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Abstract

The transport theory of high-intensity elliptic charged-particle beams is presented. In particular,
the halo formation and beam loss problem associated with the high space charge and small-
aperture structure is addressed, and a novel transport theory of large-aspect-ratio elliptic beams
has been developed.

In a small-aperture system image-charge effects have been found to be a new mechanism for
inducing chaotic particle motion, halo formation and beam loss. The rms envelope equations
have been derived and analyzed for unbunched intense charged-particle beams in an alternating-
gradient focusing field and a cylindrical metal pipe. Numerical results have shown that for
vacuum phase advance ao < 90° , the higher-order image-charge effects on the matched and

slightly mismatched beam envelopes are negligibly small for all beams with arbitrary beam
density profiles (including hollow density profiles) as well as for arbitrary small apertures
(including beams with large aspect ratios). However, the main unstable region for the envelope
evolution with image-charge effects, which occurs for 90: < a, < 270', depending on the value
of the normalized beam intensity SKI e, has been found to be narrower than its counterpart
without image-charge effects. Using the test-particle model it has been shown that in a small-
aperture alternating-gradient focusing channel, image-charge effects induce chaotic particle
motions and halo formation in intense charge-particle beams. This mechanism occurs for well-
matched beams with the ideal Kapchinskij-Vladimirskij (KV) distribution. The halo formation
and beam loss are sensitive to system parameters: the quadruple focusing field filling factor, the
vacuum phase advance, the perveance and the pipe radius. As shown in our parametric studies,
the beam loss increases rapidly as the perveance of the beam increases and as the pipe radius
decreases. In addition, a self-consistent PIC simulation code, Periodically Focused Beam
(PFB2D), has been developed, and used to simulate intense charged-particle beams in small-
aperture alternating-gradient systems. PIC simulation results on the beam envelope are consistent
with the envelope equation'solutions. However, due to numerical noise in PIC simulations, the
beam loss predicted by PIC simulation has been found to be an order of magnitude higher than
that predicted by the test-particle model. To analyze the noise in PIC simulations, an error
scaling law for the edge emittance growth and particle diffusion due to the discrete macro-
particle effects has been derived for self-consistent intense beam simulations. The error scaling
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law has been tested in the self-consistent Green's function simulations and self-consistent PIC
PFB2D simulations. The simulation results have shown good agreement with the scaling law.

Novel exact paraxial cold-fluid and Vlasov equilibria have been found for a high-intensity,
space-charge-dominated charged-particle beam with a periodically twisted elliptic cross section
in a non-axisymmetric periodic magnetic field. Generalized envelope equations, which determine
the beam envelopes, ellipse orientation, density, and internal flow velocity profiles, have been
derived, and solved numerically for nonrelativistic and relativistic examples of such beams. The
equilibrium and stability of such beams have been demonstrated by self-consistent particle-in-
cell (PIC) simulations. For current applications, the temperature effects are found to be small on
a periodically twisted large-aspect-ratio elliptic beam. We anticipate that the equilibrium theory
will provide a valuable tool in the design of high-intensity elliptic beams in novel vacuum
electron devices, especially for ribbon-beam klystrons (RBKs) and ribbon-beam traveling-wave
amplifiers (RBA). The ellipse-shaped beam equilibria may provide some flexibility in the design
and operation of high-intensity accelerators.

Thesis Supervisor: Richard J. Temkin
Title: Senior Scientist, Department of Physics

Thesis Supervisor: Chiping Chen
Title: Principal Research Scientist
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Chapter 1

Introduction

1.1 Applications of intense charged-particle beams

The field of intense charged-particle beams is a rapidly growing field due to many important

applications ranging from inertial confinement fusion, to high-energy density physics, to particle

accelerators, to high power sources of coherent radiation, to vacuum electron devices [1], to

mention a few examples.

For inertial confinement fusion or related high-energy density physics research, research on

intense heavy-ion beams are being studied at Virtual National Laboratory for Heavy-Ion Fusion

(VNL-HIF) and other research institutions. Heavy-ion fusion uses beams of heavy ions from

accelerators to produce X rays to compress and heat the target. The resulting burst of fusion

energy is contained, captured, and converted into heat in the target chamber. The intense ion

beams will have a total energy of 5 MJ, a focal spot radius of 3 mm, a pulse duration of 10 ns,

and a total current of 40 kA on target. The current focus of HIF research is a series of small-scale

experiments to study certain key aspects of intense-beam physics. These experiments include the

High-Brightness Injector Experiment to study the generation of beams with high current density,

the High-Current Experiment (HCX) [2] to investigate questions of beam transport, acceleration

and steering, and the Neutralized Transport Experiment (NTX) [3] to model certain aspects of

beam transport in a fusion chamber. In high-energy density physics research, intense ion beams

are required to deliver an energy density of 1-10 J/mm 3 .
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In particle accelerators, intense proton, antiproton, electron and positron beams are used.

Examples of such particle accelerators are the Spallation Neutron Source (SNS) and the Large

Hadron Collider (LHC) under construction, and the International Linear Collider (ILC) which is

being designed. The charged-particle beam has extremely high intensity at the low-energy front

end (i.e., the injector and the damping ring) of each of those machines. As the beam is

accelerated, maintenance of the high intensity is critical in order to achieve desired luminosity so

that the precision measurements can be made in a reasonable length of time at LHC or ILC, or

the neutron intensity is sufficiently high at SNS.

Besides major efforts on intense beams in particle accelerator, there are vigorous research

activities in the research and development of RF sources which employ intense electron beams.

For example, sheet-beam klystrons are being studied in Stanford Linear Accelerator Center

(SLAC) [4]. A mm-wave sheet-beam traveling-wave tube has been under development at Los

Alamos National Laboratory (LANL) [5]. At MIT, efforts have been made on designing large-

aspect-ratio beams which will be used in a ribbon-beam traveling-wave tube amplifier (RBA) for

wireless communications and ribbon-beam klystrons for direct energy and ILC.

1.2 Physics of intense charged-particle beams

An intense charged-particle beam can be characterized as organized charged particles (ions or

electrons) for which the effects of beam self-field are of major importance in determining the

evolution of the beam. The high-intensity charged-particle (ion or electron) beams in all the

applications mentioned above have the following unique properties.

1. The beams are nonneutral plasmas which have one component (ions, electrons or

antiparticles).
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2. The beams travel in a periodic electric and/or magnetic focusing channel. The motion of

particles is paraxial, i.e., the longitudinal energy of the particles is much higher than their

transverse energy.

3. The thermal energies in the beams are low compared with the mean-flow kinetic energies.

4. The beams are in the space-charge-dominated regimes. The condition of a space-charged

dominated beam is

K >> X (l.1)
2(X2)'

where the normalized self-field perveance K and the unnormalized transverse emittance £x

in any transverse direction are defined by

K= 2ZNbe2 (1.2)

and

2 [(x2 )(Vv\(xv1 ], (1.3)
with the average defined as ( (x, v, )dxdv

with the average defined as (Z) = Ifb (xI v,t)dxdv.

As a one-component nonneutral plasma, an intense charged-particle beam is a many-body

collection of charged particles which exhibit a broad range of collective phenomena, such as

plasma equilibrium and instabilities. Basic theoretical frameworks, such as single-particle orbit

theory, fluid theory and kinetic theory are employed in studying the behavior of high-intensity

charged-particle beams. In particular, space-charge fields have strong influence on the dynamics
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of intense beams. In this regard, an improved theoretical understanding of the nonlinear

dynamics and detailed transport properties is needed.

1.3 Issues of intense beams

There are many issues that must be addressed in order to achieve the required intensity and

performance of intense beams. In the scope of this thesis, however, we will focus on two

outstanding issues of high-intensity beams; namely, chaotic particle motion, halo formation and

particle losses in intense beams, and the transport of large-aspect-ratio elliptic beams.

It is of critical importance to understand the mechanisms and control of chaotic particle

motion, halo formation and particle losses in intense charged-particle beams in order to design

and operate intense beam systems [6][7]. Beam loss due to halo formation is very harmful to the

intense charged-particle systems. For example, in the heavy-ion fusion system, halo production

prevents the final ion beam from being focused to a spot radius of 3 mm. On the other hand, in

SNS, LHC and ILC, halo production dilutes the beam quality, degrades luminosity, and limits

the machine performance. In addition, a fractional loss of only 10- 7 of the beam is sufficient to

quench a superconducting magnet, while the beam dump on the accelerator structure discharges

an energy equivalent to a considerable concentration of explosives.

In order to minimize or control beam loss, it is necessary to study and understand the physics

of halo formation because the beam loss is typically associated with the low density halo

surrounding beam core for well controlled beams. Similar to a moon halo, a ring of light

surrounding the moon, the beam halo is a ring of charged particles surrounding the beam core.

As shown in Fig. 1.1, the beam halo is formed by the sparse particles surrounding the beam core

which has a circular boundary indicated by the purple ring in Fig. 1.1 [8]. In particular, the halo
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Fig. 1.1 An illustration of the beam halo in the cross-section plane (x, y).

formation is closely related to chaotic particle motion due to nonlinear effects. The intrinsic

space-charge effects of intense charged-particle beams have been found to play an important role

in inducing chaotic particle motion, beam halo formation and beam loss [7]-[9].

The other focus of this thesis is to understand the transport of a large-aspect-ratio elliptic beam

which had not been well understood. Such beams have very important applications in

accelerators and vacuum electron devices. For example, in the final collision section of a linear

collider, electron and positron beams with an aspect ratio of -100 collide with each other.

Sophisticated manipulation of intense elliptic beams is required in a linear collider. On the other

hand, large-aspect-ratio elliptic beams have many important applications in RF sources including

klystrons, traveling-wave tubes and other vacuum electron devices .

.Most beams are focused either by a periodic solenoidal magnetic focusing channel or by a

periodic electric or magnetic quadrupole focusing channel. Although a conventional space-

charge-dominated beam normally has an elliptic cross-section, the beam envelopes alternates and
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the beams are circular on average, i.e., the beam envelopes averages over one period in different

directions are equal. In the conventional space-charge-dominated beams, the halo formation and

beam loss, induced by the space-charge effects and image-charge effects are found to be

important. In order to reduce to the space charge effects and image-charge effects, a large-aspect-

ratio elliptic beam is explored. A large-aspect-ratio beam normally has an elliptic cross section

which is kept almost constant as it propagates. Large-aspect-ratio elliptic beams have a lower

intrinsic space-charge force and a lower intrinsic space-charge energy. Halo formation and beam

loss is expected to be less pronounced in large-aspect-ratio elliptic beams.

In addition to the reduced space-charge force and energy, large-aspect-ratio beams couple

efficiently to rectangular rf structures. The combination of the space charge reduction and

efficient coupling allows efficient rf generation in vacuum electron devices, and efficient

acceleration in particle accelerators. Moreover, elliptic beams provide an additional adjustable

parameter (e.g., the aspect ratio) which may be useful for better matching a beam into a periodic

focusing channel.

1.4 Thesis outline

This thesis is organized broadly in two parts. The first part, which includes Chapters 2-4,

contains the analytical and computational studies of the image-charge effects on inducing chaotic

particle motion, halo formation, and beam loss. The second part, which includes Chapter 5 and 6,

explore large-aspect-ratio elliptic beams, presents the cold-fluid and kinetic equilibrium theories

for intense elliptic beam transport, and particle-in-cell simulations of the equilibrium and

stability of intense elliptic beams.
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In Chapter 2, the root-mean-squared (rms) envelope equations are derived, including all

higher-order image-charge effects from the cylindrical conducting pipe. Numerical results show

that for vacuum phase advance a, < 90', higher-order image-charge effects on the matched and

slightly mismatched beam envelopes are negligibly small for all beams with arbitrary beam

density profiles as well as for arbitrary small apertures. In addition, in the operation region of the

accelerator systems, the image-charge effects do not introduce instabilities.

In Chapter 3, use is made of a test-particle model to investigate the dynamics of rms matched

intense charged-particle beams propagating through an alternating-gradient quadrupole magnetic

field and a small aperture. The elliptical cross-section of the beam and the circular cross-section

of the pipe are incorporated. It is shown that the image-charge-induced fields are nonlinear, and

that they induce chaotic particle motion and halo formation and that they cause significant beam

losses as the aperture decreases.

In Chapter 4, the development of a two-dimensional electrostatic PIC code, Periodically

Focused Beam (PFB2D), is discussed. The code is used to simulate intense charged-particle

beams in small-aperture alternating-gradient systems which are investigated theoretically in

Chapter 2 and 3. The halo formation and beam loss are found in PIC simulations of those

systems and are compared to those from theoretical investigations. The beam loss predicted by

PIC simulation is an order of magnitude higher than that predicted by theory, which leads to the

noise analysis of PIC simulations. An empirical error scaling law is found in PIC simulations,

which will be useful in future studies of beam losses.

In Chapter 5, a cold-fluid equilibrium theory is presented of an ultrahigh-brightness, space-

charge-dominated, large-aspect-ratio beam propagating through a non-axisymmetric periodic

magnetic focusing field. A paraxial cold-fluid model is employed to derive generalized envelope
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equations which determine the equilibrium flow properties of ellipse-shaped beams with

negligibly small emittance. A matched envelope solution is obtained numerically from the

generalized envelope equations, and the results show that the beam edges in both transverse

directions are well confined, and that the angle of the beam ellipse exhibits a periodic small-

amplitude twist. The slightly mismatched beams and the beam envelope instability are discussed.

Two-dimensional (2D) particle-in-cell (PIC) simulations with the PFB2D code show good

agreement with the predictions of the cold-fluid equilibrium theory as well as beam stability.

In Chapter 6, a Vlasov equilibrium theory is presented for a periodically twisted large-aspect-

ratio intense charged-particle beam with uniform density in the transverse plane propagating

through a non-axisymmetric periodic magnetic focusing field. The single-particle Hamiltonian of

such a periodically twisted large-aspect-ratio elliptic beam is investigated. A new constant of

motion is found from which a Vlasov equilibrium distribution is constructed. The beam envelope

equations and flow velocity equations are derived. They are consistent with the generalized

envelope equations derived from the cold-fluid theory equilibrium in the zero temperature limit.

Statistical properties and possible applications of the present beam equilibrium are discussed.

Effects of finite temperature on the design of intense elliptic beams are also discussed.
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Chapter 2

Image-Charge Effects on the Beam Envelope Dynamics in a Small-

Aperture Alternating-Gradient Focusing System

2.1 Introduction

A key issue in high-intensity beams is to minimize the aperture of the transport system,

while preventing the beams from developing large-amplitude charge density and velocity

fluctuations and subsequent emittance growth and halo formation. One potential cause of

emittance growth and beam loss is associated with the collective instabilities. In order to

understand the collective behavior of high-intensity beams in small-aperture alternating-gradient

systems, one needs to start from a basic theoretical model which includes both space-charge and

image-charge effects, as described by a solution to Poisson's equation with realistic boundary

conditions and beam envelope equations.

Beam envelope equations in alternating-gradient focusing systems have been investigated

since the late 1950s. One of the earliest works on the beam envelope equations can be found in

Ref. [10], in which the well-known two-dimensional (2-D) Kapchinskij-Vladimirskij (KV)

equations were derived for a uniform beam density in free space. In 1965, Lapostolle [11]

derived three-dimensional (3-D) envelope equations for a bunched beam with a uniform density

in free space. In 1971, Sacherer [12] and Lapostolle [13] extended, independently, the previous

2-D and 3-D results to the beams with a density profile of the elliptic-symmetry form

n(x2/a2 + y2/b2 + 2/c2) in free space. Sacherer's 2-D results, which describe the root-mean-
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squared (rms) beam envelopes for all elliptical beams with arbitrary beam densities, assume the

same form of the KV equations.

Recently, Allen and Reiser [14]-[16] extended Sacherer's 2-D results [12] to include the

image-charge effects due to a cylindrical conducting pipe. They analyzed the first-order image-

charge effects. Their results showed that the first-order image-charge effects do not affect the

beam envelope evolution until the beam envelope is very close to the wall of the cylindrical

conducting pipe.

In this chapter, the Allen-Reiser's 2-D envelope equations are extended to include all higher-

order image-charge effects from the cylindrical conducting pipe [17] [18]. In particular, the self-

electric and self-magnetic fields are calculated for an unbunched beam with elliptic symmetry

and an arbitrary transverse dependence. The root-mean-squared (rms) envelope equations are

derived, including all higher-order image-charge effects from the cylindrical conducting pipe.

Numerical results show that for vacuum phase advance av < 90', higher-order image-charge

effects on the matched and slightly mismatched beam envelopes are negligibly small for all

beams with arbitrary beam density profiles (including hollow density profiles measured recently

in the heavy ion injector experiment at Lawrence Berkeley National Laboratory (LBNL) [19]) as

well as for arbitrary small apertures (including beams with large aspect ratios). However, the

main unstable region for the envelope with image-charge effects, which occurs for

90 < av < 270 , depending on the value of the normalized beam intensity SK / e, is found to be

narrower than its counterpart without image-charge effects [8].
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2.2 Beam envelope equations with image-charge effects

We consider an unbunched elliptical beam propagating in an alternating-gradient focusing

field and a cylindrical conducting pipe with radius R , as shown in Fig. 2.1. The beam has an

envelope a(s) in the x -direction and an envelope b(s) in the y -direction, where s = z . The

beam drift velocity in the z direction is v;: :::::Pbc, where c is the speed of light in vacuum. In

the present analysis, we assume that the beam centroid motion is stable and is on the z -axis, so

that we ignore the beam centroid motion. Following the analysis of Sacherer [12], we express the

beam density in a self-similar beam model as

(2.1)

The general rms envelope equations can be expressed as [12]

(2.2)

y

•

.... x

Figure 2.1 Elliptical unbunched charged-particle beam in a cylindrical conducting pipe.
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and

d2 ( /+ 
ds2 2qNb~

2

4
(2.3)

In Eqs. (2.2) and (2.3), ( ) denotes the moment operator with respect to the particle beam

distribution f (x, y, x', y', s), as defined by

(X) = fl(x, , , y', s)dxdydx'dy'

with prime denoting the derivative with respect to s (e.g, x'=dx/ds ); = ()

(2.4)

and

= (y are the rms envelopes in the x- and y -directions, respectively;

£x =4kx2)(x'2)-(xx 2] 12 (2.5)

and

y = 4[(y2)(y2) _ (yy)2] 1/2 (2.6)

are 4 times the beam rms emittances in the x- and y - directions, respectively; s = fb ct is the

axial distance; 0 is the potential distribution generated by the beam space-charge including

image-charge effects of the cylindrical conducting pipe.

AC(S)= (B (s) (2.7)

is the focusing parameter of the alternating-gradient focusing system;

B q = Bq (s)(yex + ey ) (2.8)
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is the alternating-gradient quadrupole magnetic field with

(2.9)
(O.0) ax (s.0,O)(s..O

where S is the period of the filed, m and q are the rest mass and charge of the particle,

respectively.

K = 2q2 Nb/ 3m b 2C2 (2.10)

is the generalized beam perveance; Nb = J n(x, y, s)dxdy is the number of charged particle per

unit length along the z direction; y = (1- _ ,b2 )- is the relativistic factor of the beam.

In order to derive an explicit expression for the potential 0, we solve Poisson's equation

(2.11)

under the paraxial approximation with the boundary condition x2+y:2R =0. Using Green's

function technique, it is shown that the solution to Eq. (2.6) can be expressed as (see Appendix A)

where

O = upfee + I 'image

0 du T
fee = bq 2 + u b2 + U-m n(T')dT

!,a-·Tn 2 + 

is the free-space contribution of the beam,

20
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(2.13)

V20= X2 2 Y2I a2 b



(2.14)
ds + dT

0),mag: =;rabq '2 s b2 S fn(T )dT - 2 In- n(T)dTI-0 ja 0 0~~~~
is the image-charge contribution from the cylindrical metal pipe, and the function T is defined

by

X2 2
T= 2 +

a2 +u b2 +u
(2.15)

and the function T, is defined by

with

and

2 2
I a X Y1

T a2 + -,a2 +s fr +s

R2x

x + y2

R2y
x 2 + y2 - (2.18)

The space-charge terms in the envelope equations (2.2) and (2.3) can be simplified by using

Eq. (2.7)-(2.10). The results are

Kx D = Nq(JI ee + Iimage)= Nbqx +I (2.19)

and

ay =N (bq( + Iymae ) (2.20)

21
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where

Jfree =
x 3 + 

and

I free _ Y

x+y

are the space-charge contributions in free space [12], and

Image = 2)21 1 42N
1=1 R 4 1

and

i 2 (a2 _ 2 )21-1

1=l 1

are the image-charge contributions from the cylindrical conducting pipe. Here,

N, _21!2_i)2 1J [12 rabn(p2 ) 21+IdJ L12 2n(?2) dp12

N [=2 2
N 2 4fn(p2 ) 3d 21

(2. 25)

is a multiple momentum factor related to the beam density profile.

Substituting Eqs. (2.19)-(2.25) into Eqs. (2.2) and (2.3), we obtain the envelope equations of

the following form

2X [(X 2 2 2 l -1 2

ds 2 +q(s)X - 2K N (2.26)
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and

d2 -Kq(s)Y-2K l + (y2 X2Y 1 (2.27)
X+Y R=R

where X = 2 = 2 (x) and Y=2 =2 = 2y )

Unlike the previous results obtained by Allen and Reiser [14]-[16], which include only the

I = I contribution, the present envelope equations (2.21) and (2.22) are complete, including both

the = contribution and all of the higher-order image-charge effects with 1 2 2.

2.3 RMS matched beams

In this section, we investigate numerically the image-charge effects on a matched beam using

the analytical results obtained in Sec. 2.2, and show that for vacuum phase advance v, < 90 , the

higher-order image-charge effects on the matched beam envelopes are negligibly small for all

beams with arbitrary beam density profiles with elliptic symmetry (including hollow density

profiles) as well as for arbitrary small apertures (including beams with large aspect ratios).

Special attention is paid to a hollow beam observed in a recent heavy ion beam experiment [19].

The multiple momentum factor N. contains the information about the higher-order image-

charge effects in the envelope equations (2.26) and (2.27). We can assess these effects by

evaluating N. as a function of 1. In particular, we consider the following parabolic density

profile 0

23



n + 8o 1-3 '+ T , a <,
n = °i xa2 2 ) ] x2 y2 < (2.28)

x2 Y2
0, + > 9

a2 b2

where

Nb = In dxdy = rabno =constant, (2.29)

and ino is independent of x and y and satisfies the inequality - no < n0 < no/2.

In Eq. (2.28), the parameter nI0 = 0 means that the beam density is a constant across the beam

profile; The parameter &no > 0 indicates that the beam density decreases monotonically from the

center of profile to its edge and represents a Gaussian-like beam profile; The parameter in0 < 0

implies that the beam density increases monotonically from the center of beam profile to its edge

and represents a hollow beam profile such as that observed in the heavy ion injector experiment

at LBNL [19].

Using Eq. (2.28), we obtain the simplified expressions for the envelopes

I 1/2X=a (- g) (2.30)

and

Y=b - g) (2.31)

where
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nog=
no

(2.32)

Substituting Eqs. (2.28) and (2.29) into Eq. (2.25), we obtain

N=-2( (21)! y20 1 211-2gl/(1+3)72
4t(1!)2 l-0.5g 1+1

(2.33)

Note in Eq. (2.33) that NI = /8 = 0.125 is independent of the factor g.

Figure 2.2 shows a plot of N, as a function of I for three cases corresponding to g = 0, 0.5,

and - 0.5. In Fig. 2.2, Nl = 0.125 for all three cases, as expected. For 1 > 2, however, the value

of N, decreases with increasing 1 and depends strongly on the factor g (i.e., on the choice of

the density profile). In addition, for a given value of 1 > I, N, increases with g; that is, the

value of N, is lower at g = -0.5 than at g = 0.5. However, this does not necessarily mean that

the image charge effects of a hollow beam are weaker than those of a solid beam because the

0.15

0.10

N,

0.05

n nn
I*0 1 2 3 4 5

I

Figure 2.2 Multiple momentum
and -0.5.

factor N, versus I for the density in Eq. (2.32) with g =0, 0.5,
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beam envelopes X and Y given by Eqs. (2.30) and (2.31) increase considerably with decreasing

g. The physics of image charge effects is contained in X and Y. Obviously, the values of X

and Y are higher at g = -0.5 than at g = 0.5, which implies that the image charge effects of a

hollow beam are stronger than those of a solid beam.

For present purposes, we assume that the rms emittances £x and y are assumed to be

constant, i.e., £x = y = £, and that the beam density profile is given in Eq. (2.25). We also

assume that the alternating-gradient transport system is presented a step-function lattice (in Fig.

2.3) defined by

cq (S) =

+ K, 0 < sS < 0.25q,

0, 0.25 < s / S < 0.5(1 - 0.5q),

- Sqo, 0.5(1- 0.57) < s/ S < 0.5(1 + 0.57) , (2.34)

0, 0.5(1+ 0.5q) < s / S < 0.5(2 - 0.57),

+ KqO, 0.5(2 - 0.577) < s / S < 1,

+KqO

Kq 0

-KqO

s/S

Figure 2.3 Step-function lattice Kq (s) versus s for q = 0.5.
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where KqO is a constant and q (0 < q < 1) is the filling factor of the quadrupole focusing field.

The strength of the alternating-gradient focusing field can be measured in terms of the vacuum

phase advances, which are defined as

so+S ds,+S
avx, =ex a2( s) and a =y J b2 (). (2. 35)

For ex = y = E the two vacuum phase advances are equal so we define the vacuum phase

advance a =avx = av . For step-function lattice defined in Eq. (2.34), the vacuum phase

advance av satisfies [8]

cos av = cosh q1 (cos ( - 2 sin ,1 )+ q2 sinh {01 (cos D1 - 0.5f2 sin ( ), (2.36)

where

i = O.5Sqrl (2.37)

and

l-17
tp2 - tpI. (2.38)

'7

In the numerical analysis of the beam envelope equations (2.26) and (2.27), it is convenient to

use the dimensionless parameters and normalized variables defined by = s/S, a = X/S-e,

b= Y/S-, K= KS/e, =R/I[i, and Kq(s)=S 2 q(s). For example, Fig. 2.4 shows the

matched beam envelope functions Ja(s) = a(s + S) and b(s) = b(s + S) with a = 800, K = 10,

7 = 0.5, and g = -0.5 for beam propagation in free space as well as in a cylindrical conducting

pipe with R = 4.0. It is evident in Fig. 2.4 that the image-charge effects, including the
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Figure 2.4 Beam envelopes and b vs s/S for two case: R = 4.0 (cylindrical-conducting-pipe

case) and R = oo (free-space case) with t v = 800 , = 10, 7 = 0.5 and g = - 0.5.

contributions from all orders, are negligibly small for a hollow beam whose maximum envelopes

are very close to the wall of the cylindrical pipe (m, = b, = 3.25 and R = 4.0 ).

We have carried out comprehensive numerically studies of the image-charge effects on the

matched envelope functions for different beam density profiles, including beams with large

aspect ratios. The numerical results show that for vacuum phase advance a, < 90 , the total

image-charge effects, including higher-order ones, do not affect significantly the matched beam

envelopes for arbitrary beam density profiles with elliptic symmetry and arbitrarily small

apertures (conducting pipes).

2.4 Mismatched beams and envelope instabilities

In a real device, it is difficult to obtain a precisely matched beam because there exist some

perturbations on the beam propagation. These perturbations may cause beam envelope
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instabilities, and the unstable beam envelopes may result in particle losses. A perturbation on the

matched beam results in a mismatched beam in the alternating-gradient focusing system. The

beam envelope instability has already been investigated in free space 0-[24]. However, the

image-charge effects of the cylindrical conducting pipe on the mismatched beams and the beam

envelope instability have not been studied until the present work. In this section, the envelope

equations (2.26) and (2.27) are solved, assuming e£ = y = e, for slightly mismatched beams to

determine the unstable regions in the parameter space.

In order to obtain slightly mismatched beam envelopes, following the method employed in

Ref. 0, the initial conditions for ia(s) and b(s) at s = 0 are chosen to be

a(O) = ao( + ) (2.39)

and

b(O) = bo(l - ), (2.40)

where da and b0 are the matched beam envelopes at s = 0 and is chosen to be in the interval

of 0 < I <0.01. Here, represents the perturbations caused by the noise in the beam.

Therefore, the initial perturbation to the matched beam envelope is assumed to be as small as 1%.

In the numerical calculations, the particle beams are allowed to propagate over 40 periods.

Further increasing the number of the propagation periods does not affect the determination of the

unstable regions.

Figure 2.5 is a plot of K = KS I£ versus a, showing the unstable regions of the slightly

mismatched beam envelopes in both the free-space and cylindrical-conducting-pipe cases for

= 0.5, a / R = 0.9, and g = -0.5. As can be seen from Fig. 2.5, both unstable regions for the
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Figure 2.5 The unstable regions of the slightly mismatched beam envelopes in both the free-
space and cylindrical-conducting-pipe cases for 1} = 0.5, ao I R = 0.9, and g = -0.5. The solid
lines indicate the boundary of the unstable region (which is shaded) in the cylindrical conducting
pipe (i.e., with image-charge effects), and the dashed lines represent the boundary of the unstable
region in free space (i.e., without image-charge effects).
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Figure 2.6 Oscillations of the beam envelope a(s) for both the free-space and cylindrical-

conducting-pipe cases at K = 10.0 and (Yv = 120° corresponding to a point in Fig. 2.5 where the
beam envelopes in free space are unstable but the beam envelopes in the cylindrical conducting
pipe are stable.
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free-space and cylindrical-conducting-pipe cases start around a v = 900. The solid lines indicate

the boundary of the unstable region with image-charge effects from the cylindrical conducting

pipe, whereas the dashed lines represent the boundary of unstable region without image-charge

effects in free space. The unstable region with image-charge effects is shaded in Fig. 2.5.

Although the lower boundaries for both cases almost coincide, there is an observable difference

between their upper boundaries. The unstable region for the cylindrical-conducting-pipe case

(i.e., with image-charge effects) is obviously narrower than that in free space (i.e., without

image-charge effects).

Figure 2.6 shows the oscillations of ia(s) for both the free-space and cylindrical-conducting-

pipe cases at K = 10.0 and av = 120°, which corresponds to a point in Fig. 2.5 where the beam

envelopes in free space are unstable but the beam envelopes in the cylindrical conducting pipe

are stable. Figure 2.7 shows the oscillations of (s) for both the free-space and cylindrical-

conducting-pipe cases at K = 10.0 and a, = 130°, which corresponds to a point in Fig. 2.5

where the envelopes are unstable in both free space and the cylindrical conducting pipe. Figure

2.7 indicates that the instability growth rate for the beam envelopes in free space is greater than

that in the cylindrical conducting pipe. The results for free space agree with those obtained by

Qian and Davidson in Ref. [20], in which they showed an unstable region for 90° < a < 1700. It

should be mentioned that the unstable regions are not sensitive to 7 and g for the case of a

cylindrical conducting pipe, which is similar to the fact that the instability in free space is

insensitive to q7 and g as noted by Qian and Davison [8].
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Figure 2.7 Oscillations of the beam envelope (s) for both the free-space and cylindrical-

conducting-pipe cases at K = 10.0 and a, = 130° corresponding to a point in Fig. 2.5 where the

beam envelopes are unstable in both free space and the cylindrical conducting pipe.

2.5 Summary

The rms beam envelope equations (2.26) and (2.27) were derived and analyzed for unbunched

intense charged-particle beams in an alternating-gradient focusing field and a cylindrical

conducting pipe. For beams with elliptic symmetry all higher-order image-charge effects from

the cylindrical pipe were expressed in terms of so-called multiple moment factors in the rms

beam envelope equations, and the multiple momentum factors were evaluated. Numerical results

showed that for vacuum phase advance a, < 90° , the higher-order image-charge effects on the

matched and slightly mismatched beam envelopes are negligibly small for all beams with

arbitrary beam density profiles with elliptic symmetry (including hollow density profiles) as well

as for arbitrary small apertures (including beams with large aspect ratios). However, the main
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unstable region for the beam envelope evolution with image-charge effects, which occurs for

90 < a,, < 270 , depending on the value of the normalized beam intensity SK / , was found to

be narrower than its counterpart without image-charge effects.
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Chapter 3

Test-Particle Studies of Image-Charge Effects in a Small-Aperture

Alternating-Gradient Focusing System

3.1 Introduction

In Chapter 2, we concluded that the image-charge effects are negligibly small on the beam

envelopes and do not introduce collective instabilities in the regions of operation with a, < 90 .

The purpose of this chapter is to show that image-charge effects induce a new mechanism for

chaotic particle motion, halo formation and particle losses in small-aperture alternating-gradient

focusing systems.

Two key mechanisms for emittance growth and beam loss have been studied using analytical

models [8][14]-[30] and self-consistent simulations with particle-in-cell (PIC) [8][31]-[33] and

Green's function techniques. It has been shown in the test-particle model that chaotic particle

motion and halo formation occur when the root-mean-squared (rms) beam envelopes have a

sufficient large mismatch in a constant focusing channel [30] or when the beam density is

sufficiently nonuniform in an alternative-gradient focusing channel [8]. Until the present analysis

[34][35], however, most published analytical results on beam halo formation have been based on

free-space models in which wall (image-charge) effects on halo formation have been ignored.

In particular, use is made of a test-particle model to investigate the dynamics of rms matched

intense charged-particle beams propagating through an alternating-gradient quadrupole magnetic

field and a small-aperture cylindrical perfectly conducting pipe [34][35]. The elliptical cross-
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section of the beam and the circular cross-section of the cylindrical conducting pipe are

incorporated. While the present model allows for nonuniform beams with elliptic symmetry, the

effects of image charges on halo formation are illustrated with a uniform (KV) beam distribution

[10]. It is shown that the image-charge-induced fields are nonlinear, that they induce chaotic

particle motions and halo formation, and that they cause significant beam losses as the aperture

decreases.

3.2 Test-particle models and assumptions

We consider an rms-matched, continuous, intense charged-particle beam propagating in the

longitudinal direction through an alternating-gradient quadrupole magnetic field in a perfectly

conducting cylindrical pipe with radius R. The motion of an individual test particle in the

applied and self fields are described by the orbit equations in Cartesian coordinates [36]

d se (B l selj B appled e lied)ZP eE " -- v-(i + B , ]+- v(B + B& , (3.1)
dt ,c C

d P ze E self +I I V elf + Ba appli ed )1 (3.2)
ct = L C C j

d TL.+ se I VBll +B applied) V (Bsel B appliedZie E: -y(B sel -v B v(3.3)

Here, the particle momentum p(t) and particle velocity v(t) = dx(t)/dt are related by

p(t) = y(t)mv(t), where y(t) = Jl + p2(t)/mc 2 , is the relativistic mass factor.

In the paraxial approximation of a unbunched beam, the conditions
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p2 >>p2 +py2 and v _ 1 <<1
2 - mc2/Zie flb

(3.4)

are satisfied. We approximate

dpx dy d2x d2x
= my x_n --_m (3.5)

dt xdt dt2 dt2

Neglecting spread in the axial velocity about v, = pz/Tn, we further approximate vz _ /,bc and

Yr Yb = /I-fib 2 . We make similar approximations in Eqs. (3.2) and (3.3). Under these

approximations, Eqs. (3.1) - (3.3) reduce to

d _ Z ieE self
dt ybm

d2 y Ze self

dt 2 Ybm L

- I (Byse '

C

1

C 

+ B applied I dy (B self
+ c dt -

+ B7P'i)- e)V (B se
C

d2 z

dt2

The applied alternating-gradient quadrupole magnetic field is periodic in the axial direction

with periodicity length S and is defined as [see, also Eqs. (2.8) and (2.9)]

BaPPlied (X, y,s) = Bq(s)(yex + xey), (3.9)

where

B,(s) = B, (s
ay I(sO)( ax Isoo)
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is the quadrupole field gradient, (x, y) is the transverse coordinates measured from the beam axis,

and s = flbct is the axial distance.

The beam density is assumed to have elliptical symmetry, i.e.,

n=n+a2 b2n-n b--+2 . (3.11)

Under steady-state condition (ala/t = 0), the space charge and axial current of the beam produce

an self-electric field,

E""J (x) = -VO(x), (3.12)

and a self-magnetic field,

(3.13)

In terms of the beam density nb (x), Poisson's equation for 0(x) is given by

Vl
20(x) = -4zZien b(x) . (3.14)

For an elliptical beam in a perfectly conducting cylindrical pipe, the potential has been

obtained (see Appendix A)

= -abq|2
o Vk

ds

+sXb2
n(T)dT

0~ 
(3.15)

+ ab([, J ds Ti
a 2t sXb2 +'S 21n R)Jn(T )dT],

kr0

T= +Y
a2 +s b2 +s
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T- a2 + Yt
a 2 +s b+s

(3.17)

with r = (x2 + y2)l '2 x = R2x/(x2 + y2), yl = R2y/(x2 + y2), and the periodic beam envelope

functions a(s) = a(s + S) and b(s) = b(s + S) obey the envelope equations (2.26) and (2.27).

Since the beam has been assumed to have negligible axial velocity spread. The magnetic self-

potential is determined approximately by

V2 As f (x) = - 4 :Z ielJbnb(x). (3.18)

Comparing Eq. (3.14) with Eq. (3.18), we find

A se' (x)= Ae tf (x)e = flb(x)e, (3.19)

Substituting t = s/ibs, Eqs. (3.9), (3.12) and (3.13) into Eqs. (3.6) and (3.7) yields

d2 x _ Zie ab0
ds 2 ymabc 2 Ax

ZieBq

rbmbc
(3.20)

and

d 2y _ Zie ao+ ZieBq
ds 2 Ymbc 2 ay ybm ~bc

(3.21)

where 0 is given by Eq. (3.15).

It is convenient to introduce the abbreviated notation

ZieBq (s) Zie rB )
Kq (S)=TBrs rm/,c2 [,) y ;(s.O.O)

(3.22)

The transverse equations of motion, (3.20) and (3.21), can then be expressed in the compact form

as
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d2 x Zie af
dS2 +q(S)X + 32c2 ax =0 (3.23)

d 2y Zie a (3.24)
ds' (S) Y + i 0 y =. (3.24)

ds 2 q y m/322 a-y

3.3 Chaotic particle motion, halo formation and particle losses

While the present model allows for nonuniform beams with elliptic symmetry, the effects of

image charges on halo formation are illustrated with a uniform (KV) beam distribution [36], as

discussed in Sec. 3.1. We consider an rms-matched continuous beam with a uniform density

profile propagating in the longitudinal direction through an alternating-gradient quadrupole

magnetic field in a perfectly conducting cylindrical pipe with radius R.

For the KV beam, the beam density profile is expressed as

n = + < 1,

SnO' a2 + b2 2 < 1 (3.25)
0, 2+ > 1.

a2 b2

where no = Nb/mb b.

Making use of the analytical results in Eq. (3.15), an analytical expression for the scalar

potential is obtained in Appendix B for the assumed uniform-density profile. The results are
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2 rabqn ) IR ____Ibqno x_ Y + 2zaabqn 2+o ln a+b2+ ~lj-1n(a+b)-n b )-n 
a+b LX 2+ y

x2 b2 + + y2 a2 + R4
(a2 + + b2 + t 2 +Xb2 ) (X2 + y)2

2 2
x? yfor -+ <1;
a2 b2

(3.26)

= -2Jabqno n( a2 ++ b2+)-ln(a+b) + X / a 2 +

2 boa +b2 +
+ 2mabqno l( + N+)-ln(a+b)-x In + y

x24b2 ±++ y 2 4 a2 +; R+ :
(a + + b2 + (a2+ Xb2+ ) (x2+ y2)2

x2 Y2
for -+ >I .

a2 b2

(3.27)

In Eqs. (3.26) and (3.27),

1 [R4 -(a2 + b2Xx2 + y2)
2(x2 + y2)

(3.28)

-+- Ry82- -b2 - y2 )R + (a2 -b2 2 + 2 a b]

1[ 2 y a 2 b2)2 + 4(b2 x2 +a2y2 2)] (3.29)

For the KV beam, the periodic beam envelope functions a(s) = a(s + S) and b(s) = b(s + S)

obey [18]

d 2a Ir( +a(a 2-b2a lN a E
ds2 +a 2 +R4l 3

(3.30)
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and

d 2 b I (b(b2 2 (3.31)
dS q~41 63 a+b R 41 b--T '

where N, = (2 /l)[r(l + )/ (l + 2)]2 with r(x) being the standard Gamma function. Equations

(3.30) and (3.31) are readily derived from Eqs. (2.26), (2.27) and (3.25).

In the paraxial approximation, the transverse equations of motion for an individual test particle

in the uniform-density beam can be expressed as [36]

d 2 x +I(S)X+ m ao =' (3.32)

d2y q ao-d- Kq(S)Y + 0 , (3.33)ds ( 3m6 n2c 2 ay

where 0 is defined in (3.26) and (3.27).

In the numerical studies discussed in the reminder of this section, it is important to specify

initial conditions for the test-particle motion that are consistent with the assumed beam density,

which is accomplished by the particular choice of an initial distribution function [8] at s = so ,

fb (x, y, x', y, So) = NbS(W - 1)/Z2 E£y, (3.34)

where x' = dx/ds, and W is the variable defined by

x2 (ax - xa) 2 y2 (by' yb )2 (3.
a2 2; +~ 2

Here, a, a', b, and b' denote the "initial" values at s = so.

For the KV beam distribution, as the conducting pipe radius goes to infinity, the image charge

fields vanish. Therefore, in the free-space case, the self fields have a linear dependence on x and
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y within the beam boundary x2/a2 + y 2 /b 2 = 1. The equations of motion reduce to uncoupled

Hill's equations, and the particle orbits are confined within the beam envelope, provided the

latter is stable.

As the conducting pipe radius gets close to the beam envelope, the fields become nonlinear

due to the image charge on the conducting pipe. The particle orbits are non-integrable, and can

become chaotic. A test-particle simulation module is added to the existing two-dimensional

Periodically Focused Beam (PFB2D) code for studies of the test-particle dynamics. Equations

(3.32) and (3.33) are solved numerically, where the periodic a(s) and b(s) are obtained

numerically from the envelope equations (3.30) and (3.31). The code uses the standard IMSL

Runge-Kutta integration routine [37]. For the results discussed below, a sufficiently low error

tolerance of 10-4 is used in the simulations. We have benchmarked our numerical results against

the published results for the free-space case in [8].

The mechanism of beam loss is best illustrated by the phase space structure for the test-

particle motion in the plane (x,x') as shown in Fig. 3.1, where the Poincar6 surface-of-section

plots for the trajectories of 21 test particles are demonstrated for two cases: (a) free-space

(Rk R/ = oo ) and (b) R = 4.5. In the simulations, we use a periodic step-function lattice

with filling factor 77, as shown in Fig. 2.3. The system parameters are 7 = 0.5, a, = 80.0° ,

KS/e = 10.0 and e =e =y = , which correspond to those in the planned High-Current

Experiment (HCX) at LBNL [38].

For these parameters, the maximum value of the normalized envelope is a(O)/1-e _ 3.25.

Forty one and twenty nine test particles are loaded uniformly at s = so =0 in the intervals

- 2.0 < x' < 2.0 and - 1.32 < x' < 1.32 along the x'- axis in Figs. 3.1(a) and 3. 1(b), respectively.

42



1.0

-1.0

-2.0
-2.0

2.0
(b)

-1.0 0.0
x/a

1.0 2.0

1.0

x~
~ 0.0-~

-1.0

-2.0
-2.0 -1.0 0.0

x/a
1.0 2.0

Figure 3.1 Poincare surface-of section plots of test particles propagating over 1000 lattice periods
in the phase plane (x, x') for two cases: (a) free-space R = 00 and (b) R = 4.5. The system
parameters are chosen to be TJ = 0.5, O'v = 80.00

, KS / c = 10.0 and ex = cy = c . Forty one and

twenty nine test particles are loaded uniformly at S = So = 0 in the intervals - 2.0 $ x' $ 2.0 and
- 1.32 $ x' $ 1.32 along the x' - axis in (a) and (b), respectively.
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Because all of the test particles have (y(O), y'(O))= 0, their trajectories remain in the phase plane

(x,x'). As shown in Fig. 3.1 (a), well inside the beam with Wx < 1 the motion is regular,

whereas there is a chaotic sea bounded between W = I and an outer Kolmogorov-Arnold-Moser

(KAM) surface [39] at x/a = 1.7 for the free-space case with R = oo. This chaotic sea is fully

connected; that is, a particle in the chaotic sea will fill out the entire region if it travels for a

sufficiently long distance. As the conducting pipe radius R decreases, the conductor wall

intersects the chaotic sea as shown in Fig. 3.1 (b), in which case the particles in the chaotic sea

will eventually strike the wall.

It should be pointed out that as the conducting pipe radius R decreases, the image effect on the

dynamics of a beam with the KV distribution is subtle, as illustrated in Fig. 3.2. In Fig. 3.2 the

transverse energy Wx(s) = (x/a)2 + (ax'/£)2 is plotted as a function of the axial distance s for 50

test particles loaded at s = so = 0 on the beam boundary Wx (0) = 1 in the phase space with the

initial phases 00 = tan-L[(S / £)2 a(O)x'(O)/x(O)] uniformly distributed from 0 to r/2 for two

cases: (a) free-space (R = oo ) and (b) R = 4.5. The system parameters are chosen to be the same

as in Fig. 3.1. For the free-space case, the motion is stable, and the transverse energy is

conserved for all of the test particles. As R decreases to R = 4.5, some test particles become

chaotic due to the nonlinear force of the induced image charge on the wall, and the transverse

energies of these particles are no longer constant. As a result, these particles can gain energy and

escape from the beam interior into the chaotic sea, striking the wall eventually. Figure 3.2(b)

shows that some of these particles can form halo in less than 100 lattice periods and hit the wall

in 300 to 400 lattice periods.
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(a) R = 00

KS/£= 10.0

(b) R = 4.5

KS/£= 10.0

Figure 3.2 Plots of Wx vs s for 50 test particles in two cases: (a) free-space (R = R/.J£S = 00 )

and (b) R = 4.5 . The system parameters are the same as in Fig. 3.1. The test particles are initially
loaded uniformly at s = So = 0 with phase ~o ranging from 0 to !i12 on the beam boundary

[x(O)ja(O)f + [a (O)x'(O)jef = I in the phase space.
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In order to determine the outermost Kolmogorov-Amold-Moser (KAM) surface of the beam

core as illustrated in Fig. 3.1, the range of W for various initial conditions is plotted on the plane

(W', x/a). In Fig. 3.3, the range of transverse energy W, = x2/a2 + (ax'- xa')2/E2 is plotted for

test particles propagating over 2000 lattice periods for two cases: (a) free-space ( = R- = oo )

and (b) R = 3.8. The system parameters are chosen to be the same as in Fig. 3.1. The 115 test

particles are loaded uniformly at s = so = 0 in the interval 0 < Wx 1.15 along the x'- axis. As

shown in Fig. 3.3(a), the outermost Kolmogorov-Arnold-Moser (KAM) surface for the beam

core in the free space case is located at x/a = 1.03 which is slightly outside the beam boundary.

There is a continuum of KAM surfaces for x(O)/a(O)_ <1.03, where Wx is conserved. The

particles inside the beam core have regular motion and cannot escape to form a halo. As the

conducting pipe radius R decreases, the conductor wall intersects the chaotic sea. Furthermore,

the image force induced by the conductor wall becomes important and the KAM surface for the

beam core moves inside the beam interior, reaching x/a = 0.96, as shown in Fig. 3.3(b) for

a = 3.8 . In this case some particles inside the beam core will escape to form a halo and

eventually strike the wall.

The locations and evolution of the chaotic particles are illustrated in Fig. 3.4, where the

transverse energy Wr is plotted for 2000 test particles loaded at s = 0 on the beam boundary

Wx(0) = 1 in the phase space with the initial phases 00 = tan- [(S / )1 2 a(O)x'(O)/x(O)] uniformly

distributed from 0 to 2 for the same system parameters as in Fig. 3.1(b). Those test particles

with initial phases in the intervals 0 b0< 0. Dlr, 0.9zr 5 0 1. r , and 1.9;r _ 0 < 2r are

regular and remain inside the beam with W _1. The other test particles are chaotic and gain

energy. Some of the chaotic particles in Fig. 3.4 strike the wall after tens of periods. An example
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of such a chaotic particle is illustrated in comparison with a core particle in Fig. 3.5, where W is

plotted as a function of s for two test particles with initial phases: (a) 00/r =0 and (b)

0 /z = 0.35, which correspond to a halo particle and a core particle, respectively.

20.

15.

:10.

5.

0.

x(o)/a(o)

20.0

15.0

:10.0

5.0

n 

' .0 0.2 0.4 0.6
x(O)/a(0)

0.8 1.0

2

1.2

Figure 3.3 Plots of the range of Wx for test particles propagating over 2000 lattice periods for

two cases: (a) free-space R = oo and (b) R = 3.8. The system parameters are chosen to be
q = 0.5, a, = 80.00, KS/e = 10.0 and e, = , = E . The 115 test particles are loaded uniformly

at s = so = 0 in the interval 0 < W < 1.15 along the x' axis in phase space.
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0.5 1.0

Ob/r

0.5 1.0

O./)

1.5 2.0

1.5 2.0

Figure 3.4 Plots of W for 2000 test particles with the same system parameters as in Fig. 3.1(b)

at two axial locations (a) s/S = 50 and (b) s/S = 100. The test particles are initially loaded

uniformly at s = s =0 with phase 00 ranging from 0 to 2 on the beam boundary

W x(0) = [x(O)/a(0)]2 + [a(O)x'()/£] 2 = I in the phase space.
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s/S

Figure 3.5 Plots of Wx vs s for two test particles with initial phases (a) 0 /r =0 and (b)

0/x = 0.35 for the same system parameters as in Fig. 3.1(b).

3.4 Parametric studies

In this section, we study the sensitivity of chaotic particle motion, halo formation and beam

loss on the system parameters: the filling factor of the quadrupole focusing field, the vacuum

phase advance, the beam perveance, and the ratio of the beam size to the aperture. Furthermore,

we calculate the percentage of beam loss to the conductor wall as a function of propagating

distance and aperture.

As the vacuum phase advance a, decreases, the regular region of particle motion decreases,

which means that for smaller vacuum phase advance a, more particles are in the chaotic sea and

can form halo. As shown in Fig. 3.6 the outermost KAM surface location relative to the beam
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boundary decreases with increasing vacuum phase advance for two cases: (a) a/R = 80% and (b)

a/R = 85% with 77 = 0.5, KSe/£ = 10.0, and e= =y =.

However, the rate of the halo production decreases as the vacuum phase advance decreases.

The locations and evolution of the chaotic particles are illustrated in Fig. 3.7, where the

transverse energy Wx (s / S = 50) is plotted for 2000 test particles loaded initially at s = so = 0 on

the beam boundary Wx (O) = I in the phase space with the initial phases

0= tan-l[(s /e)'21a(O)x'()/x(O)] uniformly distributed from 0 to 2 for two cases: (a)

a, = 60° and (b) a = 800. Those regular particles remain inside the beam with Wx -1, while

the other test particles are chaotic and gain energy with Wx > . At s / S = 50, Fig. 3.7 shows that

more halo forms with Wx > at a, = 800 compared with the situation at a, = 60° .

1.00

0.95

x 0.90
x

0.85

n on

.... .... i ... . . . . . .i .i ....

- a/R=85%

.--- a/R=80%
, 0A 60 6 70 7 8 85 90-

. ... . . . . . . I . . . .

.O60 65 70 75 80 85 90
a v (deg)

Figure 3.6 Plots of the outermost KAM surface location XKM /a of the beam core as a function

of the vacuum phase advance a for = 0.5, KS/E = 10.0, e = y = e, and two cases: (a)

aIR = 80% and (b) a/R = 85%.
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Figure 3.7 Plots of W, vs 00 for 2000 test particles at axial distance s/S = 50 for = 0.5 ,

KS/£ = 10.0, E,_ = e, = £, and two cases: (a) a, = 60°, and (b) a, = 80° . The test particles are

initially loaded uniformly at s = so =0 with phase 40 ranging from 0 to 2z on the beam

boundary W (0) = I in the phase space.
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Figures 3.8 and 3.9 show the dependence of halo formation and chaotic particle motion on the

filling factor of the quadrupole focusing field. As the filling factor of the quadrupole focusing

field decreases, the regular region of particle motion decreases, which means that for smaller

filling factor of the quadrupole focusing field more particles are in the chaotic sea. However, the

rate of the halo production decreases as the filling factor of the quadrupole focusing field

decreases. This is illustrated in Fig. 3.9 where the halo for 7 = 0.2 is more pronounced than that

for qr=0.8 at s/S =50.

Figures 3.10 and 3.11 show the dependence of halo formation and chaotic particle motion on

the beam perveance. As the perveance increases, the regular region of particle motion decreases,

which means that for high intensity beam, more particles are in the chaotic sea. The rate of the

1.00

0.95

co

- 0.90x

0.85

n on
V'.0 O 0.2 0.4 0.6 0.8 1.0

'1

Figure 3.8 Plots of the outermost KAM surface location XM /a of the beam core as a function

of the filling factor of the quadrupole focusing field q7, for KS/e = 10.0, eX = ey = e, o, = 800

and two cases: (a) a/R = 80% and (b) aIR = 85%.
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Figure 3.9 Plots of Wx vs 00 for 2000 test particles at axial distance s / S = 50 for KS/e = 10.0,

Er = E, = E, orV = 800 and two cases: (a) = 0.2 and (b) q = 0.8. The test particles are initially

loaded uniformly at s = so =0 with phase 00 ranging from 0 to 2 on the beam boundary

Wx (0) = 1 in the phase space.
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Figure 3.10 Plots of the outermost KAM surface location XM /a

of the scaled perveance K = KS/e for =0.5, = =£y =£,

a/R = 80% and (b) a/R = 85%.
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Figure 3.11 Plots of W vs 00 for 2000 test particles at axial distance s/S = 50 for 7 = 0.5,

a, = 80°, E£ = ey = £, a/R = 85% and two cases: (a) KS/£ x = 5.0, and (b) KS/£x = 15.0.
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Figure 3.12 Plots of the percentage of particles striking the conductor wall as a function of
propagation distance for q = 0.5, ar = 80.00, KS/£ = 10.0, e£ = y = and several choices of

-R/VJ. Here, 10000 test particles with the KV distribution initially are used in the
simulations.

55

4.C

3.(

~ 2.C

1.C

rfu.u
0.0



halo production increases as the beam intensity increases. This is illustrated in Fig. 3.11 where

the halo for KS/e x = 15.0 is more pronounced than that for KS/£x = 5.0 at s/S = 50.

Finally, the beam loss is computed as a function of propagation distance and conducting pipe

radius. As an example, the results are shown in Fig. 3.12 fort = 0.5, av = 80.00, KS/e = 10.0,

Ex = y = X, o, = 80° , and four choices of the conducting pipe radius with R ' = 3.8,

3.9, 4.0, and 4.5. The critical value of R for the outermost KAM surface adjacent to the beam

core to penetrate the beam is estimated to be R = 5.5; that is, XKAM = a at R = 5.5. In another

words, when the pipe radius is chosen to be bigger than R = 5.5 i.e., a/R = 60%, no beam loss

occurs. The beam loss rate increases with the decreasing pipe radius, where the image effects

play a more important role in the total space charge force. When the maximum beam envelope

fills 86% of the conducting pipe, the beam loss reaches 8% at s = O000S. Although the results

shown in Fig. 3.12 are based on the test-particle calculations, they provide order of magnitude

estimates for the actual beam losses, which are being studied using self-consistent simulations

[31][38] (also see Sec. 4.3).

3.5 Summary

We have shown, using the test-particle model in a small-aperture alternating-gradient focusing

system, that image-charge effects induce a new mechanism for chaotic particle motion, halo

formation, and particle loss in intense charged-particle beams. This mechanism occurs for well-

matched beams with the ideal Kapchinskij-Vladimirskij (KV) distribution. The halo formation

and beam loss are sensitive to the choices of system parameters: the filling factor of the
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quadruple focusing field, the vacuum phase advance, the perveance, and the conducting pipe

radius.

As shown in our parametric studies, the beam loss increases rapidly as the perveance of the

beam increases or as the conducting pipe radius decreases. This demonstrates that in the current

configuration, halo formation and beam loss is intrinsic of the nonlinear space-charge forces in

high-intensity charged-particle beams focused by the alternating-gradient focusing fields in

small-aperture systems. In order to eliminate halo formation and beam loss in high-intensity

charged-particle beams, one could change the system configuration to reduce the nonlinear

space-charge forces while still maintaining the high intensities of the beams.
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Chapter 4

Particle-In-Cell (PIC) Simulations

4.1 Introduction

The complex nature of the problems encountered in plasma physics and accelerator physics

has motivated considerable interest in computer simulation, which has played an essential role in

the development of plasma theory. In addition, computer simulation is also becoming an efficient

design tool to provide accurate performance predictions in plasma physics applications.

In non-neutral plasma physics, computer simulations are based on kinetic description

involving particle interactions with the electromagnetic field. The simulation model is

established either by solving numerically the plasma kinetic equations (e.g. Vlasov or Fokker-

Plank equations) or by "particle" simulation, which simply computes the motions of a collection

of charged particles, interacting with each other and with externally applied fields.

The pioneering work of Dawson and others [40]-[43] in the early 60's has shown that, when

appropriate methods are used, relatively small systems of a few thousand particles can indeed

simulate accurately collective behavior of a real plasma. Since then, the development of new

algorithms and the availability of more powerful computers, especially, parallel computation

which employs thousands of computer processors, have allowed particle simulation to progress

from simple, one-dimensional, electrostatic problems to more complex and realistic situations,

involving electromagnetic fields in multiple dimensions and up to millions of particles.

There have been extensive efforts to develop large scale, multi-dimensional, parallel and

realistic particle simulation codes for beam simulations at national laboratories and in industries

in United State, such as Track3P at Stanford Linear Accelerator Center (SLAC) [44], WARP3D
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at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National

Laboratory (LLNL) [45], ICEPIC at Airforce Research Laboratory, MAGIC at Mission Research

Corp. (MRC) [46], and VORPAL at Tech-X Corporation at Boulder Colorado [47].

In this chapter, the development of a two-dimensional electrostatic PIC code, Periodically

Focused Beam (PFB2D) at Massachusetts Institute of Technology (MIT), is discussed. The

PFB2D code is used to simulate intense charged-particle beams in small-aperture alternating-

gradient systems which were investigated theoretically in Chapters 2 and 3. The envelope

dynamics and test-particle dynamics in Chapters 2 and 3 were based on a self-similar model in

which the particles do not interact with each other, therefore, the beam distribution does not

evolve self-consistently. The present PIC simulations include those interactions and allow the

beam distribution to evolve according to the self and applied focusing fields. Despite the

numerical errors and noise in the PIC simulations, the PIC model does represent a more realistic

model of the actual system. However, in the PIC simulation studies of halo formation and beam

loss, the numerical noise makes it difficult to distinguish the difference between the noise and

halo formation and beam loss. The beam loss predicted by the PIC simulations is an order of

magnitude higher than that predicted by theory. In order to estimate the noise in the PIC

simulations, particle diffusion due to discrete macro-particle effects is analyzed [48]. In

particular, an error scaling law is derived which gives the edge emittance growth due to discrete

macro-particle effects. Moreover, the scaling law is tested in Green's function simulation and the

PIC simulations. Implications of the error scaling law in the PIC simulation studies of halo

formation and beam loss are discussed.

This chapter is organized as follows. In Sec. 4.2, the algorithms of the PFB2D code are

presented. In Sec. 4.3, the PFB2D simulation results of intense charged-particle beams in small-
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aperture alternating-gradient systems are discussed and compared to the theoretical results from

the test-particle model. In Sec. 4.4, the noise and particle diffusion due to discrete macro-particle

effects is analyzed. In Sec. 4.5, a brief summary is given.

4.2 Description of the PIC PFB2D code

The system under discussion involves charged particle dynamics in both applied and self-

generated fields. The physics comes from two parts: the fields produced by the charged particles

and external electrodes or magnets, and the motion produced by the Lorentz force. The fields are

calculated from Maxwell's equations by knowing the positions of all of the charged particles and

their velocities. The PFB2D code calculates the fields from the initial charge and current

densities, then moves the charged particles by some small distances in a small time step. It

recalculates the fields due to the particles at their new positions and new velocities. This

procedure is repeated for many small time steps.

The main differences between a laboratory plasma and a simulated plasma are that the fields

are computed on a spatial grid in the PFB2D simulations instead of as a continuous function, and

that the charged particles move discontinuously in time step by step. At each step in time, the

PFB2D code solves for the fields from the charged particles and then moves the charged

particles in a cycle, shown in Figure 4.1. In the PFB2D code the axial distance plays the role of

"time". The cycle starts at s =0, with some appropriate initial conditions on the charged

particles' positions x i and velocities vi. An example of the KV beam loading will be discussed

in Sec 4.2.1. The fields will be obtained only on the spatial grid in the plane (x, y). Typically,

the spatial grids are 32 x 32 to 512 x 512. The maximum number of grid points depends on the

machine's capacity. The fields are computed by first calculating the charge and current densities
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on the grid according to the charged particle positions and velocities with a certain weighting

scheme, which will be discussed in Sec. 4.2.3. Once the densities are established on the grid,

then Poisson's equation can be solved using finite-different method to obtain the electric field

and magnetic field. With the fields known on the grid, we interpolate the fields from the grid to

the charged particles' positions in order to apply the forces at the charged particles performing a

weighting. Finally, the charged particles are moved to the next time step according to the Lorentz

force.

Integration of the equations of motion,
Imnr ln r n2rtirlPc

Weighting
(E,B)j Fi

1 .V t. .Cu Li +xi

Fi ' Vi -- Xi

Weighting

At (x, )i - (P,J)

Integration of the field equations on grid

I P b Itq, j I

Figure 4.1 A typical one-time-step cycle in a PFB2D simulation. The charged particles are
numbered with i = 1, 2, ..., Np; the grid indices are j, which is a vector in 2 dimensions.
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4.2.1 Initial particle loading

The charged particles have to be loaded carefully according to some desirable particle

distribution f(x, v) in phase space. The number of particles Np loaded has to be large enough to

make the density variations relatively smooth, implying that there have to be, on average, a few

particles per cell where the beam resides.

For example, the initial loading distribution for a KV beam is described as [8]

fb (X, y, x, y', so) = Nb(W- 1) (4.1)

where x' = dx/ds, and W is the variable defined by

W = X2 + (a'- + Y + (by' yb')2 (4.2)

Here, a, a', b, and b' denote the "initial" rms envelope values at s = so. The particles'

locations and velocities are generated from the uniform distributed random variables defined by

x = aRt cos(2R 2 ), (4.3)

y = bJ -R cs(2aR3 ), (4.4)

x'= e R sin(2,R2 ) + a'R, cos(2,R2 ), (4.5)
a

y'= =-I -Rsin(2zR 3 )+ b'l- R cos(2R3 ), (4.6)
b

where RI, R2 and R3 are independent, uniformly distributed random variables in the interval

[0, 1]. It is readily to shown that substituting Eqs. (4.3)-(4.6) into Eq. (4.2) yields W = 1.

62



4.2.2 Boundaries and uniform rectangular mesh

In the PFB2D code, the longitudinal coordinate is divided into slices uniformly along z axis.

The spatial grid is uniformly meshed on each slice in the transverse (x, y) plane, as illustrated in

Fig. 4.2. The self fields are obtained from the charge density and current density on grid points

(xj = iAx, Yk = kAy ). The mesh size is Ax x Ay, which has to be made small enough to resolve

the details deemed necessary and to avoid numerical troubles (with a warm plasma, keeping at

least Ax > 3 D,,, where AD is the Debye length).

In real systems, we have boundaries which might take irregular geometries. As shown in Fig.

4.2, a commonly used boundary is a cylindrical perfect conducting pipe which is grounded and

has zero electric potential. Therefore, the grid points that are close to the boundary have to be

assigned zero potential. There are two methods to do the assignment for such a uniform mesh. In

the first method, we can assign zero potential to the grid points which are immediately outside

the cylindrical pipe. The other method is to assign zero potential to the grid points which are

closest to the cylindrical conducting pipe, which can be either outside or inside the pipe. The

second method is more accurate than the first method but it is more computationally intensive

than the first one. In the PFB2D, the first method is implemented.

4.2.3 Weighting and effective particle shapes

The assignment of a particle charge to its neighboring grid points proceeds with the zero-order

[nearest-grid-point (NGP)] weighting, the first order (area) weighting, and higher-order

weighting.
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Ay

j

Figure 4.2 Circular conducting pipe under a uniform rectangular mesh in the transverse (x, y)
space. The mesh size is Ax x Ay.

The zeroth-order (NGP) weighting to one grid point is the simplest. The particle charge

assignment on a grid point is obtained by counting the number of particles within the rectangular

area of Ax by Ay centered at the grid point. The particle shape is a rectangular cloud of height I

and size Ax by Ay as sketched in Fig. 4.3. The force between two grid points is discontinous

which leads to noise and self-heating, but becomes close to the physical l/r dependence at large

separation of two charge clouds. For these reasons, the zeroth-order weighting (NGP) is seldom

used.

The first-order weighting is usually called area weighting due to its geometric interpretation,

as shown in Fig. 4.4. It is still a linear interpolation. The weights are given by
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Figure 4.3 Particle shape for the zeroth-order (NGP) weighting in 2D, which is uniform inside
the shaded area of size Ax x Ay and centered at the grid point.

Ay

(X j Yk+l )

(X, Yk )

4 X

Ax

A B

C D
%, I

I(j+I Yk+I)

(X, Y)

(xj+i, Yk)

Figure 4.4 Illustration of the first-order weighting in 2D. Areas are assigned to grid points: Area
A to the grid point (xi+,,yk), Area B to the grid point (xj, Yk), Area C to the grid point

(Xj+l, Yk+ ) and Area D to the grid point (Xj, Yk+ )-
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P k P Area(B) [xj+, -x] [Yk+l - Y(47)

Pjk Area(A + B + C + D) AxAy
Area(A) [Xj+l- XIJ[Y - Y]

Pik+l = P A=DI+ ] Y (4.9)
Area(A+B+C+D) AxAy

P k+Area(C) [x-xj][y- Yk] (4.10)Pj+lk+ = P Area(AP + B + C + D (4.10)
Area(A + B + C + D) AxAy

where p is the line charge density of a (line) charge at point (x, y), and Pi,k are the weights

associated with the charge at its adjacent grid points.

Effectively, the area weighting scheme introduces a shaped particle with a gradually

decreasing "density" distribution. The particle shape can be obtained by measuring the charge

assigned to a grid point as the particle moves relative to that point. The particle contours are

shown in Fig. 4.5, indicating an improvement over the flat, rectangular NGP particle. As a result,

the area weighting scheme reduces the noise and the self-heating relative to NGP.

In the PFB2D simulations, the area weighting scheme is used because it has reduced noise and

self-heating as long as the particle density is kept large enough, usually a few particles per cell,

and it is less computationally expensive than higher-order weighting schemes.
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Fig. 4.5 Particle density contours as seen by the center grid point in area weighting in 2D. The
total particle are is 4AxAy.

4.2.4 Solutions of Poisson's equation with boundary conditions

The Poisson's equation is solved using a finite-difference method on the spatial grid. The

Poisson's equation for a 2D continuous beam inside a perfect conducting cylindrical pipe is

expressed as

a 2 2 = -4rqn(x,y), (4.11)

boundary =0. (4.12)

In the finite difference form, this becomes the five-point form

Oj+l,k - 2 0jk+Oj-. + Oj.k+ - 2 0 jk + Oj,k- = 4 (4.13)
Ay2&j~~ (4.13)

Z5
2 ay2
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,' k bounda = 0 (4.14)

for j = 1, 2, 3,..., Ng and k = 1, 2, 3,..., Ng. Here, N. x Ng is the total number of mesh cells, the

potentials on the boundary were discussed in Sec. 4.2.2, and the charge density is obtained on

grid points as discussed in Sec 4.2.3.

The finite difference form of the Poisson equation (4.13) can be written in the matrix form

Ap = p (4.15)

with the boundary conditions. This is called the two-point boundary value problem [49], which is

in general solved using relaxation methods. Iteration is in general required to meld these spatially

scattered boundary conditions into a single global solution of the differential equations.

A trial solution consists of values for the dependent variables at mesh points, which neither

satisfying the desired finite-difference equations nor fulfill the required boundary conditions. The

iteration, also called relaxation, consists of adjusting all the values on the mesh so as to bring

them successively closer in agreement with the finite-difference equations and, simultaneously,

with the boundary conditions.

Good initial guesses are the secret of efficient relaxation methods. Often one has to solve a

problem many times, each time with a slightly different value of the system parameters. In that

case, the previous solution is usually a good initial guess when the parameter is slightly changed,

and relaxation will work well.

There are number of relaxation methods. In the PFB2D code, the successive over relaxation

(SOR) method is used. In the PFB2D code, Eq. (4.13) is modified to

ai,k j+l.k + bj, kj-l.k + Cjkjk+l + djkj.kk-l + ej, kj.k = -4 pij,k, (4.16)
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where a k =l/AX2, bj.k = 1/Ax 2 ,Cjk = 1/Ay2 , djk = l/Ay 2 and ek =- 2/Ax2 - 2/Ay2. The

iterations start with an initial guess distribution 9, and the iteration is

jn,,k O = ,k -(i (4.17)
ej,k

where the residual is defined as

i, k = aJ kJ+Ik + by;k jb-.k + CkJS k+l + d k. k-l + eJkJSk - 4 P'k, (4. 18)

and o is the over-relaxation parameter. The over-relaxation parameter co is geometry dependent.

In practice, we optimize co given a particular geometry. Finally, the iteration stops as Sik is less

than a required error tolerance, typically 10- 5 .

As a benchmark, the self-electric fields are calculated by using the SOR method discussed

above for a uniform distributed elliptic beam inside a cylindrical perfect conducting pipe. As

shown in Fig. 4.6, the normalized self-electric fields E and Ey on the grid points are plotted

with marco-particles initially loaded uniformly inside an elliptic beam boundary

x2/3.322 + y2/2 2 = I, where the spacial mesh of 101x101 and 5000 maro-particles are used in

the simulation. For comparison, the self-electric fields are calculated theoretically by

differentiating Eq. (3.26) and (3.27), which are plotted in Fig. 4.7. There are excellent agreement

between the numerical calculation and the analytic solution, although the numerical results have

noises due to the discrete macro-particle charge and discrete spatial mesh which can not match

the boundary exactly.
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Fig. 4.6 (a)

Fig. 4.6 (b)

Figure 4.6 Nonnalized self-electric field for a unifonn 2D elliptic beam inside a cylindrical
perfect conducting pipe with radius R = 4.0 obtained numerically from PFB2D: (a) Ex and (b)

Ey.
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~ R=4.0

Fig. 4.7 (a)

Fig. 4.7 (b)

Figure 4.7 Normalized self-electric field for a uniform 2D elliptic beam inside a perfect
conducting pipe with radius R = 4.0 obtained analytically from Eqs. (3.26) and (3.27): (a) Ex
and (b) Ey.
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4.2.5 Particle mover

Once the fields and forces on particles are computed, the particles can be moved to the next

time step. The PFB2D code may call for 100,000 particles to be run for 10,000 time steps. This

means that the particle motion equations have to be integrated 100,000 times 10,000 = 109 times.

Therefore, the integration method has to be as fast as possible, while still maintain acceptable

accuracy. In addition, our choice of method must take into account the storage capability of the

computer we will use in terms of the number of quantities that may be kept for each particle.

Under these considerations, one commonly used integration method is called the leap-frog

method. The first-order differential equations to be integrated separately for each particle are

Vxn+l/2 -Vx'n-l/ 2 = q ,,(Ex n + Vn/2B (4.19)
At m Ex'Ky)

. Vn+l/ -2 Y q (E -l/2B:, n + Vznl2Bxn (4.20)
At m n

n+- - Xn Vx,n+/2, (4.21)
At

Ant-t- = Vy.n+I/2Y (4.22)
At

where At = As/,fbc in the 2D model and abC is the axial beam velocity. The flow of a particle's

position and velocity in time is shown in Fig. 4.7. The code pushes the velocity back to one half

time step initially at time zero; that is, it calculates V(- At/2) using the force F(t = 0) at time

zero. Then the code advances the velocity and position according to Eqs. (4.19)-(4.22).
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Velocity V-A V/2
t-&/2 ~~~~~~t+~t/2

Position x,, F X,+At, F,+, Time

Figure 4.7 Sketch of the leap-frog integration method showing time-centering of the force
F while advancing the velocity V and of the velocity while advancing the position x.

4.3 PIC simulations of small-aperture alternating-gradientfocusing systems

In this section, we apply the PFB2D code to studying the halo formation and beam loss

induced by the image-charge effects. In the simulation, the beam distribution is presented by Np

macro-particles which are generated according to the KV distribution.

To illustrate the simulation results, let us focus on the example of an intense charged-particle

beam propagating through a periodic quadropule magnetic focusing channel where the magnetic

focusing field is defined by the ideal step-function in Eq. (2.34) with system parameters

corresponding to q = 0.5, a, = 800, KS/e = 10.0, and R/f = 4.0.

As shown in Fig. 4.9, the envelopes a(s) and b(s) are plotted as a function of the axial

distance for beam propagation inside a cylindrical conducting pipe with radius R/S = 4.0.

The system parameters are chosen to be: by = 0.5, a, =800, KS/£=I 0.0 and the K-V
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distributed 100k macro-particles are loaded initially at s = 0. The solid curves are obtained from

the beam envelope equations for a matched solution and the dotted curves are the calculated

beam envelopes from the PIC simulation. The two beam envelopes are in good agreement. The

beam envelopes obtained from the PIC simulation are stable in this case. The results in Fig. 4.9

demonstrate that the image-charge effects are insignificant on the beam envelopes.

In Fig. 4.10, the centroids x and are plotted as a function of the axial distance for beam

propagation inside a cylindrical conducting pipe with radius R/ = 4.0 . The system

parameters are the same as in Fig. 4.9. Because of the choice of the finite number of discrete

macro-particles, the center of the beam is not perfectly on the z axis. However, the displacement

of the beam center from the z axis in the simulations is kept small and oscillates around the z

axis.

In Fig. 4.11, the emittances ex and y in the x - and y - directions, respectively, are plotted

as a function of the axial distance for beam propagation inside a cylindrical conducting pipe with

radius R/-' = 4.0. The system parameters are the same as in Fig. 4.9. The beam emittances

are conserved within 5% after five periods.

In Fig. 4.12, the trajectories of 5000 particles out of the 100k particles from = 0 to = 20

are projected onto the phase planes (x, y) at s/S = 0, 1, 2,..., 20 for the same beam as in Fig. 4.8.

The green circle represents the cylindrical conducting pipe with radius R/I- = 4.0 and the

purple ellipse represents the initial beam boundary x2/a 2 + y2/b2 = 1. If there are no image-

charge effects, the trajectories of the particles should be regular and remain inside the beam

boundary. However, in this case the pipe radius is small and the image-charge effects induce

significant nonlinear force on the particles. Therefore, the trajectories of the particles become
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chaotic. A halo is formed, which is represented by the layer of the particles outside the beam

boundary as shown in Fig. 4.12.

In addition, because the halo formation and beam loss depends sensitively on the choice of the

pipe radius as indicated by the parametric studies in Chapter 3, we have also investigated the

beam losses in the PIC simulations. As shown in Fig. 4.13, the beam loss percentage is simulated

with the PFB2D code for the parameter choice 1] = 0.5, Uv = 60°, KS / E = 10.0 , and

Ex = Ey = E with the pipe radius armx / R = 95.5% , where the curves are simulated with the

PFB2D code for various choices of particle numbers. The beam loss is sensitive to the macro-

particle number N p • As N p increases in the simulations, the predicted particle loss decreases. It

is apparently that the beam loss calculations in PIC simulations depend on the number of macro-

particles. Therefore, the noise in the PIC simulations with moderate particle number is

significant, which will be a subject of the investigation in Section 4.4.

4.0

CJ)

~3.5o
Q)
>&j 3.0

"0
Q)

.~ 2.5
(ij
E~
~ 2.0

- Matched Envelope
...... PIC Simulation

1.5
0.0 0.5 1.0

s/S
1.5 2.0

Fig. 4.9 The normalized envelopes a(s)/.,[iS and b(s)/.,[iS are plotted as a function of the axial

distance for beam propagation inside a cylindrical conducting pipe with radius R/.,[iS = 4.0 . The
system parameters are chosen to be: 1] = 0.5, Uv = 80°, and KS/E = 10.0, and the K-V
distributed lOOkmacro-particle are loaded initially at s =O.
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Fig. 4.10 The normalized centroid displacements xl..[iS and y1..[iS are plotted as a function of
the axial distance for beam propagation inside a cylindrical conducting pipe with
radius RI..[iS = 4.0. The system parameters are the same as in Fig. 4.9.
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Fig. 4.11 The relativeemittances e.t(s)/e(O) and ey(s)je(o) are plotted as a function of the axial

distance for beam propagation inside a cylindrical conducting pipe with radius RI..[iS = 4.0. The
system parameters are the same as in Fig. 4.9.
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Fig. 4.12 The trajectories of the particles are projected onto the cross-section phase planes (x, y)
at sf S = 0, 1,2, ..., 20 for beam propagation inside a cylindrical conducting pipe with

radius R/..JES = 4.0. The system parameters are chosen to be the same as in Fig. 4.9.
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Fig. 4.13 Plot of the beam loss percentage as a function of the axial distance for amax / R = 95.5%

T} = 0.5, (Yv = 60°, and KS/ £ = 10.0, and macro-particle number N p = 1X 105
, 2x 105

, 5x 105
,

and 1x106•
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4.4 Analysis of noise in PIC simulations

The numerical noise problem has been found to be a very important issue in PIC simulations,

as discussed in the previous sections. It causes descrepancies between the simulation results and

the theoretical results. In this section, the noise and discrepancies particle diffusion induced by

the discrete particle effects is analyzed [50]. In particular, an analytical model is presented which

describes the slow-time-scale rms evolution of the edge emittance for a perfectly matched beam

in a periodic solenoidal magnetic focusing field. A scaling law for edge emittance growth is

derived for beam propagation in a periodic quadrupole magnetic field. Furthermore, the scaling

law is verified in the self-consistent Green's function simulations and the PIC PFB2D

simulations.

4.4.1 Noise scaling law

Let us consider a continuous charged-particle beam which propagates with average axial

velocity ,bcez through a periodic quadrupole magnetic field

BY = Bq(s)[yex + xe]. (4.23)

In Eq. (4.23), s = z is the axial coordinate, Bq(S + S)= Bq(S) is the axial component of the

applied magnetic field as defined in Eq. (2.9). S is the fundamental periodicity length of the

focusing field, c is the speed of light in vacuum.

In the present two-dimensional macro-particle model, the uniform beam density is

approximated by

n(x y, s =Nb i [x - xiWsAy - i (s)], (4.24)
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where Nb is the number of charged-particles per unit axial length, Np is the number of macro-

particles per unit axial length, and (xi, yi) is the transverse displacement of the ith macro-

particle from the beam axis at (x, y) = (0,0).

Under the paraxial approximation, the transverse equations of motion for the ith macro-

particle of the beam can be expressed as

ds2 +d 2Yi-+K(S + q as"l f (xi, yiS) 0, (4.25)

ds 2 28 mc 2 axi

dS2 icy ( )Yi 2 2 ayi (4.26)

where

Mself qNb Iln[( xi -xj +i - j) ] (4.27)
Np i=l(ji)

i = 1,2,..., N y = (I - ,2 ) 2 is the relativistic mass factor, m and q are the particle rest mass

and charge, respectively, Kr = kq and Kicy = -kq with KCq(s)= qBq(s)/2rbbmc 2 being a measure

of the strength of the quadrupole focusing field, and /)self is the self-field scalar potential

associated with the beam space-charge.

For simplicity, let us first consider the Kapchinskij-Vladimirskij (KV) beam

2 2

Nbla(s5(s), X + Y_ ,
a b2

nKV (xi, Yi, S)= 2 2 (4.28)

l, + > + ,>
- Vb
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where a(s) and b(s) are the beam envelopes in the x- and y- directions, respectively. The

scalar potential for the self-electric field is given by

~ (x, y, s)= N [Xs Y )] (4.29)
KV [a(s)+b(s)] a(s) b(s)

in the beam interior. Substituting pbself (x,i , i,s)= f (x,i yi,s) into Eqs. (4.25) and (4.26), the

equilibrium particle orbits x (s) and y (s) can be expressed as [36]

Xi(s)= AW,(s)cos[fx(s)+ xi, (4.30)

i()= Ayiw(s)s= Ayi (s)sin[lvy(s)+ yil, (4.31)

where Axi, y i= ( - Axi /2, xi and ~yi are constants determined by the initial conditions,

s s

YV = Jds/wx2(s) and y, = ds/w (s) are the accumulated phases of the betatron oscillations in
0 0

the x - and y - directions, respectively, and wx(s + S)= wx(s) and wy (s + S)= wy(s) solves the

beams envelope equations

d I 2K 1 (4.32)

ds2 [Cq a(s) a (s)+b(s)]w =W' (4.32)

d2wy I 2K I
wde2re w b(s) a(s)-+ bs(s)] t W (4.33)

where wx = a/x and wx = b/y with x and £y being the unnormalized emittance of the

beam, and K = 2q2Nb/I ,b2mc 2 being the perveance of the beam.

The particle distribution function for the KV equilibrium can be expressed as
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fKV(r~y sy? N < i A2 Ay )AV (XI Y, X" A 2 I (4.34)

where (x) is the Dirac - function. Because the four-dimensional phase-space volume

element is given by

1
dxdydx'dy' = s AxAdAxdAydOPd ,, (4.35)

integrating fKv over Ay, >,, and .y yields the distribution function for Ax over a KV beam

FKV (Ax) =0Nb Ax/Vx I < Ax < ~ex, (4.36)
0, Ax > x.

Note from Eq. (4.36) that the largest concentration of particles occurs at A, = x . Also,

particles with A i = /x reach the edge of the beam with xi = a. Therefore, they are most likely

to leave the beam core under the perturbations induced by the discrete-particle effects.

In the simulations, discrete macro-particles are used which deviates from the smooth beam

density nKV (x, y, s) of the KV equilibrium. For a large number of particles the deviation is small.

Such small deviation will induce the slow-time-scale evolution of Axi(s), Ayi(s), xi(s) and

yi (s) in the particle orbits given in Eqs. (4.30)and (4.31). The deviation has the most profound

effects on the edge particles which initially have Ari (s = )/ = I and

Ayi (s = 0)/7 = [I - A2i (s = O)/£x ] 2= 0, because they are most likely to diffuse away from the

beam core.

Substituting Eq. (4.30) into Eq. (4.25), we obtain
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Axi W. cos[te + Ox,i]+ 2A, iw, cos[W + ID ,i- 2(A w, +]- 2( A, wx + i )sin[Vq + ox]

+Ax, w x(f + i )2 cos r + gi] + Axw cos[Vx + xi,j]- AWx sin[r x + xiy]x + 'i)

= -KAxiWx cosV + -Ki K aseIf
2 qN b x,

(4.37)

Taking into account the slow dependence of A, and x , omitting the second-order

differentiations Ax,, oD, Ax,,x, and using = /w2, we express Eq. (4.37) as

coS[x + gxi][2Ax'iw - Axi .- Axi(W~'- iqWx - 2 )]-2sin[ + oxi][ + AxiwVoi]+C~I xi] [22Axiwx -AWx w: -kw xi

K ase'
2 qN b aXi

(4.38)

Making use of Eq. (4.32), we reduce Eq. (4.38) to

cos[ +x ]A'w Axi-'i ]-sin[V,+,i] - + Ax'i+Ai.xw'x qN ax, - ]selfj

(4.39)

It is evident in Eq. (4.39) that Axi = if 0 = v I

Let us examine the particle orbits carefully, focusing on

xi (s)= A Wx (s)cos[x (s)+ ox,]. (4.40)

The orbit oscillations occur at two different time scales. One is the envelope oscillations with the

same period as the magnetic focusing field S, and the other is the betatron oscillations with the
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s+S

period 2S/ar., where a Jfds/wx is the phase advance. The diffusion process is slower than
S

both types of the orbit oscillations. To derive a closed set of equations for the slowly varying

variables Axi and c'xi, we take an averages of Eq. (4.39) over the faster envelope oscillations

and then an average over the betatron oscillations, respectively. The independent differential

equations which determine the slowly varying variables A and ,xi (see Appendix C) are

ds 2E,XNp i=lii) < +' (4.41)ds f--xNP j=(j-i) b jC.

d4x K K N, Cjb-Bjcj
ds 2£~ a~iixN~p ~ +C c(4.42)

ds 26x A NPj=l(jwi) bj 2 + c 

where

Bj = A- x 2 sin Axj (4.43)

Ci = IK AL AXJ cosA4 (4.44)

A. 4,A A2.a= _ i cosAxj + + (4.45)
2e x EX 2£x 2E,

bj = (Axi J Axj cos sin[2, + 2A], (4.46)
2 x 2e =-(x-Ajco i 2e 2

Ci (A - Axjcos Axj )Axj sin A j+ sin[2A, + 2Aj], (4.47)
EX 2E
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with A,, -={y -g, Axj -xj -xi, and Ayj -= yj -,xi. Results in Eq. (4.41)-(4.47) are the

generalization of those in [50] from a periodic solenoidal focusing channel to a periodic

quadropule magnetic focusing channel.

In the following derivation, use is made of the dimensionless variables and normalized

parameters defined by = s/S, £=xJS, 9= yx/ S , =ay/ S ,/, =b/ S ,

A.i = Ax,/ , KAy = Ay,/ fy, = S2'Kq and K= SK/£ . Using Eq. (4.41) and (4.42),

detailed dynamics of the edge particles initially with A, = I and Ayi =0 is analyzed. In

particular, we investigate the diffusion of the edge particles which can be regarded as a measure

of the numerical noise in PIC simulations. The variane = (i - (Axi ))) is used to describe

the diffusion process quantitatively, where the average is taken over the particles that are initially

located on the beam boundary with Axi = 1 and A,,i = O0. Let us compute the expectation value of

d2 r2/ds 2 = 2((A - d(Ax 5)/d4 ) (4.48)

where the second derivative of Ai, is omitted because of the slow dependence of Axi. Averaging

Eq. (4.48) over all possible beam distributions which approach the KV distribution when

N - oo, then

K Axi = ( -K| b + c2 fKv(, j xj,.S, xjdd9dxjd 9a) =0, (4.49)
Ad& (.s=o)=i / Ar (s=O)=I

K d- P iB b + ,j fKv j.sY s',Y) jd;jd'sdp; (4.50)
d9 Np b2 + 2Axi(S-O)t Pi A' c,=
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Therefore, the expectation of the variance is

ar tg)-O a" U)= D, (4.51)

where the "diffusion" coefficient is defined as

D = : N ' (4.52)

with

1 ,b, + Cyck ) ( x S>d5jd' d' ) . (4.53)
b + c i

Using the Monte-Carlo method, we estimate t = 0.5 ± 0.3. In a particular beam simulation, the

value of At depends on geometry and numerical scheme. In general, the coefficient 5 is slightly

higher for the Green's function simulations than for the PIC simulations.

In dimensional units, the edge emittance error scaling law is given by

edg (S) K2s 2

ed 1 = ( O (4.54)

where : = 0.5 + 0.3.

Since the derivation of Eq. (4.41) and (4.42) does not require the explicit form of the focusing

magnetic focusing field B(s), Eq. (4.41) and (4.42) are valid for an arbitrary periodic magnetic

focusing channel. This result is also applicable for a beam propagating through a periodic

solenoidal magnetic focusing channel, as discussed previously in [50]. To revisit the derivation

in [50], let us consider a continuous circular charged-particle beam which propagates with

average axial velocity fibce: through an axisymmetric periodic solenoidal magnetic field,
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B = B z(sz)e - d z [Xex + ye]
2 ds

(4.55)

In Eq. (4.55) s = z is the axial coordinate, Bz(s + S)= Bz(s) is the axial component of the

applied magnetic field. S is the fundamental periodicity length of the focusing field, c is the

speed of light in vacuum.

Under the paraxial approximation, the transverse equations of motion for the ith macro-

particle of the beam can be expressed as

ds2 ds ds

d2y _2 sdx, d/~(s)i
ds2 ds ds

q a sse' (xi, i, s) 
d/2m 2 axi

q asef (Xi , yi, s) = O
yafmc 2 y i

where i = l, 2,..., Np, / (s)= qBz(s)/2b,bmc2 is a measure of the strength of the solenoidal

magnetic focusing field.

Introducing a "time"-dependent rotating frame (Larmor frame) defined as

3x(s) = x(s)cos[p(s)]- y(s)sin[q(s)] (4.58)

y(s)= x(s)sin[q(s)]+ y(s)cos[p(s)] (4.59)

where

q(s)= k(s s.
.s0

The equations of motion can be written in the Larmor frame as

d2~ z y , q qse (, Yi S) 
_~T + IC, (s)3~, /2Mc ds: dpRmcA a~,

(4.60)

(4.61)
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ds2 rbbmc =0. (4.62)

The equilibrium particle orbits i (s) and Yi (s) can be expressed as [36]

x (s) = Ai w(s)cos[yt(s) + xi ] (4.63)

Yi (s) = Ay iw(s)sinjy(s)+ Dyi ] (4.64)

where A, A =(1-i A2i/ , I. and yi are constants determined by the initial conditions,

tv = e lds/r,2 (s) is the accumulated phase of the betatron oscillations, and w = rb(s)/I solves
0

the beam envelope equation

K 1
w + (s)rw -- 2 = (4.65)

with being the unnormalized emittance of the beam.

Taking w = w, = w, Vtx = y = i, a = b = r, and e£ =Xe =y = £, we follow the derivation as

we presented earlier in this subsection for the beam propagating through a periodic quadrupole

magnetic focusing channel to obtain the same scaling law for beams propagating through the

periodic solenoidal magnetic focusing channel, as expressed in Eqs. (4.54).

4.4.2 Verification of the noise scaling law in Green 'sfunction simulations

To verify the noise scaling law in Eq. (4.54), we first review the results from the self-

consistent Green's function simulations for periodic solenoidal magnetic focusing channels [50].
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In the simulations, a first set of Np macro-particles is loaded corresponding to the KV

distribution, a second set of N, (usually N, < N ) macro-particles is loaded with A = 1,

Ayi = 0 and xi ranging uniformly from 0 to 2z. Then the edge emittance edge (S) is calculated

on the second set of edge particles and D is calculated. As the beam propagates through the

channel, the Np macro-particles in the first set of interact with each other, whereas the second

set test particles experience the electric and magnetic forces imposed by the particles in the first

set.

The simulations of a high-intensity circular beam propagating through the periodic solenoidal

magnetic focusing channel are performed. In the simulations,

Ax(= xir b )2 (4.66)

is tracked for the second set of edge particles which have initially Ai =1, Ayi =0 and

( ranging uniformly from 0 to 2r, and the expectation value of a2 over the test particles are

readily computed. Results are summarized in Fig. 4.13-4.15. In Eq. (4.66), [b = ¢4 and

= w'd- are solved from the beam envelope equation (4.65).

The periodic magnetic focusing channel in the self-consistent Green's function simulations is

defined by

() = [a0 + a, cos(2)] 2f. (4.67)

Figure 4.14 shows a plot of 0'2/S2 versus the propagation distance s^ = s / S obtained from the

self-consistent Green's function simulation. The choice of system parameters in Fig. 4.14
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corresponding to N =1024, N =512, K =0.5 , and R. defined in Eq. (4.67) with

a0 = a, = 0.648. Due to small residual correlation in the initial distributions of test particles and

background macro-paticles, the value of a2/g2 is large for < 1. As the beam propagates, the

residual correlation decays rapidly, and the value of a2/S2 approaches a plateau for > I, where

the diffusion coefficient is calculated to be D = 1.0 x 10-4 (t = 0.4), as indicated by the dashed

line. As the beam propagates further through the focusing channel, the plateau levels off because

the test particles become widely spread about Axi = 1.

The scaling law is verified by varying marco-particle number Np and peaveance K in the

self-consistent Green's function simulations. Figure 4.15 shows a logarithmic plot of D versus

K obtained from self-consistent Green's function simulations for beam propagation through the

same periodic focusing channel as in Fig. 4.14. In Fig. 4.15, the number of background macro-

particles is kept at a constant value of Np = 1024. The dotted curve is from the self-consistent

simulations, whereas the solid line is the fitting curve according to the analytical result D = aK2,

where a is fitted to be a = /Np = 3.5 x 10-4 ( = 0.35).

In Fig. 4.16, the diffusion coefficient D is plotted as a function of Np, as obtained from self-

consistent simulations of beam propagation through the same periodic focusing channel in Fig.

4.16 for a fixed value of K = 0.5. The dotted curve is from the self-consistent simulations,

whereas the solid line is the fitting curve according to the analytical result D = fI/Np, where i

is fitted to be #B = 2 = 0.12 ( = 0.48 ). In comparison with Fig. 4.15, data fluctuations in Fig.

4.16 are larger because the initial distribution changes as Np is varied.
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Fig. 4.15 Log-Log plot of D versus obtained from the self-consistent Green's function
simulations with the choice of system parameters corresponding toNp = 1024, N, = 512, and

kR defined in Eq. (4.67) with a = a, = 0.648.
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Fig. 4.16 Log-Log plot of D versus N obtained from the self-consistent Green's function

simulations with the choice of system parameters corresponding to N, = 512, K = 0.5 and .

defined in Eq. (4.67) with a = a, = 0.648.

To conclude, it is evident in Fig. 4.15 and 4.16 that the Green's function simulations results

are in good agreement with the analytically predicted scaling law discussed in Section 4.4.2.

4.4.3 Verification of the noise scaling law in PIC simulations

We have derived the noise scaling law based a generalization of the previous derivation for the

periodic solenoidal magnetic focusing channel on the Green's function simulation model. The

present derivation is shown that the noise scaling law is also valid in the self-consistent PIC

simulations of intense charged-particle beams propagating through either a periodic solenoidal

magnetic focusing channel or a periodic quadrupole magnetic focusing channel.
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The only difference between self-consistent Green's function simulations and self-consistent

PIC simulations is in the calculation methods of the self-potential. In Green's function simulation,

the self-potential is calculated according to the discrete macro-particles by using Eq. (4.32),

while in PIC simulation the self-potential is calculated on the grid points according to the

weighted average of discrete macro-particles using Eqs. (4.13) and (4.14). The self-potential

calculation in both simulations is essentially the same except that in PIC simulations the effects

of discrete macro-particles are smoothed out on the grid points. Therefore, the noise scaling law

is valid for PIC simulations with a slightly smaller diffusion coefficient .

To verify the scaling law, self-consistent PIC PFB2D simulations have been carried out for the

periodic solenoidal magnetic focusing channel (see Figs. 4.17 - 4.18) and for the periodic

quadrupole magnetic focusing channel (see Figs. 4.19 - 4.20), using the same process described

in Section 4.4.2.

The scaling law is verified for an intense charged-particle beam propagating through a

periodic solenoidal magnetic focusing channel. PIC PFB2D simulations are performed by

varying macro-particle number Np and peaveance K. Figure 4.17 shows a logarithmic plot of

D versus K obtained from self-consistent PIC PFB2D simulations for beam propagation

through the periodic solenoidal magnetic focusing channel with the other system parameters

corresponding to N = 100k, Nt = 1024, and K, defined in Eq. (4.67) with a = a, = 0.648.

The dotted curve is from the self-consistent PIC PFB2D simulations, whereas the solid line is the

fitting curve according to the analytical result D = K2 , where a is fitted to be

a= /Np= 2.7xl0-6 ( = 0.27).

92



In Fig. 4.18, the diffusion coefficient D is plotted as a function of Np, as obtained from self-

consistent PFB2D simulations of beam propagation through the periodic solenoidal magnetic

focusing channel with the other system parameters corresponding toN, = 1024, K = 0.5 and k.

defined in Eq. (4.67) with a = a, = 0.648. The dotted curve is from the self-consistent

simulations, whereas the solid line is the fitting curve according the analytical resultD = fl/Np,

where /8 is fitted to be ,8 = $2 = 0.079 ( = 0.32). It is evident in Fig. 4.17 and 4.18 that the

PIC PFB2D simulation results are in good agreement with the analytically predicted scaling law

discussed in Section 4.4.2. The diffusion coefficient : is slightly smaller in the PIC PFB2D

simulations than that in the self-consistent Green's function simulations.
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Fig. 4.17 Log-Log plot of D versus K obtained from the self-consistent PIC simulation for an
intense charged-particle propagating through a periodic solenoidal magnetic focusing channel
with the system parameters corresponding to Np = 100k, N, = 1024, and k, defined in Eq. (4.67)

with a = a = 0.648.
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Fig. 4.18 Log-Log plot of D versus Np obtained from the self-consistent PIC simulation for an

intense charged-particle propagating through a periodic solenoidal magnetic focusing channel

with the system parameters corresponding to N, = 1024, K = 0.5 and k, defined in Eq. (4.67)

with a = a = 0.648.

The scaling law is also verified for an intense charged-particle beam propagating through a

periodic quadrupole magnetic focusing channel. PIC PFB2D simulations have been performed

by varying marco-particle number Np and peaveance K. Figure 4.19 shows a logarithmic plot of

D versus K obtained from self-consistent PIC simulations for beam propagation through the

periodic quadrupole magnetic focusing channel. The periodic quadrupole magnetic focusing

channel is defined by the ideal step-function

I (S) =

+ qo 0< s S < 0.25r7,

0, 0.257 < s/ S < 0.5(1 - 0.5i7),

- Kqo, 0.5(1 - 0.57) <s / S < 0.5(1 + 0.577), (4.68)

0, 0.5(1 + 0.5) < s I S < 0.5(2 - 0.5r7),

+ Kqo, 0.5(2- 0.5q) < s / S < 1,
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Fig. 4.19 Log-Log plot of D versus obtained from the self-consistent PIC PFB2D simulation
for an intense charged-particle propagating through a periodic quadrupole magnetic focusing
channel with the system parameters corresponding to N = 100k, N, = 1024, a, =500 and
q =0.5.
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Fig. 4.20 Log-Log plot of D versus N obtained from the self-consistent PIC PFB2D
simulation for an intense charged-particle propagating through a periodic quadrupole magnetic

focusing channel with the system parameters corresponding to N = 1024, K = 0.5, a = 500 and
7 = 0.5.
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The system parameter choice is corresponding to Np = 100k, N, = 1024, a, = 50° and 7 = 0.5.

The dotted curve is from the self-consistent PIC PFB2D simulations, whereas the solid line is the

analytical result given by D = aRT2 , where a = /Np = 3.2 x 10- 6 ( t = 0.32 ).

In Fig. 4.20, the diffusion coefficient D is plotted versus Np, as obtained from self-consistent

simulations of beam propagation through the periodic focusing channel with the system

parameters corresponding to N, = 1024, K = 0.5, a, = 500 and 7 = 0.5. The dotted curve is

from the self-consistent PFB2D simulations, whereas the solid line is the analytical result given

by D = fl/N, where f =$2 =0.068 ( =0.27). It is evident in Fig. 4.19 and 4.20 that the

PIC PFB2D simulation results verify the noise scaling law for an intense charged-particle beam

propagating through a periodic quadrupole magnetic focusing channel.

4.5 Summary

To summarize, a self-consistent PIC simulation code, Periodically Focused Beam (PFB2D),

has been developed. The algorithms used in the code are discussed. Such a code is used to

simulate intense charged-particle beams in small-aperture alternating-gradient systems which

were investigated theoretically in Chapter 2 and 3. PIC PFB2D simulation results on the beam

envelope are consistent with the envelope equations solutions, and PIC simulation results on the

halo formation are consistent with the test-particle results. However, due to the numerical noise

in PIC simulations, the beam loss predicted by PIC PFB2D simulation is an order of magnitude

higher than that predicted by the theory, which led to the an analysis of noise in PIC simulations.

In order to resolve the numerical noise problem, an error scaling law for the edge emittance

growth and particle diffusion due to the discrete macro-particle effects has been derived for the
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periodic magnetic quadrupole focusing field. The error scaling law is valid for both the periodic

solenoidal magnetic focusing channel and the periodic quadrupole magnetic focusing channel. In

addition, the error scaling law is tested in the self-consistent Green's function simulations and

self-consistent PIC PFB2D simulations. The simulation results show good agreement with the

error scaling law. The error scaling law will provide a useful guide in determining the fidelity of

self-consistent PIC or Green's function simulation studies of halo formation and beam loss,

which is a very important aspect in the design of high-power accelerators and beam systems.
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Chapter 5

Cold-Fluid Theory of Equilibrium and Stability of a High-Intensity

Periodically Twisted Ellipse-Shaped Charged-Particle Beam

5.1 Introduction

High-intensity ribbon (thin sheet) beams are of great interest for applications in particle

accelerators, such as storage rings and rf and induction linacs, as well as vacuum electron

devices, such as klystrons and traveling-wave tubes with periodic permanent magnet (PPM)

focusing. They have the following remarkable properties. First, they can transport large amounts

of beam currents at reduced intrinsic space-charge forces and energies. Second, they couple

efficiently to rectangular rf structures. The combination of the space charge reduction and

efficient coupling allows efficient rf generation in vacuum electronic devices, and efficient

acceleration in particle accelerators. Third, elliptic beams provide an additional adjustable

parameter (e.g., the aspect ratio) which may be useful for better matching a beam into a periodic

focusing channel, such as an alternating-gradient magnetic quadrupole focusing channel.

Although ribbon beams have been discussed in the literature for decades, the equilibrium of a

high-intensity, space-charge-dominated beam with a large-aspect-ratio elliptic cross section has

not been discovered until the present work. Sturrock [51] first suggested use of a periodic

magnetic focusing consisting of an array of planar-wiggler magnets for rectilinear beams. Zhang,

et al [52] had some modest success in the experimental demonstration of the transport of a low-

intensity (10 A, 500 kV) sheet beam in a planar-wiggler magnetic field, and observed

considerable beam loss. Researchers made use of the multiple-time-scale analysis and the
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paraxial approximations to obtain the smooth-beam approximation of high-intensity ribbon-beam

equilibria [531-[56]. In the smooth-beam approximation, the effects of the planar-wiggler field

[51], [52], or the periodic cusp magnetic (PCM) field [53], [54], or the hybrid of PCM and

periodic quadrupole magnet (PQM) fields [55], [56], or the offset pole PCM field [56] are treated

as some averaged focusing constants in the transverse directions. While the smooth-beam

approximation yields simple results, the multiple-time-scale analysis requires time averaging,

losing the detailed information about the beam dynamics. As a result, it does not provide

adequate information about how to generate high-intensity ribbon beams in practice.

A widely used tool for the determination of evolution of the charged-particle beam systems is

based on the rms beam description. The construction of self-consistent beam distributions with

linear focusing forces is discussed in Ref. [57] and [58], such as Kapchinskij-Vladmirskij

equilibrium [10], [69], [59], [60] in an alternating-gradient quadrupole magnetic focusing field

and the periodically focused rigid-rotor Vlasov equilibrium [61], [62] in a periodic solenoid

magnetic focusing field. For ultrahigh-brightness beams with negligibly small emittance, a cold-

fluid theory can be used to examine the detailed information about the beam dynamics,

especially the evolution of the density and flow velocity profiles [63]-[65], such as the cold-fluid

corkscrewing equilibrium [62], [63] in a linear focusing channel consisting of solenoidal and

quadrupole magnetic focusing fields.

In this chapter, we present a cold-fluid equilibrium theory of an ultrahigh-brightness, space-

charge-dominated, large-aspect-ratio elliptic beam propagating through a non-axisymmetric

periodic magnetic focusing field. A paraxial cold-fluid model is employed to derive generalized

envelope equations which determine the equilibrium flow properties of ellipse-shaped beams

with negligibly small emittance. A matched envelope solution is obtained numerically from the

99



generalized envelope equations, and the results show that the beam edges in both transverse

directions are well confined, and that the angle of the beam ellipse exhibits a periodic small-

amplitude twist. Two-dimensional (2D) particle-in-cell (PIC) simulations with our Periodic

Focused Beam 2D (PFB2D) code show good agreement with the predictions of equilibrium

theory as well as beam stability [65].

The organization of the present chapter is as follows. In Sec. 5.2, the cold-fluid equilibrium

theory of a periodically twisted ellipse-shaped charged-particle beam is presented, and the

generalized envelope equations are derived. In Sec. 5.3, two-dimensional particle-in-cell

simulations of the equilibrium and stability of elliptic beams are discussed. The equilibrium

theory is further verified using 3D OMNITRAK which computes the particle trajectories self-

consistently. In Sec. 5.4, the designs of periodically twisted ellipse-shaped charged-particle

beams for various applications are presented. In Sec. 5.5, a brief summary is given.

5.2 Cold-fluid equilibrium theory

We consider a high-intensity, space-charge-dominated beam in free space, in which kinetic

(emittance) effects are negligibly small. The beam can be adequately described by cold-fluid

equations. In the paraxial approximation, the steady-state cold-fluid equations for time-stationary

flow (a/st = 0) in cgs units are [61], [62]

ACfa nb +V 1 (nbhV)=O, (5.1)

V2 b = -'V. Az = -4qnb, (5.2)
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abb +v vqnbf eext' n(5t3nh(b·· AC 'L)V = V_ b [_ V 0 +#iz xBox + VL xs.-6s ] (5.3)

where s=z, x =xex+yey, VL =a/)XL, q and m are the particle charge and rest mass,

respectively, n is the particle density, V1 is the transverse flow velocity, Yb = ( - f2'/2 is the

relativistic mass factor, use has been made of ft = VZ / c _- 8h = const, c is the speed of light in

vacuum and the self-electric field Esef and self-magnetic field Bself are determined from the

scalar potential and vector potential A:, i.e., Ese'f = -V,_b and Bsel' = V1 x A=:,.

For the beam dimensions small relative to the characteristic scale of magnetic variations, i.e.,

(koxx)2 /6<<l and (kyy)2/6<< , a three-dimensional (3D) non-axisymmetric periodic

magnetic field can be described to the lowest order in the transverse dimension as

BeX' (x) B[k° ( cos(kos)xk, +kycos(kos)yy -sin(ks) (5.4)
k k° ' '

Y

x

Fig. 5.1 Laboratory and twisted coordinate systems.
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where ko = 2/S, k + koy = ko2, and S is the axial periodicity length. The 3D magnetic field in

Eq. (5.4) is fully specified by the three parameters B o, S and ko,, /koy.

We seek solutions to Eqs. (5.1)-(5.3) of the form

Nb Y
nb(xl, s)= Iau(s)b(s) O' - a2 (S) b2(S)]. (55)

VI(xss)= lu(s) - aX(s)yI/bceX + Ly,(s)y + ay(s)xibY . (5.6)

In Eqs. (5.5) and (5.6), xl = x-~ + 5ye is a transverse displacement in the twisted coordinate

system illustrated in Fig. 5.1; (s) is the twist angle of the ellipse; (x)=l if x>0 and

O(x) = 0 if x < 0; and the functions a(s), b(s), Ux (s), y (s), a (s), ay (S) and (s) are to be

determined self-consistently.

Making use of the results in Eq. (3.26), we express the self-electric and self-magnetic fields

for an elliptical beam with density distribution specified in Eq. (5.5) as

¢= 8A= , , A:b (5.7)
a+b a b)

In obtaining (5.7) from Eq. (3.26), we have omitted the image charge contribution, because the

beam is in free space. Substituting Eqs. (5.5) and (5.6) into Eq. (5.1) and expressing the result in

terms of the tilde coordinates, we obtain

(8x +Y a b ) ( a' b2 +Fta xa2 b Y)b2
y( 2 b ax b (5.8)

+ - +'++ b I a 'Y a2 'b2 =(0,
a b a a. - b , b a 2 b 2
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where prime denotes a/as, and the relations '= y~ ' ,' =-9' , e'=-, la/s=e ' and

ae/as = -e' have been used. Since Eq. (5.8) must be satisfied for all and y , the

coefficients of the terms proportional to 1, X23, y2 and yb must vanish independently.

This leads to the following equations

1 da
,#x =_ (5.9)

a ds

1 db

IY b ds (5.10)

dO a2ay - b2a,
(5.11)

ds a2 - b2

The force balance equation Eq. (5.3) represents two equations, one in the direction e and the

other in the e directions. Substituting Eqs. (5.4)-(5.7) into Eq. (5.3), the two equations can be

expressed as

fx +gy = o, (5.12)

g.x + fyy =0, (5.13)

where

fr = Cx2 +/u - a.xa + ( - a )'- 2K 2J-, sin(ks)ay + ; -k sin(20)cos(kos),
(a + b) ko

(5.14)

~f, = ,2 +' , (ax _- ay 2K ko2x-k sin(2 )cos(ks),f =-/ + 2 -axa - ( x - y )-(' 2sin(ks)a + H Ix ysin(2)cos(kos),
.(a + b) k-

(5.15)
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6 + k y sin2
ko

cos(kos) - 22-zoux sin(ks),

(5.16)

gy =-ax +x - y ) - 4X ' oy )kx " 2 oC 2 .-k°' css2 24 co8(kOs)+ 2zusin(kos).ce sin kcos,(. 17
(5.17)

Since Eq. (5.12) and (5.13) must be satisfied for all and y, the coefficients of the terms

proportional to and y must vanish independently, which lead to

fx =0,

fy =0,

gx =0,

gy =0.

(5.18)

(5.19)

(5.20)

(5.21)

Substituting Eqs. (5.9)-(5.11) into Eqs. (5.18)-(5.21), we obtain the following generalized

envelope equations

d a _b2a (°rx, 222 2 2 ) 2 °d2 a ab2(, -2axay)+ a (ks)sin(2)_ 2Oy
ds2 a2 b 2 + - kcos(ks)sin(2)-LST - ko

sin(kos a - = 0,
a+b 0,

(5.22)

a2 ( - 2axay )+ b2a 
a2 -b2

+O k x -k, cos(kos)sin(20)+ 2[.t a x
ko sin(ks)lb 2Ka+ 0,

(5.23)

d (a2y)_ab3(a -ay) d (b)2oCOS(koS )ds - a2 -b 2 ds b
ko2x cos2 9 + koy sin2 a2 _ 24X/ a da sin(kos)= 0,

k ds(5.24)
(5.24)
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a3bd i)2d ( )-2 o S (k 0 2sin2 +koy cos26 2 dbA-(2a)-y- 24i7cos(ks) c b2 -244 ,Obdbsin(kos)=O,
ds a2 -b 2 ds a ds

(5.25)

dO a2 ay - b2ax
(5.26)

where

_ _ ~o2q2Nbzo 2 /*cqB and K - 3m2 (5.27)

Equations (5.22)-(5.26) have "time" reversal symmetry under the transformation

(s, a, b, a', b', a,,a, ) (- s, a, b,-a',-b',-x ,-ay, 9). This implies that the dynamical system

described by Eqs. (5.22)-(5.26) has the hyper symmetry plane (a',b', ax,ay).

A numerical module in the PFB2D code has been developed to solve the generalized envelope

equations (5.22)-(5.26). There are, in total, seven functions a(s), b(s), a'(s), b'(s), ax(s),

a x (s) and O(s) to be determined. The time reserval symmetry of the dynamical system requires

the quantities (a',b',ax,ay) vanish at s=0 for matched solutions. Therefore, only the three

initial values a(0), b(O) and (0) corresponding to a matched solution need to be determined

with Newton's method. Detailed numerical results will be presented in Sec. 5.4.

5.3 PIC simulation and OMNITRAK simulation

The beam equilibria predicted by the generalized envelope equations are verified by 2D PIC

simulations using the PFB2D code which is described in Chapter 4. In the PFB2D simulations,

we use the paraxial field in Eq. (5.4), typically 5x105 particles, a square grid with 400x400
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cells, and a square conducting pipe with a full width which is 3 times the semi major axis of the

beam. Such a square conducting pipe is sufficient to assume nearly free space propagation in

which the image-charge effects are negligibly small. The results simulated by the PIC PFB2D

code are in excellent agreement with the solutions of the generalized envelope equations. In

addition, in PIC simulations, the density profile is measured and it remains uniform density

profile as it evolves along time. We will demonstrate the PIC simulation for each design of the

elliptic beams in Sec 5.4.

OMNITRAK [66], a commercial software produced by Field Precision, is a 3-dimensional

self-consistent particle trajectory code which is used to study charged-particle orbits and

collective beam physics in electric and magnetic fields. OMNITRAK is used to simulate a space-

charge-dominated beam of large-aspect-ratio elliptic cross-section propagating in a non-

axisymmetric periodic permanent magnet focusing field. The simulation results confirm

theoretical predictions in the paraxial limit. We will present the 3D OMNITRAK simulation of

an intense elliptic beam for a ribbon-beam amplifier in Sec. 5.4.1 [65].

5.4 Designs of periodically twisted ellipse-shaped charged-particle beams

High-intensity periodically twisted elliptic beam equilibria exist over a wide region of

parameters ranging from the nonrelativistic to relativistic regimes. As examples, three potential

applications are listed in Table 5.1. The nonrelativistic elliptic beam corresponds to a beam

design for a high-efficiency 200 W ribbon-beam amplifier (RBA) which is being developed at

Massachusetts Institute of Technology (MIT) and Beam Power Technology proposed for

wireless communications. The mildly relativistic elliptic beam is proposed for a high-power,
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high-efficiency RBA for radar applications. The relativistic elliptic beam is proposed to be used

in a 10 MW L-Band ribbon-beam klystron (RBK) for the International Linear Collider (ILC).

Table 5.1 System parameters for elliptic-beam examples
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Parameter Nonrelativistic Relativistic Relativistic

Wireless Missile International

Application Communication Defense Linear Collider

Frequency (GHz) 1.95 2.8 1.3

RF Power (kW) 0.2 (cw) 500 (pulsed) 10,000 (pulsed)

Current (A) 0.11 18.5 85.5

Voltage (kV) 2.29 45.0 198.5

S (cm) 1.912 2.626 2.2

kox/koy 1.60 1.44 1.52

B0 (kG) 0.337 1.099 2.40

a/b 6.0 4.0 5.0

a (cm) 0.373 0.585 0.425

,Omax (deg) 10.4 11.5 8.8



5.4.1 Design of a nonrelativistic elliptic beam

As an example of a nonrelativistic elliptic beam, we consider a beam with voltage

Vb = 2290 eV, current I b = 0.11 A, aspect ratio a/b = 6, and a non-axisymmetric periodic

permanent magnet focusing with Bo = 337 G, S = 1.912 cm, and koy/kox = 1.6 (see Table 1,

Column 2). For such a system, the matched solution of the generalized envelope equations

(5.22)-(5.26) is calculated numerically as shown in Figs. 5.2(a)-5.2(c) (solid curves) with the

corresponding parameters: ko0 = 1.90 cm-' , ky = 3.03 cm- ' , = 1.04 cm-' , and

K = 1.52 x 10-2 . The solution to the generalized envelope equations (5.22)-(5.26), displayed as

solid and dashed curves in Fig. 5.2, shows that the semiaxes of the elliptical beam remain almost

constant with small oscillations, that the orientation of the ellipse twists periodically with an

amplitude of ten degrees, and that the normalized rotation flow velocities ax and a, oscillate

with the magnet periodicity. It is worthwhile pointing out that the normalized velocities ui, uy,

ax and ay vanish at s =0 which makes it a natural matching point for a parallel-flow elliptic

beam from an elliptic diode [64].

Shown in Figs. 5.2(a) and 5.2(b), the dotted curves are the envelopes and angle of the beam

ellipse obtained from the PFB2D simulation for the nonrelativistic elliptic beam. In the

simulation, the emittance is set to be negligibly small in order to demonstrate the cold-fluid

approximation. As shown in Fig. 5.2, there is excellent agreement between the theoretical

envelope solution (solid curves) and the self-consistent PIC simulation results (dotted curves).

The PFB2D simulation also shows that the transverse beam distribution preserves the

equilibrium profile as it propagates. In Fig. 5.3, 5,000 particles (a sample of the 5 x 105 particles
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in the PFB2D simulation) are plotted in the planes (x, y) and (x, dy/ds) for five snapshots within

one period: s/S = 9.0, 9.25, 9.5, 9.75 and 10.0 for the same elliptic beam shown in Fig. 5.2. This

also suggests that the beam equilibrium is stable.

The 3D OMNITRAK is used to further simulate the nonrelativistic elliptic beam. The

OMNITRAK simulation results further confirm theoretical predictions in the paraxial limit [65].

There is small discrepancy between the analytic envelope solution and the OMNITRAK

simulation in the envelope oscillations, which is due to a small mismatch induced by 3D effects.

The small mismatch can be eliminated by making slight adjustments to the envelope solutions,

via an iterative procedure using OMNITRAK simulations.
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Figure 5.2 Plots of (a) envelopes a(s) and b(s), (b) twist angle O(s) O(s), and (c) normalized

rotational velocities b(s)ax(s) and a(s)ay(s) versus the axial distance s for the nonrelativistic

twisted ellipse-shaped beam in Table I (Column 2). The solid and dashed curves are the
generalized envelope solution, whereas the dotted curves are from the PFB2D simulation.
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Figure 5.3 Plots of 5,000 particles (a sample of the 5 xl 05 particles in the PFB2D simulation) in

the planes (x,y) and (x,dyjds) for five snapshots within one period: sjS=9.0, 9.25, 9.5,
9.75 and 10.0 for the same elliptic beam shown in Fig. 5. 2.
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Figure 5.4 3D OMNITRAK simulation of the nonrelativistic twisted ellipse-shaped beam in
Table I (Column 2).
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Figure 5.5 Plots of (a) envelopes a(s) and b(s), (b) twist angle (s) versus the axial distance s
for the nonrelativistic twisted ellipse-shaped beam in Table 1 (Column 2). The solid and dashed
curves are the generalized envelope solution, whereas the dotted curves are from the 3D
OMNITRAK simulation.

5.4.2 Design of a relativistic elliptic beam

As an example of a relativistic elliptic beam, we consider a relativistic beam with voltage

Vb = 198.5 keV, current I b = 85.5 A, aspect ratio a/b = 5, and a non-axisymmetric periodic

permanent magnet focusing field with Bo = 2.4 kG, S = 2.2 cm, and ky /ko = 1.52 (see Table

1, Column 4). For such a system the matched solution of the generalized envelope equations

(5.22)-(5.26) is calculated numerically as shown in Figs. 5.5(a)-5.5(c) (solid curves) with the

corresponding parameters: kox = 1.57 cm' , ko = 2.39 cm -' , 4 = 0.732 cm' , and

K = 1.13x 10 - . The solution to the generalized envelope equations (5.22)-(5.26), displayed as

solid and dashed curves in Fig. 5.5, shows that the semiaxes of the elliptical beam remain almost
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constant with small oscillations, that the orientation of the ellipse twists periodically with an

amplitude of ten degrees, and that the normalized rotation flow velocities a, and ay oscillate

with the magnet periodicity. It is worthwhile pointing out that the normalized velocities ut, uy,

ax and ay vanish at s = 0.

Shown in Figs. 5.5(a) and 5.5(b), the dotted curves are the envelopes and angle of the beam

ellipse obtained from the PFB2D simulation for the fully relativistic elliptic beam. In the

simulation, the emittance is set to be negligibly small in order to demonstrate the cold-fluid

approximation. As shown in Fig. 5.5, there is excellent agreement between the theoretical

envelope solution (solid curves) and the self-consistent PIC simulation results (dotted curves).

The PFB2D simulation also shows that the transverse beam distribution preserves the

equilibrium profile as it propagates. In Fig. 5.6, 10,000 particles (a sample of the 5 x 105 particles

in the PFB2D simulation) are plotted in the planes (x, y) and (x, dy/ds) for five snapshots within

one period: sS = 9.0, 9.25, 9.5, 9.75 and 10.0 for the same elliptic beam shown in Fig. 5.5. The

preservation of the beam distribution is further demonstrated in Fig. 5.7, which displays the

evolution of the normalized fourth moments (x4)/(x2)2 and (y4)/(y2)2 for the same beam

shown in Fig. 5.5. In Fig. 5.7, it is evident that the normalized fourth moments (x4)/(x2) 2

and(y4)/(y2) 2 , which are both equal to 2 for a uniform-density distribution, remain to be 2

within ± 1% as the beam propagates for ten periods. The PIC simulation results suggest that the

beam equilibrium is stable, as in the case of the nonrelativistic elliptic beam.
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Figure 5.5 Plots of (a) envelopes a(s) and b(s), (b) twist angle 9(s), and (c) normalized

rotational velocities b(s)ax(s) and a(s)a,(s) versus the axial distance for the fully relativistic

twisted ellipse-shaped beam in Table 1 (Column 4). The solid and dashed curves are the
generalized envelope solution, whereas the dotted curves are from the PFB2D simulation.
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Figure 5.6 Plots of 10,000 particles (a sample of the 5 x 105 particles in the PFB2D simulation) in
the planes (x, y) and (x, dy/ds) for five snapshots within one period: s/S = 9.0, 9.25, 9.5, 9.75
and 10.0 for the same elliptic beam shown in Fig. 5.2.
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Fig. 5.7 Plots of the evolution of normalized fourth moments (x4)/(x2) and (y4)/(y2) for

the same elliptic beam shown in Fig. 5.5.

5.5 Summary

A novel exact paraxial cold-fluid equilibrium has been found for a high-intensity, space-

charge-dominated charged-particle beam with a periodically twisted elliptic cross section in a

non-axisymmetric periodic magnetic field. Generalized envelope equations, which determine the

beam envelopes, ellipse orientation, density, and internal flow velocity profiles, have been

derived, and solved numerically in both the nonrelativistic and relativistic regimes. The

equilibrium and stability of such beams have been demonstrated by self-consistent two-

dimensional particle-in-cell PFB2D simulations. We anticipate that the equilibrium theory will

provide a valuable tool in the design of high-intensity elliptic beams in novel vacuum electron

devices, especially for ribbon-beam amplifiers and ribbon-beam klystrons. The ellipse-shaped
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beam equilibrium may provide some flexibility in the design and operation of high-intensity

accelerators.
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Chapter 6

Vlasov Equilibrium of a High-Intensity Periodically Twisted Ellipse-

Shaped Charged-Particle Beam

6.1 Introduction

A fundamental understanding of the kinetic equilibrium and stability properties high-intensity

electron and ion beams in periodic focusing fields plays a central role in the design and operation

of particle accelerators, such as storage rings and rf and induction linacs, as well as vacuum

electron devices, such as klystrons and traveling-wave tubes with periodic permanent magnet

(PPM) focusing. There are two well-known equilibria for periodically focused intense beams,

namely, the Kapchinskij-Vladmirskij equilibrium [10], [59] in an alternating-gradient quadrupole

magnetic focusing field and the periodically focused rigid-rotor Vlasov equilibrium [69][60] in a

periodic solenoid magnetic focusing field. More generally, the self-consistent beam distributions

can be constructed with linear focusing forces as discussed in Refs. [57] and [58].

These previously known Vlasov equilibria for high-intensity charged-particle beams

propagating in the alternating-gradient quadrupole magnetic focusing field or the periodic

solenoid magnetic focusing field charged-particle beams are circular on average; that is, the

averages of the beam envelopes in different transverse directions over one period are the same.

In this chapter, it is shown that there exists a Vlasov equilibrium for a periodically twisted

large-aspect-ratio intense charged-particle beam with a uniform density in the transverse

direction propagating through a non-axisymmetric periodic magnetic focusing field. The single-

particle Hamiltonian of such a periodically twisted large-aspect-ratio elliptic beam is investigated
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self-consistently. A new constant of motion is found such that the self-consistent elliptic beam

Vlasov equilibrium can be constructed as a function of the constant of motion. The beam

envelope equations and flow velocity equations are derived. They are consistent with the

generalized envelope equations derived from the cold-fluid theory [65] when the temperature is

taken to be zero. Statistical properties and possible applications of the present elliptic beam

Vlasov equilibrium are discussed.

6.2 Vlasov equilibrium theory

We consider an ellipse-shaped, continuous, intense charged-particle beam propagating with

constant axial velocity Jbcez through an applied non-axisymmetic periodic magnetic focusing

field. As in Sec. 5.2, the applied non-axisymmetic periodic magnetic focusing field inside a thin

beam with k2a 2/6 << I and ko2yb2 /6 << I can be approximated by

B~ BI kB° cos(kos)xex + cos(ks)ye - sink(6.1)
ko ] (6.1)

where s = z is the axial coordinate. The associated magnetic vector potential can be expressed as

Aext =-Bosin(kos)[ ko2 ye+ k xe], (6.2)

which gives Be ' = V x A x'.

To determine the self-electric and self-magnetic fields of the elliptic beam self-consistently,

we assume that the density profile of the beam is uniform inside the beam boundary, i.e.,
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nb(x, y,s)=

-2 -2
x2 y+ < 1

a2(s) b2(s) (6.3)
otherwise,

where

= xcos[8(s)]+ ysin[9(s)] (6.4)

and

= -x sin[(s)]+ y cos[8(s)] (6.5)

are the twisted coordinates as illustrated in Fig. 5.1. The density of the elliptic beam with semi-

major axis a(s)= a(s + S) and semi-minor axis b(s)= b(s + S) is uniform in the beam interior

( l2/a +y 2 /b2 <1 ). The semi-major and semi-minor axes have the same periodicity

S = 2l/k o as the applied magnetic field. Nb = dxdynb (x, y, s) = const is the number of

particles per unit axial length. In the paraxial approximation, the Budker parameter of the beam

is assumed to be small, i.e., q2 Nb/mc2 << b, and the transverse kinetic energy of a beam

particle is assumed to be small compared with its axial kinetic energy. Here, c is the speed of

light in vacuo, Yb = (I - ,b2 )/2 is the relativistic mass factor, q and m are the particle charge

and rest mass, respectively.

From the equilibrium Maxwell equations, we find that the self-electric and self-magnetic

fields, E 'l and B set, are given by

self (j~, y~,s)= 2qN ' b-3 s)
Ese (Ys)=a(s)+ b(s) a(s) e + eb J (6.6)

and
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(6.7)

in the beam interior ( 2 /a2 + y 2 /b 2 1). It is convenient to express the self-fields in terms of

the scalar and vector potentials defined for x2 /a2 + y2/b 2 < I by

and

(6.8)

(6.9)

~-'AAse (, , s) - -N:bAe (X, 5,s) = _a(s)+ b(s) a(s) + b(s)

A sl (x, y, s)= A el(x, y , s)e .

The results are

Ese'(i, ,s)=-( -- e=+ e-
ay- B

(6.10)

and

aAselJ'

- e.
y~ 

(6.11)

In the paraxial approximation, the transverse motion for an individual particle in the combined

self fields and applied magnetic field is described by the normalized perpendicular Hamiltonian

H1 = HI/Yb3Pbmc 2 ,
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P S)p+ k + py-(H(X,YPXP =X+k- k12 J1
., ko J

K [x cos O(s)+ y sin (s)]2 + [- x sin O(s)+ y cos O(s)]

a(s)+ b(s) a(s) b(s) f
(6.12)

In Eq. (6.18), (x,Px) and (y, P) are canonical conjugate pairs, J ) = qB (s)/2bfbmc2,

K 2q2N/"/,f mc2 is the self-field perveance, Yb = (I )-112 is the relativistic mass factor,

and the normalized transverse canonical momentum P_ = (Px,Py) is related to the transverse

mechanical momentum p, by P1 = (yb,B mc)-' (P + qA' t/c).

It is convenient to transform the Hamiltonian from the Cartesian canonical variables

(x, y, Px, Py) to new canonical variables (xl, Y,1 , P,yl ), so that the new Hamiltonian assumes a

simpler form from which the invariants of the motion are easily identified.

The transformation of the Hamiltonian from the Cartesian canonical variables (x, y, P, P ) to

the new canonical variables (x, y,, P,, Pyl ) involves two steps. We first transform the Cartesian

canonical variables (x, y, Px, P ) to twisted canonical variables (, Y, P, Py) using the generating

function

F2(x, y;Px, y,s) = {xXcos[O(s)]+ y sin[O(s)}+ Py{-xsin[O(s)]+ ycos[(s)lD. (6.13)

It follows from Eq. (6.13) that

P = 2 = Px cos[9(s)]- Py sin[9(s)l (6.14)
ax
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P = aF2 = x sin[9(s)]+ P cos[O(s) (6.15)
ay

x= -F- = xcos[O(s)]+ ysin[O(s)l (6.16)

=aF2= -xsin[o(s)]+ ycos[(s)]. (6.17)

The Hamiltonian in the twisted canonical variables is then expressed as

.,(xYP, ) -- (x y, Px p k) S

,2 k2

Px cos[O(s)]- Py sin[(s)]+ n4 koy sin[O(s)]+ S y Y cos[O(s)] 

+-2 Px sin[O(s)]+ Py cos[O(s)]- k2 X cos[(sl)]+ k sin[(s)]
2 k o ko

Py L )do~s)
a(s)+ b(s) a(s) b(s) Py- P

(6.18)

The equations of motion associated with the Hamiltonian in Eq. (6.18) are

x' = aH 1 + C(s) +[ ,'(s)-a(s)(s)] (6.19)

'= L = P - C(s) - ['(s)- ay(s)V, (6.20)

aHl { koxCOs 2 [1(s)]+ koy sin 2 [(s)] 2K

- + k4 a(s)a(s)+b(s) }x
~~~~~~0 ~(6.21)

- C(s)P + ['(s) - ay (s)]P5 -c (s ks 4 sin[2(s)] ,
ko 2

124



H={ (S) Ox [ +sin2[e(s)]+ ky, cos2 [O(s)] 2K
ay; k= b(sla(s)+ b(s)] (

(6.22)
(s; ko5 -_ko4x sin[20(s)] ~X ,

+C(s)P - ['(s)-ax(s)]Px - K( l [k4 2 3F

where prime denotes derivative with respect to s,

C(s)- s) 2y- k ox sin[20(s)], (6.23)
2k02

a x (s)= - OxO sin 2 [O(s)] + kcos 2[(s) (6.24)

and

l"T'kO Xf 2 koy)] + in(2I ] (6.25)

By adding Eqs. (5.24) and (5.25), subtracting Eq. (5.24) from Eq. (5.25), and carrying out the

integrations on resulting equations with the initial condition ax (0)= ay (0)=0, it is readily

shown that ax and a, in Eqs. (6.24) and (6.25) are a particular solution to Eqs. (5.24) and (5.25).

As a second step, we apply another transformation from the twisted canonical variables

(x, Y, P, ) to canonical variables (x,, y,, Pxi, Pyl ) using the generating function

2(XY;PXIPV,,s)= W[ 1 C(Sx21 W Y ( Y x Y (6.26)
2 wx(s) 2 w(s) WX(S) WY(S)

where w,(s)= wx(s + S) and wy(s)= wy(s + S) are periodic functions solves the differential

equations
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2K I
Ww(s) I_ - _j_- T AZ \J - 2

wY(s) + C'(s)-C 2 (s)+ ~ k cos [(s)]+ k02 sin2 [(s)]
wY(S) ko

a(s)la(s)+ b(s)] -w x (s)

2K I

b(s)a(s) + b(s)] = w(s)'V\~/LC\U/ I V\/~ IY\LY

(6.27)

(6.28)

It follows from Eq. (6.26) that

P =a =
ax w()S) C(S) x + W Pxl

wx s)

y =aF = WY(s) +c(s Y+ w(s)

X 

y aPl , = (s
Y'=aPy, Wy(S)

The Hamiltonian in the canonical variables (, y, x, P,, Pyl ) is then expressed as

H (X,, y, l pX,,p,,ys)= .(x, 3pF, ,,py)+ a

2 I P2 wPw21 2

2x (s) Wy (S) )
+ 2(S)i+ ds P-XPyW Y( ) ds J xl l~

where we have introduced and demanded
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(6.30)

(6.31)

(6.32)

(6.33)

WX"(S) 11-I - 2[-l F- r--j ko sin28slkc2[sl 2K 1_



dep(s)

ds
_ Wy(s) dO(s)

wx(s) ds

w(s) dO(s)
w, (s) ds

-Ax.}

(6.34)

Following Eq. (6.34), it can be shown that the twisted angle O(s) has to satisfy the differential

equation

d(s) wx sY,- ws ) (A I
ds V.- J

W,(s)- w'(s)

The equations of motion described by H,1 are

aHll- Pxl dp(s)
x l aPl w= + YIapi w = (s) ds

_ alH I P,,v dp(s)
apyI WS(s) ds

t - alliJ

_ 

wx (S)

(6.36)

(6.37)

d+ ,(s) p,
+ P- '

ds
(6.38)

(6.39)p =_aH 1 =- y1 dp(s)
ay, ' w (s) ds

From Eqs. (6.36)-(6.39), it is readily shown that

E=x2 +y +p2 + P.I I P yl V (6.40)

is an exact single-particle constant of the motion for the Hamiltonian in Eq. (6.33). In the

reminder of this section, we consider the following trial choice of the Vlasov equilibrium

distribution function
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fb (XI' YI, PXI 9 PYI S) N [Ex +y + P + PE-TI ] (6.41)

where dfb/ds = 0, T = const > 0 is an effective emittance, and E(x) is the Dirac a function.

As will be shown below, the density profile of the beam described by the distribution functions

fb is consistent with the uniform density profile within an ellipse, which is the key requirement

for the quantity E = x + y2 + p2 + p2 to be a constant of motion. Therefore, the distribution

function defined in Eq. (6.41) is indeed a Vlasov equilibrium, i.e.,

afb = 0. (6.42)
as

The distribution described in Eq. (6.41) has the following statistical properties. First, the

distribution is consistent with the assumed density profile in Eq. (6.3)

nb(x, y,s) = JfdPxdPy '
Wx Wy

I 1Vb Iu2 2 Y2 u2

NO 5 T 

, if X +Y <I,
{ff' rTWXW y £7. ET

0, otherwise.

(6.43)

If a = ,Jw x and b = Tw then the beam is uniform in the beam interior

y _ x y x y+ - = 2 + -+ 2 < 1; that is, the beam has the uniform-density profile given
Tin ET (63),T providedT a that

in Eq. (6.3), provided that
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a = (.Tw4

and

b = [TWx (6.45)

are satisfied. Substituting Eqs. (6.44) and (6.45) into Eqs. (6.27), (6.28) and (6.35), we obtain

d2a [b2(ax2 - 2axa )+a2a
d Ls2 a2 _b 2

d 2b a2 (a _2axay)+b2a

ds 2 a2 b2

+ kJ - kcos(ks)sin(2)- 2zOay sin(kos) ]a- 2 
ko .aio~h2Jc a+b a3 '

(6.46)

+ -k o cos(kos)sin(20)+ 24,og sin(kos)]b 2 K =r b3

ko ' a + b VI
(6.47)

dO _ a2 ay - b2ax

ds a2 -b 2 (6.48)

Equations (6.46)-(6.48) are written in a form similar to Eqs. (5.22), (5.23) and (5.26) in the cold-

fluid equilibrium theory. They are identical to Eqs. (5.22), (5.23) and (5.26) in the cold-fluid

equilibrium theory, except that the thermal emittance terms appear on the right hand side of the

first two equations are zero in the cold-fluid equilibrium theory. Therefore, they are more general

than the cold-fluid equilibrium theory.

Second, in the normalized units, the average (macroscopic flow) transverse velocity of the

beam equilibrium described by Eq. (6.41) is given in the twisted coordinates by
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W, '1= K I(x - y)e- + (y' +ix')eyIfdPrdPyi

T= PAN e + WX - CxwyYI1Je +H( + wyY + ayWxXIe, jfdPdPy l
N b . W x II

= {|( Ie + I e fdPxdP I- WX -1xWy Yl)e +(Wyy, +ayWxxite]fdPx dPy 
N b w xwy

=(~wX- axYJ 7 +WY + ax e

(6.49)

The flow velocity in Eq. (6.49) is identical to the flow velocity derived by the cold-fluid theory

provided that the relations

ax = a la = ww x (6.50)

and

Y = b/b = wW / (6.51)

are satisfied.

As a third statistical property, the beam equilibrium described by Eq. (6.41) has the effective

transverse temperature profile

T1 (x, , s) = J( J(K - V1 )fdPx,dPyI

MT Wx W W W

-I[(W; x + a e + '+. 3- Y y -ay.~ ey fdPxdPvl

=NT + ldP= I { 2 +2Pdl d21
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2 w

= CT .
2 I

TWv

CTWX2 TWy)

a 2 b2 a 2 b2

(6.52)

As the fourth property, defining the 4 times thermal the rms emittance of the beam in the

twisted frame by

.h = V(X 2)(V x - ) , (6.53)

where

JI2fdxldyldPxldP

ffdxldyldPxldPl

I

,2° T

I22x + 2 + p2 +P21 - ET]dxldyldPxldPyi

= W2 rl2 COS2 8[, i2 +U2

rT 4

1 2
4

f(v2 -V2)fdxdy.dp dPy

JfdxdyIdPXIdPYI

- T ]rldrldOldU2

_2c2

7r2ET
w2 WX

= fbc2 f-2U2 COS2 p [r2 +U2 -UTrdrldld 2d
_ fW I £

_ bc 2C 2

£ 42

_ gb C P.I

4 a 2 '

(6.55)
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(v2 _V2)
\x .X 

(6.54)

+ 2 + p2 + p2 _ xldydPxldPl
XIxl +1 P

-L
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Combining Eqs. (6.52)-(6.54) yields

(h A X 7) =e*(6.56)

Finally, the Vlasov elliptic beam equilibrium has two limiting cases which are well know. It

recovers the familiar rigid-rotor Vlasov equilibrium [69] by setting the major-axis equal to the

minor-axis of the beam ellipse. It also recovers the familiar constant-radius, uniform-density

rigid-rotor Valsov equilibrium [60] by taking the limit of a uniform magnetic field with

B, = B = const.

6.3 Applications of the Vlasov equilibrium theory

We illustrate examples an example of periodically focused Vlasov equilibrium beams in a

periodic non-axisymmetric magnetic focusing field and the temperature effects with numerical

calculations. A numerical module in the PFB2D code has been developed to solve the

generalized envelope equations (6.24), (6.25), (6.46)-(6.48), which determines the rotational

flow velocity, the outer equilibrium major-axis a(s) and minor-axis b(s)of the beam ellipse, and

the twisted angle (s).

In particular, we consider a nonrelativistic elliptic beam with voltage Vb = 2.29 keV, current

I b = 0.11 A, aspect ratio a/b = 6, and non-axisymmetric periodic permanent magnet focusing

with Bo = 337.5 G, S = 1.912 cm, and koy/k,, = 1.6, which is corresponding to a beam design

for a high-efficiency 200 W ribbon-beam amplifier (RBA) which is being developed at

Massachusetts Institute of Technology (MIT) and Beam Power Technology for wireless

communication [65]. For such a system the matched solution of the generalized envelope
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equations (6.24), (6.25), (6.46)-(6.48) is calculated numerically as shown in Figs. 6.1 and 6.2 for

various maximum (on-axis) temperature choices with the corresponding parameters: kox = 1.57

cm-' , k =2.39 cm-', ;J=0.732 cm-' , and K = 1.13x10-2 . The solutions to the

generalized envelope equations (6.24), (6.25), (6.46)-(6.48), displayed as solid and dashed curves

in Fig. 6.1 and 6.2, show that the semi-axes of the elliptical beam remain almost constant with

small-amplitude oscillations, that the orientation of the ellipse twists periodically with an

amplitude of ten degrees.

As shown in Fig. 6.1 and 6.2, the solid lines represent the beam envelopes and twisted angle

with zero temperature which is corresponding to a cold beam, while the dashed lines represent

the beam envelopes and twisted angles with I eV on-axis temperature in Fig. 6.1 and 10 eV on-

axis temperature in Fig. 6.2. The aspect ratio of the beam reduces from 6 to 3.8 as the on-axis

temperature of the beam increases from 0 to 10 eV, i.e., the elliptic beam becomes more circular.

However, the twisted angle is almost unchanged as the on-axis temperature increases from 0 to

10 eV. For the elliptic beam designed for the 200 W ribbon-beam amplifier, the temperature of

the beam is estimated to be 0.1 eV from simulations [64]. In such a case, the temperature effect

is negligible.
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Fig. 6.1 Plots of (a) envelopes a(s) and b(s) and (b) twist angle O(s) versus the axial distance s
for the nonrelativistic twisted ellipse-shaped beam. The solid curves are the generalized envelope
solution for a zero-temperature beam, whereas the dashed curves are for a I eV on-axis
temperature beam.
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Fig. 6.2 Plots of (a) envelopes a(s) and b(s) and (b) twist angle 9(s) versus the axial distance s
for the nonrelativistic twisted ellipse-shaped beam. The solid curves are the generalized envelope
solution for a zero-temperature beam, whereas the dashed curves are for a 10 eV on-axis
temperature beam.
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6.4 Summary

The single-particle Hamiltonian of a periodically twisted large-aspect-ratio elliptic beam in a

non-axisymmetric periodic magnetic focusing field has been investigated. A new constant of

motion has been found such that the self-consistent beam equilibrium can be constructed as a

function of the constant of motion. The beam envelope equations and flow velocity equations

have been derived. They are consistent with the generalized envelope equations derived from the

cold-fluid equilibrium theory [65] when the temperature is taken to be zero. Statistical properties

of the present Vlasov elliptic beam equilibrium have been studied. For current applications of

interest, the temperature effects have been found to be small on periodically twisted large-aspect-

ratio elliptic beams.

136



Chapter 7

Conclusion and Future Directions

7.1 Conclusion

In this thesis, we focus on the transport theory of high-intensity elliptic charged-particle beams.

In particular, the halo formation and beam loss problem associated with the high space charge

and small-aperture structure is addressed. A novel transport theory of large-aspect-ratio elliptic

beams has been developed.

To understand the halo formation and beam loss of high-intensity elliptic charged-particle

beams in small-aperture systems, beam envelope studies, test-particle studies and self-consistent

PIC simulations have been carried out. First of all, the rms envelope equations have been derived

and analyzed for unbunched intense charged-particle beams in an alternating-gradient focusing

field and a cylindrical metal pipe. All higher-order image-charge effects from the cylindrical

conducting pipe have been expressed in terms of so-called multiple moment factors in the rms

beam envelope equations, and the multiple momentum factors were evaluated. Numerical results

have shown that for vacuum phase advance a, < 90 , the higher-order image-charge effects on

the matched and slightly mismatched beam envelopes are negligibly small for all beams with

arbitrary beam density profiles (including hollow density profiles) as well as for arbitrary small

apertures (including beams with large aspect ratios). However, the main unstable region for the

envelope evolution with image-charge effects, which occurs for 90 < < 270 , depending on

the value of the normalized beam intensity SK/£ , has been found to be narrower than its

counterpart without image-charge effects.
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Secondly, it has been shown that using the test-particle model in a small-aperture alternating-

gradient focusing channel, image-charge effects induce a new mechanism for chaotic particle

motions and halo formation in intense charge-particle beams. This mechanism occurs for well-

matched beams with the ideal Kapchinskij-Vladimirskij (KV) distribution. The halo formation

and beam loss are sensitive to system parameters: the quadruple focusing field filling factor, the

vacuum phase advance, the perveance and the pipe radius. As shown in our parametric studies,

the beam loss increases rapidly as the perveance of the beam increases and as the pipe radius

decreases. This demonstrates that in the current configuration, the halo formation and beam loss

is intrinsic due to the nonlinear space-charge forces in high-intensity charged-particle beams

focused by the alternating-gradient focusing fields in small-aperture systems.

Thirdly, a self-consistent PIC simulation code, Periodically Focused Beam (PFB2D), has been

developed. The algorithms used in the code have been discussed. Such a code has been used to

simulate intense charged-particle beams in small-aperture alternating-gradient systems which

have been investigated theoretically. PIC simulation results on the beam envelope are consistent

with the envelope equation solutions, and PIC simulation results on the halo formation are

consistent with the test-particle results. However, due to numerical noise in PIC simulations, the

beam loss predicted by PIC simulation has been found to be an order of magnitude higher than

that predicted by theory, which led to the an analysis of noise in PIC simulations. An error

scaling law for the edge emittance growth and particle diffusion due to the discrete macro-

particle effects has been derived for self-consistent intense beam simulations. The scaling law

has been valid for both the periodic solenoidal magnetic focusing channel and the periodic

quadrupole magnetic focusing channel. In addition, the error scaling law has been tested in the
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self-consistent Green's function simulations and self-consistent PIC PFB2D simulations. The

simulation results have shown good agreement with the scaling law.

Finally, novel exact paraxial cold-fluid and Vlasov equilibria have been found for a high-

intensity, space-charge-dominated charged-particle beam with a periodically twisted elliptic

cross section in a non-axisymmetric periodic magnetic field. Generalized envelope equations,

which determine the beam envelopes, ellipse orientation, density, and internal flow velocity

profiles, have been derived, and solved numerically for nonrelativistic and relativistic examples

of such beams. The equilibrium and stability of such beams have been demonstrated by self-

consistent particle-in-cell (PIC) simulations. For current applications, the temperature effects are

found to be small on a periodically twisted large-aspect-ratio elliptic beam. We anticipate that

the equilibrium theory will provide a valuable tool in the design of high-intensity elliptic beams

in novel vacuum electron devices, especially for ribbon-beam klystrons (RBKs) and ribbon-beam

traveling-wave amplifiers (RBA). The ellipse-shaped beam equilibria may provide some

flexibility in the design and operation of high-intensity accelerators.

7.2 Future Directions

Solid ground on the understanding of the space charge effects of high-intensity elliptic

charged-particle beams in small-aperture systems has been gained. However, most of the

theoretical models are based on 2-dimensional continuous dc beams and the ideal KV beam

distribution. In order to represent a practical situation, 3-D theoretical models have to be

developed and more realistic beam distribution, for example, a thermal equilibrium distribution,

is desirable. Therefore, toward to the goal of achieving realistic models and simulations of the

intense beams, the following problems have to be addressed in the future.
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· Thermal equilibrium theory. The state of art of equilibrium theory in intense elliptic

charged-particle beams are based the assumption of the KV distribution. In such a

distribution, all the particles have the same single energy which is artificial and does not

represent a realistic situation. Statistically, a many-body system is most likely to relax to a

thermal equilibrium which can be described by a Maxwellian distribution. The only known

thermal equilibrium of intense beams is a constant-radius uniform-density rigid-rotor beam

[74] in a uniform applied magnetic field. Recently, the author is investigating in thermal

equilibrium theory of a periodically focused rigid-rotor beam with breathing envelopes [75].

Furthermore, it is desirable to have a thermal equilibrium of intense elliptic beams for

applications of heavy-ion beams.

· 3D effects of bunched beams. The current theoretical models assume the beam is infinite

long in the longitudinal direction. Therefore, the 3D effects from a finite-length bunched

beam are ignored. However, in reality the beams have finite lengths. In some applications

the beams are bunched to very short lengths. Therefore, it is required to understand the

physics and space charge effects in the 3D configuration for those applications. The self-

electric and self-magnetic field calculations for 3D cigar-like beams or ellipsoid beams are

no longer trivial. A future step is to consider a spherical beam whose self-electric and self-

magnetic fields are easier to calculate. The rigorous theoretical analysis of the space charge

effects and halo formation are required on 3D bunched beams.
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Appendix A

Solution of 2D Poisson Equation with a Cylindrical Boundary

A.I Solutions to Poisson equation in free space

A.I.) Solutions to 3D Poisson equation in free space

The three-dimensional Poisson equation in free space is expressed as

V20 =-4,rqn and ¢L =0, (A.l)

where 0 is the potential, q is the particle charge, and n is the number density in the self-similar

beam model, which can be expressed as

X2 2 2
n=n( + +

a b2C2 (A.2)

In order to solve Eq. (A. 1), we first find the Green function of G = G(x,x') for this problem.

Here, x = (x, y, z) and x' = (x', y', z'). The Green function G satisfies

V2G = -46(x - x') and GI_ = 0, (A.3)

The solution of G is well known, and is expressed as

I I

Ix-xj 2)r

J I exp[ik. x-xk)]I
ii O_ k 2

Therefore, the solution of potential is written as

(x) = q Jn(x')G(x, x')dx' = q fn(x') exp[ik (x - x')] ddk
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(A.5)
- q fexpik (x)exp(-ik .x)dx'.

xUsing x=-,
a

y
b

Z
and 2 = ,we obtain

c

II = n(x')exp(-ik x')dx'

= n +-- +± ± exp(-ik x')dx'

= abc fn(k2 + y2 + 22 )exp(- ik' i)di,

where, i = (, y, 2) and k' = (kxa, kyb, kzc). The expression (A.6) can be simplified to

I1 = I, (k') = 4rabc fn(?2)
0

^2 sin(kT) d,
kr

where 2 = 2 + 2 + 2 .

Using Eqs. (A.6) and (A.7) in Eq. (A.5), we obtain

)= 2 exp(ik )dk n(x')exp(-ik x')dx'

qr2 exp(ik - dk4rabcn(r2)
0

r2 sin(k'r)d
k'r

exp ik-x+ y+ k z
2q a b c dkn(r

2q -2 / k'2 , o.,..2
)r k' k, k ' 0

a b C

2 sin(k'r)r k dr
k'r

_ 2q 2 k'( cos[k(a - l'ysin+ b- y sinsin + c' zcos9 )]

;r ooo [(a-' sin cosq) +(b-sin sin )2 +(c-' cos 0)2 k'2
k' 2 sin Odk'd Od x
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fn(p2, 2 sin(k) d
0 k 

where

kx = k'sin cos , k = k'sin 0sin , and k = k'cos .

It is readily shown from Eq. (A.8) that the potential 0 satisfies

y(xY,y, z) = 0(- x, y, z) = (x,-y, z) = (x, y,-z).

From table of integrals [77], we obtain

r 2f sin O&id~d

(a-' sin cos) 2 + (b- 1sin sin q{)2 + (' cos0) 2

sin kOd
f ..
oJ (a- 2 sin 2 e + c -2 cos 2 0 Xb -2 sin 2 9 + c- 2 COS2 e )

ds= 2;rabcl.2
oJ (a2 +sXb2 +sXc2 +s)

Now, we return to Eq. (A.8), and note that

2Cos[k'(a-'xsin' cos[kb'(a-'ysinsin cos+ c-'zcos)]
sincos + (b-' sinin + (c- cos)2

0 0 a'sincos) 2 +(b- sinOsin~p)2 +ccose)2]

Z 2 - (-) [k(a'-'xsinScosv+b-'ysininsinV+c-lzcos9) 2

= [a sincos )2 sin 2 + (' cos)2o o (asing Eq. cos (A.) + (b-we obtainsin +c-cos 

Using Eq. (A. 10), we obtain

(A. I1)

sin 0&1ddp
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(A.8)

(A.9)

(A.10)

o 0

sin &ddo. (A. 12)

= 2r



(_)nk2n 2n (2n)! (a-'x sin Ocos Vq (b-i y sin O sin q) (c-lz cos O)Y
r 2 n=O (2n)! =O p! q' !

12 = f ++=2n 2 sin 9dd
0 0 (a- sin cos) 2 +(b' sin sinp)2 +(c-' cos) 

(_)n k2n n (2n)!

n O (2n)! p,,r= (2p)!(2q)!(2r)!
p+q+r=n

(a x sin Ocos )p (b- 'y sin O sin V)pq (C- Z Cos )r

sin d/&1td
a-2 sin2 0 cos 2 o + b-2 sin2 0 sin2 0 + C-2 cos2 0

(A.13)

The issue is to work out the integral of

2,r (a-i sinc cos )2 p (b- Isin 0sin )2 (c I COS )2r

I(p,q,r)= - sin2 Cos2 + b-2 sin2 sin2 +C- 2 cos2 (A. 14)

To evaluate the integral in Eq. (A. 14), we note that

2z ( Ak in k scos )2 (b-'k sin 9 sin )2q (c-'k Cos) k2
I(p,q,r)= J6(k -1)d o 0 -2 si2 O COS2 +b- 2 sin2 sin2 + C-2 cos 2 )k2sindt

2 (aksincos )2P(sIksin9si n p)2 i(cnkcos)2r
=oJoJ(a2 sin~cos 2 ) +b - k sin2 0sin2 q+c -2 cos 0 ) k2 k(k - 1)s in d kdd dp
f (a- sin (COS +b- sin sin ?0 +c--cos )

(a'k )2p (b-k )2q - 1 )2riii 2.. k+b k!_c k=) k4(/k2 +k2 k_- .dkvdk
J J a +-2 2 +C-22 -2 2 2 

... a x + y z

. _ (k )2p (k )q (k )2r

I .I k + k2
w w 0e x Y

-( a2k2 + b2k2 + C22 -1 dxdkydk

=abc J(kva2 sin2 cos2 + b2 sin2 sin2 +c 2 cos2 0 -1) dkx
0

I 2(k sin 9 cos )2P (k sin 9 sin )2 (k cos )2r sin OdOdp
0 0
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= abc f
0

2I

.-
(sin 0 cos qp)2 p (sin 0 sin p)2q (COs 9)2r

O (a2 sin 2 cos 2 + b 2 sin 2 sin2 + C2 coS 2 )P+
q+r+

It is also readily shown from Eq. (A. 15) that

a( p+q+r)I(p,q,r)

r P+q+r+- 
2

I(0,0,0)

abc

where

,T IT sin OdOdqp
1(0,0,0) = abcf J si

0 0 (a2 sin 2 0 cos 2 + b2 sin2 sin2 + C2 cos2 )2

From Eqs. (A. I ), (A. 14), and (A. 17), we obtain

=2(j +ds

I I ds

a2+ s b2 c + s
o /(a2+sXb2 +sXc2 +s)

Equations (A.16) and (A.19) result in

I(p, q, r) = 2abc(2p)! (2q)! (2r)!n!
(2n)! p!q!r!

r a2 s)b+s b + s c2 +i I +
oJ (a2 + Xb2 +sXc2 + 
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(A. 16)

(A. 17)

1(0,0,0)

abc

and

(A.18)

a(p+q+r)

a(a2 )Pa(b 2)q a(c 2) r
I(0,0,0)1 = 2

abc j

H(-p+q+rrP+ I q+ IIF r+-j
x2

(A.19)

(A.20)

I I I31

-sin OdOdo.

a(a 2 Pa(b2 y a(C2 )

-

H piq·rF I 



Substituting Eq. (A.20) into Eq. (A. 13), we obtain

I 2cos[k'(a-x sin Ocos q + b'y sin O sin ( + c-'zcos O)]

20 (a- sin cos()2 +(b-'sin sin)2 +(los ) sin

J 2x

=2m;rabc f J
00

n= (_)n k2n n! 2 2 ) 2
n=O (2n)! pq,r=0 p!q!r! a2 +s b2+S C2 +s

p+q+r=n

(a2 + sXb2 + sXc 2 + s)

2r

= 2mabc j j
0 o0

2'

= 2abc | |
0 0

cosk'(

0c

J(a2 +sXb2+sXc2+s)
a 2 +s2 j2~~ + s +s

a2 +s b c +S

/(a2 + sXb2 +sXc2 +s)

Substituting Eq. (A.21) into Eq. (A.8) yields

x) = 4qabcdk'
0

= 4qabco ds fn 2) pd p

0 j(a2 + sXb2 + sXc2 + s)o 0

= qabc| 2 sx - |n(T') dT',
where 2 + c T

where
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(_)k2( X2
n=o (2n)! a2 +

2 2 
_ _ Z+ + +

b 2 +S C2 +ds
In s

(A.21)

) r2 k dr

2

b2 +S

z+ 21
C +S

dk'

(A.22)

__ __ __

-

1

.I

a 2 + 

-



where

T= 2 2 
=r + b2 +S C2 +

(A.23)

and the identity

'jsin(ax)cos(bx) d O2,
o0 1z/4,

0<b<a
0<a<b
0<a=b

(A.24)

has been employed.

We observe from Eq. (A.22) that the potential is a finite non-zero constant at

(x,y,z)=(O,O,,) and becomes zero at (x,y,z)= oo. However, we may choose an alternative

form of the Green function differing from Eq. (A.4). The alternative Green's function is

expressed as

1 1 
°(x'x')= x1 - 2IX -X1 lx 22

{ exp[ik ·(x - x')] exp[-ik · x]
00f- 00_00 

(A.25)

and satisfies G =0 = 0. In this case, Eq. (A.5) still holds, which can be expressed as

0(x) = q n(x')G(x, x')dx', (A.26)

because of Vl_ =0 and VGI_ =0. Note that the Green function given by Eq. (A.25) is not

symmetrical about x and x', but can be a useful solution to the problem. Using Eqs. (A.25) and

(A.26), We follow a similar procedure mentioned above and obtain another solution for the

potential, which can be expressed as
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d s 7'
(x)= -abc ds fn(T') dT', (A.27)

(a2 +sXb +sXc +s)

where

X2 y2 Z2
T + + (A.28)

a2 +s b 2 +s c2 +s

In this case, Eq. (A.27) indicates that 0=0 at (x,y,z)=(0,0,0) and = finite constant at

(x,y,z)=" if the beam density satisfies n(T') dT'= finite constant. This is always true

0

physically. The solutions in Eqs. (A.22) and (A.27) may be applicable for different calculation

purposes according to actual models.

A.1.2 Solutions to 2D Poisson equation in free space

The two-dimensional Poisson equation in free space is expressed as

a2- + = -4rqn and VO = 0, (A.29)
X2 ay2

where 0 is the potential, q is the particle charge, and n is the number density in the self-similar

beam model, which can be expressed as

x2 2

n = n(-+ 2) (A.30)
a2 b

In order to solve Eq. (A.29), we need to find the Green function of G = G(x, x') for this problem.

Here, x = (x, y) and x' = (x', y'). The Green function G satisfies
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a2 G 2 G
a2+ = -4rS(x - x')(y - y'), and VGI =0. (A.31)

ax2 y2

In order to avoid the infinite constant problem at x=(x,y)=0, one special solution of G

should satisfy G=O0 = 0, and is expressed as

I x -exp[ik .(x -x)l- exp(- k ·x)d kG (xxi)=- je2 . .(
1 .explikx(x- x')+ iky(y - y')j- exp(- ik.x'- ik y')

_ fk
2

2+- -2 LdkxdkY
' - k2+ ky

= k exp[ikx (x-x')+ iky(y- y')-exp(-ikxx' -ik Y')dk{(kze)dkz kf -- y 2 2 2 -- xdkY
- jy ---[ kkZ'I'}k + k 2+ dk

'{ i J} 1 ' exp[-ik x'-ik y']d k 

{l1 f exp[ik(x- x')+ ikv(y- y')+ ik (z - z]dk }

_ |dz, I_;_ f exp[ ikxx'- ikv y'- ikZdkdk}

=-ln[( -')2 1=-ln(r +r2-2rr'cos(-p'))+ln r2 (A.32)

The Green function given by Eq. (A.32) is also not symmetrical about x and x', but avoids the

infinity constant problem. In order to drive the solution of potential, we use the three-

dimensional results in Sec. A. 1.1. We find the relationship between the two kinds of solutions

using the properties of the Delta function. The solution of potential is written as
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(x)= q n(x')G(x, x')dx' = q n(x') exp[ik- (x - x)] - exp(- k x') dx'

- ) + +fK b2jexPkx(x-) + k - ]k 2 ddkdkq X'2
12 exp[k (x -x)+iky(y y )]- exp(- ikxx'-iky')

= k (z+)dz'+k+ + d x

( -xp [ikx(x )+ik(y- y)]-exp ik, x' ik, y)
=- ~T+ y,2 Ax'dy'dkxdk

'2 x 2 2 e[ik(x-x')+ik,,(y-y') _ e (-ik/x'-ikv')
- + + IeI

-= )J 2fL Jexp(-ikz z')dk jdz' Jn a 2 bz c ) k +kX

dx'dy'dkxdky

dx'dy'dz'dk dk dk= q 2 XI 2 + z2 + , exp[ i(kkx'+ kk' ,,]exp[i(kxx ky)]- 
2i2 .Jn1a2 b2 c, ) k + k

2 expi(kxx + kY)

a-- b aI b 2

(A.33)

x
where =--,

a
= ,and 2= ,and k = ka,

b c
k = kvb, and k = k-c .

Note that

I, = n(2 + 2 + 2 )exp[- i(kx + k +y + kz )dd,

=4 Jfn(^ 2 sin(rd

where ?2 = x2 + y2 + 22. Substituting Eq. (A.34) into Eq. (A.33) results in
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dk dk dk n2) 2 Sk

,r 2 COS xsin cosqp + ysin 0cos ,1]

0 cosa 2 sin
( sin 0 cos sin sin V k "

a b i]~

r

:= lim q
C=i mTl

a

K sin ° cos 2

a

b

k' 2 sin k'd dq fn( ) 2 sin? )d
o kr^

z cos9'8± ,, -
11- Odk'd Odp n(2 ) sn(tk),

o k

(A.35)

Using the three-dimensional results of Eqs. (A.8) and (A.22), Eq. (A.35) becomes

(x, y, l) = lim qabc ds n(T + s)o ,Ia + L' + )c;+ T

7i aabc

where

. -ds

+ s~b2 + 5XC2 + )

ds T'= - qab ds (T')dT' 
0

x2 y2 _ yT= +- a y + 
a2+s b2 +s C2+s
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= 2q

K

2q

+(sin sin / 2 cos )b c

(A.36)

(A.37)

J (a2



and

x2 2
T' = + (A.38)

a 2 +s b2 +s

It is readily shown from the two-dimensional solution in Eq. (A.36) that =0 at

(x,y,z)=(O,0,0) and = oo at (x,y,z)=oo.

A.2 Solutions to Poisson equation in a cylindrical boundary

The two-dimensional Poisson equation in the cylindrical coordinates (r, q, z) is expressed as

IrI I ar 2 a =-4qn, and r =(A.39)
r ar ar r2 a 2

where is the potential, q is the particle charge, R is the radius of the infinitely long

cylindrical conducting pipe, and n is the number density in the self-similar model, which can be

expressed as

2 2

n = n(- + Y). (A.40)
a2 b2

In order to solve Eq. (A.39), we first find the Green function G = G(r, r', q, q') for this problem.

Here, x = rcos q, y = rsin q, x' = r'cos A', and y' = r'sin q'. The Green function G satisfies

Ia r aG)+ - aG --4T I(r - r')8(q - A'), with G(r =0. (A.41)
r ar r 2 r

Note that choosing GIro = 0 is to avoid an infinite constant problem at r = 0.

The Green function G can be written in the form
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G=G 1 G +G b,

where G/ = G'/. (r, r', , , ') is the Green function in free space, satisfying

r a a =-4;r-S(r- r')6(Vp- p'), G 
~ aal sr-~0¢2 m.o~ = 0, and VG . =0,

) ~ ~~~~~~~ r=

and G, = Gb(r, r', (, ') satisfies

1a (rGb)+
r r r )

1 2G = 0, and Ghr=R

r2 v2

It is readily shown that

Gr, = - ln(r2 + r' - 2rr'cos( - n'))+ In r'2 . (A.45)

Using an image charge method, we obtain

Gb = ln(r,2 +r' -2rr'cos(- ))- In r'2 , (A.46)

where r, = R2/r . Therefore, the entire Green function

G=G/ +Gb = -In(r2 + r'2 - 2rr'cos(q,-(p'))+nr/2 + In(r,2 +r'2 -2r, cos( - '))- Inr2

(A.47)

Using the expansion

cosm and-lsM
ln(l+x2 -2xcoss)== 2 x osm and-I •x 1,

m=l m

we rewrite G and Gb as

(A.48)
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(A.42)

(A.43)

= -GJ IrR (A.44)



r< r2 (r [G -f cos[n(p- 0 -

-2 In -+ r'- " cos[m(P -
r m=l r

(A.49)

r> r'

Gb =21nr- E--I -I cos[m(o - ')], for O r < R and O < r'< R.rr m= m R)R

Equations (A.49) and (A.50) may be useful for numerical calculation purpose in some special

cases.

The potential 0 can be expressed as

= q Jn(x')G(x, x)x')x' =( x')dx'+ q n(x)Gb (x,x')dx',
S s S

(A.51)

or

p = )=J (X 2 +Y2 ' x y)dy+ | 2 +( 2 '2 y Yd y
-oob a 2yq --xxa '

(A.52)

where

N= ||n - -+) dy = 2rmbb n(02)d, (A.53)

represents the charged particle number per unit length along the z direction.

Using Eq. (A.47) and the two-dimensional results in Eqs. (A.32) and (A.36) in the case of free

space, we obtain the potential [12][73],
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and

(A.50)



= -mabq ( (T)dT + bq n(T )dT,,

2 2 Y 2T l|a' +s +s a2 + S+)o
a2 + y2a2 +s b2 +s

= 2 2 +
a2 +s b

R2x
Xl

X2 + y2 '

and

R2y
Y =X 2 + y2 '

Equation (A.54) satisfies the Poisson equation (A.39) and the boundary condition Or=R = .

The potential in Eq. (A.54) still goes to infinity at r = 0 due to the second term. In order to

solve this problem, we examine the Green functions in Eqs. (A.47) and (A.50). The singularity at

r = 0 is due to the term 2 In R in the Green function. Removing 2 In R from the Green function
r r

in Eq. (A.50) does not change the physics because A ln R is really a homogeneous solution to
r

the Poisson equation, satisfying the boundary condition rR 
= 0. Therefore, the solution of the

potential can be rewritten as
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where

and

(A.54)

(A.55)

with

(A.56)

(A.57)

(A.58)



q s sJn(T)dT + Tabq ds -- Jn(TI)dTl - 2q ln- n(x')dx'
° + s(b2 + ds r =-azbq +s4b( +s a2 +sXb2+s r

- _.f ds f (T\T I- 2 ds VIT - n

-a +n +s J,(a +s. +0 0 0 n
'' r J I\ I

r

1

(A.59)

Using the other form of the Green function in Eqs. (A.49) and (A.50), we obtain another form

of the potential 0, i.e.,

-2qy J |-iRL rr os[m('-o ')] r'2 cos1 '2 sin2 ird

2 b 2

Removing the singular term from Eq. (A.60) results in

ros2 2 sin 2 Q r'dr'd
a 2 b2

cos[m(vp - n r 2 cos2 (' r'2 sin2 'I rdrd
a2 + b2

Equations (A.60) and (A.61) can be useful for numerical calculation purpose.
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= -rabq -

+ 2 R
+ 2q ln r,of

2ds Jn(T)dT
+sXb +S)o

lnlr'2 2 '2 sin2 VIlr

a 2 b2

¢ = -mrabq | 2
0 F

(A.60)

T

as -|fn(T)dT
+ sXb2 + S)o

2 R, ( r
+ 2q Iln -)nj i

C I rr2
(A.61)

T
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Appendix B

Self-Field Potential of an Elliptic Beam with a Uniform Density in a

Cylindrical Conducting Pipe

B.]. Self-fieldpotential inside the beam

The special case of the two-dimensional Poisson equation solution is the solution for the

uniform beam density. The general solution is given by

ds a ds= -mbq | + ds n sb n(T)dT + abq dT I
+b+o ° '+ s(b~ V+ s)0 (B 10~=-~~~zabqJ 1 (~~~~~ ~~ +s~~~ +(B. 1)

-21n- fn(Ti)dTi
r 0

where

X2 y2

T = + 2 , (B.2)a2 +s b2+s

r= (x2 + y2)2 aa2- '-1 sb---+s.·T ( X2 2 +S)· (B.3)

The first part is produced by the beam charges in free-space and the second part is produced

by the induced charges. For the uniform density,

x2 y2
no = 2 +.-- < 1,

an al n x2 b2 (B.4)
x2 y2

0, a2 b2
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the free-space part is

~jfree-space = -Iabq t 2 fX2 ) n(T)dT

= -bqn Tds
=- a(a +snXb2 +s)
00 ds 2

= -i(r+bqn d __s + _ .=-Tcabqn 27a +s b2+s

Using the identities

I =V(2 sX2 ) =In[2(a2+ s + s)2s+a2 +b],
1'- I'¢+b2 + S) 

ds
I 3 I

o (a2 +s) (b2 + )

i ds

o (a2 + S);(& +)2

a=-2 1 2

-=-vo 0 a(a+b) 

a I | 2
=- 2 1 =o 2a-R b(a + b) '

we obtain

iJr=ee-.pae =-abqn([ 2 + 2 Y ] _ 2 rabqno +x y.
_a(a+b) b(a+b)j a+b a b

The image part is

0mage =rabrsXb 2 + n(T,)dT, -21n R n(T,)dTj
o o

where

R 2 2

a 2 +s+ b2 +S
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(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B. 10)

(B.11)



Since the density is nonzero only when Tl < 1, in the first term the integral should be broken into

two parts

0iimage =. bqnL,i )r,2bqnO 2~' ~ -0Vds
4- T ds

+ sX2 4J(a + Xb2 + s)+ slb'+ S J\Ws)

where Sl = : (x, y) is the solution of the equation

T (x, Y , : )= 2 + :
(X + 22(24 2· , b2 +)

The solution to Eq. (B.13) is

= I [R4 - 2 2+b2Xx2 + y2 )
= + y2[ R 4 (a

__4R8 -2(a2 -b2Xx2 y2)R4 +(a2- b2)(x2

(B. 14)

+y2Yj

For present purpose we take plus sign since 5, is always positive.

To evaluate the integral, we use the identities

r ds = J- ln[2(a2 +sb2 +s+s)+2s+a2 + b2],
1= .a2 +sb2+F s

ds +a

+.X/ ds = n[2sa +¢lXb 2+ ) + 2 +a20~~~~~~~~~~~~+b]2na+i

Va2 + I

b2 +±,)+2g +a2 +b2
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21n-R (B.12)

(B.13)

(B.15)

ds
3 1

"I (a (b Y2~ 

- -'=222

(B.16)

(B.17)



= -2- 
a(b2

a2 + 1

=2
2V(a2 + :Xb2 +J)+2 +a 2 +b2

iimage 2rabqn ln( Ia2 + b)+-2 +)-n(a+b)- ln 
L X + )72

x22 +±, + Vya2 + , Xb2+±(a2+; + -b 2+-g)J¢2 -Xgt
R4

+l(x2+y )2

(B.18)

(B.19)

The total potential is

2zrabqno - l( R
0i= L- i +2 zabqno lnV a 2 +- 1 +axb b

+
x2/b 2+ ya2 a+ 

( a2 + ~ Jb2± A j~I(a2±Xb2 .) (X2 y2y
x R4 1

(B.20)

I

B.2. Self-field potential outside the beam

Outside the beam, T can be bigger or less than I in different region, the integral of the potential

is separated into two parts, i.e.,

as +n(T)dTjW+a2s~b +s o
ds I

±sV2 J n(r)dT
+sXb2 +s) 

(B.21)
= a [ ds

o b (a2 + sXb2 + 
!jV ~s~

LIS 7 +Tds

' +|"2 + sXb2 + s

where

160

I ds

and obtain

,, = -ffbq[
·J

I

ooI



x2 22 y2
T= + S a2+s b+S

and : = 5(x, y) solves

Solving Eq. (B.23), we obtain

I x2 +y 2 _a2 _ b2 + ( +y2 a2

We take plus sign in Eq. (B.24) to make : positive.

Using the identities in Eqs. (B.15)-(B.18), we obtain

.ree-.sPa'e = -2rabqnoln(a 2 + + + )- ln(a + b)+

)2 +4(b'2x +a2y2 a'b2) . (B.24)

x2 b 2+ +y2 a2 +~(a2 a +b2( + + b~W~a + 
(B.25)

The potential produced by the induced image-charges is the same expression as the one inside

the beam because the induced image-charges are located outside the cylindrical conducting pipe.

Therefore, the total potential outside the beam is

,, = -2mabqnoln(-a2++ b2+ -ln(a + b)+x 2 b2 + 2 a 2 + a2 + + b2 + )Va +Vb T-+)iWra+Kb~Tb

+ 2zabqnoln(2 +V{ +b2 + is)-ln(a+b)- x 2+ 2~~azbqn,~~·Cx +
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(B.22)

X 2 Y
2 + =1.

a2+5 b2+: (B.23)



x( 2 + + ay2a2 + ] (B.26)+ 
'(a2 + ·:,+ b2 + ~V(a2+Xb2 +) X (x2+y2)2"j (B.26)
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Appendix C

Derivation of the Amplitude-Phase Equations

To derive a closed set of equations for the slowly varying variables A, and xi, we return to

Eq. (4.39), i.e.,

cos[V( + xI I[ AiWx i xi
Wx

-sin[x + ilLxi + aiiW
WX

_ K a s
4qNb aiXX

-KV I

(C.l)

We will perform two averages in the derivation.

C. 1 Average over fast envelope oscillations

We first take the average of Eq. (C. 1) over the fast envelope oscillations
I s+S

- (...)wds, i.e.,
s

I s+SLHS = S |{cos[y + n r ] [XiWx W- AI.ri ]-sin[/x + i] [A&i + An.r WxWx ds

=-A i , coS[Vr +,, ]- A sin[V, + x,]

(C.2)

I s+s{ K x i
S (a+b) a

RH! -

s+s KK
= f1I a+bS

K

2Np

N,

Aia 2 cos[;vx + xi]

Xi - X 

K
2Np

-7-}wxds

xi - X a d
IY +(y, -yc, 
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(C.3)-

N,

I=(~)X I



For a well-matched beam, the envelopes of the beam can be treated as a small-amplitude

modulations (oscillations with the period S ) on the smoothed-beam envelopes

(C.4)

(C.5)

with a- = f +ads/S = f+S bds/S, a = -&, (a) = f+ &ds/S = O, () = f' dds/S

and &/a << I and &/b << 1. Therefore, Eq. (C.3) becomes

s1 +s K
S a+b

A.ia 2 cos[Vf + (),i ] K

ac, 2Np

X i - XjV i_ _

j=(ji) (Xi- j + (Yi -

2c,=- Ki Ari]mcos[~tx ±T> ]
K I +sW Np Ari cos[dV + , ]-Axj cosifx + )rj 2

2Np S J j=l( ji) w {Ari cos[,r+ (I>ri ]-A cos[vrq +Cr + w {Ayj sin[y + yj + w
2

(C.6)

Because of a = w = a + &, b=Jw = b + &, in the second term of Eq. (C.6) we only

keep the first order of ~& and &. The yields

AXi cos][ + ] 1- Axj cost.r + xj W

W 2 Ar {Ax.i coS[x i + ] A,+ w2 Ayj s in[ y} 2. r

- Ai cos[1v + -i -Acos[Vx + (> [j ] [I - terms of order &i]
a Axi cosv +i]- A cos[ +di ± + +{Avy sin[v + j I2 Er

(C.7)

Carrying out the average, we obtain
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RHS = A i cos[/ + i]
2E

K N Axi cos[k + i]- j cos[ + (ij]
2e 1 Po, jsin[~tr+Iy} 2

2lP J(i){AiCS[t + icos[yV ± ]A, cos[f, + I A}2 +-{sin , jl2

(C.8)

C. 2 Average over betatron oscillations

We now take the average of Eqs. (C.2) and (C.8) over the betatron oscillations

s+2'rS/a, v+1;61.T

- J(...)sin[4r, +PDild/x and - (...)cos[V, + id ,]d

ls+2)'/a,

C.2.1 Average of- f(...)sin[V_ + C>i]dyV_ on Eq. (C.8)

s+2' ^/a,
LHS =- I{- Axi,:i cos[V x + xi]- AxI sin[., + r> ]}sin[, + cI Jdl = A', (C.9)

I K

RHS =- J sink, + (c 1iKdV 2 Ai cos[VW, + i]

K NP Ai cOs[, + x',,i -Aj cos[Yf + ,] 

2ErNP =l(Ji) {Ax+ cos[/ ] + _,i A} cos[+ -{A sin[ 

(C.10)

In Eq. (C. 10) the first term goes to zero, and the numerator of the second term becomes
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= Axi sin[2/x + 2 xi] - Aj sin[2WV + 2xi
2 2

]cosA8 - A cos[2 .+2,xi]sinA + X sin. A
2 x 2

= -Bi + B, cos[2 x + 2,x]+ C sin[2;vx + 2>xi],

(C.Il)

where

Bj =- sin 
xsin A2xj

C = ( ~ - Axj cosAx),2,F,

(C.12)

(C.13)

with Ax = j - xi.

The denominator of the second term becomes

l {Axi cos[Vx + xi ]- Aj cos[vx + j +!{Ayj sin , + yij 

x=-{A2i cos2 [6, + ; }i]+ A .; cos2 b0x + xj]-2AxiAxj cos[, + ~,,i]cos[/,x + jD+sin2IVy + yj 

= A2, + AAxj cosJA -A+s[2v +2XE 
[2x 2e= ex 2cx

+sin[2xvr + 2cDx - j sin 2AX+ AXsinA 
413r

+ Ay.

Ey

A Acos 2A -
2eI

-sin2 [y +T 1 ]

Let us examine the last term in Eq. (C. 14) and define A, = y - vx . This term can be expressed

as
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-EXJcosA
Ex

(C.14)

JAxi cos[V + D xi] Axj cos /, + Dsin[V + xi]



Asin [, +]= A2 2sn [,v+~ .y=I L41 -cOs[2V2c j [i -cos(2v + 2yxi + 2 + 2lAy)]
C, 2YJ 2£ ' 2

y 

A 2

-- [I - cos(2V
2e£

+ 2cxi )cos(2Av, + 2Aj )+ sin(2 x + 2xi )sin(2A, + 2Ayj )].

Finally, Eq. (C. 14) can be written as

a + bj cos[2f + 24x,, ]+ c sin[2,V + 2 xi ],

where

A2 Ai iAxj
a = 2x' - cos A 

n~~£

bj =-- (Axi - AxjCos A j )2 (Aj sin 
2£-, 2e£

I (Axi - A cosxj )Axj sinA
£x

+ 2
2£e 2£y

)2_Ay1cos[ 2A +2 A
2£,

+ A2 sin[2A. + 2A, 1.
2E,

Note that Af, is nearly constant. This is because , = |ds/
o

w 2(s) and V/, = ds/ 2(s) and in the
O0

smoothed-beam approximation for £x = ey,

" ds
j J a2(S

S ds

i (a + a)2

I ds
= e J +

( + )2
- 1- 2 ds = b s .

Using the identity
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(C.15)

(C. 16)

(C.17)

] (C.18)

(C.19)

x rsds
0 r (S )

-2 )ds

_ ds

0 .

- 2 '1-2a 0~

_ == 2 S
a

_S ds

b2(S

(C.20)

(C.21)



2 xA+B+Ccosx+Csinx Bb + Cc
aIbcox cidx = 22

0 a+bcosx+csinx b2 +c2

Eq. (C. 10) becomes

K N Bibi + CiciRHS = K x j j
x N p j=l(jti) b2 + I

C.2.2 Average of
1

;1G

s+2uzS/ax

-$( ...)co s[yx+ xi]dVx on Eq. (C.8)
S

s+2J/ '.+
LHS = - {- Axi(i cos[y//, + dx xi= xi]-Axi sin[Vx + xllcos[Vx +Ox ldVx =-Axjxi ,

s+2,zS/aIo r dV K 
RHS = - Jf cos[;V+xi 2 s[x ++ i2i)r S 2,e

K Np

2exNp j=I(jOi) I{Axi cos[,x

ex

Axi cos[Vx + xi]- Aj cosfV + 4j]

+ O(xi]- Axj os[Vx + x F + {Aj siny + yj
CY

A.iK
2Ex

21 s+2 K N {Axi cos[x + 4)xi]-Axj cos[§x + o4 xj cos[Vx + xi + ]

s 2£xNp j=l(jfi) I {Axi cos[d x +yxi ]-AxjcoS[yx � x+ AY sin[ + yj

(C.25)

The numerator of the second term in Eq. (C.25) becomes
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(C.23)

(C.24)
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tAxi cos[/ix + c(1 i]- Aj, cos[V/x + *, lcos[Wtx +(I)xi]

Ai A. x Axj A.:=L y + 2]x cos[2Vx + 2*i]C Axj o + sin[2, + 2Oxi]sinAxj + cos Aj
2 2 x 2 2 x 2

:= Cj + Cj cos[2Vx + 2xi]- B sin[2Vx + 2xi ]

(C.26)

Eq. (C.25) becomes

RHS= AxiK
2£x

K

F-xjNp

NP

j=l(.ji)

Cjbj - Bcj
2 + 2bJ +c

Collecting the results above [i.e., Eqs. (C.9), (C.23), (C.24) and (C.27)], we have the differential

equations which determine the slowly varying variables Axi and xi,

dAi 
ds

K

x-x Np

Np

j=l(j-i)

dcxi _ K K
ds 2E£ Axi x NP

Bjb + Cjc
bj2 +C2bi J

(C.28)

(C.29)
N, Cb - Bjcj -

j=l(ji) bcjI I
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