December 2005.



Table 1.7: The CAARs: Purchases, Double Sort on Size and ANUM

Panel A: Small Size Stocks

Time Horizon T

Od Id 1w 2w Im 2m 3m

Low ANUM 0.45** 0.72** 0.76** 0.89* 1.19* 1.96** 2.21*
(3.78) (5.26) (3.38) (2.33) (2.62) (2.70) (2.20)

High ANUM 0.30** 0.50** 0.89** 0.85* 0.72* 0.73 0.42
(3.45) (4.00) (3.55) (2.17) (2.11) (1.02) (0.40)

Panel B: Medium Size Stocks

Time Horizon T

Od ld 1w 2w Im 2m 3m

Low ANUM 0.25** 0.40** 0.73** 0.69** 0.85** 0.87** 0.79
(4.96) (5.98) (7.26) (7.83) (5.40) (3.54) (1.55)

High ANUM 0.15* 0.16* 0.27** 0.48* 0.53 0.15 0.10
(2.48) (2.11) (2.80) (2.35) (1.56) (0.29) (0.14)

Panel C: Large Size Stocks

Time Horizon T

Od Id 1w 2w Im 2m 3m

Low ANUM 0.09* 0.13* 0.10 -0.25 -0.21 -0.11 0.02
(2.33) (2.23) (0.92) (-1.01) (-0.78) (-0.31) (0.05)

High ANUM 0.04 0.13* 0.18 0.13 -0.01 0.14 0.41
(1.16) (2.13) (1.53) (1.57) (-0.04) (0.39) (0.75)

Table 1.7 shows the cumulative average abnormal returns, CAART, following
transition buys for the stocks sorted by their market capitalization and the num-
ber of analysts following them, ANUM. Returns for small stocks are presented
in Panel A, for medium size stocks in Panel B, and for large stocks in Panel
C. Inside each size group, stocks are sorted by ANUM into two groups, "Low
ANUM" and "High ANUM". The estimates of CAARs are calculated following
the Fama-McBeth procedure. T-statistics are adjusted with the Newey-West
methodology and presented in parentheses. Returns are adjusted for risk with
the 4-factor model. The sample ranges from January 2001 to December 2005.
**is significance at 1% level, *is significance at 5% level, tis significance at 10%
level.



Table 1.8: The CAARs: Purchases, Double Sort on Size and SPREAD

Panel A: Small Size Stocks

Time Horizon T

Od Id 1w 2w Im 2m 3m

Low SPREAD 0.33** 0.48** 0.69** 0 .68t 0. 4 8t  0.44 0.18
(3.49) (3.93) (2.68) (1.99) (1.89) (0.78) (0.18)

High SPREAD 0.43** 0.80** 0.78* 0.89t 1.02t 2.06* 2.40t
(3.61) (4.11) (2.65) (1.98) (1.96) (2.65) (1.93)

Panel B: Medium Size Stocks

Time Horizon T

Od Id 1w 2w Im 2m 3m

Low SPREAD 0.25** 0.22** 0.41** 0.41* 0.34 0.20 0.28
(3.69) (3.89) (3.48) (2.62) (1.31) (0.46) (0.51)

High SPREAD 0.19** 0.43** 0.66** 0.79** 0.87** 0.51, 0.63
(3.29) (4.57) (5.07) (4.51) (3.65) (1.26) (1.04)

Panel C: Large Size Stocks

Time Horizon T

Od Id 1w 2w Im 2m 3m

Low SPREAD 0.01 0.09 0.07 0.23** 0.15 0.39 0.57
(0.21) (1.55) (0.66) (2.98) (1.15) (1.28) (1.57)

High SPREAD 0.14** 0.22** 0.15 -0.14 -0.07 -0.07 0.01
(4.92) (3.70) (0.99) (-0.63) (-0.55) (-0.21) (0.01)

Table 1.9 shows the cumulative average abnormal returns, CAART, follow-
ing transition buys for the stocks sorted by their market capitalization and
their percentage spread, SPREAD. Returns for small stocks are presented in
Panel A, for medium size stocks in Panel B, and for large stocks in Panel C.
Inside each size group, stocks are sorted by SPREAD into two groups, "Low
SPREAD" and "High SPREAD". The estimates of CAARs are calculated fol-
lowing the Fama-McBeth procedure. T-statistics are adjusted with the Newey-
West methodology and presented in parentheses. Returns are adjusted for risk
with the 4-factor model. The sample ranges from January 2001 to December
2005. **is significance at 1% level, *is significance at 5% level, tis significance
at 10% level.



Table 1.9: The CAARs: Purchases, Double Sort on Size and PIN

Panel A: Small Size Stocks

Time Horizon T

Od Id 1w 2w Im 2m 3m

Low PIN 0.35** 0.57** 0.85** 1.17* 1.37* 1.40 1.21
(2.74) (3.56) (3.01) (2.25) (2.32) (1.63) (1.04)

High PIN 0.36** 0.55** 0.80** 0.87** 0.86* 1.36* 1.68**
(3.85) (4.60) (4.26) (3.03) (2.57) (2.54) (3.13)

Panel B: Medium Size Stocks

Time Horizon T

Od Id 1w 2w Im 2m 3m

Low PIN 0.06 0.09 0.21** 0.07 0.03 -0.22 -0.52
(0.82) (1.26) (2.75) (0.47) (0.07) (-0.36) (-0.60)

High PIN 0.13* 0.22* 0.22 0.45* 0.5 3t 0.33 -0.38

(2.59) (2.25) (1.38) (2.10) (1.72) (0.67) (-0.48)

Panel C: Large Size Stocks

Time Horizon T

Od ld 1w 2w Im 2m 3m

Low PIN 0.03 0.05 0.13 0. 3 1t 0.50* 0.60 0.54
(0.86) (0.97) (0.90) (2.05) (2.51) (1.52) (1.30)

High PIN 0.02 0.08 0.09 -0.24 -0.24 0.13 0.74
(0.39) (1.36) (0.56) (-0.84) (-0.73) (0.27) (1.16)

Table 1.9 shows the cumulative average abnormal returns, CAART, following
transition buys for the stocks sorted by their market capitalization and the
probability of informed trading, PIN. Returns for small stocks are presented
in Panel A, for medium size stocks in Panel B, and for large stocks in Panel
C. Inside each size group, stocks are sorted by PIN into two groups, "Low
PIN" and "High PIN". The estimates of CAARs are calculated following the
Fama-McBeth procedure. T-statistics adjusted with the Newey-West method-
ology and presented in parentheses. Returns are adjusted for risk with the
4-factor model. The sample ranges from January 2001 to December 2005. **is
significance at 1% level, *is significance at 5% level, tis significance at 10% level.



Table 1.10: The CAARs and Past Returns

Panel A: Transition Purchases

Time Horizon T

Od Id 1w 2w Im 2m 3m

Low R m,- 0.37** 0.59** 0.87** 0.95** 1.22** 1.61* 1.47
(4.95) (4.91) (4.58) (3.38) (3.04) (2.15) (1.59)

High R am,-1 0.10t 0.24** 0.22 0.14 0.06 0.35 0.36
(1.79) (2.79) (1.58) (0.66) (0.23) (1.07) (0.53)

Panel B: Transition Sales

Time Horizon T

Od ld 1w 2w Im 2m 3m

Low Rm,-l -0.17* -0.44** -0.24 0.26 0. 79t 0.98 1.33
(-2.27) (-2.72) (-1.42) (1.03) (1.77) (1.35) (1.33)

High R_3m,-1 -0.20* -0.50** -0.60** -0.19 -0.02 -0.22 -0.01
(-2.42) (-4.32) (-4.37) (-1.32) (-0.23) (-0.93) (-0.39)

Table 1.10 shows the cumulative average abnormal returns, CAARs, following
transition trades for stock grouped by their past returns. Stocks are sorted
into two groups based on their risk-adjusted past returns R madj  in the pre--3m,-1 in the pre-
vious three months. The "Low" group includes stocks with bottom 33% of
ranked stocks that have negative past returns. The "High" group includes
stocks with top 33% of ranked stocks that have positive past returns. Pur-
chases and sales are considered in Panel A and B, respectively. The estimates
are calculated following the Fama-McBeth procedure. T-statistics are adjusted
with the Newey-West methodology and presented in parentheses. Returns are
adjusted for risk with the 4-factor model. The sample ranges from January
2001 to December 2005.



Table 1.11: The CAARs and Trading Venues

Panel A: Internal Crosses

Time Horizon T

Od ld 1w 2w im 2m 3m

Buy -0.06 0.01 0.28 0.06 -0.21 0.06 0.49
(-0.92) (0.08) (1.32) (0.17) (-0.35) (0.08) (0.41)

Sell -0.01 0.05 0.15 1.03 0.81 0.46 0.79
(-0.09) (0.45) (0.74) (1.37) (1.15) (0.42) (0.52)

A -0.05 -0.04 0.14 -0.84 -1.00 -0.37 -0.31

(-0.65) (-0.23) (0.58) (-1.49) (-1.63) (-0.35) (-0.24)

Panel B: External Crosses

Time Horizon T

Od ld 1w 2w im 2m 3m

Buy 0.14* 0.29** 0.33* 0.23 0.36 0.04 -0.14
(2.22) (4.06) (2.51) (1.10) (1.32) (0.10) (-0.27)

Sell -0.14** -0.20** -0.04 -0.01 -0.16 -0.26 -0.06
(-3.19) (-3.84) (-0.20) (-0.04) (-0.47) (-0.49) (-0.10)

A 0.27** 0.48** 0.37 0.24 0.52 0.30 -0.09
(3.72) (6.88) (1.50) (0.61) (1.15) (0.46) (-0.17)

Panel C: In-kind Transactions

Time Horizon T

Od Id 1w 2w Im 2m 3m

In-Kind 0.02 0.02 0.06 0.22 0.12 0.21 0.23
(0.56) (0.47) (0.44) (1.32) (0.40) (0.47) (0.43)

Table 1.11 shows the cumulative average abnormal returns, CAARs, following
transition orders executed though different trading venues. In Panel A, the
orders executed entirely through internal crossing networks are included. In
Panel B, the orders executed entirely through external crossing network are
considered. In Panel C, the orders entirely transferred as in-kind transactions
are included. Purchases and sales are considered separately. The estimates
are calculated following the Fama-McBeth procedure. T-statistics are adjusted
with the Newey-West methodology and presented in parentheses. Returns are
adjusted for risk with the 4-factor model. The sample ranges from January
2001 to December 2005.
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Figure 1-1: Price Response to Large Transition Orders, Equally-Weighted Case

Figure shows the cumulative average abnormal returns (in percents),
CAART, following large portfolio transition buys and sells. The day 0 is
the starting date of transition trades. Horizons T up to three months are
considered. Equally-weighted returns are calculated. Means and standard
errors are calculated using the Fama-McBeth procedure for observations
grouped at monthly level. Standard errors are shown as error bars. The
sample ranges from January 2001 to December 2005.
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Figure 1-2: Price Response to Large Transition Orders, Principle-Weighted Case

Figure shows the cumulative average abnormal returns (in percents),
CAART, following large portfolio transition buys and sells. The day 0
is the starting date of transition trades. Horizons T up to three months
are considered. Principle-weighted returns are calculated; namely, obser-
vations are weighted by the size of trades normalized by average daily
volume in the previous month. Means and standard errors are calculated
using the Fama-McBeth procedure for observations grouped at monthly
level. Standard errors are shown as error bars. The sample ranges from
January 2001 to December 2005.
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Figure 1-3: Price Response to Large Transition Orders, Value-Weighted Case

Figure shows the cumulative average abnormal returns (in percents),
CAART, following large portfolio transition buys and sells. The day 0 is
the starting date of transition trades. Horizons T up to three months are
considered. Value-weighted returns are calculated. Means and standard
errors are calculated using the Fama-McBeth procedure for observations
grouped at monthly level. Standard errors are shown as error bars. The
sample ranges from January 2001 to December 2005.
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Figure 1-4: Price Response to All Transition Orders, Equally-Weighted Case

Figure shows the cumulative average abnormal returns (in percents),
CAART, following portfolio transition buys and sells. All transition trades
are included. The day 0 is the starting date of transition trades. Horizons
T up to three months are considered. Equally-weighted returns are calcu-
lated. Means and standard errors are calculated using the Fama-McBeth
procedure for observations grouped at monthly level. Standard errors are
shown as error bars. The sample ranges from January 2001 to December
2005.
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Chapter 2

The Price Impact Puzzles

2.1 Introduction

Price impact is an important variable that is of interest to both researchers and

practitioners. Researchers are interested in learning about price impact because it

reflects a complicated and not fully understood interplay between main blocks of

market microstructure: trades, prices and information. Practitioners are keen to

know about price impact because it accounts for the largest part of their transaction

costs. Many theoretical studies provide interesting insights about price impact and

its properties. However, price impact is notoriously difficult to measure empirically;

existing evidence about this variable is fairly limited and is usually subject to various

assumptions.

I use a unique data set of portfolio transition trades that allows me to construct

the estimates of price impact and its coefficients with great precision. Moreover, these

estimates are available for a large cross-section of stocks.' The main goal of the study

is to investigate several interesting questions about price impact using these estimates:

(1) how its coefficients are related to various stock characteristics and differ across
1Formally, the price impact coefficients quantify the changes in prices in response to trades

equivalent to 1% of the average daily volume. They are defined in percents of standard deviation of
daily returns.



trading venues; (2) how they evolve during execution of multi-trade "packages"; and

(3) what functional form best describes price impact functions. I document a number

of empirical findings, some of which can not be easily explained within the existing

theoretical frameworks.

First, I show that the price impact coefficients relate positively to market capi-

talization: transactions in larger stocks tend to be associated with more substantial

price impact. This finding contradicts the conventional intuition that the trading

in larger stocks involves less risk of information asymmetry and, consequently, de-

mands slighter price concessions. I suggest several explanations for a positive relation

between stock size and price impact. My analysis shows that it might be partially

induced by concavity of price impact functions.2 An alternative explanation relies on

the following argument. For large stocks, trading volume is often dominated by small

orders of noise traders and is the assembly of numerous two-sided transactions, buys

alternates with sells; although turnover of these stocks is substantial, overall order

imbalances are small. The opposite is true for small stocks.3 Thus, the information

content of one-sided trades equivalent to 1% of the average daily volume (or the price

impact coefficients) might be more substantial for large rather than for small stocks.

Second, the price impact coefficients tend to increase with the amount of noise

trading or, more precisely, with its proxy, i.e. the monthly turnover.4 Again, the

conventional market microstructure models predict the opposite effects (e.g., Kyle

(1985)). However, the second explanation, suggested above for a positive relation

between stock size and price impact, is consistent with this evidence.

Third, the link between two measures of liquidity, the price impact coefficients

and the percentage spread, is found to be weaker than expected. The price impact

coefficients increase with the spread for a sample of sell orders, however, no explicit

2Typically, trades in larger stocks are smaller in terms of a percentage of the average daily volume.
Thus, concavity of price impact functions mechanically leads to the documented results.

3These patterns are thoroughly examined in Chordia, Huh, and Subrahmanyam (2007).
4They are also positively related to the dispersion of analysts' forecasts.



patterns between these variables can be statistically detected for a sample of buy

orders. Consequently, more careful investigation of different facets of liquidity and

how they relate to each other would be valuable.

Fourth, the cross-sectional regression analysis reveals that the price impact co-

efficients are, on average, higher for transactions executed on Nasdaq rather than

on NYSE/Amex exchanges. The corresponding coefficients by the Nasdaq dummy

variable are positive across various regression specifications, yet not statistically sig-

nificant.

Fifth, this paper provides novel findings about interesting dynamics of price impact

that are observed in response to multi-trade "packages". During buy "packages", the

price impact coefficients of individual trades increase as more and more trades are

executed. In contrast, they decrease when sale "packages" are carried out. These

findings are fairly robust: they are documented for various size groups, for different

time periods and specifications of price impact. It is worth mentioning that this

evidence is only partially consistent with the theoretical predictions of how security

prices are expected to evolve in response to trading "packages". Indeed, theoretical

models about multi-period trading strategies suggest that the dynamics of the price

impact coefficients should be always non-increasing.5

Finally, I explore what functional form describes price impact functions in the best

way. I find that total price impact is definitely concave. More precisely, it can be well

approximated by the square-root specifications, which are popular in the literature on

transaction costs. Yet, the evidence on the permanent and temporary components of

price impact is much less conclusive. For instance, the permanent price impact does

not seem to satisfy a linear specification, which would be expected based on the "no-

arbitrage" arguments of the theoretical literature (see Huberman and Stanzl (2004)).

5 The effects of multi-period information-related trading on prices is modeled in Kyle (1985) and
its extensions; the effects of multi-period liquidity-related trading on prices is considered in Vayanos
(1999, 2001).



Aforementioned empirical results are based on the database of portfolio transi-

tion trades. Portfolio transitions are large and expensive transfers of funds from

legacy, i.e., existing, to target portfolios. These transitions are undertaken by various

money management institutions such as pension plans, insurance funds, endowments,

and foundations. They often occur when these institutions change the global asset

allocations, replace the fund managers, or accommodate large cash inflows and out-

flows. This paper is one of the first academic works that studies this interesting

phenomenon.6

This dataset allows me to identify supply/demand shocks and to estimate price

impact in a very precise manner. In fact, this study benefits from various institutional

features of portfolio transitions and the structure of data set. First, the trading in-

tentions of transition managers are set in advance. This contrasts with other studies

in which ex ante orders cannot be identified and realized trades might be influenced

by a variety of investment styles and order-placement strategies. Second, the trading

direction is given, whereas it is often necessary to apply heuristic and not perfectly

precise algorithms for inferring a trade side. Third, the magnitude and timing of

trades are observed. Fourth, the pre-trade benchmark and execution prices are ex-

plicitly recorded in the data set. Fifth, transition trades occur during typical days

and stock price dynamics are not affected by abnormal market conditions. Sixth, a

large cross-section of stocks is available and adds credibility to the analysis of the

price impact patterns across stocks with different characteristics.

To the best of my knowledge, the price impact dynamics during trading "packages"

has not been analyzed in the academic literature. However, the other questions

under consideration have been addressed in the previous empirical work. In a closely

related paper, Almgren et al. (2005) focuses on the analysis of the functional form

6The size of portfolio transition business is comparable to the size of hedge fund industry. Yet,
only a few academic studies are available on this topic, e.g. Obizhava (2007). Somewhat related, a
few papers analyze the selection and termination of fund managers by institutional investors which
often lead to portfolio transitions, e.g. Parwada and Yang (2004) and Goyal and Wahal (2006).



of price impact functions, which incorporates the elements of cross-sectional analysis.

Extracted from the trading records of Citigroup, their data set has somewhat similar

structure, yet their results are quite different. For instance, they conclude that the

permanent price impact is linear and that the temporary price impact is concave with

the value of curvature constant equal to 3/5.

This paper is related to the strand of literature that examines the cross-sectional

patterns of the price impact coefficients. However, researchers often use datasets

with incomplete information and, consequently, rely on various approximate algo-

rithms and assumptions. For instance, in most cases, they analyze the price impact

coefficients using publicly available TAQ data, which requires inaccurate classification

of buyer-initiated and seller-initiated trades, among other assumptions.7 As discussed

in Section 2.4, they usually draw conclusions that vary significantly and typically de-

pend on the specifications of the price impact coefficients. Related papers focus on

the cross-sectional patterns of price impact rather than those of the price impact

coefficients. For instance, Chan and Lakonishok (1995) study price impact using a

proprietary dataset of institutional trades that contains fairly detailed trading records

(including buy/sell indicators) but still lacks information on the ex ante trading inten-

tions and actual "packages". Another example is the paper of Keim and Madhavan

(1997) who examine price impact based on Plexus data, which is well-suited for this

type of analysis.

This study contributes to the empirical literature on the functional form of price

impact functions.8 Consistently with the paper, this literature comes to a conclusion

that, by and large, price impact functions are concave. However, their exact speci-

fication as well as the functional forms of its permanent and temporary components

7The recent examples of these studies include Breen, Hodrick and Korajczyk (2002), Chen, Stanzl
and Watanabe (2001), and Lillo, Farmer and Mantegna (2003).

8The examples are Hasbrouck (1991a), Hausman, Lo, and MacKinlay (1992), Keim and Madha-
van (1996), Barra (1997), Chen, Stanzl and Watanabe (2001), Lillo, Farmer and Mantegna (2003),
Almgren et al.(2005).



are still debated. In this study, I provide additional evidence on these issues, which

is derived from the portfolio transition data.9

The paper is structured as follows. Section 2 defines the price impact variables,

which are the focus of this study. Section 3 describes portfolio transitions data, which

is used to estimate price impact. Section 4 presents the cross-sectional analysis of the

price impact coefficient. Section 5 explores the dynamics of the price impact during

execution of multi-trade "packages". Section 6 focuses on the functional form of price

impact functions. Section 7 concludes.

2.2 Main Variables

Security prices change in response to trades: they tend to increase upon buy orders

and to fall upon sell orders. The price impact coefficients, or the strength of relation

between trades and price changes, depend on the fundamental questions of market

microstructure, i.e., how information is incorporated and how liquidity is provided.

Two mechanisms might be instigated: first, trades might reveal new information

and induce the corresponding price adjustments; second, if supply and demand are

inelastic, trades might deplete existing liquidity and mechanically trigger the price

pressure effects.

The goal of this study is to examine the price impact coefficients, associated with

portfolio transition orders. I start by defining of a price impact variable, PI. For

each order,

PI = (Pexec/Pbch - 1) X IBS X 100%, (2.1)

where Pezec is the trade-weighted average execution price, Pbch is the benchmark

price, a is the standard deviation of daily returns in the previous month, and 11BS

9The price impact is also analyzed in Glosten and Harris(1988), Hasbrouck (1991 a,b),
Holthausen, Leftwich and Mayers (1987, 1990), Madhavan, Richardson, and Roomans (1997), Du-
four and Engle (2000), among others.



is an indicator function equal to 1 for buy orders and -1 for sell orders. In case of

portfolio transitions, the benchmarks are agreed upon in advance and set at pre-

transition levels. As in Almgren et al. (2005), the variable PI is expressed not in

raw percentage terms but rather as a percentage of "normal" daily motion of price,

defined by the standard deviation. It is also worth mentioning that PI stands for the

price impact of a total transition order, regardless of how it is split into individual

trades and over time. 10

Total price impact (2.1) consists of two parts: the permanent and temporary

components. The former captures shifts in the market's assessment of stock fun-

damentals, whereas the latter reflects the short-lived liquidity effects. I disentangle

these two components of price impact, PI,,rm and PItemp, in the following way:

PIperm = (Pbase/Pbh - 1) X RIBS X 100%, (2.2)

Pltemp = PI- PIperm (Pe•ec - Pbase)/Pbh X ]lBs x 100%, (2.3)

where Pexec, Pbch, 0, lBS are defined as before, and Pb,,e is the price at "base" time,

or time by which presumably information has been fully incorporated into security

prices and the temporary price pressure effects disappear. For robustness, several

"base" times are considered: the close at the last transaction day, the close at the

next day, and in one or two weeks after execution.

In this study, I also focus on the price impact coefficients, the market microstruc-

ture measures associated with the price-trade relation. Since there is no agreement

on what is the best way to estimate these coefficients, I next discuss my specification

in more detail. For each portfolio transition order, the price impact coefficient Apj is

defined as,

1oHowever, only the part of transition orders executed as open market trades is considered; trades
executed in external and internal crossing networks are disregarded in this study.



S (Peec/Ph - 1)/ IBS x 100%, (2.4)
X/1%ADV

where Pexec is the trade-weighted execution price, Pbh is the (pre-trade) benchmark

price, a is the standard deviation of daily returns in the previous month, I1BS is an

buy/sell indicator function, X is the size of transition order in shares, and ADV is

the average trading daily volume in the previous month. Variable API reflects how

strongly security prices change in response to trades; more precisely, it quantifies how

significant is the price change (in percent of the standard deviation of daily returns)

in response to orders that are equivalent to 1% of the average daily volume. 11

This specification is inspired by a measure of information asymmetry, first intro-

duced by Kyle (1985) and defined as the price change over the trade size. However,

in order to make these variables more meaningful for a cross-section of stocks, it is

natural to use scaled rather than absolute values. Therefore, I normalize trade size by

a fraction of the average daily volume as well as returns by the standard deviation of

daily returns. Thus, a certain fraction of daily trading volume is expected to trigger

a certain level of "normal" price motion.' 2

This scaling procedure assures the proper specification of the price impact coeffi-

cients for the stocks with the same market capitalization but with different numbers

of shares outstanding and, consequently, being traded in the market. Also, this mea-

sure is stable with respect to splits. The following example illustrates why scaling is

appropriate. Consider two identical firms A and B with stocks A and B, respectively.

Firm A has Z shares outstanding, out of which Z/365 shares are traded daily at price

$100. Firm B has 2Z shares outstanding, out of which 2Z/365 shares are traded daily

11Following Keim and Madhavan (1997), Conrad et al. (2003) among others, I do not adjust (2.4)
for risk. Slightly positive average market return over 2001-2005 might induce bias into price impact
coefficients; however, these biases are too small to drive the results. For robustness check, I redo
my analysis for two time periods from January 2001 to June 2003 and from July 2003 to December
2005, during which downward and upward market dynamics have prevailed, respectively.

12 Similar arguments can be found in Almgren et al.(2005).



at price $50. Given the same standard deviation of returns for both stocks, the price

impact coefficients, ApI's, are equal in the following, formally identical, situations: (1)

for price change from $100 to $110 associated with Z/365 shares of stock A and (2) for

price change from $50 to $55 associated with 2Z/365 shares of stock B. By analogy,

the normalization of numerator in (2.4) by the standard deviation of returns allows

me to compare the price impact coefficients across securities with various volatilities.

Similarly, Breen, Hodrick, Korajyzyk (2002) strongly advocate the use of scaled

variables X, however, they suggest shares outstanding as a normalizer.'3  In my

opinion, the average trading volume is a more natural scaling factor, since it more

precisely represents "normal" trading activity. At the same time, a part of shares

outstanding can be frozen on the accounts of some market participants and do not

participate in the daily turnover. Consequently, it is more reasonable to define price

impact for 1% of the average daily volume than the shares outstanding.

To summarize, in this section, I construct the main variables under investigation

in this study. In the next section, I describe the unique data set of portfolio transition

trades that I use to estimate them.

2.3 Data Description

2.3.1 Data set of Portfolio Transitions

In this study, I use a proprietary data set of portfolio transition trades. Data is made

available by the leading provider of portfolio transition services, who supervises more

than 30% of stock transitions executed in the United States. The sample covers 2,234

transitions executed on behalf of institutions from January 2001 to December 2005.

Most of these institutions are corporate and public pension plans; however, there are

3"Other related examples include the price impact specifications in Korajczyk and Sadka (2004)
and Keim and Madhavan (1997) among others.



also endowments, foundations, mutual funds, and insurance companies.

Portfolio transition are transfers of funds from legacy into target portfolios, car-

ried out on behalf of these institutional investors. Transitions might be triggered

by various events such as replacement of fund managers, changes in the global as-

set allocation, or large-scale restructuring. These transactions are very large and

complicated. Their typical size is about $50-$100 million, and they usually involve

thousands of trades in more than 100 different stocks. These challenging tasks are

frequently delegated to professional transition managers, who help execute them in a

cost efficient way: they design and coordinate the execution of portfolio transitions,

often spreading transition orders over several days and channeling them into different

trading platforms. When portfolio transitions are completed, managers prepare post-

trade reports for their clients with a detailed execution analysis. This study is based

on the data set that is constructed from a collection of actual post-trade reports;

since these reports are thoroughly discussed by transition managers and their clients,

the data is exceptionally clean and comprehensive. 14

For each portfolio transition, the starting date and the ending date are specified.

Moreover, detailed information on implemented trades is provided. It includes the

number of shares traded, the execution price, and the pre-trade benchmark price as

well as various transaction costs estimates. All data is aggregated at daily levels

and is further grouped according to execution methods: internal crossing, external

crossing, and open market trading. In this study, I consider only open market trades

and focus on the associated price impact.15

In the following analysis, I exclude small trades, since they are not associated

with any significant price changes and might bias the results; more precisely, I include

orders with more than 1,000 shares traded through open markets and representing

14Description of transition management industry and this data can be found in Obizhaeva (2007).
15Some orders can be crossed internally against orders from other portfolio transitions or affiliated

index management unit. Others can be sent into crossing networks such as POSIT, LiquidNet, or
PipeLine.



more than 0.10% of the average trading volume in that stock. Also, in order to

eliminate records with potential errors and unrepresentative trades, I have filtered

out entries with obviously wrong information or typographical errors. Stocks with

the missing CRSP information are removed as well. Finally, I exclude "penny" stocks

with prices below 1$.

After filtering, there are 72,299 buy orders and 87,132 sell orders in the sample.

The number of orders executed per month ranges from 481 to 7,208 and is slightly

increasing over time.

2.3.2 Summary Statistics

Panel A of Table 2.1 shows a descriptive statistics for the size of transition orders

in the sample. All statistics are calculated from pooled data. Transition purchases

and sales have very similar characteristics. On average, transition buy and sell orders,

executed in open markets, represent about 1.21 and 1.15 bps of the shares outstanding,

or 1.63% and 1.56% of the average daily volume, respectively. These values are slightly

skewed, and their medians are smaller. Clearly, transition orders are quite large, and

they are expected to induce significant price changes.

Panel B of Table 2.1 presents descriptive statistics for the individual stocks that

are either bought or sold during portfolio transitions. In particular, it includes the

market capitalization, the annual turnover, the percentage spread, the number of

analysts who cover these stocks, the dispersion of analysts forecasts, and the standard

deviation of daily returns. Apparently, most stocks in the sample are large, liquid

with high turnover, and with a large number of analysts following them.

2.3.3 Supplementary Data

I also use the standard CRSP database to get additional stock information: prices,

returns, trading volumes, and shares outstanding. My sample includes ordinary com-



mon stocks (with CRSP share codes of 10 and 11) listed on the New York Stock Ex-

change (NYSE), the American Stock Exchange (AMEX), or NASDAQ in the period

of January 2001 through December 2005. Any derivative securities, such as ADRs,

REITS, or closed-end funds are excluded. Furthermore, I use unadjusted data from

the Institutional Brokers Estimates System(I/B/E/S) to get the number of analysts

who follow stocks together with their end-of-fiscal-year earnings forecast.

2.4 The Cross-Sectional Analysis

2.4.1 Motivation

The theoretical literature has long recognized that the price impact coefficients should

vary significantly across securities. Moreover, it has provided valuable insights on

what factors might influence their magnitude. First, a degree of information asym-

metry is a key determinant of the cross-sectional price impact patterns: the larger

and the more likely information asymmetry is, the higher compensation is required by

liquidity providers, and the greater price impact coefficients are associated with the

trades. Second, the market-making cost is obviously an important issue for the price

impact coefficients as well: the easiness of finding a hedge or reallocating securities

to other market participants is expected to mitigate price impact.

The empirical literature has provided ample evidence that price impact indeed

exhibits substantial variation across stocks; though, it is still far from saying the

last word on how in particular the price impact coefficients are related to various

stock characteristics. The main obstacle is to reliably measure the price impact

coefficients; moreover, for the trustworthy cross-sectional studies, these estimates

should be available for a large sample of stocks with different characteristics. For

instance, even the direction of trades is rarely observed by researchers, needless to

mention other numerous caveats in such studies like unknown trading motives and



order placement strategies, absence of contemporaneous changes in fundamentals or

in the overall market, among others.

Luckily, the data set of portfolio transitions provides me with a good opportunity

to estimate and to examine the price impact coefficients, estimated in a precise manner

for a large sample of securities. Indeed, ex ante portfolio transition orders and their

direction are observed, their motives are clearly defined, pre-transition benchmark and

execution prices are explicitly recorded. Moreover, although portfolio transitions tend

to affect larger stocks to a greater extent, they still involve numerous securities with

fairly different characteristics. Thus, this data is perfectly suited for identification of

supply and demand shocks and for estimation of their price impact coefficients both

with a great precision and for a large sample of securities. Next, I present the results

of the cross-sectional analysis, which is based on these estimates.

2.4.2 Price Impact and Stock Size

Historically, the relation between the price impact coefficients and the market capital-

ization has been studied first. It is commonly believed that small stocks are subjects

to information asymmetry. Numerous examples support this claim. For instance, Lo

and McKinlay (1990) find that the prices of stocks with small capitalization do not

follow random walks, which would be expected for the securities with insignificant

informed trading. Easley, Hvidkjaer and O'Hara (2002) show that the correlation

between the probability of informed trading, PIN, and the stock size is negative and

large in absolute terms. Consequently, the market microstructure literature unani-

mously conjectures that the price impact coefficients have to decrease with market

capitalization.

To investigate how the price impact coefficients depend on market capitalization,

I implement the following test. First, I split all transition orders into five groups



according to their corresponding market capitalization. 16 Since orders of large stocks

prevail in my samples, disproportionably more observations are attributed to the

large-cap group. Second, for each group, I estimate the means, the medians and

the standard errors of the price impact coefficients, Ap1 's, associated with orders in

this group. To avoid influence of extreme values, I winsorize 10% of top and bottom

observations of ApI.

Results are reported in Table 2.2. Striking patterns are clearly observed. In

contrast to aforementioned intuition, the coefficients ApI's tend to increase with the

market capitalization; and the greatest price impact coefficients are associated not

with the small stocks but rather with the large ones. These patterns are observed

both for the mean and median values regardless of trade direction. For instance, for

buy orders executed on NYSE/Amex, the median price impact coefficients gradually

increase from 1.95% for small stocks to 12.79% for large stocks."7 Similarly, for sell

orders executed on NYSE/Amex, the coefficients change from 2.44% for small stocks

to 8.51% for large stocks. Likewise, the positive relation between ApI and the market

capitalization is found for the universe of Nasdaq-traded stocks.

The positive relation between the price impact coefficients and the stock size

contradicts widely accepted beliefs. However, Breen, Hodrick, Korajyzyk (2002) draw

a similar conclusion without emphasizing it. They mention that the price impact

coefficients, estimated with data from TAQ database, also increases with the market

capitalization, if trade size in its definition is scaled by the shares outstanding and,

consequently, these coefficients are defined for a percent of turnover. However, if

instead trade size is not normalized and mere number of executed shares is used

in denominator, then the relation reverses and becomes negative. Similar negative

relation between unscaled variables is documented, for instance, in Hasbrouck (1991b)

16Capitalization thresholds are calculated based on NYSE capitalization quintiles in 2003.
17Variable Apj quantifies price impact of virtual trades equivalent to 1% of the average daily

volume, measured in percents of the return standard deviations.



and Chen, Stanzl and Watanabe (2005), among others. Thus, the specification of the

price impact coefficients seems to be crucial for this issue.

As I argued before, the specification (2.4) is a reasonable definition of the price

impact coefficients. Then, what might explain the observed counter-intuitive relation

between price impact and stock size? Certainly, it can be explained by non-linearity

of temporary price impact (e.g., Almgren et al. (2005)). Indeed, as shown in Table

2.2, the average magnitude of transition orders (as a percentage of the average daily

volume) is much smaller for larger stocks. Together with concavity of price impact

functions, these differences might induce the documented patterns of the price impact

coefficients. I will come back to the non-linearity issues in the last section, and show

that, indeed, the adjustment for non-linearity changes these patterns in some cases.

Another explanation is the following. Large stocks are traded very intensively.

However, the significant part of their trading volume is usually attributed to noise

trading, which is typically two-sided: buys alternates with sells. Consistently, for

example, Chordia, Huh, and Subrahmanyam (2007) find that the stock size is pos-

itively related to the monthly turnover and negatively to the absolute order imbal-

ances, which capture net selling or buying pressure. Consequently, for large stocks, a

one-sided trade equivalent to 1% of the average daily volume might be a very strong

signal of private information. At the same time, the opposite argument is true for

small stocks: though they are not traded much, a large fraction of their trading vol-

ume comes from one-sided orders. Consequently, for small stocks, the information

content of a one-sided trade, equivalent to 1% of the average trading volume, might

be less significant. This argument further implies that the price impact coefficients,

defined in (2.4), increase with the market capitalization.



2.4.3 Price Impact and Spread

I also examine the relation between the price impact coefficients and the percentage

spread. These variables are often used as alternative measures of liquidity. Yet, they

describe different facets of liquidity, and the relation between them might be more

complicated than a one-to-one correspondence."8 Presumably, stocks with large per-

centage spreads are traded with the large price impact coefficients, and vice versa.

Indeed, Breen, Hodrick and Korajczyk (2002) conclude that the bid/ask spread and

the price impact coefficients are related; however, the former is not a sufficient statis-

tic for the price impact. 19 Next, I empirically examine their relation based on the

evidence from portfolio transitions.

The testing procedure is very similar to the one described in Section 2.4.2. The

only difference is that groups are formed based on the percentage spread as opposed

to stock size. As before, for each group, the summary statistics for the price im-

pact coefficients is reported. Presented in Table 2.3, the results are surprising. For

transition purchases, the price impact coefficients tend to decrease with the bid/ask

spread; for transition sales, their mean and median values exhibit u-shaped patterns

across spread groups. The split of the sample into NYSE/Amex and Nasdaq-traded

stocks reveals that both groups demonstrate similar interdependence. These counter-

intuitive results might be partially attributed to a manifestation of relation between

price impact and market capitalization, discussed in the previous section. I address

this issue in the next section.

2.4.4 Regression Analysis

Certainly, the aforementioned results might be contaminated by the influence of var-

ious stock characteristics. To examine the incremental impact of specific variables, I

1sAlso, the price impact coefficients might mechanically picking up the effects of spreads.
19See also Hasbrouck (1991a)



study t he cross-sectional variation in the price impact coefficients within a regression

framework.

More specifically, I regress variable AXp on the following stock characteristics:

- LN Cap: The first variable is the logarithm of the market capitalization (in

billions). The results of Section 2.4.2 reveal that contrary to the conventional

intuition, stock size relates positively to ApI. Their robustness is checked in the

regression analysis.

- SPREAD: The second variable is the percentage spread (in percents). As dis-

cussed in Section 2.4.3, two measures of liquidity, spread and Ap1 , are expected

to be closely related to each other.

- ANUM: The third variable is the number of analysts following stocks. It

is constructed based on the number of analysts who provide I/B/E/S with

their end-of-fiscal-year earnings forecast. By and large, the greater number of

investment analysts is associated with the more transparent trading and the

lower adverse selection costs, which are in turn directly linked to ApI.

- LN Turn: The fourth variable is the logarithm of the monthly turnover. Often,

it is thought of as a good proxy for the amount of noise trading. In fact, the

substantial stock turnover is a sign of the active trading of "noninformational"

traders (e.g., Campbell, Grossman and Wang (1993)). Therefore, reflecting the

intensity of uninformed trading and information content behind typical trades,

this variable might affect API.

- DISP: The fifth variable is the dispersion of analysts' forecasts. It is defined

as the standard deviation of the end-of-fiscal-year earnings forecast normalized

by its mean. This variable usually increases with earnings uncertainty. Its

high values imply that information asymmetry between informed agents and



other market participants is large and, consequently, trades are associated with

significant price impact, ApI (e.g., Sadka and Scherbina (2007)). Substantial

analyst disagreement might also foster two-sided noise trading.

- a: The sixth variable is the standard deviation of daily returns. It also might be

related to earnings uncertainty, which potentially leads to significant informa-

tion advantage of informed agents and high API. Also, high volatility of stock

returns might be a sign of intensive trading of noise traders.

- Nasdaq: The last variable is the Nasdaq dummy variable, which is equal to

1 for all Nasdaq-traded securities and 0 for the others. It captures potential

dependence of ApJ on the specifics of different trading venues.

To avoid any spurious association between corresponding contemporaneous char-

acteristics and API, all explanatory variables are as of the end of the previous month.

Different specifications of regressions are considered. They are estimated with

the slightly modified Fama-McBeth procedure for data grouped at monthly levels.

Namely, for each calendar month, I run the cross-sectional regressions of Api 's on the

stock characteristics and report the average regression coefficients. Since the number

of observations varies significantly across months, I weight the monthly regression

estimates by their precision (see Fama (1998)). The t-statistics are further adjusted

with the Newey-West procedure to correct for intertemporal correlations.2 0 This

procedure allows one to correct for the cross-sectional correlations between stock

returns.21 Table 2.4 and Table 2.5 demonstrate the results for different regression

specifications based on the samples of buy and sell orders, respectively.

First, to check the robustness of conclusions in Section 2.4.2 and Section 2.4.3, I

examine the regression results for the market capitalization and the percentage spread.
20The number of lags is chosen by the automatic bandwidth selection procedure.
21The interdependence is of a concern, since contemporaneously traded stocks might share similar

characteristics, moreover, the estimates of the price impact coefficients in each month might be
contaminated by the overall market dynamics.



For both purchases and sales, the coefficients by the market capitalization are positive

and statistically significant for various regression specifications. These results provide

supporl;ive evidence for the patterns, discussed in Section 2.4.2: transactions in larger

stocks tend to be associated with more significant price impact coefficients.

The coefficients by the percentage spread are much less homogeneous: for pur-

chases, they are, with a few exceptions, negative but statistically insignificant, whereas

for sales, they are positive and statistically significant. Thus, the results in Section

2.4.3 can be attributed to the differences in the market capitalization across groups.

Besides, two measures of liquidity, the spread and ApZ, seem to relate positively to

each other.

Second, the price impact coefficients relate positively to the monthly turnover,

which proxies the amount of noise trading.22 Indeed, the corresponding estimates

of coefficients are positive and statistically significant for most specifications. This

evidence is consistent with the suggested explanation for the positive relation be-

tween stock size and Ap, (see Section 2.4.2): stocks, in which two-sided noise trading

accounts for the largest part of trading volume, experience larger price impact per

virtual trades equivalent to one percent of the average daily volume.

Third, the price impact coefficients seem to be higher for Nasdaq-traded stocks:

the coefficients by Nasdaq dummies are all positive. However, their t-statistics are

fairly small and, consequently, can not represent statistically strong evidence. Fur-

thermore, contribution of characteristics ANUM, the numbers of analysts who follow

stocks, and STD, the standard deviation of returns, to explanation of the cross-

sectional differences in API is statistically insignificant. Also, the price impact coeffi-

cients tend to increase with the dispersion of analysts' forecasts, which might proxy

the intensity of noise trading as well as the extent of potential information advantage

22Also, variable Apj tends to increase with the dispersion of analysts' forecasts, which might be
associated with the amount of noise trading as well. The relation between Apj and the volatility is
not statistically significant.



attributed to informed market participants.

To summarize, the price impact coefficients of portfolio transition orders vary

substantially across securities with different characteristics. The implemented cross-

sectional analysis reveals the following patterns: (1) they tend to increase with the

market capitalization and spread; (2) they are positively related to the amount of

noise trading and the degree of information advantage of informed traders; (3) they

seem to be slightly higher for Nasdaq-traded that NYSE/Amex-traded securities.

2.5 Price Impact Dynamics

2.5.1 Motivation

Market participants often split their large orders into smaller trades and execute them

over time. This practice is common among traders who wish to minimize transaction

costs while trading for their liquidity needs and traders who seek to alleviate informa-

tion leakage while trading on their private information. Transition managers are not

an exception. Helping implement transition in a cost effective way, they also tend to

stretch execution of large orders over time. Thus, transition orders usually consist of

several consecutive trades. In this section, I study the dynamics of the price impact

coefficients during these multi-trade "packages".

In the theoretical literature, it has long been recognized that traders often split

their orders to minimize transaction costs. Theoretical analysis of price impact,

associated with multi-period trading strategies, provides interesting insights about

the complicated dynamic relation between individual trades and returns (e.g., Kyle

(1985), Vayanos (1999, 2001)). Yet, to the best of my knowledge, the dynamics of

the price impact coefficients over the course of multi-trade "packages" has not been

examined empirically. Indeed, empirical literature has mostly focused on the price

responses to individual trades (e.g., Chan and Lakonishok (1993), Kraus and Stoll



(1972), Keim and Madhavan (1996)). Also, a number of empirical studies point out

that it might be misleading to consider individual trades as a unit of price impact

analysis; they examine the effects on prices of entire "packages", however, leaving

unanswered the question of how the price impact coefficient actually evolve during

these ":packages" (e.g., Chan and Lakonishok (1995), Keim and Madhavan (1997)).

To fill the gap, I study the evolution of the price impact coefficients associated with

sequences of trades that constitute portfolio transition orders.

It is worth mentioning that portfolio transitions provide a unique laboratory to

study the market response to the sequence of trades. First, since most transition

orders are fairly large, transition managers often split them over the course of several

days. Indeed, about half of all orders take more than one day to be executed, and

the majority of them are completed during a week. Second, the trading intentions

of transition managers are set in advance; this contrasts with other studies in which

ex ante orders cannot be easily identified: realized trades might be influenced by

unobserved specifics of investment styles and order-placement strategies. Thus, the

data set of portfolio transitions allows me to observe a large number of ex ante orders

and how they are split over several days.

2.5.2 Test Design and Results

To investigate the evolution of price impact, I study the average price impact co-

efficients during the first and the second halves of transition orders. I design and

implement the testing procedure in the following way.

First, I select all transition orders that take more than two days to be completed.

Second, for each of them, individual open market trades are grouped into two sets:

trades that are executed during the first half and trades that are executed during

the second half of trading strategies.23 Third, for each transition order, I compute

23For instance, if transition order is executed in four days, then trades of the first two days belong



A, the pairwise difference between the average price impact coefficients of individual

trades in the first and the second groups, API,1 - API,2 . The price impact coefficients

of individual trades are defined as in (2.4); however, instead of the pre-transition

benchmark prices, Pbch, the close prices at days, previous to trades, are used. Fourth,

10% top and 10% bottom values of A's are winsorized. Lastly, the means and the

medians of A's are estimated. I next present my conclusions which are based on the

sample of 35,289 observations.

Table 2.6 shows the means and the medians of A's along with p-values of their

t-tests and Wilcoxon signed-rank tests, respectively. Interestingly, very different pat-

terns are observed for transition buy and sell orders.

On one hand, during buy orders, the price impact coefficients of individual trades

tend to increase. Indeed, the results in Table 2.6 demonstrate that A's are typically

negative, i.e. the average price impact coefficients in the first halves of order execution,

Api,1's, are significantly lower than those in the second halves, Api,2 'S. For instance,

the average gap between them is about -18% for NYSE/Amex stocks or -3%, if the

medians are considered. 24 These differences are statistically significant. Moreover,

similar patterns are observed for stocks traded on Nasdaq and stocks with different

market capitalization.

On the other hand, during sell orders, the price impact coefficients of individual

trades tend to decrease over time. According to Table 2.6, the differences between

API,I and API,2 tend to be positive. During execution of sell orders, the price impact

coefficients drop, on average, by about 20% or by 9%, if the median values are consid-

ered. These differences are also statistically significant. As before, they are observed

for different trading venues and for different market capitalization quantiles.

To check the robustness of these patterns, I re-examine the dynamics of the price

to the first group and trades in the last two days belong to the second group.
24 As a reminder, the price impact coefficients are measures as a percentage of the standard devi-

ations of daily returns and denote the price impact of trades equivalent to 1% of the average daily
volume.



impact coefficients separately for two time periods: January 2001 through June 2003

and July 2003 through December 2005. The market is declining in the first time span

and rising in the second one. Panel C of Table 2.6 shows that despite distinctive

market conditions, similar patterns prevail in both cases for buy and sell orders.

2.5.3 Discussion

How are these findings related to existing theoretical literature? The theoretical

papers on multi-period strategies and security prices can be broadly divided into

two groups, according to the trading motives: either information-related or liquidity-

related ones.

First, some traders may have private information about the future payoff distribu-

tion and, consequently, trade for information-related motives. Kyle (1985) analyzes

the dynamic trading of a risk-neutral informed insider in this situation. He shows

that an insider trades on his private information slowly and that the price impact

coefficients are approximately constant over time.25 In various extensions of this clas-

sical model, insiders typically trade more aggressively at the beginning; their behavior

leads to the increase of the price impact coefficients during the first periods (when

information content of order flow is high) and its decrease latter (when informed in-

siders have already exploited their private information and their contribution to the

trading volume is insignificant). For instance, these patterns are found in extensions

in which an insider is risk-averse (e.g., Baruch (2002)) or when there are multiple

strategic informed traders (e.g., Holden and Subrahmanyam (1992, 1994)). Thus,

theoretical literature predicts that the price impact coefficients are non-increasing

over time during execution of information-motivated orders.

Second, some market participants can initiate trading because of liquidity-related

25In fact, non-constant functions are inconsistent with equilibrium. If price impact increased,
then insider would prefer to incorporate all his private information into prices immediately. If price
impact decreased, then insider could implement destabilizing schemas and earn unbounded profits.



motives such as risk sharing, portfolio rebalancing, accommodation of exogenous in-

flows and outflows. In these situations, they do not possess any private information

about stocks' fundamentals. However, formally they have information advantage over

other market participants as well: they know that they will be executing large orders

and that future stock prices will be changing adversely.26 Vayanos (2001) studies this

interesting form of information asymmetry. In his model, information about stock

future payoff is public, and a large risk-averse trader with liquidity needs implements

the multi-period trading strategy."2 Interestingly, if this trader does not manipulate

the market, the model predicts decrease of the price impact coefficients over time:

the market maker learns about his intentions, and unexpected order flows gradually

decrease. To summarize implications of the theoretical literature, the price impact

coefficients associated with any multi-period orders (including portfolio transition or-

ders) are expected to be non-increasing over time regardless of motives behind them.

Before proceeding, it is worth mentioning another detail. On average, portfolio

transition purchases and sales are expected to have different information contents.

Typically, the purchases of stocks from target portfolios are information-motivated

trades, whereas the sales of stocks from legacy portfolios are liquidity-motivated

ones. This interesting dichotomy of transition trades is highlighted and discussed

in Obizhaeva (2007). In fact, target portfolio usually outperform legacy portfolios in

the post-transition periods for up to half a year; this observation implies that hired

managers are better than terminated managers in generating abnormal returns. Thus,

on one hand, target portfolios are selected by skilled managers; purchases of these

portfolios reflect their private information and correspond to information-motivated

trades. On the other hand, the sales of legacy portfolios are just liquidations of

26For example, if pension fund is liquidating its position in a given stock to meet obligations
before its participants, it has private information that the stock prices will drop in the future. This
is somewhat similar to the situation when insiders observe the negative signals about future payoffs.

27See also Vayanos (1999) for a variation of this model.



portfolios of unskilled managers; they represent uninformative shocks to supply.28

The price impact patterns, found for transition sales, support the prediction of

Vayanos (2001) about price dynamics during non-informative trading. As predicted,

the price impact coefficients are much higher for the first halves of portfolio transi-

tions than for the second halves. However, as shown in Table 2.5, the drop in Ap1 is

more significant for larger stocks; if information is fully revealed by the end of tran-

sitions, this fact contradicts the intuition: ex ante information asymmetry is more

substantial for smaller stocks and, consequently, they are expected to experience the

larger decrease in the price impact coefficients.

At the same time, the patterns of the price impact coefficients, associated with

transition purchases, can not be easily explained by the existing models about information-

driven trading sequences. These models predict the non-increasing price impact dy-

namics; however, the opposite patterns are observed. These patterns may occur in

the situations when a market maker gradually learns about the active presence of

informed traders in the market.

To summarize, I show that the price impact coefficients increase over time when

stocks from target portfolios are being purchased and decrease when stocks from

legacy portfolios are being sold. These patterns are only partially consistent with

the intuition of theoretical models. Although these results are being obtained for the

sample of portfolio transition orders, they may have implications for a broader class

of institutional trades, which are often split over several days.

28More detailed discussion can be found in Obizhaeva (2007); similar arguments are presented in
Coval and Stafford (2005).



2.6 Price Impact Functions

2.6.1 Motivation

There is no consensus on whether price impact functions are concave, linear, or convex

and, furthermore, what the reasonable estimates of their parameters are.

Linear price impact functions are frequently used in the literature. For instance,

the theoretical literature often relies on this parametric form because it greatly sim-

plifies the models. Also, linear specification serves as a basis for a large number of

empirical studies. There are reasons to believe that price impact functions are indeed

linear: Huberman and Stanzl (2000) argue that non-linear price impact would lead

to arbitrage.

However, several factors might induce concavity of price impact functions by miti-

gating the transaction costs of large orders. First, block traders might credibly signal

the liquidity-related motives behind their trades (see Seppi (1990)). Second, infor-

mation behind large orders might be leaking while they are being 'shopped', thus,

lessening their realized effects on security prices. Finally, there are concerns about

the endogeneity of observed trades: since traders can place their orders strategically,

most of large costly orders will be split into smaller trades and executed over time

(see Bertsimas and Lo (1998)). Consistently with aforementioned arguments, the

empirical literature often finds examples in favor of concave price impact functions;

the examples include Almgren et al. (2005), Hasbrouck (1991a), Hausman, Lo, and

MacKinlay (1992) among many others. At the same time, there is no agreement

yet on what the reasonable values of their curvature parameters are: many papers

advocate the square-root specification (see Barra (1997)), whereas others claim that

other functional forms are more appropriate (see Almgren et al (2005)).

To provide additional evidence on these controversial issues, I estimate the price

impact functions using the dateset of portfolio transition trades. Taking advantage of



clear distinction between sell and buy orders in this data set, I analyze price impact

functions separately for these two groups. Additionally, I explore how their functional

form changes across different market quintiles.

2.6.2 Test Design and Results

I assume that the price impact might be reasonably described by the power-law

functions and estimate their parameters. More precisely, I run pooled regressions of

the following form:

PI? =/3 + e (2.5)

where PIi is the total price impact of order i, defined in (2.1), Xi is the size of

transition order in shares, and ADVi is the average daily volume in the previous

month.

I next estimate (2.5) using the entire sample of portfolio transition orders. 29 Pa-

rameters 3 and y are parameters of interest. Parameter 3 stands for the magnitude of

price impact; more specifically, it quantifies the price impact for trades equivalent to

1% of the average daily volume and is measured as a fraction of the return standard

deviations. At the same time, parameter y controls the curvature of price impact

functions, i.e. if y is close to 1 or 1/2, than linear or square-root specifications of

these functions are validated, respectively. 30

Table 2.7 presents the results of the calibration exercise: the estimates of param-

eters with their standard errors, t-statistics as well as 95%-confidence intervals. For

transition buys, the point estimates of parameters are 3 = 0.14 and ' = 0.31 (Panel

29To adjust for cross-correlation within observations of the same months, I cluster observations
at monthly levels. Also, I winsorize the top and bottom 10% of variable PI and filter out 1% of
observations with very large values of X/I%ADV (approximately corresponding to values larger
than 50).

30The price impact coefficients, Ap1 's, discussed in the previous sections, correspond to parameter
f, if a linear specification with -y = 1 is implicitly assumed.



A); for transition sales, the analogous estimates are 3 = 0.09 and 9 = 0.47 (Panel

B). Clearly, the standard errors of 3 imply that p's are positive. As for the curvature

parameters, the hypothesis - = 1 can be strongly rejected both for transition buys

and sells. These results confirm that price impact functions are concave. Moreover,

the popular square-root model seems to be a good description of actual price impact

functions, although these functions tend to be slightly flatter for transition purchases.

Table 2.7 also shows the results for different size groups. These tests are similar

to the ones implemented in Chen, Stanzl and Watanabe (2001): all stocks are sorted

into five size groups according their market capitalization and then price impact

functions (2.5) are estimated for each of these groups. Similar patterns are observed.

Point estimates of O's range from 0.05 to 0.16, and the ones of y's are from 0.23 to

0.58. For all groups, the magnitude parameters, /'s, are significantly positive and

the curvature parameters, y's, are fairly close to 1/2. The exception is price impact

of large purchases that tends to have slightly lower -'s: the market reaction to these

orders depends on their magnitude to a less extent.

To summarize, in this section I calibrate price impact functions on the data set of

portfolio transition trades. The results suggest that price impact is concave and well

described by the square-root functions. Lastly, it is worth mentioning that estimated

price impact functions are not attributes of individual stocks but rather represent

aggregated functions for entire sample or various size groups.

2.6.3 Permanent and Temporary Price Impact

The total price impact is often decomposed into two components: permanent and

temporary ones. The former is the permanent price shift due to information that is

partially revealed through a trade, whereas the latter is the transitory price change

due to liquidity effects that are induced by quick execution and limited elasticity

of demand and supply. A number of papers highlight the difference between these



two parts (e.g., Holthausen, Leftwich, and Mayers (1987), Gemmill (1996), Keim and

Madhavan (1996), Almgren et al (2005)). In this section, I calibrate the permanent

and temporary price impact functions separately.

More precisely, I re-estimate equation (2.5) but substitute the left-hand-side vari-

able PI with PI7 ,,~ and PItemp, defined in (2.2) and (2.3), for permanent and tem-

porary components, respectively. Of course, there is some ambiguity of how to disen-

tangle these two parts or, in other words, how to define an appropriate "base" time

by which all liquidity effects dissipate. Therefore, for robustness, I consider several

specifications of a "base" time: the close at the last day of order execution, the close

at the next day and one or two weeks after execution. As before, transition purchases

and sales are examined separately.

Panel A of Table 2.8 presents the point estimates of parameters with their statistics

for portfolio transition purchases. As I argued before, these transactions are expected

to contain private information. Indeed, their permanent price impact tend to be

positive: for most specifications, estimates ,'s are statistically significant and locate

above zero. However, most of ^'s can not be statistically separated from zero. This

finding implies that the functional form of permanent price impact is far from being

linear, furthermore, it suggests that its magnitude is almost unrelated to a trade

size. Similar invariance has been also documented in the literature on block trades

(e.g., Keim and Madhavn (1996)).31 At the same time, for temporary component, the

estimates of all parameters are indistinguishable from zero; thus, no strong statements

can be made about its functional form.

Panel B of Table 2.8 demonstrates the results of calibration tests for portfolio

transition sales. These results are clearly very different from those for purchases. The

dissimilarity is expected and explained by the differences in their information content

31This independence might be attributed to specifics of the sample, which is dominated by trades
in large stocks. Also, the true relationship might be obscured by noise, which is fairly substantial as
shown by very small R 2's.



- transition sales are, by and large, liquidity-motivated transaction (see Obizhaeva

(2007)). Consequently, they should not contain a permanent component. In fact,

for the most of "base" times, the curvature estimates ^'s are indistinguishable from

zero; similarly, the magnitude estimates O's are also close to zero or even slightly

negative for "base" times of one and two weeks. Meanwhile, temporary price impact

has significantly positive p's and ^'s, with the latter typically lower than 1/2. Thus,

transition sales induce price impact which is transitory in its nature.

To summarize, the following results of this section can be highlighted. First, price

impact functions are probably non-linear. Second, they can be well approximated by

square-root functions. Third, the functional form of their temporary and permanent

components is more difficult to purge; however, the permanent price impact does not

satisfy a linear specification.

2.6.4 Non-Linear Price Impact Coefficients

In the previous section, I have shown that price impact functions are concave. There-

fore, I slightly modify (2.4) and consider the following specification of the price impact

coefficients, adjusted for non-linearity:

_Pi = (Pexec/Pbch - 1)/a BS x 100% (2.6)
- /(X/1%ADV)

which is different from (2.4) only by a radical sign in its denominator. This modifi-

cation is chosen because price impact functions are found to be well described by a

square-root specification. Next, I redo all tests in this paper for variable ApI. For

brevity, I present below only a quick summary of the results.32

What is the relation between the market capitalization and Ap 1 ? I study this

question with tests, described in Section 2.4. By and large, the price impact coeffi-

32Full version of results can be provided by the author at request.



cients exhibit either u-shaped or increasing in stock size patterns. Typically, stocks

from the largest size quintile display Api's, which are higher than those for stocks of

other sizes, perhaps only with an exception for the smallest stocks. These patterns

are observed for the mean and median values of ApI, for purchases and sales, and for

different trading venues. At the same time, the regression analysis leads to weaker

results. For purchases, the coefficients by stock size are always positive but statisti-

cally insignificant; for sales, they do not exhibit any unambiguous patterns. Overall,

the results show that the positive relation between the market capitalization and the

price impact coefficients in Section 2.4 might be partially attributed to concavity of

price impact functions; however, this evidence is quite inconclusive.

What is the relation between the percentage spread and ApI? After redoing the

tests of Section 2.4, I conclude the following. For buy orders, the relation between

API and the spread is fairly weak. For sell orders, ApI's tend to increase across the

spread groups (or their relation is slightly u-shaped); this positive relation is also

found in the regression analysis: the coefficients by the spread variables are positive

and statistically significant for all specifications. Thus, adjustment for non-linearity

does not affect the conclusion of Section 2.4: the price impact coefficients tend to

relate positively to the percentage spread.

Also, ApI is usually higher for Nasdaq-traded stocks, however, these results are not

statistically significant. Moreover, Ap, tend to relate positively to the amount of noise

trading: the regression coefficients by turnover are positive for all specifications, but

their t-statistics are fairly small. The regression coefficients by the number of analysts,

the dispersion of analysts' forecasts, and the volatility are statistically insignificant.

These results are based on the analysis similar to the one in Section 2.4.4.

I also re-examine the dynamics of the price impact coefficients, when they are

adjusted for non-linearity, and I redo the tests of Section 2.5 for the specification

(2.6). Interestingly, all findings are the same: Apj increases during execution of buy



orders and decreases during that of sell orders. Thus, the patterns of \pI dynamics

in response to multi-trade "packages" are robust to the adjustment for potential non-

linearity.

On the whole, the properties of the price impact coefficients, adjusted for non-

linearity, are quite similar to the properties of unadjusted ones. However, the cross-

sectional patterns become slightly weaker; this fact implies that some of them might

be partially attributed to the concavity of price impact functions.

2.7 Conclusion

This study is a step towards building a comprehensive understanding of the price

impact patterns. I focus here on the price impact coefficients. Formally, these vari-

ables quantify the magnitude of price changes (defined in percents of the standard

deviation of daily returns) in response to virtual trades, which are equivalent to 1% of

the average daily volume. Proprietary data set of portfolio transitions helps estimate

them in a very precise manner for a large cross-section of stocks.

Using these estimates, I document interesting empirical findings about the cross-

sectional patterns of the price impact coefficients, their dynamics during implemen-

tation of multi-period strategies, and the functional form of price impact. Some of

these results can not be easily explained within the existing models and are briefly

highlighted below.

The first surprising result is the positive relation between the price impact coeffi-

cients and the market capitalization. This finding clearly challenges the conventional

intuition, according to which market participants, who trade in large stocks, do not

face significant information asymmetry and, consequently, their trades induce only

small price changes. Related to these patterns is the documented positive relation

between the price impact coefficients and the amount of noise trading; again, the



classical models predict the opposite patterns. In this paper, I provide a sketch of

explanation that can justify these two findings. However, more work on this topic is

required and other explanations might be suggested.

The second interesting finding, which is difficult to place in the context of existing

models, is the evolution of the price impact coefficients during execution of multi-

trade "packages". This study shows that they increase in response to sequences of buy

trades and decrease, if multiple sell trades are carried out. The theoretical literature

has long been studying the price dynamics during multi-period strategies, executed

either by informed or by uninformed traders. However, to the best of my knowledge,

neither of these models predict the increasing signature of the price impact coefficients.

Thus, it is difficult to reconcile the observed dynamics with the theoretical literature.

Finally, the analysis of price impact functions reveals that a linear specification

can be rejected for its permanent components with a high level of confidence. This

finding is puzzling given that, in theory, non-linear functions for permanent price

impact would allow for arbitrage. Certainly, all these findings call for more extensive

empirical analysis and theoretical explanations.
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Table 2.1: Summary Statistics

Panel A: Summary Statistics for Transition Orders:

BUY SELL
Mean Median Mean Median

# Shrs/ShrOut (bp) 1.21 0.66 1.15 0.59

# Shrs/ADV (%) 1.63 1.27 1.56 1.19

Panel B: Summary Statistics for Stocks:

BUY SELL
Mean Median Mean Median

Cap (x 109) 6.07 1.69 6.84 1.83
Turn (%) 209.40 152.32 211.55 154.24

SPREAD (%) 0.25 0.13 0.24 0.12
ANUM 10.61 9.00 11.24 10.00

DISP (%) 11.36 2.16 11.48 2.47
a 0.02 0.02 0.02 0.02

Table 2.1 presents summary statistics. Panel A shows the properties of portfolio
transition orders, such as the size of orders as the fraction of shares outstanding
(in basis points) and of average daily volume (in percents). Panel B shows the
characteristics of stocks. These characteristics include the market capitaliza-
tion (in billions), Cap, the annual turnover (in percents), Turn, the percent-
age spread (in percents), SPREAD, the number of analysts following stocks
ANUM, the dispersion of analysts' forecasts (in percents of average forecasts),
DISP, and the standard deviation of daily returns, a. Purchases and sales are
considered separately. All statistics are calculated based on pooled data from
January 2001 to December 2005.
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Table 2.2: Price Impact and Market Capitalization

Panel A: NYSE/AMEX Stocks

Cap Quintiles

1 (Small) 2 3 4 5 (Large) All

BUY PI Mean 6.73 8.33 10.95 19.07 23.53 17.75
PI Median 1.95 3.10 4.00 7.28 12.79 5.47

PI SEs 1.41 1.18 1.23 1.25 1.19 0.64
Avg(a) 0.03 0.03 0.02 0.02 0.02 0.02

Avg(%ADV) 17.87 6.27 3.20 1.94 0.96 2.87
# Obs 1,692 4,931 7,925 11,305 17,994 43,847

SELL PI Mean 4.63 5.56 4.03 6.62 13.63 8.96
PI Median 2.44 2.48 2.12 3.66 8.51 3.80

PI SEs 1.47 1.23 1.11 1.15 1.07 0.60
Avg(a) 0.03 0.03 0.02 0.02 0.02 0.02

Avg(%ADV) 29.68 8.07 3.74 1.82 0.81 3.26
# Obs 1,743 5,116 9,688 13,819 22,581 52,948

Panel B: Nasdaq Stocks

Cap Quintiles

1 (Small) 2 3 4 5 (Large) All

BUY PI Mean 7.69 9.81 15.20 21.41 25.71 13.85
PI Median 2.52 3.52 4.91 6.91 10.93 3.79

PI SEs 1.02 1.18 1.62 2.51 3.48 0.76
Avg(a) 0.04 0.03 0.03 0.02 0.02 0.03

Avg(%ADV) 11.46 4.36 2.35 1.53 0.76 4.51
# Obs 4,839 7,853 6,244 3,498 2,245 24,679

SELL PI Mean 7.40 9.28 6.77 8.51 13.24 8.57
PI Median 3.06 3.27 2.29 4.36 5.42 3.12

PI SEs 1.06 1.15 1.47 2.19 2.95 0.71
Avg(a) 0.04 0.03 0.03 0.02 0.02 0.03

Avg(%ADV) 16.92 4.68 2.74 1.74 0.71 5.67
# Obs 5,674 8,657 7,514 4,555 3,097 29,497

Table 2.2 shows the means, medians and standard errors of the price impact
coefficients for purchases and sales and different capitalization groups. The
price impact coefficients are defined in (2.4). Additionally, the average standard
deviation of daily returns, Avg(a), the average size of trades as a percentage
of average daily volume in the previous month, Avg(%ADV), and the number
of observations are presented. Data is reported separately for NYSE/AMEX
and Nasdaq. Capitalization thresholds are calculated based on NYSE stock
capitalization quintiles. The sample ranges from January 2001 to December
2005.
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Table 2.3: Price Impact and Percentage Spread

Panel A: NYSE/AMEX Stocks

Percentage Spread Quintiles

1 (Small) 2 3 4 5 (Large) All

BUY PI Mean 21.41 22.31 15.55 15.33 14.07 17.75
PI Median 9.95 9.68 5.04 4.58 3.41 5.47

PI SE 1.63 1.53 1.45 1.36 1.20 0.64
Spr Median 0.04 0.06 0.10 0.16 0.37 0.10

# Obs 8,747 8,764 8,757 8,756 8,745 43,847

SELL PI Mean 11.20 7.60 5.66 8.96 11.44 8.96
PI Median 5.87 3.85 2.46 3.61 3.96 3.80

PI SE 1.49 1.41 1.34 1.27 1.13 0.60
Spr Median 0.04 0.06 0.10 0.16 0.35 0.10

# Obs 10,563 10,598 10,555 10,573 10,571 52,948

Panel B: Nasdaq Stocks

Percentage Spread Quintiles

1 (Small) 2 3 4 5 (Large) All

BUY PI Mean 20.67 17.25 16.45 9.95 4.69 13.85
PI Median 7.95 6.17 5.44 3.22 2.02 3.79

PI SE 2.11 1.88 1.69 1.53 1.13 0.76
Spr Median 0.06 0.12 0.20 0.34 0.84 0.20

# Obs 4,914 4,927 4,912 4,928 4,920 24,679

SELL PI Mean 8.12 7.15 6.44 10.26 10.96 8.57
PI Median 3.42 2.64 2.44 3.77 3.11 3.12

PI SE 1.94 1.75 1.59 1.47 1.09 0.71
Spr Median 0.06 0.12 0.19 0.31 0.79 0.19

# Obs 5,871 5,882 5,873 5,877 5,881 29,497

Table 2.3 shows the means, and median, of the price impact coefficients with
their standard errors, for purchases and sales and different groups of stocks
based on their percentage spread. The price impact coefficients are defined in
(2.4). Also, the median values of the percentage spread, Spr Median, in per-
cents is shown for each group. Data is presented separately for NYSE/AMEX
and Nasdaq. Capitalization thresholds are calculated based on NYSE stock
capitalization quintiles. The sample ranges from January 2001 to December
2005.
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Table 2.4: The Regression Analysis, Purchases

Regressions of Price Impact on Explanatory Variables, Purchases

Regression Specifications

(1) (2) (3) (4) (5) (6) (7)

const 13.46**
(4.00)

LN Cap 3.56*
(5.68)

SPREAD

ANUM

LN Turn

DISP

a

Nasdaq 3.23
(1.34)

Avg R2

# Obs
0.01

13.83**
(3.72)

3.36*
(4.91)
-1.03

(-0.52)

3.18
(1.30)

0.02

11.36**
(3.42)

3.72*
(5.62)

13.36**
(2.84)

3.78*
(6.26)

1.29f
(1.68)

45.60
(0.58)

2.26 3.37
(1.06) (1.54)

0.02 0.02

14.22**
(3.54)

3.25*
(5.32)
-2.02

(-0.81)

11.99*
(2.50)

2.83*
(3.17)

0.24f
(1.70)

1.35t
(1.74)

0.74
(1.23)

-68.30
(-0.89)

2.83 1.94
(1.08) (0.85)

0.02 0.03 0.03
72,299

Table 2.4 shows the regression analysis of the price impact coefficients, de-
fined in (2.4), on various stocks' characteristics for the sample of purchases.
These characteristics are LN Cap, the logarithm of capitalization (in billions);
SPREAD, the percentage spread (in percents); ANUM, the number of analysts
following stocks; LN Turn, the logarithm of turnover; DISP, the dispersion
of analysts' forecasts defined as a standard deviation of forecasts normalized
by its means; a, the standard deviation of daily returns, and Nasdaq, the
exchange constant equal to 1 for Nasdaq-traded stocks. The estimated are cal-
culated following the Fama-McBeth procedure for data grouped at a monthly
level and weighted with a precision level. T-statistics are adjusted with the
Newey-West procedure and presented in parentheses. **is significance at 1%
level, *is significance at 5% level, tis significance at 10% level.
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12.94*
(2.55)

3.44*
(6.17)
-0.78

(-0.59)

1.6 0t
(1.99)

0.80
(0.97)
-45.31
(-0.57)

1.82
(0.78)



Table 2.5: The Regression Analysis, Sales

Regressions of Price Impact on Explanatory Variables, Sales

Regression Specifications

(1) (2) (3) (4) (5) (6) (7)

const 9.29**
(2.72)

LN Cap 1.70t

(1.79)
SPREAD

ANum

7.18 t

(1.89)
2.26 t

(1.91)
4 .2 6 t

(1.95)

5.32
(1.68)

1.74t
(1.85)

4.42
(1.37)

1.89t
(1.82)

1.17
(1.54)

a

Nasdaq 2.80 3 .11t
(1.64) (1.77)

100.60
(1.42)

0.62 1.75
(0.64) (1.16)

4.80
(1.19)

2.86*
(2.30)

5.73*
(2.31)

2.178
(1.83)

5.41
(1.50)

2.84*
(2.28)

-0.20
(-1.41)

1.28t

(1.79)

16.77
(0.32)

3.72 1.00
(1.98) (0.68)

-0.33
(-0.07)

3.03*
(2.43)

7.74**
(3.16)

1.47t
(1.99)

2.09 t

(1.75)
-48.51
(-0.93)

1.25
(0.90)

Avg R2

# Obs
0.01 0.02 0.02 0.02 0.02 0.02 0.02

87,132

Table 2.5 shows the regression analysis of the price impact coefficients, defined
in (2.4), on various stocks' characteristics for the sample of sales. These char-
acteristics are LN Cap, the logarithm of capitalization (in billions); SPREAD,
the percentage spread (in percents); ANUM, the number of analysts following
stocks; LN Turn, the logarithm of turnover; DISP, the dispersion of analysts'
forecasts defined as a standard deviation of forecasts normalized by its means;
a, the standard deviation of daily returns, and Nasdaq, the exchange constant
equal to 1 for Nasdaq-traded stocks. The estimated are calculated following
the Fama-McBeth procedure for data grouped at a monthly level and weighted
with a precision level. T-statistics are adjusted with the Newey-West procedure
and presented in parentheses. **is significance at 1% level, *is significance at
5% level, tis significance at 10% level.
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Table 2.6: Price Impact Dynamics

Panel A: NYSE/AMEX Stocks

BUY Mean
p-val

Median
p-val

SELL Mean
p-val

Median
p-val

Cap Quintiles

1 (Small) 2 3 4 5 (Large) All

-12.67 -2.24 -9.73 -62.37 -3.36 -18.14
(0.10) (0.72) (0.19) (0.00) (0.76) (0.00)
-1.05 -3.64 -2.64 -16.80 10.50 -3.35

(0.13) (0.03) (0.04) (0.00) (0.00) (0.00)

1.58 20.06 12.60 38.12 30.25 24.84
(0.85) (0.01) (0.09) (0.00) (0.00) (0.00)

2.94 6.73 8.21 11.21 20.91 8.97
(0.00) (0.00) (0.00) (0.00) (0.93) (0.00)

Panel B: Nasdaq Stocks

Cap Quintiles

1 (Small) 2 3 4 5 (Large) All

BUY Mean
p-val

Median
p-val

SELL Mean
p-val

Median
p-val

-12.55
(0.03)
-0.47

(0.05)

-8.38
(0.17)

2.46
(0.05)

-39.90
(0.00)
-3.52

(0.00)

2.18
(0.75)

9.18
(0.00)

-52.74
(0.00)
-8.98

(0.00)

24.39
(0.01)
11.55

(0.00)

-84.59
(0.00)
-43.53
(0.00)

67.27
(0.00)
32.96
(0.00)

-16.93
(0.59)

0.88
(0.00)

72.75
(0.00)
66.03

(0.87)

-39.33
(0.00)
-3.43

(0.00)

19.32
(0.00)

8.69
(0.00)

Different Time Periods

BUY

Mean p-val Median p-val

SELL

Mean p-val Median p-val

2001-2003 -10.16 (0.06)
2003-2005 -39.32 (0.00)

-0.93 (0.00)
-4.94 (0.00)

52.16 (0.00)
7.83 (0.04)

10.54 (0.00)
8.27 (0.00)

Table 2.6 shows the means and medians of pairwise differences between the
average price impacts coefficients in the first and the second halves, A = PI,1 -

API,2 , along with p-values of their t-tests and Wilcoxon signed-rank tests. The
price impact coefficient of individual trades are defined in (2.4), but instead of

Pbch the close price in the previous to a trade day is used. 10% of bottom and
top observations are winsorized. P-values are presented in parentheses. Data is
presented for NYSE/AMEX and Nasdaq (Panel A and B). The sample ranges
from January 2001 to December 2005. In Panel C, results for periods Jan 2001
through June 2003 and July 2003 through Dec 2005 are presented.
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Table 2.7: Price Impact Functions

Panel A: Purchases, Price Impact = / (X/1%ADV)^ + E

Parameter 3 Parameter y R 2

/ SE 95% CI ' SE 95% CI

All Stocks 0.14 0.02 [0.09..0.19] 0.31 0.05 [0.21..0.40] 0.04

Cap Quintile

1 (Small) 0.13 0.03 [0.06..0.20] 0.35 0.08 [0.20..0.51] 0.09
2 0.10 0.03 [0.04..0.17] 0.42 0.10 [0.22..0.62] 0.05
3 0.11 0.03 [0.05..0.18] 0.40 0.10 [0.19..0.60] 0.03
4 0.15 0.03 [0.09..0.22] 0.25 0.08 [0.09..0.40] 0.04
5 (Large) 0.16 0.03 [0.10..0.21] 0.23 0.07 [0.08..0.38] 0.03

Panel B: Sales, Price Impact = , (X/1%ADV)'Y + E

Parameter /3

3 SE 95% CI

Parameter y R 2

' SE 95% CI

All Stocks 0.09 0.02 [0.05..0.12] 0.47 0.08 [0.32..0.62] 0.03

Cap Quintile

1 (Small) 0.11 0.03 [0.05..0.17] 0.46 0.08 [0.29..0.62] 0.09
2 0.10 0.03 [0.04..0.16] 0.35 0.14 [0.06..0.64] 0.03
3 0.05 0.02 [0.01..0.09] 0.58 0.13 [0.32..0.84] 0.02
4 0.08 0.02 [0.03..0.13] 0.56 0.12 [0.31..0.80] 0.02
5 (Large) 0.12 0.03 [0.06..0.17] 0.55 0.11 [0.34..0.76] 0.02

Table 2.7 shows the calibration of price impact functions, Price Impact =
0 (X/1%ADV)7+E, where X is the size of transition order, and ADV is the av-
erage trading daily volume. Price impact is defined as (Pexec/Pbch - 1) X BS,
where Pexec is the execution price, Pbch is the benchmark price, a is the stan-
dard deviation of daily returns in the previous month, and IBS is a buy/sell
indicator. Point estimates, their standard errors, t-statistics and 95%-confident
intervals are presented. All observations are clustered at monthly levels. Data
is presented separately for transition purchases and sales (Panel A and B) as
well as different capitalization quintiles. Capitalization thresholds are calcu-
lated based on NYSE stock capitalization quintiles. The sample ranges from
January 2001 to December 2005.
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Table 2.8: Temporary and Permanent Price Impact

Panel A: Purchases, Price Impact = P (X/I%ADV)^ + E

Base Day PI

Parameter 3

p SE 95% CI

Parameter 7

5 SE 95% CI

t=+0 Perm 0.16 0.03 [0.10..0.22] 0.30 0.06 [0.18..0.41] 0.03
Temp -0.03 0.01 [-0.05..0.00] 0.19 0.23 [-0.27..0.65] 0.00

t=+1 Perm 0.18 0.04 [0.09..0.27] 0.13 0.07 [-0.02..0.27] 0.02
Temp -0.03 0.04 [-0.10..0.04] -0.56 0.61 [-1.78..0.67] 0.00

t=+5 Perm 0.15 0.10 [-0.04..0.35] 0.13 0.18 [-0.23..0.50] 0.01
Temp 0.01 0.09 [-0.18..0.19] 0.60 2.71 [-4.83..6.03] 0.00

t=+10 Perm 0.28 0.17 [-0.05..0.61] -0.05 0.22 [-0.50..0.39] 0.01
Temp -0.12 0.18 [-0.49..0.25] -0.35 0.75 [-1.85..1.15] 0.00

Panel B: Sales, Price Impact = P (X/1%ADV)f + E

Base Day PI

Parameter 0

P SE 95% CI

Parameter y

SE 95% CI

t=+0 Perm 0.05 0.03 [-0.01..0.10] 0.59 0.19 [0.20..0.97] 0.01
Temp 0.04 0.01 [0.01..0.07] 0.27 0.13 [0.01..0.54] 0.01

t=+1 Perm 0.01 0.02 [-0.04..0.05] 0.99 0.83 [-0.67..2.64] 0.00
Temp 0.09 0.03 [0.04..0.15] 0.23 0.11 [0.00..0.46] 0.01

t=+5 Perm -0.15 0.09 [-0.32..0.021 -0.07 0.27 [-0.61..0.46] 0.00
Temp 0.25 0.08 [0.10..0.40] 0.20 0.11 [-0.02..0.43] 0.02

t=+10 Perm -0.28 0.15 [-0.58..0.02] 0.16 0.15 [-0.14..0.45] 0.01
Temp 0.37 0.15 [0.08..0.67] 0.25 0.11 [0.03..0.47] 0.02

Table 2.8 shows the calibration of permanent and temporary price impact func-
tions, Price Impact = P (X/1%ADV)7' + e, where X is the size of transition
order, and ADV is the average trading daily volume. Permanent price impact
is defined as (Pbase/Pbch - 1) X IBS, and temporary price impact is defined
as '(Pezec - Pbse)/Pbch x 1RBS, where Pbase is the close price for the "base"
day, Pbch is the benchmark price, Pexec is the execution price, a is the stan-
dard deviation of daily returns in the previous month, and I[BS is a buy/sell
indicator. Several "base" days are considered: the close at the last day of exe-
cution, the close at the next day and one or two weeks after execution. Point
estimates, their standard errors, t-statistics and 95%-confident intervals are
presented. All observations are clustered at monthly levels. Data is presented
separately for transition purchases and sales (Panel A and B) as well as differ-
ent capitalization quintiles. Capitalization thresholds are calculated based on
NYSE stock capitalization quintiles. The sample ranges from January 2001 to
December 2005.
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Chapter 3

Optimal Trading Strategy and

Supply/Demand Dynamics (joint

work with Jiang Wang)

3.1 Introduction

It has being well documented that the supply/demand of a security in the market is

not perfectly elastic.' The limited elasticity of supply/demand or liquidity can sig-

nificantly affect how market participants trade, which in turn will influence security

prices through the changes in their supply/demand. 2 Thus, to study how market par-

ticipants trade is important to our understanding of how securities markets function,

how liquidity is provided and consumed, and how it affects the behavior of security

1See, for example, Holthausen, Leftwitch and Mayers (1987, 1990), Shleifer (1986), Scholes (1972).
For the more recent work, see also Greenwood (2004), Kaul, Mehrotra and Morck (2000), Wugler
and Zhuravskaya (2002). There is also extensive theoretical work in justifying an imperfect de-
mand/supply in securities market based on market frictions and asymmetric information. See, for
example, Grossman and Miller (1998), Kyle (1985) and Vayanos (1999, 2001).

2Many empirical studies have shown that this is a problem confronted by institutional investors
who need to execute large orders and often break up trades in order to manage the trading cost.
See, for example, Chan and Lakonishok (1993, 1995, 1997), Keim and Madhavan (1995, 1997).
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prices.3 In the paper, we approach this problem by focusing on the optimal strategy

to execute a given order, leaving aside its underlying motive. This is also referred

to as the optimal execution problem. We show that it is the dynamic properties of

supply/demand such as its time evolution after trades, rather than its static proper-

ties such as the instantaneous price impact function, that are central to the cost of

trading and the optimal strategy.

We consider a limit-order-book market, in which the supply/demand of a security

is represented by the limit orders posted to the "book," i.e., a trading system and trade

occurs when buy and sell orders match. We propose a simple framework to describe

the limit-order-book and how it evolves over time. By incorporating several salient

features of the book documented empirically, we attempt to capture the dynamics of

supply/demand a trader faces. We show that the optimal trading strategy crucially

depends on how the limit-order book responds to a sequence of trades and it involves

complex trading patterns including both discrete and continuous trades.

In particular, the optimal strategy consists of an initial discrete trade, followed

by a sequence of continuous trades. The initial discrete trade is aimed at pushing

the limit order book away from its steady state in order to attract new orders onto

the book. The size of the initial trade is chosen to draw sufficient new orders at

desirable prices. The subsequent continuous trades will then pick off the new orders

and keep the inflow coming. A discrete trade finishes off any remaining order at

the end of trading horizon when future demand/supply is no longer of concern. The

combination of discrete and continuous trades for the optimal execution strategy

is in sharp contrast to simple strategies of splitting a order into small trades as

suggested in the literature. Moreover, we find that the optimal strategy and the cost

saving depends primarily on the dynamic properties of supply/demand and is not

3For example, Kyle (1985) and Wang (1993) examine the behavior of traders with superior
information and how it affects liquidity and asset prices and Vayanos (1999, 2001) considers the
trading behavior of large traders with risk-sharing needs and its impact on market behavior.
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very sensitive to the instantaneous price-impact function, which has been the main

focus in previous work. Especially, the speed at which the limit order book rebuilds

itself after being hit by a trade, which is also referred to as the resilience of the book,

plays a critical role in determining the optimal execution strategy and the cost it

saves.

Our predictions about optimal trading strategies lead to interesting implications

about the behavior of trading volume, liquidity and security prices. For example, it

suggests that the trading behavior of large institutional traders may contribute to the

observed U-shaped patterns in intraday volume, volatility and bid-ask spread. It also

suggests that these patterns can be closely related to institutional ownership and the

resilience of the supply/demand of each security.

The problem of optimal execution takes the order to be executed as given. Ide-

ally, we should consider both the optimal size of an order and its execution, taking

into account the underlying motives to trade (e.g., return and risk, preferences and

constraints) and the costs to execute trades.4 The diversity in trading motives makes

it difficult to tackle such a problem as a general level. Given that in practice the

execution of trades is often separated from the decisions on the trades, in this paper

we focus on the execution problem as an important and integral part of the general

problem of optimal trading behavior.

Several authors have studied the problem of optimal execution. For example,

Bertsimas and Lo (1998) propose a linear price impact function and solve for the

optimal execution strategy to minimize the expected cost of executing a given order.

Almgren and Chriss (1999, 2000) include risk considerations in a similar setting using

a mean-variance objective function.5 The framework adopted in these papers share

4For example, many authors have considered the problem of optimal portfolio choices in the
presence of transactions costs, e.g., Constantinides (1986), Davis and Norman (1990), and Leland
(2000).

SSee also, Almgren (2003), Dubil (2002), Huberman ans Stanzl (2005), Subramanian and Jarrow
(2001), among others.
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two main features. First, it uses a discrete-time setting so that the times to trade

are fixed at given intervals. Second, it relies on price impact functions to describe

how a sequence of trades affects prices at which trades are executed. A discrete-

time setting is clearly undesirable for the execution problem because the timing of

trades is an important choice variable and should be determined optimally. A natural

way to address this issue would be to take a continuous-time limit of the discrete-

time formulation. But such a limit leads to degenerate solutions with the simple

price impact functions considered previously. In particular, Lo and Bertsimas (1998)

consider the permanent price impact by assuming a static, linear impact function.

As a result, the price impact of a sequence of trades depends only on their total

size and is independent of their distribution over time. In this case, the execution

cost becomes strategy independent in the continuous-time limit. Almgren and Chris

(1999, 2000) and Huberman and Stanzl (2005) also allow temporary price impact,

which depends on the pace of trades. Introducing temporary price impact adds a

dynamic element to the price impact function by penalizing speedy trades. But it

restricts the execution strategy to continuous trades in the continuous-time limit,

which is in general sub-optimal.

The simple price impact functions used in previous work do not fully capture

the intertemporal nature of supply/demand in the market. In particular, it limits

the extent to which the allocation of trades over time, given their sizes, influences

current and future supply/demand and the resulting execution cost. Yet, it is clear

that how to allocate trades over time is at the heart of the problem. Thus, modelling

the intertemporal properties of supply/demand is essential in analyzing the optimal

execution strategy. Taking these considerations into account, our framework attempts

to capture these intertemporal aspects of the supply/demand by directly modelling

the liquidity dynamics in a limit-order-book market. We show that when the timing

of trades is chosen optimally, the optimal execution strategy differs significantly from
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those suggested in earlier work and yields substantial cost reduction. It involves

a mixture of discrete and continuous trades. Moreover, the characteristics of the

optimal execution strategy are mostly determined by the dynamic properties of the

supply/demand rather than its static properties as described by the price impact

function.

In modelling the supply/demand dynamics, we choose the limit-order-book market

mainly for concreteness. Our description of the limit-order-book dynamics relies on

an extensive empirical literature.' We choose the shape of the limit-order-book to

yield a linear price-impact function, which is widely adopted in previous work. More

importantly, we explicitly model the resilience of the book, which several empirical

studies document as an important property of the book (see, e.g., Biais, Hillion and

Spatt (1995) and Harris (1990)).

Our analysis is partial equilibrium in nature. We take the dynamics of the limit-

order-book as given and do not attempt to provide an equilibrium justification for

the specific limit-order-book dynamics used in the paper. Nonetheless, it is worth

pointing out that in addition to the empirical motivation mentioned above, the sup-

ply/demand dynamics we consider is also consistent with several equilibrium models

(e.g., Kyle (1985) and Vayanos (1999, 20001)). In particular, Vayanos (2001) analyzes

the optimal trading behavior of a large trader who trades with a set of competitive

market makers for risk sharing. He shows that the price impact of the large trader

is linear in his trades and the supply/demand by the market makers exhibits certain

form of resilience. Although his analysis relies on specific assumptions on traders'

trading motives and preferences, it does provide additional theoretical basis for the

qualitative properties of supply/demand dynamics we consider.

6See, for example, Ahn, Bae and Chan (2000) for a study on the Hong Kong Stock Exchange,
Biais, Hillion and Spatt (1995) on the Paris Bourse, Chung, Van Ness and Van Ness (1999) on the
NYSE, Hasbrouck and Saar (2002) on the Island ECN, Hollfield, Miller and Sandas (2003) on the
Stockholm Stock Exchange and Griffiths, Smith, Turnbull and White (2000) on the Toronto Stock
Exchange.
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Several authors have also considered equilibrium models for the limit-order-book

market, including Foucault, Kadan and Kandel (2004), Goettler, Parlour and Rajan

(2005) and Rosu (2005). For tractability, the set of order-placement strategies allowed

in studies are severely limited to obtain an equilibrium. For example, Foucault, Kadan

and Kandel (2004) and Rosu (2005) only allow orders of a fixed size. Goettler,

Parlour and Rajan (2005) focus on one-shot strategies. These simplifications are

helpful when we are interested in certain properties of the book, but quite restrictive

when analyzing the optimal trading strategy. A more general and realistic equilibrium

model must allow general strategies. From this perspective, our analysis, namely to

solve the optimal execution strategy under general supply/demand dynamics, is an

unavoidable step in this direction.

The rest of the paper is organized as follows. Section 3.2 states the optimal exe-

cution problem. Section 3.3 introduces the limit-order-book market and a model for

the limit order book dynamics. In Section 3.4, we show that the conventional setting

in previous work can be viewed as a special case of our limit-order-book framework.

We also explain why the stringent assumptions in the conventional setting lead to its

undesirable properties. In Section 3.5, we solve the discrete-time version of the prob-

lem within our framework. We also consider its continuous-time limit and show that

it is economically sensible and properly behaved. Section 3.6 provides the solution

of the optimal execution problem in the continuous-time setting. In Section 3.7, we

analyze the properties of the optimal execution strategy and their dependence on the

dynamics of the limit order book. We also compare it with the strategy predicted by

the conventional setting. In addition, we examine the empirical implications of the

optimal execution strategy. Section 3.8 discusses possible extensions of the model.

Section 3.9 concludes. All proofs are given in the appendix.
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3.2 Statement of the Problem

The problem we are interested in is how a trader optimally executes a given order. To

fix ideas, let us assume that the trader has to buy Xo units of a security over a fixed

time period [0, T]. Suppose that the trader ought to complete the order in N + 1

trades at times to, t 1,.. ., tN, where to = 0 and tN = T. Let xtn denote the trade size

for the trade at t,. We then have

N

E xt = Xo. (3.1)
n=o

A strategy to execute the order is given by the number of trades, N + 1, the set of

times to trade, {0 < to, tl,..., tN-1, tN < T} and trade sizes {Xto,Xtl , ... , ,Xt : tn 2

0 V n and (3.1)}. Let OD denote the set of these strategies:

ED {Xto, Xtl ... , XtN} : 0 < t0, t 1, ... ,tN 5 T; xtn > 0 V n; xt = Xo .
n=O

(3.2)
Here, we have assumed that the strategy set consists of execution strategies with

finite number of trades at discrete times. This is done merely for easy comparison

with previous work. Later we will expand the strategy set to allow uncountable

number of trades over time.

Let P, denote the average execution price for trade Xt . We assume that the trader

chooses his execution strategy to minimize the expected total cost of his purchase:

min Eo [ Pn n=o (3.3)
XEeD n=

For simplicity, we have assumed that the trading horizon T is fixed and the trader

is risk-neutral who cares only about the expected value not the uncertainty of the
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total cost. We will incorporate risk considerations later (in Section 3.8), which also

allows us to endogenize the trading horizon.

The solution to the trader's optimal execution strategy crucially depends on how

his trades impact the prices. It is important to recognize that the price impact of a

trade has two key dimensions. First, it changes the security's current supply/demand.

For example, after a purchase of x units of the security at the current price of P, the

remaining supply of the security at P in general decreases. Second, a change in

current supply/demand can lead to evolutions in future supply/demand, which will

affect the costs for future trades. In other words, the price impact is determined

by the full dynamics of supply/demand in response to a trade. Thus, in order to

fully specify the optimal execution problem, we need to model the supply/demand

dynamics.

3.3 Limit Order Book and Supply/Demand

Dynamics

The actual supply/demand of a security in the market place and its dynamics depend

on the actual trading process. From market to market, the trading process varies

significantly, ranging from a specialist market or a dealer market to a centralized

electronic market with a limit order book. In this paper, we consider the limit-

order-book market, which is arguably the closest, at least in form, to the text-book

definition of a centralized market.

3.3.1 Limit Order Book (LOB)

A limit order is a order to trade a certain amount of a security at a given price. In a

market operated through a limit-order-book, thereafter LOB for short, traders post
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their supply/demand in the form of limit orders to a electronic trading system.7 A

trade occurs when an order, say a buy order, enters the system at the price of an

opposite order on the book, in this case a sell order, at the same price. The collection

of all limit orders posted can be viewed as the total demand and supply in the market.

Let qA(P) be the density of limit orders to sell at price P and qB(P) the density

of limit orders to buy at price P. The amount of sell orders in a small price interval

[P, P+dP) is qA(P)(P+dP). Typically, we have

+, P> A 0, P> B
qA(P) = and qB(P) =

0, P < A +, P< B

where A > B are the best ask and bid prices, respectively. We define

V = (A+B)/2, s = A-B (3.4)

where V is the mid-quote price and s is the bid-ask spread. Then, A = V+s/2 and

B = V-s/2. Because we are considering the execution of a large buy order, we will

focus on the upper half of the LOB and simply drop the subscript A.

In order to model the execution cost for a large order, we need to specify the initial

LOB and how it evolves after been hit by a series of buy trades. Let the LOB (the

upper half of it) at time t be q(P; Ft; Zt; t), where Ft denotes the fundamental value of

the security and Zt represents the set of state variables that may affect the LOB such

as past trades. We will consider a simple model for the LOB, to capture its dynamic

nature and to illustrate their importance in analyzing the optimal execution problem,

and return to its extensions to better fit the empirical LOB dynamics later. In

7The number of exchanges adopting an electronic trading system with posted orders has been
increasing. Examples include NYSE's OpenBook program, Nasdaq's SuperMontage, Toronto Stock
Exchange, Vancouver Stock Exchange, Euronext (Paris, Amsterdam, Brussels), London Stock Ex-
change,Copenhagen Stock Exchange, Deutsche Borse, and Electronic Communication Networks such
as Island. For the fixed income market, there are, for example, eSpeed, Euro MTS, BondLink and
BondNet. Examples for the derivatives market include Eurex, Globex, and Matif.
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particular, we assume that the fundamental value the security Ft follows a Brownian

motion, reflecting the fact that in absence of any trades, the mid-quote price may

change due to news about the fundamental value of the security. Thus, Vt = Ft in

absence of any trades and the LOB maintains the same shape except that the mid-

point, Vt, is changing with Ft. In addition, we assume that the only set of relevant

state variables is the history of past trades, which we denote by X[o, t], i.e., Zt = x[0o, t].

At=vt+s/2

pv

vt+s/2

qt=
t=to

I

q

t=tO+

vt+s At=vt+s/2

t=tl t=t2

I

q
t=t3

Figure 3-1: The limit order book and its dynamics.

This figure illustrates how the sell side of limit order book evolves over time in response
to a sale trade. Before the trade at time to = 0, the limit order book is full at the ask
price Ao = Vo+s/2, which is shown in the first panel from the left. The trade of size xo at
t = 0 "eats off" the orders on the book with lowest prices and pushes the ask price up to
Ao+ = (Fo+s/2) + xo/q, as shown in the second panel. During the following periods, new
orders will arrive at the ask price At, which fill up the book and lower the ask price until
it converges to its new steady state At = Ft + Axo + s/2, as shown in the last panel on the
right. For clarity, we assume that there are no fundamental shocks.

At time 0, we assume that the mid-quote is Vo = Fo and LOB has a simple block

shape

qo(P) - q(P; Fo; 0; 0) = q 1{P>Ao}

where and Ao = Fo+s/2 is the initial ask price and 1(z>a} is an indicator function:

l{z>a} 
= { z>a

z<a
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In other words, qo is a step function of P with a jump from zero to q at the ask price

Ao = Vý+s/2 = Fo+s/2. The first panel in Figure 3-1 shows the shape of the book

at time 0.

Now we consider a trade of size x 0 at t = 0. The trade will "eat off" all the sell

orders with prices from Fo+s/2 up to Ao0 , where Ao, is given by

qdP = xo
JFo+s/2

or A 0o = Fo+s/2+xo/q. The average execution price is P- = Fo+s/2 + xo/(2q), which

is linear in the size of the trade. Thus, the shape of the LOB we propose is consistent

with the linear price impact function assumed in previous work. This is also the main

reason we adopted it here.

Right after the trade, the limit order book becomes:

qo, (P) - q(P; Fo; Zo0;O0+) = q l{P>Ao+ }

Ao+ = Fo+s/2+xo/q is the new ask price. Orders at prices below A0+ = (Fo+s/2) +

xo/q have all been executed. The book is left with limit sell orders at prices above

(including) Ao,. The second panel of Figure 3-1 plots the limit order book right after

the trade.

3.3.2 Limit Order Book Dynamics

What we have to specify next is how the LOB evolves over time after being hit by a

trade. Effectively, this amounts to describing how the new sell orders arrive to fill in

the gap in the LOB eaten away by the trade. First, we need to specify the impact of

the trade on the mid-quote price, which will determine the prices of the new orders.

In general, the mid-quote price will be shifted up by the trade. We assume that the
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shift in the mid-quote price will be linear in the size of the total trade. That is,

Vo+ = Fo + Axo

where 0 < A < 1/q and Axo gives the permanent price impact the trade x0 has. If

there are no more trades after the initial trade x0 at t = 0 and there are no shocks

to the fundamental, the limit order book will eventually converge to its new steady

state

qt(P) = q 1 {P>At}

where t is sufficiently large, At = Vt + s/2 and Vt = F0 + Axo. Next we need to specify

how the limit order book converges to its steady-state. Note that right after the trade,

the ask price is Ao+ = Fo+s/2+xo/q, while in the steady-state it is A,, = Fo+s/2+Axo.

The difference between the two is Ao+ - A, = xo(1/q - A). We assume that the limit

order book converges to its steady state exponentially:

qt(P) = q l{P>At} (3.5)

where

At = Vt + s/2 + zoe - t , , = 1/q-A (3.6)

and p > 0 gives the convergence speed and Vt = Vo, in absence of new trades and

changes in Ft, which measures the "resilience" of the LOB.8

Equations (3.5) and (3.6) imply that after a trade x0, the new sell orders will start

coming in at the new ask price At at the rate of pq(At - Vt-s/2). For convenience,

8A number of empirical studies documented the existence of the resiliency of LOB. See, for
example, Biais, Hillion and Spatt (1995), Hamao and Hasbrouck (1995), Coppejans, Domowitz and
Madhavan (2001), and Ranaldo (2004). Moreover, the idea of liquidity being exhausted by a trade
and then replenished as traders take advantage of profit opportunities is behind most of the dynamic
equilibrium frameworks of LOB. See, for example, Foucault, Kadan and Kandel (2004), Goettler,
Parlour and Rajan (2005), Parlour (1998), Rosu (2005).
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we define

Dt = At - Vt - s/2 (3.7)

which stands for the deviation of current ask price At from its steady state level

Vt+s/2.

We can easily extend the LOB dynamics described above for a single trade to allow

multiple trades and shocks to the fundamental value. Let n(t) denote the number of

trades during interval [0, t), tl,..., tn(t) the times for these trades, and xt, their sizes,

respectively. Let Xt be the remaining order to be executed at time t, before trading

at t. We have

Xt = Xo- Z xt,. (3.8)
tn<t

with XT+ = 0. Let
n(t)

Vt = F + A(Xo - Xt) = Ft + A xti (3.9)
i=O

where Xo - Xt is the total amount of purchase during [0, t). The ask price at any

time t is
n(t)

At = Vt + s/2 + xte - p(t- t ) (3.10)
i=O

and the limit order book at any time t is given by (3.5). Panels 2 to 5 in Figure

3-1 illustrates the time evolution of the LOB after a trade. We can easily extend the

above description to include sell orders which may occur in the mean time and can

shift the mid-quote Vt. If not predictable, they are not important to our analysis.

Thus, we omit them here.

Before we go ahead with the LOB dynamics and examines its implications on

execution strategy, several comments are in order. We note that the simple LOB

dynamics described above is assumed to be given, without further economic justifi-

cation. Presumably, it is driven by the optimizing behavior of those who submit the
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orders and thus provide liquidity to the market. 9 In addition, the LOB dynamics may

be further affected by the strategic interactions among market participants (see, for

example, Vayanos (1999, 2001)). To describe the actual LOB dynamics will require

an equilibrium framework. However, for any equilibrium analysis, we first need to

study the optimal trading strategy under general LOB dynamics. Thus, our analysis

can be viewed as a necessary step along this direction. Clearly, our setting is general

enough for this purpose. It should be emphasized that the goal of this paper is to

demonstrate the importance of supply/demand dynamics in determining the optimal

trading strategy. The specific model we use mainly helps us to make the point in a

simple and revealing way. Its partial equilibrium nature as well as its quantitative

features are not crucial to our main conclusions.

3.3.3 Execution Cost

Given the above description of the LOB dynamics, we can now describe the total

cost of an execution strategy for a given order X 0. Let xt, denote the trade at time

t, and At, the ask price at t , prior to the trade. The evolution of ask price At as

given in (3.10) is not continuous. For clarity, At always denotes the left limit of At,

At = lim,,t- A, i.e., the ask price before the trade at t. The same convention is

followed for Vt. The cost for xtn is then

c(Xt.) = Pt (x)dx (3.11)

9 Several recent work show that traders do use the rich information revealed by the books when
deciding on their order submission strategies. See, for example, Cao, Hansch, and Wang (2003),
Harris and Panchapagesan (2005), Bloomfield, O'Hara, and Saar (2003), Ranaldo (2004), among
others. Many authors have developed models for optimal order placement in markets with limit
orders. See Foucault (1999), Foucault, Kadan, and Kandel (2001), Glosten (1994), Goettler, Parlou
and Rajan (2005), Harris(1998), Parlour (1998), Parlour and Seppi(2003), Rock (1996), Rosu (2005),
Sandas (2001), and Seppi (1997). However, as mentioned earlier, most of these models impose strong
restrictions on the strategies allowed.
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where Pt(x) is defined by equation

S= qt (P)dP. (3.12)
At

For block-shaped LOB given in (3.5), we have

Pt(x) = At + x/q

and

c(xt.) = [At, + xt,/(2q)] xt,. (3.13)

The total cost is -1o0 c(xtn). Thus, the the optimal execution problem (3.3) now

reduces to

min Eo - [At + x tn/(2q)] xt] (3.14)
XED n=

under our dynamics of the limit order book given in (3.9) and (3.10).

3.4 Conventional Models As A Special Case

Previous work on optimal execution strategy uses a discrete-time setting with fixed

time intervals and relies on a specific price-impact function to describe supply/demand

(e.g., Bertsimas and Lo (1998) and Almgren and Chriss (1999, 2000)). Such a setting,

however, avoids the question of optimal trading times. In this section, we briefly

describe the setting used in previous work and its limitations. We then show that the

conventional setting can be viewed as a special case of our framework with specific

restrictions on the LOB dynamics. We further point out why these restrictions are

unrealistic when the timing of trades is determined optimally.
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3.4.1 Conventional Setup

We first consider the setup proposed by Bertsimas and Lo (1998). We adopt a simple

version of their framework which captures the basic features of the models used in

earlier work.

In a discrete-time setting, the trader trades at fixed time intervals, nr, where

T- = T/N and n = 0, 1,.. ., N are given. Each trade will have an impact on the price,

which will affect the total cost of the trade and future trades. Most models assume a

linear price-impact function of the following form:

Pn = Pn-1 + AXn + n = (Fn + s/2) + A xi (3.15)
i=0

where the subscript n denotes the n-th trade at tn = nT, Pn is the average price at

which trade xz is executed with Po = Fo+s/2, A is the price impact coefficient and

un is i.i.d. random variable, with a mean of zero and a variance of r2T. 10 In the

second equation, we have set F, = Fo + En 0 ui. Clearly, A captures the permanent

price impact a trade has. The trader who has to execute an order of size Xo solves

the following problem:

N N

min Eo YBrc, = (Fo+s/2)Xo + [X X(X•+ 1-Xl). (3.16)
n=O n=o

{o,x N}...,x }

where Pn is defined in (3.15) and X, is a number of shares left to be acquired at time

tn (before trade xtn) with XN+1 = 0.

As Bertsimas and Lo (1998) show, given that the objective function is quadratic

in xm, it is optimal for the trader to split his order into small trades of equal sizes and

10Huberman and Stanzl (2004) have argued that in the absence of quasi-arbitrage, permanent
price-impact functions must be linear.
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execute them at regular intervals over the fixed period of time:

xo
Xn2, (3.17)

N+1

where n = 0, 1,..., N.11

3.4.2 The Continuous-Time Limit

Although the discrete-time setting with a linear price impact function gives a simple

and intuitive solution, it leaves a key question unanswered, namely, what determines

the time-interval between trades. An intuitive way to address this question is to take

the continuous-time limit of the discrete-time solution, i.e., to let N goes to infinity.

However, as Huberman and Stanzl (2005) point out, the solution to the discrete-time

model (3.16) does not have a well-defined continuous-time limit. In fact, as N - oo,

the cost of the trades as given in (3.16) approaches the following limit:

(Fo+s/2)Xo + (A/2)X0

which is strategy-independent. Thus, for a risk-neutral trader, the execution cost

with continuous trading is a fixed number and any continuous strategy is as good

as another. Therefore, the discrete-time model as described above does not have a

well-behaved continuous-time limit. 12 For example, without increasing the cost the

trader can choose to trade intensely at the very beginning and complete the whole

order in an arbitrarily small period. If the trader becomes slightly risk-aversion, he

will choose to finish all the trades right at the beginning, irrespective of their price

"If the trader is risk averse, he will trade more aggressively at the beginning, trying to avoid the
uncertainty in execution cost in later periods.

12In taking the continuous-time limit, we have held A constant. This is, of course, unrealistic: for
different r, A can be different. However, the problem remains as long as A has a finite limit when
7 -4 0.
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impact.13 Such a situation is clearly undesirable and economically unreasonable.

This problem has led several authors to propose different modifications to the

conventional setting. He and Mamaysky (2001), for example, directly formulate the

problem in continuous-time and impose fixed transaction costs to rule out any contin-

uous trading strategies. Similar to the more general price impact function considered

by Almgren and Chriss (1999, 2000), Huberman and Stanzl (2005) proposes a tempo-

rary price impact of a particular form to penalize high-intensity continuous trading.

Both of these modifications limit us to a subset of feasible strategies, which is in

general sub-optimal. Given its closeness to our paper, we now briefly discuss the

modification with temporary price impact.

3.4.3 Temporary Price Impact

Almgren and Chriss (1999, 2000) include a temporary component in the price impact

function, which can in general depend on the trading interval T. The temporary price

impact gives additional flexibility in dealing with the continuous-time limit of the

problem. In particular, they specify the following dynamics for the execution prices

of trades:

Pn = P, + G(xn/T) (3.18)

where P/ is the same as given in (3.15), 7 = T/N is the time between trades, and

G(.) describes a temporary price impact, which reflects temporary price deviations

from "equilibrium" caused by trading. With G(0) = 0 and G'(.) > 0, the temporary

13As N -* oc, the objective function to be minimized for a risk-averse trader with a mean-variance
preference approaches the following limit

0T 
T  

T

C(x[o, T]) = E PtdXt + laVar PtdXt = (Fo+s/2)Xo + (A/2)X 2 + ar2T X2dt
12 0I 0 2 0f t

where a > 0 is the risk-aversion coefficient and a is the price volatility of the security. The trader
cares not only about the expected execution cost but also its variance, which is given by the last
term. Only the variance of the execution cost depends on the strategy. It is easy to see that the
optimal strategy is to choose an L-shaped profile for the trades, i.e., to trade with infinite speed at
the beginning, which leads to a value of zero for the variance term in the cost function.
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price impact penalizes high trading volume per unit of time, x,/r. Using a linear

form for G(.), G(z) = Oz, it is easy to show that as N goes to infinity the expected

execution cost approaches to

(Fo+s/2)Xo + (A/2)Xo + 0 T -•-) 2dt

(see, e.g., Grinold and Kahn (2000) and Huberman and Stanzl (2005)). Clearly, with

the temporary price impact, the optimal execution strategy has a continuous-time

limit. In fact, it is very similar to its discrete-time counterpart: It is deterministic

and the trade intensity, defined by the limit of x,/r, is constant over time. 14

The temporary price impact reflects an important aspect of the market, the dif-

ference between short-term and long-term supply/demand. If a trader speeds up his

buy trades, as he can do in the continuous-time limit, he will deplete the short-term

supply and increase the immediate cost for additional trades. As more time is allowed

between trades, supply will gradually recover. However, as a heuristic modification,

the temporary price impact does not provide an accurate and complete description

of the supply/demand dynamics, which leads to several drawbacks. First, the tempo-

rary price impact function in the form considered in Almgren and Chriss (2000) and

Huberman and Stanzl (2005) rules out the possibility of discrete trades. This is not

only artificial but also undesirable. As we show later, in general the optimal execu-

tion strategy does involve both discrete and continuous trades. Moreover, introducing

the temporary price impact does not capture the full dynamics of supply/demand.' 5

Also, simply specifying a particular form for the temporary price impact function

says little about the underlying economic factors that determine it.

14If the trader is risk-averse with a mean-variance preference, the optimal execution strategy has
a decreasing trading intensity over time. See Almgren and Chriss (2000) and Huberman and Stanzl
(2005).

15For example, two sets of trades close to each other in time versus far apart will generate different
supply/demand dynamics, while in Huberman and Stanzl (2005) they lead to the same dynamics.
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3.4.4 A Special Case of Our Framework

In the conventional setting, the supply/demand of a security is described by a price

impact function at fixed times. This is inadequate when we need to determine the

optimal timing of the execution strategy. We show in Section 3.3, using a simple limit

order book framework, that the supply/demand is an intertemporal object which

exhibits rich dynamics. The simple price impact function, even with the modification

proposed by Almgren and Chriss (1999, 2000) and Humberman and Stanzl (2005),

misses important intertemporal aspects of the supply/demand that are crucial to the

determination of optimal execution strategy.

We can see the limitations of the conventional model by considering it as a special

case of our general framework. Indeed, we can specify the parameters in the LOB

framework so that it will be equivalent to the conventional setting. First, we set

the trading times at fixed intervals: t, = nr, n = 0, 1,..., N. Next, we make the

following assumptions on the LOB dynamics as described in (3.5) and (3.9):

q =-1/(2A), A=A, p = oo (3.19)

where the second equation simply states that the price impact coefficient in the LOB

framework is set to be equal to its counterpart in the conventional setting. These

restrictions imply the following dynamics for the LOB. As it follows from (3.10), after

the trade xn at tn (tn = nr) the ask price At. jumps from Vt,+s/2 to Vt,+s/2+2Ax,.

Over the next period, it comes all the way down to the new steady state level of

Vt,+s/2+Axn (assuming no fundamental shocks from tn to tn+l). Thus, the dynamics

of ask price At, is equivalent to dynamics of Pt, in (3.15).

For the parameters specified in (3.19), the cost for trade xtn, which can be calcu-
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lated as c(xt,) = [At, +xt,/(2q)] xt, becomes

c(xt.) = [Ft. +s/2 + A(Xo-Xt.) + Axt.] xt,

which is the same as the trading cost in the conventional model (3.16). Thus, the

conventional model is a special case of LOB framework for parameters in (3.19).

The main restrictive assumption we have to make to obtain the conventional setup

is that p = oo and the limit order book always converges to its steady state before the

next trading time. This is not crucial if the time between trades is held fixed. But

if the time between trades is allowed to shrink, this assumption becomes unrealistic.

It takes time for the new limit orders to come in to fill up the book again. The

shape of the limit order book after a trade depends on the flow of new orders as well

as the time elapsed. As the time between trades shrinks to zero, the assumption of

infinite recovery speed becomes less reasonable and it gives rise to the problems in

the continuous-time limit of the conventional model.

3.5 Discrete-Time Solution

We now return to our general framework and solve the model for the optimal execution

strategy when trading times are fixed, as in the conventional model. We then show

that in contrast to the conventional setting, our framework is robust for studying

convergence behavior as time between trades goes to zero. Taking the continuous-

time limit we examine the resulting optimal execution strategy which turns out to

include both discrete and continuous trading.

Suppose that trade times are fixed at t, = ur, where 7 = T/N and n = 0, 1,..., N.

We consider the corresponding strategies x[o, T] = {xo, xl,..., xz} within the strategy

set eD defined in Section 3.2. The optimal execution problem, defined in (3.3), now
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N
min Eo

{IXO,..XN} )

[At, + xn/(2q)] xn

n-1

s.t. At, = Ft, + A(Xo-Xt,) + s/2 + Z xie-pr(n-i)
i=O

where Ft follows a random walk. This problem can be solved using dynamic pro-

gramming. We have the following result:

Proposition 1 The solution to the optimal execution problem (3.20) is

Xn = - 6,n+ [Dt, (1 -n+le-+ +2,yn+le-2pr) - Xt, (A+2an+_ -3n+lKe- )]

(3.21)
with XN = XN, where Dt = At-Vt-s/2. The expected cost for future trades under

the optimal strategy is

Jt. = (Ftn +s/2)Xt. + AXoXt, + aXt2nQ + PnDD + Xt + ynD 2

where the coefficients an+l, 3n+l, •Yn+l and n,+l are determined recursively as follows

an = an+1- n+1 (A+2an+1--3n+le-Pr)
2

On = on+le-P"+•6n+ 1(1 -n+le -P +2•yn+leT-2p) (A+2an+l -on+lre-Pr)

,n = n+1e-2pr _ 6n+1 (1- n+1e-+ 2 7+e-2p) 2

with 6n+1 = [1/(2q)+a,+l - 3n+1e-P+7n+1K2 e-2pr ]- 1 and terminal condition

aN = 1/(2q) - A, PN = 1 , YN = O0
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Proposition 1 gives the optimal execution strategy when we fix the trade times

at a certain interval 7. But it is only optimal among strategies with the same fixed

trading interval. In principle, we want to choose the trading interval to minimize

the execution cost. One way to allow different trading intervals is to take the limit

T -* 0, i.e., N -- oc, in the problem (3.20). Figure 3-2 plots the optimal execution

strategy {xn, n = 0, 1,..., N} for N = 10, 25,100, respectively. Clearly, it is very

different from the strategy given in (3.17) and obtained previously when the dynamics

of demand/supply is ignored. Moreover, as N becomes large, the strategy splits into

two parts, large trades at both ends of the horizon (the beginning and the end) and

small trades in between.

The next proposition describes the continuous-time limit of the optimal execution

strategy and the expected cost:

Proposition 2 In the limit of N -- oc, the optimal execution strategy becomes

Xolim xo = xt= = (3.25a)
N-oo pT+2

N-pT2'

lim XN = Xt=T = (3.25c)
N-oo pT+2

and the expected cost is

Jt = (Fo+s/2)Xt + AXoXt + atX 2 + OtXtDt + 7tD2

where coefficients at, ft, 7t are given by

a A 2 p(T-t)

p(T-t)+2 2' p(T-t)+2' 2t [p(T-t)+2]

The optimal execution strategy given in Proposition 2 is different from those
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Figure 3-2: Optimal execution strategy with N discrete trading intervals.

This figure plots the optimal trades for N fixed intervals, where N is 10, 25 and 100
for respectively the top, middle and bottom panels. The initial order to trade is set at
Xo = 100,000 units, the time horizon is set at T = 1 day, the market depth is set at
q = 5, 000 units, the price-impact coefficient is set at A = 1/(2q) = 10- 4 and the resiliency
coefficient is set at p = 2.231.

obtained in the conventional setting. In fact, it involves both discrete and continuous

trades. This clearly indicates that the timing of trades is a critical part of the optimal

strategy. It also shows that ruling out discrete or continuous trades ex ante is in

general suboptimal. More importantly, it demonstrates that both the static and

dynamic properties of supply/demand, which are captured by the LOB dynamics

in our framework, are important in analyzing the optimal execution strategy. We

return in Section 3.7 to examine in more detail the properties of the optimal execution

strategy and their dependence on the LOB dynamics.
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3.6 Continuous-Time Solution

The nature of the continuous-time limit of the discrete-time solution suggests that

limiting ourselves to discrete strategies can be suboptimal. We should in general

formulate the problem in continuous-time setting and allow both continuous and

discrete trading strategies. In this section, we present the continuous-time version of

the LOB framework and derive the optimal strategy.

The uncertainty in model is fully captured by fundamental value Ft. Let Ft = Fo +

aZt where Zt is a standard Brownian motion defined on [0, T]. Ft denotes the filtration

generated by Zt. A general execution strategy can consist of two components, a set

of discrete trades at certain times and a flow of continuous trades. A set of discrete

trades is also called an "impulse" trading policy.

Definition 1 Let N+ = {1, 2,...}. An impulse trading policy (k, Xk) : k E N+ is a

sequence of trading times Tk and trade amounts Xk such that: (1) 0 < Tk • Tk+1 for

k E N+, (2) Tk is a stopping time with respect to Ft, and (3) Xk is measurable with

respect to Ftk.

The continuous trades can be defined by a continuous trading policy described by

the intensity of trades p[0, t], where tit is measurable with respect to Xt and 1tdt gives

the trades during time interval [t, t + dt). Let us denote T the set of impulse trading

times. Then, the set of admissible execution strategies for a buy order is

EO = 1[0, T], XztEl } : Pt,, Xt 0, O tdt + xt = Xo} (3.27)

where ,pt is the rate of continuous buy trades at time t and xt is the discrete buy

trade for t E T. The dynamics of Xt, the number of shares to acquire at time t, is
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then given by the following equation:

Xt = Xo - Isds - x8 .
sET, s<t

Now let us specify the dynamics of ask price At. Similar to the discrete-time setting,

we have Ao = Fo+s/2 and

At = Ao + f [ dV, - pDds - dX (3.28)

where Vt = Ft + A(Xo-Xt) as in (3.9) and Dt = At-Vt-s/2 as in (3.7). The dynamics

of At captures the evolution of the limit order book, in particular the changes in Vt,

the inflow of new orders and the continuous execution of trades.

Next, we compute the execution cost, which consists of two parts: the costs from

continuous trades and discrete trades, respectively. The execution cost from t to T is

T
Ct = Aspsds + E [A, + xs/(2q)]xs. (3.29)

sET, t<s<T

Given the dynamics of the state variables in (3.9), (3.28), and cost function in

(3.29), the optimal execution problem now becomes

Jt - J(Xt, At, Vt, t)= min Et [Ct] (3.30)

{Cp[o, T], {X tEt}}EeC

where Jt is the value function at t, the expected cost for future trades under the

optimal execution strategy. At time T, the trader is forced to buy all of the remaining

order XT, which leads to the following boundary condition:

JT = [AT + 1/(2q)XT] XT.
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The next proposition gives the solution to the problem:

Proposition 3 The value function for the optimization problem (3.30) is

Jt = (Ft+s/2)Xt + AXoXt + atXt2 + OtDt + ±tD 2

where Dt = At-Vt-s/2. The optimal execution strategy is

Xo PXo
Xo = XT = - t = V t E (0, T) (3.31)

pT + 2' p T + 2

where the coefficients at, 3t, and yt are the same as given in Proposition 2.

Obviously, the solution we obtained with the continuous-time setting is identical to

the continuous-time limit of the solution in the discrete-time setting. The optimal

strategy consists of both continuous and discrete trades.

3.7 Optimal Execution Strategy and Cost

In contrast with previous work, the optimal execution strategy includes discrete and

continuous trading. We now analyze the properties of the optimal execution strategy

in more detail. Interestingly, while it does not depend on parameters A and q, which

determine static supply/demand, it crucially depends on parameter p, which describes

the LOB dynamics, and the horizon for execution T. Further in this section we

quantify the cost reduction which the optimal execution strategy brings and discuss

its empirical implications.

3.7.1 Properties of Optimal Execution Strategy

The first thing to notice is that the execution strategy does not depend on A and q.

Coefficient A captures the permanent price impact of a trade. Given the linear form,
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the permanent price impact gives an execution cost of (Fo+s/2)Xo + (A/2)XO2, which

is independent of the execution strategies. This is a rather striking result given that

most of the previous work focus on A as the key parameter determining the execution

strategy and cost. As we show earlier, A affects the execution strategy when the times

to trade are exogenously set at fixed intervals. When the times to trade are determined

optimally, the impact of A on execution strategy disappears. Given the linear form

of the price impact function, A fully describes the instantaneous supply/demand,

or the static supply/demand. Our analysis clearly shows that the static aspects of

the supply/demand does not fully capture the factors that determining the optimal

execution strategy.

Coefficient q captures the depth of the market. In the simple model for the limit

order book we have assumed, market depth is constant at all price levels above the ask

price. In this case, the actual value of the market depth does not affect the optimal

execution strategy. For more general (and possibly more realistic) shapes of the limit

order book, the optimal execution strategy may well depend on the characteristics of

the book.

The optimal execution strategy depends on two parameters, the resilience of the

limit order book p and the horizon for execution T. We consider these dependencies

separately.

Panel (a) of Figure 3-3 plots the optimal execution strategy, or more precisely the

time path of the remaining order to be executed. Clearly, the nature of the optimal

strategy is different from those proposed in the literature, which involve a smooth

flow of small trades. When the timing of trades is determined optimally, the optimal

execution strategy consists of both large discrete trades and continuous trades. In

particular, under the LOB dynamics we consider here, the optimal execution involves

a discrete trade at the beginning, followed by a flow of small trades and then a discrete

terminal trade. Such a strategy seems intuitive given the dynamics of the limit order

136



At

XO

XO.

XT

XT.
0 T t

(a) (b)
Figure 3-3: Profiles of the optimal execution strategy and ask price.

Panel (a) plots the profile of optimal execution policy as described by Xt. Panel (b) plots
the profile of realized ask price At. After the initial discrete trade, continuous trades are
executed as a constant fraction of newly incoming sell orders to keep the deviation of the
ask price At from its steady state Vt+s/2, shown with grey line in panel (b), at a constant.
A discrete trade occurs at the last moment T to complete the order.

book. The large initial trade pushes the limit order book away from its stationary

state so that new orders are lured in. The flow of small trades will "eat up" these

new orders and thus keep them coming. At the end, a discrete trade finishes the

remaining part of the order. The final discrete trade is determined by two factors.

First, the order has to be completed within the given horizon. Second, the evolution

of supply/demand afterwards no longer matters. In practice, both of these two factors

can take different forms. For example, the trading horizon T can be endogenously

determined rather than exogenously given. We consider this extension in Section 3.8.

The size of the initial trade determines the prices and the intensity of the new

orders. If too large, the initial trade will raise the average prices of the new orders.

If too small, an initial trade will not lure in enough orders before the terminal time.

The trade off between these two factors largely determines the size of the initial trade.

The continuous trades after the initial trade are intended to maintain the flow of

new orders at desirable prices. To see how this works, let us consider the path of

the ask price At under the optimal execution strategy. It is plotted in panel (b) of
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Figure 3-3. The initial discrete trade pushes up the ask price from Ao = Vo+s/2 to

Ao+ = Vo +s/2+Xo/(pT+2)/q. Afterwards, the optimal execution strategy keeps

Dt = At- Vt - s/2, the deviation of the current ask price At from its steady state

Vt+s/2, at a constant level of rXo/(pT+2). Consequently, the rate of new sell order

flow, which is given by pDt, is also maintained at a constant level. The ask price

At goes up together with Vt+s/2, the steady-state "value" of the security, which is

shown with the grey line in Figure 3-3(b). As a result, from (3.28) with dAt = dVt for

0 < t < T, we have pDt = ilpt or Mt = (1/K)pDt. In other words, under the optimal

execution strategy a constant fraction of 1/1 of the new sell orders is executed to

maintain a constant order flow.

Our discussion above shows that the dynamics of the limit order book, which

is captured by the resilience parameter p, is the key factor in determining optimal

execution strategy. In order to better understand this link, let us consider two extreme

cases, when p = 0 and oo. When p = 0, we have no recovery of the limit order book

after a trade. In this case, the cost of execution will be strategy independent and it

does not matter when and at what speed the trader eats up the limit order book.

This result is also true in a discrete setting with any N and in its continuous-time

limit. When p = oo, the limit order book rebuilds itself immediately after a trade.

As we discussed in Section 3.4, this corresponds to the conventional setting. Again,

the execution cost becomes strategy independent. It should be pointed out that even

though in the limit of p --+ 0 or cc, the optimal execution strategy given in Proposition

3 converges to a pure discrete strategy or a pure continuous strategy, other strategies

are equally good given the degeneracy in these two cases.

When 0 < p < oo, the resiliency of the limit order book is finite, the optimal

strategy is a mixture of discrete and continuous trades. The fraction of the total order

executed through continuous trades is foT tdt/Xo = pT/(pT+2), which increases with

p. In other words, it is more efficient to use small trades when the limit order book is

138



more resilient. This is intuitive because discrete trades do less in taking full advantage

of new order flows than continuous trades.

Another important parameter in determining the optimal execution strategy is

the time-horizon to complete the order T. From Proposition 3, we see that as T

increases, the size of the two discrete trades decreases. This result is intuitive. The

more time we have to execute the order, the more we can continuous trades to benefit

from the inflow of new orders and to lower the total cost.

3.7.2 Minimum Execution Cost

So far, we have focused on the optimal execution strategy. We now examine how

important the optimal execution is, as measured by the execution cost it saves. For

this purpose, we use the strategy obtained in the conventional setting and its cost

as the benchmark. The total expected execution cost of a buy order of size Xo is

equal to its fundamental value (Fo+s/2)Xo, which is independent of the execution

strategy, plus the extra cost from the price impact of trading, which does depend on

the execution strategy. Thus, we will only consider the execution cost, net of the

fundamental value, or the net execution cost.

As shown in Section 3.4, the strategy from the conventional setting is a constant

flow of trades with intensity ,oo = Xo/T, t E [0, T]. Under this simple strategy, we

have Vt = Ft + A(t/T)Xo, Dt = [KXo/(pT)](1 - e- pt ) and At = Vt+Dt+s/2. The

expected net execution cost for the strategy with constant rate of execution I,. is

given by

JM =E o j (At-Ft-s/2)(Xo/T)dt] =(A/2)Xi + - (1-e-pT)X2

where the superscript stands for the "Conventional Model". From Proposition 3, the
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expected net cost under the optimal execution strategy is

Jo = Jo - (Fo+s/2)Xo = (A/2)X02 + XT
pT + 2

(note that at t = 0, Do = 0). Thus, the improvement in expected execution cost by

the optimal strategy is JoCM - J0 , which is given by

JM  - 2pT-(pT + 2)(1-e-T) X 20' - o = X. _0 (pT+2)(pT)2

and is always non-negative. The relative gain can be defined as A = (jCM _ Jo)/jCM.

In order to calibrate the magnitude of the cost reduction by the optimal execution

strategy, we consider some numerical examples. Let the size of the order to be exe-

cuted be X0 = 100, 000 shares and the initial security price be Ao = Fo+s/2 = $100.

We choose the width of the limit order book, which gives the depth of the market,

to be q = 5, 000. This implies that if the order is executed at once, the ask price

will move up by 20%. Without losing generality, we consider the execution horizon

to be one day, T = 1.16 The other parameters, especially p, may well depend on the

security under consideration. In absence of an empirical calibration, we with consider

a range of values for them.

Table 3.1 reports the numerical values of the optimal execution strategy for dif-

ferent values of p. As discussed above, for small values of p, most of the order is

executed through two discrete trades, while for large values of p, most of the order

is executed through a flow of continuous trades as in the conventional models. For

intermediate ranges of p, a mixture of discrete and continuous trades is used.

Table 3.2 reports the relative improvement in the expected net execution cost by

16Chan and Lackonishok (1995) documented that for institutional trades T is usually between 1
to 4 days. Keim and Madhavan (1995) found that the duration of trading is surprisingly short, with
almost 57% of buy and sell orders completed in the first day. Keim and Madhavan (1997) reported
that average execution time is 1.8 days for a buy order and 1.65 days for a sell order.
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p Half-life (log 2/p) Trade xo Trade over (0, T) Trade XN

0.001 693.15 day 49,975 50 49,975
0.01 69.31 day 49,751 498 49,751

0.5 1.39 day 40,000 20,000 40,000
1 270.33 min 33,333 33,334 33,333
2 135.16 min 25,000 50,000 25,000
4 67.58 min 16,667 66,666 16,667
5 54.07 min 14,286 71,428 14,286

10 27.03 min 8,333 83,334 8,333
20 13.52 min 4,545 90,910 4,545
50 5.40 min 1,921 96,153 1,921

300 0.90 min 331 99,338 331
1000 0.20 min 100 99,800 100

10000 0.03 min 10 99,980 10

Table 3.1: Profiles of the optimal execution strategy for different LOB resiliency.

The table reports values of optimal discrete trades x0 and XT at the beginning and the
end of the trading horizon and the intensity of continuous trades in between for an order
of Xo =: 100, 000 for different values of the LOB resilience parameter p or the half-life of
an LOB disturbance 71/ 2 , which is defined as exp{-pr1 /2 } = 1/2. The initial ask price is
$100, the market depth is set at q = 5, 000 units, the (permanent) price-impact coefficient
is set at A = 1/(2q) = 10- 4 , and the trading horizon is set at T = 1 day, which is 6.5 hours
(390 minutes).

the optimal execution strategy over the simple strategy of the conventional setting.

Let us first consider the extreme case in which the resilience of the LOB is very small,

e.g., p == 0.001 and the half-life for the LOB to rebuild itself after being hit by a trade

is 693.1.5 days. In this case, even though the optimal execution strategy looks very

different from the simple execution strategy, as shown in Figure 3-4, the improvement

in execution cost is minuscule. This is not surprising as we know the execution cost

becomes strategy independent when p = 0. For a modest value of p, e.g. p = 2 with a

half life of 135 minutes (2 hours and 15 minutes), the improvement in execution cost

ranges :From 4.32% for A = 1/(2q) to 11.92% for A = 0. When p becomes large and the

LOB becomes very resilient, e.g., p = 300 and the half-life of LOB deviation is 0.90

minute, the improvement in execution cost becomes small again, with a maximum of

0.33% when A = 0. This is again expected as we know that the simple strategy is
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A
Half-life 1 1 1 1 0

Half-life 1q 50q 5 100q

0.001 693.15 day 0.00 0.01 0.02 0.02 0.02
0.01 69.31 day 0.08 0.15 0.16 0.16 0.17

0.5 1.39 day 2.82 5.42 5.99 6.06 6.13
1 270.33 min 3.98 8.16 9.14 9.26 9.39
2 135.16 min 4.32 9.97 11.51 11.71 11.92
4 67.58 min 3.19 9.00 11.05 11.35 11.65
5 54.07 min 2.64 8.07 10.21 10.53 10.86

10 27.03 min 1.13 4.58 6.65 7.01 7.41
20 13.52 min 0.37 1.98 3.54 3.89 4.31
50 5.40 min 0.07 0.49 1.24 1.50 1.88

300 0.90 min 0.00 0.02 0.08 0.13 0.33
1000 0.20 min 0.00 0.00 0.01 0.02 0.10

10000 0.03 min 0.00 0.00 0.00 0.00 0.09

Table 3.2: Cost savings by the optimal execution strategy from the simple strategy.

Relative improvement in expected net execution cost A = (jCM _ Jo)/JCM is reported for
different values of LOB resiliency coefficient p and the permanent price-impact coefficient.
The order size is set at 100,000, the market depth is set at q = 5, 000 and the horizon for
execution is set at T = 1 day (equivalent of 390 minutes).

close to the optimal strategy when p -- oc (as in this limit, the cost becomes strategy

independent).

In order to see the difference between the optimal strategy and the simple strategy

obtained in conventional settings, we compare them in Figure 3-4. The solid line shows

the optimal execution strategy of the LOB framework and the dashed line shows the

execution strategy of the conventional setting. Obviously, the difference between the

two strategies are more significant for smaller values of p.

Table 3.2 also reveals an interesting result. The relative savings in execution cost

by the optimal execution strategy is the highest when A = 0, i.e., when the permanent

price impact is zero."

170f course, the magnitude of net execution cost becomes very small as A goes to zero.

142



V /Y
' ̂ 0

1

r 0

1

(a) (b) (c)

Figure 3-4: Optimal execution strategy vs. strategy from the conventional models.

The figure plots the time paths of remaining order to be executed for the optimal strategy
(solid line) and the simple strategy obtained from the conventional models (dashed line),
respectively. The order size is set at Xo = 100, 000, the initial ask price is set at $100, the
market depth is set at q = 5,000 units, the (permanent) price-impact coefficient is set at
A = 1/(2q) = 10- 4, and the trading horizon is set at T = 1 day, which is assumed to be 6.5
hours (390 minutes). Panels (a), (b) and (c) plot the strategies for p = 0.001, 2 and 1, 000,
respectively.

3.7.3 Empirical Implications

Optimality of discrete trades at the beginning and the end of the trading period

leads to interesting empirical implications. It is well documented that there is a

U-shaped pattern in the intraday trading volume, price volatility and average bid-

ask spread. is Several authors have proposed theoretical models that can help to

explain the intraday price and volume patterns.19 Most of these models generate the

intraday patterns from the time variation in information asymmetry and/or trading

opportunities associated with market closures.

Our model suggests an alternative source for such patterns. Namely, they can

be generated by the optimal execution of block trades. It is well known that large-

block transactions have become a substantial fraction of the total trading volume for

8 lIntraday patterns in volume and prices in the U.S. markets have been documented by Jain
and Joh(1988), Gerety and Mulherin (1992), Chan, Christie, Schultz (1995), among others. They
are also present in other markets. See McInish and Wood(1991) for the Toronto Stock Exchange,
Hamao and Hasbrouck (1995) for the Tokyo Stock Exchange, Niemayer and Sandas (1993) for the
Stockholm Stock Exchange, and Kleidon and Werner (1996) for the London Stock Exchange.

19See, for example, Admati and Pfleiderer (1988), Back and Baruch (2004), Brock and Kleidon
(1992), Foster and Viswanathan(1990, 1995), and Hong and Wang (2000).
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common stocks. According to Keim and Madhaven(1996), block trades represented

almost 54% of New York Stock Exchange share volume in 1993 while in 1965 the

corresponding figure was merely 3%. Thus, the execution strategies of institutional

traders can influence the intraday variation in volume and prices. It is often the case

that institutional investors have daily horizons to complete their orders, for example

to accommodate the inflows and outflows in mutual funds. For reasonable values

of the LOB recovery speed p, our optimal execution strategy implies large trades at

the beginning and at the end of trading period. If execution horizon of institutional

traders coincides with a trading day, their trading can cause the increase in trading

volume and bid-ask spread at the beginning and the end of a trading day.

Our model predicts higher variation in the optimal trading profile for stocks with

lower p. This implies that stocks with low resilience in its LOB (low p) and high

institutional holdings should exhibit more intraday volume variation. We leave the

empirical tests of these predictions for future research.

3.8 Extensions

So far, we have used a parsimonious LOB model to analyze the impact of sup-

ply/dynamics on optimal execution strategy. Obviously, the simple characteristics

of the model does not reflect the richness in the LOB dynamics observed in the mar-

ket. However, the framework we developed is quite flexible to allow for extensions

in various directions. In this section, we briefly discuss some of these extensions.

First, we consider the case where the resilience of the LOB is time-varying. Next, we

discuss the possibility of allowing more general shapes of the static limit order book.

Finally, we include risk considerations in optimization problem. This also allows us

to endogenize the trading horizon T, which is taken as given above.
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3.8.1 Time Varying LOB Resiliency

Our model can easily incorporate time-variation in LOB resiliency. It has been docu-

mented that trading volume, order flows and transaction costs all exhibit a U-shaped

intraday pattern, high at the opening of the trading day, then falling to lower con-

stant levels during the day and finally rising again towards the close of trading day.

This suggests that the liquidity in the market may well vary over a trading day.

Monch (2004) has attempted to incorporate such a time-variation in implementing

the conventional models.

We can easily allow time-variation in LOB and its dynamics in our model. In

particular, we can allow the resilience coefficient to be time dependent, p = Pt for

t E [0, T]. The results in Proposition 1, 2, 3 still hold if we replace p by Pt, pT by

fo ptdt and p(T - t) by ft ptdt.

3.8.2 Different Shapes for LOB

We have considered a simple shape for the LOB, which is a step function. As we

showed in Section 3.3, this form of the LOB is consistent with the static linear price

impact function widely used in the literature. Huberman and Stanzl (2005) have pro-

vided theoretical arguments in support of the linear price impact functions. However,

empirical literature has suggested that the shape of the LOB can be more complex

(see, e.g., Hopman (2003)). Addressing this issue, we can allow more general shapes

of the LOB in our framework. For example, we may extend our analysis to LOB with

a density of placed limit orders defined by power function. This will also make the

LOB dynamics more complex. As a trade eats away the tip of the LOB, we have

to specify how the LOB converges to its steady state. With a complicated shape for

the LOB, this convergence process can take many forms which involves assumptions

about the flow or new orders at a range of prices. For certain specifications of this

convergence process, our model is still tractable. For brevity, we do not present these

145



cases here. But beyond certain point, closed form solutions become hard to find.

Although the actual strategy can be quite complex and depends on the specifics of

the LOB shape and its dynamics, we expect its qualitative features to be the same

as that under the simple LOB dynamics we considered.

3.8.3 Risk Aversion

Let us consider the optimal execution problem for a risk-averse trader. For tractabil-

ity, we assume that he has a mean-variance objective function with a risk-aversion

coefficient of a. The optimization problem (3.30) now becomes

Jt - J(Xt, At, Vt, t) = min

(~[o, T]], {XtE}}Eec

Et [Ct] + 1 a Vart [Ct]

with (3.9), (3.28), (3.29) and the same terminal condition JT = [AT + 1/(2q)XT] XT.

Since the only source of uncertainty is Ft and only the trades executed in interval

[t, t+dt) will be subject to this uncertainty, we can rewrite (3.32) in a more convenient

form:

min

{l'[O, TJ, {,tE4}}EeC

E, [Ct] + a a O 2X2ds. (3.33)

At time T, the trader is forced to buy all of the remaining order XT. This leads to

the following boundary condition:

JT = [AT + 1/(2q)XT] XT.

The next proposition gives the solution to the problem for a risk averse trader:
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Proposition 4 The solution to the optimization problem (3.33) is

X if'(O) + au2

X u•pf(0) + ao2

PIt = xo p ( t ) - g(t) fd,+ V t (0, T)
1 + ag(t)

XT = Xo - xo - 1 ,ds

and the value function is

Jt = (Ft+s/2)Xt + AXoXt + atXt2 + itDt + 7rtD2

where Dt = At -Vt -s/2 and the coefficients are given by

a f (t)- A f(t)- 1
at= 2 , t=f(t), 7t 22 2

and

P (T-t) •p P
f(t) = (v - aa2 )/(Kp) + [~ + e + Tt) v 2 -

g(t) f'(t) - pf(t)
kf'(t) + aa2

with v = ia 2o 4 + 2aa2Kp.

It can be shown that as risk aversion coefficient goes to 0 the coefficients at, Ot,

and 7t converge to the ones given in Proposition 2, which presents the results for the

risk neutral trader.

The nature of the optimal strategy remains qualitatively the same under risk

aversion: discrete trades at the two ends of the trading horizon with continuous trades

in the middle. The effect of trader's risk aversion on his optimal trading profile is

shown in Figure 3-5. The more risk averse is the trader, the larger the initial trade

147



100x10 3

50x10 3

y.

0 T t

Figure 3-5: Optimal execution strategies for different coefficients of risk aversion.

This figure shows the profiles of optimal execution policies Xt for the traders with different
coefficients of risk aversion a = 0 (solid line), a = 0.05 (dashed line), a = 0.5 (dashed-dotted
line) and a = 1 (dotted line), respectively. Variable Xt indicates how much shares still has
to be executed before trading at time t. The order size is set at Xo = 100, 000, the market
depth is set at q = 5, 000 units, the permanent price-impact coefficient is set at A = 0, and
the trading horizon is set at T = 1, the resiliency coefficient is set at p = 1.

more trades he shifts to the beginning.

So far, we have assumed the execution horizon, [0, T], to be exogenously given,

and ignored any time preference for execution a trade. Risk aversion, however, intro-

duces a natural preference for such a preference: Trading sooner reduces uncertainty

in execution prices. Such a preference is clearly reflected in the optimal policy as

shown in Figure 3-5. Such a time preference provides a mechanism to endogenize the

execution horizon. For example, T is sufficiently large, when the trader is risk-averse

enough, he may optimally finish the whole order soon before T.
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3.9 Conclusion

In this paper, we analyze the optimal trading strategy to execute a large order. We

show that the static price impact function widely used in previous work fails to capture

the intertemporal nature of a security's supply/demand in the market. We construct

a simple dynamic model for a limit order book market to capture the intertemporal

nature of supply/demand and solve for the optimal execution strategy. We show that

when trading times are chosen optimally, the dynamics of the supply/demand is the

key factor in determining the optimal execution strategy. Contrary to previous work,

the optimal execution strategy involves discrete trades as well as continuous trades,

instead of merely continuous trades. This trading behavior is consistent with the

empirical intraday volume and price patterns. Our results on the optimal execution

strategy also suggest testable implications for these intraday patterns and provide

new insight into the demand of liquidity in the market.

The specific model we used for the LOB dynamics is very simple since our goal

is mainly to illustrate its importance. The actual LOB dynamics can be much more

complex. However, the framework we developed is fairly general to accommodate

rich forms of LOB dynamics. Moreover, with the current increase in the number of

open electronic limit order books, our LOB model can be easily calibrated and used

to address real world problems.
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3.10 Appendix

3.10.1 Proof of Proposition 1

From (3.7), we have

n-1

Dte = Atn, -Vt, -s/2 = I xt, e- p "(n- i)
(3.36)

From (3.36), the dynamics of Dt between trades will be

Dt.+l = (Dte + Ixt. r) e -p T
(3.37)

with Do = 0. We can then re-express the optimal execution problem (3.20) in terms

of variables Xt and Dt:

N

min Eo E [(Ft.+s/2) + A(Xo-Xt,)+Dt, +xtn/(2q)] xt,.
n=O

(3.38)

under dynamics of Dt given by (3.37).

First, by induction we prove that value function for (3.38) is quadratic in Xt and

Dt and has a form implied by (3.22):

J(Xtn, Dtn, Ft,, tn) = (Ftn +s/2)Xt, + AXoXtn + anX 2 + + XtDt+ -y7nDt. (3.39)

At time t = tN = T, the trader has to finish the order and the cost is

J(XT, DT, FT, T) = (FT+s/2)XT + [A(Xo-XT)+DT+XT/(2q)]XT.

Hence, aN = 1/(2q) - A, 3N = 1, "yN = 0. Recursively, the Bellman equation yields
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Jt-,_ = min { [(Ftn_1 +s/2) + A(Xo-Xt,_l)+Dt,_, +Xn- 1/(2q)] x_-1
Xn-1

+ Et,,_ J [Xt,,_ -xn-1, (Dt,~1 +xn- 1)e- , Ft,, tn]) }

Since Ft, follows Brownian motion and value function is linear in Ft,, it imme-

diately follows that the optimal z,- 1 is a linear function of Xtn-, and Dtn_l and the

value function is a quadratic in Xt,,_ and Dt,_- satisfying (3.39), which leads to the

recursive equation (3.23) for the coefficients. Q.E.D.

3.10.2 Proof of Proposition 2

First, we prove the convergence of the value function. As 7 = T/N -- 0, the first

order approximation of the system (3.23) in 7 leads to the following restrictions on

the coefficients:

A + 2at - At. = 0
(3.40)

1 - 3t + 2 ,yt = 0

and

&t = !/P p2

ft = Pf3t - lp/t(it - 4rfyt) (3.41)

S= 2Pyt + p(3t - 4t7t)2

It is easy to verify that at, Ot and 7t given in (3.26) are the solution of (3.41), satisfying

(3.40) and the terminal condition (3.24). Thus, as 7r 0 the coefficients of the value

function (3.23) converge to (3.26).

Next, we prove the convergence result for the optimal execution policy {xt}. Sub-

stituting at, 3t, 7t into (3.21), we can show that as 7 -- 0, the execution policy
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converges to

( 1 1+p(T-t) 1zt = 1 - Dt l+p(T-t) 1 [1 - !p2(T-t)T] + (p/,)DtT + O(T)
p(T-t) + 2 ,K[p(T-t) + 2] [ p2 (T- +

(3.42)

where o(r) denotes terms to the higher order of -. At t = 0, Do = 0 and we have

limr'o Xo = Xo. Moreover, after the initial discrete trade xo all trades will be thepT+2

continuous (except possibly at T) and equal to

xt = lpDtr + o(r), t = nT, n = 1, ... , N - 1. (3.43)

We prove this by induction. First, using (3.42), where X, = Xo - x0o and D, =

kxo(1 - pr), it is easy to check that (3.43) holds for x,. Second, let us assume that

(3.43) holds for some xt, where t = nr, then we can show that xt+, will satisfy it as

well. In fact, the dynamics of Xt and Dt is defined by

Xt+, = Xt - xt, Dt+,r = (Dt + kxt)(1 - pr), t = n7, n = 0,..., N - 1.

(3.44)

Substituting these into (3.42) and using the induction assumption, we get that

xt+, = (pl/)Dt+r. + o(T).

Thus, after the discrete trade xo at time t = 0 all consequent trades will be the

continuous. Moreover, (3.43) implies the following form of Xt and Dt dynamics:

Xt+, = Xt - !pDtr + (Tr), Dt+, = Dt + o(r). (3.45)Xt+·r =K
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Taking into account the initial condition right after the trade at time 0, we find that

kXo
DA = DT = pT + o(r).

Thus, from (3.43) as 7 - 0 for any t E (0, T) trade xt converges to PT72 . Since all

shares Xo should be acquired by time T, it is obvious that lim,,~ XT = o . Q.E.D.

3.10.3 Proof of Propositions 3 and 4

We give the proof of Proposition 4 along with Proposition 3 as a special case. Let us

first formulate problem (3.33) in terms of variables Xt and Dt = At-Vt -s/2 whose

dynamics similar to (3.37) is

dDt = -pDtdt - ,dXt (3.46)

with Do = 0. If we write the cost of continuous and discrete trading as following:

dCt = (Ft+s/2)c1 tdt + A(Xo-Xt)ptdt + Dettdt

ACd = 1 {tdE} [(Ft-+s/2)xt + A (Xo-Xt)xt + Dtxt + x2,/(2q)] .

then (3.33) is equivalent to

Et dCt + E ACd] + (a/2) t 2X2ds
tET

min

{([o, T], {xtE,}}cEOC

(3.47)

(3.48)

(3.49)

with (3.46), (3.47) and (3.48).

This is the optimal control problem with a single control variable Xt. We can

now apply standard methods to find its solution. In particular, the solution will be

characterized by three regions where it will be optimal to trade discretely, continu-
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ously and do not trade at all. We can specify the necessary conditions for each region

which any value function should satisfy. In fact, under some regularity conditions on

the value function we can use Ito's lemma together with dynamic programming prin-

ciple to derive Bellman equation associated with (3.49). For this problem, Bellman

equation is a variational inequality involving first-order partial differential equation

with gradient constraints. Moreover, the value function should also satisfy boundary

conditions. Below we will heuristically derive the variational inequalities and show

the candidate function which satisfies them. To prove that this function is a solution

we have to check the sufficient conditions for optimality using verification principle. 20

We proceed with the proof of Proposition 4 in three steps. First, we heuristically

define the variational inequalities (VI) and the boundary conditions for the optimiza-

tion problem (3.49). Second, we show that the solution to the VI exists and implies

a candidate value function and a candidate optimal strategy. Third, we verify that

candidate value function and optimal strategy are indeed solution to optimization

problem. Finally, we will discuss the properties of optimal strategies.

A. Variational Inequalities

Let J(Xt, Dt, Ft, t) be a value function for our problem. Then, under some regularity

conditions it has to satisfy the necessary conditions for optimality or Bellman equation

associated with (3.49). For this problem, Bellman equation is a variational inequality

involving first-order partial differential equation with gradient constraints, i.e.,

min { Jt - pDtJD + 10,2 JFF + a 2Xt2, (Ft+s/2) + A(Xo-Xt) + Dt - Jx + KJD} = 0.

Thus, the space can be divided into three regions. In the discrete trade (DT) region,

20For detailed treatment of similar problems see Hindy, Huang and Zhu(1997), Shreve and Soner
(1994), Eastham and Hastings(1988).
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the value function J has to satisfy

Jt-ppDtJD +½ 2JFF +a 2X2 > 0, (Ft+s/2)+±(Xo-Xt)+Dt-Jx+rJD = 0. (3.50)

In the no trade (NT) region, the value function J satisfies:

J--pJD+ 2JFF+a 2X 2 = 0, (Ft+s/2)+A(Xo-Xt)+Dt-Jx+rJD > 0. (3.51)

In the continuous trade (CT) region, the value function J has to satisfy:

Jt-pDtJD 2JFF+a 2X 2 = 0, (Ft+s/2)+A(Xo-Xt)+Dt-Jx+iJD = 0. (3.52)

In addition, we have the boundary condition at terminal point T:

J(XT, DT, FT, T) = (FT+s/2)XT + A(Xo-XT)XT + DTXT + X/(2q). (3.53)

Inequalities (3.50)-(3.53) are the so called variational inequalities (VI's), which are

the necessary conditions for any solutions to the problem (3.49).

B. Candidate Value Function

Basing on our analysis of discrete-time case we can heuristically derive the candidate

value function which will satisfy variational inequalities (3.50)-(3.53). Thus, we will

be searching for the solution in a class of quadratic in Xt and Dt functions. Note

that it is always optimal to trade at time 0. Moreover, the nature of the problem

implies that there should be no NT region. In fact, if we assume that there exists

a strategy with no trading at period (t1 , t2), then it will be always suboptimal with

respect to the similar strategy except that the trade at tl is reduced by sufficiently

small amount E and E trades are continuously executed over period (t1 , t2). Thus, the

candidate value function has to satisfy (3.52) in CT region and (3.50) in any other
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region.

Since there is no NT region, (Ft+s/2) + A(Xo-Xt) + Dt - Jx + J1D = 0 holds for

any point (Xt, Dr, Ft, t). This implies a particular form for the quadratic candidate

value function:

= (Ft+s/2)Xt + AXoXt

+ [f (t) - A)]Xt2/2 + f (t)XtD + [f (t) - 1]D/(2K) (3.54)

where f(t) is a function which depends only on t. Substituting (3.54) into Jt -

pDtJD + I 2 JFF + ao 2Xt2 > 0 we have:

(rf' + ao2)X,2/2 + (f'-pf)XtDt + (f'+2p-2f)D2/(2i~) > 0 (3.55)

which holds with an equality for any point of the CT region.

Minimizing with respect to Xt, we show that the CT region is specified by:

f'-PfD.
Xt = - 2 Dt.

Kf' + ao2
(3.56)

For (Xt, Dt) in the CT region (3.55) holds with the equality. Thus, function f(t) can

be found from the Riccati equation:

f'(t)(2pi + aa2) - rp 2f 2(t) - 2au2pf(t) + 2aa2p = 0. (3.57)

This guarantees that Jt - pDtJD + a2 JFF au2Xt2 is equal to zero for any points

in CT region and greater then zero for any other points. Taking in account terminal

condition f(T) = 1, we can solve for f(t). As a result, if the trader is risk neutral

and a = 0, then

f(t) =
2

p(T-t)+2"

156

J(Xt, Dt, Ft, t)



Substituting the expression for f(t) into (3.54) we get the candidate value function

of Proposition 3. If the trader is risk averse and a 4 0, then

[ ( ( ] -1f(t) = (v - au' )  aa- _+ p  22P) e (T-t)ft P )2v v - a) 2v

where v is the constant defined in Proposition 4. From (3.54) this results in the

candidate value function specified in Proposition 4.

C. Verification Principle

Now we verify that the candidate value function J(Xo, Do, Fo, 0) obtained above is

greater or equal to the value achieved by any other trading policy. Let X[o, T] be

an arbitrary feasible policy from Oc and V(Xt, Dt, Ft, t) be the corresponding value

function. We have

X(t) = X(o) - ipdt- X
sET, s<t

where ILt > 0 and xt > 0 for t E T. For any r and Xo, we consider a hybrid policy

which follows policy Xt on the interval [0, 7] and the candidate optimal policy on the

interval [7, T]. The value function for this policy is

V,(Xo, Do, Fo, 0) = Eo [(Ft+s/2)+A(Xo-Xt) + Dt] ptdt

+ 5 [(Ft,+s/2)xt, +A(Xo-Xt,)xt, + Dt xt, + x /(2q)] + J(XT, DT, F,, r)].
ti<:, tiET

(3.58)
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For any function, e.g., J(Xt, Dt, Ft, t) and any (Xt, Dt, Ft, t), we have

J(Xt, Dt, Ft, t) =J(Xo, Do, Fo, 0) + jJds + JxdX + JDdD

+ JFdF+ J JFF(dF)2 + a 2  Xds A+ AJ. (3.59)
ti<t, tiET

Use dDt = -pDtdt - idXt and substitute (3.59) for J(X,, D,, F,, T) into (3.58), we

have

Vr(Xo, Do, Fo, 0)

Now we are ready

it is true that

= J(Xo, Do, Fo, 0)

+ Eo Ft + + A(Xo-Xt) + Dt - Jx + JD tdt

+ Eo (J - pDtJD + 2 JFF a 2Xt) d

+E o  [AJ+(Ft +± +A(Xo-Xt)+ Dt + xti/(2q) xt]
ti<t, tiEY

= J(Xo, Do, Fo, 0) + I + 12 + 13 (3.60)

to show that for any arbitrary strategy Xt and for any moment 7

V 7 (Xo, Do, Fo, 0) > J(Xo, Do, Fo, O). (3.61)

It is clear that VI (3.50)-(3.52) implies non-negativity of II and I2 in (3.60). Moreover,

it implies that 13 > 0. It is easy to be shown if you rewrite AJ(Xt, , Dt,, Ft,, ti) as

J(Xti - Xt , Dt, + KIxt, Ft, + aZt±, ti) - J(Xt,, Dt , Ft,, ti). This complete the proof of

(3.61).

Use it for r = 0 to see that J(Xo, Do, Fo, 0) <_ V(Xo, Do, Fo,0). Moreover there

is an equality if our candidate optimal strategy is used. This complete the proof of

Proposition 3.
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D. Properties of the Optimal Execution Policy

We now analyze the properties of optimal execution strategies. First, let us consider

the risk neutral trader with a = 0. Substituting the established expression for f(t)

into (3.56), we find that the CT region is given by

Xt = p(T-t)+1Dt.

This implies that after the initial trade x0 = Xo which pushes the system from its

initial state X0 and Do = 0 into CT region, the trader trades continuously at the

rate Pt = pXT staying in CT region and executes the rest XT = x- at the end ofpT+2 pT+2

trading horizon. In fact, this is the same solution as we had for continuous time limit

of solution of problem (3.20).

If the trader is risk averse then the CT region is given by

f'(t) - pf(t)
Xt = g(t)Dt, where g(t) = - 2

f'(t)K + aa2 "

This implies that after discrete trade x0 = Xo pf(0)+a 2 at the beginning which pushes

the system from its initial state into CT region, the trader will trade continuously at

the rate

pg(t) - g'(t) tg ds
Itt = I•Xo e 0 1+i9(s)

1f + g (t)

This can be shown taking in account the dynamics of Dt given in (3.37) and specifi-

cation of CT region. At the end the trader finishes the order. Q.E.D.
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