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Abstract

When controlling dynamic systems such as mobile
robots in uncertain environments, there is a trade off be-
tween risk and reward. For example, a race car can turn
a corner faster by taking a more challenging path. This
paper proposes a new approach to planning a control
sequence with guaranteed risk bound. Given a stochas-
tic dynamic model, the problem is to find a control se-
quence that optimizes a performance metric, while sat-
isfying chance constraints i.e. constraints on the upper
bound of the probability of failure. We propose a two-
stage optimization approach, with the upper stage op-
timizing the risk allocation and the lower stage calcu-
lating the optimal control sequence that maximizes the
reward. In general, upper-stage is a non-convex opti-
mization problem, which is hard to solve. We develop
a new iterative algorithm for this stage that efficiently
computes the risk allocation with a small penalty to op-
timality. The algorithm is implemented and tested on
the autonomous underwater vehicle (AUV) depth plan-
ning problem, which demonstrates the substantial im-
provement in computation cost and suboptimality com-
pared to the prior arts.

Introduction
Physically grounded AI systems typically interact with their
environment through a hybrid of discrete and continuous ac-
tions. Two important capabilities for such systems are kin-
odynamic motion planning and plan execution on a hybrid
discrete/continuous plant. For example, our application is an
autonomous underwater vehicle (AUV) shown in Figure 1,
which conducts a bathymetric mapping mission for up to 20
hours without human supervision. This system should ide-
ally navigate itself to areas of scientific interest according to
a game plan provided by scientists. Since the AUV’s maneu-
verability is limited, it needs to plan its path with taking ve-
hicle dynamics into account, in order to avoid collisions with
the seafloor. A model-based executive, called Sulu (Léaut́e
2005), implemented these two capabilities in deterministic
environment for AUVs.
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Figure 1: Autonomous underwater vehicleDoradoof Mon-
terey Bay Aquarium Research Institute, conducting bathy-
metric mapping mission

Real-world systems, however, are exposed to stochastic
disturbances. Stochastic systems typically have a risk of
failure due to unexpected events, such as unpredictable tides
and currents that affect the AUV’s motion. To reduce the
risk of failure, the AUV needs to stay away from the failure
states, such as the seafloor. This has the consequence of re-
ducing mission performance, since it prohibits high resolu-
tion observation of the seafloor. Thus operators of stochastic
systems need to trade-off risk and performance.

A common approach to trading-off risk and performance
is to define a positive reward for mission achievement and a
negative reward for failure, and then optimize the expected
reward using a Markov Decision Process (MDP) encoding.
However, in many practical cases, only an arbitrary defini-
tion of reward is possible. For example, it is hard to define
the value of scientific discovery compared to the cost of los-
ing the AUV.

Another approach to trading off the risk and performance
is to limit the probability of failure (chance constraint) and
maximize the performance under this constraint. For ex-
ample, an AUV minimizes the average altitude from the
seafloor while limiting the probability of collision to 0.1%.

There is a considerable body of work on this approach in
Robust Model Predictive Control (RMPC) community. If
the distribution of disturbance is bounded, zero failure prob-
ability can be achieved by sparing the safety margin between
the failure states and the nominal states (Kuwata, Richards,
& How 2007). If the distribution is unbounded, which is the
case in many practical applications, the chance constraint
needs to be considered. When only the probability of fail-



ure of each individual time step is constrained (chance con-
straints at individual time steps), the stochastic problem can
be easily reduced to a deterministic problem by constraint
tightening(Yan & Bitmead 2005)(van Hessem 2004).

A challenge arises when the probability of failure of en-
tire mission is constrained (chance constraint over the mis-
sion). This is the case in many practical applications; for
example, an AUV operator would like to limit the probabil-
ity of losing it in a mission, rather than in each time instant.
The chance constraint over mission can be decomposed into
chance constraints at individual time steps using an ellip-
soidal relaxation technique (van Hessem 2004). However,
the relaxation is very conservative, hence the result is signif-
icantly suboptimal.

A sample based algorithm called Particle Control (Black-
more 2006) uses Mixed Integer Linear Programming
(MILP) to directly optimize the control sequence. The algo-
rithm can handle the probability of failure over the mission
directly without using the conservative bound. However, it
is slow when it is applied to the problem like goal-directed
execution of temporally flexible plans (Léaut́e & Williams
2005), due to the large dimension of the decision vector. An-
other important issue with Particle Control is that, although
there is a converging guarantee to the true optimum when the
number of the samples goes to infinity, there is no guaran-
tee that the original chance constraint is satisfied with finite
number of samples.

We propose a new fast algorithm called Bi-stage Robust
Motion Planning (BRMP), which plans the control sequence
with small suboptimality and strict guarantee of satisfying a
chance constraint over a mission. There are two key contri-
butions regarding to the BRMP algorithm; the first is the in-
troduction of a bi-stage optimization approach, with the up-
per stage optimizing the risk allocation and the lower stage
optimizing the control sequence. The second is the devel-
opment of a risk allocation algorithm for the upper stage,
called Iterative Risk Allocation (IRA). Although IRA does
not offer a guarantee of the convergence to the global op-
tima, it does have the guarantee of monotonic increase of
the objective function over iterations. Simulation results on
our implementation demonstrates a substantial improvement
in suboptimality compared to the ellipsoidal relaxation ap-
proach, while achieving a significant speed up compared to
the Particle Control.

The rest of paper is outlined as follows. The next section
introduces the notion of risk allocation, followed by the for-
mal problem statement. Then the two key ideas in BRMP,
the bi-stage optimization approach and the Iterative Risk Al-
location algorithm, are presented. The BRMP algorithm is
implemented on the case with linear dynamics and Gaus-
sian distribution, and applied to AUV navigation problem,
on which the performance of BRMP is compared with ellip-
soidal relaxation approach and Particle Control.

Risk Allocation
Racing Car Example Imagine the racing car example
shown in Figure 2. The task is to plan a control sequence
of wheel and acceleration that minimizes the time to reach
a goal, with the guarantee that the probability of crashing

into a wall during the race is less than a certain probability,
say, 0.1% (chance constraint over mission). Planning the
control sequence is equivalent to planning the nominal path,
which is shown as the solid lines in the Figure 2. We as-
sume that the dynamics of the vehicle is stochastic and the
distribution of uncertainty is unbounded. To limit the prob-
ability of crashing into the wall, a good driver would set the
safety margin, which is colored in dark gray in Figure 2, and
then plan the nominal path that does not penetrate the safety
margin. In other words, the drivertightensthe original con-
straints (the walls) and set new constraints on the nominal
path, which is shown as the dotted line.

The driver wants to set the safety margin as small as possi-
ble to make the path shorter. However, since the probability
of crash during the race is bounded, there is a certain lower
bound on the total size of the safety margin. We assume here
that the total area of the safety margin is lower-bounded.
Given this constraint, there are different strategies of setting
a safety margin; in Figure 2(a) the width of the margin is
uniform; in Figure 2(b) the safety margin is narrow around
the corner, and wide at the other places.

An intelligent driver would take the strategy of (b), since
he knows that going closer to the wall at the corner is effec-
tive to make the path shorter while doing so at the straight
line is not. A key observation here is that taking a risk
(i.e. setting narrow safety margin) at the corner results in
a greater reward (i.e. time saving) than taking the same risk
at the straight line. This gives rise to the notion ofrisk allo-
cation. The good risk allocation strategy is to save risk when
the reward is small while taking it when the reward is great.

Another important observation is, once risk is allocated
and the safety margin is fixed (i.e. chance constraintover
the missionis decomposed into chance constraints atindi-
vidual time steps), the stochastic performance optimization
problem with chance constraint over the mission has been
reduced to a deterministic nominal path planning problem
with tightened constraints. This can be solved quickly with
existing deterministic path planning algorithms.

These two observations naturally lead to bi-stage opti-
mization approach (Figure 3), in which its upper stage al-
locates risk to each time step while its lower stage tightens
constraints according to the risk allocation and solves the
resulting deterministic problem.

Start Start

Goal

Safety margin

Nominal path

(a) Uniform risk allocation (b) Optimal risk allocation

Walls

Goal

Walls

Figure 2: Risk allocation strategies on the racing car exam-
ple



The next section formally states the problem, and the sub-
sequent section formally describes the bi-stage optimization
algorithm, called Bi-stage Robust Motion Planning.

Formal Problem Statement
Our goal is to develop a method that can generalize to plan-
ning over either continuous or discrete state spaces, such as
kinodynamic path planning and PDDL planning.

Letxt ∈ X , ut ∈ U , andwt ∈ W denote the state vector,
control input (action) vector, and disturbance vector at time
stept, respectively. For example, in AUV navigation case,x

is position and velocity of the vehicle,u is ladder angle and
throttle position, andw is the uncertainty in position and
velocity. The domainsX , U andW may be a continuous
state space, discrete state space, or a hybrid of both. The
uncertainty model ofwt is given as a probability distribution
functionf :W → [0, 1].

wt ∼ f(w) (1)

The stochastic dynamics model for a continuous space or
the state transition model for a discrete space is defined as
follows

xt+1 = g(xt,ut,wt) (2)

whereg : X × U ×W → X is the state transition function.
Note thatx is a random variable whileu is deterministic.

Assuming that the initial statex0 is known deterministi-
cally, thenominal states̄xt ∈ X are defined as the sequence
of deterministic states evolved fromx0 along Eq. (2) with-
out disturbances, such that

x̄t+1 = g(x̄t,ut, 0). (3)

Let Rt ⊂ X denote thefeasible regionat time stept. In
AUV navigation case,R is the ocean above the seafloor. A
mission isfailed whenxt is out of this region at any time
step in the mission durationt ∈ [0, T ]. Theprobability of
failure over the missionPFail is defined as follows

PFail = Pr[(x1 /∈ R1) ∨ (x2 /∈ R2) ∨ · · · ∨ (xT /∈ RT )].
(4)

The chance constraint over the missionis the upper bound
of the probability of failure over the mission

PFail ≤ δ. (5)

Finally, the objective function (i.e. reward)J is given as a
functionh : X T × UT → R that is defined on the sequence
of nominal states and control inputs;

J = h(x̄1:T ,u1:T ). (6)

The problem is formulated as an optimization of con-
trol (action) sequenceu1:T that maximizes the objective
function Eq.(6) given the state transition model, uncertainty
model, and the chance constraint.
Problem 1: Control Sequence Optimization with Chance
Constraint

Maximize J = h(x̄1:T ,u1:T )

s.t. Eq.(1), (2), and(5).
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Iterative Risk Allocation
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Deterministic planner

(MILP, tree search, etc)
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Figure 3: Architecture of Bi-stage Robust Motion Planning

Bi-stage Robust Motion Planning algorithm
Our approach to solving Problem 1 is the Bi-stage Robust
Motion Planning (BRMP) algorithm (Figure 3). As de-
scribed in the previous sections, the chance constraintover
the missionis decomposed into chance constraintsat indi-
vidual time stepsby risk allocation. It results in the bi-stage
optimization approach, which is the first important contribu-
tion in this paper.

Decomposition of chance constraint over the
mission
The probability of failure at time stept is defined as follows:

PFail,t = Pr[xt /∈ Rt]. (7)

Using the union bound or Boole’s inequality (Pr[A ∪
B] ≤ Pr[A] + Pr[B]), it can be easily shown that the origi-
nal chance constraint Eq.(5) is implied by the following con-
junction (Blackmore & Williams 2006)

T
∧

t=1

Pfail,t ≤ δt (8)

∧
T

∑

t=1

δt ≤ δ (9)

where Eq.(8) refers to thechance constraints at individ-
ual time steps. Risk allocationmeans assigning values to
(δ1, δ2 · · · , δT ). Once the risk is allocated so that Eq.(9)
is satisfied, the original chance constraint over the mission
Eq.(5) is replaced by a set of chance constraints at individual
time steps Eq.(8).

Thus the original optimization problem (Problem 1) can
be decomposed into risk allocation optimization (upper-
stage) and control sequence optimization with chance con-
straints at individual time steps (lower-stage), which is de-
scribed in the next subsection.

Lower-stage optimization
The stochastic optimization problem with the chance con-
straints at individual time steps (Eq.(8)) is reduced to the
deterministic planning problem of the nominal statesx̄ by
constraint tightening (i.e. setting a safety margin) (Yan &



Bitmead 2005)(van Hessem 2004). Safety margin att (de-
noted byMt) is calculated so that the following conditional
probability is bounded by the given risk assignmentδt.

Pr[xt /∈ Rt | x̄t ∈ (Rt −Mt)] ≤ δt (10)

The distribution ofxt can be calculated a priori from Eq.(1)
and Eq.(2). Given the safety marginMt, the chance con-
straints at individual time stepst (Eq.(8)) are implied by the
following tightened constraints on the nominal states, which
are deterministic.

[(x̄1 ∈ (R1 −M1)] ∧ · · · ∧ [(x̄T ∈ (RT −MT )] (11)

The lower stage optimization problem is to find the con-
trol sequenceu1:T which maximizes the objective function
Eq.(6) given the tightened constraints Eq.(11).

Problem 2: Lower-stage Optimization

MaximizeJ = h(x̄1:T ,u1:T )

s.t. Eq.(3) and (11)

No random variables are involved in this optimization
problem. It can be solved by existing deterministic
planning methods. For hybrid state space with lin-
ear dynamics(Eq.(2)), Mixed-integer Linear Programing
(MILP) (Richardset al. 2002) is widely used. For discrete
state space, standard tree search algorithms can be used.

For later use, this optimization process is expressed as a
function of the risk allocation as follows;

LSO(δ1 · · · δT ) = max
u1:T

J s.t. Eq.(3), (10), and(11).

(12)
Upper-stage Optimization
The upper-stage optimizes the risk allocationδ1 · · · δT ac-
cording to the constraint Eq.(9).

Problem 3: Upper-stage Optimization

Maximize LSO(δ1 · · · δT )

s.t. Eq.(9)

The question is how to optimize Problem 3. In general it
is non-convex optimization problem, which is very hard to
solve. The next section introduces the second important con-
tribution of this paper, a risk allocation algorithm for theup-
per stage called Iterative Risk Allocation.

Iterative Risk Allocation Algorithm
The Iterative Risk Allocation (IRA) algorithm (Algorithm
1) solves Problem 3 with iterations. It has a parameter
0 < α < 1. In Line 4, the lower-stage optimization func-
tion LSO (Eq.(12)) is modified so that it also outputs the
resulting nominal state sequencex̄1:T . A constraint is ac-
tive at timet iff the nominal statēx is on the boundary of
(Rt − Mt). The graphical interpretation is that the con-
straint is active when the nominal path touches the safety
margin (Figure 2 and 5). In Line 7,Pr(xt /∈ Rt | x̄t) is the
actual probability of failure at timet given the nominal state
x̄t. It is equal toδt only when the constraint is active, and
otherwise it is less thanδt.

Algorithm 1 Iterative Risk Allocation
1: ∀t δt ← δ/T
2: while J − Jprev > ǫ do
3: Jprev ← J
4: [J, x̄1:T ]← LSO(δ1 · · · δT )
5:
6: for all t such that constraint is inactive att th stepdo
7: δt ← αδt + (1− α) Pr(xt /∈ Rt | x̄t)
8: end for
9: δres ← δ −

∑T

t=1
δt

10: Nactive ← number of steps where constraint is active
11: for all t such that constraint is active att th stepdo
12: δt ← δt + δres/Nactive

13: end for
14: end while

In every loop of the algorithm the nominal path is planned
using the lower-stage optimization given the current risk al-
location (Line 4). Risk assignment is decreased when the
constraint is inactive (Line 7), and it is increased when the
constraint is active (Line 12). Line 9 and 12 ensure that
∑T

t=1
δt = δ so that the suboptimality due to the union

bound is minimized.
There are two important features of this algorithm, which

are described in the following theorems.

Theorem 1 The objective functionJ monotonically in-
creases over the iteration of Algorithm 1.

Proof. If there are inactive constraints, they keep being in-
active after Line 7 sinceα < 1. Thus, the objective function
J does not change at this point. Then in Line 12, the active
constraints are relaxed, soJ increases. If there are no inac-
tive constraints, thenδres = 0 and thus risk assignments of
active constraints do not change. So consequently the objec-
tive function does not change as well.

The proof of Theorem 1 also implies another important
theorem.

Theorem 2 Algorithm 1 converges if and only if all con-
straints are active.

Note that Algorithm 1 has no convergence guarantee to
the global optima. However, Theorem 1 ensure that ifδt is
initialized with the risk allocation obtained from ellipsoidal
relaxation approach, the result of Algorithm 1 is no worse
than that of the ellipsoidal relaxation approach. Our empir-
ical results demonstrate that Algorithm 1 yields much less
conservative result when started from the simple uniform
risk allocationδt = δ/T (t = 1 · · ·T ) (Line 1 of Algorithm
1).

One additional note is that an interesting property of the
parameterα is observed in the simulation; asα becomes
large, convergence becomes faster but suboptimality gets
larger, as shown in Figure 4. This property enables a trade-
off between suboptimality and computational cost.
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Linear Time Invariant System with Gaussian
Disturbance

In many practical applications, a continuous system can of-
ten be approximated as a linear time-invariant (LTI) system
with Gaussian disturbances. The general form of the BRMP
algorithm derived in the previous sections are deployed to
the linear Gaussian case in this section.

The state and action domain is continuousX = R
nx and

U = R
nu . The deterministic constraints such as actuator

saturation is addressed by adding linear constraints onu,
rather than limiting its domainU . The state transition model
(Eq.(2)) is linear as follows;

xt+1 = Axt + But + wt. (13)

The distribution ofw (Eq.(1)) is zero-mean Gaussian with
covariance matrixΣw.

w ∼ N (0,Σw) (14)

Then the distribution ofxt is also Gaussian with the covari-
ance matrix given as

Σx,t =

t−1
∑

k=0

A
kΣw(Ak)T . (15)

The feasible region is defined by the conjunction ofNt

linear constraints;

Rt =

{

xt ∈ X :

Nt
∧

i=1

h
iT
t xt ≤ gi

t

}

. (16)

Thus the chance constraint of individual time steps
(Eq.(7)(8)) is described as follows

Pr

[

Nt
∨

i=1

h
iT
t xt > gi

t

]

≤ δt. (17)

This joint chance constraint can be again decomposed
by risk allocation. The decomposition results in the set of
chance constraints on the probability of violation of indi-
vidual constraints. Thus Eq.(8) and (9) is replaced by the
following;

T
∧

t=1

Nt
∧

i=1

(

Pr[hiT
t xt > gi

t] ≤ δi
t

)

∧
T

∑

t=1

Nt
∑

i=1

δi
t ≤ δ. (18)

The risk allocation problem ofδi
t can be solved by the itera-

tive risk allocation algorithm (Algorithm 1).
The constraint tighteningR−M in Eq.(11) is equivalent

to reducing the upper boundsgi
t of Eq.(16). The nominal

states are bounded by the tightened constraints such that

h
iT
t x̄t ≤ gi

t −mi
t (19)

mi
t =

√

2h
iT
t Σx,th

i
t erf−1(1− 2δi

t) (20)

whereerf−1 is the inverse of the Gauss error function. The
conditional probability of failure at timet in the Algorithm
1, Line 7 is replaced by the probability of violating thei th
constraint at timet, which is equal to the cumulative distri-
bution function.

Pr(xt > gi
t | x̄t) =

1

2



1 + erf
h

iT
t (xt − x̄)

√

2h
iT
t Σx,th

i
t



 (21)

If the objective function (Eq.(6)) is also linear, the lower-
stage optimization can be solved by Linear Programming. If
it is quadratic, Quadratic Programming can be used.

Simulation: AUV Depth Planning
Problem Setting We assumed the case where an au-
tonomous underwater vehicle (AUV) plans a path to mini-
mize the average altitude from the sea floor, while limiting
the probability of crashing into it. Tides and currents gives
the AUV disturbance. The linear dynamics is discretized
with interval∆t = 5. The AUV’s horizontal speed is con-
stant at 3.0 knots, so only the vertical position needs to be
planned. The dynamics model is taken from the actual AUV
developed by Monterey Bay Aquarium Research Institute
(Figure 1), and the actual bathymetric data of the Monterey
Bay is used. The deterministic planning algorithm used in
the lower-stage has been demonstrated in the actual AUV
mission.

The AUV has six real-value states and takes one real-
value control input, thusX = R

6 andU = R. Disturbance
w with σw = 10 [m] acts only on the third component ofx,
which refers to the depth of the vehicle. The AUV’s elevator
angle and pitch rate are deterministically constrained.

The depth of the AUV is required to be less than the
seafloor depth for the entire mission (1 ≤ t ≤ 20) with
probability δ = 0.05. The objective is tominimize (not
maximize) the average of AUV’s nominal altitude from the
sea floor.
Algorithms tested The following three algorithms are im-
plemented in Matlab and run on a machine with Pentium 4
2.80 GHz processor and 1.00 GB of RAM. The planning
horizon is 100 seconds (20 time steps with 5 second time
interval).

(a) Ellipsoidal relaxation approach (van Hessem 2004)
(b) Bi-stage Robust Motion Planning (α = 0.3)
(c) Particle Control (20 particles) (Blackmore 2006)
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Figure 5: Nominal path of AUV and safety margin planned
by three algorithms

Result Figure 5 shows the nominal paths and safety mar-
gins planned by three algorithms. Safety margin is not
shown in (c) since Particle Control does not explicitly com-
pute it. Ellipsoid relaxation yields a large safety margin,
which touches the nominal path (i.e. constraint is active)
only at a few points. This is because ellipsoid relaxation
uniformly allocates risk to each step. On the other hand,
Bi-stage Robust Motion Planning algorithm gives the safety
margin that almost corresponds with the nominal path. This
fact implies that risk is allocated efficiently such that a large
portion of risk is allocated to the critical points, such as the
top of the seamount.

The performance of the three algorithms is compared in
Table 1. The resulting probability of failurePFail is evalu-
ated by Monte Carlo simulation with 100,000 samples. The
plan generated by the ellipsoidal relaxation approach ((a)
ER) results in nearly zero probability of failure although
the bound isPFail ≤ 0.05, which shows its strong con-
servatism. Bi-stage Robust Motion Planning ((b) BRMP) is
also conservative, but much less so than (a). On the other
hand, the probability of failure of Particle Control ((c) PC)
is higher than the bound, which means the violation of the
chance constraint. This is because the Particle Control is a
sample based stochastic algorithm, and the chance constraint
is just approximately satisfied.

The value of objective function (reward)J is the measure
of optimality. Note that this is a minimization problem, so

Table 1: Performance comparison on the AUV depth plan-
ning problem with chance constraintPFail ≤ 0.05.
(a) ER: Ellipsoid relaxation approach, (b) BRMP: Bi-stage
Robust Motion Planning, PC: Particle Control

Algorithm used (a) ER (b) BRMP (c) PC
ResultingPFail < 10−5 0.037 0.085

Objective functionJ 99.3 55.2 51.1
Computation time [sec] 1.9 4.1 481.2

smallerJ means better performance. The true optimal value
of J lies between (b) BRMP and (c) Particle Control, since
the former is suboptimal and the latter is ”overoptimal” in
the sense that it does not satisfy the chance constraint. Thus
the suboptimality of the BRMP is less than 10%. On the
other hand, ellipsoidal relaxation yields very largeJ , which
reflects its large suboptimality.

The computation time of Particle Control is longer than
the planning horizon (100 sec). Although BRMP is slightly
slower than the ellipsoidal relaxation approach, it achieved
a substantial speed up from Particle Control.

Conclusion
In this paper, we have developed a new algorithm called
Bi-stage Robust Motion Planning (BRMP). It computes the
control sequence that maximizes an objective function while
satisfying a chance constraint over the mission. It consists of
two stages; upper stage that allocates risk to each time step,
and lower stage that tightens constraints according to the risk
allocation and solves the resulting deterministic problem.
Risk allocation in the upper stage can be efficiently com-
puted by Iterative Risk Allocation algorithm. The BRMP
algorithm is implemented on the case with linear dynamics
and Gaussian distribution, and applied to AUV navigation
problem. It is demonstrated that BRMP achieves substantial
speed up compared to Particle Control, with much less sub-
optimality compared to a ellipsoidal relaxation approach.
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