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ABSTRACT 

 
In-register, parallel alignment of similar or identical side chains is a common 

structural phenomenon in amyloid fibers. In the crystal structure of an amyloid fiber, 
these residues not only align, but take identical side chain orientations, creating long 
stacks of identical residues with identical orientations. This phenomenon of side chain 
stacking is a dominant component of the amyloid structure, and may take an equally 
important role in the seemingly sequence-independent formation of amyloid fibers or the 
sequence-dependent species barrier to amyloid transmission. 

Side chain stacking has long been observed as a prominent feature of the soluble 
parallel β-helix fold, which exhibits a cross-β structure reminiscent of amyloids. To 
investigate the sequence requirements of these stacks for directing a polypeptide chain 
into a β-helical fold, we performed systematic mutational studies using the complete P22 
tailspike protein, which contains a 13 rung β-helix domain. The in vivo folding and 
assembly of 150 single mutant polypeptide chains were characterized at multiple 
temperatures by SDS-PAGE, which distinguishes the fully native, SDS-resistant state 
from partially folded or misfolded conformers. The vast majority of the buried core was 
completely intolerent to subsitution at physiological temperatures, while only a few sites 
composing a continuously contacting network of residues called the folding spine were 
intolerant of alanine mutations at 18ºC. 

These results indicate that the β-helix folds through a processive folding 
mechanism, analogous to the nucleation and elongation mechanism of amyloids, but 
requiring recurring sequence-dependent stacking contacts that stretch the length of the β-
helix. 

Numerous avenues of investigation demonstrated that the observed folding 
defects of the full length tailspike were due to a sequence effect on the folding of the β-
helix domain. Alanine mutants capable of reaching a native-like trimeric state were as 
thermostable as the wild-type trimer, indicating that mutants affect a folding intermediate 
rather than the native state. In vivo folding efficiencies of eight β-helix folding mutants in 
the context of the isolated β-helix domain paralleled the folding of the full length 
tailspike, demonstrating that these mutants act at the level of β-helix folding. In vitro 
refolding of both full length and isolated β-helix tailspike mutants demonstrated that the 
observed mutant folding deficiencies were solely caused by the single amino acid change 
and not due to interactions with cellular components. 
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Folding spine mutations were further tested in the context of a suppressor 
mutation, A334V, which was previously shown to stabilize the β-helix and rescue classic 
temperature sensitive folding mutations. Most mutations could not be rescued by the 
addition of A334V, a number of which were in fact further hindered in folding by the 
presence of the suppressor mutation. Eight folding spine mutations located between rungs 
4 and 6 were rescued in a position specific manner, though only one of these positions 
directly contacts the suppressor. The pattern of rescue and hinderance observed with 
double mutants indicates that A334V is not a global suppressor and instead acts on a 
likely nucleus for folding. 

These studies provide evidence for a nucleation and elongation mechanism for 
folding of the parallel β-helix. Single mutations throughout the β-helix are capable of 
blocking this step-wise folding mechanism in a temperature dependent manner that likely 
leads to the population of a partially folded β-helix species that would be inherently 
aggregation prone. 
 
Thesis Supervisor: Jonathan King, Professor of Biology 
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A. PROTEIN MISFOLDING IS A MEDICAL PROBLEM 
 

In order for the human body to work properly, cells must not only synthesize 

proteins but must ensure that these proteins fold into the structure that allows them to 

perform their evolved task. The primary control of a protein’s ability to fold into a 

specific, native three-dimensional structure is the sequence of amino acids in the 

polypeptide chain itself. In 1961, Anfinsen demonstrated that a mammalian protein, 

RNase, could refold spontaneously without the aid of cellular factors (Anfinsen et al., 

1961; Haber and Anfinsen, 1961). 

Although RNase is capable of spontaneously folding in the test tube, Anfinsen 

and Haber demonstrated that folding yields dropped off significantly as the protein 

concentration increased to physiologically relevant levels (Anfinsen and Haber, 1961). 

Subsequent research revealed that a number of proteins necessary for the proper function 

of the cell cannot fold from sequence alone and require the activity of chaperone proteins 

to reach their native state. For example, the structural protein actin requires the presence 

of a specific chaperonin, TriC, in order to fold (Gao et al., 1993). Environmental stresses, 

such as increases in temperature, enhance the incidence of protein misfolding. In 

response, most tissues increase their production of chaperone proteins, particulary a 

group of chaperones known as the heat shock proteins (Whitesell and Lindquist, 2005). 

The failure of purified proteins to refold in vitro can be due to the absence of a required 

chaperone, other essential components, or to intrinsic limitations in the sequence control 

of folding. 

When proteins are unable to fold to their native state, they cannot perform their 

functions. The “natively unfolded” proteins may be an exception to this (Fink, 2005). In 

the case of the cystic fibrosis transmembrane conductance regulator (CFTR), the most 

common disease-associated mutation, ∆F508, prevents the protein from folding into its 

native conformation in the cell (Qu et al., 1997). The misfolded protein is retained in the 

endoplasmic reticulum and is quickly degraded before it can be trafficked to the surface 

of epithelial cells (Rowe et al., 2005). The lack of folded CFTR proteins on the cell’s 

surface leads to improper regulation of osmosis, which in turns leads to the symptoms 

associated with cystic fibrosis.  
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Although loss of function through an inability to fold can lead to disease, it has 

become apparent in the past decade that misfolded proteins may go on to aggregate. 

Aggregation can disrupt the homeostasis of the cell and lead to cell death and disease 

(Dobson, 2006). Although proteins may precipitate out of solution in a non-specific 

manner that depends on environmental conditions and protein concentrations, a number 

of protein misfolding and aggregation diseases have been discovered that depend upon 

the protein’s amino acid sequence. Diseases involving aggregation or misfolding of 

polypeptide chains are becoming increasingly common, particularly as the average 

human life span increases in the modern world. In order to develop therapeutics towards 

these classes of diseases, it is important to understand how polypeptide chains misfold or 

aggregate and how the amino acid sequence of these proteins contribute to the 

development of these diseases. 

 
1. Native-state Polymerization: Sickle Cell Hemoglobin 
 

Sickle cell anemia is a disease in which mutant hemoglobin aggregate through the 

interactions of natively folded proteins. A single amino acid change, a glutamine to 

valine mutation at position six of β-hemoglobin, causes native hemoglobin molecules to 

polymerize (Ingram, 1956). This substitution of a charged surface residue with a small 

hydrophobic group allows the association of hemoglobin molecules through the 

interaction of the valine mutant residue with a surface hydrophobic pocket comprised of 

F85 and L88 on the β-hemoglobin subunit of another molecule (Bihoreau et al., 1992). 

This interaction can only occur under low oxygen conditions due to the fact that the 

hydrophobic pocket is buried in the oxygenated state and only reveals itself on the 

surface of β-hemoglobin upon a conformational change induced by deoxygenation 

(Wishner et al., 1975). Since every hemoglobin tetramer contains two β-hemoglobin 

subunits, repetition of these sickling interactions with more hemoglobin molecules 

generates long polymerized fiber-like threads. 

As stated, low oxygen conditions induce polymerization across the erythrocyte, 

causing the red blood cell to stiffen and stretch into its sickle shape. This polymerization 

process proceeds through a double nucleation and polymerization mechanism (Ferrone et 
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al., 1985). In this mechanism, the first phase of aggregation is a homogenous 

polymerization that is induced by the formation of a slow-forming and metastable 

oligomer through the hydrophobic binding described above. Single unbranched fibers can 

then proceed to polymerize from this nucleus. In the second heterogeneous nucleation, 

fibers are seeded on the non-growing surface of pre-existing fibers, allowing for the 

generation of thicker, branched fibrils and gels.  

 
2. Loop-Sheet Insertion: The Serpins 
 

Serine protease inhibitors, or serpins, are the largest and most widely distributed 

superfamily of proteins that regulate proteolytic cascades (Irving et al., 2000). This is 

most typified by α1-antitrypsin, which controls proteases that are involved in 

inflammatory cascades. This superfamily also includes anti-thrombin, C1 inhibitor, α1-

antichymotrypsin, and plasminogen activator inhibitor-1. These latter proteins play 

important roles in the control of coagulation, inflammation, as well as other protease 

cascades (Lomas et al., 2005). Although quite functionally diverse, the superfamily has a 

high degree of sequence similarity and a conserved tertiary structure. This conserved 

structure is composed of three β-sheets and an exposed mobile loop. 

Inhibition of proteases occurs through a mousetrap-like system. The exposed 

mobile loop contains a peptide sequence that is a pseudosubstrate for its target protease. 

Critical residues (P1-P1’) in this loop act as bait for the protease, which cleaves the 

peptide bond between these two residues (Johnson and Travis, 1978; Wilczynska et al., 

1995). Upon cleavage, the mobile loop of the serpin swings the covalently linked 

protease over the entire length of the serpin, approximately 70 Å, while the reactive loop 

inserts itself into β-sheet A to form an additional β-strand (Huntington et al., 2000). This 

drastic change leaves the protease in a deformed and irreversibly inactive conformation. 

The resulting conformation of the serpin-protease complex is subsequently recognized for 

degradation. The large shift in conformation of the serpin is possible due to the fact that 

the serpins exist in a kinetically trapped, metastable active form. Upon peptide bond 

cleavage, the kinetic trap is released and the final loop-sheet insertion conformation is 

more thermodynamically stable that the initial structure (Carrell and Gooptu, 1998). 
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Point mutations in the reactive loop or the β-sheet region of the serpins can lead 

to distortion of the structure that allows for the insertion of the reactive loop of one 

molecule to lock into the β-sheet of a second molecule to form a dimer. This loop-sheet 

insertion oligomerization can ultimately lead to polymerization of serpins. In the case of 

α1-antitrypsin, the Z mutation (E342K) generates a structural distortion that allows for 

polymerization. These polymers may either be degraded (Wu et al., 2003) or accumulate 

in inclusion bodies in the endoplasmic reticulum (Janciauskiene et al., 2004). 

Alternatively, the mutation may lead to an early insertion of the loop into the β-sheet, 

generating an inactive latent confirmation (Silverman et al., 2001). Seeding has been 

shown to accelerate the polymerization of serpin proteins, indicating that a nucleation 

dependent process may describe this specific aggregation process (Crowther et al., 2003). 

Polymerization of the serpins leads to two medically relevant outcomes, one being 

the accumulation of the polymers in liver tissue and the second being the failure to 

secrete serpins that leads to plasma deficiency. The accumulation of misfolded α1-

antitrypsin in liver cells leads to the development of cirrhosis (Lomas et al., 2005). 

Neuroserpin polymerization and accumulation in neurons causes dementia (Miranda and 

Lomas, 2006). Deficiency of a number of different serpins can lead to clinical syndromes 

such as thrombosis, angioedema, and emphysema. 

 
3. Domain Swapping 
 

The loop-sheet insertion mechanism of the serpin polymerization reactions is an 

example of a broader class of oligomerization mechanisms known as 3D domain 

swapping. This general mechanism of protein oligomerization occurs when two or more 

proteins swap identical structural features, such as secondary structural elements, with 

each other to form dimers or oligomers (Liu and Eisenberg, 2002). This results in native-

like intermolecular contacts being formed in place of their intramolecular counterparts. 

Exchanged structural elements range in size and complexity. In crystal structures of 

domain swapped dimers of RNase A, the swapped components were single units of 

secondary structure, such as a single α-helix or a single β-strand (Liu et al., 2001; Liu et 

al., 1998). In contrast, entire domains constituting half of the protein may swap, as is 
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apparent when the native structures of the dimeric βB2-crystallin and the homologous 

monomeric γB-crystallin protein are compared (Bax et al., 1990). 

Domain swapped proteins may exist in closed conformations, where all domains 

are partnered with another protein. Dimers and trimers have been crystallographically 

observed for RNase A (Liu et al., 2001; Liu et al., 2002; Liu et al., 1998), which have led 

to proposed models for tetramers and the notion of higher order domain-swapped 

oligomers (Liu and Eisenberg, 2002). Domain swapping may provide a functional 

advantage, as is the case for glyoxalase I where the domain swapped homodimer displays 

enhanced enzymatic activity in comparison to the monomeric state (Saint-Jean et al., 

1998). 

While closed domain swapping may result in functional proteins, aggregation 

may be a result of an open conformation of domain swapping where swapping may 

produce unsatisfied domains that can cascade into a monomer addition aggregation 

pathway (Rousseau et al., 2003). Kinetic studies on domain swapping have revealed that 

the mechanism of domain swapping is dependent upon the properties of the protein and 

that there is not a universal mechanism for domain swapping. RNase domain swapping 

appears to occur through a partially folded monomeric intermediate (Liu et al., 2001). In 

contrast, the cell cycle regulatory protein p13sucI requires complete unfolding of its 

monomer in order to generate a domain-swapped dimer from the unfolded state 

(Rousseau et al., 2001). The kinetics of domain swapping of p13sucI correlated with the 

rates of aggregation upon heating, indicating that aggregation may occur through a 

domain swapping mechanism (Rousseau et al., 2001). 

Domain swapping has been proposed as a mechanism for the aggregation of the 

human γD-crystallin protein (Flaugh et al., 2006). This aggregation is likely a strong 

contributor to the eye disease cataract, which is the leading cause of blindness in the 

world. The γD-crystallin protein is composed of two domains that display differential 

stability, with the C-terminal domain being more stable than the N-terminal domain 

(Flaugh et al., 2005a). Mutants in the interface between these domains destabilize the N-

terminal domain resulting in a proposed unfolding intermediate where the C-terminal 
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domain is folded but the rest of the protein is unfolded (Flaugh et al., 2005b). Since C-

terminal domain interface residues nucleate the folding of the N-terminus, aggregation of 

the protein may proceed through a domain swapping mechanism where the C-terminus of 

one monomer would refold the N-terminus of another monomer, which then in turn acts 

on another monomer resulting in linear polymerization. Oxidative damage can cause 

deamidation of glutamines in the domain interface, which destabilizes the protein and 

leads to aggregation, while fluorescent quenching of tryptophans in the crystallin may 

have evolved to protect the protein from cataract-associated UV damage (Chen et al., 

2006; Flaugh et al., 2006). 

 
4. Amyloidosis 
 

Domain swapping has been proposed as one mechanism by which amyloid fibers 

form. Amyloid fibers are insoluble protein aggregates that have been associated with a 

number of degenerative and deposition diseases. These diseases include Alzheimer’s 

disease, Huntington’s disease, Parkinson’s disease, transmissible spongiform 

encephalopathies, senile systemic amyloidosis, type 2 diabetes, and hemodialysis-related 

amyloidosis (Chiti and Dobson, 2006). Although the proteins involved in each of these 

diseases have dissimilar amino acid sequences and native structures, they all involve the 

formation of unbranched fibrils that display green birefringence upon Congo red binding, 

thioflavin T binding, and a high degree of β-sheet content arranged in a cross-β structure 

that produces a characteristic X-ray diffraction pattern (Nilsson, 2004; Sunde and Blake, 

1997). 

The basic structure of amyloids is a cross-β structure, where β-strands are 

arranged perpendicularly to the fibril axis at a regular distance of approximately 4.8 Å 

from each other (Bonar et al., 1969; Eanes and Glenner, 1968; Sunde and Blake, 1997). 

X-ray crystallography of short, fiber forming peptides taken from larger amyloidgenic 

proteins (Nelson et al., 2005; Sawaya et al., 2007) and NMR of the Alzheimer’s 

associated Aβ-(1-42) protein (Luhrs et al., 2005), have revealed atomic level details of 

the structure of amyloid fibers (Figure 1-1A). These structures and electron paramagnetic 

resonance spectroscopy have shown that a large number of amyloids form  
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in-register, parallel β-sheets, where identical residues from different polypeptide chains 

align in the β-sheets (Margittai and Langen, 2006). Alternatively, X-ray crystallography 

and isotope-edited IR spectroscopy demonstrate that some small peptide sequences form 

anti-parallel β-sheets, where specific alignments of β-strands in the β-sheets are observed 

(Petty et al., 2005; Sawaya et al., 2007; Silva et al., 2003). 

A common feature of the parallel β-sheet amyloid structures is apparent in the 

positioning and orientation of side chains. Not only do identical residues align in-register 

with each other from one β-strand to the next in a β-sheet, but the side chains display 

identical orientations with respect to each other (Figure 1-1A&B). This is a phenomenon 

known as side-chain stacking, which will be described in more detail in Section C2. It is 

apparent from all of the current atomic resolution structures of parallel β-sheet amyloids 

that stacks, such as aromatic stacks, polar zippers, and hydrophobic stacks, dominate the 

side chain component of the amyloid structure (Luhrs et al., 2005; Nelson et al., 2005; 

Sawaya et al., 2007). It is important to note, however, that in-register, parallel alignment 

is a base criteria for side chain stacking, which further requires that side chains have 

similar chi angles or orientations with respect to each other (Petersen et al., 1997). A 

hypothetical example shows how alignment of tyrosines can be maintained while 

stacking is disrupted in a reimagined amyloid structure shown in Figure 1-1C. 

Understanding the pathway that polypeptide chains follow in folding to these 

fibrillar structures is important for understanding the cause of cellular degeneration and 

disease, particularly because it has been proposed that the final fiber forms are not the 

toxic species in amyloidosis (Caughey and Lansbury, 2003). In this proposed model of 

toxicity, non-native oligomeric species that form “donut-like” shapes or early forming 

protofibrils may be toxic by either acting as membrane pores or by disrupting the 

function of membrane channels, while the formation of fibers may protect the cell against 

these toxic effects (Blanchard et al., 2004; Caughey and Lansbury, 2003). It is therefore 

important to investigate the kinetics and intermediates of the amyloidogenesis pathway. 

Amyloid formation follows nucleation and growth kinetics according to 

aggregation experiments in vitro (Harper and Lansbury, 1997; Scheibel et al., 2004; Serio 
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et al., 2000). In the majority of nucleation-growth models for amyloid formation, the rate-

limiting step for aggregation is the formation of an unstable nucleus. This nucleus may 

act as a template for further polymerization and conversion of other polypeptide chains 

(Petty and Decatur, 2005a; Scheibel et al., 2004). In aggregation kinetics, nucleation 

appears as a lag phase that precedes exponential growth of fibers. The exact mechanisms 

by which nucleation and conversion occur are highly debated. 

Different amyloids appear to reach a nucleation state via different mechanisms. 

The soluble human prion protein is largely α-helical and must convert to the primarily β-

sheet structure of the amyloid (Nguyen et al., 1995; Zhang et al., 1995). It appears that a 

refolding intermediate may be involved in this process, though the exact mechanism of 

conversion remains unclear (Prusiner, 1998). One model derived from a dimer structure 

of human prion protein suggests that domain swapping leads to the generation of an anti-

parallel β-sheet that may be important for the transition to an amyloidgenic form (Knaus 

et al., 2001). Domain swapping has also been proposed as a mechanism for β-sheet 

formation in the cystatins, the T7 endonuclease I, and in the formation of amyloid fibers 

from an RNase A protein containing a poly-Q stretch (Guo and Eisenberg, 2006; 

Sambashivan et al., 2005; Sanders et al., 2004). Whether or not complete unfolding or 

partial unfolding is necessary for these domain swapping mechanisms is yet unclear. 

In the case of transthyretin, amyloidogenesis proceeds from a partially folded 

monomer that is derived from the dissociation of the native tetramer (Colon and Kelly, 

1992). Alternatively, a number of amyloids are derived from natively unfolded proteins, 

such as the NM region of the yeast prion Sup35 and the tau protein that is associated with 

amyloid deposits in Alzheimer’s disease (Mukhopadhyay et al., 2007; Schweers et al., 

1994). In these cases, the generation of nuclei either proceeds through oligomerization 

and conformational rearrangements, or from a rarely populated conformation that must 

proceed to oligomerization. FTIR studies on small peptides have revealed that β-sheet 

rearrangements and registration appear to be important steps in the nucleation and 

conversion of amyloidgenic peptides (Petty and Decatur, 2005a; Petty and Decatur, 

2005b). This may be an important mechanism for nucleus formation independent of the 

folding state of the source of the amyloid. 
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Although most of the discussion above has concentrated on disease-related 

amyloidosis, not all amyloids are disease related. In yeast, prions have been shown to 

confer selective advantages under certain environmental conditions or stresses (True et 

al., 2004). Functional amyloids have been discovered in bacteria, where curli proteins 

form amyloid fibers to assist in biofilm formation (Chapman et al., 2002). Humans have 

functional amyloids, as best characterized in the case of Pmel17 whose amyloidogenesis 

is required for the polymerization of melanin (Fowler et al., 2006). Given the number of 

completely different proteins that are capable of forming amyloid under various 

environemental conditions, it has been proposed that the amyloid structure is a generic 

property of polypeptide chains that is independent of the amino acid sequence of the 

protein (Dobson, 1999). 

Although the generic hydrogen bonding of the backbone may be the primary 

controller of amyloidogenesis, side chain identities play a role in the aggregation 

propensities of polypeptide chains (Kim and Hecht, 2005). Amino acid sequence also 

plays a role in the existence of species barriers in prion propagation and the specificity of 

cross-seeding reactions (Tessier and Lindquist, 2007). Examination of the relationship 

between amino acid sequence and folding pathways that lead to β-strand conformations 

both in vitro and in vivo may lead to curative or preventative agents for these diseases. 

 
 
B. THE PROTEIN FOLDING PROBLEM 
 

When Anfinsen originally demonstrated that RNase could refold when diluted 

from denaturants in vitro, he proposed that it could do so because the native state is the 

conformation with the globally lowest free energy for that particular amino acid sequence 

(Anfinsen, 1973; Anfinsen and Scheraga, 1975). According to the Levinthal paradox, if 

the polypeptide chain randomly sampled all possible conformations, then proteins could 

take the lifetime of the universe to reach their native state (Levinthal, 1968; Levinthal, 

1969). In reality, proteins fold through folding pathways specified by their amino acid 

sequence that allows most proteins to fold on time scales from milliseconds to minutes 

both in vivo and in vitro. The essence of the protein folding problem is to understand how 
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a protein’s sequence encodes folding pathways as well as the final structure. 

Given the notion that the native conformation represent a globally minimal free 

energy, it has been proposed that many proteins may misfold and aggregate as discussed 

above due to the presence of kinitecally trapped local minima or alternative folding 

funnels in a protein sequences free energy landscape (Baker et al., 1992; Clark, 2004). 

The above discussion on diseases caused by misfolding and aggregation highlights the 

importance of understanding how the amino acid sequence encodes productive folding 

and avoids non-productive local free-energy minima. The discovery that severe 

neurodegenerative diseases like Alzheimer’s, Huntington’s, and prion diseases involve 

the generation of cross β-sheet structures demonstrates a particular importance for 

understanding the mechanisms of folding β-sheet proteins (Capaldi and Radford, 1998). 

 
1. β-sheet Protein Folding 
 

The sequence requirements for β-sheet formation are poorly understood. Recent 

Critical Assessment of Structure Prediction experiments (CASP5 and CASP6), have 

shown that current computational methods of predicting structure predict α-helices 

significantly better than β-strands when tested on sequences unrelated to known 

structures (Aloy et al., 2003; Vincent et al., 2005). The comparative success of α-helical 

predictions is in large part due to a number of biochemical studies that have elucidated 

sequence rules, such as the heptad repeat found in coiled coils (O'Shea et al., 1991; 

Woolfson and Alber, 1995), and general understanding for small, globular α-helical 

proteins like the four-helix bundles and globins (Kay and Baldwin, 1996; Kim and 

Baldwin, 1990). The elucidated sequence rules for α-helices have allowed for the design 

of new α-helical proteins (Ali et al., 2005; Lombardi et al., 1996; O'Shea et al., 1993). 

Without similarly detailed characterizations of β-sheet proteins, deciphering how amino 

acid sequences direct the folding of polypeptide chains will remain an unsolved problem. 

One problem in elucidating the folding rules for β-sheet proteins lies in the fact 

that β-sheets are inherently more complex than α-helices. β-sheets are high contact order 

structures, meaning that hydrogen bonding or interacting residues are far apart in 
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sequence but are close in space in the final protein structure (Plaxco et al., 1998). In 

contrast, α-helices are low contact order structures where each residue in the helix 

hydrogen bonds with a residue only 4 positions away in the sequence. This low contact 

order allows for the chain to overcome the unfavorable entropic costs of nucleating the 

helix by having a high probability of formation due to the proximity of residues that must 

hydrogen bond (Clarke et al., 1999; Laurents and Baldwin, 1998). According to helix-coil 

transition theory, this nucleus is the most unstable transition state in the folding pathway. 

Once formed, the rest of the helix can rapidly zipper into the helical structure. 

In contrast, the initial formation of β-structure may involve the interaction of 

residues that are hundreds of amino acids apart. This makes it more difficult to elucidate 

a generic pathway of folding for β-sheet proteins. Investigations on the folding of small 

β-sheet proteins, such as the Src homology 3 (SH3) domains of a number of proteins, 

have revealed that these β-sheet proteins appear to fold via a two-state mechanism 

(Capaldi and Radford, 1998). Phi analysis of small, fast β-sheet folders revealed that the 

formation of β-hairpins was primarily responsible for stabilizing the transition state, 

though this was not assumed to be sufficient evidence to state that hairpins initiated 

folding (Viguera et al., 1996). 

In contrast to small β-sheet proteins, larger β-sheet proteins have been shown to 

populate partially folded intermediates. One example is the cellular retinoic acid binding 

protein I (CRABPI), which displays a β-clam topology where two β-sheets surround a 

central cavity (Thompson et al., 1995). Mutational studies on CRABPI, in conjunction 

with fluorescence spectroscopy and quench flow hydrogen exchange, have shown that the 

protein folds in four phases. These studies further showed that the substrate-binding 

pocket formed in the second phase while the protein’s hydrogen bond network formed an 

order of magnitude slower in the third phase of folding, indicating that a near native 

confirmation could be obtained without the formation of stable hydrogen bonds (Clark et 

al., 1997; Clark et al., 1996). Gierasch and coworkers went on to demonstrate that β-turn 

and β-hairpin regions in CRABPI are encoding by local sequence rules, as two of the 

seven β-turns were able to form native-like structures when synthesized as peptides 
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(Rotondi and Gierasch, 2003a; Rotondi and Gierasch, 2003b). These β-turns participate 

in a network of conserved residues important for folding and stability and are likely 

amongst the first parts of the protein to fold (Rotondi et al., 2003). This indicates that the 

amino acid sequence of the β-turns conformationally restricts the structures of folding 

intermediates, driving the polypeptide chain towards its native structure.(Rotondi and 

Gierasch, 2003b; Rotondi et al., 2003). 

Non-native-like folding intermediates have been observed as on-pathway folding 

intermediates for the β-trefoil protein interleukin-1β. Interleukin-1β rapidly collapses to a 

molten globule folding intermediate that possesses 90% of the native structure’s β-sheet 

content, as discovered by circular dichroism (Ptitsyn et al., 1990). This collapse occurred 

on the order of milliseconds, while stable intermediates detectable by NMR did not 

appear until after 1 second of folding. Once stable intermediates were detectable with 

NMR, hydrogen-deuterium exchange showed that they had native-like β-sheets in two 

regions of the protein, indicating the formation of a more native-like folding intermediate 

(Varley et al., 1993). The authors suggested that these experiments indicate that the 

protein rapidly folds to a non-native β-sheet structure that slowly rearranges to a more 

native-like β-sheet structure. This indicates that β-sheets may fold through complex 

folding pathways that may include non-native-like conformations. 

 
2. Protein Folding In Vivo 
 

Due to the complexity of the cellular environment, protein folding studies have 

been almost strictly limited to in vitro refolding in the test tube. Since aggregation and 

off-pathway folding events have traditionally been considered nuisances rather than 

physiologically relevant, these in vitro experiments are often performed under conditions 

that minimize aggregation, such as low homogeneous protein concentrations and at low 

temperatures (Clark, 2004). These environmental conditions do not reflect physiological 

conditions in a living organism, where macromolecular crowding, heterogeneity, and 

cellular organization have profound effects on the folding and stability of proteins 

(Cheung et al., 2005; Minton, 2006). 
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Studies on the folding of the β-clam protein CRABPI have been extended into the 

context of the cell (Ignatova et al., 2007). Utilizing a fluorescence-based system known 

as FlAsH, the investigators determined the free energy of folding of the protein in vivo. 

The results demonstrated a close correlation between the in vivo and in vitro free energies 

of folding. However, kinetic rates for unfolding were altered in the cellular environment 

so that equilibrium was reached more quickly. The authors suggest that this may be due 

to the crowding effects of the cell. 

Fluorescence-based methods have further demonstrated that the ribosome 

interacts with the nascent chain it is translating to induce conformational changes 

(Woolhead et al., 2006). In turn, the nascent chain encodes sequences that interact with 

the ribosome to control the rate of translation. 

These experiments highlight the fact that co-translational folding of nascent 

chains occurs in a complex and interactive environment that is not accurately reproduced 

by refolding experiments out of denaturant. To truly uncover how the sequence of a 

polypeptide chain encodes the folding and structure of a protein in its in vivo 

environment, complementary in vivo and in vitro experiments must be performed on 

model protein systems. This is of particular importance for β-sheet proteins, which 

appear to have complex folding pathways that are often aggregation prone. 

 
 
C. THE β-HELIX FOLD 
 

The parallel β-helix, a structurally repetitive fold created by the coiling of the 

polypeptide backbone, is one of the topologically simplest β-sheet folds (Jenkins and 

Pickersgill, 2001; Jurnak et al., 1994; Pickersgill et al., 1998; Yoder et al., 1993a). Each 

coil or rung of the canonical parallel β-helix fold consists of three β-strands (A, B and C) 

interrupted by variable turn or loop regions (T1, T2, and T3) (Figure 1-2A) (Jurnak et al., 

1994). In most of the parallel β-helix proteins, loops may be large in sequence and may 

contain entire folding domains. Rungs are aligned, forming a cross-β structure of 

elongated β-sheets lying parallel to the helical axis. Structural repetition of coils creates a 
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cylindrical hydrophobic core. β-helices are often capped by α-helix motifs or anti-parallel 

β-strands in order to avoid exposure of the hydrophobic core and unfulfilled hydrogen 

bond donors and acceptors at the ends of the helices (Richardson and Richardson, 2002) 

Three main subclasses of parallel β-helix fold currently exist: the right-handed 

parallel β-helix, the left-handed parallel β-helix, and the triple-stranded parallel β-helix. 

The right-handed β-helix proteins coil around the axis of the helix in a right-handed 

fashion and are further characterized by the presence of a kidney bean shaped cross-

section (Figure 1-2B) (Jenkins and Pickersgill, 2001). In contrast, both the left-handed 

and triple-stranded β-helices wrap around the helical axis in a left-handed direction and 

have a cross-section that is triangular in cross-section (Figure 1-2C) (Jenkins and 

Pickersgill, 2001; Weigele et al., 2003). Examples of these distinct classes of β-helix 

folds are shown in Figure 1-3. 

A number of monomeric and trimeric parallel β-helix proteins display an unusual 

stability, whereby the proteins have extremely high melting temperatures, are resistant to 

protease digestion, and are stable in the presence of detergents (Jenkins and Pickersgill, 

2001; Weigele et al., 2003) 

As of this writing, there are 168 β-helix structure files deposited amongst the 

44,018 known structures in the protein data bank (PDB) (Berman et al., 2000). These β-

helix structures represent approximately 40 different protein classes. Overall, the β-helix 

fold is not a common structural fold (Bradley et al., 2001). The sequences of these 

proteins are quite diverse, displaying typical sequence similarities between any two β-

helix proteins of less than 15% (McDonnell et al., 2006). 
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1. β-helix Functions 
 

Known β-helical proteins are predominantly associated with disease or infection. 

Examples include a number of viral adhesin proteins, virulence factors such as the 

pertactin and hemagglutinin of Bordetella pertussis, and the major pollen allergen from 

the mountain cedar tree (Clantin et al., 2004; Czerwinski et al., 2005; Emsley et al., 1996; 

Jenkins and Pickersgill, 2001). A non-canonical four-sided β-helix fold, which displays a 

square cross-section, has recently been discovered that confers antibiotic resistance to 

Mycobacterium tuberculosis by mimicking the structure of DNA in order to protect DNA 

gyrase against fluoroquinolone inhibition (Hegde et al., 2005). Human retinitis 

pigmentosa 2 protein (RP2), mutations of which are the cause of 10 – 15% of X-linked 

retinitis pigmentosa (RP) cases (Hardcastle et al., 1999; Schwahn et al., 1998), contains a 

right-handed parallel β-helix domain. A large number of mutations associated with RP 

are located in the β-helix domain, many of which are in the buried core of the β-helix 

(Kuhnel et al., 2006). 

The most common functional theme in the β-helix proteins is the use of an 

elongated lateral surface to recognize an extended polysaccharide sequence. (Jenkins and 

Pickersgill, 2001). The structures of P22 tailspike, pectate lyase C, and chondroitinase B 

have all been solved in the presence of polysaccharide ligand and demonstrate the use of 

a cleft on one of the β-sheet faces of the β-helix to bind ligand, though the angle of this 

binding with respect to the axis of the helix depends on the particular protein (Huang et 

al., 1999; Scavetta et al., 1999; Steinbacher et al., 1997b). An alternative mode for 

polysaccharide binding has been observed in the cleft between monomer subunits of the 

trimeric β-helix inulin fructotransferase of Bacillus sp. snu-7 (Jung et al., 2007). In the 

crystal structures of ι-carragenase with and without a cell wall polysaccharide ligand, the 

β-helix surface acts as part of a binding cleft but the extended loops that emerge from the 

turn regions of the β-helix fold over the substrate to form a catalytic tunnel (Michel et al., 

2003). This motif of binding long molecules is not limited to polysaccharides. The non-

canonical two-sheet left-handed β-helical collagen binding domain of YadA from 

Yersinia enterocolitica appears to bind human collagen in a similar manner along the 

long lateral surface of its β-helix (Nummelin et al., 2004). 
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YadA from Yersinia enterocolitica, P.69 pertactin from Bordetella pertussis, and 

hemoglobin protease from E. coli are all β-helical autotransporters, whose folding and 

toxicity is coupled to membrane translocation (Emsley et al., 1996; Otto et al., 2005; 

Roggenkamp et al., 2003). The β-helical filamentous hemagglutinin from B. pertussis 

must also couple its folding to membrane translocation, but does so through a two-partner 

secretion pathway (Clantin et al., 2004). In both transport pathways, outer membrane 

translocation is ATP-independent and proton-gradient independent (Henderson et al., 

2004; Thanassi et al., 2005). It has been proposed that in the case of pertactin, a vectorial 

folding of the β-helix structure may contribute the requisite energy for efficient energy-

independent translocation (Figure 1-4) (Junker et al., 2006). Greater than 97% of 

autotransporters have been predicted to be β-helices, implicating that the energetic 

coupling between folding and secretion may be a more general phenomenon (Junker et 

al., 2006). 

Multiple computational methods have predicted the existence of hundreds of 

additional β-helical proteins that are largely associated with infectious disease, 

pathogens, or allergens (Bradley et al., 2001; Ciccarelli et al., 2002; Jurnak et al., 1994; 

McDonnell et al., 2006). Given the rarity of currently known and predicted human β-

helical proteins, this fold represents a potential target for novel therapies against 

pathogens. Since a number of these potential targets are likely to fall into the family of 

autotransporting virulence factors, not only is the native state a target for therapeutics but 

so are the folding intermediates that contribute to the virulence factor’s secretion from the 

pathogenic cell. It is therefore critical to not only know the native state of the β-helix 

proteins, but to understand their sequence-dependent folding pathways. 
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2. Side Chain Stacking 
 

When the β-helix fold was first discovered upon solving the crystal structure of 

pectate lyase, it was noted that the side chains of the β-helix structure formed linear 

stacks that included asparagines ladders, serine stacks, aliphatic stacks, and aromatic 

stacks (Yoder et al., 1993a; Yoder et al., 1993b). As more β-helix protein structures were 

solved, it became apparent that the existence of elongated stacks composed of aligned, 

similar side chains with similar orientations was a prominent feature common to all β-

helical proteins (Jenkins and Pickersgill, 2001). “Cupped stacks” of aliphatic residues, 

aromatic stacks, and polar zippers that are nearly identical in appearance to the side chain 

stacks observed in amyloid structures (Figure 1-5C, Figure 1-1, Section A4) have all been 

observed in β-helical structures (Jenkins and Pickersgill, 2001; Petersen et al., 1997; 

Raetz and Roderick, 1995). While side chain stacks in the currently solved amyloid 

structures are always composed of identical residues, the side chain stacks observed in β-

helices are often composed of similar side chains that continue to exhibit similar 

orientations, in spite of a lack of sequence identity. Although stacks are composed of 

similar residues, structurally repeated rungs do not exhibit an overt sequence repeat nor 

do they exhibit sequence similarity across β-helical proteins (Bradley et al., 2001). This is 

particularly true for the right-handed parallel β-helix proteins, while the left-handed β-

helix proteins sometimes display a mild sequence repeat. In the right-handed β-helices, 

identical residue stacks of more than four rungs in length are rarely observed. 

It should be noted that stacking of residues in parallel, particularly aromatic 

residues, is not a common feature in the buried cores of globular proteins. In the case of 

aromatics, edge-to-face orientations are more common in non-β-helix proteins (Burley 

and Petsko, 1988). In the context of the β-helices, aromatics do stack as if mimicking the 

stacking of bases in DNA. This can be seen in an aromatic stack composed of twelve 

aromatics in the buried core of the chondroitinase B protein (Figure 1-5C, left). 

When examining the structures of β-helix proteins in the protein database, I 

noticed that side chains that point into the core of the β-helix tend to be aligned in well-

organized stacks, where as those side chains that point out into the solvent tend to align 
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Figure 1-5. Side chain stacking in the buried core of chondroitinase B. (A) Inward-
pointing, buried core residues are shown in sphere representation on top of the ribbon 
diagram of the chondroitinase structure (PDB ID: 1DBG) (Huang et al., 1999). Each 
stack is colored individually. The image on the right is rotated by 180º around the helix 
axis relative to the left image. (B) Cross-section of rungs 3 – 5, demonstrating the 
organized stacking of side chains in the core, as opposed to the solvent exposed exterior. 
(C) The green and yellow buried core stacks in (A) are shown in sphere representation 
absent the rest of the structure. 
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poorly in their side chain orientations (Figure 1-5B). We found this to be particularly true 

for the right-handed β-helices. The organization of these buried core residues is likely an 

indicator of their packing constraints, which may indicate that they play an important role 

in encoding the conformation of the protein. 

One notable exception to this observation is in the group of insect anti-freeze 

proteins, which are left-handed β-helices. These proteins display a high degree of well-

ordered side-chain stacks on the exterior of the protein. In particular, one β-sheet of the 

spruce budworm anti-freeze protein displays nearly perfect threonine stacks on its 

exterior face (Graether et al., 2000). It has been proposed that this stacking has an 

evolved function, whereby the geometry of the threonine stacks mimic the lattice of water 

molecules in ice, thereby allowing the protein to bind ice crystals and prevent further 

crystallization. 

Side chain stacking is a dominant feature of both β-helices and amyloids. It is 

unclear how this apparent one-dimensional crystallization contributes to the folding of 

these proteins, but it is clear that it plays a crucial role in their final structure. 

Understanding the contributions of side chain stacking in the context of the β-helices may 

lend clues to its role in amyloids. Due to a number of common features, the β-helix fold 

has been proposed as a model for that of full-length amyloid protein fibers (Kishimoto et 

al., 2004; Lazo and Downing, 1998; Perutz et al., 2002; Wetzel, 2002; Williams et al., 

2004). In one such model, the NM region of the yeast prion Sup35 has been proposed to 

form β-helical units that interact in a tail-to-tail and head-to-head fashion in order to form 

a fiber (Figure 1-6A) (Krishnan and Lindquist, 2005). A head-to-head assembly has been 

observed in the crystal structure of the globular, soluble potato ADP-glucose 

pyrophosphorylase (Figure 1-6B&C) (Jin et al., 2005), indicating that experimentation 

into the folding and structure of the β-helix proteins may lead to a better understanding of 

β-sheet formation and the assembly of higher order structures that underlies 

amyloidogenesis. 
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D. P22 TAILSPIKE 
 
 
1. Structure of the P22 Tailspike 
 

The tailspike protein of Salmonella phage P22 has been one of the principal 

systems for studying protein folding in β-helices (Jenkins and Pickersgill, 2001). The 2 

kilobase long gene 9 in the phage P22 genome encodes the tailspike’s 72kDa polypeptide 

chain (Sauer et al., 1982). Three of these 666-residue polypeptide chains come together to 

form the multi-domain native structure of the tailspike (Figure 1-7A) (Steinbacher et al., 

1996; Steinbacher et al., 1997a; Steinbacher et al., 1994). At the N-terminus of the 

homotrimer is the head-binding domain, which allows the tailspike protein to assemble 

onto the tail machine of the phage particle but is not necessary for the folding of the rest 

of the protein (Chang et al., 2006; Danner et al., 1993; Lander et al., 2006). 

Subsequent to the N-terminal head-binding domain, each polypeptide chain 

contains a 13 rung, right-handed parallel β-helix domain (residues 143-540). This β-helix 

domain includes the globular dorsal fin domain, which sticks out of the β-helix at turn T3 

of rung 3 (Figure 1-7B). Tailspike’s β-helix is capable of recognizing the O-antigen of 

Salmonella’s cell surface lipopolysaccharide and cleaving it via an endorhamnosidase 

activity (Seckler, 1998). Upon binding, the long, floppy O-antigen sits in the elongated 

lateral cleft of the β-helix, located between the dorsal fin and the ventral fin (Figure 1-

7C). This binding mode brings the polysaccharide into close contact with the active site 

residues D392, D395 and E359, which are capable of cleaving the α(1,3)-O-glycosidic 

bond between rhamnose and galactose in the O-antigen (Steinbacher et al., 1997b). 

Although this endorhamnosidase activity is not necessary for phage adsorption, it is 

believed to help bring the phage to the cell membrane so that DNA injection can occur 

(Berget and Poteete, 1980; Israel, 1978; Iwashita and Kanegasaki, 1976). 
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C-terminal to the β-helix domain, monomers wrap around each other to form an 

intertwined β-sheet domain where each chain’s residues contribute to a single buried 

hydrophobic core, consisting of one rung of a triple β-helix (residues 541-557) and a 

triple β-prism structure (Kreisberg et al., 2000; Seckler, 1998; Steinbacher et al., 1994). 

The ultimate step in tailspike’s productive folding pathway (Figure 1-8) coincides with 

the folding and assembly of this interdigitated region to form a molecular clamp that 

makes tailspike resistant to trypsin degradation and SDS denaturation, and raises the 

melting temperature by approximately 40°C to 88.4°C (Goldenberg and King, 1982; 

Kreisberg et al., 2002; Sturtevant et al., 1989). Because of the native structure’s SDS 

resistance, final native structure can be easily separated and identified from folding 

intermediates and aggregates by SDS gel electrophoresis. 

At the far C-terminus of the homotrimer is a region of the protein called the 

cysteine annulus (Figure 1-7B), so called due to the total presence of six cysteine 

residues, two (C613 and C635) from each polypeptide chain. 

 
2. In Vivo Folding Pathway of P22 Tailspike 
 

Extensive studies of the in vivo folding pathway of tailspike have revealed a 

number of long-lived, partially folded intermediates (Figure 1-8) (Betts and King, 1999). 

The first of these intermediate structures, a β-helical conformer [I0], rapidly develops 

while nascent chains are still attached to the ribosome (Clark and King, 2001). Upon 

release from the ribosome tailspike, thermolabile monomeric intermediates, [I], may 

oligomerize and further fold into the SDS-resistant trimeric tailspike, NT (Goldenberg et 

al., 1982). 

Oligomerization of the tailspike into a natively structured heterotrimer appears to 

involve the region of the protein C-terminal to the β-helix (Gage and Robinson, 2003). 

Part of this assembly reaction involves the formation of a transient disulfide bond that is 

not present in the final native structure (Danek and Robinson, 2003; Haase-Pettingell et 

al., 2001; Robinson and King, 1997). Initial evidence suggests that this disulfide bond 

may first form in the monomeric folding intermediate [I] (Kim and Robinson, 2006),  



 43 

 
 

Fi
gu

re
 1

-8
. I

n 
vi

vo
 fo

ld
in

g 
pa

th
w

ay
 o

f t
he

 P
22

 ta
ils

pi
ke

 h
om

ot
ri

m
er

. A
s d

es
cr

ib
ed

 in
 th

e 
te

xt
, t

he
 u

pp
er

 b
ra

nc
h 

of
 th

e 
fo

ld
in

g 
pa

th
w

ay
 sh

ow
s p

ro
du

ct
iv

e 
in

tra
ce

llu
la

r i
nt

er
m

ed
ia

te
s l

ea
di

ng
 to

 th
e 

na
tiv

e 
st

at
e.

 In
te

rm
ed

ia
te

s l
ea

di
ng

 to
 th

e 
in

cl
us

io
n 

bo
dy

 st
at

e 
ar

e 
on

 sh
ow

n 
on

 th
e 

bo
tto

m
. [

pT
] =

 P
ro

tri
m

er
. 



 44 

where it may aid in the formation of an intermolecular disulfide bond in the dimer and 

protrimer intermediates (Betts and King, 1998; Robinson and King, 1997). The transition 

from the protrimer to the native trimer involves the reduction of transient disulfide bonds 

and is coincident with further folding of the interdigitated and β-prism regions of the 

protein (Kreisberg et al., 2002). Mutations have been isolated in these regions that block 

or delay this final transition to the native trimer (Gage et al., 2005; Weigele et al., 2005). 

From such mutants, it has been shown that mutations that block oligomerization or trimer 

maturation result in the accumulation of soluble, SDS-sensitive species (Betts et al., 

2004; Kreisberg et al., 2002). 

Alternatively, the presence of any of over 60 genetically isolated temperature-

sensitive folding (tsf) mutations at temperatures in the higher range of cellular growth 

will generate a misfolded monomeric conformation [I*], which specifically self-

aggregates and accumulates in inclusion bodies (Haase-Pettingell and King, 1997; Haase-

Pettingell and King, 1988). Higher temperatures prevent the wild-type tailspike protein 

from folding successfully, causing wild-type chains to aggregate in the cell. This in turn 

limits the growth of the P22 phage (Pope et al., 2004). Aggregation proceeds via 

monomer addition of aggregation prone intermediates that are conformationally similar to 

productive folding intermediates (Speed et al., 1997; Speed et al., 1995). Though a 

specific aggregation pathway exists, the conformation of polypeptide chains in these 

aggregates is unknown and may contain native-like conformations. 

The tsf mutations, predominately located at surface loops and turns, appear to act 

by destabilizing the β-helical structure found in the thermolabile, monomeric folding 

intermediate (Haase-Pettingell and King, 1997; Schuler and Seckler, 1998). Global 

suppressors (su) of the tsf mutations or lower temperatures stabilize the β-helical fold or 

otherwise inhibit aggregation (Danner and Seckler, 1993; Schuler and Seckler, 1998). 

The GroEL chaperone does not assist tailspike chains in efficiently folding or preventing 

aggregation in vivo (Gordon et al., 1994). Partitioning between native and aggregation 

states is therefore a reflection of the folding state of the β-helix. As a result of the native 

tailspike’s SDS-resistance, SDS-PAGE of whole lysates provides a sensitive and reliable 

measure of in vivo folding (Goldenberg and King, 1982; Goldenberg et al., 1982). 
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3. Stacking in the P22 Tailspike 
 

The numerous surface site tsf mutations represent residues essential for the 

creation of the β-helical fold at higher temperatures but do not carry the essential 

information for β-helix folding, as they are unnecessary at lower temperatures. In 

contrast, five phenylalanines and one leucine in the hydrophobic core stacks are essential 

for the folding, but not stability, of tailspike at high and low temperatures (Betts et al., 

2004). This suggests that stacked core residues contain the necessary sequence 

information to direct β-helix formation. 

It has been observed that disruptions of hydrophobic side chain packing in the 

cores of β-sheet and β-barrel proteins disrupts their folding or destabilizes the native state 

(Gunasekaran et al., 2001; Sauer, 1996). This implies that the buried core residues of the 

P22 tailspike may be particularly important in encoding the β-helix structure. We have 

observed that the buried core of the P22 tailspike is dominated by the presence of side 

chain stacks (Figure 1-9). In total, we identified ten main columns of stacks, each of 

which is displayed in its own individual color in Figure 1-9. These stacks encompass 113 

buried core residues, six of which are the amino acids discovered to be essential for 

folding in vivo (Betts et al., 2004). Like the observations made on other β-helix proteins, 

these stacks appear better organized in relation to shared side chain orientations than 

residues that point out into the solvent. These observations further indicate that these 

buried core, side chain stacking residues are primary candidates for the residues that 

encode the folding and structure of the P22 tailspike protein. 

Investigating the role that buried, side chain stacking residues play in the folding 

of the P22 tailspike’s β-helix domain may yield information relevant to amyloid 

formation, especially since a fragment composed solely of the isolated β-helix domain is 

capable of forming amyloid fibers (Schuler et al., 1999). 
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Figure 1-9. Side chain stacking in the core of the P22 tailspike β-helix. (A) The C-
terminal portion (113-666) of a single chain of the P22 tailspike trimer is shown as a 
ribbon diagram and a transparent molecular surface. Backbone and side chain atoms of 
inward pointing, buried core residues are shown in space-fill and colored according to 
their stack. Solvent exposed residues are not shown for clarity. (B) Rung 6 cross-section 
of the β-helix domain, demonstrating the locations of inward pointing stacks (spheres) 
and outward pointing residues (sticks). (C) Side chain atoms of the buried core. Single 
spheres represent glycines. The left image is in the same orientation as (A); the right is 
rotated by 180º. Figure reprinted from (Simkovsky and King, 2006), © 2006 by The 
National Academy of Sciences of the USA. 
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E. THESIS OBJECTIVES 
 

The aim of this thesis is to elucidate the role that the amino acid sequence of a 

protein plays in the importance of the side-chain stacking phenomenon. Specifically, this 

thesis investigates the contributions of the amino acid sequence of the buried core stacks 

of the β-helix domain of P22 tailspike towards the folding of the β-helix. The roles of 

these buried side chains was first investigated through a large-scale scanning alanine 

mutagenesis experiment (Chapter 2). The results of this mutagenesis experiment lead to a 

model pathway for the folding of the β-helix domain, which is subsequently tested and 

examined in the remaining chapters. 

These studies lead to a better understanding of the tailspike’s folding pathway, 

with particular attention to the folding of the β-helix domain. In the broader scheme, the 

results of the thesis contributes understanding into the mechanisms by which an amino 

acid sequence may direct polypeptide chains into a folded state or into aggregation. 

Given the similarities between tailspike and other aggregation prone proteins, such as 

amyloids, this thesis has general application to our understanding of β-sheet folding, 

assembly, and aggregation. 
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CHAPTER TWO: 
 
 

IN VIVO MUTAGENESIS OF THE P22 
TAILSPIKE β-HELIX BURIED CORE 
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A. INTRODUCTION 
 
 
1. Stacking in the Buried Core of the P22 Tailspike 
 

Upon inspection of the structure of the tailspike protein (PDB file 1TYU 

(Steinbacher et al., 1996)), it became apparent that the majority of the β-helix buried core 

is composed of stacked residues whose side chains have similar conformations (Figure 1-

9). In total, ten buried core stacks were identified containing 113 amino acids that 

comprised the entirety of the β-helix domain’s core: six stacks participating in the 

structurally conserved β-sheets (red, orange, yellow, green, magenta, and purple stacks in 

Figure 1-9), two pseudo-stacks located in T2 and T3 (cyan and gray), one short stack 

preceding sheet C running from rungs 5 to 13 (blue), and a second shortened stack of 

three residues at the N-terminus of the β-helix in the conserved turn T2 (brown). 

 
2. Experimental Design 
 

Side chain stacking is a prominent feature of the buried core of the P22 tailspike 

β-helix domain, in spite of the fact that this domain does not display an overt sequence 

repeat (Figure 2-1). How does the amino acid sequence of these stacks contribute to the 

folding of the protein and how are residue mismatches in stacks tolerated? 

To investigate the contributions of all stacked, buried core side chains to the 

folding of the parallel β-helix, I have carried out a high-throughput, scanning alanine 

mutagenesis study on the folding of the P22 tailspike (Cunningham and Wells, 1989). 

Scanning alanine mutagenesis allows for an unbiased evaluation of the contributions of 

side chains to the folding and stability of a protein’s structure (Yu et al., 1995). Each of 

the 103 buried, non-alanine residues was individually replaced with alanine and the 

mutant chains expressed in E. coli. 

Capping regions exist in β-sheet structures to fulfill hydrogen bonding potential 

and prevent aggregation (Richardson and Richardson, 2002). To investigate this in the 

case of the β-helix, all residues in the N-terminal capping region (122-146) and the C-

terminal region of the β-helix domain (521- 545) were chosen as targets of  



 51 

   

 
   

Fi
gu

re
 2

-1
. S

tr
uc

tu
re

-b
as

ed
 se

qu
en

ce
 a

lig
nm

en
t o

f t
he

 P
22

 ta
ils

pi
ke

 β
-h

el
ix

. T
he

 a
m

in
o 

ac
id

 se
qu

en
ce

 o
f t

he
 β

-h
el

ix
 d

om
ai

n 
(1

43
 

– 
54

0)
 w

as
 a

lig
ne

d 
ba

se
d 

on
 th

e 
st

ac
ki

ng
 o

bs
er

ve
d 

in
 th

e 
PD

B
 st

ru
ct

ur
e 

1T
Y

U
 (S

te
in

ba
ch

er
 e

t a
l.,

 1
99

6)
. E

ac
h 

ro
w

 in
 th

e 
ab

ov
e 

ta
bl

e 
re

pr
es

en
ts

 a
 ru

ng
 o

f t
he

 β
-h

el
ix

, a
s n

um
be

re
d 

on
 th

e 
le

ft.
 In

w
ar

d-
po

in
tin

g,
 b

ur
ie

d 
co

re
 st

ac
k 

re
si

du
es

 a
re

 c
ol

or
ed

 a
cc

or
di

ng
 to

 th
e 

sc
he

m
e 

us
ed

 in
 F

ig
ur

e 
1-

9,
 w

hi
le

 o
ut

w
ar

d 
po

in
tin

g 
re

si
du

es
 a

nd
 lo

op
 re

gi
on

s a
re

 n
ot

 sh
ad

ed
. G

51
1,

 w
hi

ch
 is

 d
is

or
de

re
d 

in
 th

e 
cr

ys
ta

l 
st

ru
ct

ur
e,

 is
 in

cl
ud

ed
 in

 th
e 

di
ag

ra
m

 a
s a

 p
ot

en
tia

l p
ar

t o
f s

ta
ck

 1
2,

 b
ut

 is
 n

ot
 c

ol
or

ed
. 

 



 52 

mutagenesis, irrespective of their solvent accessibility. Six further solvent exposed 

residues located throughout the β-helix domain were added to the target list due to their 

proximity and potential chemical reactivity with cysteine residues. One disordered 

glycine, G511, was chosen for mutagenesis due to its potential location at a stacking 

position. 

As further positional controls, five residues outside of the β-helix domain in a part 

of the structure known as the cysteine annulus were chosen for mutagenesis. The cysteine 

annulus is known to be important for the oligomerization of P22 tailspike (Danek and 

Robinson, 2003). The positions selected included two cysteine residues (C613 and C635) 

believed to be important for the presence of a transient disulfide bond in a oligomerized 

protein folding intermediate as well as residues that appeared likely to affect the 

reactivity of those cysteine residues (H610, D632, and P638) (Fomenko and Gladyshev, 

2003). 

 
 
B. MATERIALS AND METHODS 
 
 
1. Production of Single Alanine Mutants 
 

Gene 9, which encodes the Salmonella phage P22’s tailspike protein, was 

previously cloned into the vector pET11a (Novagen) as described (Kreisberg et al., 

2002). The resulting vector, pET(gene9), encoded the full length wild-type tailspike 

protein. 

Methylated pET(gene9) DNA was purified to act as template DNA for 

mutagenesis from XL1-Blue cells (Stratagene) using a QIAGEN Plasmid Midi Kit. 

Scanning alanine mutagenesis was performed using the PCR-based QuikChange 

mutagenesis procedure (Stratagene) in a parallelized, high-throughput manner. Sequences 

of mutagenic primers (IDT) are listed in Table 2-1. Mutagenesis reactions were 

performed in parallel in 96 well plates and utilized multi-channel pipeting to achieve 

high-throughput processing. 
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Table 2-1. Mutagenic primers used to construct single alanine mutants. Forward 
mutagenic primers that were used to produce the specified single alanine mutations are 
listed. Reverse mutagenic primers used in the reaction were the exact reverse 
complement of the forward primers. 
 
Mutation Forward primer 

K122A 5'-CAATAGAAGCTGATAAAAAATTTGCGTATTCAGTAAAATTATCAG-3' 
Y123A 5'-CAATAGAAGCTGATAAAAAATTTAAGGCTTCAGTAAAATTATCAG-3' 
S124A 5'-CAATAGAAGCTGATAAAAAATTTAAGTATGCAGTAAAATTATCAG-3' 
V125A 5'-GCTGATAAAAAATTTAAGTATTCAGCAAAATTATCAGATTATCC-3' 
K126A 5'-GTATTCAGTAGCATTATCAGATTATCCAACATTGCAGGATGCAG-3' 
L127A 5'-GTATTCAGTAAAAGCATCAGATTATCCAACATTGCAGGATGCAGC-3' 
S128A 5'-CAGTAAAATTAGCAGATTATCCAACATTGCAGGATGCAGC-3' 
D129A 5'-CAGTAAAATTATCAGCTTATCCAACATTGCAGGATGCAGC-3' 
Y130A 5'-GTAAAATTATCAGATGCTCCAACATTGCAGGATGCAGCATCTG-3' 
P131A 5'-GTAAAATTATCAGATTATGCAACATTGCAGGATGCAGCATCTG-3' 
T132A 5'-CAGATTATCCAGCATTGCAGGATGCAGCATCTGC-3' 
L133A 5'-GATTATCCAACAGCGCAGGATGCAGCATCTGCTGC-3' 
Q134A 5'-GATTATCCAACATTGGCGGATGCAGCATCTGCTGCG-3' 
D135A 5'-CAACATTGCAGGCTGCAGCATCTGCTGCG-3' 
S138A 5'-GCAGGATGCAGCAGCTGCTGCGGTTG-3' 
V141A 5'-CAGCATCTGCTGCGGCTGATGGCCTTC-3' 
D142A 5'-CTGCTGCGGTTGCTGGCCTTCTTATCGATC-3' 
G143A 5'-GCATCTGCTGCGGTTGATGCCCTTCTTATCG-3' 
L144A 5'-CTGCTGCGGTTGATGGCGCTCTTATCGATCGAG-3' 
L145A 5'-CTGCTGCGGTTGATGGCCTTGCTATCGATCGAG-3' 
I146A 5'-GATGGCCTTCTTGCCGATCGAGATTATAATTTTTATGGTGGAG-3' 
R148A 5'-CGGTTGATGGCCTTCTTATCGATGCAGATTATAATTTTTATGGTG-3' 
Y150A 5'-GGCCTTCTTATCGATCGAGATGCTAATTTTTATGGTGGAGAG-3' 
F152A 5'-GGCCTTCTTATCGATCGAGATTATAATGCTTATGGTGGAGAG-3' 
Y153A 5'-GAGATTATAATTTTGCTGGTGGAGAGACAGTTGATTTTGGCGG-3' 
E156A 5'-GATTATAATTTTTATGGTGGAGCGACAGTTGATTTTGGCGG-3' 
V158A 5'-GGTGGAGAGACAGCTGATTTTGGCGGAAAGG-3' 
F160A 5'-GGTGGAGAGACAGTTGATGCTGGCGGAAAGGTTC-3' 
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Mutation Forward primer 
K163A 5'-GAGAGACAGTTGATTTTGGCGGAGCGGTTCTGACTATAG-3' 
L165A 5'-GAGACAGTTGATTTTGGCGGAAAGGTTGCGACTATAGAATG-3' 
T166A 5'-GATTTTGGCGGAAAGGTTCTGGCTATAGAATGTAAAGC-3' 
I167A 5'-GTTGATTTTGGCGGAAAGGTTCTGACTGCAGAATGTAAAGC-3' 
C169A 5'-GCGGAAAGGTTCTGACTATAGAAGCTAAAGCTAAATTTATAGGAG-3' 
K172A 5'-CGGAAAGGTTCTGACTATAGAATGTAAAGCTGCATTTATAGGAG-3' 
F173A 5'-GGTTCTGACTATAGAATGTAAAGCTAAAGCTATAGGAGATGG-3' 
G175A 5'-GCTAAATTTATAGCAGATGGAAATCTTATTTTTACGAAATTAGGC-3' 
L179A 5'-GAGATGGAAATGCTATTTTTACGAAATTAGGCAAAGGTTCCCGC-3' 
F181A 5'-GATGGAAATCTTATTGCTACGAAATTAGGCAAAGGTTCCCGC-3' 
L184A 5'-CTTATTTTTACGAAAGCAGGCAAAGGTTCCCGCATTGCCG-3' 
S188A 5'-GAAATTAGGCAAAGGTGCCCGCATTGCCGG-3' 
I190A 5'-CAAAGGTTCCCGCGCTGCCGGGGTTTTTATGG-3' 
V193A 5'-CCCGCATTGCCGGGGCTTTTATGGAAAGC-3' 
M195A 5'-CCGCATTGCCGGGGTTTTTGCGGAAAGCACTAC-3' 
S260A 5'-GCAAAAGGGCAAAACATAACGGCTACGTTAGAAATTAGAG-3' 
L262A 5'-CATAACGTCTACGGCAGAAATTAGAGAATGTATAGGGGTCG-3' 
I264A 5'-GTCTACGTTAGAAGCTAGAGAATGTATAGGGGTCGAAGTTC-3' 
C267A 5'-GAAATTAGAGAAGCTATAGGGGTCGAAGTTCATCGGGCTAG-3' 
V270A 5'-GAGAATGTATAGGGGCCGAAGTTCATCGGGC-3' 
V272A 5'-GTATAGGGGTCGAAGCTCATCGGGCTAGC-3' 
G277A 5'-GTTCATCGGGCTAGCGCTCTAATGGCTGG-3' 
F282A 5'-GGCTAGCGGTCTAATGGCTGGTGCTTTGTTTAGAGG-3' 
F284A 5'-GCGGTCTAATGGCTGGTTTTTTGGCTAGAGGGTGTC-3' 
C287A 5'-GTTTAGAGGGGCTCACTTCTGCAAGATGGTAGACGC-3' 
C290A 5'-GAGGGTGTCACTTCGCCAAGATGGTAGACGCC-3' 
M292A 5'-CTTCTGCAAGGCGGTAGACGCCAATAATCCAAGCG-3' 
V293A 5'-CTGCAAGATGGCAGACGCCAATAATCCAAGCG-3' 
P298A 5'-GACGCCAATAATGCAAGCGGAGGTAAAGATGGC-3' 
G300A 5'-GACGCCAATAATCCAAGCGCAGGTAAAGATGGC-3' 
G301A 5'-GCCAATAATCCAAGCGGAGCTAAAGATGGCATTATAAC-3' 
I305A 5'-GTAAAGATGGCGCTATAACCTTCGAAAACCTTAGCGGCG-3' 
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Mutation Forward primer 
I306A 5'-GTAAAGATGGCATTGCAACCTTCGAAAACCTTAGCGGCG-3' 
F308A 5'-CATTATAACCGCCGAAAACCTTAGCGGCGATTGGGG-3' 
N310A 5'-CATTATAACCTTCGAAGCCCTTAGCGGCGATTGGGG-3' 
N319A 5'-GGGGAAGGGTGCCTATGTCATTGGCGGACG-3' 
V321A 5'-GGGGAAGGGTAACTATGCCATTGGCGGAC-3' 
G324A 5'-CTATGTCATTGGCGCACGAACCAGCTATGGG-3' 
T326A 5'-CATTGGCGGACGAGCCAGCTATGGGTC-3' 
G329A 5'-GAACCAGCTATGCGTCAGTAAGTAGCGCCC-3' 
S333A 5'-CAGCTATGGGTCAGTAAGTGCCGCCCAGTTTTTACG-3' 
F336A 5'-GGGTCAGTAAGTAGCGCCCAGGCTTTACGTAATAATGG-3' 
N339A 5'-GCGCCCAGTTTTTACGTGCTAATGGTGGCTTTGAACG-3' 
G347A 5'-GGTGGCTTTGAACGTGATGCTGGAGTTATTGGG-3' 
V349A 5'-GCTTTGAACGTGATGGTGGAGCTATTGGGTTTAC-3' 
F352A 5'-GGAGTTATTGGGGCTACTTCATATCGCGCTGGGG-3' 
S354A 5'-GTTATTGGGTTTACTGCATATCGCGCTGGGGAG-3' 
G361A 5'-CGCGCTGGGGAGAGTGCCGTTAAAACTTG-3' 
V362A 5'-GCTGGGGAGAGTGGCGCTAAAACTTGGC-3' 
T364A 5'-GTGGCGTTAAAGCTTGGCAAGGTACTGTGGG-3' 
N376A 5'-GGGCTCGACAACCTCTCGCGCCTATAATCTGC-3' 
L379A 5'-CGCAACTATAATGCGCAATTCCGCGACTCGGTCG-3' 
F381A 5'-CTCGCAACTATAATCTGCAAGCCCGCGACTCGG-3' 
S384A 5'-CAATTCCGCGACGCGGTCGTTATTTACCCC-3' 
V386A 5'-CCGCGACTCGGTCGCTATTTACCCCG-3' 
P389A 5'-CTCGGTCGTTATTTACGCCGTATGGGACGG-3' 
G393A 5'-CCCCGTATGGGACGCATTCGATTTAGGTGC-3' 
F394A 5'-CCCCGTATGGGACGGAGCCGATTTAGGTGC-3' 
L396A 5'-GGGACGGATTCGATGCAGGTGCTGACACTGAC-3' 
L424A 5'-CAATACCCACTGCATCAGTTACCCGCAAATCACCTGATTG-3' 
H426A 5'-GTTACCCCTAAATGCCCTGATTGATAATCTTCTGGTTCGC-3' 
I428A 5'-CTAAATCACCTGGCTGATAATCTTCTGGTTCGCGGGG-3' 
L431A 5'-CACCTGATTGATAATGCTCTGGTTCGCGGGGCG-3' 
V433A 5'-GATAATCTTCTGGCTCGCGGGGCGTTAGG-3' 
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Mutation Forward primer 
G440A 5'-GCGGGGCGTTAGGTGTAGCTTTTGGTATGG-3' 
F441A 5'-CGGGGCGTTAGGTGTAGGTGCTGGTATGGATG-3' 
M443A 5'-GCGTTAGGTGTAGGTTTTGGTGCGGATGGTAAGGG-3' 
G445A 5'-GGTTTTGGTATGGATGCTAAGGGCATGTATGTGTC-3' 
M448A 5'-GATGGTAAGGGCGCGTATGTGTCTAATATTACCGTAGAAG-3' 
V450A 5'-GGATGGTAAGGGCATGTATGCGTCTAATATTACCG-3' 
I453A 5'-GTATGTGTCTAATGCTACCGTAGAAGATTGCGCTGGGTC-3' 
V455A 5'-CTAATATTACCGCAGAAGATTGCGCTGGGTCTGG-3' 
C458A 5'-CGTAGAAGATGCCGCTGGGTCTGGCGCG-3' 
S461A 5'-GATTGCGCTGGGGCTGGCGCGTACC-3' 
G462A 5'-CGCTGGGTCTGCCGCGTACCTACTC-3' 
L465A 5'-GGGTCTGGCGCGTACGCACTCACCCACG-3' 
T467A 5'-GCGCGTACCTACTCGCCCACGAATCAG-3' 
S470A 5'-CCTACTCACCCACGAAGCAGTATTTACCAATATAGC-3' 
F472A 5'-GCGTACCTACTCACCCACGAATCAGTAGCTACCAATATAG-3' 
I475A 5'-CCCACGAATCAGTATTTACCAATGCAGCCATAATTGACACC-3' 
I477A 5'-CAATATAGCCGCAATTGACACCAATACTAAGGATTTCCAGGC-3' 
T480A 5'-GCCATAATTGACGCCAATACTAAGGATTTCCAGGC-3' 
Q489A 5'-CCAGGCGAATGCGATTTATATATCTGGGGCTTGCCG-3' 
I490A 5'-GGCGAATCAGGCTTATATATCTGGGGCTTGCCGTG-3' 
I492A 5'-GGCGAATCAGATTTATGCATCTGGGGCTTGCCGTG-3' 
S493A 5'-GATTTATATAGCTGGGGCTTGCCGTGTGAACGG-3' 
C496A 5'-GATTTATATATCTGGGGCTGCCCGTGTGAACGGTTTACG-3' 
V498A 5'-GGGGCTTGCCGTGCGAACGGTTTACG-3' 
N499A 5'-GGGGCTTGCCGTGTGGCCGGTTTACGTTTAATTG-3' 
L501A 5'-CCGTGTGAACGGTGCACGTTTAATTGGGATCCGC-3' 
L503A 5'-CCGTGTGAACGGTTTACGTGCAATTGGGATCCGC-3' 
G511A 5'-CCGCTCAACCGATGCGCAGGGTCTAAC-3' 
T515A 5'-GGCAGGGTCTAGCCATAGACGCCCC-3' 
I516A 5'-GGCAGGGTCTAACCGCAGACGCCCCTAAC-3' 
S521A 5'-GACGCCCCTAACGCTACCGTAAGCGG-3' 
T522A 5'-CCCTAACTCTGCCGTAAGCGGTATAACCGG-3' 
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Mutation Forward primer 
V523A 5'-CCCCTAACTCTACCGCAAGCGGTATAACCG-3' 
S524A 5'-CCCCTAACTCTACCGTAGCCGGTATAACCGGG-3' 
G525A 5'-CTACCGTAAGCGCTATAACCGGGATGGTAGAC-3' 
I526A 5'-CGTAAGCGGTGCAACCGGGATGGTAGACCC-3' 
T527A 5'-GTAAGCGGTATAGCCGGGATGGTAGACCC-3' 
G528A 5'-GCGGTATAACCGCGATGGTAGACCCCTC-3' 
M529A 5'-GCGGTATAACCGGGGCGGTAGACCCCTC-3' 
V530A 5'-GGTATAACCGGGATGGCAGACCCCTCTAG-3' 
D531A 5'-CGGGATGGTAGCCCCCTCTAGAATTAATGTTGC-3' 
P532A 5'-CCGGGATGGTAGACGCCTCTAGAATTAATGTTGC-3' 
S533A 5'-CCGGGATGGTAGACCCCGCTAGAATTAATGTTG-3' 
R534A 5'-GTATAACCGGGATGGTAGACCCCTCTGCAATTAATGTTGC-3' 
I535A 5'-CCCCTCTAGAGCTAATGTTGCTAATTTGGCAGAAGAAGGG-3' 
N536A 5'-GGGATGGTAGACCCCTCTAGAATTGCTGTTGCTAATTTGG-3' 
V537A 5'-GGTAGACCCCTCTAGAATTAATGCTGCTAATTTGGC-3' 
N539A 5'-CCCCTCTAGAATTAATGTTGCTGCTTTGGCAGAAGAAGGG-3' 
L540A 5'-GACCCCTCTAGAATTAATGTTGCTAATGCGGCAGAAGAAG-3' 
E542A 5'-CTAATTTGGCAGCAGAAGGGTTAGGTAATATCCGC-3' 
E543A 5'-CTAATTTGGCAGAAGCAGGGTTAGGTAATATCCGC-3' 
G544A 5'-GGCAGAAGAAGCGTTAGGTAATATCCGCGCTAATAG-3' 
L545A 5'-GGCAGAAGAAGGGGCAGGTAATATCCGCGCTAATAG-3' 
H610A 5'-GCTGTATCATTAAAAGTTAACGCCAAAGATTGCAGGGGGG-3' 
C613A 5'-CCACAAAGATGCCAGGGGGGCAGAGATACCATTTG-3' 
D632A 5'-CGCGTCAGATGATTTTATAAAGGCTTCCTCATGTTTTTTGC-3' 
C635A 5'-CAGATGATTTTATAAAGGATTCCTCAGCTTTTTTGCCATATTGGG-3' 
P638A 5'-GGATTCCTCATGTTTTTTGGCATATTGGGAAAATAATTCTACTTC-3' 
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Clones encoding full length, but potentially altered, tailspike were identified via 

over-expression in Escherichia coli NovaBlue(DE3) cells (Novagen). Plasmid DNA was 

purified using QIAprep Spin MiniPrep kits (QIAGEN). DNA sequencing of a 400 base 

pair region (20% of the tailspike gene) containing the targeted codon confirmed mutant 

clones (MGH DNA Core, Cambridge, MA). 

 
2. Expression of Tailspike Constructs 
 

Plasmid DNA encoding confirmed alanine mutants was transformed into E. coli 

BL21(DE3) using a single step protocol, as described in (Chung et al., 1989). 

Transformations were performed in parallel in 2 ml 96 deep-well plates (Bel-Art) and 

were prepared in a high-throughput manner. Cultures were selected on individual Luria 

Broth (LB) plates containing 100 µg/ml ampicillin. This selection stage was the only part 

of the experimental procedure that could not be performed in a high-throughput way. 

Cultures were made into 40% glycerol working stocks and 8.3% DMSO freeze 

stocks after 8 hours of growth in LB containing 100 µg/ml ampicilllin at 37ºC. Working 

stocks were stored at -20ºC in 96 deep-well plates while freeze stocks were stored at -

80ºC in dram vials. Expression cultures were inoculated via 100-fold dilution of the 

working stocks into LB media containing 0.5% glucose, 50 mM 3-[N-morpholino]-

propanesulfonic acid (MOPS) and 100 µg/ml ampicillin. Cells were grown shaking (225 

rpm) in 500 µl volumes in 96 deep-well plates for approximately 4 hours at 30ºC until 

cultures reached an OD600 between 0.4 and 0.5. Isopropyl-β-D-thiogalactopyranoside 

(IPTG) was added to a final concentration of 1.5 mM to induce protein expression. 

Cultures were transferred to 37ºC, 30ºC, 18ºC, or 10ºC and were allowed to express 

protein for approximately 4.25, 6.5, 18.3 hours, or 24 hours respectively. Cultures were 

harvested via centrifugation for 15 minutes at 4000g and 4ºC. Cells were resuspended to 

1/10 volume in lysis buffer (50 mM Tris-HCl, pH8.0; 25 mM NaCl; 2 mM EDTA; 0.1% 

Triton X-100) and stored at -20ºC. 
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3. Cell Lysis and SDS-PAGE 
 

Frozen expression samples were thawed at room temperature and lysis was 

initiated by addition of freshly dissolved lysozyme (1 mg/ml final concentration from 10 

mg/ml aqueous solution) and PMSF (9 mM final concentration from 90 mM stock in 

isopropanol). After 30 min of slow stirring at room temperature and addition of DNase I 

(Sigma) (10 µg/ml final concentration from 0.06 mg/ml stock in glycerol; 1 M MgSO4), 

lysates were stirred for an additional 30 min. 

Half of each lysate was removed as a complete lysate sample, while the remaining 

lysate was centrifuged for 30 min at 4,000g and 4ºC in shallow well plates to separate 

soluble and insoluble fractions. Lysate pellets were resuspended in lysis buffer by gentle 

agitation. Lysate fractions were mixed with 2% SDS sample buffer containing 15% BME 

as previously described (Betts et al., 2004). SDS-PAGE was run at 4ºC on 7.5% 

polyacrylamide, 102-lane Triple Wide gels (C.B.S. Scientific) using the discontinuous 

buffer system of King and Laemmli (King and Laemmli, 1971). A multichannel pipet 

was used to ensure rapid and efficient loading. 

 
4. Optical Densitometry and Folding Efficiency Calculations 
 

Coomassie-stained gels were individually scanned at 300ppi and 8-bit gray scale 

via a ScanMaker 9800XL tabletop scanner (Microtek). Optical densitometry of the gel 

image was performed using the GelAnalyzer plug-in (Appendix A) for ImageJ (NIH). In 

brief, gel images were calibrated using a Kodak OD step tablet (AI-04-0057, Tiffen 

Company) that ranged from 0.6 to 3.09 OD. Profile plots of lanes were calculated as the 

average OD across a lane’s width. Background levels of cellular protein expression, as 

calculated as the average profile plot of expression cultures containing pET11a vectors 

lacking any tailspike gene, were scaled and subtracted from each complete lysate sample 

lane. Integration of the positive area of peaks corresponding to tailspike bands, as 

determined from the migration of purified tailspike standards, yielded relative protein 

amounts. 
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Folding efficiencies were calculated as the percent of all tailspike chains found in 

the native, trimeric tailspike (NT) band, according to the following formula: 

! 

Percent Folded =  
OD

NT

OD
NT

+ OD
U

"100% 

Folding efficiencies were normalized to the average wild-type folding efficiency, which 

was calculated as the average of 22 independent lysates, according to the formula: 

! 

Folding Efficiency =  
Percent FoldedMutant

Percent FoldedWT

"100% 

 
 
C. RESULTS 
 
 
1. Production of Single Alanine Mutants 
 

In total, 150 non-alanine sites were individually mutated to alanine, as confirmed 

by DNA sequencing. As detailed in Section B1, DNA sequencing was performed on a 

400 base pair region containing the targeted codon. Although the entire gene was not 

sequenced for each individual mutant, only one sample out of 241 samples sequenced had 

a second site mutation outside the primer region, resulting in approximately 0.02 second 

site mutations per gene. This low error rate indicated that this limited sequencing was 

sufficient to confirm single alanine mutations, thus allowing for these mutants to be 

assayed for their affect on folding, as detailed below. 

In addition to the desired 150 single alanine mutants, a small number of insertion 

or deletion mutants were produced. The deletion of base T553 in the codon encoding 

L184 of tailspike or deletion of base A586 in the M195-encoding codon resulted in 

reading frame shifts that produced truncated proteins 214 amino acids in length that 

appeared exclusively in the insoluble fraction of 37ºC expression lysates. Another 

deletion mutant, a deletion of T1564 in the codon encoding S521 generated a frame shift 

that produced a 523 amino acid polypeptide chain. When expressed at 37ºC, this protein 

also appeared exclusively in the insoluble fraction of the cellular lysate. 
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An insertional mutant was recovered that contained an F472A mutation with a 

subsequent duplication of residues 468-472, thus creating an insertion of 6 amino acids 

into the tailspike protein that included two F→A mutations. When expressed at 37ºC, 

30ºC, or 18ºC, this insertional duplication yielded insoluble, SDS-sensitive polypeptide 

chains. 

2. In Vivo Expression of Single Alanine Mutants 
 

All single alanine mutants were individually over-expressed from a pET plasmid 

in Escherichia coli cultures incubated at 37ºC, 30ºC, and 18ºC in order to assess the 

contribution of the altered residue to the in vivo folding of the β-helix domain. Some 

mutant strains were sensitive to freeze stock storage conditions. These strains would not 

express tailspike proteins even after several rounds of growth following freeze storage 

and would only produce tailspike protein after the appropriate plasmids were freshly 

transformed into bacteria. 

Cells containing pET11a plasmids lacking any tailspike genes were induced as a 

negative control of tailspike expression. Positive controls included wild-type and ∆N 

tailspike, which lacks the N-terminal domain (1-108) (Miller et al., 1998b). Mutant 

expression at each temperature was performed in triplicate. Induced samples were lysed, 

mixed with SDS sample buffer, and unheated samples were analyzed by SDS-PAGE. 

Sample gels are shown in Figure 2-2. 

As can be seen in Figure 2-2, host protein translational levels were consistent 

across all samples. Mutant and wild-type lysates accumulated tailspike polypeptide 

chains as clearly resolved bands. These observations proved true for all expression 

samples at all three temperatures. Thus, alanine substitutions at the targeted sites had no 

noticeable affect on translation or degradation of the tailspike polypeptide chain. 
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When complete E. coli lysate samples were electrophoresed through an SDS 

polyacrylamide gel, over-expressed tailspike chains partitioned between two bands in the 

gel (Figure 2-2). Chains that reached the SDS-resistant, native tailspike structure did not 

dissociate in the presence of SDS (Goldenberg et al., 1982). These chains appeared on the 

gel as a slowly migrating native trimer band (NT) of approximately 210-kD. In contrast, 

partially folded intermediates and inclusion body aggregates are dissociated and unfolded 

in detergent, causing these species to electrophorese as a rapidly migrating, 72-kD band 

(U). Quantification of the percent of tailspike polypeptide chains reaching the native state 

provided an accurate and precise measure of the in vivo partitioning between productive 

and non-productive folding. 

Negative control samples were used to subtract background cellular protein levels 

so that tailspike bands could be accurately quantified. Normalization of the percent 

folded measurement to the average wild-type value generated a useful measure, the 

percent of wild-type folding efficiency. Comparison of these folding efficiencies allowed 

for an unbiased assessment of the effects of individual alanine substitutions with respect 

to a known standard, the wild-type sequence. 

 
3. Overall Folding Efficiencies 
 

At each temperature, the distribution of folding efficiencies among mutants 

proved bimodal, allowing for the classification of each mutant as either a wild-type-like 

folder or as folding deficient. Mutants whose folding efficiencies were less than 75% of 

wild-type’s folding efficiency were classified as folding deficient. This 75% threshold 

was conservatively chosen based upon the distribution of averages, examination of the 

statistical overlap of sample values with wild-type, and the expectation that a mutant 

classified as defective at a low temperature should be similarly classified at higher 

temperatures. 

Quantitative analysis of the in vivo folding of all mutants at all three temperatures 

is shown in Figure 2-3 and Table 2-2. Though a few mutant sequences were able to reach 

the native state at the presumed physiological temperature of the Salmonella phage P22, 
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Figure 2-3. Quantitative results of folding experiments. Average percent of wild-type 
folding efficiencies are shown for all alanine mutants when expressed at 37ºC (red 
circle), 30ºC (brown triangle), and 18ºC (blue square). Colored lines indicate the standard 
deviations of triplicate experiments. Note that WT and ∆N average percent of wild-type 
folding efficiencies and standard deviations are shown as insets. The 75% threshold 
delineating wild-type-like folders and folding deficient samples is shown as a dashed 
line. 
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Table 2-2. Folding efficiencies of single alanine mutants. The percent of WT folding 
efficiencies for all 150 single alanine substitutions, as well as the WT and ∆N positive 
controls, at the four temperatures tested are given as averages and standard deviations of 
multiple expression experiments, as described in this chapter. 10ºC expression data was 
not collected for mutants capable of folding like wild-type at 18ºC. These samples are 
marked by “NA”. Folding deficient average values (<75%) are shaded and bolded. 
 

Percent of WT folding efficiency 
Sample 

37ºC 30ºC 18ºC 10ºC 
WT 100.0 ± 9.9 100.0 ± 5.7 100.0 ± 1.8 100.0±4.3 
∆N 95.4 ± 13.3 108.9 ± 3.2 103.9 ± 1.0 100.5±4.4 

K122A 111.9 ± 2.3 110.4 ± 4.1 103.3 ± 3.0 NA 
Y123A 100.1 ± 11.8 105.4 ± 8.4 104.6 ± 3.0 NA 
S124A 109.9 ± 2.9 107.3 ± 4.7 101.5 ± 4.0 NA 
V125A 110.9 ± 5.4 104.6 ± 2.6 99.8 ± 5.3 NA 
K126A 81.4 ± 15.9 94.4 ± 18.1 102.3 ± 4.1 NA 
L127A 62.6 ± 5.8 99.8 ± 8.6 101.8 ± 4.0 NA 
S128A 42.6 ± 10.2 99.1 ± 7.8 103.6 ± 1.2 NA 
D129A 79.4 ± 18.4 106.3 ± 1.1 103.2 ± 2.0 NA 
Y130A 8.9 ± 5.0 39.4 ± 15.0 102.4 ± 0.8 NA 
P131A 108.8 ± 6.1 101.2 ± 3.3 99.6 ± 1.7 NA 
T132A 64.8 ± 11.6 102.0 ± 12.2 99.5 ± 1.0 NA 
L133A 10.1 ± 8.5 46.0 ± 25.9 100.4 ± 0.5 NA 
Q134A 56.7 ± 9.8 107.9 ± 6.0 103.4 ± 3.2 NA 
D135A 82.0 ± 13.3 105.4 ± 7.2 101.9 ± 4.7 NA 
S138A 97.5 ± 15.1 109.4 ± 4.6 102.2 ± 3.1 NA 
V141A 15.7 ± 4.5 39.6 ± 11.6 68.6 ± 17.0 40.6±12.1 
D142A 84.8 ± 14.8 103.8 ± 2.2 99.2 ± 2.4 NA 
G143A 108.5 ± 9.1 105.7 ± 0.4 100.1 ± 3.9 NA 
L144A 0.0 ± 0.0 8.4 ± 6.2 40.7 ± 19.5 36.4±23.5 
L145A 46.8 ± 17.9 106.9 ± 4.2 103.7 ± 0.5 NA 
I146A 14.6 ± 10.7 44.0 ± 8.0 96.6 ± 0.7 NA 
R148A 79.6 ± 15.1 97.3 ± 1.2 99.2 ± 1.9 NA 
Y150A 0.2 ± 0.1 10.0 ± 6.3 99.5 ± 4.4 NA 
F152A 0.0 ± 0.0 0.0 ± 0.0 10.1 ± 12.1 7.7±6.7 
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Sample 37ºC 30ºC 18ºC 10ºC 
Y153A 67.1 ± 30.2 88.4 ± 12.4 99.9 ± 4.2 NA 
E156A 6.0 ± 4.9 20.0 ± 8.0 96.2 ± 3.1 NA 
V158A 20.6 ± 9.0 93.8 ± 7.4 99.3 ± 1.6 NA 
F160A 8.8 ± 4.9 77.4 ± 2.7 100.4 ± 0.8 NA 
K163A 19.1 ± 16.9 74.4 ± 18.7 100.4 ± 3.3 NA 
L165A 7.1 ± 3.3 54.2 ± 1.5 101.0 ± 0.2 NA 
T166A 87.6 ± 20.2 105.0 ± 3.5 100.1 ± 1.1 NA 
I167A 0.0 ± 0.0 0.5 ± 0.4 72.4 ± 10.4 68.5±19.9 
C169A 55.7 ± 18.3 96.2 ± 5.5 101.0 ± 2.9 NA 
K172A 43.1 ± 27.4 105.7 ± 6.8 100.4 ± 1.1 NA 
F173A 10.4 ± 13.1 10.4 ± 7.2 100.0 ± 1.9 NA 
G175A 2.1 ± 1.9 22.9 ± 9.5 98.4 ± 2.2 NA 
L179A 0.5 ± 0.4 1.8 ± 2.0 47.4 ± 14.3 68.9±16.4 
F181A 1.8 ± 1.4 20.7 ± 7.1 100.6 ± 2.5 NA 
L184A 3.0 ± 1.3 31.4 ± 16.7 102.2 ± 1.5 NA 
S188A 52.1 ± 10.8 92.8 ± 7.7 100.1 ± 1.4 NA 
I190A 8.9 ± 5.6 56.2 ± 7.8 100.8 ± 0.4 NA 
V193A 62.5 ± 17.3 86.1 ± 18.9 95.1 ± 5.3 NA 
M195A 0.5 ± 0.6 2.4 ± 3.4 39.3 ± 24.3 48.7±25.5 
S260A 60.7 ± 16.3 92.0 ± 8.6 97.7 ± 4.1 NA 
L262A 0.0 ± 0.0 0.3 ± 0.4 29.8 ± 10.8 28.5±21.6 
I264A 0.4 ± 0.6 0.1 ± 0.1 92.0 ± 4.1 NA 
C267A 59.8 ± 18.4 97.5 ± 7.8 99.9 ± 3.9 NA 
V270A 3.0 ± 2.7 49.1 ± 9.2 100.0 ± 3.1 NA 
V272A 2.8 ± 2.5 14.3 ± 3.8 100.7 ± 3.2 NA 
G277A 0.0 ± 0.0 0.0 ± 0.0 8.3 ± 11.6 0.0±0.0 
F282A 0.0 ± 0.0 1.8 ± 2.6 7.0 ± 9.9 1.6±2.2 
F284A 0.3 ± 0.4 0.0 ± 0.0 5.2 ± 4.8 4.1±2.9 
C287A 1.1 ± 1.3 1.7 ± 0.7 93.6 ± 2.6 NA 
C290A 2.4 ± 2.1 31.1 ± 10.0 99.3 ± 1.1 NA 
M292A 2.5 ± 1.8 28.8 ± 4.1 101.3 ± 3.5 NA 
V293A 10.2 ± 9.2 83.1 ± 3.4 98.9 ± 2.7 NA 
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Sample 37ºC 30ºC 18ºC 10ºC 
P298A 7.4 ± 5.4 63.4 ± 7.2 101.1 ± 3.6 NA 
G300A 0.0 ± 0.0 13.1 ± 9.9 9.7 ± 11.0 26.3±20.3 
G301A 2.1 ± 1.5 30.3 ± 8.2 100.1 ± 2.9 NA 
I305A 7.1 ± 2.0 60.1 ± 5.7 99.1 ± 2.5 NA 
I306A 1.2 ± 0.9 15.3 ± 20.1 99.8 ± 2.2 NA 
F308A 0.0 ± 0.0 0.7 ± 1.0 8.4 ± 10.7 3.5±4.4 
N310A 0.0 ± 0.0 2.7 ± 3.9 13.2 ± 15.4 15.8±18.2 
N319A 0.0 ± 0.0 0.0 ± 0.0 4.6 ± 4.1 6.0±5.4 
V321A 1.4 ± 1.6 12.1 ± 7.9 98.3 ± 2.5 NA 
G324A 0.0 ± 0.1 7.3 ± 9.7 4.0 ± 4.2 6.3±5.1 
T326A 59.1 ± 21.5 66.1 ± 27.2 98.2 ± 2.6 NA 
G329A 0.0 ± 0.0 0.0 ± 0.0 32.3 ± 25.7 30.7±18.2 
S333A 38.2 ± 13.3 95.6 ± 10.7 98.9 ± 2.0 NA 
F336A 0.0 ± 0.0 0.1 ± 0.1 28.5 ± 32.8 42.3±27.3 
N339A 2.4 ± 2.5 37.1 ± 3.4 99.1 ± 4.2 NA 
G347A 5.2 ± 3.5 75.2 ± 9.7 99.4 ± 2.2 NA 
V349A 13.4 ± 4.5 77.6 ± 12.4 101.5 ± 2.0 NA 
F352A 0.6 ± 0.9 11.7 ± 16.1 95.8 ± 4.5 NA 
S354A 25.8 ± 11.6 96.7 ± 3.9 100.0 ± 2.3 NA 
G361A 1.3 ± 0.9 21.0 ± 5.9 92.2 ± 4.4 NA 
V362A 4.2 ± 2.8 47.3 ± 11.4 100.0 ± 2.2 NA 
T364A 14.9 ± 1.1 50.8 ± 28.0 98.5 ± 4.1 NA 
N376A 2.5 ± 1.1 35.9 ± 20.1 95.6 ± 4.3 NA 
L379A 0.0 ± 0.0 0.0 ± 0.0 21.0 ± 23.7 8.7±8.8 
F381A 0.0 ± 0.0 0.1 ± 0.0 6.9 ± 2.6 15.6±13.3 
S384A 40.8 ± 18.7 106.3 ± 3.1 100.1 ± 2.6 NA 
V386A 83.5 ± 13.1 100.3 ± 6.9 99.6 ± 0.9 NA 
P389A 11.5 ± 7.2 88.5 ± 6.2 100.2 ± 2.2 NA 
G393A 1.2 ± 1.4 10.9 ± 12.7 35.8 ± 17.0 12.5±11.7 
F394A 2.5 ± 2.0 7.0 ± 5.7 90.6 ± 4.4 NA 
L396A 0.1 ± 0.2 7.0 ± 9.8 7.9 ± 8.5 3.3±2.3 
L424A 0.7 ± 0.9 16.9 ± 12.8 70.6 ± 15.0 45.8±24.8 
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Sample 37ºC 30ºC 18ºC 10ºC 
H426A 0.2 ± 0.3 15.0 ± 19.3 0.5 ± 0.8 2.5±3.3 
I428A 46.4 ± 28.5 76.9 ± 25.7 98.9 ± 2.6 NA 
L431A 2.1 ± 2.2 59.0 ± 16.3 94.1 ± 4.5 NA 
V433A 41.0 ± 15.0 101.8 ± 4.0 99.0 ± 3.2 NA 
G440A 33.6 ± 8.3 91.3 ± 1.5 80.9 ± 10.3 NA 
F441A 0.1 ± 0.1 0.2 ± 0.3 1.2 ± 1.6 0.2±0.2 
M443A 10.5 ± 7.0 49.3 ± 36.2 96.3 ± 6.3 NA 
G445A 0.3 ± 0.4 0.3 ± 0.3 1.2 ± 1.7 0.4±0.6 
M448A 15.4 ± 8.9 90.0 ± 5.0 100.5 ± 2.2 NA 
V450A 70.8 ± 13.3 102.2 ± 2.2 98.9 ± 3.3 NA 
I453A 0.1 ± 0.1 29.6 ± 41.8 40.1 ± 27.7 7.4±5.5 
V455A 92.3 ± 21.9 108.5 ± 2.1 88.7 ± 19.4 NA 
C458A 42.8 ± 24.1 90.5 ± 8.9 99.4 ± 1.9 NA 
S461A 98.1 ± 23.2 78.4 ± 31.7 101.4 ± 2.3 NA 
G462A 80.5 ± 18.4 100.8 ± 4.1 86.0 ± 5.6 NA 
L465A 15.7 ± 7.6 89.7 ± 12.1 99.1 ± 3.6 NA 
T467A 71.8 ± 10.9 103.9 ± 2.0 96.7 ± 4.2 NA 
S470A 40.8 ± 10.7 91.8 ± 2.9 94.8 ± 6.5 NA 
F472A 0.1 ± 0.1 1.2 ± 0.3 6.9 ± 1.3 3.3±2.3 
I475A 0.3 ± 0.3 0.6 ± 0.8 7.5 ± 8.7 0.9±1.3 
I477A 12.4 ± 9.2 95.8 ± 4.5 98.6 ± 2.3 NA 
T480A 66.2 ± 16.1 109.3 ± 3.2 101.3 ± 0.8 NA 
Q489A 102.2 ± 11.9 100.7 ± 4.2 92.6 ± 7.2 NA 
I490A 4.8 ± 5.6 67.4 ± 6.0 99.4 ± 1.1 NA 
I492A 0.7 ± 0.6 0.7 ± 0.7 23.8 ± 8.3 2.9±2.2 
S493A 99.8 ± 17.2 91.3 ± 17.8 100.8 ± 1.6 NA 
C496A 0.7 ± 1.0 20.4 ± 19.4 58.5 ± 13.4 15.1±3.9 
V498A 0.5 ± 0.7 19.1 ± 9.3 90.7 ± 3.5 NA 
N499A 59.8 ± 13.5 97.5 ± 0.6 99.6 ± 1.9 NA 
L501A 15.3 ± 1.1 82.5 ± 6.2 99.6 ± 2.1 NA 
L503A 51.5 ± 17.1 86.6 ± 14.1 88.0 ± 9.8 NA 
G511A 86.0 ± 8.8 103.6 ± 1.0 100.4 ± 3.7 NA 
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Sample 37ºC 30ºC 18ºC 10ºC 
T515A 107.7 ± 11.2 109.1 ± 1.8 101.0 ± 1.2 NA 
I516A 6.2 ± 4.1 18.1 ± 0.8 81.5 ± 10.8 NA 
S521A 52.7 ± 23.4 105.4 ± 1.8 101.4 ± 1.9 NA 
T522A 57.6 ± 25.2 107.1 ± 3.8 101.2 ± 2.2 NA 
V523A 21.5 ± 15.2 98.4 ± 10.7 99.6 ± 0.8 NA 
S524A 97.8 ± 37.3 107.3 ± 4.0 99.9 ± 1.1 NA 
G525A 62.5 ± 13.8 105.1 ± 4.5 97.8 ± 1.5 NA 
I526A 25.9 ± 6.6 95.1 ± 11.7 98.8 ± 2.0 NA 
T527A 68.3 ± 9.9 89.9 ± 2.3 80.6 ± 9.6 NA 
G528A 27.3 ± 1.6 88.7 ± 5.2 91.1 ± 4.1 NA 
M529A 89.1 ± 10.3 105.6 ± 4.6 100.8 ± 2.0 NA 
V530A 61.0 ± 32.7 102.7 ± 2.2 99.1 ± 2.9 NA 
D531A 35.0 ± 8.6 90.3 ± 9.5 85.9 ± 3.9 NA 
P532A 96.9 ± 15.3 105.5 ± 4.4 99.9 ± 1.6 NA 
S533A 108.6 ± 7.0 108.2 ± 5.2 100.9 ± 2.6 NA 
R534A 84.1 ± 18.2 104.5 ± 8.1 98.4 ± 2.6 NA 
I535A 40.1 ± 29.0 86.8 ± 4.7 81.5 ± 7.4 NA 
N536A 72.3 ± 30.1 102.0 ± 7.6 99.4 ± 1.0 NA 
V537A 28.4 ± 18.2 67.3 ± 16.6 29.0 ± 14.0 31.2±15.1 
N539A 100.7 ± 12.3 103.6 ± 8.2 97.6 ± 2.4 NA 
L540A 92.7 ± 17.0 100.8 ± 5.2 96.6 ± 3.0 NA 
E542A 96.5 ± 4.9 100.0 ± 8.9 96.4 ± 0.3 NA 
E543A 67.9 ± 19.6 99.6 ± 10.1 99.8 ± 1.3 NA 
G544A 76.4 ± 22.7 104.2 ± 2.4 100.2 ± 2.3 NA 
L545A 57.1 ± 13.0 83.6 ± 10.3 79.7 ± 1.2 NA 
H610A 3.0±1.1 0.1±0.1 10.4±12.1 1.9±2.4 
C613A 0.2±0.2 0.0±0.0 5.6±6.6 1.6±2.2 
D632A 0.1±0.1 0.1±0.2 0.0±0.0 1.2±1.2 
C635A 0.1±0.1 1.0±0.8 11.1±7.7 1.0±0.9 
P638A 2.2±3.0 2.9±2.0 31.6±15.5 15.5±6.8 
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37ºC, the great majority exhibited severe folding defects. As the temperature was 

lowered, many single alanine mutants were rescued back to wild-type-like folding 

efficiencies. However, even at the low temperatures of 18ºC, 36 mutants were folding 

deficient and were unable to reach the native state like wild-type. 

Mutants classified as folding deficient at 18ºC were subsequently expressed at 

10ºC. The overall expression efficiencies observed at 10ºC were consistent with those 

seen at 18ºC. The lowered expression temperature did not rescue any of these residues to 

wild-type-like folding efficiencies. 

 
4. Wild-type and ∆N Folding Efficiencies 
 

For wild-type chains expressed at 18ºC, 94% (average of 22 expression samples) 

of the polypeptide chains reached the SDS-resistant, trimeric native conformation. When 

renormalized to this average, the standard deviation of these samples was 2%. Expression 

at 10ºC generated a folding yield of 93±4% (6 samples). When expressed at 30ºC, 87±6% 

(21 samples) of wild-type chains reached the native conformation. Expression at 37ºC 

yielded 62±10% (22 samples) of wild-type chains reaching the native state. The 

deviations at each temperature were well within the 75% threshold for a wild-type-like 

folder (Figure 2-3 insets; Table 2-2). The small standard deviations observed at each 

expression temperature illustrate the precision of this SDS-PAGE based assay. 

ΔN chains folded with wild-type-like efficiency at 37ºC, 95±13% for 28 samples. 

At lower temperatures, ∆N folded significantly better than wild-type with a folding 

efficiency relative to wild-type of 109±3% for 26 samples at 30ºC, 104±1% for 28 

samples at 18ºC, and 101±4% for 6 samples at 10ºC. It has been reported that tailspike 

chains lacking the N-terminal head-binding domain fold faster than the full wild-type 

sequence (Danner et al., 1993; Miller et al., 1998b). The ability to detect the affects of 

this accelerated folding rate validates the precision and accuracy of this assay. 
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5. Mutant Folding Efficiencies at 37ºC 
 

In contrast to the insignificant effect that removal of over 100 amino acids had on 

the folding of the ΔN tailspike protein, alanine substitution of any one of 95 of the 103 

buried core sites significantly hindered the tailspike chains’ ability to reach the native 

state when expressed at 37ºC. One of these mutants, F308A, was previously shown to fail 

to fold at high and low temperatures (Betts et al., 2004). Our high throughput system was 

able to accurately reproduce the published data for this residue as well as all other β-helix 

residues investigated by Betts, et al (2004) (Table 2-2). Of the remaining 42 

predominantly surface exposed sites, 20 had defective folding phenotypes. When folding 

data for all mutants are mapped to the native structure of the P22 tailspike (Figure 2-4), it 

is apparent that the vast majority of defective folding sites are in the cylindrical buried 

core. These sites were intolerant to alanine substitution when folded at 37ºC in vivo. 

Conversely, the 30 wild-type-like folding alanine mutations map almost entirely 

to surface exposed residues, to the termini of the β-helix, or to the shortened stack that 

precedes sheet C. V386A and V455A, located in a valine stack in sheet B, were the only 

exceptions to this. G511A, located in a disordered loop in the wild-type crystal structure, 

had a folding efficiency of 86±9% at 37ºC, and remained a wild-type-like folder at lower 

temperatures. 

 
6. Mutant Folding Efficiencies at 30ºC 
 

At 30ºC, alanine substitutions at 47 sites prevented folding, as compared to 95 

sites at 37ºC. Thus, a drop of 7ºC in expression temperature rescued 48 defective folding 

mutants back to wild-type-like levels. Amongst these rescued sites are nearly all the 

remaining surface exposed residues. 33 of the rescued positions were in the buried core 

stacks, so that 62 of the 103 stacking residues were intolerant to alanine substitution at 

30ºC. Intolerant sites localized to the central region of the β-helix opposite the dorsal fin 

(Figure 2-4), while more tolerant positions clustered near the termini of the β-helix. The 

fourth and fifth rungs of the β-helix were completely intolerant to alanine substitutions of 

core residues at 30ºC. 
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7. Mutant Folding Efficiencies at 18ºC 
 

In contrast to the requirement for 92% of the buried core residues at 37ºC, only 31 

out of 103 alanine mutations were absolutely incapable of achieving wild-type-like 

folding efficiencies at 18ºC. The sites of these completely intolerant residues were 

located in every rung of the β-helix, except rung 7. Rungs 6 and 8 have the highest 

number of intolerant positions, four and five respectively. Individual substitutions of six 

glycines prevented mutant chains from reaching the native state. Four of these six glycine 

residues have backbone conformations that are inaccessible by alanine, while steric 

packing problems may prevent the other glycine to alanine mutations from folding. 

When non-glycine positions completely intolerant to alanine substitution are 

mapped onto the native structure of tailspike’s β-helix, a continuous network of 29 

interacting side chains is revealed that spans the length of the β-helix (Figure 2-4). This 

chain of mostly hydrophobic residues, which we call the “folding spine”, is composed of 

short stacks that cluster around variable turn regions, such as the dorsal fin. In the case of 

the dorsal fin domain, a cluster of six amino acids is essential for folding where the chain 

detours from the β-helix and into the dorsal fin. At the center of this cluster, two residues 

(M195, L262) pack against each other, as if stapling together the meandering backbone 

(Figure 2-5). 

Although the most frequent wild-type residue found in the folding spine is 

phenylalanine, it is important to note that not all phenylalanines in the buried core of the 

P22 tailspike β-helix are necessary at all temperatures. This observation demonstrates 

that the folding phenotype is not due solely to the type of mutation, but that tertiary 

context contributes to the detected folding efficiencies. 

Two asparagines, N310 and N319, and the only histidine in the buried core, 

H426, are present in the folding spine. In the native structure, these side chains interact 

with resolved, buried water molecules that coordinate the backbone of loop regions. 

These necessary residues highlight the complexity of the folding process in vivo. 
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8. Mutant Folding Efficiencies at 10ºC 
 

When expressed at 10ºC, the 31 buried core alanine mutations that were incapable 

of achieving wild-type-like folding efficiencies at 18ºC continued to display folding-

deficient phenotypes (Table 2-2). Of these 31 residues, only 7 showed statistically 

different folding efficiencies, all but one of which had lower folding efficiencies at 10ºC 

than at 18ºC. The only mutant that significantly improved in its folding efficiency at 10ºC 

was L179A, which had its folding efficiency rise from 47% to 69% with the eight degree 

decrease in temperature. 

 
9. Capping Residues 
 

A number of alanine substitutions in the N-terminal capping region (122-146) of 

the β-helix resulted in folding deficient phenotypes at or below 30ºC. These mutants 

highlight this region’s role in preventing aggregation (Figure 2-6). This region is 

composed of a short β-strand, a turn, and a conserved α-helix. V141A, located at the C-

terminus of the conserved α-helix, is the only mutant in this region deficient in folding at 

all temperatures. This residue may act as a stop signal, ensuring that the α-helix is the 

proper length to cap the β-helix. 

Only two capping mutants are rescued at 18ºC, L133A and Y130A. L133 is 

located at the N-terminus of the α-helix and points directly downward into the β-helix 

core, possibly anchoring the α-helix into its capping position. Y130 sits centrally over the 

core of the β-helix, potentially bridging the hydrophobic interior of the β-helix and the 

polar solvent. It is important to note that Y123A, as opposed to Y130A, displays 

completely wild-type-like folding phenotypes at all temperatures. The folding phenotypes 

observed in the N-terminal capping regions illuminate key roles of wild-type side chains 

that are not simply a reflection of the type of mutation. 
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Figure 2-6. N
-term

inal C
apping R

egion. (A
) R

ibbon diagram
 of the N

-term
inal capping region (blue) and α-C

arbon trace of the first 
rung of the β-helix (green). (B

) Phenotypic data is m
apped onto the structure of the N

-term
inal capping dom

ain. G
reen residues 

represent positions that fold like w
ild-type at all tem

peratures w
hen replaced by alanine. Y

ellow
 residues are folding deficient only at 

37ºC
 w

hen replaced by alanine. O
range residues are folding deficient at 37ºC

 and 30ºC
 w

hen replaced by alanine. The red residue 
(V

141) is folding deficient at all tem
peratures w

hen replaced by alanine. Figure reprinted from
 (Sim

kovsky and K
ing, 2006), ©

 2006 
by The N

ational A
cadem

y of Sciences of the U
SA
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In the C-terminal capping region (521 – 545), only V537A was deficient in 

folding at temperatures below 37ºC (Table 2-2). In the wild-type native trimer, this 

residue is a part of the final rung of the β-helix and interacts with the side chain of F553 

from one of its sister polypeptide chains. This residue may play a greater role in capping 

through oligomerization, rather than capping in a monomeric state. 

 
10. C-terminal Cysteine Annulus Mutations 
 

Alanine substitutions were constructed in the far C-terminus of the tailspike 

protein. These mutants are located in an area of the structure known as the cysteine 

annulus, which is known to be important for the oligomerization of P22 tailspike (Gage 

and Robinson, 2003). These mutations affected cysteine residues (C613 and C635) 

believed to be important for the presence of a transient disulfide bond in a protein folding 

intermediate (Haase-Pettingell et al., 2001; Robinson and King, 1997) as well as residues 

that appeared likely to affect the reactivity of those cysteine residues (H610, D632, and 

P638) (Fomenko and Gladyshev, 2003). 

At all temperatures tested, these mutants were incapable of folding to the native, 

trimeric state (Table 2-2). 

 
11. Solubility and Mobility Shifts 
 

Instead of accumulating as trimers, the majority of the cysteine annulus mutations 

accumulated as SDS-sensitive polypeptide chains in the soluble fraction of the expression 

lysates at temperatures below 37ºC. At 37ºC, all non-native tailspike conformers in all 

37ºC samples accumulated in a consistent manner in the pelleted, insoluble fraction of the 

cell lysates. At 30ºC and lower temperatures, only V537A, H610A, C613A, and D632A 

accumulated soluble, SDS-sensitive tailspike chains in a consistent manner across the 

three independent expression cultures tested per mutant. C635A also accumulated 

soluble, SDS-sensitive chains at 18ºC and 10ºC in a consistent manner. 

As described above, accumulation of soluble SDS-sensitive species represents 

chains that have reached a late stage in folding, with defects either in oligomerization, 
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native state maturation, or stability. Since mutants that accumulated as soluble, SDS-

sensitive polypeptide chains are located at the very end of the β-helix or in the C-

terminus of the tailspike protein, it is consistent to state that these chains were capable of 

creating a folded β-helix domain but were defective in later steps in the tailspike folding 

pathway. In contrast, the folding defects associated with the core β-helix alanine mutants 

occurred at or prior to the monomeric, β-helical folding intermediate.  

A number of native trimeric mutant chains displayed mobility shifts with respect 

to wild-type chains. These mutants primarily corresponded to the mutation of charged 

residues, though not all charge changes produced alterations in mobility. Two neutral 

changes (N499A, G462A) produced reproducible mobility shifts. The physical basis for 

these shifts is not understood, but may reflect an altered native conformation. 

 
 
D. DISCUSSION 
 
 
1. Tailspike β-helix Folds via a Processive Folding Pathway 
 

Previous experiments on small, globular proteins have demonstrated that the 

amino acid folding code is highly degenerate and, in at least one case, half of the residues 

can be replaced by alanines simultaneously (He et al., 2004; Kuroda and Kim, 2000; 

Sauer, 1996). In the P22 tailspike β-helix, the entire core is surprisingly sensitive to 

amino acid changes at physiological temperature. If folding followed a global collapse 

mechanism, then the removal of 2 to 8 atoms out of a core composed of 365 side chain 

atoms would not be expected to completely block the folding process, which has a ∆G of 

-7.6 kcal/mol for the isolated β-helix domain (Miller et al., 1998a) and produces a native 

state that has a melting temperature of 88.4ºC (Sturtevant et al., 1989). 

In contrast, a processive folding pathway, where a series of local folding events 

must occur in a specific order to reach a native structure, is consistent with these results. 

We propose that the in vivo folding pathway of the tailspike’s β-helix occurs via a 

processive folding mechanism, such as the sequential winding of rungs (Figure 2-7). 
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The contribution of wild-type side chains to productive folding was temperature 

dependent. Folding analysis at low temperatures revealed an elongated folding spine of 

essential residues encoding critical contacts that allow for the in vivo folding of the 

tailspike protein. Although it cannot be ruled out that these residues represent positions 

that critically interact with the ribosome in a ribosome-assisted folding mechanism, it is 

unlikely that these residues are required for intermolecular interactions. Instead, we 

postulate the simpler model that these residues may control the folding of the β-helix by 

tethering key positions into a general cylindrical structure, thereby allowing β-sheets to 

form. At lower temperatures, certain packing interactions may tolerate an alanine 

replacement, but the interaction energy of an alanine mutant may not be sufficient to 

overcome added kinetic energies at higher temperatures. 

30ºC data demonstrated that residues located centrally in the β-helix were more 

intolerant to substitution than at the termini. The proposed processive folding pathway 

predicts that inhibition of earlier folding events would have more drastic effects than later 

stages. This suggests that β-helix formation in vivo initiates with the creation of a 

structural nucleus near the center of the β-helix and proceeds via a templating or tethering 

mechanism outward towards the termini. Folding data from mutants located in the N-

terminal capping region suggest that folding of this domain concludes via formation of 

key capping contacts, which may stabilize the β-helix and prevent aggregation. 

All β-helix domain mutant chains incapable of producing native trimers 

accumulated in the insoluble pellet fraction of the lysates, while mutations in the C-

terminus of the protein accumulated soluble, SDS-sensitive chains. This indicates that the 

observed folding defects associated with mutants in the β-helix domain are due to affects 

on the folding of this domain. 
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2. Role of Stacking Residues 
 

These results indicate that stacking of side chains plays a critical role in the 

folding of the β-helix. However, stacks that run the entire length of the β-helix are not 

necessary to direct folding at low temperatures. Instead, the folding spine spans numerous 

stacks and is composed of numerous different amino acid types. This finding supports the 

notion that side chain stacks are necessary to encode an elongated β-helix. This is in 

contrast to the large number of previously isolated tsf mutations that represent solvent 

exposed residues critical in folding at high temperatures, but unnecessary at lower 

temperatures (Betts et al., 2004). The short core stacks may function to stabilize 

intermediate forms or to specifically prevent off-pathway aggregation. Although the 

identity of wild-type side chains in the folding spine does not yield a simple sequence-

based rule for folding, it does reveal that folding is a highly complex process that depends 

both on side chain identities and their tertiary context. 

The continuous nature of the folding spine indicates that a long-range network of 

interactions may act cooperatively to form the β-helix. Such networks have been 

previously proposed based upon sequence conservation analysis of PDZ and POZ 

domains (Lockless and Ranganathan, 1999). Our data demonstrates the existence of such 

a network in the context of the folding of the β-helix domain. If the connectivity of short 

stacks did not act cooperatively, one might expect that these short stacks of necessary 

residues might be more randomly dispersed throughout the core. Instead, we believe that 

the presence of this continuous folding spine represents a cooperative network that directs 

the protein towards its native fold in vivo. 

Understanding the full role key stacking positions play will require further 

investigations into the cooperativity of this network and identification of factors that link 

the amino acid sequence to its contribution towards folding. Seckler and coworkers have 

analyzed the site of the buried global suppressor, A334, in considerable detail (Seckler, 

1998). In contrast to the intolerance of side chain deletions presented here, β-helix 

folding tolerated bulkier substitutions at this site (Schuler and Seckler, 1998). 
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3. Capping Residues 
 

Residues located at the N-terminus of the β-helix indicate that this capping region 

is critical for prevention of aggregation. V141 likely acts as an α-helix breaker, thereby 

ensuring the formation of the capping α-helix. The positioning of Y130 over the core the 

β-helix not only acts as a bridge between the hydrophobic interior of buried core and the 

polar solvent, but it may also register the α-helix into its capping role on the N-terminal 

side of the helix. Overall, it appears that the formation of the α-helix and the positions 

bounding it are critical for the proper formation and solubility of the β-helix. 

In contrast, residues located at the C-terminus of the β-helix did not appear to be 

as important for the folding of the protein. If these residues can tolerate alanine 

substitutions, how does the sequence encode a signal to stop the winding of the β-helix 

domain and to protect the hydrophobic surface that may be exposed until the protein 

trimerizes? The answer may lie in the fact that the region of sequence following the last 

rung of the β-helix contains a large number of charged residues. These residues are 

unlikely to be able to form a rung without causing burial of charged residues (Figure 2-8). 

Packing of buried charges would be incompatible with the sole critical residue in this 

region, V537. Therefore, the C-terminal residues that were tested in this experiment were 

likely unimportant for folding because the true “stop” signal exists beyond the sequence 

region examined.
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THERMOSTABILITY OF FOLDING MUTANTS 
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A. INTRODUCTION 
 
 
1. Thermostability of P22 Tailspike 
 

The last step in tailspike’s productive folding pathway (Figure 1-8) coincides with 

the folding and assembly of the interdigitated region to form a molecular clamp that 

makes tailspike resistant to trypsin degradation and SDS denaturation, and raises the 

melting temperature by approximately 40°C to 88.4°C (Goldenberg and King, 1982; 

Kreisberg et al., 2002; Sturtevant et al., 1989). When exposed to temperatures above 

65ºC and below tailspike’s melting temperature in the presence of 2% SDS, the native 

trimer will partially unfold to an SDS-resistant, high mobility species (Iu) that maintains 

β-helical conformation but lacks structure in the N-terminal head-binding domain (Chen 

and King, 1991). 

Previous experimentation on temperature sensitive folding mutations has 

demonstrated that temperature sensitive folding (tsf) mutations do not affect the native 

stability of the trimeric tailspike protein, but instead affect a thermolabile folding 

intermediate (Danner and Seckler, 1993; Sturtevant et al., 1989). 

 
2. Experimental Design 
 

In Chapter 2, it was shown that polypeptide chains carrying a β-helix mutant 

incapable of producing a native trimer band accumulated in the pelleted fraction of the 

lysate. In contrast, folding deficient mutants located at the very end of the β-helix or in 

the cysteine annulus of the tailspike were capable of producing soluble but SDS-sensitive 

tailspike chains. Although this indicates that β-helix mutants affected the folding of the 

protein before association, it does not rule out the possibility that mutant polypeptide 

chains reached a transient native-like state, but then fell apart to an aggregation prone 

state. Do these mutations destabilize the native trimeric conformation of tailspike? 

To test if these mutations caused low folding efficiencies at the higher 37ºC 

temperature by destabilizing the native state, I performed a thermostability assay on 

mutant trimers produced at 18ºC to determine their approximate melting temperatures. 
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B. MATERIALS AND METHODS 
 
 
1. Production of Mutant Trimers 
 

Natively folded tailspike trimers of mutants generated in Chapter 2 were produced 

by over expression at 18ºC as described in Chapter 2, Section B2. Cells were lysed and 

fractionated by centrifugation as described in Chapter 2, Section B3. The supernantant 

fractions containing native trimers were subsequently mixed with 2% SDS sample buffer 

as described in Chapter 2, Section B3 in a 96 well plate. After the experiments of Chapter 

2 were completed, these samples were stored at -20ºC. 

 
2. Thermostability Assay 
 

Frozen supernatant samples were thawed on ice and 10 µl aliquots were moved to 

new shallow well plates. Plates were sealed with silicon cap lids clamped down by a glass 

plate and binder clips. The sealed plate was partially submerged in a heated water bath to 

either 80ºC or 90ºC for 3 min, and then placed on ice until samples were examined by 

SDS-PAGE, as described in Chapter 2, Section B3. Gels were imaged and analyzed by 

optical densitometry as described in Chapter 2, Section B4. Due to the partial unfolding 

of the N-terminal domain of tailspike at temperatures above 65ºC (Chen and King, 1991), 

optical density values were calculated for the tailspike bands corresponding to the native 

trimer, the partially unfolded intermediate Iu, and the completely unfolded SDS-sensitive 

species. The percentage of chains that were unfolded was calculated by dividing the 

optical density of the completely unfolded band by the total optical density of all three 

tailspike bands, as detailed in the following formula: 

! 

Percent Unfolded =  
OD

U

OD
NT

+ OD
IU

+ OD
U

"100%  



 88 

C. RESULTS 
 
 
1. Unfolding of Wild-type and ∆N Controls 
 

To test if mutations acted by destabilizing the native state, the native trimeric 

forms of the mutant polypeptide chains in the soluble fractions of 18ºC expression 

samples were assessed for thermostability. 114 of the alanine mutants accumulated 

sufficient native-like trimers at low temperature to be assayed. Lysates were heated to 

either 80ºC or 90ºC for 3 min in the presence of 2% SDS and analyzed for unfolding of 

the β-helix region. As described by Chen and King (Chen and King, 1991), wild-type 

proteins partially unfolded to an SDS-resistant, high mobility species (Iu) that maintains 

β-helical conformation but lacks structure in the N-terminal head-binding domain when 

heated to 80ºC (Figure 3-1). Only 3.1±1.7% of wild-type native chains fully denatured to 

a SDS-sensitive species at 80ºC. Heating to 90ºC resulted in nearly complete dissociation 

(89.9±7.9%) to a denatured, monomeric SDS/polypeptide chain complex (Figure 3-2; 

Table 3-1). 

Heating of ∆N resulted in similar thermostability values, with only 4.5±3.4% of 

chains unfolding at 80ºC and 98.5±3.7% of chains unfolding at 90ºC (Figure 3-2; Table 

3-1). Since ∆N lacks the N-terminal region that partially unfolds at these high 

temperatures, ∆N did not produce the partially unfolded species (Iu) (Figure 3-1). This 

reconfirmed that the partial unfolding of the mutant trimers was not due to the unfolding 

of the β-helix region and allowed for the identification of mutant tailspike specific bands, 

such as Iu, in other samples. 
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Figure 3-2. Therm
ostability assay on 18ºC

 w
ild-type-like folders. The percent of native tailspike chains com

pletely unfolded in the 
presence of 2%

 SD
S w

hen heated to 80ºC
 (blue circle) or 90ºC

 (red square) is show
n as the average of duplicate experim

ents. Lines 
represent standard deviations. W

T and ∆N
 controls are show

n in inset. Figure reprinted from
 (Sim

kovsky and K
ing, 2006), ©

 2006 by 
The N

ational A
cadem

y of Sciences of the U
SA
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Table 3-1. Thermostability data of 18ºC WT-like trimers. Thermostability values are 
given as the percent of tailspike chains completely unfolded in the thermostability assay 
when heated to either 80ºC or 90ºC. These values were calculated only for samples 
displaying >75% folding efficiency at 18ºC, as determined in Chapter 2. Otherwise the 
calculation was not applicable (NA). Average percent unfolded values greater than 50% 
are shaded and bolded. 
 

Percent unfolded by heat  Percent unfolded by heat 
Sample 

80ºC heat 90ºC heat  
Sample 

80ºC heat 90ºC heat 

WT 3.1 ± 1.7 89.9 ± 7.9  R148A 3.3 ± 0.4 80.8 ± 8.0 

∆N 4.5 ± 3.4 98.5 ± 3.7  Y150A 3.8 ± 2.0 97.6 ± 1.4 

K122A 24.9 ± 16.7 99.0 ± 0.6  F152A NA NA 

Y123A 29.3 ± 18.3 97.6 ± 1.0  Y153A 2.5 ± 0.3 83.6 ± 5.3 

S124A 24.8 ± 15.4 97.8 ± 1.3  E156A 18.8 ± 18.7 95.8 ± 0.9 

V125A 10.1 ± 7.6 98.2 ± 0.5  V158A 10.4 ± 8.3 96.0 ± 3.1 

K126A 11.2 ± 5.0 97.9 ± 0.0  F160A 7.5 ± 5.8 99.1 ± 0.1 

L127A 3.9 ± 1.1 98.6 ± 0.0  K163A 2.5 ± 0.2 88.9 ± 1.5 

S128A 27.6 ± 25.2 95.7 ± 2.9  L165A 23.8 ± 19.5 98.7 ± 0.4 

D129A 22.8 ± 14.8 97.2 ± 0.2  T166A 24.3 ± 23.4 97.3 ± 0.7 

Y130A 28.0 ± 26.9 97.4 ± 0.4  I167A NA NA 

P131A 22.4 ± 21.7 98.8 ± 0.1  C169A 6.4 ± 1.4 96.2 ± 0.1 

T132A 12.8 ± 11.9 98.3 ± 1.0  K172A 15.3 ± 15.2 95.0 ± 2.0 

L133A 12.4 ± 11.3 98.2 ± 0.7  F173A 8.0 ± 8.0 97.8 ± 0.8 

Q134A 4.6 ± 1.3 96.7 ± 2.5  G175A 3.9 ± 0.9 61.6 ± 30.1 

D135A 2.3 ± 0.3 97.6 ± 0.9  L179A NA NA 

S138A 1.9 ± 0.2 97.4 ± 0.8  F181A 6.0 ± 0.9 98.7 ± 0.5 

V141A NA NA  L184A 8.9 ± 7.9 98.6 ± 0.5 

D142A 49.3 ± 4.4 95.2 ± 0.0  S188A 3.8 ± 1.8 96.9 ± 0.6 

G143A 8.6 ± 5.7 97.1 ± 0.2  I190A 7.7 ± 3.4 95.0 ± 1.4 

L144A NA NA  V193A 2.9 ± 1.4 87.9 ± 10.7 

L145A 34.2 ± 31.9 97.0 ± 0.3  M195A NA NA 

I146A 6.8 ± 6.6 93.0 ± 1.1  S260A 2.8 ± 0.9 92.2 ± 1.3 



 92 

Sample 80ºC heat 90ºC heat  Sample 80ºC heat 90ºC heat 

L262A NA NA  F352A 14.6 ± 0.5 93.6 ± 1.9 

I264A 4.2 ± 3.5 97.7 ± 0.6  S354A 3.9 ± 1.0 94.6 ± 0.3 

C267A 4.8 ± 1.9 96.2 ± 1.4  G361A 43.7 ± 42.4 96.5 ± 2.0 

V270A 4.9 ± 1.7 98.6 ± 0.0  V362A 14.4 ± 10.3 97.7 ± 1.6 

V272A 2.9 ± 0.7 99.3 ± 0.3  T364A 34.6 ± 2.7 95.8 ± 0.3 

G277A NA NA  N376A 23.3 ± 8.7 94.9 ± 1.6 

F282A NA NA  L379A NA NA 

F284A NA NA  F381A NA NA 

C287A 2.1 ± 0.5 98.7 ± 0.1  S384A 3.0 ± 0.6 96.4 ± 1.5 

C290A 3.0 ± 0.5 90.0 ± 7.3  V386A 2.3 ± 0.7 75.9 ± 18.2 

M292A 2.6 ± 0.6 82.8 ± 4.8  P389A 6.0 ± 4.9 84.5 ± 0.3 

V293A 2.8 ± 0.7 97.2 ± 1.1  G393A NA NA 

P298A 2.7 ± 0.1 93.3 ± 3.5  F394A 92.2 ± 4.1 92.7 ± 2.2 

G300A NA NA  L396A NA NA 

G301A 17.7 ± 3.8 82.4 ± 5.0  L424A NA NA 

I305A 4.2 ± 1.9 93.8 ± 2.4  H426A NA NA 

I306A 3.1 ± 2.0 95.9 ± 0.5  I428A 32.1 ± 17.4 96.0 ± 1.1 

F308A NA NA  L431A 5.3 ± 2.4 92.7 ± 3.5 

N310A NA NA  V433A 3.2 ± 0.2 84.2 ± 5.3 

N319A NA NA  G440A 8.3 ± 0.2 93.7 ± 0.7 

V321A 4.5 ± 1.1 96.6 ± 1.1  F441A NA NA 

G324A NA NA  M443A 2.0 ± 1.4 99.2 ± 0.1 

T326A 2.8 ± 0.9 94.9 ± 0.7  G445A NA NA 

G329A NA NA  M448A 15.1 ± 15.1 94.9 ± 0.6 

S333A 3.9 ± 2.1 84.8 ± 1.7  V450A 5.6 ± 5.4 95.1 ± 0.6 

F336A NA NA  I453A NA NA 

N339A 4.1 ± 0.5 84.3 ± 2.8  V455A 44.3 ± 29.5 95.3 ± 1.7 

G347A 7.4 ± 3.2 95.5 ± 0.1  C458A 28.6 ± 20.2 94.6 ± 1.3 

V349A 2.7 ± 1.5 95.2 ± 1.0  S461A 3.5 ± 3.4 93.6 ± 2.9 
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Sample 80ºC heat 90ºC heat  Sample 80ºC heat 90ºC heat 

G462A 14.7 ± 4.6 95.8 ± 2.1  G525A 6.9 ± 4.2 98.6 ± 0.1 

L465A 1.9 ± 0.3 83.5 ± 8.6  I526A 3.8 ± 0.7 97.6 ± 0.9 

T467A 3.5 ± 2.4 96.9 ± 0.7  T527A 7.4 ± 0.4 96.9 ± 2.0 

S470A 4.3 ± 3.6 98.0 ± 0.7  G528A 2.9 ± 2.2 70.1 ± 19.6 

F472A NA NA  M529A 3.5 ± 3.4 98.2 ± 0.9 

I475A NA NA  V530A 4.6 ± 4.6 99.1 ± 0.2 

I477A 5.8 ± 5.8 96.1 ± 1.0  D531A 18.3 ± 11.5 92.7 ± 2.0 

T480A 6.7 ± 5.8 95.2 ± 1.1  P532A 4.4 ± 4.3 95.9 ± 2.9 

Q489A 11.7 ± 8.6 85.9 ± 3.7  S533A 5.9 ± 4.9 96.8 ± 1.2 

I490A 3.2 ± 3.1 97.6 ± 0.3  R534A 7.4 ± 4.6 96.3 ± 0.3 

I492A NA NA  I535A 31.2 ± 4.1 96.3 ± 1.0 

S493A 3.9 ± 3.6 94.0 ± 0.4  N536A 5.3 ± 3.8 97.6 ± 0.1 

C496A NA NA  V537A NA NA 

V498A 2.7 ± 0.2 93.5 ± 2.7  N539A 13.9 ± 9.8 97.8 ± 1.0 

N499A 3.9 ± 0.0 80.9 ± 13.7  L540A 4.4 ± 2.8 97.1 ± 2.6 

L501A 2.7 ± 2.6 89.4 ± 5.9  E542A 20.1 ± 11.5 96.1 ± 1.6 

L503A 5.0 ± 1.8 94.6 ± 2.4  E543A 5.3 ± 2.8 98.7 ± 0.4 

G511A 2.1 ± 1.3 92.9 ± 4.7  G544A 2.9 ± 1.5 97.9 ± 0.7 

T515A 2.3 ± 2.2 80.2 ± 0.6  L545A 17.5 ± 6.3 94.9 ± 1.3 

I516A 2.9 ± 2.7 92.3 ± 1.5  H610A NA NA 

S521A 4.6 ± 2.3 96.6 ± 1.5  C613A NA NA 

T522A 2.3 ± 2.3 92.7 ± 3.6  D632A NA NA 

V523A 1.1 ± 1.1 96.4 ± 0.4  C635A NA NA 

S524A 3.4 ± 1.9 96.3 ± 0.4  P638A NA NA 
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2. Unfolding of Single Alanine Mutants 
 

All trimeric mutant tailspikes consistently dissociated to monomeric 

SDS/polypeptide chain complexes when heated to 90ºC (Figure 3-2). All of these chains 

partially denatured similarly to wild-type when subjected to 80ºC, except for F394A. 

F394A consistently and completely dissociated to SDS-sensitive chains when subjected 

to 80ºC (Figure 3-2; Table 3-1). These results demonstrate that the single alanine mutants 

have melting temperatures within the range of 80ºC to 90ºC in the presence of 2% SDS. 

Therefore, all but one of the alanine mutations did not affect the stability of the trimeric 

native state. 

 
 
D. DISCUSSION 
 
 
1. Alanine Mutants Affect β-helix Folding Intermediates 
 

In these thermostability experiments, mutant chains were exposed to extreme 

environmental conditions. The chains, while being present in a 2% SDS solution, were 

first frozen at -20ºC and then heated to either 80ºC or 90ºC. These settings are far harsher 

than the environment experienced by mutant chains folding within cells at 37ºC. Given 

that the melting temperatures of these chains is greater than 80ºC in the presence of 

detergent, it is clear that the observed folding efficiencies in Chapter 2 are not due to a 

destabilization of the native state, but must be due to a folding defect earlier in the 

productive folding pathway. 
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A. INTRODUCTION 
 
 
1. The Isolated β-helix Domain 
 

Seckler and coworkers constructed and characterized a tailspike fragment 

consisting of only the central β-helix domain (109 – 544) of the P22 tailspike protein 

(Miller et al., 1998a). They demonstrated that the fluorescence and CD signals of the 

isolated β-helix construct closely resemble those of the full length tailspike, indicating 

that the fragment is in a conformation similar to that of the β-helix domain in the native 

trimeric tailspike. This tailspike fragment exists as a monomer at concentrations below 1 

µM, trimerizes at higher protein concentrations, and is capable of binding and cleaving 

tailspike’s endorhamnosidase substrate. Unlike the full length tailspike, the β-helix 

fragment can be reversibly unfolded and refolded under ideal conditions, allowing for the 

calculation of its free energy of folding (-32 kJ/mol) from a two-state model. 

Under non-ideal conditions, such as temperatures above 10ºC, high salt 

concentrations, or the lack of chelating agents, the β-helix fragment readily aggregates 

(Schuler et al., 1999). This aggregation proceeds by a linear polymerization model and 

occurs fastest at denaturant concentrations corresponding to its folding mid-point, 

indicating that aggregation proceeds from a partially folded intermediate. Aggregation 

leads to a number of distinct morphologies, including the formation of amyloid-like 

fibrils. These fibers bind the dye Congo red and display bright green birefringence upon 

excitation with cross-polarized light. Unlike most amyloids, the fibers are an order of 

magnitude larger in diameter and many of the fibers appeared curled or branched. 

2. Mutants G244R (tsf) and A334V (su) 
 

Mutational analysis of the full length tailspike and the isolated β-helix domain 

have allowed for detailed investigations into the sequence control of the folding of the β-

helix. Two particular mutations, G244R and A334V, have been well characterized in 

both constructs under various environmental conditions in vivo and in vitro. 
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The temperature sensitive mutation (tsf) G244R, originally designated tsH304, is 

located in a solvent exposed loop of the dorsal fin. This mutation produces trimeric 

tailspike at temperatures at or below 30ºC with an altered electrophoretic mobility both in 

vivo and in vitro (Goldenberg and King, 1982; Goldenberg et al., 1982; Mitraki et al., 

1993; Yu and King, 1984). At elevated temperatures, such as 37ºC or greater, G244R is 

incapable of forming trimeric tailspikes, even though trimeric G244R tailspikes formed at 

permissive temperatures have a melting temperature of 87.5ºC (Goldenberg and King, 

1981; Smith and King, 1981; Sturtevant et al., 1989). Instead, a destabililzed folding 

intermediate rapidly accumulates into an irreversible aggregate, as is apparent from in 

vitro refolding experiments (Danner and Seckler, 1993). When investigated in the context 

of the isolated β-helix domain, G244R destabilized the structure’s free energy of folding 

by 10 kJ/mol, or 2.4 kCal/mol (Schuler and Seckler, 1998). These observations have led 

to the hypothesis that G244R and other tsf mutants act by globally destabilizing a 

monomeric folding intermediate where the β-helix domain is largely formed. 

The global suppressor mutation (su) A334V is capable of rescuing an intrachain 

G244R folding defect or enhancing the folding yields of wild-type at higher temperatures 

in vitro and in vivo (Danner and Seckler, 1993; Fane et al., 1991; Mitraki et al., 1993). 

Although A334V does not alter the melting temperature of the full length trimer (Mitraki 

et al., 1993), it has been shown to accelerate the unfolding of ∆N and full length tailspike 

(Beissinger et al., 1995; Miller et al., 1998b). The crystal structure of A334V displays a 

root mean square difference of only 0.104 Å in comparison to the wild-type structure, but 

is hindered in its enzymatic activity by 40% (Baxa et al., 1999). This single amino acid 

mutation appears to stabilize the monomeric folding intermediate along the productive 

folding pathway, allowing for more efficient folding (Beissinger et al., 1995). Since 

A334V stabilizes the isolated β-helix domain by 7 kJ/mol, or 1.7 kCal/mol (Schuler and 

Seckler, 1998), it has been proposed that this suppressor mutation globally stabilizes the 

β-helical, monomeric folding intermediate. 
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3. Experimental Design 
 

In previous chapters, it was shown that single alanine mutants of β-helix domain 

residues do not destabilize the native state of the trimeric P22 tailspike protein. Instead, 

mutant chain solubilities indicate the β-helix mutants affect a folding step before 

oligomerization. Do single alanine mutations located in the buried stacks of the tailspike 

β-helix domain prevent tailspike formation by hindering the folding of the β-helix? 

To test the affects of mutations directly on the folding of the β-helix, mutations 

were constructed in the context of the isolated β-helix domain and assayed for their 

ability to fold in vivo at the temperatures previously tested with the full length tailspike. 

The mutations A334V and G244R were included in this study as controls. 

 
 
B. MATERIALS AND METHODS 
 
 
1. Production of Isolated β-helix Construct 
 

pET(∆N), which is a pET11a vector encoding a P22 tailspike protein lacking its 

N-terminal domain (1-108) called ∆N, was a generous gift from Dr. Anne Robinson 

(Gage and Robinson, 2003). Methylated pET(∆N) DNA was purified to act as template 

DNA for mutagenesis from E. coli XL1-Blue cells (Stratagene) using a QIAprep Spin 

MiniPrep kit (QIAGEN). 

The pET(∆N) vector was mutated to a pET(βHX) vector, a pET11a vector 

encoding the isolated β-helix domain (residues 109-544) with a hexahistidyl tag at its C-

terminus (Miller et al., 1998a), through a series of 3 site-directed mutagenesis reactions. 

The first reaction mutated three amino acids at the end of the β-helix domain of ∆N to 

histidines to generate ∆N-L545H-G546H-N547H, which was called ∆N-3H. The second 

reaction further mutated three more residues to hisitidines, generating ∆N-L545H-

G546H-N547H-I548H-R549H-A550H, or ∆N-6H. The final reaction mutated the codons 

encoding residues 551 and 552 to amber and ochre stop codons, respectively, generating 

the βHX construct. 
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At each step of the process, methylated template DNA was mutated through a 

PCR-based QuikChange procedure (Stratagene) that utilized the appropriate mutagenic 

primer (IDT) listed in Table 4-1 and that primer’s exact reverse complement. PCR 

products were transformed into E. coli XL1-Blue cells using a single step protocol 

(Chung et al., 1989). Following clonal growth, methylated plasmid DNA was purified as 

before and used either as a template for further rounds of mutagenesis or for DNA 

sequencing. DNA sequencing of a 400 base pair region (20% of the tailspike gene) 

containing the targeted codon confirmed the generation of ∆N-3H, ∆N-6H, and βHX 

clones (MGH DNA Core, Cambridge, MA). 

 
2. Production of Single Alanine Mutants in the Isolated β-helix 
 

Methylated pET(βHX) DNA was purified to act as template DNA for mutagenesis 

from XL1-Blue cells (Stratagene) as described above. Scanning alanine mutagenesis was 

performed using the PCR-based QuikChange mutagenesis procedure (Stratagene) as 

described in Chapter 2, Section B1. Mutagenic primers used to generate single alanine 

mutants in Chapter 2, Section B1 were used again to introduce the desired six mutations 

[F160A, F308A, F336A, F352A, Q489A, and C496A] individually into the βHX 

construct (Table 2-1). The mutagenic primers (IDT) listed in Table 4-2 and their reverse 

complements were used to generate the control mutations of G244R and A334V in the 

βHX-encoding gene. PCR products were transformed into E. coli XL1-Blue cells as 

described previously. 

Plasmids encoding potentially altered βHX genes were purified from XL1-Blue 

cells and confirmed by sequencing, as described above. Plasmid DNA encoding 

confirmed alanine mutants was transformed into E. coli BL21(DE3) as described above. 

Cultures were selected on individual Luria Broth (LB) plates containing 100 µg/ml 

ampicillin. Cultures were made into 8.3% DMSO freeze stocks after 8 to 11 hours of 

growth in LB containing 100 µg/ml ampicillin at 37ºC. Freeze stocks were stored in dram 

vials at -80ºC. 
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3. Production of G244R and A334V Full Length Tailspike Mutants 
 

The plasmid pET(gene9) was mutated to encode the mutation G244R or A334V 

using the procedures described in Chapter 2, Section B1. The mutagenic primers listed in 

Table 4-2 were used to generate the G244R and A334V mutations. Mutants were 

confirmed by sequencing following transformation into XL1-Blue cells and miniprep of 

clonal cultures as described in Section B2. Confirmed mutant plasmids were transformed 

into E. coli BL21(DE3) cells and stored as 8.3% DMSO freeze stocks at -80ºC, as 

detailed in Chapter 2, Section B2. 

 
4. Expression of β-helix and Full Length Constructs 
 

Freeze stocks of full length tailspike constructs and pET(βHX) strains were 

streaked out on LB plates containing 100 µg/ml ampicillin and grown overnight at 37ºC. 

Clones from these plates or streaks from freeze stocks were used to inoculate 37ºC 

overnight growth cultures in LB containing 100 µg/ml ampicillin. Expression cultures 

were inoculated via 100-fold dilution of the overnight cultures into LB media containing 

0.5% glucose, 50 mM MOPS and 100 µg/ml ampicillin. Cells were grown shaking (225 

rpm) in 500 µl volumes in 96 deep-well plates for approximately 3.25 hours at 37ºC. 

IPTG was added to a final concentration of 1.5 mM to induce protein expression. 

Expression cultures were transferred to 37ºC, 30ºC, 18ºC, or 10ºC and were allowed to 

express protein for approximately 4, 8.5, 22.4 hours, or 24 hours respectively. Cultures 

were harvested via centrifugation for 15 minutes at 4000g and 4ºC. Cells were 

resuspended to 1/10 volume in lysis buffer (50 mM Tris-HCl, pH8.0; 25 mM NaCl; 2 

mM EDTA; 0.1% Triton X-100) and stored at -20ºC. 

 
5. Cell Lysis, Fractionation, and SDS-PAGE 
 

Frozen expression samples were thawed at room temperature and lysis was 

initiated by addition of freshly dissolved lysozyme (1 mg/ml final concentration from 10 

mg/ml aqueous solution) and PMSF (9 mM final concentration from 90 mM stock in 

isopropanol). After 30 min of slow stirring at room temperature and addition of DNase I 
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(Sigma) (10 or 125 µg/ml final concentration from 0.06 or 1 mg/ml stock in glycerol; 1 

M MgSO4), lysates were stirred for an additional 30 min. 

Half of each lysate was removed as a complete lysate sample, while the remaining 

lysate was centrifuged for 30 to 50 min at 4,000g and 4ºC in shallow well plates to 

separate soluble and insoluble fractions. Lysate pellets were resuspended in Buffer B (50 

mM Tris-HCl, pH8.0; 25 mM NaCl; 2 mM EDTA) by gentle agitation. Lysate fractions 

were mixed with 2% SDS sample buffer and run on 7.5% Triple Wide SDS 

polyacrylamide gels as described in Chapter 2, Section B3. Crude lysates, supernatant 

fractions, and insoluble pellet fractions were all analyzed by SDS-PAGE. 

 
6. Optical Densitometry 
 

Coomassie-stained gels were individually scanned at 400ppi and 8-bit gray scale 

via a ScanMaker 9800XL tabletop scanner (Microtek). Optical densitometry of the gel 

images was performed using the GelAnalyzer plugin (Appendix A) for ImageJ (NIH) as 

described in Chapter 2, Section 4. Background subtraction using lanes of expression 

cultures containing pET11a vectors lacking any tailspike or β-helix genes was performed 

separately for crude lysate samples, supernatant fraction samples, and pellet fraction 

samples. 

Folding efficiencies for full length tailspike samples were calculated as described 

in Chapter 2, Section 4. For βHX constructs, the percent folded values were calculated as 

the percent ratio of the optical density of the supernatant fraction’s βHX band versus the 

complete crude lysate’s βHX band, according to the following formula: 

! 

Percent Folded =  
ODSupernatant

ODCrude

"100% 

These folding efficiencies were normalized to the average wild-type β-helix 

efficiency, as in Chapter 2, section 4. 
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C. RESULTS 
 
 
1. Construction of ∆N-3H, ∆N-6H, and β-helix Constructs 
 

Although the β-helix construct had been previously generated in a derivative of 

the pASK40 plasmid (Miller et al., 1998a), it was necessary to reproduce this construct in 

the context of the pET11a vector to achieve expression levels consistent with experiments 

discussed previously in this thesis. The plasmid pET(∆N) was sequentially mutated to 

encode ∆N-3H, ∆N-6H, and, finally, the isolated β-helix (βHX) as detailed in section B1. 

Once sequencing confirmed these three constructs, they were expressed at 37ºC 

and analyzed for their solubility and ability to fold. While expression of βHX 

predominantly produced soluble 48kDa polypeptide chains, ∆N-3H and ∆N-6H produced 

72kDa chains that were found solely in the insoluble fraction of cell lysates. This data 

indicates that histidines in the region of 545 – 550 promote aggregation of the full length 

tailspike, but do not hinder the folding and solubility of the βHX protein when present as 

a C-terminal his-tag. 

Six mutations investigated in the context of the full length tailspike were chosen 

for investigation in the context of the βHX construct: F160A, F308A, F336A, F352A, 

Q489A, and C496A. These mutations represent a diversity of folding phenotypes as 

determined in Chapter 2, of locations in the β-helix, and of amino acid types in the wild-

type sequence (Figure 4-1). In addition to these six mutations, G244R and A334V were 

chosen as folding controls, since these mutations have been previously characterized in 

the full length tailspike protein and in the isolated β-helix, as discussed in Section A2. 

The eight desired mutants were generated in the context of the βHX construct, confirmed 

by sequencing, and subsequently assayed for their affect on the solubility of the βHX 

construct. Since G244R and A334V were not analyzed in Chapter 2, full length tailspike 

mutants were made, confirmed, and assayed for folding.
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Figure 4-1. Mutations investigated in the isolated β-helix. The locations and folding 
phenotypes for the 8 mutations investigated in this chapter are shown on the structure of 
the β-helix domain from the native, trimeric structure (1TYU, (Steinbacher et al., 1996)). 
Folding phenotypes are given as the temperatures at which the mutations are wild-type-
like folders in vivo in the context of the full length tailspike protein, along with a 
corresponding color code. Mutants that cannot fold at any temperatures tested are part of 
the folding spine and are labeled “FS”. Folding temperatures for A334V and G244R are 
from the literature discussed in the main text.  
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2. In Vivo Folding Efficiencies of Full Length Tailspike Mutants 
 

The newly constructed mutants A334V and G244R were over-expressed at all 

four temperatures previously tested in Chapter 2: 37ºC, 30ºC, 18ºC, and 10ºC. Since a 

number of the mutants under examination in this chapter are not in the folding spine and 

were not assayed at 10ºC, all 9 full length tailspike strains under analysis in this chapter 

were over-expressed at 10ºC. When unheated over-expression lysates were examined by 

SDS-PAGE, host protein translational levels were consistent across all samples and full 

length tailspike strains accumulated tailspike polypeptide chains as clearly resolved 

bands. These observations are consistent with those made in previous expression 

experiments in Chapter 2. 

The percent of wild-type folding efficiencies were calculated from three or six 

independent expression samples for each strain at each temperature newly tested. Without 

normalization, the folding efficiency of wild-type chains expressed at 10ºC was 95±3% 

(3 independent expression samples), which is consistent with the previously determined 

value of 93±4%. This consistency was also observed for mutant strains previously 

examined at 10ºC, F308A, F336A, and C496A (Table 2-2, Table 4-3). At most, new and 

old values differed by approximately 9%. 

As had been observed previously, all strains having a folding efficiency less than 

75% of wild-type at 18ºC were folding deficient at 10ºC, while mutants that folded like 

wild-type at 18ºC continued to do so at 10ºC (Table 4-3). As expected from previous 

publications, A334V folded like wild-type or better at all temperatures tested while 

G244R only displayed greater than 75% folding efficiencies at 30ºC or lower 

temperatures. Only 2±2% of G244R tailspike chains reached the native state at 37ºC, 

which is consistent with the original discovery that G244R is a temperature sensitive 

folding mutant. 
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Table 4-3. Folding efficiencies of full length tailspike mutants. The percent of WT 
folding efficiencies for 8 mutants and WT at the four temperatures tested are given as 
averages and standard deviations of multiple expression experiments. Folding deficient 
average values (<75%) are shaded and bolded, while new expression data is starred (*). 
 

Percent of WT folding efficiency 
Sample 

37ºC 30ºC 18ºC 10ºC 
WT 100.0 ± 9.9 100.0 ± 5.7 100.0 ± 1.8 100.0±3.2 * 

F160A 8.8 ± 4.9 77.4 ± 2.7 100.4 ± 0.8 103.6±1.3 * 
G244R 2.2±1.6 * 81.9±5.9 * 102.6±11.6 * 98.7±5.0 * 
F308A 0.0 ± 0.0 0.7 ± 1.0 8.4 ± 10.7 0.7±0.7 * 
A334V 109.9±26.7 * 98.6±3.2 * 105.7±2.4 * 100.9±1.3 * 
F336A 0.0 ± 0.0 0.1 ± 0.1 28.5 ± 32.8 47.1±1.9 * 
F352A 0.6 ± 0.9 11.7 ± 16.1 95.8 ± 4.5 96.4±1.9 * 
Q489A 102.2 ± 11.9 100.7 ± 4.2 92.6 ± 7.2 90.5±3.0 * 
C496A 0.7 ± 1.0 20.4 ± 19.4 58.5 ± 13.4 6.3±2.9 * 

 
 
 
 
Table 4-4. Folding efficiencies of βHX mutants. The percent of WT-βHX folding 
efficiencies for 8 mutants and WT-βHX at the four temperatures tested are given as 
averages and standard deviations of triplicate expression experiments. Folding deficient 
average values (<75%) are shaded and bolded. 
 

Percent of WT-βHX folding efficiency 
Sample 

37ºC 30ºC 18ºC 10ºC 
WT-βHX 100.0±22.1 100.0±18.8 100.0±10.2 100.0±5.9 

F160A-βHX 0.8±0.2 121.8±6.2 102.7±5.0 97.1±3.5 
G244R-βHX 0.5±0.4 79.9±4.6 76.7±5.4 84.9±5.7 
F308A-βHX 0.3±0.1 0.0±0.1 0.0±0.0 0.0±0.1 
A334V-βHX 116.4±3.9 115.0±11.3 84.1±2.5 105.4±6.0 
F336A-βHX 0.0±0.0 0.1±0.1 8.6±3.1 49.0±8.5 
F352A-βHX 0.1±0.1 0.0±0.0 67.4±6.4 85.2±9.9 
Q489A-βHX 119.3±5.4 119.1±12.2 107.2±14.5 89.5±1.6 
C496A-βHX 0.0±0.0 2.7±2.2 96.3±1.0 12.0±3.8 
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3. In Vivo Expression of β-helix Mutants 
 

Mutant and wild-type βHX proteins were expressed in E. coli cultures at 37ºC, 

30ºC, 18ºC, and 10ºC in a manner identical to the full length tailspike proteins. As 

observed with the full length tailspike samples, host protein translational levels were 

consistent across all samples when examined by SDS-PAGE (Figure 4-2). The SDS-

sensitive βHX protein band had a mobililty corresponding to its 48kDa molecular weight 

and could be identified in all samples by comparison with a pET11a expression sample, 

which lacked any tailspike or β-helix genes (Figure 4-2A). Examination of the crude 

lysates of all expression samples indicated that the βHX protein was expressed in a 

consistent manner and was not degraded by host proteases at any of the temperatures 

tested. 

When crude lysates were fractionated by low speed centrifugation, βHX proteins 

partitioned between the soluble supernatant fraction and the insoluble pellet fraction. 

Based on previously published fluorescence and CD spectroscopy, oligosaccharide 

binding, and enzymatic activity of purified, soluble β-helix constructs expressed at 30ºC, 

which include wild-type, G244R, and A334V, it is assumed that solubility is a measure of 

folding in vivo (Miller et al., 1998a; Schuler and Seckler, 1998). The observed 

partitioning and consistent expression levels allowed for the quantitation of folding 

efficiencies for all isolated β-helices. The most reliable method for calculating the 

percent of βHX chains folded proved to be a ratio of the supernatant chains to crude 

lysate chains, due to concentration changes that occur in resolubilizing the pelleted 

fraction. Since this calculation requires the comparison of two distinct gel electrophoresis 

samples while the calculation for full length tailspike relies only on a single crude lysate 

sample, this method inherently introduces more potential sources of error. In spite of this 

potential error, the calculated folding efficiencies proved to be both precise and 

consistent with previous experiments (Table 4-4, Table 4-3). 
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4. Wild-type, G244R, and A334V Folding Efficiencies 
 

The calculated folding yields for the wild-type isolated β-helix proteins 

demonstrate some of the errors in calculating folding yields from multiple samples. For 

example, when wild-type βHX was expressed at 18ºC in three independent expression 

cultures, the folding yield was 127±13%. Folding yields significantly greater than 100% 

are indicative of some error in fractionation or pipetting. The calculated folding yields of 

expression at 37ºC, 30ºC, and 10ºC, 105±23%, 88±17%, and 88±5% respectively, did not 

appear to suffer from these errors, and it can be observed that the wild-type β-helix 

consistently produced high folding yields at all temperatures tested. 

Normalization of mutant folding yields to the wild-type βHX folding yields at 

each temperature generated folding efficiencies for A334V and G244R that are consistent 

with the folding efficiencies of full length tailspike expression cultures (Figure 4-3) and 

previously published data. A334V-βHX was able to fold like wild-type or better at all 

temperatures tested (Table 4-4), consistent with the folding efficiencies observed for the 

full length A334V tailspike (Table 4-3). Although the folding efficiencies of A334V-

βHX do not always overlap with those of full length A334V, they are never more than 

22% apart (Figure 4-3). 

G244R-βHX accumulated in the pelleted fraction of the lysate when expressed at 

37ºC, yielding a relative folding efficiency of 0.5±0.4%. Below 37ºC, G244R-βHX 

folded with wild-type-like folding efficiencies (Table 4-4). This temperature sensitivity is 

consistent with folding efficiencies obtained with the full length G244R tailspike (Table 

4-3, Figure 4-3). The wild-type-like folding of G244R-βHX at 30ºC reflects previously 

published data, where this construct was expressed at 30ºC in generating soluble protein 

for purification (Schuler and Seckler, 1998). 
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Figure 4-3. Quantitative comparison of β-helix and tailspike in vivo folding. Average 
percent of wild-type folding efficiencies are shown for full length tailspike (blue) and 
βHX (green) mutants at the four temperatures tested. Darker color lines indicate the 
standard deviations of triplicate experiments. The 75% threshold delineating wild-type-
like folders and folding deficient samples is shown as a dashed line. 
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5. Single Alanine Mutant βHX Folding Efficiencies 
 

The folding efficiencies for single alanine mutations of the isolated β-helix reflect 

the observations made with A334V and G244R that the solubility of βHX constructs 

matches the folding efficiencies of full length tailspike mutants. At 37ºC, the only alanine 

mutant that is capable of folding with wild-type-like folding efficiencies is Q489A-βHX 

(Table 4-4). All other alanine mutants are completely incapable of yielding soluble βHX 

proteins. This is identical to the observed folding efficiencies of full length constructs at 

37ºC (Figure 4-3). 

When expressed at 30ºC, F160A was the only alanine mutant incapable of folding 

at 37ºC that was rescued to a wild-type-like folding efficiency. As observed with the full 

length tailspike proteins, all other alanine mutants failed to fold and accumulated in the 

pelleted fractions of the cellular lysates. 

At 18ºC, F160A-βHX, Q489A-βHX, and C496A-BHX folded with wild-type-like 

efficiencies, while F308A-βHX, F352A-βHX, and F336A-βHX were folding deficient. 

The folding efficiencies of F160A, F308A, and F336A are nearly identical to those 

calculated for the full length tailspike protein (Table 4-3, Table 4-4, Figure 4-3). For 

Q489A, both full length and βHX proteins are wild-type-like in folding but show a 14.6% 

difference. F352A-βHX is folding deficient with a folding efficiency of 67±6% while 

F352A full length is classified as a wild-type-like folder with a folding efficiency that is 

28% higher than the βHX construct. Although there is a discrepancy in the folding 

efficiencies of the full length and βHX F352A, it is clear that F352A-βHX is capable of 

generating a substantial amount of soluble proteins. The same is true for C496A, where 

the full length tailspike is folding deficient at 18ºC, but C496A-βHX displays a wild-

type-like folding efficiency 37.8% greater than its full length counterpart. 

Isolated β-helix mutants F308A, F336A, and C496A were folding deficient when 

folded in vivo at 10ºC. The calculated folding efficiencies for these mutants are nearly 

identical to those observed for their corresponding full length tailspike mutants. This is 

also the case for F160A, F352A, and Q489A, which are wild-type-like folders in the 



 112 

context of the isolated β-helix and in the full length tailspike protein. It is interesting to 

note that C496A, both in the isolated β-helix domain and in the full length protein, is 

capable of producing a substantial amount of folded protein at 18ºC but is nearly 

completely blocked in folding at 10ºC. 

 
 
D. DISCUSSION 
 
 
1. Alanine Mutants Affect the Folding of the β-helix 
 

Seckler and coworkers were able to purify and characterize wild-type and mutant 

isolated β-helix domain proteins from the soluble fractions of 30ºC expression cultures. 

Based on a number of biophysical methods, they concluded that these proteins were in a 

β-helical confirmation that is very close to the native β-helix conformation observed in 

the full length protein (Miller et al., 1998a; Schuler and Seckler, 1998). In the 

experiments presented here, the in vivo solubilities of mutant and wild-type βHX proteins 

mirrored the corresponding full length tailspike sequences’ abilities to produce native, 

SDS-resistant trimers in the cellular environment. Taken together, these observations 

support the notion that solubility is a measure of the folding of the βHX domain in vivo. 

Overall, the folding phenotypes observed here for the isolated β-helix domain 

reasonably replicate the folding efficiencies observed for the full length tailspike mutants. 

Two mutants did not follow this general observation at one temperature, 18ºC. Although 

these βHX mutants crossed the 75% delineation between folding deficiency and wild-

type-like folding with respect to their corresponding full length constructs, both full 

length and βHX constructs produced substantial amounts of folded protein. In contrast, 

mutant F308A was never able to produce any folded protein at any temperature in either 

the full length protein or the isolated β-helix domain. The data for all mutants across all 

four temperatures suggests that the single alanine mutants affect the ability of the isolated 

β-helix to fold. This in turn demonstrates that the alanine mutants in the buried core of 

the β-helix domain of the P22 tailspike protein prevent the full length tailspike from 

folding by preventing the β-helix domain from folding. 
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2. Multiple Pathways of Aggregation 
 

In constructing the pET(βHX) construct, it was noted that ∆N-3H and ∆N-6H 

were completely blocked in forming any native, trimeric tailspike proteins and instead 

accumulated in the insoluble fraction of the cellular lysate. In contrast, βHX 

predominantly accumulated in the soluble fraction, indicating that it was folded as 

investigated by Seckler and co-workers (Miller et al., 1998a). Since ∆N-6H and βHX 

differ from each other by the presence of the C-terminus of the tailspike protein (residues 

551 – 666), this region of the protein must be responsible for the aggregation observed 

with the ∆N-6H construct. 

Various mutants of βHX accumulated in the pelleted fraction of crude lysates in a 

temperature dependent manner. One particular mutant, F308A, was never capable of 

producing any soluble βHX proteins at any temperatures and consistently produced 

insoluble aggregated protein. Previous investigations into the aggregation of the isolated 

β-helix domain have shown that this protein fragment is not a well-behaved protein and 

readily aggregates (Miller et al., 1998a; Schuler et al., 1999). 

The aggregation of the ∆N-6H and the aggregation of the isolated β-helix domain 

depend upon different parts of the full length tailspike protein. Previous investigations 

into the aggregation pathway and inclusion body formation of tailspike proteins indicate 

that aggregation proceeds from a partially folded or misfolded β-helical intermediate that 

is aggregation prone (Haase-Pettingell and King, 1988; King et al., 1996; Schuler et al., 

1999). The results described here demonstrate that multiple pathways of aggregation exist 

for the P22 tailspike protein (Figure 4-4). One pathway utilizes the C-terminal, 

oligomerization domain while the second involves the β-helix domain. It is unclear why 

these distinct pathways have not been detected before, but it may be postulated that the 

process of evolution optimized the C-terminal region for folding, assembly, and stability, 

while it has been previously demonstrated that the β-helix domain has been optimized for 

oligosaccharide binding rather than folding and stability (Seckler, 1998). Hence, in the 

full length protein, the region less optimized for folding is more likely to cause 

aggregation.
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A. INTRODUCTION 
 
 
1. In vitro refolding of P22 Tailspike 
 

In vitro refolding of the tailspike protein has shown that the protein is capable of 

refolding without the presence of the ribosome or other cellular factors and that in vitro 

refolding closely resembles the intracellular maturation pathway (Fuchs et al., 1991). 

Therefore, cellular components are not necessary for the folding of the protein and the 

amino acid sequence is sufficient to encode the folding and assembly of the protein to its 

native, trimeric state. 

Tailspike folding in vitro is rarely as efficient as in vivo. For example, folding 

yields as high as 60% have been reported for in vitro refolding of the wild-type tailspike 

at 10ºC (Fuchs et al., 1991; Seckler et al., 1989), while a 10ºC in vivo folding yield of 

93% was achieved in Chapter 2 of this thesis. One difference between the in vitro and in 

vivo refolding pathways that may account for this lower yield in vitro is that nascent 

polypeptide chains on the ribosome exhibit a β-helical conformation, as determined by 

antibody binding studies, that is not present at early times when tailspike is refolded in 

vitro (Clark and King, 2001). This observation has led to the suggestion that interaction 

with the ribosome or other cellular factors assists the tailspike chain in reaching these 

productive folding conformations more quickly than upon refolding in vitro. 

 
2. Chaperones and the P22 Tailspike 
 

In the cell, tailspike protein folding intermediates are recognized and bound by 

GroEL, but folding defects are not rescued by the presence of the chaperone (Gordon et 

al., 1994). In vitro studies showed that although GroEL can bind refolding tailspike, the 

tailspike protein is not released in an efficient manner and can thereby be trapped when 

ATP is not present (Brunschier et al., 1993). In contrast, the coat protein of the P22 phage 

has been shown to interact with GroEL to suppress aggregation (Doyle et al., 2004). 

Secondary-site suppressors of temperature sensitive folding mutants in the coat protein 

suppress aggregation by enhancing interactions between folding intermediates of the coat 

protein and the chaperone system (Parent et al., 2004). 
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Although the tailspike does not utilize the GroEL chaperone, the nascent chain 

displaying β-helical conformation does associate with the 30S ribosomal subunit (Clark 

and King, 2001). Since the ribosome-associated chaperone trigger factor and other 

chaperones such as the signal recognition particle dock to the 50S subunit near the 

polypeptide exit tunnel (Kramer et al., 2002; Schaffitzel et al., 2006), it is unlikely that 

these factors direct the folding of this 30S bound conformer. It has been suggested that 

co-translational interactions with the ribosome may favor β-helix formation. 

 
3. Experimental Design 
 

The results presented in previous chapters demonstrate that alanine mutations in 

the buried core hinder the folding of the β-helix domain in a temperature-sensitive 

manner. Do these residues affect intermolecular interactions, such as with the ribosome 

or chaperones, that favor the folding of the β-helix, or are the wild-type residues 

sufficient for encoding the folding of the β-helix domain? 

To investigate if the amino acid substitutions investigated in Chapter 4 are 

sufficient for producing the observed in vivo folding defects documented in Chapter 2, 

full length tailspike mutant polypeptide chains that had been investigated in the context 

of the isolated β-helix were purified, chemically denatured, and assessed for their ability 

to refold in vitro. Since mutant polypeptide chains completely incapable of reaching the 

native state at all temperatures were amongst those to be isolated, methods for purifying 

native tailspike trimers could not be utilized. Although his-tagged, full length tailspike 

proteins were constructed and purified, the additional amino acids present in the tag 

interfered with wild-type tailspike refolding (see Appendix B). Therefore, inclusion 

bodies from over-expressing cultures of full length tailspike sequences were purified and 

chemically denatured. Polypeptide chains were refolded in vitro to determine how alanine 

mutants in the β-helix domain affect the refolding of tailspike trimers. 
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B. MATERIALS AND METHODS 
 
 
1. Production of Inclusion Bodies of Full Length Tailspike Mutants 
 

Freeze stocks of full length tailspike constructs, which were generated as detailed 

in Chapter 2 and above, were streaked out on LB plates containing 100 µg/ml ampicillin 

and grown overnight at 37ºC. Clones from these plates were used to inoculate 37ºC 

overnight growth cultures in Super Broth containing 100 µg/ml ampicillin. Expression 

cultures were inoculated via 200-fold dilution of the overnight cultures into 1 liter Super 

Broth media containing 100 µg/ml ampicillin. Cells were grown shaking (225 rpm) for 

approximately 3 hours at 37ºC. Isopropyl-β-D-thiogalactopyranoside (IPTG) was added 

to a final concentration of 1 mM to induce protein expression. Expression cultures were 

transferred to 42ºC water baths and were allowed to express protein for 5 hours. Cultures 

were harvested via centrifugation for 15 minutes at 4000g. Cell pellets were resuspended 

in 10 ml of lysis buffer (50 mM Tris-HCl, pH8.0; 25 mM NaCl; 2 mM EDTA; 0.1% 

Triton X-100) and stored at -80ºC. 

Frozen expression cultures were thawed at room temperature and lysed at 4ºC and 

18,000 psi via French press. Samples were pressed three times each before adding PMSF 

(0.9 mM final concentration from 90 mM stock in isopropanol). Inclusion bodies were 

harvested by centrifugation at 5,800g for 40 minutes. Pelleted inclusion bodies were 

washed twice with 25 ml of lysis buffer for over an hour at 4ºC after being resuspended 

by scraping with a glass rod. Washed samples were pelleted by centrifugation at 15,000g 

for 10 minutes at 4ºC. Purified inclusion bodies were resuspended in 25 ml of Buffer B 

(50 mM Tris-HCl, pH8.0; 25 mM NaCl; 2 mM EDTA) and stored at 4ºC for up to four 

months. 

Inclusion body samples were analyzed by SDS-PAGE to observe their purity and 

to estimate the concentration of tailspike protein in each sample via optical densitometry. 
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2. Unfolding and Refolding of Inclusion Bodies 
 

Inclusion body samples containing approximately 40 µg of tailspike protein were 

pelleted via centrifugation for 10 minutes at 10,000g at room temperature. Pellets were 

resuspended in unfolding buffer (6 M urea, 10 mM DTT, 50 mM Tris-HCl, 25 mM NaCl, 

2 mM EDTA, pH 7.6) to an estimated concentration of 2mg/ml and incubated for 1 hour 

at room temperature. 

Unfolded samples were rapidly diluted 1:20 with ice cold refolding buffer (50 

mM Tris, 2 mM EDTA, pH7.6) to initiate refolding with an approximate tailspike 

concentration of 100 µg/ml. Samples were placed on ice for 30 minutes before being 

moved to a water bath at the desired testing temperature, either 37ºC, 30ºC, 18ºC, or 

10ºC. After specified time points, aliquots were removed from the refolding sample and 

mixed with 2% SDS sample buffer and stored at 4ºC until all time point samples were 

taken and could be analyzed by gel electrophoresis. 

3. SDS-PAGE and Optical Densitometry of Refolding Samples 
 

Time point samples were electrophoresed through 7.5% polyacrylamide gels as 

described in Chapter 2, Section B3. Gels were fixed with 10% acetic acid and 30% 

ethanol for over one hour and then stained with SYPRO® Ruby stain (Invitrogen) 

overnight. Gels were visualized using the Typhoon 9400 variable mode imager 

(Amersham Biosciences) with a fluorescence excitation of 457 nm, an emission filter of 

610 nm, and a photomultiplier value of 750 – 800. Gels were scanned at a resolution of 

100 microns. 

Optical densitometry of the gel image was performed using the GelAnalyzer 

plugin (Appendix A) for ImageJ (NIH). Images were calibrated using ImageJ’s 

Uncalibrated OD correlation function. Profile plots calculated for sample lanes were not 

corrected by a background lane, but were corrected by an average baseline value. As 

described in Chapter 2, Section B4, integration of the positive area of peaks 

corresponding to tailspike bands yielded relative protein amounts. A percent folded was 

calculated for each time point as the percent of tailspike chains present in the native, 

trimeric tailspike band, as detailed in Chapter 2, Section B4. 
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4. Kinetic Fits of Time Course Data 
 

Average percent folded time course data were fit to a single exponential rise 

function using the curve fitting feature of Kaleidagraph. This particular fit has the 

following formula, where t is time and A, B, and C are fitting variables: 

! 

Percent Folded = A +B(1- e
(-C*t)

)  

Each average percent folded value, calculated from triplicate independent experiments, 

was weighted by one over the square of the calculated standard deviations of triplicate 

experiments. Kaleidagraph provides data weighting as an option for curve fitting. 

 
C. RESULTS 
 
 
1. Inclusion Body Production 
 

Full-length tailspike mutants that had been examined at 10ºC in Chapter 4 (Figure 

4-1) were over-expressed at 42ºC, a temperature at which even the suppressor mutation 

A334V accumulates into inclusion bodies rather than folding or undergoing intracellular 

degradation. Inclusion bodies were washed and purified via several rounds of low speed 

centrifugation. Purified inclusion body samples were stable at 4ºC for several months 

with no signs of proteolysis.  

All tailspike sequences produced inclusion bodies whose composition was 70 – 

75% SDS-sensitive tailspike protein (Figure 5-1). In contrast, a pET11a lacking any 

tailspike genes was induced for expression but yielded no inclusion body proteins. 

Although some samples, such as A334V, still produced some native trimers at 42ºC, 

these trimers were removed in the process of purifying the inclusion bodies. 

 
2. Inclusion Body Refolding 
 

Pelleted inclusion body samples were chemically denatured at neutral pH in 6 M 

urea. Although these conditions are not strong enough to denature the natively folded, 

trimeric tailspike (Seckler et al., 1989), they were sufficient for solubilizing the inclusion
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body pellets. After one hour of unfolding at room temperature, samples were diluted with 

ice cold refolding buffer and incubated for 30 minutes on ice. This ice step has been 

shown to suppress in vitro aggregation of folding intermediates and produce folding 

yields in excess of 80% at 20ºC (Betts and King, 1998). Since tailspike in vitro refolding 

yields are typically much lower than in vivo, and since a number of the mutations 

examined in this study have already proven to be highly aggregative and defective in 

folding, we wanted to refold under optimal conditions for productive refolding. After the 

incubation on ice, refolding time courses were monitored for wild-type and all mutant 

samples in triplicate at three different temperatures: 10ºC, 18ºC, and 30ºC. SDS gels of 

18ºC refolding samples for wild-type, G244R, and F308A are shown in Figure 5-2. 

As can be seen in Figure 5-2, all tailspike chains were in an SDS-sensitive state 

upon being moved from ice to a heated water bath. With increasing time of incubation, 

wild-type and G244R tailspike chains trimerized and became SDS-resistant. This was the 

case for a number of other mutants, as will be discussed below. As expected, the G244R 

trimer exhibited an altered electrophoretic mobility with respect to wild-type trimers. 

While WT and G244R accumulated as trimers, the density of the SDS-sensitive band (U) 

diminished with time, as is most obvious in the case of WT. In contrast to the ability of 

wild-type and G244R polypeptide chains to reach the native state, F308A chains were 

completely incompetent for folding and remained in the SDS-sensitive band throughout 

the refolding time course. 

Except for two bands, marked by a question mark in Figure 5-2, bands 

representing other proteins in the inclusion bodies did not increase or decrease in density 

through the course of the experiment. The marked bands, however, increased sharply 

after the ice incubation and decreased with time. These bands appear to be tailspike 

specific, as they are not present in the refolding time course of the folding defective 

mutant F308A. The unknown band in the G244R sample is electrophoretically altered 

with respect to the unknown band in the wild-type sample, as would be expected if these 

bands were tailspike specific. Although these bands may be tailspike fragments, such as 

∆N tailspike chains that are known to be produced by proteolysis of partially unfolded 

intermediates (Chen and King, 1991), the fact that their density decreases with time 
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suggests that they are previously unidentified, SDS-resistant trimeric folding 

intermediates. However, since it is not known if these bands represent full length 

tailspike proteins, the calculation of percent folded values at each time point did not 

include these bands. 

 
3. Refolding Time Courses 
 

Refolding data acquired from the SDS-PAGE analysis of refolding time points 

demonstrated that the mutations investigated here significantly affect the refolding of 

tailspike chains to the SDS-resistant trimer state. This is most readily apparent from the 

refolding time courses of C496A, F336A and F308A. These full length tailspike mutants 

were completely incapable of producing substantial SDS-resistant tailspike proteins 

above the values calculated at the zero hour time point, independent of the refolding 

temperature (Figure 5-3). 

In contrast, the wild-type protein was capable of reaching refolding yields of 

26±2% at 30ºC, 43±4% at 18ºC, and 29±1% at 10ºC. The time courses observed in 

Figure 5-3 could be fit by a single exponential rise function. For wild-type, the resulting 

fits had coefficients of determination (R2) of 0.98 at 30ºC, 0.98 at 18ºC, and 0.99 at 10ºC, 

indicating the goodness of the fits. These fits were used to determine the half-times of 

refolding, which are shown for all time courses in Table 5-1. For the wild-type tailspike, 

the calculated half times of refolding, 12 minutes at 30ºC, 85 minutes at 18ºC, and over 4 

hours at 10ºC are generally in agreement with previously published data, which cites the 

refolding half-times of wild-type tailspike as 7 minutes at 30ºC, 60 minutes at 20ºC, and 

10 hours at 10ºC (Danner et al., 1993; Danner and Seckler, 1993). Given that the 

previously published experiments were performed without the initial ice step and were 

performed using different concentrations of proteins, the fact that the published values 

and those estimated here are on the same order of magnitude for all three temperatures 

indicates that the refolding of wild-type tailspike chains from inclusion bodies mimics the 

refolding of natively purified tailspike protein. 
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Figure 5-3. Kinetics of inclusion body refolding. For each time point, the percent of 
tailspike chains folded into SDS-resistant trimers was calculated. Colored symbols, as 
detailed in the legend in the upper left, represent averages of triplicate independent 
refolding experiments with vertical bars representing the standard deviations of these 
experiments. Colored curves are single exponential fits to the data, weighted by standard 
errors. 
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Table 5-1. Folding half-times of inclusion body refolding samples. The single 
exponential fits shown in Figure 5-3 were used to estimate the half-times of refolding. 
These values were calculated as the amount of time required for 50% of the fit’s 
maximum yield to fold into a native, SDS-resistant trimer. Negative values, which are 
shaded and bolded, represent time courses that could not produce native tailspike. 
 

In Vitro Trimer Refolding Half-Times (min) 
Sample 

37ºC 30ºC 18ºC 10ºC 
WT NA 12 85 256 

F160A NA 44 69 208 
G244R NA 20 71 212 
F308A NA -51 -245 -2220 
A334V NA 24 76 215 
F336A NA -1269 -456 -3999 
F352A NA -82 58 144 
Q489A NA 24 75 219 
C496A NA -1763 -278 -1674 

 
Table 5-2. In vitro folding efficiencies of full length tailspike mutants. The percent of 
WT folding yields for 8 mutants and WT at the various refolding temperatures tested are 
given as averages and standard deviations of the final yields of multiple refolding 
experiments. Folding deficient average values (<75%) are shaded and bolded, while 
heavily defective values (<25%) are colored red. 
 

In Vitro End-Point Percent of WT folding yields 
Sample 

37ºC 30ºC 18ºC 10ºC 
WT NA 100.0±6.4 100.0±8.6 100.0±2.7 

F160A NA 60.8±0.2 71.4±10.3 74.5±6.1 
G244R NA 69.3±2.5 78.7±9.8 92.7±6.0 
F308A NA 13.5±3.0 10.8±3.2 14.9±1.1 
A334V NA 82.1±2.6 88.6±14.0 79.0±4.0 
F336A NA 13.3±2.8 13.4±5.1 14.7±0.9 
F352A NA 15.3±0.6 35.1±9.5 41.2±7.0 
Q489A NA 100.4±4.7 88.0±14.0 94.3±11.2 
C496A NA 15.5±1.1 16.6±10.3 20.6±5.3 
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A number of mutants were able to refold to a native, trimeric state with kinetics 

similar to the wild-type full length tailspike protein. A334V, G244R, Q489A, and F160A 

were capable of producing detectable native trimer bands at all temperatures tested. As 

can be observed in Figure 5-3, although the final yields of these four mutants and wild-

type tailspike were often significantly different, the time courses of these mutants tended 

to cluster with that of wild-type, as opposed to the time courses of F352A, C496A, 

F308A, and F336A. At 30ºC, the half-times of mutants A334V, G244R, and Q489A were 

approximately twice that of wild-type, while F160A had a refolding half time nearly 4 

times that of wild-type. Though this difference may be significant, these values are still 

on the same order of magnitude. When refolded at 18ºC and 10ºC, these four mutants 

fold with half-times nearly identical to that of the wild-type sequence.  

The single alanine mutant F352A displayed significantly lowered folding yields at 

18ºC and 10ºC, and was completely blocked from folding at 30ºC (Figure 5-3). The fact 

that this mutation is capable of refolding back to its native conformation at 18ºC and 

10ºC, but not at 30ºC, mirrors its in vivo folding phenotypes at these temperatures (Table 

4-3). It is unclear why the folding yields for F352A are so much lower than the other 

refolding samples. When the half-time of refolding was calculated for F352A at 30ºC, a 

negative value was obtained (Table 5-1). This proved to be the case for all the other 

mutants incapable of producing native tailspike and is likely an indicator of the inability 

of these chains to fold to the native conformation. Positive values were obtained for 

F352A at 18ºC and 10ºC, and these values were higher than, but still on the same order, 

as those observed for wild-type and the other mutants capable of refolding. 

 
4. A Comparison of In Vivo and In Vitro Data 
 

A simple comparison of the temperature dependence of the in vivo folding of 

tailspike sequences (Table 4-3) and their ability to refold in vitro (Table 5-1) 

demonstrates that in vitro refolding data recapitulates the in vivo folding phenotypes, as 

previously highlighted with F352A. Some differences can be observed, however, when 

the end point folding yields of in vitro refolding experiments (Table 5-2) are compared 

with in vivo folding efficiencies (Figure 5-4). 
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Figure 5-4. Quantitative comparison of in vivo and in vitro tailspike folding. Average 
percent of wild-type folding efficiencies are shown for the in vivo expression (blue) and 
in vitro refolding (green) of full length tailspike mutants at the three temperatures tested. 
Darker color lines indicate the standard deviations of triplicate experiments. The 75% 
threshold delineating wild-type-like folders and folding deficient samples is shown as a 
dashed line. 



 129 

In comparing the in vitro and in vivo percent of wild-type folding efficiencies, a 

number of mutants displayed folding deficient values when refolded from inclusion 

bodies that did not display these values when folded in the environment of the cell. These 

inconsistencies, colored pink in Table 5-2, highlight F160A at all temperatures, F352A at 

lower temperatures, and G244R at 30ºC. Although these mutant samples would not have 

been classified as wild-type-like folders in the in vivo assay performed in Chapter 2, they 

do produce significant amounts of native tailspike, as is observed in Figure 5-3. 

Therefore, the ability to form native tailspike is consistent from in vivo expressions to in 

vitro refoldings. 

Nonetheless, large differences between in vivo and in vitro conditions were 

observed for F352A at 18ºC and 10ºC, C496A at 18ºC, and F336A at 10ºC (Figure 5-4). 

The reason for these differences is unclear, but it is important to note that C496A, for 

example, is able to generate some SDS-resistant trimers in vivo, but was completely 

incapable of doing so in vitro. Many factors, such as the oxidation state of the refolding 

environment or the presence of other proteins in the inclusion body samples may affect 

the folding of these chains. 

 
D. DISCUSSION 
 
 
1. Single Alanine Mutations Block Refolding 
 

Although some differences are apparent between the folding of full length mutant 

chains in vivo and in vitro, the temperature sensitivity displayed by mutant chains 

refolding from chemically denatured inclusion body pellets is consistent with their ability 

to fold de novo in the cell. In particular, F352A was capable of refolding at 18ºC and 

10ºC, but was not able to refold at 30ºC. This mutant displays the same temperature 

sensitive folding phenotype when expressed in E. coli. Given that the refolding 

environment tested here is substantially different from the environment a nascent chain 

experiences inside the cell, the observed consistency of folding phenotypes supports the 

notion that the inability of these mutant chains to fold is due solely to the introduced 

alanine mutation. 
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Not only is it apparent that the single alanine mutations affect the folding and 

refolding of tailspike chains in a temperature sensitive manner, it is surprising that some 

mutations, such as F308A, are able to completely block the folding of the tailspike 

protein under all conditions so far tested. In the case of F308A, the deletion of a single 

side chain from a 666 amino acid polypeptide chain completely prevents the protein from 

folding in the cell, completely blocks inclusion body purified polypeptide chains from 

folding in the test tube, and bars βHX proteins from folding in vivo. 

 
2. Sequence, not Ribosomal Interactions, Control Folding of β-helix 
 

Mutants capable of folding upon expression in vivo were also able to fold into 

trimeric tailspike proteins upon renaturation from denatured inclusion bodies. This 

demonstrates that the observed folding phenotypes are not a product of cotranslational 

folding or the environment that the nascent chain experiences upon emergence from the 

ribosome exit tunnel. Instead, this is a product of the sequence itself. 

The inclusion body samples were only approximately 70 – 75 % pure. Although 

this purity is consistent with a previously published purity of 68% for inclusion bodies 

generated with β-lactamase at 42ºC (Valax and Georgiou, 1993), it is clear that 

contaminants are present in the samples. It is possible that chaperones or ribosomal 

components may exist amongst those contaminants, as inclusion bodies have been 

observed to contain the heat-shock chaperone DnaK and ribosomal RNAs (Hartley and 

Kane, 1988; Rinas et al., 2007). These contaminants may assist or hinder the refolding of 

tailspike chains in a sequence specific manner. The fact that the observed kinetics of 

refolding of tailspike chains from inclusion bodies are consistent with the published 

values for the natively purified tailspike protein indicates that inclusion body 

contaminants do not significantly affect the rate of refolding. The unexpectedly low 

folding yields for all sequences tested may indicate that these contaminants do affect the 

relative rates of aggregation. This has been previously noted in the case of the refolding 

of hen egg white lysozyme from inclusion bodies, where contaminants affected the rate 

of aggregation, and hence folding yields, but did not disturb the rate of folding 

(Maachupalli-Reddy et al., 1997). 
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A. INTRODUCTION 
 
 
1. Fluorescence Studies on the Isolated β-helix Domain 
 

Fluorescence intensity experiments have been utilized to characterize the 

reversible folding of the isolated β-helix domain and the affects that mutations have on 

this process (Miller et al., 1998a; Schuler and Seckler, 1998). An apparently two-state 

fluorescence transition has been demonstrated for the urea induced equilibrium unfolding 

and refolding of the β-helix domain that is similar to the unfolding and refolding 

transitions of the trimeric ∆N tailspike protein. The fluorescence kinetics of refolding are 

identical to that of ∆N tailspike, indicating that the isolated β-helix domain adopts a 

tertiary structure that resembles that of the β-helix domain in the full length protein. 

Although the reversible folding of the isolated β-helix domain has allowed for the 

calculation of differences in free energies of folding for the wild-type sequence and 

various mutations, these experiments were performed under conditions that suppressed 

aggregation. When equilibrium studies were performed under strong ionic conditions, 

such as in the presence of guanidinium or urea with added sodium chloride, the 

fluorescence transition was no longer two-state but showed a plateau region in the 

equilibrium curve at 1 M guanidine or between 2 M and 4 M urea in the presence of 0.5 

M salt (Schuler et al., 1999). This plateau matched a similar plateau observed in the 

refolding fluorescence of the full length tailspike protein (Fuchs et al., 1991). In the urea 

induced unfolding and refolding experiments, the transition region at 4 M urea from this 

plateau to the unfolded state was congruent with an apparently two-state acquisition of 

secondary structure, as measured by circular dichroism.  

When high ionic strength equilibrium unfolding and refolding samples were 

allowed to incubate for extended times at 10ºC, it became apparent that conformations 

associated with the 2 M fluorescence transition and the plateau region were highly 

aggregation prone. The resulting aggregated protein exhibited multiple morphologies, 

including an amyloid-like fibril. When the affect of mutations was investigated on these 

aggregation processes, Seckler and coworkers observed that the temperature sensitive 
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folding mutant G244R substantially deviated from two-state fluorescence behavior at 

18ºC, yielding a fluorescence intensity 33% lower than wild-type at low urea 

concentrations. Under these same conditions, the suppressor V331G displayed near two 

state behavior, but showed a dip in fluorescence intensity at 1.5 M urea. These data 

suggest that the β-helix domain folds through an aggregation prone intermediate that is 

more readily populated by the temperature sensitive folding mutant G244R. 

 
2. Experimental Design 
 

In Chapter 5, refolding experiments using purified inclusion bodies demonstrated 

that the buried core alanine mutants affected the refolding of the full length tailspike 

protein in a sequence specific and temperature sensitive manner that mirrored the in vivo 

folding phenotypes characterized in Chapter 2. This observation, in combination with the 

in vivo folding phenotypes of isolated β-helix domain mutants described in Chapter 4, 

supports the notion that single amino acid changes block the folding of the entire trimeric 

210 kDa protein by altering the necessary information for encoding the folding of the β-

helix domain. Can this effect be more directly demonstrated if isolated β-helix domain 

mutants are purified and refolded in vitro? 

The answer to this question was investigated directly by purifying the wild-type 

isolated β-helix domain and the single alanine mutant F308A-βHX. Because the F308A 

mutation has proven to be completely blocked under all expression conditions tested, 

both constructs were purified under denaturing conditions and subsequently assayed for 

their ability to refold by fluorescence spectroscopy. 
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B. MATERIALS AND METHODS 
 
 
1. Production and Purification of Isolated β-helix Constructs 
 

Wild-type and F308A mutant pET(βHX) constructs were previously generated 

and transformed into E. coli BL21(DE3) as described in Chapter 4. Freeze stocks of βHX 

were streaked out on LB plates containing 100 µg/ml ampicillin and grown overnight at 

37ºC. Clones from these plates were used to inoculate 37ºC overnight growth cultures in 

LB containing 100 µg/ml ampicillin. Expression cultures were inoculated via 200-fold 

dilution of the overnight cultures into 1 liter LB media containing 100 µg/ml ampicillin. 

Cells were grown shaking (225 rpm) for approximately 2.5 hours at 37ºC until cultures 

reached an OD600 between 0.6 and 0.7. Isopropyl-β-D-thiogalactopyranoside (IPTG) was 

added to a final concentration of 1 mM to induce protein expression. Expression cultures 

were allowed to express protein for 7.5 hours at 37ºC. Cultures were harvested via 

centrifugation for 15 minutes at 4000g. Cell pellets were frozen and stored at -80ºC. 

Frozen expression culture pellets were thawed at room temperature and lysed by 

mixture with 5 ml of denaturing lysis buffer (100 mM NaH2PO4, 10 mM Tris base, 8 M 

urea, pH 8.0) per gram of cell pellet for one hour at room temperature. Cellular debris 

was removed by centrifugation of lysates for 30 min at 10,000g. The resulting 

supernatant was mixed with Ni-NTA resin (Qiagen) and purified by gravity flow affinity 

chromatography. The Ni-NTA and lysate column was washed with denaturing lysis 

buffer and subsequently washed with denaturing wash buffer (100 mM NaH2PO4, 10 mM 

Tris base, 8 M urea, pH 6.3). His-tagged proteins were eluted with denaturing elution 

buffer (100 mM NaH2PO4, 10 mM Tris base, 8 M urea, pH 4.5). Elution fractions were 

pooled and concentrated using Amicon Ultra-15 centrifugal filters (Millipore). 

Protein concentrations were determined by measuring absorbance at 280 nm of 

unfolded proteins, according to the Edelhoch method (Edelhoch, 1967). Extinction 

coefficients, 1.1872 (mg/ml)-1cm-1 for WT-βHX and 1.1891 (mg/ml)-1cm-1 for F308A-

βHX, were calculated based on the protein sequence (Gill and von Hippel, 1989). 
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2. Equilibrium Refolding of the Isolated β-helix 
 

βHX proteins were unfolded in 6 M urea (pH 7), 45 mM sodium phosphate, 0.9 

mM EDTA, and 4.5 mM DTT at a concentration of 100 µg/ml for one hour at room 

temperature. These unfolding reactions were then diluted 10-fold into varying 

concentrations of urea solution (0 M – 6.5 M), giving a lowest final urea concentration of 

0.6 M. Refolding samples were allowed to equilibrate for up to 5 days at 10ºC. The exact 

urea concentration of each sample was determined by measuring the refractive indexes of 

samples and applying the following equation: 

[Urea] = 117.66*∆N + 29.753*∆N2 + 185.56*∆N3 

where ∆N is the refractive index of the sample minus the refractive index of buffer 

lacking any urea. 

 
3. Fluorescence Spectroscopy 
 

Fluorescence emission spectra were taken using a Hitachi F-4500 fluorimeter 

equipped with a temperature control circulating water bath to maintain a constant 

temperature of 10ºC. The fluorimeter parameters included a slit width of 10 nm for 

excitation monochromators and 5 nm for emission monochromators. Samples were 

excited at 280 nm and the emission fluorescence was recorded for the wavelength range 

of 300 – 400 nm. All spectra were corrected for buffer. 
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C. RESULTS 
 
 
1. Fluorescence of the Unfolded and Refolded States of βHX 
 

Both wild-type βHX and F308A-βHX were purified by metal affinity 

chromatography to >90% homogeneity. Purified proteins were chemically denatured at 

neutral pH and refolded into varying concentrations of urea. To acquire the data shown 

here, DTT was required in the unfolding buffer. The range of urea that βHX chains 

experienced was 0.6 M to 6.4 M. Refolding reactions were allowed to equilibrate via 

incubation at 10ºC for 5 days. Equilibrium samples were then assayed for folding by 

fluorescence spectroscopy. 

Completely unfolded samples mixed with 6.4 M urea were excited at 280 nm and 

monitored for fluorescence across a range of wavelengths from 300 nm to 440 nm. Both 

WT-βHX and F308A-βHX samples displayed nearly overlapping curves, with peaks at 

350 nm for both samples (Figure 6-1). The WT-βHX sample equilibrating at the lowest 

concentration of urea, 0.6 M, showed a peak shift to 340 nm and a large increase in 

fluorescence intensity. The observed peaks and intensity changes are consistent with 

previously published fluorescence data on the WT-βHX protein (Miller et al., 1998a). 

This intensity increase was not observed if the unfolding buffer lacked DTT. 

The F308A-βHX sample equilibrated at 0.6 M urea displayed a peak shift to 340 

nm, but did not display a large intensity change (Figure 6-1). This is indicative that the 

conformation of this protein at low denaturant concentrations is not in the same folding 

state as the natively folded WT-βHX protein, nor is it in the completely unfolded state 

observed at high urea concentrations. The F308A-βHX protein appears to go into a third 

conformational state at low urea concentrations where some partial burial of tryptophans 

likely account for the peak shift and slight increase in fluorescence intensity. 
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2. Equilibrium Refolding Fluorescence 
 

The above fluorescence analysis and previously published data indicates that the 

fluorescence intensity of the β-helix domain at 340 nm is an indicator of the native folded 

state of the protein. Fluorescence emissions at this wavelength was observed for WT-

βHX and F308A-βHX samples that had been refolding for five days in a range of urea 

concentrations  

The WT-βHX protein displayed near two-state behavior, showing a clear 

transition between the unfolded state at high urea concentrations and the highly 

fluorescent native state at low urea concentrations. The midpoint of this transition 

occurred at approximately 2.5 M urea, which is in agreement with previously published 

data (Miller et al., 1998a; Schuler and Seckler, 1998). The only deviation from this two-

state refolding was a dip in fluorescence intensity centered around 1.5 M urea. This is the 

concentration of urea at which refolding experiments that include high amounts of salt 

show a folding transition from an intermediate plateau to the native state (Schuler et al., 

1999). This is also the concentration at which a similar dip in fluorescence can be 

observed in the 18ºC incubation of the suppressor mutation V331G. This dip in 

fluorescence may indicate a range of urea concentrations where the WT-βHX protein 

populates a partially folded, aggregation prone state. Although the aggregation of these 

samples was analyzed by absorbance at 360 nm, which measures light scattering due to 

high molecular weight species, turbidity measurements did not show any signal of 

aggregation. This is likely due to the fact that the 10 µg/ml concentration of proteins in 

the refolding samples was below the detection limit of the spectrophotometer. 

F308A-βHX showed a clear deviation from two-state behavior (Figure 6-2). This 

deviation is nearly identical to that of G244R-βHX when it was incubated in high salt 

concentrations at 18ºC. The deviation is not only similar in the shape of the resulting 

equilibrium curve, but in the magnitude of the fluorescence signal as compared with the 

wild-type isolated β-helix domain. At the lowest tested urea concentration, the 

fluorescence of F308A-βHX was 44% less than that observed for WT-βHX. 



 139 

 
 

Fi
gu

re
 6

-2
. E

qu
ili

br
iu

m
 r

ef
ol

di
ng

 o
f W

T-
β

H
X

 a
nd

 F
30

8A
-β

H
X

. R
ef

ol
di

ng
 sa

m
pl

es
 c

on
ta

in
in

g 
10

 µ
g/

m
l p

ro
te

in
 w

er
e 

eq
ui

lib
ra

te
d 

fo
r 5

 d
ay

s a
t 1

0º
C 

in
 v

ar
io

us
 c

on
ce

nt
ra

tio
ns

 o
f u

re
a.

 F
lu

or
es

ce
nc

e 
em

is
si

on
 a

t 3
40

 n
m

 w
as

 e
xa

m
in

ed
 a

fte
r e

xc
ita

tio
n 

at
 2

80
 n

m
. S

ol
id

 
do

ts
 re

pr
es

en
t t

he
 fl

uo
re

sc
en

ce
 in

te
ns

ity
 w

hi
le

 li
ne

s a
re

 p
re

se
nt

 si
m

pl
y 

as
 a

 g
ui

de
. 



 140 

D. DISCUSSION 
 
 
1. Mutant β-helix Folding Phenotypes are due to Sequence Alone 
 

WT-βHX and F38A-βHX protein were purified under denaturing conditions to a 

high degree of homogeneity. When assayed for their ability to refold, the WT-βHX 

folded to its native state, as assayed by fluorescence, while the F308A-βHX protein could 

not reach the same conformation. These experiments indicate that it is the polypeptide 

chain sequence of the single alanine mutation F308A that prevents the folding of the β-

helix domain. 

This single change appears to hinder the 42 kDa tailspike fragment from fully 

folding. Instead, the observed peak shift and partial fluorescence recovery indicate that 

the F308A-containing polypeptide chain goes into a partially folded conformation that is 

aggregation prone. The partial increase in fluorescence intensity and the peak shift 

observed at low urea concentrations indicate that some of the tryptophans of the β-helix 

protein may become partially buried, though not to the extent observed in the native 

structure. Though this burial may be due to aggregation, it is important to note that this 

altered burial is due to amino acid changes that do not necessarily contact any of the six 

tryptophans present on the surface of the β-helix domain (Figure 6-3).  

Based upon the published CD spectra of the wild-type sequence under conditions 

of high salt, the β-helix appears capable of attaining its high degree of β-sheet content at 

urea concentrations much higher than the fluorescence transitions observed here (Schuler 

et al., 1999). Although it is unclear how the F308A mutation affects β-sheet formation, 

this data would argue that the F308A mutant populates a partially folded state that likely 

has β-sheet content but lacks proper tertiary structure. The structure of such a partially 

folded conformer may be a β-helical topology where strands are improperly registered or 

a nucleus for folding cannot form. In such a collapsed structure, tryptophans could be 

partially buried but not folded into a native structure, while exposed hydrophobic 

sequences would be particularly prone to aggregation. 
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Figure 6-3. Locations of tryptophan residues in the tailspike β-helix domain. Six 
tryptophans, shown in blue, are located in the β-helix domain of the P22 tailspike. All are 
located on the surface of the protein. Three of these tryptophans (W202, W207, and 
W213) are located in the dorsal fin, while the other three (W315, W365, and W391) are 
on the surface of the β-helix. Residues A334 (green), F308 (red), and G244 (magenta) are 
shown for reference.
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CHAPTER SEVEN: 
 
 

DOUBLE MUTANT ANALYSIS REVEALS A NUCLEUS 
 
 
 
 



 144 

A. INTRODUCTION 
 
 
1. The Global Suppressors 
 

Suppressor mutations of temperature sensitive folding mutations were repeatedly 

isolated in genetic screens at two positions in the P22 tailspike protein: V331 and A334 

(Fane and King, 1991; Fane et al., 1991). Because these mutants intragenically rescued 

the temperature sensitivity of all mutants they were tested against, regardless of amino 

acid change or position, it was claimed that these suppressors acted in a global, or generic 

manner. Investigations of these mutants in the context of the isolated β-helix domain 

indicated that this global mechanism of suppression is likely via thermodynamic 

stabilization of a β-helical folding intermediate (Schuler and Seckler, 1998). 

 
2. Experimental Design 
 

The folding spine positions discovered in Chapter 2 represent the minimal 

required code for folding the β-helix domain. These mutations are incapable of folding 

like wild-type at all temperatures when expressed in the full length tailspike in vivo. For a 

small set of these mutants, it has been demonstrated that these alanine mutations block 

folding of the isolated β-helix domain (Chapter 4), block in vitro refolding of the full 

length protein (Chapter 5), and block the in vitro folding of the β-helix domain (Chapter 

6). Can the global suppressor rescue these highly defective sequences? 

If the global suppressor does rescue folding spine mutants, will the resulting 

folding efficiencies indicate which part of the β-helix domain folds first? After all, the 

central model of this thesis is that the β-helix domain of P22 tailspike folds via a 

nucleation-elongation mechanism. The folding spine does not appear to highlight a 

particular nucleus for folding. Does a specific region of the β-helix domain nucleate 

folding and, if so, where is it located? 

To address these questions, double mutants of the single alanine folding spine 

mutations were made by introducing A334V into each single folding spine mutant 

sequence. The global suppressor A334V was chosen over other suppressor mutations 
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because the wild-type alanine side chain points into the core of the β-helix and because 

this mutant has been analyzed in a number of contexts relevant to this thesis (Baxa et al., 

1999; Beissinger et al., 1995; Danner et al., 1993; Miller et al., 1998b; Mitraki et al., 

1993; Mitraki et al., 1991; Schuler and Seckler, 1998). The C-terminal cysteine annulus 

mutations investigated in Chapter 2 were included in this investigation to control for the 

location of the mutants. Double mutants of G244R, ∆N, and ∆N-G244R were constructed 

to provide positive controls for rescue by A334V. These new double mutants were tested 

for their ability to fold in vivo at four temperatures: 37ºC, 30ºC, 18ºC, and 10ºC. 

 
 
B. MATERIALS AND METHODS 
 
 
1. Production of Double Mutants 
 

Purified, methylated plasmids encoding confirmed single alanine mutants, the 

wild-type tailspike, the ∆N tailspike, and the mutated G244R tailspike were previously 

isolated from NovaBlue(DE3) cells (Novagen) or XL1-Blue cells as described in Chapter 

2 and Chapter 5, Section B1. These plasmids were used as templates for introducing the 

A334V mutation via the PCR-based QuikChange mutagenesis procedure (Stratagene). 

The A334V mutagenic primer listed in Table 4-2 and its reverse complement were used 

to introduce this mutation in all but two of the single alanine mutant constructs. Since the 

codons encoding the G329A and F336A mutants are located in the region of the A334V 

mutagenic primer, new primers were designed to maintain these single alanine mutations 

while introducing the A334V mutation. The sequences of these primers (IDT) are listed 

in Table 7-1. Mutagenesis reactions were performed in parallel in 96 well plates and 

utilized multi-channel pipeting to achieve high-throughput processing. 

PCR products were transformed into E. coli BL21(DE3) cells as described in 

Chapter 2, Section B2. Plasmid DNA was purified using QIAprep Spin MiniPrep kits 

(QIAGEN). Purified plasmids were also submitted for DNA sequencing of a 400 base 

pair region (20% of the tailspike gene) containing the targeted codon. Sequencing 

confirmed the double mutant clones (MGH DNA Core, Cambridge, MA). 
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2. Expression of Double Mutant Constructs 
 

Clonal E. coli BL21(DE3) cultures of double mutants and the A334V single 

mutant were made into 40% glycerol working stocks and 8.3% DMSO freeze stocks after 

8 hours of growth in LB containing 100 µg/ml ampicilllin at 37ºC. Working stocks were 

stored at -20ºC in 96 deep-well plates while freeze stocks were stored at -80ºC in dram 

vials. Overnight growth cultures were inoculated via 100-fold dilution of the working 

stocks into LB media containing 100 µg/ml ampicillin in preparation for inoculation of 

expression cultures. In the case of mutants with the F381A mutation, proper expression 

required that these cultures be freshly transformed into BL21(DE3) cells as described 

above and that the resulting transformant clones be used to inoculate overnight growth 

cultures. 

Expression cultures were inoculated via 100-fold dilution of the overnight or the 

working stock cultures into LB media containing 0.5% glucose, 50 mM 3-[N-

morpholino]-propanesulfonic acid (MOPS) and 100 µg/ml ampicillin. Cells were grown 

shaking (225 rpm) in 500 µl volumes in 96 deep-well plates for approximately 4.25 to 4.5 

hours at 30ºC. Isopropyl-β-D-thiogalactopyranoside (IPTG) was added to a final 

concentration of 1.5 mM to induce protein expression. Cultures were transferred to 37ºC, 

30ºC, 18ºC, or 10ºC and were allowed to express protein for approximately 4, 6.25, 18.3 

hours, or over 30.5 hours respectively. Cultures were harvested via centrifugation for 15 

minutes at 4000g and 4ºC. Cells were resuspended to 1/10 volume in lysis buffer (50 mM 

Tris-HCl, pH8.0; 25 mM NaCl; 2 mM EDTA; 0.1% Triton X-100) and stored at -20ºC. 

 
3. Cell Lysis, Fractionation, and SDS-PAGE 
 

Frozen expression samples were thawed at room temperature and lysed as 

described in Chapter 2, Section B3. Complete crude lysates, supernatant fractions, and 

pellet fractions were analyzed by SDS-PAGE as described in Chapter 2, Section B3. 
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4. Optical Densitometry 
 

Optical densitometry was performed on coomassie stained gels and normalized 

folding efficiencies were calculated from complete crude lysate samples as described in 

Chapter 2, Section 4. 

The amount of rescue conferred by the presence of A334V was calculated as the 

difference between the normalized folding efficiency of the A334V containing mutant 

and the normalized folding efficiency of the mutant lacking A334V. Standard deviations 

of this measure were calculated as the standard error of this difference: 

! 

Standard Error of Difference =  
SD

Mut( )
2

N
Mut

+
SD

Mut +A334V( )
2

N
Mut +A334V

 

The above equation utilizes the standard deviation (SD) calculated for the single mutation 

(Mut) and its corresponding double mutant (Mut+A334V), as well as the number of 

independent expression samples (N) used in calculating the standard deviations. 

 
 
C. RESULTS 
 
 
1. In Vivo Expression of Double Mutants 
 

All double mutants and single mutants not previously characterized, such as ∆N-

G244R, were individually over-expressed from a pET plasmid in Escherichia coli 

cultures incubated at 37ºC, 30ºC, 18ºC and 10ºC in order to assess the affect of the 

A334V suppressor on previously characterized folding phenotypes. As was observed 

previously, all strains accumulated tailspike polypeptide chains as clearly resolved bands, 

indicating that the mutations did not recruit proteases. Host protein translational levels 

were consistent across samples, allowing for appropriate background subtraction so that 

the folding efficiencies of new expression cultures could be calculated accurately in the 

manner performed in Chapter 2. Folding efficiency values for strains not previously 

characterized were normalized to wild-type folding efficiencies. These newly calculated 

values are listed in Table 7-2.
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Table 7-2. Folding efficiencies of new double mutants. The percent of wild-type 
folding efficiencies for double mutants at the four temperatures tested are given as 
averages and standard deviations of triplicate or sextuplicate independent expression 
experiments. Folding deficient average values (<75%) are shaded and bolded. 
 

Percent of WT folding efficiency 
Sample 

37ºC 30ºC 18ºC 10ºC 
∆N-A334V 134.3±7.0 99.9±2.5 109.0±2.9 105.0±0.6 

G244R-A334V  64.6±32.1 97.3±5.9 107.3±3.5 103.6±1.2 
∆N-G244R 6.3±2.5 73.1±8.1 107.3±3.4 105.0±1.5 

∆N-G244R-A334V  73.9±22.0 97.0±3.1 109.9±1.8 105.6±1.1 
V141A-A334V  8.7±7.0 16.6±7.7 62.5±9.0 52.9±7.8 
L144A-A334V  0.7±0.5 1.3±1.1 28.7±8.8 29.7±13.4 
F152A-A334V  6.6±4.9 0.0±0.0 11.5±9.1 13.8±3.9 
I167A-A334V  0.2±0.2 0.0±0.0 32.6±10.7 46.8±15.4 
L179A-A334V  0.1±0.1 0.0±0.0 21.9±9.0 49.6±16.1 
M195A-A334V  0.1±0.1 0.1±0.0 43.7±17.8 72.9±10.9 
L262A-A334V  0.3±0.4 0.5±0.5 16.8±5.0 35.2±14.6 
G277A-A334V  0.3±0.4 0.2±0.2 7.2±1.4 20.6±6.5 
F282A-A334V  1.0±0.9 0.3±0.1 79.6±18.3 90.4±6.3 
F284A-A334V  0.1±0.1 0.0±0.0 42.2±8.8 75.7±1.7 
G300A-A334V  0.4±0.4 1.2±0.3 101.7±3.0 102.0±3.6 
F308A-A334V  0.0±0.0 0.0±0.0 5.8±3.1 25.2±9.7 
N310A-A334V  0.2±0.2 0.0±0.0 67.2±8.7 90.6±5.9 
N319A-A334V  0.1±0.1 0.0±0.1 89.6±6.0 99.3±3.6 
G324A-A334V  0.1±0.1 0.8±1.0 99.3±5.9 100.2±2.3 
G329A-A334V  0.4±0.5 8.5±3.1 108.5±3.7 98.0±1.3 
F336A-A334V  0.3±0.4 0.5±0.5 101.2±7.5 90.9±9.3 
L379A-A334V  0.2±0.2 0.0±0.0 2.4±2.2 3.8±2.1 
F381A-A334V  0.0±0.0 0.0±0.0 0.0±0.0 0.1±0.0 
G393A-A334V  0.6±0.7 0.1±0.0 0.8±0.9 2.3±1.1 
L396A-A334V  0.1±0.1 0.0±0.0 0.2±0.2 1.3±1.0 
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Sample 37ºC 30ºC 18ºC 10ºC 
L424A-A334V  0.4±0.3 3.9±1.7 16.4±3.6 31.8±12.9 
H426A-A334V  0.1±0.1 0.8±1.1 1.2±1.1 1.7±1.6 
F441A-A334V  0.6±0.6 0.1±0.1 0.4±0.5 0.0±0.0 
G445A-A334V  0.8±0.6 0.0±0.0 0.5±0.6 0.0±0.0 
I453A-A334V  0.5±0.7 0.4±0.5 0.0±0.1 0.0±0.0 
F472A-A334V  1.0±0.7 0.1±0.1 1.2±1.0 1.5±1.0 
I475A-A334V  0.6±0.6 0.3±0.3 0.6±0.5 0.3±0.3 
I492A-A334V  0.8±0.6 0.7±0.5 0.8±0.3 2.0±1.2 
C496A-A334V  0.4±0.2 0.3±0.4 0.1±0.1 0.0±0.1 
V537A-A334V  49.5±33.7 63.3±9.6 60.1±9.3 54.9±17.0 
H610A-A334V  0.2±0.3 0.2±0.2 0.0±0.0 0.0±0.0 
C613A-A334V  0.4±0.2 0.2±0.1 0.0±0.0 0.1±0.1 
D632A-A334V  1.3±0.6 0.1±0.1 0.2±0.2 0.4±0.3 
C635A-A334V  1.9±0.7 2.7±1.1 3.7±2.1 4.6±2.0 
P638A-A334V  2.6±0.7 1.9±1.0 9.2±0.2 29.4±5.4 
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2. Mutant Folding Efficiencies at 37ºC and 30ºC 

 
Folding spine mutants, as well as single alanine mutations in the cysteine annulus 

of the P22 tailspike, were previously shown to be deficient in folding at both 37ºC and 

30ºC. This proved to be the case despite the presence of the A334V suppressor mutation 

(Figure 7-1). The suppressor mutant was completely incapable of rescuing any folding 

spine or cysteine annulus mutant back to wild-type-like folding efficiencies at 37ºC and 

30ºC. For mutants that produced some amount of trimeric tailspike at these temperatures, 

the presence of the A334V suppressor did not significantly alter the folding of the 

mutant. This can be best seen with the mutation V537A, where the average folding 

efficiency of the single mutant was within a single standard deviation of its 

corresponding double mutant. 

Although A334V did not significantly rescue any of the folding spine mutants, it 

did significantly hinder the folding of at least one of these mutants at 30ºC, V141A. As a 

single alanine mutant, this position displays a folding efficiency of 40±12%, but in 

conjuncation with the A334V mutation this mutant displays a folding efficiency of 

17±8%. These values do not statistically overlap, demonstrating the unexpected result 

that the A334V suppressor might actually enhance folding deficient phenotypes, rather 

than cure them. 

In contrast to the fact that A334V could not rescue the folding of any of the single 

alanine mutations, it was capable of significantly improving the folding of the G244R and 

∆N-G244R control mutations at 37ºC and at 30ºC (Figure 7-1, left side). Although such 

rescue was expected at 37ºC, based on tailspike literature (Danner and Seckler, 1993; 

Fane et al., 1991; Mitraki et al., 1993), the fact that A334V could continue to enhance 

folding efficiencies of G244R mutants at 30ºC was an interesting result. A334V was also 

able to significantly improve the folding of the ∆N tailspike protein at 37ºC, but appeared 

to slightly hinder the folding of ∆N at 30ºC. 
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Figure 7-1. Folding efficiencies of single and double m
utants at 37ºC

 and 30ºC
. The average folding efficiencies of strains lacking 

the A
334V

 suppressor m
utation are represented by colored dots w

ith their corresponding colored standard deviations. A
verage folding 

efficiencies and standard deviations of m
utants containing A

334V
 are show

n as black diam
onds and black bars respectively. C

ontrol 
strains are show

n on the left of the vertical black bar, w
hile alanine m

utants are plotted on the right according to their position in the 
polypeptide sequence. A

 dashed cyan line is draw
n at 75%

 folding efficiency. 
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3. Mutant Folding Efficiencies at 18ºC and 10ºC 
 

At 18ºC and 10ºC, the presence of the A334V suppressor mutation did not 

significantly alter the folding efficiencies of the control mutations tested here, as all of 

these strains appeared to be at their maximal folding yields (Figure 7-2, left side). 

In contrast, the presence of the suppressor mutation rescued a handful of folding 

spine mutations back to wild-type-like folding efficiencies (Figure 7-2, Table 7-2). The 

positions of the mutants rescued by A334V at 10ºC lie between residues number 282 and 

336, and include the single alanine mutations F282A, F284A, G300A, N310A, N319A, 

G324A, G329A, and F336A. Of these mutants, only F284A and N310A were not rescued 

back to wild-type-like folding efficiencies at 18ºC, but were still significantly improved 

in their folding by the intragenic presence of A334V at this temperature. 

Rescued alanine mutants are located close in sequence to the suppressor mutation. 

Some positions farther in sequence from the suppressor were also significantly improved 

in folding efficiency, though not enough to be classified as wild-type-like folders. These 

mutations include M195A at 10ºC, V537A at 18ºC and 10ºC, and P638A at 10ºC. 

A number of mutations were significantly hindered in folding by the presence of 

the A334V mutant, particularly when expressed at 18ºC. These include I167A, L179A, 

G393A, L424A, I453A, I492A, C496A, and P638A. 

 
4. A Region of Rescue 
 

A334V rescues a handful of positions located close in sequence to itself at 18ºC 

and 10ºC. Although this can be seen in a general comparison of the folding efficiencies of 

single alanine mutants and their double mutant counterparts (Figure 7-2), the effects of 

the secondary-site mutation are most obvious when the exact percentage difference in 

folding efficiencies are calculated (Figure 7-3). For example, these differences highlight 

the rescue that A334V affords the G244R mutant in the full length and ∆N constructs. At 

37ºC, A334V rescues G244R by 60 to 70%, while this rescue is only 15 to 25% at 30ºC. 

When these constructs are expressed at 18ºC and 10ºC, rescue drops to nil.
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Figure 7-2. Folding efficiencies of single and double m
utants at 18ºC

 and 10ºC
. The average folding efficiencies of strains lacking 

the A
334V

 suppressor m
utation are represented by colored dots w

ith their corresponding colored standard deviations. A
verage folding 

efficiencies and standard deviations of m
utants containing A

334V
 are show

n as black diam
onds and black bars respectively. C

ontrol 
strains are show

n on the left of the vertical black bar, w
hile alanine m

utants are plotted on the right according to their position in the 
polypeptide sequence. A

 dashed cyan line is draw
n at 75%

 folding efficiency. 
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For the single alanine mutants, 18ºC and 10ºC rescue values highlight the region 

just N-terminal to the position of the global suppressor (Figure 7-3). These positions not 

only include the mutants that became wild-type-like folders in the presence of A334V, 

but also include a number of other mutants that are significantly rescued by the 

suppressor, including M195A which displays a significant rescue value of 30% at 10ºC. 

When the positions that are rescued by the A334V suppressor mutation back to 

wild-type-like levels, or alternatively are rescued by 50% or more at either 18ºC or 10ºC, 

are analyzed, the positions highlight a cluster of residues in rungs 4, 5 and 6 (Figure 7-4). 

Although these positions are in the general vicinity of the suppressor mutation, only one 

of these positions, F336, directly contacts the alanine at position 334 in the wild-type 

structure. Amongst the folding spine residues, the second closest position in space to 

alanine 334 is F308, whose alanine mutant cannot be rescued by the suppressor or by any 

temperature. Figure 7-4 also shows the positions of temperature sensitive mutants that 

were listed in the literature as being rescued by the global suppressor. These positions 

highlight the same region that the rescued folding spine positions highlight, as well as the 

dorsal fin. Folding mutants in this central portion of the β-helix appear to be rescueable 

by the A334V suppressor mutation. 

 
5. A334V Hinders Folding of Distant Folding Spine Residues 
 

Single alanine mutants outside the central rungs (4 – 6) of the β-helix have a 

greater tendency to be hindered by the presence of the suppressor mutation rather than be 

rescued by A334V (Figure 7-3). At 30ºC, 18ºC, and 10ºC, rescue values indicate that a 

number of single alanine mutations are significantly hindered by the presence of the 

suppressor mutation. These mutants, such as V141A at 30ºC, have negative rescue values 

that are significantly different from zero. The majority of these hindered positions are 

distantly C-terminal to the suppressor position. Many of these positions were hindered 

between 40 and 60% by the presence of the suppressor mutation. These are significant 

values, given that A334V rescues G244R by 60% at 37ºC. 
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Figure 7-4. Locations of A334V rescued mutants. The native positions of folding spine 
mutants that are rescued back to wild-type-like folding efficiencies (>75%) by the 
presence of A334V (green) are shown in cyan, while the positions of other alanine 
mutants that are not rescued by A334V are colored red. Positions colored blue represent 
temperature sensitive mutations that have been previously published as being rescued by 
the suppressor mutation A334V. 
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D. DISCUSSION 
 
 
1. A334V is Not a Global Suppressor 
 

A334V and other suppressors of temperature sensitive folding defects were 

originally classified as global suppressors because they appeared to rescue the folding 

defects of all mutants tested via a general mechanism of suppression. Since the 

suppressor mutants thermodynamically stabilized the isolated β-helix domain, it was 

suggested that the generic mechanism of suppression was through a stabilization of the β-

helical folding domain (Schuler and Seckler, 1998). 

The results presented here demonstrate that the suppressor mutation A334V is not 

a global suppressor. This mutant is not capable of rescuing a number of alanine mutations 

located in the core of the β-helix that block the folding of the tailspike protein. In fact, 

A334V’s pattern of suppression of folding spine mutations is position specific and is 

isolated to a specific region of the β-helix between rungs 4 and 6. This suggests that the 

mechanism by which A334V rescues folding defects is not by stabilizing the entire β-

helix domain. If suppression occurred through enhanced thermostability of the β-helix 

domain, one would expect the suppressor to rescue positions in a manner more consistent 

with the type of mutations that are generated, rather than by location in the structure. 

A number of folding defective alanine mutations are further hindered in folding 

by the presence of A334V. Since A334V has been shown to stabilize the β-helix, these 

results demonstrate non-additivity in the folding of the double mutant tailspike protein 

sequences. This precludes the possibility that the partitioning between productive folding 

and aggregation is dependent on the thermostability of the β-helical folding intermediate. 

 
2. A Nucleus for Folding 
 

If the suppressor mutation does not enhance productive protein folding through 

the thermodynamic stabilization of a β-helical folding intermediate, then perhaps it acts 

by stabilizing an earlier folding intermediate or a particular kinetic transition in the 

folding of the β-helix domain. Based on the nucleation-elongation mechanism proposed 
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in Chapter 2, the A334V mutant may be stabilizing a nucleus for folding or rescue only 

those mutations that disrupt the folding of the nucleus. The central region of the β-helix 

between rungs 4 and 6, where the suppressor mutation rescues folding spine mutations, 

most likely highlights this nucleus for folding. 

If it is true that the A334V mutation acts by stabilizing a folding nucleus, then the 

non-additivity observed for mutations C-terminal to the suppressor is likely the result of 

the formation of a structure with a stable nucleus that is hindered in elongation by the 

folding spine alanine mutant. Such a combination of mutations would cause polypeptide 

chains to populate a conformation that is partially folded in the central part of the β-helix, 

likely exposes hydrophobic regions, and is highly prone to aggregation. 

How does the suppressor mutation stabilize a nucleus for folding? Seckler has 

suggested that the substitution of valine for alanine at position 334 improves an internal 

hydrophobic stack, given that A334 is sandwiched between I306 and V362 in a buried 

core stack. The existence of the folding spine highlights the importance of key stacking 

positions for registration of one β-strand against the next in the β-helix topology. The 

A334V substitution may rescue folding spine alanine mutations in the nucleation region 

by stabilizing the proper registration of β-strands in the nucleus region. Alternatively, 

alanine mutations remove the necessary information for registering rungs against each 

other while the valine substitution at position 334 provides alternative information for β-

sheet registration. 
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CHAPTER EIGHT: 
 
 

FINAL DISCUSSION 
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A. SUMMARY OF CHAPTERS 
 

Side chain stacking is a structural phenomenon that is a prominent component of 

protein structures, such as amyloid fibers and the β-helix fold, that are involved in a 

number of human illnesses. Neurodegenerative diseases such as Alzheimer’s, 

Huntington’s, and Parkinson’s disease are coincident with the formation and 

accumulation of amyloid fibers at the sites of neuronal loss. Some allergies are the result 

of an immune response to the β-helix structure of antigens. The toxins responsible for 

whooping cough are β-helical in nature. At the end of Chapter 1, the question was posed 

as to how the amino acid sequence involved in side chain stacks directs the folding of 

these proteins. 

 This question was initially investigated in Chapter 1 by reviewing the known 

cases of side chain stacking. β-helix proteins, the amyloid crystal structure, and leucine 

rich repeat proteins all display varying degrees of side chain stacking. In the case of the 

amyloid crystal structure, side chain stacking involved identical residues stacking with 

identical orientations. In contrast, β-helix proteins tend to lack any form of sequence 

repeat between rungs, and β-helix stacks readily tolerate sequence identity mismatches. It 

was further observed that for the right-handed parallel β-helix structures, side chain 

stacking was more highly organized inside the buried cores of the proteins, while external 

side chain stacks were more structurally disorganized. 

To address the question of how the amino acid sequence of buried core residues 

directs the folding of β-helix proteins, scanning alanine mutagenesis was performed on 

the buried core stacks of the P22 tailspike. In Chapter 2, alanine mutants of the buried 

core of the P22 tailspike were assayed for their ability to fold in the context of the cell. 

These experiments demonstrated that the buried core of the tailspike protein is 

surprisingly sensitive to alanine mutations at high expression temperatures. At lower 

temperatures, alanine mutations are tolerated more readily, though a core set of positions 

are completely intolerant to alanine substitution. These positions highlight a network of 

continuously contacting residues called the folding spine. The results of these 

experiments led to the proposal at the end of Chapter 2 that the β-helix domain of P22 



 163 

tailspike folds through a step-wise nucleation-elongation mechanism, where a nucleus of 

a few rungs forms and acts as a template for subsequent rungs to wind up against. In this 

folding mechanism, the folding spine residues represent the necessary information for 

creating key contacts that dock one rung to the next. The remaining chapters of this thesis 

were dedicated to testing this model for the folding pathway of the P22 tailspike β-helix 

domain. 

In Chapter 3, the native state stabilities of mutant tailspike proteins were assayed 

to determine if the alanine mutants investigated in Chapter 2 failed to accumulate native, 

trimeric tailspike proteins at various in vivo expression temperatures because the 

mutations destabilized the native state. A general thermostability assay demonstrated that 

all but one of the mutant proteins carrying alanine substitutions had melting temperatures 

between 80ºC and 90ºC in the presence of 2% SDS. Since these conditions are much 

harsher than that experienced by nascent chains folding in cells at the temperatures tested, 

the results established that the folding defects caused by single alanine mutations were 

not due to a destabilization of the native state. 

To determine whether the buried core alanine mutants acted at the level of the 

folding of the β-helix domain of the full length tailspike protein, a small subset of 

mutants were investigated in the context of the isolated β-helix domain in vivo. The 

folding of the mutant βHX proteins was assayed by their solubility. The temperature 

sensitive folding phenotypes discovered for mutants in the isolated β-helix was consistent 

with those seen in the full length tailspike proteins. These experiments demonstrated that 

the inability of mutant chains to reach the native trimeric state in Chapter 2 was due to a 

defect in the folding of the β-helix domain. 

Another important observation made in Chapter 4 is that multiple aggregation 

pathways exist for the P22 tailspike. This conclusion was borne out from the generation 

of ∆N-6H and βHX sequences. The ∆N-6H polypeptide chain was highly aggregative 

and was incapable of forming native, SDS-resistant trimers. βHX, which was identical in 

sequence to ∆N-6H except for the lack of the C-terminus of the tailspike protein, was 

able to form soluble, natively folded β-helix proteins. Therefore, in the case of ∆N-6H, 
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the C-terminus of the protein was responsible for aggregation while another aggregation 

pathway must be present for folding defective βHX mutants. 

In Chapter 5, the in vitro refolding of full length tailspike mutants was assayed to 

determine if the sequence of these mutants alone is sufficient to cause the observed 

folding defects. Inclusion bodies were purified and denatured tailspike chains were 

investigated for their ability to refold to the native state. The competence of tailspike 

mutants to refold in vitro was consistent with in vivo folding phenotypes. The kinetics of 

refolding was also consistent with previously published half-times. Although in vitro 

folding yields were often reduced in comparison to the calculated in vivo folding 

efficiencies, the kinetics of refolding demonstrated that possible inclusion body 

contaminants did not have a significant effect on the folding of the tailspike. This 

indicates that the amino acid sequence of the tailspike polypeptide chains alone is 

sufficient to encode the folding of the protein. Further, the refolding experiments 

demonstrated that single alanine substitutions are sufficient for blocking the folding 

pathway. 

In vitro refolding experiments were extended to the refolding of wild-type βHX 

and F308A-βHX proteins. These species were purified under denaturing conditions in 

Chapter 6 and equilibrium refolding experiments were monitored by fluorescence. The 

observed fluorescence signals indicated that the F308A mutation does in fact block the 

folding of this domain. However, the observed fluorescence values for F308A-βHX at 

low denaturant concentrations indicated that some burial of tryptophans occurs at low 

urea concentrations. This likely implies that the mutation F308A partially folds or 

collapses into an aggregation prone conformation. 

The final test of the nucleation-elongation model was to ask whether the global 

suppressor mutation A334V could rescue folding spine mutations and demonstrate the 

existence of a folding nucleus. In Chapter 7, double mutants of the full length tailspike 

sequence were expressed in vivo and analyzed for the ability to form native trimers. 

Comparing the folding of single alanine mutations with the folding of double mutants 

containing A334V highlighted a region of residues in rungs 4, 5, and 6 that were rescued 
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by the suppressor mutation at 18ºC or 10ºC. I propose that this region represents a 

nucleus for the earliest of folding events in the β-helix domain. 

Other folding spine residues could not be rescued by A334V and a number of 

mutants had significantly hindered folding efficiencies upon the introduction of the 

A334V mutant. The fact that A334V cannot rescue all mutations demonstrates that this 

mutant is not in fact a global suppressor. Although it has been previously demonstrated 

that A334V thermodynamically stabilizes the β-helix, the non-additivity of folding 

phenotypes of A334V and folding spine double mutants indicates that the 

thermodynamics of a native-like β-helix folding intermediate is not the primary controller 

of the folding of the β-helix domain. Instead, it appears that A334V stabilizes or 

kinetically enhances the population of a nucleus for β-helix folding. 

 
 
B. MEDICAL IMPLICATIONS 
 

As we come to better understand the basic principles behind misfolding and 

aggregation, we can begin to design therapeutics that aim to cure protein misfolding 

diseases. Already, a number of methods are utilized to combat these diseases. These 

methods fall into two categories: rational design and chemical library screening. 

For example, a number of nonsteroidal anti-inflammatory drugs have been 

developed that specifically stabilize the native, tetrameric state of transthyretin (Miller et 

al., 2004). Stabilization of the native state prevents dissociation of the tetramer, which is 

a necessary step towards the progression of amyloid formation (Colon and Kelly, 1992). 

In the case of serpin polymerization, small peptides have been designed to bind into the 

middle strand position of β-sheet A, thereby blocking mobile loops of other proteins from 

intermolecular binding in that position and proceeding towards polymerization (Zhou et 

al., 2004). These two methods of therapeutics design are successful because they target 

native structures and prevent the disruption of that structure by aggregative processes. 

The alternative discovery method has been applied to finding chemicals that can 

disaggregate amyloid fibrils associated with Alzhiemer’s disease. This process resulted in 
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the discovery of 4,5-dianilinophthalimide (DAPH) which is capable of reversing Aβ(1-

42) fiber formation, though the mechanism of action is currently unknown (Blanchard et 

al., 2004). Alternatively, this type of drug discovery process was used to find small 

chemicals that enhance inclusion formation (Bodner et al., 2006). These enhancers of 

aggregation alleviated some of the toxic effects of amyloidgenic Huntingtin protein and 

α-synuclein. It appears that forcing these proteins into inclusions prevents the protein 

from populating toxic species. 

These methods of drug discovery and design have also been used to target 

pathogens, such as pathogenic gram-negative bactera. One example is the discovery of a 

pentadecapeptide that binds and inhibits the β-helical protein LpxA (Williams et al., 

2006). LpxA catalyzes the first step in lipid A biosynthesis and is essential for growth. 

Inhibition of this protein therefore makes this pentadecapeptide a powerful antibiotic. 

As can be seen from these examples of designed and discovered drugs, the main 

focus of modern therapeutics is to target the end states of the folding and aggregation 

processes. Drugs are either designed or screened for their ability bind the native state of a 

protein or to act on formed fibers. In the case of amyloidosis, this may not be ideal if the 

toxic species are small oligomeric species that would become more populated upon fiber 

disaggregation. Instead, a processive folding mechanism provides a new target for drug 

design against a number of diseases associated with β-helical proteins and protein relying 

on side chain stacking. 

For example, it is reasonable that instead of blocking the interactions between an 

infective β-helix and its recognition factor, drugs may be designed to hinder the folding 

process. These may be particularly useful for combating disease-associated 

autotransporter β-helix proteins, whose folding and translocation are coupled (Otto et al., 

2005). Inhibition of the folding process would prevent maturation of toxicity. It is clear 

that the core of the P22 tailspike β-helix is surprisingly sensitive to environmental factors 

and mutational effects, which can cause unrecoverable folding inhibition under 

physiological conditions. The same may be true for the folding of other structures that 

display side chain stacking. Therefore, side chain stacks and their associated folding 
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intermediates may represent an assortment of targets for inhibition of the step-wise 

folding or assembly of these proteins. 

Since the β-helix class of proteins is rare and primarily specific to the microbial 

world, drugs of this type would benefit from specificity towards the infectious agent. 

Drugs capable of inhibiting β-helix formation may offer an effective mechanism for 

preventing selected microbial and viral infections. 
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APPENDIX A. GELANALYZER PLUG-IN FOR IMAGEJ 
 

Commercial 1D gel analysis software is readily available from a number of 

commercial suppliers. These software packages, such as ImageQuant (MD), allow for the 

quantification of optical densities of bands in electrophoresis gels, an activity that proved 

indispensable in this thesis. However, many of these programs suffer from a number of 

limitations that restrict their usefulness, such as operating system dependencies, the 

expense of the software, the inability to correct mistakes, and limits on the number of 

samples that can be analyzed at one time. Many of these software programs are laborious 

and time consuming, particularly when attempting to analyze a 102-lane gel image. 

In order to overcome many of the drawbacks inherent in commercially available 

gel analysis programs, I developed the GelAnalyzer plug-in for the freely available image 

processing software ImageJ (Wayne Rasband, National Institutes of Health, USA). 
Although ImageJ has its own methods for performing optical densitometry analysis, these 
routines suffer from many of the same problems as the commercial software. For example, 
there is currently no way to undo mistakes without having to start the process over entirely. 
ImageJ also only allows for the selection of perfectly rectangular lanes, and does not allow 
for lanes that shift, which is a common occurrence in scanned gel images. GelAnalyzer was 
specifically developed to take advantage of the established framework of the Java-based 
ImageJ program while making the process of gel analysis straight forward, flexible, and 
accurate. 

Like ImageJ, the plug-in was written in the Java programming language, making it 
cross-platform. The plug-in is also freely distributed and can be installed in one step, 
making it readily accessible to any individual interested in performing gel analysis. The 
source code for GelAnalyzer is packaged with the program, allowing software developers 
the option of expanding GelAnalyzer or using its methods as a library for other programs. 

Once a gel image is opened in the ImageJ program, the plug-in can be started 

from ImageJ’s plug-in menu. The plug-in displays a graphical user interface (GUI) for 

the user, which takes the user through the five basic steps of analyzing a gel: orientation 

of the image, calibration of the image, marking lanes, subtracting background, and 

identifying and analyzing band peaks. At any point in the process, the user can save 

whatever progress has been performed on the current image or load progress from a 
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previous analysis run. All selected values for each step of the analysis are saved in the 

text-formatted progress file. 

 
1. Image Orientation 
 

Although the GUI is the main control center for the analysis process, the user can 

still interact with the image using many of the ImageJ tools. This is readily observable in 

the first phase of gel analysis, image orientation. The image orientation panel provides 

two main methods of rotating the image, either by automated detection of features or by 

manual inputting rotation values. 

Two options are currently implemented for automated orientation of the gel 

image. The first is based on the detection of a step tablet, while the second attempts to 

recognize the gel itself. Neither of these methods are guaranteed to provide the desired 

results, but the reliability of their detection algorithms may increase with time. Currently, 

the step tablet recognition algorithm, which relies on identifying the darkest and lightest 

spots on the image and predicting where the corners of the tablet are based on these 

values, appears to perform more reliably than the gel detection algorithm. Gel detection 

implements a modified Sobel filter to detect band edges. The algorithm then attempts to 

calculate the median directionality of detected bands, and rotate the gel accordingly. 

Manual orientation has so far proven the most reliable method for rotating for gel 

analysis. The user can input a desired angle of rotation and tell the program if the image 

should be flipped in the vertical or the horizontal directions. The user may use ImageJ’s 

line selection tool to draw a line over a desired image feature and ask the plug-in to make 

the line selection horizontal. The program will automatically calculate the desired angle 

of rotation with respect to the original image’s orientation and report that angle back to 

the user. 
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2. Image Calibration 
 

Image calibration is a necessary step for reliable optical densitometry evaluations. 

Images may be scanned using different scanners or different scanner settings, which 

changes how a black or white pixel value in an image is related to absolute values of 

optical density. This is also important because the relationship between optical density 

and pixel value is rarely a linear function, but more often is a logarithmic function. 

If an image is not scanned with a step tablet or without a step tablet of known 

optical density values, then the user has the option of calibrating the image using 

ImageJ’s built-in calibration function “Uncalibrated OD”. Although this is not the most 

accurate method of calibration, it does at least attempt an exponential relationship 

between optical density and pixel value. 

Alternatively, the user may interact with the step tablet outlining tool that is 

displayed on the image. This tool is a modified and enhanced version of ImageJ’s region 

of interest (Roi) selection boxes. It can therefore be resized and relocated at will. The 

height and the amount of sampling to calculate pixel values can be adjusted in the GUI’s 

calibration panel. The number of steps as well as each step’s width and OD value can be 

adjusted using the displayed table interface. The calculated average pixel value for each 

step is automatically recalculated any time the step tablet is changed. Finally, the type of 

function that will be used to map pixel values to optical densitometry values can be 

selected from amongst 12 built-in options. However, every time the step tablet is adjusted 

and the average pixel values of steps are calculated, the fit function yielding the best fit is 

automatically calculated and displayed in its selector. 

Once the user has outlined the step tablet, selected the appropriate fit function, 

and pressed the calibrate button, the image’s pixel values are calibrated according to the 

inner mechanisms of ImageJ’s calibration and function. Pixel values can be automatically 

transformed into optical density values. 



 193 

3. Marking Lanes 
 

Once the image is calibrated, the gel lanes are ready to be marked. Although the 

gel selection panel does not currently have methods for automatic lane or band detection, 

the java programming interface allows for such methods to be easily incorporated into the 

program if they are developed. 

Currently, gel lanes must be traced manually. A set of templates for common gel 

sizes and numbers of lanes are incorporated into the program for easy selection. Like the 

step tablet selection tool, the gel selection tool is an extended version of ImageJ’s roi 

selectors. Therefore, the user can resize or translate the gel in the image window. 

Alternatively, the lane width, lane length, and directionality of the gel can be determined 

in GelAnalyzer’s GUI. It is an important component of gel analysis that all lanes have the 

same width because the average optical density is calculated of a band is calculated as the 

average OD across the width of the lane. In order for all lanes to share the same amount 

of noise in this calculation, lane widths are kept constant across all lanes. 

Lanes can be individually placed using the GUI’s input table. Lanes can also be 

named, either by manually typing in the lane names or by loading the lane names from a 

comma-delimited file. In order to correct for possible lane shifting, lanes can be 

manipulated individually on the gel image once the “Individual Lanes” adjustment mode 

is selected. The lane selection tool is a spline tool, where the center of the lane is 

determined by a spline through a set of node points. This allows for curvature in the lane 

and let’s the user define specific locations that the center of the lane must pass through. 

Nodes can be added or removed by holding down the “alt” key while clicking on the 

image window. The lane selection tool is also a type of roi selector, and thus it can be 

translated at will. 

It is important to note that although the spline allows for curvature in a lane, the 

profile plot of the lane is calculated as the average OD over a given width of pixels at a 

specific pixel height in the image. The profile plot does not adjust its calculation to take 

into account the angle of curvature in the lane. 
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4. Background Subtraction 
 

Once lanes have been selected, the GelAnalyzer plug-in automatically calculates 

the plot profile of the lane as the average optical density at each integral pixel position 

along the height of the lane. The user is then offered the option to correct individual lanes 

by a specified background lane. This is a useful tool if the user desires to remove the 

background staining of the gel itself, based on a lane not loaded with any sample, or if the 

user wishes to subtract the background bands of a control sample. 

Each lane or all lanes can be selected as background, as being corrected by the 

background lane, or for not being corrected at all. In the current version of the program, if 

multiple lanes are chosen as background, then the average profile plot of these lanes is 

calculated as the background to use for subtractions. The background selection tool 

allows for the input of a horizontal offset of the current lane in comparison to the 

background profile plot. This enables the user to correct for smiles in the gel that causes 

the same bands in different lanes to run at slightly different positions from each other. 

Although this kind of correction would ideally allow for horizontal scaling to align peaks 

with each other, the program does not currently implement that ability. Offsets can be 

calculated by an algorithm that attempts to match up peaks, though this automated 

algorithm is not guaranteed to work often offsets lanes about one to two pixels off from 

the ideal horizontal offset. 

Since some lanes may stain differently than other lanes, scalars can be applied to 

each lane in order to have the baselines of the background match the baselines of the 

sample lane. An algorithm is provided that calculates the ideal scalar for matching the 

median OD values of the two lanes. This algorithm was used so as to attempt to match 

the baselines of the lanes, which ideally are the most prevalent OD value in each lane. 

When determining the background, scalars, and offsets of each lane, profile plots 

are shown depicting the relative values of the raw profile plot, the background profile 

plot, and the final adjusted profile plot if the lane is selected for background correction. 

These plots are updated any time a change is made to the lane’s offset or scalar in order 

to visually aid the user. 
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5. Peak Analysis 
 

Having defined lanes and defined whether sample lanes are to be corrected by 

background lanes, the user can analyze the individual peaks in each lane. When this panel 

of the GelAnalyzer GUI is first opened or anytime the lane and background definitions 

are changed, an automated peak detection algorithm run in an attempt to detect all of the 

peaks. This algorithm scans the profile plot for any local maxima in the plot and defines 

those positions as peaks. This is not ideal, in that smoothing of the profile plot may 

produce fewer spurious peaks 

For each lane, the user can specify a variable number of peaks and can name each 

peak individually. Each peak can be selected graphically or a horizontal apex position can 

be typed into the peaks table. Once a new apex value is given to the program, it will 

automatically recalculate where the nearest apex is for the selected peak and will try to 

detect the upper and lower limits of the peak. The user can also manually adjust the 

bounds of the peak. Peaks bounds are displayed in the gel image so that the user can 

compare peak locations across lanes and can visually see where in the gel the peak is 

located. The number of peaks in a lane, the peaks’ names, the peaks’ values, and the 

peaks’ bounds can be individually selected for each lane or can be applied to all lanes. 

A baseline value can also be adjusted for calculating the integrated optical density 

of the peak. The baseline can be assigned a specific numerical value to set as a flat 

baseline for the entire profile peak. Most often, this baseline would be set to 0.0. 

Alternatively, the user can set the baseline mode to be sloped, which will calculate a 

linear sloped baseline from the minimum bound of the peak to the maximum bound of 

the peak. This baseline can be adjusted individually for each lane, or can be set for all 

lanes in the gel. 

Once the peaks are defined, the positive integrated optical density between the 

profile plot and the baseline is automatically calculated. This represents the optical 

density for that protein band, while the apex value represents the distance migrated. 

These values can be saved in a comma-delimited file that can be read by most data 

analysis or spreadsheet software. 
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APPENDIX B. HIS-TAGGED TAILSPIKE CONSTRUCTS 
 

When β-helix mutants were initially investigated for their ability to fold in vitro in 

the context of the full length tailspike protein, his-tagged constructs of these mutants 

were prepared. Dr. Peter Weigele and Phil Campbell cloned the wild-type gene 9 

sequence into a pET21b vector using the BamHI and NdeI restriction digest cloning sites. 

The use of these cloning sites added a total of 22 amino acids to the end of the protein. 

DNA sequencing confirmed the addition of the amino acid sequence 

“ADPNSSSVDKLAAALEHHHHHH” to the C-terminus of the protein. This plasmid, 

termed pET(TSPK:H6), was subsequently used as a template for site directed 

mutagenesis, as performed in Chapter 2. Resulting plasmids were confirmed by 

sequencing and were transformed into BL21(DE3) cells in preparation for over-

expression. 

Over-expressed proteins were purified under denaturing conditions using a Ni-

NTA metal affinity column to purify the his-tagged tailspike proteins. Proteins were 

purified to >90% purity. As a control for the purification of proteins under denaturing 

conditions, wild-type his-tagged tailspike proteins were purified under native conditions 

from the supernatant fraction of the same over-expression culture used to produce the 

wild-type proteins for denaturing purification. Natively purified wild-type his-tagged 

chains were named WN, while wild-type his-tagged chains purified under denaturing 

conditions were called WD. 

After an one hour incubation in 8 M urea at pH 3, proteins were examined for 

their ability to refold as performed in Chapter 5. While WN was able to refold, none of 

the other tailspike sequences were able to refold under the tested conditions. In this 

experiment, WD was also unable to fold to a native trimeric form and instead aggregated 

as determined by native gel electrophoresis. 

Various experimental conditions were adjusted in an attempt to get the WD 

sample to refold like the WN sample. As a control for this experiment, wild-type tailspike 

protein that lacked the his-tag was also simultaneously refolded. Various purification and 

unfolding buffers were examined for their effects on the tailspike chains. In the initial 
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purification, 7 M urea of varying pH from 8 to 4.6 were used to bind, wash, and elute the 

tailspike protein from the nickel column. The denaturing purification buffers were 

adjusted to elute the proteins with varying concentrations of immidazole at pH 8. The 

denaturing buffers were further adjusted to replace urea with 6 M guanidine 

hydrochloride. Independent of the buffer conditions used to purify the wild-type his-

tagged tailspike protein under denaturing conditions the WD sample would not refold. 

The unfolding buffer used before dilution with refolding buffer was also adjusted. 

Initial investigations used an 8 M urea solution at pH 3.0, as the natively folded tailspike 

protein will not unfold at neutral pH even in high concentrations of urea. Further 

investigations used the neutral pH buffer used in Chapter 5. Independent of the unfolding 

buffer used, the WD sample did not refold. This is in contrast to the data presented in 

Chapter 5, which demonstrated that the wild-type full length tailspike protein was able to 

refold out of aggregated inclusion bodies. 

Further experimentation demonstrated that the inability to refold was not rescued 

by the presence of DTT or BME. The introduction of 1,10-phenanthroline, an iron 

chelator, or the additon of iron sulfate did not influence the folding of the WD or WN 

samples. Experimentation did not reveal any conditions under which the WD protein 

samples were able to refold to a trimeric tailspike protein. 

In contrast, it was discovered that incubation in 6 M urea at pH 3.0 at 10ºC for an 

extended period of time, approximately 5 days, caused the WN sample to no longer be 

able to refold. A control reaction of natively purified, wild-type tailspike lacking the 

histidyl tag was simultaneously examined. After 5 days of incubation in an acidic urea 

solution, the wild-type tailspike lacking a his-tag was still able to refold as it had after 

one hour of incubation. The results indicate that the C-terminal 22 amino acid tag that 

includes six histidines was sensitive to the presence of denaturants in a time-dependent 

manner. 

We hypothesized that the observed sensitivity was likely due to chemical 

modifications of the protein, most likely in the C-terminal tag. The MIT biopolymers 

group analyzed WN and WD samples by mass spectroscopy to determine if any 
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molecular weight differences existed between proteins in the two stock samples. Initial 

Maldi analysis revealed that a molecular weight difference of 154 daltons. Trypsin digest 

followed by ion spray or Maldi demonstrated that two extra bands resulted from digestion 

of the WN sample that were not present in the WD samples. The molecular weights of 

these bands, however, did not map to expected masses from in silico digests. 

Upon attempting to purify these tailspike proteins by HPLC in preparation for 

repeating the mass spectrometry experiments, samples behaved unexpectedly. Samples 

either stuck to the column or samples eluted in broad and mixed peaks. 

When the above mass spectrometry experiments were repeated with stock sample 

that had been refrigerating for nearly two months, no mass difference could be detected. 

To date, it is unclear what modifications or interactions may have been occurring 

to cause the observed inability to refold. The only clear result is that the 22 amino acid C-

terminal tag was likely responsible in a manner dependent upon long time exposure to 

denaturant. 


