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Abstract

Natural language use relies on situational context. The meaning of words and utterances
depend on the physical environment and the goals and plans of communication partners.
These facts should be central to theories of language and automatic language understanding
systems. Instead, they are often ignored, leading to partial theories and systems that cannot
fully interpret linguistic meaning.

I introduce a new computational theory of conceptual structure that has as its core claim
that concepts are neither internal nor external to the language user, but instead span the
objective-subjective boundary. This theory proposes interaction and prediction as a central
theme, rather than solely emphasizing deducing, sensing or acting. To capture the possi-
ble interactions between subject and object, the theory relies on the notion of perceived
affordances: structured units of interaction that can be used for prediction at certain levels
of abstraction. By using perceived affordances as a basis for language understanding, the
theory accounts for many aspects of the situated nature of human language use. It provides
a unified solution to a number of other demands on a theory of language understanding in-
cluding conceptual combination, prototypicality effects, and the generative nature of lexical
items.

To support the theory, I describe an implementation that relies on probabilistic hierarchical
plan recognition to predict possible interactions. The elements of a recognized plan provide
an instance of perceived affordances which are used by a linguistic parser to ground the
meaning of words and grammatical constituents. Evaluations performed in a multiuser
role playing game environment show that this implementation captures the meaning of
free-form spontaneous directive speech acts that cannot be understood without taking into
account the intentional and physical situation of speaker and listener.
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Chapter 1

Introduction

Much of human language speaks about the world. We easily refer to objects using words

such as "door" or "the blue thing for making pizza that I gave you yesterday." The relation-

ship that holds between words and the world, variously and differently described by such

terms as reference, intentionality and aboutness, has been the subject of many theories and

debates. Most of these theories posit an intermediary step between words and the world,

usually labelled as a concept. However, theories differ even on fundamental matters such

as whether a concept is a mental construct of the language user, or an independent abstract

entity. Only very few of these theories have computational instantiations that have been

used to build larger scale natural language processing systems.

There are two highly interrelated parts to any theory of concepts: a description of the

internal structure (or lack of internal structure) of a concept, and an account of how this

structure comes to be about the world. In many cases, theories focus on the first and

neglect the second, or at best give a vague answer to the second. Why is this? I suggest

that at issue is the problem of autonomy. Human beings are autonomous in a very specific

way - we interact with our immediate world ourselves, and maintain our own concepts

about this world. However, we neither try to fully internalize a complete representation

of the world [Brooks, 1991], nor do we individually maintain all possible concepts of our

language community [Putnam, 1975]. If we are to build a machine that uses language at

the human level, such a machine needs to show the same type of autonomy: it needs to be

able to maintain its own concepts about its own experience, yet rely on its environment and

its community to maintain most of the state of the world and the meaning of language in



general.

In building machines other than language using ones, the need for this type of autonomy is
obvious: a walking robot would not be considered a walking robot if it needed to be carried
by a human being to locomote. In building language using machines, however, this type
of limitation is widely accepted: human beings provide input and output interpretation for
these machines, alleviating the need for the machine itself to maintain any sort of inten-
tionality. Thus, a machine connecting words to other words is considered language using,
though it relies on human beings to establish any sort of external meaning for its words.
This is not only a failure of language using machines: theories of concepts make exactly
the same mistake. It is true that for other problems the human solution may not always
be the optimal one: perhaps a driving robot can get around better than a walking one in
many cases. However, there are good reasons to build walking robots: human beings have
shaped their environment to be amenable to the type of locomotion they are good at, so if
a robot wants to share this environment, it better learn how to walk. The same requirement
is true of language: there may be more efficient and clearer ways for machines to define
concepts without the requirement that they connect to the world like human ones do, but
if we are to build language using machines that speak human language, their concepts and
intentionality must be of the same type and quality as the human equivalents.

The lack of a link between language using systems and the world they are supposed to
speak about supports the use of theories of concepts that neglect the intentional aspects of
concepts. These theories may define words in terms of other words or symbols and call
these definitions concepts. I believe that if we are to build a machine that is a true language
using machine in all the ways a human being is, we need to start from scratch with a new
theory of concepts that emphasizes from the ground up the importance of intentionality
and tightly couples the internal structure of concepts with their need to be about the world.
Any theory that draws a clear line between concepts and the world is doomed to support
detached concepts that lose their intentionality. In this thesis, I provide a theory that refuses
to draw such a line. Instead, it proposes that every structural element of every concept must
cross over from the concept to the world, that every concept is both a property of the
language using system, and of its relation to the the embedding world. These structural
elements are called affordances, yielding a theory of Affordance-Based Concepts.

The Affordance-Based Concept provides a solution to the need to take into account the
intentional link between the language user and the world by making predicted interac-



tions its core elements. By doing so, it also yields a substrate that addresses many other

demands of a theory of concepts that have been only addressed individually before. For

example, perceived affordances are naturally ranked according to typicality and context,

addressing the prototypicality effects often exhibited by human concepts. Similarly, the

rich predictions made by Affordance-Based Concepts naturally lend themselves to concep-

tual composition. In fact, as I will show in the implementation provided here, conceptual

composition can be cast as a filtering process on the complete set of affordances a situation

yields. Finally, hierarchical sets of affordances give an intuitive framework for performing

conceptual generalization and abstraction.

The computational realization of this theory employs plan recognition to model the link be-

tween the language user and the world. In recognizing a language user's plans, it maintains

sets of plan states that capture predictions about the language user relative to the structure

of the world at a specific level of abstraction. These hierarchically organized probabilistic

state sets correspond to the notion of affordances just introduced. In understanding lan-

guage, then, the implementation introduced in this thesis understands speech by linking

grammatical constituents to sets of plan recognition states. By doing so, it grounds lan-

guage in a substrate that naturally represents concrete and abstract objects together with

their possible interactions as sets of affordances. An evaluation using a probabilistic Earley

parser as a plan recognizer to understand situated commands in a multiuser computer role

playing game shows that this implementation leverages the perceived affordances to under-

stand situated directives. It also provides examples of reasoning over past affordances to

understand complex utterances.

1.1 Roadmap and Contributions

This thesis casts the problem of understanding situated language as that of using words and

linguistic structure to filter the set of perceived affordances relevant at the time of an ut-

terance. Perceived affordances, mental representations that summarize the past and predict

the future at a single level of abstraction, represent a subject's possible past, current and

future interactions with the situation. Language, or in the case of the studies presented here

a linguistic command, filters the state of all perceived affordances down to those implied

by the utterance used, resulting in a concept consisting of perceived affordances. This



concept can be used to predict the next action of someone listening to the command (as
it is in the studies presented here), or more generally to capture the intended effect of an
utterance taking into account the physical situation and intentional context of speaker and
listener. In the course of casting concepts anew as bundles of perceived affordances this
thesis sketches solutions to standing problems such as conceptual abstraction and compo-
sition, and that of reasoning about other minds, and it provides constrained instantiations
of the proposed solutions in the context of understanding commands in a computer role
playing game. This thesis thus moves beyond the current state of the art in language under-
standing by tying language to the elements of a dynamic, intentional representation of its
embedding situation.

Chapter 2 To support the need for a new theory of concepts, I critique other proposed
solutions, especially ones attempting to bridge the gap between concepts and the
world and show how they fall short of embedding the concept in the world. With
support from other recent work in Philosophy and Cognitive Science, I arrive at an
interaction based theory of concepts that forces every conceptual element to represent
a part of the world by making a prediction about it. In this way, concepts are the basic
elements of reasoning and can be falsified when their predictions do not come true. I
draw on the theory of affordances, which focuses on perceived possible interactions
between an agent and the world, to flesh out the theory.

Chapter 3 To support the new theory, I then provide a computational implementation of
the proposed theory using the notion of plan recognition via hierarchical parsing.
The implementation supports global hierarchical plan recognition of two actors in a
constrained environment, and proposes the idea of using linguistic analysis to filter
the results of plan recognition to achieve understanding. It performs plan recognition
via probabilistic Earley parsing, and ties the notion of an affordance to an Earley state
used to summarize past actions and predict the future at one level of the parse forest
hierarchy. Language is also analysed by a parser, which builds up a filter expression
used to limit the set of Earley states considered to be a valid interpretation of an
utterance.

Chapter 4 This chapter applies the implementation described in Chapter 3 to the concrete
problem of understanding spontaneous language used by players of online role play-
ing games. Such games provide a rich interaction environment embedding the play-



ers' characters, and the theory introduced in Chapter 2 proves useful in modelling

the affordances of the environment and linking its action possibilities to the language

used by the players. Specifically, the studies address the problem of understanding

directives in a co-operative two player puzzle by predicting the listener's next action

based on plan recognition filtered by linguistic analysis. The chapter also sketches

how the implementation might be extended to cover descriptions and questions.
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Chapter 2

The Problem of Concept Detachment

Adopting any given theory of concepts imposes a bias, because every theory emphasizes

certain features of concepts to the detriment of others. There are thus always a host of

objections to any theory. Some of these objections simply note that the theory does not

cover some features, for example that a definitional theory of concepts does not explain the

existence of prototypical concepts. Other criticisms are offered at a more abstract level,

claiming that there are insurmountable theoretical problems with a given solution. An

example of such an attack is the claim that any solution that represents concepts by their

relation to each other leads to meaning holism, where any change to one concept changes

all concepts at once. Laurence and Margolis as well as Prinz give good overviews of

current theories of concepts and the debates surrounding them [Laurence and Margolis,

1999; Prinz, 2002].

In my view, however, many problems with traditional theories stem from a fundamental

bias of their creators: that the use of concepts by an actual language using system, and thus

their connection to the world, is secondary to their internal structure and formal properties.

This is a persistent human bias visible also from the first attempts to create intelligent com-

putational systems: human beings believe that what is easy for them, namely perceiving

and acting on the physical world, must generally be easy problems. More "abstract" men-

tal feats, however, such as playing chess or providing word definitions, seem to be harder

problems to us. Artificial intelligence quickly foundered on this bias, because building sys-

tems that could sense and act like human beings turned out to be very difficult, and still

remains an unsolved problem today. Theories of concepts do not have this built-in bias



detector, because most of the people proposing new theories do not implement them in an
artificial system with wide coverage, but rather pick and choose examples from human lan-
guage use that they can explain. To compound this problem, researchers actually building
language using systems have a cheat available that those building sensing and acting ma-
chines do not have: they can de-couple the more abstract mental use of concepts from their
connection to the world, by using a conveniently available natural mechanism to substitute
for the ability of their system to make this connection: actual human beings. Thus, current
day artificial language using systems live in a world of symbols which connect to other
symbols in a myriad ways. At the beginning and at the end, however, there is always a
human being feeding in the original symbols and interpreting the final ones. Thus, internet
search engines [Brin and Page, 1998], automatic essay grading programs [Valenti et al.,
2003] and text summarization tools [Paice, 1990] show impressive performance and are
very useful. They cannot, however, autonomously use language without the human being
serving as input and output converters.

I believe that many of the criticisms and recently proposed theoretical solutions are con-
cerned with this underlying problem of Concept Detachment that both traditional theories
of concepts and computational language systems share. In the following, I will relay some
of these criticisms and proposals in my own words, and show how they relate to the problem
of concept detachment.

2.1 Non-Mental Concepts and Human Intentionality

At its most extreme, concept detachment takes the form of the claim that concepts are not
mental constructs at all, but rather are abstract entities that attach to language independent
of a specific language user. While some state this view explicitly, such as Frege does when
presenting his notion of sense, it is implicit in a number of theories by virtue of their lack of
attention to the mechanisms of conceptual attachment [Frege, 1892]. Alternatively, a num-
ber of theorists claim that there is something special about the way that human beings attach
their concepts to the world, so special that a computational machine could not possibly have
the same kind of intentionality. Thought experiments like Searle's Chinese Room scenario
purport to show this impossibility [Searle, 1980]. Both the view that concepts attach to the
world independently of the language user, or that they attach through the language user, but



in a way that is not computationally explainable, lead theorists to feel like they do not have
to tell a story about how concepts connect to the world. This is not the place for a full refuta-

tion of these arguments, especially as such a refutation has been eloquently given by others

(many of these arguments are included with Searle's original publication). Suffice it to say
that if one is interested in building machines that attain human level autonomous language

use, they are not arguments that lead forward. To use Dennett's phrase, these thought exper-

iments only work due to a failure of imagination [Dennett, 1992]. I thus assume a position

very similar to Jackendoff's and Barwise and Perry's: that there is no magic in how con-

cepts attach to the world, and that this attachment is a fully computationally explainable,
if complicated, relationship between the language user and the world [Jackendoff, 2002;

Barwise and Perry, 1983]. It is this attachment that should be the main subject of study

if we are to move forward with a useful theory of concepts. It follows that if it is compu-

tationally explainable, it is also computationally implementable and there is no reason in

principle why a machine cannot have exactly the same kinds of intentionality that human

beings have.

Interestingly, most computational manifestations of concepts reveal the same implicit as-

sumptions by not providing any details of how the data structures used as concepts attach to

the physical or virtual world they are about. As these programs are often billed as language

understanding systems, this either means that even computer scientists do not believe that

machines can have intentionality, or that their hope is that language attaches to the world

independently of language users. The first belief seems like giving up the quest for hu-

man level intelligent machines without a fight, whereas the second has only led to systems

that need human interpreters for input and output. It is hard to see how either justification

allows room for autonomous language using machines.

2.2 Requirements for Conceptual Attachment

Accepting the position that concepts are mental constructs of the language user, there are

two overarching requirements for a theory of concepts. It must detail the structure of a

concept and how it can be used computationally, and it must tell a story about how this

mental structure attaches to the world through the language user's perception and action.

These two requirements are inextricable, and as we will see in the following it is a mistake



to treat one without the other.

2.2.1 Sensory Grounding

The most straightforward attempt to fulfill the two requirements of detailing the structure of

concepts and explaining how they are attached to the world consists of taking an existing
theory of concepts, such as the definitional one, and adding a link from each symbol to
some sensing machinery. This is exactly Hamad's scheme [Hamad, 1990]. Here, a set of
basic symbols is supported by sensory categorization machinery - a connectionist network,
in Hamad's proposal. Each of these symbols thus becomes connected to the world by its
categorizer's ability to pick out members of the concept from sensory input. There are a
number of systems that have been built according to this paradigm, including some of our
own [Roy et al., 2002; Roy, 2002]. These systems often address additional aspects of this
type of grounding, such as how categories are learned by the language user [Roy, 2003]
and how concepts grounded in this way can be combined [Gomiak and Roy, 2004].

There is no denying that sensory grounding is a very important aspect of language un-
derstanding. One can note immediately, however, that the systems resulting from this
paradigm are severely limited in several ways. While it is to be expected that at least
initially only basic words can be directly grounded in sensory perception, it is more in-
teresting that these systems are almost entirely without a purpose of their own: they are
programmed to interpret or produce descriptions, and have no choice but to interpret or
produce descriptions. Practically, thus, these systems are severely limited by having no
desires of their own, and no ability to model other's desires. Responding to anything other
than hardcoded commands, or acting autonomously to reach goals, are thus out of the ques-
tion. In fact, even representing actions and understanding language about actions is at best
an afterthought in these systems.

There are a few examples of language using systems that use words to label actions. Some
of them simply perceive actions of others and label them, making them in a way equiva-
lent to systems that label other features of the world they perceive [Siskind, 2001]. Other
systems are based purely on a representation of action, but do not perform what we would
normally call perception - in fact, while they represent action they do not actually act them-
selves, but rather understand language in terms of their built-in action representations [Bai-
ley, 1997; Narayanan, 1997].



2.2.2 Prediction and Interactivity

There remain looming theoretical and practical problems for proposals of language ground-

ing systems that treat perception and action separately. Separating perception and action

leads one to see the perception process as a type of encoding. That is, a mental representa-

tion of an external object functions as a representation due to the fact that there is a close

correspondence between object and representation. The theoretical objection levelled by

critics like Millikan and Bickhard is that any correspondence-based theory does not allow

room for errors [Millikan, 1993; Bickhard, 2001]. A correspondence representation either

corresponds or does not correspond to an object - there is no sense in which it corresponds

to the wrong object. Being wrong, however, is clearly a feature of mental representations,

one that is crucial for basic processes like reasoning and learning.

This objection may seem unimportant to practical systems. After all, several of them learn

correspondences without problems. It is important to note, however, that when they learn,
the correctness of the correspondence is judged by a human observer. Take, for example,

Toco, a small robot that learns an audio-visual word dictionary by listening to a teacher's

speech and observing various objects named somewhere in the speech [Roy, 2003]. The

robot is equipped with an algorithm that lets it find the English sounds for words like "ball"

or "red" from the speech stream, together with their visual correspondences. The fact that

this is the correct correspondence only stems from the fact that its designer meant for Toco

to learn English words corresponding to visual features. If Toco randomly paired sounds

with visual features, or, for that matter, if Toco were to spontaneously start dancing while

reciting Kant in the original German, this would not be wrong behaviour for Toco itself,

but only wrong given the context of Toco's purpose imposed externally by its designer. The

problem that stems from viewing representation as correspondence is thus very similar to

the original problem of designing language using systems that do not connect words to the

world: such systems need a human being as a judge of whether their actions are correct and

meaningful or not. Meaning, therefore, stays external to the system.

Now, perhaps this is not a problem. Millikan argues that normative function, which lets you

say that a heart isfor pumping blood and that "red" is meant to refer to a specific perceived

colour is determined by evolutionary history for natural systems. Similarly, we could argue

that Toco's use of "red" is correct if Toco was designed to learn English. Here we run into

another problem, however. While it is imaginable that we design a system that uses the



English language with greater sophistication than Toco, what we are after is ultimately a

system that uses a natural language just like human beings use a natural language. We are
thus attempting to align our design process with the outcomes of evolution. While this is
abstractly true, it does not provide much guidance for the detailed design process.

A more useful view of normative function, put forward by Smith and Bickhard, proposes
that representation arises from the need for prediction, and stays intimately coupled with
prediction [Smith, 1996; Bickhard, 2001]. This view is useful, because it allows for nor-
mativity within the conceptual system itself: the system makes a prediction based upon its
representation of the world, and the world either develops according to the prediction, or it
does not. Smith goes as far as to claim that this use of mental representations for prediction
is what leads to the distinction between subject and object, between representer and repre-
sented in the first place. He argues that subject and object must engage in an intentional
dance to be subject and object: the subject must internalize some structure of the world
and make a prediction based on this internalization, and the world has to be structured such
that it allows for predictions to be successful, thus becoming an object. Most importantly,
representation is cast as an active process that fuses perception, representation and action
into a unified conceptual system where one cannot exist without the other two.

There are aspects of this unified conceptual structure in some artificial systems: some sys-
tems learn by reinforcement, thus evaluating their predictions and model of the world based
upon feedback from the world [Sutton and Barto, 1998]. However, especially in symbolic
reasoning systems, which language using systems must on some level be due to the sym-
bolic nature of language, it seems a common trend to separate perception and action. As
discussed, these systems assume a more or less simple correspondence between perception
and the symbols used, and maintain a separate system for making decisions and acting, if
they have one at all. While the perception and the action systems obviously communicate in
some way to produce reasonable behaviours, this communication is an afterthought. I have
argued in this chapter that the link between perception, representation and action should
be the central design issue for a language using system. To move forward based on this
premise, however, we need a basic representation unit that can be used for perception and
prediction. In the following, I argue that the notion of an affordance is exactly such a unit.

While the theory introduced in the next chapter is general in nature, it should be seen
as a proposal and outline with partial support from the implementation and studies that
follow in the subsequent chapters. Many of the linguistic aspects of the implementation are



simple, and blatantly ignore discourse history to focus on taking into account intentional

and physical history. This is a deliberate decision, because discourse history has been

proposed as a way to analyse intentions and recover plans before, whereas intentional and

physical history has been left unaddressed [Allen and Perrault, 1980; Litman and Allen,

1984; Stone, 2001]. This decision means that treatment of anaphora, and linguistic analysis

in general are somewhat simplistic in favour of emphasizing the connection to the situation

model given by the physical and intentional analysis. Similarly, while suggestive and used

as a model to analyse and predict human behaviour in this thesis, there is not yet evidence

for the proposed theory beyond the studies shown here, so its psychological reality should

be considered in that light.

2.3 Existing Computational Approaches

Winograd's SHRDLU was one of the first situated language understanding systems [Wino-

grad, 1970]. In fact, it still stands today as one of the most sophisticated ones, without

much followup work to surpass it. SHRDLU uses a relatively static, symbolic representa-

tion of the situation and keeps the user's plans distinct from the physical (logical) situation.

Plans in SHRDLU are only implicitly encoded in the form of procedures applied due to the

language used. In the work presented here, the situation includes a noisy estimate of the

language user's plans in a highly dynamic situation. The situation thus requires categoriza-

tion and representation in order to be tied to language, which in turn requires interaction

and prediction on the part of the language understanding system. SHRDLU thus commits

to the problematic assumption of the separation of linguistic concepts from the world they

are about that was discussed in the previous sections.

Chapman's work describes a semi-autonomous agent in a game that follows simple linguis-

tic instructions [Chapman, 1991]. While touching on elements of interaction and planning,

this work de-emphasizes the linguistic component in favour of focusing on a model for

interactivity. This thesis expand on that work by introducing a strong language element

to cast the elements of interactivity and prediction themselves as the basis for a linguistic

system.

In our own work, we have introduced both visually situated language understanding sys-

tems [Gorniak and Roy, 2004] as well as interactive conversational robotic systems [Hsiao



et al., 2003]. While grounded in visual perception and pioneering the linguistic parsing and
incremental grounding strategies that lead to the work under discussion here, the former
only considers language with little purpose. All of its interactions are pure visually refer-

ring expression with the single purpose of communicating their referent. Here, I propose
that determining the purpose behind an utterance is of prime importance to understanding

its meaning. Along similar lines, our robotics work has led Roy to propose a theory for
grounding linguistic concepts in physical interaction [Roy, 2005]. That work complements
that presented here as a proposal for linguistic meaning based on interactions with the world
at a far more detailed and fine grained of experience than considered here. In the future, we
hope to give an account that encompasses both the level of representation discussed there
as well the more abstract and broader interactions under investigation here.

Modem non-situated spoken language understanding systems usually attempt to fill slots
in queries necessary to perform database retrievals, such as for providing flight or weather
information [Zue et al., 2000; Schwartz et al., 2004]. Any recognition of the user's plans
relies solely on the language used, and does not take into account the dynamics of an
evolving situation - mainly because these systems do not allow the situation to evolve in
interesting ways. Similarly, it is unclear how to tie a richer yet static database of symbolic
knowledge such as Cyc to the dynamic situations in which most speech occurs [Lenat,
1995]. Similar to the work presented here other authors have proposed plans and plan
recognition as important elements for language understanding [Pollack, 1986; Litman and
Allen, 1984; Allen and Perrault, 1980] . Again, however, their view of plan recognition
includes only the language used in a discourse, not the dynamic physical and intentional
external situation of the discourse.

Horswill's approach to merging symbolic computation with realtime perception and robotic
action has an important parallel to the work described here in its use of tags [Horswill,
2001]. Tags connect different parts of the framework by marking operations as being about
the same object or role. Implicitly, this connects a set of operations that can perceive, pre-
dict and act on a structural element of the world, making them similar to the notion of
perceived affordances introduced here. The difference lies in the fact that affordances are
represented explicitly and based on plan recognition in the work presented here, whereas
they connect different sub-systems in Horswill's work. Having different representations of
the same concept is an important topic not addressed here, but having an explicit structural
element called an affordances allows more sophisticated reasoning and prediction of the



type employed in language understanding in the following chapters. The two contributions

are thus complimentary, and it stands to reason that the higher level reasoning and under-

standing employed here would benefit from integration with a lower level perception and

action system in the case of a robotic platform.

In the field of language parsing, there exist many efforts to map parse structures to logical

form [Zettlemoyer and Collins, 2005; Haddock, 1989; Schuler, 2003]. While this problem

is very similar to the mapping performed here between parse structures and functional call

structures, it is only one aspect of the overall problem of taking an interactive external

situation into account to perform language understanding. None of these works address

anything but static, symbolic (usually logical) language groundings.

The implementation introduced here relies on hierarchical plan recognition based on ob-

serving a sequence of actions given a generative model to perform planning. While much

work and many systems exist that produce hierarchical plans given goals, especially in the

popular framework of HTN (Hierarchical Transition Network) planning [Erol et al., 1994;

Nau et al., 2003], there exists considerably less work on applying similarly expressive and

structured models to probabilistic plan recognition. Except for the use of parsers employed

in the work presented here [Bobick and Ivanov, 1998; Pynadath and Wellman, 2000], the

use of Abstract Hidden Markov models has been suggested, which does not produce the

type of modularity required here [Bui et al., 2002]. A promising new candidate is Geib and

Goldman's execution model based plan recognition framework, which maintains pending

action sets that could be used instead of the Earley state sets on which the work here is

based [Geib and Goldman, 2005]. The advantage of a plan library based approach using

HTN style methods would be a better parametrization of the plan library, and thus easier

creation of and reasoning about possible plans.

Except for work explicitly related to planning and plan recognition, some authors have

proposed other predictive representations for learning and acting. Drescher uses structural

elements that assemble themselves into hierarchies while interacting with a simple world

[Drescher, 1991]. While strongly related to the notion of affordances used here, this work

does not connect to language and it is unclear how it scales to a problem of the size tackled

in the studies presented in later chapters. The work does contain many insights into how

affordances might be learned and organized by interacting with a situation. More recently,

Littman et al. have proposed a stochastic representation of an agent's state based upon

predictions of the outcome of a series of actions the agent could take [Littman et al., 2001].



These proposed representations are promising candidates for computational instantiations
of affordances. However, in the implementation presented here we rely on a known plan
recognition paradigm that is suitable for the complexity and structure of the scenario inves-
tigated. In other situations, for example in the robotic case where action and perception are
unreliable, but plans may be less complex, these other ways of working with affordances
may be more suitable.

Finally, there exists work on computationally modelling affordances more abstractly as a
theoretical tool to explore linguistic mechanisms [Steedman, 2002], as well as in a non-
linguistic setting to model a robot's interactions with the real world [Stoytchev, 2005].
While both research areas are relevant to the work presented here, they do not address the
need for a theory linking perceived affordance to linguistic concepts in an implementable
fashion. They do, however, suggest other ways to encode and reason about affordances,
which could enrich the work presented here in the future.



Chapter 3

The ABC Theory

The theory of Affordance-Based Concepts provides a solution to the problem of concept
detachment outlined in the last chapter. The nature of its basic units, perceived affordances,

ensures that it provides the linked triplet of perception, representation and prediction at the

most basic level. The theory therefore produces concepts connected to the real world in

the strongest possible sense, doing away with problems of passive perception and lack of

normativity. I describe the theory in this chapter, and a computational instantiation that

captures many aspects of the theory in the next chapter.

3.1 Affordances

The last chapter ended by pointing out the need for a mental structure that incorporates per-

ception, representation and prediction aspects into a coherent unit. This section introduces

the notion of a perceived affordance to fulfill this need.

3.1.1 Affordances and Perceived Affordances

The term affordance was coined by Gibson in 1977 [Gibson, 1977]. Working in the field

of visual perception, Gibson was responding to what I have called correspondence theories

of perception. Rather than focusing on image-like representations that are similar to, or



correspond to, the light information impinging on the retina, he proposed that perception

encodes what the external world affords the perceiver. Thus, extended surfaces are per-

ceived to provide support for walking on, if the surface is of an appropriate size relative to
the perceiver and sturdy enough to hold the perceiver's weight, and the perceiver is actually
able to walk. However, affordances are not necessarily perceived. They are relationships
between an actor and the environment embedding the actor that hold independently of the
actor perceiving them. I therefore distinguish between affordances and perceived affor-
dances - those that the actor perceives and thus mentally represents.

Affordances are unique in that they are primitive aspects of the physical makeup of the
world that are neither objective nor subjective. They span the objective-subjective bound-
ary. There is no sense in which a chair affords sitting on, unless we assume someone who
is doing the sitting relative to the chair: the sitter must be of the right size and weight to get
onto the chair and be supported by it. Thus, a human sized chair affords sitting for an adult
human actor, but not for a horse. A chair might also afford picking up and throwing for
adult humans, but not if it is bolted to the floor. The set of all affordances of an individual
in an environment contains all possible interactions of the individual with the environment.
This set is not identical to the set of perceived affordances of the individual. Neither is the
set of perceived affordances a subset of the set of all affordances, because the individual
may be wrong about what the environment affords it. If a person attempts (and fails) to sit
on a cunningly designed object that looks like a wooden chair but is actually made out of
paper, the individual perceived an affordance that did not actually hold.

Perceived affordances, as I have described them here, fulfill the requirements of a repre-
sentation I arrived at in the last chapter: they are the product of perception of the world,
they encode some aspect of the structure of the world relative to the perceiver, and they
predict a possible interaction between perceiver and world. By implying a prediction, they
can be falsified. However, not every wrong perceived affordance must be falsified. If in
the preceding example the perceiver never decides to use the prediction and does not sit
on the paper chair, the perceived affordance, though wrong, will never be falsified. The
distinction between true and false perceived affordances is not necessarily a binary one.
Agents may have degrees of belief in the validity of perceived affordances, and in fact the
implementation presented in Chapter 4 maintains exactly such degrees of belief.



3.1.2 The Structure of Perceived Affordances

An affordance concerns possible interactions between an actor and an environment, and

an interaction necessarily includes a temporal element. Given a joint state of actor and

environment an affordance is a possible future interaction and thus concerns at least two

points in time: the current moment, and the future point of interaction, which may also

be extended in time. Remember that affordances in general are not representations - they

are sets of possible interactions and thus exist simply because of the physical state of the

system that includes the state of the environment and the state of the actor - in short,
because of the situation. Here, we are more interested in perceived affordances, which are

mental representations, and thus must be finitely describable without requiring a complete

description of the situation. Due to what Smith calls the flex and slop of the world, namely

the property that in the macroscopic world of everyday experience effects die off with

distance, it is generally possible to produce a state description of the situation that suffices

to make good predictions without describing it completely. The Markov Assumption of

a state in a model proposes much the same thing: that it is possible to predict the future

behaviour of the system given only a simplified encoding of its current state. Perceived

affordances thus include an encoding of some aspects of the current situation. There are

many examples of such state encodings in the current day literature concerning decision

making for artificial agents [Boutilier et al., 1999].

In addition to a state encoding, an affordance predicts a possible interaction. This prediction

may be representationally explicit, such as a list of possible ways to pick up a cup, or

it may be implicit, such as an encoding of the cup's geometry together with a model of

possible hand movements and configurations. Both representational styles have their place

at different levels of affordances. It seems unlikely that a list is a good way to represent

the myriad ways to pick up a cup, but it may serve well for thinking about what to have for

breakfast. In general, as Minsky points out, there are many styles of representation that are

amenable for different ways of thinking about different things, or thinking differently about

the same thing [Minsky, 1985]. As long as they encode state and serve to predict possible

interactions, they are candidates for affordances.

An affordance addresses the possible action prediction problem at a single level of repre-

sentation. In the previous example, the possible ways to pick up a cup and the choice of

breakfast foods are on very different levels of representation. They are connected, however,



in that a possible breakfast choice may include pouring a cup of milk, and thus picking up
a cup. To make mental representation feasible it is important to keep these levels of affor-
dances related yet distinct. Keeping them distinct allows one to reason on a single level,
to achieve more concise yet still approximately Markovian state encodings and to employ
the representation and reasoning methods that are best for that level. Keeping them loosely
connected, on the other hand, allows for predictions that span levels and lets one fill in the
details of high level plans, creating a hierarchy of perceived affordances.

3.2 Affordance-Based Concepts

3.2.1 Objects

Note that so far I have not invoked the notion of objects per se - perceived affordances are
about the structure of the world that can be exploited to make predictions. These structures
can be below the level of everyday objects, for example when they concern the topology
of a graspable surface, which may or may not be part of a larger structure that we usually
label "cup". Having replaced the notion of objects with the notion of structural elements
called affordances, we can now re-introduce objects as bundles of affordances. Due to the
distinction between affordances and perceived affordances, we need to distinguish between
objects and concepts of objects. A cup becomes the set of interactions a cup affords, as
determined by its physical properties and the agent's abilities. Due the the subject-relative
nature of affordances, objects thus only exist relative to subjects. Here, as in Smith's meta-
physical view, an object is only an object due to its being pinned down in the structure
of the world by a subject's possible interactions with the object. When we engage in an
active process of representation to distinguish objects within the structure of the world, we
carve out a set of local affordances in the world and consider it an object. This process
is not arbitrary, however, as it exploits the pre-existing structure of the world, including
our own abilities. Thus while concepts of objects are the product of our perception, rep-
resentation and actions, and while we may decide to cut up the world into different sets
of objects at different times, we are externally constrained in our object categorizations by
our own structure and that of our environment. In that sense, objects exist in the world.
Affordances and perceived affordances thus jointly address the metaphysical and the psy-
chological aspects of the existence of objects. The world must provide affordances to allow



representation of objects by a subject via perceived affordances, yielding concepts of ob-
jects. As this thesis concerns a theory of and mechanism for concepts, which are assumed
to be mental structures, the psychological claim is of prime importance here.

3.2.2 Concepts and Compositions

Concepts of Objects are instances of the more general class of structures I call concepts.
Each concept is a bundle of perceived affordances. In addition to representing concrete
everyday objects at various levels, as described in the last section, concepts can represent
any other sets of structures in the world. Allowing arbitrary bundles of affordances gives
the Affordance Based Concept theory a unique representational power, but the use of af-
fordances imposes limits as it is subject to constraints imposed by the framing structure of
subject and environment. One aspect of this power is the ability to represent abstraction. If
a bundle of affordances corresponds to the perceived possible interactions with a particular
red cup, one meter in front of the subject, filled with hot tea, it is only a matter of adding and
dropping other affordances in a coherent manner to arrive at interactions possible with hot
tea cups of all colours, filled and non-filled cups, cups I drank from yesterday, containers,
objects that have handles, cup-sized objects and physical objects in general. This is not a
claim that the way in which affordances are added and dropped is simple, but we will see in
the next chapters that such feats of abstraction can indeed be instantiated computationally.
Importantly, however, using affordances gives the power to perform these abstractions, yet
maintains the notions of prediction and interactivity I have emphasized throughout.

Concepts may be labelled or unlabelled if they occur in language using creatures. A dog
may have mostly unlabelled concepts, with perhaps a few labels taught to it by interaction
with human beings. We, on the other hand, have labels for many of our concepts. Human
language is so highly spontaneously productive and shapes our thinking so much that we
can come up with labels for many abstract concepts that we have never labelled before. I
have already used some such labels ("objects that have handles", "the blue thing for mak-
ing pizza I gave you yesterday"). It is worth noting, and I will expand on this greatly in
the following chapters, that representing concepts as bundles of affordances is amenable
to performing linguistically driven conceptual combination. Thus, in parsing "objects that
have handles" I propose that we perform an online conceptual specification and abstrac-
tion, starting with the sets of affordances labelled by some of the individual words and



combining these according to syntactic and conceptual combination rules to arrive at a set

of affordances that is the meaning of the whole phrase. Importantly, also, the concepts

attached to each word already contain an immense amount of information about possible

interactions, thus suggesting many rich complex combinations, such as in Pustejovsky's
examples of "fast car", "fast road" and "fast food" [Pustejovsky, 1995]. Many similar

combinations will be computationally explained in the following chapters.

3.2.3 Abstract Concepts, Agents and Subjects

ABCs also extend to non-physical concepts. Some labelled concepts have intuitively clear

constraints on interaction possibilities associated with them, such as "mass"9 or "ease of
use". But I believe there is even a story of levels of affordances to be told about a concept

like "freedom". As said, I do not claim that a single type of mental representation suffices

to account for all possible levels and types of affordances. The following chapters intro-

duce one type of framework to maintain hierarchical levels of affordances and to perform
language understanding in terms of these affordances. Some meanings of a word like "free-

dom" might be representable in that framework, within the limited domain addressed. We
will need to develop a representationally richer framework that relies less on explicit enu-

meration of affordances to cover the full human meaning of a word in terms of affordances.

I do believe this is possible in the framework of possibilities of interaction, and not out of
reach computationally.

Objects with agency, be they human beings, animals, machines or other things one may
want to assume the intentional stance towards [Dennett, 1989], can be treated exactly like
other objects under the ABC paradigm. However, the possible interactions of one agent
with another are often far more extensive than those between one agent and a non-agentive
world structure. For human beings, this includes being able to speak to other human beings,
folding the full interactive richness of natural language into the affordance framework. A
special set of affordances forms the concept of the subject, the "self". It is clear that this set
is distinct from those representing other agents, though similar in many ways. As our own
affordances are quite similar to those of other agents, many of the same interaction possi-
bilities exist in subject-subject interaction. Thus we can convince ourselves to do certain
things, we can analyse our own abilities; in short, we can conceptualize ourselves. This
level of reflection about one's own abilities is one of the most powerful aspects of human



thinking. All the aspects of Affordance-Based Concepts, from linking perception to predic-

tion to supporting abstraction ("I'm good at thinking on the spot", "I have awful hand-eye

coordination") play into the full range of human thought and consciousness necessary both

for human thinking and for building human-level artificial thinking machines [Singh, 2005;

Minsky, 1985; Minsky, to be published].
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Chapter 4

An Implementation of the ABC

I now turn to a computational implementation of the Affordance-Based Concept theory.

The implementation described here features all the aspects of ABCs:

" predictive units that capture the possible interactions at a given level of abstraction

" a hierarchy relating affordances at different levels of abstraction

" a mechanism to track the current situation in terms of perceived affordances of all

levels

" a set of functions to form and combine concepts from the past and current perceived

affordances

" the necessary relationships linking linguistic structure to ABCs to decode language

into concepts given a situation.

As the first of its kind, however, the implementation is limited in scope. While its mech-

anisms are general and should be transferable to any domain and situation, it achieves co-

herent treatment of hierarchical perceived affordances through uniformity: each affordance

is represented in the same way. While this particular representation is useful for a number

of problems and domains, I claim in no way that perceived affordances should actually be

uniformly represented, or that they are so in human beings.



4.1 Hierarchical Plans

This implementation of affordances hinges on the notion of a hierarchical plan. A plan is

a sequence of one or more steps an agent takes or considers taking. A hierarchical plan is

a plan in which a top level node is expanded out into lower level nodes, with the leaves of

this plan forming a non-hierarchical plan of concrete steps the agent can actually take. We

explicitly or implicitly maintain hierarchical plans all the time, such as when planning to

buy milk, which expands into going to the store and purchasing milk, which in turn expands

into walking to the car, getting in the car, driving to the store, and so on. Hierarchical plans

have the advantage of making some independence assumptions: if your goal is to buy milk,
how you get to the store does not matter - you could walk, drive or bike.

Plans and planning are intimately related to perceived affordances. In fact, perceived af-

fordances are the basis for planning. The current situation must contain an affordance

predicting I could go buy milk, as otherwise I would not plan for it. Similarly, I will only
consider driving to the store, at a different level of affordances, if I actually have access to

a car, and if my encoding of the situation contains the perceived affordance of driving. Per-

ceived affordances are thus not the elements of a plan, but at each step they are the possible
choices a planner faces when making decisions. Thus each planner must maintain sets of
affordances to perform its planning, and a hierarchical planner maintains hierarchical trees
of affordances.

Note that the activities of planning and plan recognition are tightly coupled. In fact, as
soon as there are two agents involved in a plan, the two activities become one and the same
- to plan for two people, each individual must recognize the other individual's plan and
incorporate it. In the implementation presented here, I focus on hierarchical plan recog-
nition, because it allows me to model two people's intertwined affordances, model their
concepts and understand their speech externally. As we will see, however, elements of

planning will be necessary to understand language as well, and when building an artificial
language using machine, planning takes central stage. I will outline how to proceed to a
fully autonomous language using machine after describing the computational modelling of
the ABCs of human speakers via plan recognition.



4.1.1 Probabilistic Context Free Parsing

The machinery used in representing affordances in the implementation presented here is
that of context free parsing, so this section gives a brief introduction to the relevant notions.

A Context Free Grammar (CFG) is described by a set of rules of the form X -* Y where

X is a single symbol called a non-terminal, and Y is a string of symbols. Any symbol in Y

(the tail of the rule) that does not appear on the left side of an arrow in the set of rules (is

not the head of a rule) is called a terminal. Rules should be interpreted as re-write rules: X
can be re-written as Y (or Y as X, depending on the direction of analysis). In a context free
grammar the fact that every rule can only have one non-terminal as its head enforces that
X can be replaced with Y independently of what symbols occur to the left or to the right of

X, independent of X's context. Given a string of terminal symbols, the basic task in using
a grammar is to apply re-write rules starting with the string of terminal symbols until a pre-

specified top-level symbol, S, is produced. This process is called parsing and the tree of

symbols produced due to rule applications is called a parse tree. Note that the combination

of a given terminal string and a given grammar can produce many parse trees (a forest)

due to ambiguity. There are a number of efficient parsing algorithms, which work either

as described by starting with S and expanding it (top-down), or by starting with the given

terminal symbols and applying rules by replacing the tail with the head until the top level

symbol is produced (bottom-up), or a combination of top-down prediction and bottom-up

parsing [Collins, 2003].

By making the same context-free assumption in a probabilistic context, namely that rules

are expanded independently from each other given a non-terminal during the parsing pro-

cess, a CFG parser can be turned into a Probabilistic Context Free Grammar (PCFG) parser
by adding a probability p of rule expansion to each rule,

P(X -+ Y).

The probability of a parse tree T is then given as

P(T) = j1 p
P(X-Y) E d(T)

where d(T) is a derivation of the terminal string consisting of a sequence of rule appli-



RRETRIEVEKEY - RROOM_1-TOROOM_2 ROPENCHEST
RTAKEKEY

RROOM_1_TOROOM-2 - IMAKEDOORPASSABLE
RROOMCHANGEROOM-1_TOROOM_2

RROOMCHANGEROOM-1.TOROOM_2 - RTHROUGHDOOR RENTERROOM.2
IMAKEDOORPASSABLE - I-PULLLEVER OOPENDOOR
IMAKEDOORPASSABLE -> IBREAKDOOR
IMAKEDOORPASSABLE -- IUNLOCKDOOR LOPENDOOR
ROPENCHEST -+ RUNLOCKCHEST RLIFTLID
ROPENCHEST -> RBREAKCHEST

Table 4.1: Sample Plan Recognition Grammar Fragment

cations that produces T. There can be multiple derivations producing the same parse tree

(depending on the order of rule applications), so usually a uniquely identifiable derivation

is picked amongst them. Often this is a leftmost derivation, where the leftmost terminal is

always replaced first. The likelihood of the terminal string with symbols x.. .x given a

grammar G, on the other hand, is the sum of all P(T):

P(xI...x G) = E P(T)
d(T)

where d(T) are the possible leftmost derivations producing x.. .x from S. Using a PCFG
instead of a CFG has the advantage that P(T) can be used to distinguish between a set

of possible parse trees, and that P(x 1 ...x, G) can be used to compare the likelihood of
different terminal symbol sequences.

The whole point of context free parsing is to recover hierarchical structures from a sequence
of non-hierarchical observations, so it comes as no surprise that context free grammars, and
especially PCFGs have been suggested as ideal paradigms for performing plan recognition

[Bobick and Ivanov, 1998; Pynadath and Wellman, 2000]. In this case, the symbols in

the terminal string correspond to observed events in a temporal sequence, and the grammar

specifies possible higher level event structures. Let us turn to a simplified example from the

studies that will be described in the next chapter. The example involves two players, Roirry
(prefix 'R') and Isania (prefix 'I'), that engage in the short sequence of events depicted in
Figure 4-1. Isania pulls a lever to open a door, and Roirry goes through the door and fetches
a key from a chest in the next room. Table 4.1 shows a small grammar fragment covering
this example event trace. Given the observation sequence given in Figure 4-1, a context



0 IMAKEDOORPASSABLE
o IMAKEDOORPASSABLE

0 I.MAKEDOORPASSABLE
o RRETRIEVEKEY

0: 0 RROOM_1.TOROOM.2

1: 0 IMAKE.DOORPASSABLE
2: 0 IMAKEDOORPASSABLE
2: 0 RROOM_1_TOROOM_2

2: 2 RROOMCHANGEROOM-1_TOROOM.2
3: 2 RROOMCHANGEROOM_1_TOROOM_2
4: 2 RROOMCHANGEROOM-1.TOROOM_2
4: o RROOM_1_TO-ROOM_2

4: 0 R.RETRIEVEKEY

4: 4 ROPENCHEST
4: 4 ROPENCHEST
5: 4 ROPENCHEST
6: 4 R.OPENCHEST
6: n R.RETRIEVEKEY

7: 0 RRETRIEVEKEY

-+ IPULLLEVER OOPENDOOR
- BREAK.DOOR
.IUNLOCKDOOR LOPENDOOR

-+ RROOM_1_TOROOM_2 ROPENCHEST
RTAKEKEY

-. IMAKEDOORPASSABLE
R.ROOMCHANGEROOM1.TOROOM_2
-- PULL-LEVER . OOPENDOOR
IPULLLEVER OOPENDOOR.
IMAKEDOORPASSABLE

RROOMCHANGE.ROOM_1-TOROOM_2
R.THROUGHDOOR RENTERROOM_2

-> RTHROUGH-DOOR . RENTERROOM_2
-> RTHROUGHDOOR R.ENTERROOM.2.
-> IMAKEDOORPASSABLE

R-ROOMCHANGEROOM_1_TO-ROOM_2.
RROOM_1-TOROOM_2 . R-OPENCHEST
RTAKEKEY

-. RUNLOCKCHEST RLIFTLID
-. RBREAKCHEST

R-UNLOCKCHEST . RLIFTLID
-> RUNLOCK.CHEST RLIFT.LID.

RROOM-1_TOROOM-2 ROPENCHEST
. RTAKEKEY
RROOM.1_TOROOM-2 R.OPENCHEST
R-TAKEKEY.

Table 4.2: Earley States for the Plan Parsing Example

free grammar parser would recover the parse tree shown in Figure 4-2.

Isania Roirry

Figure 4-1: Sample Event Trace



Figure 4-2: Sample Plan Parse Tree

4.1.2 Probabilistic Earley Parsing

I claimed before that a planner must consider affordances when making decisions. A plan
recognizer has the luxury of a known terminal string (or at least a set of observed terminal

strings). Many parsers take advantage of this fact by constraining their search for possible

parse trees to only include those that actually include the terminal string. Any bottom up

parser does this, because it incrementally combines symbols to form higher level structures,

starting with the terminal symbols. However, such a parser also considers possible subtrees

that cannot be used to derive the S symbol. For example, if we add the rule PASSDOOR --+
OOPENDOOR RTHROUGHDOOR to the grammar fragment in Table 4.1, a bottom-

up parser would construct a constituent PASSDOOR, but never use it in the derivation for

R.RETRIEVEKEY. In contrast, a pure top-down parser would expand IBREAKDOOR,

even though the terminal symbols do not end up supporting this sub-tree. In short, different

parsing algorithms produce the same answers in terms of possible parse trees, but they do

so with varying efficiency and by maintaining different internal states. As we aim to use

the internal states of a plan recognizer to represent a set of affordances, we need to be

careful to select an algorithm that does predict all possible interactions at all levels at any

given point in time, but that uses the symbols observed to constrain its search. The ideal

candidate for an efficient parser along these lines is an Earley parser, which performs a

combination of top-down prediction and bottom-up completion of parse trees to optimize
its search behaviour [Earley, 1970].

An Earley parser is based on the notion of an Earley state, a structure that concisely sum-



marizes the state of the parser at a particular point in the observation sequence, and at one
level of the current parse. An Earley state is denoted as

i : kX -- > A.y

which should be interpreted as the fact that when the parser was parsing position i in the
observation sequence xo...xi 1 xi.. .x, it had started expanding non-terminal X at position

k in the observation sequence, and that in using rule X --> AP it had advanced past A in the
tail of rule as indicated by the dot. For example, Table 4.2 shows the state sets an Earley

parser would produce while producing the parse tree in Figure 4-2. These state sets are

also visually represented as colour coded stacks below the leafs of the parse tree in Figure
4-2. Each state that has the dot to the right of the rule, meaning that it has successfully

completed the rule, is coloured in blue, whereas states that still have predictions pending

are coloured in green. The same colour scheme will be used to visualize more complex

plan parses in the next chapter. In short, at any given position i in the parse, the Earley

parser is predicting a set of next symbols, namely the symbols to the right of a dot in the set
of states at i (from those states coloured in green). However, the parser does not produce all

top-down parse trees, because it uses already present states to predict future states. Thus, a
non-terminal will only be expanded at a given position if it occurs to the right of a dot, and

each possible symbol will be only expanded once at a given position because the Earley

parser re-uses produced sub-trees in a dynamic programming fashion.

An Earley parser can be turned into a probabilistic Earley parser by adding two quantities
to the state description for state S:

i : kX --+ A.y [a,

The quantities a and -y are called the forward and inner probability of an Earley state, re-

spectively [Stolcke, 1995]. The forward probability (a misnomer, as it is an expected count,

due to possible recursion in the grammar) represents the expected number of occurrences

of a given state in state set i after symbols xo... zi_ 1 have been parsed. The inner prob-

ability is the probability of the parser being in the given state after parsing Xk.. .Xi 1 , i.e.

Y = P(Xk...Xi_1, SIG) where G is the grammar the parser uses.



4.2 Earley States as Perceived Affordances

I now wish to claim that an Earley parse state,

i : kX --+ A.p [a, -Y]

in an Earley parser used for plan recognition is an ideal candidate for a computational

manifestation of a perceived affordance. Assuming that the parser is used to recognize the

plans of a particular agent, it

" predicts possible future interactions with the world at a particular point in time (the

symbols to the right of the dot in the state)

* ranks the likelihood of possible future interactions given the interaction seen so far

through its forward probability

e applies to a particular level of abstraction, but is related to other levels due to the
hierarchical nature of the grammar

" summarizes a segment of past interaction to predict the future.

As an Earley parser progresses, it maintains complete state sets for each point in time, thus
providing a complete history of past actions and predictions in addition to currently relevant
predictions. I call the grammar used by this Earley parser an affordance grammar. This
grammar is a predictive model of the structure of the world, representing a certain agent's
predictions about and possible interactions with the world.

In principle, the affordance grammar should include all possible interactions including ver-
bal ones. Giving a command or asking a question is certainly an interaction with the world.
In the affordance grammar and the studies presented in the next chapter, however, we face
somewhat of a chicken-and-egg problem: using the affordance grammar for plan recogni-
tion provides a substrate for language understanding, but we need to understand language
to write an affordance grammar that can include verbal actions. Once the initial analysis
using an affordance grammar that does not take into account utterances is done, however,
it should be possible to extend this grammar with possible utterance actions and treat ut-
terances identically to other interactions with the world. The work presented here does not



include this last step, and thus treats utterances as events external to the affordance gram-

mar. This in turn means that while the meaning of utterances can be resolved in terms of

how they express interaction with the physical world, the meaning cannot include linguistic

interactions such as commands or descriptions. These are therefore handled externally to

the affordance parsing process in the current implementation. It should also be noted that

other work exists that deals with the effect of past utterances on the understanding of future

utterance [Litman and Allen, 1984], in fact, past utterance are often the only type of situa-

tion taken into account by other language understanding systems. I therefore intentionally

focus the work here on taking into account the extra-linguistic situation first and foremost,

rather than the linguistic one.

4.3 Concise Environment Descriptions

In a human being, I assume that the ability to perceive affordances partially developed

through evolution, and is expanded and adapted via lifetime learning. While the represen-

tation for affordances presented in the preceding sections is amenable to learning, that is

not the topic of this thesis. Instead, the many rules for the affordance grammar used to

derive Earley states are specified concisely via a rule generation system. The rule gen-

eration system produces a full set of rules capturing the hierarchical structure in possible

event sequences, so that events and sub-events can be recognized and predicted at varying

levels of description. The generation system works from a set of meta-rules that concisely

specify 1) the essential events of interest and the sequence in which they must be observed

to form higher level events, 2) the hierarchical relationships between these events, 3) the

times and types of possible extraneous event structures within other events (note that what

is extraneous to recognizing one event sequence may be the core of another), 4) the phys-

ical structure of the space (e.g. room connectivity) and 5) the parameterization of event

structure (e.g. which actors can be involved in which events). These aspects of the plan

recognition problem are interrelated; for example, the physical space structure determines

possible temporal event structures. However, specifying these constraints in relative iso-

lation in a meta-language lets the designer work in terms of intuitive constraints on the

events being modelled, and leaves the generation of the large space of detailed grammar

rules from this specification to the machine.



Figure 4-3: A part of a confusion network produced by Sphinx 4 for the utterance "Can
you open the gate again".

4.4 A Framework for Understanding Situated Speech

Having identified probabilistic Earley states as the implementational correlates of perceived
affordances, it is time to embed them in a framework for speech and language understand-
ing. This framework maps the language signal, be it speech or typed text, onto Affordance
Based Concepts using Earley states as affordances. The language signal is often ambiguous
both in form (what was said) and content (what was meant). The goal of the Framework
for Understanding Situated Speech (FUSS) presented here is to resolve these ambiguities
without over-committing by discarding interpretation options at any stage of processing.

4.4.1 Speech and Text Recognition

The FUSS uses the Sphinx 4 speech recognizer' as a speech front end. I have augmented
this speech recognizer with confusion network generation facilities. Confusion networks
are compact representations of possible hypotheses [Mangu et al., 1999]. Each link in the
network is called a confusion set and spans exactly one word slot, containing all words
that might have occurred over that period based on the speech recognizer's acoustic and

Ihttp://cmusphinx.sourceforge.net/sphinx4/



language models. Each word hypothesis is associated with a corresponding posterior prob-

ability, where the posteriors of all possible hypotheses in one set sum to one. For the

results reported here I used an efficient confusion network construction algorithm based

on the maximum a posteriori path [Hakkani-Tur and Riccardi, 2003]. The resulting source

code is now publicly available as part of the Sphinx 4 distribution. Figure 4-3 shows part

of a network from the data for the spoken utterance "Can you open the gate again." Nodes

are shown in order of decreasing probability from top to bottom with the correct node high-

lighted in each confusion set. "<noop>" and "<sil>" are special words that stand for a

possible word skip and a silence word, respectively. The example shows that the correct

word is often not the one with the highest probability, and that confusion varies from a

single word choice to more than 10 choices.

Typed text is usually a less noisy signal signal than speech, but often contains spelling errors

and out-of-vocabulary words. Similar to the way it handles speech, the FUSS transforms

typed text into a confusion network by adding words with small string-edit distances to the

typed word to the network link for that word. First, it checks that the word is part of the

known vocabulary, and replaces it with the closest word from the vocabulary according to

string edit distance if not. It then adds all words within a given string edit distance threshold

to the confusion set, estimates probabilities for these words using a value of

1
2stringedit(lm,tw)

where 1w is the vocabulary word considered and tw is the word actually typed (or selected

as closest from the vocabulary), and finally normalizes across all words in the confusion

set.

4.4.2 Language Parsing

The linguistic parsing step of the FUSS uses the same Earley parser as described earlier.

For the noisy confusion networks produced by speech and typed text, a few modifications

to the standard Earley algorithm are necessary, some covered by Stolcke [1995]. The parser

considers each word in a confusion set at position i as a possible word in that position, and

multiplies a state's probabilities by the probability of the word in the confusion set. This

incorporates the speech recognizer hypotheses directly into the parsing process and weighs



Figure 4-4: A confusion network produced by spelling correction for the utterance "Stand
by the wet (sic) lever".

them by the speech recognizer's acoustic and language model, effectively conditioning all

probabilities produced during parsing on these models.

As speech and typed text are often grammatically incorrect, the parser seeds each parse

position with an initial state (one producing the S symbol), effectively causing the parser

to work like a bottom-up parser so that it finds all grammatical substrings of the input. At

the end of a parse the FUSS uses the most probable top level state that covers the largest
portion of the confusion network as an interpretation of the sentence.

Finally, the framework automatically augments the grammar by splitting each rule N -t

where t is a terminal, into three rules using a new non-terminal NOOP: the original rule,
N -+ NOOP t and N -+ t NOOP. The added rules NOOP -+ <noop> and NOOP --

NOOP NOOP cover sequences of <noop> symbols. The probabilities of all these rules
can be estimated by counting the number of individual and pairs of <noop> symbols along
the best paths of all confusion networks. In effect, this allows every terminal to be replaced
with any number of skips preceding or following the terminal.

4.4.3 Language Grounding

Whenever the parser produces a state that has the dot to the right of all symbols, that is,
whenever it successfully applies a full grammatical rule and thus completes a constituent,
it attempts to ground this constituent in terms of ABCs. For this purpose, constituents



X * Y Z.
a(b(cO) 4----- a(?) b(cO)

Figure 4-5: A possible composition schema for grounding a constituent in ABCs

can be associated with concept specifications. A concept specification takes the form of a

nested function call specification, for example a(b(c(, d(e))) expressing how the current

set of perceived affordances is to be filtered to arrive at the ABC for this constituent. Ev-

ery lexical item can be associated with a non-nested function call specification. Such a

specification includes the name of the filtering function to apply to the set of affordances,

and the argument positions used in the function call. It is possible to specify any number

of function call specifications per lexical item. Upon completion of a grammatical rule,

the parser walks along each symbol in the tail of the rule and checks whether the function

specification for the symbol together with the arguments offered by the other symbols form

a valid nested function call. Every tail symbol must be used, otherwise grounding fails

for this constituent and an ungrounded constituent (one without a concept specification) is

produced.

Figure 4-5 shows a successful grounding composition where needed arguments are indi-

cated by a question mark. The parser here uses the complete concept specification for Z,

b(c() as an argument for Y's a(?) specification to produce a(b(c())) for the head X. Y

can either require the argument to a(?) to occur on its right, or leave the argument position

unspecified. If a concept specification covers the tail but remains incomplete, for example

if the specification for Y in Figure 4-5 was a(?, ?), the parser can produce a still incom-

plete specification for the head, in the example a(b(c()), ?). Note that composing concept

specifications in this way is akin to how syntactic composition is driven in a Categorical

Grammar [Steedman, 1988], but only applies to semantic composition as presented here.

In my view, the semantic aspect of incremental composition is more important than the

syntactic one, and might even explain many of the syntactic phenomena observed [Sedivy

et al., 1999].

This method of incremental composition driven by language syntax is akin to other work

that associates grammatical rules with lambda calculus expressions [Schuler, 2003] and my

own work that performs compositional grounding according to explicit composition rules



in the grammar [Gorniak and Roy, 2004]. The loose handling of compositions here has

the advantage of pushing all the information into the lexicon, while leaving the grammar
untouched. I take advantage of this fact in the next chapter, where the system is trained

to use a relatively large probabilistic grammar without having to specify the compositional
behaviour of each rule. If multiple interpretations are produced, they most probable longest
(in terms of covering the most words in the utterance) candidate is selected. As for using
concept specifications instead of the full visually grounded concepts of my previous work:
this is simply a matter of efficiency. It was possible to consider all objects at every com-
position when there were at most 30 objects and few grammatical rules, leading to few
completed constituents. Even in the restricted scenario presented in the next chapter, there
can be tens of thousands of affordances to be considered, and hundreds of constituents
completed during a single parse. It is thus prohibitive to perform a full composition when-
ever a constituent is completed. The concept specifications produced here are otherwise
equivalent, but delay grounded composition until a final constituent is produced, though
any other constituent could be explicitly grounded at any time. Interpreting a complex con-
cept specification even with thousands of affordances being considered can be made speedy
with suitable indexing of affordances. The interpretation of utterances in the study in the
next chapter, for example, runs at a speed suitable for realtime in-game use.

4.4.4 Affordance Filtering

An utterance occurs at a specific point in time, and at that time the plan recognition Earley
parsers will have a particular set of current and past Earley states under consideration. To
interpret a concept specification, the nested function call they represent is interpreted as an
incremental filter on the full set of perceived affordances. Thus, for example, a noun like
"gate" might select all interactions involving opening, unlocking, breaking and walking
through at all present and past points in time, whereas a verb like "open" might filter these
to only include the possible and actual interactions of opening doors. This simple example
is shown in Figure 4-6. Figure 4-7, on the other hand, shows the filter expressions from
this simple parse tree applied to the previous affordance example. In sequence, the selected
affordances for select(DO OR), select(O PEN) and select(OPEN, select(DOOR)) are
highlighted. Each word specifies the possible number of arguments of the filter function
attached to it, and the order of function applications is imposed by the order of rule appli-
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Figure 4-6: Simple parse tree example and affordance filters
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Figure 4-7: Filter functions applied to affordance example

cations. The order in which missing arguments are filled is determined first by the order of
occurrence within a rule, and then by rule order. For example, "give" in "give this one a

try" will first receive the filter function from "this one" as its leftmost argument, and then
that for "a try". Filter functions that are still missing arguments are not considered as ar-
guments themselves. Filter functions can be arbitrarily complex and in the next chapter we
will encounter several examples that include filtering relative to a point in time, filtering by
changing actor and filtering by planning.

se6d(



Figure 4-8 shows a more realistic sample parse of the utterance "stand by the west lever"

from the studies discussed in the next chapter. It shows both grounded and ungrounded con-

stituents (those with grounding functions shown, and those without.) The figure does not

show the probabilities associated with constituents, which are used to distinguish between
possible parse trees. Incrementally, the parser builds up a grounding string for the final

("NONE") constituent at the top of the figure, which reads plan-path( select-location( se-
lect(LEVER),. *ROOMCHANGE. *ROOM-] _[0-3]-TOROOMO_[0-3].*)). The functions
involved will be explained in more detail in the next chapter, but in short this nested func-
tion call should be read as a filter on affordances that first selects all those concerning levers

(including pulling and attacking levers), then amongst these all those that are in a location

from which on can walk Eastward, and then plans a path through the game rooms to arrive
in such a location.
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Figure 4-8: A sample parse of the utterance "stand by the west lever", including grounding
functions
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Chapter 5

ABCs in Computer Role Playing Games

I now apply the theory and implementation of Affordance-Based Concepts to the problem
of understanding situated human language. To do so, it is not only necessary to record and
analyse human language, but also to model the situation in which the language occurs using

the machinery introduced in the last chapter. In prior work, we have used robots to access

the same physical environment as human beings, and have studied language use in this

environment [Roy et al., 2002; Roy et al., 2004]. Due to the inherent sensing and action

problems robots face, however, such studies are necessarily limited in the complexity of the
environment they can model, including limitations to the extent and detail of the physical
space, the type of social relationships possible, and the ways in which the robot can affect

the world. Here, I turn to multi-user graphical online role playing games to provide a rich

and easily sensed world to support and capture human interaction.

5.1 The World of Neverwinter Nights

Current day multi-user graphical role playing games provide a rich interaction environment

that includes rooms and exterior areas, everyday objects like chairs, doors and chests, pos-

sessions, character traits and other players' avatars. All of these can be acted upon by a

player, be it through taking direct action on the world or through speaking with other play-

ers. Here, I describe a set of studies using a commercial game, Neverwinter Nightsi, that

lhttp://nwn.bioware.com



Figure 5-1: The in-game perspective of a player in Neverwinter Nights.

includes an editor allowing the creation of custom game worlds. A sample in-game view
from the player's perspective in this game is shown in Figure 5-1.

I have instrumented the game to record complete transcripts of events in the game world,
including player locations, actions such as pulling levers or opening doors, as well as all
in-game text messaging between players. Figure 5-2 shows the map used for the study
presented here. Dependencies between objects in the map are indicated with dotted arrows.
The two players start at the South end of the map. There are two pre-designed in-game
characters available for them to play. One of the characters is a rogue, with the ability to
pick locks, whereas the other is a monk, who has the ability to destroy doors with her bare
fists. However, the rogue can only unlock the doors and chests marked as unlockable on
the map, whereas the monk can only break the doors marked as breakable. The levers each
open one door for a short period of time, too short for the same character to pull the lever
and run through the door him- or herself. Finally, the chests contain a key each, the first
unlocking the other chest, the second unlocking the door behind the first chest. The only
purpose of the puzzle is to reach the goal indicated on the map. When they start the puzzle,
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Figure 5-2: The map of the module used in studies.

players only know that there is a goal they need to step on somewhere in the module.

One possible puzzle solution plays out as follows: The rogue picks the lock on the South-

West door. The monk opens the next door for him with the South-East lever, whereupon he

picks the lock on the chest, obtains the key in it, and returns to the start with help from the

monk. The monk now opens the South-East door for him, and he uses the key to open the

chest here and obtains another key. Once more with help from the monk opening doors, he

makes his way back to the room with the first chest and uses the key in the door leading

from it (which also opens the center door in the East.) Opening doors for each other, the

two characters now switch places and then reach the goal by unlocking or breaking their

respective doors.

This puzzle is designed for players to separate and communicate their instructions and

unlockable

unlockable
and

breakable



goals by using language. As an added restriction, one of the players is randomly chosen in

the beginning and forced to only used one of the following phrases instead of being able to

speak freely:

' "Yes"

e "No"

( "I Can't"

' "Done"

* "Now"

e "What's going on?"

* "OK"

This limits the amount of dialogue phenomena possible, which are not the focus of the

study.

5.2 Data Collection and Annotation

The study included 26 players who played in 13 dyads after responding to ads on the
bulletin boards on the Neverwinter Nights website. 11 of these dyads completed the puzzle
in times ranging from 25 minutes to 1 hour, whereas the others gave up after 1 hour. Even
the two incomplete sessions completed most of the puzzle, except for both players entering
the last room. While previous studies showed that the FUSS handles speech [Gorniak and

Roy, 2005a; Gorniak and Roy, 2005b], this study only collected typed text to focus on the
semantic problems at hand. 9 sessions served for development purposes, such as writing
the affordance grammar and training the linguistic parser, and a group of 4 sessions formed
an unbiased evaluation set. I first annotated the development data and built and trained the
system, then annotated the evaluation data and tested on it.

Figure 5-3 shows the interface for browsing and annotating the data. At the bottom of the
window we find a panel showing a timeline of the events that occurred during the session.
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Figure 5-3: The annotation tool used to correct and annotate parse trees.

Events can be filtered using the check boxes above, quickly examined via overlayed infor-
mation, and the annotator can zoom into and pan across different sections of the timeline.
Furthermore, the timeline provides controls to step through a replay of the events, during
which audio events are replayed and the map reflects player actions. The map panel is
shown above and to the right of the timeline, and shows a picture very close to the one
players see during game play, except that the camera can be arbitrarily controlled by the
annotator and players are represented by red arrows.



The remainder of the window is filled with controls that let the user annotate a specific
utterance. In the figure, the utterance "can you just keep on pressing on the other lever"
has been selected. Above the map is a parse tree of the utterance. We initialize parse
trees with the Stanford Parser [Klein and Manning, 2003] using a standard grammar for
written English. This does not capture many of the phenomena encountered in spontaneous,
situated text, and so the parse tree panel allows the annotator to correct the parse tree,
which is interactively re-formatted. The controls on the left show information about the
currently selected syntactic node, and allow for re-parsing of the original utterance. Below
these controls are the annotation markers for the current utterance, letting the utterance
be described as, for example, an action request. The node annotation button below lets
the annotator select a referent for the currently highlighted syntactic constituent. In the
case shown, the annotator has selected the noun phrase "the other lever" and used the map
panel to indicate the lever this utterance refers to, which is translated into the appropriate
reference indicator by the interface. This functionality is unused in the study presented
here, because the current study involves the interpretation of complete parse trees rather
than specific constituents.

For parsing, the detailed event trace yielded by the game can be abstracted into a simpler
trace noting only the relevant changes in world state including

* object interactions (lever pulls, chest use, door interactions)

" room changes

* key acquisitions and exchange

" attempted actions such as attempted unlocks

Table 5.1 shows a sample event trace segment from one session. In this segment, one of the
players (player 'R' for 'Roirry', the player character's name) unlocks the Southwest door
(door 4), then attempts to unlock the next door (door 7) and fails. Player 'I' (for 'Isania')
now first mistakenly pulls the Southwest lever (opening the Southeast door), but then opens
the correct door for Roirry by pulling the Southeast lever (lever 9). Roirry enters the next
room, lockpicks the chest in it and acquires the key from the chest. Event traces from the
study sessions range between 450 and 2000 events in length.



High Level Events
IROOMCHANGEROOM_1_0_TOROOM_0_O
RROOMCHANGEROOM_1_0_TO-ROOM-0-O
RATTEMPTUNLOCKDOOR-4
RUNLOCKDOOR_4
RATTEMPTUNLOCKDOOR_4
ROPENDOORDOOR_4
ITHROUGHDOOR_4
IROOMCHANGEROOM_0_0_TOROOM_0_1
RTHROUGHDOOR_4
RROOMCHANGE-ROOM-0_0_TOROOM_0_1
RATTEMPT-UNLOCK.DOOR_7
ITHROUGHDOOR_4
I.ROOMCHANGEROOM_0_1_TOROOM_0_0
IACTIVATELEVER_10
OOPENDOORDOOR_6
I.ROOMCHANGEROOM_0_0_TOROOM_1_0
OCLOSEDOORDOOR_6
ODEACTIVATELEVER_10
LACTIVATELEVER_9
OOPENDOORDOOR_7
RTHROUGHDOOR_7
RROOMCHANGEROOM_0_1_TOROOM_0_2
IROOMCHANGEROOM_1_0_TOROOM_0_O
OCLOSEDOORDOOR_7
ODEACTIVATELEVER_9
RATTEMPTUNLOCKCHEST_13
ITHROUGH.DOOR_4
IROOMCHANGEROOM_0_0_TOROOM_0_1
RUNLOCKCHEST_13
ROPENPLACEABLECHEST_13
OINVENTORYCHESTKEY_14

Table 5.1: A Sample Event Trace Segment from a Study Session

5.3 Language and Situation Modeling

The linguistic Earley parser uses a grammar estimated by counting the rules used in the

corrected parse trees of the sessions' utterances. The concept specification for the lexical



entries will be further described below.

A set of 90 meta-rules specify the affordance grammar, which captures

e the physical makeup of the puzzle, including room and door connectivity, effects of
levers, locations of chests

" the possible actions in every room, including moving to other rooms, pulling levers,
unlocking doors, etc.

* planning patterns for players, such as opening a door for the other player to enter a
room

* the current state of the world, including which rooms the players are currently in and
how much of the puzzle they have solved

The 90 rules expand to a full affordance grammar of about 6500 rules with 1300 non-
terminal and terminal symbols. In essence, the meta rules parameterize entities like actors
and rooms, whereas the full rule set produces a unique rule for each parameter setting. The
lack of parameterization in the actual plan recognition mechanism is one of the shortcom-
ings of using a pure context free grammar parser. However, the parser is efficient enough
to run on the large rule set produced by the precomputed parameter expansion employed
here. As already pointed out previously, it is desirable to move to a plan recognizer that
employs a more concise description of the situation, but none of the existing paradigms
near the efficiency and high quality algorithms that exist for parsing. Figure 5-4 shows 4
sample rules from the full grammar. Symbols consist of parts separated by underscores.
These rules be read as follows: The initial part of each symbol, if it is I or R indicates
the player performing the action (the character names in the modules are Isania the monk
and Roirry the rogue.) These four rules describe actions assigned to Isania, because their
head symbols start with I. The heads further tell us that in this action Isania moves from
the South-West room (rooms are encoded in Cartesian coordinates, thus this is room 0,0)
and moves to the second room on the East side. The last part of the head indicates that
while this happens, the other player is in room 0,0. To perform this action, the other player
(Roirry) must first open the door leading into room 1,1 (door 6) while being in room 0,0
(this action expands to pulling the South-East lever and the door opening) while Isania must
then walk to room 1,0 and then to room 1,1. The last symbol is a roomchange sequence



rather than a simple room change because players can step back out of the target room and
into it again before the door closes. By having a symbol for any sequence like this, the
whole episode can be classified as a single room change event. The other three versions of
this rule displayed here add room specific noise rules in all possible positions. These rules
are marked as NM to indicate that they do not produce motion (room changes). The rule
itself appears, amongst other places, in the tail of NOISE2_RROOMOOIROOMO0
-- I2-ROOM_0_0_TOROOM-1_1_OROOM_0_0 NOISE2_RROOM-OOIROOM-1_1,

showing how room noise rules transition between each other via movement rules.

I_2_ROOM_0_0_TOROOM_1_1_OROOM_0_0 -
R_2_OPNDOR_6_RROOM0_0_IROOM_0_0
I_ROOMCHNGROOM_0_0_TOROOM_1_0
I_ROOMCHNGSEQ_2_2_ROOM_1_0_TOROOM_1_1_OROOM_0_0

I_2_ROOM_0_0_TOROOM_1_1_ROOM_0_0 -
R_2_OPNDOR_6_RROOM_0_0_IROOM_0_0
I_ROOMCHNGROOM_0_0_TOROOM_1_0
NOISE2_NM_R_ROOM_0_0_I_ROOM_1_0
I_ROOMCHNGSEQ_2_2_ROOM_1_0_TOROOM_1_1_0_ROOM_0_0

I_2_ROOM_0_0_TOROOM_1_1_ROOM0_0 -o-
R_2_OPNDOR_6_RROOM_0_0_IROOM_0_0
NOISE2_NM_R_ROOM_0_0_I_ROOM_0_0
I_ROOMCHNGROOM_0_0_TOROOM_1_0
I_ROOMCHNGSEQ_2_2_ROOM_1_0_TOROOM_1_1_0_ROOM_0_0

I_2_ROOM_0_0_TOROOM_1_1_ROOM 0 N
R_2_OPNDOR_6_RROOM_0_0_IROOM_0_0
NOISE2_NM_R_ROOM_0_0_I_ROOM_0_0
I_ROOMCHNGROOM_0_0_TOROOM_1_0
NOISE2_NM_R_ROOM_0_0_I_ROOM_1_0
I_ROOMCHNGSEQ_2_2_ROOM_1_0_TOROOM_1_1_0_ROOM_0_0

Figure 5-4: A sample of 4 rules from the expanded affordance grammar.

The probabilities for the rules stem from counting the number of rule applications in the

maximum likelihood parse trees for the development sessions. Not all of the rules produced

by the meta-rules are actually used in the development sessions (remember that rules are
produced for all possible parameter settings), therefore two forms of discounting are needed

to produce probability estimates for the remaining rules. First, Witten-Bell discounting



assigns probabilities to rules whose heads have occurred, but whose tails have not, by
estimating how likely a new rule with this head is to be seen [Witten and Bell, 1991]. This
smoothing method uses the number of types of rules with a given head to estimate how
likely one is to see another new rule with this head, and divides this probability amongst
all the rules with this head that were not seen in the development data. This works for
rules whose heads were seen in the training data, but leaves those rules with heads that
were not seen. Absolute discounting reserves a fixed probability mass for these rules, and
subtracts the mass proportionally from all the rules that were seen or received a probability
via Witten-Bell discounting.

5.4 Communication Strategies

Players employ many different types of speech acts to communicate with each other about
the puzzle, and each type further subdivides into different strategies for expressing inten-
tions. Broadly, these strategies can be broken down into 3 types of speech acts,

directives "pull the east lever", "open", "go into the room with the chest and the locked
door"

descriptions "there's a lever here", "my switch opens your door", "none of these doors
can be lockpicked", "I'm in the entry room"

questions "you're not trapped in the west room are you?", "does it open?", "where have
you been?"

Players also produce utterances that have little to do with the actual puzzle solution, such as
"it's cold and dark in here", "mutter" or "KILL THE PROGRAMMER!". In the following,
the focus lies largely on directives because their effect on the second human player is rela-
tively easy to measure, and they are probably the most important category of utterance that
a synthetic player would be expected to understand. Furthermore, as pointed out in the last
chapter, it is a limitation of the current implementation that the affordance grammar does
not include possible interactions via language, because it is used to interpret these interac-
tions in the first place. To distinguish between speech acts within the framework presented
here it is necessary to add speech acts as possible interactions into the affordance grammar



itself, so that the system can reason about them. By dealing mainly with directives I avoid
this problem for now and interpret the produced grounding for an utterance as a directive

by selecting those affordances selected that pertain to the listener (i.e. those the listener

could take advantage of at the point in time the utterance occurs) and considering them as

likely actions. I do, however, sketch possible ways to interpret descriptions and questions

below, after presenting the results on directives.

Players typed a total of 1742 utterances in the development sessions, and 689 utterances in

the test sessions. I annotated 1320 of the development session utterances as being on-topic,

that is, relevant to solving the puzzle. 302 of these can be considered directives, whereas

the remaining utterances are evenly split between questions and descriptions - a distribution

to be expected in a puzzle designed to separate players while solving a puzzle. Similarly,

the test sessions contain 69 directives out of 427 utterances.

5.5 Affordance Filters

As described in Section 4.4.3, the final result of linguistic interpretation is an affordance

filter specification in the form of a nested function call. The affordance filtering process has

two stages. First, the final concept specification is interpreted as a filtering function on the

current set of affordances, producing another set of affordances that is the interpretation of

the utterance at hand in terms of possible physical actions and their abstractions. Second,

the utterance is interpreted as a speech act, which involves deciding on the type of speech

act and taking any measures to treat it as such, which may involve planning to get the

character into a situation in which he or she can perform the action predicted.

5.5.1 Filter Functions

In addition to the affordance set arguments they take as described in Section 4.4.3, filters

are further parameterized with static parameters specified in the lexicon to re-use the same

filter for different words (for example "east" uses the same filter function as "west" with

different parameters). Many words have multiple meanings, of course, even in the limited

world of these studies. Some examples of several meanings (for example for "that") occur



below, but not all meanings are covered by the system. I discuss failures due to missing
meanings in Section 5.6.1.

Simple Selection The simplest filtering function, select, selects affordances by substrings

in their predicted next symbols. Thus, a word like "open" selects all affordances

involving opening of chests or doors.

Actor Selection The actor-selection filter can select either the speaker ("I"), the listening
character ("you"), or both characters ("us","'s") by filtering affordances for the initial
actor string in their predicted symbols.

Indexicality The expandset filter uses the currently predicted set of affordances for the
speaker as a source set, and selects a target set selecting either all affordances that
specify the same interaction but for any actor. This is the filter associated with the
word "this", selecting, for example, all the possible interactions with a lever next
to the speaker for the fragment "this lever". For the word "other", the same filter
selects affordances of either actor of the same type (e.g. opening doors or pulling
levers) that are not currently available to the speaker (that are, for example, not in the
current room.)

The select-distant filter, on the other hand, collects affordances that were encountered
by the speaker at some point in the past and are not available in the speaker's current
state. It grounds, for example, one use of "that" as in "What about that lever?"
where the speaker is standing next to one lever, but referring to another one with this
utterance.

Movement Planning The plan-path filter plans a path from the current set of affordances
to another by assuming that location changes are enough to bring about the target
set. This is largely a valid assumption in the puzzle discussed here: players can
usually interact with the things around them, though some plans produced this way
may be invalid because the players have not yet advanced far enough in the puzzle.
For example, they may not have managed to open a door yet that is necessary to enter
a target room. Movement planning takes into account the rules of the puzzle, such
that players have to open doors for each other to get into certain rooms. This filter is
used for words like "go" (as in "can you go stand by the other lever") or "run". The
same planning functionality is also used when interpreting an utterance as a directive,
which is discussed below.



Discourse Reference For every utterance, the parser stores the affordance set of the last

filter call that filters by neither actor or planning. A back reference filter (back-ref)

simply re-activates this set of affordance for words like "it".

Past Interactions The select-past filter finds those perceived affordances that were actu-

ally taken advantage of by the agent in the past. This yields another use of the word

"that" as in "Let's try that again."

Location Reference The select-location filter selects affordance sets by the possible room

changes they predict. This is used, for example, to ground "left" and "West" by

selecting for those sets of affordances that predict a room change interaction in which

the target room has an x value of 1. Note that this means that locations are defined by

how one leaves them (i.e. "west" is a location from which on can walk East.) Again,

this is obviously not the most general and only meaning of location references, but it

works very well in the scenario discussed here.

Possession Players tend to use "my" and "your" to refer to objects they interacted with

recently, thus the select-recent filter selects the most recently used affordances in the

current set.

Table 5.2 lists the words grounded via filter functions used in the studies, together with the

their filter function and the number of arguments they take on the left and on the right.

Word Function Left Arity Right Arity

's select-actor 0 1

chest select 0 0

come plan-path 0 0

door select 0 0

east select-location 0 1

east select-location 1 0

exit select 0 0

give intersect 0 2

go plan-path 1 1

continued on next page



Word Function Left Arity Right Arity
i select-actor 0 0
it backref 0 0
1 select-location 0 1
left selectlocation 0 0
left selectilocation 0 1

left select-location 1 0
lever select 0 0
lh select-location 0 1
my select-recent 0 1
north select-location 1 0
northwest select-location 0 1
one select 0 0
open select 0 0
open select 0 1

opening select 0 1
other select-distant 0 1
out select 0 1
press select 0 1
pull select 0 0
pull select 0 1
pulling select 0 1
r select-location 0 1
right select-location 0 1
right selectilocation 1 0
room select 0 0
stand plan-path 0 1

switch select 0 0
that select-distant 0 1
that select-past 0 0
then select-arg 1 1

continued on next page



Word Function Left Arity Right Arity
this expand-set 0 0
this expand-set 0 1

throw select 0 1

try select 0 0
unlock select 0 1

upper selectlocation 0 1

use select 0 1

west selectlocation 0 1
west select-location 1 0

you select-actor 0 0

you select-actor 0 1

your select-recent 0 1

Table 5.2: Words with Filter Functions

5.5.2 Speech Act Interpretation

For a directive, the FUSS first applies the concept specification provided by the linguistic
parser to produce a set of affordances grounding the utterance. It then translates the result-
ing set of affordances into a predicted next action by finding the most recent affordances in
the set and checking whether any are also available for the listener in the currently predicted
set. If they are, they are turned into the basic actions they predict (that is, actions the player
can actually take), by walking down the affordance grammar until a lexical item is reached.
If they are not currently available, but are known to be available in other situations, the
FUSS will plan a path to the room in which such an affordance would be available, and
make the first action in this plan its immediate prediction. Note that such a plan not only

includes movement steps, but also the steps necessary to gain passage such as pulling levers

to open doors for other players. If no predictions are produced in this way, it might be due

to the fact that the next action predicted is not the listener's to take, for example in the case

where the speaker must open the door for a listener to walk through. Thus, the FUSS now

proceeds with a depth first search for the next action of the listener starting with the cur-

rently predicted symbols in the rules contained in the selected affordance states. If any of

these steps produce multiple predictions, they are ranked by the sum of the forward prob-



abilities in the Earley states producing them, and the most probable action is used as the
prediction.

5.6 Results

Whenever one player gives the other a directive, the utterance is turned into a confusion
network and parsed by the language parser to produce an affordance filter specification.
The plan recognizer then runs this filter specification on the complete set of affordances
produced up to this point in the game, which yields a filtered set of affordances. These are
then interpreted as described in the previous section to yield a single best prediction. To
measure performance, this prediction is compared to the next action the player in question
actually takes, and counted as correct if it matches.

Table 5.6 shows the overall results of language understanding using this method. All results
are split between the development and the test set to show generalization to unseen data.
The first row (All Directives (AD)) shows the performance on the complete set of 302
directives in the development sessions and 69 directives in the testing sessions. However,
players do not always follow instructions, so the second row (Followed Directives (FD))
shows performance only on the 281 cases where the player actually performs an action that
matches the directive as determined by the annotator (64 in the testing session). Half of the
directives players used and followed correctly are what I will call action markers: single
word utterances that do not significantly restrict the nature of the action to be performed,
but rather mark the time at which the obvious action should be performed. Such utterances
include "now", "go", "lever" and "open". While the high frequency of such action markers
supports the claim made here that the interactive situation determines much of the meaning
of language (sometime so much that language becomes unnecessary), the performance of
the linguistic component of the FUSS is not evaluated in these utterances. Followed Long
Directives (FLD) in Table 5.6 therefore shows performance on the half of the directives
that contain more than one word. The average length of the total set of directives lies at 3.6
words, but rises to 6.2 words when restricted to the set of development directives employing
more than one word (4.5 vs. 6.5 in the test set). Performance on the set of linguistically
interesting directives is generally lower because the language groundings used in this study
do not cover all of the meanings that occur (omissions and problems are discussed further



below). However, the gap to the pure plan recognition baseline widens significantly on this
utterance set, showing that the FUSS can understand more complex language and produce
the correct concept for many of these directives.

Table 5.6 shows a number of prediction baseline results for the same data sets. The Hierar-
chical Plan Recognition figure shows the performance if language is ignored - that is, if we
simply pick the most probable prediction of the plan recognizer at the point an utterance
occurs, without paying attention to the words in the utterance. As above, Plan Recognition
(FD) and Plan Recognition (FLD) restrict the pure plan recognition baseline to those direc-
tives that were correctly acted upon by the listener (FD), and then further to those that use
more than one word (FLD), respectively. State Based Maximum counts the actions players
took when they were in a specific combination of two rooms, and in response to a direc-
tive predicts the action taken most often in this combination. Finally, State Based Random
randomly picks amongst all the actions players were ever observed to perform in a room
combination.

Selected Utterances Accuracy - Development Accuracy - Test
All Directives (AD) 70% 68%
Followed Directives (FD) 72% 70%
Followed Long Directives (FLD) 61% 68%

Table 5.3: Results of Understanding Directives in the Neverwinter Nights Puzzle Scenario

Prediction Type Accuracy - Development Accuracy - Test
Hierarchical Plan Recognition (AD) 65% 63%
Hierarchical Plan Recognition (FD) 66% 64%
Hierarchical Plan Recognition (FLD) 50% 60%
State Based Maximum (AD) 42% 48%
State Based Random (AD) 15% 17%

Table 5.4: Prediction Baselines for the Neverwinter Nights Puzzle Scenario

When interpreting these results, it is important to keep in mind that perfect prediction

cannot and should not be achieved in any of these cases. The puzzle naturally causes much

exploration by the players, and, as will be discussed further below, situations and directives

often do not limit players to a single next action. Some amount of variability is thus inherent

in the scenario.



72% constitutes the best measure of overall performance of the complete system. Given the
complexity of the problem and the leeway players appear to give each other in following
their own utterance, this figure indicates that the theory and implementation presented in
previous chapters make for an effective substrate for language understanding systems.

It is clear from these results that the hierarchical plan recognizer captures important as-
pects of the puzzle solution: it shows over 20% improvement in predictions compared to
a simple predictor baseline. Prediction is also no simple task, as the low random baseline
shows (even this baseline does not pick amongst all possible actions, but only those players
performed in the development data). Language understanding heavily relies on plan recog-
nition - often the meaning of an utterance is highly constrained by the player's states and
plans. Taking the words into account, however, improves again on the pure plan recogni-
tion performance. The best measure of this improvement is the 11% gain (8% in the test
set) seen when considering the set of correctly followed directives longer than one word.
The percentage performance gain is smaller when considering all utterances because per-
formance is dominated by action markers, for which linguistic content plays little role, and
thus yields no improvement in performance. Not all action markers are acknowledged by
the simple rule of considering one word utterances to be action markers: "go for it", "go
go go", and other multi-word action markers occur in the data, but they occur rarely.

Performance on the test utterances is entirely comparable to that on the development ut-
terances, showing that the plan recognition grammar and linguistic parser, while restricted
in their coverage, generalize well to unseen data. Of note is that as already discussed,
individual sessions differ greatly in playing and communication style. In fact, there is a
single session in the test set that contains very repetitive and easily predicted player be-
haviour. When it is omitted, the test set performance baselines are equals to or lower than
the development set baselines.

5.6.1 Detailed Performance and Mistakes

Examining the utterances in detail yields clues as to the benefits and shortcoming of the
implementation presented.

Action Markers I call utterances that impose next to no restrictions on the action to be per-
formed via their words action markers. The most common ones (about half the data)



are "go", "now", "open" and "lever". There is an external bias imposed favouring
"now" because it was one of the only action markers available to the non-speaking

character. For this class of utterances, performance of the utterance understanding

algorithm can only be as good as predictions made by the plan recognizer. How-

ever, the performance figure here also underestimates the performance of the FUSS:
it seems that in many cases players do not have an exact action in mind. For exam-
ple "open" might really be taken to mean "open anything and everything you can"
or "open something" in several cases, especially when players cannot see each oth-

ers' characters. Sometimes players even explicitely indicate this as in "try something

else". I will discuss performance of the plan recognizer further below.

Simple Selection Almost every utterance that is not simply an action marker uses at least

one content word involving simple selection of affordances (and even an action
marker like "lever"' or "open" does). The overall performances speaks to the use-
fulness of the affordance filtering approach in understanding directives in a plan

recognition context.

Location Reference These include utterances like "throw the one to the west" and "now

head to the east lever". These occur a significant amount in the data (35 utterances in

the development data) and are correctly understood if in combination with a simple
request. 4 of the 35 are incorrectly understood because they involve constructions

or commands not covered by the affordance filters, such as "can you try thief' [sic]

picking either the chest or north lock".

Discourse Reference 7 out of 11 uses of "it" (as in "I need you to pull it" in the develop-

ment data were correctly understood via the back-ref filter. The remaining suggest

that there are influences on the use of "it" in this context beyond the discourse one.

Indexicality Indexicals including "this", "that" and "other" were understood correctly in

half of the cases (14 out of 28). In the 4 (out of 9) misunderstood cases of "this"

the mistakes are due to problems with actor attribution, not with indexicality, as they

are all of the form "throw it and i'll throw this one" or "let me go down this way

once more ... not saying it'll help". "That" is correctly interpreted in 5/7 cases and
"other" in 5/12. This only partially indicates problems with their current groundings,

as some of the mistakes are due to other words in the utterance such as in "can you



try to open from the other side somehow?", which lacks groundings for "side" and
"from" at minimum.

Movement Planning Is not only used for phrases like "go to" and "stand by", but also to
interpret any utterance that produces affordances not available to the listener in his
or her current location. As such, it is involved in understanding most utterances and
performs extremely well.

Other communication strategies occurred too rarely to allow for meaningful analysis. There
are a few overarching problems and omissions with the implementation presented here.

Missing Meanings There are a few classes of meanings that occur in the data for directives
that the implementation currently does not handle at all. There are a number of
idioms like "go for it" and "come back" that perhaps should be handled as idioms
and not analysed word for word. Sometimes complicated linguistic structures occur,
often expressing temporal dependencies and causality. These can even be intermixed
with descriptions such as in "I need you to pull it when I open the door for you ... I
think it opens the door on the other side". However, constructions this complex are
rare.

Spatial Coarseness Spatial locations in the structural grammar are purely room based,
and thus relatively coarse. For distance based directives, for example those including
"that", utterances can be misunderstood because the player considers him- or herself
distant from an object and uses "that", but is still considered to be in the same room
as the object by the affordance grammar.

Multiple Interpretations The particular implementation discussed here uses the best in-
terpretation of an utterance exclusively. In previous work we have shown ways to
consider multiple weighted interpretations simultaneously by probabilistically mix-
ing the linguistic elements from the language parser with the affordances produced
by the structural grammar [Gorniak and Roy, 2005a]. It would clearly be beneficial
to adapt those methods to the system described here to consider multiple word and
constituent meanings and their interpretations simultaneously.

Learning The paradigm presented here lends itself to supporting learning by a synthetic
character. Possible learning targets include the weights and rules of the structural



grammar, the function bindings for words, and the interpretation of words in terms of
affordances. Especially together with a coherent framework for considering multiple

interpretations such a learning framework would likely improve robustness of the

understanding system over the partially handcrafted approach taken here.

Omniscience vs. Player Modelling The plan recognizer used here models both players

simultaneously and is informed of the structure of the puzzle. This eases recognition

of interdependent actions by the players (such as pulling a lever to let the other person

through a door), and increases prediction accuracy by taking into account the actual

puzzle structure. However, when interpreted as perceived affordances, the plan states

should correspond to those maintained by an individual player attempting to solve the

puzzle, not to an omniscient planner for both players. For many directives this is not

a problem, because "pull the east lever" can be understood in either model. Problems

arise when players are mistaken about how to solve the puzzle, for example when

they assume that levers act differently when pulled simultaneously. This presents two

problems, one for directives and one for descriptions, discussed below. An utterance

like "let's try that again" might refer to the joint action of the characters pulling

their respective levers, which is not modelled in the plan used. In the particular

puzzle there are few directives of this sort, but the effect on performance of the plan

recognizer, which does not acknowledge these falsely perceived structures, may be

degrading performance.

Descriptions The second problem with an omniscient plan recognizer is that it makes it

hard to interpret descriptions. A player utters a description to inform the other player

of the physical makeup of the puzzle ("there's a chest and a locked door in this

room"), his or her mental model of how the puzzle works ("they both open opposite

doors"), or the effects of actions ("both door and chest remain locked"). Intuitively,

each should produce a change in the listener's mental model of the situation: he or

she might consider new affordances or discard ones previously thought to be avail-

able. As all and only the correct affordances are available in the omniscient plan

recognizer, it is impossible to model this effect. However, the filtering mechanisms

proposed here lend themselves to exactly this type of effect when run on a different

type of plan recognizer - one that is uninformed about the puzzle structure and has

limited perception of the other player's actions.

Questions Questions are in content very much like descriptions in the data collected for



these studies, because the listener could respond only with primitive utterances.
Thus, they usually read like a description in question form, for example "is the door
back there locked?", in effect filling in the questioner's model of the puzzle workings
and world state via the response.

Plan Recognition Beside the problem of whether to use an omniscient or several player-
specific plan recognizers (or both in tandem), there are other problems with the plan
recognizer used here. As Pynadath and Wellman point out, while successful in esti-
mating hierarchical plans of agents, grammar based plan recognizers are not naturally
parameterized in an intuitive or useful way. For example, many of the thousands of
rules used in the plan recognizer here are due to the fact that they are largely con-
ditioned on the rooms the players find themselves in. Rather than being parameters,
these rooms are part of the symbols used in the grammar rules, and are explicitly
produced by the meta-rules. The meta-rules are in essence a parameterization of the
grammar, but they are not used during the actual plan recognition. To more easily
derive and estimate affordance grammars, and also to reason directly about the un-
derlying state variables, it seems advisable to go to a combined model of a grammar
and an underlying state model that are linked but represented separately [Pynadath
and Wellman, 2000].

5.7 Examples of Utterance Understanding

Figures 5-5 through 5-8 show visualizations of the concepts produced while understanding
the utterance "Can you go to the other lever again please?". Each figure shows the full set
of grounded constituents produced during the linguistic parse in the upper left hand cor-
ner, with the currently selected constituent highlighted in red. The affordance specification
corresponding to the selected constituent is displayed at the top of each figure. The main
part of each figure depicts the complete set of affordances encountered so far in the session
with time running left to right. The utterance in this example occurs at time step 60. Each
column corresponds to the set of affordances at one time step, with predicted affordances
(those that still have symbols remaining to be parsed) shown in green, and completed ones
(those that have been fully parsed and have the dot to the right of the rule) shown in blue.
The rightmost column of affordances in each figure corresponds to the time at which the



utterance occurs. The set of affordances corresponding to the selected constituent is high-
lighted in red, and each figures magnifies an example affordance from the selected set and
shows the symbol it predicts. The bottom of each figure notes the symbol that actually
occurs at the time step of the magnified example affordance. Note that most of the filter
functions only consider predicted affordances, because each completed affordance has a
corresponding predicted affordance at an earlier time step.

The character named "Roirry" is the listener in this example. Figure 5-5 shows the concept
for "you", which contains all the predicted affordances of the listener at all past and present
time steps. For example, Roirry could have attempted to unlock door 6 at a time in the past,
but rather chose to use lever 9. Figure 5-6 shows the affordances for "lever" and highlights
Isania's option of pulling lever 9. Both "you" and "lever" correspond to simple selections.
Figure 5-7 shows the affordances grounding "the other lever". The affordance specification
selects those affordances involving levers that were available to the Roirry at some points
in the past, but are not currently available to him. "You go to the other lever" in Figure
5-8, finally, plans a path from the current time to a situation in which Roirry could pull
the lever selected by "the other lever". Highlighted and magnified is the single affordance
corresponding to the first step in this plan, namely a room change into the adjacent room.

5.8 Future Steps towards Individuals' Mental Models

The single most important limitation of the model of perceived affordances presented in this
thesis is that it employs a global and correct plan recognizer. While this allows for accurate
predictions, it makes the flawed assumption that player's mental models of the situation
are omniscient and correct. As pointed out before, this assumption makes it impossible
to understand descriptions and questions, because they concern the updating of flawed or
incomplete mental models.

A series of steps is necessary to alleviate the problems caused by this assumption. They
range from simple extensions to the framework presented here to open research question.
They are, however, covered by the general theory presented in earlier chapters. The first
step consists of running one plan recognizer per player, rather than one per game. Alone,
this step does not change the set of available affordances. The next step is to model players'
limited perception by making their access to the world state incomplete. A simple start to
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would spread the probability assigned to the current world state over many possible states
as players take actions without seeing each other act. This directly leads to the ability to
interpret a subset of descriptions and questions such as "I'm in the Northwest room" or "Did
you make it into the next room?". The descriptions would have the effect of narrowing the
probability distribution over possible world states by raising the probability of the described
state.

A further step towards creating more realistic mental models for players is to allow for lack
of knowledge of the structure and functioning of the world. For example, when a player
encounters a lever for the first time, his or her affordance grammar should predict a new
set of interactions possible at this location, and hypothesize any number of effects these
interactions might produce. In the world of Neverwinter Nights the set of possible effects
is limited, and in most real situations the effects predicted are produced and constrained
by experience. Encountering a switch on a wall leads us to predict only a few effects of
the switch with high probability - lights or other electric appliances may turn on or open,
but we do not expect the moon to rise or our friends to betray us as a result of flicking
the switch. In fact, design meant to suggest and obvious and limited set of predicted in-
teractions led to the introduction of the term "affordance" in the field of industrial design
[Norman, 1988]. Predicting new affordances thus implies modifications to the structure of
the affordance grammar - new interactions and their effects are predicted, but the possible
interactions and most effects are specializations of more general categories of interaction
based on experience. One might thus imagine that every new situation adds a set of affor-
dances rules. For example, encountering a lever adds all possible interactions with levers
as well as the possible effects of levers in the game, such as opening doors or unlocking
chests. Of course, players can now be wrong about how the world works. This step covers
utterances such as "there's a lever here", "I was wrong, it doesn't open this door" and "does
anything happen when I pull this lever?". Both interaction with the world and utterances
by other player can have the effect of pruning the possible affordances of new situations,
for example by discovering that a lever pull seems to have no effect in the current room, or
being told so by another player.

Finally, there remains the issue of modelling agents, both other players and the player in
question him- or herself. Obviously, the perceived affordances captured by the affordance
grammar are a model of the player. However, players reflect on and talk about their per-
ceived affordance freely. Utterances like "This isn't working", "I think this lever opens the



South-East door, but I might be wrong" and "this is frustrating" refer not only to the player
embedded in the affordances of the physical situation, but also to the thought processes and
mental state of the player. Similarly, players share knowledge and comment on each oth-
ers' mental states. There are two problems to be addressed here: First, utterances by other
players should be events that can have all the effects of physical events and more. They can
update a player's mental model of the situation, convey the other player's mental model

and even communicate meta-comments, for example by categorizing a whole approach or
mental model as invalid. Secondly, the model of other players should be rephrased similar
to the way the self-model was rephrased here, namely by providing for uncertainty, igno-
rance and the influence of words. There are a number of open research questions along
these lines, such as how to avoid regression in modelling others' models of oneself (though
for the game playing purposes under investigation here one or two levels of regression are
likely enough) and how to extend to the case where players are not co-operating and might
lie. While an answer to these questions will involves machinery beyond the one track plan
recognition paradigm presented here, I hope to have convinced the reader that the machin-
ery presented should extend to handle more cases smoothly, and that even where it is flawed

the contributions of this thesis in terms of viewing language as filters on the space of an
affordance-based representation should underlie further implementational work.
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Chapter 6

Conclusion

I hope to have convinced the reader at this point of four things, namely

" that language understanding depends on a mental representation designed for inter-

action with and prediction of the world

* that the notion of an affordance captures the crucial element of a theory of concepts
that from the ground up acknowledges the need for interaction with the world

" that affordances make for powerful computational instantiations based on planning
and plan recognition and lead to a new method for truly grounded computational

language understanding

" and that, by example, this new method can feasibly be implemented and performs

well in understanding spontaneous human language in a complex situation.

The implementation presented in this thesis provides a convenient framework for proba-

bilistic hierarchical reasoning about affordances while understanding situated language. It

will be important to integrate this framework with other approaches and views on affor-

dances [Steedman, 2002; Roy, 2005] and to re-phrase existing approaches dealing with

other aspects of grounded language understanding in an affordance-based framework.

The theory behind the implementation, as presented in the first two chapters of this the-

sis, I believe to be a fundamentally important and new view of mental representation of



concepts. It is unique in its strong ties to computational language understanding and its
successful realization in a language understanding task dealing with spontaneous, situated
human language. I hope that this pairing of theory and implementation speaks to those
studying and thinking about human mental representation as well as those building ar-
tificial language understanding systems. The need for integration of the many insights
available in the relevant fields fields into coherent, large scale theories and frameworks for
language understanding is growing. I see this thesis as a necessary step to emphasize some
of the aspects of grounding and intentionality that are much neglected in the computational
disciplines, and to focus the work that does exist by acknowledging the importance that
modem cognitive and philosophical insights about mental representation bear on synthetic
systems. At the same time, I hope that providing a concrete implementation that performs
well on spontaneous, situated human language shows that bridging the gap between theory
and implementation is not only possible, but necessary for progress towards understanding
language understanding.
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