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Abstract 

This dissertation presents data processing techniques relevant to the acquisition, mod-
eling, and inversion of self-potential data.  The primary goal is to facilitate the inter-
pretation of self-potentials in terms of the underlying mechanisms that generate the 
measured signal.  The central component of this work describes a methodology for 
inverting self-potential data to recover the three-dimensional distribution of causative 
sources in the earth.  This approach is general in that it is not specific to a particular 
forcing mechanism, and is therefore applicable to a wide variety of problems.   
 Self-potential source inversion is formulated as a linear problem by seeking the 
distribution of source amplitudes within a discretized model that satisfies the meas-
ured data.  One complicating factor is that the potentials are a function of the earth 
resistivity structure and the unknown sources.  The influence of imperfect resistivity 
information in the inverse problem is derived, and illustrated through several syn-
thetic examples.   
 Source inversion is an ill-posed and non-unique problem, which is addressed by 
incorporating model regularization into the inverse problem.  A non-traditional regu-
larization method, termed “minimum support,” is utilized to recover a spatially com-
pact source model rather than one that satisfies more commonly used smoothness con-
straints.  Spatial compactness is often an appropriate form of prior information for the 
inverse source problem.  Minimum support regularization makes the inverse problem 
non-linear, and therefore requires an iterative solution technique similar to iteratively 
re-weighted least squares (IRLS) methods.  Synthetic and field data examples are 
studied to illustrate the efficacy of this method and the influence of noise, with appli-
cations to hydrogeologic and electrochemical self-potential source mechanisms.   
 Finally, a novel technique for pre-processing self-potential data collected with ar-
bitrarily complicated survey geometries is presented.  This approach overcomes the 
inability of traditional processing methods to produce a unique map of the potential 
field when multiple lines of data form interconnected loops.  The data are processed 
simultaneously to minimize mis-ties on a survey-wide basis using either an l2 or l1 
measure of misfit, and simplifies to traditional methods in the absence of survey com-
plexity.  The l1 measure requires IRLS solution methods, but is more reliable in the 
presence of data outliers.   
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Chapter 1   

Introduction 

1.1 Motivation and overview of previous research 

Self-potentials (SP), sometimes called spontaneous potentials, refer to passively 

measured electric potentials that are generated through coupling with some other forc-

ing mechanism; which is often hydraulic, chemical, or thermal.  Some of the early ef-

forts to characterize these coupled flow mechanisms in a geophysical context can be 

attributed to Marshall and Madden [1959], Sato and Mooney [1960], and Nourbe-

hecht [1963].  Conceptually, it is a very straightforward and versatile technique; elec-

tric signals in an electrically conductive medium (such as the earth) can be detected 

remotely from the location of the forcing mechanism.  The challenge, to which I at-

tempt to contribute in this thesis, is to be able to make inferences about the underlying 

forcing mechanisms from the measured electric signal. 

 Interest in the self-potential method has been growing for a number of years 

(Figure 1-1), with application to various fields within the earth sciences including hy-

drology [Bogoslovsky and Ogilvy, 1973; Fournier, 1989; Birch, 1998; Revil et al., 

2003a; Darnet and Marquis, 2004; Revil et al., 2005; Suski et al., 2006], geothermal 

and volcanic systems [Corwin and Hoover, 1979; Fitterman and Corwin, 1982; Ishido 

et al., 1983; Morgan et al., 1989; Revil and Pezard, 1998; Aizawa, 2004; Darnet et 

al., 2004; Moore et al., 2004], geotechnical and environmental engineering [Corwin, 

1990; Perry et al., 1996; Vichabian and Morgan, 2002; Naudet et al., 2003; Naudet et 
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al., 2004; Sheffer et al., 2004], mineral exploration [Sato and Mooney, 1960; Corwin, 

1973; Sivenas and Beales, 1982a; Bigalke and Grabner, 1997; Revil et al., 2001; 

Heinson et al., 2005], and petrophysics [Ishido and Mizutani, 1981; Morgan et al., 

1989; Revil et al., 1999a; Timm and Moller, 2001; Guichet et al., 2003; Kulessa et al., 

2003; Maineult et al., 2004; Maineult et al., 2005].  In many cases, the self-potential 

method has been successfully utilized because of its relative ease-of-use and simplic-

ity in making qualitative interpretations of the measured data.  More recent efforts in 

this field have continued along these lines, and have also attempted to provide a more 

quantitative interpretation.  

 Consider a simple, but somewhat more intuitive, analogy to this problem: an elec-

tric toaster oven is placed in a room, which is outfitted with an array of temperature 

sensors on the walls and ceiling.  Given a sufficient number of sensors, one could de-

termine the location of the toaster with reasonable accuracy, though the restriction of 

the sensors to the walls and ceiling may lead to some uncertainty.  A further degree of 

sophistication would involve making some inference about the electric current that is 

flowing through the heating coils of the toaster based on the remote measurements of 

temperature.  While this would likely involve more uncertainty than locating the 

toaster, reasonable assumptions about the thermal properties of the toaster materials 

and air in the room can at least help to provide an estimate.   

 The self-potential methods discussed in this thesis attempt to accomplish similar 

tasks: (1) to locate the spatial distribution of electric sources in the earth generated by 

the coupling mechanism and (2) to characterize the forcing mechanism itself based on 

the electric signal.  One complication is that the spatial distribution of self-potential 

sources can be arbitrary and complicated; the problem is much simpler if one knows a 

priori that a point source (like a toaster in a room) is the imaging target. 

 Throughout this thesis, the forcing mechanism, regardless of its nature, is referred 

to as the “source” of the self-potential signal.  Thus, the goal of a self-potential survey 

is to infer some properties about the source processes from the measured data.  This is 

in contrast with other geophysical methods such as seismic, radar, or electrical resis-

tivity tomography, which utilize known sources to actively probe structures in the 
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subsurface.  Self-potentials are therefore able to provide unique information about 

physical and chemical phenomena occurring in the earth that cannot be determined 

with other methods. 

 Compared with controlled-source geophysical methods, self-potential surveys are 

relatively simple to undertake due to the minimal and inexpensive equipment that is 

required.  This simplicity is sometimes an advantage, but can also lead to some diffi-

culty interpreting the data.  Given known sources and measured data, physical proper-

ties such as seismic velocity or electric resistivity can be determined.  In the self-

potential case, the measured response is a function of both unknown sources and the 

unknown resistivity structure.  Therefore, there is an inherent ambiguity when inter-

preting the self-potential data when the earth resistivity is unknown.  This is some-

what analogous to the earthquake location problem, where passive traveltime meas-

urements are combined with an assumed seismic velocity structure to determine the 

earthquake location.   

 A more direct analogy to the self-potential problem is the electroencephalogram 

(EEG), which is a medical imaging technique.  The EEG consists of passive meas-

urements of the electric potential field on a person’s scalp, which can vary due to 

electrical activity within the brain.  The goal of EEG data interpretation is to localize 

these sources in the brain, providing useful information about regions that are acti-

vated by some external stimulus or medical condition such as epilepsy [e.g. Michel et 

al., 2004, and references within].  While self-potentials and EEG have completely dif-

ferent spatial scales and applications, the underlying problem is the same; an un-

known electrical source within a heterogeneous volume conductor (the earth or a per-

son’s skull) produces a remotely measurable potential field, which is subsequently 

used to characterize the source.  Therefore, many of the same concepts and data proc-

essing techniques from one problem may provide useful insights for the other. 

 Various approaches have been developed to interpret self-potential data [e.g. Fit-

terman, 1979a; Fitterman and Corwin, 1982; Fournier, 1989; Patella, 1997; Birch, 

1998; Gibert and Pessel, 2001; Revil et al., 2001; Sailhac and Marquis, 2001; Darnet 

and Marquis, 2004; Revil et al., 2004; Sheffer et al., 2004; Minsley et al., 2007], and 
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there is a large volume of related work in the medical community [e.g. Pascual-

Marqui et al., 1994; Malmivuo et al., 1997; Marin et al., 1998; Pascual-Marqui, 

1999; Michel et al., 2004; Wolters et al., 2004; Wolters et al., 2006].  Some of these 

can be termed “forward” methods, where the measured data are replicated by system-

atically varying different source parameters (e.g. source depth, spatial distribution, 

intensity, etc.).  Alternatively, “inverse” methods utilize the measured data directly to 

characterize the source properties.  Both approaches can be useful, though this thesis 

focuses primarily on the inverse techniques.   

 Several processing steps for the self-potential problem can be effectively bor-

rowed from somewhat more developed electrical resistivity algorithms [Fitterman, 

1979b; Wurmstich, 1995; Shi, 1998].  In the resistivity inverse problem, a limited 

number of sources with known intensity and location are utilized, and the recorded 

potentials are used to infer the resistivity structure of the earth.  In the self-potential 

inverse problem, recorded potentials are combined with an assumed resistivity struc-

ture to recover an unknown distribution of sources.  Both of these methods, however, 

rely heavily on efficient methods of computing the potential field due to multiple 

known source distributions and resistivity structures. 

 As with all geophysical techniques, data errors degrade our ability to interpret the 

measured signal.  Common sources of self-potential measurement error can be associ-

ated with the degradation or drift of the measuring electrodes, poor contact between 

the electrode and soil, and cultural noise.  Numerous authors have investigated elec-

trode designs that reduce measurement errors and are stable over long periods of time 

[Corwin, 1973; Perrier et al., 1997; Clerc et al., 1998; Petiau, 2000].  Measurement 

errors on the order of several (~5) millivolts should be expected with modern survey-

ing equipment, and this can be significantly reduced by installing the electrodes 

(semi) permanently [Perrier et al., 1997; Perrier and Pant, 2005].  The influence of 

cultural noise (e.g. power lines, cathodic protection, grounding systems) can be sig-

nificant [Corwin, 1990], and should be accounted for when surveys are conducted 

near developed areas.  Of course, the level of noise should be considered with respect 
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to the magnitude of the measured signal; large anomalies that register hundreds of 

millivolts should not be significantly influenced by relatively small errors. 

 The self-potential source inversion problem is highly non-unique; there are many 

possible distributions of sources that fit the data equally.  This dilemma is common to 

nearly all geophysical inverse problems, and is exacerbated by the fact that measure-

ment locations are often restricted to relatively few locations on the earth’s surface.  

Additionally, the self-potential response depends on the resistivity structure of the 

earth, which is never perfectly known.  One approach to reducing the non-uniqueness 

of the problem is to introduce constraints in the inverse problem based on prior as-

sumptions about the properties of the source model.  I address these issues in this the-

sis by: (1) utilizing non-traditional inversion constraints that are appropriate for self-

potential sources, (2) incorporating available resistivity information into the inversion 

algorithm, and (3) understanding the effects of uncertainty in the resistivity structure 

on the source inversion results. 

1.2 Outline of thesis 

The main goal of this thesis is to develop processing algorithms that aid in the acqui-

sition and interpretation of self-potential data.  My approach is general in the sense 

that this methodology can be applied to SP data generated by any source mechanism.  

This is accomplished by separating the problem into two steps.  The first step, which 

is the main focus of this thesis, involves the inversion of measured SP data to recover 

the spatial distribution of electrical sources that generate the signal.  In some cases, 

simply understanding the distribution of sources in the earth can provide useful in-

sights into a problem.  Next, the distribution of source amplitudes can be interpreted 

in terms of the physical relationship that describes the coupling between a primary 

forcing process and the electrical response.   

 Chapter 2 provides background information regarding the origin of self-potential 

signals generated by hydraulic and chemical forcing mechanisms, and several simple 

examples are presented to give some insight into the general behavior of the coupled 
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phenomena.  A brief description of the possible types of self-potential sources, in the 

context discussed by Sill [1983] and Wurmstich [1995], is also presented.  Finally, a 

“realistic” synthetic example based on an aquifer storage and recovery (ASR) experi-

ment is presented to highlight several aspects of self-potential sources.  More than to 

present new information, this chapter seeks to clarify several frequent misconceptions 

regarding self-potential sources. 

 Chapter 3 describes the self-potential source inversion methodology, which is a 

central component of this thesis.  The result of the source inversion is a distribution of 

electric current sources that support the measured data.  Self-potential source inver-

sion is a linear problem, though the use of a non-linear model regularization scheme 

that promotes spatially compact sources (rather than traditional smoothness con-

straints) requires an iterative solution method.  Available resistivity information can 

be incorporated into the Green’s functions for the inversion, which are also utilized to 

implement sensitivity scaling.  Synthetic examples illustrate the utility of this ap-

proach, and provide some insight into how resistivity uncertainty affects the inversion 

results.  Field data from a previously published self-potential survey [Bogoslovsky 

and Ogilvy, 1973] in the vicinity of a water well are subsequently inverted.  This 

dataset is chosen because it has been the focus of several other self-potential studies 

[Darnet et al., 2003; Revil et al., 2003a].  The bulk of this chapter is published as: 

• Minsley, B.J., J. Sogade, and F.D. Morgan (2007), Three-dimensional source 

inversion of self-potential data, Journal of Geophysical Research, 112, 

B02202, doi:10.1029/2006JB004262. 

 Chapter 4 discusses in detail the effects of resistivity uncertainty on the self-

potential source inversion, and is accomplished in two phases.  First, the problem is 

approached by deriving the effect of resistivity uncertainty on the self-potential re-

sponse for a known source using a Taylor expansion.  This provides useful insights 

into the situations where resistivity uncertainty has the greatest effect on the source 

inversion.  This derivation is very general, and does not presume any particular model 

geometry, acquisition array, or source structure.  The second part of this chapter pre-

sents several synthetic examples where self-potential data are simulated using a sim-
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ple point source and known resistivity structure.  These data are then inverted using 

the methods discussed in Chapter 3, with an incorrect (homogeneous) resistivity 

structure.  Errors in the recovered sources provide useful insights into the effect of 

various forms of resistivity uncertainty.  The latter portion of this chapter was pre-

sented as a poster at the Fall 2006 AGU meeting in San Francisco, and received the 

outstanding student paper award for the Near-Surface section:  

• Minsley, B. and F.D. Morgan (2006), Quantifying the effects of unknown re-

sistivity structure on self-potential inversion, EOS Trans. AGU, 87(52), Fall 

Meet. Suppl., Abstract NS31A-1562.   

The entire chapter will be submitted as a manuscript with the same title to the Journal 

of Geophysical Research, with authors Minsley, B., W. Rodi, and F.D. Morgan. 

 Chapter 5 is a case study where the inversion procedure is applied to self-potential 

data collected at the Savannah River Site in South Carolina.  This is a relatively 

unique self-potential dataset, as it consists of both surface and borehole measurements 

surrounding a contaminated site.  These data were collected by me and others from 

the Earth Resources Lab during a field campaign in 2003, in conjunction with a 3D 

induced polarization survey at the same site.  Self-potentials associated with the deg-

radation of contaminants in the environment is an active area of research, and still re-

quires further work to fully understand the electrochemical mechanisms that generate 

the signal.  This chapter is recently published as: 

• Minsley, B., J. Sogade, and F.D. Morgan (2007), Three-dimensional self poten-

tial inversion for subsurface DNAPL contaminant detection at the Savannah 

River Site, South Carolina, Water Resources Research, 43, W04429, 

doi:10.1029/2005WR003996. 

 Chapter 6 presents a pre-processing method for self-potential datasets collected 

with complicated survey geometries.  This technique was developed as a result of a 

large self-potential survey carried out in Nevis, West Indies during a geothermal ex-

ploration campaign in which I participated in 2004.  Traditionally, survey lines are 

collected such that they form closed loops; data errors are accounted for at the closure 

points, and multiple survey lines are connected at their intersection points.  When 



 38

many survey lines form multiple interconnected loops, however, a unique potential 

map cannot be determined by processing survey lines sequentially using the tradi-

tional approach.  This chapter presents a methodology for processing all survey lines 

simultaneously using a least-squares algorithm.  A unique potential map is generated 

that minimizes the loop closure errors over the entire survey using either an l2 or l1 

measure of misfit.  In the presence of data outliers, which are common to many self-

potential surveys, the l1 measure tends to produce superior results.  This chapter is in 

preparation for Geophysical Prospecting:  

• Minsley, B., D. Coles, Y. Vichabian, and F.D. Morgan, Accounting for mis-ties 

on self-potential surveys with complicated acquisition geometries, Geophysi-

cal Prospecting, in preparation. 
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Figure 1-1: Number of publications per year with topic “self-potential” based on a 
search of the Thomson ISI Web of Knowledge database.  N.B: related terms such as 
“spontaneous potential” or “electrokinetic” were not searched due to a large number 
of hits from non-geophysical applications. 
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Chapter 2   

Self-potential background 

2.1 Overview of the origin of self-potentials 

Self-potentials are the result of coupling between electric and non-electric flows and 

forces in the earth.  On the macroscopic scale, coupled transport phenomena are typi-

cally discussed in the context of non-equilibrium thermodynamics [e.g. de Groot, 

1951], and it is assumed that fluxes are linearly related to driving forces.  This results 

in a linear system of coupled equations (2.1), where the ijL  are phenomenological 

coupling coefficients that link the forces ( iX ) to fluxes ( iq ). 

 

11 12 13 141 1

21 22 23 242 2

31 32 33 343 3

41 42 43 444 4

L L L Lq X
L L L Lq X
L L L Lq X
L L L Lq X

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

 (2.1) 

Onsager [1931] showed that, for small flows, the matrix of coupling coefficients is 

symmetric (i.e. ij jiL L= ).  The system of coupled phenomena is often referred to as 

Onsager’s reciprocal relations, for which he was awarded the Nobel Prize in Chemis-

try in 1968. 

 Typical forces and their conjugated fluxes are: electric potential gradients and 

electric current density (Ohm’s Law), hydraulic gradients and fluid flux (Darcy’s 

Law), chemical gradients and solute flux (Fick’s Law), and thermal gradients and heat 
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flow (Fourier’s Law).  Because of the coupling described by equation (2.1), it is also 

possible to have contributions to any of the fluxes from any other non-conjugated 

forcing, i.e. 

 i ij j
j

q L X= ∑ . (2.2) 

All sixteen possible phenomena are summarized in Figure 2-1. 

 The total electric current density 1j q=  [A·m-2] in the earth can have a contribu-

tion from all four forces, i.e. 

 ( ) ( ) ( ) ( ) ( )c k d tj j j j j= + + +x x x x x . (2.3) 

jk is the streaming current due to hydraulic forcing, jd is the diffusion current due to 

chemical forcing, jt is the current due to thermal forcing, and jc is the familiar conduc-

tion current 

 ( ) ( ) ( )cj Eσ=x x x , (2.4) 

where ( )σ x  [S·m-1] represents the earth conductivity structure and ( )E x  is the elec-

tric field.   

 The self-potential problem, by definition, is concerned only with currents that 

vary on the time scale of the forcing mechanism, which is generally very slow for 

processes in the earth.  Therefore, the quasi-static from of Maxwell’s equations can be 

applied.  By neglecting the magnetic induction in Faraday’s Law,   

 0BE
t

∂
∇× = − ≅

∂
 (2.5) 

the electric field can be written as the negative gradient of the scalar electric potential, 

( )ϕ x  [V]. 

 ( ) ( )E ϕ= −∇x x  (2.6) 

Taking the divergence of Ampère’s Law (2.7) 

 ( ) 0EH j
t

ε∂⎛ ⎞∇ ⋅ ∇× = ∇ ⋅ + =⎜ ⎟∂⎝ ⎠
, (2.7) 

and substituting Gauss’ Law (2.8) 
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 ( ) qEε ρ∇ ⋅ = , (2.8) 

yields the equation for the conservation of charge 

 qj
t

ρ∂
∇ ⋅ = −

∂
. (2.9) 

In equations (2.7) and (2.8), ε is the electric permittivity [F·m-1], ρq is the charge den-

sity [C·m-3], and j is the total current density from equation (2.3).  For the quasi-static 

case, the time derivative of the charge density is neglected, resulting in the familiar 

equation for the conservation of current. 

 0j∇ ⋅ =  (2.10) 

 Self-potentials are the measurable electric potentials associated with a conduction 

current ( cj ) that is due to coupling with one or more forcing phenomena.  That is, the 

electric potential is the response to some other forcing mechanism.  Substituting equa-

tion (2.3) into equation (2.10), and separating the forcing from the electrical response 

gives 

 ( ) ( ) ( )( )sj sσ ϕ−∇ ⋅ ∇ = ∇ ⋅ =x x x x . (2.11) 

Thus the source term ( )s x  [A·m-3] equals the divergence of the sum of the current 

densities due to the forcing mechanism(s), i.e. 

 1
1

s k d t j j
j

j j j j L X
≠

= + + = ∑ . (2.12) 

 The coupling coefficients, ijL ,  found in the source term clearly play an important 

role in determining the self-potential response.  A significant amount of research has 

therefore gone into understanding the coupling coefficients for various forcing 

mechanisms [e.g. Ishido and Mizutani, 1981; Morgan et al., 1989; Pride, 1994; Revil 

et al., 1999a; Reppert, 2000].  While the coupling coefficient is not a focus of this 

thesis, a brief review of the coupling for electrokinetic and electrochemical processes 

is presented in the following two sections as the concepts are relevant to subsequent 

discussions. 
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2.1.1 Streaming potentials and the Helmholtz-Smoluchowski 
equation 

Streaming potentials result from the coupling between fluid flow and electric conduc-

tion in porous media, a phenomenon sometimes called the electrokinetic effect 

[Overbeek, 1952].  The buildup of an excess charge in the vicinity of fluid-solid inter-

faces is described by the physics of the electric double layer. [e.g Guéguen and Palci-

auskas, 1994; Bockris and Reddy, 2000] (Figure 2-2).  For most earth materials, the 

solid surface exhibits a negative charge, resulting in an excess of positive counterions 

in the fluid.  Near the fluid-solid interface, charges are tightly bound within the inner 

and outer Helmholtz layers, also called the Stern layer, and are immobile under a hy-

draulic gradient.  Beyond this distance (typically on the order of several Angstroms), 

the density of excess charge decays in a diffuse cloud.  Drag of the excess charge un-

der a hydraulic gradient results in a streaming current density within the fluid ( kj  in 

equation (2.3)). 

 k qj uρ= �  (2.13) 

qρ  represents the charge density [C·m-3] and u�  is the fluid velocity [m·s-1]. 

 Consider fluid flow through a cylindrically-shaped pore (or capillary) under a 

static pressure gradient (Figure 2-3).  The fluid velocity is described by Poiseuille’s 

Law 

 ( )2 2( )
4

Pu r a r
lη

∆
= −� , (2.14) 

where P∆  is the applied pressure drop across the ends of the pore [Pa], η  is the fluid 

viscosity [Pa·s], l is the pore length [m], a is the pore radius [m], and r is the radial 

coordinate within the pore [m].  The charge density is also a function of distance from 

the pore wall, and is governed by Gauss’ Law (in radial coordinates) 

 1 ( ) qd d rr
r dr dr

ρψ
ε

−
= , (2.15) 
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where ( )rψ  describes the potential [V] with distance from the pore wall due to the 

excess charge.  The zeta-potential, ζ  [V], is defined as the potential at the distance 

from the pore wall where the charge can be dragged with the fluid ( r s a= ≈ ), as it is 

tightly bound within the double layer for s r a< <  (Figure 2-2).   

 The divergence theorem can be used to convert the integral of equation (2.11) over 

the volume of the cylinder into a surface integral of the total current density 

 ( ) ( )( ) ( ) ( ) ( ) 0c k c k
V V

j j dV j j dS
∂

∇ ⋅ + = ⋅ + =∫ ∫x x n x x . (2.16) 

The total current, I [A], flowing across a surface is defined by the integral of the cur-

rent density over the surface 

 ( )
S

I j dS= ⋅∫n x . (2.17) 

At equilibrium, equation (2.16) implies that the total current through a surface is zero, 

and the streaming current is balanced by the conduction current. 

 ( ) ( )c c k k
S S

j dS I I j dS− ⋅ = − = = ⋅∫ ∫n x n x  (2.18) 

It is important to note that the total current through a surface equals zero, but the cur-

rent at any given point in the system may be non-zero.  This can be a source of some 

confusion in self-potential interpretation, and will be discussed in more detail later.   

 Equations (2.13) through (2.15) are combined in equation (2.18) to compute kI  

 ( )2 2

0

( )
2

s

k
P d d rI dr r a r

l dr dr
επ ψ

η
− ∆

= −∫ . (2.19) 

Integrating by parts gives  

 ( ) ( )2 2

0 0

( ) ( )2
2

s s

k
P d r d rI a r r dr r r

l dr dr
επ ψ ψ

η
⎡ ⎤− ∆

= − − −⎢ ⎥
⎢ ⎥⎣ ⎦

∫ , (2.20) 

where the first term in brackets evaluates to zero under the approximation that a s≈ .  

Integrating by parts a second time gives 
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 2

0
0

( ) 2 ( )
2

s
s

k
PI r r dr r r

l
επ ψ ψ

η
⎡ ⎤− ∆

= −⎢ ⎥
⎣ ⎦

∫ , (2.21) 

where the zeta-potential is defined as 

 ( )sψ ζ= , (2.22) 

and the remaining integral evaluates to zero.  Thus, the streaming current in the cylin-

der as a function of the pressure gradient is 

 
2

k
s PI
l

εζπ
η

− ∆
= . (2.23) 

 The conduction current, cI  flows in the opposite direction and is found by inte-

grating equation (2.4) over a surface of the cylinder 

 ( )
0

2
a

c fI dr r
l

π σ ∆
= ∫

φ , (2.24) 

where fσ  is the fluid conductivity 

 
2

f
c

a
I

l
π σ ∆

=
φ

. (2.25) 

Finally, setting c kI I− =  with equations (2.23) and (2.25) yields the familiar Helm-

holtz-Smoluchowski equation, which relates the electric potential across the ends of 

the cylinder to the applied pressure difference. 

 
f

Pεζ
ησ

∆ = ∆φ  (2.26) 

 There are several important assumptions that apply to the use of the Helmholtz-

Smoluchowski equation for porous media, where the pore space geometry is more 

complex [Overbeek, 1952; Wurmstich, 1995]. 

1. Flow is laminar within the pore space. 

2. The mean pore radius is large compared to the double layer thickness. 

3. The radius of curvature of the pore is large compared to the double layer 

thickness. 
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4. The effects of surface conduction can be neglected, though there are several 

modifications to equation (2.26) that take this into account [Ishido and Mi-

zutani, 1981; Morgan et al., 1989; Revil et al., 1999b]. 

 The term that relates the electric potential difference to the applied pressure dif-

ference across a sample is often called the voltage coupling coefficient [V·Pa-1], 

 
f

C εζ
ησ

= . (2.27) 

The voltage coupling coefficient is useful because it is readily measurable in the labo-

ratory, and is frequently reported in the literature.  Modeling self-potentials according 

to equation (2.11), however, requires knowledge of the current coupling coefficient, L 

[A·Pa-1·m-1].  The voltage and current coupling coefficients are related by the bulk 

conductivity of the sample, 

 rL Cσ= − . (2.28) 

The ratio of the bulk conductivity to fluid conductivity is often referred to as the for-

mation factor, F, and equation (2.28) can be written as 

 L
F
εζ

η
−

= . (2.29) 

 Note that the Helmholtz-Smoluchowski equation (2.26) is the result that follows 

from the physics defined in equation (2.11), but should not be interpreted as a general 

rule that holds everywhere.  That is, self-potentials can be measured between two 

points on the earth surface, but this does not necessarily imply that there is a hydrau-

lic gradient between the measurement locations.  For example, consider the situation 

where fluid flow occurs due to a hydraulic gradient in a subsurface confined aquifer.  

Self-potential measurements can be made between two electrodes on the earth sur-

face, even though the fluid flow occurs only at depth.   

 In general, the streaming and conduction currents can occupy different domains 

and have different boundary conditions.  This is related to the earlier comment that, 

while the total current in a system equals zero, it is not necessarily zero at every point 

within the system.  Additionally, when the streaming and conduction currents occupy 
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different domains, the maximum potential drop in the system may be lower than that 

predicted by equation (2.26).  This can occur when a layer with relatively high con-

ductivity effectively short circuits the system, and the conduction current can balance 

the streaming current with a smaller potential drop. 

 These concepts are illustrated in several simple synthetic examples where fluid 

flow in a porous sample is modeled by Darcy’s Law.  An applied pressure gradient 

produces the streaming current and coupled electric potentials.  The two-way coupled 

equations are therefore  

 rj L Pσ ϕ= − ∇ − ∇  (2.30) 

 kq L Pϕ
η

= − ∇ − ∇ , (2.31) 

where k is the hydraulic permeability [m2].  The first term in equation (2.31) is typi-

cally dropped because the gradient of the generated streaming potential is typically 

small, and results in negligible additional flow compared with that due to the hydrau-

lic gradient.  The following examples are therefore only one-way coupled. 

 Figure 2-4a shows the model geometry for the first example, which is a 2D homo-

geneous sample with dimensions 10cm x 2.5cm, though these concepts can easily be 

applied to field scales as well.  The input parameters for this example are summarized 

in the center column of Table 2-1.  The hydraulic boundary conditions consist of an 

applied pressure difference of 9800Pa (1m of head) between the ends of the sample, 

and no-flow conditions along the top and bottom of the sample.  For the electric prob-

lem, a no-flow boundary condition is specified on all four sides, and the reference po-

tential location is at the bottom-left corner. 

Table 2-1:  Parameters used for the synthetic model in Figure 2-4. 
 Model A Model B 

rσ  [S·m-1] 0.01 0.01 

(2)rσ  [S·m-1] N/A 0.01, 0.1, 0.001

L [A·Pa-1·m-1] 91.5 10x − 91.5 10x −  
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 Model A Model B 

k [m2] 121 10x −  121 10x −  

η  [Pa·s] 0.001 0.001 

P∆  [Pa] 9800 9800 

 

 The finite element software package, COMSOL MultiphysicsTM 3.2, provides a 

versatile way to solve coupled multiphysics problems such as this one.  Equations 

(2.30) and (2.31) are solved under the condition 0j∇ ⋅ =  and 0q∇ ⋅ = , which is 

equivalent to solving equation (2.11) with the source current determined by the speci-

fied coupling coefficient and pressure gradients determined from Darcy’s Law.   

 Figure 2-5 illustrates the solution to this problem, where the color image depicts 

the electric potentials; the contours are lines of constant pressure; and the arrows rep-

resent different portions of the electric current density.  The arrows depict the source 

current (2nd term in equation (2.30)) in Figure 2-5a, the conduction current ( cj ) in 

Figure 2-5b, and the total current ( s cj j+ ) in Figure 2-5c.  For this simple example 

where the hydraulic and electric domains are the same, the total current is zero at each 

point in the model. 

 A 1cm layer is added to this geometry for the next example, as shown in Figure 

2-4b.  In this case, however, fluid flow is restricted to the original lower domain 

rather than the entire sample.  This is accomplished by solving the hydraulic problem 

only in the lower portion of the model, where the same pressure difference is applied 

between the lower ends of the sample, and the no-flow boundary condition for the 

fluid is now at the interface between layers.  The electric problem is solved over the 

entire domain, where the bulk conductivity can be specified separately for each layer.  

A no-flow condition is still specified for the electric current density on the outside 

edges of the model, and continuity of the total current density ( 1 2( ) 0j j⋅ − =n ) is 

given at the interface between layers. 

 In the earth, this might correspond to the situation where there is a hydraulic gra-

dient within a confined aquifer at depth.  Fluid flow is restricted to the aquifer, but the 
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entire earth structure above the aquifer is typically at least partially saturated and 

therefore electrically conductive.  The following three examples maintain the same 

parameters as the first example, but the conductivity of the upper layer is varied (see 

Table 2-1). 

 In Figure 2-6, the upper layer has the same bulk conductivity as the lower layer, 

i.e. -1(2) 0.01 S mr rσ σ= = ⋅ .  Fluid flow, and therefore the source current ( sj ) de-

picted by arrows in Figure 2-6a, is confined to the lower layer because of the imposed 

hydraulic boundary conditions.  This source current drives a conduction current, 

shown by the arrows in Figure 2-6b, throughout the entire domain due to the conser-

vation of total current required by equation (2.11).  The total current density in Figure 

2-6c is non-zero throughout the model, in contrast with the previous example in 

Figure 2-5 where the total current was zero at every point.  For the two-layer case in 

Figure 2-6, the total current density passing through any vertical cross-section of the 

model equals zero, which is a result of satisfying equation (2.16). 

 Figure 2-7 and Figure 2-8 shows the same series of images for the cases where the 

bulk electric conductivity of the upper layer equals 0.001 S·m-1 and 0.1 S·m-1, respec-

tively.  All other parameters for these examples remain unchanged, resulting in the 

same source current (Figure 2-7a and Figure 2-8a).  Because of the differences in the 

bulk conductivity of the upper layer, however, the conduction current is partitioned 

between the two layers depending on the ratio of their conductivities (Figure 2-6b, 

Figure 2-7b, Figure 2-8b).  Proportionally more current flows in the layer with the 

higher conductivity, though the total current through any vertical cross-section is still 

zero.   

 In Figure 2-7b, very little of the conduction current flows in the upper layer where 

the conductivity is smaller than that of the lower layer.  Note that the actual magni-

tude of the total current density in the upper layer of Figure 2-7c is the same as the 

(relatively small) conduction current shown in the upper layer of Figure 2-7b, but has 

been scaled relative to the maximum value.  In the limiting case where the upper layer 

conductivity becomes very small, virtually all of the conduction current flows in the 

lower layer, resulting in zero total current at each location as in Figure 2-5c. 
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 A significant amount of the conduction current flows in the upper layer in Figure 

2-8b due to the relatively high electric conductivity compared with the lower layer.  

Again, this results in a non-zero total current density at any particular location (Figure 

2-8c), though the total current density passing through any vertical cross-section is 

still zero.   

 Another feature that becomes apparent in Figure 2-8 is the short-circuiting effect 

mentioned earlier, where the maximum electric potential drop for a given applied hy-

draulic pressure difference depends on the upper-to-lower layer bulk conductivity ra-

tio.  This is illustrated in Figure 2-9, which shows the maximum electric potential dif-

ference across the model for a range of upper-to-lower layer bulk conductivity values, 

where all other modeling parameters remain fixed.  As this ratio becomes very small, 

the maximum electric potential difference asymptotes to the value predicted by the 

Helmholtz-Smoluchowski equation (2.26).  For large values of upper-to-lower layer 

conductivity ratio, the maximum electric potential difference is approximately one-

third of the value predicted by equation (2.26).  This reduction in the potential differ-

ence is due to the decrease in effective resistance of the model, though the magnitude 

of this effect depends on the particular details of the model geometry. 

2.1.2 Diffusion potentials and the Nernst equation 

Another common mechanism for generating self-potentials involves the coupling be-

tween chemical gradients and electric current density.  The molar flux [mol·m-2·s-1] of 

the ith ionic species (i.e. q+  or q−  in a 1:1 electrolyte) due to a concentration gradient 

is described by Fick’s Law, 

 i i iq D c= − ∇ , (2.32) 

where D [m2·s-1] is the diffusion coefficient and c [mol·m-3] is the concentration.  Ac-

cording to the Einstein relation, the diffusion coefficient can be written in terms of the 

ionic mobility, u [m2·V-1·s-1]; Boltzmann’s constant, k [ 231.38 10x − J·K-1]; temperature, 

T [K]; and total ionic charge, ez  [C], where e is the elementary charge 191.6 10x − C 

[Bockris and Reddy, 1998]. 
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 i
i

i

u kTD
ez

= . (2.33) 

 The source current [A·m-2] in equation (2.12) due to the solute flux is therefore 

 s d i A i
i

j j ez N q= = ∑ , (2.34) 

where AN  is Avogadro’s number ( 236.02 10x mol-1).  Thus, the source current is given 

by the total flux of all ionic species 

 sgn( )d i i i
i

j z RTu c= ∇∑ , (2.35) 

where AR kN=  is the gas constant (8.314J·mol-1·K-1).  For a simple fluid-filled pore 

geometry such as Figure 2-3, the total current density is described by the Nernst-

Planck equation 

 sgn( )c d i i i i i i
i

j j j u F z c z RTu cϕ= + = ⎡− ∇ − ∇ ⎤⎣ ⎦∑ , (2.36) 

where F is Faraday’s constant (96,500C·mol-1).  While this is conceptually similar to 

the streaming potential case, one complicating factor is that the fluid electric conduc-

tivity is a function of the concentration that drives the solute flux.  Additionally, the 

source current driven by the applied concentration gradient is radially uniform, as-

suming that the double layer thickness is much smaller than the pore radius.   

 Equation (2.36) must also satisfy the conservation equation (2.10) which, upon 

application of the divergence theorem, leads to an expression equivalent to equation 

(2.16) where dj  is substituted for kj .  For the simple cylindrical pore, this again im-

plies that the total current [A] passing through any cross-section is zero, and therefore 

 ( ) ( )c c d d
S S

j dS I I j dS− ⋅ = − = = ⋅∫ ∫n x n x . (2.37) 

These surface integrals are straightforward due to the radial independence of dj  based 

on the assumption of a relatively thin double layer. 

 ( )
0

2 sgn( )
a

i
d i i

i

cI dr r z RTu
dl

π ∆
= −∑∫  (2.38) 
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 ( )
0

2
a

c i i i
i

I dr r u F z c
dl
ϕπ ∆

= −∑∫  (2.39) 

In order for the conduction current to remain constant and balance the diffusion cur-

rent, the electric potential gradient must change along the length of the cylinder to 

account for changes in concentration.  Therefore, the electric potential gradient is 

considered over a small segment, dl.   

 Then, according to equation (2.37), 

 sgn( )i i i i i
i i

u F z z RTu cϕ∆ = − ∆∑ ∑ . (2.40) 

Assuming a z:z- electrolyte such as NaCl and equal local concentrations of Na+ and 

Cl- (i.e. c c c+ −= = ) at steady state, an expression for the diffusion potential across the 

cylinder is found by integrating both sides of equation (2.40) 

 ( ) ( )
0 0

l lc

c

RT u u
d F z u u dc

c

ϕ

ϕ

ϕ + −
+ −

−
+ = −∫ ∫ . (2.41) 

The concentration at opposite ends of the cylinder are given by 0c  and lc , and the to-

tal electric potential drop, 0lϕ ϕ ϕ∆ = − , is governed by the Planck-Henderson equa-

tion. 

 ( )
( ) 0

ln lu u cRT
z F u u c

ϕ + −

+ −

−−
∆ =

+
. (2.42) 

This reduces to the Nernst equation when there is only diffusion of one ionic species, 

i.e. 0u+ =  or 0u− = , such as the case through a semi-permeable membrane.   

 Equation (2.42) is conceptually similar to the Helmholtz-Smoluchowski equation 

(2.26) in that both equations describe the electric potential response due to an applied 

forcing mechanism.  In the electrochemical case, however, the electric potential dif-

ference is not linearly related to the concentration gradient due to the dependence of 

the fluid conductivity on concentration.  Also, both equations are derived under the 

assumption that the source and conduction currents occupy the same domain.  Several 
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examples in section 2.1.1 show that equation (2.26) does not hold when this assump-

tion is not valid, and a similar argument can be made for equation (2.42). 

2.1.3 Electrochemical potentials associated with redox proc-
esses 

A significant amount of self-potential literature is related to redox phenomena in the 

earth, particularly in the context of mineral exploration.  In one of the earliest re-

ported observations of naturally occurring electric gradients related to ore bodies, Fox 

[1830, p. 400] hypothesized that  

“.. it seems likely that electro-magnetism may become useful to the 

practical miner in determining with some degree of probability at least, 

the relative quantity of ore in veins, and the directions in which it most 

abounds.” 

While this prediction has certainly proven true in modern exploration geophysics, Fox 

[1830] attributed his observations to a thermal, rather than electrochemical, mecha-

nism.  This is not entirely surprising, as his work came only thirty years after Gal-

vani’s invention of the Voltaic pile, and preceded both Kirchoff’s circuit laws (1845) 

and Maxwell’s equations (1861). 

 Large self-potential anomalies, sometimes on the order of hundreds of millivolts, 

have successfully delineated areas with economically relevant mineral resources.  De-

spite this accomplishment, the electrochemical mechanisms that generate these sig-

nals remain somewhat a topic of confusion and controversy.  This is partly due to the 

interpretation of self-potentials in the earth based on the Galvanic cell (Figure 2-10a) 

in the context of equilibrium thermodynamics, which is discussed here in more detail. 

 Most of the contemporary literature in this field is based on the work of Sato and 

Mooney [1960], who attribute the measurable self-potentials to the ohmic potential 

drop in the rock and soil surrounding an ore body that is part of an electrochemical 

cell.  In their model, the ore does not participate in the redox reactions, but serves as 

an electronic conductor that spans a gradient in the subsurface redox conditions 

(Figure 2-11).  Sato and Mooney [1960] suggest the case where the ore straddles the 
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water table, resulting in a spontaneous electrochemical cell where electronation reac-

tions take place in the upper portion (cathode) and de-electronation occurs at depth 

(anode).  This is similar to the case illustrated in Figure 2-10b, which is analogous to 

the corrosion of an iron pipe that spans regions of different redox conditions in the 

earth [Bockris and Reddy, 1970; Corwin, 1990]. 

 A number of authors have discussed electrochemical mechanisms as the driving 

force for self-potential signals related to buried ores in this context [Nourbehecht, 

1963; Sivenas and Beales, 1982b; Sivenas and Beales, 1982a; Kilty, 1984; Bigalke 

and Grabner, 1997].  An important distinction that is sometimes overlooked is the 

fact that the electrochemical systems relevant to the self-potential problem are not in 

equilibrium.  If the system were in equilibrium, no current would flow through the 

earth external to the ore body and there would therefore be no ohmic potential drop 

(and hence no measurable self-potential).   

 In the Galvanic cell (Figure 2-10a), equilibrium conditions exist when either the 

load or electrolyte resistances ( lR  or eR ) become very large such that no current can 

flow.  In this open-circuit case, the cell potential measured between the two electrodes 

is the equilibrium potential as defined by the Nernst equation, and can be found in a 

table of standard electrode potentials.  Note, however, that this potential can only be 

measured by placing the measurement system in direct contact with the zinc and cop-

per electrodes.   

 Consider the following analogy to the streaming potentials discussed earlier in 

Figure 2-5 through Figure 2-8.  If a hydraulic pressure difference is applied between 

the two ends of the sample, but a valve is closed that prohibits fluid flow through the 

sample, there is no self-potential signal.  The only way to infer something about the 

hydraulic pressure difference is to directly measure the pressure outside the sample. 

 When lR  and eR  are finite, however, the electrochemical reactions at the anode 

and cathode drive a current through the system; electronic from the electrodes through 

the load resistance, and ionic in the electrolyte.  Due to the flow of current in this 

non-equilibrium state, the potential difference across the load drops from the equilib-

rium potential.  Continuing the analogy with the hydraulic example, this is equivalent 
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to the situation where the potential difference across the sample is lower than that 

predicted by the Helmholtz-Smoluchowski due to the conduction current outside the 

domain of the convection current (Figure 2-6 through Figure 2-9).  This phenomenon 

is observed when a load is connected to a battery, and the measurable potential be-

tween the terminals is reduced. 

 The current in the system is determined by the various resistances.  There are two 

more “resistances” in Figure 2-10 ( interfaceR ), which are associated with the metal-

electrolyte interface at the two electrodes.  These are not resistances in the traditional 

sense, but are described by the Butler-Volmer equation (2.43) which relates the cur-

rent density crossing the electrode-electrolyte interface to the potential across the in-

terface [e.g. Bockris and Reddy, 1970; Bard and Faulkner, 1980].   

 ( )2 2
0

nF RT nF RTj j e eη η−= −  (2.43) 

 The importance of this equation is significant because it describes the current den-

sity, j, in non-equilibrium systems.  The potential that develops across the interface 

due to current flow is the overpotential (η  [V]), which is defined as the departure of 

the potential drop across lR  and eR  ( l eV V∆ + ∆ ) from the equilibrium potential ( 0V∆ ). 

 ( )0 e lV V Vη = ∆ − ∆ + ∆ . (2.44) 

Here, η  represents the overpotential through both the anode and cathode, i.e. 

1 2η η η= − , but the net effect is additive since they are of opposite signs.  0j  is the 

equilibrium exchange current density, and is dependent on the kinetics of the interfa-

cial system as well as the electrode and electrolyte properties [Bockris and Reddy, 

1970].  F is Faraday’s constant, R is the gas constant, T is the temperature, and n is 

the number of electrons involved in the electronation/de-electronation reactions.  At 

zero overpotential, the system is at equilibrium and 0j = .  For small overpotentials, a 

linearized version of the Butler-Volmer equation is often used, where 

 0 2
nFj j
RT

η= . (2.45) 
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 This allows the electrochemical problem to fit into the framework described by 

Sill [1983] using equation (2.11), where the current density in equation (2.43) repre-

sents the source current [Kilty, 1984; Bigalke and Grabner, 1997; Revil et al., 2001].  

This cannot be accomplished by simply stating the problem in terms of the equilib-

rium potential using the Nernst equation.  For ore bodies in the earth that are stable 

over geologic time scales, it is likely that the current density (and therefore the over-

potential) is relatively small.  This can be due to a combination of either small equi-

librium exchange current density and/or large electrolyte or ore resistances. 

 Substituting equation (2.45) into (2.44), and writing everything in terms of the 

current ( I j A= ⋅ ) flowing through the electrolyte and load resistances gives 

 0
0

2
e l

RTI R R V
A j nFη

⎛ ⎞
+ + = ∆⎜ ⎟⎜ ⎟

⎝ ⎠
, (2.46) 

where Aη  is the area associated with the electrode-electrolyte interface.  The first term 

in parenthesis in equation (2.46) has units of resistance, but is associated with the in-

terface properties; large surface area and high equilibrium exchange current density 

leads to lower resistances.  Also, note that the maximum potential difference through 

any component of the electrochemical cell equals the equilibrium potential.  Thus, 

while the source current defines the self-potential anomaly, it is limited by the equi-

librium potential and system resistance. 

 The potential drop within the electrolyte, which is relevant to the self-potential 

measurement, is then 

 0

0

2
e e

e l

VIR R
RT R R

A j nFη

ϕ ∆
∆ = =

⎛ ⎞
+ +⎜ ⎟⎜ ⎟

⎝ ⎠

. (2.47) 

As a simple illustration, consider a cylindrical Galvanic cell with length l and radius 

a, where the electrodes provide a ‘cap’ on either end of the cell, and are connected 

externally through a negligible load resistance ( 0lR ≈ ).  The electrolyte resistance is  

 2e
f

lR
aπ σ

= , (2.48) 
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and therefore the potential difference across the cell is given by 

 0

0

2e
f

l VIR
RT

l
j nF

ϕ
σ

∆
∆ = =

⎛ ⎞
+⎜ ⎟

⎝ ⎠

. (2.49) 

As l becomes large, the electrolyte resistance increases and the equilibrium potential 

is reached.  For small l, the interface resistance becomes increasingly important. 

 Conceptually, the electrochemical problem is similar to the previous examples in 

that the total current density in the system must be conserved, resulting in an equation 

in the form of (2.11).  There are two important complications for the electrochemical 

case, however.  First, the overpotential, which provides the “driving force” for the 

source current in equation (2.45), is not fixed like the pressure gradient in section 

2.1.1, but is a function of the current flowing in the system.  Second, equation (2.45) 

is valid for small overpotentials, where a linear approximation can be made to the 

Butler-Volmer equation.  If this is not the case, the exponential form for the source 

current given in equation (2.43) should be used, and the problem is no longer linear. 

 A further complication regarding the interpretation of self-potential signals related 

to electrochemical mechanisms involves more recent efforts to relate self-potentials to 

the degradation of contaminants in the environment [Perry et al., 1996; Vichabian et 

al., 1999; Atekwana et al., 2000; Naudet et al., 2003; Naudet et al., 2004; Naudet and 

Revil, 2005].  This complication stems from the fact that in there is no metallic con-

ductor (ore body) in the contaminant degradation problem to provide the electronic 

conduction pathway discussed thus far.  Explanations for the self-potential signals 

that rely strictly on the Galvanic model therefore break down. 

 Natural and stimulated degradation of contaminants is widely reported in the lit-

erature, however [e.g. Vogel et al., 1987; Wiedemeier et al., 1999; Christensen et al., 

2000; Kao et al., 2003; Schwarzenbach et al., 2003].  While it is not within the scope 

of this thesis to discuss the mechanisms by which contaminants undergo degradation 

in the earth, these reactions are often thought to be mediated by microorganisms 

[Lovley et al., 1994; Magnuson et al., 1998; Vichabian et al., 1999; Naudet et al., 

2004; Naudet and Revil, 2005; Williams et al., 2005].  Therefore, as long as the redox 
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reactions take place by some mechanism, there must be a net transfer of charge be-

tween oxidized and reduced species, resulting in a source current for the self-potential 

signal regardless of the presence of a metallic conductor.  Oxidation of organic con-

taminants is often linked to the reduction of oxygen, nitrate, manganese, iron, sul-

phate, or carbon dioxide in an aquifer [Christensen et al., 2000].  In other cases, rela-

tively oxidized contaminants such as tetrachloroethylene (PCE) can be reduced when 

coupled to the oxidation of organic material in the aquifer. 

 Electrochemical reactions associated with the degradation of contaminants involve 

complex processes that may depend strongly on the distribution of the contaminant, 

microorganisms, and aquifer materials.  The net transfer of charge between species 

still provides a source current for the self-potential signal, however, and the self-

potential source inversion methods discussed in this thesis may therefore provide a 

useful indication of the spatial distribution of contaminant-related redox processes in 

the subsurface.  A case study from the Savannah River Site in South Carolina, where 

the mechanism for the self-potential signal is proposed to be contaminant degradation, 

is presented in Chapter 5. 

2.2 Self-potential sources 

The previous sections have discussed how self-potentials are generated from a pri-

mary flow mechanism that is either hydraulic or chemical.  The self-potential re-

sponse for simple geometries where the primary flow and induced conduction cur-

rents occupy the same domain can be explained by simple relationships such as the 

Helmholtz-Smoluchowski equation (2.26).  As mentioned earlier, however, this rela-

tionship is a result of the coupling phenomena and geometry, and should not be ap-

plied as a general rule for interpreting self-potentials. 

 It is therefore important to characterize the self-potential sources for arbitrary ge-

ometries and in heterogeneous media such as the earth, as these sources are responsi-

ble for the measured signal.  While sources and sinks of the primary flow are gener-

ally understood to act as self-potential sources, there is frequent confusion about other 
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possible types of sources.  Sill [1983] clearly describes the self-potential sources as 

they are defined by equations (2.11) and (2.12), which is the framework that is also 

followed in this thesis.   

 Take, for example, the electrokinetic problem defined by equations (2.30) and 

(2.31), where the source can be written as 

 2
sj L P L P= ∇ ⋅ = ∇ + ∇ ⋅∇s . (2.50) 

The first term on the right hand side can be attributed to sources or sinks of the pri-

mary flow.  For hydraulic problems, this might occur at a well where fluid is being 

pumped into or out of an aquifer, or a mountain peak where there is rainwater infiltra-

tion.  The second term in equation (2.50) refers to sources that are generated by fluid 

flow perpendicular to a boundary in the coupling coefficient. 

 Sill [1983] further breaks down the sources by substituting Darcy’s Law 

( )q k Pη= − ∇  into the first term in equation (2.50), 
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η η

η
⎛ ⎞

∇ = ∇ ⋅ − ⋅⎜ ⎟
⎝ ⎠

. (2.51) 

The first term in equation (2.51) describes the sources discussed above, where there is 

a source or sink of the primary flow.  The second term describes sources that are at-

tributed to fluid flow perpendicular to a boundary in the hydraulic conductivity.  

Thus, Sill [1983] describes three source terms: 

1. At locations where there is a source or sink of the primary flow (e.g. at a well) 

2. At locations where there is flow perpendicular to a change in the coupling co-

efficient. 

3. At locations where there is flow perpendicular to a change in the hydraulic 

conductivity (and the coupling coefficient is non-zero). 

 Wurmstich [1995] expanded on this approach by substituting equation (2.29) for 

the coupling coefficient into the second term of equation (2.50).  According to the 

product rule, flow that is perpendicular to changes in any of the coupling coefficient 

parameters (fluid dielectric constant, zeta potential, viscosity, or formation factor) 

will also be manifested as a source.  The fact that the current density falls off rapidly 
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with distance from the source is also discussed by Wurmstich [1995], who computes 

the electric power density as an indicator of the source locations for several synthetic 

examples. 

 One misconception about self-potential sources is that they can be generated by 

flow parallel to a boundary, which is contrary to the discussion above.  While the 

primary flow that provides the source current may exist over a large region, self-

potential sources are only manifested where there is a divergence of the source current 

(equations (2.11) and (2.50)).  Thus, in Figure 2-6, Figure 2-7, and Figure 2-8, the 

sources of the self-potential field are restricted to the ends of the sample where there 

is a source and sink of the primary fluid flow.  The fact that fluid flow (and therefore 

the source current) is restricted to the lower domain does not alter the self-potential 

source term. 

2.3 Synthetic self-potential response for aquifer stor-
age and recovery (ASR) 

Aquifer storage and recovery (ASR) is a technique whereby fresh water is injected 

into a subsurface aquifer that serves a storage unit until a later time when the water is 

withdrawn as needed.  This is a technology that is becoming particularly attractive in 

arid regions where water is becoming an increasingly scarce resource, and supply is 

not consistent throughout the year [e.g. Kendall, 1997; Peters, 1998].  While there are 

certain benefits to storing water in subsurface aquifers, one must carefully consider 

the regional hydrology and geochemistry to ensure that the valuable stored resource 

will be recoverable at a later date.  Geophysics is therefore a natural companion to 

ASR, as this provides a way to monitor the fate of the injected water throughout the 

injection and recovery cycle. 

 As part of a pre-feasibility study for geophysical monitoring of an ASR project in 

Kuwait, I considered the hydrogeophysical response of the self-potential method to 

the aquifer storage phase [Minsley et al., 2006].  This is a “realistic” synthetic study, 

where the fluid injection is modeled with COMSOL MultiphysicsTM 3.2 using an ap-
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proximation of the true heterogeneous aquifer properties (Figure 2-12).  This figure 

shows the relevant lithologic units in Kuwait, which consists of: the Kuwait group- an 

unconfined sandstone unit that is saturated at a depth of approximately 30m; the 

Dammam aquifer, which is a limestone/dolomite formation that is confined at its up-

per and lower boundaries; and the Radhuma formation, a dolomite/anhydrite unit.   

Because the planned ASR experiment takes place only within the confined Dammam 

aquifer, the overlying and underlying formations are modeled with homogeneous and 

static properties.  The fluid flow modeling is therefore restricted to the Dammam aq-

uifer, while the geophysical response is computed over the entire domain.  Future 

simulations will consider other realistic cases such as leakage through the confining 

layers and regional groundwater recharge. 

 There is a salinity mis-match between the in situ Dammam aquifer water (ap-

proximately 4000ppm) and the treated water that will be injected (approximately 

100ppm).  Modeling the fluid flow therefore requires coupling the fluid mass trans-

port equations (modified Darcy’s Law) and solute transport (advection and disper-

sion).  This is a two-way coupled problem in that the advective term in the solute 

transport is given by the fluid velocity from the mass transport problem, and an addi-

tional term in the mass transport equation is due to the dependence of fluid density on 

salinity [Ackerer et al., 1999].  Thus, in the initial stage of injection, fluid flow is con-

trolled primarily by Darcy’s Law with a source at the screened portion of the well, 

and the fresh water is advected as a plume into the more saline aquifer.  At later times 

after the injection phase stops, diffusion and buoyancy effects begin to control the dy-

namics of the injected fresh water. 

 The heterogeneous porosity in Figure 2-12 is mapped into permeability for the 

fluid flow modeling.  The model is radially symmetric, and is centered on the injec-

tion well, which is a 20m screened section in the middle of the Dammam aquifer at 

the left edge of the figure.  Fluid density, viscosity, and conductivity are dynamically 

computed as they change as a function of salinity and fluid pressure in the aquifer 

[Keller and Frischknecht, 1966; Batzle and Wang, 1992].  The dispersion tensor for 

the solute transport equations is fixed, with a contribution from both diffusion and 
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mechanical dispersion.  Fluid injection is simulated over the screened portion of the 

well with salinity 100ppm and a rate of 1000m3·day-1 for 12 months.  Afterwards, the 

simulation continues for another 36 months, where buoyancy and diffusion effects 

take over. 

 Figure 2-13 illustrates the modeled bulk electric resistivity both before (a) and af-

ter 12 months of (b) fresh water injection.  The bulk resistivity is computed at each 

time step in using Archie’s Law [e.g. Telford et al., 1990], which combines the (static) 

model porosity with the fluid conductivity computed from the salinity.  In this figure, 

the introduction of the fresh water plume is clear as a nearly spherical resistivity 

anomaly of approximately 1000Ω·m and radius ~50m.   

 Modeling the self-potential response in this system is straightforward; it only re-

quires the addition of equation (2.30) to the model, which specifies the one-way cou-

pling between hydraulic flow and the electric self-potential response.  The bulk resis-

tivity and hydraulic pressure are already defined in the model, and the coupling coef-

ficient is specified using equation (2.29).  The fluid dielectric and zeta potential are 

given fixed values, the viscosity is dynamically computed as a function of salinity, 

and the formation factor is computed from the porosity.  There is no fluid flow, and 

thus no source current, outside the Dammam aquifer, though the resistivity of the 

Kuwait Group has an effect on the self-potential response at the earth surface. 

 Figure 2-14 shows the self-potential source term as defined by equation (2.50), 

separated into the two components that have to do with the source of fluid at the well 

(a) and flow across boundaries of the coupling coefficient (b).  The source magnitude 

is displayed as a function of (logarithmic) distance from the well at a constant depth 

of 230m, which is the center of the screened portion of the well.  It is clear in this fig-

ure that the primary contribution to the self-potential source comes from the fluid in-

jection at the well (a), rather than flow across boundaries (b).  Additionally, the mag-

nitude of the source falls off rapidly with distance from the well.  Therefore, the self-

potential source appears more-or-less like a line source along the screened portion of 

the well. 
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 The self-potential response at various depths in the model is illustrated in Figure 

2-15 as a function of radial distance from the well.  A negative peak is observed above 

the well location at the earth surface (Figure 2-15a), which is the expected response 

for fluid injection at depth, and increases in amplitude slightly over the 12 months of 

injection.  The anomaly at the surface is only on the order of a few millivolts, how-

ever, which is likely too small to be of practical use in a field-setting.   

 A more viable self-potential monitoring setup is highlighted in Figure 2-15b-d, 

where self-potential observation locations are considered at three different depths 

within the Dammam aquifer.  This figure is meant to illustrate the time evolution of 

the self-potential signal at all distances from the well.  In practice, only a few obser-

vation wells could be sited at various discrete distances from the injection well, po-

tentially with a number of electrodes spaced vertically within each well.   

 The anomaly within the aquifer is much larger, on the order of 100mV (note that 

the y-axis is now logarithmic), due to the proximity to the source location.  Addition-

ally, the magnitude of the anomaly changes significantly both in space and over time.  

Because the source magnitude remains fairly constant throughout the injection, the 

observed changes in the self-potential signal are primarily due to the change in resis-

tivity between the well and observation location caused by the injected fluid.  As the 

fresh water plume approaches the observation location, a notable decrease in self-

potential is observed.  Thus, self-potential observation points within the aquifer may 

provide useful information about the progress of the injection front, and whether there 

are preferential flow directions. 
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Figure 2-1:  Coupled forces and fluxes [adapted from Wurmstich, 1995; Bader, 2005] 
(top).  Pictorial representation of the coupling of flows and the development of 
counter forces in a system [from Marshall and Madden, 1959] (bottom). 
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Figure 2-2:  Schematic of the electrical double layer in the vicinity of a solid-fluid 
interface.  The negatively charged solid surface is balanced by fixed positive ions 
within the Helmholtz layer, and a diffuse layer of ions farther from the interface (top).  
The potential as a function of distance from the fluid-solid interface decays exponen-
tially in the diffuse layer (bottom).   
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Figure 2-3:  Cross-section of a cylindrical pore (length l, radius a) with Poiseuille 
flow due a hydraulic pressure difference ( P∆ ) from top to bottom.  The streaming 
current ( kj ) due to drag of excess charge is balanced by a conduction current ( cj ) in 
the opposite direction, resulting in an electric potential difference ( V∆ ) across the 
cylinder. 
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Figure 2-4:  Model geometries and boundary conditions for synthetic electrokinetic 
coupling examples.  A) fluid and electric flows are confined to the same domain, 
where fluid flow is caused by an applied pressure difference across the sample.  B)  
An electrically conductive layer is added to the model, but fluid flow is restricted to 
the same domain as A). 
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Figure 2-5:  Results of electrokinetic coupling for the model in Figure 2-4a.  Surface 
colors show the electric potentials, and contours denote lines of constant pressure.  
Arrows showing the streaming current, kj , in (A) are balanced everywhere by the 
conduction current, cj , in (B) such that the total current density is zero everywhere 
(C).   



 70

 

Figure 2-6:  Results of electrokinetic coupling for the model in Figure 2-4b with 
-1(2) 0.01 S mr rσ σ= = ⋅ .  Surface colors show the electric potentials, and contours de-

note lines of constant pressure.  Arrows showing the streaming current, kj , in the 
lower portion of the model (A) are balanced by the conduction current, cj , in the en-
tire domain (B) such that the total current density in (C) through any vertical slice is 
zero, but is non-zero at any given location.   
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Figure 2-7:  Results of electrokinetic coupling for the model in Figure 2-4b with 
-1(2) 0.001 S mr rσ σ= = ⋅ .  Surface colors show the electric potentials, and contours 

denote lines of constant pressure.  Arrows showing the streaming current, kj , in the 
lower portion of the model (A) are balanced by the conduction current, cj , in the en-
tire domain (B) such that the total current density in (C) through any vertical slice is 
zero, but is non-zero at any given location.   
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Figure 2-8:  Results of electrokinetic coupling for the model in Figure 2-4b with 
-1(2) 0.1 S mr rσ σ= = ⋅ .  Surface colors show the electric potentials, and contours de-

note lines of constant pressure.  Arrows showing the streaming current, kj , in the 
lower portion of the model (A) are balanced by the conduction current, cj , in the en-
tire domain (B) such that the total current density in (C) through any vertical slice is 
zero, but is non-zero at any given location. 
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Figure 2-9:  Maximum electric potential drop across the model in Figure 2-4b for a 
fixed applied hydraulic pressure difference as a function of the upper-to-lower layer 
conductivity ratio.  The limiting case where the upper layer conductivity becomes 
small produces the potential difference predicted by equation (2.26). 
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Figure 2-10:  (A) Schematic of a Galvanic cell that can spontaneously produce a cur-
rent through an external load (Rcell) due to the difference in equilibrium potential of 
the different metals.  (B) Schematic of a corrosion cell that can spontaneously pro-
duce a current due to differences in ionic concentration or oxygen availability in the 
electrolyte near the top and bottom of the metal. 
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Figure 2-11:  Self-potential model surrounding an ore body from Sato and Mooney 
[1960, Fig. 2]. 
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Figure 2-12:  Porosity model for the synthetic aquifer storage and recovery hydrogeo-
physical modeling.  The geometry, aquifer properties, and injection parameters are an 
approximation for the planned ASR experiment in Kuwait. 
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Figure 2-13:  Modeled bulk electrical resistivity before (A) and after 12 months of (B) 
fresh water injection into the Dammam aquifer.  Background variations in resistivity 
are due to the use of Archie’s Law to compute bulk resistivity from fluid resistivity 
and porosity. 
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Figure 2-14:  Individual terms describing the self-potential sources from equation 
(2.50) for the aquifer injection model.  The major contribution to the source comes 
from the fluid injection at the well, rather than flow across boundaries in the coupling 
coefficient. 
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Figure 2-15:  Self-potential response at the surface of the aquifer storage model (A) 
and three depths within the Dammam aquifer (B-D) as a function of distance from the 
well after 1, 6, and 12 months of injection.  Note the different axis scales for (A) and 
(B-D). 
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Chapter 3   

Self-potential source inversion 

3.1 Introduction 

Source inversion for potential-field problems has been the focus of many geophysical 

studies including gravity [Last and Kubik, 1983; Li and Oldenburg, 1998], magnetics 

[Li and Oldenburg, 1996; Portniaguine and Zhdanov, 2002], and self-potentials 

[Fitterman and Corwin, 1982; Fournier, 1989; Patella, 1997; Birch, 1998; Shi, 1998; 

Gibert and Pessel, 2001; Sailhac and Marquis, 2001; Darnet et al., 2003; Revil et al., 

2003a; Rizzo et al., 2004].  Analogous work has also been carried out in the medical 

community which uses the electroencephalogram (EEG) to non-invasively measure 

time varying electrical potentials on the scalp.  The scalp potentials are combined 

with resistivity information to spatially and temporally locate electrical sources within 

the brain [Pascual-Marqui et al., 1994; Malmivuo et al., 1997; Weinstein et al., 2000; 

Michel et al., 2004].  Although different in their application, all of these problems are 

governed by an elliptic partial differential equation.  Each involves the measurement 

of a potential field (or its gradient) that can either be interpreted directly in data-

space, or inverted to determine a source model that predicts the data using the under-

lying physics of the problem. 

 This chapter provides a methodology for the inversion of self-potential data to 

produce an electrical current source model.  These current sources can be generated 

directly by an electrical source, or through a variety of coupling phenomena (elec-
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trokinetic, electrothermal, or electrochemical) [Onsager, 1931; de Groot, 1951; Nour-

behecht, 1963].  This work focuses on the inversion problem; it does not attempt to 

discuss in detail the relationship between current sources and coupled flow properties, 

which can be found in numerous articles [Sato and Mooney, 1960; Fitterman, 1979a; 

Sill, 1983; Morgan et al., 1989; Wurmstich and Morgan, 1994; Wurmstich, 1995; Re-

vil et al., 1999a; Naudet et al., 2003; Revil et al., 2003b; Darnet et al., 2004], and is 

also discussed in Chapter 2. 

 Source inversion is fundamentally different from tomographic inverse problems, 

which seek to describe the spatial variation in physical properties such as velocity or 

resistivity.  Sources tend to be spatially localized, though the actual smoothness of the 

distribution of sources varies for different problems.  Several inversion techniques 

have been developed to account for the compact nature of sources [Last and Kubik, 

1983; Portniaguine and Zhdanov, 1999].   Our approach combines these concepts 

with inverse sensitivity scaling techniques that have been effective in many geophysi-

cal inverse problems [e.g. Li and Oldenburg, 1996].  The sensitivities are calculated 

according to the reciprocity theorem, which allows for complex resistivity structure 

and model geometry.  Reciprocity is an efficient way to calculate the Green’s func-

tions for the source inverse problem because the solution relies only on multiple well-

posed forward calculations [Penfield et al., 1970; Madden, 1972; Malmivuo et al., 

1997]. 

 Accurate determination of the 3D distribution of current sources that describe the 

self-potential signal provides valuable information about the causal coupling proc-

esses.  We discuss how accurate calculation of the source distribution is complicated 

because measured SP data are affected by unknown (or imperfectly estimated) resis-

tivity structure.  All of the examples used to demonstrate these concepts are three di-

mensional, though simple 1D or 2D geometries are used for the purpose of illustra-

tion.   This work follows that of Zhang et al. [1995] and Shi [1998], who utilize the 

transmission network analogy and conjugate gradient algorithms to solve the forward 

and inverse problems. 
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3.2 The electric forward problem 

Equation (2.11), repeated below, is an elliptic partial differential equation that governs 

the dc electrical response due to a source in a conductive medium.   

 −∇ ⋅ ∇ =σ φ s  (3.1) 

σ represents the earth conductivity structure [S·m-1], φ is the electrical potential [V], 

and s describes the electrical current source density [A·m-3] forcing term.  This is 

simply a statement of the conservation equation applied to the current density field 

= − ∇j σ φ  [A·m-2].  Mathematically, it is the same expression that applies to the elec-

trical resistivity geophysical method [e.g. Telford et al., 1990], which uses known 

sources (electrodes) and measured potentials to recover the earth resistivity structure.   

 In this thesis, the self-potential forward problem refers to the calculation of φ , 

given s  and σ .  The forward response in equation (3.2) is defined by the spatial con-

volution of the source term s and Green’s functions φG. 

 ( ) ( ) ( ); ,Gx x x x dxσ′ ′ ′= ∫φ φ s
D

 (3.2) 

For the self-potential inverse source problem, measured potentials are combined with 

assumptions about the earth resistivity structure in order to recover the unknown 

sources.  Solution of the inverse problem, which is discussed further in this chapter, 

requires multiple solutions of the forward problem. 

 Mixed boundary conditions are used in conjunction with equation (3.1).  A Neu-

mann boundary condition is specified at the air-earth interface, such that 0⋅ ∇ =n σ φ .  

Within the earth, a Dirichlet boundary condition requires that 0→φ  as the distance 

from the sources becomes large ( r → ∞ ).  This typically requires that the model 

boundaries are far away from the source region of interest [Dey and Morrison, 1979].  

 The calculation of φ, given s and σ, is a well-posed forward problem and can be 

accomplished with a variety of numerical algorithms.  The finite element package, 

COMSOL MultiphysicsTM 3.2, was utilized in the previous discussions of self-

potential mechanisms to solve equation (3.1).  There are two significant benefits to 

this package: (1) flexibility for incorporating complicated model geometries and (2) 
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the multiphysics approach that allows the physics of the source mechanism to be cou-

pled directly into the problem.  One drawback, however, is that it is not ideally 

adapted for use within the inverse problem, which requires fast solutions of many 

forward problems. 

 In this thesis I adapt a code developed originally for resistivity problems, but 

modified by Shi [1998] to solve the self-potential inverse problem.  This code utilizes 

the transmission network analogy [Madden and Swift, 1969; Madden, 1972] to solve 

equation (3.1), which involves the discretization of the model into network nodes and 

impedance branches, and is reviewed in more detail in Appendix A.  Potentials and 

current sources are defined at each node.  In three-dimensions, each interior node is 

connected to the six surrounding nodes by impedance branches.  The impedances [Ω] 

are calculated from resistivity [Ω·m] values given at the node locations and the dis-

tance between nodes.  This is analogous to a network of resistors, where currents [A] 

flow through the branches [Ω], and potentials [V] are defined at all intersections.  

Kirchoff’s law requires that flow into any node equals the flow out of that node in the 

absence of a current source. 

 Equation (3.1) can be redefined in terms of the transmission network as a linear 

system of equations (3.3), where the discretized forcing term, s, on the right hand side 

now has units of current, [A].  

 Kφ = s  (3.3) 

 A useful property of K is that it is positive definite symmetric, and therefore has 

an inverse.  Direct calculation of K-1, which is a full matrix, is prohibitive for most 

3D problems with even modest dimensions.  Efficient calculation of the forward prob-

lem is essential for solving the inverse problem, and can be accomplished using vari-

ous algorithms.  The code developed in this study uses a conjugate gradient algorithm 

with incomplete Cholesky decomposition and sparse storage to calculate the vector of 

potentials, φ, given K and s; thereby avoiding storage of the matrix inverse.  Zhang et 

al. [1995] and Shi [1998] provide a useful account of the forward problem through the 

use of the transmission network and conjugate gradients. 
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3.3 The inverse problem 

The self-potential inverse problem involves the calculation of s throughout the model 

from an incomplete set of measured potentials and known or estimated impedances.  

As a DC geoelectric problem, the impedance is a function of the model resistivity and 

geometry, and there is no complex component.  There are two fundamental difficulties 

that are addressed during the inversion.    The first problem involves the large varia-

tion in sensitivity of the data to different model parameters.  The sensitivity is typi-

cally greatest near the measurement locations, though it is also a function of the resis-

tivity structure.  Sensitivity scaling is therefore applied by defining a weighting op-

erator that is calculated from the cumulative sensitivity of each model parameter to all 

of the measured data.  Second, this is an ill-posed problem with a fundamentally non-

unique solution, which is compounded by the limited set of available measurements.  

In order to address this non-uniqueness, we choose to select a class of source solu-

tions that have a desired spatial compactness.  This choice amounts to the addition of 

prior knowledge about the properties of s, which may be dependant on the particular 

problem of interest. 

 Equation (3.4) states the basic inverse problem, where K† represents K-1 using 

conjugate gradients to avoid direct calculation and storage of the inverse.   

 †K s = φ  (3.4) 

We assume that the earth resistivity structure, which is part of K, is known.  Ideally, 

the results of a resistivity survey should be incorporated into the self-potential inver-

sion.  Errors in the resistivity structure will clearly propagate as an error in the source 

estimate.  The sources, s, could theoretically be calculated if φ is known completely, 

but in practice this will never be the case.  φ is typically sampled at a limited subset 

of locations (N << M) that are often limited to the surface of the earth.  Equation (3.5) 

gives the more common situation, where the N measured potentials, φd, are related to 

the M unknown sources through a subset of the rows of K† selected by the N by M 

matrix operator P.  P is a ‘selector’ matrix that consists of a single ‘1’ on each row in 

the column that corresponds to the measurement location. 
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 †
dPK s = φ  (3.5) 

 Each row of K† contains the Green’s function that multiplies the source vector and 

results in a potential.  Multiplication by P selects only the Green’s functions related to 

the measurement locations.  We discuss below how the Green’s functions for an arbi-

trary resistivity structure are calculated using reciprocity.  Because PK† has many 

more columns than rows, it is rank-deficient and the problem is ill-posed.  Including 

more measurements, which incorporates more rows of K†, improves the source recon-

struction.  The solution that minimizes the l2 norm of the data misfit, 

 ( ) 2†

2d d dφ = −W PK s φ , (3.6) 

is given in equation (3.7), which relies on the symmetry of K† (i.e. the Green’s func-

tions are self-adjoint, and K-1=K-T) 

 † 2 † †T T
d d(K P W PK )s = K P φ . (3.7) 

In practice, dW  typically contains information about the standard deviation of the 

measurement errors, but for the purpose of simplifying the remaining discussion 

d =W I .   

 The utility of a conjugate gradient algorithm to estimate s without computing ma-

trix inverses is evident from equation (3.7).  All that is required to find s is a series of 

matrix-vector products [Rodi, 1976; Mcgillivray and Oldenburg, 1990; Zhang et al., 

1995].  K† operating on a ‘source’ vector is simply the solution to the well-posed for-

ward problem (3.3), which provides a set of ‘potentials’ also found using conjugate 

gradients.  The quotes are used because the vectors do not necessarily represent real 

sources and potentials.  For instance, PTφd is the ‘source’ vector on the right side of 

the equation from which a vector of ‘potentials’ are calculated.  This represents a 

back-projection of the data into model-space.  On the left side of the equation there is 

a forward calculation, multiplication by the selection operator P and its transpose, fol-

lowed by a second forward calculation.  Thus, the source estimate is found through a 

series of forward calculations nested within a conjugate gradient algorithm.  In prac-
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tice, the ill-conditioning of this problem requires that additional model regularization 

is used. 

3.4 Sensitivity scaling 

Sensitivity scaling requires calculation of the Jacobian (J), or sensitivity of the data 

with respect to the model parameters (3.8). 

 ( )† †
T

T T Td∂ ∂
= = =

∂ ∂
φJ s K P K P
s s

 (3.8) 

By our definition, PT consists of N column vectors with a single 1 in each column 

corresponding to the data locations.  Computation of J is therefore accomplished 

through N forward calculations using a unit source at each data location, which is an 

efficient way to calculate the sensitivity kernel for this problem, as illustrated by 

equation (3.9).  Note that the resistivity structure is already included in K, and is 

therefore naturally incorporated into the sensitivity calculation. 
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 (3.9) 

 Each column on the left of (3.9) gives the sensitivity of one datum to all parame-

ters, which is found on the right side by calculation of the potentials at every location 

due to a unit source at the datum location.  This is a statement of reciprocity, which 

states that the sources and receivers can be exchanged (3.10). 

 
TT
ji

j is s
ϕϕ ∂∂

=
∂ ∂

 (3.10) 

 In this study, J is not used directly in equation (3.7); rather, it is used to calculate 

the cumulative sensitivity of the data to each parameter.  The cumulative sensitivity is 

similarly defined by Portniaguine and Zhdanov [1999], and is given by (3.11). 
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1/ 2

2

1

1:
N

kk kj
j

J k M
=

⎛ ⎞
Λ = =⎜ ⎟

⎝ ⎠
∑ …  (3.11) 

The Λkk form a diagonal weighting matrix that is used in the model regularization 

term in the new objective function given by equation (3.12).  This weighting allows 

for solutions away from the measurement locations, typically at depth, where sensitiv-

ity is decreased.  Similar weighting schemes have been used in gravity [Li and Olden-

burg, 1998; Boulanger and Chouteau, 2001] and magnetic [Li and Oldenburg, 1996; 

Pilkington, 1997] inverse problems. 

 
2 2†

22d m dφ λφ λΦ = + = +PK s -φ Λs  (3.12) 

Here, λ is a trade-off parameter that controls the relative influence of the data and 

model misfit terms.  It is convenient to make a transformation, ws = Λs , and rewrite 

(3.12) in terms of the weighted variable sw (3.13). 

 
2 2† 1

22w w d wλ−Φ = +PK Λ s -φ s  (3.13) 

Minimization of the weighted objective function with respect to sw leads to equation 

(3.14). 

 ( )1 † † 1 1 †T T
w dλ− − −+ =Λ K P PK Λ I s Λ K P φ  (3.14) 

 Equation (3.14) can be solved in the same way as described for equation (3.7), 

through forward operations applied to a ‘source’ vector and multiplication by several 

sparse matrices within a conjugate gradient algorithm.  The solution for sw is then 

multiplied by the diagonal matrix Λ-1 to recover s.  The effect of the Λ-1 term in (3.14) 

becomes clear: it scales the left-most term such that the diagonals are equal to one.  

By equalizing the diagonals, parameters with large sensitivities do not dominate, and 

solutions can be found away from the measurement locations.   

 According to equation (3.12), this method simply involves a solution that is con-

strained by data misfit and a sensitivity-weighted minimum length term.  Other model 

regularization operators (i.e. gradient or Laplacian) can also be used to produce flat or 
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smooth models.  In practice, a data weighting term with estimated variance informa-

tion can also be applied, but is excluded here for clarity. 

3.5 Model regularization for self-potential source in-
version 

As discussed by Constable et al. [1987], the purpose of regularization in the inverse 

problem is to introduce stability while recovering models that do not contain more 

complicated features than are justified by the data.  A common form of regularization 

involves the measure of a low order differential operator applied to the model [e.g. 

Tikhonov and Arsenin, 1977].  Minimization of this functional using an l2 norm results 

in a linear system of equations that introduces stability through the constraints pro-

vided by the regularization operator.  Thus, the regularization term in equation (3.12) 

is of the form 

 2

2m mφ = W s . (3.15) 

 When the operator is the identity matrix ( m =W I , 0th order), a minimum length 

solution is obtained.  Other popular operator choices include the gradient ( m = ∇W , 

1st order) or Laplacian ( 2
m = ∇W , 2nd order), which produce flat or smooth solutions, 

respectively.  Additional a-priori information can be included, for example, by intro-

ducing anisotropic weights for the gradient operator to promote features such as hori-

zontal layering.  Li and Oldenburg [1996; 2000] employ a combination of metrics that 

enforce a minimum length solution with respect to a reference model, allow for ani-

sotropic spatial gradients, and incorporate depth weighting to overcome problems re-

lated to poor sensitivity at depth.  The sensitivity scaling techniques discussed in the 

previous section can be included with any of these linear operators. 

 These methods are widely used because inversion stability and reasonable model 

constraints are introduced in a framework that fits naturally with least squares algo-

rithms, i.e. the objective function involves a quadratic function of the model.  The re-

sulting models, however, tend to have smooth variations that may not always be 
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physically appropriate [Silva et al., 2001; Bertete-Aguirre et al., 2002].  This can be 

the case when a geologic feature such as a fault or dike has material properties that 

vary over relatively short distances, or where fluid flow occurs along restricted high 

permeability pathways [Ajo-Franklin et al., 2007].  Another case where parameters 

should not be expected to vary smoothly involves the source term for certain potential 

field problems.  Potential field sources can be highly localized, such as a cavity that 

produces a gravity anomaly or a pumping well that produces a self-potential signal.  

Forms of regularization that do not penalize sharp or blocky features should therefore 

be used in appropriate circumstances. 

 Various regularization schemes have been introduced that provide inversion stabil-

ity using constraints that promote simple, though not necessarily smooth, features in 

the model without introducing unnecessary complexity.  Some examples of alternate 

regularization methods include minimization of the low order spatial derivatives of 

the model using an l1 norm [Claerbout and Muir, 1973], minimizing the area occu-

pied by model parameters [Last and Kubik, 1983] or their spatial derivatives 

[Portniaguine and Zhdanov, 1999], and minimization of the moment of inertia of an 

object [Guillen and Menichetti, 1984].  In all of these cases, the objective function is 

no longer quadratic, and solution of the non-linear inverse problem requires the use of 

model-space iteratively re-weighted least squares (IRLS).  IRLS techniques are more 

commonly used in the data domain to solve inverse problems in the lp norm [Scales et 

al., 1988; Bube and Langan, 1997], but can also be adapted to model-space re-

weighting [Farquharson and Oldenburg, 1998] as discussed in Appendix B. 

3.5.1 Total variation regularization  

Total variation (TV), stated in equation (3.16), provides a measure of the variation of 

the entire model, and is equivalent to the l1 norm of the gradient of the model [e.g. 

Acar and Vogel, 1994; Bertete-Aguirre et al., 2002].  

 ( )TV
V

dVφ = ∇∫s s  (3.16) 
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Minimization of the total variation functional generates “blocky” images that are 

piecewise constant over one or more regions [Claerbout and Muir, 1973; Dobson and 

Santosa, 1996].  Both l1 and l2 norms of the gradient penalize oscillations in the 

model due to noisy data, but sharp discontinuities are better preserved under the l1 

norm.  Total variation has been applied in various forms to geophysical inverse prob-

lems [Claerbout and Muir, 1973; Portniaguine and Zhdanov, 1999; Yu and Dough-

erty, 2000; Bertete-Aguirre et al., 2002], and has also been developed for noise sup-

pression in image processing [Rudin et al., 1992; Acar and Vogel, 1994; Vogel, 2002]. 

 Because equation (3.16) is non-differentiable when any of the 0is∇ = , the total 

variation functional is often approximated using equation (3.17) [e.g. Farquharson 

and Oldenburg, 1998; Bertete-Aguirre et al., 2002].   

 ( ) ( )1/ 22 2
TVφ β= ∇ +s s  (3.17) 

This is a specific case of the generalized measures of data misfit and model structure 

discussed by Farquharson and Oldenburg [1998], and is also reviewed in Appendix 

B.  The gradient operator is replaced with its discrete form of the differencing opera-

tor such that m = ∇W .  Differentiating equation (3.17) with respect to s leads to 

 ( )TV T
m m

φ∂
=

∂
s

W RW s
s

 (3.18) 

where, 

 ( )( ) 1/ 22 2
ii m i

R β
−

= +W s . (3.19) 

R is a diagonal matrix with an entry for differences between adjacent model parame-

ters in all directions, and β provides stability when the model gradient is near zero.  

Minimization of the full objective function, d TVφ λφΦ = + , results in the familiar sys-

tem of equations for s given in equation (3.20). 

 ( )† † 1 †T T j j T
m m dλ −+ =K P PK W R W s K P φ  (3.20) 

 An iterative solution method must be used because the total variation constraint 

involves a non-linear function of the model.  The first estimate, s1, typically comes 
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from a conventional linear smoothness constraint by setting 0 =R I .  This model is 

then used to compute a new diagonal weighting matrix 1j−R  and, subsequently, a new 

model estimate, js .  The solution that satisfies the total variation constraint is reached 

when changes to the model become sufficiently small, i.e. 1j js s ε−− < . 

3.5.2 Spatially compact sources using minimum support 
regularization 

For the potential-field source inversion problem, a constraint that requires the source 

model to be spatially localized has more meaning: a self-potential source due to well 

pumping will be near the screened portion of the well, a gravity anomaly due to an 

intrusion is limited to the area of change in density, etc.  Elsewhere, the source term 

should be zero.  Wurmstich [1995] illustrated the localization of self-potential sources 

by computing the electric power density for several synthetic models, where the 

power density drops off rapidly from the source locations. 

 Compact source constraints have proven useful in various geophysical and medi-

cal investigations [Last and Kubik, 1983; Portniaguine and Zhdanov, 1999; Portni-

aguine et al., 2001; Silva et al., 2001; Portniaguine and Zhdanov, 2002].  Different 

inverse problems will involve a range of model characteristics such as compactness or 

smoothness; therefore, a regularization operator should be chosen that incorporates 

the intrinsic physical properties of interest.  Portniaguine and Zhdanov [1999] discuss 

a minimum support stabilizing functional that is developed from the compactness 

constraint used by Last and Kubik [1983]. This is based on the minimization of an 

area (or volume in three-dimensions) metric given by equation (3.21).   

 
2

2 20 1

lim
M

k
e

k k

sarea a
sβ β→

=

=
+∑  (3.21) 

 Here, ae represents the area of an individual model block or element, which is as-

sumed constant in this case.  β is a small number that is introduced to provide stability 

as sk → 0.  In the limit of β → 0, terms in equation (3.21) evaluate to 1 for any value 

of sk ≠ 0, and they become 0 for sk = 0.  This metric approximates the area of the 
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anomalous region, and is essentially the same as the minimum support functional dis-

cussed by Portniaguine and Zhdanov [1999].   

 A new objective function is defined that incorporates the measure of area, 

 
22†

2 22
1

M
k

d m d
k k

s
s

φ λφ λ
β=

Φ = + = +
+∑PK s -φ . (3.22) 

Figure 3-1a shows the general form of the model regularization term ( mφ ) for several 

values of β  compared with the traditional damping case where =Λ I  in equation 

(3.12). The compactness term is clearly non-quadratic, though large values of β  

(relative to ks ) introduce a similar damping effect on the model parameters. For the 

case when ksβ � , the compactness constraint becomes apparent; the objective term 

asymptotes to one regardless of the magnitude of ks . Hence, the penalty on model pa-

rameters does not depend on their relative magnitude, only whether or not they lie 

above or below the threshold of β .  Minimization of mφ  is realized by allowing the 

greatest number of parameters to have amplitude less than β .  Large absolute values 

of the remaining parameters are not constrained since any value greater than β evalu-

ates to ~1.  

 A new weighting variable is defined by equation (3.23), which includes the mini-

mum support functional scaled by the cumulative sensitivity weights, which is con-

ceptually similar to R in equation (3.19).   

 
( 1)

1/ 2
2

2 2 1:
j

kk
kk

k

k M
s β

−

⎛ ⎞Λ
⎜ ⎟Ω = =
⎜ ⎟+⎝ ⎠

…  (3.23) 

The denominator of kkΩ  is fixed with respect to a prior model (j–1) so that the regu-

larization term becomes a quadratic function of the unknown parameters, sk, and can 

be easily incorporated into a traditional least squares algorithm.   

 
2 2†

22MS d m dφ λφ λΦ = + = +PK s -φ Ωs  (3.24) 

 In other words, the estimate of s that minimizes the minimum support objective 

function fits the data using the fewest number of parameters, scaled by the cumulative 
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sensitivity.  Because the prior estimate of s is used in equation (3.23), this minimiza-

tion occurs in the neighborhood of 1j−s .  This formulation allows the linear inversion 

to be repeated using an IRLS approach, with a new Ω calculated at each step from the 

previous s.  Each successive optimization reduces the minimum support functional by 

using fewer parameters until further reduction no longer fits the data and 1j j−≈s s .  In 

general, as fewer parameters are used to fit the data, the source parameters must in-

crease in amplitude and move to greater depth. 

 Figure 3-1b shows the linearized form of the model regularization term, which 

now depends on the value of a prior model estimate, 1j
ks − .  First, note that even for 

small values of β  (relative to 1j
ks − ) the objective function does not asymptote to a 

constant value as in Figure 3-1b.  In this case where 1j
ksβ −� , it is the ratio 1j j

k ks s −  

that is penalized quadratically.  When 1j
ksβ −� , the objective term simplifies to the 

traditional damping case and β  serves to bound the values of elements on the diago-

nal of Ω ; as 0ks → , kk kk βΩ → Λ .  At any given step, Ω  can be viewed as a spa-

tially variable damping matrix with high values in regions where the prior model es-

timate has a small absolute magnitude.  This promotes compactness, and reduces un-

necessary model complexity, by damping out relatively small amplitude features, 

within the constraints provided by the data misfit term. 

 Using the transformed parameters, w =s Ωs , the form of the solution similar to 

(3.14), the only difference being the numerator of Ω-1 that now scales the left most 

term of (3.25). 

 ( )1 † † 1 1 †T T
w dλ− − −+ =Ω K P PK Ω I s Ω K P φ  (3.25) 

Once computed, sw is then transformed back to the original parameters using 
1

w
−s = Ω s . 

 It is important to remember that the compact source solution does not remove the 

inherent non-uniqueness for this problem.  Instead, this method finds an ensemble of 

source solutions that fit the data equally using increasingly compact models.  The in-
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terpreter must still decide which solution is ‘correct’ based on prior information about 

the source properties.  One effective stopping criterion might be a pre-specified model 

roughness, which tends to increase as the solution becomes more compact. 

3.5.3 The role of multiple regularization parameters 

 Zhdanov and Tolstaya [2004] and Farquharson and Oldenburg [1998] discuss 

how to choose an appropriate value for β based on a tradeoff curve method.  This is 

accomplished by plotting β versus mφ  for multiple values of β and a given model.  

Small values of β lead to small values of mφ , but may introduce instability or un-

wanted oscillations in the model, especially when noise is present in the data.  As β 

becomes large, the minimum support functional behaves more like a weighted mini-

mum length constraint.  Thus, β can be chosen from the tradeoff curve such that it 

controls the behavior of the regularization term, providing a balance between desired 

compactness and stability.   

 A further complication, however, is that there are now two regularization parame-

ters that control the solution, λ and β, which cannot be chosen independently.  In or-

der to understand the combined influence of these parameters, a synthetic dataset is 

generated from a known source and is contaminated with zero-mean Gaussian noise.  

These data are then inverted using equation (3.25) and 99 different combinations of 

fixed values for the regularization parameters, i.e. all combinations of nine logarith-

mically equi-spaced values of λ between 1x10-4 and 1x101, and eleven logarithmically 

equi-spaced values of β between 1x10-3 and 1x10-1.   

 In Figure 3-2, an L-curve [e.g. Hansen and Oleary, 1993] is displayed for each 

value of β, and points along each curve represent different values of λ.  The L-curve 

represents the tradeoff between the model norm ( mφ ) and the data norm ( dφ ).  For a 

single curve, one generally selects the value of λ at the point of maximum curvature, 

thereby finding the solution that minimizes both terms optimally.  For display pur-

poses, the x-coordinate in Figure 3-2 is 2
mβ φ  instead of simply mφ .  Because 
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( )2 0mβ φ β∂ ∂ > , the curves do not overlap and β increases from the left-to-right of 

the figure, where smaller β correspond to more “compact” solutions.  Large values of 

β decrease the model norm as determined by equation (3.22), but do not lead to com-

pact solutions.  The true level of noise added to the dataset is annotated by the black 

dashed line. 

 The curves on the right side of Figure 3-2 correspond to smooth solutions and 

have the traditional “L-shape”.  Pre-multiplication of the model norm by β2 has the 

effect of collapsing all of these curves together because β2 is the dominant term in the 

denominator of (3.22).  As β decreases, however, the effect of the minimum support 

operator takes over and the model norm decreases because solutions become increas-

ingly compact.  The three left-most curves in Figure 3-2 exhibit equal degrees of 

compactness (for a given level of data misfit), but appear separated on the figure due 

to the pre-multiplication by β2.  The combined effects of λ and β are summarized in 

Table 3-1 below, where the four quadrants in the table roughly correspond to the re-

gions in Figure 3-2. 

Table 3-1:  Summary of the combined influence of the minimum support regulariza-
tion parameters 

 Small β Large β 

Large  

λ 

Solutions are compact.  For increas-

ing λ, the IRLS method compacts 

the solution too rapidly, leading to 

an incorrect source location and 

therefore increasingly poor data fit. 

Solutions are smooth.  For increas-

ing λ, the data norm becomes large 

because smoothness is favored over 

data fit. 

Small  

λ 

Solutions have an intermediate de-

gree of compactness.  Small λ al-

lows the data to be over-fit, requir-

ing numerous sources near the 

measurement locations 

Solutions are relatively smooth, but 

there may be significant oscillations 

near the receivers required to fit the 

noise in the data. 
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 Figure 3-2 highlights an important result; it illustrates that the nonlinear minimum 

support regularization term behaves as a stabilizing functional should, providing a 

tradeoff between data misfit and a measure of model length.  It is interesting to note, 

for this example, that the notch in the “L” falls at or near the correct level of data mis-

fit for the compact solutions (three left-most curves).  The fact that there is an addi-

tional regularization parameter complicates the situation somewhat, but the behavior 

of the solution can be predictably controlled by the selection of λ and β. 

3.5.4 Synthetic illustration of various regularization tech-
niques 

A simple two-dimensional synthetic example is used to illustrate the different types of 

results achieved with the regularization methods discussed thus far.  Figure 3-3a 

shows the “true” 2D source model, which consists of a negative point source with 

amplitude -3mA and a positive dipping source with pixel amplitudes +1.5mA.  The 

resistivity structure is homogeneous, and a dense set of measurement locations are 

shown at the top of the model with black triangles.  Synthetic noise-free data gener-

ated from this model are displayed in Figure 3-3b.  This model is roughly representa-

tive of the source characteristics that might be described by equation (2.50); a point-

like source near the location of fluid injection/extraction in a well, and a linear source 

feature where there is flow across a boundary in the coupling coefficient. 

 Figure 3-4 shows the source inversion results using the traditional linear regulari-

zation techniques, where m =W I  in Figure 3-4a, m = ∇W  in Figure 3-4b, and 

2
m = ∇W  in Figure 3-4c.  Sensitivity scaling, as discussed in section 3.4, is also in-

cluded for all three cases, and λ is fixed at 0.1.  All of the models using traditional 

regularization are very smooth, and do not capture much information about the true 

source structure (which is depicted by white asterisks). 

 Results using the total variation regularization technique are shown in Figure 3-5, 

again with λ fixed at 0.1.  The initial model for the iterative procedure is the smooth 

model from Figure 3-4c.  The solutions are illustrated at IRLS iterations #3 (Figure 
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3-5a), #5 (Figure 3-5c), and #7 (Figure 3-5e).  In addition to the source solutions, the 

diagonal elements of the regularization term in equation (3.20), i.e. T
m mW RW , com-

puted from the solutions at these iterations are illustrated in Figure 3-5b, Figure 3-5d, 

and Figure 3-5f.  These maps of the regularization operator can be viewed as a spa-

tially variable damping operator, where small values correspond to a weak constraint 

on model amplitudes and large values correspond to a stronger constraint.  The total 

variation results provide a slight improvement over the traditional regularization 

methods in that the anomalous regions are better localized about the true source loca-

tions.  As expected, this solution is “blockier” than the traditional result, but is still 

not able to completely reconstruct the true source model. 

 Next, the compact source solution using the minimum support regularization tech-

nique is illustrated in Figure 3-6.  The starting model is again taken as the smooth 

model from Figure 3-4c.  Results are shown for IRLS iterations #3 (Figure 3-6a), #5 

(Figure 3-6c), and #7 (Figure 3-6e).  The weighting operator Ω  used to compute each 

of these solutions is shown in Figure 3-6b, Figure 3-6d, and Figure 3-6f.  The influ-

ence of the spatially variable damping that depends on the amplitude of the prior 

model estimate is evident.  The large near-surface weights in the background of all of 

the weighting operator images comes from the sensitivity scaling term in equation 

(3.23).  The compact source solution is clearly able to capture the true source struc-

ture and amplitudes, though solutions that are “over-compact” can also be found due 

to non-uniqueness and limited data sensitivity.  This is partially evident in Figure 

3-6e, where the dipping positive source becomes somewhat broken up. 

 Finally, the influence of noisy measurements is considered for the minimum sup-

port method, which is illustrated in Figure 3-7.  Gaussian noise is added to the data in 

Figure 3-3b, where the noise has zero-mean and standard deviation equal to 10% of 

the mean of the noise-free measurements.  Figure 3-7a shows the source inversion re-

sult for the first iteration using the traditional smoothness constraint.  The main fea-

tures are similar to Figure 3-4c, but the uncorrelated random noise is manifested pri-

marily as near-surface artifacts.  The subsequent minimum support results for itera-

tions #3 (Figure 3-7b) and #5 (Figure 3-7d) are also shown along with the correspond-
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ing weighting operators (Figure 3-7c and Figure 3-7e, respectively).  As the features 

become increasingly compact, the true source locations and shapes cannot be recov-

ered due to the influence of the noisy measurements.  Subtle features in the data due 

to a dipping or distributed source are masked by the noise, limiting the extent to 

which these features can be imaged. 

 It is important not to over-fit the data in the presence of noise, as many shallow 

sources are needed to fit rapid oscillations in the data due to random noise.  One op-

tion is to choose λ for the first IRLS iteration such that the solution is slightly over-

damped, and artifacts due to the noise are avoided.  Alternatively, if the level of noise 

in the data is known the target data misfit can be specified accordingly.  Subsequent 

iterations with increasingly compact solutions are then found that also avoid over-

fitting the noise due to the nature of Ω , which tends to enhance the regions of the 

model that have large amplitudes in previous iterations. 

 Also, as the level of noise in the data increases, the model resolution decreases. 

This can be explained by the model resolution matrix, R, where est true=m Rm .  For 

the traditional linear regularization techniques R is a function of the acquisition ge-

ometry and regularization operator, and is independent of the data.  For the minimum 

support regularization, however, R depends on a prior model estimate, and is there-

fore data-dependent. Thus as the data quality becomes poorer, one should expect re-

sults with correspondingly lower resolution.  

 Overall, the minimum support regularization technique provides superior results 

for the self-potential source inversion problem.  This method works well because it 

can be justified that the sources occupy a limited volume in the subsurface, and have 

zero magnitude at most locations.  Various self-potential source mechanisms will have 

different degrees of spatial compactness, however, and so the degree to which a truly 

compact source solution is sought should be considered for a given problem.  By in-

troducing prior knowledge about the spatial statistics of the source processes, for ex-

ample, one can remove some of the inherent ambiguity regarding how compact the 

source structure should be.  One approach might incorporate the physics and/or chem-
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istry of the coupling mechanism in a statistical sense to determine a plausible range of 

correlation lengths for the source distribution. 

 While the total variation approach generates solutions that are more spatially 

compact than the traditional smoothness constraint, it does not explicitly seek to 

minimize the volume of the causative anomaly.  Based on these results, the minimum 

support regularization technique is utilized throughout the remainder of this disserta-

tion for the self-potential inverse source problem.  Possible improvements might in-

corporate a hybrid minimum support/total variation constraint to seek solutions that 

are spatially compact, but avoids oscillation within the anomalous region associated 

with “over-compaction” of the anomaly.   A drawback of this approach is that it re-

quires multiple user-selected tradeoff parameters, λ. 

3.6 3D synthetic example with minimum support 
regularization 

A simple 3D synthetic example is used to illustrate the utility of the methods de-

scribed.  The model has dimensions 36 x 46 x 23 (M = 38,088 nodes) with 5m spacing 

between nodes, and has a homogeneous 100Ω·m resistivity structure.  Two current 

sources are located within the volume (Figure 3-8): a negative point source at 

(16,16,6) and a positive, dipping source at (20,24-28,4-8).  Synthetic data generated 

from the current source model are shown in Figure 3-9.  The data have been sampled 

at N = 60 random surface locations to simulate a typical surface SP survey.  The con-

toured data show a clear anomaly over the positive source, but there is little evidence 

of its shape or the presence of the negative point source.  

 These data are first inverted using the basic approach of equation (3.7), with the 

addition of a minimum length constraint on the model ( 2min s ) and the correct ho-

mogeneous resistivity.  Slices through the resulting model are shown in Figure 3-10a.  

As expected, the estimated sources have been pulled towards the surface measure-

ments.  Figure 3-10b shows the cumulative sensitivities, as calculated by equations 

(3.8) and (3.11).  The very low sensitivity near the edges is due to the fact that several 
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padding blocks with much larger node spacing are used, and are therefore very far 

from the measurement locations.  Incorporating the sensitivity scaling in the inversion 

starts to provide better information at depth, which is shown in Figure 3-10c.  

 Next, equation (3.25) is solved for this example to illustrate the effect of the com-

pactness constraint.  Larger values of λ tend to increase the rate that solutions become 

more compact, but also tends to produce a less stable result.  λ is fixed at 1.0 for this 

example.  Figure 3-11 shows the iterative re-weighting scheme that produces increas-

ingly compact sources.  The top image for each iteration is a slice of the diagonal 

weighting terms, Ω, along x = 20.  Because the initial source estimate is zero ( 0 0=s ), 

the first iteration produces exactly the same weighting and source result as the sensi-

tivity weighted minimum length solution shown in Figure 3-10.  From this estimate, a 

new weighting term is calculated according to equation (3.23), which is then used to 

find a new source estimate.  The weighing term and source results for iterations 4 and 

7 are shown in Figure 3-11b and c.   

 The effects of the minimum support functional become clear in these iterations as 

the source images become more focused.  Relatively weak constraints are imposed on 

the parameters where sources were estimated in the previous iteration, and the con-

straint tends towards sensitivity scaling only for the parameters where the previous 

source estimation was near zero. Note the different color scale at each iteration; the 

source amplitudes increase as their spatial extent decreases, and ultimately reach ap-

proximately 20% of the true amplitude.  Table 3-2 summarizes the data misfit and 

model norm for these results.  Because there is no noise in this synthetic example, the 

data misfit is allowed to be small, as can be seen by the <1mV data RMS error.  While 

the data misfit varies only slightly, the model norm drops rapidly (by four orders of 

magnitude) during the minimum support iterations as fewer parameters are used to fit 

the data.  This highlights the point that the minimum support regularization technique 

allows us to find multiple solutions which fit the data equally, but exhibit varying de-

grees of spatial compactness. 

 The synthetic example given in this study takes about eight minutes to run ten it-

erations on a 2GHz Linux workstation.  Calculation of the cumulative sensitivity in-
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formation involves N forward calculations, but only needs to be calculated once for a 

given dataset and model geometry and resolution.  This information can then be 

stored and read directly for future runs with different inversion parameters. 

3.6.1 Effect of unknown resistivity structure 

An important source of error in the self-potential inversion comes from the fact that 

assumptions about the resistivity structure are incorporated in the operator, K.  Ide-

ally, an estimate of this structural information would be provided by a resistivity sur-

vey carried out in conjunction with the self-potential survey, though this is not always 

practicable, and is never perfect.  In this section, several synthetic examples are illus-

trated where the true resistivity structure is unknown, and a homogeneous value is 

used for the inversion.  This provides useful insight for interpreting source inversion 

results that are derived using an uncertain resistivity model.  A more detailed discus-

sion of this problem is presented in Chapter 4, which includes a general framework to 

describe the effect of resistivity uncertainty as well as additional synthetic examples. 

 Three synthetic examples, which use the same model dimensions as the previous 

section, are shown in Figure 3-12.  Slices of the resistivity structures, ρ(y,z), at x = 20 

are illustrated in panels A, C, and E in conjunction with a dipping source at the loca-

tions outlined in white boxes and amplitude 10mA.  For each model, 150 synthetic 

self-potential data points are generated on a dense surface grid in order to highlight 

the effects of the unknown resistivity structure rather than array geometry.  Each data-

set is then inverted for the source distribution using a homogeneous 100Ω·m estimate 

of the resistivity structure.  The corresponding inversion results are shown in Figure 

3-12 panels b, d, and f. 

 In the first case, Figure 3-12a-b, we illustrate the effect of a high resistivity 

(150Ω·m)  near-surface layer overlying a half-space (50Ω·m), which results in a slight 

vertical mis-location of the source structure.  The second example, shown in Figure 

3-12c-d, demonstrates a 2D resistivity case where there is near-surface heterogeneity, 

and the high resistivity is limited to y > 23.  This contributes to slightly more distor-

tion of the source structure compared with the previous two layer model.  The third 
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example, shown in Figure 3-12e-f, consists of a two layer model where the half-space 

has the greater resistivity.  The source inversion for this final case shows the most dis-

tortion, with a significant bias towards the location of the unknown resistivity con-

trast.  The data misfit and model norm for these tests are summarized in the last three 

rows of Table 3-2.  Again, the data misfit is allowed to be small for all of these exam-

ples because there is no noise.  However, as the inversion results become increasingly 

distorted due to the incorrect resistivity assumptions and more parameters are re-

quired to fit the data, there is a corresponding increase in the model norm. 

Table 3-2:  Summary of data and model norms for the inversion results related to the 
synthetic models in Figure 3-8 and Figure 3-12 

Result 
Data RMSE 

[V] 

Data norm 

( dφ ) 

Model norm 

( mφ ) 

Minimum length (Figure 3-10a) 1.68x10-4 1.70x10-6 1.21x109 

Sensitivity scaled (Figure 3-10c) 1.47x10-4 1.30x10-6 1.87x107 

Minimum support, it #1 (Figure 3-11a) 1.47x10-4 1.30x10-6 1.87x107 

Minimum support, it #4 (Figure 3-11b) 2.64x10-5 4.19x10-8 8.60x103 

Minimum support, it #7 (Figure 3-11c) 4.65x10-5 1.30x10-7 1.00x103 

Resistivity test #1 (Figure 3-12a,b) 7.56x10-6 8.57x10-9 6.23x103 

Resistivity test #2 (Figure 3-12c,d) 2.14x10-5 6.90x10-8 9.53x103 

Resistivity test #3 (Figure 3-12e,f) 8.47x10-5 1.08x10-6 7.12x104 

3.7 Field data example 

We illustrate the source inversion methods on a field self-potential dataset collected in 

the vicinity of a pumping well, originally published by Bogoslovsky and Ogilvy 

[1973].  Although all the details of this experiment are unfortunately not available, it 

is a useful dataset to work with because it has been recently studied by several other 

authors [Darnet et al., 2003; Revil et al., 2003a].  Figure 3-13 shows the SP profile 

collected over the pumping well (labeled K-1) as well as the water table elevations 
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interpolated from piezometers in several monitoring wells.  The broad positive self-

potential anomaly is fairly symmetric about the well position, and there are two sharp 

negative anomalies that correspond to infiltration from the surface drainage ditches 

located at approximately -70m and +110m.  As expected with field data, there is some 

noise that corrupts the signal. 

 For the self-potential source inversion, we have discretized the data at 85 locations 

with 4m spacing.  A 3D model is generated with dimensions (101 x 21 x 33) nodes (M 

= 69993), with 4m node spacing in the x-y direction and 1m in depth, except for the 

larger boundary nodes.  A smaller extent in the y-direction can be used because, while 

the problem is 3D, the data lie entirely on a 2D profile.  The result of this geometry is 

that sources can only be properly collapsed onto the vertical plane through the data, 

which is suitable for this particular problem.   

 Three resistivity models, illustrated in Figure 3-14, are investigated for this exam-

ple.  As discussed previously, we expect that better estimates of the resistivity struc-

ture will improve the inverted source structure. We start with a homogeneous 40Ω·m 

resistivity model (Figure 3-14a).  Next, we use a 1D resistivity structure with 150Ω·m 

in the top 1m, followed a 1m layer of 100Ω·m overlying a 40Ω·m half-space (Figure 

3-14b). A more resistive near-surface resistivity is a reasonable approximation given 

the nominal water table depth of ~1m and broad unsaturated zone due to the draw-

down.  Finally, in Figure 3-14c we use a 2D resistivity structure that better approxi-

mates the unsaturated drawdown cone.  This model consists of a 1m surface layer of 

150Ω·m over a 40Ω·m half-space, in which we add a radially symmetric region of 

85Ω·m in the drawdown region estimated from the bottom of Figure 3-13.  We do not 

include any effects from the well casings for these examples. 

 Noise in the data that has a high spatial frequency (uncorrelated noise) tends to 

produce unwanted large amplitude artifacts in the source model near the surface 

measurements.  To address this, we include a strong smoothness constraint 

(
22min ∇ s ) that is relaxed as the iterative re-weighting iterations proceed.  The 

smoothness constraint ensures that the gross model structure is estimated and the 
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noise artifacts are damped out for the first iteration.  The minimum support operator is 

therefore not biased towards focusing the surface artifacts, and solutions at depth can 

be found.  As the sources move away from the measurement locations, the smoothness 

constraint is no longer needed because the near-surface artifacts do not improve the 

data misfit.  If some measurements were known to be more reliable than others, a data 

weighting term could be used to place a weaker constraint on the noisy measure-

ments, as discussed in section 3.3, though all data are treated equally for this example.   

 Each column of Figure 3-15 shows the source estimates for the corresponding re-

sistivity structure in Figure 3-14.  The groundwater elevations, pumping well, and 

drainage ditches are superimposed on each image.  Six different source estimates are 

shown for each case, starting with the smoothed model at the top (iteration 1), then 

successively more compact model estimates (iterations 4, 7, 10, 13, and 16).  In all 

three cases there is a large positive source at depth in the vicinity of the screened por-

tion of the well where fluid is removed.  The two drainage ditches where there is infil-

tration into the subsurface show up nicely as near-surface sources with negative polar-

ity, and smaller amplitude than the pumping source.  The results are similar for the 

homogeneous (Figure 3-15a) and 1D (Figure 3-15b) resistivity structures, though the 

positive source at the well is located slightly deeper for the 1D case.  For the 2D resis-

tivity model (Figure 3-15c), the source at the well is deeper and more compact at any 

given iteration than the other two resistivity models. 

 Figure 3-16 shows the data fit for three of the minimum support iterations.  The 

effect of the smoothness constraint on the early iterations is evident in this figure; the 

first model estimate captures only the general features of the data, but provides a use-

ful approximation for the next iterative weighting term.  This also helps to eliminate 

oscillations in the model related to fitting noise in the data, and subsequently restricts 

these features from the compact source solutions.   

 Table 3-3 provides a summary of the data and model norms for the solutions in 

Figure 3-15.  For each of the three different resistivity cases, the solution is over-

damped in the first iteration, as is evident by the relatively large RMS error of 5-8mV, 

to avoid model artifacts due to noise.  During subsequent minimum support iterations, 
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the data misfit is allowed to improve, and the model norm clearly decreases as fewer 

parameters are used to fit the data. 

Table 3-3:  Summary of data and model norms for the inversion results shown in 
Figure 3-15 that come from the Bogoslovsky and Ogilvy [1973] dataset 

Result 
Data 

RMSE [V] 

Data norm 

( dφ ) 

Model 

norm ( mφ ) 

Homog. resistivity, it #1 (Figure 3-15a) 5.53x10-3 2.60x10-3 4.26x105 

Homog. resistivity, it #4 (Figure 3-15a) 2.12x10-3 3.83x10-4 2.38x104 

Homog. resistivity, it #7 (Figure 3-15a) 1.16x10-3 1.14x10-4 2.00x104 

Homog. resistivity, it #10 (Figure 3-15a) 8.00x10-4 5.44x10-5 1.16x104 

Homog. resistivity, it #13 (Figure 3-15a) 7.10x10-4 4.29x10-5 8.26x103 

Homog. resistivity, it #16 (Figure 3-15a) 7.66x10-4 4.98x10-5 3.35x103 

1D resistivity, it #1 (Figure 3-15b) 8.43x10-3 6.04x10-3 5.74x105 

1D resistivity, it #4 (Figure 3-15b) 2.16x10-3 3.95x10-4 2.10x104 

1D resistivity, it #7 (Figure 3-15b) 1.20x10-3 1.23x10-4 1.01x104 

1D resistivity, it #10 (Figure 3-15b) 7.97x10-4 5.40x10-5 9.78x103 

1D resistivity, it #13 (Figure 3-15b) 7.12x10-4 4.31x10-5 6.85x103 

1D resistivity, it #16 (Figure 3-15b) 7.06x10-4 4.24x10-5 2.72x103 

2D resistivity, it #1 (Figure 3-15c) 8.26x10-3 5.81x10-3 5.30x105 

2D resistivity, it #4 (Figure 3-15c) 2.20x10-3 4.11x10-4 1.51x104 

2D resistivity, it #7 (Figure 3-15c) 1.40x10-3 1.66x10-4 1.15x104 

2D resistivity, it #10 (Figure 3-15c) 9.18x10-4 7.17x10-5 1.36x104 

2D resistivity, it #13 (Figure 3-15c) 8.19x10-4 5.70x10-5 5.11x103 

2D resistivity, it #16 (Figure 3-15c) 8.61x10-4 6.31x10-5 1.61x103 

 

 Without knowing the details about the screened portion of the pumping well, 

pumping rate, or true resistivity structure, it is difficult to calibrate these results.  We 

expect, however, that there should be a relatively compact source at the portion of the 

well where fluid is removed and there is a divergence of the source current.  The 



 107

deeper source solution using the 2D resistivity model for iterations 10-16 best repre-

sents pumping somewhere between the groundwater level of 17m at the well and well 

depth of ~22m estimated from Figure 3-13.  The sources for the homogeneous and 1D 

resistivity models do not extend below the water table.  This supports the argument 

that a more realistic resistivity structure produces better source results, though moder-

ate differences in resistivity structure still produce similar images.  In general, we are 

successfully able to reconstruct the expected spatial distribution of SP sources from a 

single surface profile.   

 These results can be compared with the current sources calculated by Darnet et al. 

[2003] based on equation (3.26) and their hydraulic property estimates.   
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Here, ρ is the fluid density (kg·m-3), g is the gravitational acceleration (m·s-2), L is the 

coupling coefficient (mV·S·MPa-1·m-1), Q is the pumping rate (m3·s-1), K is the hy-

draulic conductivity (m·s-1), r is the radial distance from the well (m), h0 (m) is the 

water elevation at the well measured from a datum at 28m, and r0 (m) is the inner ra-

dius of the well.  From their estimates of Q/K = 290m2, L = 0.8 mV·S·MPa-1·m-1, h0 = 

11m, and r0 = 0.09m, the electrokinetic current source (Is) at r = r0 and r = 1m equals 

1.5mA·m-3 and 0.002mA·m-3, respectively.   

 Equation (3.26) is derived from the Dupuit-Forchheimer formula, which is known 

to be less accurate in the vicinity of the well where flow is no longer mostly horizon-

tal [Marsily, 1986, chapter 7].  Given this knowledge, as well as uncertainties in-

volved with the hydraulic properties of interest, we use 0.002mA·m-3 to 1.5mA·m-3 as 

a rough estimate of the current source in the vicinity of the well.  This compares fa-

vorably with the values taken from our source inversion results.  The maximum am-

plitude for the current source at iteration 1 is approximately 0.04mA (Figure 3-15, top 

row), which corresponds to 0.0025mA·m-3 given the 16m3 block size.  At iteration 16 

(Figure 3-15, bottom row), the current source amplitude is approximately 8mA, or 

0.50mA·m-3.  This correspondence with the results of Darnet et al. [2003] suggests 
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that our source inversion methods could also be used to make inferences about the 

associated hydraulic properties. 

 Besides some uncertainty in the parameters used to compute the current source 

estimate in equation (3.26), there are several other factors that can account for the 

discrepancy between the inversion results and predicted values.  First, recall from the 

synthetic example that only approximately 20% of the true source amplitudes were 

recovered.    This is due to the limited data aperture, which cannot completely recover 

the compact sources, and may be further influenced by noisy data.  Second, we expect 

that equation (3.26) will over-predict the current sources in the vicinity of the well 

because the true piezometric head near the well lies above that predicted by the Du-

puit-Forchheimer formula [Marsily, 1986].  (i.e.  the term in parenthesis in the de-

nominator of equation (3.26) is too small).  Thus, we expect that the inverted current 

source amplitudes will be an under-estimate of the true values, especially near the 

well. 

3.8 Discussion and conclusions 

A robust method for 3D self-potential source inversion is presented that can provide 

depth resolution from limited surface data.  Resistivity structure and model geometry 

are incorporated into the problem through use of the sensitivity kernel that is calcu-

lated using reciprocity.  Methods for addressing the non-uniqueness and large sensi-

tivity variations are described that may also be useful in other potential-field inverse 

problems.  Spatial compactness is appropriate for SP sources, but the degree of com-

pactness will vary in different situations.  The interpreter must therefore choose the 

most appropriate class of solutions based on prior expectations about the distribution 

of sources though, as previously stated, this study does not aim to characterize the 

specific SP source mechanisms. 

 An important point that was not directly addressed in the previous examples is the 

influence of the survey aperture.  In all cases, the measured potential field was due to 

sources located below the array of electrodes, and the amplitude of the potentials de-
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cayed to near-background levels at the limits of the survey area.  This is an ideal 

situation, but is not always achieved in practice.  That is, a portion of the self-

potential signal may come from sources that are laterally outside, but not far from, the 

edges of the survey area.  In this case, the sensitivity of the data to the source shape 

and location is limited, and the source inversion results are therefore degraded accord-

ingly.  For surveys with unknown source locations, it is therefore good practice to run 

several synthetic models that use the actual survey geometry and various known 

sources located outside the survey area.  Inverting these datasets will give some feel 

for the ability of the acquisition geometry to recover information outside the main 

survey area.  When acquiring field datasets, it is therefore desirable to extend the 

measurement area so that the potential field returns to ‘background’ levels at the lim-

its of the survey. 

 Future work involves the incorporation of more complex model geometries and 

development of efficient processing algorithms.  One important step requires the defi-

nition of ‘convergence criteria’ that can be used to select from models with equal data 

misfit based on prior information.  The expected spatial statistics of the source distri-

bution, ideally determined from the relevant physics and chemistry of the coupling 

phenomena, may provide useful information in this regard.  Calculation of the sensi-

tivities can be time consuming for large models with many measurements (N forward 

calculations), but can be accomplished efficiently by dividing the computations 

among several parallel processors, which is another improvement we hope to incorpo-

rate.  Finally, the results of the SP source inversion should be used to then estimate 

the hydraulic, chemical, or thermal properties of interest.  This is not a computation-

ally expensive task, but requires some knowledge about the forcing mechanism such 

as the coupling coefficient structure and boundary conditions for the primary flow. 
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Figure 3-1:  (A) Illustration of the non-quadratic term in the objective function for the 
compactness constraint defined in equation 4 for several values of β. These are com-
pared with a traditional quadratic term (grey line). (B) The linearized version of the 
compactness term in the objective function, which is now a function of both β and a 
prior model estimate sj−1. 
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Figure 3-2:  Tradeoff curves for the λ and β in the minimum support regularization 
functional.  One curve is computed for each value of β denoted in the legend with 
multiple values of λ logarithmically spaced from 1x10-4 to 1x101.  The x-axis is 
scaled by β2 so that the curves do not overlap and β increases monotonically from left 
to right.  The true noise level for the dataset is denoted by the black dashed line.  
Curves on the left of the figure represent compact solutions, and curves on the right 
are more smooth. 
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Figure 3-3:  Synthetic 2D source model (A) has a negative point source with magni-
tude -3mA and dipping positive source with magnitude +1.5mA.  Measurement loca-
tions at the surface of the model are denoted by black triangles.  (B) Noise-free data 
corresponding to the source model in a homogeneous resistivity structure. 
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Figure 3-4:  Inversion results for the data in Figure 3-3b using traditional linear regu-
larization techniques (equation (3.15)).  (A) m =W I , (B) m = ∇W , (C) 2

m = ∇W .  The 
true source locations are depicted by white asterisks. 
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Figure 3-5:  Source inversion results and re-weighting regularization operators for to-
tal variation IRLS iterations 3 (A-B), 5 (C-D), and 7 (E-F).  The true source locations 
are depicted by white asterisks. 
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Figure 3-6:  Source inversion results and re-weighting regularization operators for 
compactness IRLS iterations 3 (A-B), 5 (C-D), and 7 (E-F).  The true source locations 
are depicted by white asterisks. 
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Figure 3-7:  Source inversion results an re-weighting regularization operators for 
compactness IRLS iterations 1 (A), 3(B-C), and 5 (D-E) when 10% zero-mean Gaus-
sian noise is added to the data in Figure 3-3B.  The general source locations are still 
captured, but the shape of the anomalies cannot be reconstructed due to the influence 
of noise. 
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Figure 3-8:  Vertical slices through the initial 3D synthetic current source model at 
x=16 (top) and x=20 (bottom).  Axes are labeled by node number, and the node spac-
ing is 5m.  True source amplitudes are ±10mA. 
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Figure 3-9: Synthetic SP data generated from the source model in Figure 3-8.  Data 
are sampled at 60 random surface locations to simulate a typical SP survey.   
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Figure 3-10:  A) Minimum length source solution along x = 16 (top) and x = 20 (bot-
tom).  The sources have been pulled to the surface measurement locations.  B)  Cumu-
lative sensitivities (Λ) calculated from the sensitivity kernel (J) using equation (3.11) 
along the same two profiles.  The very low sensitivities near the edges are because 
padding blocks are used with large node spacing so that the boundaries are far from 
the region of interest.  C)  Source solution using equation (3.14) that incorporates the 
sensitivity weighting term, which begins to include sources at depth. 
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Figure 3-11:  Iterative weighting terms (top row) along x = 20 and source inversion 
results (bottom two rows) along x = 16 and x = 20 for iterations 1 (A), 4 (B), and 7 
(C).  The starting model corresponds to s0 = 0, therefore iteration #1 corresponds to 
the sensitivity weighted minimum norm solution.  Note the different color scale for 
each iteration, where iteration 7 recovers approximately 20% of the true source ampli-
tude. 
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Figure 3-12:  Three synthetic examples that illustrate the effect of unknown resistivity 
structure on the source inversion results.  The true resistivity structures (panels A, C, 
and E) are used to generate a synthetic dataset with a dipping source at the locations 
outlined in white.  Each dataset is then inverted using a homogeneous 100 Ω·m model 
to produce the source inversion results shown on the right (panels B, D, and F).   
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Figure 3-13:  Self-potential profile (top) in the vicinity of a pumping well (K-1, bot-
tom).  The water table elevation is estimated in the bottom part of the figure from pie-
zometers in monitoring wells.  Note the influence of infiltration from the surface 
drainage ditches near -70 and +110m on the self-potential signal.  85 SP measure-
ments are discretized from the original figure [Bogoslovsky and Ogilvy, 1973]. 
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Figure 3-14: Different resistivity structures used for the field data inversion.  A) Ho-
mogeneous 40Ω·m, B) 1D resistivity with 150Ω·m for the top 1m, then a 1m layer at 
100Ω·m over a 40 half-space and, C) 2D resistivity with 150Ω·m in the top 1m, 
85Ω·m in the region of drawdown from the well, and 40Ω·m background. 
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Figure 3-15:  Source estimates for the field data example corresponding to the homo-
geneous resistivity (column A), 1D resistivity (column B), and 2D resistivity (column 
C).  Increasing compactness, observed from top to bottom for each example, is due to 
the minimum support re-weighting.  A smoothness constraint is enforced during the 
early iterations to remove the influence of noisy data, and is subsequently relaxed as 
the compact source solution becomes more stable.  The location of the water table, 
pumping well, and drainage ditches are superimposed on the source images. 
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Figure 3-16:  Data fit for three iterations of the compact source solution with the 1D 
resistivity structure.  Note the rough fit for the first iteration, which has a strong 
smoothness constraint to avoid near surface artifacts due to the noisy data.  This con-
straint is relaxed at later iterations, which is evident by the improved data fit. 
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Chapter 4   

Quantifying the effect of resistivity 
uncertainty on self-potential data 
analysis 

4.1 Introduction 

Self-potential signals result from the coupling between electric currents in the earth 

and a primary forcing mechanism, which typically involves hydraulic, thermal, or 

chemical gradients [e.g. Nourbehecht, 1963; Sill, 1983; Wurmstich, 1995].  The task 

of self-potential interpretation is to make inferences about the primary forcing (or 

source) mechanism from measurements of the electric potential field made remotely 

from the source region, often at the surface of the earth.  In general, the sources oc-

cupy a limited volume in the subsurface, and are located at an unknown distance from 

the measurement locations.  An analogous problem in the medical community in-

volves the electroencephalogram (EEG), where electrical potentials can be measured 

on the scalp due to sources within the brain [e.g. Michel et al., 2004].   

 These problems are similar in that they are governed by the flow of electric cur-

rents in a conductive medium, albeit with different geometries, where the measured 

potential field is used to characterize an unknown source mechanism.  The measur-

able potential field is therefore a function of both the unknown sources and the resis-

tivity structure of the medium, which typically poorly known.  In this chapter, I ad-
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dress how imperfect knowledge of the earth resistivity structure influences self-

potential data interpretation.  Similar studies have investigated the influence of skull 

conductivity for the EEG problem [Pohlmeier et al., 1997], and have also included 

influence of resistivity anisotropy [Marin et al., 1998; Wolters et al., 2006]. 

 Numerous approaches have been developed to interpret self-potential measure-

ments using various forms of forward and inverse modeling [Fitterman and Corwin, 

1982; Fournier, 1989; Birch, 1998; Shi, 1998; Gibert and Pessel, 2001; Sailhac and 

Marquis, 2001; Revil et al., 2003a; Revil et al., 2004; Minsley et al., 2007].  This 

work follows the technique of Minsley et al. [2007], as discussed in Chapter 3, where 

the entire medium is discretized and a source distribution is determined by inverting 

the self-potential measurements using an assumed resistivity structure within a least 

squares framework.  Even with the correct resistivity structure, this is an inherently 

non-unique problem with multiple solutions that fit the data.  We select a class of so-

lutions that are spatially compact by imposing model constraints in the inverse prob-

lem that satisfy this prior assumption about the source structure.   

 One component of error in the recovered source model is due to the assumptions 

that must be made about the resistivity structure of the medium.  Several studies in-

corporate information from a resistivity survey into the self-potential interpretation 

[e.g. Yasukawa et al., 2003; Naudet et al., 2004; Revil et al., 2005], though in many 

cases a simple homogeneous structure is assumed.  In either situation, these imperfect 

representations of the true earth structure will propagate as errors in the source inver-

sion, which we seek to understand and quantify. 

4.2 Background 

4.2.1 Self-potential sources 

Self-potentials result from conduction currents in the earth that are generated by a 

primary forcing mechanism, such as fluid flow, which provides a source current.  
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Thus, the total current density [A·m-2] in the earth is composed of a source current 

( sj ) and a conduction current ( cj ) 

 1( ) ( ) ( ) ( ) ( ) ( )s c sj j j j ρ ϕ−= + = + ∇x x x x x x , (4.1) 

where ( )ρ x  [Ω·m] represents the resistivity structure and ( )ϕ x  [V] are the electric 

potentials.  The total current density must be divergence-free under the quasi-static 

assumption, resulting in the familiar dc geoelectric governing equation (4.2), where 

the forcing term on the right hand side [A·m-3] is related to the properties of the 

source current. 

 ( ) ( ) ( )1 ( )sj sρ ϕ−−∇ ⋅ ∇ = ∇ ⋅ =x x x x  (4.2) 

This is the same as equation (2.11), but is expressed in terms of the resistivity struc-

ture, which is more relevant to the discussion in this chapter. 

 The self-potential problem is often modeled in a two-step approach [Sill, 1983; 

Sheffer et al., 2004].  First, the electrical source term on the right hand side of equa-

tion (4.2) is computed based on the physics of the appropriate source mechanism of 

interest.  Next, the electrical source term is used to calculate electrical potentials 

throughout the model by solving equation (4.2).  This chapter focuses primarily on the 

second step, though some description of the source mechanism is also relevant to our 

discussion. 

 Although the specific nature of the source current varies for different problems, 

we adapt a general form for the source current [e.g. Ishido and Mizutani, 1981; Sill, 

1983] 

 ( ) ( ) ( )sj L ψ= ∇x x x , (4.3) 

where ( )ψ x  represents a potential (e.g. hydraulic, chemical, thermal) and ( )L x  is the 

coupling coefficient.  An important point in the following discussion is that the cou-

pling coefficient, and therefore ( )s x , can be a function of resistivity.  A common ex-

ample involves streaming potentials, where ( )ψ x  represents hydraulic pressure and a 

simplified form of the electrokinetic coupling coefficient [A·Pa-1·m-1] is given by 
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equation (4.4), which is also equivalent to equation (2.29) [e.g. Ishido and Mizutani, 

1981; Morgan et al., 1989; Revil et al., 1999b]. 

 f
ekL

εζρ
ηρ

−
=  (4.4) 

In the coupling coefficient, ε is the fluid dielectric constant [F·m-1], ζ is the zeta po-

tential [V], ρf is the fluid resistivity [Ω·m], η is the fluid viscosity [Pa·s], and ρ is the 

bulk resistivity [Ω·m]. 

4.2.2 Description of the forward and inverse problems 

Equation (4.2) is approximated using the transmission network approach [Madden 

and Swift, 1969], which is discussed further in the context of the quasi-static geoelec-

tric problem by Zhang et al. [1995] and Shi [1998], and in Appendix A of this disser-

tation.  A model is discretized into network nodes and impedance branches (Figure 

A-1), where the impedances [Ω] are defined by the node spacing and model resistivi-

ties.  This results in a linear system of equations (4.5) that is equivalent to finite ele-

ment or finite difference methods. 

 ( ) =K ρ φ s  (4.5) 

This is the same as equation (3.3); the fact that K depends on the model resistivity is 

highlighted here, as this is the main focus of the following discussion. 

 The impedance equations given by Zhang et al. [1995, equations 3a-c] are re-

peated here, 

 

1 1
( ) ( , , ) ( 1) ( 1, , )
( ) ( ) ( ) ( )

1
( ) ( , , 1) ( 1) ( 1, , 1)
( ) ( 1) ( ) ( 1)

x
x i i j k x i i j kR
y j z k y j z k

x i i j k x i i j k
y j z k y j z k

ρ ρ

ρ ρ

=
∆ ∆ − −

+
∆ ∆ ∆ ∆

+
∆ − ∆ − − −

+
∆ ∆ − ∆ ∆ −

, (4.6) 
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1 1
( ) ( , , ) ( 1) ( , 1, )

( ) ( ) ( ) ( )
1

( ) ( , , 1) ( 1) ( , 1, 1)
( ) ( 1) ( ) ( 1)

y
y j i j k y j i j kR

x i z k x i z k

y j i j k y i i j k
x i z k x i z k

ρ ρ

ρ ρ

=
∆ ∆ − −

+
∆ ∆ ∆ ∆

+
∆ − ∆ − − −

+
∆ ∆ − ∆ ∆ −

, (4.7) 

 1 ( ) ( )
( ) ( , , )z

x i y j
R z k i j kρ

∆ ∆
=

∆
, (4.8) 

where ∆x(i), ∆y(j), and ∆z(k) define the node spacing for the block with resistivity 

ρ(i,j,k).  The stiffness matrix, K, is banded and square symmetric, with a number of 

rows equal to the number of nodes in the model.  Entries along the nth row are deter-

mined by the L impedance branches that connect nodes m and n  such that 

 

1

1

1 connected to 

0  not connected to 

L

l nl

nm
nm

n m
R

K n m
R

n m

=

⎧ ⎛ ⎞ =⎪ ⎜ ⎟
⎝ ⎠⎪

⎪⎪ ⎛ ⎞= −⎨ ⎜ ⎟
⎝ ⎠⎪

⎪
⎪
⎪⎩

∑

. (4.9) 

In three dimensions, an interior node has 6L =  impedance branches connected to it. 

 The forward problem of computing the measurable potential field is defined by 

equation (4.10), which can be expressed as the inner product of a source term and the 

Green’s function, Gϕ , which depends on the resistivity structure of the medium. 

 ( ) ( ) ( ); ,G s dϕ ϕ ρ′ ′ ′= ∫x x x x x
D

 (4.10) 

In discrete form, this involves solving equation (4.5) for ϕ, given K and s.  Given 

homogeneous boundary conditions, this is a well-posed problem because K is positive 

definite symmetric. 

 The self-potential source inverse problem is stated in equation (4.11), where the 

measured data, d, is a subset of the full potential field, ϕ. 

 1− = =PK s Pφ d  (4.11) 
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P is a sparse matrix with a single ‘1’ in each row that selects the value of ϕ that corre-

sponds to the measurement locations associated with d.  1−K  represents the discrete 

form of the Green’s function in equation (4.10), though the inverse problem is limited 

to a subset of the rows of 1−K  selected by P due to the finite set of measurement loca-

tions.  1−PK  is poorly conditioned because the number of measurements is typically 

much smaller than the number of unknown model parameters, and equation (4.11) 

cannot be solved directly for s.  Instead, we find a source solution that minimizes a 

joint measure of data misfit and a model regularization term, i.e. 

 ( ) 2 21
22

arg min d mλ−⎡ ⎤= − +⎢ ⎥⎣ ⎦s
s W PK s d W s�  (4.12) 

 The solution of this problem is described in Chapter 3, where a particular nonlin-

ear form of Wm is chosen to select spatially compact solutions.  In general, however, 

Wm can incorporate any other form of prior information that is deemed appropriate.  

Information about measurement errors can be included in the data weighting operator, 

Wd, though we use d =W I  throughout this chapter, which does not address the issue 

of noisy data. 

4.3 Deriving the effect of resistivity assumptions on 
the forward problem 

Because the true earth resistivity is never known completely, some assumptions must 

go into the formation of K.  Information from a resistivity survey collected in con-

junction with the self-potential survey is very useful, but often unavailable, and is 

never a perfect representation of the earth.  Simple resistivity models based on prior 

assumptions about the survey area are often used during self-potential interpretations.  

It is therefore important to understand the impact of these assumptions on our ability 

to interpret self-potential data. 

 Differentiating equation (4.5) with respect to a single resistivity, jρ , gives 
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j j jρ ρ ρ

∂ ∂ ∂
+ =

∂ ∂ ∂
K φ sφ K , (4.13) 

which can be re-arranged to provide the sensitivity of the potentials to a perturbation 

in a single resistivity value in (4.14) [e.g. Rodi, 1976]. 

 1

j j jρ ρ ρ
−

⎛ ⎞∂ ∂ ∂
= −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

φ s KK φ  (4.14) 

The elements of jρ∂ ∂K  can be computed explicitly using equations (4.6) through 

(4.9), where most values are zero because each resistivity cell contributes to a maxi-

mum of only nine impedance branches.  The full sensitivity matrix for all of the dis-

cretized resistivity values is given in equation (4.15). 
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1

1

1 2

1
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m m

m

ϕ ϕ
ρ ρ

ρ ρ ρ
ϕ ϕ
ρ ρ

−

⎡ ⎤∂ ∂
⎢ ⎥∂ ∂⎢ ⎥

⎛ ⎞⎢ ⎥ ⎡ ⎤∂ ∂ ∂ ∂ ∂
= = −⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂⎣ ⎦⎢ ⎥ ⎝ ⎠

⎢ ⎥∂ ∂
⎢ ⎥

∂ ∂⎣ ⎦

φ s K K KK φ φ φ
ρ ρ

"

# % # "

"

 (4.15) 

 The node potentials,ϕ, can be expanded in a Taylor series (4.16) for perturbations 

to the resistivity structure. 

 ( ) ( ) ( )2, ( , ) , Oδ δ δ+ = + ∂ +ρφ s ρ ρ φ s ρ φ s ρ ρ ρ  (4.16) 

Substituting equations (4.5) and (4.15) into equation (4.16) and ignoring the second 

order term yields an expression for the measurable potentials as a function of the re-

sistivity perturbation (4.17). 

 ( ) 1 1 1 1

1

,
m

δ δ
ρ ρ

− − − −⎛ ⎞⎡ ⎤∂ ∂ ∂
+ = + −⎜ ⎟⎢ ⎥⎜ ⎟∂ ∂ ∂⎣ ⎦⎝ ⎠

s K Kφ s ρ ρ K s K K s K s ρ
ρ

"  (4.17) 

It is useful to consider a single measurement of the potential field,  

 ( ),T
i iϕ δ= +a φ s ρ ρ  (4.18) 
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where [ ]0 0 1 0 0T
i =a " "  is a single row from P in equation (4.11) 

with a ‘1’ in the column corresponding to the ith measurement location.  Equation 

(4.19) provides the complete expression for the ith potential measurement, which is a 

function of the resistivity perturbations. 

 1 1 1T T
i i m i

m m

a aϕ δρ δ
ρ

− − −⎡ ⎤∂ ∂
= − +⎢ ⎥∂ ∂⎣ ⎦

∑ K sK I K s K ρ
ρ

 (4.19) 

 This equation provides useful insights into how resistivity uncertainties translate 

into errors in the forward and inverse problems.  The bracketed term in equation 

(4.19) can be interpreted as a modification to the operator 1−K , with perturbations 

arising due to the locations where 0iδρ ≠ .  Alternatively, one can consider 1−K  oper-

ating on three ‘source’ terms, as shown in equation (4.20). 

 [ ]1 1T T
i i i m

m m

a aϕ δρ δ
ρ

− − ⎡ ⎤∂ ∂′ ′′= + + = − +⎢ ⎥∂ ∂⎣ ⎦
∑ K sK s s s K s φ ρ

ρ
 (4.20) 

It is important to note that s´ and s˝ are not physically real sources, but can be used 

mathematically to correct for the erroneous resistivity assumptions.   That is, the op-

eration of 1−K  on s, s´, or s˝ results in a set of ‘potentials’ as defined by the forward 

problem. An interesting point about s´ is that it can be expressed as a function of the 

potential field due to s in the unperturbed part of the resistivity structure (i.e. 

( )1−=φ K ρ s ). 

 The third term, s˝, is related to the fact that the self-potential source mechanism 

discussed in section 4.2.1 can have a dependence on resistivity.  If the fully coupled 

problem is modeled by first determining s from equations (4.3) and (4.4) using an in-

correct resistivity assumption, the resulting electrical potentials will also be in error.  

The sensitivity of the source term to the ith resistivity cell can be found from equa-

tions (4.2) and (4.3). 

 s
i i iρ ρ ρ

∂ ∂ ∂
= ∇ ⋅ = ∇ ⋅ ∇

∂ ∂ ∂
s Lj ψ  (4.21) 
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Equation (4.21) has the same form as equation (4.2), with →φ ψ  and 1
iρ ρ− → ∂ ∂L , 

where iρ∂ ∂L  has a single non-zero element that can be computed from equation 

(4.4).  This system can be discretized in the same fashion as equation (4.5), such that 

 i
i iρ ρ

⎛ ⎞∂ ∂
=⎜ ⎟∂ ∂⎝ ⎠

L sM ψ , (4.22) 

where i→K M  and iρ→ ∂ ∂s s .  The elements of iM  [A·Pa-1·Ω-1·m-1] can be deter-

mined using equations (4.6) through (4.9) by substituting iρ∂ ∂L  for 1ρ − .  iM  is very 

sparse because iρ∂ ∂L  has only one non-zero element; therefore a maximum of nine 

nodes (or rows of iM ) have a contribution from the non-zero value.  The complete 

expression for s˝ in equation (4.20) is therefore 

 1
1

m
m

δ
ρ ρ

⎡ ⎤⎛ ⎞⎛ ⎞∂ ∂′′ = ⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

L Ls M ψ M ψ ρ" . (4.23) 

 Because 1−K  is symmetric,  

 ( )1 1 TT T
i i i

− −= =a K K a u . (4.24) 

Equation (4.24) shows that the expression 1T
i

−a K  found in equations (4.19) and (4.20) 

is equal to a vector of ‘pseudo-potentials’ ui (i.e. the adjoint field), which are com-

puted by solving a single forward problem with a unit source at the ith measurement 

location.  Equation (4.20) can therefore be simplified as 

 [ ] 1T T
i i i m

m m

ϕ δρ δ
ρ

−⎡ ⎤∂ ∂′ ′′= + + = − +⎢ ⎥∂ ∂⎣ ⎦
∑ K su s s s u s K s ρ

ρ
. (4.25) 

 From equation (4.25), we see that the potential at the ith station is described by 

the interaction of the adjoint field computed using the assumed resistivity structure 

with three ‘source’ terms.  s is the true source distribution, s´ consists of the forward 

potential field in the assumed resistivity structure ( 1−K s ) times the scaled sum of sen-

sitivities of the forward operator (K) to the resistivity structure, and s˝ is composed of 
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the resistivity perturbations times the sensitivities of the source mechanism to the re-

sistivity structure.   

 Several useful inferences can be made regarding the influence of resistivity uncer-

tainties on measurable potentials from equation (4.25).  The second term, T
i ′u s , sug-

gests that the resistivity perturbation will have the greatest effect when (1) the pertur-

bation is near the receiver ( T
iu  is large), (2) the perturbation is near the source ( 1−K s  

is large), (3) the magnitude of mδρ  is large, or (4) the spatial extent where 0mδρ ≠  is 

large.  The third term, T
i ′′u s , has the greatest effect when (1) the resistivity perturba-

tion is located in the source region (because ∂ ∂s ρ  is diagonal) and (2) the magnitude 

of mδρ  is large.  These insights confirm more qualitative or intuitive expectations re-

garding the influence of unknown resistivity structure [e.g. Marin et al., 1998]. 

4.4 The influence of resistivity uncertainty on self-
potential source inversion 

In this section, we illustrate how imperfect knowledge of the resistivity structure in-

fluences self-potential source inversion using several synthetic examples.  The inverse 

method, discussed in Chapter 3, seeks to find a distributed electrical source model ac-

cording to equation (4.12) that explains the measured data in addition to satisfying a 

constraint that the sources should be spatially compact.  Model constraints are neces-

sary to overcome the inherent non-uniqueness of the source inverse problem, though 

various forms of prior information other than compactness may be used.  In the fol-

lowing examples, compactness is an appropriate choice because the synthetic model 

consists of a point source. 

 A three-dimensional synthetic model is generated with [ ] [ ], , 71,71, 25nx ny nz = , 

where the node spacing in all directions is 1m (Figure 4-1a).  Boundary nodes with 

larger spacing are utilized at the sides and bottom of the model to satisfy the Dirichlet 

boundary conditions far away from the source region.  The true source model is a 
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positive point source with magnitude 10mA at [ ] [ ], , 36 ,36 , 6x y z m m m= − .  That is, we 

define the electrical source explicitly for these examples, which removes the effects 

of resistivity on the source magnitude and the resulting potential field due to s˝ in 

equation (4.25).  A dense grid of 337 surface measurement locations is used to simu-

late a surface self-potential dataset (black dots in Figure 4-1a).  The simple source 

model and dense set of noise-free measurements is utilized to highlight only the ef-

fects of perturbing the resistivity structure. 

 Figure 4-1b shows a mesh-plot of the potential field computed from equation (4.5) 

using the true source model in a homogeneous resistivity structure of 100Ω·m.  The 

potential field is symmetric over the point source, with maximum amplitude approxi-

mately 32mV.  Figure 4-1c shows a slice of the source inversion results along x = 

36m, highlighted by the white line in Figure 4-1b, where the correct homogeneous 

resistivity structure is assumed.  Note that the inversion is able to properly locate the 

point source in the subsurface, though the source amplitude is approximately 60% of 

the true value.  This is likely due to the fact that surface measurements alone do not 

provide a large enough aperture to completely reconstruct the source.   

 Next, we show several examples where the synthetic data are computed using the 

same point source model, but different “true” resistivity structures.  The source inver-

sion is then carried out by assuming an incorrect 100Ω·m homogeneous resistivity 

structure.  Noise-free data are used for all of the synthetic examples in order to high-

light only the effects of the incorrect resistivity assumptions.  Table 4-1 summarizes 

the data and model norms for all of the following inversion results.  Note that the data 

RMS error is allowed to be small (< 1mV) for all of the examples due to the lack of 

measurement noise. 

4.4.1 1D resistivity structures 

Three different examples are investigated where the true resistivity structure consists 

of a layer of either 10Ω·m or 1000Ω·m embedded within a background resistivity of 

100Ω·m.   The anomalous resistivity layer is above the source in the first case, below 
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the source in the second case, and at the same depth as the source in the third case.  

The forward data computed with these true resistivity structures are then inverted by 

constructing 1−K  with a homogeneous 100Ω·m resistivity assumption.   

 The first example, shown in Figure 4-2, illustrates the effect of the anomalous re-

sistivity in a thin near-surface layer.  Figure 4-2a-b show the true model for the con-

ductive and resistive near surface layers, with a mesh-plot of the potential fields that 

would be recorded at the stations indicated on the surface of the model.  Figure 4-2c 

displays the potentials along x = 36m, denoted by the white lines in Figure 4-2a-b.  

The potentials for the homogeneous resistivity case (Figure 4-1) are shown in black, 

for the conductive near-surface layer in blue, and for the resistive near-surface layer 

in red.  As expected, there is a clear influence of the near-surface resistivity on the 

shape and amplitude of the recorded potentials.   

 Inversion of these potential fields with the incorrect resistivity structure is there-

fore unable to recover the true point source, which is illustrated in Figure 4-2d-e.  In 

the case of the conductive near-surface layer, the potential field is broadened and re-

duced in amplitude due to the pseudo-sources, s´.  The net effect can be explained by 

the source distribution in Figure 4-2d, which is deeper than the true source in order to 

fit the broader potential field.  In Figure 4-2e, the recovered source is wider, and 

slightly too shallow, than the true point source.   

 Figure 4-3 illustrates the same steps as Figure 4-2, but for the second case where 

the resistivity perturbations are in a half-space below a 100Ω·m layer that contains the 

source.  The influence of the resistivity structure on the simulated potentials can be 

seen in Figure 4-3a-c.  Again, the amplitude of the self-potential anomaly is smaller 

for the conductive case than for the resistive one, but the shapes of the potential fields 

are also different.  In Figure 4-2, the potential field for the resistive case is the “sharp-

est”- that is, they decay more rapidly from the peak value.  In Figure 4-3, however, 

the potentials for the conductive case decay most rapidly.  This results in a shallow 

recovered source for the conductive case (Figure 4-3d) and a deeper recovered source 

for the resistive case (Figure 4-3e). 
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 It is interesting to note that the source solution for the near-surface conductive 

layer (Figure 4-2d) is similar to the solution for the resistive half-space (Figure 4-3e), 

and the resistive near-surface layer solution (Figure 4-2e) is similar to the conductive 

half-space solution (Figure 4-3d).  This is due to the fact that the resistivity contrast 

between layers is the same: 1 2 0.1ρ ρ =  for the first two cases, and 1 2 10ρ ρ =  for the 

second two cases.  The corresponding solutions are not exactly the same, however, 

because of the differences in layer thickness. 

 A third case, where the anomalous resistivity consists of a thin layer at the same 

depth as the source, is shown in Figure 4-4.  Again, the simulated potentials for the 

conductive layer case are significantly reduced, and decay more slowly than the case 

with the resistive layer, as seen in Figure 4-4a-c.  The source inversion using a homo-

geneous resistivity assumption therefore recovers a source that is too deep for the case 

where the data are simulated using a conductive layer (Figure 4-4d).  For the case 

with the resistive layer, the inverted source model cannot be collapsed to a point, but 

occupies a small volume at the correct depth. 

4.4.2 2D resistivity structures 

Next, we examine the influence of lateral resistivity heterogeneities on the self-

potential source inversion.  The examples in Figure 4-5a-b consist of either a conduc-

tive or resistive near-surface layer that covers approximately half of the model, 

though it does not extend all the way over the source location.  Laterally varying near-

surface heterogeneity can be common in self-potential surveys that traverse varying 

soil types or saturation conditions.  The potentials along x = 36m are no longer sym-

metric, as can be seen in Figure 4-5c.  On any line parallel to the resistivity contrast 

(constant y), however, the potentials are symmetric.  This highlights the importance of 

collecting data in two-dimensions when lateral resistivity heterogeneity is present. 

 It is clear from Figure 4-5c that the potentials computed from the model with the 

resistive layer (red line) are more similar to the homogeneous case (black line) than 

those computed from the model with the conductive layer (blue line).  This difference 
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is manifested as a greater error in the source inversion for the conductive layer case 

when a homogeneous resistivity structure is assumed.  The inverted source for this 

case is distorted both laterally and vertically, and appears as a dipping feature in 

Figure 4-5d.  In contrast, the source is only slightly distorted and mis-located for the 

case with the resistive near-surface heterogeneity, as seen in Figure 4-5e.   

 A second laterally heterogeneous example is shown in Figure 4-6, where the resis-

tivity heterogeneity covers approximately half of the model, but does not extend all 

the way to the surface.  The source is located in the background 100Ω·m material, 

several meters away from the contrast in resistivity.  As with the previous case, the 

forward-modeled potentials are no longer symmetric along x = 36m due to the 2d re-

sistivity structure (Figure 4-6c).  The results of the source inversion using the incor-

rect (homogeneous 100Ω·m) resistivity structure are shown in Figure 4-6d-e.  Again, 

the case with the more conductive region appears as a dipping source, offset slightly 

from the true source location.  For the more resistive case, the recovered source is 

generally in the correct location, but has a distorted and blurred shape. 

4.4.3 3D resistivity structures 

Figure 4-7a-b illustrate slightly more complicated resistivity models that have both 

conductive and resistive regions embedded within a 100Ω·m half-space, and the cor-

responding forward-modeled potential fields.  Each case has a shallow trench that is 

8m wide crossing the entire model and a 10m wide block that is perpendicular to, and 

extends to within 15m of, the trench.  The resulting potential fields are somewhat 

more irregular (Figure 4-7c), and are no longer symmetric about any survey line in 

the x- or y-directions.  The corresponding source inversions using a homogeneous re-

sistivity assumption exhibit both mis-location and distortion of the source structure.  

In both cases, the sources are smeared out in the direction of the more resistive por-

tion of the true resistivity model.  Also, the overall mis-location for the case with the 

more resistive trench (Figure 4-7b,e) is not as great as the case with the more conduc-

tive trench (Figure 4-7a,d). 
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 A more realistic example is presented in Figure 4-8, where the true resistivity 

structure is a spatially correlated random variable with a lognormal distribution.  The 

range of resistivity values is approximately the same as the previous examples (~10 to 

1000Ω·m).  In Figure 4-8a, the entire model has a random distribution with a mean 

value of 183Ω·m; whereas in Figure 4-8b, the heterogeneity below the near-surface is 

replaced by a constant half-space with resistivity equal to 183Ω·m.  Comparing these 

two cases helps to illustrate the relative importance of the near-surface resistivity 

compared with subsurface resistivity variations.   

 The simulated self-potential data for these resistivity models is shown in Figure 

4-8a-c.  One notable feature is that the potential fields are smooth compared with the 

other examples that contain near-surface lateral heterogeneity (Figure 4-5 and Figure 

4-7) due to the fact that the resistivity contrast is less sharp.  Also, while there is some 

difference in the synthetic data generated from the fully heterogeneous (Figure 4-8a) 

and near-surface heterogeneous (Figure 4-8b) structures, they have a very similar 

shape, which is evident in Figure 4-8c.  This is consistent with the example in Figure 

4-3, where differences in the lower half-space result in similarly shaped potential 

fields that are offset in amplitude.  The source inversion results for these examples 

using a homogeneous resistivity assumption are similar (Figure 4-8d-e), though the 

case with the constant half-space is slightly better due to the fact that there are fewer 

locations where the homogeneous assumption is incorrect.  This also supports the ar-

guments in section 4.3 that suggest source inversion errors are greater when the resis-

tivity errors are near the receiver locations, or when a large volume of resistivity is 

incorrectly estimated. 

4.4.4 Partially known resistivity structure 

Finally, we consider the case where the heterogeneous resistivity structure is partially 

known, which may be the case when self-potential and resistivity surveys are carried 

out in the same area.  The simulated self-potential data from the forward model in 

Figure 4-8a are inverted with smoothed estimates of the true resistivity structure, 
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shown in Figure 4-9.  In Figure 4-9a, an average 2D resistivity structure ( ( ),y zρ ρ= ) 

is used as an input for the source inversion, which might be obtained from a 2D resis-

tivity survey.  The corresponding source solution is shown in Figure 4-9b.  Next, a 

blurred 3D version of the true resistivity structure (Figure 4-9c) is used as an input for 

the self-potential source inversion, with results shown in Figure 4-9d.  While there is 

still some degree of distortion and mis-location of the source results using a partially 

known resistivity structure, both results in Figure 4-9 show an improvement over the 

case where a homogeneous resistivity structure is used (Figure 4-8d). 

Table 4-1: Summary of data and model norms for the synthetic inversion results based 
on Figure 4-1 

Result 
Data RMSE 

[V] 

Data norm 

( dφ ) 

Model norm 

( mφ ) 

1D resistivity (Figure 4-2a,d) 2.57x10-4 2.21x10-5 4.80x105 

1D resistivity (Figure 4-2b,e) 2.10x10-5 1.49x10-7 2.69x105 

1D resistivity (Figure 4-3a,d) 2.12x10-5 1.52x10-6 6.29x105 

1D resistivity (Figure 4-3b,e) 7.67x10-5 1.98x10-6 5.03x106 

1D resistivity (Figure 4-4a,d) 2.31x10-4 1.81x10-5 9.56x105 

1D resistivity (Figure 4-4b,e) 3.16x10-5 3.36x10-7 6.90x105 

2D resistivity (Figure 4-5a,d) 1.98x10-4 1.33x10-5 8.80x105 

2D resistivity (Figure 4-5b,e) 1.46x10-4 7.22x10-5 3.41x105 

2D resistivity (Figure 4-6a,d) 1.03x10-4 3.55x10-5 1.09x106 

2D resistivity (Figure 4-6b,e) 4.53x10-5 6.92x10-7 6.87x105 

3D resistivity (Figure 4-7a,d) 2.82x10-4 2.68x10-5 1.72x106 

3D resistivity (Figure 4-7b,e) 2.11x10-4 1.50x10-5 8.60x105 

3D resistivity (Figure 4-8a,d) 4.88x10-4 8.02x10-5 2.26x106 

3D resistivity (Figure 4-8b,e) 4.56x10-4 7.00x10-5 1.27x106 

Partial resistivity, 2D (Figure 4-9a,b) 7.39x10-4 1.83x10-4 1.07x106 

Partial resistivity, 3D (Figure 4-9c,d) 3.79x10-4 4.84x10-5 2.28x106 
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4.5 Conclusions 

We have demonstrated the influence of resistivity structure on the interpretation of 

self-potential data, particularly in relation to self-potential source inversion.  Based on 

the analytic description of forward-modeled electric potentials and their sensitivity to 

uncertainties in the resistivity of the medium discussed in section 4.3, we quantify the 

cases where resistivity uncertainty is most important: (1) The resistivity uncertainty is 

near the receiver locations, (2) the resistivity uncertainty is near the source locations, 

(3) the self-potential coupling mechanism is strongly dependent on the resistivity, (4) 

the magnitude of the resistivity uncertainty is large, or (5) the size of the region where 

the resistivity assumption is incorrect is large.  A combination of any of these cases 

clearly enhances the effect on the measured potentials. 

 Synthetic examples help to illustrate the effect of resistivity uncertainty on the 

self-potential source inversion problem.  Mis-locations in the inverted sources for the 

1D resistivity models are generally in the vertical direction, though sources can also 

be smeared laterally somewhat.  For the 2D and 3D resistivity examples, the inverted 

sources can be mis-located both laterally and vertically, and can be distorted in shape.  

These results provide useful insights into the types of errors that can be expected 

when interpreting self-potential data with imperfect knowledge of the resistivity 

structure.  It is important to consider these errors in order to avoid misinterpreting 

features in the data that are due to unaccounted for resistivity, rather than actual self-

potential source processes.  We therefore promote the use of combined resistivity and 

self-potential surveys where possible, as the resistivity information can be useful to 

self-potential interpretation, and provides complementary information regarding sub-

surface structure. 
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Figure 4-1:  a)  Synthetic point source model with 337 surface measurement locations, 
b) potential field computed from the point source in a homogeneous 100Ω·m resistiv-
ity structure, c) 2d slice of the inverted source model along x = 36m, denoted by the 
white line in b), assuming the correct resistivity structure.  The inversion successfully 
recovers the true location of the point source, though the amplitude is slightly reduced 
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Figure 4-2:  Synthetic models with a conductive (a) and resistive (b) near-surface layer over a 100Ω·m half-space, and a mesh-
plot of the potentials computed at the measurement locations due to the point source in Figure 4-1.  (c)  Comparison of the poten-
tials along x = 36m for the conductive near-surface layer (blue line), the resistive near-surface layer (red line), and the homoge-
neous model (black line).  (d,e) Source inversion results assuming a homogeneous resistivity structure for the data computed in 
(a) and (b), respectively.  For reference, the white star represents the true source location, and the black dashed line denotes the 
location of the resistivity contrast in the forward model. 
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Figure 4-3:  Synthetic models with a conductive (a) and resistive (b) half-space below a 100Ω·m layer, and a mesh-plot of the 
potentials computed at the measurement locations due to the point source in Figure 4-1.  (c)  Comparison of the potentials along 
x = 36m for the conductive half-space (blue line), the resistive half-space (red line), and the homogeneous model (black line).  
(d,e) Source inversion results assuming a homogeneous resistivity structure for the data computed in (a) and (b), respectively.  
For reference, the white star represents the true source location, and the black dashed line denotes the location of the resistivity 
contrast in the forward model. 
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Figure 4-4:  Synthetic models with a conductive (a) and resistive (b) layer within a 100Ω·m half-space, and a mesh-plot of the 
potentials computed at the measurement locations due to the point source in Figure 4-1.  (c)  Comparison of the potentials along 
x = 36m for the conductive layer (blue line), the resistive layer (red line), and the homogeneous model (black line).  (d,e) Source 
inversion results assuming a homogeneous resistivity structure for the data computed in (a) and (b), respectively.  For reference, 
the white star represents the true source location, and the black dashed line denotes the location of the resistivity contrast in the 
forward model. 



 148

 

Figure 4-5:  Synthetic models with a conductive (a) and resistive (b) near-surface layer  that extends partially over a 100Ω·m 
half-space, and a mesh-plot of the potentials computed at the measurement locations due to the point source in Figure 4-1.  (c)  
Comparison of the potentials along x = 36m for the conductive layer (blue line), the resistive layer (red line), and the homogene-
ous model (black line).  (d,e) Source inversion results assuming a homogeneous resistivity structure for the data computed in (a) 
and (b), respectively.  For reference, the white star represents the true source location, and the black dashed line denotes the loca-
tion of the resistivity contrast in the forward model. 
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Figure 4-6:  Synthetic models with a conductive (a) and resistive (b) region covering approximately half of the subsurface por-
tion of the model, and a mesh-plot of the potentials computed at the measurement locations due to the point source in Figure 4-1.  
(c)  Comparison of the potentials along x = 36m for the conductive region (blue line), the resistive region (red line), and the ho-
mogeneous model (black line).  (d,e) Source inversion results assuming a homogeneous resistivity structure for the data com-
puted in (a) and (b), respectively.  For reference, the white star represents the true source location, and the black dashed line de-
notes the location of the resistivity contrast in the forward model. 
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Figure 4-7:  Synthetic models with both conductive and resistive anomalous regions, and a mesh-plot of the potentials computed 
at the measurement locations due to the point source in Figure 4-1.  (a)  A conductive 8m wide trench extends across the model, 
and a resistive 10m wide block protrudes into the model perpendicular to the trench.  (b)  Same model as (a), with the resistivity 
perturbations swapped.  (c)  Comparison of the potentials along x = 36m for the model in (a) (blue line), the model in (b) (red 
line), and the homogeneous model (black line).  (d,e) Source inversion results assuming a homogeneous resistivity structure for 
the data computed in (a) and (b), respectively.  For reference, the white star represents the true source location, and the black 
dashed line denotes the location of the resistivity contrast in the forward model. 
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Figure 4-8.  Synthetic models with a spatially correlated lognormal resistivity distribution (a) throughout the entire model, and 
(b) within a near-surface layer, displayed with a mesh-plot of the potentials computed at the measurement locations due to the 
point source in Figure 4-1.  (c)  Comparison of the potentials along x = 36m for the model in (a) (blue line), the model in (b) (red 
line), and the homogeneous model (black line).  (d,e) Source inversion results assuming a homogeneous resistivity structure for 
the data computed in (a) and (b), respectively.  For reference, the white star represents the true source location, and the black 
dashed line denotes the location of the resistivity contrast in the forward model. 
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Figure 4-9.  Smooth 2D (a) and 3D (c) versions of the true resistivity structure in Figure 4-8a used as input to the self-potential 
source inversion with the simulated data from Figure 4-8a.  (b)  The source inversion result using the 2D resistivity provides a 
more compact solution than Figure 4-8d, but the sources are still somewhat mis-located.  (d)  The use of a smooth 3D resistivity 
model better estimates the source depth, though there is still some lateral distortion. 
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Chapter 5   

Three dimensional self-potential 
inversion for DNAPL contaminant 
detection at the Savannah River 
Site, South Carolina 

5.1 Introduction 

Chlorinated organic solvents, part of a larger group of chemicals referred to as Dense 

Non-Aqueous Phase Liquids (DNAPLs), represent a significant portion of the world’s 

groundwater contamination problem because of their extensive use during the past 

fifty years.  These chemicals can persist in the ground for a long time because of their 

physical and chemical properties [Pankow and Cherry, 1996].  Combined with very 

low maximum contaminant levels (MCLs) in water, which range from approximately 

5-200 µg/L [Ajo-Franklin et al., 2005], these contaminants represent a long-term 

groundwater hazard.  Remediation of sites contaminated with these chemicals there-

fore remains an important issue today.  The goal of this investigation is to characterize 

underground contaminant distributions using minimally invasive geophysical meth-

ods, particularly self-potential, in order to improve site remediation efficiency.   

 There is growing interest in the use of geophysical methods for environmental 

monitoring [Greenhouse et al., 1993; Daily and Ramirez, 1995; Lendvay et al., 1998; 

Atekwana et al., 2000; Atekwana et al., 2004; Chambers et al., 2004; Mota et al., 
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2004; Ajo-Franklin et al., 2005], and there have been several recent efforts to relate 

self-potential measurements to subsurface contaminants [Perry et al., 1996; Vichabian 

et al., 1999; Naudet et al., 2003; Naudet et al., 2004].  Self-potential is a general term 

that describes spontaneously occurring electrical potentials caused by electrothermal, 

electrokinetic (often called streaming potentials), or electrochemical coupling effects.  

This method promises to be an effective tool for site characterization and monitoring 

because it is sensitive to in-situ subsurface and contaminant chemistry, though bacte-

ria may also play an important role in the mediation of the redox processes that gen-

erate a self-potential signal [Atekwana et al., 2004; Naudet and Revil, 2005]. 

 As with other potential-field methods, interpretation of SP data is inherently non-

unique [Blakely, 1995], and this is enhanced by the limited set of measurement loca-

tions often available within the volume of interest.  In this investigation, a 3D array of 

surface and borehole measurements is employed to provide greater data coverage.  A 

three-dimensional inversion algorithm is utilized to determine a self-potential current 

source model that relates the measurements to the spatial distribution of contaminants.  

Determination of the SP sources is an important step in relating the measured data to 

physical properties of interest, and is relevant to other exploration and engineering 

applications besides contaminant detection.  The SP source inversion method used 

here continues from the work of Shi [1998], which is also similar to electroencepha-

lographic imaging methods used in the medical community [e.g. Michel et al., 2004 

and references within]. 

 This procedure is employed at the A-14 outfall at the Savannah River Site (SRS), 

a location with significant DNAPL contamination.  During a 2001 field survey at the 

SRS [Morgan, 2001], two SP transects were taken in the vicinity of the A-14 outfall.  

Surface anomaly locations were qualitatively correlated with elevated DNAPL con-

centrations taken from several well measurements (Figure 5-1).  While one should not 

expect perfect correlation between surface self-potentials and elevated concentrations 

at depth, the 2001 SP results justified a more thorough survey for the 2003 field ex-

periment, including a more rigorous analysis of the data.  DNAPL concentration data 

taken from several ground truth wells helps measure the success of this method, 
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though measurement of other environmental parameters (i.e. oxygen content, bacterial 

presence, redox potential, organic nutrients) that may also contribute to the SP signal 

is needed to make a more conclusive argument. 

5.2 Background 

5.2.1 A-14 Outfall 

The A-14 outfall is located on the northwest side of the SRS (Figure 5-2).  The outfall 

is a surface discharge point of a process sewer system that serves the “A/M” area at 

the SRS and feeds a tributary to Tims Branch, which ultimately leads to the Savannah 

River along the border with Georgia.  Various wastes from the fabrication facilities in 

this area were released into the sewer system from 1952 until 1981, when it was real-

ized that DNAPLs were contaminating the groundwater below the settling basin just 

south of the outfall. 

 Three varieties of chlorinated solvents were used as degreasers in the M-area, all 

of which are classified as DNAPLs:  tetrachloroethylene (PCE), trichloroethylene 

(TCE), and trichloroethane (TCA).  It is estimated that more than 600,000 kilograms 

of these solvents were released to the A-14 outfall [Jackson et al., 1999].  Discharge 

of chlorinated solvents at the A-14 outfall during a 30 year period resulted in exten-

sive vadose zone contamination.  DNAPLs, being denser than water, generally mi-

grate downwards towards the water table, but are also influenced by subsurface struc-

ture, variations in hydraulic conductivity, capillary forces, microbial activity, and re-

cent remediation efforts.   

 The vadose zone beneath the “A/M” area extends approximately 40m below 

ground surface, and is the primary area of interest for this study.  Within this zone, 

there are interbedded layers of sand, silt, and clay.  The clays are not very thick or lat-

erally extensive, but tend to play a large role in the movement and distribution of 

DNAPLs [Jackson et al., 1999; Parker et al., 2003].  There are varying reports on the 

details of this structure, but there is general agreement that the vadose zone consists 

of three or four distinct clay layers.  In the vadose zone, a significant amount of resid-
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ual DNAPL can be trapped in the pore space due to capillary forces.  Subsurface het-

erogeneity therefore results in very complicated and difficult to predict contaminant 

distributions at the A-14 outfall. 

5.2.2 Contaminants as self-potential sources 

The primary source of a self-potential signal at the A-14 outfall is proposed to be 

electrochemical in nature.  This is based on the limited 2001 data and little expected 

influence from thermal or hydraulic gradients in the relatively small survey area, 

though there may be some influence (several mV) from fluid flow in the vadose zone 

[e.g. Guichet et al., 2003; Darnet and Marquis, 2004].  Naudet et al. [2004] ascribe 

the self-potential signals to large scale redox zonation due to the influence of con-

taminants “in a natural geobattery process in which biofilms could play an important 

role”.  These geobatteries, which are associated with redox potential gradients, may 

therefore be good indicators of DNAPL presence.   

 Electrochemical sources can be attributed to several phenomena, more than one of 

which may be occurring at a given site [e.g. Kulessa et al., 2003].  A source current, 

discussed in further detail in section 2.1.3, is generated as the contaminant is biode-

graded through microbially mediated redox reactions.  These redox processes may 

involve several intermediate compounds and electron transport chain components be-

fore the terminal electron acceptor is reduced [Lovley et al., 1994]. The source cur-

rent, embedded in the conductive earth structure, must be balanced by an external cur-

rent that flows throughout the earth according to the requirement that the total electric 

current density is divergence-free.  This results in a remote source term for the self-

potential signal that is measured at the earth surface.  This system is analogous to the 

corrosion of two metals in a short-circuited energy-producing cell described by Bock-

ris and Reddy [2000, chapter 12].  Another common electrochemical source mecha-

nism is the diffusion of ions due to a concentration gradient between two regions.  

The source current due to diffusion is balanced by a current that flows throughout the 

earth conductivity structure, again such that the total current density is divergence 

free. 
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 The three varieties of chlorinated solvents of concern at the A-14 outfall (PCE, 

TCE, and TCA), consist of two carbon atoms that are each attached to a number of 

chlorine and hydrogen atoms, shown in the shaded boxes in Figure 5-3.  Halogenated 

compounds tend to be relatively oxidized, increasingly so with the number of chlorine 

atoms attached to the molecule [Vogel et al., 1987].  These chemicals can therefore 

act as electron acceptors, and are reduced during reductive dechlorination.  Several 

pathways for the half-reactions involving the reductive dechlorination of the DNAPLs 

found at the SRS are shown in Figure 5-3.  This process is typically (though not ex-

clusively) biologically mediated, and occurs primarily in more reducing anaerobic en-

vironments where the chlorinated solvent becomes the primary electron acceptor 

[Chen et al., 1996; Magnuson et al., 1998; Wiedemeier et al., 1999; Schwarzenbach et 

al., 2003].  The presence of cis-DCE, one of the daughter products during reductive 

dechlorination, at the A-14 outfall is evidence that this form of degradation has likely 

taken place. 

 Another mechanism for the degradation of chlorinated solvents is cometabolism.  

This process can involve the oxidation or reduction of contaminants in aerobic or an-

aerobic environments where microorganisms derive carbon and energy from metabo-

lism of a primary substrate, and the chlorinated solvent is degraded fortuitously 

[Wiedemeier et al., 1999].  PCE is not known to undergo cometabolic degradation, as 

it is limited to less oxidized chlorinated solvents with one or more hydrogen atoms 

[Kao et al., 2003]. 

 There is evidence that DNAPLs may be degraded by either of these methods in 

different locations at the same field site.  A recent field investigation at the A-14 out-

fall [Powers et al., 2003] suggests that microbial populations were capable of come-

tabolizing TCE in the generally aerobic conditions, but vadose zone heterogeneity 

also provides localized anaerobic environments where reductive dechlorination takes 

place.   In general, degradation of chlorinated solvents results in a long-term decrease 

of the redox potential, though the more chlorinated compounds may not degrade sig-

nificantly unless the conditions become more reducing [Wiedemeier et al., 1999].   
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 Extended contaminant presence and degradation will therefore tend to be associ-

ated with zones of lower redox potential, with the exception of PCE contamination in 

an aerobic area that does not degrade because oxygen remains the preferential elec-

tron acceptor.  Redox gradients generated by these various reactions provide the 

source of the SP signal.  It is important to note however, that it is not only contami-

nant presence, but also factors such as microbial presence, oxygen content, and or-

ganic material that will determine the redox state of the subsurface. 

5.3 Electrode and survey design  

5.3.1 Electrode design 

It is standard practice to use non-polarizing porous-pot electrodes (typically Ag-AgCl, 

Cu-CuSO4, or Pb-PbCl2) for SP measurements. This consists of a metal conductor in a 

saturated solution of its own salt that is allowed to slowly leak out of the electrode 

and contact the ground.  By ensuring that two electrodes have the same chemical 

composition and concentration, there will be no inherent electrochemical potential 

between them. 

 Ag-AgCl porous-pot electrodes are designed and constructed for this field ex-

periment [e.g. Perrier et al., 1997; Petiau, 2000].  The basic requirements for the 

electrodes were durability, long-term stability, and low noise level.  The basic elec-

trode construction is a PVC tube filled with a saturated solution of NaCl and a small 

porous cup glued to one end.  A piece of silver mesh that is plated with AgCl is fixed 

inside the top part of the tube, and connected to the wire bundle leading out of the 

borehole.  A summary of the electrode construction methods is provided in Appendix 

C. 

 Porous-pot electrodes can usually be refilled with NaCl, but in this case, they were 

inaccessible once the boreholes were filled.  Therefore, it was important that the elec-

trodes did not dry up between the time they were put in place and the time of the field 

survey (which would possibly be repeated up to 24 months later).  In addition to the 

saturated NaCl solution, a viscous thickening agent (Bacto Agar) is added to the long 
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(50cm) borehole electrodes in order to extend their useful lifetime.  Petiau [2000] 

provides useful information on the use of thickening agents to extend electrode life-

time.  Although the electrodes used for surface measurements do not have the same 

requirements for durability and longevity, they were constructed in the same fashion 

to minimize any differences between the surface and borehole electrodes based on 

their manufacture.  Additionally, the addition of a “gelling” agent in the borehole 

electrodes helps to ensure that there is no electrochemical reaction between the elec-

trode mesh and the in-situ (contaminated) soil, which is one of the main design pur-

poses of the liquid-junction electrode. 

 In the laboratory, the electrodes were tested by placing them in a bath of salt wa-

ter, and the potential was measured between a reference and each electrode.  After a 

stabilization period of a few minutes, the electrodes became very reliable with poten-

tial differences between 0.1mV to 0.4mV; well within the acceptable level of noise for 

the field experiment.  The resistance across any single electrode was on the order of 

100Ω.   

5.3.2 Survey layout 

The SP survey was designed around four boreholes that were also used for an induced 

polarization (IP) survey.  The boreholes are each 25.6m deep, and arranged approxi-

mately in a square with 9m along the edges (Figure 5-4).  Each of the four boreholes 

was instrumented with an array of seven porous-pot electrodes spaced at 3.7m depth 

intervals, starting 1.8m below the ground surface.  The electrode arrays were lowered 

into empty boreholes that were subsequently filled from the bottom with a mud mix-

ture meant to match the surrounding soil electrical properties and make contact with 

the electrodes.  The array emplacement took place several months before the experi-

ment to provide ample time for the borehole filling mixture to equilibrate. 

 SP measurements were taken on the surface with respect to a reference electrode 

in a 2-D grid that encompasses the four boreholes using a Fluke 87 digital multimeter 

with high input impedance (10MΩ).  Seven lines of data were acquired with 2m spac-

ing between the lines.  Measurements were taken every 4m along the line outside of 
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the borehole region, and every 2m within the borehole area.  Shallow holes (5-10cm) 

were made to ensure good electrode contact at each measurement location.  Each of 

the porous-pot electrodes in the boreholes were also measured with respect to the ref-

erence electrode, which is located approximately 20m southeast of the borehole re-

gion. 

 In addition, a base station is used to monitor the reference electrode throughout 

the duration of the survey.  The base station consists of two porous-pot electrodes; 

each located two meters away from the reference.  Undesirable fluctuations of the ref-

erence electrode can be detected by the base station and, if needed, corrections can be 

applied to the data.  Before the start of the survey, the reference and base station elec-

trodes were placed in shallow holes to ensure good soil contact.  They were allowed 

to stabilize over a period of about one-half hour while some of the surface measure-

ment locations were prepared.   

5.4 Acquired data 

5.4.1 Self-potential 

Because there are only 112 measurements in the SP dataset, there is little data redun-

dancy, and any spurious values can seriously degrade the result.  Figure 5-5 shows a 

histogram of the SP measurements taken at the A-14 outfall, including only the sur-

face measurements surrounding the borehole area.  There is clearly a smooth distribu-

tion of points, with the exception of a single measurement near -100mV.  This meas-

urement comes from electrode #6 in borehole MIT-1 and was repeated several times 

with no change.  A contact resistance measurement of 1.2MΩ with respect to the shal-

lowest electrode in the same borehole (compared with ~1kΩ for all other electrodes) 

suggests that this electrode was poorly coupled with the ground, and this measure-

ment was therefore excluded from the dataset.  The base station used to monitor the 

reference electrode showed very stable results, with a maximum variation of only 0.3 

mV throughout the 3.5 hour survey duration.   
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 Thermoelectric contributions to the SP signal can be ruled out because the survey 

area is small, and significant temperature gradients would not be expected.  Streaming 

potentials generated by electrokinetic sources are generally related to areas with fluid 

flowing through a porous medium.  The target of this survey is focused in the vadose 

zone and should therefore not be affected strongly by fluid motion.  Some standing 

water (less than 20cm) in the outfall may contribute locally to an electrokinetic signal 

of several mV due to infiltration, however.  A vapor extraction system used at the out-

fall was turned off prior to the experiment as it would have likely generated a measur-

able electrokinetic signal.  Another concern with self-potential measurements is the 

influence of time-varying magneto-telluric currents.  This effect can be discounted for 

the A-14 survey due to the small dimensions of the survey area and relatively short 

measurement period.  Potential variations due to magnetotellurics are often on the or-

der of a few mV per kilometer, while this survey is performed over less than 50 me-

ters. 

 Figure 5-6a shows several depth slices of the SP data with values calculated by 

linearly interpolating the data between surface and borehole measurements.  Interpo-

lation of the data has little physical basis and is only meant to provide a rough illus-

tration of the distribution of the electrical potential in the survey area.  There is a 

large positive anomaly that extends approximately 8m in depth in the region of the A-

14 outfall with amplitude ~150mV.  The negative anomaly at the eastern edge of the 

survey is due to a telephone pole with a grounding wire centered near (x, y) = (-20m, 

5m).  The surface measurements in this area (x < -8m) are not included in the inver-

sion because of the distance to the borehole electrodes where resistivity information 

was also acquired. 

5.4.2 Resistivity 

The self-potential inversion requires that resistivity information for the entire model 

space is used as an input, as described by equation (3.1).  For this survey, resistivity 

information is taken from the output of a 3D spectral induced polarization inversion 

that was performed as a part of this project at the SRS [Briggs et al., 2003].  Several 
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slices from the IP inversion results at the lowest frequency (1/16Hz) are shown in 

Figure 5-6b, and are used as input data for the SP inversion.  These values represent 

the real part of the resistivity structure derived from the IP results. 

5.5 Inversion of field data 

The 112 original measurements are reduced to 90 data points for the field data inver-

sion based on data quality and proximity to the borehole area where there is also re-

sistivity information.  The model dimensions are the same as those used for the IP 

survey (1.5m x 1.5m x 1.8m blocks), for a total of 11,592 parameters, 3120 of which 

are inside the borehole region. 

 Several slices through the inversion model output are shown in Figure 5-7.  These 

images show a fairly smooth distribution of electrical sources and sinks, which is par-

tially controlled by the regularization that takes place in the inversion.  The fact that 

the anomalies are not clustered only around the data locations provides some evidence 

that the regularization and borehole data are successful in distributing amplitudes 

throughout the volume.  The potentials predicted by the inversion model match those 

measured in the field to within ±5mV, as indicated in Figure 5-8.  This good fit indi-

cates that this is a valid model and the regularization has not biased the solution, 

though it is important to remember that there are many possible solutions with equal 

misfit due to the non-uniqueness of this problem. 

 Two isosurfaces from the inversion model provide another view of the results in 

Figure 5-9.  These surfaces show the locations where there are electrical current 

sources (red) and sinks (blue) at a threshold of ±12µA.  This threshold value is chosen 

purely for display purposes.  The known water table depth of approximately 40m is 

also annotated in this figure and is well-correlated with a broad positive current 

source anomaly.  Several authors have associated self-potential signals with the water 

table elevation [Fournier, 1989; Birch, 1998; Revil et al., 2004], though it is also pos-

sible that a strong change in redox potential across this boundary may contribute to 

the source.  Furthermore, there appears to be some connectivity between the shal-
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lower contaminated zone and the water table, though more data points at depth are 

needed to verify this anomaly due to the inherent non-uniqueness and reduced sensi-

tivity at depth. 

5.6 Comparison with ground-truth data  

Five ground-truth wells were sampled at the A-14 outfall, and DNAPL concentrations 

recorded at 0.3m intervals within each well [Riha and Rossabi, 2003].  Two samples 

were taken at each depth to provide some redundancy.  The relative locations of the 

ground-truth wells (CR1-5) and electrode boreholes (MIT1-4) are shown in Figure 

5-10.    PCE concentrations are by far the largest (up to 104 mg/kg) within any bore-

hole.  TCE, cis-DCE, and TCA concentrations generally follow the same trend as PCE 

with depth, but are 1-4 orders of magnitude smaller in magnitude.  The presence of 

cis-DCE, which was not released directly to the A-14 outfall, provides evidence that 

reductive dechlorination has taken place.  Although TCE is also a daughter product 

during the reductive dechlorination of PCE (Figure 5-3), it is not possible to distin-

guish between these degradation byproducts and the TCE that was released directly to 

the outfall given the available data. 

 In each ground-truth well, a simple empirical relationship between the current 

source intensity and the logarithm of the PCE concentration data is investigated.   

 10log [ ]s A B PCE= +  (5.1) 

Here, s represents the current source determined in the inversion and (A,B) are the 

constants that provide the best fit to the concentration data, where A = 1.1x10-5 and B 

= 5.4x10-6.  The results can be interpreted in terms of the geobattery model driven by 

redox zonation discussed earlier.  Areas with more positive sources represent rela-

tively oxidized regions where reductive dechlorination is less likely to take place, and 

may explain why elevated levels of PCE, which only degrades under more reducing 

conditions, are found in the vadose zone.  A soil vapor extraction unit along the road 

outside MIT-3 may also contribute to locally more aerobic conditions.  Regions of 
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lower redox potential (more negative SP sources) indicate areas where reductive 

dechlorination is more likely to take place, and should correspond to lower PCE and 

TCE concentrations. 

 Because of the discrepancy between the ground-truth sampling interval (0.3m) and 

inversion model block size (1.8m), the concentration data are smoothed using a run-

ning average over a 1.8m interval.   In Figure 5-11, the averaged PCE concentration 

data is plotted versus depth (open circles) for each of the ground-truth wells, with 

horizontal bars representing the standard error.   Each point in this figure represents 

the average and standard error of up to 12 DNAPL concentration measurements (du-

plicate samples at six depths spanning 1.8m).  Values extracted from the inversion 

model at the same locations are fit to the concentration data using a linear regression 

and are also plotted in Figure 5-11 (black line).  Uncertainty in the source inversion 

will be a function of regularization in the inverse problem, uncertainty in resistivity 

structure, and data errors, as discussed in Chapter 3 and Chapter 4.  The regression 

accounts for the differences in dynamic range of the two datasets.  Inspection of this 

figure shows that the SP inversion results have good correlation with contaminant 

presence in some areas, though certainly not everywhere.   

 In CR2 and CR3, the current source model reasonably represents areas with high 

PCE concentrations, possibly due to higher redox potentials, though this is best at 

shallow depths.  CR4 shows a good correlation between low current source intensities 

and consistently low concentrations (10-1 to 10-3 mg/kg).  Wells CR1 and CR5 show 

less correlation, though there are several possible explanations for these differences.  

Most of the strongest negative SP sources are observed as relatively sharp features 

near the surface (Figure 5-7), which is consistent with downwards infiltration [Revil 

et al., 2002].  Several authors have suggested methods for separating the effects of 

different coupling mechanisms based on their signature [Kulessa et al., 2003; Naudet 

et al., 2004; Rizzo et al., 2004; Maineult et al., 2005], though this is not investigated 

here. 

 Although the absolute concentration of a DNAPL in one kilogram of soil is impor-

tant information with respect to the extent of contamination, this metric alone does 
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not guarantee a large SP signal.  The redox reactions that produce a signal are also 

dependent on other factors, such as the presence of oxygen or microbial activity.  It is 

therefore not necessary that all of the DNAPL in one location participates in the reac-

tion.  Interior portions of a contaminated region contribute to larger volume concen-

trations, but redox reactions may be limited to the edges of the contaminated area 

where there is contact with microbial communities.  Other factors, such as the dispar-

ity between the ground truth sampling and the inversion model discretization dimen-

sions (approximately 300:1) can also add uncertainty, especially when the contami-

nant concentrations are very localized. Unfortunately, more complete geochemical 

information is not available for this investigation.   

 Additional support for the utility of the self-potential method at contaminated sites 

is shown in Figure 5-12.  This figure provides further corroboration of the relationship 

between contaminant presence and surface SP data alone.  In this case, the surface SP 

anomalies are found to lie near the wells with the greatest DNAPL concentrations.  

Where the sampled concentration is lowest in CR4, the SP surface is near background 

levels.  This suggests that self-potential surveys can be useful for determining regions 

of active biodegradation, which can guide more detailed site analysis and well place-

ment. 

5.7 Conclusions and future work 

Self-potential geophysics is a promising tool for the reconnaissance and characteriza-

tion of DNAPL contaminated sites.  Source inversion of the SP data is a useful inter-

pretation tool that requires further development to properly relate current sources to 

the physical or chemical properties of interest.  The 3D source inversion is facilitated 

by collecting both surface and borehole data in order to better constrain the results at 

depth.  Gathering resistivity or induced polarization information in the same area as 

the self-potential data serves several functions.  It can provide independent informa-

tion about the subsurface structure and, in limited cases, may be a help to indicate 

contaminant presence or absence.  In this study, resistivity information is used in con-
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junction with the SP data to recover a current source model that is related to the sub-

surface geochemistry. 

 The results presented here show a reasonable correlation between contaminant 

presence and the SP inversion results, though geochemical ground-truth information 

is limited at the SRS field site.  It is clear that there are instances where the SP 

sources are good indicators of contaminant presence; likely when the contaminants 

are actively biodegrading under favorable conditions.  In other cases, SP sources are 

not spatially correlated with contaminant presence due to variability in other biogeo-

chemical factors that affect the contaminant degradation.  A better understanding of 

the bio-electrochemical source mechanisms such as that proposed by Naudet et al. 

[2004] and Naudet and Revil [2005] is a key step towards a more quantitative inter-

pretation.  We hope to improve the predictive capabilities of this method at contami-

nated sites through further laboratory and field experiments in conjunction with nu-

merical modeling of the self-potential sources. 
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Figure 5-1. Comparison of surface self-potential measurements (black line) and PCE 
concentrations (gray bars) measured in four wells at the A-14 outfall [from Morgan, 
2001]. 
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Figure 5-2.  Map of the Savannah River Site and surrounding area (site details from 
Mamatey, [2005]).  The A/M area and A-14 outfall are located near the northwest 
boundary of the site.  Black shaded areas are known contaminant plumes. 
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Figure 5-3: Common reaction pathways for the degradation of selected DNAPLs.  
Those measured at the A-14 outfall are shaded.  The left axis shows the reduction po-
tential with respect to ethylene for these reactions [adapted from Vogel et al., 1987]. 
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Figure 5-4:  Layout of the surface and borehole self-potential array at the SRS.  Seven 
lines of data are collected on the surface, with station spacing 2-4m.  Four 84 foot-
deep boreholes surrounding the region of interest each contain seven porous pot elec-
trodes with 3.7m spacing in depth.  All measurements are made with respect to a 
common reference electrode. 
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Figure 5-5: Histogram of SP data measured at the A-14 outfall.  The data are smoothly 
distributed with the exception of a single bad measurement near -100mV. 



 173

 

Figure 5-6: A) 3D self-potential field based on interpolation of surface and borehole 
data.  The reference electrode is located at (-15, 0).  B) 3D resistivity model from in-
duced polarization inversion at the A-14 outfall [Briggs et al., 2003]. 
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Figure 5-7:  Vertical and horizontal slices of the current source distribution model 
from the SP inversion.  Red areas indicate electrical current sources and blue areas 
indicate sinks. 
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Figure 5-8: Measured versus predicted voltages from the inversion model results.  
There is a good correlation between data and model, with residuals less than ±5mV. 
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Figure 5-9:  Isosurfaces of the current source model from the 3D SP inversion at 
±12µA.  Approximate water table depth is shown in transparent blue, which corre-
sponds well with the broad positive anomaly at the bottom of the model, but is below 
the electrode array.  Further analysis of the sensitivity to the water table is required. 
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Figure 5-10:  Aerial map showing the relative locations of the MIT boreholes and 
ground truth sampling wells.  False Easting and Northing of 15000m and 30000m, 
respectively, is used for display. 
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Figure 5-11:  Comparison between PCE ground truth concentration data (in log10) 
and 3D SP inversion model results at the ground truth well locations.  SP current 
source values are scaled based on the best linear fit to the concentration data for all 
five wells.  Error bars represent the standard error of concentration data given by Riha 
and Rossabi [2003]. 
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Figure 5-12:  This figure shows the general relationship between surface SP data and 
total PCE concentration in each of the ground truth wells.  The highest concentrations 
are located near larger SP anomalies, and the low concentrations are away from the 
SP anomaly.  This helps to confirm the general relationship between surface SP and 
contaminated regions. 
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Chapter 6   

Accounting for mis-ties on self-
potential surveys with complicated 
acquisition geometries 

6.1 Introduction 

Geophysical surveys often consist of multiple transects of data collected on regular or 

irregular grids with multiple crossover points.  These data are collected with the goal 

of uniquely defining some geophysical parameter (electrical potential, gravity, tem-

perature, bathymetry, etc.) over the survey area.  Measurements are inherently imper-

fect, however, and may be contaminated by unknown random and systematic errors.  

Mis-ties (also called misclosures or crossover errors) at intersection points result from 

the accumulation of these imperfect measurements along different survey lines.  A 

successful analysis of the measured data will uniquely define the underlying field val-

ues such that they best represent the data, subject to available measurement error sta-

tistics or model constraints.   

 Several previous studies have addressed the geophysical mis-tie problem from 

various perspectives [e.g. Cowles, 1938; Foster et al., 1970; Johnson, 1971; Prince 

and Forsyth, 1984; Bandy et al., 1990].  In this paper, we present an efficient method 

for processing self-potential data collected with multiple reference points and inter-

connected survey loops, though this methodology can be easily adapted to various 
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geophysical survey types.  The data processing procedure proposed in this study is 

robust because: (1) it produces a unique set of electric potentials for arbitrarily com-

plicated survey geometries, (2) it naturally incorporates error statistics and model 

constraints, (3) it can efficiently process data in real-time as it is collected, and (4) it 

reduces to traditional methods in the absence of survey complexity.   

 There are numerous examples of self-potential surveys with interconnected acqui-

sition lines that would benefit from this technique [e.g. Corwin and Hoover, 1979; 

Michel and Zlotnicki, 1998; Finizola et al., 2003; Yasukawa et al., 2003; Aizawa, 

2004].  All of these studies involve a large survey area with limited roads or paths 

along which measurements are taken, in addition to sometimes rough terrain, which 

necessitates the use of multiple interconnected survey lines.  When two closed acqui-

sition loops share two or more common measurement locations, their crossover errors 

are no longer independent and the final survey map will depend on the order in which 

the lines are processed.  This can become significant when there are many intersecting 

survey lines with multiple crossover points. 

 Our proposed method produces a unique solution for the electric potential field by 

processing all of the collected data simultaneously in a survey-consistent approach.  

Measurements are expressed as a linear system of equations, and the entire system is 

solved to minimize the misclosures over the entire survey.  Traditional least squares, 

which minimizes the l2 norm of the difference between measured and predicted data, 

is the simplest approach to this problem.  We also explore the use of an l1 measure of 

misfit, which can be more robust in the presence of unreliable measurements 

[Claerbout and Muir, 1973; Farquharson and Oldenburg, 1998] that can occur with 

self-potential surveys, but is computationally more expensive. 

6.2 Self-potential data acquisition 

Values of the electric potential in a self-potential survey are given with respect to an 

arbitrary reference station, which is typically assigned a value of 0 mV for conven-

ience.  When possible, it is preferable to measure the potential between each survey 
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station and the fixed reference with a variable length of wire, directly measuring the 

potential field and eliminating the need for extra processing.  When surveys span 

large areas over rough terrain, however, the length of wire that can be deployed at one 

time is often limited.  In this case, measurements are made with respect to a single 

reference until the maximum amount of wire is deployed.  This last survey location 

then becomes the new reference, and measurements continue from this point.  The 

electric potential measured at the second reference site from the original reference 

must be added to each of the potentials measured relative to the second reference sta-

tion.  In this fashion, multiple lines can be tied together to cover large areas using suc-

cessive references.     

 A limiting case of this method is called the gradient configuration, where a fixed 

length of wire equal to the minimum station spacing is used.  The difference in elec-

tric potential is measured between the two stations, and then both electrodes move 

forward one wire length so that the rear electrode takes the position of the front elec-

trode during the previous measurement.  Again, starting from a reference value of 0 

mV at the first station, the potential differences are integrated along the survey line to 

compute the potential at each survey point with respect to the reference.    

 Two electrodes in direct contact with one another should have no potential differ-

ence between them.  In practice, however, electrode drift can result in a small poten-

tial difference between electrodes (sometimes up to a few mV) when they are in direct 

contact.  Unaccounted for, this small difference can produce large cumulative errors 

using the gradient method, as the bias is integrated over many measurements.  An-

other possible systematic source of error involves telluric currents, which can result in 

measurable potentials when the electrode separation is relatively large (several 

mV/km).  Random errors associated with electrode contact, instrumentation, and cul-

tural noise are also important to consider. 

 Kirchoff’s voltage law (6.1) requires that the total potential drop around any 

closed survey loop must equal zero.   

 0V dl∆ ⋅ =∫v  (6.1) 



 184

Due to measurement errors, however, this does not always occur and a mis-tie is 

manifested at the closure point.  A common means of accounting for this is to evenly 

distribute the misclosure errors for each loop among the measurements in that loop 

[Corwin, 1990].  This is a useful way to account for accumulated errors, but can be-

come complicated if multiple connected loops share segments. 

 There is a sequence implied in this traditional method of collecting and processing 

data described above: each line of data is processed individually, lines are tied to-

gether at their intersections, and loop closure errors are distributed as they are in-

curred.  A self-potential survey with interconnected tie-points and loops that share 

segments can no longer be processed sequentially because the loops are not independ-

ent.  Numerous solutions for the potential field can be found simply by processing 

lines of data in different order.  Our proposed method for calculating the potential 

field accounts for all data points simultaneously, thereby eliminating this problem.  In 

addition, measurement statistics or model constraints can easily be incorporated into 

the procedure. 

6.3 Methodology 

A simple synthetic example fashioned after that of Cowles [1938] is used to illustrate 

the methodology for calculating the potential field from a set of gradient self-potential 

measurements.  Figure 6-1a shows an example with ten stations, where the size and 

shade of the marker at each station indicates the ‘true’ potential at each point.  An in-

terpolated map of the potential field is illustrated in Figure 6-1b.  Synthetic, noise-

free, gradient SP data are calculated by taking the difference between adjacent poten-

tials for each of the 13 measurements along four traverses (a-d), indicated by the dif-

ferent line styles that connect points.  Each traverse forms a closed loop, and no 

measurements are repeated.  That is, the potential between stations 4 and 5 is meas-

ured on ‘line a’, and therefore does not need to be re-measured on ‘line b’.  The simu-

lated field data are summarized in Table 6-1. 



 185

Table 6-1:  Simulated self-potential dataset for the synthetic example in Figure 6-1. 
Measurement 

number 
Survey  
Line 

Rear electrode 
station # 

Front electrode 
station # 

Measured SP 
(mV) 

1 a 1 2 15 
2 a 2 3 10 
3 a 3 4 5 
4 a 4 5 -20 
5 a 5 1 -10 
6 b 4 6 -5 
7 b 6 7 -5 
8 b 7 5 -10 
9 c 2 8 -5 
10 c 8 9 5 
11 c 9 3 10 
12 d 9 10 5 
13 d 10 6 5 

  

 A critical bookkeeping step requires that each station is assigned a unique number, 

even though some stations are used for more than one measurement.  In practice, sta-

tions numbers are incremented by one at each new measurement location.  When a 

new measurement ties into a station already used on a previous line, it is important to 

record the original station number. 

 Given M = 13 measurements and N = 10 stations in this example, the relationship 

between the unknown potentials (v = [v1 … vn]T) and measured gradients (d = [∆v1 … 

∆vm)]T) can be written as a system of linear equations given in equation (6.2), 

 = +Av d e  (6.2) 

where e is a vector of the unknown measurement errors.  A is the connectivity (or to-

pology) matrix that describes the acquisition geometry and connects measurements to 

their uniquely numbered stations.  The connectivity matrix is sparse and contains only 

1, -1, and 0 entries.  Each measurement produces one row in A: 1 is placed in the col-

umn corresponding to the unique station number for the front electrode, -1 in the col-

umn corresponding to the rear electrode station number, and 0 in the remaining col-

umns.  When each row is multiplied by v, the result is a simple expression for a po-

tential difference, vi – vj, associated with the measured value ∆v in the same row of d.  
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 Because only differences are involved in each measurement, all of the rows of A 

add up to zero; therefore the columns are not linearly independent, and the potentials 

can only be determined up to an arbitrary constant.  By assigning a value (typically 

0mV) to the global reference point for the survey, the column of A associated with the 

reference location is removed.  This guarantees that the number of data is at least 

equal to (and possibly greater than) the number of unknown parameters, depending on 

whether survey lines form closed loops.   As long as all of the survey stations are 

connected through one or more reference locations, the problem of determining the 

potential field relative to a global reference point is a well-posed problem. 

 We define an objective function in equation (6.3) that is a measure of data misfit 

plus a regularization functional using the l2 norm.   

 ( ) 2 2

22d m d mφ φ λΦ = + = +W d - Av W v   (6.3) 

Wd is a diagonal data-space weighting operator that incorporates information about 

the measurement errors, where entries are typically the inverse of the estimated stan-

dard deviation for each measurement (i.e. 1
d

−=W σ I ).  Wm is a model-space regulari-

zation operator that provides additional model constraints.  In this study, we choose 
2

m l= ∇W  to promote solutions for the potential field that are spatially smooth, where 

l∇  is the gradient in the direction of the acquisition line. mW  can therefore be com-

puted for arbitrary station spacing ix∆ using equation (6.4),  

 2T
m =W A X A  (6.4) 

where  

 ( ) 1

0
i

ij
x i jX

i j

−⎧ ∆ =⎪= ⎨
≠⎪⎩

. (6.5) 

λ is a tradeoff parameter that provides a balance between data misfit and model 

smoothness.  Minimization of equation (6.3) results in the traditional linear system of 

equations (6.6) that produces an estimate of the potential field, �v . 

 ( ) �T 2 T 2T
d m m dλ+ =A W A W W v A W d . (6.6) 
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 The model regularization term, mφ , is not strictly required to provide a stable in-

version result, but is used to prevent over-fitting the data in the presence of noise.  We 

compute φd for multiple values of λ, and interpolate to find the value of the tradeoff 

parameter that results in a data misfit equal to a pre-selected target misfit value, tar
dφ .  

Assuming Gaussian measurement errors with known standard deviation, we use a tar-

get misfit value equal to the number of measurements, M.  Alternatively, one could 

use the L-curve method [e.g. Hansen, 1992] to choose a value for λ that provides a 

tradeoff between dφ  and mφ . 

 For the synthetic example in Figure 6-1, we add Gaussian noise with 2.5mVσ =  

(30% of the mean of the noise-free data) to the 13 synthetic measurements.  Figure 

6-2 shows the result of implementing equation (6.6) with 0.022λ =  so that 

13tar
d dφ φ= = .  The inversion successfully recovers the original potential field such 

that it is able to predict the measured data within the expected errors, as can be seen 

in Figure 6-2a-b.   

 Cowles’ [1938] approach to closing slope (gradient) data traverses using least 

squares is equivalent to the methods proposed here.  Instead of the connectivity ma-

trix, however, an edge-loop matrix is used to represent the four independent loops in 

the survey.  The four parameters found by inverting this matrix are Lagrange multipli-

ers, and linear combinations of them produce the minimal slope correction terms that 

are equal to the elements of ( �−d Av ).  The corrected slopes are found such that the 

loop closure errors are minimized, which produces the same potential field as the 

connectivity matrix method.  The two methods are essentially the same; the only dif-

ference is in their application.  The connectivity matrix approach presented in this pa-

per is appropriate for geophysical surveys because it can be constructed efficiently as 

data is collected, while finding the independent loops in a complicated network may 

not be obvious.  

 One drawback to the commonly used l2 norm is the strong influence of outliers on 

the solution.  There are numerous mechanisms that can result in large measurement 

errors during a self-potential survey such as cultural noise, poor electrode contact, or 
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strong near-surface heterogeneity.  An alternative, though slightly more computation-

ally expensive, approach to the mis-tie problem is to use an l1 measure of data misfit, 

which is less sensitive to erratic measurements [Claerbout and Muir, 1973].  This re-

quires an iterative solution technique [Schlossmacher, 1973; Scales et al., 1988], 

sometimes referred to as iteratively re-weighted least squares (IRLS), whereas the l2 

method can be solved in a single step.  We follow the method of Farquharson and 

Oldenburg [1998] to define a set of equations that minimize the objective function 

using an l1 norm.  The details of this approach are presented in the appendix of this 

paper, and a synthetic example is presented in the next section that compares the use 

of the l1 and l2 measures of misfit. 

6.4 Application to a synthetic example using the l1 
norm 

A larger synthetic example is used to illustrate the utility of the l1 measure of misfit 

for the self-potential survey mis-tie problem, particularly when the data contain out-

liers.  The Matlab “peaks” function is used as the “true” potential field for this exam-

ple, shown in Figure 6-3a, where the range of approximately 140mV is typical of 

many self-potential surveys.  The units of distance are arbitrary since we are only in-

terested in potential differences between survey stations.   

 A grid of six survey lines (a-f) is used to simulate a self-potential survey, which 

are also marked on the figure.  Each line consists of 49 stations, though several sta-

tions are repeated on multiple lines at the intersection points, giving a total of N = 285 

unique stations.  The station potentials (vtrue) sampled from the “true” potential field 

in Figure 6-3a are illustrated in Figure 6-3b.  A self-potential survey is simulated us-

ing the gradient method along each survey line, so that the data represent potential 

differences between adjacent stations.  Figure 6-3c shows the synthetic self-potential 

data (d) along each line, with a total of M = 288 measurements. 

 First, purely Gaussian noise with 0.96mVσ =  (30% of the mean of the noise-free 

data) is added to the measurements.  A, Wd, and Wm are constructed according to the 
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methods discussed in section 6.3.  In the first iteration, equation (6.6) is solved with λ 

= 1.48 to provide the target l2 misfit, 2( ) 288tar
d lφ = , yielding �

1
v .  This solution is used 

to compute the l1 estimate according to the iterative methods outlined in the appendix, 

with 1( ) 229.8tar
d lφ = .  This value comes from Parker and McNutt [1980], who define 

an appropriate value for the target data misfit using the l1 measure as 

( )1 2tar
d l Mφ π=  when only Gaussian noise with known data variance is present.  A 

stopping criterion is set such that the inversion ends when the average difference be-

tween successive model estimates is less than 0.5%. 

 One procedural difference is that the model re-weighting matrix is held constant 

( m =R I ) throughout the iterative process.  Maintaining the l2 measure for the model 

regularization term produces a smoother solution than when the re-weighting scheme 

is used.  This is appropriate since our goal is to recover a smooth solution, though it 

amounts to the incorporation of somewhat arbitrary prior information into the inver-

sion.  The objective function that is minimized is therefore given by equation (6.7). 

 ( ) 1 2

21d m d mφ λφ λΦ = + = +W d - Av W v  (6.7) 

 Figure 6-4 shows the inversion results for this example, where data from all six 

lines are plotted in succession according to the station or measurement number.  

Figure 6-4a compares the noise-free (light grey line) and noisy (grey dots) data with 

the predicted data ( �Av ) for the l2 (dotted black line) and l1 (dashed black line) inver-

sion results.  Figure 6-4b shows the true station potentials along with the potentials 

predicted by the l2 and l1 inversions.  In general, both results do a good job of repro-

ducing the true potential field, though the l2 results are slightly better when compared 

with the noise-free solution.  The model RMS error, defined by equation (6.8), is 

2.6mV for the l2 result and 5.1mV for the l1 result. 

 
( )2

1

N
true

i i
i

v v
RMSE

N
=

−
=

∑
 (6.8) 
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 Next, we illustrate the effect of outliers in the data by increasing the level of noise 

at 10% of the measurement locations, chosen randomly throughout the survey.  At 

these locations, 4.8mVσ = , which is five times the standard deviation of the noise for 

the rest of the measurements.  No prior knowledge about the outliers is assumed, so 

the same values for the data weighting matrix and target misfit are maintained as in 

the previous example ( 10.96m
−=W I , ( )2 288tar

d lφ = , and ( )1 229.8tar
d lφ = ).  In general, 

one might need to increase the value of the target misfit when outliers are present in 

order to avoid over-fitting the data.  The inversion runs for 21 iterations before the 

model changes are small enough to meet the stopping criterion, which is similar to the 

case without outliers that runs for 25 iterations. 

 Figure 6-5 shows the inversion results for the case with unexpected erratic data.  

In Figure 6-5a, the difference between the l2 (dotted black line) and l1 (dashed black 

line) penalties on the data residual is apparent.  As expected, the l2 result tends to 

over-fit the data due to the quadratic penalty on the residuals.  Several locations 

where this is most evident are highlighted by black arrows.  Figure 6-5b shows the 

corresponding station potentials predicted by the two inversion methods compared 

with the true solution.  Large errors in the potentials of up to ~20mV can be seen in 

the l2 solution, while the l1 solution avoids these artifacts.  Quantitatively, the model 

errors according to equation (6.8) are 7.8mV and 4.7mV for the l2 and l1 solutions, 

respectively.  Compared with the previous example where there were no outliers, the 

l2 model error has tripled while the l1 model error has decreased slightly.  This com-

parison somewhat under-represents the success of the l1 result that is observed in 

Figure 6-5b, however, since equation (6.8) provides the mean model error over all sta-

tions and the greatest improvements occur at a limited number of stations. 

 These results confirm the general behavior that we expect: the l1 measure of misfit 

produces a more robust solution in the presence of outliers.  In the case where the data 

contain only Gaussian noise, the l1 and l2 measures of misfit produce similar solu-

tions.  There are a few locations where the l2 solution provides a slightly better result 

in both examples, though the improvements are not dramatic considering the level of 
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noise.  The extra computational cost for the l1 method arises from solving equation 

(B.5) multiple (often ~10 to 20) times, but is by no means prohibitive. 

6.5 Self-potential field example from Nevis, West In-
dies 

A self-potential survey was carried out on the island of Nevis (Figure 6-6) in August 

2004 as a part of a larger geothermal exploration campaign supported by the Organi-

zation of American States (OAS) Geo-Caraïbes program.  The data were collected us-

ing the gradient electrode configuration with a fixed separation of about 75m.  An 

area of approximately 16km2 was covered by 19 lines of data collected along accessi-

ble roads and trails in the southwest part of the island.  The dataset consists of 483 

potential difference measurements using 469 unique stations.  The lines of data make 

up a complicated network of measurements with many interconnected loops (Figure 

6-6).  The data were corrected for electrode drift by periodically placing the two elec-

trodes in direct contact, and telluric corrections were deemed unnecessary, though 

may remain a small source of error in the data.  Difficulties in calculating a unique 

potential field by sequentially tying lines together and distributing closure errors ne-

cessitated the survey-consistent approach developed in this paper. 

 These drift-corrected data are inverted using the methods developed in this paper.  

In this field study, however, we do not know the true standard deviation of the meas-

urement errors, or to what extent outliers are present in the data.  We therefore show 

several inversion results using different combinations of values for 1
d σ −=W I  and 

tar
dφ  to get a sense of the range of possible solutions.  Each inversion assumes a con-

stant value of σ (either 2mV or 5mV) for all measurements, and two possible values 

for the target data misfit.  The target misfit is set to ( )2 483tar
d l Mφ = =  and 

( )2 1.5 724.5tar
d l Mφ = =  for the l2 inversions, and ( )1 2 385.4tar

d l Mφ π= =  and 

( )1 1.5 2 578.1tar
d l Mφ π= =  for the l1 inversions.  Thus, four different solutions are 

computed for each of the l2 and l1 methods.   
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 Figure 6-7 illustrates the inversion results extracted along two of the longest sur-

vey lines, labeled ‘line a’ and ‘line b’ in Figure 6-6.  In Figure 6-7a, the measured 

self-potential data (black dots) are compared with the predicted data ( �Av ) for the l2 

(black shaded line) and l1 (grey shaded line) inversions.  The width of each line repre-

sents the range of results from the four different cases of target data misfit and as-

sumed measurement standard deviations, while the white dashed line represents the 

mean result.  Inverted station potentials ( �v ) along these two lines are shown in Figure 

6-7b.  The width of each shaded area again represents the range of solutions recovered 

from the four different inversion runs, and the white dashed line is the mean result.  

The range of possible solutions is generally larger for the l1 results due to the weaker 

constraint on the data misfit for this method. 

 The l2 and l1 solutions mostly follow the same trends, though there is a spatially 

variable offset between the two results due to the effect of outliers on the inversion.  

This can be explained by considering a single line of potential difference data that is 

integrated to compute the station potentials, with a single data outlier in the middle of 

the line.  The l2 potentials will have a large step jump at the location of the outlier, 

whereas the l1 potentials, which avoid integrating the outlier, will not have the step 

jump.  Therefore, the two results will be similar up to the location of the outlier, but 

will be offset by a constant value (equal to the magnitude of the outlier) for the re-

mainder of the line.  The results in Figure 6-7 are somewhat more complicated be-

cause the entire survey is inverted simultaneously, and the shifts in Figure 6-7b can be 

due to outliers in Figure 6-7a as well as outliers from other survey lines.   

 Figure 6-8a shows the mean l2 inverted potential field interpolated over the entire 

survey area, and Figure 6-8b shows the mean l1 result using the same color scale.  As 

noted in Figure 6-7b, the two solutions have a similar trend, but are offset at most sur-

vey locations.  Figure 6-8c shows the difference between l2 and l1 solutions, which is 

almost always positive, but varies spatially with an average value of approximately 

35mV over the entire survey area.  There are specific regions where the two solutions 

are significantly different, such as the increased (~50mV) broad negative anomaly for 

the l1 result along ‘line a’ from around 1000m - 2500m relative to the start of the line 
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(0m), where the potentials for the l1 and l2 results are the same (Figure 6-7b).  This 

increased negative anomaly is clearly evident in Figure 6-8b-c over several survey 

lines in the area between 62.61ºW - 62.62ºW and 17.12ºN - 17.13ºN.   

 Figure 6-9 highlights the benefit of using the survey consistent method discussed 

in section 6.3 to minimize the loop closure errors globally, rather than the traditional 

method of processing lines sequentially.  This figure shows three different calcula-

tions of the station potentials interpolated over the whole survey area, where individ-

ual lines of data were processed in different sequences.  This technique results in non-

independent loop closures and significantly different images depending on the arbi-

trary order in which the data are processed.  Note, however, that the linear interpola-

tion used to generate the original results in Figure 6-9 produces less smooth images 

than the interpolation used to generate Figure 6-8.  While this accounts for some of 

the visual differences between figures, the main effect is due to the difference in in-

version methods.  We conclude that the survey-consistent approach, whether using the 

l2 or l1 measure of misfit, provides a significantly more robust approach to processing 

self-potential data. 

6.6 Conclusions and future work 

Self-potential surveys acquired with interconnected survey loops require processing 

techniques that account for the fact that loop closure errors are not independent.  The 

methodology presented in this paper provides a simple and robust procedure for com-

puting potentials in a survey-consistent fashion.  This method is valid for arbitrarily 

complicated survey geometries, and is equivalent to traditional line-by-line processing 

methods when survey loops are not interconnected.   Our development has involved 

only self-potential surveys, though this approach can easily be adapted to other geo-

physical methods. 

 Formulated as a linear inverse problem, this technique can easily incorporate sta-

tistical information regarding measurement errors and model constraints based on 

prior information.  Additionally, we have shown the utility of solving the problem us-
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ing an l1 measure of misfit when outliers are present in the data.  The l1 and l2 solu-

tions produce similar results when the noise is solely Gaussian, though the former 

case requires an additional computational cost to solve the problem iteratively. 

 These methods can be readily adapted to provide a real-time self-potential map-

ping system.  A handheld PC with a GPS antenna and data logger can record potential 

differences at stations in the field.  The topology matrix (A) can therefore be con-

structed as the data are collected, and updated self-potential maps can be computed at 

any time.  Even for relatively large surveys with several hundred stations, the compu-

tation time will be on the order of several minutes.  This information can be used im-

mediately to make decisions regarding where more data should be collected.  

6.7 Acknowledgements 

I thank Mark Lambrides and the Organization of American States for funding the field 

component of this study carried out in Nevis.  Additionally, I am grateful to the other 

members of the geophysical survey team: Yervant Vichabian, Darrell Coles, Mary 

Krasovec, Colin Morgan, Timur Kanachet, and Dale Morgan.  GPS survey positions 

were provided by Dr. Richard Robertson and Rosemarie Mohais of the Seismic Re-

search Unit, University of West Indies, Trinidad. 



 195

 

Figure 6-1:  Synthetic example of a gradient SP survey with 10 stations and 13 meas-
urements (based on Cowles [1938]).  a) Symbol size and shading represents the ‘true’ 
station potentials.  Gradient data are simulated along four lines (a-d) by calculating 
potential differences between adjacent stations.  b)  Interpolated potential field using 
the 10 stations in a). 
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Figure 6-2:  Illustration of the l2 inversion results for the data from Figure 6-1 with 
additional Gaussian noise.  The inversion method is able to successfully predict meas-
urements within the expected errors.  a) True data that would be measured from the 
potentials in Figure 6-1a (grey line) with error bars to denote the standard deviation of 
the added noise, and one realization of noisy measurements (black dots).  b)  Interpo-
lated potential field found by inverting the noisy measurements. 
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Figure 6-3.  Synthetic potential field used to illustrate mis-tie methods.  a)  Map of the 
complete potential field with six survey lines annotated. b) True potentials at the sur-
vey stations (49 per line, 294 total).  c)  Synthetic gradient data (potential differences 
between adjacent stations) for each of the survey lines. 
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Figure 6-4.  Inversion results for the case with Gaussian noise only (σ = 0.96mV).  All 
six lines are displayed sequentially as a function of survey measurement # or station 
#.  a)  Comparison of the synthetic noise-free (light grey line) and noisy (grey dots) 
data with data predicted by the l2 inversion (black dotted line), and the l1 inversion 
(black dashed line).  b)  Comparison of the true station potentials (light grey line) 
with the results from the l2 inversion (black dotted line), and the l1 inversion (black 
dashed line). 
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Figure 6-5.  Inversion results for the case where 10% of the measurement locations 
have an unexpectedly large measurement error (σ = 4.8mV) to simulate outliers.  All 
six lines are displayed sequentially as a function of survey measurement # or station 
#.  a)  Comparison of the synthetic noise-free (light grey line) and noisy (grey dots) 
data with data predicted by the l2 inversion (black dotted line), and the l1 inversion 
(black dashed line).  b)  Comparison of the true station potentials (light grey line) 
with the results from the l2 inversion (black dotted line), and the l1 inversion (black 
dashed line).   Black arrows highlight several of the locations most affected by the 
outliers. 
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Figure 6-6.  Map of Nevis showing the station locations for 19 lines of gradient SP 
data over an area of approximately 16km2 in the southwest part of the island.  The two 
lines with different shading (labeled a & b) are used for displaying results in subse-
quent figures. 
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Figure 6-7.  Inversion results for the field dataset shown along ‘line a’ and ‘line b’ 
from Figure 6-6.  The width of each filled area represents the range of results that are 
found using different combinations of σ and tar

dφ  for the l2 and l1 measures of misfit, 
while the white dashed line represents the mean result.  a)   Comparison of the field 
SP measurements (black dots) with predicted data ( �Av ) from the l2 (black area) and 
l1 (grey area) inversions.  b)  Range of station potentials predicted along the two tran-
sects for the different combinations of σ and tar

dφ  for the l2 and l1 measures of misfit. 
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Figure 6-8.  Potential field maps calculated using the l2 (a) and l1 (b) inversion meth-
ods, interpolated over the entire survey area.  In both cases, the mean result from us-
ing four different combinations of data weights and target misfit values is illustrated, 
which corresponds to the white dashed lines in Figure 6-7.  c)  The difference between 
the mean l2 and l1 solutions varies in magnitude over the entire survey area, but is 
almost always positive. 
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Figure 6-9.  Three different versions of the potential field computed using traditional 
processing methods with lines of data processed in different orders, then interpolated 
over the entire survey area.  Loop closure errors are distributed along new loops as 
they are completed, but potentials along existing loops are not modified.  Because the 
loops are not independent, this methodology produces inconsistent results. 
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Chapter 7   

Conclusions and future research 
directions 

7.1 Conclusions 

The self-potential method has met with mixed success over many years of use, but has 

yet to become a truly “mainstream” geophysical technique.  This is not for a lack of 

trying, however; self-potential surveys have been carried out for a wide variety of ap-

plications.  Measurements are fairly straightforward and inexpensive to carry out, and 

the data can sometimes be interpreted qualitatively with reasonable success.  I see 

three main research areas needed to promote the wider implementation of self-

potential investigations, several of which I have attempted to address in this disserta-

tion: 

1. Better understanding the physics and chemistry of self-potential source 

mechanisms, particularly in the context of how these sources are distributed in 

the earth under realistic conditions.   

2. Improved data processing and interpretation algorithms that provide a quanti-

tative framework for characterizing self-potential sources.   

3. Improving data acquisition methods and equipment to improve the quality of 

measured signals and better quantify measurement errors. 

 This thesis has focused primarily on the second point by introducing a general ap-

proach for the three-dimensional source inversion of self-potential data.  Incorporat-
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ing resistivity information into the inverse method is an important step, as unknown 

resistivity structure can be a significant source of error in the self-potential data 

analysis.  Not only is resistivity information useful for the self-potential data analysis, 

but these methods provide complementary information about the subsurface.  There-

fore, it is generally advantageous to conduct joint resistivity and self-potential surveys 

where possible. 

 There is a natural feedback between the second and first points above.  Informa-

tion gained from better understanding self-potential source mechanisms will aid our 

ability to image these targets in the earth by incorporating realistic prior information 

into the inverse problem.  For example, the constraint that sources should be spatially 

compact as utilized in this thesis works well for many source inversion problems.  A 

more powerful approach will be to also incorporate constraints based on the physics 

and chemistry of the coupling mechanisms.   

 In the other direction, source inversion of self-potential observations can provide 

useful insights into the behavior of source mechanisms, particularly for realistic cases 

in the earth that cannot be readily studied through numerical simulations or laboratory 

experiments.  Returning to the analogy of understanding earthquakes, it is through 

both the interpretation of recorded seismograms as well as theoretical or laboratory 

studies of stress and deformation in earth materials that the problem is fully ad-

dressed.  Similarly with self-potentials, an understanding of the source mechanisms in 

the earth will come from reconciling observations with the known behavior of the 

coupling phenomena. 

 Finally, careful consideration should be given to improving data quality for self-

potential surveys.  Many advances in geophysical methods have come from improv-

ing both the quality and quantity of measured data allowed by modern recording 

equipment.  Reducing and quantifying measurement errors are important acquisition-

related aspects that have a significant impact on inversion results.  At a minimum, 

data should be collected to avoid spatial aliasing of the signal.  Significant improve-

ments in sensitivity can be made for smaller field-scale experiments, where additional 

measurements can be made at depth in boreholes 
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7.2 Future research ideas: secondary source imaging 

One of the main drawbacks of the self-potential method is that there is significant un-

certainty associated with the fact that it is a passive technique.  Given the three gen-

eral components of a survey (source, medium properties, and response), only the re-

sponse is known.  In this section, I highlight a new self-potential imaging technique 

that utilizes water pumped to/from a well as a known source, which can be used to 

image unknown sources in the subsurface away from the well.  This has a significant 

advantage from traditional self-potential methods as it incorporates information from 

a known source and, as discussed below, also naturally accounts for unknown resistiv-

ity heterogeneity near the well. 

 This technique is based on the discussion surrounding equation (2.50), where the 

first term ( 2L P∇ ) is associated with the source/sink of fluid at the well, and is called 

the “primary” source.  In section 2.3, the primary source was found to be constant for 

a given pumping rate, and located in close proximity to the screened portion of the 

well (Figure 2-14).  The second term in equation (2.50), ( L P∇ ⋅∇ ) is the “secondary” 

source, and is associated with fluid flow across boundaries of the coupling coefficient 

in the subsurface away from the well.   

 Consider the situation illustrated in Figure 7-1.  A well (blue column) is located on 

the left side of the figure, where the screened section is shaded light blue.  An un-

known structure (fault, intrusion, etc.) with different resistivity and coupling coeffi-

cient from the background medium is shown in brown towards the right side of the 

figure.  Self-potential electrodes are placed in an array on the earth surface, shown by 

black triangles. 

 When fluid is pumped from the well (Figure 7-1a), the recorded self-potential re-

sponse will be a superposition of the primary source at the well plus the secondary 

source induced by fluid flow across the boundary.  In the second step (Figure 7-1b), 

the well pump is turned off, and an electric pole source is lowered into the screened 

portion of the well.  In practice, this would likely involve a second current electrode 
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placed far away from the well and measuring electrodes.  The potential field due to 

the active current source in the well is then recorded. 

 Differencing these two datasets leaves only the potential field that is due to the 

unknown secondary source, which can be subsequently imaged using the inversion 

techniques developed in this thesis.  Because we know that there will be a large 

source at the well for a pumping experiment, it is advantageous to remove this effect 

in order to highlight the more subtle secondary sources.  This is accomplished by rec-

ognizing that the potential field due to the source at the well can be simulated by an 

active source at the well screen, though a long screened section of the well may begin 

to appear as a line source rather than a point. 

 There is an additional subtle, yet extremely important, benefit to this technique.  

The potential field recorded from the active source in the well (Figure 7-1b), incorpo-

rates all of the unknown resistivity structure of the medium.  That is, the response 

provides the empirical Green’s functions for the medium from the well to the meas-

urement locations.  When this response is subtracted from the response in Figure 7-1a, 

the effect of the source and the unknown resistivity structure are removed.  The shape 

of the anomaly in Figure 7-1a is defined both by the secondary sources and any resis-

tivity heterogeneity.  Without prior information, it is not possible to distinguish be-

tween these influences.  In Figure 7-1b, however, the anomaly is related solely to the 

resistivity structure.  Thus, combining these two datasets removes the influence of the 

resistivity structure, without having to know the resistivity explicitly. 

 Inversion of the residual self-potential signal (Figure 7-1a minus Figure 7-1b) still 

requires some resistivity assumption, however, because the true Green’s functions 

from the secondary source to the receivers remain unknown.  While these assumptions 

will lead to some uncertainty, as discussed in Chapter 4, the overall benefit of remov-

ing the effects of the primary source at the well is significant. 
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Figure 7-1:  Conceptual schematic of a self-potential secondary source imaging ex-
periment.  When fluid is pumped from the well (A), the self-potential response is re-
corded due to both source types: fluid withdrawal at the well and flow across a 
boundary.  Next, an electric pole source is placed in the screened portion of the well 
while it is no longer pumping, and the potential field is recorded at the surface (B).    
Differencing the two datasets leaves only the potential field that is due to induced 
flow across a boundary. 
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Appendix A 

Discretization using the transmis-
sion network equations 

The transmission network analogy is a useful method for the discretization of the dif-

ferential equations that govern geophysical forward and inverse problems [Madden 

and Swift, 1969; Swift, 1971; Madden, 1972].  The resulting linear system of equa-

tions is essentially the same as would be obtained using finite difference or finite 

element methods.  Analogy to transmission network systems provides useful insight 

for the self-potential problem, where the governing equations come from the electro-

static form of Maxwell’s equations. 

 ( ) ( ) ( ), , , , , ,x y z x y z x y z∇ = − ⋅φ ρ j  (A.1) 

 ( ) ( ), , , ,x y z x y z∇ ⋅ =j f  (A.2) 

Thus, the electric field, = −∇E φ  [V·m-1], is determined by the earth resistivity struc-

ture, ρ [Ω·m], and current density, j [A·m-2].  Equation (A.2) is the continuity condi-

tion on the current density, which is divergence-free in the absence of external electric 

sources, f [A·m-3].  Combining equations (A.1) and (A.2) yields a Poisson equation, 

 ( , , ) ( , , ) ( , , )x y z x y z x y z−∇⋅ ∇ =σ φ f , (A.3) 

where 1−=σ ρ  represents the conductivity. 



 212

 Equation (A.1) can be approximated using the network analogy, in which a con-

tinuum is discretized into network nodes and impedance branches (Figure A-1).  Fol-

lowing the convention of Zhang et al. [1995] and Shi [1998], the earth is divided into 

resistivity blocks ρ(i,j,k) with a node at the top center of each block.  In three dimen-

sions, each interior node is connected to six surrounding nodes by an impedance 

branch (Figure A-1).  The impedance of a branch is defined by the simple relationship 

between resistivity, length, and cross-sectional area. 

 LR
A

ρ=  (A.4) 

In the self-potential problem, we are not concerned with complex impedances; each 

branch is therefore associated simply with a resistance (with units of ohms). 

 Due to the convention of placing a node at the top center of a resistivity block, in-

terior branches in the x-y plane span four blocks; two above and two below (Figure 

A-2).  These branch impedances are therefore given by the parallel combination of 

two pairs of impedances that are each connected in series.  In the z-direction, an im-

pedance branch is determined completely by a single resistivity block.  The branch 

impedances are therefore defined by equations (A.5) through (A.7) [from Zhang et 

al., 1995].   

 

1 1
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1
( ) ( , , 1) ( 1) ( 1, , 1)
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y j z k y j z k

x i i j k x i i j k
y j z k y j z k

ρ ρ

ρ ρ

=
∆ ∆ − −

+
∆ ∆ ∆ ∆

+
∆ − ∆ − − −
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∆ ∆ − ∆ ∆ −

 (A.5) 

 

1 1
( ) ( , , ) ( 1) ( , 1, )

( ) ( ) ( ) ( )
1

( ) ( , , 1) ( 1) ( , 1, 1)
( ) ( 1) ( ) ( 1)

y
y j i j k y j i j kR

x i z k x i z k

y j i j k y i i j k
x i z k x i z k

ρ ρ

ρ ρ

=
∆ ∆ − −+

∆ ∆ ∆ ∆

+
∆ − ∆ − − −

+
∆ ∆ − ∆ ∆ −

 (A.6) 

 1 ( ) ( )
( ) ( , , )z

x i y j
R z k i j kρ

∆ ∆
=

∆
 (A.7) 
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 To satisfy the Neumann boundary condition at the earth surface ( 0⋅ =n j ), there is 

no branch that extends upwards into the air.  Branches in the x-y plane at the earth 

surface only have an impedance contribution from the resistivity blocks below; since 

→ ∞ρ  in the air, the second term in equations (A.5) and (A.6) evaluates to zero 

Boundary nodes are specified at the exterior edges of the model, which are often 

placed far away from the region of interest so that a Dirichlet boundary condition 

( 0→φ  as r → ∞ ) can be used. 

 Discretization using the impedance equations (A.5) through (A.7) and the network 

model in Figure A-1 effectively eliminates the spatial dimensions in equations (A.1) 

through (A.3).  Potential gradients in equation (A.1) are replaced by potential differ-

ences between adjacent nodes, which are connected by the branch impedances.  This 

is equivalent to a network of interconnected resistors with electric currents that are 

allowed to flow through the circuit.   

 The discrete form of equation (A.1) is simply Ohm’s Law, 

 C yϕ− ∆ =  (A.8) 

where y represents the current [A] that flows in a branch with conductance 1C R=  

[S] connecting adjacent nodes with potential difference ϕ∆  [V].  The currents that 

flow through the network can be represented as a linear system of equations, 

 − =CAφ y . (A.9) 

A is an L by M differencing operator, with one row for each branch that connects ad-

jacent nodes such that Aφ  represents all of the potential differences in the network.  

The row of A that connects nodes a and b has -1 in column a and +1 in column b, and 

zeros in the remaining columns.  C is a diagonal L by L matrix that contains the in-

verse of the branch impedances given by equations (A.5) through (A.7).  Therefore, y 

represents the L currents flowing in the network. 

 Equation (A.2) is a statement of Kirchoff’s current law which, for the discrete 

case, states that the sum of currents flowing into and out of any node equals the cur-



 214

rent source at the node.  The discrete form of the divergence operator is T−A  [Strang, 

1986], so equation (A.2) becomes 

 T− =A y s , (A.10) 

where the current source, s, has units of Amperes.  Combining equations (A.9) and 

(A.10) leads to the discrete version of (A.3), which represents the network as a linear 

system of equations. 

 T = =A CAφ Kφ s  (A.11) 

 The stiffness matrix, K, is positive definite symmetric and has a banded structure, 

where the number and spacing of bands depends on the model geometry.  K can be 

formed from product TA CA , though it can also be formed directly according to the 

rules given in equation (A.12). 

 

1

1

1 connected to 

0  not connected to 

P

p np

nm
nm

n m
R

K n m
R

n m

=

⎧ ⎛ ⎞ =⎪ ⎜ ⎟
⎝ ⎠⎪

⎪⎪ ⎛ ⎞= −⎨ ⎜ ⎟
⎝ ⎠⎪

⎪
⎪
⎪⎩

∑

 (A.12) 

The diagonal element on the nth row of K contains the sum of the P branch conduc-

tances that are connected to node n, where 6P =  for an interior node in three-

dimensions.  The mth column on the nth row contains the negative of the branch con-

ductance that connects nodes n and m, and equals zero if nodes n and m are not con-

nected.  Implementation of the Dirichlet boundary condition on the boundary nodes is 

accomplished by removing either the columns of A, or the rows and columns of K, 

associated with the boundary nodes. 
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Figure A-1.:  Schematic of a portion of the 3D transmission network discretization.  
Adapted from Zhang et al. [1995]. 
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Figure A-2:  Close-up view of a single impedance branch in the x-z plane.  Rx(i,j,k) is 
determined by the impedance contributions from four resistivity blocks that share the 
branch, while each Rz comes from a single resistivity block. 
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Appendix B 

Minimization using an l1  measure 
of data misfit 

Equation (B.1) describes the general form of the objective function to be minimized.   

 ( ) p

j
j

xφ = ∑x  (B.1) 

Traditional least squares problems that satisfy the l2 norm are solved using 2p = .  In 

this case, the l1 measure of misfit is utilized with 1p = , and the objective function is 

the sum of absolute values of a vector, x.  This provides a framework for minimizing 

a general objective term using the l1 measure, where x can represent either the data 

misfit term (B.2) 

 ( )d=x W d - Av , (B.2) 

or a measure of model length given by a regularization functional (B.3). 

 m=x W v  (B.3) 

A modified form of the objective function, given by equation (B.4), is needed to avoid 

the discontinuity in φ∂ ∂x  for any 0ix =  [Ekblom, 1987; Farquharson and Olden-

burg, 1998].  A small user-specified value, ε, introduces stability for the case where 

any 0ix = . 

 ( ) ( )
11/ 22 2

1
φ ε= +x x  (B.4) 
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 The chain rule is used to compute the derivative of the objective function with re-

spect to the unknown potentials, v.  A new system of equations (B.5) that provides an 

estimate of the unknown potentials is found by setting this expression equal to zero. 

 ( ) �T T
d d d m m m d d dλ+ =A W R W A W R W v A W R W d  (B.5) 

where, 

 ( ) 1/ 22 2

0
i

ij
x i jR

i j

ε
−⎧ + =⎪= ⎨

≠⎪⎩
. (B.6) 

Because R is a function of the unknown potentials, this is a non-linear system, and an 

iterative approach must be used.  This is sometimes referred to as iteratively re-

weighted least squares (IRLS) [Scales et al., 1988].   

 We again follow the approach of Farquharson and Oldenburg [1998] by setting R 

= I for the first iteration, which results in the traditional least squares solution given 

by equation (6.6).  This estimate, �
k

v  (k = 1), is then used to compute a new Rk+1 

from equation (B.6), which is subsequently substituted into equation (B.5) to produce 

a new estimate, �
1k +

v .  This procedure is repeated until � �1k k
δ

+
− <v v , where δ  is a 

user-specified value that determines when to stop the inversion based on the change in 

model parameters between successive IRLS iterations.  Assuming only Gaussian er-

rors and known data variance, an appropriate value for the target data misfit using the 

l1 measure is ( )1 2tar
d l Mφ π=  [Parker and McNutt, 1980].  In the case where out-

liers are present, however, a larger target misfit may be needed to avoid over-fitting 

the data. 

 There are now three user-defined parameters, which are not necessarily independ-

ent from one another, that control the behavior of the solution: λ, one ε for Rd, and 

one ε for Rm.  Small values of ε are needed to approximate equation (B.1), but too 

small a value can introduce instability for any 0ix → .  Large values of ε tend to act 

more like the traditional regularization parameter, λ (i.e.,  1ε −→R I when ixε � ).  
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Typically, a plot of ( )φ x  for a range of ε is used to determine an optimal balance be-

tween these extremes [Farquharson and Oldenburg, 1998; Zhdanov and Tolstaya, 

2004].  This is not computationally expensive because it only requires substituting 

multiple values of ε into equation (B.4) using the current value of x.  λ can be chosen 

in the same fashion that is discussed in section 6.3, by searching over multiple possi-

ble values to find the one that provides the desired data misfit, tar
dφ . 

 An algorithm for solving the self-potential survey mis-tie problem using the l1 

norm is summarized below: 

1. Compute A, Wd, and Wm as suggested in section 6.3. 

2. Set d m= =R R I . 

3. Solve equation (B.5) for multiple values of λ, and find the value that produces 

tar
d dφ φ=  for the l2 measure of misfit.  The corresponding �

1
v  is the l2 solution. 

4. Choose optimal values of ε for Rd and Rm by plotting dφ  and mφ  using equation 

(B.4) with the current  �
k

v  and a range of ε.  

5. Compute Rd and Rm using equation (B.6) with the current �
k

v  and ε. 

6. Update ( )1max 0.95 ,tar tar tar
d d d lφ φ φ⎡ ⎤= ⎣ ⎦  to provide a smooth transition between the l2 

and l1 target misfit values. 

7. Solve equation (B.5) for multiple values of λ, and find the value that produces 

tar
d dφ φ= .  Store the solution �

k
v  that corresponds to the target misfit. 

8. Repeat from step #4 until � �1k k
δ

+
− <v v . 
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Appendix C 

Construction notes for Ag-AgCl 
porous pot electrodes 

C.1 Ag-AgCl conductor preparation 

Silver wire mesh is cut into rectangular strips and rolled into a cylinder.  The dimen-

sions for the strips depend on the application, but we have previously used 4cm x 

17cm.  The strips are rolled into a cylinder using a pencil or something similar to give 

them shape, then washed with acetone and de-ionized (DI) water. 

 Electroplating is done in a solution of approximately 1M NaCl, which needs to be 

replenished after several electrodes are made.  A schematic of the setup is shown in 

Figure C-1.  DC current is passed between the silver mesh and a non-corrosive con-

ductor in a solution of NaCl.  The positive lead is connected to the mesh so that Cl- 

ions are attracted to the silver.  A few centimeters of mesh is left out of the solution so 

that a solder joint can be made to the silver.  The negative lead is connected to the 

metal conductor through a multi-meter that is used to monitor the current supply.  A 

variable DC source is used so that the current can be controlled. 

 A rough estimate of the current needed is found by applying 1 Coulomb per square 

cm of silver mesh.  The 4cm x 17cm tube has roughly 36 cm2 of silver surface area, 

which requires 6 minutes of electroplating using 100mA of current.  The mesh should 

be agitated occasionally to ensure an even coating of AgCl, which appears black/dark 

purple (Figure C-2).  Current is applied until there is an even coating of silver chlo-
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ride, which sometimes takes a little longer than the time estimated.  The mesh is 

rinsed in DI water and set aside to dry. 

C.2 Electrode housing preparation 

The top of the electrode consists of a PVC cap with female threading and a small hole 

drilled in the top for the wire lead.  The cap is threaded onto a male adapter, which 

has one threaded end and one slip end, and fixed with PVC cement (Figure C-3).  The 

slip end is a 1” fitting. 

 A length of wire needed for the electrode lead is cut, with a minimum of about 12 

inches.  The un-plated end of the silver mesh (top end in Figure C-2) is soldered to the 

wire lead, being careful to solder only onto the pure silver, and not onto the AgCl.  It 

helps to braid some of the copper wire strands into the silver mesh before soldering.  

Also, if a very long wire lead is used, it is best to feed it through the PVC cap before 

soldering instead of pulling the whole length of wire though afterwards. 

 Next, the PVC cap is placed in a rack or vice so that the slip end is pointing up.  A 

board with nails spaced so that the threaded part of the cap rests on two nails works 

well.  Pulling down on the wire brings the mesh to the bottom of the cap, and helps 

keep it nearly vertical.   

 Epoxy is poured into the cap until it is filled above the Ag-AgCl joint, but below 

the lip on the inside of the male-slip adapter, and left to dry.  No epoxy should be al-

lowed to dry in the slip end of the adapter so that the PVC tube can be inserted later, 

and the mesh should stay vertical as the epoxy dries.  A squeeze tube or “pastry bag” 

is useful so that the epoxy can be poured to the end of the cap without getting it on 

the mesh.   

 We tested several non-conductive/non-reactive glues and epoxies, but only had 

good success with Loctite® Hysol® two part epoxy.   

C.3 Electrode tube and end cap 
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The electrode tube is made of one-inch PVC pipe with a porous cup attached to the 

bottom end.  For gelled electrodes, the length of the tube and electrolyte properties 

determine the lifetime of the electrode.  The life of the electrode is given by Petiau 

[2000] as 

 2
D Tt G L k=  (C.1) 

where, 

 ( ) ( )0.581.720.082 25 24 /T M M S S mG C C C C C= − − − . (C.2) 

tD is the life of the electrode in days, L is the length of the electrode from the porous 

cup to the bottom end of the silver mesh in mm, and k is the diffusion coefficient in 

mm/day that will vary with different electrolytes.  CM is the maximum electrolyte 

concentration (>1 with non-dissolved salt), CS is the concentration at saturation (CS = 

1), and Cm is the minimum concentration outside the electrode. 

 Equation (C.2) is a useful approximation and is valid for CM > CS, which means 

there is non-dissolved salt added to extend the electrode lifetime.  For CM = CS, Equa-

tion (C.1) is simplified to  

 2 / 4Dt L k=  (C.3) 

Based on these equations, the length of PVC tubing needed for the electrode body can 

be approximated. 

 After the PVC tubing is cut to length, a CoorsTek porous ceramic cup (Figure 

C-4) is glued inside one end with the Loctite® epoxy.  The cup is inserted in the bot-

tom of the PVC tube so that the bottom of the cup extends a few millimeters beyond 

the end of the PVC.  The epoxy is left to dry with the PVC tube standing vertically 

and the porous cup at the top.  Tape or dowel rods are useful to hold the cup in place 

while the epoxy dries. 

 After the epoxy is dry enough that the ceramic cup doesn’t slide in the PVC tube, 

more epoxy should be applied around the edge of the protruding cup so that it is com-

pletely sealed (Figure C-5).  Once again, the PVC/ceramic cup is left to dry in a verti-
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cal position.  When the epoxy has dried, the PVC tube is filled with water to check for 

leaks. 

C.4 Preparing the electrolyte and sealing the elec-
trode 

For a refillable liquid electrode, everything is ready; the PVC tube can be filled with a 

saturated solution of NaCl or KCl, and the end cap with silver mesh is placed onto the 

tube.  Figure C-6 illustrates the completed electrode design.  Semi-permanent elec-

trodes, however, require a solid or gelled electrolyte since they cannot be refilled.  

Various electrode/electrolyte designs are discussed by Perrier et al. [1997] and Petiau 

[2000].   

 We use a NaCl electrolyte (though KCl can also be used), which is gelled with the 

addition of BactoTM Agar solidifying agent.  Before starting, the following items 

should be on hand: the end cap with silver mesh glued in place, the PVC tube with 

ceramic cup glued in place, a vice to hold the PVC tube vertically, a funnel, and PVC 

cement.  To make the gel, a large beaker of DI water saturated with NaCl (365 g/L) is 

heated on a hot plate.  While this is heating, a few smaller beakers that are large 

enough to hold enough fluid for one electrode are prepared.  NaCl is added to each 

beaker so that the final NaCl saturation after adding the heated saturated solution will 

be CM in equation (C.2). i.e.,.if CM = 2 and the electrode volume is 100mL, 36.5g of 

salt is placed in the small beaker.  This will give the required twice-saturated solution 

when 100mL of the heated NaCl solution is added. 

 When the large beaker of NaCl is hotter than 70°C, 30g/L of the Agar powder is 

added and stirred constantly until the powder dissolves.  When the Agar is completely 

dissolved, one electrode’s-worth is poured into each beaker and is stirred continu-

ously.  The temperature must be monitored continuously because it needs to be poured 

into the PVC tube before it begins to rapidly gel ~40°C.  If it is poured into the PVC 

tube while it is still much hotter than 40°C, the gelled electrolyte will not be uniform 

because the salt tends to settle to the bottom. 
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 When one of the small beakers with Agar/NaCl electrolyte cools to ~45-50°C, it 

begins to thicken rapidly.  The gelled electrolyte should be stirred vigorously before 

pouring the solution into the PVC tube, leaving about 1-2cm unfilled.  PVC cement 

should be immediately applied to the outside of the PVC tube and inside of the PVC 

end cap.  The electrode is then sealed by placing the end cap over the tube, with the 

mesh in the electrolyte.  These final steps of pouring the electrolyte and sealing the 

electrode must be done in rapid succession so that the electrolyte does not solidify 

before the mesh is placed into it. 

 A batch of completed electrodes is shown in Figure C-7.  A balloon is placed over 

the ceramic cup on the end of each electrode to keep it from drying out before use.  

Cheese cloth soaked in a solution of saturated NaCl is placed inside each balloon. 

 We have also investigated the use of Cab-O-Sil®, a fumed silica that is used for 

rheologic control in various industrial applications, as the electrolyte gelling agent.  

One benefit is that the Cab-O-Sil® will form a gel when vigorously mixed in a 

blender, and does not need to be heated, somewhat simplifying the electrode manufac-

ture process.  A second benefit is that Cab-O-Sil® is frequently used as a solidifying 

agent for back-filling boreholes used in geophysical applications; this was the case for 

the electrode boreholes at the Savannah River Site discussed in Chapter 5.  Minimiz-

ing the differences between the electrode material and soil in which it is placed may 

help to improve the electrode performance. 
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Figure C-1:  Setup for electroplating the silver mesh. 
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Figure C-2:  Silver mesh electroplated with AgCl. 
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Figure C-3:  Electrode top cap configuration. 
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Figure C-4:  Porous ceramic cup (from CoorsTek, Inc.). 
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Figure C-5:  PVC tube with ceramic cup glued to the end. 
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Figure C-6:  Schematic of the porous pot electrode design. 
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Figure C-7:  Completed electrodes 
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