
Nanoscale Heat Conduction with Applications in Nanoelectronics
and Thermoelectrics

by

Ronggui Yang

M.S., Mechanical Engineering (2001)
University of California at Los Angeles

M.S., Engineering Thermophysics (1999)
Tsinghua University, Beijing, China

B.S., Thermal Engineering (1996)
Xi'an Jiaotong University, Xi'an, China

Submitted to the Department of Mechanical Engineering
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Mechanical Engineering

at the
Massachusetts Institute of Technology

February 2006

© 2006 Massachusetts Institute of Technology
All rights reserved

Signature of Author .........
Department of Mechanical Engineering

December 20, 2005

Certified by ................................................................ ..
Gang Chen

Professor of/echanical Engineering
,~s/ nc ie eThesis Supervisor

Accepted by ......... ................................................. ......... ................... .........
Lallit Anand

Chairman, Department Committee on Graduate Students

MASSACHUSETS INSTIMTE
OF TECHNOLOGY

JUL 14 0 n0 6 ARCHIVES
I B --- I

LIBRARIES



2



Nanoscale Heat Conduction with Applications in Nanoelectronics and Thermoelectrics

by

Ronggui Yang

Submitted to the Department of Mechanical Engineering on December 20, 2005
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Mechanical Engineering

ABSTRACT

When the device or structure characteristic length scales are comparable to the mean free
path and wavelength of energy carriers (electrons, photons, phonons, and molecules) or the time
of interest is on the same order as the carrier relaxation time, conventional heat transfer theory is
no longer valid. Tremendous progress has been made in the past two decades to understand and
characterize heat transfer in nanostructures. However most work in the last decade has focused
on heat transfer in simple nanostructures, such as thin films, superlattices and nanowires. In
reality, there is a demand to study transport process in complex nanostructures for engineering
applications, such as heat transfer in nanoelectronic devices and the thermal conductivity in
nanocomposites which consists of nanowires or nanoparticles embedded in a matrix material.
Another class of problems which are rich in physics and might be explored for better design of
both nanoelectronic devices and energy conversion materials and devices are coupled electron
and phonon transport. Experimentally, most past work has been focused on thermal conductivity
characterization of various nanostructures and very little has been done on the fundamental
transport properties of energy carriers.

This thesis work contributes to the following aspects of heat transfer, nanoelectronics, and
thermoelectrics. 1) Simulation tools are developed for transient phonon transport in
multidimensional nanostructures and used to predict the size effect on the temperature rise
surrounding a nanoscale heat source, which mimics the heating issue in nano-MOSFETs. 2)
Semiconductor nanocomposites are proposed for highly efficient thermoelectric materials
development where low thermal conductivity is a blessing for efficiency enhancement. Both the
deterministic solution and Monte Carlo simulation of the phonon Boltzmann equation are
established to study the size effect on the thermal conductivity of nanocomposites where
nanoparticles and nanowires are embedded in a host material. 3) Explored the possibility of
creating nonequilibrium conditions between electrons and phonons in thermoelectric materials
using high energy flux coupling to electrons through surface plasmons, and thus to develop
highly efficient thermoelectric devices. 4) Established a sub-pico second optical pump-probe
measurement system where a femtosecond laser is employed and explored the possibility of
extracting phonon reflectivity at interfaces and the phonon relaxation time in a material, which
are the two most fundamental phonon properties for nanoscale energy transport from the pump-
probe measurements.

Thesis Supervisor: Gang Chen
Title: Professor of Mechanical Engineering
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Chapter 1. Introduction

1.1 Introduction

Heat transfer at the nanoscale may differ significantly from that in macro and microscales.

With device or structure characteristic length scales becoming comparable to the mean free path

and wavelength of heat carriers (electrons, photons, phonons, and molecules) or the time of

interest is on the same order as the heat carrier relaxation time, classical laws are no longer valid

and size effects become important [1-4]. Well-known examples are the failure of the Fourier law

to predict the thermal conductivity of composite nanostructures such as superlattices, which is a

simple periodic stack of alternate nanometer material layers [5, 6] and the failure of the Stefan-

Boltzmann law in predicting radiation heat transfer across small gaps [7, 8]. Although much has

been done in this area recently, there is still an immediate need for a better understanding of

thermal phenomena in nanostructures. There are typically two types of problems. One is the

management of heat generated in nanoscale devices to maintain the functionality and reliability

of these devices. Examples are the heating issues in integrated circuits [9] and in semiconductor

lasers [10]. The other is to utilize nanostructures to manipulate heat flow and energy conversion.

Examples include nanostructures for thermoelectric and thermionic energy conversion [11, 12],

for data storage [13] and for nano-diagnostics [14]. This thesis deals with both types of

problems.

This chapter provides necessary background and gives an overview for this thesis. Section

1.2 discusses the fundamentals of nanoscale heat conduction including the characteristic length

of phonon carriers and the particularities of nanoscale heat transfer, especially rarefied phonon

heat conduction and nonequilibrium effects between energy carriers. Section 1.3 briefly

discusses the importance of nanoscale heat transfer in nanoelectronics and section 1.4 provides

the necessary background for thermoelectric energy conversion. Section 1.5 outlines the scope

and the organization of this thesis.

1.2 Fundamentals of Nanoscale Heat Conduction

At the macroscale, heat conduction is predicted by the Fourier law,

q = -kVT (1-1)
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where k is the thermal conductivity, q is the heat flux, and VT is the temperature gradient. The

Fourier law is a diffusion equation and the thermal conductivity is a materials property, which

may depend on the detailed microstructure of the material but is independent of the size of the

material.

At the nanoscale, the conduction of heat by energy carriers can be a ballistic process that

is similar to photon transport in thermal radiation. Thermal conductivity is no longer only a

materials property. Heat conduction in dielectric materials and most semiconductors is

dominated by phonons. Size effects appear if the structure characteristic length is comparable to

or smaller than the phonon characteristic lengths. Two kinds of size effects can exist: the

classical size effect, when phonons can be treated as particles, and the wave effect, when the

phonon wave phase information becomes important. Distinctions between these two regimes

depend on several characteristic lengths, which we discuss below [3].

1.2.1 Characteristic Lengths

The important characteristic lengths of phonon heat conduction are the mean free path,

the phonon wavelength, and the phase coherence length [3]. The mean free path is the average

distance that phonons travel between successive collisions. The corresponding average time

between successive collisions is the collision-free time, which is often referred to as microstate

relaxation time. Direct calculation of the mean free path is generally difficult, particularly for

electron and phonon transport in solid. The kinetic theories and experimental conductivity data

are often used to estimate the mean free path according to

k= Cv2r= CvA (1-2)
3 3

1 C1max A °)max

k=- COv, dod =- ICvodw (1-3)
30 30

where C is the volumetric specific heat, i.e. the specific heat per unit volume, the relaxation

time, v the velocity of carriers. The integration in Eq. (1-3) is over all the phonon frequency and

correspondingly, C , v, and T0, are the volumetric specific heat, the velocity, and the

relaxation time at each frequency, respectively. If Eq. (1-2) is used to estimate the phonon mean
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free path with the measured specific heat and the speed of sound, the mean free path can be an

order of magnitude lower than that based on Eq (1-3) [15-17]. The consideration of the

frequency dependence is necessary because phonons are highly dispersive. In Fig. 1-1(a), we

show the phonon mean free path in silicon which is estimated based on Eq. (1-2) and Eq. (1-3),

using the reported data on the specific heat and the speed of sound.

Energy carriers have particle-wave duality. The phase and the frequency/wavelength are

the two most important characteristics of carrier waves. The phase of a wave can be destroyed

during collision, which is typically the case in inelastic scattering processes, such as the electron-

phonon collision and phonon-phonon collision. An inelastic scattering process is the one that

involves the energy exchange between carriers. If the phase destroying scattering process occurs

frequently inside the medium, the wave characteristic of carriers can be ignored and the transport

falls into the particle diffusion regime. Not all the scattering processes, however, destroy the

phase. Elastic scattering processes such as scattering of photons by particulates and the scattering

of electrons by impurities do not destroy phase. Thus, the phase coherence length is usually

longer than the mean free path, but it is not much longer, particularly at room temperature for the

electrons and phonons. Therefore we can treat them as having the same order of magnitude.
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The phonon wavelength in a crystal spans a wide range. Long wavelength phonons have

a wavelength that is comparable to the crystal size. The shortest phonon wavelength is just twice

of the lattice constant. However, not all the phonons in the wide range of wavelengths contribute

equally to thermal transport. The actual probability of excitation for a specific quantum

mechanical state depends on the energy of the state and the temperature of the object as governed

by the Fermi-Dirac distribution for electrons and the Bose-Einstein distribution for phonons and

photons. We can estimate the order of magnitude of the average wavelength of the energy

carriers, At ,, by assuming the average energy of one quantum state is KB T/2, where

K (=1.38X10-2 3 J/K) is the Boltzmann constant and calculating the corresponding wavelength

from the Planck relation E=hv for phonons and photons, where h (=6.6x10 3 4 J.s) is the Planck

constant, p the momentum and vthe frequency. This leads to,

2hv

KBT
(1-4)

where v is the speed of carriers. Fig. 1-2 shows the phonon wavelength in silicon. At room

temperature, the wavelength is around 10 A for phonons.

11102
TEMPERATURE (K)

Figure 1-2. Thermal wavelengths for representative energy carriers. At

wavelength is around 10 A for phonons.

room temperature, the
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Size effects appear if the structure characteristic length is comparable to or smaller than

the phonon characteristic lengths, i.e. mean free path, wavelength and phase coherence length of

energy carriers.

1.2.2 Wave vs. Particle Size Effects

A key question in understanding phonon transport is whether one should treat phonons as

waves or as particles. When treating them as waves, the phase information carried by waves

should be included. The superposition of waves leads to interference, diffraction, and tunneling

phenomena that also exist in other types of waves. Using the three characteristic lengths

discussed above, we make the following qualitative observations.

One necessary condition for the inclusion of wave effects is that the mean free path

(phase coherence length) should be comparable or longer than the structure characteristic length,

such as the thickness of a film or the diameter of a wire, so that the phase of the wave can

possibly be conserved. This condition, however, is not sufficient for actually observing the wave

effects because of three additional factors: (1) interface scattering processes, (2) the wavelength

of the carriers, and (3) the spectrum of the carriers, as explained below.

When a wave meets an interface, it will be scattered. The most familiar example is the

reflection and refraction of optical waves [18]. Phonon waves show similar processes. For a flat

interface, the phases and directions of the refracted and reflected waves are fixed relative to the

incident waves. Thus, these processes do not destroy phase. Periodic interface corrugations are

another example for which the incident and outgoing waves have clear fixed phase relations.

Rough interfaces, however, are more complicated. If the detailed interface roughness structures

are known and if the interface interaction is elastic, the directions of the reflected and refracted

waves can be determined in principle. In reality, this is rarely possible and rough interface

scattering is often assumed to be diffusive, i.e., the reflected and transmitted waves are

isotropically distributed into all directions. Usually, the accompanying assumption is that the

relationship between the phases of the reflected, transmitted and incident wave is lost, i.e., the

scattering is phase randomizing. Such an assumption cannot be justified easily but appears to be

true in many transport processes, particularly for phonons. In addition to elastic scattering, the

inelastic scattering can be also strong at the interfaces and such scattering processes are phase

breaking. Thus, interface scattering can be approximated as phase breaking if the interface is
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rough, and as phase preserving if it is smooth. Whether an interface is rough or smooth depends

on the average roughness, 6, compared to the wavelength X We can approximately take [19]

b >> 0.1 (Rough)

A << 0.1 (Smooth)

Thus, if interface scattering is diffuse, the wave aspects of energy carriers can be neglected and

size effects, which appear when the characteristic dimension of the structure is comparable or

larger than the mean free path, fall into the classical regime. The short phonon thermal

wavelength suggests that the particle picture and classical size effects dominate except at very

low temperatures when both the mean free path and thermal wavelength are long.

1.2.3 Nanoscale Heat Conduction Phenomena

Even when the phone transport falls in the particle picture or classical size effect regime,

there are a range of unique heat conduction phenomena that are important at the nanoscale. The

most distinguishable examples are thermal boundary resistance at interfaces and thermal

conductivity reduction for simple nanostructures, including nanowires, thin films, and

superlattice. For heat conduction perpendicular to an interface, phonon reflection implies that the

energy carried by heat carriers will be reduced compared to the case when there is no interface,

or equivalently, a resistance for heat flow exists at the interface. This phenomenon, called

Kapitza resistance or thermal boundary resistance, has been known since the pioneering work of

Kapitza for the liquid helium-solid interface and Little for the solid-solid interface [20, 21], and

extensive experimental and theoretical studies have been carried out on these topics in the past.

For two solids in perfect contact, the thermal boundary resistance is on the order of 10'8-10'9

m2K/W. Such a thermal boundary resistance corresponds to the thermal resistance of a solid

layer of thickness 1 nm - 1 gpm with a bulk thermal conductivity of 1-100 W/m-K. When dealing

with films of comparable thickness or smaller, the interface thermal resistance contributes

significantly to the total thermal resistance.

The most intensive research in nanoscale heat transfer is the measurement and the

modeling of the thermal conductivity of thin films, superlattices, and more recently nanowires,

due to their importance for nanoelectronics, photonic and thermoelectric devices. Reviews can be
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found in Ref. [22, 23]. Experimentally, it has been observed that the thermal conductivity of

these low-dimensional nanostructures can be one or two orders of magnitude lower than the

thermal conductivity values calculated based on the Fourier law, using the properties of their

parent materials [24-30].

Here I present in particular two slightly not well-known phenomena, which are closely

related to my thesis work: the phonon rarefaction effect and nonequilibrium heat conduction

processes between different heat carriers.

Phonon Rarefaction Effect. Although the thermal conduction reduction in thin films and

nanowires is a well-known phenomenon, the size effects outside for heat conduction external to

nanostructures have not received much attention. Heat generated inside nanoscale regions or

nanostructures eventually will be conducted to the surroundings. When the heat generation

region or the size of the nanostructure is smaller than the mean free path of the heat carriers in

the surrounding medium, the temperature rise of the nanostructure can be much higher than that

predicted by the Fourier law [31]. To see why this occurs, we consider the heat conduction

surrounding a heat generating spherical region embedded inside a semi-infinite medium, as

shown in Fig. 1-3. The Fourier law leads to the following relation between heat transfer rate, Q,

and the temperature rise at the surface of the sphere, T,,

Q(Fourier) = 4krr(Ts - T) = 4_ rCvA(Ts - T) (1-6)
3

where Too is the temperature of the medium away from the sphere and r is the radius of the

sphere, and we have used the kinetic expression, Eq. (1-2), for the thermal conductivity. When

the diameter of the nanosphere is much smaller than the mean free path of the heat carrier in its

surroundings, however, we can neglect the scattering and treat the heat transfer between the

region and its surroundings as a radiation process. This approach leads to the following solution

for the heat transfer,

Q(radiation)= 7rr2Cv(T,e - To ) 2nr2Cv(T, - T ) (1-7)
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Figure 1-3. Heat conduction between two spheres to mImIC the heat transport process

surrounding a heat generating spherical region embedded inside a semi-infinite medium and

thus to illustrate the phonon rarefaction effect.

where we have used Ts,e to represent the temperatures of the phonons comIng out of the

nanoparticle or the emitted phonon temperatures. If there is no reflection at the interface, the

surface temperature, as used in the Fourier law, is related to the emitted phonon temperature

through, Ts=0.5'(Ts,e+Too),which leads to the second equality of Eq.(I-7). Comparing Eq. (1-7)

with Eq. (1-6), we can see that

Q(Fourier) 2A
Q(Radiation) 3r

(1-8)

Thus, in the limit where the mean free path is much larger than the sphere radius, the Fourier law

over-predicts the heat transfer rate. This is because the Fourier law is only applicable when there

is not a large temperature gradient within one mean free path. For the above example, the

application of the Fourier law to a region much smaller than the mean free path (surrounding the

sphere where the temperature varies significantly) inherently implies that there is strong

scattering in this region, which is only true when the mean free path is much smaller than the

region, while in reality, the mean free path corresponding to the bulk thermal conductivity is

much larger.
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Nonequilibrium between Energy Carriers. In dealing with nanoscale heat transfer, it is

important to identify where and how heat is generated and how heat is exchanged between

different groups of heat carriers. For example, the electric field in some devices such as a

MOSFET easily reaches 106 V/m (1Volt across 1 micron). Depending on the electron-phonon

heat exchange rate, the electrons can be heated to a much higher temperature than the phonons.

Such hot electron effects occur when the electric fields become higher as the feature size shrinks.

The temperature difference between the electrons and phonons would be -104 -10 5 K for a

typical mobility of 102 cm2/V s. Apparently the conventional assumption that the electrons and

phonons are under local equilibrium in modeling transport phenomena, is no longer valid. This

hot electron phenomena, nonequilibrium between electrons and phonons, also happens in the

case of laser-materials interactions where the electrons can be thrown out of equilibrium with the

lattice due to excitation by an ultra-short laser pulse [32].

In addition, different group of phonons have very different characteristics and they can be

out of equilibrium with each other. For example, electrons interact more readily with optical

phonons, particularly polar optical phonons as in GaAs [33, 34]. The optical phonons, however,

do not carry heat as efficiently as acoustic phonons. Consequently, depending on the energy

exchange rate between optical phonons and acoustic phonons, hot optical phonons under some

circumstances can be generated. Due to the large dispersion of acoustic phonons, it is also

possible that acoustic phonons are significantly out of equilibrium with each other.

Along the same line of reasoning, the coupled electron-phonon transport is the basis for

solid-state energy conversion such as thermoelectric and thermionic cooling and power

generation. Taking thermoelectric cooling as an example, electrons take energy away from

phonons at a metal-semiconductor interface, carrying the energy to the hot side, and rejecting it

to phonons. Although macroscopic thermoelectric phenomenon is well understood [35], some

questions remain, such as what happens at the interface and how phonons are cooled and heated

by electron systems.

1.2.4 Characterization of Nanoscale Heat Transfer

There are two key experimental directions in studying nanoscale heat transfer phenomena.

One is the thermophysical property measurements of nanostructures such as thin films and

nanowires. The other is the temperature measurements and particularly, temperature mapping
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surrounding nanoscale devices. During the last decade, remarkable progress has been made in the

area of microscale thermometry, which can now allow temperature measurements at length and

time scales comparable to the mean free paths and relaxation times of energy carriers in solids.

As reviewed in [36], the two most renowned techniques are: (1) scanning thermal microscopy for

high spatial resolution thermal imaging; and (2) scanning optical thermometry that combines high

spatial and temporal resolution measurements.

Measuring thermophysical properties is always a challenging task, even at the macroscale.

The thermophysical property characterization of nanostructures and microstructures is even more

challenging. A variety of measurement techniques, using electrical, optical, and the hybrid

sensing methods have been developed [3, 36, 37]. The two most successful methods for

measuring the thermal conductivity of thin films and superlattice are the 3 method and the

transient thermoreflectance method (TTR), which is also called the sub-picoseconds pump-probe

method since this method utilizes an ultrafast (subpicosecond) laser. The 3 o0 method, initially

developed for measuring the thermal conductivity of bulk materials [38], is currently the most

popular method for measuring the thermal conductivity of thin films where the thermal

conductivity of thin films down to 20 nanometers in thickness has been measured [39, 40]. More

recently, the method has been extended to study the thermal conductivity of nanowires and

carbon nanotubes [41, 42].

In the optical pump- probe method, sub-picosecond time resolution is made possible by

splitting the ultrafast laser output into an intense heating pulse, i.e. "pump" beam, and a weaker

"probe" beam, and controlling the optical path length difference between the pump and probe

beam through a mechanical delay stage [43]. The details will be described in chapter 6. The

optical path length difference results in variable time delay between the pump and the probe

beams. The pump beam is used to generate a temperature change at the sample surface. The

decay of the temperature rise is measured by the reflected energy of the probe pulse series, where

the probe takes a snapshot of the reflectance at a specific experimental time delay relative to the

pump. The temporal resolution of the optical pump-probe method is on the order of the probe

pulse duration. By localizing the energy deposition spatially and temporally, it is possible to

monitor thermal changes in both the electron and phonon lattice systems with very high

resolution, thus allowing for observation of electron-phonon relaxation dynamics, interface

thermal resistance, and thermal conductivity of nanostructures, especially for superlattices and
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thin films [36, 44, 45]. Understanding the energy deposition and transport process in the material

after ultrafast laser illumination is of significant importance for the pump- probe method.

Whether the sub-picosecond pump-probe optical measurement can be used to study the

fundamentals of phonons, such as the phonon reflectivity at an interface and the phonon

relaxation time, like it does for electrons, needs further exploration.

1.3 Applications of Nanoscale Heat Transfer in Nanoelectronics.

The thermal management of microelectronics has already become a challenging issue.

Commercial integrated circuits are currently available with transistors whose smallest lateral

feature size is around 65 nm and the thinnest material films are below 2 nm, or only a few atomic

layers thick. Such miniaturization has led to tremendous integration levels, with more and more

transistors assembled together on a smaller area, together with more functionality. The

technology advance is likely to follow the current miniaturization trend as summarized by

Moore's law in the coming years. However as the gate length continues to decrease, it is also

predicted that the operating voltage cannot be correspondingly reduced for maintaining a low

leakage current and thus the device operating power cannot be reduced below a certain level [46].

The "power problem," i.e., the heat generation and chip temperatures reaching a level that will

prevent the reliable operation of the integrated circuits. The chip-level power densities are

currently on the order of 100 W/cm2. How to avoid the hot spots on the chip where higher

temperatures occur at a localized millimeter functional region is a hot topic today for chip and

integrated circuit designers. While much of the attention has been focused on chip level

packaging, nanoscale heat transfer effects including the thermal conductivity reduction of thin

films and the phonon rarefaction effect discussed above may further complicate the problem in

the performance and design at the device level. For example, figure 1-4(a) shows an SEM picture

of a nanoscale MOSFET and figure 1-4(b) shows that heat is mostly generated on the drain side

over a lateral dimension of -10 nm in MOSFETs through the Monte Carlo simulation of electron

transport. The rarefied phonon heat conduction effect discussed above means that the device

temperature rise can be much higher than the prediction employing the Fourier law. In addition,

nonequilibrum between optical and acoustic phonons can further increase the local temperature

rise [46]. Microelectronic devices are pushing to tens of gigahertz clock frequency with a much

shorter transient time. Energy transduction mechanisms at such short time scales can differ
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significantly from that at the macroscale. Understanding how the heat is generated and

transported at the nanoscale has significant implications for the reliability of nanoelectronic

devices.

1.4 Thermoelectric Energy Conversion

Energy conversion is a field that may greatly benefit from nanoscale energy transport

phenomena. An example is thermoelectric cooling and power generation based on the Peltier

effect and the Seebeck effect, respectively [47].

Thermoelectricity investigates the direct converSIon of thermal energy into electric

energy and vice versa. The fundamental physical reason for thermoelectric phenomena is the fact

that the electrical carriers are also heat carriers at the same time. Therefore, the electron

movement can be driven not only by the electrical potential, but also by a thermal potential. The

basic physical effects in thermoelectricity are the Seebeck effect and the Peltier effect, named

after the early investigators of these effects. The Seebeck effect is defined as how much of an

electromotive force, or voltage, arises when the two ends of a material are maintained with a

temperature difference between them. When a current passes through a thermocouple, the heat is

transferred from one junction to the other; and thus the temperature of one junction increases and

the other decreases. This phenomenon is called the Peltier effect. The magnitude of this heat

transfer rate is proportional to the electrical current and the ratio is called the Peltier coefficient.

-
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Figure 1-4. (a) A MOSFET made by IBM. MOSFET is the workhorse of today's Ie industry. (b)

The Monte Carlo simulation of electron transport at IBM shows that heat is mostly generated

over a lateral dimension of", 10 nm on the drain side of the MOSFET.
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As an approach to realize direct energy conversion, thermoelectricity can be used for both

cooling and power generation, depending on whether the work is taken from or put into the

system. Figures 1-5(a) and (b) are schematic diagrams showing typical thermoelectric

refrigeration and power generation devices. The basic thermoelectric device is a thermocouple

composed of one n-type leg and one p-type leg. When used for cooling, an electrical potential is

supplied to the device, as shown in Fig. 1-5(a). The electrical potential will drive electrons and

holes to flow in n-type leg and p-type legs respectively. Since the flow directions of electrons

and holes are opposite to each other, the heat carried by both carriers in the two legs is always

transported from the low temperature heat source to the high temperature heat sink. When used

for power generation, the device is put in between a high temperature heat source and a low

temperature heat sink, as shown in Fig. 1-5(b). Electrons and holes are driven by the temperature

gradient to diffuse from the hot to the cold side, which creates an electromotive force in the n-

type and p-type legs, respectively. Since the electromotive forces are of opposite signs between

the two legs, they add up and can be used to supply power to the external load.

The efficiency of a thermoelectric device is determined by the thermoelectric figure-of-

merit of the material ZT = a S2T/k, where S is the Seebeck coefficient, is electrical

conductivity, k is the thermal conductivity and T is the absolute temperature. The central issue in

thermoelectrics research is to increase the thermoelectric figure of merit ZT. The best

thermoelectric materials were succinctly summarized as "phonon-glass electron-crystal" material

(or PGEC in short), which means that the materials should have a low lattice thermal

conductivity as in a glass, and a high electrical conductivity as in crystals [48]. The best

thermoelectric materials are found in heavily doped semiconductors. Insulators have poor

electrical conductivity and metals have a low Seebeck coefficient. In semiconductors, the

thermal conductivity has contributions from both electrons (ke) and phonons (kp), with the

majority usually coming from phonons. The phonon thermal conductivity can in some cases be

reduced without causing too much reduction in the electrical conductivity. A proven approach to

reduce the phonon thermal conductivity is through alloying proposed in the late 1950's [49].

The mass difference scattering in an alloy reduces the lattice thermal conductivity significantly

without much degradation to the electrical conductivity. The commercial state-of-the-art

thermoelectric cooling materials are based on alloys of Bi2Te 3 with Sb2Te3 (such as Bio.5Sbl.5Te3,

p-type) and Bi2Te 3 with Bi2Se3 (such as Bi2Te2.7Seo.3, n-type), each having a ZT at room
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temperature approximately equal to one [50]. As shown in Figure 1, the progress since 1960s in

improving ZT had been very slow before the 1990s. The value of the maximum ZT had

essentially remained around one. The landscape in thermoelectrics research changed quite

significantly in the 1990s due to several new conceptual developments leading to a renewed

interest from several US research funding agencies. Low-dimensional materials, such as

quantum wells, superlattices, quantum wires, and quantum dots offer new ways to manipulate the

electron and phonon properties of a given material [51] after the groundbreaking work by Hicks

and Dresselhaus [52,53,54,55]. Most significant enhancements of the thermoelectric figure-of-

merit were reported in BbTe3/Sb2Se3 superlattices along the cross-plane direction [56] and

PbTe/PbTeSe quantum-dot superlattices along the film-plane direction [57].

Although superlattice-based materials are the best systems for proof of principle studies

and they have the highest reported ZT values today, superlattice-based materials are likely to be

very expensive and difficult to scale up for large scale applications [58]. The difficulty in making

high performance devices from superlattices and in characterizing their ZT also shows one major

challenge in using these materials for example for making thermoelectric coolers. Thin film or

superlattice-based thermoelectric devices which are around 1 - 10 micron thick suffer seriously

from various losses and additional electrical and thermal resistances [59]. How to scale up the

physics responsible for reported high ZT in superlattices into mass-producible cost-effective bulk

thermoelectric materials and devices is a challenge for thermoelectricians today. This thesis will

investigate the potential of nanocomposite materials for thermoelectrics applications.
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Figure 1-5. Schematic demonstration of thermoelectric device configurations for (a) refigeration

and (b) power generation. (arrows indicate carrier transport direction)
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1.5 The Scope and Organization of this Work

The research on the size effect of heat transfer dates back to Casimir's pioneering work in

the 1930's [60] and the resurgence of the effort starts around early 90's due to progress in micro

and nano fabrication. However, most research has focused on heat transfer in simple

nanostructures, for example, the theoretical prediction and experimental demonstration of

thermal conductivity reduction of thin films, superlattices, and nanowires. In reality, there is also

a large demand to study phonon transport in complex nanostructures. Examples are how heat

generated in nanoelectronic device, where the heated region is often much smaller than the

phonon mean free path, will be transported out, and how the thermal conductivity in

nanocomposites which consists of nanowires or nanoparticles embedded in a matrix material, is

different from that of macroscale composites. Often such kinds of problems are multiscale

problems. Another class of problems, which are rich in physics and might be explored for better

design of both nanoelectronic devices and energy conversion materials and devices, are coupled

electron and phonon transport problems. Experimentally, most of the past work has been focused

on the thermal conductivity characterization of various nanostructures and very little has been

done on the fundamental properties of phonon transport, for example the phonon reflectivity at

the interfaces and the phonon relaxation time in the bulk material.

This thesis work has been focused to contribute to the following aspects of heat transfer,

nanoelectronics and thermoelectrics: 1) Developing simulation tools for transient phonon

transport in multidimensional nanostructures and studying the predicted size effect on heat

transfer surrounding a nanoscale heat generating region, i.e., the temperature rise in

nanoelectronic devices, where heating is becoming a limiting factor for further scaling for

electronic devices according to the semiconductor roadmap. 2) Proposing semiconductor

nanocomposites for highly efficient thermoelectric materials development where the reduction of

thermal conductivity is a blessing for efficiency enhancement. Both deterministic solution of the

phonon Boltzmann equation and Monte Carlo simulations are established to study the size effect

on thermal conductivity of nanocomposites where nanoparticles and nanowires are embedded in

a host material. 3) Exploring the possibility of creating nonequilibrium conditions between

electrons and phonons in thermoelectric material using the high energy flux coupling to electrons

through surface plasmons, and thus to develop highly efficient thermoelectric devices. 4)
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Establishing a sub-pico second optical pump-probe measurement system where a femtosecond

laser is employed and exploring the possibility of extracting phonon reflectivity at the interfaces

and phonon relaxation time in a material, which are the two most fundamental properties for

nanoscale energy transport from pump-probe measurements. To this end, this thesis is organized

as following.

It has been demonstrated in the last decade that the Boltzmannn transport equation (BTE)

is a valid and useful tool for studying the classical size effect of phonon transport at the

nanoscale. However, the solution of the phonon BTE has been limited to a few simple

geometrical configurations, such as thin films, superlattices and nanowires. The inherent

difficulties associated with the solution of the phonon BTE have significantly limited the

consideration of the size and transient effects in multidimensional real engineering problems.

Fewer studies have gone beyond non-planar and multidimensional geometries [61-63]. One of

the objectives of chapter 2 is to develop numerical solution strategies for solving the transient

phonon BTE in multidimensional structures. Modeling the multidimensional heat conduction

processes in most devices involving multiple length scale devices from nanoscale to macroscale

is very challenging. Direct numerical solution of the phonon BTE is preferred, but it is usually

slow to implement such solutions. Approximate methods that are capable of capturing the major

size effects but easier to implement are thus desirable. A ballistic-diffusive approximation was

proposed, which essentially splits the carriers inside the medium into two groups - a ballistic

component and a diffusive component [64, 65]. Chapter 2 extends the ballistic-diffusive

equations to multidimensional space with a nanoscale heat source term and numerical

implementations were performed on the transient ballistic-diffusive equations. The so-developed

numerical simulation tools were applied to study the heating issue in a nanoscale MOSFET

structure. Simulation results of heat conduction in nanoscale heat generation regions show that

the localized nanoscale heating can have a several times larger temperature rise than that

predicted by the Fourier law. This has significant implications for the reliability of MOSFET

devices. This work also demonstrates that the ballistic-diffusive equations and the numerical

calculation strategies can be promising for incorporating into commercial device simulators.

Nanostructure-based materials such as Bi2Te3/Sb2Te3 superlattices and PbTe/PbSeTe

quantum dot superlattices have shown significant increases in ZT values compared to their bulk

counterparts due to mainly the reduced phonon thermal conductivity of these structures [56, 57].

38



Nanocomposites may realize a similar thermal conductivity reduction and provide a pathway to

scale-up the nanoscale effects observed in superlattices to thermoelectric materials in bulk form

[58]. There are not many theoretical studies on the thermal conductivity of nanocomposites,

despite their importance for practical applications such as for thermoelectrics and thermal

interface materials. In chapter 3 the deterministic solution of the phonon Boltzmann equation is

used to study the thermal conductivity of 2-D nanocomposites where silicon nanowires are

periodically aligned in a germanium matrix both along and across the nanowire directions.

Though very much doable, extending the 2-D BTE simulation to phonon transport in complex

three-dimensional (3-D) spatial coordinates is very tedious, owing to the complexity in tracking

the phonon transport deterministically. Chapter 4 presents an algorithm for studying phonon

transport in nanoparticle composites using Monte Carlo simulations with special attention paid to

the implementation of periodic boundary conditions. The size effects of phonon transport in

nanoparticle composites were thus studied and the results showed that the thermal conductivity

of nanoparticle composites can be lower than their alloy value. The calculations also show that

the interfacial area per unit volume (interface density) is a useful parameter to correlate the size

effect of the thermal conductivity in nanocomposites. Results of this study can be used to direct

the development of both high efficiency thermoelectric materials and thermal interface materials

containing high thermal conductivity particle or wire inclusions.

In addition to the materials development, there are also new opportunities to create novel

thermoelectric devices that can potentially outperform conventional thermoelectric devices.

Different device configurations have been explored in the past. Past studies include the

investigation of thermoelectric effects in pn junctions and minority carrier effects [66,67],

multistage thermoelectric devices [68], and transient effects [69].

In thermoelectric devices it is the electrons that do the useful energy conversion work and

the electron temperature that matters for energy conversion efficiency. Following the rationale

of reducing the phonon thermal conductivity, if there is a way to impart energy to electrons only

(by cutting off the energy transport through phonons between the heat source or the cooling

target and the thermoelectric element) while minimizing the energy coupling between electrons

and phonons, it is possible to obtain better performance for thermoelectric devices. It has been

long recognized that the nonequilbrium between electrons and phonons in a thermoelectric

element can be exploited to improve the thermoelectric energy conversion efficiency [70-74], but
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there exist no easy ways to create such nonequilibrium states between electrons and phonons to

benefit from hot electrons for power generation or to benefit from the cold electrons for

refrigeration. Recent work on phonon-polariton coupling in the near-field shows that a heat flux

as high as 10's or 100's W/cm2 can be obtained when two half-spaces of a polar semiconductor

(such as silicon carbide or boron nitride) are separated by a nanoscale vacuum gap for a

temperature difference of 10's K between the two surfaces [75]. In Chapter 5, we conceptualize

and investigate surface-plasmon coupled nonequilibrium thermoelectric devices. These devices

use surface-plasmon coupling to limit the energy exchange between the heating source (or

cooling target) and the thermoelectric element to electrons alone, while eliminating direct energy

exchange between phonons. Models for refrigeration and power generation devices based on

this concept are established, together with simplified criteria to guide the device design and

materials selection. Our simulations show that these devices can lead to significant

improvements in efficiency over conventional thermoelectric devices.

As shown in all the current theoretical modeling and simulation work, it is extremely

important to have a correct phonon relaxation time or phonon mean free path as input parameters

for any Monte Carlo or Boltzmann transport equation-based simulations for nanoscale heat

conduction problems. Phonon reflectivity at interfaces and phonon relaxation time are clearly

the most fundamental energy carrier properties for nanoscale heat conduction. Unfortunately no

work has been done so far for phonon dynamics to extract these phonon properties. The closest

studies are those using the optical pump-probe measurements to study thermal diffusivity and the

interface thermal resistance. Almost all pump-probe measurements use the heat diffusion

equation to fit the cooling curve thermal conductivity and interface resistance. However, for the

heat diffusion equation to be valid, this cooling time scale should be many times longer than the

phonon relaxation time. So the fit would result in fundamental errors if the cooling delay time is

not long enough. For example, the phonon relaxation time is around 100 ps, and the

experimental delay time is often around several hundred picoseconds or 1 nanosecond. During

this thesis work, we set up the sub-picosecond pump-probe optical measurement facilities

employing a Ti:sapphire femtosecond laser which have a output pulse width of -100 fs. Chapter

6 studies the fundamentals of ultrafast laser material interaction and the possibilities of using the

phonon Boltzmann equation to fit the experimental data and to extract the phonon reflectivity

and relaxation time using the optical pump and probe measurement.
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Finally, Chapter 7 summarizes the contribution of this thesis and presents some possible

future directions for these studies.
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Chapter 2. Numerical Solution of Multidimensional Transient

Ballistic-Diffusive Equations and Phonon Boltzmann Equation:

Application to Heating in Nanoscale MOSFETs

Heat conduction at the micro- and nanoscale and during ultra-fast processes may deviate

from the predictions of the Fourier law, for several reasons, such as boundary and interface

scattering, the ballistic nature of the transport, and the finite relaxation time of heat carriers. The

Boltzmann transport equation (BTE) has proven to be a valid and useful tool for nanoscale and

ultrafast heat transfer where the particle description of energy carriers is valid. Direct numerical

solution of the phonon BTE is preferred, but it is usually slow. Approximate methods that are

capable of capturing the major size effects but easier to implement are thus very much desirable.

The transient ballistic-diffusive heat conduction equations (BDE) were developed by Chen as

an approximation to the phonon Boltzmann equation (BTE) for nanoscale heat conduction

problems. In this chapter, we further develop the BDE for multidimensional heat conduction,

including with a nanoscale heat source term and different boundary conditions. The numerical

simulation schemes were applied for several 2-D cases, including the heat transport surrounding

a nanoscale heat source, which mimics the heat generation inside a nanoscale MOSFET. For

comparison, the transient BTE is also solved in multidimensional Cartesian coordinates using the

discrete ordinates method with two Gauss-Legendre quadratures. The results show that the BDE

captures the characteristics of the phonon BTE with much shorter computational time.

2.1 Introduction

The feature size of electronic devices in current integrated circuits has become

comparable to or even smaller than the phonon mean free path in the substrate on which the

devices are built, and this size is projected to be much smaller in the next ten years. For example,

the mean free path of the heat carrying phonons in silicon is -40-300 nm depending on how it is

estimated. The volumetric heat generation rate inside ultra-small semiconductor devices can be

expected to be very high, since the device operating power cannot be reduced below a certain

* Chen, G., "Ballistic-Diffusive Heat-Conduction Equations," Physical Review Letters, Vol. 86,
pp. 2297-2301, 2001.
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level [1]. All the heat generated in a nanoscale region close to the drain side of the devices must

be transported out through the substrate and then to the packaging heat sink. Qualitatively, the

device scaling results in a serious phonon rarefaction effect as described in section 1.2 and thus a

much higher temperature rise is observed than that is predicted by the Fourier law. In addition,

the switching transient of these devices are approaching the phonon relaxation time, which is on

the order of 10-100 ps in silicon.

It is well recognized that heat conduction in micro- and nanoscale devices and in ultrafast

processes may deviate significantly from the predictions of the Fourier law, due to the boundary

and interface scattering and the finite relaxation time of heat carriers [2]. The phonon Boltzmann

equation (BTE) and Monte Carlo simulations can be used for simulating heat conduction

processes continuously from the nanoscale to the macroscale in the regime where the particle

description of phonons is valid [3, 4]. For many nanostructures and heat transfer configurations,

past solutions of the BTE for electron transport, neutron transport, and photon transport can be

applied [5-7]. However, the solution of the phonon BTE has been limited to a few simple

geometrical configurations such as thin films and superlattices [8,9]. The inherent difficulties

associated with the solution of the phonon BTE have significantly limited consideration of the

size and transient effects in multidimensional real engineering problems. Fewer studies have

gone beyond non-planar and multidimensional geometries [10-13]. In this work, we developed

numerical solution strategies for solving the transient phonon BTE in multidimensional

structures where double Guassian-Legendre quardratures are used to replace the conventional

discrete ordinate method and thus much smoother convergent results are achieved.

Heat conduction in most devices is multidimensional and involves length scales from the

nanoscale to the macroscale. Modeling the heat conduction processes in such multiple length

scale devices is very challenging. Direct numerical solution of the phonon BTE is preferred, but

it is usually slow. Approximate methods that are capable of capturing the major size effects but

easier to implement are thus desirable. Recently the transient ballistic-diffusive heat conduction

equations (BDE) are derived from the phonon BTE under the relaxation time approximation [14,

15]. The comparison of transient heat conduction in thin films using the BDE and the phonon

BTE shows that the BDE can capture both the time retardation and the nonlocal processes, and

thus can be applied to fast heat conduction process and to small structures. In this chapter, we

also generalize the BDE to study multidimensional nanoscale heat conduction including different
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kinds of boundary conditions and the nanoscale heat source term. The numerical solution

strategies for the BDE are presented. In the last section of this chapter, numerical results

obtained from the BDE are compared with the numerical solution of the transient phonon BTE

and the Fourier heat conduction equation in selected 2-D cases.

2.2 Boltzmann Equation and Equation of Phonon Radiative Transport

In the macroscale, heat transfer is characterized by three basic modes, i.e., conduction,

convection and thermal radiation, or their combinations. Although the governing constitutive

equations for each mode in the macroscale are very different in form and the energy carriers can

be varied, the transport phenomena obey the same fundamental particle transport theory, the

Boltzmann transport equation. For example, heat conduction obeys the Fourier law and thermal

radiation can be described by the photon radiative transfer equation. Based on the one-particle

assumption, the Boltzmann transport equation is appropriate for all the energy carriers - dilute

gas molecules, electrons, photons and phonons. Its generality is impressive, since macroscopic

transport behavior for particles, such as the Fourier Law, Ohm's Law, Newton's shear stress law,

Fick's Law, and the hyperbolic heat equation can all be derived from the Boltzmann equation in

the macroscale limit with appropriate approximations. From the Boltzmann equation, we can

also derive the familiar conservation equations for mass, momentum, and energy used widely in

the mechanical engineering discipline and even electrohydrodynamics used in electrical

engineering [2,16,3].

In its general form, the BTE can be written as

+v.Vrf +F.Vpf = (aI (2-1)
at t

wheref is the statistical distribution function of an ensemble of carriers, which depends on time t,

position vector r, and momentum vector p. Here F is the force vector applied to the particles.

The key to the Boltzmann equation is the scattering term, which is the term that restores the

system to equilibrium. Quantum mechanical principles are often used to deal with scattering.

The perturbation treatment in quantum mechanics leads to the Fermi golden rule of calculating

the scattering probability from one quantum state to another [17]. A general expression of the
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scattering integral can be formally written, based on the scattering probability and the

distribution function. This leads to an integral-differential form of the Boltzmann equation,

which is difficult to solve but has been often treated in thermal radiation transport in the form of

equation of radiative transfer [18, 19].

In real crystals, phonons experience various type of scattering, limiting transport

processes. The most basic scattering mechanism is due to the anharmonicity of the lattice

potential, which permits phonon-phonon scattering, including normal phonon-phonon scattering

and Umklapp phonon-phonon scattering. Other important scattering mechanisms are:

· Phonon scattering at impurities and defects

· Phonon scattering at grain boundaries or surfaces

· Phonon scattering with carriers

Different scattering mechanisms might dominate in different materials, structures and at

different temperatures. In nanostructures, phonon-surface/interface scattering dominates the

transport at room and higher temperatures, which happens very similarly at very low temperature

in even bulk materials. Each of these scattering categories must be distinguished with respect to

the type of phonons involved. A large body of literature describes different phenomena [20, 21,

22, 23]. The evaluation of scattering integrals for phonons is very difficult. Generally, the

scattering term can be written as

af(p): af(p)~ + f( p (2-2)
(at , at [ at )

where ( >"1 is the net phonon generation rate from electron-phonon interaction or photon-

phonon interaction. (f(P)j denotes the phonon number change due to the phonon-phonon

scattering, phonon scattering by lattice defects, and phonon-boundary scattering. Often the

relaxation time approximation is used

f(P) _ fo(P)- f(P) (2-3)
t ,i r (T(r),p)
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where f0 (p) is the Bose-Einstein distribution for phonons at equilibrium temperature T, and

r(T(r),p) is the relaxation time as a function of temperature and momentum. Often the

scattering processes are approximated as frequency-dependent rather than wavevector-dependent

[24]. These assumptions leads to approximate eq (2-3) as

aff(co) fo (o)- f(o)=-~~~~~~~~ . ~~(2-4)
at Ei i(T(r),ro)

When estimating the effect of several types of scattering centers, each related to a

specific relaxation time ri , the total time between independent scattering events can be

estimated from Mathiessen's rule [20], since the collision term in the Boltzmann equation is

proportional to rhe collision rate and is additive, as shown in Eq. (2-2)

1 E1 (2-5)
T i 'i

Most of time, one needs to fit the experimental thermal conductivity data for the phonon

relaxation time according to Eq. (1-3) or alternatives [25]. Although the boundary scattering is

often grouped together with other scattering mechanisms according to the Mathiessen rule, this

must be done with extreme care because unlike the phonon-phonon scattering and phonon-

impurity scattering, which are volumetric processes, the phonon boundary scattering is a surface

process.

In analogy to the equation of radiative transfer for photons, the equation of phonon

radiative transfer has been derived by Majumdar [26] as

aI I, - I,
+ V · V rIo = + S (2-6)

at T.
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where , is the phonon relaxation time, I (t,r,Q) is the phonon intensity, and Sg, is due to the

phonon generation through the scattering with other carriers, for example, electron-phonon

scattering and photon-phonon scattering.

The phonon intensity in Eq. (6) is defined as

I (t, r, i) = vhc )D( r )/4 (2-7)

where D(o) is the phonon density of states per unit volume, which should be obtained from the

phonon dispersion relation of the specific material.

Accordingly, the phonon energy source term can be written as

S, = v h f(co)) D(o)/4r (2-8)

Indeed, the Boltzmann equation for phonons, Eq.(2-1), and the Equation of Phonon

Radiative Transport, Eq. (2-6), has been used interchangeably by the nanoscale heat transfer

community.

Phonon Gray Medium Approximation A rigorous phonon transport simulation should

incorporate the frequency dependence of the phonon relaxation time and group velocity, and thus

should account for interactions among the dispersive phonons of different frequencies. However,

it requires solution of the phonon BTE for many different frequencies. Previous works show that

an average MFP is a good approximation for thermal conductivity modeling across interfaces

(cross-plane transport) [27]. For transport parallel to the interface, a frequency dependent

relaxation time gives a better solution [28]. However, the existing theories for the frequency

dependence of the relaxation time contain large uncertainties because they are based on many

approximations and rely on the fitting parameters from experimental data [29]. Therefore, we

will use a frequency independent phonon MFP and phonon group velocity for simplicity, i.e. a

phonon gray medium approximation.
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Often the phonon MFP A is estimated from the thermal conductivity, the specific heat,

and the speed of sound, according to the standard kinetic theory expression,

k = CvA (2-9)
3

where C is the volumetric specific heat. This method, however, neglects the fact that the phonons

are highly dispersive. Figure 2-1 shows the phonon dispersion for Si and Ge, which relate the

phonon energy and its momentum [30,31]. The phonon dispersions along different

crystallographic directions are generally different. Both Si and Ge have the diamond structure

consisting of interpenetrating FCC (face center cubic) structures, with a two distinct atom basis,

and there are thus a total of six branches in each directions. The upper three branches are called

optical phonons and the lower three are called acoustic phonons, which are the dominant energy

carriers. With the known phonon dispersion, the group velocity ( v, ) and phonon density of state

D(o), which is the number of normal modes between frequencies w and co + dco, can be found

[22, 32]. The group velocity is defined as

v, = - (2-10)
dk

which is simply the slope of the branch on the dispersion relation, where k is the phonon wave

vector.. The phonon density of state D(o) for each branch is given by,

D(co) =k ak (2-11)
272 (

At room temperature most acoustic phonons are populated close to the zone boundary where the

phonon group velocity is significantly smaller than the sound velocity. Furthermore, the optical

phonons contribute a significant portion to the specific heat, but little to the thermal conductivity

due to their near zero group velocity.
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The gray media approach assumes that phonon properties are frequency-independent, i.e.,

by averaging the frequency-dependent phonon properties over the phonon population. The

average phonon properties, which are dependent on temperature only, including average phonon

frequency, OJavg' average phonon group velocity, vavg, can be calculated as: .

average frequency:

3I fmp noo(n )D( 00)doo
p=1

00 = --------
avg n .N (2-12)

average group velocity:
1 3 aoo

vavg = - I imp -(n)D(oo)dOO
N p=1 ak

(2-13)

where the phonon number density is given by

3
N = Lr~(n)D(oo)dOO

p=1

(2-14)
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Figure 2-1. The phonon dispersion relation for Si and Ge, which related the phonon energy to its

momentum. Reprinted from references [30,31].
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In the above expressions, the index p represents the specific branch of polarization, h =

1.05 x 10-34 J.s is the Planck's constant divided by 2r, co is the phonon frequency, w mp the

maximum cut-off phonon frequency for each phonon branch, kB = 1.38 x 10-23 J/K the

B3oltzmann constant, and <n> is the equilibrium distribution function for phonons, which follows

from the Bose-Einstein statistics as:

n) = 1 (2-15).

Exprh -1

In Eq. (2-12) through (2-14) the summation is only for three polarization branches, one

longitudinal and two transverse acoustical phonon branches, since the contribution of optical

phonons to the thermal conductivity is negligible due to their small group velocity [28]. As a

simplification, the phonon dispersion relations are assumed to be isotropic and thus only the

phonon dispersion in the [100] direction of Si and Ge in the literature is taken to calculate the

phonon density of state in Eq. (2-11). The maximum wave vector, kmax, corresponding to the

maximum phonon frequency is determined by kmax,=la, where a is the equivalent atomic

V 3
distance given by -) . In this expression, V is the volume and N is the number of atoms in

the volume.

The heat capacity due to the acoustic phonons can be written as

aE a(n)
Cac = h0 =,, mP(co'n)D(o)do (2-16)ac= = n ad

p=l

where E is the energy density of acoustic phonons and can be calculated as

E = hco(n)Do)do (2-17.)
p=l
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Using the average acoustic phonon properties and assuming the contribution from the optical

phonons to the thermal conductivity to be negligible, the temperature-dependent phonon mean

free path A can be calculated through the simple kinetic theory

A 3 kbulk (2-18)
Vavg Cac

where kBulk is the thermal conductivity of the bulk material and is taken from experimental data

in the literature [33]. The temperature dependent phonon mean free path for Si and Ge is shown

in Fig. 1-1. We note that a similar but slightly different estimation of the phonon MFP and the

group velocity was done by Chen [28], where he approximated the dispersion of the transverse

and the longitudinal-acoustic phonons with simple sine functions. Both estimations of the

phonon MFP taking the phonon dispersion into account leads to very close values for the phonon

MFP. At room temperature, this estimation leads to phonon mean free path in silicon of the order

of 250 nm to 300 nm, a much longer mean free path than using the simple kinetic theory

expression k = ICvA. Experiments and modeling from Goodson's group also lead to similar
3

values for the phonon MFP [8].

2.3 Ballistic-Diffusive Equations and Numerical Solution

Heat conduction in most devices is multidimensional and involves length scales from the

nanoscale to the macroscale. Modeling the heat conduction processes in such multiple length

scale devices is very challenging. Direct numerical solution of the phonon BTE is preferred, but

it is usually slow. Approximate methods that are capable of capturing the major size effects but

easier to implement are thus desirable. One such method, for example, is to focus on the

interface region only by introducing appropriate boundary conditions, while away from the

boundaries the usually diffusion or drift-diffusion equations are used, e.g. Ref [34].

Another approximation that provides further improvements compared to the introduction

of special interface conditions is the ballistic-diffusive approximation [14, 15, 35, 36]. The

essence of the ballistic-diffusive approximation is to divide the distribution function at any point

into two parts, - a ballistic component and a diffusive component f = fb + fm as shown in Fig.
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2-2 [14, 15]. In this figure, h at an internal point along a specific direction originates from the

boundaries or heat sources. In the course of traveling from the boundaries or sources to this

point, some of the carriers are scattered and only those remaining are included in h .This part of

carrier contribution is ballistic. The ballistic term can be further divided into the source term and

the boundary emission term. The rest of the carrier contribution at this internal point is grouped

into 1m. These are the carriers that are scattered or emitted into this direction from other internal

points. The distribution of these carriers is more isotropic than the ballistic carriers from the

boundary due to multiple scattering or nearly isotropic emission. The philosophy is then to treat

this part of the heat carriers by the conventional diffusion approach. This approach has its origin

in thermal radiation [35,19]. Recently the idea itself has been further explored to combine with

the discrete ordinates method to reduce the ray effect in solving photon radiative transport

equation (RTE) in optically thin media [37, 38]. The major difference of our method is that we

consider the time dependence of heat conduction. The ballistic-diffusive equations we derive

will facilitate the solution of complex engineering problems on the nanoscale and in ultrafast

processes.

catterlng Event

~

Figure 2-2. In deriving the ballistic-diffusive heat-conduction equations, the local carner

distribution function f is divided into two parts: fb which originates from the boundary fwand

experiences outgoing scattering only, and fm which originates from the inside domain and is

directed into the indicated direction either through scattering or through phonon emission by

the medium.

55



This work further develops the ballistic-diffusive equations for phonons [14,15] to

include a nanoscale heat source term. Accordingly, the intensity at any point can be divided into

two parts,

I, (t,r) = Ib(t,r)+ Im,(t,r) (2-19)

where Ib, (t,r) represents carriers originating from the boundaries and/or the carrier generation

source and experiencing out-scattering only.

Thus from Eq. (2-6), the governing equation for the ballistic part is

- + vo Vrlbo = -- + S, (2-20)
at = X

We would like to note that in this splitting into two terms the carrier generation term is

grouped into the ballistic component for studying the nanoscale heat source. In the ballistic-

diffusive approximation approach, the ballistic term can be expressed explicitly in terms of the

values at the boundaries, heat source and the initial distribution inside the system. A general

solution for the ballistic part in its intensity form, Eq. (2-20), is given by Pomraning [39]

Ibowt r, l) = S,(t - svl,r - sA,f) exp[ - ]-ads

Ir-r.I ds'
+ Iv,,r(t -Ir - rlv l,r.,fi)exp[ - fI ] H(Ivlt-lr-r.)

o IVI'

Ivit ds'
+Io- I vl , lt,)· exp[ - ds · H(r - r, I - I vlt) (2-21)

where s is the distance along the direction of propagation, Io, denotes the phonons entering the

system through the boundary surface and Ijo, is due to the initial distribution condition inside the

system. The Heaviside or unit step function H(¢ ) indicates that Iw,, should be taken as zero for

negative time and I,, should be taken as zero for points outside the system. The integral
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equation simply follows the fact that phonons of direction [l which are at point r at time t must

have originated at some point r - sh at a time t - s/ i v due to the finite speed of the phonon,

i.e., the time retardation. The exponential in the equation accounts for the out-scattering.

The other part I,,(t,r) in Eq. (2-19) represents those phonons originating from inside the

medium due to the excitation and the boundary contributions converted into scattered or emitted

phonons after absorption:

,n I -I+ v + VI. = -
at mw

(2-22)

For this part, we can use the diffusion approximation that is familiar in thermal radiation [36].

This can be derived from the spherical harmonic expansion of the intensity [35],

(2-23)Im (t,r, f) = J,,(t,r)+ J,(t,r) Q

where J,, is a vector. Substituting Eq. (2-23) into Eq. (2-22) yields

vl at 1 JtVo + fe [VJ fi] Ioo -Jwo, Jic *
l co A , A .

where A,,(= viT) is the heat carrier mean free path at frequency o.

(2-24)

Integrating the above

equation over the solid angle of the whole space leads to,

4a J00) 4V + o4 V 
I I -. , +- ' Ilo
lvI at J5

(2-25)= - 4a ( o, -I. )
A.

Multiplying Eq. (2-25) by the unit vector 6i and integrating the thus-obtained equation over the

solid angle of the whole space gives [19]
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(2-26)- 8+ VJ0o =O -
I I at A.

Based on the decomposition of the phonon distribution (intensity), Eq. (2-19), the heat flux can

be expressed as

q(tr)= {fI cos Od]do = qb +q, (2-27),

where the ballistic and diffusive heat flux contributions are defined as

qb (t, r) = f Ib (t, r)cos 9d c]d (2-28)

(2-29)and qm (t,r)= fJdco.

The energy conservation equation gives

a
-Voq+q = at

Ot
(2-30)

where 4e is the heat generation per unit volume due to external heat sources, and u is the internal

energy of the heat carriers per unit volume. Here u is found from u = hcfD(w)dcodQ/47r,

which can be written as

= 1 dD]} +IV - dc = Ub + rn
IV C 

(2-31)
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where ub and u, are the internal energy of the ballistic and the diffusive components,

respectively. The total internal energy is related to the equivalent temperature through

aUcaT aur aub-= C = _ + (2-32)
at at at at

It should be noted that in the ballistic regime, the statistical distribution of heat carriers

deviates far from equilibrium. The local temperature in this caseis best considered as a measure

of the local internal energy.

Integrating Eq. (2-26) over frequency and solid angle, and utilizing Eq. (2-29), we have

the following constitutive relation for the diffusive component,

aq m k
ra +qm =--Vum (2-33)

't C

where k is the thermal conductivity,

k = f Ilv AAodo/3 (2-34)

and is an average of the relaxation time that is spectrally weighed by the heat flux at each

carrier frequency. Inclusion of the frequency-dependence of the relaxation time can be done

through such an averaging procedure but is not the emphasis of this work. If we treat Um/C as an

effective temperature representing the local energy of the diffusive carriers, Eq. (2-32) is the

familiar Cattaneo equation [40]. In the current model, however, qm and um are only part of the

heat flux and internal energy. From Eqs. (2-30) and (2-32), we have

at at

Taking the divergence of Eq. (2-33) and utilizing Eq. (2-35) to eliminate qm leads to
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a 2 t 2 + 2 =V( Vu -Veqb+qe (2-36)

In deriving Eq. (2-36), we have used the following equation

8ub
r + V qb==-Ub +q (2-37)

at

that can be derived from Eq. (2-20). Equation (2-36) differs from the hyperbolic heat conduction

equation, derived on the basis of the Cattaneo constitutive relation, mainly because of the

additional ballistic term V * qb. This additional term, together with the appropriate boundary

conditions, however, makes a large difference in the final results, as will be seen later. We will

call Eqs. (2-21) and (2-36) as the ballistic-diffusive heat conduction equations, or the ballistic-

diffusive equations. Among the two equations, only the solution of Eq. (2-36) is mathematically

involved. The ballistic term can be expressed explicitly in terms of the values at the boundaries,

as in Eq. (2-21). Solving Eq. (2-36) is much simpler than solving the Boltzmann equation, which

involves seven coordinates in the phase space (three spatial, three momentum, and one time),

because Eq. (2-36) is averaged over the momentum space and thus involves only three spatial

coordinates plus time, as in the Fourier equation. This equation can be solved using standard

finite difference or finite volume methods and this is what is decribed in the following.

2.3.1 Boundary Conditions for BDE and comments

The formulation of the ballistic-diffusive equations implies that heat carriers originating

from the boundaries be treated as the ballistic components. The boundary heat carriers may be

emitted/transmitted from another medium or reflected from the same medium. The boundary

does not contribute to the diffusive component, thus the diffusive heat flux at the boundary is

qm ,,n =-.n<om,,, nd. (2-38)

where n is the unit vector perpendicular to the boundary. Substituting Eqs. (2-23) and (2-29)

into the above equation yields,
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qm n = -vUm /2

This is the Marshak boundary condition in the limit of black walls for thermal radiation or

neutron diffusion. In the studies by Olfe [35], the boundaries are limited to the blackbody

radiation. Several authors [36, 40] modified this boundary condition for nonblack surfaces by

including the reflected components into the diffusive heat flux. We argue here, without

substantial simulation results, that Eq. (2-49) can be applied to nonblack surfaces by grouping

the reflected component into the ballistic part. This means that the boundary values in the

ballistic components may be coupled to the diffusion components at the same location. Such a

treatment will not increase the mathematical complexity significantly since only algebraic

equations are involved for nonblack surfaces.

We can eliminate qm in Eq. (2-39) based on the constitutive relation, Eq. (2-33), to obtain the

following boundary conditions for the diffusion components,

r + = -VU * n . (2-40)
at 3

The Boltzmann transport equation is a first-order partial differential equation in spatial

coordinates, and thus needs only part of the boundary conditions specified in the spatial

coordinates. For example, the boundary condition is needed at one end and the other end can be

left free in one-dimensional examples. However, this boundary condition must specify the

intensity in all solid angle directions, including those entering the domain (leaving the boundary)

and those leaving the domain (entering the boundary). In most of the literature, particularly for

photon radiation transport, only the intensity distribution entering the domain is given. However,

over all boundaries, which is equivalent to specifying the intensity distribution over all 4 r solid

angle directions on part of the boundary. In radiation heat transfer, the temperature representing

the distribution of the photons entering the domain is specified as the temperature at the

boundary. This is justified because most of these boundaries are solid boundaries and the

temperature actually represents the local solid temperature. For phonons, a similar treatment will

cause misinterpretation because the temperature representing phonons entering the domain
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covers only half of the solid-angle in space, and it is called the emitted phonon temperature [27].

Phonons entering the boundary, which cover the other half of the solid angle, may have a

different characteristic temperature. The local energy density, and thus the corresponding

temperature, which represents the sum of the phonons leaving and entering the boundary, is

different from the emitted phonon temperature, and it is called the equivalent equilibrium

temperature. Because the temperature distribution inside the calculation domain obtained from

the phonon BTE or BDE represents the local energy phonon density, it is consistent only with

the equivalent equilibrium temperature. If the emitted phonon temperature is used to represent

the local temperature, an artificial temperature jump is developed at the boundaries for "black"

surfaces that have no phonon reflection. The temperature concept used in the Fourier law is a

local equilibrium quantity. It represents the local energy density. Thus a comparison between the

Fourier law-based heat conduction equation with the phonon BTE or BDE would be meaningful

only when the equivalent equilibrium temperature boundary conditions are used in the phonon

BTE or BDE. The use of the consistent temperature definition, however, makes the simulation

more demanding because the phonon characteristics entering a boundary are usually unknown,

making iteration necessary.

2.3.2 Numerical Calculation Scheme

In this section, we studied the transient phonon transport in the 2-D geometry as shown in

Fig. 2-3 (a) and 2-3(b). In Fig. 2-3(a), a heater is deposited on a substrate and the heater width

can be varied to control the phonon Knudsen number, which is defined as Kn = L Xwhere A is
Lh

the phonon mean free path and LH is the heater width. The substrate is initially at the ambient

temperature To . At time t = 0, the heater is suddenly increased to temperature T, where T, and

To, respectively, represent the emitted temperature in case I and the equivalent equilibrium

temperature in case II. Case III investigates the size effect of a nanoscale heat source inside the

medium as shown in Fig. 2-3(b).

62



y

(a)

V

11
II,

Tor
0
V

(b)

Figure 2-3. Schematic drawing of device geometry simulated in this calculation: a) a confined

surface heating at y=0O, where T1 and To represent the emitted temperature in case I and the

equivalent equilibrium temperature in case II. b) Case III: a nanoscale heat source

embedded in the substrate, which is similar to the heat generation and transport in a

MOSFET device.

As an example, I show here how the numerical solution was conducted for the two-

dimenionsional case I. From Fig. 2-4, the ballistic component of the temperature in the substrate

can be expressed as:
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Tb(xo,yo) = I b dQ

AT Lx+Lh ~' 2 (x 2

2

(2-41)

exp[- ] * Y dzdxA 3

in which s = -X ) 2 +Yo 2 + z 2 is the length of the phonon path, v is the phonon velocity, and

A is the phonon mean free path. Similarly we have the x component and y component of the

ballistic heat flux as:

CvAT , 2Lx+Lh(

2 - 2

CvAT (Lx+L )-(x-xO)2-yo2
qby = - JLx-2Lh

2

exp[- ]. yo(X-x°) dzdx
A S 4

2

exp[--] Yo dzdx
A s4

(2-42)

(2-43)

in which C is the volumetric heat capacity.

Figure 2-4. Geometry and notation for the calculation of the ballistic component coming from

the boundary.
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The following nondimensional parameters are introduced for our calculation:

AT
AT

q* = qm
n CvAT

* t k
t =- k

T

Lx
Y.h Lh

Lh

Tb = T

* qb
- CvAT

X

Lx

_ A
n r

Lh

Ly
Yyh =

Lh

T
AT

q = q
CvAT

Ly

Lz

rzh = 
Lh

Accordingly, Eq. (2-36) for the diffusive component can be written as:

`Om + aom Kn 2 1 a 2 o,
t 2 +---( 2

ct2* ,t* 3 Yxh a 2

-Kn( - + 
a7 Yxh c9 Yyh

1 a2
0)

+ a 
h2 rg2

and its associated initial and boundary conditions can be written as:

o0(,,0) = 0,

? = 0,1: ( + ) I=0,1

g = 0, : (o + am ) I=OaI at

30(77, ,t )
c, t*=0 = 0

at*

2Kn dO
= x0 ·-( ) =o,1

3yxh dq 

= 2Kn dO,

37yh d- 

(2-46)

(2-47)

(2-48)

Equation (2-33) can be written as:
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(2-44)

(2-45)

t =0:



+ qm = Kn -- (2-49)
at 3Yxh i7

and its associated initial and boundary conditions can be written as:

oqmy * Kn 8Om
-_- qmy -- (2-50)

at 3yxy a:

q = 0,1: x* q*mx = -Om /2 (2-51)

= 0,1: , qmy* = -O9 / 2 (2-52)

It is straightforward to construct a more complicated solution for Case II and case III.

The parameters YXh = = 10 and yh = = 5 are set in case I and case II.
Lh h -Lh

Case III investigates the size effect of a nanoscale heat source inside the medium as

shown in Fig. 2-3(b). The heat source is similar to that generated in a MOSFET device as shown

in Figure 1-5.

Nanoscale heat conduction problems often involve multiscale modeling. For example,

heat is generated in a nanoscale source region and is eventually conducted to a much larger

substrate. In order to accurately capture the physics of the transport phenomena and to minimize

the calculation time, a non-uniform grid system is used in this work. Fine grids are used close to

the heating region. In the x direction, the length underneath [refer to Fig. 2-3(a)] or inside [refer

to Fig. 2-3(b)] the heating area Lh is divided uniformly into Nh grids. The grids outside the

heater area are increased in size using a geometric series, with each consecutive the grid size

increased by grid size ratio X,. For Fig. 2-3(b), the length inside the heating region is divided

uniformly into Nh grids and the rest is divided non-uniformly with an increase in size by grid

size ratio Xy. The total grids in the x direction are N. -2 and the total grids in the y direction

are Ny -2. The total calculation points are N x Ny since the additional points with zero

volume are added at all the boundaries. For Fig. 2-3(a), a simpler division in the y direction with
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a non-uniform division starting just underneath the heating region, has also been tested. The

results presented in this work use the same set of grid system as that used for Fig. 2-3(b). The

grid size dependence of the simulation results has been studied. The results presented in the work

used Nx = 151, N = 81, Nh = 31, Xx = 1.05, and Xy = 1.05, which give convergent results

for all the cases studied.

A general numerical calculation block diagram is shown in Fig. 2-5. From Eq. (2-21), it

is not difficult to understand that the ballistic term can be subdivided into a source term, a

boundary emission term and an initial condition term. At each time step, calculation of the

ballistic component induced by the internal heat source and the initial conditions is

straightforward since the internal heat generation and the initial conditions are known. The

ballistic term firom the boundaries depends on whether the emitted temperatures at the

boundaries are known or not. In case I, the calculation is easier since the emitted temperatures at

the boundaries are pre-defined. However, the emitted phonon temperatures at the boundaries are

unknown for most practical engineering problems, e.g. case II and III. Thus we used an iteration

scheme to obtain the emitted phonon temperatures at the boundaries in each time step. A Gauss-

Legendre integration scheme is used to calculate the ballistic components, and the conventional

finite-difference technique is used to solve the governing equation for the diffusive component.

For comparison, the diffusion heat conduction equation based on the Fourier law is also solved

using the finite difference method for an identical geometry and boundary conditions.

2.4 Two-Dimensional Transient Phonon BTE Solver

To validate the simulation results of BDE in multi-dimensions, the transient phonon BTE

is also numerically solved in 2-D structures as shown in Fig. 2-3(a) and 2-3(b). To be rigorous,

phonon transport simulations should incorporate the frequency dependence of the phonon

relaxation time and group velocity, and thus account for interactions among phonons of different

frequencies. This requires solution of the phonon BTE, i.e. Eq. (2-6), for many different

frequencies, which has been performed previously for one-dimensional transport by several

authors [28, 41].. The present study focuses on the complexity of two-dimensional transport.

Thus for simplicity the frequency dependence of the phonon properties are neglected. Integrating

Eq. (2-6) over frequency, we obtain the same form as in equation (2-6) but without the frequency

as subscripts.
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Figure 2-5. Numerical solution scheme of the ballistic-diffusive equations.
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The 2-D phonon BTE under the single mode relaxation time approximation can be

written as,

ai cI I-I(
sin 0 cos a + cos - (2-53)

"Iy ax A

where and 0 , as shown in Fig. 2-6 are the polar and the azimuthal angles, respectively, and

A is the average phonon MFP.

In nanostructures, however, the local equilibrium cannot be established and thus the

temperature obtained should not be treated as being the same, as in the case of local thermal

equilibrium. From the first law of thermodynamics, we obtain the following expression for the

equilibrium phonon intensity as [42]:

Io(t, r)= 1 i(t,r,.)d 1 ,ii(tx,x ,y,O, p)sin sOdOdq
and the corresponding temperature 4obtained is a measure of the local energy density.

and the corresponding temperature obtained is a measure of the local energy density.

(2-54)

Z

Figure 2-6. Local coordinate used in phonon Boltzmann transport simulation.
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Equation (2-6) or (2-53) is similar to the photon radiative transport equation (RTE)

[6,18]. The key is to solve I(t,r,Q). A variety of solution methods is available in the thermal

radiative transfer literature [6, 18]. The discrete ordinates method (DOM) achieves a solution by

solving RTE exactly for a set of discrete directions spanning the solid angle 4. The discrete

ordinates method has received considerable attention and development in the last decade because

of its ability to solve many radiative transport problems with relatively good accuracy and

moderate computing resources. Different sets of directions and weights have been tabulated and

may result in considerably different accuracy [43, 44]. The most serious drawback of the

method is that it does not ensure conservation of radiative energy [45]. The finite volume

method (FVM) was first proposed by Briggs et. al [46] in 1975 using an exact integration to

evaluate the solid angle integrals. The method is fully conservative in radiative energy and

recently reviewed by Raithby [45]. However, both methods suffer from two shortcomings: ray

effects and false scattering effects. Ray effects are related to the angular discretization, while

false scattering effects are related to the spatial discretization. Several proposals to overcome

these numerical inaccuracies have been proposed [37,38, 47-49]

We focused our solution method on the discrete ordinates method. Similar to the solution

of the BDE, the non-uniform grid system has been used. The grid size dependence of the

simulation results has been studied with a combination of the choice of the discrete directions.

The results presented in the work used N =121, N =71, Nh =21, x = 1.05, and

Xy = 1.05, which give convergent results for all the cases studied. Figure 3 shows the direction

cosines projecting the path of the phonon transport onto the x-y plane using the polar and

azimuthal angles, 0 and f. For the angular discretization, the conventional S12 quadrature [50]

has also been examined. The "ray effect" is found to be very serious for the Kn=10 (the acoustic

thin limit) case though the method gives enough accuracy for small Knudsen number (the

acoustic thick limit). We therefore used two Gauss-Legendre quadratures to increase the

discretized direction points: One to discretize the cosine ,/ into N# points from -1 to 1 and the

other to discretize {( into No points for 0-;r (not 0-2 r due to symmetry). Thus we present

only the results using two Gauss-Legendre quadratures in the rest of this work. We have tested

the dependence of the simulation results with the number of discrete directions. For the spatial
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grids presented in this work, the change of the simulated results is negligible when N, >100 and

NO >12. For example, the maximum relative difference in the temperature distribution for using

N, =100 and N =12 discrete directions and using N,, =160 and N, =16 discrete directions is

less than 0.02%. The reported simulation results in this work used N, =120 and N o =16. Fewer

points can be used for fast calculation. Then equation (2-54) can be written as

, (tx,y)= 2 I(t, xy,, ,, )ww'M (2-55),

the factor 2 in the denominator is due to the symmetry. The weights satisfy w n Wm = 2 .
n m

The diamond scheme and the step scheme are the two most popular schemes for spatial

discretization [51]. The step scheme is the counterpart of the upwind in computational fluid

dynamics, and it is well known that it tends to smooth out steep gradients yielding the so-called

false diffusion effect, i.e., false scattering effect. The diamond scheme reduces false scattering

effect, but it may, yield unphysical results. Following the recommendation by Chai et. al [51], the

step scheme has been used for spatial discretization in this work. As shown in Fig. 2-7, spatial

differencing depends on the directions of phonon transport in the two-dimensional plane. As an

example, we show here the discretized equation for the case nr>0 and #t>0. For a given

direction (, , Pm ), we have:

I*'' I" I"" (*i' I~tl I~ii l k+l ik+l
J..., + i,s V . in Ax i-,j,n,m + I ij i,,n,m i,j-,n.n 4 rn m + S (2-56)

At Ax /y r

with k in the subscript is the time index, i the index in the x direction and j the index in the y

direction. As shown in Eq. (2-56), the transient equation is solved using an implicit scheme in

time marching. The equation is solved by iteration on the value of the equilibrium intensity

I0(t, x, y) = I(t, xY, (py, 9m)wnw'm . At each time step, the initial value of the equilibrium
2intensity is guessed by setting it equal to nthe value of the previous time step and then the field of

intensity is guessed by setting it equal to the value of the previous time step and then the field of
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the intensity inside the medium for every direction is calculated. The iteration advances by

taking the values of intensity Ikj',m in ZZIkmwnwm equal to its previous iteration to
n m

calculate the equilibrium intensity Io. We would like to note that although an implicit scheme has

been used for the transient calculation, the nature of the BTE equation involves the iteration for

the I o term. Thus the so-called implicit scheme is not a "full" implicit scheme. The time step for

a stable calculation should be At < min(-l , ). For transient simulations, one needs to
Ivl'lvl

consider the change of value in each time step when a convergence criterion is selected. In our

calculation, the maximum relative error of the equilibrium intensity between two iteration steps

is selected to be 2x10-6. That is, when the relative error of the calculated value of the equilibrium

intensity between two iteration steps is less than 2 x 10- 6 , the calculation advances to the next

time step. This convergence criterion gives convergent transient results for all the cases

presented in this work although it might be too strict for some cases and it might consume longer

computational time than necessary. For equivalent equilibrium temperature cases, the relative

error for the iterations of the nondimensional emitted temperature at the boundaries is also

controlled to be less than 2 x 10- 6 .

9,m

(1\

AL

j~~~~~rl~~r

Figure 2-7. Directions of phonon transport in two-dimensional planes as given by different

combinations of the direction cosines and the corresponding differencing schemes used for

the BTE solver.
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Although the temperature cannot be defined as a measure of equilibrium when the system

is at the nanoscale, we can still use the effective temperature to reflect the local energy density

inside the medium. Assuming a constant specific heat over a wide temperature range, we can

write an equation for determining the temperature:

4- r47J(t,x,y) IT(t,x,y)= 4 ' I(t,x,y,,,p(P )WVnW' m (2-57)
C I v CllV

The heat flux can be accordingly written as:

qx(t,x,y) = I I(t,x, y,n,,m )n W'm (2-58)
m n

qy(t,x,y)= I(t,x,y,/n,,m 1-P" cosr -w w'm (2-59)
m n

2.5 Results and Discussions

Several two-dimensional cases have been simulated. In case I, the boundary conditions

are specified as the emitted phonon temperature boundary conditions in Fig. 2-3(a) to compare

the simulation results of the Boltzmann transport equation (BTE) and the ballistic-diffusive

equations (BDE). Case II assumes the equivalent equilibrium temperature boundary condition to

compare the BTE results with those of the BDE and the Fourier law. Case III investigates the

size effect of a nanoscale heat source inside a medium as shown in Fig. 2-3(b)

CASE I: Emitted Temperature Boundary Condition

To compare the simulation results of the phonon BTE and BDE, the emitted phonon

temperatures are assumed at the boundaries of the simulation geometry shown in Fig. 2-3(a).

Figure 2-8 shows a comparison of the transient temperature and the heat flux in the y

direction at the centerline of the geometry for Kn=10. It shows that the BDE can capture the

characteristics of the phonon BTE in the multi-dimensional case. However, it takes an Intel P4

800MHz PC only around 20-minute calculation time to reach the steady state for the BDE

compared to 100 minutes for the phonon BTE. For small Knudsen numbers, i.e., the acoustic
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thick limit, the calculation time of the BTE solver can be much longer, but the calculation time

of the BDE does not change much.

Very often, the results of the phonon BTE are compared with those obtained from the

Fourier heat conduction theory. From the discussion above, it is clear that the comparison might

not be meaningful without consistent use of the temperature concept. But the comparison gives a

sense of how heat conduction based on the Fourier law and the BTE might differ. Figure 2-9(a)

shows a comparison of the steady state temperature distribution at the centerline using the

Fourier theory, the phonon BTE, and the BDE for different Knudsen numbers. As we can see,

the BDE agrees well with the phonon BTE for all the Knudsen numbers. When the Knudsen

number is small, both the BDE and the phonon BTE results become very close to those of the

Fourier theory. Figure 2-9(b) show the heat flux comparison at the centerline for Kn=O.1 at

nondimensional time t*=100, i.e., after a time elapse of 100 times of the phonon relaxation time.

Apparently, BDE agree well with the phonon BTE. There is again a slight difference between the

Fourier theory and the phonon BTE even in the small Knudsen number limit (acoustic thick

limit). The underlying physics is due to the subtle difference in boundary conditions.
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Figure 2-8. Comparison of the transient temperature and heat flux in the y direction at the

centerline of the geometry for Kn = 10 based on the emitted temperature condition: (a)

temperature, and (b) heat flux qy*.
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Figure 2-9. (a) Comparison of the steady state temperature distribution at the centerline using the

Fourier theory, the Boltzmann transport equation (BTE), and the ballistic-diffusive equations

(BDE) for different Knudsen numbers. (b) Comparison of the heat flux qy at the centerline

for Kn= 0.1 at t*=100.

CASE II: Equivalent equilibrium Temperature Boundary Condition

As explained before, the emitted phonon temperatures in Case I do not represent the local

energy density at the boundaries. To compare with results obtained from the diffusion heat

conduction equation based on the Fourier law, the boundaries in Fig. 2-3(a) are set as an

equivalent equilibrium temperature in Case II. Though the results are presented in temperature, it

should be properly interpreted as an energy density. As discussed before, iteration is needed to

obtain the transient emitted phonon temperatures at the boundaries from given equivalent

equilibrium temperature boundary conditions. The calculation time for both the BTE and the

13DE can be 4-5 times longer than the corresponding calculation time using the emitted

temperature boundary conditions.

Figure 2-10(a) and (b) compares the transient nondimensional heat flux in the y direction

calculated using the phonon BTE, BDE and the Fourier law. The BDE gives very good

agreement with the phonon BTE. However, the Fourier law overpredicts the heat flux by several

times compared to the prediction by the phonon BTE. These results indicate that the suppressed
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heat conduction in nanostructures will lead to a larger temperature rise than that obtained from

the Fourier law if a heat flux is specified at the boundary. Figure 2-10(c) shows the comparison

of the transient temperature distribution along the centerline. Compared to case I, no temperature

jump is observed at the boundary because of the consistent use of equivalent equilibrium

temperature at the boundaries. Both the phonon BTE and BDE show time retardation due to the

finite propagation speed of the phonons that cannot be predicted by the Fourier law. The

temperature distribution predicted by Fourier heat conduction theory is very close together for

t* = 0.1 and t* = 1.0 as shown in Fig. 2-10(b).
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Figure 2-10. Comparison of transient

temperature and heat flux distribution at the

centerline using the Fourier theory, the

Boltzmann equation, and the ballistic-

diffusive equations based on thermalized
11

temperature boundary conditions: (a)&(b)

heat flux qy, (c) temperature.
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CASE III: Nanoscale Volumetric Heat Generation

In case II, we investigate the size effect of a nanoscale heat source inside the medium, as

shown in Fig. 2-3(b). The heat source is similar to that generated in a metal oxide semiconductor

field effect transistor (MOSFET), which is the backbone of microelectronics. A 10nm x 10 nm x

I tm hot strip is embedded in the silicon substrate. The power generation rate is 1 X 1019 W/m3,

typically for a period of 10 ps [1]. We are interested in finding out the temperature rise -10 ps

after the device is turned on. With the given input properties stated in the second section, we can

model the problem as a two dimensional nanoscale heat conduction problem because 1 [tm in

the length direction (z) is much longer than the phonon traveling length 30 nm in 10 ps. We

know that the geometric parameters Lx and Ly will not much affect the results obtained by the

phonon BTE and the BDE when the surrounding length is larger than 30 nm, thus L = 10Lh

and Ly = 5 Lh is used in the calculation.

Figure 2-11 shows the source, boundary emission and the diffusive component

contribution to the total temperature and the heat flux in the y direction at the centerline. The

region close to the heater is dominated by the ballistic part. The ballistic component of the

temperature rise induced by the heat source reaches a maximum while the ballistic component of

the heat flux induced by the heat source is zero at the center of the heat source because the heat

carrier is propagating in both directions. The ballistic component induced by the boundary

emission decays exponentially from the boundary. The region far away from the heater is

dominated by the diffusive part. There is bending for the diffusive component in both the

temperature and heat flux profiles because the heat carriers are treated as a ballistic component

out of the boundary once they are diffused into the boundary. A small wave front is also

observed where the boundary emission component decays to zero. This wavefront is believed to

be artificial since it does not appear in solution of the Boltzmann equation.

Figure 2-12 shows a comparison of the temperature distribution obtained by the phonon

13TE, BDE and the Fourier law. The peak temperature predicted by the Fourier law is much

smaller than that predicted by the phonon BTE and BDE. However, the Fourier law predicts a

broader temperature-affected region because the Fourier law assumes a very large thermal

conductivity and an infinite phonon propagation speed. The heat flux distribution shown in Fig.

2-13(a) explains the difference in Fig. 2-12. The Fourier law overpredicts the heat flux by many

times especially in the short time scale when compared to those obtained by the phonon BTE.
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Localized nanoscale heating is clearly shown in the results and the phonon BTE and BDE

captures such an effect fairy well. Figure 2-13(b) shows the peak temperature rise in the device

as a function of time. A saturation of temperature rise after 10 ps is predicted by all the methods

although the magnitudes are different. From the cases studied, we also would like to note that

the relative difference between the BDE and the phonon BTE is case specific. Without a heat

source inside the medium, the relative difference between the BDE and the phonon BTE is

negligible. The difference between the phonon BTE and the BDE are larger when an internal

heat source exists but the results from the BDE are still significantly better than those from the

Fourier law. For example, the relative errors are 25% and 85% for the BDE and the Fourier's law

when compared to the phonon BTE in case III.

2.6 Conclusions

In this chapter, we further developed the BDE for multidimensional heat conduction

problems including a nanoscale heat source term and different boundary conditions. The

numerical solution strategies for multidimensional nano-scale heat conduction using the BDE are

presented. The transient Boltzmann equation is solved using the discrete ordinates method with

the two Gauss-Legendre quadratures. Several 2-D cases are simulated to compare the results of

the transient phonon BTE, BDE, and the Fourier law. Special attention has been paid to the

boundary conditions. Compared to the cases without internal heat generation, the differences

between the BTE and BDE are larger for the case studied with internal heat generation due to the

nature of the ballistic-diffusive approximation, but the results from the BDE are still significantly

better than those from the Fourier law. Overall, the BDE captures the characteristics of the

phonon BTE with much shorter computational time.
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Chapter 3. Thermal Conductivity of Two-Dimensional

Nanocomposites

In this chapter, the deterministic solution of the phonon Boltzmann equation is

established to study the phonon thermal conductivity of nanocomposites with nanowires

embedded in a host semiconductor material, both along and across the wire directions. Special

attention has been paid to cell-cell interaction using periodic boundary conditions. The general

approach is applied to study silicon wire / germanium matrix nanocomposites. We predict the

thermal conductivity dependence on the size of the nanowires and the volumetric fraction of the

constituent materials. At constant volumetric fraction, the smaller the wire diameter, the smaller

is the thermal conductivity of periodic two-dimensional nanocomposites. For fixed silicon wire

dimension, the lower the atomic percentage of germanium, the lower the thermal conductivity of

the nanocomposites. Comparison is also made with the thermal conductivity of superlattices,

alloys, and conventional model. The simulation shows that the temperature profiles in

nanocomposites when the temperature gradient is applied across the nanowire direction are very

different from those in conventional composites, due to ballistic phonon transport at the

nanoscale. Such temperature profiles cannot be captured by existing models in the literature. The

results of this study can be used to direct the development of high efficiency thermoelectric

materials.

3.1 Introduction

The efficiency and energy density of thermoelectric devices are determined by the

S2aT
dimensionless thermoelectric figure of merit ZT = , where S is the Seebeck coefficient, a

k

is the electrical conductivity, k is the thermal conductivity, and T is the absolute temperature [1].

Significant advances for increasing ZT have been made, based on new ideas about how to

engineer electron and phonon transport [2]. One particularly fruitful and exciting approach has

been the use of nanostructures, so that the electronic performance can be improved or maintained

concurrently with a reduction of the phonon thermal conductivity [3-5]. Nanostructure-based

materials, such as Bi2Te3/Sb2Te3 superlattices and PbTe/PbSeTe quantum dot superlattices, have

shown significant increases in ZT values compared to their bulk counterparts due mainly to the
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reduced phonon thermal conductivity of these structures [6,7]. Nanocomposites may realize a

similar thermal conductivity reduction and may provide a pathway to scale-up the nanoscale

effects that are observed in superlattices to nanocompsite thermoelectric materials in bulk form

[8]. A recent report on high ZT bulk thermoelectric materials indeed contains nanostructure

constituents [9]. With a simple hot pressing procedure, Zhao et al. showed that the effective

thermal conductivity of a Bi2Te3 nanocomposite with tubular Bi2Te3 nanowire inclusions is

reduced, leading to a 25% increase in ZT compared to homogenous bulk materials [10].

Most previous studies on thermal transport in nanostructures have focused on thin films,

semiconductor superlattices and nanowires. One key question in modeling of the thermal

conductivity in nanostructures, especially such as superlattices and nanocomposites where the

structures are periodic, is when the wave effect, i.e., the phonon dispersion change, should be

considered [11, 12]. For example, models for phonon transport in superlattices generally fall into

two groups. One group ("wave models") assumes that phonons form superlattice bands and then

calculates the modified phonon dispersion using lattice dynamics or other methods [13-16]. The

other group of models ("particle models") assumes that the major reason for the thermal

conductivity reduction is the sequential scattering of phonons at interfaces [17-20]. In these

models, phonon transport falls into the totally incoherent regime, and superlattices are treated as

inhomogeneous multilayer structures. Diffuse interface scattering is usually incorporated into the

Boltzmann equation (BE) as a boundary condition. These models succeeded in fitting

experimental values for several superlattice systems in the thick period range. However, because

the wave nature of phonons is ignored, these models fail to explain the thermal conductivity

recovery in the short period limit that is observed in some superlattices. More recently, models

[12,21] and direct simulations [22] combining the above two pictures have been presented.

These models and simulations further confirm the importance of diffuse interface scattering for

thermal conductivity reduction. The diffuse interface scattering can not only reduce the phonon

MFP but also can destroy the coherence of phonons. Due to the loss of coherence, the phonon

dispersion change in nanostructures predicted by the ideal lattice dynamics approximation cannot

be realized. Previous studies of the thermal conductivity of superlattices demonstrated that

classical size effect models are expected to be applicable to a wide range of nanostructures. This

has been further confirmed by a recent study on developing the classical size effect model for

phonon transport in nanowires and superlattice nanowires [23]. The model, assuming gray and
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diffuse phonon scattering at interfaces and side walls, has successfully explained the thermal

conductivity reduction effect measured from nanowires. Based on all these previous studies, we

believe that the reduced thermal conductivity in superlattices comes from the sequential interface

scattering of phonons, i.e., classical size effect, rather than the coherent superposition of phonon

waves. This conclusion leads naturally to the idea of using nanocomposites as potentially an

economical alternative to superlattices in the quest for high ZT materials [24,25]. Thus we will

apply in this chapter and in chapter 4 the phonon Boltzmann equation and Monte Carlo

simulation method to study the classical size effect on the thermal conductivity of

nanocomposites.

Another field of related research is effective thermal conductivity of composites. The

effective thermal conductivity of composites at the macroscale has been studied since Maxwell

(for a review, see Milton [26]), and a variety of methods have been proposed to estimate physical

properties of heterogeneous media. In most of these research works, the interfaces between two

hetero-media are treated as non-resistive to heat flow. The interface thermal resistance, or

Kapitza resistance [27] has been considered only recently. The first two theoretical analyses that

include the interface thermal resistance were conducted by Hasselman and Johnson [28], and by

Benvensite [29], respectively. Hasselman and Johnson extended the classical work of Maxwell

and Rayleigh to derive a Maxwell-Garnett type effective medium approximation (EMA) for

calculating the effective thermal conductivity of simple spherical particle and cylindrical fiber

reinforced matrix composites in which interface effects and particle size effect are included.

Benvensite and Miloh [29] developed a general framework incorporating thermal boundary

resistance by averaging all pertinent variables like heat flux and intensity over the composite

medium, viewed as a continuum consisting of a matrix with inclusions. Every et al [30] refined

the effective medium theory and presented an asymmetric Bruggeman type EMA, corrected for

Kapitza resistance, as a simple solution for a high volumetric fraction of an inclusion, based on

Bruggeman's integration-embedding principle. A noticeable work was by Nan et al., [31] who

adopted the multiple scattering theory [32] to develop a more general EMA formulation for the

effective thermal conductivity of arbitrary particulate composites with interfacial thermal

resistance. They considered the properties of the matrix and reinforcement, particle size and

particle size distribution, volume fraction, interface resistance and the effect of shape. Other

models have also been proposed including the bounding model [33,34] and the thermal
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resistance network theory. Numerical simulation of the thermal conductivity of composites can

also be found in the literature [35-38]. However these macroscopic models are developed based

on Fourier heat conduction theory, and this theory is not valid at the nanoscale due to ballistic

phonon transport.

So far, there are not many theoretical studies on the thermal conductivity of

nanocomposites, despite their importance in both thermoelectrics and thermal management of

electronics (especially the development of thermal interface materials). Closely related works

have been done by Khitun et al. [39] and Balandin and Lazarenkova [40] to explain the ZT

enhancement of Ge quantum dot structures (where Ge quantum dots are -4nm and can be

thought of as nanoparticles). The model by Khitun et al. is to calculate the reduced thermal

conductivity through the relaxation time change due to the nanoparticles embedded using

Mathiessen rule [41]. They used the Mie theory for acoustic wave scattering to calculate the

scattering cross-section of a single particle and thus the additional relaxation time due to single

particle scattering. Their method is valid if there is no inelastic scattering inside the particle and

the interface scattering must be specular [42]. This approach does not recover the bulk material

properties of composites since the thermal conductivity of the nanoparticle material is not taken

into account. Similar to the wave model of superlattices, Balandin and Lazarenkova [40]

assumed that a new homogeneous material is formed and they calculated the new electron and

phonon dispersion relation thus showing a reduction in the group velocity. This approach

requires phonon coherence over several unit cells and does not apply to diffuse interface

scattering as observed in previous studies on superlattices.

The motivation of the present work in this thesis is to develop a microscopic framework

for thermal conductivity of nanocomposites in terms of phonon particle transport model. More

specifically, we will establish the deterministic solution of the phonon Boltzmann equation to

study the phonon transport in periodic two-dimensional (2-D) nanocomposites where nanowires

are embedded in a matrix material, for the thermal conductivity both along and across the wire

directions. Chapter 4 complements this chapter by studying the thermal conductivity of both

periodic and random nanoparticle composites using a Monte Carlo simulation of the phonon

transport. Both models will help to understand some basic physical phenomena that exist in

nanocomposites and the approach might be extended to study electron transport in

nanocomposites. Some fundamental questions will be addressed in the investigation, such as (a)
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how is phonon transport in nanocomposites different from that in macroscale composites, (b)

what is the behavior of the size effect in nanowire-embedded composites, and (c) can

nanocomposites have a lower effective thermal conductivity than a superlattice.

3.2 Theoretical Model

To establish the phonon particle transport model, the following assumptions are made: (1)

The phonon wave effect can be excluded. (2) The frequency-dependent scattering rate in the bulk

medium is approximated by an average phonon MFP. (3) The interface scattering is diffuse. The

first assumption has already been addressed in the introduction and the second one in Chapter 2.

HIere we are elaborating on the last assumption, i.e., diffuse interface scattering.

The interface scattering between the nanowire and the host material is assumed to be

diffuse. Ziman [41] proposed the following expression for estimating the interface specularity

parameter p,

p = expf 16ff3S 2 (3-1)

where is the characteristic interface roughness and A is the characteristic phonon wavelength.

At room temperature, the characteristic phonon wavelength A = hv/kBT is about 1 nm, where h

is Planck's constant, kB is the Boltzmann constant and v is the sound velocity in the material.

From this equation even a one monolayer roughness - 0.3 nm gives an interface specularity

parameterp=O, and allows for a totally diffuse interface assumption.

3.2.1 Unit Cell and Periodic Boundary Condition for Transport Processes

If there are two species, nanocomposites can be in the form of nano-particles and

nanowires of one materials specie embedded in another host matrix material, or mixtures of two

different kinds of nanoparticles that are compacted, as shown in Fig. 3-1 [ 43 ]. My thesis work

focuses on nanocomposites with nanoparticles or nanowires embedded in a host material as

shown in Fig. 3-1 (a).

It can be a daunting problem to model or simulate the transport properties of

nanocomposites since the distribution of the nanoparticle size and location can vary a lot. To
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accurately model the transport, the simulation box shown in Fig. 3-1(a) should be as large as

possible, or even the same size as the sample. The memory and computational time requirements

for such a multi scale problem are very demanding. Simulation of the properties of a periodic

structure often gives physical insights of materials even in their random form. In this approach,

as shown in Fig. 3-1(c), the nanocomposite is shown as a repeating structure of the simulation

box. Such a simulation box is also often called a unit cell. A unit cell might consist of one

nanoparticle/nanowire or many nanoparticles and nanowires. If the unit cell consists of only one

nanoparticle or one nanowire, the repeating structure is a simple stack of a periodic

nanocomposite. If the unit cell consists of many nanoparticles and nanowires inside and the

distribution inside the unit cell (simulation box) is random, the nanocomposite is then semi-

periodic, i.e, long range periodic but random inside the unit cell.
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00.2.. 0 0 ~ 0 0 90 0 0o -v 0 0 0 0 , 00 0
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0"000 ~O 0 00.000
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0e
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Figure 3-1. There are two forms ofnanocomposites: (a) nano-particles or nanowires embedded in

a host matrix material,or (b) mixtures of two different kinds of nanoparticles. (c) This thesis

focuses on periodic nanocomposites where nanoparticles or nanowires are embedded

periodically in a matrix material. The periodic nanocomposite can be viewed as a periodic

stack of unit cells, shown as red squares.
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Even to simulate the transport properties of periodic structures can be a challenge. The

reason is that although the geometry is periodic, the distribution of the state properties such as

temperature is not periodic since either a thermal or an electric field is applied in the transport

direction. This is very different from studying state properties in solid state physics such as those

using the Bloch theorem for finding electron states when a periodic potential is applied. If one

does not pay careful attention to the boundary conditions, the transport properties obtained using

the unit cell will not be the same as the composite, as shown in Fig. 3-1(a). The unit cell concept

is actually often used to analyze transport properties of heterogeneous materials. For example,

the constant wall heat flux and the constant-temperature boundary conditions are the two most

often used boundary conditions for thermal conductivity modeling and simulation for periodic

stacks when the Fourier law for heat conduction is applied [44]. However, neither of them would

be able to resemble the transport properties of the structure.

It can be shown from the Fourier heat conduction equation that the heat transport in the

unit cell represents the transport inside the whole structure when

VT(r + L) = VT(r) (3-2)

or

q(r + L) = q(r) (3-3)

where r is the vector describing any point inside a composite, L is the vector describing the

periodic structure, and q is the directional heat flux in arbitrary Q directions. For a rectangular

unit cell as shown in Fig. 3-1(a) with heat flow imposed in th x direction (horizontal direction),

the general condition of Eq.(2) or (3) results in such a set of boundary conditions:

qx (0, y)= q, (L, y) (3-4)

qy (x,O) = qy (x, Ly) (3-5)

In addition, to calculate the thermal conductivity, one needs to apply a constant temperature

difference AT which is independent of y across the unit cell in the transport direction, i.e, in the

x direction. The final results for the thermal conductivity will not depend on how large a AT that
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is applied. This boundary condition is stricter than constant wall heat flux and the constant-

temperature boundary conditions.

When the Boltzmann equation is used to analyze the thermal conductivity of periodic

composites, one would physically argue that Eq. (3-3) must be valid, but Eq. (3-2) cannot be

established since a temperature gradient cannot be established. However, we need boundary

conditions for calculating the intensity. In the following, we provide a physical argument

leading to justification of the periodic boundary condition.

When the Boltzmann equation is used, the frequency-dependent phonon radiation

intensity in the fl direction is defined over all of space with a 4Jr solid angle, as

I.? (r, i) = vhcof (r, )D(co)/4r. (3-6)

However, we cannot simply specify that I,(r,)= = Io(r + L,) since f(r, ) is not equal to

f (r + L,i) due to the temperature field (or temperature difference) applied on the composite

structure where the difference in the equilibrium distribution f can be large. On the other hand,

we can define a frequency-dependent directional heat flux q,(r) in Q direction, i.e., q,, (r,),

which is defined in over a 2r solid angle that is related to the frequency-dependent phonon

intensity which is defined over a 4re solid angle as

q. (r, -) = I. (r, -)- I,, (r,-a) (3-7)

As discussed in Chapter 2, the nature of the Boltzmann transport equation requires that

the boundary condition specify the intensity pointing inward towards the simulation domain

direction at all the boundaries. Thus Eq.(3-7) would not be able to close the model based on the

Boltzmann equation since it does not specify the intensity, and covers only a 2r solid angle.

Noticing that Io. (r) is isotropic, one can write Eq. (3-7) as

q0 [I(r,.) =[Io(r, l)- Io(r)]- [I (r,-)- Io (r)] q (r, a)- q (r, ) (3-8)
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Then we are able to specify the intensity over the full 4r solid angles, and then one should

specify q, (r, )-I r,)-Io,(r) for the 2 solid angle and q ,(r,)- I, (r,-)- I0 o(r) for

the other 2r solid angle. Comparing this expression to Eq. (3-3) for diffusive heat transport, the

periodic condition for Boltzmann transport should be

I, (r, )- Io(r) = I. (r + L, )- Io (r + L) (3-9)

which can represent the whole structure, where Io (r + L) and I, (r) depend solely on the local

temperature. Thus Eq.(3-9) means that the deviation of the phonon intensity at any point in any

direction is periodic. Eq. (3-9) provides the basis for setting up the periodic boundary conditions

when using the Boltzmann transport equation.

3.2.2 Transport across the wire direction

We first focus our work on the phonon transport in nanowire-embedded composites when

the heat-flow direction is perpendicular to the wire axis. As shown in Fig. 3-2 (a), there is no

heat flow along the wire axis. Thus the problem is simplified to a two-dimensional problem

although the nature of the phonon transport is three-dimensional in nature, as shown in Fig. 3-

2(c). The unit cell to be simulated is shown in Fig. 3-2(b). The details about the interface and

boundary conditions will be presented in s later section. To make comparisons, we also

calculated the cross-plane thermal conductivity of a simple one-dimensional Si-Ge layered

structure, which is often called a superlattice when the thickness of each layer is tens of

nanometers, as shown in Fig. 3-2(d).

For each material phase, the 2-D phonon BTE under the single mode relaxation time

approximation can be written similarly to Eq. (2-6) as,

__, Ii Ii -Ii
sin cos + cos Ii - (3-10)

ay ax Ai
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where e and t/J , as shown in Fig. 3-2(c) are the polar and the azimuthal angles, respectively, and

A; is the average phonon MFP. 10; is determined by the Bose-Einstein distribution of phonons

and depends on the local equilibrium temperature.

Boundary Conditions. As shown in Fig. 3-2(b), heat is forced to flow in the x-direction. The

symmetry in the geometry and the physics of periodic transport renders that the specularly

reflected boundary conditions should be enforced at the y=O and y=Lce boundaries,

, ~~, .;
~~-------~-----

Ge/ '

y~------------------
X

(a) (b)

Heat

Direction 01
Phonon Transp ort

z .......
LGe LSi

(e) (d)

Figure 3-2. (a) Heat flow across a periodic 2-D composite with silicon wires embedded in the

germanium host, (b) the unit cell to be simulated, (c) local coordinates used in the phonon

Boltzmann equation simulation, (d) heat flow across a I-D Si-Ge layered structure

(superlattice ).
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I(X, LGe ,0, () = I(X, LGe ,O7, ] - ) (3-11)

I(x,O, 0, 0) = I(x,O, 0, - 0). (3-12)

In the x-direction, we can now straightforwardly write the boundary condition from Eq. (3-9) as

I(LGe,Y,,0) - Io (GeY) = I(O,y,0,0)- Io(, y) (3-13)

The physical meaning of this equation is that the distortion of the phonon intensity in each

direction at each point (O,y) at the x=O boundary is the same as the distortion in the

corresponding direction at the corresponding point (LGe,y) at the X=LGe boundary.

With these boundary conditions shown in (3-11) to (3-13), the phonon transport of the

whole structure can be represented by that in the unit cell due to the periodicity of the problem as

formulated. Again the temperature difference across the unit cell in the x-direction should be

independent of y3. for a rectangular unit cell when the temperature difference is applied in the

normal direction, that is:

I (O, y)- I (LGe ) = Cl [T(Oy) - T(LGeY)] =constant. (3-14)
4r

In our simulation, we superimposed T(O, y) - T(LGe, y) = I K on the above equation. If we do not

superimpose such a temperature difference onto the program, Eq. (3-13) will automatically

converged to a constant temperature difference T(O,y)-T(LGe,y). The converged value will

vary with the simulated structure. But the final results of the thermal conductivity value will not

depend on whether the temperature difference is superimposed. However, the calculation is

much faster when a temperature difference value is superimposed. We should note that

superimposing a temperature difference across the unit cell is physically different from

superimposing a temperature (either an emitted or Fourier-limit temperature) at each boundary,

which was done in most of the current literature.
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Interface Conditions. Determining the phonon reflectivity and transmissivity at an interface is

difficult as in the treatment of the classical thermal boundary resistance problem [45-47]. One

rather crude model is called the diffuse mismatch model [47] which assumes that phonons

emerging from the interface do not really bear any relationship the origin of the phonon, i.e., one

cannot tell which side the phonons come from. This assumption implies that

Td21 = Rdl 2 = 1- Tdl2 , (3-15)

where Td2I is the phonon transmissivity from medium 2 to medium 1, and Rdl2 is the phonon

reflectivity in medium 1 at the interface between medium 1 and 2. In the above, the second

equation comes from the energy conservation identity Rd 2 + Tdl 2 =1. Dames and Chen [23]

obtained the following equation for Tdl2, which is expected to be valid over a wide temperature

range:

Td,2 (T) U 2v 2 (3-16)
U (T)v + U2,(T)v 2

where U is the volumetric internal energy, v2 and v2 is the average phonon group velocity in

material 1 and 2, respectively.

With a given phonon transmissivity and reflectivity at interfaces, we can write down the

phonon intensity at the interfaces. As an example, the phonon intensity for 0 < 0 < - ( > 0) at
2

the (x= L G , L e -SI < y < LGe + L ) interface can be written from the energy balance
2 2 2

equation.

2J /2 I(LGe - L ,y,,b)cos sinid d = -Rd2 1 IG' L,, c sin + .olgo/I( 2 ,Ys2y,O, )cossin (3-1

- Li, y,, )cos. 0sin si 0d& d (3-17)
-[-Td1·nf/2(~_L~e 2
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Because the phonons are scattered diffusely at interfaces, the phonons leaving an interface are

isotropically distributed, and Eq. (3-17) can be written as

Le -Lsi 0) d2 I(LGe -Lsi y cossin
2 r c r2 2

rcn2 f, [/21 , Lse -L+Tdl2 ,y,,)cos0.sindid0, for 0<0<-- (3-18)
r 2 2

The equations for phonons leaving for - < 0< 7z and at other interfaces can be similarly written.
2

Numerical Simulation and Effective Thermal Conductivity. Although at thenanoscale, the

temperature cannot be defined as a measure of equilibrium, and so we can use an effective

temperature to reflect the local energy density inside the medium. Assuming a constant specific

heat over a wide temperature range, we can write an effective temperature as

4w1(xy) 1T(x,y) = I xI(x,Y,, (m )Wnw' t (3-19)
CIVI Clvi 

The heat fluxes qx(x,y) and qy(x,y) at every point can be accordingly written as:

qx(x,y) = Z I(x,y,J,,( m ) Wn W' (3-20)
m n

qy(x,y) = -I(x,YU, X-- cosm ' Wnw' m (3-21)
m n

where qx and qy are heat flux in the x- and y- directions respectively. After the local effective

temperature distribution and heat flux are obtained, the thermal conductivity calculation is

straightforward, taking advantage of the unit cell concept. The surface heat flux in the x-direction

can be calculated as

Q(x) = Lq Ce qx(x,y)dy (3-22)
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where Lz is the unit length in the z-direction. Eqs. (3-11) and (3-12), i.e., the specular reflected

boundary conditions enforced at y=O and y=LGe boundaries have ensured Qx(x)=constant. The

average energy density (average temperature) at each y-z plane along the x-direction can be

written as:

T(x) = e T(x,y)dy. (3-23)
Ge

Therefore the effective thermal conductivity k of the composite can be obtained as:

k= _ Qx (3-24)
Lz (T(LGe) - T(O))

from

Qx = k * (LZLGe) * (T(Le)-T(O)) (3-25)
LGe

The following dimensionless parameters have been introduced to present results of temperature

and heat flux distributions:

q = Qx , x Y
q-x Y (3-26)q , ,Q = , =(3

C1v LGeLzCVI L, LGe

2.3 Transport along the Wire Direction

In Fig. 3-3(a), a temperature gradient is applied along the axial direction (z-direction) of a

periodic two dimensional nanocomposite with tubular nanowire inclusions. Since the transport

is periodic in both the x and y directions, the transport inside the nanocomposites can be

represented by that in the small unit cell shown in Fig. 3-3(b) applying the totally specular

phonon reflection boundary conditions along the x and y boundaries. However simulation of

phonon transport in a 3-D unit cell shown in Fig. 3-3(b) is still a big challenge that involves the

use of both Cartesian and cylindrical coordinates. As an approximation, we further convert the
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outer surface of the square unit cell into a circle, i.e., to approximate a square unit cell cross-

section as a circular cross-section, as is often used to study fluid flow problems [48,49]. The

problem then becomes one of phonon transport in core-shell cylindrical structures, as shown in

Fig. 3-3(c). This approximation results in a 10% error. Figure 3-3(c) shows the generic phonon

transport model we developed for core-shell nanostructures, which consist of a tubular core layer

and a shell layer. Here we use the following notations, ro is the inner radius of the core layer, rl is

the outer radius of the core layer, and r2 is the outer radius of the shell. We assume partially

diffuse and partially specular surface scattering at the inner surface of the core layer and totally

specular reflection at the outer surface of the shell layer, to be consistent with what occurs at the

outer surface of the unit cell shown in Fig. 3-3(b), i.e., to represent the phonon transport in

nanocomposites. The specularity parameter at the inner surface of the core layer and at the outer

surface of the shell layer is represented by pi and p2, respectively, where p (=pl or P2) =0

corresponds to diffuse scattering and p=I corresponds to specular scattering at the surface. This

generic model can be used to simulate a variety of nanocomposites by changing some of the

input parameters. For example, when the inner radius of the tubular core layer is ro=0 and the

interface specularity is p=l at ro=0, the structure represents periodic two-dimensional

composites with simple wire inclusions as shown in Fig. 3-3(d). When the same material is used

for the core and the shell layers, the interface between the core and shell layers disappears and

the interface scattering at r dies out, the model then represents the phonon transport inside a

nanoporous medium with cylindrical pores along the pore direction as shown in Fig. 3-3(e).

In terms of the total phonon intensity I, the 2-D phonon Boltzmann equation under the

single mode relaxation time approximation in cylindrical coordinates can be written as,

It c I ti)_ Ii -I(P-( W -) - 1 9 (,qi) +1 (3-27)
r r r az Ai

where the subscript i (=1,2) denotes the properties of the core and shell material, and Ai is the

average phonon MFP. We also define p, rI , and r as the direction cosines:

p = sinOcos4, r = sinOsinq, = cosO (3-28)
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Figure 3-3. (a). A periodic two dimensional nanocomposite (composite with tubular nanowire

inclusions), (b) cross-sectional view of a unit cell: a square unit cell cross-section is

approximated as a circular cross-section of equal area, (c) by the approximation in (b), the

transport in nanocomposites becomes phonon transport in core-shell cylindrical structures,

(d) periodic silicon nanowire composites, (e) cylindrical nanoporous silicon material.
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where and 0 are the polar and azimuthal angles, respectively, as shown in Fig. 3-4. In the

phonon Boltzmann transport equation [Eq. (3-27)], there are two coordinate systems [shown in

Fig. 3-4]: spatial coordinates (r, 4c and z) and directional coordinates (0 and ) for the

transport, which correspond to the movement of carriers in spatial and momentum space. As a

phonon travels through a curved geometry, such as in cylindrical coordinates, the propagating

direction is constantly varying, even though the phonon does not physically change its direction.

This is why an additional term, the second term of the left hand side in Eq. (3-27), exists.

Similary, we extend the previous work in Cartesian coordinates to cylindrical coordinates. The

method separately discretizes the integration points in = cosO (the angle 9) and in the angle 0

using the Gauss-Legendre quadratures. To obtain high accuracy, it is discretized into 120 points

from -1 to 1 and 0 is discretized into 24 points for 0 to 7r (not 0 to 2 7r due to symmetry).

Following the conventional artifice of Carlson and Lathrop [50] and Lewis and Miller [51 ]

which maintain phonon radiative energy conservation and permit minimal directional coupling,

the angular derivative term can be written as follows:

nminm)d anm+- 2 jn,m+l/2 -n,m-
1 /2

nmm) = (3-29)

where ww'm is are weights and a,,,m+l/2 are the coefficients for the angular derivative term

determined from the non-divergent flow condition following the recursive equation

Figure 3-4. Phonon transport in cylindrical coordinates.
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For this work, we are only interested in the size effect occurring in the radial direction,

not in the wire axis direction. However, because heat flows along the axial direction, the

simulation requires choosing a proper length and setting the corresponding boundary conditions

at the two ends along the transport direction. When heat is forced to flow in the axial direction,

the temperature is different at the two ends. However, simply assuming a temperature difference

at the two ends might induce an artificial size effect in the axial direction. To get rid of the

artificial size effect in the axial direction, the periodic boundary condition on the phonon

distribution deviation proposed in section 2.1 is used. For transport along the axial direction, the

periodicity is arbitrary. So we can choose an arbitrary length Lz and use the periodic boundary

condition to obtain thermal conductivity values that are independent of Lz. If the boundary

conditions at the two ends are assumed as the emitted temperature condition [52], one often

needs to simulate a domain more than 3 times longer than the phonon mean free path, which can

be many times longer than the size in the radial direction. With the proposed boundary condition,

the simulation domain length can be adjusted according to the size of the structure in the radial

direction. We also note that the nature of the Boltzmann equation requires iterations to obtain

convergent results with the boundary conditions we have defined.

As in previous work, a non-uniform grid system and the step scheme is used for spatial

discretization to accurately capture the physics of the transport phenomena and to minimize the

calculation time. The step scheme is used for spatial discretization. The equation is solved by

iteration over the value of the equivalent equilibrium intensity

2
Ioi(r,z) = I i (r,z,n,4~)WnW'm . Assuming a constant specific heat over a wide

temperature range, we can write the effective temperature, which is a measure of the local energy

density inside the medium, as

T(r,z) = 4r I(rz) (3-31)
Cilvi

The heat flux along the axial direction at every point can be accordingly written as:
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q,(r,z) = ~ ~I(xy, ntm ) w.w'm. (3-32)
m n

The surface heat flux in the axial direction can be calculated as

Qz (z) = q (r, z)2 nrdr . (3-33)

When the simulation is converged, then Q(z)=constant. After a local effective temperature

distribution and heat flux are obtained, the thermal conductivity calculation is straightforward.

The effective thermal conductivity k of the core-shell structure can be obtained as:

k = QLQ (334)
kr2? [T(r, Lz )- T(r,O)]

3.3 Results and Discussions

3.3.1 Transport across the Wire Direction

A. Nonequilibrium Temperature and Heat Flux Distribution

Figure 3-5 (a) and (c) show the effective temperature distribution in the composite structures

with a silicon wire dimension of Lsi =268 nm and Lsi=1O nm, respectively. The atomic

percentages are 20% for Si and 80% for Ge. Simple calculation gives the geometric ratio

LGe = 2.35. The choosing of Lsi =268 nm is based on the fact that the MFP value is around 268
Lsi

nm as calculated from the silicon phonon dispersion curve [17]. Figure 3-5(a) is very close to the

temperature we expect in macroscale composites with an interface thermal resistance. Therefore,

for a wire dimension larger than 268 nm, the effective temperature distribution is expected to be

similar to that plotted in Fig. 3-5(a). Comparison between Fig. 3-5(a) and (c) shows that the

temperature or energy density distribution at the nanoscale in periodic 2-D composites can be

very different from that at macroscale due to the ballistic nature of phonons. To better understand

the effect of and interface thermal resistance, we plot the temperature distribution along the x
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direction at certain fixed y positions of the two structures in Fig. 3-5(b) and (d). Apparent

temperature jumps at the wire-host material interfaces are clearly shown in Fig. 3-5(b) & (d).

There are also temperature jumps along the y direction as indicated in Fig. 3-5(a) &(c). The

larger the wire size, the lower the temperature jump relative to the total temperature difference

across the interface, and thus the lower the contribution of the interface resistance to the effective

thermal resistance of the composite. When the nanowire dimension is much smaller than the

phonon MFP, say Ls=lO nm, the temperature gradient along the x direction can be negative in

some local regions. The heat fluxes in the x-direction, however, are always positive as shown in

Fig. 3-6 (a) and (b). This phenomenon has not been observed before in macroscale composites

and cannot be predicted by Fourier heat conduction-based theories. Another question that one

may raise is whether the results shown in Fig. 3-5(c) and (d) violate the thermodynamic 2 nd law

because the temperature inside the cell is larger than the cell boundary. To answer this question,

we should first remember, as pointed out before, that the temperature as defined is not the same

as the case of thermal equilibrium or local thermal equilibrium. When ballistic transport

dominates, no local thermal equilibrium can be established and the calculated temperature

represents the local energy density. Figure 3-7(a) and 3-7(b) illustrate the mechanisms of the

observation in Fig. 3-5. When Lsi is much smaller than the phonon MFP, the internal scattering

in the medium (both for the host material and the wire) is negligible. We further assume that the

phonon reflectivity is unity at the wire and host material interface. Then the scenario can be

simplified as thermal radiation in vacuum with opaque wire inclusions (host material - vacuum,

interface - solid wall, wire- opaque solid body). Referring to Fig. 3-7(a), we are interested in

knowing the temperature distribution of A-F points when the heat is forced to flow in the x-

direction. We can qualitatively call the left half of the region shown as the "hot" region and the

right half as the "cold" region. As shown in the figure, points D and F "see" the hot region and

points A and C "see" the cold region. Thus points D and F locally receive higher energy phonons

and have a higher effective temperature than points A and C. Moving from point A to F (or from

C to D), more hot area is seen than cold area. Thus the effective temperature increases.

Comparing to D and F, point E has a lower temperature due to a small view factor from the hot

region. Similarly point B has a higher effective temperature than A and C. Figure 3-5 shows the

temperature distribution only in one unit cell. To visualize the temperature distribution, one

needs to stitch together several periods of figure 3-5. Figure 3-7(b) shows the temperature
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distribution along x at several y points over three periods. The energy over those regions with
even higher temperatures than the unit cell boundary comes from the much higher temperature
region in their previous cells.The results do not violate the thermodynamic 2nd law if one view
the nonequilibrium phonon transport through thermal radiation analogy.
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Figure 3-5. Effective temperature (T-Tref) distribution in the unit cell of Sio.rGeo.8 composites
with T(O,y)- T(Lce,Y) = 1 K applied for different wire dimensions: (a) temperature contour
for Ls;=268nm, (b) the temperature distribution along x* at y* = 0.5, y* = 0.7 andy* = 0.85
for Ls;=268nm, (c) temperature contour for Ls;= 1Onm, (d) the temperature distribution along
x* at y* = 0.5, y* = 0.7 and y* = 0.85 for a Ls;= 10 nm. The temperature discontinuity at the
interface is clearly shown. The temperature distribution in a Ls; = 10 nm nanocomposite is
very different from macroscale composites due to ballisticphonon transport at the nanoscale
and these effects cannot be captured by Fourier heat conduction theory.
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Figure 3-6. The dimensionless heat flux distribution in the x-direction qx *: (a) Ls; =268nm

composite, and (b) Ls; = 10 nm composite. These results show that the x-directional heat flux

is always positive even in the localized negative temperature gradient region shown in Figure

3-5.
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Figure 3-7. (a) Illustration to show the mechanisms of negative temperature gradient in the

localized regions using the thermal radiation analogy. (b) the temperature distribution along

x* at y* = 0.5, y* = 0.7 andy* = 0.85 for Ls; =10 nm over three periods.
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B. Effect of Wire Dimension

To calculate the effective thermal conductivity of composites, the surface heat flux and

the average temperature (average energy density) at each y-z plane along the x direction is

calculated. As an example, Fig. 3-8 show the dimensionless average energy density distribution

along the x direction in a SiO.2-Geo.8 composite with a silicon wire dimension of Lsi=268 nm and

of Lsi=10 nm respectively. The dimensionless surface heat flux is conserved to

Qx (x) = 0.088 for a Lsi=268 nm composite and Qx*(x) = 0.037 for a Lsi =10 nm composite.

Again, the surface heat flux is conserved and a temperature jump appears at the interface. The

smaller the wire size, the larger the average temperature jump and thus the larger is the interface

resistance contribution to the effective thermal resistance of the composite. We can expect that

when the wire dimension is 2-3 times or even larger than the silicon MFP, the contribution of the

interface thermal resistance will be negligible and the results will recover the Fourier limit.

Figure 3-9 shows the thermal conductivity of Sio.2-Geo.8 composites as a function of the silicon

wire dimension. To make a comparison, we include the results of the cross-plane (perpendicular

to the interfaces) thermal conductivity of a simple one-dimensional Si-Ge layered structure

(superlattice). A simple calculation shows that the thickness of the germanium layer should be

4.52 times the thickness of silicon layer in 1-D stacks with a germanium atomic percentage of

80%. Figure 3-9 clearly shows that at a constant volumetric fraction (or atomic percentage), the

smaller the characteristic length of silicon (the silicon wire dimension in composites and the

thickness of the silicon layer in superlattices), the smaller the thermal conductivity. The simple

1 -D layered structure has a lower thermal conductivity than periodic nanowire composites at this

atomic percentage. We point out that the thermal conductivity of superlattices calculated here is

lower than the experimental data because the interface scattering in superlattices may not fall

into totally the diffuse scattering limit [17, 19]. The comparison shown in this chapter using

totally diffuse phonon interface scattering is just for theoretical consistency.

C. Effect of Atomic Percentage

Some other questions of interests are: (1) can the thermal conductivity of nanowire

composites be lower than that of simple 1-D stacks? (2) How the thermal conductivity changes

with the atomic percentage? Figure 3-10 shows the thermal conductivity of Sil.x-Gex composites

as a function of atomic percentage x of germanium for wire dimensions Lsi of 50nm and 10 nm,
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Figure 3-8. The dimensionless average temperature distribution along the x direction in a Sio.2-

Geo.8 composite with a silicon wire dimension of Lsi=268 nm and Lsz=1 0 nm, respectively.
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Figure 3-9. The thermal conductivity of Sio.2-Geo.8 composites as a function of the silicon wire

dimension or layer thickness. The smaller the characteristic length of silicon (the silicon wire

dimension in composites and the thickness of the silicon layer in superlattices), the smaller is

the thermal conductivity.
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respectively. By changing the atomic percentage, the geometric ratio of the unit cell, i.e., the

dimension of germanium is changed in the numerical simulation. The figure shows that for a

fixed silicon wire dimension, the lower the atomic percentage of germanium, the lower is the

thermal conductivity of the nanocomposites. This is very different from macroscale composites

and nanoparticle-filled polymers, in which the thermal conductivity of the composites increases

with the decreasing volumetric fraction of the low thermal conductivity component. This is

caused by the ballistic transport of phonons in both the host material and the nanowires, and the

interface resistance between the host material and the nanowires. In polymer nanocomposites,

the thermal conductivity of the host polymer is usually very low and the thermal transport in

polymers is diffusive. Thus the thermal conductivity of polymer nanocomposites increases with

the volumetric fraction of high thermal conductivity nanoparticle fillers. Figure 3-10 also shows

that the thermal conductivity of the periodic 2-D nanocomposites is lower than that of

superlattice with a corresponding characteristic length when the atomic percentage x of

germanium is lower than 35%. A simple calculation shows that the geometric ratio LGe is
Ls,

around 1.182 when x=0.35. For a simple 1-D layered structure as shown in Fig. 3-1 l(a), phonons

experience cross-plane interface scattering in all the cross-sectional area z-y when the heat is

forced to flow in the x-direction. Comparing Fig. 3-11 (a) and (b), we know that phonons can

flow through a fraction of the LGe -L si open area without experiencing cross-plane interface
LGe

scattering. However, phonons must experience an additional fraction of L Si interface scattering
LGe

parallel to the heat flow direction (in-plane scattering). When the thermal conductivity of a

simple 1-D layered structure is the same as that of periodic 2-D nanocomposites at x=0.35, we

can approximately infer that a fraction of the Li in-plane interface scattering is equivalent to a
LGe

fraction of the LGe - L Si cross-interface scattering. In other words, the efficiency of cross-
LGe

interface scattering to reduce the thermal conductivity is around 5 times as effective as the

scattering parallel to the interface. This result is consistent with previous experiments and

modeling of the in-plane and cross-plane thermal conductivity of superlattices [17, 19]. It also
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suggests that anisotropic nanocomposites might be more effective for reducing thermal

conductivity of nanocomposites.

D. Comparison with EMA

As stated in the introduction, most past studies on the thermal conductivity of

nanocomposites were based on the Fourier diffusion theory together with consideration of the

thermal boundary resistance. To examine the validity of such an approach, we compare the

effective thermal conductivity obtained from the Boltzmann equation with that of the effective

medium approach (EMA) developed by Nan et al [31], which gives the anisotropic effective

thermal conductivity values of nanowire composites as:

.' ... I .
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Figure 3-10. The thermal conductivity of Sil_ -Gex composites as a function of atomic percentage

x of germanium. For a fixed silicon wire dimension, the lower the atomic percentage of

germanium, the lower is the thermal conductivity of the nanocomposites. The result is very

different from the bulk material due to the ballistic nature of phonon transport at the

nanoscale and the interface effect.

108

30

25

20

15

10

5

E

U

0
z0
U

-JEaI
W
U1

n
0.10 0.90

.................................

0.2

.i iu



k =k =k kp(l+a)+km+cDp[kp(l-a)-km]
II 22 m kp(l+a)+km -cDp[kp(l-a)-km]

(3-35)

(3-36)

where kll and kzz are the effective composite thermal conductivity across the WIre aXIS

direction and k33 is the effective thermal conductivity in the longitudinal direction, km is the

thermal conductivity of the host material, k p is the bulk thermal conductivity of the nanowire

inclusion materials, cD p the volume fraction of nanowire inclusion, ex is a dimensionless

parameter defined as a=ak/ap for nanowire composites. ap is the radius of nanowire inclusions,

and ak= Rkm , where R is the interface thermal resistance which can be calculated as [19]

R = __ 4__ ~ 4(UlvI +Uzvz)
TdlZUI VI UI vlUZ V Z

(3-37)

I
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Figure 3-11. Illustration to show that phonons experience less cross-interface scattering In

periodic 2-D composites (b) than that in 1-0 layered structures (a) but they experience

additional scattering parallel to the interface. The efficiency of cross-interface scattering to

reduce the thermal conductivity is around 5 times as effective as scattering parallel to the

interface.
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We compare kll, the thermal conductivity perpendicular to the wire axis, with our phonon BTE

simulation results. As our phonon BTE simulation was done for square wire inclusions, an

effective diameter D = 2ap = 4A C I P is used, where Ac is the cross-sectional area and P is the

perimeter of the cross-section, to convert the square geometry into a circular geometry. Figure 3-

12 compares the thermal conductivity in nanowire composites perpendicular to the wire axis

obtained from the phonon Boltzmann equation simulation and the effective medium

approximation (EMA). As we can see, the effective medium approach based on incorporating the

thermal boundary resistance into the solutions of the Fourier heat conduction law leads to

erroneous results that underpredict the size effects.
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Figure 3-12. Comparison of the thermal conductivity of nanowire composites in the direction

perpendicular to wire axial direction obtained from a phonon Boltzmann equation simulation

and from the effective medium approximation (EMA) based on the Fourier law and the

thermal boundary resistance, demonstrating that the EMA underpredicts size effects.
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3.3.2 Transport along the Wire Direction

Figure 3-13 shows results for the thermal conductivity of a silicon-germanium

nanocomposite which consists of a germanium matrix with silicon wire inclusions (as shown in

r,2
Fig. 3-3(d)) as a function of the silicon wire radius and the volumetric ratio of Si, Os =- 2

which can be related to the atomic ratio ysi through ysi = OSi where a is the

lattice constant. In a bulk Si-Ge composite, the effective thermal conductivity increases linearly

as the cross-sectional area or volumetric ratio of Si (Dsi) increases, since Si has a much higher

thermal conductivity than Ge. For Si-Ge nanocomposites, the effective thermal conductivity

decreases as the radius of the wire inclusion decreases due to the relative increase in interface

scattering area per unit volume. When the radius of the wire inclusion is larger than 500 nm, the

effective thermal conductivity asymptotically approaches that of macroscale composites. This

means that the interface scattering is negligible compared to the internal thermal resistance in Si

wires and in the Ge matrix, and that the effective value for the thermal conductivity can be

predicted by the Fourier law. For nanowire composites with an embedded wire radius less than

150nm, there exists a minimum thermal conductivity as the volumetric ratio of Si changes. The

trend is similar as those predicted for core-shell Si-Ge nanowires [53]. When the volumetric ratio

of Si (Dsi) in the composites is large, the effective thermal conductivity has the same trend as

that of the macroscale composite. When the volumetric ratio of Si (si) in the composites is

small, the effective thermal conductivity increases as the fraction of the low thermal conductivity

component increases, which is contrary to the behavior of bulk composites. This is because the

effective thermal conductivity of the Si wire kesi is decreased to well below the bulk Ge thermal

conductivity due to interface scattering. The effective thermal conductivity of the Ge matrix keGe

increases as (r2-rl)/r1 increases, since the scattering surface per unit volume of Ge decreases. The

effective thermal conductivity of the core-shell structure can be written as

[kesir2 + keGe (r 2 - r)]/ r2
2 thus accounting for the existence of a minimum value.

Apparently, Eq. (3-36) shows that the EMA model does not consider size the effect of

effect on the thermal conductivity for nanowire composites in the longitudinal direction, i.e.,

when the temperature gradient is applied along the wire axis direction. Such a result is clearly
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contrary to the solution of the Boltzmann equation presented here that shows a strong size

dependence.

The same code can be used to simulate the thermal conductivity of a nanoporous medium.

Figure 3-14 shows results for the thermal conductivity of porous silicon along the cylindrical

pore direction (as shown in Fig. 3-3(e)). Here ro is the pore radius and the shell thickness (r2-ro) is

2

determined by the porosity as Io = 2 . For simplicity, only the results assuming diffuse surface
r2

scattering at the pore surface are reported. For macroscale porous materials, the effective thermal

conductivity decreases linearly as the porosity increases. When the pore radius is less than 2-3

times the phonon mean free path in the silicon matrix, the effective thermal conductivity is not

only a function of porosity, but also a function of pore radius. For composites with the same

porosity, the effective thermal conductivity decreases as the pore radius decrease since the

scattering area per unit volume increases. The implication of this study is that nanopores can

possibly be used to further reduce the thermal conductivity of nanowire composites. In a recent

report, Zhao et al. showed that the effective thermal conductivity is further reduced and thus the

thermoelectric figure of merit ZT is increased in a Bi2Te 3 composite with tubular Bi2Te 3

nanowire inclusions [10].
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Figure 3-13. Thermal conductivity of the silicon-germanium nanocomposite which comprises of

a germanium matrix with silicon wire inclusions as a function of the silicon wire radius and

the volumetric ratio.

112

- LKI LK' '
-O- 10nm Si M

--.-- 50nm Si WIRE - '
·*-&-150nm Si wrRE b-

- * *be .muuP -- -

ma- _1a . _ ,O

...... ........ ....

�·C·"

,1
Ald



4 a
:! I v

E

F 100

Zz0
U

I-

U.

L 0wU a
0 0.2 0.4 0.6 0.8 1

POROSITY

Figure 3-14. Thermal conductivity of porous silicon along the cylindrical pore direction as a

function of the pore radius and porosity.

The model has also been used to study the thermal conductivity of tubular nanowire

composites as shown in Fig. 3-3 (a). Again the results shown here assume a totally diffuse

surface scattering at the pore surface. The effective thermal conductivity of tubular nanowire

composites is a function of the pore radius inside the tubular silicon wire ro, the outer radius of

the silicon shell r (the silicon shell thickness is defined as rl-ro), and the volumetric ratio of

silicon si = (r2 -ro 2 ) /(r22 -ro2 ) in the composites. Figure 3-15 shows the effect of the silicon

core layer thickness of the tubular silicon wire inclusions on the effective thermal conductivity of

the nanocomposites. From Fig. 3-15, the effective thermal conductivity is smaller when the Si

core layer thickness is thinner for the same volumetric ratio of Si and same inner pore radius. A

smaller Si shell thickness means a smaller Ge shell thickness. This gives a smaller effective

thermal conductivity for both the Si and Ge layers and thus a smaller effective thermal

conductivity of the nanocomposites. Comparison of Fig. 3-15(a) and (b) shows that the effective

thermal conductivity of the composites decreases as the radius of the inner pores increases for

fixed Si shell thickness and volumetric ratio of Si due to the increase of surface scattering area

per unit volume.

Figure 3-16 shows that the tubular Si nanowire composite has a lower solid thermal

conductivity than that of simple nanowire composite due to the additional surface scattering
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introduced through the inner pore surface. Here the solid thermal conductivity k s is defined as

ks = ATwhere Q is the heat flux, L is the length of the simulation domain along the

direction where the temperature difference AT is applied, and As is the solid part of the cross-

sectional area As = n(r22 - r 2 ) . For comparison, the Si wire radius (or outer shell radius of the

tubular nanowire) is fixed. Figure 3-16 also shows that the solid thermal conductivity decreases

as the pore radius increases due to the increased surface scattering per unit volume.

3.4. Conclusions

We studied theoretically the phonon thermal conductivity of periodic two-dimensional

nanocomposites with nanowires embedded in a host semiconductor material, both across and

along the wire direction, using the deterministic solution of the phonon Botlzmann equation.

Special attention has been paid to cell-cell interaction using periodic boundary conditions. The

simulation shows that the temperature profiles in nanowire composites for transport across the

wire direction are very different from those in conventional composites, due to ballistic phonon

transport at the nanoscale. Such temperature profiles cannot be captured by existing models in

the literature. The results show that the effective thermal conductivity changes not only with the

volumetric fraction of the constituents but also with the radius of the nanowire, pore, and tubular

nanowire inclusions due to the nature of the ballistic phonon transport. These results are in

contradiction with the existing theory on the thermal conductivity of composites, which lead to

effective transport properties depending only on the volume fraction but independent of size.

The smaller the wire/pore diameter, the smaller is the thermal conductivity of periodic two-

dimensional nanocomposites for a given volumetric fraction. Composites with tubular nanowire

inclusions have both a lower effective and solid thermal conductivity than simple nanowire

composites due to the introduction of surface scattering through the pores. We also show that the

effective medium approach based on incorporating the thermal boundary resistance into the

solution based on the Fourier heat conduction law leads to erroneous results that underpredict the

size effects. Results of this study can be used to direct the development of both high efficiency

thermoelectric materials and thermal interface materials with high thermal conductivity particle

or wire inclusions.
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Figure 3-15. The effect of the silicon core layer thickness and the pore size of tubular silicon

wire inclusions on the effective thermal conductivity of the nanocomposites: (a) 50nm pore

radius, (b) 10nm pore radius.
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increases due to the increasing surface scattering per unit volume.
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Chapter 4. Monte Carlo Simulation for Phonon Transport and

Thermal Conductivity in Nanoparticle Composites

Though very much doable, extending the 2-D BTE simulation described in

Chapters 2 and 3 to phonon transport in complex three-dimensional (3-D) spatial coordinates

is very tedious, owing to the complexity of tracking phonon transport deterministically. In

this chapter we present a Monte Carlo (MC) simulation scheme to study the phonon transport

and thermal conductivity of nanoparticle composites, where nanoparticles are embedded in a

matrix material. Special attention has been paid to the implementation of periodic boundary

condition in Monte Carlo simulation. The scheme is then applied to study the thermal

conductivity of silicon-germanium (Si-Ge) nanocomposites. The Monte Carlo simulation is

first validated by successfully reproducing the results of two dimensional nanocomposites

where silicon nanoparticles are embedded in a germanium matrix using the deterministic

solution of the phonon Boltzmann transport equation and the experimental thermal

conductivity of bulk germanium, and then the validated simulation method was used to study

(three dimensional) nanoparticle composites, where Si nanoparticles are embedded in a Ge

host. The size effects of phonon transport in nanoparticle composites are studied. It is found

that randomly distributed nanoparticles in nanocomposites renders the thermal conductivity

values close to that of periodic aligned patterns. We show that the interfacial area per unit

volume (interface density) is a useful parameter to correlate the size effect of thermal

conductivity in nanocomposites.

4.1 Introduction

The simulation results of the thermal conductivity in two-dimensional nanowire

composites in chapter 3 show great promise to scale up the physics responsible for the
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reported high ZT in superlattices into mass-producible cost-effective high efficiency

thermoelectric nanocomposites, where phonon thermal conductivity reduction is a blessing

for the enhancement of the thermoelectric figure of merit. Thermoelectric nanocomposites

have indeed become a promising direction for thermoelectric community. A few groups have

practiced making various nanocomposites with both nanowire and nanoparticle inclusions in

a matrix host [1, 2] or just a compact mixture of nanoparticles [3]. Among them some groups

have reported very encouraging reductions in the thermal conductivity and consequently

encouraging ZT enhancement.

In this chapter, we aim to study the phonon transport in three-dimensional

nanocomposites, where nanoparticles are embedded in a matrix material. Though very much

doable, extending the deterministic solution of the 2-D phonon BTE to phonon transport in

complex three-dimensional (3-D) spatial coordinates is very tedious, owing to the complexity

in tracking phonon transport deterministically. In addition, it is almost impossible for one to

track phonon transport in a random nanocomposite in a deterministic way. Thus, we resort

our efforts to the Monte Carlo (MC) simulation.

The Monte Carlo simulation solves the Boltzmann transport equation in a statistical

framework, and has been widely used to simulate the radiative transfer equation and the

Boltzmann equation for electrons and holes in semiconductors [4-9]. Only few reports of

using the Monte Carlo technique for phonon transport have been published in the past.

Peterson employed the Monte Carlo method to simulate phonon transport in a confined space

[10] while Klitsner et al. [11] performed Monte Carlo simulations to obtain the temperature

distribution in a crystal. Mazumder and Majumdar considered phonon dispersion as well as

various phonon scattering mechanisms to study heat transport in complex geometries and to

predict their thermal conductivities [12].

This work builds upon previous studies on the phonon transport in nanoscale

structures and is the first attempt to use Monte Carlo methods to study phonon transport in
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complex three-dimensional nanostructructures, i.e., nanocomposites. The objective is to

present an algorithm for studying phonon transport in nanocomposites using Monte Carlo

simulation with special attention paid to the implementation of periodic boundary conditions

and to study the size effect of the thermal conductivity in nanoparticle composites.

4.2 Monte Carlo Simulation

In a Monte Carlo solution technique, phonons are drawn and distributed inside the

computational domain initially. These phonons are given velocity and direction, which

correspond to wavevectors in the phonon dispersion relation, and are allowed to move freely.

As the phonons move, they engage in various "intrinsic-scattering" events, such as

phonon-phonon scattering, phonon-impurity scattering and phonon-dislocation scattering,

and encounter interfaces and boundaries, mimicking the particle picture of phonon transport.

If there is a large enough number of phonons and if the average time is long enough, the

averaged transport quantities based on the phonon ensemble should approach the

deterministic solution of the phonon Boltzmann equation. The initial selection of phonon

positions and directions as well as the subsequent phonon movement must obey the physical

laws that determine phonon properties and define phonon dynamics. Though a more

comprehensive Monte Carlo simulation technique which accounts for phonon dispersion and

polarization for scattering events has been presented before [12], as a first attempt to tackle

the 3-D phonon transport problem in nanocomposites, we take a simplified gray media

approach which assumes that the frequency-dependent scattering rate in the bulk medium can

be approximated by an average phonon mean free path (MFP). As justified in chapter 2 and

similar to the assumptions made in chapter 2 and chapter 3, another assumption has been

made is that the phonon wave effect can be excluded. Temperature dependent average phonon

properties are used including average phonon frequency, average phonon group velocity and

average phonon mean free path as obtained in chapter 2 is used. In the program, a look-up
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table relating temperature, energy density and all the other average properties shown in

chapter 2 is established before doing the calculation. In the Monte Carlo simulation, phonons

are divided into phonon bundles, and the averaged phonon properties are assigned to the

phonon bundles during the simulation. The properties of a phonon bundle do not change

while it travels, until it encounters scattering events, either by interface scattering or

"intrinsic-phonon" scattering. The number of phonons in a phonon bundle is pre-determined

before the simulation, by considering the computational time and memory requirements.

In the following sections, we present the details of implementing the gray media

Monte Carlo technique for solving the phonon transport problem in nanocomposites.

4.2.1 Computational Domain and Boundary Conditions

The challenge is to simulate the phonon transport in the whole composite structure,

as shown in Figure 4-1(a), with Si nanoparticle embedded in a Ge matrix. The memory and

computational time requirements for such a multiscale problem are demanding. Our

approach is to apply periodic boundary conditions to a chosen unit cell. A rectangular

parallelepiped in the composite material is taken as the computational domain, which is

called a unit cell, as shown in Fig. 4-1(b). With the periodic boundary conditions we applied,

shown in detail below, the phonon transport in the unit cell represents the phonon transport

inside a composite made by repeating the unit cell. The heat is forced to flow in the

x-direction. The transport in both the y-direction and the z-direction are periodic and thus the

specularly reflected phonon boundary conditions can be enforced at these boundaries due to

their symmetry. However in x-direction, although the geometry is periodic, the transport is

not periodic since the temperature is not periodic. To address this problem for the

deterministic BTE solution, the periodic boundary condition on the deviation of the

distribution function was proposed in Chapter 3. The periodic boundary conditions are

implemented in MC simulation as follows. For specular reflection boundaries at y=0, y=Ly,
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z=O, and z=Lz, the phonon bundles expenence a mirror reflection when they hit these

boundaries, without losing any momentum or energy. The implementation of the periodic

boundary condition in the x direction needs more elaboration. First, a certain number of

phonon bundles are emitted from the boundaries during each time step so that the net heat

flow (phonon energy flow) across the boundaries x=O and x=Lx are identical and equal to a

prescribed value. The number of phonon bundles Nemil at each boundary emitted into the

computational domain in each time step is calculated by,

(a)

Mirror Reflection

Subcell

Diffuse Interface

(b)

Figure 4-1. (a) Periodic nanocomposite with cubic silicon nanopartic1es dispersed

periodically in a germanium matrix. (b) With the periodic boundary condition dictated in

section 4.2.1, the Monte Carlo simulation of phonon transport in the computational

domain (unit cell) represents phonon transport in the whole structure shown in Fig. 4-1(a).

The unit cell (computational domain) is further divided into subcells.
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(±Q + s ho nabsorb )
Nemit = (4-1)

femit ' S

where Q is the prescribed heat flow, whose sign depends on the boundary emission direction,

S the scaling factor representing the number of phonons contained in each bundle,

S hco,,, rb the total phonon energy leaving the computation domain, and woemit the

average phonon frequency corresponding to the local boundary temperature, which is

obtained by extrapolating the temperature profile inside the computational domain to the

boundary. When a phonon bundle hits one of the x boundaries, it is considered to be leaving

that boundary. The pattern (velocity, direction, position, and the remaining flight time) of

phonon emission at one x boundary is assumed to be the same as the pattern of phonon

leaving the opposite x boundary. This implementation is realized by maintaining a pool of

leaving phonons, recording their velocity, direction, position and flight time, and determining

the properties of each emission phonon by randomly drawing from the pool. The pool is

refreshed after each time step.

The unit cell is further divided into many grids, or "subcells", as shown in Fig. 4-1

(b). The dimension of the subcell must be selected to maintain a balance between spatial

resolution and computation time. The larger the subcells, the more phonon phonons each

subcell would enclose, and the better the accuracy of each subcell temperature estimate, but

the poorer the resolution of temperature mapping within the unit cell due to the small number

of temperature points. The smaller the subcells, the more subcells within the unit cell, and

the higher the resolution of the temperature mapping within the unit cell, but the poorer the

accuracy of each temperature point because of the lower phonon count within each subcell.

In this work, the smallest subcell dimension that can generate stable results was found to be

around lnm.
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At the end of each time step, the temperature of each subcell is assigned based on

the total phonon energy it contains at this stage of each time step, i.e. just after all phonons

have moved and scattered:

Sx 3@)C = hcxD(co) do (4-2)

V CXIkhCelIJ, 1

where ( hc) e , is the total phonon energy the subcell contains, V is the volume of the

subcell, and Tce,1 is the temperature of the subcell. With the known temperature Tce,,o all the

averaged phonon properties can be calculated and then assigned to phonon bundles emitting

from this local subcell.

4.2.2 Phonon Scattering

The dominant scattering event in nanocomposites is particle-host interface

scattering. Similar to chapter 3 the phonon scattering at the particle-host matrix interface

(Si-Ge) interface is assumed to be diffuse. In the Monte Carlo scheme, when a phonon hits an

interface, a random number between zero and unity is drawn and compared with the

transmissivity. If the random number is larger than the transmissivity, the phonon is

transmitted. Otherwise, it is reflected. To comply with the concept of diffuse interface, the

phonon direction vector is reset after encountering an interface, either transmitted or reflected,

and is given by,

sr = sin cos t 1 + sin 0 sin Wt2 + cos Oi (4-3)
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where sin20 = R1, T = 27nR2, and 0< Ri<l and 0< R2<1 are independent random numbers, ii

the unit surface normal vector at the point of collision, and tl and t2 the unit surface

tangent vectors that are normal to each other. In order to maintain a continuum of energy

density, a transmitted phonon is represented by a new phonon that assumes local properties

(velocity, frequency and MFP) and travels along the new direction that is randomly

determined as explained above until finishing the remaining time in the current time step.

Because the frequencies at the two sides of the interface are generally different, the phonon

energy is not conserved. This is remedied by monitoring the energy deficiency (or surplus) at

each side of the interface. When the cumulated energy difference exceeds a certain amount, a

new phonon is emitted from the interface (or the current phonon is absorbed). This treatment

leads to conservation of energy in the interface scattering process.

In addition to phonon-interface scattering, phonons engage in various

"intrinsic-scattering" events, such as phonon-impurities, phonon-dislocation, and

phonon-phonon scattering, as they move inside a crystalline material.. Though it is possible

to trace the detailed scattering events using the Monte Carlo simulation, many of the

scattering mechanisms are not well understood and existing models are sometimes

questionable in addition to the tremendous computational time and memory requirements that

are needed. As a simplified approach, we calculate the scattering probability of a phonon by a

lumped MFP,

Ps = 1 - exp(-v,,vg At / A) (4-4)

where A is the lumped MFP as calculated in chapter 2, vavg is the phonon group velocity and

At the time step. The assumption is that the "intrinsic-scattering" events happen similarly in

the bulk material as that in nanocomposites. This assumption is valid for most of cases since
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the modification of the phonon dispersion relation is not important due to the short

wavelength of the dominant heat transport phonons which is around nm. In the current

simulation, each phonon is treated for intrinsic phonon scattering at the end of each time step.

A random number is drawn and compared to Ps. The phonon undergoes a scattering event

when the random number is less than Ps. The scattered phonon then assumes local properties

of velocity and frequency. The scattered phonon direction is assumed to be isotropic and the

direction vector is given by,

= sin 0 cos i + sin 0 sin Wj + cos Ok (4-5)

where cosO = 2RI-1, T = 27R2, and 0< Rl<1 and 0< R2<1 are independent random numbers.

The phonon energy is again not conserved since the phonon frequencies before and after

scattering are usually different. The remedy is similar to that used for interface scattering.

The energy difference of each subcell resulting from scattering is monitored, and when the

difference exceeds a certain amount, a new phonon is generated (or an existing phonon is

destroyed). Energy conservation is therefore maintained at the subcell level. Note that the

isotropic resetting of the phonon direction in the above scheme tends to restore local

equilibrium. This physical model is similar to all the relaxation time-based phonon BTE

simulation that are done without considering the details of the momentum conservation of the

intrinsic-phonon scattering events.

4.2.3 Process Flow

Figure 4-2 shows the schematic process flow of the Monte Carlo simulation

algorithm. The Monte Carlo simulation starts with the initialization step, where phonons are

created within the unit cell and at a given frequency, velocity, and direction to represent the
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initial temperature condition within the unit cell. The initial temperature inside the unit cell is

assumed to be uniform. After the initialization step, phonons experience the moving (energy

transport) and scattering (energy exchange) in each time step. The phonon bundles move

one-by-one in straight lines for a prescribed time step and then scatter at the interfaces. The

properties of the phonons that leave the unit cell are monitored and stored. The next step is

phonon emission at the x boundaries using the stored phonon pattern, as explained in section

4.2.1. The total number of emitted phonons is determined by a constant heat flow boundary

condition. After moving (transport) and emission, the three-dimensional temperature profile

of the unit cell is obtained by tallying the internal energy of each subcell. The average phonon

properties are then calculated accordingly. Based on the local temperature and mean free path

values thus obtained, the phonons then undergo "intrinsic phonon" scattering. This step

marks the end of a single time step, and the next time loop starts again from the start of the

next moving (transport) step.

Figure 4-2. The schematic process flow of the Monte Carlo simulation algorithm. The Monte

Carlo simulation starts with the initialization step. After the initialization step, phonons

experience moving (transport) and scattering in each time step.
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4.2.4 Convergence and Accuracy

The Monte Carlo technique is a statistical method, whose accuracy depends largely

on the phonon bundle number and the time employed in the calculation. After some initial

trials, we adopted a bundle number such that there are on average more than 50 phonon

bundles in each subcell. The time step is selected such that within each time step a phonon

travels a distance on the order of the magnitude of the subcell dimension. For example, if the

subcell dimension is 1 nm, with a phonon group velocity on the order of 103m/s, the

appropriate time step would be 10-12 second. The simulations usually attain converged

thermal conductivity results after 1000 time steps. A typical trend for the calculated thermal

conductivity with respect to the calculation time is shown in Fig. 4-3. The error after Ins,

equivalent to 1000 time steps, is within 3% of the final value, while the error after 10ns is

within 0.1% of the final value. Note that due to the statistical nature of the Monte Carlo

method, the results still exhibit variations, although insignificant, even after a 120ns

calculation. In this study, a calculation time of at least 10ns, which normally corresponds to

104 time steps, is applied to all cases for calculating the thermal conductivity. The results of

the last 500 time steps are further averaged to give a representative thermal conductivity

value.

4.3 Results and Discussions

To validate our Monte Carlo (MC) simulation methodology, we first simulate the

phonon transport in bulk Ge material to compare the thermal conductivity obtained through

the Monte Carlo simulation with the experimental data in the literature. Then we conducted a

MC simulation for phonon transport in 2D nanowire composites and compare the results with

those obtained through the deterministic solution of the phonon BTE. After the validation, the

code is then used to simulate phonon transport in various 3D Si-Ge nanocomposites to study

the size effect of the thermal conductivity of nanoparticle composites. Some of the
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fundamental questions critical for designing highly efficient thermoelectric nanocomposites

are addressed, including (a) how the thermal conductivity changes with the size of the

nanoparticles and their atomic composition, and (b) what is the effect of non-monosize

particles and what is the effect of the distribution pattern of nanoparticles on the thermal

conductivity reduction in nanoparticle composites. A comparison with the effective medium

approach based on the Fourier heat conduction with the addition of interface thermal

resistance is also given. In the end, we suggest using an interfacial area per unit volume

(interface density) as a parameter to correlate the size effect of the thermal conductivity in

nanocomposites.

10

3

.,

v

?o0O

E

I-

8

6

4

2

n
0.1 1 10 100

Calculation Time, ns

Figure 4-3. Typical variation of the thermal conductivity values with respect to the

calculation time. The case shown is a 2D nanocomposite with 10Onm Si nanowires

embedded in a Ge host. The result converges after 10ns of simulation, corresponding to

10000 time steps, with a variation of less than 0.1% afterward.
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4.3.1 Code Validation - Bulk and 2-D Simulation

Homogeneous bulk Ge material was simulated first, where the computational

domain contains no particles and the only scattering mechanism is the intrinsic phonon

scattering. Figure 4-4 shows the comparison of the thermal conductivity value from the

gray-medium Monte-Carlo simulation conducted in this work with the experimental thermal

conductivity value of a bulk germanium sample. The experimental Ge value is taken from

Ref. [13]. The circular symbols indicate the results of simulating a solid bulk material without

any particle inside. The triangle symbol represents the simulation of a "pseudo composite",

when both the particle and the host material are Ge. When the two sides of the interface both

have transmissivity values of one, the simulation should equal that of a solid bulk material

without any particles. This pseudo composite simulation served to validate the Monte Carlo

coding. The simulation results of the thermal conductivity of bulk Ge agree very well with

the experimental data, as shown in Figure 4-4. The program was then used to study the

thermal conductivity of 2D nanowire composites, which were previously studied by

simulating phonon transport using the deterministic solution of the phonon BTE. To simulate

phonon transport in 2-D nanowire composite, the particle in the unit cell, shown in Fig. 4-1(b)

is extended to touch the z boundaries. Due to the specular reflection and periodic boundary

conditions, this is equivalent to infinitely long nanowires (with a square cross-section)

embedded in the host material, thus fully reproducing our previous two-dimensional case

shown in chapter 3. The temperature distributions in the mid plane of the unit cell are taken

for comparison with that obtained from the deterministic solution of 2-D phonon BTE. Figure

4-5 presents the temperature profiles of Sio.2-Geo.8 nanocomposite consisting of O1nm X

10nm cross-section Si nanowires embedded in a Ge host material along the x direction for

various y locations. Although the results by the Monte Carlo simulation exhibit a slight

asymmetry, which is attributed to the statistical error associated with the Monte Carlo

simulation method, the temperature profiles by the two simulations show very good
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agreement. Thermal conductivity values from the Monte Carlo simulation and those from of

the deterministic Boltzmann transport equation solution also agree with each other, as shown

in Figure 4-6, for 10nm and 50nm nanowires with heat flow in the cross-wire direction.

Overall the difference on the thermal conductivity value is less than 8% for all the cases

simulated. The above comparisons justify the phonon gray medium-based Monte Carlo

simulation methodology adopted in this study and also validate the program coding.
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Figure 4-4. Comparison of the thermal conductivity value from the gray-medium

Monte-Carlo simulation conducted in this work with the experimental thermal

conductivity value of a bulk germanium sample. The experimental Ge value is taken from

Ref. [35]. The circular symbols indicate the results of simulating a solid bulk material

without any particle inside. The triangle symbol represents the simulation of a "pseudo

composite", when both the particle and the host material are Ge. When the two sides of

the interface both have transmissivity values of one, the simulation should equal that of a

solid bulk material without any particles. This pseudo composite simulation served to

validate the Monte Carlo coding.
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Figure 4-5. Comparison of the temperature (energy density) distributions inside a nanowire

composite obtained, respectively, by the deterministic solution of the phonon Boltzmann

transport equation and Monte Carlo method. (a) Geometric dimensions of the unit cell for

a Sio.2-Geo.g nanowire composite with a 10nmxlOnm nanowire inclusion with z along the

wire direction, (b) temperature distribution along the x direction at various y positions

assuming heat flows in the x-direction.
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Figure 4-6. Comparison of thermal conductivity values for the 2D nanowire composites

obtained by a Monte Carlo simulation and by a deterministic solution of the Boltzmann

transport equation. The relative percentage deviation is less than 8%.

4.3.2 Three-Dimensional Periodic Structures

After verifying the Monte Carlo methodology, the program is used to simulate

phonon transport in various nanocomposites with different cubic particle sizes and particle

distributions. Figures 4-7(a) and 4-7(b) show the various cases for the nanoparticles with the

mono-size particles distributed in aligned (a) and staggered (b) patterns in a periodic 3D

nanoparticle composites. The staggered distribution resembles a face center cubic (FCC)

structure, in the crystallographic terminology, with particles arranged in a pattern similar to

the atomic pattern in an FCC crystal. Likewise, the aligned distribution resembles a simple

cubic pattern. Figure 4-7(c) shows a random distribution regarding both size and position. All

cubical particles shown in Fig. 4-7 are assumed to align with one of the cubic face parallel to

the transport direction.
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Figure 4-7. Sketch of nanoparticle composites with silicon cubic nanoparticles distributed in

an aligned pattern (a), in a staggered pattern (b), and randomly (c) in a germanium matrix

for Monte Carlo simulation conducted in this work. Even in (c) the cubic nanoparticles

are aligned in parallel to each other. The thermal conductivity calculated in this work are

all in the direction normal to the cubic nanoparticles.

Figure 4-8 shows the two-dimensional temperature distribution in the mid plane of

the unit cell for an aligned pattern. The Si particle has a size of 1Onrnx 1Onmx 1Onm and

occupies a 3.70/0 volume fraction, the volume of Si particle divided by the total volume of the

unit cell. Similar to the temperature profile shown in Figs. 4-5 for 2D nanowire composites,

Figures 4-8 again show that the maximum temperature overshoot occurs at the nanoparticle -

host lattice interface. The Monte Carlo simulation does not show the highest energy density

(temperature) region occurring at the corner of the nanoparticle-host interface as those

simulated by the deterministic BTE solution. The reason is due to the lower spatial resolution

implemented in Monte Carlo simulation. As mentioned earlier, the requirement of having

sufficient phonon bundles in each subcell largely limits the spatial resolution in Monte Carlo

phonon simulation.

It is also worthwhile at this point to show the effectiveness of the periodic boundary

conditions implemented in chapter 3, i.e., to verify that the phonon transport simulation in the

unit cell can be used to represent the phonon transport in the whole nanocomposite and thus
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to deduce the effective thermal conductivity of the nanocomposites. Figure 4-9(a) shows the

comparison of the heat flux at the hot (x=O) and cold (x=Lx) x boundaries in a periodic

aligned nanoparticle composite, i.e., with one lOnm cubic particle inside a l4nm cubic unit

cell. The periodicity in the local heat flux in the x-boundaries clearly demonstrated the unit

cell with the periodic boundary condition has been effectively implemented in this work.
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Figure 4-8. Temperature distribution inside an aligned periodic nanoparticle composite in the

middle plane in the z-direction. The dimension of the nanoparticle is lOnm X lOnm X

lOnm. The volume fraction of Si particles is 3.7%, corresponding to a Sio.04-Geo.96atomic

composition.
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Figure 4-9. Comparison of the heat flux at the hot (x=0) and cold (x=Lx) x boundaries in: (a)

A periodic aligned nanoparticle composite, i.e., with one lOnm cubic particle inside a

14nm cubic unit cell; and (b) A random nanoparticle composite, i.e, with 10 nanoparticles,

each of which is a 10 Onm cube randomly distributed inside a 40nmx40nmx40nm unit cell.

The comparison demonstrates the periodicity of local heat flux in the x direction.

Figure 4-10 shows the size effect on the thermal conductivity of nanoparticle

composites. The comparison of the thermal conductivity of the nanoparticle composites with

50nm silicon particles and IOnm silicon particles simply aligned in a germanium matrix and

that of the SiGe alloy is presented in Fig. 4-10(a). The results show that the thermal

conductivity decreases as the size of the nanoparticle decreases and the thermal conductivity

of nanocomposites with 10nm particles can be even lower than that of the alloy value with

the same constituents. This demonstrates that nanocomposites can be an effective approach to

reduce the thermal conductivity and thus to develop high-efficiency thermoelectric materials.
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Figure 4-10(b) shows the effect of the particle distribution on the thermal conductivity of

nanocomposites with a 10nm Si particle in a Ge host material. For the same Si/Ge atomic

ratio, the thermal conductivity of the random nanocomposites varies a little, but is very close

to the thermal conductivity of periodic nanocomposites. The lowest thermal conductivity is

achieved by well organizing the particles in a staggered pattern, where nanoparticles are

distributed in a pattern similar to the atoms in the FCC crystal structure. This phenomenon is

within our anticipation as staggered particles effectively block the pathway of ballistic

transport and increase the chances of interface scattering. Also shown in Figure 4-10(b) are

the thermal conductivity values of 2D nanocomposites consisting of 1Onm Si nanowires in a

Ge host. The difference between the thermal conductivity of the 2D nanocomposites

(nanowire composites) and the 3D nanocomposites (nanoparticle composites) is mainly due

to the interface area change at the same atomic ratio.

As stated earlier, most past studies on the thermal conductivity of nanocomposites

were based on the Fourier diffusion theory together with consideration of the thermal

boundary resistance. To examine the validity of such an approach, we compare the effective

thermal conductivity obtained from the Monte Carlo simulation with that of the effective

medium approach (EMA). The following EMA equation was developed by Nan et al. [14] for

spherical particles.

ke kp(1 + 2a) + 2km + 2f[kp (1 - a)-k,, (46)
km kp (1 + 2a) + 2km -f[kp (1- a)- km ]

where ke is the effective composite thermal conductivity, km is the host material thermal

conductivity, kp is the particle thermal conductivity, f is the volume fraction of nanoparticle

inclusion, ca is a dimensionless parameter defined as oa =aklap for nanoparticle composites.
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Figure 4-10. The effects of silicon nanoparticle size and distribution on the thermal

conductivity of nanoparticle composites: (a) Comparison of the thermal conductivity of

composites with 10nm and 50nm silicon cubic particles distributed in a simple periodic

pattern in a germanium host and that of a Si-Ge alloy as a function of atomic composition.

(b) The effect of the distribution pattern on the thermal conductivity of composites with

10nm silicon particle inclusions. Also shown in Figure 10(b) is the thermal conductivity

of a Si-Ge alloy.
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ap is the radius of nanoparticle inclusions, and ak=Rkm, where R is the interface thermal

resistance which can be calculated as [15]

R = 4 4(UIv, +U 2 v2 ) (4-7)

TId12UIv U 1v 1U2 v 2

Using the heat capacity and the sound velocity to calculate the interface thermal resistance

shown in Eq. (4-7), we obtain R=1.0*10-9 m2K/W. Other parameters used in the calculation

are k (Ge) = 51.7 W/(m K), k(Si) = 150 W/(m K), ap = 5nm, 25nm and 100nm (for

nanoparticle dimensions of 10nm, 50nm and 200nm). Strictly speaking, Eq.(4-6) is correct

only for composites with spherical particle inclusions and the present Monte Carlo simulation

is conducted for composites with cubic nanoparticle inclusions, but we expect that the

difference of the true thermal conductivity values of nanocomposites between cubic and

spherical nanoparticle inclusions should be very small. Figure 4-11 compares the thermal

conductivity obtained from the Monte Carlo simulation and the effective medium

approximation. As we can see, the effective medium approach based on incorporating the

thermal boundary resistance into the solutions of the Fourier heat conduction law

underpredicts the size effects for sizes of 50nm or lower. The EMA results do not predict a

thermal conductivity value lower than bulk SiGe alloy in any case. This conclusion is further

supported by recent experimental work, which shows that the thermal conductivity of Si-Ge

nanocomposite is very close to that of the Monte Carlo simulation [ 16]
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Figure 4-1 l1. Thermal conductivity of nanoparticle composites predicted by the Monte Carlo

simulation (MC) conducted in this work and that predicted by the effective medium

approximation (EMA) proposed by Nan et al. in Ref. [14]. . The EMA based on

incorporating the thermal boundary resistance into the solutions of the Fourier heat

conduction law underpredicts the size effects.

4.3.3 Effects of Randomness

In a random distribution, the particles are distributed randomly with their positions

determined by random numbers. Figures 4-8(c) also show further randomization on particle

size in addition to random position distribution. However owing to the periodic boundary

conditions addressed in Section 2.1, the computation is mathematically equal to simulating an

infinite material consisting of repeating structures of the computational domain. In other

words, the random distribution treated in this chapter represents a semi-random semi-periodic

pattern (short range random and long range periodic pattern). This argument is solidified by

the periodic heat flux shown in Fig. 4-9(b). Figure 4-9(b) shows that the periodicity of the
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heat flux is remarkably well preserved even in the random distribution case. Without a solid

proof, we comment that if the computational domain (unit cell) is larger than a few phonon

mean free paths (or contains enough particles), the simulation results should converge to the

true value of the random nanocomposites. However, it requires a much larger computational

time and memory since the problem is intrinsically a multiscale problem. We note that due to

the computational power limit, the calculations have been performed only with cubic

nanoparticles and the nanoparticles are aligned so that two of the surfaces of a nanoparticle

are normal to the direction where a temperature difference is applied in the unit cell. Figure

4-10(b) and Fig. 4-12 show the thermal conductivity values of nanocomposites constituted of

randomly distributed particles. In these figures, each data point for a random structure is the

result of randomly distributing 10 particles in the computational domain. Since the process of

distributing particles and selecting particle sizes is purely random and the computational

domain is not large enough, the outcomes of the program after each run vary from one run to

another. However, the spread of these random structure results sheds some light on the

possible range of thermal conductivity reduction associated with a nanocomposite sample

fabricated through a process like hot-pressing. Fig. 4-10(b) shows that the random

distribution of particle positions generally results in thermal conductivity values very close or

even lower than those of aligned distribution. However, a further randomness associated with

particle sizes [distribution pattern shown in Fig. 4-8(c)] does not help reduce thermal

conductivity, as shown in Fig. 4-12, which is shown by comparing the thermal conductivity

values of aligned 50 nm particles and of random 10-100nm particles. The spread of the

thermal conductivity value depends largely on the number of nanoparticles being simulated in

a unit cell, which is limited by the computational power. The variation of the thermal

conductivity of the random nanocomposites, as shown in Fig. 4-12, might due to the variation

of the average size of the nanoparticles and thus the change of the total interfacial area in

the random nanocomposites from one running case to another.
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Figure 4-12. Comparison of the thermal conductivity of a periodically aligned nanocomposite

with 50nm cubic silicon particles distributed in a germanium matrix and that of a random

composite with silicon nanoparticles having a size range from 10 to 100nm distributed

randomly in a germanium matrix as a function of germanium atomic composition.

4.3.4 Interfacial Area per Unit Volume (Interface Density)

Knowing that the phonon-interface scattering dominates the thermal conductivity

reduction for nanocomposites, we propose using the interfacial area per unit volume

(interface density) as a unifing parameter to replace the nanoparticle size and the atomic

composition and to correlate the wide spread in the thermal conductivity data. Figure 4-13

show that the thermal conductivity data of nanoparticle composites follows a single curve

nicely as a function of interfacial area per unit volume. The randomness either in particle size

or position distribution causes slight fluctuations but is not a dominant factor for the

reduction in the thermal conductivity. Also shown in Fig. 4-13 are the thermal conductivity

values of 2D nanowire composites. Apparently, the effective thermal conductivity of 2D

nanowire composites is lower than that of 3D nanoparticle composites for the same interface
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area per unit volume. The reason is that a 2D nanowire composite contains half of its

interfacial area perpendicular to the applied temperature difference direction and the other

half parallel to the applied temperature difference direction, while a 3D nanocomposite

contains only one third of its interfacial area perpendicular to the applied temperature

difference direction and the rest is parallel to the applied temperature difference direction. All

the previous work show that interfaces which are perpendicular to the applied temperature

direction are more efficient in scattering phonons and thus are more efficient in reducing the

thermal conductivity [15]. This also suggests that one might try to use an effective interfacial

area per unit volume (interface density) to correlate the thermal conductivity of

nanocomposites with different shapes of nanowire/particle inclusions. The key for thermal

conductivity reduction is to have high interface density where nanocomposites can have a

much higher interface density than simple 1-D stacks such as superlattices. Thus

nanocomposites benefits the enhancement of the thermoelectric figure of merit ZT in terms of

reducing the thermal conductivity.

4.3.5 Temperature Dependent Thermal Conductivity (Comparison with Experiments)

The Monte Carlo code can be used to simulate temperature dependent thermal

conductivity value of nanocomposites. Figure 4-14(a) shows the temperature-dependent

thermal conductivity of nanoparticle composites. Boundary scattering results in a very

different temperature dependence of the thermal conductivity of nanocomposites compared to

their bulk counterpart where at high temperature the thermal conductivity is dominated by the

Umklapp phonon-phonon scattering process. The thermal conductivity of Si-Ge

nanocomposites with 10 nm particles in the germanium matrix is almost temperature

independent. Figure 4-14 (b) shows the comparison of the simulated thermal conductivity

with recent experimental results from Jet Propulsion Laboratory [16]. The "3run 2 HTB A"

sample is a Si-Ge nanocomposite with 20-80 nm Si particles embedded in a Ge matrix. The
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"SGMA05" sample is a ball-milled SiGe alloy nanocomposite with average particle size of

10nm. Although the "SMGA05" sample cannot be directly compared with the modeling since

we did not consider the alloy scattering and the sample configuration is more like Fig. 3-1(b),

both sets of experimental data clearly show that the size effect dominates the thermal

conductivity reduction.

4.4 Conclusions

This chapter presents a phonon grey medium Monte Carlo scheme to simulate the

phonon transport and thus to study the thermal conductivity in nanocomposites. Special

attention has been paid to the implementation of periodic boundary conditions in the heat

flow direction for the Monte Carlo simulation, which is essential to study the thermal

conductivity of bulk composites with nanoparticle/nanowire inclusions - an intrinsic

multiscale transport problem. With a simplified gray phonon approach, the simulation was

able to duplicate our earlier results of deterministically solving the Boltzmann transport

equation. The Monte Carlo simulation reveals the ballistic feature of phonon transport in

nanocomposites, which is consistent with the deterministic solution of the phonon BTE. The

size effects of phonon transport in nanoparticle composites were systematically studied and

the results showed that the thermal conductivity of nanoparticle composites can be lower than

the alloy value. Several other parameters that could influence the thermal conductivity were

also investigated by the Monte Carlo simulation, including the distribution of the size and

position of the Si nanoparticles. It was found that randomly distributed nanoparticles in

nanocomposites rendered the thermal conductivity values close to that of periodically aligned

patterns. On the other hand, a staggered distribution of nanoparticles could result in a slightly

lower thermal conductivity for the same particle volume fraction. The thermal conductivity

values calculated by this work qualitatively agree with recent experimental measurement in

Si-Ge nanocomposites. This work also suggested using an interfacial area per unit volume
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(interface density) as a parameter to correlate the size effect of the thermal conductivity in

nanocomposites. The key for the thermal conductivity reduction is to have a high interface

density where nanoparticle composites can have a much higher interface density than th

simple 1-D stacks, such as superlattices. Thus nanocomposites further benefit the

enhancement of ZT in terms of thermal conductivity reduction.
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Figure 4-13. The thermal conductivity of nanoparticle composites as a function of the

interfacial area per unit volume (interface density). The thermal conductivity data of

nanoparticle composites falls on to a single curve nicely as a function of interfacial area

per unit volume. The randomness either in particle size or position distribution causes

slight fluctuations. However, these fluctuations are not a dominant factor for the reduction

in the thermal conductivity. The effective thermal conductivity of 2-D nanowire

composites is lower than that of 3-D nanoparticle composites for the same interface area

per unit volume, since the effectiveness of interface scattering on the thermal conductivity

reduction is different when the interface is perpendicular to the applied temperature

difference direction and when the interface is parallel to the applied temperature

difference direction.
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Figure 4-14. (a) The temperature-dependent thermal conductivity of nanoparticle composites.

(b) Comparison of the simulated thermal conductivity with recent experimental results

from Jet Propulsion Laboratory [16].
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Chapter 5. Surface-Plasmon Enabled Nonequilibrium

Thermoelectric Refrigerators and Power Generators

Thermoelectric energy conversion devices rely on electron transport for energy

conversion, while phonon heat conduction is usually detrimental for the energy conversion

efficiency. Higher energy conversion efficiency is possible if the electrons and phonons can be

decoupled. This chapter proposes and investigates surface-plasmon coupled nonequilibrium

thermoelectric devices. In such devices, the energy transport from the heat source of a power

generator or from the cooling target of a refrigerator to the thermoelectric element is limited to

electrons only through the coupling of surface-plasmons across a vacuum gap of the order of tens

of nanometers. In the power generation mode, this method of thermal-energy coupling allows the

creation of hot electrons in the thermoelectric element. In the refrigeration mode, cold electrons

created in the thermoelectric element can be coupled to the cooling target through the surface-

plasmons. Under certain conditions, these surface-plasmon coupled nonequilibrium

thermoelectric devices perform significantly better than conventional thermoelectric devices

based on the same materials.

5.1 Introduction

Direct energy conversion between heat and electricity using thermoelectric effects such

as the Seebeck for power generation and the Peltier effect for refrigeration has been studied

extensively [1, 2] . In a thermoelectric device, three competing processes occur simultaneously:

the useful Peltier effect or Seebeck effect, the volumetric Joule heating, and the heat conduction

from the hot end to the cold end. Device analysis shows that the performance of thermoelectric

devices is determined by the materials figure of merit, Z = S 2 a/k, where S is the Seebeck

coefficient, ar is the electrical conductivity, and k is the thermal conductivity. The thermal

conductivity has contributions from both electrons and phonons. That is, k = ke + kp, where ke

and kp are the electron and phonon thermal conductivities, respectively. Most research in

thermoelectrics has focused on improving the figure of merit though reduction of the thermal

conductivity using interfaces and quantum engineering on electron transport, and significantly

progress has been made in these directions in the past decade [2-4]. In addition to the materials
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development, there are also new opportunities to create novel thermoelectric devices that can

potentially outperform conventional thermoelectric devices. Different device configurations

have been explored in the past. Past studies include the investigation of thermoelectric effects in

pn junctions and minority carrier effects [5,6], multistage thermoelectric devices [7], and

transient effects [8]. Recent examples are thermionic refrigeration and power generation based

on single and multilayer structures [9,10].

In thermoelectric devices it is the electrons that do the useful energy conversion work and

it isthe electron temperature that matters for energy conversion efficiency. Following the

rationale of reducing the phonon thermal conductivity, if there is a way to impart energy to

electrons only (as for example by cutting off the energy transport through phonons between the

heat source or the cooling target and the thermoelectric element) while minimizing the energy

coupling between electrons and phonons, it should be possible to obtain better performance in

thermoelectric devices. Existing examples are the vacuum thermionic power generators [ 11 ] and

electron tunneling refrigerators [12]. Electron thermionic emission, however, is limited by the

work function of available materials, and electron tunneling requires extremely small gaps, of the

order of several angstroms. An alternative way to decouple electrons and phonons is to explore

thermal radiation between two surfaces, for example, using photons to transfer the energy from

the heat source to electrons in the power generation unit. Along this line, the most apparent way

of utilizing such an effect is to use a thermophotovoltaic converter [13] in which photovoltaic

cells convert the energy of the photons emitted by a thermal source into useful electrical energy.

Thermophotovoltaics, however, is limited to photons with energies above the bandgap. If

radiation can create sufficient non-equilibrium conditions between electrons and phonons in a

thermoelectric power generator or refrigerator, the performance of such devices can be

significantly improved. It has been long recognized that nonequilbrium conditions between

electrons and phonons in a thermoelectric element can be exploited to improve the

thermoelectric energy conversion efficiency [14-18], but there exist no easy ways to create such

nonequilibrium states between electrons and phonons to benefit from hot electrons for power

generation or to benefit from cold electrons for refrigeration. Taking power generation as an

example, to take advantage of nonequilibrium conditions between electrons and phonons, a small

thermal radiation resistance is needed (1) to provide high energy flux to compensate for the

electron energy loss to phonons and thus to create a nonequilibrium state between electrons and
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phonons (2) to reduce the temperature drop between the heat source and electrons in the

thermoelectric element. The heat flux through the far-field thermal radiation is generally too

small to create nonequilibrium conditions between electrons and phonons. Recent work on

phonon-polariton coupling in the near-field shows that a heat flux as high as 10's or 100's

W/cm2 can be obtained when two half-spaces of a polar semiconductor (such as silicon carbide

or boron nitride) are separated by a nanoscale vacuum gap for a temperature difference of 10's K

between the two surfaces [19]. We anticipate that near-field energy transfer due to surface-

plasmons will have a similar behavior with the additional advantage that only electrons (or

plasmons) participate in the energy exchange.

In this chapter, we develop models to investigate the potential of surface-plasmon

coupled nonequilibrium thermoelectric refrigerators and power generators. This chapter is

organized as follows. In section 5.2, we develop models for surface-plasmon-coupled

nonequilibrium thermoelectric devices, including a surface-plasmon energy transport model

across a nanoscale vacuum gap and a nonequilibrium electron-phonon energy transport model in

the thermoelectric device, followed by discussion of material property selection criteria. Section

5.3 presents the calculation results for refrigerators and power generators followed by a brief

summary in section 5.4.

5.2 Theoretical Model

Figures 5-1(a) and 5-1(b) illustrate schematically a surface-plasmon coupled

nonequilibrium thermoelectric refrigerator and power generator, respectively. A nanoscale

vacuum is present to avoid the direct contact of heat source or cooling target from the

thermoelectric element, thus cutting-off the heat flow through phonons between the heat source

or the cooling target and the thermoelectric element. The vacuum gap should range from a few

nanometers to a few tens of nanometers to ensure high radiative energy flux. The cooling target

or heat source should support surface plasmon polaritons or be coated with a thin film of a

material that can support surface plasmon polaritons. Similarly, the side of the thermoelectric

element facing the cooling target or heat source should also be coated with a thin film of the

same material. Having the same material on both sides of the vacuum gap gives the largest

energy transfer due to surface plasmons. Also illustrated in the figure are the typical electron and

phonon temperature distributions in the devices, which will be justified subsequently. We will
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first present the surface-plasmon energy transport model in section 5.2.1, and couple it to a

nonequilibrium electron-phonon transport model for the whole device in section 5.2.2. We will

also develop criteria for good device performance. Section 5.2.3 outlines the material property

selection rules.

vacuum
gap

x=-d

the rmoe lectrle refrigerator

q'l battery

(a)

'.............

vacuum
gap -----

Tp
therm oelectrtc power generator

heat source
x=-d x 0

load

(b)

Figure 5-1. Schematic drawing of surface-plasmon coupled nonequilibrium thermoelectric

devices: (a) refrigerator, and (b) power generator. A nanoscale vacuum gap is used to

avoid the direct contact of the heat source or the cooling target with the thermoelectric

device, and thus cut-off the heat flow through phonons between the heat source or the

cooling target and the thermoelectric device.
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5.2.1 Surface-plasmon Energy Transport Model

Radiative energy transfer between two surfaces separated by more than a few

characteristic wavelengths, as given by Wien's displacement law, is too small to create

significant non-equilibrium effects between electrons and phonons in the thermoelectric element

for our proposed application. Tunneling of normal evanescent waves can give rise to an

enhancement in the radiative energy transfer, with a maximum radiative flux proportional to n2

times that of the blackbody flux in vacuum, where n is the material refractive inde [20,21].

Although the possibility of utilizing this enhancement for thermophotovoltaic energy conversion

has been studied theoretically as well as experimentally [22,23], the increase in heat flux is still

not sufficient for the current application. On the other hand, it has been found recently that

excitation of electromagnetic surface waves, such as surface phonon-polaritons, can lead to an

enhancement of radiative flux orders of magnitude higher than that of the blackbody limit [24].

The possibility of utilizing this effect for thermophotovoltaic energy conversion has been

analyzed theoretically using materials that support surface phonon-polaritons [19]. Similar

enhancement of the energy transfer can be achieved due to near-field coupling between surface

plasmon polaritons, which involve electrons as opposed to phonons.

The radiative energy transfer between the heat source (or cooling target) and the

thermoelectric element by surface plasmons is modeled following the same method used to

model energy transfer between two half-spaces due to surface phonon-polaritons [19] using a

combination of dyadic Green's function technique [25] and the fluctuation-dissipation theorem

to characterize the spectral strength of the thermal sources [26]. Doped semiconductors with

high electron or hole mobilities can support surface plasmon waves. An n-type semiconductor

with the following dielectric function is assumedT(O)=t-4; (DC-t)(@2 (w+ir,) (5-1)
The first term on the right hand side of Eq. (5-1) is due to atomic polarization, the second term is

due to the optical phonons, and the third term is due to the conduction electrons. We choose
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parameters that are close to these of InSb, with e =15.24, DC =17.76, COTo =0.022 eV,

Yp =3.56x 10
- 4 eV [27]. The plasma frequency is related to the doping by the relation

n e 2

UCo 2 I ne t(5-2)

where n is the electron concentration, meff is the effective mass of the electrons, and so is the

electrical permittivity of free space. The effect of doping on the radiative transfer is to vary the

plasma frequency, cop, and the damping, Y e. Though the entire device could be complicated, the

heat source (or cooling target) and the thermoelectric element are modeled as two half-spaces

that have the same plasmon frequency as shown in Fig. 5-2(a). For comparison, the spectral

"absorptivity" of a 10 nm thin film of InSb adjacent to a half-space of InSb is shown in Fig. 5-3.

The emitter is a half-space of InSb. Almost the entire energy incident on the thin film in the

spectral range corresponding to transfer by plasmons is absorbed in this very thin layer. As long

as the major part of the radiative energy transfer is due to surface plasmon polaritons, the exact

configuration of the thermoelectric device can be approximated by that of two half-spaces

separated by a vacuum layer since the penetration depth of surface plasmons is only around 10

nm. The spectral flux transfer between two half-spaces of InSb, with p = 0.18 eV and Ye =

5.33 meV, at 400 K and 390 K with a vacuum gap in-between them is shown in Fig. 5-4. The

two peaks in the figure correspond to resonances due to surface waves. The smaller peak, which

occurs around the surface phonon-polariton frequency, is due to the surface phonon polariton and

the main peak, which occurs around the surface plasmon polariton frequency, is due to the

surface plasmon of the conduction electrons. For our application, only radiative transfer by

surface plasmons is desired. By doping InSb appropriately, the fraction of energy transfer due to

phonons can be reduced. To do so, the surface plasmon polariton frequency would have to be

sufficiently separated from the surface phonon polariton frequency. In addition, the optimum

plasma frequency is also determined by the temperatures involved. Figure 5-5 shows the net

energy transfer from one half-space at a constant temperature as a function of temperature

difference between the two half-spaces. For comparison, the net energy transfer between two

blackbodies, one of them at 500 K, is also shown in the same figure. The resonance effect of the
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surface plasmon results in an energy transfer 3-4 orders of magnitude higher than the far-field

value. The net surface plasmon energy transfer is also a function of the distance between hot and

cold surface (as shown in Fig. 5-4). The smaller the vacuum gap d, the larger is the energy

transport flux with a given temperature difference. The total energy flux due to excitation of

surface waves is proportional to 1/d2. In the rest of this chapter, a 10nm gap vacuum is assumed.

(a)

~--------------------------------I
I R I
I e I
I I

Rvac Tpe : T2

I R Tp Rp II e-p I
I I
I I
I I
I I'----------------n-~~~-----------,

(b)

Figure 5-2. (a) Schematic of half-spaces of InSb separated by a vacuum gap of thickness d, (b)

thermal resistance network of the surface-plasmon coupled nonequilibrium devices.
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Figure 5-3. Spectral "absorptivity" of a 10 run film of InSb separated from a InSb half space

(emitter) by a 10 nm layer of vacuum. "Absorptivity" is defined as the ratio (qinc- qexit)/ qinc.

This figure shows that only 10 nm of InSb is necessary to absorb all the surface plasmon

energy flux. It confirms that our approximation of treating the thermoelectric device as two

half-spaces of InSb separated by a 10 run layer of vacuum is valid.
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Figure 5-4. Spectral flux between two half-spaces of InSb separated by a vacuum gap of

thickness d = 10 nm and d = 100 nm. The plasma frequency is assumed to be 0.18 eVe The

smaller peak corresponds to resonance due to surface phonon polaritons and the bigger

peak corresponds to resonance due to surface plasmon polaritons.
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Figure 5-5. Total energy transfer between two half-spaces of InSb. The hotter half-space is

maintained at T1 and the temperature of the colder half-space is varied. The x-axis is the

temperature difference between the hot and cold bodies. The blackbody energy transfer,

with the hotter half-space maintained at 500 K, corresponds to the y-axis on the left. The

other curves correspond to the y-axis on the right.

5.2.2 Surface-Plasmon Coupled Nonequilibrium Thermoelectric Devices

Standard thermoelectric device models assume that electrons and phonons are under local

equilibrium. However, depending on the electron-phonon energy exchange rate and the rate of

heat input, the electrons can be heated (or cooled) to a much higher (or lower) temperature than

the phonons. Such a nonequilibrium electron-phonon effect, which is often called hot electron

effect in high field electronics since electrical fields heat up electrons first, have been extensively

studied for high field electronics [28, 29,30] and laser-material interactions where the electrons

can be thrown out of equilibrium from lattice due to excitation by an ultra-short laser pulse

[31,32]. A few papers have also dealt with nonequilibrium electron and phonon transport in
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thermoelectrics research [14-18]. We follow an established way to deal with such a

nonequilbrium situation, the two-temperature model, which assumes that electron and phonons

are in equilibrium with their respective subsystems and have their own temperature, and that the

boundary conditions can be separately formulated. For this treatment to be valid, the electron-

electron collisions which randomize the electron energy should be frequent enough, a condition

usually satisfied if the electron concentration is 1016 cm 3 or higher, as is the case in good

thermoelectric materials. We further restricted our analysis to monopolar (single carrier)

semiconductors and assumed that there is no electron-hole pair generation and thus no additional

recombination heat needs to be considered. We also neglected the temperature dependence of

the thermal and thermoelectric properties (ke, kp, and S). Thus no Thompson effect is

included in the model. Under these approximations, the governing transport equations for the

electron and phonon subsystems in the thermoelectric element are:

d 2 T, J.2
ke e G(T-Tp) + j = 0 (5-3)

d2T
kP 2P +G(Te -Tp) = 0 (5-4)

dx2

where Te and Tp are the electron and phonon temperatures, respectively, j is the current density

passed through the thermoelectric element, and G is the volumetric electron-phonon energy

coupling constant, which can also be viewed as the cooling or heating rate of electrons due to

their interaction with phonons. The first terms in Eqs. (5-3) and (5-4) are heat conduction terms

due to electron carriers and phonon carriers, respectively, G(Te-Tp) describes the energy

coupling or interaction between the electron and phonon subsystems, and j 2 p is the energy

input to the electron subsystem due to Joule heating.

The general solutions for the electron and phonon temperatures are,

Te (x)- TP(x) = 0o + (x) (5-5)
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kTe O(x)- x + C3x+C 4 (5-6)
k, + kP 2a(k + k)

where

(jk', (x)=Ce +C2e (5-7)
Go(ke + kp)

and

m2 _ G(ke + kp) (5-8)

kekp

The above general solutions have been obtained before, together with different boundary

conditions to determine the coefficients C to C4. The concept of coupling through surface

plasmons requires us to establish new boundary conditions that are difficult to realize in

conventional device configurations. If we look at the time scale, the characteristic time scale for

creating a surface polariton mode is co-', which in this case is 23 fs. The electron-electron

scattering time is also around tens of femto-seconds. Finally, the characteristic time for energy

transfer between electrons and phonons is given by the electron-phonon coupling constant,

which can range from a pico-second to nano-seconds at low temperatures. Hence, this chapter

assumes that the surface polaritons are regenerated almost instantaneously. The radiative energy

due to surface polaritons is first transferred to the electrons, which form a subsystem at the

electron temperature, and finally to the phonons, which form another subsystem at the phonon or

lattice temperature, through electron-phonon coupling. This scale analysis justifies the boundary

conditions established below for the nonequilibrium thermoelectric devices. Although the

temperature profiles seem different in the surface plasmon thermoelectric refrigerators [Fig. 5-

l(a)] and power generators [Fig. 5-1(b)], the boundary conditions for the control equations are

actually similar.

At x=L, away from the plasmon coupling surfaces, we assume that the electrons and

phonons are in equilibrium with each other at T2. That is,

Te = T2 and T = T2 (5-9)
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At x=O, the phonon subsystem is assumed to be isolated, i.e.

dT =0. (5-10)
dx

This assumption is used in most of the calculation results presented in this chapter except for Fig.

5-11 shown later, since the surface-plasmon energy transport calculation in Fig. 5-4 shows that

less than 10% of total energy coupling between the surfaces is through phonons and this

percentage can be further reduced by appropriate doping to control the separation between

frequencies of the surface plasmon and surface phonon-polariton.

The boundary condition for the electron subsystem at x=O can be written as

q = STe Ix=0 -ke d Ix=o (5-11)
dx

The first term is the Peltier cooling term, which represents the heat absorbed from the hot surface

of the power generator or cold surface of the refrigerator. The second term is the heat conducted

by electrons.

It is through q in Eq. (5-11) that we couple the equations of the nonequilibrium electron-

phonon transport model in thermoelectric devices to the surface-plasmon energy transport model

across the vacuum. Because of this coupling, neither the heat flux nor the temperature at x = 0

(the interface between the vacuum and the thermoelectric element) are known variables. For

power generators, the heat source temperature T at x = -d is usually taken as the input for the

efficiency calculation, where d is the size of the vacuum gap. For refrigerators, either the cooling

target temperature T or the cooling power density is given for the performance calculation.

Thus numerical iteration is inherently needed for the calculation of the temperature distribution.

After the temperature inside the thermoelectric element is known, we can determine the

performance of the whole device.
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To evaluate the refrigerator performance, the temperature at the interface of the vacuum

and thermoelectric element can be calculated for a given cooling load (cooling rate) at a cooling

target temperature T.. Then the energy expenditure pi, for cooling can be written as

jiL
Pi, = Sj(T 2 - e x,=O)+ a*

The coefficient of performance (COP) 0 is defined as

= q
Pin

(5-12)

(5-13)

The minimum cooling target temperature is reached when q is set to zero.

For power generators, the power output depends on the external electrical load resistance RL.

L
Often the external resistance is written as RL = pRi, = p-, where p is the electrical resistance

ratio, Ri, is the electrical resistance of the thermoelectric element and A is the cross-section area

of the thermoelectric element. Then the electric current density in the power generator can be

written as

_ Vs S(Te Ix= -T 2 ) Sc(Te Ix=0 -T2)

RTOTA ( +RL)A L(1+u)
aA

(5-14)

The power output p0 is thus,

j 2 RL S 2cU(Te I=0 -T2) 2

A L (1+ p) 2 (1+ p)2
(5-15)kZ(Te x=_-T2)

L

The energy conversion efficiency 7 can be calculated as
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rP = (5-16)
q

We will also compare the COP and minimum temperature for refrigeration and the

efficiency for power generation thus obtained with that of standard devices, for which the

corresponding expressions are well documented [1].

We note that there are no simple equations for the performance evaluation of surface-

plasmon coupled nonequilbrium thermoelectric devices. The numerical simulations are carried

out to obtain various optimum values. Before presenting any numerical results, however, we

will develop some criteria that serve as guidelines for device design and materials selection.

From the above discussion, we see that in the proposed devices, an additional

temperature drop between the heating (cooling) source and the thermoelectric element develops

across the vacuum gap. We define an effective thermal resistance for the vacuum gap, Rac,,, due

to the surface-plasmon energy transport, where R, = -' x . This resistance must be small
q

such that most of the temperature drop happens in the thermoelectric element rather than the

vacuum gap, i.e.,

Rvac << RTE (5-17)

where RTE is the total thermal resistance of the thermoelectric element, which will be determined

next.

For conventional thermoelectric devices (both a power generator and refrigerator), the

L
thermal resistance is given by . In the nonequilibrium thermoelectric devices, a first order

k

analysis (neglecting the joule heating effect on thermal resistance model) gives the thermal

resistance network as shown in Fig. 5-2(b). When the energy is coupled from the heat source or

the cooling object to the interface between the vacuum and the thermoelectric element, it is

transported through two channels in the thermoelectric element. One is through the electron

subsystem and the other is through the electron-phonon interaction and then the phonon

subsystem. The electron-phonon coupling thermal resistance can be written as
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Rep (5-18)
-P GI,GLe-p

where Lep is the length over which the electron and phonon subsystems have distinguishable

temperatures. Le-p is the thermoelectric element length or the electron cooling length, whichever

is smaller. The electron cooling length is defined as the distance required for electrons and

phonons to reach equilibrium from the boundary where electrons is heated or cooled [15,17]

IG [=±G I + I q(5-19)

The total thermal resistance of the thermoelectric element operating in nonequilibrium can be

thus be approximated as,

1 1 1 1 1
RTE = + = + + (5-20)

Re R-p + R) GtL,-p kp L (5-20)

1 iL
If G is much less than k the nonequilibrium effect is not noticeable and Eq. (5-20) can be

GLe_p kp

L
simplified to that of a conventional thermoelectric device, -. Thus, to have distinguishable

k

benefit, RTE must be larger than the thermal resistance of a conventional device, that is

RTE > (5-21)
k

1 L
On the other hand, when 1++-- o , the thermoelectric element can be viewed as an

GLep kp

almost perfect one with thermal conductivity of ke and a corresponding Z =
ke
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Thus one will apparently benefit from a nonequilibrium electron-phonon effect, if

1 L L
I + L-> L-. (5-22)

GLep kp ke

Normally kp is larger than ke for thermoelectric materials. Then the criterion can be written as

1 L
-- > - (5-23)
GLep ke

We note that in nanostructured thermoelectric materials, k is often reduced to the same order of

magnitude as k, [2]. In such a case, Eq. (5-22) should be used as a criterion.

In summary, a surface-plasmon enabled nonequilibrium thermoelectric device will have

performance superior to a conventional one when:

1) Rvac << RTE to reduce the additional temperature drop due to surface-plasmon energy transfer.

This criterion also explains why the coupling by conventional far field radiation or the tunneling

of regular evanescent waves is not sufficient for the proposed device configurations.

1 L
2) ->- to have a distinguishable contribution from nonequilibrium electron-phonon

GLep ke

temperatures. This means that materials with low electron-phonon coupling are desirable.

5.2.3 Material Property Selection

The efficiency of conventional thermoelectric devices is determined by ZT. Reviews of

past and current research in thermoelectrics should be consulted for progress made [1,2,33].

Generally a good thermoelectric material has S-200 gV/K, and a 105 m2-'m- . For the

proposed devices, the electron-phonon coupling constant G is of crucial importance, as well as

the plasmon frequency. The electron-phonon interaction is an active research area due to its

important role in solid state physics, notably as the process that determine the electrical

resistance, superconductivity, and the equilibrium dynamics of hot electrons. More often, the

electron-phonon energy exchange is represented by the electron energy relaxation time re in the
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literature [28, 30,34-37]. Neglecting the electron kinetic energy, the electron-phonon coupling

constant can be written as,

G = 3nkB (5-24)
2'e

Clearly, G is proportional to the doping concentration in Eq. (5-24) and is a very complicated

function of both the electron and phonon temperatures rather than a constant, since Te depends

on both the electron scattering mechanism and the electron degeneracy. References [35] and [36]

summarize the theoretical form of Te for various scattering mechanisms and reference [38] for

low dimensional systems. However, the theoretical value agrees only qualitatively with

experimental results. A number of different techniques, including electrical transport (steady

state) and optical methods (dynamics) have been used to study the electron energy relaxation

[29,30,38]. Table 5-1 lists some experimental data for the energy relaxation time for various

materials (after [29]). Clearly 're ranges from 0.1 - 10 ps at room temperature. At low

temperatures, ze can be as long as tens nanoseconds. Depending on the optimum doping

concentration for optimum ZT, G ranges from 109 to 1013 W/(m3 K) in semiconductors. The

optimum doping concentration for thermoelectric material varies from 1015 cm-3 or 1016 cm 3 for

narrow bandgap materials (InSb [39], Hgl_-CdTe [40]) to 1019 cm'3 or 1020 cm 3 for wide

bandgap materials (SiGe alloys). Most good thermoelectric semiconductors have a G value

around 101° or 10 12 W/(m3 K) at their optimum ZT values. Metals have very high G, which is

around 106 1017 W/(m3 K) [41].

In the Russian literature [14,15,17], the electron-phonon energy coupling constant is

often given as an electron cooling length. The electron-phonon cooling lengths vary from 100's

nanometers to several microns at room temperature. However, this estimation does not give the

details about the doping concentration dependence.

In our calculation, we used S = 200 jiV K -', a = 105 LI-'m-' and k = 2.0 Wm''K-'. G and

ke / k varies in different cases. With such material properties, the minimum temperature that the

cold end of a conventional thermoelectric refrigerator can achieve is 241K at a zero cooling load
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and a hot side temperature of 300K. When this material is used to make a conventional

thermoelectric power generator operating at 500K to 300K, the maximum efficiency is 7%.

Table 5-1. Experimental data of the energy relaxation time (after Reference [29]).

Material

Si

Ge

InSb

GaAs

Lattice Electron 'e

Temperature Temperature (10-2 sec)
(K) (K)

8 29 110.0
107 24.0
222 2.94
505 0.5

77 107 23.0
222 2.6
505 0.43

300 330 2.6
505 0.37

100 100 27.0

150 150 10.0
200 200 6.0
300 300 6.0

400 6.0
640 9.7
1500 19.0

4.2 5 2x10 5

10 3x 10 5

15 4x 105

1.15 1-15 2.35-3.3x 105

20 20 5 x 105

25 25 1.3 x 105

77 77
122 1.76
192 2.46
297 3.37

50 50 17.3
80 80 1.7
77 150 0.35

300 0.65
700 0.82
1000 1.02

300 350 1.42
500 1.28
800 1.94
1000 1.88
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5.3 Results and Discussion

The model described in section 5.2 has an inherent assumption that the electrons and

phonons are in good equilibrium with each other in the heat source or in the cooling target while

maintaining their nonequilibrium state in the thermoelectric element. This assumption can be

justified through careful design of the surface of the heat source or cooling target. We can think

othat the heat source or cooling target are made of a very thin surface plasmon material (such as

InSb), coated on a metal layer. The high electron-phonon coupling constant of a metal, which is

usually around 4-5 orders of magnitude larger than that of semiconductors, ensures that the

equilibrium between electrons and phonons in the metal underneath the material layer that

supports surface plasmon. Then the thickness of the surface plasmon supporting material must

satisfy two conditions: 1) The thickness should be large enough to support all the surface

plasmon energy flux. As discussed in Fig. 5-3, it should be more than 10 nm. 2) The electron and

phonon temperature drop inside the surface plasmon material layer should be small. Figure 5-

6(a) shows the temperature drop in the surface plamson supporting layer under a cooling heat

flux of q = 50W/cm2. Fig. 5-6(a) shows the electron temperature drop (Te-Tm) and phonon

temperature drop (Tp-Tm) inside the surface plasmon supporting material layer, where Tm is the

temperature at the surface of metal layer and surface plasmon material facing the vacuum. Figure

5-6(b) shows the temperature drop at the plasmon material surface as a function of the thickness

of surface-plasmon material. The smaller the electron-phonon coupling constant, the larger the

electron temperature drop. The temperature drop is less than 2.5 K if the thickness of the surface

plasmon material is less than 1 m. Thus we can assume that the electron temperature and

phonon temperature are in equilibrium and they are the same as the cooling target or heat source

temperature if the cooling target or heat source are coated with tens or several hundred

nanometers of surface plasmon material with a thin metal layer underneath. In the rest, we

present the calculation results for both the surface plasmon coupled nonequilibrium refrigerators

and power generators.

5.3.1 Refrigerator

Figure 5-7 shows the variation of several characteristic temperatures as a function of the

current density under a cooling load of 50 W/cm2 . In the figure, Toe and Top are the electron and

phonon temperatures at the cold end of the thermoelectric element (i.e., the interface between the
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Figure 5-6. The temperature drop in the surface plasmon supporting layer with a thin metal layer

underneath under a cooling heat flux of q=50W/cm2
: (a) the electron (Te-Tm) and phonon

(Tp-Tm) temperature drop inside the surface plasmon supporting material layer, and (b) the

temperature drop at the plasmon material surface as a function of the thickness of the

surface-plasmon material.

vacuum gap and the thermoelectric element) respectively, and T 1 is the cooling target

temperature. Two most distinctive features of this figure are: 1) The phonon temperature Top at

the cold end is much higher than the electron temperature Toe. The phonon temperature at the

cold end can be even higher than the hot end temperature T2 but the electrons at the cold end are

still colder than T2. This is because the Peltier effect cools the electrons first. 2) By using

surface-plasmon coupling, the cooling target can reach as Iowa temperature as the electron

temperature at the cold end. However, due to the additional thermal resistance or temperature

drop at the vacuum side, the cooling target temperature T} is always higher than Toe when there is

an external cooling load. In this figure the cooling load is first calculated from the maximum

cooling power density of a conventional thermoelectric refrigerator operating at T2 = 300K and

T,= 250K, which is q = 50W/cm2 for a L = 50 J.lmdevice. Then such a cooling load is applied to

the surface-plasmon coupled device to calculate the temperature distribution inside the device

and the cooling target temperature by sweeping the applied current. As shown in the figure,
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compared to the minimum temperature T = 250 K that the conventional refrigerator can reach at

such a cooling load at its optimum current jconv.opt., the surface-plasmon coupled nonequilibrium

thermoelectric refrigerator can reach a much lower temperature. The minimum temperature with

a cooling load of q = 50W/cm2 surface-plasmon coupled nonequilibrium thermoelectric

refrigerator can achieve is T, = 201.63K, which corresponds to Z = 0.00547 K-1 or ZTH= 1.641

(TH=300K). If the cooling target is kept at T = 250K, a much smaller current than the

conventional optimum current jconv.opt. can be applied and thus a much higher COP, as large as

0.40, than the 0.092 of the conventional refrigerator can be achieved.
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Figure 5-7. Typical temperature and COP change as a function of the applied current under a

cooling load. Toe and Top are the electron and phonon temperatures at the cold end of the

thermoelectric element (i.e., the interface between the vacuum gap and the thermoelectric

device) respectively, and T1 is the cooling target temperature. Comparing to the minimum

temperature T=250 K to that which the conventional refrigerator can reach at such a

cooling load at its optimum current density jconv.opt., the surface-plasmon coupled

nonequilibrium thermoelectric refrigerator can reach a much lower temperature.
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When the cooling load is removed, a thermoelectric refrigerator achieves its minimum

temperature if the optimum current is applied. In a surface-plasmon coupled nonequilibrium

thermoelectric refrigerator, this means that the cooling target temperature (both electrons and

phonons at the cooling target) achieves the same temperature as the cold end electron

temperature of the thermoelectric element. Figure 5-8(a) shows the minimum temperature of the

surface-plasmon coupled nonequilibrium thermoelectric refrigerator as a function of

thethermoelectric element length for various G values. Apparently the shorter the thermoelectric

element length and the smaller the coupling constant G, the lower the minimum temperature that

can be reached. Interestingly, for the same ke k = 0.1, the minimum temperature can be grouped

GL2

as a function of dimensionless parameter . Figure 5-8(b) shows the minimum temperature as
k

GL2 GL2

a function of for various ke k. For given values ofZ and ,the lower the ke / k ratio,
k k
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the lower the minimum temperature, which means the phonon heat flux has been cut off more

effectively. Figure 5-9 shows the temperature distribution inside a 50 glm nonequilibrium

thermoelectric refrigerator when the minimum cold end temperature is reached. The smaller the

electron phonon coupling constant G, the larger the temperature difference between electrons

and phonons. For small G values [108 and 10'0 W/(m3 K)], the electron temperature near the hot

end can be larger than the phonon temperature but electrons are much colder than phonons at the

cold side.

10 20
x (m)

30 40 50

Figure 5-9. The temperature distribution inside a 50 m surface-plasmon coupled

nonequilibrium thermoelectric refrigerator when the minimum cold end temperature is

reached (dashed lines - electron temperature, solid lines - phonon temperature) . The

smaller is the electron phonon coupling constant G, the larger is the temperature difference

between electrons and phonons.
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Figure 5-10 shows the performance of a surface-plasmon coupled nonequilibrium

thermoelectric refrigerator under a cooling load of 50 W/cm2, which is the same as the maximum

cooling power density of a L = 50 glm conventional thermoelectric refrigerator with Z = 0.002K-

1 operating at TH= 300K and Tc= 250K. Figure 5-10(a) shows the cooling target temperature

change with thermoelectric element length and the electron-phonon coupling constant. Also

shown in the figure is the cooling target temperature for conventional thermoelectric refrigerators.

Clearly, a much lower cooling target temperature can be obtained for a wide range of G and L

combinations than the conventional device with the same given load. For a large G value, a

smaller thermoelectric element length is necessary to take advantage of the nonequilibrium effect.

Figure 5-10 (b) compares the COP of a surface-plasmon coupled nonequilibrium thermoelectric

refrigerator with conventional thermoelectric refrigerator with the cooling target temperature at

250 K. Compared to the maximum COP = 0.092 for Z = 0.002K-' material in conventional

thermoelectric refrigerator, which is independent of the thermoelectric element length, the COP

of surface-plasmon coupled nonequilibrium thermoelectric refrigerators is a length dependent

characteristic. For G = 1012 W/(m3 K) [large G value], the benefit from the nonequilbrium

electron-phonon effect is much smaller than the degradation due to additional thermal resistance

at the vacuum side. Thus, the COP is always smaller than the conventional thermoelectric

refrigerator. However, for low G values, the COP of surface-plamson coupled nonequilibrium

thermoelectric refrigerator can be much higher than the maximum of the conventional

thermoelectric refrigerator.

As discussed in Section 5.2.2, there is small amount of energy flux due to the surface

phonon polariton (the smaller peak in Fig. 5-4). The energy exchange through surface phonon

polariton will degrade the performance calculated before since, in the case of refrigeration, the

high phonon temperature in the thermoelectric element will cause a reverse flow of heat from the

thermoelectric element to the cooling target. We have calculated the degradation caused due to

this surface phonon polariton energy exchange. This is done by separating the energy exchange

through surface plasmons and surface phonon polaritons. The boundary conditions (5-10) and (5-

11) are changed accordingly. Figure 5-11 shows the cooling target temperature under a cooling

load of 50 W/cm2 with (dashed lines) and without (solid lines) consideration of the degradation.

The degradation can be a few degrees for short thermoelectric elements. However, the overall

performance is still much better than the conventional thermoelectric refrigerator.
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Figure 5-10. (a) The cooling target temperature changes with thermoelectric element length and
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plasmon coupled nonequilibrium thermoelectric refrigerator as a function of thermoelectric

element length and electron-phonon coupling constant with the cooling target temperature
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Figure 5-11. The cooling target temperature with and without consideration of the reverse energy

flow due to surface phonon polaritons (dashed lines with symbols - without, solid lines

with symbols - with) under a cooling load of 50W/cm2. Though the surface phonon

polariton degrades the cooling performance, the surface-plasmon coupled nonequilibrium

devices have much better performance than conventional devices.
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5.3.2 Power Generator

Figure 5-12 shows the typical change of the output power density and the energy

conversion efficiency as a function of the ratio of the external and internal thermal resistances

/u = RL / RTE operating with a heat source temperature at 500 K and the cold side temperature at

300 K. Compared to the conventional thermoelectric power generator, the surface-plasmon

coupled device has a much higher energy conversion efficiency over a wide range of

p = RLIRTE. The optimum efficiency is around 1.5 times the optimum of a conventional

thermoelectric power generator for given parameters. However, the high efficiency comes with a

decrease in the output energy density compared to the conventional thermoelectric power

generator. The efficiency gain is more of interest than the loss of energy density since the device

power density must match the external thermal management capabilities.
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Figure 5-12. Typical change of the output power density and the energy conversion efficiency

with the ratio of the external and internal thermal resistances p = RL IRTE. Compared to a

conventional thermoelectric power generator, the surface-plasmon coupled nonequilbrium

thermoelectric power generator has a much higher energy conversion efficiency over a

wide range of = RL RTE .
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Figure 5-13(a) shows the optimum efficiency as a function of thermoelectric element

length for different electron-phonon coupling constants with k/k = 0.10 and Z = 0.002K-'

operating at T1 = 500K and T2 = 300K. For both G = 108 W/(m3 K) and G = 109 W/(m3 K), the

efficiency of the surface-plasmon coupled device is higher than the conventional thermoelectric

power generator due to the nonequilibrium electron-phonon effect. The longer the thermoelectric

element, the less the benefit of the nonequilibrium effect and thus the less the energy conversion

efficiency. For G = 1012 W/(m3 K), the effective thermal resistance on the thermoelectric element

side is small and so the performance is limited by the surface-plasmon energy transport. With

longer thermoelectric elements, the relative thermal resistance of the vacuum decreases and thus

the energy conversion efficiency increases. Figure 5-13(b) shows the corresponding electron

temperature at the hot end of the thermoelectric element. Apparently, the longer the

thermoelectric element, the higher is the electron temperature at the hot end due to the relatively

larger thermal resistance of the thermoelectric element. Figure 5-13(c) shows the temperature

distribution in a 50 m surface-plasmon coupled nonequilibrium thermoelectric power generator

when the heat source is maintained at 500K. Again, it shows that the relative temperature drop at

the vacuum side is large for large G because the contribution of the nonequilibrium effect to the

total thermal resistance of the thermoelectric device becomes small. It can also be seen that a

small G results in a large temperature difference at the hot end.

Similar to refrigerator, the ratio of the electron thermal conductivity contribution to the

total thermal conductivity kik also plays an important role in the energy conversion efficiency.

Figure 5-14 shows the energy conversion efficiency as a function of thermoelectric element

length for different kk. It is interesting to see that increasing kik results in a change of the

device from a nonequilibrium effect dominated regime (kIk =0.10) to a vacuum thermal

resistance regime (klk =0.50) and results in a conversion energy decrease.

Comparing the performance calculation of refrigerators and power generators, we expect

that the nonequilbrium transport favors the realization of refrigerators than power generators due

to: (1) at low temperatures, the electron-phonon coupling constant G is several orders smaller; (2)

at low temperatures, the thermal wavelength is longer and thus the vacuum gap can be larger.

Finally we note that our calculation results shown above are not optimized. Though ZT is a good

indicator for the performance of conventional thermoelectric devices, it is only one of the

determining factors of the performance of the surface plasmon nonequilibrium thermoelectric

175



14

2 Z0.002K-1
12

10 - \

8

6

4 - = 10'Wl(m3 K)
' -- -G = 10' W(m K)

2 / --- G = 10 W(m' K)
-0- Conventional

0 ......
0 100 200 300 400 500

THERMOELECTRIC ELEMENT LENGTH (pm)

(a)

440

420

400

380

360

340

320

300

.iuu

W 480

4 460

' 440

5 420

0 400

-J
' 3800z
'" 360I-0
- LR

0 100 200 300 400 500
THERMOELECTRIC ELEMENT LENGTH (pm)

(b)

0 10 20 30 40 50

x m)

(c)

Figure 5-13. (a) the optimum energy conversion efficiency as a function of thermoelectric

element length for different electron-phonon coupling constant with kk=0.10 and

Z=0.002K' operating at T=500K and T2=300K, (b) the corresponding electron

temperature at the hot end of the thermoelectric element. (c) the electron (dashed lines) and

phonon (solid lines) temperature distributions in a 50 ,tm surface-plasmon coupled

nonequilibrium thermoelectric power generator when the heat source is maintained at 500K.
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devices. The optimum performance of such nonequilibrium devices is determined by the plasma

frequency cop , and the damping Ye, the electron-phonon coupling constant G, thermoelectric

figure of merit ZT, and the contribution of the electrons to the total thermal conductivity, i.e.,

kelk. All these factors are strong functions of doping concentration and temperature.

Optimization of such devices will be reported in the future.

5.4 Conclusions

This chapter conceptualizes and investigates the surface-plasmon coupled nonequilibrium

thermoelectric devices. These devices use surface-plasmon coupling to limit the energy exchange

between the heating source (or cooling target) and the thermoelectric element to electrons alone,

while eliminating direct energy exchange between phonons. Models for refrigeration and power

generation devices based on this concept are established, together with simplified criteria to

guide the device design and materials selection. Our simulations show that these devices can

lead to significant improvements in efficiency over conventional thermoelectric devices.
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Chapter 6. Sub-picosecond Pump-and-probe Characterization of

Thermal Transport at Nanoscale

As shown in all the current theoretical modeling and simulation work, it is extremely

important to have a correct input of the phonon relaxation time or phonon mean free path and

phonon reflectivity at interfaces for nanoscale heat conduction modeling and simulation

programs such as Monte Carlo simulation or phonon BTE and BDE solvers. The phonon

reflectivity at interfaces and the phonon relaxation time are clearly the most fundamental heat

carrier properties for nanoscale heat conduction. No work has been done so far for phonon

dynamics to extract these phonon properties. The closest studies are using the optical pump-and-

probe (pump-probe) measurement to study thermal diffusivity and the interface thermal

resistance. Optical pump-and-probe measurement uses ultrafast laser (with femtosecond or

picosecond pulses) to construct a high temporal resolution temperature measurement system. The

laser output from an ultrafast laser is split into two beams. A higher power beam is used to heat

the sample, which is called the "pump" beam. A relatively low power "probe" beam measures

the reflectivity change after ultrafast pump beam heating, from which the temperature

information (cooling curve) of the sample is deduced by using the reflectivity-temperature

correlation. Almost all pump-and-probe measurements use the heat diffusion equation to fit the

cooling curve to get the thermal conductivity and interface resistance. However for the heat

diffusion equation to be valid, this cooling time scale should be many times longer than the

phonon relaxation time. So the fit would result in fundamental errors if the cooling delay time is

not long enough. For example, the phonon relaxation time in silicon is around 100 ps, and the

experimental delay time is often around several hundred picoseconds or 1-3 nanoseconds. We

have indeed seen some reports in the literature that the extracted thermal conductivity is much

smaller than its true thermal conductivity using such optical measurements. In this work, we set

up the sub-picosecond pump-and-probe optical measurement facility, which would be a platform

for future studies on the fundamentals of heat carriers. To explain the difference, a new two

temperature model, the electron Fourier conduction and phonon Boltzmann transport model, is

proposed to describe the energy transport process after ultrafast laser illumination on materials.

The modeling results show the rationale and feasibility to extract the phonon reflectivity and
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relaxation time using the optical pump-and-probe measurement. In summary, this chapter reports

the experimental setup, the modeling, and some preliminary experimental results with the data

analysis still in progress.

6.1 Introduction

The availability of ultrafast lasers with picoseconds (ps) and femtosecond (fs) pulses has

sparked considerable work in both fundamental and applied physics. There has been great

interest in understanding the evolution of matter (primary solids, and more recently soft- and bio-

materials) under highly nonequilibrium conditions induced by impulsive heating by a sub-ps

laser pulse [1, 2]. The dynamics of the materials evolution, such as ultrafast phase transitions,

thermal and non-thermal structural transformations and melting dynamics, under a high pulse

intensity [3, 4, 5, 6], > 10 4 Wcm2 , has been attracting significant attentions due to their

immediate importance for the increasing application of ultrafast lasers in precision

micromachining and materials processing [7, 8, 9]. Relatively low intensity experiments

(-10Wcm '2 ) have enabled substantial understanding of the electronic properties of solids

exposed to nonequilibrium conditions and short time scales, mostly through time-resolved

optical methods such as the pump-and-probe technique. A number of recent works have been

done on the generation and propagation of coherent phonons using femtosecond lasers and thus

probe their structure properties [10, 11]

In the optical pump and probe method, sub-ps time resolution is made possible by

splitting the ultrafast laser with sub-ps pulse output into an intense heating pulse, i.e. a "pump"

beam, and a weaker "probe" beam, and controlling the optical path length difference of the pump

and probe beam through a mechanical delay stage. The length difference of the optical paths

results in variable time delay between the pump and the probe beams. The pump beam is used to

generate a temperature change at the sample surface. The decay of the temperature rise is

measured by the reflected energy of the probe pulse series, where the probe takes a snapshot of

the reflectance at a specific experimental time delay relative to the pump. When the reflectance is

measured, the method is often called sub-ps transient thermoreflectance technique (TTR). If one

is to measure the transmissivity change, the method is termed as sub-ps transient

thermotransmission (TTT). The temporal resolution of the optical pump and probe method is on

the order of the probe pulse duration. By localizing the energy deposition spatially and
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temporally, it is possible to monitor thermal changes in both the electron and phonon lattice

systems with very high temporal resolution, thus allowing for observation of electron-phonon

relaxation dynamics, interface thermal resistance, and thermal conductivity of nanostructures,

especially superlattice and thin films [12,13,14, 15,16,17,18, 19, 20, 21, 22, 23, 24, 25].

Understanding the energy deposition and transport process in the material after ultrafast

laser illumination is apparently of significant importance for both ultrafast laser applications in

manufacturing and sensing abilities. As a general framework, it has been established that when a

short laser pulse illuminates a sample, the electrons are driven into a highly nonequilibrium state

different from the phonons or the lattice, since electrons absorb most of the photon energy.

Within the electron subsystems, the timescale for energy exchange Tee is within 10-14 s. Thus

electrons are in local thermal equilibrium and can be characterized by a single electron

temperature value. Strongly coupled ions can also be described by a single temperature. The

energy exchange between electrons and phonons (ions) is governed by the electron-phonon

collisions. Although the electron-phonon collision time can be as short as electron-electron

collision time, the energy transfer from the electrons to the lattice will last much longer than the

thermalization time of electrons due to the large mass difference between electrons and phonons,

typically of the order of a few to a few tens of picoseconds. This picture is well verified by

experiments [12,13,14] and can be approximately described as a classical two-temperature

nonequilibrium system, which was proposed by Ansimov [1]. Due to the relatively small

electronic heat capacity, the electron temperature can be 2 to 3 orders of magnitude higher than

that of lattice/phonons, sometimes even reaching several thousand of Kelvins above the

equilibrium melting point. The thermalized electrons transport first ballistically and then

diffusively while exchanging energy with phonons. The electron and phonon energy exchange is

determined by the electron-phonon coupling factor. Lots of work has questioned whether the

temperature concept can be used for the electron and phonon subsystems and whether the

electron transport is diffusive at an ultrafast time scale. It has been well demonstrated that

electron thermalization time in gold and in most of metals is faster than 10 fs [26,27], and thus

the electron temperature concept should be valid when we are interested in time scales much

larger than 10 fs. Attempts have been made to revise the heat diffusion model for electrons,

including the use of hyperbolic heat conduction model for electrons [15, 28 ],

electrohydrodynamics model, and the higher order or even full collision-integral solution of
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electron Boltzmann equation [29, 30]. The full solution of electron Boltzmann equation shows

that the energy exchange between electrons and lattice can be well described by the two-

temperature model, in spite of the nonequilibrium distribution function of the electron gas due to

the ultrafast heating [30]. However, the energy exchange rate could be lower as demonstrated in

experiment [31]. Very few works have looked into the phonon transport after ultrafast laser

interaction [32, 33].

Naturally the initial investigations of ultrashort heating has mostly been performed on

very thin metal layers, where minimizing of the electron heat diffusion is of practical interest, to

measure the electron-phonon coupling factor for a variety of metals [12,13,14]. The scaling of

nanoelectronic devices and the advent of optoelectronics is the primary driver for studying the

electron-phonon coupling in semiconductor nanostructures in the past decade [34, 35]. The

thermal transport experiment for measuring thermal diffusivity of thin films using an ultrafast

pump and probe method was pioneered by Paddock and Eesley in 1986 [16, 17]. Several

investigators have recently revisited this idea since the thermal properties of thin films and

interface thermal resistance have become a topic of great interest to the nanoelectronics,

optoelectronics and thermoelectrics communities. The most complete and systematic study on

thermal interface resistance and thermal conductivity of nanostructures using sub-picoseconds

optical pump and probe method was performed by Maris and co-workers [18,19,20,21]. Cahill

built a system similar to Maris' and extended the study for thermal interface resistance for

different materials combinations including solid-liquid interfaces [22, 36, 37, 38]. Reviews on

current work on optical pump-and-probe method for thermal property measurement can be found

in [23,24,25]

Figure 6.1 shows typical sample configurations for interface and thermal conductivity

measurements using the ultrafast pump and probe method: (a) for measuring the thermal

interface resistance and thermal conductivity of bulk substrate, (b) for measuring the thermal

conductivity of thin film or superlattice nanostructures. A metallic layer with a thickness of-lOs

nm is sputtered or evaporated on top of a thin film or a substrate for which we are interested in

finding the thermal conductivity. Almost all ultrafast (sub-pico second and pico second) pump-

and-probe measurements fitted the interface thermal resistance and thermal conductivity using

the heat diffusion equation. There are a few problems with previously published models

analyzing the experimental data. First of all, no one has looked into the detailed energy transport

184



~'9
~o~

~ o~
~

PUMP Substrate PUMP

~

Substrate

Metal Metal hanostructure

(a) (b)

Figure 6-1. Typical sample configurations for the ultrafast pump-probe method: (a) to measure

the interface thermal resistance and the thermal conductivity of the substrate. (b) to measure

the thermal conductivity of thin film and superlattice nanostrnctures.

processes in the metal. Most of the previous work neglected energy transport (thermal resistance)

in the metal layer. Although the total thermal conductivity of a metal layer is usually --1OOW /mK

or above, the phonon or lattice thermal conductivity of the metal layer is often on the order of 5-

10W/mK. A large temperature gradient can be built in the ultrashort time scale and thus the

phonon transport dominates the thermal resistance for energy relaxation. The detail energy

transport process might put the current data analysis technique in question. Secondly, all analysis

so far is based on diffusion equations for both the film and the substrate. The criterion for the

heat diffusion equation to be valid is that the time scale of interest should be many times longer

than that of the carrier energy relaxation time. As stated earlier, the electron-electron energy

relaxation time is often of the scale of tens of femtoseconds. Thus the conventional transport

theory might be valid for electron energy transport. But the phonon relaxation time can be much

longer than that of electrons. For example, in silicon the phonon relaxation time is a few hundred

ps, so the data fitting would result in fundamental errors if the cooling time delay measurement is

not long enough. Unfortunately, the experimental time delay is limited by the experimental setup

itself, and is often on the order of nanoseconds. One reason is due to the repetition rate of

femtosecond lasers. Most commonly used femtosecond laser systems have a pulse repetition rate

of -76 MHz which gives a time window of 13ns for detection. The other reason is that the travel
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distance associated with a long delay time would result in difficulty in overlapping the pump and

probe beams on the sample. A 5 ns delay time corresponds to a round trip travel length of 75 cm

for the probe beam.

The above discussion raises questions about the validity of the current models to extract

the thermal boundary resistance and thermal conductivity of the substrate. At the same time, it

suggests the possibility of extracting more fundamental parameters such as the phonon interface

transmissivity and phonon relaxation time, which are the input parameters for nanoscale heat

conduction models and simulators such as Monte Carlo simulations or phonon BTE and BDE

solvers. The ability to characterize the phonon relaxation time and phonon reflectivity to the

nanoscale transport characterization would be of similar importance as the thermal conductivity

measurement is to bulk materials characterization today. Thus the task of this chapter is to

establish a sub-ps pump-and-probe measurement system and to explore the possibility of using

this measurement system as a new gateway to study nanoscale heat transfer problems by

extracting the phonon relaxation time and phonon reflectivity at an interface. This chapter is

organized as follows. Section 6.2 describes the ultrafast optical pump and probe system we built

in the W.M. Roshenow Heat and Mass Transfer Lab. To better describe the energy transport

process, section 6.3 proposes a new two temperature model, the electron Fourier conduction and

phonon Boltzmann transport model, and studies the nonequilibrium electron-phonon transport

under ultrafast laser illumination. The modeling results demonstrate the possibility of extracting

the phonon relaxation time and the phonon reflectivity at an interface using the sub-ps pump-

and-probe method. Section 6.4 reports some of the preliminary experimental results and the work

in progress to improve our experimental system and to analyze the experimental results.

6.2 Pump-and-probe Experimental Setup and Data Acquisition.

Figure 6-2 is a schematic diagram of the pump-and-probe experimental setup constructed

in the W.M. Rohsenow Heat and Mass Transfer Lab with the photo of the experimental system

shown in Figure 6-3. The pulses from a Spectra-Physics Titanium:sapphire (Ti:A120 3) Tsunami

laser are generated at a 76 MHz repetition rate with a full width at half maximum FWHM of

-100 fs and are separated into two beams by a nonpolarizing beam splitter with an intensity ratio

of- 9:1. The Ti:Sapphire laser is pumped by a 8W Spectra-Phsyics solid state laser and can be

tuned to produce pulses through a range of photon wavelength from 800 nm to 1015 nm. The
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Figure 6-2. A schematic diagram of the pump-and-probe experimental setup constructed in the

W.M. Rohsenow Heat and Mass Transfer Lab.

intense pump beam -5 nJ/pulse is used as a heating source while the lower power probe beam is

used to monitor the change of the reflectivity of the sample due to the ultrafast laser pumping of

the material.

The pump beam passes through an acousto-optic modulator (AOM), creating a modulated

pulse train at a prescribed frequency of 1 MHz regulated by a HP function generator. The pump

beam reaching the sample surface creates the modulated heating required for transient

thermoreflectance detection. After the AOM, the pump beam passes through a half waveplate

and a polarizer. The polarizer is to control the polarization of the pump beam to be orthogonal to

that of the probe beam's polarization and thus to aid in filtering of the scattered pump beam from

the sample surface. The waveplate is to control the pumping power intensity. The pump beam is

then focused down to a diameter of -30 um at the sample surface. The pump beam is incident

close to the normal direction upon the sample surface while the probe beam is incident at an
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angle of -300 from the normal direction to the sample surface to minimize the scattered pump

light to the detector. The energy deposited within the penetration depth of the sample creates the

temperature rise that the probe beam monitors.

(a)

(b)

Figure 6-3. Photos of the sub-picoseconds pump-and-probe experimental system housing in the

Rohsenow Heat and Mass Transfer Lab.
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The probe beam passes through a retroreflector mounted on a delay stage, which has a

step resolution of 1 tm, used to vary the optical path length, allowing for measurement of the

transient change in reflectance of the sample with a resolution on the order of the probe pulse

duration, -100 fs. The retroreflector directs the beam back at 1800 from that of the input beam.

As the stage is moved, the time at which the probe pulse hits the sample surface can be altered so

that the probe pulses arrive at the sample surface before, during or after the arrival of the pump

pulses. As the optical path length of the probe increases, an experimental time delay is created

between the arrival of the pump and probe pulses. In practice, we used two retroreflectors on the

delay stage and thus the light has two round trips on the stage as shown in Fig. 6-3, which results

in a total of -8 ns time delay using a 60cm delay stage. The probe beam is focused to - 20 Im at

near 300 incidence in the center of the heated region by the pumping beam, assuring that the

probe beam lies entirely within the heated region. The reflected probe beam is re-collimated

using an identical lens and passes through an iris that helps block out scattered light from the

pump beam. A polarizer with same polarization as the input probe beam but normal to the

pumping beam is positioned before the detector to reduce the effect of the scattered pump light.

Since the pump beam is modulated at 1 MHz, the photocurrent created by the detector is sent

into the lock-in amplifier, which is also tuned to monitor the signal modulations at 1 MHz. A

lock-in amplifier determines the magnitude and phase of the voltage signal at the modulation

frequency of the AOM, say 1 MHz.

Figure 6-4 helps to describe the signal detection mechanisms, especially the role of the

photodiode and the lock-in amplifier (after Qiu [39]). The -100fs heating pulses with a

separation of 13 ns (at a pulse repetition rate of 76MHz but modulated at 1MHz by AOM),

shown in Fig. 6-4 (a), are incident on the surface of the sample and create a temperature rise with

each pulse as seen in Fig. 6-4(b). The period where there are no heating pulses results in a

relaxation back to the initial temperature, To. The corresponding change in reflectivity of the

sample is shown in Fig. 6-4(c). Assuming that the reflectivity is a linear function of temperature,

the reflectivity will have same shape as the temperature profile. Fig. 6-4 (d) represents the probe

beam intensity before reflecting off of the sample. After refection, the intensity of the probe is

modulated according to the temperature of the sample surface as depicted in Fig. 6-4 (e). The

probe photodiode has a rise time of - 30 ps, and therefore it sees the incoming pulses, of width

100 fs, as a smeared out pulse on the order of a few tens of picoseconds, as depicted in Fig. 6-4
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(f). The photocurrent generated by the photodiode is passed through a band pass filter that selects

only the phenomena occurring in a narrow band around 1 MHz. The resulting signal is a sine-

like wave with an amplitude on the order of a few micro Volts, as shown in Fig. 6-4 (g). Figures

6-4 (a through g) represent the signal when the stage is positioned at one point shown in Fig. 6-4

(h). A typical temporal measurement curve which is also often called a cooling curve shown in

Fig. 6-5 is constructed by moving the stage a small step which corresponding to a changing delay

and measuring the amplitude and phase of the sine wave at that point by a lock-in amplifier.

A LabView® program has been developed to control the motion of the retroreflectors

mounted on the delay stage and for data acquisition. The delay stage motion must be accurately

coordinated with the recorded photodiode signal and laser power. The program works in a leap-

frog fashion. First, a message is sent to the stage controller to begin the motion of the stage. Then,

the program records a data point from the output (voltage and phase) of the lock-in amplifier.

Movement of the delay stage corresponds to an experimental measurement in time, with an

associated minimum time increment referred to as the "time constant." This time constant is

directly related to the velocity of the delay stage and is also limited by the delay in real time

between acquiring data points. The effective time constant of the program between lock-in data

points is 400 ms. The time constant of the lock-in amplifier was sent to sample the photocurrent

of the photodiode every 100 ms. This sampling rate was found to be the optimum for the setup.

Decreasing the time constant resulted in no change in the temporal profile of the scan, only more

noise. Increasing the time constant too much resulted in data that did not accurately represent the

cooling curve.

The delay stage can be moved in 1 micron intervals with a total travel of 60 cm. Since the

beam is folded twice (two rounds) on the stage, a 1 micron displacement of the retroreflector in

the stage results in a 13.3 fs time delay, and the maximum delay time is 8 ns. Apparently the

temporal resolution is not limited by the delay stage but ultimately by the laser pulse itself, on

the order of -100 fs. The program allows the user to prescribe different time scale and resolution

combinations for any particular measurement. This ensured the best temporal resolution possible

of - 100 fs for fast transient just tens picoseconds after ultrafast laser interaction and fast scan to

study slower phenomena happening on a longer time scale. A typical scan for an - 8ns delayed

cooling curve takes approximately 20 minutes. Both the magnitude and phase of the signal

measured by the lock-in amplifier are recorded at each experimental time step.
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Figure 6-4. The signal detection mechanisms of the sub-ps pump-and-probe measurement.
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Figure 6-5. A typical temporal measurement curve which is constructed by moving the stage a

small step and then measuring the amplitude and phase of the sine wave at that point, as

described in Fig. 6-4.

6.3 Model Development

After the classical two temperature model [1], there are a variety of papers arguing that

the electron would not follow simple heat diffusion theory [15,28,30,31]. Ideally one should

solve the coupled electron and phonon Boltzmann transport equation to study the ultrafast

transport process in laser-material interaction. However, replacing the Fourier heat conduction

equation with the hyperbolic equation for electrons indeed does not give too much difference for

the temperature prediction after ultrafast laser illumination on solids [39]. In addition, the recent

solution of the Boltzmann equation seems to confirm that the Fourier law for heat conduction

captures well the electron behavior but with temperature dependent electron properties [29, 30 ].

This is mainly due to the short mean free path of electrons, for example, which is around a few

nanometers at room temperature. However it usually takes a much longer time for phonons to

relax to their equilibrium state. The phonon relaxation time of semiconductors underneath the
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metal layer shown in Fig. 6-1 is usually much longer than the electron relaxation time. For

example, it can be several lOOps in silicon. When the time scale is smaller than the phonon

relaxation time, the phonon transport can be very different from the prediction by the Fourier law

[40,41]. The thermal conductivity prediction at high frequency can be much lower than that at

low frequency. Volz [41] termed this phenomenon as thermal insulation at high frequencies.

Thus we propose a coupled electron Fourier conduction - phonon Boltzmann transport model to

describe the heat transfer in the model system shown in Fig. 6-6, essentially the same as Figure

6.1, under ultrafast laser heating. The idea is that phonon transport is under highly

nonequilibrium condition while electron transport is close to local equilibrium and can be

described by Fourier heat conduction theory with temperature dependent thermal properties.

An interesting point is that electrons dominate heat conduction in metals, whereas

phonons dominate that in semiconductors and insulators. Hence, for heat transport to occur

across metal-nonmetal interfaces, energy transfer must occur between electrons and phonons.

This is a very fundamental problem that needs to be explored both theoretically and

experimentally for understanding the interface phenomena [42]. There are two possible pathways,

namely: (1) coupling between electrons of the metal and phonons of the nonmetal through

anharmonic interactions at the metal-nonmetal interface [43,44], and (2) coupling between

electrons and phonons within the metal, and then subsequently coupling between phonons of the

metal and phonons of the nonmetal [42]. In this work, we assume that the energy coupling

between a metal and a semiconductor is primary through phonon-phonon coupling.

Figure 6-6. The fundamental transport process across a metal-semiconductor interface and the

idea of the newly proposed model is to extract the interface phonon reflectivity and phonon

relaxation time (t) by fitting the experimental data of the pump-probe measurement rather

than fitting the interface thermal resistance and the thermal conductivity of the substrate.
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On the metal side, the photon energy is deposited in the electron subsystem and the

electrons establish an equilibrium temperature Te. Electrons relax their nonequilibrium energy

through both the electron diffusive conduction and the relaxation of their energy to the phonon

subsystem. Similar to Eq. (5-3), we can write the governing equation for the electron subsystem

as,

PCe d = V(keV Te)- G(Te - T ,)+ S(r,t) (6-1)

where S(r,t) is the energy deposition rate from laser heating. We used the temperature

dependent thermal properties for electron subsystems in metals since the electron temperature

rise can be several hundred Kelvin (K) or larger under ultrafast laser interaction due to its low

heat capacity. The temperature dependent properties can be found in Kittel [45]. The electron

heat capacity is linearly related to the electron temperature as c,= Ce'Te, where c,' is the

electron heat capacity constant. The thermal conductivity depends on the ratio of the electron and

lattice temperatures as ke = keq (TL) T e/ITL, where keq(TL) is the equilibrium thermal conductivity at

a lattice temperature TL. The linear relationships for the heat capacity and electron thermal

conductivity are valid for Te < TF, where TF is the Fermi temperature.

Depending on the relaxation time of the phonons, the phonon subsystem might

experience diffusive or ballistic transport. The transport equation can be described by the phonon

BTE under relaxation time approximation as discussed in chapter 2,

+ Vm Vrf = -+ fg (6-2)
at T m

wherefg is the phonon source term due to electron-phonon coupling and the subscript m denotes

metal properties. Due to the short phonon mean free path which corresponds to a very short

phonon relaxation time in metals [46], Eq. (6-2) can be written as a phonon thermal diffusion

equation when necessary.

Equations (6-1) and (6-2) are the governing transport equations for the electron and

phonon subsystems systems, respectively, and are coupled by the electron-phonon energy
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coupling factor, G. The electron-phonon coupling factor G is constant for small temperature

changes above the Debye temperature. We note that the electron-phonon coupling factor G is

usually measured or derived under the assumption that the phonon subsystem is in equilibrium.

In our case, although we write a phonon Boltzmann equation for the phonon system, we expect

phonon transport in a metal to be more diffusive-like. In addition, the temperature rise in the

lattice temperature is usually only a few K, and thus we expect that nonequilibrium phonon

transport will not significantly affect the electron-phonon coupling factor G.

On the semiconductor side, heat is primary transported by phonons. The transport is

described by the phonon Boltzmann equation under the relaxation time approximation.

f + Vs · Vrf = -4 (6-3)
at I-

where the subscript s denotes the semiconductor properties.

Due to the slow speed of phonons in the semiconductor comparing to a much faster

electron Fermi velocity in a metal and a larger pump spot size (- 30 microns) compared to the

phonon travel distance of a few microns within a few nanoseconds, one dimensional transport

across the metal-semiconductor interface would be a reasonably good approximation.

The heat source term S(r,t) representing a Gaussian temporal pulse shape with constant

optical properties in Eq. (6-1) can be written as [47]

S(x,t)= 0.94 Jexp (6-4)
tp86, [ " a

where x is the direction normal to the film surface, J is the laser fluence, t is the laser pulse

width which is -100 fs in this study from the Ti:Sapphire femtosecond laser system output, R is

the reflectance of the film, and 8a is the optical penetration depth. Changes in R are generally

less than 0.1% for nonequilibrium heating, so for the purposes of modeling, R is taken to be

constant in the source term.
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Equations (6-1) to (6-4) complete the newly proposed electron Fourier conduction -

phonon Boltzmann transport model for studying the ultrafast laser-material interaction when

facilitated with appropriate initial and boundary conditions.

At the initial stage before the laser pulse arrives, we assume that both electrons and

phonons in the metal and phonons in the semiconductor are maintained at an initial temperature

To. At both x=O and x=d, the adiabatic boundary condition is assumed for electrons. It is a

reasonable boundary condition for electrons at x=d when the electron concentration is low in a

semiconductor and where electrons on the metal side are confined due to the Schottky barrier,

and the electron energy can be coupled from the metal to the semiconductor through electrons

only. How much is the electron heat coupled to the environment at such a short time scale

through both radiation and convection remains a question to explore? A widely accepted

assumption is that the electron system is adiabatic at the front surface since the time scale of

interest is very short, on the nanosecond scale. The phonon system is also assumed to be

adiabatic at the front surface x=0 and at a constant temperature To far inside the semiconductor.

Before moving on to the simulation results of the newly proposed model denoted as a

nonequilibrium BTE model ("Non_Eq BTE" in the figures) in the rest of this chapter, I would

like to emphasize the hierarchical relation between the new model and the classical heat

diffusion models used for pump-and-probe experiments. Depending on which properties are

targeted to be measured, the past works have been using two sets of models, as shown in Figure

6-7. One set of the model is the conventional two temperature models which assume that

electrons and phonons are in nonequilibrium and phonons are in nonequilibrium and the

phonon/lattice thermal transport is diffusive. This set of models is to be denoted as the

nonequilibrium Fourier model ("Non_Eq Fourier" in the figures) in the rest of this chapter. If not

considering the effect of substrate, the model consists simply of the first two equations in the

model system. This model is often used to fit the nonequilibrium electron-phonon coupling

factor G from experiments. The scanning time for the pump-and-probe method is often in the

range of a few ps to tens of ps (short scan mode) since the electron-phonon thermalization time is

on this order of magnitude. The other set of models is often used to fit the interface thermal

resistance and the thermal conductivity of the layer underneath the metal layer, as done by Maris

and co-workers [18,19,20,21,50], Cahill and co-workers [22,23], and Norris [25, 48]. This model

is referred to as the Fourier model with lumped thermal mass (simply denoted as "Fourier" in
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Figures) in the rest of this chapter. In this model, the whole metal layer is lumped into a thermal

mass and assumed to be at one temperature and the heat is transported through the interface and

then diffused into the layer underneath. In this case, the temperature cooling curve is often

measured for more than 100ps to a few nanoseconds (long scan mode). Apparently both sets of

models often used are heat diffusion models and are just subsets of the newly proposed model. In

fact, there are very few works considering the effect of the substrate on the two temperature

model.

'Ifsive Phonons N\ No Transport in Metal
agJ willusive Pholonls

No Tr arsp
in Metal

Figure 6-7. Model hierarchy for the description of the energy transport processes for ultrafast

laser-material interactions. The conventional two temperature model which assumes that the

electrons and phonons are in nonequilibrium and the phonon/lattice thermal transport is

diffusive. This model is often used to fit the nonequilibrium electron-phonon coupling factor

G from experiments. The other set of models that are often used to fit the interface thermal

resistance and the thermal conductivity of the layer underneath the metal layer assumes that

the metal layer is a lumped thermal mass. Both the conventional heat diffusion models are

subsets of the newly proposed electron Fourier heat conduction and phonon Boltzmann

transport model.
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Now let's show the rationale whether we are able to extract the phonon relaxation time

and the phonon reflectivity at an interface from the experimental system we are building and the

experiments we are conducting. Most of the earlier work used a heat diffusion model to fit the

experiments to get the interface thermal resistance and thermal conductivity of the layer

underneath the metal layer, where there are two unknowns used to fit the experiment data after

cooling for 50 ps to a few nanoseconds assuming that electrons and phonons are in equilibrium

with each other after tens of picoseconds. Ideally, we would be able to optimally fit all the three

parameters, electron-phonon coupling factor, phonon interface reflectivity, and phonon

relaxation time in the substrate of our newly proposed electron Fourier conduction - phonon

Boltzmann transport model from one temperature cooling curve starting from 0 ps (right after the

laser heating). In practice, we can fit the parameters in two steps using the newly proposed model;

the first step is to fit the electron-phonon coupling factor G for short scans (less than 50ps) where

the effect of thermal transport through the interface and the substrate on the nonequilibrium

process is negligible. Then by knowing G, we can fit the remaining two, the phonon reflectivity

at an interface and the phonon relaxation time, using the newly proposed model in a similar

fashion as done for the thermal conductivity and interface thermal resistance fitting using the

heat diffusion models. As discussed earlier, the idea here is that the Boltzmann equation based

model is valid at any time scale as short as picoseconds. Thus the fit for the fundamental

transport properties (phonon reflectivity and relaxation time) should be much more accurate than

usingthe heat diffusion equation for the interface thermal resistance and thermal conductivity

where the scan time should be many times longer than the phonon mean free path for the heat

diffusion equation to be valid and experiments sometimes can not afford such luxuriates. In

addition, if we can extract the phonon relaxation time, we would be able to accurately recast the

steady state thermal conductivity using a short time scale measurement. This is analogous to

using the short scale MD simulation to extract bulk properties [49].

Before moving on to the experimental results, I would like to show some comparisons

between these models and to emphasize the rationale of using the proposed model to fit the

phonon reflectivity at an interface and the phonon relaxation time of the substrate. The model

simulation is constructed for aluminum (Al) on a silicon (Si) sample, similar as the schematic

shown in Fig. 6-6. As discussed earlier, we assume that energy coupling between metals and

semiconductors is primarily through phonons. The phonon transmissivity is the parameter we
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need to fit from the experiments. To show the rationale, we used the diffuse mismatch model

(DMM) for phonon transmissivity across metal-nonmetal interfaces in model calculations.

Similarly DMM model has been applied to explain the metal and non-metal interface thermal

resistance by Maris [50], Costescu et al [22], Majumdar and Reddy [42], and more recently

Stevenson et al [48]. Thus we would expect the transmissivity used in the calculation could be

reasonably close to the experiment results. The details of the diffuse mismatch model for phonon

transport across an interface and finding the interface thermal resistance from the transmissivity

for heat diffusion theory have been described in chapter 3.

Figure 6-8 shows the electron and phonon temperature rise at the front surface of the

metal layer. For nonequilibrium models (Non_Eq Fourier and Non_Eq BTE), the temperature

shown is the front surface temperature of the metal layer (the surface facing the incidence laser

beam). Tm is the lumped average temperature of the metal layer for the Fourier model using a

lumped surface layer. Tm is lower than the nonequilibrium front surface temperature since the

lumped model assumes that the energy is immediately distributed over the whole metal layer, a

superfast process. We can clearly see the nonequilibrium temperature distribution between

electrons and phonons at a time scale of a few tens of ps as shown in Fig. 6-8(a). This timescale

is much longer than the electron-phonon thermalization time if estimated simply from r = c, / G

- 0..lps for aluminum. In addition, we find that the difference between the nonequilibrium

Fourier model and the nonequilibrium BTE model is negligible during this period. At longer

times shown in Fig. 6-8(b) and (c), the temperature difference between the electrons and phonons

is negligible although some temperature differences will always exist, since phonons are the only

way to have cross-talk with the substrate. However the difference between the BTE and Fourier

model becomes larger. The cooling process is slower for the nonequilibrium BTE model which

results in a higher temporal temperature since the phonon transport is ballistic during the first

few 100 picoseconds.

For accurate characterization of the temperature for a pump-and-probe measurement, one

needs to establish a very accurate temperature - reflectance relation, which could be difficult to

do especially when the laser - material interaction is nonequilibrium heating. Thus the absolute

temperature rise is usually not used and the normalized signal is often used for the fitting

procedure. The procedure is to find an optimized global fit to the whole temporal measurement

of the reflectivity change curve (the cooling curve). To fit for thermal interface resistance and
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Figure 6-8. The electron and phonon temperatures rise after femtoscond laser heating. For the

nonequilibrium models, the temperature shown is the front surface temperature. Tm is the

lumped average temperature of the metal layer for the lumped model often used for the

thermal interface resistance measurement. (a) The electrons and phonons are in

nonequilbrium conditions at a short time scale, - tens of ps, but the difference of the

nonequilibrium Fourier model and the nonequilbrium BTE model is negligible. (b)&(c), the

difference between the electron and phonon temperatures at the front surface at large

timescales is negligible. The difference between the nonequilibrium Fourier model and the

nonequilbrium BTE model clearly shows a much slower phonon ballistic transport process.
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the thermal conductivity of the layer underneath, one usually uses the normalized signal after

50ps, which is assumed to be longer than the electron-phonon thermalization time, and thus

having a minimal effect from the nonequilibrium electron-phonon heating. We expect that the

phonon reflectivity and phonon relaxation time can be similarly fitted. Thus Figure 6-9(a) shows

that the normalized temperature decay curve using different models from 50ps to 2000ps after

femtoscond laser, pumping, which is often the temporal range of the pump-and-probe experiment,

where the temperature rise is normalized to that at 50ps. Compared to heat diffusion models, the

temperature decays much slower for the nonequilibrium BTE model which would result in a

much smaller thermal conductivity and larger thermal interface resistance if one is trying to fit

the phonon BTE results with the Fourier results. Again this is expected. Figure 6-9(b) shows the

temporal temperature decay normalized to the temperature at 1 ns. Here we find that the

nonequilibrium Fourier results agrees very well with the nonequilibrium BTE results for long-

time decay curve (cooling curve). This is because after many relaxation times, the transient

Fourier transport becomes valid. The normalized temperature decay curve of the Fourier model

with lumped thermal mass does not agree with the nonequilibrium models since in the beginning

the lumped model neglects the thermal resistance in the metal that should be considered, a

neglect of the thermal resistance results in too fast a process in the beginning.

Figure 6-10(a) shows the transient temperature distribution at different time scales

(cooling process) at the interface region. At t = 0.7 ps, the electrons have a much higher

temperature than the phonons. At t = 7 ps, the average electron and phonon temperatures are

close to equilibrium in the metal layer. But at the front surface the phonon temperature can be

higher than the electron temperature. This is because the the electron temperature is redistributed

to equilibrium very quickly due to its high electron thermal conductivity. But the thermal energy

is extracted by the phonons to the substrate, the phonons in the metal layer must establish a

temperature gradient to conduct the heat through the interface and out to the semiconductor

substrate. At a larger time scale, electron and phonon temperature is very close but the phonon

temperature is still a little higher than the electron temperature at the front surface to establish the

energy relaxation process. Figure 6-10(b) shows the normalized phonon temperature distribution

close to the interface region, which is normalized to the front phonon temperature at that time

instant. This figure shows the relative contribution of the thermal resistance in the metal layer

and the interface thermal resistance to the overall thermal resistance for the energy relaxation
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from the metal surface deeply into the semiconductor interface. Apparently in the beginning

stage, the dominant thermal resistance is in the metal layer and in the interface thermal resistance

(<0.5-ins) since the phonon thermal conductivity is only 5 W/m K and the phonon-phonon

coupling is the only mechanism for energy relaxation through the interface even though the total

thermal conductivity of the metal layer can be 200-300 W/m K. It also shows that the thermal

resistance of the metal layer plays an important role even after 5 ns. This is again due to the low

thermal conductivity of the phonon system although the electron temperature has already been

re-distributed into equilibrium after a few tens of picoseconds.
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Figure 6-9. The normalized temporal cooling curve. (a) The normalized temperature decay curve

is different for the heat diffusion model and the nonequilibrium BTE model from 50ps to

2000ps, which is often the range of the pump-probe experiment. The temperature decays

much more slowly for the phonon BTE model which would result in a much smaller thermal

conductivity and a larger thermal interface resistance if one is trying to fit the phonon BTE

results with the Fourier results. (b) If one fits the results with normalization to 1 ns and uses a

much longer decay curve, say 10ns, one would find that the nonequilibrium Fourier results

agrees very well with the nonequilibrium BTE results.
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Figure 6-10. (a) The distributions of the temperature rise close to the interface region at various

transients. (b) The distributions of the normalized temperature distribution close to the

interface regime. This figure shows the relative contribution of the thermal resistance in the

metal layer and the interface thermal resistance to the overall thermal resistance for the

energy relaxation from the metal surface deeply into the semiconductor interface.

The modeling results above clearly show that the transient energy transport process is

different from the prediction of the heat diffusion theory since the heat diffusion theory is valid

only after the time of interest is many times of the phonon relaxation time. This also shows the

need and promise to extract phonon relaxation time and phonon reflectivity at an interface,

which are the most fundamental properties for energy transport at the nanoscale. The modeling

also shows that the phonon transport in the metal can be a dominant slow process for energy

relaxation through metal-semiconductor interfaces.

6.4 Preliminary Experimental Results and Discussions

The experimental setup has been tested and is being used to characterize the phonon

transport at the nanoscale. Here I would like to show some of the preliminary results for Al on a

Si sample. Figure 6-11 shows the raw amplitude and phase signal of the lock-in output for a
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100nm thick aluminum evaporated on top of a silicon sample under femtosecond laser

illumination with different laser intensity. The amplitude signal in Fig. 6-1 (a) shows that there

is a spike in the first few picoseconds and later there is a slow exponential decaying process. The

initial spike is due to the electron-phonon relaxation. This is more clearly shown in Fig. 6-1 l1(b).

The change of the reflectivity is due to both the electron temperature and phonon temperature

rise. The peak of the signal occurs at around 6 ps. The electron-phonon energy exchange process

occurs during a time period of about 40ps. After that, the electrons and phonons are close to

equilibrium and the signal is dominated by the heat transport into the semiconductor. Figure 6-

1 l(c) shows the raw phase signal. Figure 6-12 shows the amplitude signal normalized to their

respective amplitude signals at 50ps at different laser intensities. The collapsing of the

normalized signals with different laser fluencies at short time scales, as shown in Fig. 6-12 (a),

demonstrates that the electron transport is thermalized [51] . In other words, the electron thermal

conduction obeys the Fourier heat conduction theory.

We are in the process of analyzing the experimental data with the newly proposed model

to extract the phonon relaxation time and the phonon reflectivity and comparing the results of

this fitting procedure with the fitting for the thermal interface resistance and thermal conductivity.

Here I would like to identify the several noise sources which are very important for interpreting

the signal.

The first most obvious signal noise source is due to the scattered pump light. The

scattered pump beam is occurring at the modulation frequency. Both the roughness of the sample

surface and the intensity of the pump beam affect the scattered pump signal amplitude. In order

to minimize this unwanted signal, the polarization of the probe beam is rotated by 900 relative to

the pump so that a polarizer can be used to filter out most of the scattered pump beam. The

incidence of the pump is close to normal to the sample surface and the probe beam is formed at a

30° angle. A pinhole is placed in front of the photodiode such that only the scattered pump light

traveling in the same direction as the reflected probe reaches the detector.

Ideally the assumption that is often made is that the change in reflectivity measured by a

probe light pulse originates entirely from the previous pump pulse. Thus the magnitude of the

detected signal is a direct measure of the change in reflectance due to the nonequilibrium heating

induced by a single ultrafast pulse. This is certainly a valid assumption if the energy deposited

from each pulse has completely dissipated prior to the arrival of the next pulse. However, for
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Figure 6-11. Raw experimental signals at different laser pumping intensities: (a) amplitude at a

long time scale, -ns, shows a fast peak in the beginning and a slow decaying process later, (b)

The fast peak is an indication of the electron-phonon energy exchange that occurs during the

10 ps time scale, (c) the raw phase signal.
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Figure 6-12. The transient amplitude signal normalized to the amplitude of the signal at 50ps: (a)

the fast peak is an indication of the electron-phonon energy exchange that occurs during the

-10 ps time scale, (b) the slow decaying process due to the energy transport through the

interface and the substrate.

most of the cases in our experiments, the reflectivity change of the metallic thin film due to a

single pump pulse does not fall to a negligible value by the time the next pump pulse arrives.

There is a certain amount of residual heating that remains after each pump pulse. The amount of

residual heating is a function of the incident fluence and the diffusion time constant of the

sample system. Therefore it is necessary in the analysis to consider the contributions to AR(t)

that come from previous pump pulses. Figure 6-13(a) depicts the time evolution of the

reflectivity change measured in the experiment (after Capinski [52]). Time t=O refers to the

absorption of the first pump pulse after the laser is turned on. The time axis is in units of the time

between pump pulses At,. The cooling signal would be the first curve close to time zero if only

a single pump pulse heats the sample. In reality, the next pulse heats the sample before the

sample cools to its initial value. Thus the measured signal is a superposition of many pump

pulses as shown in Fig. 6-13(a). Figure 6-13(b) shows a comparison of the single pulse signal

and the measured signal when we normalized both signals to their own maxima. Clearly the
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measured signal due to the many pulse effect (slow decaying effect) would be much sharper than

the signal expected from a single pulse. As a first step, Fig. 6-14 (a) and (b) compare the

modeling of a single pulse signal with the experimental results by changing the phonon

transmissivity at the interface and the phonon relaxation time. None of the reasonable data input

would be able to capture the fast decaying measured signal. This plot clearly demonstrates the

importance of a multi-pulse effect. We are now in the process of taking into account the multi-

pulse effect in the data fitting process.
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Figure 6-13. (a) Time evolution of the reflectivity change measured in the experiment. Time t=O

refers to the absorption of the first pump pulse after the laser is turned on. The time axis is in

units of the time between pump pulses. The measured signal is a superposition of many pump

pulses. (b) A comparison of the single pulse signal and the measured signal when we

normalized both signals to their own maxima.
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Figure 6-14. Comparison of single pulse modeling results with the experimental signal by

changing (a) the phonon transmissivity at the interface and (b) the phonon relaxation time.

None of the reasonable data input would be able to capture the fast decaying measured signal.

This plot clearly demonstrates the importance of the multi-pulse effect.
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6.5 Summary and Future Work

In this work, we set up the sub-picosecond pump-and-probe optical measurement system

employing a Ti:Sapphire femtosecond laser system. The measurement system would be a

platform for future studies on nanoscale heat transfer measurements. A new two temperature

model - electron Fourier conduction & phonon Boltzmann transport model is proposed to

describe the energy transport process under ultrafast laser-materials interaction. Calculations

show that there are significant differences between heat diffusion and phonon transport at

ultrafast time scale. This renders the rationale and the possibility to extract the phonon

reflectivity at an interface and the phonon relaxation time from the sub-ps pump-and-probe

measurements. We present preliminary measurement results. However more work is needed to

analyze the signal, especially taking into account the multi-pulse effect, and to fully explore the

powerfulness of the sub-ps pump-and-probe measurement system as a vehicle for

characterization of nanoscale thermal transport. The following work is planned for the near

future.

To eliminate the unwanted signal due to the scattered pump light reaching the

photodetector and thus to increase the signal-noise ratio, we plan to employ the two color scheme

for the pump-and-probe measurement system. In the two color scheme, a pump and probe light

beams are at different frequencies (wavelengths) by employing second harmonic generation to

double the frequency of one laser beam. The color filter placed before the detector will

successfully decrease the noise level.

After this work, the sub-ps pump-and-probe measurement system is suggested to be used

to study the following interesting problems: 1) Electron-phonon interactions in low dimensional

systems which are known to play important roles in the determination of device performance and

reliability. 2) Energy relaxation of a single particle in a medium which is a fundamental energy

transport process relating to nanoparticle thermal therapy and nano fluids. 3) thermal energy

transport across a variety of interfaces between different materials, for example, organic-

inorganic, solid-liquid, metal/semiconductor- polymer, crystalline-amorphous materials, to name

a. few. 4) thermal transport in a polymer system which is closely related to polymer solar cells

and OLEDs (Organic Light Emitting Diodes) and ultrafast laser processing of polymers.
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Chapter 7. Summary and Recommendations

7.1 Summary and Conclusions

The research on nanoscale heat transfer has steadily been in rapid progress over the last

two decades with applications in nanoelectronics, nanophotonics, energy conversion, thermal

biology, and nano-manufacturing. This thesis contributes to the following aspects for the heat

transfer, nanoelectronics, and thermoelectrics research communities:

1) It has been demonstrated in the last decade that the Boltzmannn equation is a valid and useful

tool for studying the classical size effect of phonon transport at the nanoscale. The solution of the

phonon BTE has been limited to a few simple geometrical configurations due to inherent

difficulties and thus has limited consideration of the size and transient effects in

multidimensional real engineering problems. Chapter 2 develops numerical solution strategies

for the transient phonon BTE in multidimensional structures. Modeling the multidimensional

heat conduction processes in most devices involving multiple length scale devices from the

nanoscale to the macroscale is very challenging. Direct numerical solution of the phonon BTE is

preferred, but it is usually slow. Approximate methods that are capable of capturing the major

size effects but easier to implement are thus desirable. Chapter 2 also extends the ballistic-

diffusive equations proposed earlier [1,2] to multidimensional problem with a nanoscale heat

source term and we have performed numerical implementations of the transient ballistic-

cliffusive equations. The so-developed numerical simulation tools are applied to study heat

transport surrounding nanoscale heat source, which mimics the heating issue in a nanoscale

MOSFET structure. Simulation results show that the localized nanoscale heating in a nanoscale

MOSFET can have a temperature rise several times larger than that predicted by the Fourier law.

This has significant implications for the reliability of MOSFET devices. This work also

demonstrates that the ballistic-diffusive equations and the numerical calculation strategies can be

promising to be incorporated into commercial device simulators.

2) Nanostructure-based materials such as Bi2Te3/Sb2Te3 superlattices and PbTe/PbSeTe quantum

clot superlattices have shown significant increases in ZT values compared to their bulk

counterparts due mainly to the reduction of the phonon thermal conductivity in these structures
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[3, 4]. Nanocomposites may realize a similar thermal conductivity reduction and provide a

pathway to scale-up the nanoscale effects observed in superlattices to thermoelectric material in

bulk form. The study on the thermal conductivity of nanocomposites has been rather scarce. In

chapter 3 the deterministic solution of the phonon Boltzmann equation is established to study the

thermal conductivity of 2-D nanocomposites where silicon nanowires are periodically aligned in

a germanium matrix both along and across the nanowire directions. Though very much doable,

extending the 2-D BTE simulation to phonon transport in complex three-dimensional (3-D)

spatial coordinates is very tedious, owing to the complexity in tracking phonon transport

deterministically in such a simulation algorithm. Chapter 4 presents an algorithm for studying

phonon transport in nanoparticle composites using a Monte Carlo simulation with special

attention paid to the implementation of periodic boundary conditions. The size effects of phonon

transport in nanoparticle composites were studied and the results showed that the thermal

conductivity of nanoparticle composites can be lower than that of the corresponding alloys and

superlattices. The results also show that the key for the thermal conductivity reduction is a large

interfacial area per unit volume (high interface density), where nanocomposites offer better

results than superlattices. Results of this study can be used to direct the development of high

efficiency advanced thermoelectric materials.

3) In thermoelectric devices it is the electrons that do the useful energy conversion work and the

electron temperature that matters for energy conversion efficiency. Following the rationale of

reducing the phonon thermal conductivity, if there is a way to impart energy to electrons only

(by cutting off the energy transport through phonons between the heat source or the cooling

target and the thermoelectric element) while minimizing the energy coupling between electrons

and phonons, it is possible to obtain better performance of thermoelectric devices. In Chapter 5,

we conceptualize and investigate the surface-plasmon coupled nonequilibrium thermoelectric

devices. These devices use surface-plasmon coupling to limit the energy exchange between the

heating source (or cooling target) and the thermoelectric element to electrons alone, while

eliminating direct energy exchange between phonons. Models for refrigeration and power

generation devices based on this concept are established, together with simplified criteria to

guide the device design and materials selection. Our simulations show that these devices can

lead to significant improvements in efficiency over conventional thermoelectric devices.
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4) As shown in all the current theoretical modeling and simulation work, it is extremely

important to have a correct phonon relaxation time or phonon mean free path as input parameters

for any Monte Carlo or Boltzmann transport equation based simulations for nanoscale heat

conduction problems. The phonon reflectivity at interfaces and the phonon relaxation time are

clearly the most fundamental energy carrier properties for nanoscale heat conduction. No

experimental work has been done so far to study the phonon dynamics and thus to extract these

phonon properties. During this thesis work, we set up a sub-picosecond pump-probe optical

measurement facility employing a Ti:Sapphire femtosecond laser. Chapter 6 studies the

fundamentals of ultrafast laser-materials interaction and the possibilities of using the phonon

Boltzmann equation to fit the experimental data and to extract the phonon reflectivity and

relaxation time using the optical pump and probe measurement.

7.2 Recommendations for Future Directions

Nanoscale heat transfer has been "hot" over the past two decades. With the recent

progress in nano materials synthesis and nanostructure fabrication, nanoscale heat transfer will

remain "hot" in the future, playing a significant role in information technology, energy

conversion technology, and bio-medical engineering. Solid contributions in both theory and

experiments are desirable with the following as immediate needs and extensions:

1) Energy Transport across Interfaces

Nanotechnology enables material scientists to introduce nanostructured materials with a

high density of controlled interfaces between constituent materials. Energy transport across

interfaces often involves reflection and diffraction of energy carriers. When the constituent

materials across an interface are dissimilar, the energy carriers can be very different, and thus

coupling among different energy carriers, for example electrons and phonons, can be very

important. How the energy is coupled and is transported across interfaces among different groups

of energy carriers remains an open challenge. There are different kinds of interfaces of scientific

and engineering interest, to name a few, superconductor /metal - insulator, organic-inorganic.

Understanding the fundamentals of energy transport across interfaces is the key to the

breakthrough of developing novel materials for high efficiency energy conversion and thermal

management.

215



2) Full Dispersion Phonon Transport Simulation for Nanostructures

The current Boltzmann transport equation solver and Monte Carlo simulation assume

phonon gray medium. More detailed simulations that can account for the complete dispersion

relationships by considering the frequency or even wavevector dependent phonon propagation

and phonon scattering can be introduced to refine the simulation results. With the size of

nanostructures, for example, the size of the heat generation region and the thickness of thin films,

approaching the wavelength of phonons, one might need a better way accounting for phonon

wave characteristics in thermal transport, as some have done before for thermal transport in

superlattices [5].

3) Coupled Electron and Phonon Transport Solver

Conventional two-temperature models and electrohydrodynamics models [6] only capture

the nonequilibrium conditions between electrons and phonons to a certain extent. Accurate

prediction of how heat is generated, how the heat is transported in nanostructures, and how the

heat transport affects the electron performance calls for a more detailed coupled electron-phonon

Boltzmann equation solver or Monte Carlo simulator. The simulation results of such a solver or

simulator will help the device and circuit designers predicting device failure and will help to

come up with a better design using a variety of new materials and new architectures. In addition,

a better understanding of coupled electron and phonon transport is the key for advancing laser-

materials processing and the performance prediction of nanoengineered energy conversion

devices and technologies.

4) Transport Properties of Nanocomposites

Nanotechnology offers the opportunities to make nanocomposites with unveiling

properties. Predicting transport properties of nanocomposites has been a challenge since most of

the conventional formule can not be valid any more. The periodic transport simulation scheme

developed in this thesis might be used for studying other transport properties, for example, the

electrical conductivity, Seebeck coefficient and magnetoresistance, of nanocomposites.

Simplified models taking into account the nanoscale transport physics that can give consistent

results as those obtained through detailed simulations are highly desirable for fast turnaround and
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engineering applications. In addition, nanoengineering often results in the change of a variety of

material properties simultaneously, some good and some bad. There is currently a need for better

optimization strategiese for multifunctional nanocomposites.

5) Thermal Characterization and Thermal Imaging at Nanoscale

While the thermal conductivity of silicon thin films and nanowires, and carbon nanotubes

have been recently characterized, no such data is yet available for a large volume of other

interesting engineering materials. In addition, nanoengineered materials with superior properties

might be found from some so-so conventional bulk materials due to the radical change of

materials properties at the nanoscale. It is also good to keep in mind that conventional properties,

such as the thermal conductivity, might not be the best way to characterize nanostructures.

Carrier reflectivity and energy relaxation time might offer a better alternative for describing

thermal transport in nanostructures. Sub-pico second pump-probe is expected to be an ideal tool

to study interface thermal transport properties. A database on the phonon reflectivity and phonon

relaxation time for nanoengineeringed materials might be as important as thermal conductivity

database we have today for bulk materials. In addition, the sub-picosecond pump-probe method

can be improved for high spatial resolution profiling thermal transport at ultrafast time transients.
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