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Abstract
The field of computational fluid mechanics of viscoelastic flows has been well explored in
the three decades since its inception. Still, even with the vast amount of work detailed in
the literature, much remains to be done towards the improvement of models of viscoelastic
fluids and the improvement of the numerical methods used to solve the set of governing
equations. The work contained in this document is concentrated in the latter of these
areas.

The main goal of this body of work is to develop a robust, efficient simulation package
to model three-dimensional viscoelastic flows. In order to accomplish this goal, improve-
ments to the numerical methods and equation formulation were necessary to help reduce
the overall size of the equation set used to describe viscoelastic flows in three-dimensional
geometries. In order to test their viability for use in reducing the overall size of the prob-
lem, concepts involving changing the formulation of the equations and the numerical
methods used to find the solution to the equations were first implemented and analyzed
in a previously developed two-dimensional finite element simulation package.

Implementation and analysis is discussed of a formulation change involving decoupling
the calculation of the velocity gradient interpolant equation and the momentum and mass
continuity equations in the DEVSS-G formulation. Two different decoupled methods for
computing the velocity gradient, one using a global least squares approximation and
the other a local patch algorithm, are explored. While both methods reduce to the
true velocity gradient with mesh refinement, the patch algorithm is shown to require
significantly more mesh refinement than the global least squares approximation to order
to attain equivalent refinement of the solution. Comparison of the two methods taking
into account the additional refinement requirements of the local patch algorithm makes
clear the superiority of the decoupled global least squares approximation for calculation
of the velocity gradient interpolant.

The versatility and robustness of the decoupled form of the DEVSS-G equations are
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demonstrated through the addition and modification of the evolution equations describing
the stress of the polymer as well as new physical quantities of the flow. A time-dependent,
free-surface finite element method is developed in which an evolution equation derived
from the kinematic boundary condition is used to describe the height of the free surface
as a function of time. This new evolution equation is incorporated into the decoupled
formulation by simply adding an additional step to the time integration to evaluate the
change in the height of the surface during the current timestep and then updating the
element locations in the deformable region of the mesh. Application of the new equation
in this manner requires no knowledge of the direct dependence of the system on changes
in the new quantity, allowing for quick and easy implementation.

Incorporation of more advanced constitutive equations is used as further example of
the utility of the decoupled form of the DEVSS-G equations. For most continuum based
constitutive equations, the dependence of the equations on the flow variables can be
expressed explicitly, allowing for the coupled set of equations to be solved with Newton's
method. However, the dependence of the stress on the flow cannot be explicitly written
for more advanced constitutive equations such as those derived from kinetic theory or
those employing Brownian dynamics, greatly hindering the performance of Newton's
method in locating the solution to the system. As an illustrative example, incorporation
into the decoupled equation formulation of the closed form of the Adaptive-Length-
Scale model (ALS-C) is presented. Simulations are presented capturing for the first
time the pressure drop enhancement with increasing viscoelasticity of the model of the
flow of a Boger fluid in the 4:1:4 axisymmetric contraction-expansion geometry observed
experimentally (Rothstein et al., 2001). Simulations of the flow of a 4-mode FENE-P
model fluid within the geometry are also presented. Though its dependence on the flow
field can be expressed analytically, the cost of computation using multimode models is
typically prohibitive when using fully coupled equation sets as the overall problem size
grows considerably with the addition of each new mode. Incorporation of the 4-mode
model within the decoupled equation formulation adds relatively little computational
cost to the overall calculation.

Employing the formulation and numerical methods developed herein, a new three-
dimensional finite element package is described for simulating confined viscoelastic flows.
To make the package more robust, a number of different boundary conditions are in-
cluded for modeling different geometries used in polymer processing. To help reduce
the burden associated with mesh refinement in three-dimensional meshes, a commercial
meshing package utilizing o-grid refinement for localization of refinement is employed.
Furthermore, to allow for computation of the large equation sets typically associated
with three-dimensional geometries, a parallel implementation of the three-dimensional
simulation package is developed based on the two-dimensional parallel method devel-
oped by Caola et al. ((Caola et al., 2001), (Caola et al., 2002)). Simulation results
demonstrating the accuracy and performance of the method are presented.

As a test of the robustness of the three-dimensional method, simulations of the flow
of Newtonian and Oldroyd-B fluids through a periodic, linear array of cylinders are

3



presented. Comparisons with previous calculations for the Oldroyd-B flow in an infinitely
wide domain with no variations in the direction of the width show the same trend in the
drag force on the cylinder with increasing viscoelasticity as well as in the size and shape
of the vortices formed in the gap between the cylinders. The study of this flow includes
effects of modeling the cross section of the flow as an infinite domain with no variation
in the direction of the width, an infinite domain of periodic computational width, an
infinite domain of periodic computational width and a symmetric flow above and below
the cylinders, and a bounded domain with solid walls located 4 cylinder radii apart.

Thesis Supervisor: Robert A. Brown
Title: Professor of Chemical Engineering

Thesis Supervisor: Robert C. Armstrong
Title: Professor of Chemical Engineering
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Chapter 1

Introduction

1.1 Motivation

The field of study of flow of viscoelastic fluids has offered decades of rich and rewarding

research opportunities, from work aimed at understanding the fundamental behavior of

the systems driven by the academic community, to work aimed at design and optimization

of production and processing technology driven by industry. While early research in the

field focused. on the most well known viscoelastic fluids of polymer solutions and polymer

melts, more recent research has turned to systems of biological fluids such as solutions

of DNA molecules which exhibit viscoelastic behavior in flow.

Simulation and modeling work aimed at better understanding and describing the flow

of viscoelastic fluids has been an established field of research since its inception in the mid

1970's, evidenced by the numerous review articles written in the field [13], [24], [47], [48].

Since that time many strides has been made in modeling and simulation of these flows,

but there is still much work to be done before the viscoelastic problem will be considered

solved. The overarching goal of this body of work is to further the understanding of

modeling and simulation of viscoelastic fluid flows.

As with the solutions of large problems in many fields of study, assumptions are

often made to simplify the model of the physical process, making its solution tractable
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by reducing the amount of time and effort needed to reach the solution [4], [29], [30].

The field of computational fluid mechanics of viscoelastic fluid flows is by no means an

exception to this rule. The early simulation work in the field started with one- and two-

dimensional simulations using coarse discretizations of relatively simple geometries. As

time passed, improvements in computational power came about as well as improvements

in the numerical algorithms employed to solve the problems. More and more detail could

be added to simulate geometries of increasing complexity as well as complexity of the

representation of dynamic behavior of the fluid and the physical description of the system.

Recently there has been significant effort toward extending the solution techniques

used for two-dimensional domains to three-dimensional domains. While some of the

motivation for this move was borne from the ability to compute problems of such size,

much of the motivation has come from the loss of physics of assuming that a three-

dimensional physical problem can be represented by a simplified one- or two-dimensional

model. To help justify this statement, imagine a simple physical setting such as tangential

flow in the annular region between two concentric cylinders, the so called Couette flow,

Fig. 1-1. When the viscous forces of the fluid flow far outway the inertial forces and

when considering only the region of the flow far away from ends of the cylinders, the

problem can be reduced to a simpler two-dimensional geometry that is a cross-section

of the cylinders perpendicular to their axes. Looking closely at one small section of

this geometry, the curved walls of the cylinders can be viewed as two parallel plates,

one stationary and the other moving at a linear velocity equal to the magnitude of the

velocity of the moving cylinder. This approximation works well within the limit of very

small differences in the inner and outer radii or the cylinders, but when this gap width

increases, the approximation begins to break down. To the local fluid, the walls begin to

appear curved, changing the behavior of the fluid as it flows through the annular region.

Up to this point we have assumed that the direction parallel to the axes of the cylinders

is a neutral direction in that no variations in behavior are noticeable in this direction.

This assumption is applicable as long as we only observe the fluid at a point far away
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Figure 1-1: Example of the reduction in dimensionality of the modeling of the flow field
in simple Couette flow from three dimensions shown in the main figure to one dimension
shown in the inset. This reduction in dimesionality is appropriate only when Vo = Vo (r).
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Figure 1-2: View of the gap cross-section of the low viscosity Boger fluid at De = 1.88,
Re = 33.4 (co-rotating cylinders). Downwardly rolling vortices begin to form at 10
minutes. The direction of rotation of vortices along the inner cylinder is reveled by the
clockwise motion of the comma shaped region of seed depletion in the vortex visible from
40 to 44 minutes. Reproduced from [9].

from either end of the cylinders as though the cylinders were infinitely long. However,

as we approach either end of the cylinders we will see effects from the shear on the top

and bottom bounding surfaces. The existence of a bounding wall appears to cause effects

to propagate throughout the fluid and cause flow cells to develop that are at first three-

dimensional steady and then become time-dependent as the viscoelasticity of the fluid is

increased. The cells have been shown to travel up and down the axis of the cylinders,

[9]. A time history of the formation of rolling cells of a Boger fluid within co-rotating

cylinders is shown in Fig. 1-2.
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Development of three dimensional structures from the growth of instabilities in the

flow of viscoelastic fluids is in fact common throughout the literature. As shown by

Evans and Walters ([31] and [32]) entry flows into a planar contraction of width to height

ratio of 1 to 2 yields fully three-dimensional structures, another phenomena that could

not possibly be captured with a two-dimensional simulation. Genieser [33] also explored

the effects of contraction ratio on instabilities in the planar contraction. While the

mechanism of the instability is not fully understood, it is apparent that the boundedness

in the "neutral" direction is not likely the cause given that the instability exists for a wide

range of width to height ratios. Another such instability that has been well studied is

the flow around period array of cylinders of various inter-cylinder spacings [3], [71], [54],

[57]. For the infinitely spaced case, that of an isolated cylinder in a channel, McKinley et

al. [57] observed through experimentation three dimensional spatially periodic structures

on the downstream side of the cylinder as illustrated in Fig. 1-3. Instabilities can also

arise in unconfined flows such as those present in fiber spinning illustrated in Fig. 1-4.

Here the flow is shown to progress from a stable column of fluid in (a), to a shark-skin

instability starting in (b), and finally to gross melt fracture in (f) and (g).

Aside from the need for three-dimensional simulations to capture flow structures that

arise from instabilities, there are also many industrially important problems in which the

three-dimensional structure of the problem arises from the problem geometry, such as

extrusion dies used in the fiber spinning industry and film casting industry. Traditional

fiber spinning consists of extrusion and draw down of a cylindrical filament from a die.

By assuming the filament and die are both axisymmetric, the model is reduced from three

dimensions t;o two dimensions [71]. However, this is rarely the case in the fiber spinning

industry. In some cases fibers of varying cross section are used to enhance properties

such as touch and feel and even to enhance mass and heat transfer properties fabrics

constructed of the fiber. Of all of the cross-sections pictured in Figs. 1-5 and 1-6, only

the circular cross-section can be modeled by a two-dimensional axisymmetric simulation.

The other fibers require three-dimensional simulations to capture the intricacy of the
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Figure 1-3: Steady, spatially periodic structure of a Boger fluid flowing past an isolated
cylinder (black) .. Flow is from top to bottom. Reproduced from [57]
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Figure 1-4: Example of an instability arising in the extrusion of a single strand polymer
filament. Steady flow is shown in (a), evolving into a shark-skin instability in (b)-(e),
and finally gross melt fracture in (f) and (g). Extrudates of a polymer melt at 70° C.
Shear rates are (a) 1.36 S-l, (b) 2.72 s-1, (c) 6.81 s-1, (d) 13.6 S-l. (e) 34.1 s-1, (f) 68.1
s-1, and (g) 136 S-l. Fiber is roughly 1 mm in diameter. Reproduced from [88].

o
Figure 1-5: Various cross-sections of spun polymer fibers.
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Figure 1-6: Artist rendition of a 4 DG Deep-Groove fiber. The cross-section is designed
to have enhanced capillary action allowing for improved wicking properties as well as
greatly increased surface to volume ratio over traditional fibers. Reproduced from [2]

, fiber cross-section.

Even in the case of circular cross section fibers, because of the high processing rates

used in industry, it is common practice to draw multiple fibers from a single die assembly

and then draw the fibers together into a bundle. Die plates with three, five, or more die

holes are used in these applications. While each die hole could behave as an independent

contraction flow at relatively low processing rates with isolated lip vortices [8], it is

unclear what would happen as the lip vortices from two adjacent die holes collide with

o 0
o

o 0

Figure 1-7: Possible die geometry and cross-section with five hole layout.
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one another as the processing rates are increased. Certainly rich behavior beyond the

modeling capacity of the two-dimensional case of the simple one-holed die is likely to

occur.

It is clear that the need for three-dimensional modeling of the dynamics of viscoelastic

fluids is important for the understanding and development of many applications. Work

with the three-dimensional models to this point in the field has included mostly finite

volume simulations on relatively coarse meshes as in [60], [87], and [89] with some at-

tempts in finite elements on even coarser meshes [8]. More recently parallelization of the

viscoelastic flow problem has been utilized to break up the calculation among a number

of machines effectively reducing the overall time to reach solution or increasing the at-

tainable calculation size. Application of a three-dimensional finite volume method can

be found in [28] and that of a two-dimensional finite element method in [16].

1.2 Goals and Outline of Thesis

The overall goal of this body of work is to further develop the set of tools available for

the analysis of viscoelastic flows. The main target for achievement of this goal is the

development, a three-dimensional modeling package for viscoelastic flows. Due to the

large set of equations that describe typical three-dimensional viscoelastic flow systems,

it is necessary to develop numerical methods and formulations that pursue the solution

to the viscoelasitc flow system in the most optimal manner. To aide in this effort,

the methods developed in this thesis take advantage of the techniques developed in a

well-documented two-dimensional finite element package in terms of formulation of the

equations and parallel solution of the resulting set of differential algebraic equations. To

further reduce the overall size of the set of differential algebraic equations, modification

of the formulation of the equations was studied and documented herein. Also, since

a comprehensive package in terms of the physical description of the system is of inter-

est, the use of additional evolution equations for added physical description and for new
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and diverse descriptions of the polymer stress is addressed. For example, incorporation

of evolution equations describing the motion of free surfaces within the computational

domain and incorporation of a closed form of the Adaptive-Length-Scale model for im-

proved description of the polymer stress are presented. Furthermore, since the size of

the equation set resulting from sufficient refinement of the three-dimensional geometry

with a finite element mesh can be quite sizable when compared to its two-dimensional

counterpart, development of optimal parallel solution techniques to divide up the set

of equations among multiple processors is presented. Finally, the power of the three-

dimensional package is demonstrated on a complex viscoelastic flow known to exhibit a

time-dependent elastic instability.

Since the field of modeling and simulation of viscoelastic flows is well established, a

significant amount of background study is helpful before proceeding. The first couple

of chapters of this thesis are dedicated to aid the reader in this endeavor. Chapter

2 discusses the physics of viscoelastic fluids in simple and complex flows. The chap-

ter begins with the description of some of the more interesting flow phenomena that

has been observed by experimentalists. The simple flows typically used to measure the

performance of models for viscoelastic fluids by comparison of the computed and ex-

perimentally measured material functions are then described. Finally, the governing

equations for viscoelastic fluid flow are given, starting with the conservation equations

for the mass and momentum of the fluid and ending with continuum-based constitutive

equations describing the relationship between the flow field and the stress of the fluid.

While there have been a large number of constitutive equations developed over the history

of modeling of viscoelastic fluids, equations described herein are only those most relevant

to the work contained within this document and their most relevant predecessors.

Chapter 3 further aids the reader in the understanding of viscoelastic fluid flow model-

ing and simulation. This chapter is dedicated to the discussion of the numerical methods

used to attack the daunting task of simulation of complex viscoelastic flows. The chapter

begins with the description of the more recent history of the formulations of the viscoelas-
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tic governing equations. The finite element method, the discretization workhorse in the

field of viscoelastic flow simulation, is then discussed, with examples designed to help

the reader understand how the governing equations are fit into this framework. The

basis functions and elements are also included to help with understanding the implemen-

tation of the finite element method. Next, a discussion is included of the decoupled

sub-problem formulation of the time-dependent set of equations with comparison to the

direct computation of the steady-state set of equations. A brief treatment of time in-

tegration methods is included, with advantages and disadvantages of each given. The

parallel solution method used within this work is then discussed in detail. Finally, to

motivate the need for all of the advanced numerical methods included within this work,

a sample problem size calculation is included for a model fiber spinning problem taken

from the literature.

Chapter 4 is dedicated to the description of the decoupled velocity gradient inter-

polant formulation. This is a new method designed at reducing the overall size of the

computational problem by taking advantage of the time-dependent form of the equa-

tions and the sub-problem formulation discussed in chapter 3. The chapter begins with

discussion of the decoupled form of the equations and suggests two different forms of

the equations used to compute the velocity gradient interpolant: a global least squares

minimization and a local patch formulation. Measurement of the performance of these

two formulations is presented in detail, the goal of which is to determine the method that

provides the largest reduction in the overall problem size without loss of detail in the

viscoelastic flow simulation. While the local patch formulation appears to offer great

savings in overall problem size, as the Deborah number is increased, the velocity gra-

dient field computed from the method deviates more and more from the accepted ideal

of the fully coupled set of equations. To combat this increase in error, increased mesh

refinement can be used, but at a significant cost to the overall calculation. The decou-

pled global least squares minimization formulation on the other hand shows virtually no

deviation from the ideal solution and requires no further mesh refinement. The chapter
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concludes with a sample problem size calculation comparing the fully coupled method

with both the decoupled least squares and the local patch formulations, demonstrating

the significant savings in problem size offered by the new decoupled global least squares

formulation for the calculation of the velocity gradient interpolant.

Chapter 5 contains the development of the time-dependent free-surface viscoelastic

finite element method for two-dimensional unconfined flows. The governing equations

describing the flow of a viscoelastic fluid in an unconfined geometry are first presented.

In addition to the governing equations given in the preceding chapters, the free-surface

boundary conditions are now introduced along with the mapping equations used to up-

date nodal positions in the deformable portion of the mesh. The numerical method

used to attack this problem is then discussed, focussing on the implementation in the

time-dependent, decoupled formulation. Though this development is carried out in the

two-dimensional framework, it is intended to be applied to the full time-dependent, three-

dimensional solver. The method outlined in this chapter is a demonstration of how

an evolution equation describing some new physical aspect of the system is easily im-

plemented in the decoupled, time-dependent formulation of the viscoelastic system of

equations. Other equations that can be implemented in this manner included the en-

ergy evolution equation and the crystallization kinetics evolution equation. As a test of

the implementation of the free-surface governing equations, simulations of the die-swell

of a Giesekus fluid emanating from a contraction die are compared to a known two-

dimensional steady-state method for a range of Deborah numbers, Weisenberg numbers,

and Capillary numbers. Excellent agreement is demonstrated between the two methods

for all cases.

Chapter 6 contains the simulations of the flow of a Boger fluid in the 4:1:4 contraction-

expansion geometry. The models used to represent the Boger fluid are the closed version

of the Adaptive Length Scale model and the 4-mode FENE-P model. Use of these models

within the time-dependent decoupled framework helps to demonstrate the variety of

constitutive equations that can be easily implemented in this framework. The rheology

38



of the fluid characterized in [64] and [65] is modeled, and the comparisons to the key

theological measurements are given in detail. The geometry used in the simulations

is designed to model that used by Rothstein et al. [65]. The simulations of the flow

in the 4:1:4 geometry with the ALS-C fluid model are the first to demonstrate pressure

drop enhancement with increasing viscoelasticity, a well-known experimentally observed

phenomenon. Qualitative growth of the vortex in the salient corner, parameterized

into radial and axial location of the vortex center, as well as the reattachment length

also agrees qualitatively with experimental findings. The simulation with the 4-mode

FENE-P model also shows pressure drop enhancement and salient corner vortex growth,

but the simulations prove to be difficult to converge as the viscoelasticity increases and

do not show the dramatic trends that the ALS-C model simulations exhibit.

Chapter 7 details the three-dimensional finite element package for viscoelastic flows

in confined geometries. This package is based on the two-dimensional method used in

chapters 4-6. It builds upon the time-dependent, decoupled formulation and takes ad-

vantage of the decoupling of the velocity gradient interpolant equation as presented in

chapter 4. 'To develop a method for robust use with many different physical geometries,

implementation of a number of different boundary conditions was crucial. The boundary

conditions implemented are given in detail. Next the elements and basis functions used

in the three--dimensional package are given along with a description of the mesh genera-

tion software used. To test the accuracy of the method, simulations of Newtonian and

Giesekus fluids flowing in pipe and duct geometries are compared to analytical solutions

where available or otherwise to simulation generated from a well-tested two-dimensional

method and to results published in the literature. Due to the large size of the finite

element meshes needed to resolve flows in three-dimensional geometries, a parallel imple-

mentation of the three-dimensional package is detailed. Favorable performance of the

package is demonstrated for the duct flow problem with increasing parallel machine size.

Chapter 8 contains simulations the flow of an Oldroyd-B fluid in a periodic, linear

array of cylinders. The geometry is designed to match that used by Liu et al. [54] in
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experimental identification a time-dependent instability of the flow of a Boger fluid and

later used by Smith et al. [73] in a linear stability analysis of the flow. Comparisons are

made of the flow fields and stress fields generated in an infinitely wide array described

by a two-dimensional simulation and by a three-dimensional simulation with periodic

boundaries on the side walls of the computational domain. The effects of adding solid

side-walls to the geometry are also discussed. Finally, the flow structures arising in the

infinite width array with a periodic computational domain of width 2, 3, and 4 units are

explored and compared to the flow structure found by Smith et al..

Chapter 9 contains a summary of the work and results presented in this document.

Finally, the author's views are included concerning the extensions of the work in this

document and the possible exploitation of the techniques developed herein for further

improving the simulation efforts for viscoelastic fluid flows.
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Chapter 2

Physics of Viscoelastic Fluids

The physics associated with the flow of viscoelastic fluids is an area of research that

is rich in interesting flow phenomena but is described by a set of governing equations

that is difficult at best to solve. In this chapter, by way of justification of the above

statement and as motivation into why the area of viscoelastic fluids is one of interesting

research, some of the flow phenomena are first presented to give the reader a feel for the

unique behavior of viscoelastic fluids in flow as compared to flows of the relatively simple

Newtonian fluids. Simple flows that are commonly used to characterize the rheology of

the viscoelastic fluids are then described. Finally, the equations governing the flow of

viscoelastic fluids are presented.

2.1 Flow Phenomena

Many interesting and visually stimulating phenomena have been observed in the flow of

fluids. A number of books are available with a broad array experimental visualizations

from fluid flow. For phenomena focused mostly in the area of Newtonian flows, the

reader is directed to the book assembled by Van Dyke [84]. An excellent collection

of experimental visualizations for viscoelastic fluid flows is that compiled by Boger and

Walters [12]. Here a few examples of the phenomena of viscoelastic flows that differ
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(a) (b)

Figure 2-1: Tube flow and "shear thinning." In each part, the Newtonian behavior is
shown on the left "N"; the behavior of a polymer on the right "P". (a) A tiny sphere
falls at the save rate through each; (b) the polymer flows out faster than the Newtonian
fluid. Reproduced from [10].

from Newtonian flows are presented.

2.1.1 Non-Newtonian Viscosity

One of the striking differences between Newtonian and Non-Newtonian fluids is the de-

pendence that non-Newtonian viscosity can have on the shear-rate of the flow. The vast

majority of non-Newtonian fluids that exhibit shear-rate dependent viscosity are what

are known as shear-thinning fluids, or pseudoplastic fluids [10]. These fluids exhibit

a decrease in viscosity with increasing shear-rate. Figure 2-1 portrays the flow of a

Newtonian and a shear-thinning non-Newtonian fluid from a pipe. In fig. 2-1a, a tiny

sphere is shown to fall in both fluids at the same rate with no discernible difference be-

tween the two fluids. In fig. 2-lb, the fluids are shown flowing from the pipes, with the

shear-thinning fluid flowing faster due to the decrease in viscosity from the wall shearing

the fluid.

A few fluids have been shown to exhibit behavior opposite to shear thinning, in which

the viscosity increases with increasing shear rate [10]. These fluids are known as shear-
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thickening fluids, or dilatant fluids.

A third class of non-Newtonian fluids are the fluids that exhibit a yield stress called

viscoplastic fluids. Many examples of these fluids can be found, including common

household items such as toothpaste or paint. The existence of the yield stress has been

challenged on the ground that all fluids will flow given enough time has passed [10]. This

being true, the yield stress is then a measure of the stress below which flow is negligible.

2.1.2 Normal Stress Effects

Another very significant difference between Newtonian and non-Newtonian fluids is the

generation of differences in the normal stresses of non-Newtonian fluids in shear flow. In

simple shear flow of polymer fluids, the first normal stress difference, the difference of the

normal stress in the primary flow direction and the stress in the direction of variation in

the flow field, is practically always negative [10]. Thisdifference can be thought of as an

extra tension in the fluid along the streamlines of the flow in addition to the shear stress

in the Newtonian case. This extra tension resists the flow, always wanting to return the

material to its previous state. This simple explanation of tension along the streamlines

has been used to explain a number of different experimentally witnessed phenomena [10].

The second normal stress difference, the difference in stress in the direction of variation

of flow and the neutral direction in shear flow, is almost always positive in non-Newtonian

fluids, though typically it is considerably smaller than the first normal stress difference

[10]. This equates to a small extra tension exhibited in the neutral direction in shear

flow.

One of the most graphic examples of the effects of normal stress differences is shown

in the rod climbing experiment (fig. 2-2). In this experiment a vertical rod is placed

in a beaker of Newtonian and non-Newtonian fluid. Upon rotation of the rod, the

non-Newtonian fluid begins to "climb" up the rod against the forces of gravity, while

the surface of the Newtonian fluid remains flat or is depressed if the fluid inertia is

large enough. Simple explanation of the phenomena is given through the idea that the
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Figure 2-2: Fixed Cylinder with rotating rod. "N" The Newtonian liquid, glycerin,
shows a vortex; "P" the polymer solution, polyacrylamide in glycerin, climbs the rod.
The rod is rotated. much faster in the glycerin than in the polyacrylamide solution. At
comparable low rates of rotation of the shaft, the polymer will climb whereas the free
surface of the Newtonian liquid will remain flat. Reproduced from [10].
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streamlines surrounding the rod in closed loops all contain this extra tension. As the rod

is turned, the tension along these concentric streamlines increases and strangulates the

flow forcing it inward against the centrifugal force and upward against gravity. However,

more in-depth analysis shows that both normal stress differences play a role in the fluid's

behavior [10].

Another interesting phenomena attributed to the normal stress differences in non-

Newtonian fluids is the die-swell effect (fig. 2-3). A Newtonian and a non-Newtonian

fluid are shown here being extruded from a capillary die. The non-Newtonian fluid

exhibits a significantly greater swell in the radius of the jet as compared to the Newtonian

fluid. This extra swell can be attributed to the relaxation of the tension built up along

the streamlines as the fluid emerges from the die [12].

2.1.3 Secondary Flows

Some flows of non-Newtonian fluids can exhibit additional weak secondary flow structures

apart from the strong primary flow structure in flows where Newtonian fluids do not

exhibit any secondary flow structure. The formation of the primary flow structure

is roughly attributed to the viscous properties of the fluid, while the secondary flow

structure is attributed to the inertial and elastic effects in the flow [10]. The elastic

effects in the flow are typically opposite that of the inertial effects.

One interesting experiment in which a sphere is rotated in a sea of fluid shows sig-

nificant differences in the between the Newtonian and non-Newtonian fluids. In the

Newtonian case, the primary flow is shown by streamlines of concentric circles carrying

fluid around the rotating sphere. A weak secondary flow driven by inertial effects is

also seen, pulling fluid towards the sphere near the axis of rotation [10]. The analogous

experiment was performed by Giesekus [35] for a 5% solution of polyacrylamide. He

found the same primary flow, but with a secondary flow carrying fluid toward the sphere

in the equatorial plane and away from the sphere near the axis of rotation.

Another interesting experiment in which differences in the secondary flow are seen is
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(a)

(b)

Figure 2-3: Die swell for liquid extruded into a neutrally-bouyant medium constructed
from a low viscosity silicone oil and carbon tetrachloride solution of matching density
to the extruded flow medium. (a) Newtonian liquid of viscosity 11.6 Pa s being ex-
truded (Re=O.OOl). (b) Boger fluid of viscosity 11.4 Pa s being extruded (Re=O.0009,
We=O.272). Reproduced from [12]
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the cylindrical tank with a rotating lid experiment [10]. For the Newtonian case, the flow

of the fluid is tangential to the rotation of the lid and decreases in strength moving away

from the lid. A secondary flow is seen in which centrifugal force near the surface of the

lid throws fluid radially outward, perpendicular to the primary flow. In the analogous

experiment with a non-Newtonian fluid, a secondary flow in the exact opposite direction

is seen as fluid is drawn inward at the surface of the lid where the normal stresses of the

primary flow have acted to counter the effects of centrifugal force.

2.2 Simple Flows and Material Functions

Two types of simple flows are commonly used to measure experimentally the material

functions of viscoelastic fluids. These two types are shear flows and shearfree flows.

Measurements of material properties are most conveniently done in flows that are ho-

mogeneous, where the velocity gradient tensor does not vary with position. Both the

steady and unsteady, startup and cessation, shear and shearfree flows are of importance

in fluid rheological characterization. Detailed discussion of these flows and there use in

fluid theological characterization can be found in [10].

2.2.1 Shear Flow

The velocity profile for shear flow is illustrated for simple shear flow by

V = ffyxY (2. la)

vy = 0 (2.lb)

v = 0 (2.lc)

where ;/yx is the shear rate. The flow is shown schematically in fig. 2-4. Particles

in shear flow that are separated by a distance y > 0 will become separated from one

another an amount linearly proportional to the amount of time over which the shear flow
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Figure 2-4: Steady simple shear flow with shear rate y = V/b. Reproduced from [10].

is applied, for large times. Physically, this flow can be thought of as a deck of cards where

the top card. is slid at a velocity V and each card below the top card moves with a linearly

decreasing velocity with the bottom card remaining stationary [10]. The deformation of

a material cube in steady shear flow shown in fig. 2-5 helps in visualization of this flow.

The material functions for steady shear flow are defined as follows. The viscosity for

shear flow is defined as

o = ) yx (2.2)

The normal stress coefficients for steady shear flow are defined as

T-xx -u = - ()2 (2.3)

y- -z = -42 (2) (2.4)
-Y -yx
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Figure 2-5: Deformation of (a) unit cube of material from time t to t2 (t2 > t) in (b)
steady simple shear flow and (c) three kinds of shearfree flow. The volume of material
is preserved in all of these flows. Reproduced from [10]
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Figure 2-6: Steady elongational
from [10].

flow (shearfree flow with b = 0 and e > 0). Reproduced

2.2.2 Shearfree Flow

The velocity profile for simple shearfree flow is given by

V = -- (1+b)x
2
1vy - - (1-b) y
2

V, = Z

(2.5a)

(2.5b)

(2.5c)

where f is the elongational rate and 0 < b < 1. Choices for the two parameters yield

special cases of shearfree flow. Uniaxial elongational flow is given by the choice b = 0

and > 0. Biaxial stretching flow is given by the choice b = 0 and < 0. Planar

elongational flow is given by the choice b = 1. The flow for the b = 0, > 0 case is

shown schenmatically in fig. 2-6. Particles in the shearfree flow move relative to one

another at an exponential rate, a rate much faster than the linear rate of separation in

shear flow. As a loose comparison, biaxial stretching flow can be pictured as starting

with a spherical ball of dough and then pressing the ball of dough into a round flat disk,

like a pizza crust. While this is not a true elongational flow, this will hopefully help
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the reader to visualize the flow. Deformations of a cube of material in the three special

cases of elongational flow are shown in fig. 2-5.

The material functions for shearfree flow are defined as follows. For steady shearfree

flow two viscosity functions r71 and 02 are defined as

'Z--x = -l¢ (, b) ~ (2.6)
Ty - = -i2 (, b) (2.7)

For uniaxial extension and biaxial stretching where b = 0, 2 = 0 and /1 becomes equal

to the elongational viscosity, ().

2.3 Governing Equations

A set of partial differential equations is used to describe the flow of a viscoelastic fluid.

This set consists of equations describing the conservation of momentum and mass, as

well as a constitutive equation describing the relationship between the flow kinematics

and the polymer stress. Detailed derivation and discussion of the conservation equations

can be found in [11] and [27] and discussion of the constitutive equations can be found

in [10].

2.3.1 Conservation Equations

The equations of mass continuity and momentum conservation govern the flow of all

fluids. The equation describing the conservation of mass, the continuity equation, is

given by

-P + V. (v) = (2.8)

where p is the density of the fluid, t is the time, V is the gradient operator, and v

is the velocity vector of the fluid. Using the incompressibility assumption and non-

dimensionalizing with the characteristic length and velocity scales, the continuity equa-
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tion becomes

V V = 0 (2.9)

The quantities with overbars are the non-dimensional forms.

The equation describing conservation of momentum is given by

(pv) +V (pvv) = pg - V r (2.10)

where g is the gravity vector and r is the total stress tensor. Assuming incompressibility

and that the effects of gravity are negligible in the modeled geometries, and rewriting the

total stress of the fluid as the sum of the pressure and the deviatoric stress, r = IP + r,

where I is the identity tensor, the momentum balance takes the form

Dv
P D t = 7 (2.11)

where D -a9 + v V is the substantial derivative, P is the pressure of the fluid, and r is

the deviatoric stress. The characteristic length and velocity scales are represented as h*

and v*. The characteristic viscous stress, P* = ,tv*/h*, is chosen to scale the pressure

and stress terms and the characteristic time scale is chosen as the process timescale,

t* = h*/v*, resulting in the non-dimensional form

Dv - - -
Re = -VP - V (2.12)Dt

where Re h*p is the Reynolds number. Often in polymer flows, Re << 1. In this

case, the momentum balance reduces to the Stokes form,

0 = -VP- * T- (2.13)
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2.3.2 Constitutive Equations

The constitutive equation is a relationship between the deformation of the material or

fluid and the stresses generated within it. The simplest constitutive equation is that of

a Newtonian fluid, namely

r = -rrTY (2.14)

where r is the constant fluid viscosity and - Vv + VvT is the rate-of-strain tensor.

Since the fluid viscosity is constant for a given pressure and temperature in a Newtonian

fluid, the constitutive equation is a simple linear relationship between stress and rate-of-

strain in the fluid.

The simplest of the non-Newtonian fluid models is the Generalized Newtonian Fluid

model, represented by the constitutive equation

r = -r (y) / (2.15)

where q1 is ow a function of the shear rate, defined as j = 2 ', where HI is the

second invariant of the rate-of-strain tensor. Various models for fitting experimental

r (y) data have been proposed. The five parameter Carreau-Yasuda model has proven

useful for numerical simulations, representing the dependence of viscosity on the rate-of-

strain tensor as

r- r = [1 + (A.)a](nl)/a (2.16)
170 - I,,

where rIo is the zero-shear-rate viscosity, r is the infinite-shear-rate viscosity, A is a

time constant, n is the power-law exponent, and a is a dimensionless parameter that

describes the transition region between the zero-shear-rate region and the power-law

region. Another relationship for r1 (a) more commonly used in industry is the Power-

Law model given by

1 m/n- (2.17)

where m and n are parameters used to fit experimental viscosity data. It is useful to note
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that when m = Tr and n = 1 the Newtonian constitutive equation is recovered. Also,

if n < 1, the fluid exhibits shear-thinning behavior, and when n > 1 the fluid exhibits

shear-thickening behavior. Other empirical forms of () for the Generalized Newtonian

Fluid model can be found in [10].

While the Generalized Newtonian Fluid model has proven useful in a number of

applications, use of this model is not always appropriate. The model becomes invalid

when elastic effects become important in the flow and is strictly only applicable to steady-

state shear flows [10]. To determine when this occurs, the dimensionless quantity known

as the Deborah number is defined as

De= - (2.18)
tflow

where A is the characteristic time of the fluid, typically taken as the timescale associated

with the longest relaxation time of the fluid, and tflow is the timescale of the flow. When

De << 1 elastic effects can be neglected and the Generalized Newtonian Fluid model is

applicable. When De is of O (1) both viscous effects and elastic effects are important

and the Generalized Newtonian Fluid model is no longer valid. Accurate representation

of these viscoelastic fluids requires a model that takes into account both viscous and

elastic effects within the fluid.

One of the earliest known models used in the study of viscoelastic fluids was that of

Maxwell. I his model he described the stress of the fluid as a combination of effects

arising from the both the viscous and the elastic responses of the fluid. The Maxwell

model is given by

r + A1 -i = 07 (2.19)at

where A1 = il/G is the relaxation time of the fluid with ft being the viscosity and G being

the elastic modulus of the fluid. The Maxwell model comes from a class of models known

as linear viscoelastic models. Its range of validity is limited to flows with infinitesimally

small displacement gradients [10].
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To improve upon the linear viscoelastic models and include non-linear effects in the

models, a 'Taylor expansion about the Newtonian fluid is used in the class of models

known as the retarded motion expansions. The expansions make use of the nth convected

derivative of the rate-of-strain tensor y(,+),

Y(1) - Y (2.20a)

= 7((n) (vv)T 7n + Y(n) * (Vv)} (2.20b)

The nth convected derivative is defined in such a way that it is independent of the

superposed rigid rotations [10]. Stress in the retarded motion expansion is then expressed

as

T = - [bly(l) + b) bl y((2) bl { (1)}] + higher order terms (2.21)

where bl, b2, and b1i are material parameters often called the retarded-motion constants.

The order of the expansion is given by the highest order of the velocity gradient terms.

The expansion shown in eq. 2.21 is the second-order expansion and the fluid modeled by

this equation is referred to as a second-order fluid. While the retarded-motion expansions

have proved useful in yielding a great deal of insight as to the effects of elasticity of the

fluid, they are not widely applicable to industrially relevant problems as they are limited

to modeling flows that are slow or slowly varying [10].

Derivation of differential models that are valid for arbitrary, time-dependent flows

requires the introduction of the upper convected derivative of the stress tensor r(1),

(1) = - { (VV)T. r + r* (VV) (2.22)

Replacing the time derivative of the stress tensor in the Maxwell model with the upper

convected derivative yields the upper convected Maxwell model,

r + AlT(l) = -0o (2.23)
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a widely used model in computation of viscoelastic flows due to its simplicity [10].

The Oldroyd B fluid model is obtained by adding the first convected derivative of the

rate-of-strain tensor to the model, a quasi-linear viscoelastic model known as.

T + A17(1) = -7m ((1) + A2Y(2 )) (2.24)

where A2 is the retardation time of the fluid. The stress in the model can be rewritten

as the sum of stresses from the solvent and polymer components of the fluid yielding the

expression

T - + rp (2.25a)

TS=--Vsa rq,, 1~~(2.25b)

Tp + A17p(l) = -p (2.25c)

where the zero-shear-rate viscosity has been rewritten as 7o = ]s + r7p and the retardation

time has been rewritten as A2 = A1~ .
?7o

While the Oldroyd-B fluid model and other quasi-linear viscoelastic models are valid

for arbitrary time-dependent flows, they still fail to predict real material properties such

as decrease of viscosity and first normal stress coefficient with increasing shear rate in

steady shear flow. For this, nonlinear differential constitutive equations are necessary.

One such model that has considerable diversity in its ability to predict heological phe-

nomena is the Giesekus model [10]. Its form is similar to that of the Oldroyd-B model,

with the addition of a quadratic term in stress. The Giesekus model is given as

T = rT + rp (2.26a)

'r~= -7 j (2.26b)

A 1
Tp + Aljp(l) - -- { 'p rp} =- -rp (2.26c)

pwhere is the mobility factor. Note that at 

where a is the mobility factor. Note that at a = 0, the Giesekus model reduces to the
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Oldroyd-B fluid model.

In steady shear flow, unlike the Oldroyd-B fluid model, the Giesekus model is capable

of capturing shear thinning behavior with T () z /-' and qj () t -3/2 at high shear

rates. The model also predicts a constant second normal stress difference. For low

shear rates, qJ2/'1 -a/2, which is physically acceptible for concentrated solutions

and polymer melts if c is between 0.1 and 0.5. In steady elongational flow the model

predicts an elongational viscosity of iq = 2ro0/a at high strain rates. In transient shear

flows, the model overshoots both viscosity and first normal stress coefficients. Detailed

information on the theological behavior of the Giesekus model can be found in [10].
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Chapter 3

Numerical Methods for Viscoelastic

Flows

3.1 Formulations of the viscoelastic governing equa-

tions

Many different formulations have been used to solve the governing equations of vis-

coelastic flow systems in order to deal with numerical difficulties introduced by both

the momentum equation and the constitutive equation. At first inspection, the numer-

ical representations of the equations appear to fall into the two categories of an elliptic

partial differential equation in the case of the momentum equation and a hyperbolic par-

tial differential equation in the case of the types of constitutive equations used in this

field. However, the straight forward numerical formulation of the equations turns out

to change characteristics with variations in flow fields and system parameters. This

change is known to be a numerical artifact, as it is possible to prove that the conti-

nuity/momentum equation pair must be elliptical. Therefore, much effort has been

put forth to formulate the numerical implementation of the equations in such a way as

to preserve the elliptic nature of the momentum equation without sacrificing numerical

58



stability or other such properties of the system.

One of the early formulations for the viscoelastic flow equations was the Explicitly

Elastic Momentum Equation, EEME, formulation which ensured the elliptic nature of the

numerical momentum equation by taking the divergence of the upper convected Maxwell

constitutive equation together with a modified pressure and substituting both into the

set of equations. The result is a term in the momentum equation that can be shown to

maintain its ellipticity independent of the flow conditions.

The treatment of solutions and low molecular weight species in melts by the inclusion

of a Newtonian term led to replacing the UCM constitutive equation with the Oldroyd-B

constitutive equation, where the total stress is a summation of polymer and solvent stress.

Substituting this total stress into the momentum equation results in a form in which ,

the ratio of the solvent viscosity to the total viscosity, multiplies the elliptic term. In the

limit of 3 0, the ellipticity of the momentum equation is lost. Furthermore, due to the

numerical approximation of the elliptic term, even with 3 << 1 the ellipticity of the term

is sometimes not recognized by the numerical approximation of the equations. This short

coming of the formulation prompted a search for a new formulation that could both use

the concept of solvent viscosity and preserve the ellipticity of the momentum equation,

while still allowing for ease of implementation of new models. Hence, the Elastic-Viscous

Stress Splitting, EVSS, formulation was created. As the name suggests, the stress in the

momentum equation is split into elastic and viscous components by defining the elastic

stress as

E- = +---: = p -(1-- ) (3.1)

Substituting this equation into the momentum equation, eq. 2.13, yields

-V 2v +V. + Vp = 0 (3.2)

V-v=0 (3.3)

S + De(1) - De (1 -) '(x) = 0 (3.4)
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where the dependent variables are (v, p, E). The elliptic term in the momentum equation

is guaranteed to survive for all choices of flow conditions and material parameters. How-

ever, introduction of the upper convected derivative of the rate-of-strain tensor proves

difficult to deal with due to the time derivative term it introduces. Mesh sized oscillations

were eliminated through the use of a least squares approximation of the rate-of-strain

tensor,

j/- (Vv) - (Vv) T = 0 (3.5)

However, numerical instabilities arise with use of this formulation at relatively low Deb-

orah numbers for the planar Couette flow problem as shown by Szady [81].

Based on the knowledge that the constitutive equation formulated with EVSS degen-

erates into an algebraic equation along the curves where the velocity field vanishes, Brown

[14] and Szady [82] changed the interpolated quantity from the rate-of-strain tensor to

G, the velocity gradient interpolant,

G - Vv = O (3.6)

This new definition of the rate-of-strain tensor in terms of the interpolant, =

(Vv) + (Vv)T = G + GT,is substituted into the constitutive equation. As demonstrated

by Szady [81], the EVSS-G formulation for the momentum equation and Oldroyd-B con-

stitutive equation shows no numerical instabilities for the planar Couette flow problem

with Deborah numbers an order of magnitude larger than those where the EVSS formu-

lation shows numerical instabilities to occur.

The Discrete Elastic-Viscous Split Stress Gradient interpolant formulation, DEVSS-

G, is similar to the EVSS-G formulation, with a change in the elastic stress expression

= + [G + GT] = p + (1 - ) [G + GT ]
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The elastic stress is substituted into the momentum equation only, yielding

r7p + DeTp(l) +- (1 - ) [G + GT] = 0 (3.7)

-V7v + (1 - ) V. [G + GT] + V- Tp - Vp = O (3.8)

G-Vv = 0 (3.9)

V v=0 (3.10)

Notice here that there is no longer an occurrence of the upper convected derivative of

the rate-of-strain tensor in the constitutive equation. Thus, the difficulty of interpolating

the time derivative of the rate-of-strain tensor is removed completely. The method also

offers advantages in ease of derivation for different constitutive equations as compared

to the EVSS and EVSS-G methods. Szady [81] demonstrates for the planar Couette

flow that the EVSS-G and DEVSS-G formulations produce nearly identical results at

high Deborah number with no introduction of numerical instabilities from the change in

formulation. The DEVSS-G formulation represents the state of the art in the calculation

of viscoelastic flows and is used exclusively in the work contained in this document.

3.2 Finite Element Method

3.2.1 Development of the finite element method

Since the finite element method is at the heart of the numerical methods used in this

thesis, application of the method is illustrated here. The diffusion equation is chosen

since it is one of the typical examples used in finite element texts and its form is very

similar to that of the momentum equation. The following is just a condensed version of
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the treatment found in many finite element texts and is included here for completeness.

The reader is directed to [36], [37], and [42] for more detailed discussion.

Consider the two-point boundary value problem of the diffusion equation for a func-

tion u (x) is defined as

d2 U

dx 2
(3.11)

with a Dirichlet boundary condition applied at x = 0,

u (O) = 0 (3.12)

and a Neumann boundary condition applied at x = 1,

du
dx x=1

=0

This form of the diffusion equation is termed the classical form or strong form.

An equivalent formulation of this system is to find a function u E V such that

a(u,v) = (f,v) V E V (3.14)

where a (.,.) and (.,.) are vector valued functions defined as

a (, v) X/ () (d) dx

(w,v)_ wvdx

(3.15)

(3.16)

and the function space V is defined as

V = {v: v E CO on [0,1], v (0) = 0) (3.17)

Proof of the equivalence of the strong and weak form of the diffusion equation can be
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shown by performing integration by parts on eq. 3.14,

a (u,v) =- v 2dx + v du = fvdx= (f,v) (3.18)

which can be rearranged to arrive at

d2U du 1
- V 2 + f dx+v d v =0 (3.19)

Notice here that if u is found such that eq. 3.11 is satisfied, then the integrand of the

first term of eq. 3.19 will be zero. The requirement that v E V where V is constructed

such that it vanishes at x = 0 causes the second term of eq. 3.19 to be zero at x = 0.

Also, satisfying the Neumann boundary condition, eq. 3.13, will cause the second term

of eq. 3.19 at x = 1 to be zero. Thus, satisfying eq. 3.19 is equivalent to solving the

diffusion equation and boundary condtions prescribed by eqs. 3.11 - 3.13.

Systems of equations discretized using the finite element method are first placed in

the weak form as shown above. The weak form of any differential equation can be

constructed by multiplying the equation by a test function v and then integrating over

the spatial domain Q. Consideration of the boundary conditions is handled according to

the specific type of condition. For Dirichlet boundary conditions like that given in eq.

3.12, an appropriate function space V is constructed only of functions that will vanish

on the appropriate boundary. These boundary conditions are referred to as essential

conditions. For Neumann boundary conditions, integration by parts is applied to the

weak form equation to produce an additional term in the weak form as in eq. 3.19. These

boundary conditions are referred to as natural conditions.

Discretization of the weak form of the boundary value problem is accomplished by

applying the Ritz-Galerkin approximation, where the infinite dimensional function space

V is replaced by a finite dimensional subspace V C V. The approximate variational
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problem then becomes to find Uh C Vh such that

a (uh, v) = (f, v) V vh E Vh (3.20)

The functional space Vh is described by a linearly independent set of basis functions {i }

such that the functions in the space Vh can be expressed as v (x) = ciqi (x). By

applying this discrete form of v (x), eq. 3.20 is transformed to a set of linear equations,

A Uh =f (3.21)

where A is a two-dimensional tensor whose components are described by Aij a (i, 0j),

uh is the vector of coefficients Uhi in h (x) = y Uhii(x), and f is a vector whose

components are described by fi = (fi, v).

A number of different variational methods are defined by the choice of functional space

Vh used to construct the linear set of equations in eq. 3.21 from eq. 3.20. The finite

element method defines the functional space Vh by dividing the physical domain Q into

a finite number of non-overlapping subintervals Ij, or elements. Vh is then constructed

by using low order, usually first and second order, polynomials defined on each of the

elements. The piecewise linear approximation for the Vh space is defined as

h = {v: V CO (Q), vj E 1 , (0) = 0} (3.22)

where CO is a continuous function and II is the set of all real polynomials P with degree

less than or equal to n,

P (x) = ao + ax + ... + anxn (3.23)

The piecewise quadratic approximation for the Vh space is defined as

Vh = {v: V E C (Q), v E 2, 2, (0)=0} (3.24)
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In the viscoelastic flow problem, the polynomial approximations for the pressure,

velocity, and velocity gradient interpolant unknowns are required to be continuous on the

element boundaries. In addition to continuity between elements, the funtional spaces for

velocity and pressure in the Stokes problem must meet the requirements given by the inf-

sup condition, also known as the Ladyshenskaya-Babugka-Brezzi condition, to gaurantee

compatability and uniqueness of the solution. The reader is directed to [37] for further

discussion of the inf-sup condition. To this end, the function space given in eq. 3.22 is

used for the pressure and velocity gradient interpolant unknowns, and that given in eq.

3.24 is used for the velocity unknowns.

Unlike the velocity, pressure and velocity gradient interpolant spaces, the space used

to approximate the stress unknowns is not required to be continuous. In the Discontin-

uous Galerkin formulation, the functional space for stress is constructed from piecewise

linear functions that are not required to be continuous on the elemental boundaries. De-

scription of the this finite element space is aided by considering a typical stress evolution

equation,
07-+v- Vr = f (r, G) (3.25)at

The Discontinuous Galerkin space is then defined as

VhI = {v:v E L1(Q), V E 1, ()= H, v (3.26)

where L1 is a continuous function within each element. Given this space, the weak for

eq. 3.25 becomes to find Th E VhDG such that

(v, t) (v, Vh VTh) - (, Vh n ( - )) = (v f (rh, Gh)) Vv VD G

(3.27)

where n is the outward-pointing unit normal on the element surface and OTJ- is an inflow
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(a) (b)

O corner node

CD center node

Figure 3-1: Line elements used to discretize one-dimensional geometries. (a): 2-node
linear line element; (b): 3-node quadratic line element.

boundary of the element, defined as

OT- - {x E Te : (v. n) < 0} (3.28)

Further discussion of the Discontinuous Galerkin method can be found in [23].

3.2.2 Elements and Basis Functions

Detailed discussion of many of the elements and basis functions used in the Finite Element

Method can be found in [42]. The elements and basis functions used in this work

can either be found there explicitly or derived from relationships contained within the

text. For completeness, the elements and basis functions implemented in the two-

dimensional finite element method for computations contained within this document are

derived below.

Line elements are used to discretize a one-dimensional physical geometry, Fig. 3-1.

Langrange polynomials, eq. 3.29, are used in the derivation of the basis functions for the

line elements shown above.
nen

H ( - b)
b=1

laen 1 ( ) en (3.29)
I (a - b)

b=1
b4a
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where n,, is the number of nodes in the one-dimensional element, n,n - 1 is the order

of the polynomial, a is the node in the element, and a is the coordinate of node a in

(-space. Basis functions for an n,,-noded element in one dimension are defined by the

relation

Na (~) I= -lel- (~) (3.30)

The basis functions for the linear (2-node) line element are given by

1N(() () = (1 - ) (3.31a)
2

N2(1) = l( I)= (1 +I) (3.31b)
2

Similarly, the basis functions for the quadratic (3-node) line element are given by

_N1 () = 12(J) = 24(J-1) (3.32a)
2

N2 (c) = 122 ()=1 42 (3.32b)

1
N33() = 132(-)= J(+ 1) (3.32c)

2

The choice of elements in the two-dimensional space is somewhat more complicated.

A quadrilateral element can be derived as a simple extension of the one-dimensional line

element, Fig. 3-2. Basis functions of the two-dimensional elements are found by taking

the product of two one-dimensional Lagrange polynomials

Na ( 1,) I n en - 1 Inert3- 1Na (& o r7) lnen (g) lcfl"K' (r) (3.33)

where b and c can be thought of as the nodes of two separate one-dimensional elements,

one oriented along the C axis, the other along the rj axis, and a refers to the node on the

two-dimensional element. Basis functions for the two-dimensional bilinear quadrilateral
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(a)

0
(b)

corner node

side node

center node

Figure 3-2: Quadrilateral elements used to discretize the surfaces of a three-dimensional
geometry. (a): 4-node bilinear quadrilateral element; (b): 9-node biquadratic quadri-
lateral element.
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element are then

(14
1

= 11 ( 2 ( ) = (14

1

-()( -v)

+ O)( 1 - q1)

- O)( + O

+ O)(1 + V1)

Similarly, basis functions for the two-dimensional biquadratic quadrilateral element are

then

= 1 () 1 ()

= 13 (1) t] (V)
: ~l (~) 13 (v)

= 13 (~)Zl3 (v)

: t] (~) t1 (V)= 12 (() 12 (,q)= 12 (a) 12 (77)

= 12 (() 1 (VI)

= 12 (J) 12 (,q )
= 1 (> 12 (71)

l= (( 1)(r- 1)

= 4/+(( ( + 1)(+1)
1

= f 1) (77 1)

1

= 2 )1- q2)

= (( 1)(1 - 2)

= (1 2) (q2+ 1)

= (1 --2) (1 -- 2 )

Triangular elements can also be derived for the two-dimensional discretization, Fig.

3-3. They can serve one of two purposes, either as the sole type of element for dis-

cretization of the entire physical domain or as a transition element between regions of

differing degrees of refinement of quadrilateral elements. Triangular coordinates, r, s,

and t (r, s) =: 1 - r - s, are used to define the basis functions for these elements, in which

each coordinate is 0 along one edge of the triangle and 1 at the opposite node. The
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(a)

0
(b)

corner node

side node

Figure 3-3: Triangle elements used to discretize the surfaces of a three-dimensional ge-
ometry. (a):: 3-node bilinear triangle element; (b): 6-node biquadratic triangle element.
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general formula for the derivation of basis functions for the Lagrange-type triangular

elements is

N, (r, s. t) = T (r) T (s) TK (t) (3.36)

where
I#1

(3.37)
I=1 

The basis functions for the bilinear triangular element are then

= T2 () T () T (t) = 121

= T1 (r) T2 (s) T1 (t) = 12

= TI (r) T1 () T2 (t) = 12 ( 2t)

Similarly, the basis functions for the biquadratic triangular element are

= T3 (r) T (s) T (t) = 12

= T (r)T3 (s) T (t) = 12

= T (r) T (s) T3 (t)= 132

= T2 (r)T 2 (s) T (t)= 12

= TI (r)T 2(s)T 2 (t)= 121

= T2 (r) T (s) T2 (t) = 11

( 2r)
r3 -

(t3 1)

(r2- )(322:)
(2 )

= r(2r- 1)

= s (2s- 1)

= t(2t - 1)

( -2s)

The work in this document uses quadrilateral elements as the primary element for dis-

cretization of the physical geometries and relies on triangular elements only as transition

elements between regions of differing degrees of refinement.
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N1 (r, s, t)

N2 (r, s, t)

N3 (r, s, t)

( 2r)

r2 -1
r 2s

vS2 -

(3.38a)

= S (3.38b)

(3.38c)

NV (r, t)

N2 (r, s, t)

N3 (, s, t)

NAT (r, s, t)

A5 (r, s,t)

]i6 (, , t)

(3.39a)

(3.39b)

(3.39c)

(3.39d)

(3.39e)

(3.39f)

- 4rs

I 12t = 4st

t2 (2t )_ = 4rt

TI (r) = r- 
1,



3.3 Decoupled sub-problem formulation

Two major classes of numerical methods used for finding the steady-state solutions of

systems of partial differential equations are the direct computation of the steady-state

solution through a fully coupled set of equations and indirect computation through a de-

coupled set of equations using time-dependent methods to evolve the problem to steady-

state. Direct methods for computing the steady-state solution involve solving large sys-

tems of equations using Newton's method or some variant. This involves formation of a

large Jacobian matrix of derivatives of all discretized equations with respect to all of the

system unknowns. Factorization of this matrix can be carried out by using sparse LU

factorization or some other efficient numerical method, but for larger problems frontal

solvers and even iterative solvers must be employed. The major advantages of the method

are guaranteed quadratic convergence and the availability of a Jacobian for analysis of

bifurcations. One of the major disadvantage of this technique is the need for a good

initial guess for the solver. While the method is guaranteed to converge given a good

initial guess, one is not always readily available.

Time-dependent methods are often used because of the robustness added over the

steady-state methods of not needing a good initial guess in order to find the steady-state

solution of a system. By starting out with any initial guess, the problem solution is

time-stepped toward steady state. Limitations exist on how large the time step can be,

dictated by the stability of the system and the time integration algorithm utilitzed. Apart

from the robustness of the method to the initial guess, other more important changes

can be made to help with the size of the computational problem. Since the entire set

of equations no longer must be solved simultaneously, the evolution equations describing

the polymer stress can be decoupled from the equations describing flow and solved for

in separate substeps in time. This approach is known as operator splitting [75]. An

illustration of the decoupled set of equations is shown in Fig. 3-4.

Two major advantages can be identified with the operator splitting approach. By

decoupling the stress equations from the momentum and mass equations, different types

72



d'rp _ {(. v 

v1 ._- - S 4[ _ o \

Figure 3-4: Illustration of the index one set of differential algebraic equations for the vis-
coelastic flow problems. The set of DAE's can be rewritten as a set of ODE's describing
the stress evolution which are constrained by the flow equations.

of constitutive equations can be implemented more easily. For example, given the flow

field, equations describing the evolution of molecular properties of the fluids can be used

with only knowledge of how stress can be expressed in terms of them. No knowledge

of direct effects on velocity and pressure is needed. This allows for the use of a much

broader range of constitutive equations to describe the dynamics of the system based on

molecular effects, etc..

Another major advantage of being able to separate the momentum and mass equations

from the constitutive equations is the reduction of overall problem size. As an illustration,

consider solution of a problem of n total unknowns, consisting of two subproblem of n* 1/2

unknowns each. Using an iterative solver for the fully coupled set of equations requires

order n 2 operations to solve the set. By decoupling the equations and splitting them into

the two subproblems, we expect order (n * 1/2)2 = 1/4 * n2 operations to reach solution

for each subproblem and 1/2 * n2 operations for the total problem, half of the operations

needed as compared to the fully coupled problem. From this simple illustration it is

apparent that a large advantage in the size of tractable problems is possible by applying

the operator splitting to the set of equations describing the viscoelastic fluid.
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3.4 Time-Stepping Algorithms

As discussed above, integration of the time-dependent equations to reach steady state

offers advantages over direct calculation of the steady state. There are a number of

different time-stepping algorithms available to discretize the viscoelastic equations in

time. This section contains the most relavant methods. For a more complete treatment

of the subject, the reader is directed to [62] and [39].

3.4.1 Taylor-series-based methods

The most basic class of the time-stepping algorithms is the set of explicit methods. These

methods require only knowledge of the state of the system at the previous time-step in

order to construct the state at the current time-step. The simplest form of this class of

methods is Euler's method, also known as the Forward Euler method. The Taylor series

expansion of y in time around t is given by,

dy(t) d2y (t)y (t +At) = y (t) dt At+ t) + dt At + (3.40)

Euler's method is derived by dropping the terms of second order and higher leaving

Yk+l = Yk + At (3.41)dt (3k.4)

where the shorthand Yk is used to represents the solution y (tk) and Yk+l represents

y (tk + At). The method is explicit, since it requires only information at the current

timestep to construct the solution at the next timestep. The method is said to be

first-order accurate, since the terms of second order and higher are neglected. The

clear advantage of Euler's method is that it requires only the current value of y and the

derivative of y with respect to time t at the current time to construct the solution at time

t + At. Both of these quantities are typically readily available. The disadvantage of

this method is that it tends to have poor numerical stability irrespective of the stability

74



of the equation set; it therefore requires a relatively small timestep to remain stable.

The implicit method analogous to the Forward Euler method is the Backward Euler

method. The Backward Euler method is derived in the same manner as the Forward

Euler method, except that the first derivative of y with respect to time is calculated at

the fiuture timestep rather than the current timestep,

Yk+l = Yk + - At (3.42)dy k+t

Unlike the Forward Euler method, the Backward Euler method is unconditionally stable.

However, like Forward Euler method, the Backward Euler method is only first order

accurate, severly limiting its usefulness. Methods of higher order accuracy are typically

more desirable.

3.4.2 Runge-Kutta methods

To decrease the computational time needed to reach a steady-state solution, it is of

interest to use the largest time-step possible when time integrating the set of equations.

The limit of the size of the stable time step can be increaesd by including higher order

derivatives with respect to time from the Taylor series. Unfortunately these quantities

are not often readily available and can be difficult to calculate in more complex equation

sets. Other methods have been developed to increase the stable time step without the

need to evaluate the higher order terms. One of the most well-known sets of methods

of this type is the Runge-Kutta method set. These methods simulate the higher order

terms by evaluating the time derivative of y at several steps in between k and k + 1.
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The most often used of these methods is the 4th order Runge-Kutta method, RK4,

Yk+l = Yk + i (k + 2k2 + 2k3 + k4) (3.43a)
6

kl = f (tk, Yk) At (3.43b)

k2 = f (tk + At/2, k + kl/2) At (3.43c)

k3 = f (tk + At/2, Yk + k2/2) At (3.43d)

k4 = f (tk + At, yk + k3) At (3.43e)

where f (tk, Yk) = dk is the derivative of Yk with respect to t at time tk. While

the method does not have any formal estimate of error to base a stable time-step on,

application of the method shows a significant increase in the stable time-step compared

to the lower order methods [62]. The RK4 method is used exclusively in the integration

of the evolution equations for stress in the calculations presented in this work.

3.5 Parallel solution method

Aside from improvements in the formulation of robust, efficient numerical methods to

compute solutions of the partial differential equations describing the dynamics of vis-

coelastic fluid systems, strides have also been made in employing parallel architectures

to further increase the total tractable problem size. Caola [16] describes in detail one such

method and demonstrates the use of the method on complex flow systems of viscoelastic

fluids. The method is summarized here for completeness.

The method uses the time-dependent DEVSS-G/DG formulation in the decoupled

form discussed in Section 3.3. By attacking the set of equations describing flow and

that describing polymer stress separately, optimal numerical techniques can be applied

to each set. The set of equations can be written in the form

di=D 1M - D f (p, V, G) (3.44)
dt De
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g (rp, v,p, G) = 0

where the evolution equations for stress and the equations describing the flow are sep-

arated and where f represents the discretization of the constitutive equation and g

represents the discretization of the generalized Stokes problem. Since the two sets of

equation are decoupled from one another, eq. 3.45 can be written as the linear set of

equations

p[j = (7p ) (3.46)

Eq. 3.46 is then substituted into eq. 3.44 to yield

f (7,) M-'f (p, g (p)) (3.47)

The fourth order Runge-Kutta method, eq. 3.43a, is applied to the eqs. 3.44 and 3.46 to

yield

kl = Atf (Tp) (3.48a)

k = \tf- (3.48b)

k3 = \tf- (3.48c)

k4 = Atf (7pn + k3) (3.48d)

pn+l = n+6 (k1 + 2k2 + 2k3 + k4) (3.48e)

Evaluation for each of the ki substeps requires the evaluation of the generalized Stokes

problem given in eq. 3.46. Because of the discretization of the stress unknowns with the

discontinuous Galerkin basis functions, M in eq. 3.47 for each element in the domain is

independent of all other elements. Parallelization of the evaluation of stress from eqs.

3.48a-e is then accomplished by distributing the elements among the processors in the
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parallel machine. Since the elemental equations are independent from one another, the

stress equations are ideally parallelizable, in that doubling the number of processors in

the parallel machine will result in one half the time needed to reach solution.

Solution of the generalized Stokes problem given in eq. 3.46 is accomplished by

preconditioning the set of equations with the BCALM preconditioner [15] and solving

them with the GMRES Krylov subspace iterative method. Details of the GMRES

method and. other Krylov subspace methods can be found in [66]. Discretization of the

generalized Stokes problem yields the linear system

=Ax A B [ ] [ l = b (3.49)
C D X2 b2

where A and B are the discretizations of eqs. 3.8 and 3.9, C and D are the discretizations

of eq. 3.10, and x1 and x2 are vectors of the sets of unknowns [v, G] and [p], respectively.

Note that I) = 0 results from the discretization, since pressure does not appear in eq.

3.10. A can then be rewritten in the Schur complement form as

[0 x2 b 2 - CA-lb (3.50)

where the Schur complement S is

S D - CA-1B (3.51)

Eq. 3.50 can now be solved in two steps,

Sx2 = (D - CA-1B) x2 = b2- CA-lbl (3.52a)

Ax1 = Bx 2 + b (3.52b)
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where a separate preconditioner can now be applied to each step, detailed in [16] and

[15]. S in eq. 3.52a is preconditioned by first approximating the Schur complement

as S D - CB and then preconditioning the resulting matrix with the diagonal of S.

Construction of a preconditioner for A in eq. 3.52b requires approximation of A -1 which

is accomplished by using a two-level additive Schwarz domain decomposition method [69].

Level one of the method captures the high spatial frequency properties of the solution

of A, while the coarse mesh approximation in level two captures the low frequency

properties of' the solution. While the additive Schwarz method completely decouples the

individual subdomains in the computational domain, the number of Krylov iterations

needed to reach convergence can be greatly reduced by introducing overlap between the

subdomains on the order of a single set of nodes [15].

Decomposition the geometrical domain into subdomains is accomplished through a

routine called CHACO developed at Sandia National Lab in New Mexico. The decom-

position minimizes the amount of surface area between the subdomains, reducing the

amount of communication between processors required during solution of eq. 3.52b.

The end result is a method for which speed scales nearly linearly with the number of

processors in the parallel machine, theoretically allowing computations of large problems

limited only by the number of processors available. Eventually, a saturation in the

number of processors occurs where adding additional processors no longer increases the

speed of the calculation. This is because the ratio of communication between processors

to computation per processor increases as the problem domain is broken up into smaller

and smaller pieces. Intuitively, the saturation is delayed for larger and larger problem

sizes as can be seen in Fig. 3-5. The speedup shown in Fig. 3-5 is a common measure of

the performance of a parallel method given by

S _= (3.53)
tN

where t is the time required for solution of the problem on 1 processor and tN is the

time required for solution on N processors. The smallest mesh, SM1, has a total of 60,900
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Figure 3-5: Speedup S for the solution of the Stokes-like linear system; De=0.5. The
meshes range in size from mesh SMI with 60,900 degrees of freedom to mesh SM4 with
751,110 degrees of freedom. Figure reproduced from [16]
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Figure 3-6: Finite element mesh used in simulation of the melt spinning process. The
mesh contains 3896 elements and 92418 unknowns. Note that this unkonwn count is for
continuous linear stress unkowns. Taken from [44].

degrees of freedom, and the largest mesh, SM4, has a total of 751,110 degrees of freedom.

As can be seen from Fig. 3-5, the saturation level has not been reached at 16 processors

for the SM4 mesh. The method has been used to compute problems of nearly 1,000,000

unknowns on a 32 processor parallel cluster.

3.6 Problem size estimates for 3-D geometries

To help the reader to understand the size of problems that are of interest for a full

simulation of three-dimensional flow and thus the need for optimized numerical meth-

ods, an estimation of the three-dimensional problem size is presented here based on an

adequately-resolved two-dimensional fiber spinning mesh found in the literature [44] and

shown in Fig. 3-6. The two-dimensional mesh is expanded around the asmuthal direction
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to construct the three-dimensional mesh. To estimate the number of elements in the

three-dimensional mesh, a mesh that is uniform in the asmuthal direction will be used.

Since the gradients of the flow and stress field should be the highest in the contraction

region of the geometry between z = -4 and z = 0 in Fig. 3-6, the center of this region, at

r = 0.5 will have elements of aspect ratio approximately 1:1:1. Elements in this region

are of dimension Ar = 0.25 and Az = 0.2 in the two-dimensional mesh. If there are 14

elements in the asmuthal direction, then elements in this region of the three-dimensional

mesh will have dimensions of Ar = 0.25, Az = 0.2, and AO = 0.225. The total num-

ber of elements in the three-dimensional mesh for this fiber spinning geometry is then

54,544 with a total number of unknowns of approximately Ntota = 5, 000, 000. Note

that the estimate for the number of unknowns in the three-dimensional mesh takes into

account the use of discontinuous basis functions used to represent the stress unknowns,

as the three-dimensional finite element package makes use of this formulation. The total

number of unknowns breaks down into roughly NVp = 1, 670, 000 velocity and pressure

unknowns, NVG total = 830, 000 velocity gradient unknowns total with NG = 92, 000 for

each of the nine components, and Ns = 2, 500, 000 stress unknowns. A typical bandwidth

for a mesh of this size is b = 2000.

To estimate the time necessary to compute the solution to the above problem for a

Deborah number of 0(1), solution methods using the steady-state method, the serial

decoupled time-dependent method, and the parallel decoupled time-dependent method

are considered. Assuming that the calculations are carried out on a computer capable

of 100 million floating point operations per second (MFLOPS), the estimates for time

to reach solution are as follows. For the steady-state method using a frontal solver to

reduce the set of equations, the time to reach solution is found by

(Ntotalb 2 ) * nsteps (3.54)100xteady state = 106FLOPS
where nsteps = 100 is the estimated number of Newton method steps needed to converge

with consideration given for the need to take incremental steps in De to reach 0(1). The
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amount of time is then

tsteady state = 38 years

which is an infeasible amount of time to allot. For the serial decoupled time-dependent

method using a preconditioned Krylov subspace method to solve the momentum/mass

continuity and the velocity gradient interpolant subproblems and a 4th order Runge-

Kutta time-stepping method to integrate the stress equations, the time to reach the

steady-state solution is dominated by the time of the momentum/mass continuity sub-

problem. This time is given by

(Nvpb) * tsteps * 4 (3
decoupled = 100x106 FLOPS

where tteps : = 10000 is the estimated number of time steps needed to reach steady state

and the factor of 4 is for the four substeps in the 4th order Runge-Kutta method. The

amount of time is then

tdecoupled = 15 days

still somewhat longer than desired. Parallelization of the decoupled time-dependent

method can offer significant savings in the time needed to compute a solution due to the

division of labor among many processors in the parallel machine. For a good parallel

algorithm, a linear relationship between the number of processors used in the parallel

machine and the time needed to solve the problem is seen [16]. This translates to the

time needed to compute the solution being given by

tparallel = tdecoupled (3.56)
nprocessors

where nprocessors is the number of processors in the parallel machine. Assuming a parallel
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machine of 32 processors, the time to compute solution for this method is

tparallel = 0.5 days

a very reasonable amount of time for a calculation of this size. Results of the estimated

time to solution for the three methods are summarized in Table 3.1. Clearly it is desirable,

Table 3.1:

method time to reach solution
steady 38 years

serial decoupled 15 days
parallel decoupled 0.5 days

Estimated time to reach solution for the steady-state method, the serial
decoupled time-dependent method, and the parallel decoupled time-dependent method.

and in the case of even larger problems necessary, to use a parallel version of the decoupled

time-dependent formulation.

84



Chapter 4

Decoupled G Formulation

4.1 Introduction

The main goal of this chapter is to develop a new formulation for the solution of the

viscoelastic flow equations adapted from the DEVSS-G formulation first used by Liu

et al. [54]. Due to the relatively large computational burden of solving for the flow

field when using continuum-based differential constitutive equations, it is desirable to

minimize the overall size of the equation set used to describe the flow problem without

loss of physical description. Optimizing the numerical methods used to translate the

flow equations into a form solvable on the computer is the best way to attain this goal.

The following work details two modified forms of the DEVSS-G formulation in which

the solution of the velocity gradient interpolant, G, is decoupled from the solution of

the momentum and mass continuity equations. The first method is a direct extension

of the DEVSS-G method, utilizing a global least squares minimization to approximate

G. The second method employs a patch algorithm developed by Zienkiewicz and Zhu

[90] to approximate G from local velocity gradient information. Comparison of the

performance and accuracy of the two methods is made to determine that which best

reduces the overall size of the flow problem. Comparisons to the accuracy of the fully

coupled formulation are also presented.
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4.2 Problem Description

The methods developed here are based on the DEVSS-G method used for solution of

the equations describing viscoelastic flow. The DEVSS-G method is presented in full in

Section 3.1. A decoupled form of the equations describing the polymer stress and the

flow field is used as a starting point for the numerical method. This method is detailed

in Section 3.3. The portion of the equation set and formulation that is of interest herein

is the expression used to approximate the G interpolant and the method used to solve

for that expression in relation to the momentum and mass continuity equations.

In order to reduce the overall size of the discretized flow equations, the equations

approximating the G interpolant are decoupled from the flow equations. In the spirit

of the decoupling of the polymer stress equations from the flow equations, where the

solution of the flow equations acts as a constraint on the evolution equations for the

polymer stress and precisely describes the flow field for the current stress field in an

intertialess flow, the equations for the G interpolant are solved for after the velocity

field has been determined for the current polymer stress in the system. The decoupled

equations describing the polymer flow system take the form of eqs. 4.1, 4.2, and 4.3:

dT= M-lf (7p, 91 (p, G), 92 (V)) (4.1)

II =gl9(7p,G) (4.2)
P

[ G ] = 2 (V) (4.3)

A schematic diagram of the algorithm is shown in figure 4-1. In this form, eqs. 4.2 and 4.3

act as constraints on eq. 4.1. The following sections concern the details of the computa-

tion of eq. 4.3 for the global least squares minimization and the local smoothing methods.

For both cases, only three components of G are solved for in the two-dimensional case

(eight in the three-dimensional case): G,,, Gy, and G,,. The fourth component, Gyy,
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Figure 4-1: Time stepping algorithm of the decoupled G formulation for the equations
describing viscoelastic flow.

is found using continuity, G,, + Gyy = 0.

4.2.1 Global Least Squares G Formulation

The global minimization of the least squares approximation for the G interpolant is the

form used in the DEVSS-G formulation detailed in Section 3.1 and shown in eq. 4.4:

(Vv - G)2dQ= (4.4)

Details on using least squares equations with the finite element method can be found in

[43]. The least squares minimization then takes the variational form given in eq. 4.5 in

the finite element discretization.

(v - G) dQ = 0 (4.5)

Considered in the overall algorithm for solution of the polymer flow (fig. 4-1), the G

interpolant is computed from eq. 4.4 given the velocity field at every linear node in the

flow domain. For a given velocity field, the G interpolants are solved for at once for the

entire flow domain. Expressing eq. 4.5 in component form (eq. 4.6),

dvx ~dv d1v GxY G dvx dv d

dv dvy_ dv - Gyx Gyy Gyd = 0 (4.6)dy dy dy Y

dv dv dv. G Gzy
dz dz dz 
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and then considering the equation for each component (eq. 4.7),

(Vvij - Gij) dQ = 0 (4.7)
e

it is clear that each component of the G tensor is independent of one another; hence,

each component can be solved for separately, reducing the size of the overall calculation.

4.2.2 Local Patch G Formulation

The concept of replacing global minimizations with local minimizations was first dis-

cussed by Hinton and Campbell [41]. Zienkiewicz and Zhu [90] furthered this concept by

developing a patch recovery technique which allows for the computation of derivatives

of the field variables through a local smoothing technique. Their method has the ad-

vantage over direct differentiation of preserving the order of the differentiated variable

and the advantage over global minimization of greatly reducing the overall problem size

by eliminating coupling of the unknowns at the global level. By using an adaptation

of the patch algorithm laid out by Zienkiewicz and Zhu, the global minimization of G

is replaced by local smoothing equations in which velocity gradient information from

nearest node neighbors are used to compute a smoothed G interpolant (eq. 4.8).

n n

pT (i, i) P (xi, yi) Gkl = pT (xi, Yi) VVkI (Xi, Yi) (4.8)
i- i=l

Here n is the number of nodes in each element of the patch, VVkl is the k, I component

of the velocity gradient computed from the flow field and Gkl is the k, I component

of velocity gradient interpolant. The vector P is the polynomial expansion, or basis

function, for an individual element in the patch. The polynomial expansion is given in

eq. 4.9 as

P = [1, x, y, xy] (4.9)
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Figure 4-2: Four quadralateral elements used in construction of the local patch. The
resulting patch element is an approximation of a larger quadralateral element.

, It is important to note that VVkl is treated as data in eq. 4.8. By looking at the

linear elements contributing to the patch, one can easily see the quadralateral form that

arises from P (fig. 4-2). Considering the case of a patch constructed from four bilinear

rectangular elements illustrated in figure 4-2, one can easily see that a biquadratic element

results, described by a biquadratic basis function. Although these four-element patches

are the primary choice for implementation in the viscoelastic solver, it is instructive to

see the effects of increasing the number of elements in the patch. In the limit as the

number of elements in the patch approaches the total number of elements in the system,

the global minimization equation is recovered (eq. 4.10) as

(4.10)

Here net is the total number of elements in the computational domain, n. Therefore,

the patch algorithm is consistent with the global minimization used in the DEVSS-

G formulation for the viscoelastic system of equations as well as here in the alternate
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decoupled frmulation described in Section 4.2.1.

While the global minimization of G is not a boundary-value problem and hence

does not require any information of the geometrical boundaries, since the patches used

to compute the components of G are constructed from the surrounding elements, it

is necessary to give special treatment to the nodes lying on the boundaries. When

considering patches consisting of four quadralateral elements, there are three possible

cases for the patch configuration of an element lying on a boundary: a corner node,

a side node, and an inverted corner node. The three cases are presented in figure 4-

3. Each case has four possible orientations with respect to the patched node. Notice

that the three configurations have one, two, and three elements, respectively, from which

the local patch is constructed. The special treatment necessary to correctly represent

the information present is somewhat trivial, though necessary. When looping over the

elements n in eq. 4.8, the correction for the non-existent elements is simply to set the

values of VVkl to zero on all of the nodes in the element, whether or not the nodes

are present. This will correctly weight the information in the local patch when not all

contributing elements are present.

4.3 Comparison of Patch and Least Squares Formu-

lations

In order to understand best the effects of implementation of both the decoupled global

minimization and local minimization methods, analysis in terms of accuracy and perfor-

mance was carried out using the fully coupled DEVSS-G method as a benchmark. The

flow in the periodic wavy walled channel was chosen as an optimal test problem for the

comparisons since this flow exhibits a mixture of shear and elongational flow without

the existence of any geometrical singularities. Figure 4-4 is a schematic diagram of the

physical geometry modeled in the calculations. Here H = 0.8 is the channel height at the

widest point; H, = 0.2 is the swell height of the channel wall; Lp = 1.0 is the length of
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(a) corner

(b) side

(c) inverted corner

Figure 4-3: Types of patch element configurations for a mesh of quadralateral elements.
Each of the three cases has four possible orientations relative to the patched node.
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Figure 4-4: Schematic diagram of a wavy walled channel. H = 0.8 is the channel height
at the widest point; Hw = 0.2 is the amplitude of the sine wave describing the undulations
in the top wall; Lp = 1.0 is the length of a periodic section of the channel.
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a periodic section of the channel; 2R = 0.3 is the amplitude of the sine wave describing

the undulations in the channel wall. Flow in figure 4-4 is from left to right. Periodic

boundary conditions are applied on the inlet and outlet surface of the geometry. Zero

velocity boundary conditions are enforced on the channel wall. A symmetry boundary

condition is enforced on the channel centerline. Meshes used to discretize the physical

geometry are shown in figure 4-5. Meshes M1, M2, and M3 contain successive levels

of refinement. Mesh M2a has approximately the same number of elements as mesh

M2, but with grading in the vertical direction concentrated near the channel wall where

the gradients are typically the largest. Calculations were performed for an Oldroyd-B

fluid with solvent to total viscosity ratio of d = 0.5 over a range of Deborah numbers,

De = A (v) /h, where A is the relaxation time of the polymer, (v) is the average velocity

in the narrowest section of the channel and h = H - HW is the height of the channel in

the same region. The time constant A is used to vary De in the simulations.

To understand better the effects of decoupling the velocity gradient interpolant equa-

tions from the momentum and mass continuity equations, comparisons of the solutions

from the deicoupled global minimization method and the fully coupled method are pre-

sented here. The L2 norm of a vector x is defined as xH _ x. The comparison is

carried out by monitoring the L2 norm of the velocity field, [lv[H, during startup of flow

in the wavy-walled channel for both the decoupled global minimization method and the

fillly coupled method. Figure 4-6 is a plot of the difference of jjvfl for the two meth-

ods. The L2 norm of the stress field, 11r11, is included to show when the steady state

solution has been reached for the fully coupled method. As is expected from decou-

pling the computation of the velocity gradient interpolant equations from the flow field

equations, there is some initial difference in the computed flow field. However, as the

stress field evolves, the difference in ][lvj monotonically decreases approaching zero as the

flow reaches steady state. Comparison of the solutions of the flow fields and pressure

fields show that the solutions produced by the two methods do agree within numerical

precision at steady state. This if of course the anticipated result, since the steady-state
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(a) M1 (b) M2

(c) M2a (d) M3

Figure 4-5: Meshes for the wavy-walled channel geometry. MI: 300 elements; M2: 1200
elements, M2a: 1150 elements; M3: 4800 elements
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Figure 4-6: Error associated with decoupling of the global minimization equations for
the velocity gradient interpolants from the momentum and mass continuity equations in
startup of flow in the wavy-walled channel of an Oldroyd-B fluid of = 0.5 and De = 0.7.
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equations for both the decoupled global minimization and the fully coupled method are

identical. The conclusion can therefore be drawn that decoupling the computation of

the velocity gradient interpolant from the equations describing the flow field has no effect

on the computed steady-state solution.

Since a difference in the computed flow field is present prior to attaining steady state,

the convergence with successive iterations of the decoupled method was also studied.

For this study, the stress field was determined using the fully coupled method for the

steady-state flow in the wavy-walled channel for De = 0.7. A simulation using the

decoupled method was then carried out with zero initial values for the velocity, pressure,

and velocity gradient interpolant fields and the steady-state stress field as computed

from the fully coupled simulation at De = 0.7. In this manner, the number of iterations

necessary for the decoupled global minimization method to converge to the fully coupled

method solution was determined. Figure 4-7 is a plot of ][vii for the decoupled method.

The dashed line is the value of lv][ for the fully coupled method. As is shown here,

the decoupled method requires 17 iterations for the flow field to reach the steady-state

solution computed by the fully coupled method.

Armed with a better understanding of the effects of decoupling the computation of

the velocity gradient interpolant from the flow equations, comparison of steady-state

solutions of the global and local minimization methods can now be made. For the

flow of a Newtonian fluid in the wavy-walled channel, the solutions obtained with the

global and the local minimization methods show little variation. As De increases, small

differences in the computed flow fields and pressure fields from the two methods begin

to appear. Figure 4-8 shows the contours of the two components of velocity and the

pressure as computed by the two methods. To aid in identification of differences in the

two flow fields, overlays of the contours of of velocity and pressure computed from the two

methods are included in figure 4-9. As is apparent from the overlays of the velocity and

pressure contours, only minute differences are present in the solutions computed from

the two methods. The pressure field is clearly the most sensitive to the differences in the
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Figure 4-7: Convergence of the flow in the wavy-walled channel using the decoupled
global minimization method for computation of the velocity gradient interpolant with a
fixed stress field. Stress field computed using the fully coupled method for the flow of
an Oldroyd-B fluid of 3 = 0.5 with De = 0.7.
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Figure 4-8: Velocity and pressure contours computed with the global and local smoothing
methods with mesh 1vI2a for De = 0.1.
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Figure 4-9: Comparison of the velocity and pressure contours computed with the global
and local smoothing methods with mesh M2a for De = 0.1. Blue: global method; red:
local method.
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approximations of the two methods, but still exhibits only small deviations concentrated

near the wall of the narrowest region of the channel. As the viscoelasticity of the

flow increases, the differences in the flow field and pressure field computed with the

two methods become more pronounced. Figure 4-10 shows the velocity and pressure

contours as computed with the two methods for De = 1.0. Overlays of the contour fields

for velocity and pressure for the De = 1.0 case are included in figure 4-11. In contrast

to the De =: 0.1 case, the overlay of the pressure contours for the De = 1.0 case shows

much more significant variation in the pressure fields computed with the two methods.

The variations are still concentrated near the wall of the narrowest section of the channel

but now remain pronounced much further away from the wall. In addition, the velocity

fields computed with the local smoothing method are now beginning to show significant

deviation from the global method.

Clearly the global and local minimization methods produce different results for the

flow field in the wavy-walled channel as viscoelasticity increases. As with the computed

flow fields and pressure fields, comparison of the differences in the computed values

of the components of G show increasing differences as the viscoelasticity is increased.

Contour plots of the components of G for the global and local minimization cases for

De = 0.1 are shown in figure 4-12. Figure 4-13 shows overlays of the contours of

the components of the velocity gradient interpolant computed using the two methods

in the region near the wall of the narrow section of the channel. These comparisons

show that the most significant variation between computed values of the global and local

smoothing methods occurs near the wall of the channel in the narrowest section. While

the contour plots of the components of G are still quite similar at De = 0.1, the overlays

of the solutions show small differences beginning to arise between the computed values of

the two methods near the wall of the narrowest region of the geometry, the region where

the gradients are the largest in magnitude. As with the computed values of velocity and

pressure, the approximations for G of the two methods show an increase in variation as

the viscoelasticity is increased. Contour plots of the components of G for the global
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Figure 4-10: Velocity and pressure contours computed with the global and local smooth-
ing methods with mesh M2a for De = 1.0.
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Figure 4-11: Comparison of the velocity and pressure contours computed with the global
and local smoothing methods with mesh M2a for De = 1. Blue: global method; red:
local method.
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Figure 4-12: Contour plots of the components of G computed using the global and local
minimization methods with mesh M2a for De=O.1.
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Figure 4-13: Comparison of the contours of the components of G computed with the
global and local smoothing methods with mesh M2a for De = 0.1. Blue: global method;
red: local method.
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and local minimization cases for De = 1.0 are shown in figure 4-14. Overlays of the

contour fields for the components of G for the De = 1.0 case are included in figure

4-15. From the contour overlay plots it is apparent that the increased variation with

increasing viscoelasticity is still concentrated around the wall of the narrowest region of

the channel:; this is the region of the largest viscoelastic stresses. While variation in G,,

is not significant at the wall in the narrow section, the local method predicts much higher

values at the wall just upstream and downstream of the narrow region. Comparisons

of G.x and Gxy also show dramatic differences between solutions of the global and local

approximations. In figure 4-15(b) the local smoothing method is shown to predict a

much higher gradient in Gyx near the wall of the narrowest region of the channel. In

figure 4-15(c) the local smoothing method is shown to predict higher values of Gxy, most

apparent just downstream of the narrowest region of the channel.

As the viscoelasticity is further increased, the local smoothing method shows even

greater differences in the computed flow field as well as the velocity gradient interpolant

fields. With mesh M2a, the local smoothing method fails to reach steady state above

De = 1.0, whereas the global smoothing method continues to reach steady state up to

De = 1.5. Figure 4-16 shows that whereas the local smoothing method reaches steady

state in approximately the same number of iterations as the global smoothing method,

a discrepancy in the flow field exists. The increased discrepancy of the flow field over a

range of De calculated from the local smoothing method is qualified by using the fixed

stress field analysis described previously. Figure 4-17 is a plot of the difference in the

L2 norms of the flow field with increasing viscoelasticity as predicted by the global and

local smoothing methods using a fixed stress field. Note that with the fixed stress field

calculated from the fully coupled method, temporal convergence of the local smoothing

method can be obtained for higher De using the M2a mesh. Although the error in the

patch method approaches a limiting value as De-- 0, the error grows rapidly as De is

increased.

To understand better if the local smoothing method is convergent with increased
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Figure 4-14: Contour plots of the components of G computed using the global and local
minimization methods with mesh M2a for De=1.0.
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Figure 4-15: Comparison of the contours of the components of G computed with the
global and local smoothing methods with mesh M2a for De = 1.0. Blue: global method;
red: local method.
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Figure 4-16: Convergence of the L2 norm of the velocity field in the wavy-walled channel
using the decoupled local smoothing method (- -) for computation of the velocity
gradient interpolant with a fixed stress field. Stress field computed using the fully
coupled method for the flow of an Oldroyd-B fluid of = 0.5 with De = 0.7. Decoupled
global minimization method (-) is included for comparison.
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Figure 4-17: Difference in L2 norms of the velocity computed from the global and local
smoothing methods using a fixed stress field over a range of De for an Oldroyd-B fluid
with = 0.5. Mesh M2a is used in the calculations.
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Figure 4-18: Mesh convergence study of the local smoothing method. Refinement r is
inversely proportional to the element dimensions in the mesh. (---): global method
with mesh M1l; (o): local method. G on channel wall at x = 0.65.

mesh resolution, calculations were performed with meshes M1, M2, and M3 using the

local smoothing method. Comparison of the solutions of the global smoothing method

for the three meshes showed virtually no difference; hence, the global smoothing method

is considered to be converged with the M1 mesh. Comparison was made between the so-

lutions of the global smoothing method with mesh Ml and the local smoothing method

with meshes M1, M2, and M3. Figure 4-18 shows the value of Gyx at the wall just

downstream of the narrowest part of the channel for the two methods. Refinement r is

inversely proportional to the dimensions of the elements in the mesh such that doubling

r results in doubling the number of elements in both the x and y directions, effectively
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quadrupling the total number of elements. It is shown here that the local smoothing

method converges to the global method with increasing mesh resolution. This super

linear convergence agrees with the theory presented in [90]. Using the local smooth-

ing method it is possible to obtain steady-state solutions at higher De with increased

mesh resolution. In order determine the amount of refinement needed to converge to

the solution of the global smoothing method when utilizing the local smoothing method,

solutions found for the three meshes, M1, M2, and M3, were compared to the solution

from the global smoothing method, since the level of refinement necessary to converge

to the global smoothing method's solution was not necessarily required in all regions of

the flow domain. Figure 4-19 identifies where and approximately how much additional

refinement is necessary for the local smoothing method to converge to the global smooth-

ing method for the flow in the wavy-walled channel with De = 1.0. The resulting mesh

has approximately seven times the number of unknowns of the equivalent mesh for the

global smoothing method.

By performing an operation count for the local smoothing method and global smooth-

ing method :for the equivalent meshes needed to reach similarly converged solutions with

both methods, better understanding of the relative computational costs of the two meth-

ods can be gained. Take N to be the total number of unknowns in the system. The

operation count for both methods can be broken up into the count for the subproblems of

the calculation of the velocity gradient interpolant and the calculation of the velocity and

pressure. Consideration of the operation count of the latter subproblem is necessary due

to the effect of the increase in mesh resolution needed in the local smoothing method on

this calculation. For operation count estimation, it is assumed that a Krylov subspace

method with suitable preconditioner can be found to solve the large linear equation sets

in the velocity-pressure subproblem [16] and the global least squares minimization of G

subproblem. The constant, b, in the operation count of the Krylov solver is assumed to

scale with the total number of unknowns in the subproblem. For the patch algorithm,

it is assumed that the evaluation of each individual patch requires approximately 10 op-
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Figure 4-19: Refinement necessary when using local smoothing method to converge to
global smoothing method solution. Shaded regions highlight areas of refinement. The
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region requires no refinement.
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erations. The components of G make up approximately one third of the total number

of unknowns in the flow problem of the mixed finite element formulation. This is true

for both the two-dimensional and three-dimensional problems. In the two-dimensional

case, for the global smoothing method, the subproblem for the global least squares min-

imization of G requires

3* O ((1/3 * N 1/3) * (1/3 * b 1/3)) = 0.04 *0 (Nb)

operations. Note here that each component of G is solved for separately, since they have

no dependence on one another. Savings in three dimensions is further enhanced by a

factor of 1/3 * 3 3 * 1/8 * 1/8 * 8 = 3/8. The velocity-pressure subproblem requires

0 ((2/3 * N) * (2/3 * b)) = 0.44 * 0 (Nb)

operations. The overall operation count for the global smoothing method is then

(0.04 + 0.44) * 0 (Nb) = 0.48 * 0 (Nb)

operations.

For the local smoothing method, the subproblem for the patch algorithm calculation

of G requires

0 (10 * (7 * 1/3 * N)) = 23 *0 (N)

operations. The velocity-pressure subproblem requires

0 ((7 * 2/3 * N) * (7 * 2/3 * b)) = 22 *0 (Nb)

operations. The overall operation count for the local smoothing method is then

(23 + 22 * b) * O (N) = 22 * 0 (Nb)

113



operations. Table 4.1 summarizes the operation counts for the decoupled global smooth-

ing, decoupled local smoothing, and the fully coupled methods. While the calculation of

method operation count factor, x O (Nb)
fully coupled 1
global smoothing 0.44
local smoothing 22

Table 4.1: Itelative operation count for the fully coupled, decoupled global smoothing
and decoupled local smoothing methods.

G using the patch algorithm is of little consequence in the overall operation count, the ef-

fect of the increased resolution required to approximate the global smoothing method on

the velocity-pressure subproblem makes the overall calculation using the patch algorithm

quite expensive when compared to the method utilizing global least squares minimiza-

tion for G. Considering the operation count for the fully coupled method to be 0 (Nb),

the decoupled global smoothing method offers significant savings at roughly half of the

number of operations required to reach solution.

4.4 Conclusions

In this chapter, two different methods for computing the velocity gradient from a previ-

ously computed flow field in the viscoelastic flow problem are presented in an attempt

to reduce the computational load of the computation of the viscoelastic flow calculation.

Both methods are based upon the DEVSS-G formulation first used by Liu et al. [54], but

decouple the calculation of the velocity gradient from the flow problem. The decoupled

global smoothing method is a direct extension of the DEVSS-G method, in that they both

utilize a global least squares approximation for the calculation of the velocity gradient.

The decoupled local smoothing method, on the other hand, utilizes a patch algorithm

developed by Zienkiewicz and Zhu [90] for use in solid mechanics for determining the

stress posteriori.

Since both methods utilize a decoupled form of the equation set governing viscoelastic
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flow, a study of the effects of decoupling the global least squares minimization equation

for G is performed. The most significant result of this study was that no discernible dif-

ference in the steady-state solution of the decoupled global smoothing method was found

when compared to the fully coupled steady state solution. The decoupled method did

however require additional iterations to reach steady state when initialized with a fixed

stress field at moderate De; however, utilizing a time-dependent method automatically

addresses this issue as the solution evolves in time.

Comparison of the performance of the global and local smoothing methods was stud-

ied, concentrating on differences in steady state solutions over a range of De. While

only minor differences in the flow fields are present at low De, as De is increased, more

dramatic differences become apparent. Eventually, above De = 1.0, the local smooth-

ing method fails to converge to a steady-state solution, whereas the global smoothing

method still is able to reach steady state up to De = 1.5 when utilizing the same finite

element mesh for calculation. Calculation utilizing a fixed stress field computed with

the fully coupled method shows that the error in the flow field computed with the local

smoothing method grows rapidly with De. Increased mesh resolution is shown to be

a possible solution to the poor performance of the local smoothing method. However,

analysis of the computational cost of the increased resolution necessary to capture the

same accuracy as the global smoothing method shows the local smoothing method to be

quite expensive relative to the decoupled global smoothing method. On the other hand,

the global smoothing method reduces the overall computational cost of the flow problem

by a factor of two, clearly making it the more desirable method.
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Chapter 5

Time-dependent Free-surface

Formulation for Two-dimensional

Viscoelastic Flows

Many technologically important problems involve free surfaces and viscoelastic fluids [49],

[56], [61], [83]. One of the commonly studied free surface problems involving viscoelastic

fluids is the extrusion of a polymer from a die orifice. Although this problem involves a

confined die geometry in which rich dynamic behavior occurs [7], [52], [63], much interest

has been centered on the dynamics that occur at and beyond the die exit [50], [53],

[58], [59], [70], [78]. In particular, this problem is of great interest to the fibers and films

industry. Accurate modeling of the free-surface problem would be extremely helpful in not

only understanding the behavior of currently utilized process technology and polymers

but also in exploring new polymers and vastly different processing technology designed

through relatively inexpensive modeling performed on computers reducing the amount

of costly experimentation in lab-scale and pilot plant facilities.

Implementation of free-surface boundaries through the use of deformable regions intro-

duces significant complexity to the viscoelastic flow problem. While the use of deformable

regions with steady-state solvers has been proven successful [70], [78], it introduces signif-
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icant computational cost to the already expensive viscoelastic flow problem. While less

computationally intensive, implementation into the decoupled time-dependent schemes

may be much more troublesome than the steady-state analog. Algebraic mesh genera-

tion involving a simple interpolation scheme, [74], is one such method used in conjunction

with the finite element method. However, the scheme has been shown to behave poorly,

resulting in mesh distortions and crossing of elements in some instances, [20]. A success-

ful method for updating nodal positions in two-dimensional domains is the use of a set

of elliptic mapping equations developed by Christodoulou and Scriven, [21]. However,

extension of the two-dimensional mapping equations to three dimensions is not straight

forward.

Rasmussen and Hassager, [40], take a somewhat different approach in which the

elements of the discretized domain are allowed to deform affinely given the governing

equations and boundary conditions. The authors employ a remeshing technique to avoid

any distortion of elements during the simulation. However, the modeling technique uses

a Lagrangian frame of reference, where the simulations of interest here are problems

described with an Eulerian frame of reference. Tailoring this technique to an Eulerian

frame of reference yields another formulation known as the Arbitrary Lagrangian-Eulerian

method in which the moving variables are segregated from the non-moving variables, [79].

Other authors have demonstrated the use of elements that lie along the computed velocity

streamlines for three-dimensional solvers, [25], [58]. However, this adds yet another

subproblem since the velocity field is needed to compute locations of the elements. How

this substep would be implemented in a time-dependent viscoelastic solver is not clear

and may cause numerical instabilities to arise. To make matters worse, there is a known

temporal instability, the Hadamard instability, arising from the constitutive equation

that may affect the implementation of a free-surface boundary, [45], [51]. Joseph [45]

provides an extended discussion on hyperbolic equations and change of type leading to

the Hadamard instability.

This chaipter details a two-dimensional implementation of deformable mesh regions
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with free-surface boundary conditions within the time-dependent DEVSS-G formulation

discussed in Section 3.1. The method capitalizes on the decoupled, time-dependent for-

mulation of the governing equations by including the evolution equation describing the

height of the free surface in a self-contained subproblem, limiting the impact on the over-

all problem size from creation of the new unknowns for nodal position in the deformable

region of the domain. Reduction of this impact, while not crutial in two-dimensional

problems, is critical to the application of the free-surface equations in the much larger

three-dimensional problems. Furthermore, application of the new physical equation

in the manner presented here can be extended to include evolution equations describing

other physical aspects of the system, such as the energy equation, with minimal impact to

the overall problem size. Derivations of the equations describing the free-surface bound-

ary conditions and equations used for updating node locations of deformable elements

are included in Section 5.1. Comparison of solutions from the time-dependent method

to those of a known steady-state method [72] are detailed in Section 5.2. Conclusions

are presented in Section 5.3.

5.1 Problem Description

5.1.1 Governing Equations

The DEVSS-G method is employed here to describe the flow of a viscoelastic fluid in an

unconfined geometry, given by eqs. 3.7, 3.8, 3.9, and 3.10. Development of the method is

described in full in Section 3.1. The polymer extra stress is modeled using the Giesekus

equation, eq. 2.26.

5.1.2 Free-surface Boundary Conditions

Boundary conditions for both the total stress on the meniscus boundary and the motion

of the meniscus boundary are necessary to describe the system fully. The stress balance
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on the surface consists of the tangent component and the normal component, namely

t r-n=0 (5.1)

2H
n r-n= Ca (5.2)

where t is the tangent to the meniscus, n is the outward normal to the meniscus, 7r =

7r + p8 is the total stress, H is the surface curvature, Ca r(v) / is the capillary

number, and is the surface tension.

The kinematic boundary conditions for the meniscus boundary are written as

Vsurf ace n = Vfluid n (5.3)

Vsrf acet = 0 (5.4)

where VsurfcLce is the velocity of the free surface and vfluid is the velocity of the fluid at

the free surface. These conditions assure that the motion of the free surface is equal

to the motion of the fluid normal to the surface only. To help reason this out, imagine

the surface to be a thin film spread out across the surface of a fluid bath. If the fluid

is viewed at a perspective tangent to the surface in an Eulerian frame of reference, only

motion of the fluid against the film will produce noticeable motion in the film, perhaps

fluid being added to or drained from the bath to raise or lower the height of the film, or

a wave passing under the film, causing it to rise or lower locally. Viewing the film from

this tangential perspective would not allow observation of the fluid dragging the film but

only observation of the fluid either pushing or pulling the film.

To describe the motion of the free-surface, the Monge surface consisting of the profile

of the deformable region of the computational domain is used. A Monge surface is a

surface that is generated by a profile curve whose profile rolls without slipping over a

developing surface. To describe the evolution of any point on this surface, it is necessary
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Figure 5-1: Schematic diagram of the change in the height of the surface after time At
as described by the y component of the normal velocity of the fluid. (-): surface at
t = to; (- -): surface at t = to + At.

to transform eq. 5.3 into an equation describing the time rate of change of the height of

the surface. The shape of the Monge surface is given in the Eulerian frame of reference

by describing the height of the surface as a function of position and time. The primary

direction of flow is defined as x direction, and the transverse direction of flow is defined

as the y direction. The time rate of change of the surface height, dh/dt, can then be

expressed as the y component of the velocity of the fluid normal to the surface, v wy (eq.

5.5).
dh (, t)

= VAny (t) (5.5)dt

The motion after a time At is shown pictorially in figure 5-1. This is not, however, a

complete description of the time rate of change of the height of the surface, which can

be seen visually in that the location of the surface does not equal the distance the fluid

pushing on the surface would have travelled, vnAt. When considering a wave travelling

across the surface, it is clear that viewed in an Eulerian frame of reference the surface will

appear to move both tangential to the direction of propagation of the wave and normal

to the direction of propagation of the wave. Thought of in this way, clearly there are
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Figure 5-2: Schematic diagram of the change in the height of the surface after time At
as described by equation 5.6. (-): surface at t = to; (- -): surface at t = to + At;
(- -): surface at t = to + At accounting for translation.

contributions to the change of the height of the surface from both the local fluid velocity

pushing the perpendicular direction and the motion of the wave itself. To account for

this additional motion, the portion of the normal fluid velocity that would cause pure

translation of the surface is included in the expression for the time rate of change of the

height of the surface (eq. 5.6).

dh (x, t) ( , t) + ty nx(x, t) (5.6)
dt tX

Here, t is a unit vector tangent to the surface. The motion after a time At considering

this additional contribution is shown pictorially in figure 5-2. Visual inspection of figure

5-2 verifies that the motion of the surface over a timestep At now moves the full vnAt

as described by the normal kinematic boundary condition (eq. 5.3).
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5.1.3 Mesh Mapping Equations

Elliptic mapping equations are used to describe the node locations of the deformable

regions of the computational domain. They are based on those derived by Christodoulou

and Scriven [21], which are a modified version of the conformal mapping method

V2 = 0 (5.7)

V2?7 = O (5.8)

where and r7 are the coordinates of the element nodes in the computational domain.

Here the Laplace equations are used to ensure smooth, orthogonal meshes. An orthogonal

mesh can also be created by including a factor that stretches the mesh by the element

aspect ratio, S.

V SV~ = 0 (5.9)

1
V · VT] = 0 (5.10)

S 2 (5.11)

Here , x- Ox/O, etc.. Smoothness of the mesh is accounted for by a weighted version

of the conformal mapping equations.

esV2~ = 0 (5.12)

eS V2
7 = 0 (5.13)

Here the parameter ec scales the relative importance of smoothness to orthogonality in

the mesh in the final form of the mapping equations, typically taking on a value around
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1, though higher values can be used. The composite of eqs. 5.9 and 5.12 yields eq. 5.14.

V- n 2 O + e ) V o= (5.14)

Due to the nature of the meshes generated in the die swell problem where large aspect

ratios dominate in the principal flow direction, use of the stretch factor, S, in the pri-

mary flow direction is not necessary. Instead, the Laplace equation for this direction is

rewritten to account for the importance of smoothness and orthogonality in the principal

flow direction, x, relative to the transverse flow direction, y, by use of the scaling ratio

Ex/Cy.

V E 7/xex + ryey = 0 (5.15)

Eqs. 5.14 and 5.15 are the equations used to update the element node locations at each

timestep. The mapping equations in this form were first used by Smith [72].

5.1.4 Numerical Methods

A mixed finite element method is used to discretize the governing equations. Linear basis

functions are used to represent the pressure, and stress unknowns, while quadratic basis

functions are used to represent the velocity and nodal location unknowns. Quadrilateral

elements are used to discretize the physical geometry.

The interest here is in finding the steady-state solution to the problem described by the

governing equations in Secion 5.1.1. To accomplish this, the time-dependent versions

of the governing equations are integrated until a steady-state solution is reached. A

decoupled equation technique based on the technique described in Section 3.3 is used to

solve the equations. In addition to the subsets of equations describing the polymer flow

field and the polymer stress, a subset of equations describing the evolution of the free

surface and element node locations is now included (fig. 5-3). The overall calculation

of the evolution during a single timestep now consists of first calculation of the velocity
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Figure 5-3: Decoupling of equation set describing the time-dependent viscoelastic flow
problem with free-surface boundaries.

and pressure from the momentum and continuity equations, next the polymer stress is

updated based on the new flow field, and finally the free surface is evolved and the element

node locations recomputed based on the new flow field. Figure 5-4 shows schematically

the progression of steps in the method. The arrows between each subproblem block not

only show the progression of the solver but also denote the flow of information between

each subproblem.

As with the confined flow problem, the flow equations in the DEVSS-G formulation are

solved using the Harwell frontal solver. The stress equations are time integrated using the

fourth order Runge-Kutta method, an explicit time integrator that allows full decoupling

of the stress equations from the flow equations at each time step. An explicit integration

method is also used in time integration of the free-surface boundary condition (eq. 5.6)

to take advantage of the decoupling at each time step. It is important to understand

the relative stability of the free surface boundary condition with respect to the stress

equations. To determine best what order of accuracy is needed in the time integration

method for eq. 5.6 the effects of three different explicit time integration routines used

for evolution of the free-surface boundary condition were studied, namely the forward

Euler method, the second order Runge-Kutta method, and the fourth order Runge-Kutta

method. Results of this study showed that the evolution equation describing the free-
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Figure 5-4: Subset steps in a single timestep for the free-surface time integrator. Arrows
indicate both progression of algorithm as well as flow of information between subprob-
lems.

surface height was time stable in the viscoelastic equation set when using the forward

Euler method, a promising result considering the subset of equations describing the free-

surface and element node locations would only have to be updated once for each timestep

taken in the overall timestepper, while the stress equations and flow field equations are

solved for in four separate substeps. To solve for the element node locations in the

deformable region of the mesh, the Harwell frontal solver is employed with the node

locations of the boundaries of the deformable region at the current time step acting as

essential boundary conditions.

Judgement of steady state is made through comparison of the L2 norms of the velocity

fields and stress fields from one timestep to the next. When the difference between

timesteps in both norms drops below a given tolerance, the method is deemed to have

reached the steady state for the problem.

Since the method detailed herein is a new formulation for the viscoelastic problem,

it is important to analyze the convergence of the method with successive mesh refine-

ment. Figure 5-5 shows the successive levels of refinement in the region surrounding the

contraction die lip. As shown in [67] refinement around the singularity is necessary to

capture correctly the stress as the fluid dettaches from the die. Here, convergence of
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Figure 5-5: Successive levels of mesh refinement in region surrounding the die lip. Die
lip located at x = 0, y = 1.
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a macroscopic quantity of the flow will be used to show that the method is convergent,

namely the die-swell ratio, = hf/h - 1. The plot of die-swell ratio as a function of

mesh refinement near the die lip, figure 5-6, shows h2 convergence of the method.

5.2 Die-swell of a Giesekus fluid as a function of die

aspect ratio

In order to test the accuracy of the time-dependent method to known solutions, simula-

tion of planar die-swell from a contraction die was performed for a Giesekus fluid with

mobility parameter a = 0.2 and solvent to total viscosity ratio 3 = 0.5. The geometry is

shown in figure 5-7. Flow through the geometry is from left to right. For the flow prob-

lem, on the inflow boundary the one-dimensional version of the flow equation is solved

for the x component of velocity and the y component of velocity is set to zero. On the

outflow boundary, the normal stress is specified to be zero in the x direction and the y

component of velocity is again set to zero. On the walls both the x and y components

of velocity are set to zero. On the centerline boundary, a symmetry condition is used

for the x component of velocity and the y component of velocity is set to zero. On

the meniscus boundary, eqs. 5.1 and 5.2 are specified as natural boundary conditions.

For the stress problem, since the evolutino equations are hyperbolic in nature, only a

single boundary condition can be used on the inflow boundary. For this condition, the

one-dimensional versions of the stress equations are solved on the inflow boundary. For

the deformable mesh problem, essential conditions of the node locations are specified on

all boundaries.

Simulation results using the time-dependent method are compared to solutions from

the steady-state method used in [72]. For these simulations, the Weisenberg number,

a measure of viscoelasticity in the system, is defined as We A (v) /h where A is the

polymer relaxation time, (v) is the average velocity in the die land, and h is the half

height of the die land. The die-swell ratio, the percent swell of the free-surface beyond
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Figure 5-6: Die-swell ratio versus level of mesh refinement around die lip for flow of a
Giesekus fluid ( = 0.2, = 0.5) through a contraction die-swell geometry.
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Figure 5-7: Planar die-swell geometry.
contraction length; hf: maximum swell

H: upstream height; h: contractoin height; L:

the die half height, is defined as = hf/h - 1 where hf is the maximum half height of

the polymer surface downstream of the die. In the following simulations the contraction

ratio is fixed at H/h = 4, while the die land length, L/h, and the capillary number, Ca,

are varied over the range of the parameter space.

The mesh used for the bulk of the simulations is shown in Figure 5-8.
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Figure 5-8: Contraction die-swell mesh used for comparisons of the time-dependent and
steady-state free-surface solvers.

consists entirely of quadrilateral elements, with a concentration of elements in the die

land as well as just upstream and downstream of the die land.
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Contour plots for the kinematic variables for a We = 1 flow are shown in Figure 5-9.

The majority of the pressure drop for this flow is seen in the die land, with an increased
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Figure 5-9: Contour plots of pressure and velocity for flow through the contraction die-
swell geometry with We = 1, L/h = 2.5, and Ca = 1 for the Giesekus model (a = 0.2
and (3 = 0.5) as computed with the time-dependent method.

pressure region on the upstream side of the reentrant corner of the contraction and a

negative pressure spike at the die lip. The velocity and pressure profiles continue to vary

until the meniscus boundary has reached a constant height, no more than 5h lengths

from the die exit.

Comparisons of the solutions computed using the time-dependent method and steady-

state method were made over the range of the parameters pertaining to viscoelasticity,

We, to surface tension, Ca, and to the geometry, L/ h. For comparisons of the two
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methods over the range of We, the capillary number is fixed at Ca = 1 and the die land

length is fixed at L/h = 2.5. Figure 5-10 shows the change in the die-swell ratio over a

range of We as computed with both the time-dependent and steady-state methods. As

We is increased, the swell ratio of the polymer exiting the die increases monotonically.

This increase is undoubtedly due to the increased buildup of normal stresses inside the

die land just prior to the fluid emerging from the die as the viscoelasticity of the fluid

is increased. However, it is important to note that for L/h = 2.5, the memory of the

shape of a fluid element in the large slit plays a significant part in the resulting swell.

Results from the time-dependent method show excellent agreement with the results from

the steady-state method.

For comparison of the two methods over the range of L/h, the capillary number is

fixed at Ca = 1 and the Weisenberg number is fixed at We = 4. Figure 5-11 shows the

change in die-swell ratio over a range of L/h as computed with both the time-dependent

and steady-state methods. Holding We constant for the flow as L/h is increased allows

for observation of the effects of the diminishing memory of the polymer fluid as it is given

greater time to relax following the narrow contraction region. As the die land length is

increased, the swell ratio of the polymer decreases logarithmically, approaching a limit

of approximately 0.355 as L/h approaches infinity. Results from the time-dependent

method again show excellent agreement with the those of the steady-state method.

For comparison of the two methods over the range of Ca, the Weisenberg number is

fixed at We = 4 and the die land length is fixed at L/h = 2.5. Figure 5-12 shows the

change in die-swell ratio over a range of Ca as computed with both the time-dependent

and steady-state methods. Since the capillary number is a measure of the relative

strength of the viscous and surface forces, varying Ca while holding We and L/h constant

for the flow allows for study of the effects of varying the normal forces acting on the free-

surface of the polymer, which tend to constrain swell of the fluid due to surface tension.

Increasing Ca effectively decreases the normal forces acting on the surface, as can be seen

in the normal stress balance on the surface in eq. 5.2. This can be seen in Figure 5-12.
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Figure 5-10: Die-swell ratio versus Weisenberg number for flow of a Giesekus model
(co = 0.2 and = 0.5) in a contraction die-swell geometry with L/h = 2.5 and Ca = 1.
(--): steady-state method; (A): time-dependent method.
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Figure 5-11: Die-swell ratio versus die land length for flow of a Giesekus model ( = 0.2
and = 0.5) in a contraction die-swell geometry with Wi = 4 and Ca = 1. (--):
steady-state method; (A): time-dependent method.
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Figure 5-12: Die-swell ratio versus capillary number for flow of a Giesekus model (c = 0.2
and / = 0.5) in a contraction die-swell geometry with We = 4 and L/h = 2.5. (--):
steady-state method; (A): time-dependent method.
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As Ca is increased the swell ratio increases logarithmically, approaching a maximum of

0.556. It is also interesting to note that as Ca is decreased from unity the swell ratio

monotonically decreases due to the singularity in the normal stress boundary condition

arising as Ca - 0.

5.3 Conclusions

In this chapter a new finite element formulation has been discussed for solving the vis-

coelastic flow problem with free-surface boundary conditions. Continuing along the vein

of reduction of the overall computational cost of the viscoelastic flow problem, the equa-

tions describing the updating of the element node locations within the deformable mesh

region and the associated boundary conditions are included as a new subproblem within

the previously-developed decoupled time-dependent method (Section 3.3). In order to

implement the equations in this method, the kinematic boundary condition for the nor-

mal velocity of the meniscus is converted into an evolution equation for the height of the

surface. Modified versions of the elliptical mapping equations derived by Christodoulou

and Scriven [21] along with essential conditions of the locations of all nodes on the

boundaries of the deformable region at the current time step are then solved to update

the element node locations in the deformable region.

Comparison of the solutions of the new time-dependent method are made to a pre-

viously developed steady-state method by using the flow of the Giesekus model in a

contraction die-swell geometry as a test problem. Simulation results are compared for a

range of We, Ca, and L/h. All simulation results show excellent agreement with those

computed using the steady-state method. Therefore, the time-dependent implementa-

tion is a viable numerical method for the computation of the viscoelastic free-surface

problem in two-dimensional flow.
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Chapter 6

4:1:4 Axisymmetric

Contraction-expansion Flow

6.1 Background

The flow through contraction-expansion geometries is a complex combination of both

shearing and extensional kinematics. Experimental work with Boger fluids in this class

of geometries has revealed interesting dynamics, such as a pressure drop enhancement

with increasing flow rate [[64], [65]]. Previous attempts to model this behavior have

failed [[80], [22], [46]]. Inability of the polymer models to properly describe the polymer

in regions of rapid extension may be responsible for these failures. Rothstein et al. [65]

also identified major differences in vortex growth for various contraction ratios, namely

shrinking of the upstream vortex with subsequent formation of a lip vortex in the 2:1:2

geometry. The 4:1:4 and 8:1:8 ratios both produced growing upstream vortices with

increasing flow rate. Here we employ the closed version of the Adaptive Length Scale

model, ALS-C, developed by Ghosh et al. [34] to describe the flow of the polymer in

the 4:1:4 contraction-expansion geometry. The ALS-C model has been used previously

to capture the asymmetric wake instability in the flow around a cylinder problem. We

also consider the use of a multimode FENE-P model in an attempt to model the system
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better.

Section 6.2 describes the physical geometry and fluid properties modeled to represent

those used by Rothstein et al., as well as the governing equations and numerical methods

used to simulate the system. Section 6.3 describes the heological fit of the model

parameters to the physical fluid. Section 6.4 contains the results of the simulations

of flow in the 4:1:4 geometry. Section 6.4.1 contains discussion of the results obtained

with the FENE-P and ALS-C models. Section 6.4.2 contains discussion of the results

obtained with the 4-mode FENE-P model and compares them to the single mode model

results.

6.2 Problem Description

6.2.1 Physical Geometry

The geometry considered here is an axisymmetric 4:1:4 contraction-expansion designed

to match the experimental system used in [65], a schematic of which is shown in Figure

6-1. All physical dimensions are non-dimensionalized by the small-tube radius, R 2.

The length of the contracted region is defined as L, = R 2, and the reentrant corner is

rounded with a radius of R = 0.5R2. The downstream corner is rounded with a radius

of R, 2 = 0.2R2 to avoid a computational singularity. The tube radius upstream and

downstream of the contraction is equal to four times the small-tube radius, R 1 = 4R2.

The upstream and downstream channel lengths, LU and Ld respectively, are chosen to be

sufficientlty long to be able to impose fully developed flow boundary conditions on the

inlet and outlet boundaries. Specifically we choose L = 24R2 and Ld = 25R2, yielding

an overall geometry length of L = Lu + L, + Ld = 50R 2.
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1
Figure 6-1: 4:1:4 contraction expansion geometry selected to model the experimental
geometry of Rothstein et al. [65]. Flow through the geometry is from top to bottom.
Here Rl = 4R2' Lc = R2' L1.I.= 24R2' Ld = 25R2' Rc = O.5R2, and RC2 = O.2R2.
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6.2.2 Fluid properties

The fluid modeled here is a 0.025% by weight solution of monodisperse polystyrene

dissolved in oligomeric styrene. The heological properties of this fluid and its relevant

physical parameters are reported in [65] and are summarized in Table 6.1.

Notation Description Parameter Value
c Concentration of high molecular weight polystyrene 0.025%
Mw/Mn Polydispersity 1.03
Mw Molecular weight (g/mol) 2.0 x 106
b = L2 Extensibility parameter 26900
To Reference temperature (K) 298
r0o Zero-shear-rate viscosity (Pa s) 22.75
rIs Solvent viscosity (Pa s) 21
Ap, Solvent relaxation time (s) 2.5 x 10 - 4

Az Zimm (longest) relaxation time (s) 3.24
A Oldroyd relaxation time (s) 0.146

10 Zero-shear-rate first normal stress coefficient (Pa s2) 6.66

Table 6.1: Parameters characterizing the viscometric properties of the 0.025 wt.% PS/PS
fluid as reported by Rothstein et al. [2001]

6.2.3 Modeling and Simulation

Modeling of the theological properties of the fluid for determination of the ALS-C and

FENE-P model parameters was carried out with a homogeneous flow simulation of both

steady shear and transient extensional flow developed in the Matlab environment.

To model the heterogeneous complex flow, the DEVSS-G formulation for the momen-

tum and mass continuity equations is utilized [54]. For the polymer extra stress, a closed

version of the Adaptive Length Scale model (ALS-C) is chosen [34], and the FENE-P

model is used for comparison.

Flow of the fluid through the contraction-expansion geometry is governed by the equa-

tions of momentum, mass continuity, and equations describing the relationship between

polymer stress and velocity of the fluid. In the DEVSS-G formulation, the momentum

equation is written using stress-splitting to take the form
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V2 v-Vp- V. {(1 - ) {G + GT }} _ V p = (6.1)

Here v is the fluid velocity, 3 is the solvent to zero shear rate viscosity ratio, p is the

pressure, G is the velocity gradient tensor, rp is the extra stress, and V is the gradient

operator. The mass continuity equation is given by,

V v=0 (6.2)

A least squares minimization is used to compute the velocity gradient,

(Vv - G) 2 = 0 (6.3)

The extra stress of the polymer is described through a few different sets of constitutive

equations in this work. The closed version of the Adaptive Length Scale (ALS-C) model

[34] is primarily used in this work. The theory behind this model is discussed at length

in Ghosh et al. [34]. For completeness, the theory of the Adaptive-Length-Scale, ALS,

model as an adaptive version of the Finitely Extensible Nonlinear Elastic, FENE, model

is summarized here.

The force law for the FENE model is given by

FFENE (Q) HQ (6.4)
1-(Q/QO) 2

where Q is the length of the FENE spring, Qo is the maximum extension of the spring,

and H is the spring constant. Ghosh et al. [34] argued that while a FENE chain

with an increasing number of links can be used to capture with reasonable accuracy

the behavior in uniaxial extension of the more exact and quite more computationally

expensive Kramers chain model, the FENE chain is not an efficient model for this task.

Whereas a large number of springs are needed in the FENE chain model to capture the

behavior of the Kramers chain at low strains, a much simpler FENE dumbbell model
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(single spring) captures the behavior at moderate to high strains.

As a more efficient alternative, Ghosh et al. proposed a model in which a single spring

has a length scale L* that adapts to the kinematic history of the flow, the ALS model.

L* is the largest length scale for which the FENE force law approximation applies. The

polymer is then represented by a FENE spring whose maximum length equals L*. The

force law of a segment with a maximum length L* is given by

F*(s)_ se (6.5)seg - (Q2/L* 2 )

where H*g is the spring constant that is proportional to the number of segments in

the spring. The number of segments is set equal to the contour length of the polymer

molecule divided by L*. L* would be the length scale if the polymer molecule were able

to react instantaneously to the surrounding environment. Ghosh et al. proposed an

evolution equation for the actual length scale L that takes into account the relaxation of

the polymer molecule to the flow as well as a stiffening of the polymer molecule. The

evolution equation for the adaptive length is shown here in dimensionless form as

dbseg =-fIn X Q| Wi 1r- bg- b(eg) K + (bma - bseK (6.6)db::g - (n x b(g bg
where beg is the dimensionless adaptive length, n is a unit vector parallel to the eigen-

vector of the rate-of-strain tensor that corresponds to its largest eigenvalue, Wi =

'Ad max [Eig ()] is the Weissenberg number, Ad is the longest relaxation time of the

polymer, a is the rate-of-strain tensor, bg is the dimensionless adaptive length scale if

the polymer were able to instantaneously react to the flow, and K* and K are ratios of

Ad to the time constants (A* and A) of a single segment.

Ghosh et al. demonstrated that the new model has much better agreement with

the Kramers chain model than the FENE dumbbell model in a wide range of flows.

In addition, they proposed a closed version of the model that could be readily used in
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complex flow simulations and showed that the heological properties of the model were

virtually unchanged by the closure approximation.

In the complex flow simulations of the present work, the closed version of the ALS

model developed in [34] is employed. The extra stress of the polymer in the ALS-C

model is related to the average conformation of the polymer molecules by

bmax (bmax 2 {QQ) (6.7)

Tp- (bseg) -- (bse9) J 1tr- (be_) (bse)

Here bmx is the maximum extensibility of the polymer molecule, (bSeg) is the dimen-

sionless finite extensibility for a segment with maximum extension equal to the adaptive

length scale L, and (QQ) is the conformation tensor of the molecule. (bseg) is described

by the evolution equation

(Q2Q2)/2Dtb~e9) = _ nx ( (QM,. ) (tr (QQ))i/2 De(b}I) (b eg) 8

((bseg) - (b*eg)) K* + (bmax - (bseg)) K

Here D (be) /Dt = d (bseg) /dt + v V (b,,g) is the substantial derivative, n is a unit

vector parallel to the eigenvector of the rate-of-strain tensor corresponding to the largest

eigenvalue, and (b*eg) is the average adaptive length of the molecule if the parameters

describing it; were able to instantaneously change as a result of instantaneous changes in

the flow field and is given by the relation,

De( tr(QQ) bm ) (6.9)

In eq. 6.9 z is an unknown constant of 0(1). K and K* are given by the following
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equation in which b is equal to (bseg) and (b*eg) respectively:

= b )bmx . (6.10)

(2(M + 1)2 + 7) ((M + 1)2 1) 12 ((M + 1)2 + 1) ((M + 1)2 - 1) /2
45 45 ( (M+ 1) (b + 7)

Here M = bmx/b is the average number of segments in the molecule. (QQ) is given by
the evolution equation,

D (QQ) == De {VvT (QQ) + (QQ) Vv}- K (QQ) +K(6) (6 11)

Dt tQQ) b.bmax J

Motivated by the fact that the ALS model is essentially a multimode FENE model
with a spectrum of time constants rather than individual discrete modes, single mode and
four mode FENE-P models are also employed for comparison to the ALS-C model. For
the FENE-P model, the extra stress of the polymer is related to the average conformation
of the polymer molecules by

' + 5) 6- (QQ) (6.12)( b--~ 61 tr<QQ}
b

where (QQ), is given by the evolution equation

D (QQ) = De {VVT (QQ)+ (Q) Vv} (QQ) + (b 25 6 (6.13)
Dt trQQ)2

On the inflow boundary the velocity in the axial flow direction is specified through
solution of the one-dimensional kinematic equations, and the velocity in the radial di-
rection is specified as zero. No slip boundary conditions are specified on all of the solid
walls in the geometry. On the centerline no variation in the radial direction of the axial
velocity and zero radial velocity are specified. On the outflow boundary a fully developed
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Figure 6-2: Finite element mesh necessary to discretize 4:1:4 contraction-expansion ge-
ometry.

condition is applied to the axial velocity, and the radial velocity is specified as zero. There

are assumed to be no variations in the azimuthal direction, and the azimuthal velocity is

specified as zero. Boundary conditions for the conformation tensor and adaptive length

scale are set on the inflow boundary through the solution of one-dimensional versions of

the respective evolution equations.

The Galerkin finite element method is used to discretize the unknowns for the DEVSS-

G equations, namely v, p, and G, and the discontinuous Galerkin method is used for

unknowns for the constitutive equations describing the polymer stress, namely (QQ)

and be,,g. The mesh used to discretize the physical domain is shown in figure 6-2. This

structured mesh combines both quadralaterals and triangles for its constituent elements.

Whereas quadralaterals are used for the bulk of the mesh, triangles are used to match

boundaries between regions of differing levels of refinement. By employing triangles

in this manner, use of psuedo-node formulations can be avoided without the cost of

refinement in regions where it is unnecessary to represent the flow optimally. Figure

6-3 shows the amount of refinement used near the contraction wall, where the gradients

of the velocity, velocity gradients, and stress are highest. The smallest element in this

mesh is 0.01R2 by 0.01R2, located next to the wall in the contraction throat.

The index one set of DAE's resulting from the finite element discretization is then

converted into a set of first order ODE's by using the operator splitting technique de-

scribed in [77]. Once written in this form, the set of equations can be decoupled and

solved in separate sub-steps by employing an explicit time integration technique, in which
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Figure 6-3: Level of refinement necessary near the contraction wall to resolve areas of
high gradients.
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the equations describing the flow, equations 6.1, 6.2, and 6.3, become constraints on the

evolution equations describing the polymer extra stress, equations 6.11 and 6.8. The flow

equations are further decoupled by first solving equations 6.1 and 6.2 and then using the

new velocity fields to compute the G interpolants from equation 6.3. The momentum

and continuity equations are preconditioned and then solved with a Krylov iterative tech-

nique as in [16]. Unlike the work of Caola et al. [16] in which BiCGStab was used as the

iterative solver, here the GMRES algorithm is employed for its improved stability and

robustness. Also unlike the work of Caola et al., a separate solution technique can now

be employed to solve for the least squares interpolation for G since equation 6.3 is now

decoupled from the flow equations. Here the Conjugate Gradient method is employed for

this symmetric, positive definite set of equations. All of the sub-problems are solved by

using parallel versions of the Krylov solvers and the domain decomposition CHACO to

optimally distribute the equations among the nodes in the parallel machine. Complete

details of this method are discussed in [16]. The computations were carried out on a

parallel cluster of 32 Dell 2650 PowerEdge servers each with dual 2.8 GHz Intel Pentium

Xeon processors and each with one gigabyte of memory. The intercommunication be-

tween machines was carried out via an Extreme Black Diamond 6808 switch with gigabit

copper NIC's and adequate bandwidth for a fully non-blocking and non-oversubscribed

architecture.

6.3 Fluid rheology and model parameter determina-

tion

Model parameters for the ALS-C and FENE-P constitutive equations are determined by

attempting to match closely the rheology of the model to that reported in [65]. The

zero-shear-rate Deborah number, De = A0 (vz)2 /R2 , is used here to present the data.

The zero-shear-rate relaxation time, A0 = I10/2rp0, is calculated to be 1.886 seconds.

The single mode fit to the complex viscosity data from small angle oscillitory shear flow
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reported in [65] is shown in Figs. 6-4 and 6-5. As is apparent from the plots of ' and

r/", the single mode fails to capture the decrease in the dynamic rigidity with increasing

frequency. The solvent mode is assumed to behave Newtonian-like over the range of

experimentally accessible shear rates and frequencies.

A four mode FENE-P model was also fit to the heological data. Parameters for

each mode of the four mode FENE-P model are given in Table 6.2.

mode Ak r pk b
1 4.75 0.290 30
2 1.25 0.387 300
3 0.5 0.129 115
4 0.05 0.194 50

Table 6.2: Parameters for the 4 mode FENE-P model

Choice of the time constant, Ak, for each mode was made to ensure the modes were

well distributed over the range of response demonstrated in the linear rheological data.

The contribution of each mode to the total polymer viscosity was then determined by fit

to the linear viscoelastic data, results of which are shown in Figs. 6-6 and 6-7. Through

use of the additional modes, much better agreement with the linear viscoelastic data is

acheived.

For the single-mode models a maximum extension of b = 7, 744 is used to fit the

steady-state extensional viscosity. Choice of the z parameter for the ALS-C model is

best determined from comparison of the transient extensional viscosity of the model

and experiments. Figure 6-8 compares the transient extensional viscosity for the ALS-C

model, FENE-P model, and experimental data. Here, the FENE-P model prediction

lags the data in strain; in contrast, the ALS-C model more closely captures the strain

dependence of the extensional viscosity. The steady-state extensional viscosity of the

fluid is captured by both models. The first normal stress coefficient in steady shear flow

for the ALS-C and FENE-P models is shown in Figure 6-9. Although the ALS-C model

for all z values is in the same range as the experimental data, the model predicts a much

faster decrease in I 1 with increasing De than the experimental data suggest is correct.
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Figure 6-5: Fit of single mode plus solvent to the experimental dynamic rigidity data.
From experiments: (O): 0.025% PS/PS fluid. From model: ( -): polymer mode; (-
·): solvent mode; (-): model composite.
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Figure 6-7: Fit of 4 mode FENE-P plus solvent model to the experimental dynamic
rigidity data. From experiments: (0): 0.025% PS/PS fluid. From model: (- -):
mode 1; (- ): mode 2; (): mode 3; (-- ): mode 4; (- -.): solvent mode; (--): model
composite.
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Figure 6-8: Transient extensional viscosity of the single mode models with b = 7744.
(0): 0.025% PS/PS fluid; (-): FENE-P; ALS-C model with (- -): z = 0.25; (- ):
z= 0.5; (): z = 1.0; (-..): z = 2.0.
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The FENE-P model exhibits a similarly quick decrease in TE1 with increasing De, but 1

for this model begins to decrease at almost a decade higher value of De than that for the

ALS-C models.

As is apparent from the comparisons to theological data, it is difficult to determine

the proper value for the parameter z for the ALS-C model. In Figure 6-8 the strain at

which the knee occurs for the four choices of z suggests that the correct choice for z

is 2.0. However, the maximum strain reached in the 4:1:4 contraction-expansion flow is

only 2.75; the ALS-C model with z values of 0.25 and 0.5 better fit the experimental data

at strains preceding this value. The plot of T1 also sheads little light on the appropriate

choice for the z parameter. Therefore, a range of values for the parameter z is used

in the complex flow calculations in an attempt to better understand the differences in

behavior of the model as a fimction of the z parameter.

For the four-mode model, to obtain a fit to the non-linear theological data, a small

value of b is used for the first mode to represent molecules that are pulled on so quickly

by the surrounding flow that they are unable to uncoil and in effect become entangled

like a knotted ball of string, whereas b values for the second, third, and fourth mode are

chosen at higher values to best fit the transient extensional data. Due to the relatively

low maximum strain reached in the 4:1:4 geometry, fit of the transient extensional data

only up to a strain of 3 was sought. Fitting the non-linear parameters to the steady-

state extensional viscosity was not attempted. The dramatic improvement in the fit to

transient extensional viscosity is shown in Figure 6-10. Predictions from the single mode

FENE-P and the ALS-C model with z = 0.5 are provided for comparison. The plot of

the first normal stress coefficient in steady shear for the four mode model is shown in

Figure 6-11. Predictions of the single mode models are again provided for comparison.

While the four mode model fails to model the experimental data accurately, the trend of

the model is much closer than the single mode models.
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Figure 6-12: Contours of pressure for flow in the 4:1:4 geometry for the ALS-C model
with z = 0.25. (a): De = 0.5; (b): De = 3.0; (c): De = 6.0; (d): De = 9.0; (e):
De = 12.0; (f): De = 16.0.

6.4 Results

6.4.1 Single mode models

Simluation results for the 4:1:4 geometry were generated for the accessible Deborah num-

ber space for the ALS-C model with z values of 0.25, 0.5, 1.0, and 2.0 as well as for the

FENE-P model. Field plots of the simulation results are presented here for the z = 0.25

and z = 1.0 results for the ALS-C model. Simulation results for z = 0.5 are qualitatively

similar to those for z = 0.25, and the same is true of the results for z = 2.0 as compared

to z = 1.0. Figure 6-12 shows the pressure contours for a range of De for the z = 0.25

results, and Fig. 6-13 shows the corresponding results for z = 1.0. As most of the

pressure drop in the flow occurs in the contraction throat, an increasing fraction of the

total pressure drop is seen near the rounded reentrant corner as De is increased for both
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Figure 6-13: Contours of pressure for flow in the 4:1:4 geometry for the ALS-C model
with z = 1.0. (a): De = 0.5; (b): De = 3.0; (c): De = 6.0; (d): Dc = 9.0; (e):
De = 12.0; (f): De = 16.0.
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Figure 6-14: Contours of (bseg) for flow in the 4:1:4 geometry for the ALS-C model with
z = 0.25. (a): De = 0.5; (b): De = 3.0; (c): De = 6.0; (d): De = 9.0; (e): De = 12.0;
(f): De = 16.0.

the z = 0.25 and z = 1.0 cases. However, in the z = 1.0 case the maximum pressure

occurs within the small tube, while in the z = 0.25 case the maximum pressure occurs

farther upstream at the entrance to the small tube. Figure 6-14 shows the segment length

contours for a range of De for the z = 0.25 results, and Fig. 6-15 shows the corresponding

results for z = 1.0. The majority of the decrease in segment length, or conversely the

increase in the average number of segments per molecule, occurs near the wall of the

contraction throat. This is the area of maximum shear rate in the flow. Travelling

along the centerline of the geometry, the average molecule moves from a region of few

segments upstream of the contraction, through a region of increased segments near the

contraction entrance at x = 0, next to a region of fewer segments again near the middle

of the contracted section, then to a region of increased segments again just beyond the

exit plane of the contraction, and finally to a region where the number of segments re-
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Figure 6-15: Contours of (bseg) for flow in the 4:1:4 geometry for the ALS-C model with
z = 1.0. (a): De = 0.5; (b): De = 3.0; (c): De = 6.0; (d): De = 9.0; (e): De = 12.0;
(f): De = 16.0.
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Figure 6-16: Contours of tr (QQ) for flow in the 4:1:4 geometry for the ALS-C model
with z = 0.25. (a): De = 0.5; (b): De = 3.0; (c): De = 6.0; (d): De = 9.0; (e):
De = 12.0; (f): De = 16.0.

turns to a value near 1 in the region downstream of the contraction. This trend is true

for both the z = 0.25 and z = 1.0 cases, and the changes become more dramatic as De

is increased. To gain a better understanding of this behavior, analysis of the data for

(bseg) can be coupled with data of the trace of the average configuration of the molecules,

tr (QQ) = (QQ)xx + (QQ)yy + (QQ)zz. Figure 6-16 shows the contours of tr (QQ) for

a range of De for the z = 0.25 results, and Fig. 6-17 shows the corresponding results

for z = 1.0. By looking also at the trace of the configuration tensor in the flow, it is

clear that, on average, molecules are being stretched out from a coiled state to a highly

elongated state as they pass through the contraction on the centerline. The behavior

of the number of segments shown in figures 6-14 and 6-15 is expected, since the ALS-C

model uses a single segment to represent both the coiled state and the highly elongated

state of the molecule. Hence, whereas the number of segments passes through three
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Figure 6-17: Contours of tr (QQ) for flow in the 4:1:4 geometry for the ALS-C model
with z = 1.0. (a): De = 0.5; (h): De = 3.0; (c): De = 6.0; (d): De = 9.0; (e):
De = 12.0; (f): De = 16.0.
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different extrema as the flow progresses through the contraction near the centerline, the

average length of the molecules passes through only one extremum. The major difference

between the simulation results of the z = 0.25 and z = 1.0 cases for the ALS-C model is

the amount of molecular stretch exhibited in the contraction throat. The results for the

z = 1.0 case show very high values of tr (QQ) in the region between the contraction wall

and centerline, whereas the z = 0.25 case shows moderate values of tr (QQ) concentrated

around the centerline in the contraction. The high values of tr (QQ) in the z = 1.0 case

also seem to affect the flow around the contraction region, as seen in the plots of the

pressure field for the z = 1.0 case, Fig. 6-13. A significant amount of pressure buildup

can be seen near the reentrant corner leading into the region of high tr (QQ), as though

extra resistance is being added to the flow in the region of high tr (QQ), manifested by

a buildup of pressure just upstream of this region.

The macroscopic property of the flow that is of interest in comparison to the exper-

imental findings is the extra pressure drop generated by the fluid entering and exiting

the contracted region of the geometry. This quantity can be extracted from the overall

pressure drop in the geometry by subtracting out the pressure drop due to the Poiseuille

flow in the upstream, downstream, and contraction sections of the geometry. The con-

tracted region here is assumed to be a straight section of pipe, an assumption made to

agree with the work of Rothstein et al. [65]. The resulting expression for the extra

pressure drop is given in equation 6.14.

IQPd-LdPUL, (6.14)'Pad = (Pd - - + 4(6.14)

where L = ( - Zd) - L, is the total length of pipe with radius R1 in the geometry. Again

in agreement with Rothstein et al. [65], the extra pressure drop is scaled by the extra

pressure drop of a Newtonian fluid flowing through a 4:1:4 contraction-expansion with

sharp corners. The extra pressure drop of the Newtonian fluid is found via simulation

of this geometry.

Figure 6-18 shows the computed extra pressure drop through the channel as a function
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of Deborah number as compared to the experimental findings presented in [65]. Rothstein

et al. found that as De was increased the extra pressure drop first decreased slightly then

increased monotonically until the flow became unstable around a De of 40 for the flow

in the 4:1:4 contraction-expansion geometry with rounded corners. For the limited De

range over which solutions can be obtained for the FENE-P model, a decrease in pressure

drop is found, in contrast to the experimental findings. For all choices of z parameter

for the ALS-C model, pressure drop enhancement with increasing De is observed in

qualitative agreement with the experimental findings. However, none of the choices of z

yield quantitative agreement with the experimental findings.

A qualitative difference is seen in the pressure drop with increasing De for the range of

z's used. The pressure drop for z = 1.0 shows two different distinct increasing regions with

inflections near De of 8 and 14 corresponding with the appearance and dissappearance

of a ridge of pressure in the contraction throat (most prevelant in Fig. 6-13(d)), whereas

results for z of 0.25 and 0.5 show only one increasing region followed by a plateau and no

appearance of a pressure ridge. The increasing pressure drop of the model with z = 2.0

shows behavior similar, though muted, to the z = 1.0 model.

In order to compare the simulation results to the experimentally measured upstream

vortex growth, the streamlines of the flows are computed over the range of Deborah

numbers simulated. Rather than computing the stream function for the given flow, data

of the components of velocity are taken from the simulation and combined to form a

vector field over the flow domain. Streamtraces are then found much like experimental

streakline images are constructed, by tracing the path of marker particles flowing through

the domain. An example of a streamtrace plot for the 4:1:4 geometry is shown in Fig.

6-19. Since the solutions presented here have been time integrated to steady state, the

streamtraces found in this manner are equivalent to the streamlines of the flow. It is

important to note that while streamlines found in this manner are valid for the given

flow, changes in the concentration of streamlines here do not indicate changes in the

intensity of the flow, as would be the case with streamlines plotted from evenly spaced
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Figure 6-20: Key measurements for characteristics of upstream corner vortex. Z and
Rv are the axial and radial distance, respectively, of the vortex center from the salient
corner upstream of the contraction. L, is the vortex reattachment length.

values of the streamfunction. The pertinent information regarding the formation and

growth of the vortex in the salient corner is shown schematically in Fig. 6-20, namely

the location of the upstream vortex center relative to the salient corner and the vortex

reattachment length.

Figure 6-21 illustrates the vortex growth over a range of De for z = 1.0. The flow

pattern in the salient corner progresses from a Moffat vortex at low De shown in subfigure

(a) to a corner vortex shown in subfigure (b). The flow then slowly recedes back into the

salient corner as De is further increased. Just prior to failure of the calculations signs of

the formation of a lip vortex near the reentrant corner were seen in the calculations. A
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Figure 6-21: Streamlines near the salient corner of the 4:1:4 contraction-expansion with
increasing Deborah number for the ALS-C model with z = 1.0. (a): De = 0.5; (b):
De = 3.0; (c): De = 6.0; (d): De = 9.0; (e): De = 12.0; (f): De = 16.0.
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Figure 6-22: Streamlines near the salient corner of the 4:1:4 contraction-expansion with
increasing Deborah number for the ALS-C model with z = 0.25. (a): De = 0.5; (b):
De =3.0; (): De = 6.0; (d): De = 9.0; (e): De = 12.0; (f): De = 16.0.

lip vortex has never boon found, however, in a steady-state solution in the calculations

presented herein.

Figure 6-22 illustrates the vortex growth over a range of De for z = 0.25. The flow

pattern in the upstream corner progresses from a Moffat vortex with concave streamlines

in (a), to a corner vortex with convex streamlines in (b). Steady growth is then seen in

(c) through (f). This behavior agrees qualitatively with the 4:1:4 experiments in [65].

However, as with the trends of computed extra pressure drop, these choices for z are

unable to produce quantitatively accurate results when compared to the experimental

findings concerning the growth of the salient corner vortex.

Trends similar to those of the extra pressure drop are seen in the uptream vortex

behavior with increasing De of the ALS-C model simlulations for the four choices of

z. For z > 1, the upstream vortex is seen to shrink back into the corner as De is
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increased. Figure 6-23 displays the key characteristics of the vortex formed in the

upstream salient corner for the ALS-C fluid. Two distinct decreasing regions can be seen

in the reattachment length of the corner vortex in the same range of De where an increase

is seen in the pressure drop. However, these trends are in qualitative disagreement with

the experimental findings and suggest the formation of a lip vortex is imminent. Though

this was not observed in the 4:1:4 experiments, it seems relevant to note that it was

observed experimentally in the 2:1:2 contraction-expansion case [65]. The cases of z < 1,

however, show quite different behavior for the upstream corner vortex. In both of these

cases, the vortex is seen to move radially and axially away from the corner and increase

in size. Figure 6-24 shows the characteristics of the vortex in the salient corner of the

4:1:4 geometry as reported in [65]. From comparison to the experimental data, it is

clear that although the z < 1 cases show the correct trend for the salient corner vortex,

namely growth and movement away from the salient corner, the models still fail to predict

quantitatively the dynamics of the salient corner vortex.

6.4.2 4-mode FENE-P model

Simulation results using a 4-mode FENE-P model for the flow in the 4:1:4 contraction-

expansion geometry are presented here. Figure 6-25 shows the computed extra pressure

drop through the channel as a function of Deborah number as compared to the exper-

imental findings presented in [65]. Convergent solutions for the 4-mode model were

attained for much higher De than with the single mode FENE-P model. This is a direct

result of the smaller b values used for the finite extensibility of each mode of the model

as compared to the single mode finite extensibility of b = 7, 744 chosen to fit the steady-

state extensional viscosity. Over the range of De where solutions were computed, the

simulations exhibit an initial decrease in the extra pressure drop followed by a monotonic

increase. Eventually a plateau region is reached at higher De. While the trend is similar

to that of the single mode ALS-C model, especially the z = 0.25 case, the results of the

4-mode FENE-P model show much less increase in extra pressure drop, and they reach
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Figure 6-23: Key characteristics of the vortex formed in the upstream salient corner
with increasing Deborah number for the ALS-C fluid where X = L/,IR 2 is the vortex
reattachment length, -= R/R 2 is the radial location of vortex center, and = Zv/R2
is the upstream location of the vortex center. (- -): z=0.25; (- ): z=0.5; (): z=1.0;
(---. ): z=2.0.
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Figure 6-24: Characteristics of the upstream growth dynamics as a function of Deborah
number for the 4:1:4 axisymmetric contraction-expansion with rounded entrance lip,Rc =

O.5R2 - (.): vortex reattachment length, X = Lvi R2; (.6): radial location of vortex
center, ~ = 141R2; (0) the upstream location of the vortex center, ( = Zvl R2; and (.):
vortex reattachment length for the 4:1:4 contraction-expansion with sharp entrance lip,
Rc = o. Reproduced from [65]. Note: De scale has been modified to correspond with
the current work.
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Figure 6-25: Extra pressure drop of the single and 4-mode models in the 4:1:4 contraction-
expansion geometry. (0): 0.025% PS/PS fluid; (- -): 4-mode FENE-P; (-):
FENE-P; ALS-C with (- -): z = 0.25; (): z = 1.0.
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the plateau region at a De of about half of that in the ALS-C z = 0.25 case.

Figure 6-26 displays the key characteristics of the vortex formed in the salient corner

for the simulations using the 4-mode FENE-P model. Similar to the behavior of extra

pressure drop with increasing De, the location of the vortex center and the reattachment

length in the 4-mode FENE-P simulations show the same trend as the z < 1 ALS-C

calculations, namely, the vortex center moves out and away from the salient corner and

the reattachment length steadily increases with increasing De. However, the behavior

of the salient corner vortex with increasing De is significantly muted as compared to the

experimental findings as well as the ALS-C calculations presented here.

6.5 Conclusions

For the first time a model that captures the increase in pressure drop with increasing

flow rate is presented for the flow of Boger fluids in axisymmetric contraction-expansion

geometries. Using the ALS-C model, simulations were carried out for a range of the order

one z parameter. Pressure drop enhancement was predicted for all values of z. Analysis

of the dynamics of the salient corner vortex with increasing Deborah number in the cases

with z > 1 show that the vortex receeds into the salient corner as De is increased. By

contrast the z < 1 cases show a vortex that grows and moves radially and axially away

from the salient corner. Comparison to experimental observations of Rothstein et al.

[65] shows that the z < 1 cases yield the qualitatively correct trend for the dynamics of

the salient corner vortex.

Although the ALS-C model with z < 1 correctly captures the qualitative behavior

of the salient corner vortex and predicts pressure drop enhancement with increasing De,

the model does not quantitatively describe the behavior. In an attempt to describe

better the behavior of the fluid, a 4-mode FENE-P model is used. Comparison to

the rheological data show vast improvement in the ability of the multimode model to

describe the Rothstein fluid in simple homogeneous flows. Like simulations for the ALS-
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Figure 6-26: Key characteristics of the vortex formed in the salient corner with increasing
Deborah number for the single and 4-mode fluids. 4-mode FENE-P: ( -); ALS-C:
(- -): z=0.25; (.): z=1.0.
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C model, simulations using the multimode model yeild the correct trend for both the extra

pressure drop with increasing De as well as predict growth of the salient corner vortex

with increasing De. However, the multimode model also fails to predict quantitatively

either the pressure drop or the vortex growth observed experimentally.
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Chapter 7

Three-Dimensional Finite Element

Method for Confined Flows

7.1 Motivation

Development of three-dimensional structures from the growth of instabilities in the flow

of viscoelastic fluids is common throughout the literature. As shown by Evans and

Walters [31], [32] entry flows into a planar contraction of width to height ratio of 1

to 2 yields full three-dimensional structures, a phenomena that could not possibly be

captured with a two-dimensional simulation. In a series of papers, Chiba et al. ([18],

[19], [17]) examined the formation and motion of Goertler vortices, longitudinal vortex

tubes forming near the wall of the contraction plane, for the entry flow of dilute and

semidilute polyacrylamide solutions in a planar contraction geometry. They found that

the presence of three-dimensional lip vortices play an important role in the formation of

the Goertler vortex pairs [17]. Gesenier [33] also explored the effects of contraction ratio

on instabilities in the planar contraction. While the mechanism of the instabilty is not

fully understood, it is apparent that the boundedness in the "neutral" direction is not

likely the cause given that the instability exists for a wide range of width to height ratios.

Another such instability that has been well studied is the flow around period array of
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cylinders of various spacings [3], [54], [57], [71]. For the infinitely spaced case, that of an

isolated cylinder in a channel, McKinley et al. [57] observed through experimentation

three dimensional spatially periodic structures on the downstream side of the cylinder.

Aside from the need for three-dimensional simulators to capture flow structures that

arise from instabilities, there are also many industrially important problems in which

the three-dimensional structure of the problem arises from the problem geometry alone.

An example of this is fiber spinning. Traditional fiber spinning consists of extrusion and

draw down of a cylindrical filament from a die. By assuming the filament and die are

both axisymmetric, the model is reduced from three dimensions to two dimensions [70].

However, this is rarely the case in the fiber spinning industry. A variety of cross sections

are often used to enhance properties such as touch and feel.

Even in the case of circular cross section fibers, because of the high processing rates

used in industry, it is common practice to draw multiple fibers from a single die assembly

and then draw the fibers together into a bundle. Die plates with three, five, or more

die holes are used for this application. While each die hole would behave similarly to

an axisymmetric contraction flow, developing lip vortices [8], it is unclear what would

happen as the lip vortices from two adjacent die holes collide with one another, but

certainly potentially rich behavior such as this cannot be captured by simulation of the

simple one hole die. In addition, there are important issues of distribution of polymer

among the dtie holes, which can only be captured with a three-dimensional simulation.

It is clear that the need for three-dimensional modeling of the dynamics of viscoelastic

fluids is important for the understanding and development of many applications. Work

to this point; in the field has included mostly finite volume simulations on coarse meshes

[60], [87] with some attempts in finite elements on even coarser meshes [8].

The purpose of this chapter is to detail the implementation of a time-dependent,

three-dimensional finite element package for the solution of viscoelastic flows in con-

fined geometries. Section 7.2 details the governing equations and boundary conditions

used. Section 7.3 describes the finite element method and associated basis functions

177



and quadrature used to discretize the governing equations. Section 7.4 describes results

from comparisons of the method to analytical solutions and other proven methods. Sec-

tion 7.5 defines the parallel method used and gives measures of the performance of the

method.

7.2 Problem Description

7.2.1 Governing Equations

Discussion of the equations governing the flow of viscoelastic fluids can be found in

Section 2.3. The method uses the DEVSS-G formulation discussed in Section 3.1 with

the decoupled G formulation discussed in Chapter 4. While the method is designed to

accept a wide variety of constitutive equations, the Giesekus equation 2.26a is chosen for

comparison and performance measurements presented in this chapter.

7.2.2 Boundary Conditions

Given that the system of equations describing the flow of a viscoelastic fluid consists

of partial differential equations, it is necessary to prescribe boundary conditions on the

equations where applicable. Two boundary conditions are necessary for each component

of velocity, given that it is described by a second order partial differential equation.

Typically only one boundary condition is necessary for the components of stress, given

that they are usually described by a first order partial differential equation. For the

constitutive equations used within this work, this is always the case.

Allowing for a wide range of possible boundary conditions helps to make a fairly

robust simulation package capable of modeling many different geometries. For confined

flows, the implemented boundary conditions include no-slip surfaces, reflective symmetry

surfaces, periodic surfaces, two-dimensional inflow surfaces and fully-developed outflow

surfaces. Details of conditions specified at each boundary follow.
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The no-slip boundary condition consists of setting all of the components of velocity to

the velocity of the surface. This condition is most commonly used to model stationary

walls, in which all of the components of velocity are set equal to zero.

A symmetry boundary condition is included to model boundaries where reflective

symmetry is present. This boundary condition consists of no penetration and no shear

conditions. The no penetration condition equates to a zero boundary condition for the

velocity component normal to the surface. The no shear conditions equate to setting to

zero the derivatives in the direction normal to the surface of the components of velocity

transverse t;o the surface. This boundary condition acts as a mirror on the applied sur-

face. Because of this fact, it is often used to reduce the overall size of the computational

domain by cutting it in half.

The periodic boundary condition is implemented by replacing all equations on the

boundary with the matching equations on the opposing boundary in the geometry. In

problems of flowing fluids, application of this condition is modified slightly for pressure.

In the case of pressure driven flow, the pressure is divided into two parts, the periodic

portion of the pressure drop and the linear portion of the pressure drop.

P (, y, z) Pperiodic (, y, z) + (L - ) (7.1)

Here x is the direction normal to the periodic boundary , L is the distance between the

periodic boundary and the opposing boundary, and AP is the pressure drop between

the two boundaries. This description of the pressure is used in model geometries that

are infinite in length and typically contain some repeating geometric feature such as an

obstacle or a restriction.

The inflow and outflow boundary conditions are complimentary in that they are

always used together in modelling flow geometries. The inflow boundary conditions

consist of setting the velocity and stress profiles on the boundary. The profiles are

found by solving the set of flow equations and stress equations on the boundary that

are independent of the direction normal to the boundary. Like the periodic boundary
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conditions, the flow equations for the inflow boundary conditions require an extra piece

of information about the pressure drop in the direction normal to the boundary, the

pressure drop per unit length. This quantity can be specified directly, or it can be used

as a Lagrange multiplier to introduce an additional equation used to specify the flow rate

Q through the inflow boundary,

Q = J vdA (7.2)

where F is the inflow boundary and x is the direction normal to the inflow boundary.

The outflow boundary conditions, or fully-developed boundary conditions, consist of

specifying that the flow no longer varies in the direction normal to the boundary. These

conditions equate to setting the derivatives of velocity with respect to the direction

normal to the boundary to zero.

7.3 Discretization

7.3.1 Elements and Basis Functions

As discussed in Section 3.2, a mixed finite element method is used to discretize the set

of equations describing the viscoelastic flow problem. Discretization of the volume of the

physical geometry is performed using meshes of purely hexahedral elements or tetrahe-

dral elements of the Lagrange type. No degenerate elements are employed. Continuous

linear basis functions are used for representation of the pressure and velocity gradient in-

terpolant variables. Continuous quadratic basis functions are used for the representation

of the velocity variables. Discontinuous Galerkin basis functions are used to represent

the stress variables.

The linear and quadratic isoparametric hexahedral elements are shown in Fig. 7-1.

As is demonstrated in Section 3.2.2 for two-dimensional elements. the basis functions for

the hexahedral element are constructed by taking products of the Lagrange polynomi-

als, eq. 3.29, representing one-dimensional line elements lying along each of the three
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Figure 7-1: Hexahedral elements used to discretize the volume of a three-dimensional
geometry. (a): 8-node linear hexahedral element; (b): 27-node quadratic hexahedral
element. ((, , 6) isoparametric coordinate system is shown for each element.
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isoparametric axes.

Na (1, t1, 6) = lbn en - I() -1 (n- ) ln, -(V - ) (7.3)

where nen is the number of nodes along the one-dimensional edge (see Section 3.2.2 for

further explanation) and b, c and d can be thought of as the nodes of three separate one-

dimensional elements oriented along the axis, the r1 axis, and the ( axis. Continuous

basis functions for the linear hexahedral element are then given by the expression

N ( 1 + (Ia(.) ( 1 (I + ~/d/) (1 + t(7.4)

where (ya, ra, pa) are the isoparametric coordinates of the ath node shown in Fig. 7-1(a).
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Basis functions for the quadratic hexahedral element are given by the expressions

1

8
1

= ~Crl (1-4
1

= ~71 ( -
41
4

= ¼,7 (1-

(Ct) (1 + bad)

4= C ( + 1) (1 - 2) ( _ 1)

1
= I4( (( - 1) (1 _ 2) (( + 1)

= 4 ( + 1)(1 2) ( + 1)
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4
1

4

14=

4

N2 1 (, A, m)
1
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= 2( -1)(1 q2)(1 2)

1
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Figure 7-2: Tetrahedral elements used to discretize the volume of a three-dimensional
geometry. (a): 4-node linear tetrahedral element; (b): 10-node quadratic tetrahedral
element. Tetrahedral (r, s, t) isoparametric coordinates are shown for each node in the
two elements.

where the node numbers correspond to those in Fig. 7-1 with a being the corner nodes

1 through 8.

The linear and quadratic isoparametric tetrahedral elements are shown in Fig. 7-

2. Tetrahedral (r, s, t) isoparametric coordinates are shown for each node in the two
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elements. Basis functions for the trilinear tetrahedral element are

N1 (r, s, t) = r (7.6a)

N2 (r,s,t) = s (7.6b)

N3 (r, s, t) = t (7.6c)

N4 (r,s,t) = 1-r-s-t (7.6d)

Basis functions for the triquadratic tetrahedral element are

N1 (r, s, t) = r (2r-1) (7.7a)

N2 (r, s, t) = s (2s-1) (7.7b)

N3 (r, s, t) = t (2t - 1) (7.7c)

N4 (r, s, t) = (1 - r - s - t) (1 - 2r - 2s - 2t) (7.7d)

N5 (r, s, t) = 4rs (7.7e)

N6 (r, s, t) = 4st (7.7f)

N7 (r, s, t) = 4t(1-r-s-t) (7.7g)

N8 (r,s,t) = 4r(1-r-s-t) (7.7h)

Ng (r, s, t) = 4rt (7.7i)

No (r, s, t) = 4s (1-r-s-t) (7.7j)

7.3.2 Mesh Generation

Mesh generation for the three-dimensional geometries is quite complex compared to its

one- and two-dimensional counterparts. To accomplish this task ICEM, a mesh generator

commercially available from ANSYS, is employed [1]. This mesh generation package was

chosen from among the many commercial and freeware packages available because it is

capable of generating meshes with the level of complexity beyond that of the modeling

efforts presented here, allowing for growth without changing packages. In addition,

185



I I I I

(a) (b)

Figure 7-3: Example of o-grid refinement in a two-dimensional mesh used to localize the
effects of mesh refinement. a) standard mesh with 4 elements in each section. b) mesh
with o-grid refinment applied to central section, doubling the refinement.

considering the high level of complexity of geometries and meshes that can be created,

the package is quite easy to use and manipulate. While both tetrahedral and hexahedral

mesh generation modules are available within the ICEM package, meshes built for use in

this work enploy only the hexahedral meshing module, HEXA. The ICEM package has

built in bandwidth minimization which is utilized here as well.

Due to the significant size of the three-dimensional finite element meshes, it is impor-

tant that some form of local refinement be available within the meshing package. While

ICEM is capable of generating meshes with local refinement using pseudo nodes, also

known as hanging nodes, this has not been shown to be effective in the computation of

viscoelastic fluid flows. ICEM also employs o-grid refinement to aid in localizing the

effects of mesh refinement. Figure 7-3 is an example of the use of o-grid refinement in

a two-dimensional mesh to double the mesh refinement in the vertical direction of the

central section of the mesh. Note that the refinement applied to the central region of the

mesh in has no impact on the mesh surrounding the central region. This technique can

be used to concentrate elements around geometrical features such as corners and edges

as well as provide means to transition mesh refinement between entry and exit regions

such as those found in contraction and expansion geometries. Three-dimensional meshes

generated within this work rely heavily on o-grid refinement to help reduce the overall

size of the computational problem.

Further information on the ICEM mesh generation package is available on the web
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at http://www.ansys.com.

7.4 Results of test problems

To test the validity of the three-dimensional finite element package, comparisons to so-

lutions of trusted sources were performed. The geometries used for these tests are that

of a cylindrical pipe and a square duct. Comparisons of the three-dimensional finite

element package to the analytical solutions for the case of flow of a Newtonian fluid are

first made. Comparisons of the new package to known solutions for the viscoelastic flow

cases are also made, namely for a Giesekus model fluid.

7.4.1 Pipe Flow

The first test problem is that of pipe flow. This geometry was chosen since direct com-

parison to solutions from well tested two-dimensional package can be made. A schematic

diagram of the three-dimensional test geometry is shown in Figure 7-4. Boundary con-

ditions for the geometry are as follows. On the wall of the pipe, zero-velocity conditions

are applied. On the left and right ends of the pipe, periodic boundary conditions are

applied, namely all unknowns except for pressure are set equal to one another at the

equivalent positions on the two boundaries and a uniform pressure gradient is specified

in the direction of flow. The mesh used to discretize the geometry is shown in Fig. 7-5.

It consists of 1344 hexahedral elements. An o-grid meshing structure is used to avoid

degenerate elements on the centerline that would result from extruding a two-dimensional

mesh in the azimuthal direction.

For the flow of a Newtonian fluid in a cylindrical pipe the analytical solution is well

known [11]. The velocity profile as a function of flow rate is given by

RV, = 2 _[1 (R)2 (7.8)
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L

Figure 7-4: Schematic diagram of a pipe with circular cross-section. Flow is in the x
direction. Inflow and outflow faces are in the yz plane. L = 5 is the length of the
pipe used in the simulations. D = 2 is the diameter of the pipe used in the simulations.
Note that Cartesian coordinates are used to describe the structure in three-dimensional
space.
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Figure 7-5: Mesh used for simulations of flow of a fluid in a pipe with cylindrical cross-
section. The mesh contains 1344 hexahedral elements.
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Figure 7-6: Comparison of the velocity field generated with the three-dimensional finite
element package to the analytical solution for flow of a Newtonian fluid in a cylindrical
pipe. - -: analytical solution; 0: finite element solution.

where vx is the velocity in the x direction, Q is the volumetric flow rate, R is the radius

of the pipe, and r = - +z 2 is the radial location within the pipe.

Comparison of the flow field of the three-dimensional solution and the analytical

solution is shown in Fig. 7-6. Excellent agreement between the three-dimensional

package solution and the analytical method is found.

Since analytical solutions are not available for flows using more complicated viscoelas-

tic constitutive equations, comparison of the three-dimensional package solution to a well

tested and documented two-dimensional finite element package is used [16]. The mesh

used in the two-dimensional finite element package is shown in Fig. 7-7. For these
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Figure 7-7: Mesh used for simulations of flow of a fluid in a pipe in the two-dimensional
finite element method. The mesh contains 56 quadrilateral elements.

comparisons, the Giesekus model (eq. 2.26a) with 3 = 0.5, A = 1, and ac = 0.1 is used

to model the viscoelastic fluid. For De = 1.0, a comparison of the flow field found with

the three-dimensional package and the two-dimensional package is shown in Fig. 7-8. A

comparison of the shear and normal components of the stress tensor found with the two

packages is shown in Fig. 7-9. As with the comparison of the Newtonian flow simu-

lation to the analytical solution, excellent agreement is found between the axisymetric

two-dimensional solver used in [16] and the new three-dimensional package.

7.4.2 Duct Flow

The second type of geometry used to test the three-dimensional solver is the flow through

a duct. It is useful to think of duct flows as two distinct types, namely a duct with finite

length between bounding walls in the transverse flow directions, Fig. 7-10 and a duct

of infinite width in one of the two transverse dimensions, more commonly referred to as

flow between two parallel plates, Fig. 7-11.

For the flow of a Newtonian fluid through a duct, the analytical solution is well known

for the case of the where the width of the slit is infinite [27]. For this geometry, the
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Figure 7-8: Comparison of the velocity field generated with the three-dimensional finite
element package and the two-dimensional finite element package used in [16] for flow of
a Giesekus model fluid in a cylindrical pipe. Parameters for the model fluid are = 0.5,
De = 1.0, and a = 0.1. - -: 2-D axisymetric solution; 0: 3-D solution.
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Figure 7-9: Comparison of the shear and normal components of the stress tensor gen-
erated with the three-dimensional finite element package and the two-dimensional finite
element package used in [16] for flow of a Giesekus model fluid in a cylindrical pipe.
Parameters for the model fluid are = 0.5, De = 1.0, and c = 0.1. Symbols represent
the solution from the 3-D package, and lines represent the same from the 2-D package. -
- and 0: r,,,; -- and : ryy; - -and V: Tyx
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----------l---------

Figure 7-10: Schematic of flow in a rectangular duct. Flow is in the x direction. Inflow
and outflow faces are in the yz plane. L = 2 is the length of the duct used in the
simulations. 2H = 1 is the height of the duct and 2W = 1 is the width of the duct.

----L----I

1
2H

1

Figure 7-11: Schematic of flow between parallel plates. Flow is in the x direction.
Inflow and outflow faces are in the yz plane. L = 2 is the length of the duct used in the
simulations. 2H = 1 is the height of the duct used in the simulations.
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Figure 7-12: Mesh used for simulations of flow of a fluid in a duct with a square cross-
section. The mesh contains 600 hexahedral elements.

velocity profile in the flow direction is given by

(7.9)

where q is the volumetric flow rate per unit width of the channel and H is the half height

of the channel.

The mesh used for the duct flow calculations with the three-dimensional solve~ is

shown in Fig. 7-12. The mesh has a square cross-section and contains a total of 600

hexahedral elements. To model the flow between two parallel plates, on the top and
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bottom surfaces a zero velocity boundary condition is applied. On the left and right

side surfaces periodic boundary conditions are applied with a pressure gradient of zero

in the direction normal to the faces. On the front and back surfaces inflow and outflow

boundary conditions are applied.

Comparison of the flow field of the three-dimensional solution and the analytical

solution is shown in Fig. 7-13. As with the pipe flow, excellent agreement with the

analytical solution is demonstrated.

An analytical series solution has been derived for flow of a Newtonian fluid through

an infinitely long rectangular duct of cross-section 2a by 2b [85]. The velocity profile in

the cross-section of the duct is given as

16a2 ( dp ( 1 )(i1)/2 [1 - cosh (iTz/2a) cos (iy/2a)
fu3 kdx} Z. [ cosh (ib/2a) csi

i=1,3,5....

For the square duct case modeled here, 2a = 2b = 1. Boundary conditions for simulation

of this flow geometry consist of zero velocity conditions on the top, bottom, left, and right

surfaces. Inflow and outflow boundary conditions are used on the front and back surfaces,

respectively.

Comparison of the flow field of the three-dimensional solution and the analytical

solution is shown in Fig. 7-14. Again, excellent agreement with the analytical solution

is found.

For comparison of flow in the square duct of viscoelastic fluids modeled with con-

stitutive equations yielding non-vanishing second normal stress differences, as with the

Giesekus model, analytical solutions are not available. It is well documented in the

literature that flows of these fluids in the square duct exhibit a secondary flow that is

mirrored on four planes of symmetry [86], [26]. The secondary flow computed by Xue

et al. [86] for a single quadrant in the square duct flow is shown in Fig. 7-15. The

streamtraces: of the secondary flow found in the three-dimensional simulation are shown

in Fig. 7-16. The presence of the symmetry of the secondary flow along the y = 0.5,
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Figure 7-13: Comparison of the velocity field generated with the three-dimensional finite
element package to the analytical solution for flow of a Newtonian fluid between parallel
plates. - -: analytical solution; 0: finite element solution.
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Figure 7-14: Comparison of the velocity field generated with the three-dimensional finite
element package to the analytical solution for flow of a Newtonian fluid in a duct with a
square cross section. - -: analytical solution at z = 1/3; Li: finite element solution at
z = 1/3;-: analytical solution at z = 1/2; 0: finite element solution at z = 1/2.
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Figure 7-15: Secondary flow generated in the flow of an MPTT fluid in a square duct.
The image shows streamtraces in a single quadrant of the cross-section of the duct.
Model parameters as reported in [86] are p = 1, mO = 1 Amax =- 0.01, = 0.1, = 0.2,
n = 0.65, and = 1. Figure reproduced from [86].
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Figure 7-16: Secondary flow generated from flow of a
De = 1.0, and a = 0.1 in a square duct of 2H = 1, 2W
clearly present along y = 0.5, z = 0.5, y = z, and y = 1 -

0.75 1

Giesekus fluid with = 0.5,
= 1, and L = 2. Symmetry

z planes.
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z = 0.5, y = z, and y = 1 - z planes is clearly present.

7.5 Parallel method

The parallel method used in the three-dimensional solver is a direct extension of the two-

dimensional parallel viscoelastic flow solver used in [16]. Details of the method are given

in Section 3.5 in a form independent of the dimension of the problem. In addition, the

subproblem describing the velocity gradient interpolant is solved by using the Conjugate

Gradient method. Each component of G is independent of the other components, and

therefore the components are solved for separately, further reducing the overall size of the

calculation. This results in a set of calculations that requires an insignificant amount of

time when compared to the solution of the Stokes problem. The relative time to reach

solution in each subproblem is provided below.

Testing of the performance of the three-dimensional solver was performed on a parallel

cluster of 32 Dell 2650 rack-mounted servers. The machines each contain dual Pentium

Xeon processors with 512 KB L2 cache and 2 GB RAM. Each processor has a clock

speed of 2.8 GHz. The Linux operating system with kernel 2.4.1 was used on each

machine. The parallel environment consisted of LAM version 6.5.9 and PETSC version

2.1.6. The machines were interconnected with an Extreme Networks Black Diamond 6808

switch containing 40 fully non-blocking 1 Gb copper ethernet ports and both primary

and secondary management modules to provide adequate switching fabric to ensure no

greater than 1:1 subscription ratio for each port.

While the ultimate goal of the development of the parallel solver was to reduce the

total time needed to complete the calculation as compared with the serial analog, it is of

interest to measure how efficiently the resources of the parallel machine are being used.

Armed with efficiency measurements, one is much more apt to predict correctly how the

solver will perform for a wide range of problem sizes. A number of metrics exist for the

measurement of the performance and efficiency of parallel solvers. The most relavant to
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the current investigation are as follows.

The speedup metric is often used to measure the efficiency of the size of the parallel

machine. Speedup S = tl/tp is the ratio of the time to complete the calculation on

one processor, t, divided by the time to complete the calculation on P processors, tp

given a fixed problem size. Efficiency of the parallel method is given by E = S/P. An

ideal parallel method would have a linear speedup with a slope of one where doubling

the number of processors would result in time decreasing by a factor of one half and an

efficiency of one for any number of processors. Since the problem size is held constant, as

the number of processors increases, the problem on each processor will decrease. In terms

of the physical geometry, as the domain is broken up into smaller and smaller pieces, the

relative size of the bordering area between the pieces increases. This in turn necessitates

greater and greater amounts of communication between processors. Eventually the time

needed for communication between processors will become much more significant than

the amount of time spent on each processor's calculations, consistent with Amdahl's law

[5], [68]. This occurence is manifested in the speedup metric when doubling the amount

of processors results in the time decreasing by less than a factor of one half and in the

efficiency metric when significant decrease from unity is seen with increasing number of

processors. Because of this fact, the speedup and efficiency metrics are highly dependent

on the hardware used to test the parallel method.

Measurements of speedup and efficiency are given in Fig. 7-17 for a highly refined

square duct mesh of 5,000 elements with 450,000 unknowns. For a problem of this

magnitude, the parallel three-dimensional solver exhibits linear speedup and efficiency of

unity with up to 8 processors in the parallel machine. For 16 processors the speedup

and efficiency are no longer ideal, and for 32 processors little gain in speed is realized

as compared to the 16 processor case. The optimal machine size for this problem is

therefore 8 processors, though some overall speed increase is seen for up to 32 processors.

A more refined set of metrics used by Gustafson [38] for determining the performance

and efficiency of the parallel method are defined as above but with a problem size per
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Figure 7-17: Speedup and efficiency of three-dimensional parallel method for flow of a
Giesekus fluid (De = 1.0, 3 = 0.5, ac = 0.1) in a square duct. The mesh consists of 5,000
elements and a total of 450,000 unknowns.

processor that is held constant. Fig. 7-18 shows the Gustafson efficiency for numbers

of unknowns per processor of 14115, 44788, and 177088. Since it is quite difficult to

fix exactly the number of unknowns per processor, the efficiency, E, for the P processor

parallel machine is multiplied by the ratio of number of unknowns per processor for

P = n to the number of unknowns per processor for P = 1. For each of the two smaller

problems, the Gustafson efficiency appears to asymptotically approach a single value for

large n. This large-n efficiency appears to decrease slightly with increasing problem size.

Due to limitations of the hardware, the largest probem could not be run on a machine

greater than 8 processors.

Since the solver used here for the solution of the viscoelastic flow is comprised of

multiple decoupled subproblems, it is instructive to consider the relative amount of time

spent on each of the subproblem. For the square duct mesh of 5000 elements, the relative

amount of time needed to compute the solution of each subproblem is shown in Table
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Figure 7-18: Gustafson efficiency as a function of the number of processors in the parallel
machine for the three-dimensional finite element solver. Unknowns per processor: 0-
14115, 1- 44788, A- 177088.

7.1. Clearly the amount of time needed to solve the Stokes problem greatly outweighs

that of the velocity gradient interpolant and the stress equation. While this is certainly

the case for any continuum stress equation, polymer stresses described by more advanced

methods such as Brownian Dynamics and kinetic theory will undoubtedly require more

significant amounts of computational time relative to the Stokes problem [76].
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G
average iterations 40
time/iteration (seconds) 0.5
% of total time 95%

20x9
0.001
<1% 5%c

Table 7.1: Relative time needed to reach solution for the momentum/mass continuity,
velocity gradient interpolant, and stress subproblems in the parallel three-dimensional
finite element package. Measurements are made for the calculation of the flow of a
Giesekus fluid in a square duct with 5000 elements.

7.6 Summary

A three-dimensional finite element package for the computation of confined viscoelastic

flows was detailed in this chapter. The package employs the DEVSS-G formulation and

uses a time-dependent method to decouple the stress, flow, and velocity gradient inter-

polant equations. While the Giesekus equation is the constitutive equation implemented

in the package, the decoupled form of the equations allows for easy implementation of

any differential constitutive equation. The package is designed to handle a wide range

of geometries by including a number of different boundary conditions.

Detailed information concerning the elements and basis functions used in the package

are included for completeness of description of the method. Meshing to discretize the

physical domain is accomplished using the ICEM mesh generator commercially available

from ANSYS. ICEM employs o-grid refinement to localize the effects of mesh refinement,

reducing the overall size of the mesh.

The accuracy of the method has been demonstrated using a number of pipe and

duct flows with comparison to analytical and computational results. Comparison of the

solutions with established results for flow of a Newtonian fluid and a Giesekus fluid show

excellent agreement.

Parallelization of the method is a direct extension of the two-dimensional method

in [16]. The measurements of the speedup and efficiency of the method demonstrate

that application of this parallelization technique is effective for the three-dimensional

viscoelastic flow calculation.
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Chapter 8

Flow Across a Periodic Array of

Cylinders

To test the three-dimensional finite element package on a problem of complex flow, the

periodic, linear array of cylinders was chosen. Flow in this geometry exhibits a combi-

nation of shear, predominately in the gaps between the cylinder and the top and bottom

walls, and elongation, predominately in the region immediately upstream and down-

stream of the cylinder. The periodic nature of the geometry allows for more mesh to

be concentrated in regions of large gradients rather than long upstream and downstream

sections of the geometry as is necessary in entry and exit flow simulations such as the

axisymmetric 4:1:4 contraction-expansion flow geometry that is modeled in chapter 6.

Much work has been accomplished in characterizing the flows over the full range of

separation distances between the cylinders in the periodic array ([6], [54], [55], [57], [73]).

The most significant body of work on this problem is for the inter-cylinder spacing of 2.5,

as performed by Liu [55] and Smith et al. [73]. Liu performed extensive experimental

observations for the flow of a polyisobutylene Boger fluid through a periodic, linear array

of cylinders for cylinder spacings of 2.5, 6 and oc, the isolated cylinder case. Tran-

sitions from a two-dimensional flow to a three-dimensional, time-dependent flow were

identified for critical values of the Weisenberg number that depended on the cylinder
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spacing. Smith et al. performed linear stability analysis by applying three-dimensional

perturbations to a two-dimensional base-state flow. Using the Oldroyd-B model, they

were able to capture the onset of the instability for the periodic array of cylinders over

a range of cylinder spacings. Their calculations of the critical Weisenberg number for

the onset of the instability as well as the wave number of the instability agree quite well

with Liu's findings for the 2.5 case.

The goal of this chapter is to study the flow of a Newtonian fluid and the Oldroyd-B

model in the periodic, linear array of cylinders with cylinder spacing of 2.5 and charac-

terize the effects of variations in the width of the geometry using a full three-dimensional

finite element simulation. Section 8.1 presents the geometry, governing equations, and

numerical methods used in the simulations. Section 8.2 presents the results of the simu-

lations beginning with the Newtonian results in Subsection 8.2.1 and then the Oldroyd-B

model results in Subsection 8.2.2. Conclusions are given in Section 8.3.

8.1 Problem Description

8.1.1 Geometry

The geometry considered here is a periodic, linear array of cylinders designed to match

the experimental system used in [55], a schematic diagram of which is shown in Fig. 8-1.

All physical dimensions are non-dimensionalized with the cylinder radius, Rc. The axis

of the cylinder is centered between the top and bottom walls of the channel. While

geometries with various distances between cylinders were considered by Liu, only geome-

tries with a separation length L = 2.5Rc between the cylinder centers are considered

here. The height of the channel is 2H = 4R,. The width of the channel is W = 4R

for the majority of the calculations, though geometries of W = 2Rc and W = 3R, are

also simulated. The periodic computational domain is from the center of gap fore and

aft of one cylinder with a length of Ld = L,, denoted by the dashed lines in Fig. 8-1.

The origin of the Cartesian coordinate system used to describe the geometry is located
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Figure 8-1: Schematic diagram of the periodic array of cylinders. The distance between
the cylinder centers is Lc = 2.5Rc. The height of the channel is 2H = 4Rc. The axis
of the cylinder is centered between the top and bottom walls of the channel. The width
of the channel is W = 4Rc for the majority of the calculations, though geometries of
W = 2Rc and W = 3Rc are also simulated. The periodic computational domain is from
the center of gap fore and aft of one cylinder with a length of Ld = Lc, denoted by the
dashed lines. The flow in the channel is in the positive x direction.
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on the axis of the cylinder halfway between the ends of the cylinder. The flow in the

channel is in the positive x direction.

8.1.2 Governing equations

Flow of the fluid through the periodic, linear array of cylinders is governed by the equa-

tions of momentum conservation, mass continuity, and equations describing the relation-

ship between polymer stress and deformation of the fluid. To model the heterogeneous

complex flow, the DEVSS-G formulation for the momentum and mass continuity equa-

tions is utilized. In the DEVSS-G formulation, the momentum equation employs a stress

splitting to take the form

V2v - VP - {(1 - p) {G + GT) _ V. r = (8.1)

where v is the fluid velocity,/3 is the solvent to zero-shear-rate viscosity ratio, p is the

pressure, G is the velocity gradient tensor, r-p is the extra stress, and V is the gradient

operator. The mass continuity equation is given by,

V v=O (8.2)

A least squares minimization is used to compute the velocity gradient,

(Vv - G)2 = 0 (8.3)

The Oldroyd-B fluid model is chosen the model the polymer extra stress of the MIT

Boger fluid used in [54]. This model was used successfully to describe the dynamics of

this polymer system by Smith et al. [73] in the periodic, linear array of cylinders. The

Oldroyd-B fluid model is given by,

Tp + Derp(l) = - (1 - 3) [G + GT] (8.4)
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where De = A0,y is the Deborah number, A = 'o/2 (r0 - rs) is the zero-shear-rate

polymer relaxation time, and 3 = rs/r70 is the solvent to total viscosity ratio. To match

the zero-shear-rate theological properties of the MIT Boger fluid used in [55] and modeled

in [73] the parameters are chosen as A0 = 0.3 s and /3 = 0.67.

Boundary conditions applied to the boundaries of the computational domain shown in

Fig. 8-1 are specified as follows. To model an array of cylinders that repeats indefinitely

in the x direction, periodic boundary conditions are applied on the inflow and outflow

boundaries. No slip boundary conditions are specified on the solid walls oriented in the

xz plane and on the cylinder surface. On the walls bounding the computational geometry

in the yz plane, two different conditions are applied. To model a geometry bounded

in the z direction, no slip boundary conditions are applied on these walls. To model a

geometry that is infinite in the z direction, periodic boundary conditions are applied on

these walls.

8.1.3 Numerical method

The Galerkin finite element method is used to discretize the unknowns for the DEVSS-

G equations, namely v, p, and G, and the discontinuous Galerkin method is used for

unknowns for the constitutive equations describing the polymer stress, namely rp. The

mesh used to discretize the three-dimensional physical domain is shown in figure 8-2.

This structured mesh consists of 14420 hexahedral elements. The meshes used to model

the W = 2Re and W = 3Rc geometries are identical to the W = 4R, mesh in all but

the z coordinate. Meshes identical to each other were chosen to better compare the flow

fields arising the in different geometries. Increased resolution in the z direction with

decreasing width W is necessary if flow structures periodic in the z direction are to be

resolved.

For comparison purposes, simulation of the periodic, linear array of cylinders assuming

symmetry about the mid-plane y = 0 were also performed. The mesh used for these

simulations, Fig. 8-3, is identical to the upper half of the mesh shown in Fig. 8-2. The
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mesh consists of 7210 hexahedral elements.

The mesh used in the two-dimensional simulations, in which variations in the z di-

rection are neglected and v is assumed to be zero, is shown in Fig. 8-4. This mesh is

simply a cross-section of the three-dimensional mesh. It consists of 412 quadrilateral

elements.

The index one set of DAE's resulting from the finite element discretization of the

governing equations is then converted into a set of first order ODE's by using the operator

splitting technique described in [77]. Once written in this form, the set of equations can

be decoupled and solved in separate sub-steps by employing an explicit time integration

technique, in which the equations describing the flow, eqs. 8.1-8.3, become constraints on

the evolution equations describing the polymer extra stress, eq. 8.4. The flow equations

are further decoupled by first solving equations 8.1 and 8.2 and then using the new

velocity fields to compute the G interpolants from equation 8.3. The momentum and

continuity equations are preconditioned and then solved with a Krylov iterative technique

as in [16] and further described for the three-dimensional method in Section 7.5. Unlike

the work of Caola et al. [16] in which BiCGStab was used as the iterative solver, here

GMRES is employed for its improved stability and robustness. Also unlike the work of

Caola et al.., a separate solution technique can now be employed to solve for the least

squares interpolation for G since equation 8.3 is now decoupled from the flow equations.

Here the Conjugate Gradient method is employed for this symmetric, positive definite set

of equations. All of the sub-problems are solved by using parallel versions of the Krylov

solvers and the domain decomposition CHACO to optimally distribute the equations

among the nodes in the parallel machine. Further information on this method can be

found in [16]. The computations were carried out on a parallel cluster of 32 Dell 2650

PowerEdge servers each with dual 2.8 GHz Intel Pentium Xeon processors and 2 gigabytes

of memory. The intercommunication between machines was carried out via an Extreme

Black Diamond 6808 switch with gigabit copper NIC's and adequate bandwidth for a

fully non-blocking and non-oversubscribed architecture.
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Figure 8-2: The mesh used for simulation of the three-dimensional bounded and periodic
width geometries. The mesh is composed of 14420 hexahedral elements.
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Figure 8-3: The symmetric mesh used for simulation of the three-dimensional bounded
and periodic width geometries. The mesh is identical to the upper half of the three-
dimensional mesh shown in Fig. 8-2 and is composed of 7210 hexahedral elements.
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Figure 8-4: The two-dimensional mesh used in simulations of the periodic, linear array of
cylinders where variations in the z direction have been neglected and the veloctiy in the
z direction is assumed to be zero. The mesh is a cross-section of the three-dimensional
mesh and consists of 412 quadrilateral elements.
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8.2 Results

8.2.1 Newtonian fluid

Simulation results for the flow of a Newtonian fluid in the periodic, linear array of cylin-

ders are presented here. Four different geometrical cases are modeled, including an array

of infinite width where variations in the z direction and velocity in the z direction are

neglected, an array of infinite width modeled where the flow is assumed to be periodic in

the z direction with a period of 4R, an array of infinite width modeled where the flow

is assumed to be periodic in the z direction with a period of 4Rc and symmetric about

the y = 0 plane, and an array bounded by solid walls in the z direction with a width of

4R,. Comparisons of the flows in the four geometries are also given.

Array of infinite width

Simulation results are given here for the flow of a Newtonian fluid in an array of infinite

width where variations in the z direction and velocity in the z direction are neglected.

The z direction is therefore referred to as the "neutral" direction and the model is reduced

to two dimensions. Contour plots of the periodic portion of the pressure and the x and

y components of velocity are shown in Fig. 8-5. Streamlines for the flow are constructed

by first combining the components of velocity from the simulation to form a vector

field over the entire flow domain. Streamtraces are then found much like experimental

streakline images are constructed, by tracing the path of marker particles flowing through

the domain. The streamtraces of the flow are equivalent to the streamlines at steady

state. The streamlines for this flow are shown in Fig. 8-6. A pair of vortices fill the

gap between the cylinders, each reaching outward 0.38R, units from the centerline. The

vortices act to divide the flow into four separate regions, namely the main from above the

cylinders, the two vortices between the cylinders, and the main flow below the cylinders.

Because of the closed loops of streamlines in the vortices, no information is exchanged

between these regions.
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Figure 8-5: Contour plots of the periodic portion of pressure and the x and y components
of the velocity for the flow of a Newtonian fluid in a periodic, linear array of cylinders
with infinite width. Variations in the z direction and the z velocity are neglected.
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Figure 8-6: The streamlines for the flow of a Newtonian fluid in a periodic, linear array
of cylinders with infinite width. Variations in the z direction and the z compon~nt of
velocity are neglected.
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Effects of considering variations in the z direction

Simulations were also performed using the three-dimensional geometry of width 4Rc

where the flow is assumed to be periodic in the z-direction, and variations in the" neutral"

direction and non-vanishing Vz are admitted. The flow field and pressure field from the

simulations showed no variation in the "neutral" direction. Contours of the periodic

portion of the pressure and the x and y velocity in the z = 0 plane are given in Fig.

8-7. The streamlines for this flow are presented in Fig. 8-8. The flow field and pressure

p

-1

0.5 1.5 2 2.5
X

Ip:.62 -48.34.20.6 8 22 36 ~I
0.5 1.5 2 2.5

x

IV)(: 0.Q1 0.230.460.68 0.91 1.13-7.!11
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Ivy: .0.31 -0.22 .0.13 -0.050.04 0.13 ~30 I

Figure 8-7: Contour plots of the periodic portion of pressure and the x and y components
of the velocity in the z = 0 plane for the flow of a Newtonian fluid in a periodic, linear
array of cylinders with periodic width of W = 4Rc.

field show virtually no deviation from the case with the assumed neutral z direction.

Results of the simulations for this geometry with the added assumption that the flow is

symmetric about the y = 0 plane also showed virtually no deviation from the case with

the assumed neutral z direction.
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Figure 8-8: The streamlines of the flow of a Newtonian fluid through a periodic array of
cylinders unbounded in the z direction with periodic width of W = 4. Flow is in the
positive x direction.
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Effects of adding bounding walls

Simulations of the periodic, linear array of cylinders with no slip walls bounding the flow

in the z-direction and with width of 4Re apart were performed to discern the effects of

the sidewalls on the flow. While the flow field showed virtually no deviation from the

case of assumed neutral z-direction when viewed at the centerplane z = 0, significant

effects are seen in the z = R, planes, the halfway points between the z = 0 plane

and the sidewalls. Contours of the periodic portion of the pressure and the x and y

components of velocity in the z = R, plane are given in Fig. 8-9. While the pressure

field shows little variation, the bounding walls have acted to reduce the intensity of the

flow in the x and y directions at a distance of R, from the walls. The streamlines for

this flow in the z = 0 and z = Rc planes are presented in Fig. 8-10. Here the vortices in

the gap between the cylinders are shown to shrink significantly at a distance of R, from

the bounding wall.

Figure 8--11 shows a close-up of the streamlines in the gap between the cylinders on

the z = 0 plane, superimposed onto the contour field of the velocity in the y direction.

Only two levels are used to discretize the contour levels, one greater than zero and one

less than zero, allowing for easy identification of where the y velocity is zero. Near the

cylinder surface the y velocity changes signs at the separation lines between the vortex

and the main flow in the positive and negative half of the geometry as well as at the

vortex-vortex interface at the y = 0 centerline. Extracting a line of data from the flow

at x = I (z = 0) makes this fact readily apparent, as is shown in Fig. 8-12. Here

the three intersections of the data and the dashed line denote the three sign changes.

Comparison of vy at x = 1 (z = 0) from the four simulation cases demonstrates only

slight variation in this quantity, as shown in Fig. 8-13. Only slight differences in the

separation line locations exist among the four different test cases.

To help identify the effects of adding bounding walls to the geometry, comparison of

the y velocity near the aft edge of the cylinder is made closer to the bounding surfaces

of the solid wall and the periodic wall cases. An isosurface plot of the vy = 0 surface
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near the aft edge of the cylinder is shown for the periodic wall case in Fig. 8-14 and for

the solid wall case in Fig. 8-15. The isosurface is shown for the flow from the cylinder

wall to plane halfway between the cylinders. The dashed red line indicates where the

isosurfaces intersect the x = 1 plane. The periodic wall case shows no variation in

the separation lines along the width of the domain. For the solid wall case, while the

interface between the vortices, denoted by the central isosurface, exhibits virtually no

variation over the width of the domain, the separation lines between the primary flow

and the vortices shows significant variation across the width of the domain. Moving

away from the z = 0 plane, the point of attachment of the vortices decreases in the y

direction. The bounding walls clearly impose a significant effect on the flow over nearly

the entire width of the domain.
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Figure 8-9: Contour plots of the periodic portion of pressure and the x and y components
of the velocity in the z = 1 plane for the flow of a Newtonian fluid in a periodic, linear
array of cylinders of width W = 4Rc.
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Figure 8-10: The_streamlines of the flow of a Newtonian fluid through a periodic array of
cylinders bounded in the z direction with width W = 4Rc. (a) z = 0 plane; (b) z = Rc
plane. Flow is in the positive x direction.
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Figure 8-11: Plot of streamlines near the gap between the cylinders overlaid on a contour
plot of the positive and negative regions of the y component of velocity.
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Figure 8-12: Velocity in the y direction along the line x = 1 (z = 0). The intersections
with the vy = 0 line correspond to the separation lines between the main flow and the
vortex, and the vortex/vortex interface.
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Figure 8-13: Velocity in the y direction along the line x = 1 (z = 0) for the four
variations in the width of the periodic, linear array of cylinders. (green): infinite width,
no z variations; (orange): periodic width; (red): periodic width, forced symmetry; (blue):
bounded width.
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Figure 8-14: Isosurface for vy = 0 near the downstream edge of the cylinder for a Newon-
tian fluid flowingin the periodic, linear array of cylinders with periodic width of W = 4Rc.
The region between the downstream cylinder wall and the yz plane at x = 1.25 is shown.
The upper and lower isosurface near the cylinder wall denotes the interface between the
main flow and the vortices. The center isosurface denotes the interface between the
vortices. The red line is at x = 1.
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Figure 8-15: Isosurface for vy = 0 near the downstream edge of the cylinder for a Newon-
tian fluid flowing in the periodic, linear array of cylinders with periodic width of W = 4Rc.
The region between the downstream cylinder wall and the yz plane at x = 1.25 is shown.
The upper and lower isosurface near the cylinder wall denotes the interface between the
main flow and the vortices. The center isosurface denotes the interface between the
vortices. The red line is at x = 1.
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8.2.2 Oldroyd-B model fluid

This section explores the effects of increasing viscoelasticity on the flow. Results from

simulations of the flow of an Oldroyd-B fluid in the periodic, linear array of cylinders

are presented. As with the Newtonian fluid case, four different geometrical cases are

modeled, namely an array of infinite width where variations in the z direction and velocity

in the z direction are neglected, an array of infinite width modeled where the flow is

assumed to be periodic in the z direction with a period of 4R, an array of infinite width

modeled where the flow is assumed to be periodic in the z direction with a period of

4Rc and symmetric about the y = 0 plane, and an array bounded in the z direction

with a width of 4R,. Comparison of the flows in the four geometries is given along with

comparison to trends found in previous works.

Array of infinite width

Simulation results are given here for the flow of an Oldroyd-B fluid with / = 0.67 in an

array of infinite width where variations in the z direction and velocity in the z direction

are neglected. The streamlines in the gap between the cylinders are shown for a range

of De in Fig. 8-16. The simulations show that increasing the viscoelasticity of the flow

causes the vortices in the gap between the cylinders to grow outward from the y = 0 plane.

This appears to be caused by an increased resistance of the fluid to curvature along the

streamlines as the fluid passes over the gap between the cylinders. The vortices also show

increased concavity as De is increased, with more growth on the edge of the downstream

cylinder than the upstream cylinder. For comparison, results reproduced from [73]

showing a single streamline representing the outline of the upper vortex computed at

De = 1.46 is shown in Fig. 8-17. The outline of the upper vortex computed by Smith

et al. compares favorably with the current simulation results, especially considering the

relatively low resolution in the xy plane of the mesh used in the present work. Steady

state solutions were not found for De higher than 1.5. Simulations at De of 1.6 and

higher exhibited oscillations with increasing amplitude in the L2 norms of both 7- and v.
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(a) Oe=O.O (b) Oe=0.7 (c) Oe=1.5

Figure 8-16: Streamlines computed for the flow of an Oldroyd-B fluid with {3 = 0.67 and
De of 0.0, 0.7, and 1.5 in a periodic, linear array of cylinders with infinite width where
variations in the z ~irection are neglected and Vz is assumed to be zero.
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Figure 8-17: Contours of Tpll (left) and Tp12 (right) at We=1.46 as computed by Smith et
al. [73] where 1 and 2 denote the streamwise tangential and streamwise normal direction
in the Protean coordinate system. The dark outline in the gap between the cylinders is
the computed vortex.

Oscillations were also witnessed in the L2 norms of the De = 1.5 case, but the amplitude

of the oscillations decreased with time, eventually reaching zero. This limiting value of

De is within 2% of the critical value found by Smith et al.. Care was taken to ensure

that the simulations were converged in the timestep demonstrating that the oscillations

were not due to a lack of temporal resolution.

Using the analysis developed above for the Newtonian cases, the relative change in

vortex size with increasing De can be shown by viewing the location of the sign change in

vy in the x = 1 plane,_ Fig. 8-18. The flow remains stable and symmetric for De ::; 1.5.

The drag on the surface of a single cylinder in the periodic array as a function of De

is computed for comparison to previous work. The drag force FD of a fluid on a surface

is calculated from the expression

where ~r is an outward unit vector normal to the surface. The drag force is non-
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Figure 8-18: Velocity in the y direction along the line x = 1 for the flow of an Oldroyd-
B fluid of {3 = 0.67 in a periodic, linear array of cylinders with infinite width and no
variation in the z direction. (red): De=O.O;(green): De=0.7; (blue): De=1.5.

dimensionalized with the characteristic viscous stress, TJo (v) / Rc. The drag force com-

puted on the cylinder in the two-dimensional simulations is shown in Fig. 8-19. Here,

X = FD/FD,N is the drag force scaled by the drag force of a Newtonian fluid. Liu et al.

[54]reported that the drag force of an Oldroyd-B fluid on a single cylinder in the periodic,

linear array of cylinders with Lc = 2.5 and H = 2 reaches a minimum at some critical

value of De and then grows monotonically for higher De. The drag force computed in

the two-dimensional simulations shows t.hesame trend with increasing De, but the values

do not agree quantitatively with the results of Liu et al..
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Figure 8-19: The normalized drag force on a single cylinder with increaseing Deborah
number for the flow of an Oldroyd-B fluid of = 0.67 through a periodic, linear array of
cylinders with L = 2.5.
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Effects of considering variations in the z direction

To model the effects of including variations in the z direction, simulations for the geom-

etry with periodic width of W = 4Re were computed up to De = 0.725. At De leading

up to 0.725, increased sensitivity to the size of the timestep was found. Whereas the

simulations at De of 0.1, 0.3, and 0.5 all were stable at a dimensionless timestep of no

greater than At = 0.01 * (v) /h, where (v) /h is the characteristic timescale of the flow, the

De=0.7 case was time-stable at At = 0.0035. Figure 8-20 shows the stable timestep as

a function of De for the stable cases. Error bars are included that show the half-interval

0.012

' 0.01

V
" 0.008

0.
' 0.006

E

) 0.004
0.002

0.002

0 0.1 0.2 0.3 0.4
De

0.5 0.6 0.7

Figure 8-20: Stable dimensionless timestep as a function of Deborah number for the
simulations of an Oldroyd-B fluid with = 0.67 in a periodic, linear array of cylinders
with periodic width of W = 4R,. Error bars are given that show the half-interval over
which the timestep was tested for temporal stability in the simulation at each value of
De.
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over which timesteps were chosen to test for stability in the simulation at each De. Only

the top half of the error bar is included indicating that the simulation is known to be

stable for timesteps smaller than the data point. This suggests that another timescale

in addition to the process timescale has appeared and is affecting the numerical stability

of the governing equations. At higher De the simulations failed to reach a stready-state

solution and exhibited growing oscillations in the L2 norms of Tp and v. Care was taken

to ensure that the simulations were converged in the tiInestep.

The vortices formed along the z = 0 plane with increasing De are shown in Fig 8-21.

The vortices are very similar to those found in the two-dimensional simulation up to

(a) De = 0.1 (a) De = 0.3 (a) De = 0.5 (a) De = 0.7

Figure 8-21: Streamlines computed for the flow of an Oldroyd-B fluid with j3 = 0.67 and
De of 0.1, 0.3, 0.5, and 0.7 in a periodic, linear array of cylinders with a periodic width
of W = 4Rc.

De = 0.7. No evidence of the concave shape of the outer edges of the vortices that is

just starting to appear in the two-dimensional simulations at De = 0.7 is present here,

though similar growth of the vortices with increasing De is apparent.

Plots of the xx, yx, and yy components of Tp in the z = 0 plane are shown in Figs. 8-

22, 8-23, and 8-24, respectively. Buildup of stress with increasing De is mostly localized

near the cylinder surface between 60 and 90 degrees above and below the centerli~e of
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(a) De = 0.1 (b)De = 0.3 (c) De = 0.5 (d) De = 0.7

Figure 8-22: Contour plot of the xx component of Tp for the flow of an Oldroyd-B fluid
with /3 = 0.67 for a range of De in the periodic, linear array of cylinders with periodic
width of W = 4Rc. Flow is in the positive x direction.

the geometry. Also, a buildup of Tpxx with De is seen at the top and bottom walls
of the geometry. Furthermore, as De increases, a break in the symmetry of the stress
field becomes apparent, most prevalent in Tpyy where the lobe growing off the bottom
upstream side of the cylinder is clearly more intense than that on the top upstream
side for De of 0.5 and 0.7. Stress fields for the xz, yz, and zz components of Tp were
essentially zero for all De simulated.

The only significant variations in the z direction are found in the z-component of
velocity, though this component's values are quite small compared to vx, and vy. Contour
plots of the Vz velocity in the y = :f:l.5 planes are shown in Fig. 8-25. Recall that the
cylinder axes are at x = 0 and x = 2.5, with the gap present at 1 < x < 1.5. Though
only very weak flow is present in the z direction, the variation is clearly present. On the
downstream side of the cylinder, the flow is shown to move in the positive z direction
while on the upstream side of the cylinder the flow moves in the negative z direction. This
suggests that large recirculation cells are present in the flow traveling over the cylinders.
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(a) De = 0.1 (b) De = 0.3 (e) De = 0.5 (d) De = 0.7

Figure 8-23: Contour plot of the yx component of Tp for the flow of an Oldroyd-B fluid
with (3 = 0.67 for a range of De in the periodic, linear array of cylinders with periodic
width of W = 4Rc. Flow is in the positive x direction.

While this is true above and below the cylinders, Vz is clearly not symmetric about the

y = 0 plane. Above the cylinders the flow in the z direction on the downstream side of

the cylinder is more concentrated in the center of the domain, while on the upstream side

of the cylinder it is more concentrated near the outer edges of the domain. Vz below the

cylinders is also considerably higher in magnitude than above the cylinders. As De is

increased, the difference of the flow in the z direction on the upstream and downstream

sides of the cylinder for y = 1.5 becomes more dramatic, while for y = -1.5 just the

magnitude of the flow increases.
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Figure 8-24: Contour plot of the yy component of T p for the flow of an Oldroyd-B fluid
with j3 = 0.67 for a range of De in the periodic, linear array of cylinders with periodic
width of W = 4Rc. Flow is in the positive x direction.

238



vz
14e.os
13E-05
1.IE-05
D3E-06
76E-06
6.oE-06
'.3E-06
UE.06
•. 8E-07

-a.IE..o7
-2.SE..06
-42E.06
-6,DE.06

-, 6E-06
.... 3E-05

vz
1.0E-«
•. 6E-os
1.1E-06
5.1E-06
43E-oS

2.DE-OS
14e.os

Ooe.oo
-1.4E-05

.aE-os
-UE-os
.5.1E-os
-1.1E-06
".6E-os
.,.oe-<l4

0.5

1.5

-, -, .1 .,
-'.5

0.5 '.5 2.5 1.5 2.5 0.5 '.5 2.5 0.5 1.5 2.5
X X X X

(a) De = 0.1 (b) De = 0.3 (c) De = 0.5 (d) De = 0.7

1.5

It! 0.5

.....
I
II>-

-,

0.5 1.5 2.5 0.5 1.5 2.5 0.5 1.5 2.5 0.5 1.5 2.5
X X X

It!.....+
II>-

Figure 8-25: Contour plot of the Vz in the y = 1.5 and y = -1.5 planes for the flow of an
Oldroyd-B fluid with (3 = 0.67 for a range of De in the periodic, linear array of cylinders
with periodic width of W = 4Rc. Flow is in the positive x direction.
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Effect of assuming symmetry about the y = 0 plane

Since the flow in the full geometry with periodic width of W = 4Rc was found to be

asymmetric, simulations of the same geometry with the added assumption that the flow

field and stress fields are symmetric about the y = 0 plane were performed. As with the

full simulation, increased sensitivity to the timestep was found as De was increased in the

simulations, and the simulations failed to reach steady state above De of 0.725. Virtually

no differences are present in the flow fields of the symmetric and the full simulation. This

was anticipated, since symmetry in the flow field was preserved in all but the z direction

in which it was considerably weaker than that in the x and y directions.

Plots of the xx, yx, and yy components of Tp in the z = 0 plane over the range of De

simulated are shown in Figs. 8-26, 8-27, and 8-28. Comparison of the Tpyy contours for

x x x x

______ -7._T-_l_.011-_3j3.o._2.4.•5._.16•.o._7F.~:Jil.o-II __3_3.o .7_.~__ 1.o_III_313.•o .-2.4•.5.-16 •.0.-f.7.~:I.l.IO I
(a) De = 0.1 (b) De = 0.3 (e) De= 0.5 (d) De = 0.7

Figure 8-26: Contour plot of the xx component of Tp for the flow of an Oldroyd-B fluid
with (3 = 0.67 for a range of De in the periodic, linear array of cylinders with periodic
width of W = 4Rc. Symmetry is assumed on the y = 0 plane. Flow is in the positive
x direction.

the symmetric case and full simulation where the break in symmetry was most apparent

shows that the portion of the T pyy above the y = 0 plane in the full simulation more
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Figure 8-27: Contour plot of the yx component of T p for the flow of an Oldroyd-B fluid
with /3 = 0.67 for a range of De in the periodic, linear array of cylinders with periodic
width of W = 4Rc. Symmetry is assumed on the y = 0 plane. Flow is in the positive
x direction.

closely agrees with that of the symmetric simulation, while the portion below the y = 0

plane shows significantly higher values of stress near the back edge of the cylinder than

the corresponding symmetric results. Differences are also apparent in the contours of

T'PYX where the shear stress is significantly in the full simulation for the same region where

the differences in T'PYY are present.

Plots of Vz in the y = 1.5 plane over the range of De simulated are given in Fig. 8-29.

Like the components of the stress tensor, Vz in the symmetric simulations shows more

similarity to the the upper portion of the solution from the full simulations than the lower

portion where again on the downstream side of the cylinder Vz is larger in the center of

the domain, while on the upstream side of the cylinder it is larger near the outer edges

of the domain. This difference again becomes more dramatic with increasing De.

Since only half the number of elements are needed in the symmetric geometry to

attain the level of resolution used in the full geometry, calculations with refined meshes

241



2 2 2 2

1.5

-0.5

'- ~ -1 ~

-1.5 -1.5

2
-2

2
-2

2
-2

2
X X X

1-5.9 -4.2 -2.4 -o.~ 1 I 1-5.9 -4.2 -2.4 -0.6 1.1/

(a) De = 0.1 (b) De = 0.3 (c) De = 0.5 (d) De = 0.7

Figure 8-28: Contour plot of the yy component of Tp for the flow of an Oldroyd-B fluid
with (3 = 0.67 for a range of De in the periodic, linear array of cylinders with periodic
width of W = 4Rc. Symmetry is assumed on the y = 0 plane. Flow is in the positive
x direction.

were possible. The goal of these calculations was to determine if it is possible to simulate

the three-dimensional periodic cylinder flowwith De greater than 0.7 by increasing mesh

resolution. Two cases were considered: doubling the number of elements in the z

direction, and doubling the number of elements in the xy plane. While doubling the

number of elements in the z direction showed no difference in the maximum De that could

be simulated, doubling the number of elements in the xy plane increased the maximum

De at which steady state solution could be found to 0.9. No significant structural

differences were seen in the flow field and stress fields at De of 0.9 for the resolved mesh

when compared with those of the De of 0.7 case.

242



(a) De = 0.1

x

(b) De = 0.3 (c) De = 0.5

1.5
X

(d) De = 0.7

2.5

yz
I.'E.05
9.2E.{)6
HE.{)6

5.5E.{)6
3.7E.{)6
1.9E.{)6

7.1E-oe
.1.8E.{)6
.36E.{)6
.54E.{)6
.7.2E.{)6
.9.0E.{)6

.1.IE-oS

.1.3E.05

.1.SE.05

Figure 8-29: Contour plot of Vz in the y = 1.5 plane for the flow of an Oldroyd-B fluid
with /3 = 0.67 for a range of De in the periodic, linear array of cylinders with periodic
width of W = 4Rc. Symmetry is assumed on. the y = 0 plane. Flow is in the positive
x direction.
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Effects of including bounding walls

To model the effects of bounding the flow in the z direction, simulations of the geometry

of width W = 4Rc were performed. As with the other three-dimensional cases, steady

state solutions were only found up to De near 0.7. Comparisons were made to the

unbounded cases on the z = 0 plane of the flow. The most noticeable differences appear

in the streamlines of the flow with increasing De for the bounded case. Vortices formed

along the z = 0 plane with increasing De are shown in Fig. 8-30. Unlike the flows in
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Figure 8-30: Streamlines in the z = 0 and z = ::i:1 planes computed for the flow of an
Oldroyd-B fluid with (3 = 0.67 and De of 0.1, 0.3, 0.5, and 0.7 in a periodic, linear array
of cylinders with width of W = 4Rc.
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the infinite width and periodic width geometries, the vortices in the z = 0 plane deviate

significantly from the Newtonian fluid with increasing De. At De = 0.3 the eye of the

upper vortex begins to move forward and continues to do so up to De = 0.7, breaking

the symmetry on the y = 0 plane. Flow across the y = 0 plane is also observed. The

streamlines in the z = 1and z = -1planes do not show evidence of a break in symmetry.

The eyes of both the upper and lower vortex move forward in the x direction at the same

rate with increasing De. In addition, no flow is observed across the y = 0 line in the

streamlines of the z = :1:1 planes. Figure 8-31 displays the change the streamlines

between the z = 0 and z = 1 planes. Here the width of the region where the break in
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Figure 8-31: Streamlines in the z = 0, 0.25, 0.5, and 0.75 planes computed for the flow
of an Oldroyd-B fluid with (3 = 0.67 and De of 0.5, and 0.7 in a periodic, linear array of
cylinders with width of W = 4Rc.

the symmetry of the flow is present can be discerned. For the De = 0.5 case, the br~ak

in symmetry can be seen in the z = 0.5 plane, while for the De = 0.7 case, the break in

symmetry can be seen at the z = 0.75 plane. Clearly, the width of the region where the

break in symmetry occurs is growing with De.
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While the xx, yx, and yy components of Tp exhibited virtually no differences com-

pared to those of the geometry with periodic width, the results for the zz component of

T p is quite different. Recall that the zz component. of T p was found to be uniformly

zero in the entire flow domain for all of the unbounded cases. Contours of Tpzz in the

z = 0 plane for the bounded wall case are shown in Fig. 8-32. Here the positive normal

2 2 2 2
X X X x

1-,.1~~~21 1'1.1E-02,~-o21 1-,.'~~~21 I-,.'E~ ,~~I
(a) De = 0.1 (b) De = 0.3 (e) De = 0.5 (d) De = 0.7

Figure 8-32: Contour plot of the zz component of Tp in the z = 0 plane for the flow of an
Oldroyd-B fluid with /3 = 0.67 for a range of De in the periodic, linear array of cylinders
with width of W = 4Rc. Flow is in the positive x direction.

stress in the z direction is shown to shift from just past the top edge of the cylinder to

the gap between the cylinder as De increaseS. The positive region of Tpzz also grows

in intensity as it shifts into the gap. The regions of negative Tpzz start just upstream

of the top edge of the cylinder and move just above the top edge while decreasing in

intensity as De is increased. The increase in normal stress in the z direction in the gap

between the cylinders appears to be the cause of the movement and symmetry break of

the vortices in the gap between the cylinders. Contours of Tpzz in the z = -1.0 and

z = -1.5 planes are shown in Fig. 8-33.Moving outward from the z = 0 centerplane, the

regions of positive Tpzz first shifts away from the y = 0 line in at z = -1.0. Closer to the
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Figure 8-33: Contour plot of the zz component of Tp in the z = -1.0 and z = -1.5
planes for the flowof an Oldroyd-B fluid with f3 = 0.67 for a range of De in the periodic,
linear array of cylinders with width of W = 4Rc. Flow is in the positive x direction.

bounding wall, at z = -1.5, Tpzz in the gap and surrounding region becomes negative.

Similar growth in magnitude followed by a change of sign for Tpzz occurs for the negative

regions near the upstream top and bottom edges of the cylinder. The positive regions

of Tpzz remain relatively stationary in the z = -1.5 plane.

Effect of varying width of periodic domain

Since the instability in the periodic, linear array of cylinders with Lc = 2.5Rc identified

experimentally by Liu [55] and computationally by Smith et al. [73] has a period of
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approximately 3Re, simulations of arrays with periodic widths of 2 and 3 were also

performed to explore any similarities with the previously identified instability.

Simulation results for the W = 2R, case were very similar to those of the W = 4R,

case. Steady state solutions were found for De up to 0.7, slightly less than in the

W = 4R, case. Similar sensitivity to the timestep was also witnessed. Flow fields and

stress fields also closely resembled those found in the W = 4R, case.

Simulation results for the W = 3R, case were somewhat unique compared to the

other two cases. For this width, steady state solutions could only be found for De up to

0.5. However, flow fields and stress fields were found to be quite similar to the results

of the other two cases. No unique flow structure appeared in any of the three different

periodic widths simulated.

8.3 Conclusions

Simulations of the flow of a Newtonian fluid and an Oldroyd-B fluid in a periodic, linear

array of cylinders were performed. The effects of modeling the geometry as infinite

and unvarying in the z direction, as periodic in the z direction, and as periodic in the z

direction with symmetry assumed about the y = 0 plane were studied. The effects of

bounding the geometry in the z direction were also studied. For the flow of a Newtonian

fluid, virtually no difference in the flow field in the z = 0 plane was found for the four

cases. However, the bounding walls were shown to have a significant effect on the flow

field less than Rc away from the z = 0 plane.

For the flow of an Oldroyd-B fluid, favorable comparisons were made to the work of

Liu [55] and Smith et al. [73] for the geometry that was infinite and unvarying in the z

direction. The effects of admitting solutions with variations in the z direction were then

presented. The time-dependent simulations were shown to become increasingly sensitive

to the timestep as De was increased, suggesting that an additional timescale dependent

on De was introduced into the system with the modeling of the z direction. The flows
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computed became increasingly asymmetric about the y = 0 plane, most evident in pyy

and v,. The values of v, suggest that the flow is moving back and forth along the

axis of the cylinders forming one large recirculation cell with a higher magnitude below

the cylinders than above. The values of v, were however quite small when compared

to v, and v,, and no evidence of such a cell was found in the streamlines of the flow.

Simulations of the periodic width geometry with forced symmetry about the y = 0 plane

were also performed for comparison with the full simulation. Sensitivity to the timestep

was similar to that of the full simulation. Flow fields and stress fields compared well

with the half of the flow domain in the full simulation that exhibited the lower magnitude

v, regions.

The effect of adding bounding walls to the geometry was quite dramatic with increas-

ing De. While little motion was seen in the vortices in the gap between the cylinders for

the periodic width case, including bounding walls caused the vortices in the z = 0 plane

to grow significantly with increasing De and also broke the symmetry about the y = 0

plane. The normal stress in the z direction showed interesting behavior with the regions

of positive 'pzz on the downstream side of the outer edge of the cylinder shifting into

the gap between the cylinders and increasing in intensity as De increased. The regions

of negative 'rpzz found initially on the upstream side of the cylinder near the top and

bottom walls shifted in between the cylinder and the wall and decreased in intensity as

De increased. The motion and break in symmetry of the vortices was most likely caused

by the movement and increase in intensity of the region of positive %pzz.

In order to attempt to compare flow structure found in the simulation to the instability

identified by Liu et al. and Smith et al., simulations of the periodic linear array of

cylinders with periodic width of 2, 3, and 4 were performed. The only significant effect

found of varying the periodic width of the computational domain was a decrease in De

at which the flow became unstable for the W = 3Rc case relative to the W = 2Re and

W' = 4Re cases. However, no unique flow structure appeared in the simulation results

for any of the three geometries with different periodic widths. Reasons for this are quite
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likely that the simulations failed to reach steady state at Deborah numbers of almost

half of that were the instability was identified. The refinement study carried out for the

symmetric geometry suggest that increased resolution is required in the xy plane to obtain

solutions at higher De. This is not surprising in that the two-dimesional simluations

showed only qualitative agreement with the results of previous simluations that employed

more highly refined meshes. Given hardware and operating system limitations, the

meshes used for simulation of the full geometry were near the maximum possible size.

Further studies with more resolved meshes should be completed once simulations can be

performed on hardware with increased memory allocation limits.
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Chapter 9

Conclusions and Further Work

9.1 Summary of work

The field of computational fluid mechanics of viscoelastic flows has been well explored in

the three decades since its inception. Still, even with the vast amount of work detailed in

the literature, a number of problems remain relatively untouched and a number of phe-

nomena unexplained. This can be attributed to two areas in which research in the field is

still quite prominent. The first area is that of the models used to describe the behavior of

the polymer, be it based in the continuum approximation of the fluid, in the more direct

description of the microstructure, or in the more exact modeling of the polymer molecules

themselves. The second area is the numerical methods enabling the computational fluid

mechanician to model ever more complicated flow geometries. Early simulation efforts

in the field were concentrated around simple homogeneous flows and some coarse descrip-

tions of heterogeneous flows. As the computational technology evolved and computer

power improved, so did the desire to model more interesting geometries and relieve as-

sumptions that were previously used to reduce problem size. In the past five years, a

significant push towards the development of parallel solution techniques has appeared

within the field, no doubt fueled by the appearance of relatively inexpensive clusters of

PC's armed with free software allowing small groups of computational scientists to build
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on-site parallel resources rather than wait for prescious supercomputer time as in the

past. The creation of parallel solution technology has opened the door to the compu-

tation of complex geometries much more in tune with industrially relevant problems as

well as vast increases in the level of detail included in the models of viscoelastic fluids.

The main goal of this thesis was to develop a robust, efficient simulation package

to model three-dimensional viscoelastic flows. In order to accomplish this goal, im-

provements to the numerical methods and equation formulation were necessary to help

reduce the overall size of the equation sets used to describe viscoelastic flows in three-

dimensional geometries. In order to test their viability for use in reducing the overall

size of the problem, concepts involving changing the formulation of the equations and the

numerical methods used to find the solution to the equations were first implemented and

analyzed in a previously developed two-dimensional finite element simulation package.

In Chapter 4 implementation and analysis was discussed of a formulation change

involving the decoupling of the calculation of the velocity gradient interpolant equation

and the momentum and mass continuity equations in the DEVSS-G formulation. Two

different decoupled methods for computing the velocity gradient, one using a global least

squares approximation and the other a local patch algorithm, were explored and the

performance of each method was documented. While both methods in theory reduce to

the true velocity gradient with mesh refinement, the patch algorithm was found to require

significantly more mesh refinement than the global least squares approximation in order

to attain equivalent accuracy in the solution. Comparison of the two methods taking

into account the additional refinement requirements of the local patch algorithm made

clear the superiority of the decoupled global least squares approximation for calculation

of the velocity gradient interpolant.

Decoupling the calculation for the velocity gradient equation from the flow equations

offered an even greater advantage than the initial splitting of the equation sets into

two smaller problems. Decoupling the equations in this manner allows for optimal

numerical methods to be applied to each equation set. The two-dimensional parallel
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solver developed by Caola et al. ([16], [15]) demonstrated this advantage in the decoupling

of the stress equations from the flow equations in the DEVSS-G formulation by allowing

application of a specially tuned preconditioner to the flow equations. Here this idea is

taken one step further by applying the Conjugate Gradient method to each component

of the decoupled velocity gradient interpolant equation, which, in the decoupled form,

are independent from one another and symmetric positive definite. Application of the

CG method. to each individual component reduces the size of the calculation for all of

the components of the velocity gradient interpolant to less than one percent of the total

calculation, making it in effect a free calculation. The total cost savings of the decoupled

global least squares approximation is 1/2 the cost of the overall calculation using the

coupled formulation.

In Chapters 5 and 6 the versatility and robustness of the decoupled form of the

DEVSS-G equations were demonstrated through the addition and modification of the

evolution equations describing the stress of the polymer as well as new physical quantities

of the flow. Chapter 5 details the time-dependent, free-surface finite element method

in which an evolution equation derived from the kinematic boundary condition is used

to describe the height of the free surface as a function of time. This new evolution

equation is incorporated into the decoupled formulation by simply adding an additional

step to the time integration to evalulate the change in the height of the surface during

the current timestep and then updating the element locations in the deformable region of

the mesh. Application of the new equation in this manner requires no knowledge of the

direct dependence of the system on changes in the new quantity, allowing for quick and

easy implementation. The RK4 method is used to time integrate the stress equations

in this implementation. The new evolution equation may not have similar stability to

the stress equations; hence, analysis should be performed to determine an optimal time

integrator for the new equation. In the case of the evolution equation for the height

of the surface, stable time integration could be achieved with a forward Euler method

interlaced with the RK4 method for integration of stress, reducing the overall cost of
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adding the capability to handle unconfined geometries to the simulation package.

Incorporation of more advanced constitutive equations describing polymer stress re-

lies much more heavily on the use of the decoupled equation set. For most continuum

based constitutive equations, the dependence of the equations on the flow variables can

be expressed explicitly, allowing for the coupled set of equations to be solved with New-

ton's method. However, in the more advanced constitutive equations, such as those

derived from kinetic theory or those employing Brownian dynamics, the dependence of

the stress on the flow cannot be explicitly written, greatly hindering the performance

of Newton's method in locating the solution to the system. Chapter 6 details an ex-

ample of incorporating relatively complicated closed-form constitutive equations within

the decoupled equation formulation. The closed version of the Adaptive-Length-Scale

(ALS-C) model developed by Ghosh et al. [34] is used to describe the Boger fluid used

by Rothstein et al. [65] in the flow through a 4:1:4 axisymmetric contraction-expansion

geometry. Although this equation is written in closed form, it includes a term that

requires the evaluation of the eigenvector associated with the maximum eigenvalue of the

rate-of-strain tensor of the local streamwise flow. Derivatives of this eigenvalue cannot

be expressed analytically in terms of the velocity gradient. Use of this model in the

decoupled equation formulation provided the first ever simulation of a dilute polymer

solution model in a contraction-expansion geometry that exhibited the pressure drop en-

hancement with increasing viscoelasticity that has been well documented experimentally.

A 4-mode FENE-P model was also used to represent the Rothstein fluid. Though its

dependence on the flow field can be expressed analytically, the cost of computation with

multimode models is typically prohibitive when using fully coupled equation sets, as the

overall problem size grows considerably with the addition of each new mode. Incorpo-

ration of the 4-mode model within the decoupled equation formulation adds relatively

little computational cost since the modes in the decoupled form that are time integrated

with an explicit method are also decoupled from one another. Adding additional modes

does still have an impact on the total amount of memory used in the calculation, but
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this is a concern only for larger problems.

Once the formulation changes and numerical method improvements were implemented

and well analyzed within the framework of the two-dimensional finite element pack-

age, development of the three-dimensional package was possible. Chapter 7 details

the three-dimensional finite element simulation package for use with confined viscoelas-

tic flows. The package utilizes the formulation and numerical methods developed in

the two-dimensional package with modifications where necessary for the increase in di-

mensions of the physical problem. To make the package more robust, a number of

different boundary conditions were included to model the different geometries used in

polymer processing. To help reduce the burden associated with mesh refinement in

three-dimensional meshes, a commercial meshing package utilizing o-grid refinement for

localization of mesh refinement was employed. Furthermore, a parallel implementation

of the three-dimensional simulation package was developed based on the two-dimensional

parallel method of Caola et al. ([16], [15]).

As a test of the robustness of the three-dimensional method, simulations of the flow

of Newtonian and Oldroyd-B fluids through a periodic, linear array of cylinders were

performed and are detailed in Chapter 8. The study of this flow includes effects of

modeling the cross section of the flow as (1) an infinite domain with no variation, (2)

an infinite domain of periodic computational width, (3) an infinite domain of periodic

computational width and a symmetric flow above and below the cylinders, and (4) a

bounded domain with solid walls located 4 cylinder radii apart. Comparison with pre-

vious calculations for the Oldroyd-B flow in case (1) showed the same trend in the drag

force on the cylinder with increasing viscoelasticity as well as in the size and shape of

the vortices formed in the gap between the cylinders. The simulations were unable to

capture the instability shown in [73], but the likely explanation is a need for even further

increase in the mesh resolution, which was not possible in these simulations given the

available hardware.
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9.2 Future work

One of the long term research goals that this thesis contributes to is the development

of a simulation package aimed at modeling industrial polymer processing technology

including fiber spinning, film casting, and film blowing. While the three-dimensional

simulation package developed here is a significant contribution toward this goal, there is

still plenty of work needed to complete the goal. One of the capabilities that remains to

be included in the three-dimensional simulation package is the modeling of free-surface

boundaries and deformable regions of the computational domain. The two-dimensional,

time-dependent, free-surface method developed in Chapter 5 is a good starting point for

this endeavor. The free-surface boundary conditions employed in the two-dimensional

method are directly extendable to three-dimensional geometries. Equations for updat-

ing the node locations of the elements in the deformable regions of the computational

domain will require additional research, but the mapping equations employed in the

two-dimensional method should prove to be a good starting point.

In addition to modeling unconfined geometries, additional physical models need to

be added to the package to capture the behavior of the polymer. The most relevant

physical effects that should be included in the simulation package are non-isothermal

effects and crystallization effects (for crystallizing polymers such as polyethylene). Evo-

lution equations describing the change in these physical quantities, such as the energy

equation for modeling the local temperature of the polymer in the system, are easily im-

plemented in the decoupled time-dependent formulation. This was demonstrated in the

two-dimensional simulation package with the implementation of the evolution equation

describing the motion of the free surface in Chapter 5 as well as with the implementation

of the ALS-C( and 4-mode FENE-P constitutive equations in Chapter 6.

In terms of this specific simulation package and the size of problems it is capable of

solving, improvement of the memory scalability in the parallel machine is needed. More

precisely, effort is needed to reduce the memory overhead associated with the overall

problem that; is carried on each machine in the parallel processor. The parallel method
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implemented here has been shown to scale quite well with number of processors in the

parallel machine, but as the overall problem size increases, so does the burden of overhead

of book-keeping structures relating to the overall computational domain that are stored in

memory on each machine. The hardware used in the larger calculations contained within

this thesis consists of clusters of 32-bit PC's banded together with high-speed networking

and configured to be run as a single parallel machine using software available on the

internet. The limitation of this large parallel machine that was critical to the calculations

presented here appeared in the memory allocation limits of 32-bit platforms. While the

32-bit platform is able to address a large total amount of memory commensurate with

the total memory limitations of the motherboards (typically 64 gigabytes at present

on server- and workstation-class machines), only around 2 gigabytes of memory can be

allocated to a single process on the machine. While increasing the number of processors

in the parallel machine reduces the size of the problem on each machine, the overhead

on each machine associated with the overall problem persists. Hence, computation

of very large problems is not possible due to the associated overhead. One possible

course of action is to make software-based improvements that will reduce the overhead

on each processor in the parallel machine. Another approach is to take advantage of

improvements to the hardware that have been made available in the last year allowing

allocation of virtually all available memory to a single process in the 32-bit platform.

Intel's version of this architecture, the EMT64 class motherboards, is now included in

the majority of workstation-class machines that are produced. Clusters composed of

these machines with a sizable amount of physical memory in each machine will make

possible the solution of much larger problems. This technology to address larger amounts

of memory has been present in the 64-bit platforms for some time; however, the cost of

these platforms are quite considerable when compared to their 32-bit counterparts. Since

at least some overhead is likely always to be present on each of the machines in the large

parallel calculations, it seems prudent to attack the problem of memory overhead from

both the software and hardware fronts to allow for the most efficient simulation package
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capable of simulating problems of adequate size to model industrial-type processes and

handling ever increasingly complex constitutive equations.
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