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ABSTRACT

Huntington's disease (HD) is a progressive degenerative neurological disorder.
Individuals who inherit the IT15 gene with an expansion of the CAG repeat region inevitably
succumb to increasingly sever motor, psychological, and cognitive symptoms. I sought to
develop an assay system with the capability for identification of chemical compounds that
selectively decrease the intracellular levels of disease-causing expanded polyglutamine
huntingtin (Htt) protein without reducing the intracellular levels of the potentially protective
normal Htt. To achieve this goal I designed a cell-based assay using the enzymatic activity of E.
coli 1-galactosidase as a reporter for Htt protein levels. I expressed either expanded (97Q) or
normal (23Q) Htt fused to the 3-galactosidase alpha-subunit (a) in an inducible fashion in PC12
cells which also expressed the -galactosidase delta-subunit (A). Complementation between
these expressed subunits allowed the formation of functional 3-galactosidase. The level of
3-galactosidase activity in these A-a 97Q and A-a 23Q cells directly correlated with the amount
of a 97Q and a 23Q fusion protein levels, indicating that -galactosidase activity could be used
as a reporter in this system for Htt protein levels. I implemented this cell-based assay as a
secondary assay to characterize a group of compounds that had been initially identified in a High
Throughput Screen because they reduced levels of expanded Htt-fragment fused to GFP. Of the
34 compounds characterized in the -galactosidase A-a 97Q assay, dose response curves and
counter-screening with A-a 23Q cells revealed that seven compounds decrease 3-galactosidase
activity only in A-a 97Q cells. Immunofluorescence demonstrated that two compounds decrease
levels of expanded but not normal Htt proteins in the cells. Finally, tests of toxicity on HttQ103

PC12 cell lines, which show specific toxicity following expression of expanded Htt, revealed a
significant correlation with the results from the f3-galactosidase assay and the identification of at
least one compound which continued to meet the criteria for therapeutic intervention in HD.
These results support the feasibility of the development of an HD therapeutic strategy based on
small molecules which cause a specific reduction of intracellular expanded Htt protein levels and
suggest a program of development for such molecules.
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CHAPTER I

HUNTINGTON'S DISEASE AND THE SEARCH FOR A TREATMENT

In 1872, George Huntington first published a description of a hereditary form of chorea

[1], the disease which now bears his name. He noted three hallmarks of Huntington's disease

(HD), aside from chorea: 1. Psychological symptoms: high likelihood of suicide, insanity, and

socially unacceptable behavior; 2. Dominant inheritance: affected individuals have an afflicted

parent; the lineage of children from an unaffected parent who do not manifest the disease also

never exhibit symptoms; 3. Late-onset: patients typically begin showing symptoms at 30-40

years of age.

Even though Huntington did not think that these observations were "of any great practical

importance", and presented the information "merely as a medical curiosity", HD is now a

recognized disease affecting 5-10 out of 100,000 people. The tremendous effort put forth by the

scientific community, particularly since the discovery of the gene responsible for the disease in

1993, has lead to a detailed understanding of the disease's cellular mechanisms. This knowledge

has in turn led to significant therapeutic promise. However, there is still no treatment for this

devastating disease.

HD SYMPTOMS IN MOVEMENT, PSYCHOLOGY, AND COGNITION

HD is now characterized by the progressive degeneration in motor, psychological, and

cognitive abilities [2]. Typically, chorea begins in the hands and feet, expanding over the years

to the limbs and face, while increasing in intensity. The symptoms include inability to control

the tongue, eyelids, and eye movements. Many HD patients exhibit aggressiveness, apathy, and

depression. HD patients are five times more likely to commit suicide than the general

population. The decline in cognitive ability affects memory, attention, concentration, emotional

processing, spatial manipulation, and eventually dementia.
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HD IS A DOMINANTLY INHERITED DISEASE

The genetic cause for HD is an expansion of the CAG repeats in the first exon of the

HUNTINGTINgene, located on chromosome 4 [3, 4]. This expansion in CAG repeats translates

into an expanded poly-glutamine (polyQ) region in the huntingtin (Htt) protein. Unaffected

individuals have Htt with 6-35Q (normal Htt), while HD patients have Htt with 40-1OOQ

(expanded Htt). The variation in the polyQ expansion in patients correlates to age of onset,

where patients with a longer polyQ region have a tendency to present with symptoms earlier in

life [5]. However, there is no correlation between the length of the polyQ region and the rate of

disease progression.

HD ANIMAL MODELS

While physical symptoms are easily described in HD patients, the underlying causes of

the symptoms can not be studied in humans. In order to more closely study the disease

mechanism, many HD animal models have been created by expressing expanded Htt. No animal

model is a perfect recreation of the disease in humans, but each one does recapitulate some of the

motor, psychological, and cognitive dysfunctions. Furthermore, some of these animal models

are widely used to determine efficacy of potential drug therapies for HD.

Drosophila

Neurodegeneration [6-8], motor dysfunction, and premature death [2] are HD phenotypes

that have been recapitulated in Drosophila models. The abnormalities observed in ommatidia,

clusters of eight photoreceptor neurons that make up the Drosophila eye, serve as evidence of

neurodegeneration. Motor function can easily by assayed by observing the larva's path through

agar and the adult's flying or walking abilities. Finally, the three month life-span of normal adult

Drosophila provides a relatively quick way to determine premature death.

The N-terminal Htt Drosophila model expresses specifically in the eye the first 170 aa of

Htt with either 75Q or 120Q [9]. Up through the pupal stage, all animals have normal eyes,

indicating that expanded Htt expression does not affect the development of the ommatidia.

However, degeneration of the ommatidia is observed in Htt-120Q and Htt-75Q containing

animals, with onset at adulthood day 10 and 30, respectively. Throughout early development,
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the expression of Htt is cytoplasmic in both Drosophila lines. In the transition from pupa to

adulthood, the expression of Htt-120Q begins to shift towards the nucleus. By day 10, this

expression becomes punctated.

Another HD Drosophila model expresses the first 548 aa of Htt with 128Q [10]. When

the transgene is expressed specifically in the eye, the ommatidia degenerate during adulthood.

When the transgene is expressed in all neurons, abnormal motor functions are observed in larvae

and adults. This expression of Htt-128Q results in premature death. In this Drosophila model,

cytoplasmic but not nuclear aggregated Htt is found in the late larval stage.

These Drosophila models are beneficial for determining the efficacy of a potential HD

drug treatment for several reasons. First, the effects of a drug on the extent and timing of

ommatidia degeneration can easily be quantified, which could parallel the drug's effect on

neurodegeneration seen in humans [6-8]. Second, a delay or prevention of lethality is another

measure of a drug's efficacy that can easily be assessed, and potentially beneficial to humans.

Third, the short life-span and large number of progeny of Drosophila allows for statistically

significant data from such drug tests.

Mouse

Many aspects of HD have been recapitulated in mouse models, although no one model

shows all. The neurodegeneration observed in humans [6-8] can be studied in mice by

measuring whole-brain weight, or by counting nuclei. Motor dysfunction [2] can be studied by

multiple protocols. One popular protocol is the accelerating rotarod, where a mouse is placed on

a rotating rod and the latency to fall is noted. Other protocols include gait analysis and

quantification of limb clasping. Cognitive ability [2] can be assayed by protocols that require

learning and memory. One such protocol is the Morris water maze, where the mice must learn

and remember the location of a hidden platform in a pool of water. Another learning protocol is

the T-maze, where the mice must learn which arm of a T-shaped maze contains the food. The

weight loss observed in HD patients [11] can easily be measured in mice by noting daily body

weights. Finally, premature death can be measured.
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R6/2 and R6/1 mice

The R6/2 and R6/1 mice were the first HD mouse models [12]. They express exon one of

Htt and an expanded polyQ, where R6/2 mice have 150Q and R6/1 mice have 115Q. At 3-4

weeks of age, the R6/2 mice show dysfunction in cognitive abilities as assayed by the Morris

water maze and T-maze [13]. At eight weeks of age, motor dysfunction is visible in R6/2 mice

by rotarod, limb clasping, and gait abnormalities, whereas the onset for R6/1 mice is around 13

weeks of age [12]. R6/2 mice start to lose weight around eight weeks of age. R6/2 mice tend to

die between 13-15 weeks of age, while R6/1 mice live longer than one year. There is significant

loss in brain weight in 12 week old R6/2 mice and 18 week R6/1 mice [14], although this is due

to cell atrophy and not cell loss [15, 16]. Striatal and cortical aggregates are first visible in 3-4

week old R6/2 and eight week old R6/1 mice [17, 18].

The R6/2 mice are the most commonly used mouse model for testing the efficacy of

potential drugs for HD treatment, discussed in the next section. One reason for this is that

because of the early onset of symptoms, the drug trials are quick. This allows for a larger

number of animals in the drug trials resulting in good statistical analysis of data.

N171-820 mice

The N171-82Q mice express the first 171 aa of Htt with 82Q in neurons [19]. The first

HD-related symptom to manifest is weight loss at two months of age. The motor dysfunctions

manifest in rotarod, limb clasping, and gait abnormalities begin at three months. Finally, these

mice die at 5-6 or 8-11 months, depending on the line. The expanded Htt protein is found

diffusely in the nucleus of neurons, but also in aggregated form in the cortex and striatum.

Neurodegeneration is evident in the striatum.

The N1 71-82Q mice have been used to test several drug treatments for HD, discussed in

the next section. Although the onset of symptoms is later than in the R6/2 mice, the onset is a

relatively quick 2-3 months. This later onset and prolonged disease progression can be an

advantage because the disease mechanism being targeted might require a prolonged exposure to

a drug in order to see an effect.
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Full-length Htt mice

Two full-length expanded Htt mouse models, cDNA with 89Q [20] and YAC with 72Q

[21], have a similar time-line in the onset of symptoms. Although a small percentage of striatal

neurons have nuclear aggregates, there is significant cell loss in the striatum at 12 months of age.

Another full-length Htt mouse model with 128Q, YAC128, begins to fail at the rotarod test at six

months of age, and neuronal cell loss is observed at 12 months of age [22]. None of these

models are ideal for drug testing because of the late-onset of motor symptoms and

neuropathology. However, these mouse models should be used for potential drugs that target

full-length Htt, since R6/2 and N171-82Q mice only express N-terminal fragments of Htt.

Knock-in polyQ expansion of mouse Htt

The mouse homolog of the HD gene, Hdh, is 91% identical to the human gene, with exon

one having 100% homology [23, 24]. In order to examine the effects of expanded Htt with a

normal expression pattern and protein levels, multiple groups have inserted expanded polyQ

tracts into the endogenous mouse Hdh gene [25-34]. Knock-in mice with 150Q, 140Q and 109Q

have abnormal gait beginning at 12 months, 12 months, and 24 months, respectively [25-27].

The Hdh-150Q mice also exhibit limb clasping and rotarod dysfunctions by 12 months of age

[27]. Although none of the knock-in mice show neuronal loss, those with 72-80Q and 140Q do

have axonal atrophy at 17-22 months and 14 months of age, respectively [32, 33]. Aggregates

are visible only in the striatum of Hdh-94Q mice [34], whereas they are more widespread

throughout the brain in knock-in mice with 109Q, 140Q, or 150Q [26-28]. The differences

between the onset of symptoms in the different knock-in mouse lines are partially due to the

length of the polyQ tract. In addition, genetic modifiers in the different mouse strains used to

insert the polyQ tract can be another factor. Similar to the transgenic full-length mouse models,

these knock-in mice could be used to test drugs that target the full length Htt protein.

DYSFUNCTIONAL CELLULAR PROCESSES IN HD

Htt is widespread throughout the body, with the highest expression in the central nervous

system [35, 36]. In cellular and animal models of HD, the majority of dysfunctional processes

are attributed to a gain of function by expanded Htt, although loss of function of normal Htt also
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contributes. The levels of normal Htt are decreased in HD patients since they express normal Htt

from only one allele. The 50% reduction in normal Htt levels is not the sole cause of HD

symptoms since people with a deletion in chromosome 4 that includes the HUNTINGTINgene

do not exhibit symptoms of HD [37]. However, the levels of normal Htt in HD patients are even

further reduced due to sequestration by expanded Htt.

Greater understanding of the dysfunctional cellular processes in HD has led to the

identification of potential drug therapies, described below. However, to date, success in treating

HD has been minimal [38]. An underlying reason for this limited success may be that each drug

tested thus far has been directed towards a single cause of cellular dysfunction in HD, while as I

will discuss below, there are in fact multiple pathways which have been shown to contribute

significantly to cellular dysfunction in HD. So, even if a drug were to be maximally effective in

addressing a single cause of cellular dysfunction, additional pathways to cellular dysfunction

may remain active during treatment with such a drug, resulting in the continued presence and

progression of disease symptoms.

Increased cell death

Brains from HD patients are significantly smaller due to dramatic cell loss in the striatum

and partial loss in the cortex [6, 7]. MRI scans of individuals who were an average 22 years

away from the predicted age of onset show that the striatum is already smaller [8]. Cell death in

HD has been attributed to the specific mechanisms of excitotoxicity and apoptosis, along with

death due to general cellular dysfunction.

Excitotoxicity

Excitotoxicity refers to cell death caused by continuous excitatory stimulation of a

neuron, such as that caused by the binding of a high affinity agonist to glutamate-receptors

causing intracellular calcium concentrations to rise to toxic levels. Normal Htt directly binds to

the scaffold protein PostSynaptic Density-95 (PSD-95), and stabilizes it at the synapse while

expanded Htt has a lower affinity to PSD-95 resulting in a higher amount of PSD-95 available to

stimulate NMDA receptors [39]. Over-stimulated NMDA receptors have been reported in cell

lines expressing expanded but not normal Htt [40, 41].
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Inhibitors of the NMDA pathway can decrease the amount of calcium influx and have

had some benefits in treating HD. Remacemide is a glutamate antagonist that, in R6/2 mice,

increases survival by 16% while improving motor functions, brain pathology, and weight loss

[42]. Riluzole is a another glutamate antagonist that, in R6/2 mice, increases survival by 10%

while improving motor functions, brain pathology, and weight loss [43]. In a one year clinical

trial, riluzole poses a transient benefit on chorea, and a slightly more sustained effect on other

motor symptoms of HD patients [44]. Memantine is an NMDA receptor antagonist that, in a two

year clinical trial, seems to slow the disease progression in HD patients [45].

Apoptosis

Apoptosis is programmed cell death, mediated by activated caspases. Comparison of

TUNEL staining, an indicator of apoptosis, in HD patients and control brains indicates that there

is an increase in apoptosis in HD [46]. One apoptosis marker is the release of cytochrome c,

which can be induced by expanded Htt [47]. Expanded Htt also activates some caspases, which

may directly lead to cell death [48, 49]. In addition, Htt contains several caspase cleavage sites

at the N-terminus [50] and it has been reported that expanded Htt undergoes cleavage more

efficiently than normal Htt [51]. This finding may explain the abundance of N-terminal

expanded Htt fragments. The size of the expanded Htt fragments inversely correlated to toxicity

[52].

Several caspase inhibitors have been examined as potential HD treatments since they

prevent apoptosis. The caspase inhibitor zVAD-fmk increases survival by 25% while improving

motor functions, brain pathology, and weight loss in R6/2 mice [53]. Cystamine was identified

as a transglutaminase inhibitor, although it seems to function in HD mice by inhibiting caspase

activity [54]. In R6/2 mice, cystamine increase survival by 20% while improving motor

functions, brain pathology, and weight loss [55, 56]. Minocycline inhibits activation of some

caspases by preventing cytochrome c release. R6/2 mice treated with minocycline survive 14%

longer while showing improvement in motor functions and brain pathology [57]. In a two year

clinical trial, minocycline stabilizes both motor and neurological symptoms [58].

10



Toxicity

Many experiments have shown that normal Htt plays a protective role in cells. For

example, turning off the expression of normal Htt in the forebrain of a conditional knock-out

postnatal mouse leads to progressive neurodegeneration, behavioral abnormalities, and death

[59]. In cells, expression of normal Htt protects against multiple cellular insults that would

normally lead to apoptosis [60]. Normal Htt can also protect cells against the toxic effects of

expanded Htt, as over-expression of normal Htt in cells with expanded Htt results in a lower

incidence of cell death [61].

Mitochondrial activity

Brains of HD patients and pre-symptomatic individuals have a decrease in glucose

metabolism [62]. Interestingly, mitochondrial dysfunction is found specifically in the striatum

and cortex, whereas other brain areas are spared. Impaired mitochondrial activity causes

ineffective metabolism of glucose which can lead to damaging release of cytochrome c into the

cell [47]. Normal Htt is directly associated with mitochondrial membranes [63] and allows

proper transport of mitochondria along the axon, while expanded Htt prevents it [64]. Expanded

Htt also affects calcium levels, which can lead to mitochondrial dysfunction [65].

Some antioxidants mildly alleviate symptoms in HD mouse models. Alpha-lipoic acid

increases survival by 7% in both R6/2 and N171-82Q mice [66]. BN82451 improves survival by

15% while improving motor functions, brain pathology, and weight loss in R6/2 mice [67].

Dichloroacetate (DCA) activates mitochondrial activity, and in both R6/2 and N171-82Q mice, it

increases survival by 7% and improves motor functions, brain pathology, and weight loss [68].

Creatine is essential for normal mitochondrial function by stabilizing calcium levels and

its membrane permeability, and thus prevents the release of cytochrome c. In both R6/2 and

N171-82Q mice, creatine increases survival by 17% while improving motor functions, brain

pathology, and weight loss [69, 70]. Creatine given to symptomatic R6/2 mice decreases the

progression of symptoms, with the highest effects in younger, less symptomatic mice [71].

However, in a one year pilot clinical trial in humans, creatine had no effect on symptoms [72].

Coenzyme Q10 (CoQ 10) is an essential component of the electron transport chain, and an

antioxidant. In R6/2 mice, CoQ 10 increases survival by 15% while improving motor functions,
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brain pathology, and weight loss [42]. By combining CoQ10 with other active drugs, a higher

benefit has been seen in HD mouse models. CoQ 0 and minocycline in R6/2 mice increased

survival by 18% [73]. CoQ10 and remacemide resulted in an increase of 32% survival of R6/2

mice [42]. However, in a 2.5 year clinical trial, CoQ O10 alone or with remacemide had no effect

on symptoms in humans [74].

Transcriptional deregulation

Comparison of in situ hybridization in R6/2 and normal mice indicates that the mRNA

levels of several neurotransmitter receptors are decreased in HD [75]. Furthermore, extracts

from HD patient and mouse model brains have lower mRNA levels of several Neuron Restrictive

Silencer Element (NRSE)-controlled genes, including Brain Derived Neurotrophic Factor

(BDNF) [76]. Normal Htt, but not expanded Htt, allows the transcription of NRSE-controlled

genes by inactivating co-repressors of their transcription. One of the NRSE-responsive genes is

BDNF, which is transcribed in the cortex [77]. BDNF is an important protein in neuronal

activity because it acts as a neurotrophic factor, aiding in the formation or maintenance of the

cortico-striatal synapse.

Microarray data from HD mouse models [78], and human brains [79] show that the

transcription of many genes are decreased by the presence of expanded Htt. Expanded Htt can

sequester transcription factors and prevent the transcription of their targeted genes. A notable

example is CREB-Binding Protein (CBP) which is found in aggregates in HD cell and animal

models, along with brains from HD patients [80, 81]. CBP contains a polyQ region, the deletion

of which prevents it from being sequestered into aggregates. The expression of expanded Htt

leads to decreased transcription of CBP-dependent genes [82]. Replenishing the cells with the

transcription factors that have been sequestered may provide a benefit. For example, it has

recently been shown that increasing the levels of CBP in an HD Drosophila model completely

rescues neurodegeneration and transcriptional deregulation [83].

Another way expanded Htt decreases transcription is by reducing histone acetylation

[84]. Acetylated histones allow the transcription machinery to access the DNA, while

deacetylated histones impede this process. Several histone deacetylase inhibitors have been

tested in HD animal models. SuberoylAnilide Hydroxamic Acid (SAHA) and sodium butyrate
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(NaBu) rescue some of the neurodegeneration seen in an HD Drosophila model [85]. In R6/2

mice, SAHA alleviates some of the motor functions but has no effect on survival [86]. NaBu

increases survival by 22% while improving motor functions and brain pathology in R6/2 mice

[87]. Phenylbutyrate increases survival by 23% while improving brain pathology in the

N171-82Q mice [88]. Another way to globally increase transcription is to reduce histone

methylation, as mithramycin can do. In R6/2 mice, mithramycin increases survival by 29%

while improving motor functions and brain pathology [89].

Decreased protein trafficking

Many of the proteins that are involved in protein trafficking have altered expression

levels in HD [78, 79]. Normal Htt is associated with vesicle membranes, dendrites, axons, and

microtubules [36] and plays a role in vesicular transport between the axon and cell body [64, 90].

BDNF is an example of a protein whose transport via the microtubules is mediated by normal Htt

[91]. Expanded Htt reduces protein trafficking by sequestering many of the proteins involved in

protein trafficking, as well as binding to microtubules to prevent transport.

Decreased protein degradation

Proteins tagged with ubiquitin are targeted for degradation via the proteasome, and the

existence of ubiquitinated expanded Htt in aggregates suggests a dysfunction in this process [92].

The proteasome is inefficient in fully degrading ubiquitinated expanded Htt, resulting in the

release of small fragments containing the polyQ region [93]. Furthermore, inhibition of the

proteasome increases aggregates in a cell model [94], and prevents the clearance of expanded Htt

in a conditional mouse model [95]. In addition, cells that express expanded Htt are less able to

degrade Green Fluorescent Protein (GFP) tagged for proteasomal degradation [96], indicating

that proteasomal dysfunction affects more than just the expanded Htt protein.

In addition to the proteasome, Htt has been shown to be degraded by lysosome-mediated

autophagy. The inhibition of the proteasome seen in an HD cell model can be rescued by

activation of autophagy [97]. Rapamycin sequesters mTOR which causes an activation of the

autophagy degradation pathway. Rapamycin decreases neurodegeneration in an HD Drosophila

model, and improves motor functions in an HD mouse model [98].
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TOXIC FORM OF EXPANDED HTT IS STILL DEBATED

Although the loss of function of normal Htt contributes to HD symptoms by affecting

several cellular processes, its loss alone is not enough to explain the extent of the dysfunctions.

In a conditional mouse model, the complete loss of normal Htt in the forebrain of post-natal mice

leads to only some characteristic HD symptoms [59]. However, Htt is an essential protein during

development as best shown by three independently derived Htt knock-out mice, that all die in

gestation [99-101]. The fact that HD patients homozygous for the disease allele survive to

adulthood and do not exhibit an earlier age of onset relative to heterozygous patients [102],

indicates that expanded Htt can fulfill the developmental role of normal Htt.

It must therefore be the gain of function by expanded Htt that causes most of the cellular

dysfunctions. The question of which form, whether aggregated or monomeric, of expanded Htt

is the toxic species is still debatable. A direct pathway to the development of therapeutic

interventions aimed at specifically eliminating or reducing the formation of the toxic forms of

expanded Htt protein is currently challenging, since it is unclear which form should be targeted.

Aggregates

Aggregates of expanded polyQ Htt, visible in pathological specimens in the form of

inclusion bodies, are evident in diseased brains, but not control brains [6, 7]. Patients with

longer polyQ regions have a higher prevalence of inclusion bodies containing aggregated Htt

[103], particularly in the cortex [104]. In the nuclei of neurons, the aggregated Htt consists of

small N-terminal fragments of expanded Htt, while in the cytoplasm aggregated Htt includes

variably sized N-terminal expanded Htt fragments [104]. Both expanded and normal Htt are

cleaved at multiple sites by caspases [50, 105], although expanded Htt is preferentially cleaved

[51]. Expanded Htt nucleates into aggregates faster than normal Htt, where the rate-limiting step

is believed to be a change in protein conformation [106]. In addition, the smaller the Htt

fragment, the faster expanded Htt forms aggregates.

In support of the toxic aggregates theory, pure polyQ aggregates which were created in

vitro and then introduced to cells cause toxicity when the aggregates are targeted to the nucleus

[107]. However, these polyQ aggregates are very stable whereas aggregates in HD cell and

animal models are dynamic. Since caspase cleavage of Htt results in the elimination of the C-
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terminal Nuclear Export Signal [108], nuclear toxicity is a possible role for aggregated or

monomeric expanded Htt. In addition, proteins such as chaperones, proteasome subunits,

transcription regulating proteins, and ubiquitin binding proteins are sequestered by monomeric

expanded Htt and found in aggregates. The loss of function of these proteins can lead to cellular

dysfunction.

Some aggregation inhibitors have had some benefit in HD animal models. The

compound C2-8 partially rescues neurodegeneration in an HD Drosophila model [109]. C4-sFv

is a single-chain Fv antibody fragment that rescues larval survival and delays neurodegeneration

in an HD Drosophila model [110, 111]. Congo Red inhibits oligomerization and, in R6/2 mice,

increases survival by 16% while improving motor functions, brain pathology, and weight loss

[112]. Trehalose is a disaccharide that inhibits aggregation by stabilizing proteins in a partially-

folded state [113]. In R6/2 mice, trehalose increases survival by 11% while improving motor

functions, brain pathology, and weight loss [114].

Monomeric

An alternative to expanded Htt aggregates having detrimental effects in cells is that

aggregates benefit cells by sequestering toxic monomeric Htt and thus prevent it from interfering

in cellular processes. Support for the beneficial aggregates theory comes from the fact that

aggregates are mainly found in striatal and cortical cell types that are spared in HD, while those

cell types that tend to die have fewer aggregates [115]. In general, aggregate density does not

correlate with cell loss, as perhaps best shown in the brain of one pre-symptomatic individual

which had many aggregates in the cortical region but very little cell loss [116]. Further support

comes from the full rescue of motor functions, in spite of continued presence of aggregates,

following arrest of expanded Htt expression in a 17 month old conditional mouse model [117].

Most recently, a compound was identified that rescues proteasome dysfunction in an HD cell

model by increasing aggregate formation [118]. Direct and compelling support for the protective

effect of intracellular inclusions and the toxic effects of soluble expanded Htt species is provided

by time lapse cinematography of cultured neurons in an Htt model system. In this study,

neurons, that show a diffuse signal for expanded Htt are more likely to die while under
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observation than neurons that have aggregated expanded Htt in the form of inclusion bodies

[119].

COULD REMOVAL OF DISEASE-CAUSING EXPANDED HTT BE AN OPTIMAL

THERAPY FOR HD?

Drugs targeted at cellular dysfunctions or expanded Htt aggregation have not provided

sufficient benefit in ameliorating HD symptoms to be considered an effective treatment. In order

to evaluate the effect of removing expanded Htt after disease-onset, the conditional mouse model

HD94, where exon one of expanded Htt is expressed in the forebrain, was created [120]. When

the expression of expanded Htt is eliminated after onset of symptoms, the progression of motor

dysfunction and neuronal loss is not only prevented but the symptoms are actually reverted. If

the expression is turned off at 10 months of age, the motor dysfunction is completely rescued and

aggregates are no longer visible [121]. When the expression is turned off at 17 months of age,

motor dysfunction is also completely rescued, however in this case without any effect on

aggregates [117].

The study of the HD94 mouse model indicates that removal of the disease-causing

expanded Htt is a viable treatment for the disease which can be beneficial at multiple stages in

disease progression. One way to decrease the expanded Htt protein load is to prevent its

translation by the use of RNAi targeted to the striatum. RNAi treatment in N171-82Q mice

results in a 50% reduction of Htt mRNA for 2 weeks, while improving motor functions [122]. In

R6/1 mice, RNAi treatments cause an 80% decrease in Htt mRNA for 10 weeks, while delaying

the onset of motor symptoms [123]. RNAi treatments in R6/2 mice which decreased Htt mRNA

levels by about 50% for one week result in increased survival and improved motor functions,

brain pathology, and body weight [124]. RNAi treatment given after onset can also prevent the

progression of neuropathology [125]. These results with RNAi treatments are encouraging

because they show benefit even without complete elimination of expanded Htt. However, a

drawback to RNAi is that it can not be specific for expanded Htt because RNAi targets small

sections of mRNA sequence, which do not differ between expanded and normal Htt. Since
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normal Htt serves a protective role, it is not ideal for an HD treatment to decrease the levels of

normal Htt.

An approach to HD therapy which has the potential to address the occurrence of

pathology at its source would be to decrease the levels of expanded Htt while maintaining the

expression of normal Htt to maximize the protective effects of normal Htt. A compound could

decrease the levels of expanded Htt proteins by either reducing the efficiency of its initial

production or by promoting its degradation. The elimination of expanded Htt would allow cells

to recover from the cellular dysfiunctions caused by the expression of expanded Htt. Such a

compound would, in principle, not only prevent the onset of disease, but also stop the

progression of symptoms, as seen in the HD94 mouse model [120]. A therapy which met these

criteria would have no effect on the expression of normal Htt, allowing it to continue with its

protective cellular functions. The fact that expanded and normal Htt have different tertiary

structures [126] allows for the possibility that a chemical compound could have specificity to

expanded but not normal Htt. The goal of the study presented here was to design and implement

a cell-based High Throughput Screen that could identify a compound which met these criteria for

an optimally effective HD therapeutic. Therefore, the assay developed is designed to target the

most basic cause of HD, the expression of expanded Htt, while making no assumptions as to

which cellular dysfunction causes the most harm to HD patients or which form of expanded Htt

is the most toxic to cells. The results of this screen provide a proof of concept for this approach

through the identification of two compounds which decrease cellular levels of expanded but not

normal Htt protein. The efficacy of compounds in another cell-based assay based on the toxicity

caused by expanded Htt expression further validates this approach to therapeutic intervention.

These studies thus provide initial steps in a pathway towards a direct and potentially effective

approach to the treatment of HD.
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CHAPTER II

DESIGN AND PRODUCTION OF A CELL-BASED HTS FOR IDENTIFYING

COMPOUNDS WHICH DECREASE EXPANDED HTT PROTEIN LEVELS

ABSTRACT

Huntington's disease (HD) is a progressively degenerative neurological disorder.

Individuals who inherit the IT15 gene with an expansion of the CAG repeat region inevitably

succumb to motor, psychological, and cognitive symptoms. I sought to develop an assay system

with the capability for identification of chemical compounds that selectively decrease the

intracellular levels of disease-causing expanded polyglutamine huntingtin (Htt) protein without

reducing the intracellular levels of the potentially protective normal Htt. To achieve this goal I

designed a cell-based assay using the enzymatic activity of E. coli 3-galactosidase as a reporter

for Htt protein levels. I expressed either expanded (97Q) or normal (23Q) Htt fused to the

f3-galactosidase alpha-subunit (a) in an inducible fashion in PC 12 cells which also expressed the

3-galactosidase delta-subunit (A). Complementation between these expressed subunits allowed

the formation of functional -galactosidase. The level of -galactosidase activity in these

A-a 97Q and A-a 23Q cells directly correlated with the amount of a 97Q and a 23Q fusion

protein levels, indicating that P-galactosidase activity could be used as a reporter in this system

for Htt protein levels. Optimization of A-a 97Q cells for High Throughput Screening (HTS)

resulted in a Z' factor of 0.73. These data demonstrate that the cell based assay system I have

developed is well suited for the identification of chemical compounds which specifically

decrease intracellular expanded Htt protein levels in an HTS format.
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INTRODUCTION

Huntington's disease (HD) is characterized by the progressive degeneration in motor,

psychological, and cognitive abilities [1, 2]. The genetic cause for this disease is an expansion of

the CAG repeats in the first exon of the IT15 gene, located on chromosome 4 [3, 4]. This

expansion in CAG repeats translates into an expanded poly-glutamine (polyQ) region in the

huntingtin (Htt) protein. Unaffected individuals have Htt with 6-35Q (normal Htt), while HD

patients have Htt with 40-1OOQ (expanded Htt). The variation in the polyQ expansion in patients

is correlated to age of onset, where patients with a larger polyQ region have a tendency to

present with symptoms earlier in life [5]. However, there is no correlation between the length of

the polyQ region and the rate of disease progression.

Htt is widespread throughout the body, with the highest expression in the central nervous

system [6, 7]. Expanded Htt has been implicated in decreasing mitochondrial activity [8-10],

transcription [11-18], and protein degradation [19-23]. Loss of normal Htt further contributes to

dysfunction in the mitochondria [9,24], transcription [25], and protein trafficking [9, 26-28].

The ultimate end to cellular dysfunction, cell death, has also been observed in HD.

Brains from both symptomatic and pre-symptomatic HD patients show a remarkable decrease in

striatal and cortical neurons [29-31]. There is some evidence suggesting apoptosis in the brain as

a mechanism for neuronal loss [32]. There is also evidence suggesting excitotoxicity as a

specific mechanism contributing to neuronal death [33-35]. Cell-based assays expressing exon

one of expanded Htt have been designed and implemented to screen for compounds that rescue

toxicity [36, 37]. These screens identified several compounds which decrease toxicity, although

the only class of compounds found by both screens is caspase inhibitors. An issue which must

be considered in such screens is that cellular dysfunction preceding cell death may lead to many

of the symptoms observed in patients. Thus, even if compounds identified by screens based on

blocking cytotoxicity suppress cell death in HD patients, they may not be effective treatments for

HD because they do not prevent cellular dysfunction.

The presence of inclusions containing aggregated expanded Htt in the brains of HD

patients [29, 30] has led to the hypothesis that these inclusions are responsible for the cellular
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dysfunction and death [38]. Many cell-based assays have been designed and implemented to

screen for aggregation inhibitors, whose endpoints are directly or indirectly tied to the formation

of intracellular inclusions. Several potent aggregation inhibitors have limited effects on survival

of HD animal models [39-41], indicating that inhibition of aggregation may not be the most

effective way to treat HD. The drawback to these aggregation screens is that they assume

inclusions are responsible for HD symptoms. Since there is evidence that inclusions may be

beneficial to cell survival [42], this assumption may not be correct.

Assays designed to identify compounds that target particular cellular functions, cell

death, and aggregation can only be used to screen for compounds that act in one specific disease

pathway. Since expanded Htt has been implicated in many cellular dysfunctions, the most

straight-forward way to treat HD would be to eliminate the disease-causing expanded Htt from

cells. In order to evaluate the effect of removing expanded Htt after disease-onset, the

conditional mouse model HD94, where exon one of expanded Htt is expressed in the forebrain,

was created [43]. When the expression of expanded Htt is eliminated after onset of symptoms,

the progression of motor dysfunction and neuronal loss is not only prevented but the symptoms

are actually reverted. If the expression is turned off at 10 months of age, the motor dysfunction

is completely rescued and aggregates are no longer visible [44]. However, if the expression is

turned off at 17 months of age, motor dysfunction is completely rescued without any effect on

aggregates [45]. The study of this mouse model indicates that blockage of the production of the

disease-causing expanded Htt is a viable treatment approach for the disease which can be

beneficial at multiple stages in disease progression.

The first attempt at treating HD by eliminating expanded Htt was the use of RNAi

treatments in various HD mouse models, which improves survival and motor functions while

decreasing neuropathology [46-48]. These results with RNAi treatments are encouraging

because they show benefit even without complete elimination of expanded Htt. However, a

drawback to RNAi is that it can not be specific for expanded Htt because RNAi targets small

sections of mRNA sequence, which do not differ between expanded and normal Htt. Since

normal Htt serves a protective role, it is not ideal for an HD treatment to decrease the levels of

normal Htt.
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The most effective way, in principle, to treat HD is to decrease the levels of expanded Htt

while maintaining the expression of normal Htt. The fact that expanded and normal Htt have

different tertiary structures [49] allows for the possibility that a compound could have specificity

for expanded but not normal Htt. Here, a cell-based assay was designed to identify compounds

which decrease the levels of expanded but not normal Htt proteins, making no assumptions as to

which cellular dysfunction causes the most harm to HD patients or which form of expanded Htt

is the most toxic to cells. This assay uses -galactosidase activity as a reporter for Htt protein

levels. PC12 cells expressing the O-galactosidase delta-subunit (A), and either expanded (97Q)

or normal (23Q) Htt fused to the -galactosidase alpha-subunit (a) in an inducible fashion exhibit

P-galactosidase activity. The level of P-galactosidase activity in these A-a 97Q and A-a 23Q

cells directly correlated with the amount of a 97Q and a 23Q fusion protein levels, indicating

that P-galactosidase activity could be used as a reporter for Htt protein levels. Furthermore,

these cells were optimized for High Throughput Screening.
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RESULTS

Assay design

A cell-based assay has been designed to identify small molecules that decrease the

amount of expanded huntingtin (Htt) but do not affect the levels of normal Htt. To accomplish

this task, this system exploits the sensitive and quantitative features of a Beta-galactosidase

(3-galactosidase) enzymatic activity assay reported elsewhere [50, 51]. The 3-galactosidase

enzyme consists of two functional domains, termed the delta (A) and alpha (a) subunits. The

f3-galactosidase A- and a-subunits are physically separable and enzymatically inactive when

expressed alone (Fig 1A). Restoration of functional P3-galactosidase activity is mediated by a

process known as alpha-complementation, successfully used in bacteriology, which occurs via

intracellular association of the A-subunit with the highly unstable a-subunit. Rapidly degraded

by cells, the small a-subunit can be stabilized when fused to Htt fragments (a Htt), which still

allows for P3-galactosidase activity. Thus, P-galactosidase activity is the reporter for the presence

of the Htt protein in this system.

The measurement of f-galactosidase activity is highly reproducible and quantitative,

making it possible for identification of compounds that decrease the protein levels of expanded

Htt to varying degrees. The ideal compound for treating Huntington's disease would be one

which targets expanded Htt but not normal Htt. Since in this system P-galactosidase activity

depends on the expression of both the 3-galactosidase A-subunit and a Htt fusion proteins, this

ideal compound would decrease the protein levels of expanded Htt fused to the f-galactosidase

a-subunit and thus abolish 3-galactosidase activity (Fig 1A). The specificity of this compound

would be identified by its ability to decrease 3-galactosidase activity in cells expressing

expanded Htt but not in cells expressing normal Htt.

For this assay, the 1-galactosidase a-subunit was cloned upstream of the first 600 aa of

Htt containing either 97Q for expanded Htt (a 97Q) or 23Q for normal Htt (a 23Q) (Fig B).

This size fragment of Htt was chosen because it contains all the known caspase cleavage sites

[52]. The advantage is that this fragment can undergo most if not all of the conformations that

full length Htt can, thus maximizing the types of compounds that can be identified in this screen
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which can differentiate between expanded and normal Htt. In order to control the timing and

level of expression of both the 3-galactosidase A-subunit and a Htt fusion proteins, constructs

were cloned under the control of an ecdysone inducible system, where Ponasterone A (PonA) is

used as the inducer.

Generation of stable PC12 cells

Before committing to generating stable cell lines, transient transfections were done on

CHO (Chinese hamster ovary) and PC 12 (rat pheochromocytoma) cells. In both cell types,

-galactosidase activity was only seen with co-transfection of the f3-galactosidase A-subunit and

either a 97Q or a 23Q constructs (data not shown). This verified that the constructs were able to

undergo alpha-complementation. For stable transfections, PC 12 cells were chosen because they

are a pre-neuronal cell line that can be differentiated into neuronal-like cells [53, 54].

In order to make stable cell lines that express both the 3-galactosidase A-subunit and the

a Htt fusion constructs, two rounds of stable transfections were performed. In the first step, the

-galactosidase A-subunit was stably transfected into PC 12 cells containing the expression

vector for the Ecdysone Receptor, EcR PC12 cells. Small colonies of these EcR-A cells were

individually picked and expanded. After 24 hr of induction with PonA, 3 out of 31 clones were

found to alpha-complement with transiently transfected a 23Q (Fig 2). Clone 600-2 was chosen

to continue with the next round of stable transfections because it most closely resembled the

morphology of the parental cell line.

The chosen EcR-A cell line was then stably transfected with either the a 97Q or a 23Q to

make A-a 97Q or A-a 23Q cells, respectively. Individual colonies were picked and expanded.

After 24 hr of induction with PonA, 3 out of 52 A-a 97Q clones and 5 out of 45 A-a 23Q clones

had P-galactosidase activity (Fig 3).

Selection of A-a 97Q and A-a 23Q cell lines for screen

The two rounds of stable transfections generated three A-a 97Q and five A-a 23Q cell

lines that showed varying degrees of -galactosidase activity after 24 hr of induction. Since the

A-a 23Q cell lines were to be used as a counter-screen for the A-a 97Q cell line, it was important
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to choose the A-a 97Q and A-a 23Q cell lines that most closely resembled each other. Therefore,

multiple characteristics were examined in order to make this choice: cell size, cell morphology

compared to the parental line, doubling time, percent of cells having P3-galactosidase activity

after induction, and amount of 13-galactosidase substrate hydrolyzed (Table 1). Cell lines

A-a 97Q #46 and A-a 23Q #44 were chosen due to their exact match in cell size, doubling time,

and substrate hydrolyzed. In addition, their cell morphology and percent of cells with

3-galactosidase staining were very similar. From here on, all experiments described were

performed on A-a 97Q #46 and A-a 23Q #44 cells, and are referred to as simply A-a 97Q and

A-a 23Q cells, respectively.

Induction with PonA correlates with P-galactosidase activity along with P-galactosidase

A and a Htt protein levels

The 0-galactosidase activity assay yields a colorimetric output, which is detected using

photometry and then converted to nmoles of substrate hydrolyzed. The effects of different levels

of induction of the 13-galactosidase A-subunit and a 97Q or a 23Q proteins on P3-galactosidase

activity were assessed by titration of the inducer PonA (Fig 4A). The amount of PonA directly

correlated with 3-galactosidase activity. Furthermore, Western blots showed that the protein

levels of P3-galactosidase A-subunit and a 97Q or a 23Q increased with the increase in PonA

(Fig 4B and C). These data show a direct correlation between the amount of PonA added and the

levels of 3-galactosidase activity detected in cell lysates, and demonstrate the sensitivity of this

assay to changes in 3-galactosidase A-subunit, a 97Q, or a 23Q protein levels.

A-a 97Q and A-a 23Q cells can degrade P-galactosidase A and a 97Q or a 23Q proteins

The purpose of this screen is to identify compounds that can decrease the protein levels

of expanded Htt but not normal Htt. One likely mechanism to accomplish this would be to

promote the degradation of the proteins. Therefore, it was important to show that A-a 97Q and

A-a 23Q cells were capable of degrading the induced a 97Q or a 23Q proteins on their own.

This was assessed by inducing cells with PonA for 24 hr. At this point, the medium was

removed from all wells and replaced with either medium without PonA (washed) or medium
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with PonA (un-washed). By 12 hr after removal of the inducer, the -galactosidase activity was

the same as un-induced (0 hr) cells (Fig 5A and B). At this time, the induced a 97Q and a 23Q

protein levels dramatically decreased, as well as the induced P3-galactosidase A-subunit protein

levels, although less so. By 24 hr after the removal of the inducer, Western blots show no

detectable a 97Q and a 23Q (Fig 5C and D) or P3-galactosidase A proteins (Fig 5E and F). This

shows that the lack of P3-galactosidase activity in the screen at 24 hr is an appropriate indication

of degradation of the a 97Q or a 23Q fusion proteins and/or the -galactosidase A-subunit.

Optimization of p-galactosidase assay for High Throughput Screen

It is important to maximize speed and reproducibility in a High Throughput Screen

(HTS). Therefore, several aspects of the f3-galactosidase assay were examined in order to find

the protocol which minimized the number of steps while maximizing the enzymatic read-out

(data not shown). The number of cells seeded per 96-well was maximized to ensure a high

f-galactosidase activity without over-seeding which could result in unhealthy cells. It was

determined that only a single PBS wash was needed to fully remove the media from the wells to

ensure reproducible results. Multiple recipes of lysis buffer were tested to find one which

minimized the background absorbance reading at 405 nm, maximized the detection of

f,-galactosidase activity, and minimized the amount of time needed for maximal 3-galactosidase

activity. It was determined that 30-45 min in 37°C resulted in an absorbance reading at 405 nm

near but not above 1.0, which is the limit of reliability. Finally, addition of STOP buffer after

this incubation allowed the -galactosidase signal to remain stable, giving flexibility in the

timing of plate reading.

A-a 97Q cell population has high Z' factor

These experiments showed that A-a 97Q and A-a 23Q cells are capable of reporting what

they were designed to do, namely use -galactosidase activity as a reporter for the protein levels

of a Htt. However, in order to be useful for an HTS, the P-galactosidase activity of the negative

and positive controls had to be significantly different for statistical analysis of the effect of

compounds. One way to measure this is with Z' factor, which takes into account the difference
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of the mean between two populations and the variance within each population (Fig 6). A Z'

factor higher than 0.2 is considered acceptable for HTS, while higher than 0.5 is desirable.

Using the optimized protocol for HTS, the Z' factor for A-a 97Q cell population was calculated

to be 0.73 under conditions for use in Aleksey Kazantsev's HTS laboratory at Massachusetts

General Hospital. These data indicate that A-a 97Q cells are highly suitable for HTS.
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DISCUSSION

Although Huntington's disease is known to be caused by the expression of the Htt protein

with expanded glutamines, it is still widely debated how this protein causes the vast spectrum of

symptoms in patients. Which of the cleaved Htt-fragments is most detrimental? Which role of

expanded Htt within a cell is the disease-causing role and which roles are non-consequential?

Does the disease mechanism best correlate with cellular dysfunction or cell death? While these

are all important and scientifically relevant questions to answer, designing a cell-based drug

screen founded on a potential disease-causing role for Htt is risky. For this reason, a drug screen

was designed based on the fact that the expression of expanded Htt is detrimental to cells,

making no assumptions as to which form or role of expanded Htt is responsible for the disease

mechanism.

The complexity of symptoms of Huntington's disease is a combination of gain-of-

function by expanded Htt and loss-of-function of normal Htt. For this reason, a counter-screen

was designed with normal Htt to rule out compounds that also decrease the protein levels of

normal Htt. This distinction is important because normal Htt has been shown to be protective in

cells [55-57]. The fact that expanded and normal Htt have different tertiary structures [49]

allows for the possibility of a compound to selectively recognize expanded but not normal Htt.

The cellular assay described here was designed using P3-galactosidase activity as a

reporter for the presence of expanded (97Q) or normal (23Q) Htt. Two cell lines were generated,

A-a 97Q and A-a 23Q, under an ecdysone inducible system. Induction with PonA directly

correlated with P3..galactosidase activity, and the protein levels of P3-galactosidase A-subunit and

a 97Q or a 23Q. In addition, the cells were able to degrade these induced proteins within 24 hr

after removal of inducer. Together, these sets of experiments show that the amount of

f-galactosidase activity (i.e., of -galactosidase substrate cleaved) correlates with the amount of

a 97Q or a 23Q present in cells and serves as an indicator of Htt clearance. Furthermore, these

results show that these cells are capable of clearing expanded Htt, recapitulating the clearance

observed in the inducible mouse model [43] of HD. This confirms that the cell lines possess an
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intrinsic mechanism for degrading expanded Htt, and validates this cell line for use in an HTS to

identify small molecules.

While this screen was designed to use P-galactosidase activity as a reporter for the

decrease in protein levels of expanded Htt, the loss of j3-galactosidase activity in this assay can

be caused by a number of different mechanisms. The compounds I particularly sought would

decrease the amount of expanded Htt protein, but not normal Htt. The decrease in protein may

be accomplished either in the production (transcription, translation) or degradation of protein.

The degradation of proteins can be increased by proteasome-targeting or affecting chaperones to

increase misfolding. The identification of a compound which differentially acted preferentially

on expanded Htt would be of particular significance because it would represent proof of principle

that this approach to therapeutic intervention in HD was technically feasible.

Regardless of the mechanism by which a compound specifically decreases levels of

expanded but not normal Htt, such a compound should also score positively in assays which

measure downstream consequences of expanded Htt function, including the inhibition of

aggregation and the rescue from toxicity in other cellular assays. Compounds of this type may be

helpful in sorting out the relationships among theories regarding which products of expanded Htt

are most significant in causing pathology.

If aggregates are toxic to cells, then reduction in aggregates would lead to a reduction in

cell death. Evidence to support the toxic aggregate theory comes from experiments where pure

polyQ aggregates taken up by cells causes toxicity when the aggregates are targeted to the

nucleus [58]. Since caspase cleavage of Htt results in the elimination of the C-terminal nuclear

export signal [59-1, nuclear toxicity is a possible role for aggregated expanded Htt. In addition,

sequestered proteins such as chaperones, proteasome subunits, transcription regulating proteins,

and ubiquitin binding proteins are found in aggregates. The loss of function of these proteins can

lead to cellular dysfunction, and ultimately cell death.

If the alternative theory that monomeric expanded Htt is toxic because it interferes in

cellular processes is true, then compounds that decrease levels of expanded but not normal Htt

protein would rescue toxicity because they eliminate the disease-causing protein. Support for the

toxic monomeric theory lies in the observation that neurons which show a diffuse signal for
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expanded Htt are more likely to die than neurons that have aggregated expanded Htt [60]. In this

theory, aggregates are actually protective because they sequester monomeric expanded Htt and

prevent it from doing further harm in a cell. Further support comes from the observation that

aggregates are mainly found in striatal and cortical cell types that are spared in HD, while those

cell types that tend to die have fewer aggregates [61]. In general, aggregate density does not

correlate with cell loss [62]. This is perhaps best shown in the brain of one pre-symptomatic

individual which had many aggregates in the cortical region but very little cell loss. Further

support comes from the full rescue of motor functions, in spite of continued presence of

aggregates, following arrest of expanded Htt expression in a conditional mouse model [45].

Most recently, compounds have been identified that rescue proteasome dysfunction in an HD cell

model by increasing aggregate formation [63].

Compounds identified in the A-a 97Q screen described here could fall into another

category, where the decrease in 3-galactosidase activity is caused by affecting the alpha-

complementation specifically in A-a 97Q but not A-a 23Q cells. Possible mechanisms would be

physical interference between the P3-galactosidase subunits, alteration of expanded Htt

conformation, or re-localization of expanded Htt to a different cellular compartment. All of

these could prevent alpha-complementation between the O3-galactosidase A-subunit and a 97Q

proteins. While these mechanisms themselves may not benefit the treatment of the disease, these

compounds could still be interesting because of their selectivity to expanded Htt but not normal

Htt. Study of these compounds could lead to knowledge of how they confer selectivity for

expanded Htt, which could be applied to other compounds that do promote degradation.

The final category of compounds that could be identified in this screen is one where

compounds are affecting common components of the two cell lines. These would be compounds

which decrease J3-galactosidase activity in both A-a 97Q and A-a 23Q cells by decreasing the

number of cells, decreasing any Htt protein levels, decreasing 03-galactosidase A-subunit levels,

or interfering with the ecdysone inducible system (preventing either PonA from binding to the

ecdysone receptor, or the ecdysone receptor from binding to E/GRE). While compounds that

decrease the protein levels of both expanded and normal Htt are not the focus of this screen,

these compounds could still be beneficial for drug development since medicinal chemistry may
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create a related compound that maintains the ability to decrease Htt protein levels, but makes it

specific to expanded Htt. However, the A-a 23Q counter-screen would be unable to differentiate

between compounds that decrease the protein levels of all Htt proteins and those that affect

common components between the two cell lines. Therefore, additional experiments would be

necessary to determine this information, discussed in Chapter IV.
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MATERIALS AND METHODS

Cloning

The P3-galactosidase A-subunit, lacking the first 500 bp of P3-galactosidase, was cloned

into a pIND vector (Invitrogen), which contains five E/GREs and a promoter for induction with

Ponasterone A. The 3-galactosidase a-subunit, the first 500 bp of 3-galactosidase, was cloned

upstream of the first 600 aa of Htt containing either 97Q or 23Q, with a FLAG-tag in between.

These constructs, a 97Q and a 23Q, were then cloned into a pIND/Hygro vector (Invitrogen),

containing five E/GREs and a promoter for induction with Ponasterone A.

Generation of stable PC12 cell lines

PC12 cells stably transfected with pVgRXR (Ecdysone Receptor expression vector), was

used as the parental cell line and is referred to as EcR PC 12 (gift from Aleksey Kazantsev).

Lipofectamine 2000 (Invitrogen) was used to stably transfect -galactosidase A-subunit in pIND

and a 97Q or a 23Q in pIND/Hygro into the EcR PC12 cells in two steps: 1. 3-galactosidase

A-subunit; 2. a 97Q or a 23Q. These steps generated A-a 97Q and A-a 23Q PC12 cell lines,

respectively.

Cell culture

A-a 97Q and A-a 23Q PC12 cells were grown in DME medium with 15% fetal bovine

serum, 2 mM penicillin-streptomycin, 2 mM L-glutamine at 37°C with 5% CO2. The pVgRXR,

pIND -galactosidase A-subunit, and pIND/Hygro a 97Q or a 23Q constructs were maintained

with 0.2 mg/ml Zeocin, 0.25 mg/ml Geneticin, and 0.1 mg/ml Hygromycin, respectively.

P-galactosidase activity assay

Either A-a polyQ cells were seeded at 50 x 104 cells/ml in 96-well format, induced with

5 gM Ponasterone A (AG Scientific) in DMSO, and then grown at 37°C for 24 hr. Each well

was then rinsed with PBS, and 10 gl of Modified RIPA added (150 mM NaCl, 50 mM Tris HCl

pH 7.4, 1 mM EDTA, 1% NP-40, 1% w/v Na-deoxycholate, stored at 4°C). 67 gl of a master

mix (5 gl 10x Cleavage Buffer, 0.135 gl 14.3 M P3-mercaptoethanol, 44.865 pl dH2O, 17 gl

4 mg/ml ONPG) from Invitrogen's 3-galactosidase Assay Kit was added to each well and

incubated at 37°C for 30-60 min. The addition of 125 gl of STOP Buffer (1 M Na2CO3 )
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stabilizes the colorimetric change of ONPG cleaved by 13-galactosidase, which was then read at

405 nm on a plate reader.

p-galactosidase activity is reported in nmoles of ONPG hydrolyzed. The absorbance at

405 nm can be converted to nmoles of ONPG hydrolyzed by the following formula:

nmoles of ONPG hydrolyzed = (OD a 405 nm) * (final vol =1.92x 105 n) = (OD4 05 .) * (42.667 nmole)
(4500 nl/nmole-cm) * (1 cm)

The data from the experimental wells was normalized by subtracting the amount of

f-galactosidase activity in un-induced wells.

Western Blots

Either A-a 97Q or A-a 23Q cells were seeded in 12-well plates at 50 x 104 cells/ml and

grown at 37°C for 24 hr. Proteins were extracted from cells with Lysis Buffer (50 mM Tris pH8,

100 mM NaCl, 5 mM MgCl2, 0.5% NP-40) and Complete Protease Inhibitors (Roche) at 2x, on

ice 30 min. Protein concentration was determined using Protein Assay and BSA standards

(Bio Rad). 10-15 gig of protein in SDS loading buffer with B-mercaptoethanol was heated at

80°C for 5 min, then loaded on an 8.5% acrylamide gel in a PROTEAN II system (Bio Rad).

Proteins were transferred to PVDF (Millipore) using 15% MeOH in transfer buffer (25 mM Tris,

190 mM glycine), at 80 V for 2 hr in 4°C.

PVDF blots were blocked in PBST with 0.5% milk for 1 hr. Actin (1:500, Sigma),

[-galactosidase (1:2000, MP Bio), or MAB2166 Htt (1:2000, Chemicon) antibodies were diluted

in PBST with 0.5% milk and incubated for 2 hr at room temperature or overnight at 4°C.

HRP-conjugated secondary antibodies were diluted in PBST with 0.5% milk and incubated with

blots for 30-45 min. Proteins were visualized with ECL Plus (Amersham Biosciences), and blots

exposed to MR film (Kodak).
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Figure 1: Beta-galactosidase activity as reporter assay for presence of Htt
A) The expression of neither the Beta-galactosidase alpha-fusion or delta-subunit is
sufficient for Beta-galactosidase activity. Co-expression of the alpha-fusion and delta-
subunit will re-constitute the Beta-galactosidase activity. The ideal compound is one
which specifically recognizes expanded Htt-97Q and promotes its degradation but does
not affect the level of normal Htt-23Q. This compound can be identified in the assay
because it will degrade the expanded Htt which is fused to the alpha-subunit. The
elimination of the alpha-subunit will eliminate Beta-galactosidase activity.
B) Inducible PC12 cell lines express the Beta-galactosidase delta-subunit and the Beta-
galactosidase alpha-subunit fused to the first 600 aa of Htt, containing either 23Q or
97Q. Both constructs are under the expression of the ecdysone inducible system.
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Figure 2: Stable EcR-delta PC12 cell lines identified.
EcR PC12 cell lines stably transfected with the Beta-galactosidase delta-subunit were
transiently transfected with a23Q, and subsequently induced with 5 uM PonA for 24 hr.
Beta-galactosidase enzymatic activity of each cell line was detected by the Invitrogen
Beta-galactosidasel Assay Kit and reported as nmoles of ONPG (B-galactosidase
substrate) hydrolyzed. Error bars indicate standard deviation. N=3.
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Figure 3: d-a97Q and d-a23Q PC12 cell lines are identified.
delta PC12 celllines stably transfected with either a970 (A) or a230 (B) were induced
with 5 uM PonA for 24 hr. Beta-galactosidase enzymatic activityof each celllinewas
detected by the Invitrogen Beta-galactosidase Assay Kit and reported as nmoles of
ONPG hydrolyzed. Error bars indicate standard deviation. N=12.
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Table 1: Comparison of d-a97Q and d-a23Q cell lines.
The three d-a97Q (#45, #46, #47) and five d-a23Q (#9, #15, #17, #31, #44) cell lines
were examined on various parameters in order to choose the most ideal d-a97Q cell
line for HTS, and the best d-a23Q cell line to use as a counter screen for compound
specificity. Cell size and the amount of seemingly differentiated cells are comparative
measures. Doubling time was determined by a standard growth curve. The percent of
cells with Beta-galactosidase enzymatic activity was determined by inducing the cells
with 5 uM PonA for 24 hr and subsequently staining for Beta-galactosidase activity
using Invitrogen's Bgal Staining Kit. The total nmoles of ONPG that a population of
cells is capable of hydrolyzing was used as a measure of Beta-galactosidase enzymatic
activity, with Invitrogen's Beta-galactosidase Assay Kit. This was determined by
subtracting the nmoles of ONPG hydrolyzed in un-induced cells from the nmoles of
ONPG hydrolyzed in cells induced with 5 uM PonA for 24 hr.
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Figure 4: Induction with PonA directly correlates with Beta-galactosidase activity
and induced protein levels.
d-a23Q or d-a97Q cells were either untreated (0 uM) or induced with 1, 3, or 5 uM
Ponasterone A (PonA) for 24 hr. Cells were either assayed for Beta-galactosidase
activity using the Invitrogen's Beta-galactosidase Assay Kit (A) or lysed for Western blot
analysis (B, C). A) Higher concentrations of PonA result in more Beta-galactosidase
activity, as determined by nmoles of substrate hydrolyzed. Error bars indicate standard
deviation. N=5. B) Western blot analysis was used to detect the expressions of a23Q
or a97Q and actin using the MAB2166 Htt and Actin antibodies, respectively. C) The
detection of the Beta-galactosidase delta-subunit and Actin was achieved by the
Beta-galactosidase and Actin antibodies, respectively.
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Figure 5: Decrease in Beta-galactosidase activity correlates with reduction of
induced protein levels.
d-a97Q and d-a23Q cells were induced with 5 uM PonA. After 24 hr, the media of each
well was replaced either with media containing PonA (unwashed) or media without
inducer (washed). Cells were either assayed for Beta-galactosidase activity (A, B) or
lysed for Western blot analysis (C-F) at the following time points: 0, 24, 30, 36, 42, or
48 hr. d-a97Q data shown in A, C, E; d-a23Q data in B, D, F. A, B) The Beta-
galactosidase activity of continuously induced cells (closed) and of washed cells (open)
was determined using the Invitrogen Beta-galactosidase Assay Kit. Error bars indicate
standard deviation. C, D) Western blot analysis using MAB2166 Htt and Actin
antibodies to detect the a-Htt fusion expression and Actin, respectively. Upper bands
are inducible a-Htt fusion protein at full length, and lower bands are cleaved products of
a-Htt fusion protein. E, F) Western blot analysis using the Beta-galactosidase and Actin
antibodies.
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Figure 6: Z' Factor description
To accurately detect a shift in the mean of a population towards another population, the
two populations would ideally have a large distance between their means, and the
variance within each population would be minimal. In this assay, the two populations
are the negative control (0% Beta-galactosidase activity) and positive control (100%
Beta-galactosidase activity). The shift being detected is the change in Beta-
galactosidase activity from 1000/0with the addition of an active compound.
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CHAPTER III

IDENTIFICATION AND CHARACTERIZATION OF COMPOUNDS THAT

DECREASE EXPANDED HTT PROTEIN LEVELS

ABSTRACT

Huntington's disease (HD) is a progressively degenerative neurological disorder.

Individuals who inherit the IT15 gene with an expansion of the CAG repeat region inevitably

succumb to motor, psychological, and cognitive symptoms. I sought to identify chemical

compounds that specifically caused a decrease in intracellular levels of the disease-causing

expanded huntingtin (Htt) protein without reducing the levels of the protective normal Htt. In

this chapter, I describe the identification of compounds which meet these criteria, a proof of

principle for this approach. I further show that these compounds are effective in reducing

toxicity caused by expanded Htt in a cell based model system further validating this approach to

HD therapy. To carry out these studies I implemented a cell-based assay, using 3-galactosidase

activity as a reporter for Htt protein levels, as a secondary assay to characterize a group of 34

compounds initially identified in a High Throughput Screen format because they reduced levels

of expanded Htt fused to GFP. Of the 34 compounds characterized in the P3-galactosidase

A-a 97Q assay, dose response curves for 11 compounds verified their activity at 10 gM or less.

Counter-screening of these 11 compounds with A-a 23Q cells revealed that seven compounds

decrease -galactosidase activity only in A-a 97Q, and four compounds decrease P-galactosidase

activity in both cell lines. Immunofluorescence further demonstrates that two of the compounds

decrease levels of expanded but not normal Htt proteins in the cells. Finally, tests of toxicity on

HttQl0 3 PC-12 cells, which show specific toxicity following expression of an expanded Htt

protein, revealed a significant correlation with the results from the 3-galactosidase assay and the

identification of at least one compound which continued to meet the criteria for therapeutic

intervention in HD. These results support the feasibility of the development of an HD

therapeutic strategy based on small molecules which cause a specific reduction of intracellular

Htt expanded repeat protein levels and suggest a program of development for such molecules.
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INTRODUCTION

Huntington's disease (HD) is characterized by the progressive degeneration in motor,

psychological, and cognitive abilities [1, 2]. The genetic cause for this disease is an expansion of

the CAG repeats in the first exon of the IT15 gene, located on chromosome 4 [3, 4]. This

expansion in CAG repeats translates into an expanded poly-glutamine (polyQ) region in the

huntingtin (Htt) protein. Unaffected individuals have Htt with 6-35Q (normal Htt), while HD

patients have Htt with 40-100Q (expanded Htt). The variation in the polyQ expansion in patients

is correlated to age of onset, where patients with a larger polyQ region have a tendency to

present with symptoms earlier in life [5]. However, there is no correlation between the length of

the polyQ region and the rate of disease progression.

Htt expression is widespread throughout the body, with the highest levels of expression in

the central nervous system [6, 7]. Expanded Htt has been implicated in decreasing mitochondrial

activity [8-10], transcription [11-18], and protein degradation [19-23]. Loss of normal Htt can

further contribute to dysfunction in mitochondrial activity [9, 24], transcription [25], and protein

trafficking [9, 26 28]. Cell death has also been observed in HD. Brains from both symptomatic

and pre-symptomatic HD patients show a remarkable decrease in striatal and cortical neurons

[29-31]. Evidence of apoptosis in the brains is one mechanism of cell loss [32], while

excitotoxicity also contribute [33-35]. Nuclear inclusions containing Htt protein are observed in

surviving neurons in the brains of HD patients at autopsy. However, the pathological role of

such inclusions or their potentially beneficial role in cell survival remains a question of

significance [36].

Understanding of the dysfunctional cellular processes has lead to potential drug therapies,

in particular those targeting the mitochondria [37-44], transcription [18, 45-49], protein

degradation [50], and toxicity [51-60]. However, none of these drug treatments are effective

enough to be considered a viable HD treatment. One possible reason is that each of these drugs

target only one aspect of HD, leaving the possibility that symptoms arising from other

dysfunctions would persist.
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Alternative drugs have been targeted at aggregation, based on the proposal that the

toxicity caused by aggregated Htt is the cause of the cellular dysfunction. Support for this theory

comes from the presence of aggregated expanded Htt in the brains of HD patients [29, 30]. Pure

polyQ aggregates taken up by cells causes toxicity when the aggregates are targeted to the

nucleus [61]. Since caspase cleavage of Htt results in the elimination of the C-terminal nuclear

export signal [62], nuclear toxicity is a possible role for aggregated expanded Htt. In addition,

sequestered proteins such as chaperones, proteasome subunits, transcription regulating proteins,

and ubiquitin binding proteins are found in aggregates. The loss of function of these proteins can

lead to cellular dysfunction, and ultimately cell death. However, several potent aggregation

inhibitors have limited effects on survival of HD animal models [63-65], indicating that

inhibition of aggregation may be of limited effectiveness in treating HD.

Since expanded Htt, aggregated or not, has been implicated in many cellular

dysfunctions, a direct way to treat HD would be to eliminate the disease-causing expanded Htt

from cells. In order to evaluate the effect of removing expanded Htt after disease-onset, the

conditional mouse model HD94, where exon one of expanded Htt with 94Q is expressed in the

forebrain, was created [66]. When the expression of expanded Htt is eliminated after onset of

symptoms, the progression of motor dysfunction and neuronal loss is not only prevented but the

symptoms are actually reverted. If the expression is turned off at 10 months of age, the motor

dysfunction is completely rescued and aggregates are no longer visible [67]. However, if the

expression is turned off at 17 months of age, motor dysfunction is completely rescued without

any effect on aggregates [68]. The study of this mouse model indicates that removal of the

disease-causing expanded Htt is a viable treatment for the disease which can be beneficial at

multiple stages in disease progression.

The first attempt treating HD by eliminating expanded Htt was the use of RNAi

treatments in various HD mouse models, which improves survival and motor functions while

decreasing neuropathology [69-71]. These results with RNAi treatments are encouraging

because they show benefit even without complete elimination of expanded Htt. However, a

drawback to RNAi is that it can not be specific for expanded Htt because RNAi targets small

sections of mRNA sequence, which do not differ between expanded and normal Htt. Since
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normal Htt may serve a protective role, it is not ideal for an HD treatment to decrease the levels

of normal Htt.

An approach to the treatment of HD which, in principle, would be extremely attractive

would be to identify treatments that decrease the levels of expanded Htt while maintaining the

expression of normal Htt. The fact that expanded and normal Htt have different tertiary

structures [72] allows for the possibility that a chemical compound could have specificity to

expanded but not normal Htt. Here, a cell-based assay was implemented to identify compounds

that decrease the levels of expanded but not normal Htt proteins, making no assumptions as to

which cellular dysfunction causes the most harm to HD patients or which form of expanded Htt

is the most toxic to cells. This assay uses 3-galactosidase activity as a reporter for Htt protein

levels. PC12 cells expressing the 3-galactosidase delta-subunit (A), and either expanded (97Q)

or normal (23Q) Htt fused to the -galactosidase alpha-subunit (a) in an inducible fashion exhibit

f[-galactosidase activity. These A-a 97Q cells were used to screen compounds in a High

Throughput Screen format. Counter-screening with A-a 23Q cells and secondary assays

identified two compounds which decrease levels of expanded but not normal Htt proteins. These

data indicate that the A-a 97Q cells and A-a 23Q counter-screen are effective in identifying

compounds that selectively decrease expanded Htt protein levels serving as a proof of principle

for this approach to HD therapy.
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RESULTS

Validation of assay and identification of 11 effective compounds

A-a 97Q ]1PC12 cells were constructed as a cell-based assay to identify compounds that

decrease the level expanded Htt protein. The cell line is stably transfected with two constructs:

one encodes the B3eta-galactosidase (-galactosidase) delta-subunit (A), and the other encodes a

fusion between the first 600 aa of expanded Htt (with 97Q) and the P3-galactosidase alpha-subunit

(a). Thus, Htt protein levels are monitored by 3-galactosidase activity due to alpha-

complementation of 3-galactosidase A-subunit and a-subunit fused to Htt (a 97Q). Both the

f0-galactosidase A-subunit and a 97Q proteins are under the control of the inducible ecdysone

system and can be expressed upon the addition of the inducer Ponasterone A (PonA). A similar

cell line containing a normal length of the polyQ region, A-a 23Q, was also created to be used as

a counter-screen to identify compounds that specifically decrease the protein levels of expanded

but not normal Htt.

In order to validate A-a 97Q cells as capable of identifying compounds which decrease

fP-galactosidase activity by decreasing a 97Q protein levels, a collection of compounds

previously shown to decrease an N-terminal Htt fragment (Htt 1-17 aa) with 103Q fused to

EGFP was tested. Aleksey Kazantsev previously identified 114 compounds that decreased the

overall levels of EGFP (Fig 1A) [73]. Since these PC12 cells expressed only a small Htt

fragment with 103Q, any specific compound that affected the levels of EGFP was presumably

targeting the polyQ. However, some compounds might act non-specifically, for example by

disrupting transcription, ecdysone induction, or cell viability. Therefore, there was a distinct

likelihood that some compounds in this collection would be capable of decreasing

f3-galactosidase activity in A-a 97Q cells.

Kazantsev's lab tested these 114 compounds on the A-a 97Q cells in a High Throughput

Screen (HTS) format. Of the 114 compounds tested, 34 compounds showed less than 75%

f;-galactosidase activity as compared to induced cells without compound and were considered

hits. These 34 compounds were re-tested for validation by performing dose response tests on

A-a 97Q cells in a low-throughput manner. At 10 1 M, 17 compounds were found to have more
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than 101% P3-galactosidase activity, five compounds with 76-100% fP-galactosidase activity, and

one could not provide reproducible results (Fig 1B). These 23 compounds were considered false

positive compounds and were not further analyzed. The remaining 11 compounds showed linear

close response, and at 10 M had less than 75% P3-galactosidase activity. Specifically, one

compound had 0-.25% 3-galactosidase activity, five had 26-50% P3-galactosidase activity, and

five had 51-75% P-galactosidase activity.

Four classes of compounds identified by A-a 23Q counter-screen

The 11 compounds that caused 0-75% P3-galactosidase activity in A-at 97Q cells were then

tested in A-a 23Q cells by dose response curves to determine their specificity to expanded Htt.

Upon examination of the data, the compounds were categorized into four classes (Table 1).

Class I is composed of compounds that decrease P3-galactosidase activity in A-a 97Q cells, but

increase it in A-a 23Q cells as compared to induced cells without compound. The Class II

compound has complex effects on both cell lines. Class III compounds decrease 3-galactosidase

activity in A-a 97Q cells but have no effect on A-a 23Q cells. Finally, Class IV compounds

decrease P3-galactosidase activity in both cell lines. Classes I, II, and III are compounds that have

specificity to expanded Htt, and are described below. Class IV compounds are non-specific, and

will be described in a later section.

Characterization of seven specific acting compounds:

Seven specific acting compounds are grouped into Classes I I, and III

Compounds A7, A8, A9, and A24 were placed in Class I because between 1-10 M, none

caused the f3-galactosidase activity of A-a 97Q to rise above 125%, while the P3-galactosidase

activity of A-a 23Q does increase (Fig 2). These are the most promising compounds because if

f,-galactosidase activity is a true measure for either a 97Q or a 23Q proteins, then these

compounds have the ability to decrease the level of expanded Htt and increase the level of

normal Htt.

Compound A1 8 stands alone in Class II with its ability to dramatically increase

f;-galactosidase activity in both A-a 97Q and A-a 23Q cells at low concentrations (Fig 3).
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However, at higher concentrations, A18 does decrease 3-galactosidase activity in A-a 97Q cells

while still increasing the P3-galactosidase activity of A-a 23Q cells. Therefore, while there was

no specificity at low concentrations, the specificity at high concentrations has the potential of

making this a compound worth pursuing.

In Class III are compounds A25 and A31, which decreased the -galactosidase activity in

A-a 97Q but had no effect on A-a 23Q cells (Fig 4). These two compounds are interesting

because they have the potential of having selectivity for expanded Htt but not normal Htt. This

contrasts with earlier identified compounds that have effects on both expanded and normal Htt.

Effects of Class I, II, and III compounds on cell viability

Compounds that reduce cell viability would also cause a decrease in P3-galactosidase

activity in the assay. Therefore, the compounds were tested in a secondary assay for effects on

viability. Although these compounds had been previously tested for toxicity effects, each cell

line has different sensitivities to compounds. Therefore, they were tested for an effect on

viability (MTS mitochondrial activity assay) of A-a 97Q and A-a 23Q cell lines. Cells were

induced with PonA and either 5 or 10 pM compound for 24 hr, at which time the MTS solutions

were added. 100% MTS activity was defined as the activity of induced cells without compound.

A18 was the only compound that caused a decrease in viability in A-a 97Q cells (Fig 5). This

specific decrease in viability could explain the decrease in P3-galactosidase activity at 10 pM

since a well with fewer healthy or proliferating cells would have lower fP-galactosidase activity.

It is also interesting to note that no compound at 5 or 10 pM increased viability in

A-a 23Q cells. This indicates that the increase in fP-galactosidase activity observed in A-a 23Q

cells with Classes I (Fig 2) and II (Fig 3) compounds was not due to an increase in cell number.

Effects of Class I, II. and III compounds on P-galactosidase and Htt protein levels

Since 3-galactosidase activity level was being used as a reporter for Htt protein levels, it

was important to verify the assay results by measuring protein levels. Immunofluorescence was

used on A-a 97Q and A-a 23Q cell lines which had been induced and treated with 10 pM

compounds for 24 hr. Of all seven specifically acting compounds, only A9 and A24 were

capable of decreasing the level of a 97Q immunofluorescence (Figs 6 and 7). Comparison of

induced A-a 97Q or A-a 23Q cells with DMSO vs. compounds showed that none of the
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compounds had an effect on the cytoplasmic localization of Htt or P3-galactosidase proteins (data

not shown). In addition, none of the compounds had an effect on the level of P3-galactosidase

proteins in either cell line (data not shown).

Compound A9 at 10 M very dramatically decreased the level of a 97Q proteins as

compared to A-a 97Q cells which were treated with the drug vehicle DMSO (Fig 6A and B).

However, it had no effect on either a 23Q or 3-galactosidase A-subunit protein levels (Fig 6C

and D). This indicates that A9 very specifically causes a decrease in expanded Htt protein

levels, but does not affect normal Htt or other proteins induced from the same promoter.

Compound A24 at 10 gM showed a similar pattern in that it decreased a 97Q protein

levels (Fig 7A and B), although not as strongly as A9. Of additional interest, A24 actually

increased the level of a 23Q protein (Fig 7C and D). This change in protein levels directly

parallels the effect of the compound on P-galactosidase activity: it decreased P-galactosidase

activity in A-a 97Q and increased 3-galactosidase activity in A-a 23Q.

Compound A9 may decrease expanded Htt protein production

It was evident by looking at the expression of Htt proteins in A-a 97Q and A-a 23Q cells

with the addition of A9 or A24 that these compounds decreased the amount of a 97Q after 24 hr

of treatment. This decrease in a 97Q protein levels could be due to a decrease in the rate of

a 97Q protein production, an increase in the rate of a 97Q protein degradation, or a combination

of both.

To address this question, the f3-galactosidase activity in the first 12 hr of induction was

assessed in A-a 97Q and A-a 23Q cells. Cells were induced and treated with 10 gIM A9 or A24,

and f3-galactosidase activity was measured every 2 hr (Fig 8). Between 6-10 hr of expression,

both A-a 97Q and A-a 23Q cells with A9 had lower P3-galactosidase activity as compared to

induced cells without compound. However, at 12 hr the 3-galactosidase activity in A-a 97Q cells

was still lower, while A-a 23Q cells had caught-up to the control cells. This suggests that while

A9 may prevent the accumulation of a 97Q and a 23Q proteins at first, this effect is maintained

for a longer period of time with a 97Q but not a 23Q proteins.

In contrast, A24 had no effect on the increase of P3-galactosidase activity in the first 12 hr

of induction. This could suggest that the decrease in a 97Q protein observed at 24 hr with A24
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may be due to increased degradation of a 97Q. Similarly, the increase in a 23Q protein levels

observed could be due to reduced degradation of a 23Q.

Effect of Class I I and III compounds on HttQ l0 3 PC12 cell toxicity

In order to determine if the compounds had the ability to rescue cellular toxicity due to

expressed expanded Htt, they were tested in HttQ 103 PC12 cells. These cells have been shown to

have 50% toxicity upon induction of the expanded Htt [74]. Cells were induced with either 1, 5,

10, or 25 gM compound for 72 hr. The ability of the compounds to rescue toxicity was assessed

by the previously mentioned MTS assay.

All four compounds in Class I showed an ability to rescue toxicity in HttQ10 3 cells

(Fig 9A). More specifically, A7 only had partial rescue at 1 and 5 gM, and even caused

additional toxicity at 25 gM. A8, A9 and A24 had complete rescue, in a dose-dependent manner.

Since A9 and A24 were the only compounds that decreased a 97Q protein levels, HttQ103 cells

treated with 10 gM A9 or A24 were fixed and any changes in the GFP-tagged aggregates were

examined. Cells with DMSO control mainly had multiple aggregates per cell, infrequently had

either one or no aggregates, and never showed diffuse GFP (Fig 9B). Cells treated with A9

mainly had either one or no aggregates, some had diffuse GFP, and rarely were there multiple

aggregates per cell. Cells treated with A24 mainly had a single aggregate, occasionally had

multiple aggregates per cell, and sometimes had diffuse GFP. Cells which had one aggregate did

not show a diffuse GFP signal, indicating that A9 and A24 are most likely not affecting the

aggregation of Htt. The ability of the compounds to prevent multiple aggregates per cell is likely

due to an overall decrease in expanded Htt protein levels. The fact that nucleation of expanded

Htt requires a critical mass supports this theory since cells with low Htt protein levels would be

unable to form aggregates and thus have a diffuse expression pattern.

The only concentration of A18 that could rescue toxicity of HttQ l03 cells was 1 M

(Fig 9A). Perplexingly, it was at low concentrations that A1 8 increased the f3-galactosidase

activity in both A-a 97Q and A-a 23Q cells (Fig 3). Therefore, in this case, a compound that

increases the reporter for Htt protein levels can also rescue toxicity in a different cell line. Of the

two compounds in Class III, only A31 was able to rescue toxicity in HttQ 03 cells (Fig 9A).
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Characterization of four non-specific acting compounds:

Four compounds in Class IV non-specifically decrease D3-galactosidase activity

As mentioned before, the 11 compounds that caused 0-75% 3-galactosidase activity in

A-a 97Q cells were tested in A-a 23Q cells for their ability to specifically affect expanded Htt.

The seven compounds that were found to act specifically on A-a 97Q have already been

discussed. The four compounds that were found to decrease 1-galactosidase activity in both

A-a 97Q and A-a 23Q were A14, A15, A20, and A29 in Class IV (Fig 10). Each of these

compounds non-specifically decreased 3-galactosidase activity to 25-50% at 10 gM.

Effect of Class IV compounds on cell viability

The four non-specific acting compounds were tested for an effect on cellular viability of

A-a 97Q and A-a 23Q cell lines with the MTS assay, in order to identify compounds whose

effect on 0-galactosidase activity can be explained by a decrease in cell number. Cells were

induced PonA and either 5 or 10 gM compound for 24 hr, when the MTS solutions are added.

Compound A14 caused a decrease in viability in both cell lines (Fig 11). In addition to

this, it became apparent when looking at the wells that this compound caused a decrease in cell

number (data not shown). This decrease in cell number could easily explain the decrease in

03-galactosidase activity, therefore this compound was not further studied.

Effect of Class IV compounds on 1-galactosidase and Htt protein levels

In order to verify that the change in P3-galactosidase activity with compound correlated

with a change in Htt protein levels, immunofluorescence was used on A-a 97Q and A-a 23Q cell

lines. Cells were induced and treated with 10 gM compounds for 24 hr. Comparison of induced

cells with DMSO control vs compounds shows than none of the compound had an effect on Htt

or P-galactosidase protein cytoplasmic localization (data not shown). However, A1 5, A20 and

A29 were capable of decreasing the level of a 97Q and a 23Q proteins (Figs 12, 13 and 14).

Compounds A15 and A20 were similarly capable of decreasing both a 97Q and a 23Q

protein levels (Figs 12 and 13). However, these compounds also slightly decreased the

f-galactosidase A-subunit protein levels in A-a 23Q cells. While this may indicate that the

compounds were acting on all induced proteins, it is not necessarily the case since they did not

affect the levels of 3-galactosidase A-subunit protein levels in the A-a 97Q cell line. A29
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decreased the levels of a 97Q and a 23Q proteins (Fig 14). The protein level of P3-galactosidase

A-subunit was not affected, indicating that the decrease in Htt proteins was not a global effect on

induced proteins, but specific to Htt.

Effect of Class IV compounds on HttQ 03 PC12 cell toxicity

In order lo determine if the compounds had the ability to rescue cellular toxicity due to

expressed expanded Htt, they were tested in HttQ 103 PC12 cells, which have 50% toxicity upon

induction of the expanded Htt. Cells were induced with either 1, 5, 10, or 25 M compound for

72 hr. The ability of the compounds to rescue toxicity was assessed by assaying cellular viability

with the MTS assay. Only compound A1 5 could partially rescue HttQl03 toxicity (Fig 15).

Compound A14 had the same toxic effect on HttQl03 that it did on A-a 97Q and A-a 23Q cells,

validating the decision to not study it any further.
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DISCUSSION

In the attempts to find a treatment for HD, many cell models have been created to

recapitulate some aspect of the disease. In many cases, the disease phenotype that was being

targeted was toxicity [75, 76]. In other cases, inhibition of aggregation was the target [77].

While some of these assays have lead to the identification of interesting compounds, they each

target a very specific aspect of the disease. In the hopes of finding a compound which would

have the most dramatic effect on the disease, a cellular assay was designed to target the basic

cause of HD: expression of the expanded Htt protein.

In order to identify compounds that target expanded Htt, a cellular assay was created

which used -galactosidase activity as a reporter for the presence or absence of expanded Htt or

normal Htt. In these cells, A-a 97Q and A-a 23Q cell lines, the amount of a 97Q and a 23Q

protein levels has been shown to directly correlate with P-galactosidase activity. Thus

compounds that decrease P3-galactosidase activity in A-a 97Q cells might also decrease the levels

of expanded Htt.

To validate A-a 97Q cells as a useful drug-discovery assay, a collection of compounds

previously shown to decrease the protein levels of a small Htt fragment and 103Q was tested.

Since the A-a 97Q cell line contains the first 600 aa of Htt and all of the known caspase cleavage

sites [78], they have the ability for the Htt fragment to be cleaved down to a smaller fragment

which could be recognized by the compounds from the 103Q screen.

From the 114 compounds tested in an HTS-format, 34 were found to decrease

P3-galactosidase activity in A-a 97Q cells. Upon re-testing, 11 compounds were found to reliably

and consistently decrease [3-galactosidase activity. Of these, seven were found to act specifically

decrease P3-galactosidase activity in A-a 97Q cells but not A-a 23Q cells, and were

subcategorized into three classes defined by their dose response characteristics (Table 1).

Class I consisted of A7, A8, A9, and A24 which caused a decrease in P3-galactosidase activity of

A-a 97Q cells, but an increase in A-a 23Q cells. Interestingly, compounds A7, A8, and A9

belong to the same structural family of compounds. Class II consisted of only A1 8 which had

the ability to increase P3-galactosidase activity in both A-a 97Q and A-a 23Q at low
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concentrations, but decrease P-galactosidase activity at higher concentrations. While the trend of

effect of A1 8 was similar on both cell lines, there was a shift in the dose response curve, making

the decrease in P-galactosidase activity selective at 10 pM. In Class III were A25 and A31

which decreased P3-galactosidase activity in A-a 97Q cells but had no effect on A-a 23Q cells.

Finally, four compounds non-specifically decreased P3-galactosidase activity in both cell lines,

and were categorized into Class IV.

To understand more clearly the mode of action for each of these 11 compounds, three

additional assays were performed: cellular viability, Htt protein levels, and rescue of HttQl03

toxicity (Table 2). By examining how a compound performed across these experiments, two

distinct ways in which a compound may act to decrease f3-galactosidase activity in A-a 97Q cells

can be distinguished: decrease in Htt protein levels, and decrease in cell number.

Five compounds were found that decreased expanded Htt protein levels. Compounds A9

and A24 in Class I selectively decreased a 97Q protein levels, while compounds A15, A20, and

A29 in Class IV decreased both a 97Q and a 23Q protein levels. In each case, when a

compound had no effect on P-galactosidase activity in A-a 23Q cells, it also had no effect on

a 23Q protein levels. Similarly, those compounds which decreased 3-galactosidase activity in

A-a 23Q also decreased a 23Q protein levels. Since these compounds had no effect on cell

viability or 1-galactosidase delta protein levels, the likely mechanism for decreasing

P3-galactosidase activity is the decrease in a 97Q or a 23Q protein levels. However, the specific

mechanism underlying the decrease in protein levels remains to be elucidated.

Another mechanism for a decrease in ,3-galactosidase activity which can be readily

attributed to compounds is a decrease in cell number. Compound A1 8 in Class II caused a

decrease in cellular viability in A-a 97Q, while the non-specific compound A14 in Class IV

caused a decrease in both A-a 97Q and A-a 23Q cells. The toxic effects of these compounds at

the doses tested suggest that they should not be pursued further, except perhaps at still lower

doses.

The mechanism of action for the four remaining compounds (A7, A8, A25 and A31)

remains elusive. Since compounds A7, A8 in Class I and A31 in Class III have no detrimental

effect on cellular viability and they rescue HttQ103 toxicity to some degree, they remain
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compounds worth pursuing. Since their effect on P3-galactosidase activity is specific to the

expanded Htt cell line, they are compounds which in some way specifically recognize expanded

Htt but not normal Htt. Possible mechanisms include binding to expanded Htt to either change

its conformation or physically interfering with the two 3-galactosidase subunits to prevent alpha-

complementation. Relocalization of expanded Htt to a different cellular compartment to prevent

alpha-complementation has been ruled out by examining A-a 97Q and A-a 23Q cells.

Another potential mechanism for decreasing 3-galactosidase activity is decreasing the

3-galactosidase delta protein levels. A likely reason why no compounds were found with this

mechanism is that these compounds were already selected for their ability to decrease a small

fragment of Htt.

Of the compounds studied, A24 has the highest potential of being a worthy for drug

development. This compound has all the characteristics that would be ideal in treating the basic

cause of HD: decreasing disease-causing expanded Htt protein levels, increasing the protective

normal Htt protein levels, not affecting cellular proliferation, and functional rescue of a toxic cell

line. In the 34,000 compounds from the Chembridge library initially screened, this compound

was found to be the sole representative of its kind. However, these results serve as proof of

principle that compounds with the properties desired for HD therapy can be identified. To

identify compounds with similar properties to A24 two routes may be taken. First, medicinal

chemistry can be used to create new variations of the A24 structure which may have increased

potency for causing reduction in expanded Htt levels. Second, HTS screening of additional

chemical libraries may lead to the identification of compound scaffolds with similar modes of

action but increased potency. Success in either of these endeavors could bring the approach to

HD therapy outlined here significantly closer to practical implementation.
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MATERIALS AND METHODS

Cell culture

A-a 97Q and A-a 23Q PC12 cells were grown at 37°C with 5% CO2 in DME medium

supplemented with 15% fetal bovine serum, 2 mM penicillin-streptomycin, 2 mM L-glutamine.

The pVgRXR, pIND f3-galactosidase A-subunit, and pIND/Hygro a 97Q or a 23Q constructs

were maintained with 0.2 mg/ml Zeocin, 0.25 mg/ml Geneticin, and 0.1 mg/ml Hygromycin,

respectively.

HttQl0 3 PC12 cells were grown at 37°C with 10% CO2 in DME medium supplemented

with 25 mM HEPES, 5% calf serum, 5% horse serum, 2 mM penicillin-streptomycin, and 2 mM

L-glutamine. The plasmid was maintained with 0.5 mg/ml Geneticin.

p-galactosidase activity assay

A-a polyQ cells were seeded at 50 x 104 cells/ml in 96-well plate format induced with

3 gM Ponasterone A (AG Scientific) in DMSO, and then grown at 37°C for 24 hr. Each well

was then rinsed with PBS, and 10 l of modified RIPA was added (150 mM NaCl, 50 mM Tris

HCl pH 7.4, 1 mM EDTA, 1% NP-40, 1% w/v Na-deoxycholate, stored at 4°C). 67 jl of a

master mix (5 l 10Ox Cleavage Buffer, 0.135 il 14.3 M P3-mercaptoethanol, 44.865 il dH 20,

17 jl 4 mg/ml ONPG) from Invitrogen' s -galactosidase Assay Kit was added to each well and

incubated at 37°C for 30-60 min. The addition of 125 il of STOP Buffer (1 M Na2CO3 )

stabilizes the colorimetric change of ONPG cleaved by 3-galactosidase, which was then read at

405 nm on a plate reader.

,3-galactosidase activity is reported in nmoles of ONPG hydrolyzed. The absorbance at

405 nm can be converted to nmoles of ONPG hydrolyzed by the following formula:

nmoles of ONPG hydrolyzed = (OD (a 405 nm) * (final vol =1.92x 105 ni) = (OD4 05n) * (42.667 nmole)
(4500 nl/nmole-cm) * (1 cm)

The data from the experimental wells was normalized by subtracting the amount of

f-galactosidase activity in un-induced wells. To report percent of 3-galactosidase activity, 100%

P-galactosidase activity was defined as the activity of induced cells, while 0% activity was
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defined as the activity of un-induced cells. Subsequently, all experimental data is reported

relative to these two controls.

High Throughput Screen

A-a 97Q cells were seeded on 96-well plates at 10 x 104 cells per well in 200 gl of media

without selection drugs. In order to induce the expression of the 3-galactosidase A and a 97Q

constructs, PonA was added to a final concentration of 3 gM. Compounds from Chembridge

were dissolved in DMSO and screened at 5-10 gM concentrations, in triplicate. Eight wells were

used as positive controls and did not receive any compounds, and eight wells received un-

induced cells to determine 0-galactosidase background activity level. The screen was performed

at MIND CAGn by Deb Russel and Steven Altman, supervised by Aleksey Kazantsev.

MTS assay

A-a polyQ cells were seeded at 10 x 10
4 cells/96-well or HttQl0 3 PC12 cells at 2 x 10

4

cells/96-well and then grown for either 24 hr or 72 hr, respectively. 40 gl of MTS/PMS

(Promega) was added to each well and incubated for 2-4 hr. The colorimetric change of MTS

converted was read at 490 nm on a plate reader. The data from the experimental wells was

normalized by subtracting the reading from medium-only wells.

Immunofluorescence

A-a polyQ cells were seeded at 50 x 104 cells/ml in chamber slides and grown for 24 hr.

The cells were then fixed with 4% paraformaldehyde and blocked with 10% goat serum in PBS

for 1 hr. MAB2166 Htt (1:500 Chemicon) or P3-galactosidase (1:2000 MP Bio) antibodies and

secondary antibodies (Alexa-488 and -594 1:200) were diluted in 10% goat serum and 0.2%

Tween in PBS and incubated for 1 hr.
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Figure 1: Verification of the compounds from HTS
A) Distribution of hits from 103Q HT~ B) Distribution of hits from d-a97Q low-through
put validation of 34 hits from d-a97Q HTS. d-a97Q cells were induced with 3 uM PonA
and 10 uM compound for 24 hr. Beta-galactosidase activity was determined using
Invitrogen's Beta-galactosidase Assay Kit. 1000/0Beta-galactosidase activity is defined
as the activity of induced cells without compound, and the Beta-galactosidase activity of
un-induced cells is subtracted from all data. Compounds were categorized into five
groups: 0-25%, 26-50%, 51-75%, 76-100%, or >100% Beta-galactosidase activity. Of
34 compounds, 11 were found to reproducibly cause less than 75% Beta-galactosidase
activity in d-a97Q cells and were further analyzed.
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Compounds
Relative Beta-galactosidase activity

d-a97Q d-a23Q

I

II

III

IV

A7, A8, A9, A24

A18

A25,A31

A14, A15, A20, A29

down

complex

down

down

up

complex

same

down

Table 1: Counter-screen d-a23Q categorizes 11 compounds into four classes
The 11 compounds verified to decrease Beta-galactosidase signal in d-a97Q were
counter-screened in d-a23Q cells. Relative Beta-galactosidase activity is compared to
induced cells without compound. Compounds in Class I raise the Beta-galactosidase
signal in d-a23Q cells. The compound in Class II has complex effects in both cell lines.
Compounds in Class III have no effect on Beta-galactosidase activity in d-a23Q cells.
Compounds in Class IV decrease Beta-galactosidase activity in both cell lines.
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Figure 2: Class I compounds decrease Beta-galactosidase activity in d-a97Q but
not d-a23Q
d-a97Q (triangles) and d-a23Q (squares) cells were induced with 3 uM PonA and upto
10 uM compound for 24 hr. Beta-galactosidase activity was determined using
Invitrogen's Beta-galactosidase Assay Kit. 100% Beta-galactosidase activity is defined
as the activity of induced cells without compound, and the Beta-galactosidase activity of
un-induced cells is subtracted from all data. In each of these four compounds, Beta-
galactosidase activity rises above 125% in d-a23Q but not in d-a97Q cells. Y-axis
indicates relative Beta-galactosidase enzymatic activity. X-axis indicates uM
compound. Error bars indicate standard deviation. Asterisk indicates P<0.005 when
comparing vs. 0 uM. N=5 for data points in the first column of graphs, and N=3 for
data points in the second column of graphs.
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Class II -*d-a97Q
-wd-a23Q

CI

u~N ~ ~r

Figure 3: A18 decreases Beta-galactosidase activity in d-a97Q but not d-a23Q at
high dosage
d-a97Q (diamonds) and d-a23Q (squares) cells were induced with 3 uM PonA and
either 1, 2, 5, 8, or 10 uM compound for 24 hr. Beta-galactosidase activity was
determined using Invitrogen's Beta-galactosidase Assay Kit. 100% Beta-galactosidase
activity is defined as the activity of induced cells without compound, and the Beta-
galactosidase activity of un-induced cells is subtracted from all data. With this
compound, Beta-galactosidase activity rises above 125% in both d-a97Q and d-a23Q
cells. Y-axis indicates relative Beta-galactosidase enzymatic activity. X-axis indicates
pM compound. Error bars indicate standard deviation. Asterisk indicates P<0.005
when comparing vs. 0 uM. N=5 for data points in the first column of graphs, and N=3
for data points in the second column of graphs.
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Figure 4: A25 and A31 decrease Beta-galactosidase activity in d-a97Q but not
d-a23Q
d-a97Q (diamonds) and d-a23Q (squares) cells were induced with 3 uM PonA and
either 1, 2, 5, 8, or 10 uM compound for 24 hr. Beta-galactosidase activity was
determined using Invitrogen's Beta-galactosidase Assay Kit. 100% Beta-galactosidase
activity is defined as the activity of induced cells without compound, and the Beta-
galactosidase activity of un-induced cells is subtracted from all data. With these two
compounds, Beta-galactosidase activity does not rise above 125% in either d-a97Q or
d-a23Q cells. Y-axis indicates relative Beta-galactosidase enzymatic activity. X-axis
indicates puM compound. Error bars indicate standard deviation Asterisk indicates
P<0.005 when comparing vs. OuM. N=5 for data points in the first column of graphs,
and N=3 for data points in the second column of graphs.
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Figure 5: Only A18 decreases cellular viability
d-a97Q (A) and d-a23Q (B) cells were induced with 3uM PonA and either 5 or 10 uM
compound for 24 hr. Cell viability was determined using Promega's MTS Assay Kit.
100% MTS activity is defined as the activity of induced cells without compound (0 uM).
V-axis indicates relative MTS activity. Error bars indicate standard deviation. Asterisks
indicate P<O.005 when compared to 0 uM. N=6.
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d-a97Q DAPI Beta-galactosidase
delta

Htt

DMSO

A9
10 uM

A

B

d-a23Q

DMSO

A9
10 uM

c

D

DAPI Beta-galactosidase
delta

Htt

Figure 6: A9 decreases a97Q but not a23Q or Beta-galactosidase delta-subunit
protein levels.
d-a97Q (A-B) and d-a23Q (C-D) cells were induced with 3 uM PonA and compound for
24 hr. DAPI (first column) stain was used to visual the nuclei, Alexa-594 for the Beta-
galactosidase antibody (middle column), and Alexa-488 for the MAB2166 Htt antibody
(last column).
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delta

Htt

OMSO

A24
10 uM

C

D

Figure 7: A24 decreases a97Q but increases a23Q protein levels.
d-a97Q (A-B) and d-a23Q (C-D) cells were induced with 3 uM PonA and compound for
24 hr. OAPI (first column) stain was used to visual the nuclei, Alexa-594 for the Beta-
galactosidase antibody (middle column), and Alexa-488 for the MAB2166 Htt antibody
(last column).
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Figure 8: A9 lowers the rate of increase of Beta-galactosidase activity
d-a97Q (A) and d-a23Q (B) cells were induced with 3 uM PonA and either 10 uM of
A24 or A9. Beta-galactosidase activity was assayed every 2 hr, beginning at 4 hr after
induction and ending at 12 hr after induction. Error bars indicate standard deviation.
Asterisks indicate P<0.005 when compared to induced cells without compound. N=4.
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MTS on HttQ 103A
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Figure 9: Almost all Class I and III compounds rescue toxicity of HttQ103 PC12
cells, and compounds A9 and A24 alter the presentation of GFP aggregates
HttQ103 PC12 cells were induced in the presence of either 1, 5, 10, 15, or 25 uM
compound for 72hr. A) 100% MTS activity is defined as the activity of un-induced cells
(white bars). A compound is determined to rescue toxicity when the MTS activity is
significantly higher than that of induced cells with DMSO control (0 uM, hatched bars),
emphasized with the dashed line. Y-axis indicates relative MTS activity. Error bars
indicate standard deviation. Asterisks indicate P<0.005 when compared to induced
cells without compound. N=6 for each data point, except the 25 uM data points where
N=3. B) Comparison of induced cells at 72 hr with DMSO control or A9 or A24 at 10
uM. DAPI was used to stain nuclei, and green indicates the expression of the HttQ1 03_
GFP construct.
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Figure 10: A14, A15, A20, and A29 decease Beta-galactosidase activity in both
d-a97Q and d-a23Q.
d-a97Q (triangles) and d-a23Q (squares) cells were induced with 3 uM PonA and upto
10 uM compound for 24 hr. Beta-galactosidase activity was determined using
Invitrogen's Beta-galactosidase Assay Kit. 100% Beta-galactosidase activity is defined
as the activity of induced cells without compound, and the Beta-galactosidase activity of
un-induced cells is subtracted from all data. Y-axis indicates relative Beta-
galactosidase enzymatic activity. X-axis indicates uM compound. Error bars indicate
standard deviation. Asterisks indicate P<0.005 when compared to induced cells without
compound. N=5.
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Figure 11: A14 decreases cellular viability
d-a97Q (A) and d-a23Q (8) cells were induced with 3 uM PonA and either 5 or 10 uMcompound for 24 hr. Cellular viabilitywas determined using the MTS Assay Kit. 100%

MTS activityis defined as the activityof induced cells without compound. Y-axis
indicates relative MTS activity. Error bars indicate standard deviation. Asterisks
indicate P<0.005 when compared to induced cells without compound. N=6 for A 14 and
A 15, N=3 for A20 and A29.
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Figure 12: A15 decreases a97Q and a23Q protein levels
d-a97Q (A-B) and d-a23Q (C-D) cells were induced with 3 uM PonA and compound for
24 hr. DAPI (first column) stain was used to visual the nuclei, Alexa-594 for the Beta-
galactosidase antibody (middle column), and Alexa-488 for the MAB2166 Htt antibody
(last column).

84



d-a97Q DAPI Beta-galactosidase
delta

Htt

OMSO

A20
10 uM

A

B

d-a23Q DAPI Beta-galactosidase
delta

Htt

OMSO

A20
10 uM

C

D

Figure 13: A20 decreases a97Q and a23Q protein levels
d-a97Q (A-B) and d-a23Q (C-D) cells were induced with 3 uM PonA and compound for
24 hr. OAPI (first column) stain was used to visual the nuclei, Alexa-594 for the Beta-
galactosidase antibody (middle column), and Alexa-488 for the MAB2166 Htt antibody
(last column).
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Figure 14: A29 decreases a97Q and a23Q protein levels
d-a97Q (A-B) and d-a23Q (C-D) cells were induced with 3 uM PonA and compound for
24 hr. OAPI (first column) stain was used to visual the nuclei, Alexa-594 for the Beta-
galactosidase antibody (middle column), and Alexa-488 for the MAB2166 Htt antibody
(last column).
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Figure 15: A15 rescues toxicity of HUQ103 PC12 cells
HttQ103 PC12 cells were induced in the presence of either 1, 5, 10, or 25 uM
compound for 72 hr. 1000/0 MTS activity is defined as the activity of un-induced cells
(white bars). A compound is determined to rescue toxicity when the MTS activity is
significantly higher than that of induced cells with DMSO control (0 uM, hatched bars),
emphasized with the dashed line. Y-axis indicates relative MTS activity. Error bars
indicate standard deviation. Asterisks indicate P<0.01 when compared to induced cells
without compound. N=6, except A 14 where N=6.
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N/A N/A

4444

4444

4444

rescue HttQ 10 3

toxicity

Yes

Yes

Yes

Yes

No

No

Yes

No

Yes

No

No

Table 2: Summary of the effects of each compound on assays tested
Table indicates summary of effect of each of the compounds on the assays tested:
cellular viability of d-a97Q or d-a23Q, protein levels of a97Q or a23Q, and rescue of

HttQ 1 03 toxicity. Results are relative to induced cells without compound, positive
controls. The compounds are organized by Classes , II, III, and IV. A9 and A24 have
the most ideal characteristics across the assays, namely no affect on cellular viability, a

decrease in a97Q but not a23Q protein levels, and rescue of Htt-Q 1 0 3 PC12 toxicity.
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CHAPTER IV

FUTURE DIRECTIONS EXTENDING THE WORK DESCRIBED HERE

ABSTRACT

A number of lines of investigation should be pursued to extend the work described here

towards the ultimate goal of identifying an effective therapeutic intervention for HD. It would

clearly be of significance to expand screening of chemical libraries in the hope of identifying

compounds with higher levels of activity and alternative structures for further development

through medicinal chemistry. An important line of investigation which should be pursued will

be to establish the mechanistic basis by which identified compounds cause their effect on Htt

protein levels. It would also be valuable to expand the range of cell and animal models in which

compounds are characterized to develop a better understanding of the range of physiological

conditions under which a compound will remain active in specifically decreasing endogenous

expanded Htt protein levels. New cell lines can also be developed for more efficient screening

and characterization of compounds. Finally, detailed analysis through medicinal chemistry to

establish structure activity relationships for specific compound families would be an important

part of this effort. In the course of this discussion some preliminary data that support the

feasibility of particular lines of investigation is presented.
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FUTURE DIRECTIONS

A cell-based assay was designed and constructed in order to identify compounds that

specifically decrease expanded Htt but not normal Htt protein levels (Chapter II).

3-galactosidase activity in these cells, A-a 97Q and A-a 23Q PC 12 cells, was used as a reporter

for the presence of expanded or normal Htt proteins. A collection of 114 compounds were

screened in A-a 97Q cells in an HTS format successfully validating the assay (Chapter III). Of

34 compounds that emerged from the screen, 11 were confirmed by dose response curves in

A-a 97Q cells. These 11 validated compounds were then counter screened in A-a 23Q cells to

determine their specificity to expanded Htt. The compounds were further characterized by

assessing their ability to decrease protein levels and functionally rescue the toxicity of another

HD cell model. These data showed that the assay system described here utilizing A-a 97Q and

A-a 23Q cells can be successfully used to identify compounds which specifically decrease

expanded Htt protein levels.

In this chapter, I will discuss the future directions which I believe should follow these

studies. In the course of this discussion I will present some preliminary data that support the

feasibility of particular lines of investigation.

Direct use of the A-a 97Q and A-a 23Q cells as a primary HTS

It would clearly be desirable to identify additional compounds which have chemical and

functional properties that are appropriate as a starting point for therapeutic intervention in HD.

The compounds screened in Chapter III were pre-selected in that they were previously shown to

decrease the levels of a smaller Htt fragment with 103Q. The use of A-a 97Q cells as a primary

screening system would be preferable vs. a primary screen utilizing a smaller Htt fragment

because the target polypeptide in the A-a 97Q screening system would be more likely to closely

resemble the conformation of native full length Htt.

In order to assess the performance of A-a 97Q cells in a full-scale HTS, these cells were

used to screen a 5,000 compound collection (from Maybridge) in collaboration with Aleksey

Kazantsev and his laboratory. Thirteen compounds were found to decrease 3-galactosidase
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activity to below 75% of induced cells without compound. This hit rate of 0.26% was similar to

other screens; for example, the 0.36% hit rate in the Htt-103Q PC 12 cell line used to screen

36,000 compounds [1].

Dose response curves on A-a 97Q cells were used to verify the HTS results. At 10 gM,

one compound had more than 75% 3-galactosidase activity (Fig 1). This was considered a false

positive and not further analyzed. The remaining 12 compounds showed linear dose responses,

and at 10 gM had less than 75% 3-galactosidase activity. Specifically, three had 0-25%

P3-galactosidase activity, three had 26-50% 3-galactosidase activity, and six had 51-75%

3-galactosidase activity.

The 12 compounds that caused 0-75% 3-galactosidase activity in A-a 97Q cells were then

tested in A-a 23Q cells for their ability to specifically affect expanded Htt. Three compounds did

not decrease the P-galactosidase activity of A-a 23Q cells below 75% and were considered

compounds with specificity to expanded Htt (Fig 2). The three specifically acting compounds

(M4, M5, and M6) each caused no change in 03-galactosidase activity in A-23Q cells, and thus

were categorized into Class III of compounds previously described in Chapter III. While

compounds M4 and M5 caused the most striking difference between 3-galactosidase activities of

A-a 97Q and A-a 23Q cells at 10 gM, compound M6 had the best effect at 1 xM.

Of the 12 compounds which caused 0-75% P3-galactosidase activity in A-a 97Q cells, nine

were found to also decrease 3-galactosidase activity in A-a 23Q cells and were categorized into

Class IV of compounds previously described in Chapter III (data not shown). Of these, three had

0-25% 3-galactosidase activity, four had 26-50% P3-galactosidase activity, and one had 51-75%

p-galactosidase activity in both cell lines. One compound caused a greater decrease in

3-galactosidase activity in A-a 23Q cells than in A-a 97Q cells.

Further experiments should be performed to fully characterize the 12 compounds. The

viability of cells with addition of compound should be determined with the mitochondrial

activity MTS assay to identify those compounds that decrease 3-galactosidase activity by

decreasing cell number (similar to Chapter III Figs 5 and 11). Immunofluorescence on these

cells should be performed to identify what effects these compounds have on a 97Q, a 23Q, or

3-galactosidase A-subunit protein levels or cellular localization (similar to Chapter III Figs 6, 7,
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12-14). Finally, these compounds should be tested on HttQ10 3 PC 12 cells to check their ability to

functionally rescue toxicity (similar to Chapter III Figs 9 and 15). The results of these

experiments will allow the characterization of compounds that cause a decrease in a 97Q protein

levels and can functionally rescue toxicity, and are therefore of potential interest for further

development. The effective use of the A-a 97Q cell based assay in an HTS format suggests that

the use of this assay for the screening of additional chemical libraries is likely to be productive.

Mechanistic analysis of decrease in expanded Htt protein level with compounds

Chapter III described a series of experiments that were performed to help determine the

mode of action of seven compounds found to decrease P3-galactosidase activity specifically in

A-a 97Q cells, and four compounds found to decrease 3-galactosidase activity non-specifically in

A-a 97Q and A-a 23Q cells. The analysis of these experiments showed that five compounds

caused a decrease in Htt protein levels, two compounds specifically in A-a 97Q cells and three in

A-ct 97Q and A-a 23Q cells. The mechanistic basis for the activity of each compound is an

important question which should be explored further.

Decrease protein production vs. increased protein degradation

A question of interest which can be answered with greater clarity is the extent to which a

compound acts at the time of synthesis of the polypeptide chain to influence its rate of

production vs. the potential effect on the stability of a polypeptide chain increasing its rate of

degradation. One experimental protocol which can give insight into this question would be to

examine the rate of decrease of P3-galactosidase activity and immunofluorescence in A-a 97Q and

A-a 23Q cells with the addition of compound, a wash-out experiment. Figure 3 shows

preliminary data with 10 laM A25 where A-a 97Q and A-a 23Q cells were induced for 24 hr.

The media from each well was removed and replaced with either media without inducer, or

media without inducer but with A25. In this case, A25 had no effect on the rate of decrease of

fl-galactosidase activity upon removal of inducer. A complementary experiment which can

provide additional information on the question of a compound's effect the production vs.

degradation of expanded Htt protein is an induction time course (similar to Chapter III Fig 8).

This could be followed, in principle, by a pulse labeling experiment. In this protocol, protein
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production is quantified by incorporation of a labeled amino acid such as 35S Methionine. By

running protein samples taken over a time course on an acrylamide gel, a change in the

instantaneous rate of production of a 97Q in the presence of a compound can be determined.

Taken together these experiments can distinguish effects of a compound on the instantaneous

rate of production of a 97Q and the subsequent rate of degradation of a 97Q.

Decrease in the instantaneous rate of synthesis of expanded Htt

The identification of a mechanism of action for compounds which reduce the

instantaneous rate of synthesis of a 97Q will be quite challenging. It is worth noting, however,

that characterization of nascent polypeptide chain interactions inside the ribosome during

synthesis provide strong evidence for distinctive chaperone activity within the ribosome tunnel

as a nascent chain is undergoing elongation [2]. The events which occur during the folding and

processing of nascent chains could be the sites of specificity for the action of compounds which

impact on the instantaneous rate of synthesis of a 97Q. Characterization of a 97Q and a 23Q

behavior in systems designed to recapitulate these effects in vitro could lead to a mechanistic

understanding of the basis of action of compounds which affect these processes.

Increase in the rate of degradation of expanded Htt

Several experiments could elucidate what aspects of degradation could be affected by a

compound which causes an increased degradation rate for a 97Q. One mechanism for an

increase in degradation could be proteasome targeting, which has been implicated in HD [3]. To

address this possibility, a variation on the wash-experiment can be performed. Here, A-a 97Q

and A-a 23Q cells would be induced for 24 hr at which time the media is replaced with new

media containing either a proteasome inhibitor and compound, or a proteasome inhibitor alone.

If the P-galactosidase activity in cells with proteasome inhibitor and compound decreases as

compared to cells with proteasome inhibitor but no compound, then the pathway of degradation

is proteasome-independent.

Chaperones play a role in the rate of degradation and have also been implicated in HD

[4]. If a compound affects the effectiveness of a chaperone that participates in the folding of

a 97Q, this could result in a higher percentage of misfolded a 97Q proteins which, would then be
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targeted for degradation. In vitro assays of chaperone activity could be useful in determining the

impact of compounds on these pathways.

Of interest in this regard is a recent report showing that 17-AAG, an analog of

geldanamycin, both hsp-90 inhibitors, specifically decreases protein levels of the Androgen

receptor with expanded polyQ but not normal polyQ, and in doing so ameliorates an SBMA

mouse model of its disease symptoms [5]. It was of interest to determine if this compound

would also have specificity to expanded Htt, since this is precisely the type of compound which

A-a 97Q and A-a 23Q cells were designed to identify in an HTS. However, 17-AAG was

unavailable at the time so geldanamycin was tested instead. Interestingly, geldanamycin caused

a decrease in P-galactosidase activity in both A-a 97Q and A-a 23Q cells, even at very low

concentrations (Fig 4). Analysis of viability by the MTS assay will determine if geldanamycin

decreases 3-galactosidase activity by decreasing cell number (similar to Chapter III Figs 5 and

11), a possibility since it is known to have some toxicity. If this result is negative,

immunofluorescence on cells would determine if geldanamycin decreases both a 97Q and a 23Q

protein levels (similar to Chapter III Figs 6, 7, 12-14). If geldanamycin does indeed decrease

both a 97Q and a 23Q protein levels, it may suggest that 17-AAG does not recognize a protein

by its expanded polyQ region alone, but perhaps by the polyQ region in context of the protein.

This would explain why 17-AAG can have specificity to expanded AR but geldanamycin would

recognize both expanded and normal Htt. In addition, the effects of 17-AAG would ideally be

tested on A-a 97Q and A-a 23Q cells in order to make this conclusion.

Further validation of compounds in additional cell-based and animal assay systems

To further the overall goals of identifying an effective therapeutic intervention for HD, it

would be desirable to continue validating compounds on other HD assay systems. One such

system could be a novel cell-based assay designed to determine the range of polyQ lengths

recognized by the compound. It would also be beneficial to show that the compound decreases

endogenous full length expanded Htt protein levels in other HD model cells. Finally, testing the

compounds on HD animal models for rescue of symptoms is an essential step before proceeding

to human clinical trials.
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Decrease -galactosidase activity in A-a (intermediate polyQ) PC 12 cells

Testing the effect of compounds on A-a 97Q and A-a 23Q cells allows the determination

of the specificity of a compound for expanded Htt. Creating new cell lines with intermediate

lengths of polyQ would help determine at what polyglutamine length the compounds are

specific. Compounds tested only in cell lines with very high polyQ lengths may not be effective

for treating HD because the majority of HD patients have 40-50 glutamines [6]. It would

therefore be import to utilize cell lines expressing Htt with polyQ lengths similar to those seen in

most HD patients to validate compounds identified in screens based on longer poly Q lengths.

Decrease full length expanded Htt protein levels in cell models

It would be beneficial to examine the effects of the compounds on cell lines that express

both full length expanded and normal Htt in an endogenous manner. One such cells line is

StHdh Q 1 /Q7 which is a straital cell line from a knock-in transgenic mouse where 111Q have

been knocked-in to one of the Htt alleles [7]. Another useful cell line would be human

lymphoblasts cells from HD patients.

Preliminary work has been done to optimize the analysis of Htt protein levels from

StHdh QI 1 /Q7 (Fig 5A) and human lymphoblast cells (Fig 5B, C). The Western blots for the

fll length Htt proteins show that the expanded and normal Htt proteins can be separated and

identified (Fig 5A and B). This allows for the possibility of identifying a compound which

decreases the expanded Htt protein levels in any of these cells. In addition, a Western blot for a

collection of human lymphoblasts shows that endogenous Htt with different lengths of polyQ can

be cleaved into different length Htt fragments (Fig 5C). This is helpful because these Western

blots could also identify compounds which may not have any effect on full length but would

decrease Htt fragments levels.

While Western blots have the ability to identify compounds which affect the levels of full

length or fragment Htt proteins, they are not very effective in determining if there is a change in

fiull length Htt which exist in aggregates. In order to address this, filter trap assays could be

performed. In this experiment, protein extracts are run through a membrane that allows soluble

proteins to pass through but aggregated proteins remain trapped. The amount of protein on the
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membrane can then be quantified to determine if the addition of compound to cells affects the

levels of aggregated protein.

Rescue of symptoms and premature death in animal models

Using cell models is a good start in identifying compounds which could be drug

candidates. To continue with more complex systems, certain animal models can be tested. For

example, the compounds can be tested for rescue of toxicity in an HD yeast model [8, 9].

Similarly, they can be tested for rescue of toxicity in an HD Drosophila model [ 10, 11 ]. If a

compound succeeds in rescuing these animals, then it can be tested in an HD mouse model for

rescue of behavior, neuropathology, and death [12].

Identification of compounds of higher activity

While some compounds identified thus far may be potential candidates for further

development, it would clearly be desirable to identify compounds which show desirable activity

at a lower concentration range. The screening of additional libraries is clearly one route to such

compounds. The exploration of novel compounds structurally related to ones found to be active

would be of significance. In addition, structure activity relationships may provide insight into

the molecular target of each compound series. Two complementary routes towards the

acquisition of structurally related compounds for each active compound are available.

Pre-existing compound libraries

The compounds tested thus far have been acquired from sources which have already

synthesized many additional compounds which include structurally related compounds for each

compound tested. An initial strategy which may be taken is therefore to acquire a series of such

structurally related compounds and test them in the assays described here. A preliminary picture

of structure activity relationships may emerge from such studies.

Medicinal chemistry

Despite the availability of many such compounds from suppliers, as a study of this type

proceeds, it will likely become necessary to synthesize de novo a series of compounds which test

specific hypotheses or are likely to have higher biological activity. The further development of a

compound series which shows good activity in cell-based assays may also include attention to
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structural features of candidate molecules which improve bioavailability, serum half-life, and

blood brain barrier penetration, while retaining the original specificity for reduction in levels of

expanded Htt protein.

Final thoughts

The original motivation for the work described in this thesis was to contribute to the

development of a therapeutic intervention for HD. Upon learning about all the various cellular

dysfunctions that contribute to the disease symptoms, I thought targeting only one of these

pathways would not necessarily have any significant effect on the HD patient. Therefore, I

believed that the optimal way to treat HD was to target all of the cellular dysfunctions, and the

simplest way to accomplish this would be to use one drug that targets the common underlying

cause for all of the dysfunctions. I rationalized that people who do not express the expanded Htt

protein do not exhibit HD symptoms, therefore if I could identify a compound that eliminates

this disease-causing protein then it would be the optimal way to treat the disease. It is my hope

that the results and discussion in this thesis have provided an incremental contribution towards

the development o)f a therapy for HD.
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MATERIALS AND METHODS

Cell culture

A-a 97Q and A-a 23Q PC12 cells were grown at 37°C with 5% CO2 in DME medium

supplemented with 15% fetal bovine serum, 2 mM penicillin-streptomycin, and 2 mM

L-glutamine. The pVgRXR, pIND 3-galactosidase A-subunit, and pIND/Hygro a 97Q or a 23Q

constructs were maintained with 0.2 mg/ml Zeocin, 0.25 mg/ml Geneticin, and 0.1 mg/ml

Hygromycin, respectively.

Lymphoblast cells were grown at 37°C with 5% CO2 in RPMI medium supplemented

with 15% fetal bovine serum and 2 mM penicillin-streptomycin.

StHdh (Q 11 /Q7) cells were grown 33°C with 5% CO2 in DME medium supplemented

with 10% fetal bovine serum, 2 mM L-glutamine, and 200 ug/ml Geneticin.

P-galactosidase activity assay

A-a polyQ cells were seeded at 50 x 104 cells/ml in 96-well plate format induced with

3 gM Ponasterone A (AG Scientific) in DMSO, and then grown at 37°C for 24 hr. Each well

was then rinsed with PBS, and 10 jtl of modified RIPA was added (150 mM NaCl, 50 mM Tris

HCI pH 7.4, 1 mM EDTA, 1% NP-40, 1% w/v Na-deoxycholate, stored at 4°C). 67 pil of a

master mix (5 gl 10x Cleavage Buffer, 0.135 gl 14.3 M P3-mercaptoethanol, 44.865 gl dH2O,

17 pgl 4 mg/ml ONPG) from Invitrogen's 3-galactosidase Assay Kit was added to each well and

incubated at 37°C for 30-60 min. The addition of 125 gl of STOP Buffer (1 M Na2CO3)

stabilizes the colorimetric change of ONPG cleaved by -galactosidase, which was then read at

405 nm on a plate reader.

P3-galactosidase activity is reported in nmoles of ONPG hydrolyzed. The absorbance at

405 nm can be converted to nmoles of ONPG hydrolyzed by the following formula:

nmoles of ONPG hydrolyzed = (OD a, 405 nm) * (final vol =1.92x 105 nl) = (OD4 05m) * (42.667 nmole)
(4500 nl/nmole-cm) * (1 cm)

The data from the experimental wells was normalized by subtracting the amount of

3-galactosidase activity in un-induced wells. To report percent of 3-galactosidase activity, 100%

[3-galactosidase activity was defined as the activity of induced cells, while 0% activity was
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defined as the activity of un-induced cells. Subsequently, all experimental data is reported

relative to these two controls.

High Throughput Screen

A-a 97Q cells were seeded on 96-well plates at 10 x 104 cells per well in 200 p1 of media

without selection drugs. In order to induce the expression of the P3-galactosidase A and a 97Q

constructs, PonA was added to a final concentration of 3 p.M. 5,000 compounds from Maybridge

were dissolved in DMSO and screened at 5-10 jiM concentrations, in triplicate. Eight wells were

used as positive controls and did not receive any compounds, and eight wells received un-

induced cells to determine 3-galactosidase background activity level. The screen was performed

at MIND CAGn by Deb Russel and Steven Altman, supervised by Aleksey Kazantsev.

Western blots

StHdh (Q 111/Q7) cells were seeded at 10 x 10 4 cells/ml in 12-well plates. Cells were

lysed in StHdh lysis buffer (20 mM Tris pH7.2, 150 mM NaCl, 1 mM EDTA, 1% Triton-X 100)

and Complete Protease Inhibitors (Roche), ice 30 min.

Lymphoblast cells were seeded at 10 x 104 cells/ml in 6-well plates. Cells were lysed

with Lysis Buffer (50 mM Tris pH8, 100 mM NaCl, 5 mM MgCl2, 0.5% NP-40) and Complete

Protease Inhibitors (Roche), ice 30 min.

Protein concentration was determined using Protein Assay and BSA standards (Bio Rad).

40-100 fig of protein in SDS loading buffer were loaded on an 8.5% low-bis acrylamide gel in a

PROTEAN II system (Bio-Rad), with P3-mercaptoethanol in the running buffer. Proteins were

transferred to PVDF (Millipore) using 10% MeOH in transfer buffer (25 mM Tris, 190 mM

glycine), at 25V 8 hr in 4°C.

PVDF blots were blocked in PBST with 0.5% milk for 1 hr. Actin (1:500, Sigma),

MAB2166 Htt (1:2000, Chemicon), or PolyQ (1:2000) antibodies were diluted in PBST with

0.5% milk and incubated for 2 hr at room temperature or overnight at 4°C. HRP-conjugated

secondary antibodies were diluted in PBST with 0.5% milk and incubated with blots for 30-45

min. Proteins were visualized with ECL Plus (Amersham Biosciences), and blots exposed to

MR film (Kodak).
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75-100%

Figure 1: Distribution of 13 hits from HTS of 5,000 Maybridge compounds
d-a97Q cells were induced and treated with 10 uM compound for 24 hr. Compounds
were categorized by their ability to decrease Beta-galactosidase activity. Categories are
0-25%, 26-50%, 51-75%, and 75-100% Beta-galactosidase activity as compared to
induced cells without compound.
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Figure 2: Dose response curves for 3 Maybridge specific acting compounds
d-a97Q (diamonds) and d-a23Q (squares) cells were induced and treated with either
1, 2.5, 5, 7.5, or 10 uM compound for 24 hr. Y-axis indicates relative Beta-
galactosidase activity. X-axis indicates uM of compound. Error bars indicate standard
deviation. Asterisks indicate P<0.005 when compared to induced cells without
compound. N=2.
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Figure 3: Sample Wash-out experiment with A25
d-a97Q (A) and d-a23Q (B) cells were induced for 24 hr. The media from each well
was removed and replaced with either media with PonA (diamonds), media without
PonA (squares), or media without inducer but with 10 uM A25 (triangles). Beta-
galactosidase activity was assayed every 2 hr for 12 hr. Y-axis indicates relative Beta-
galactosidase activity. Error bars indicate standard deviation. N=5.
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Figure 4: Geldanamycin decreases Beta-galactosidase activity in both d-a97Q
and d-a23Q cells
d-a97Q (diamonds) and d-a23Q (squares) cells were induced and treated with either
1, 10, 50, or 100 nM geldanamycin. Y-axis indicates relative Beta-galactosidase
activity. X-axis indicates nM of geldanamycin. Error bars indicate standard deviation.
Asterisks indicate P<0.01 when compared to induced cells without compound. N=4.
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A Mouse Straital
htt alleles
1110 1110
70 70

B Human Lymphoblasts
htt alleles

630 530 440 200
240 170 150 180

C Human Lymphoblasts
htt alleles

730 630 620 520 430 200 300
190 240 190 180 160 180 240

182kDa

116kDa

83kDa

64kDa

Figure 5: Sample Western blots of mouse straital and human lymphoblast cells
Lysates from StHdh 07/0111 (A) or various human Iymphoblasts (B, C) were run on
acrylimide gels and transferred to PVDF blots. A) PolyO antibody recognized full
length proteins. B) MAB2166 Htt antibody recognized full length htt proteins. C)
PolyO antibody recognized multiple Htt fragments.
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