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ABSTRACT
Imaging speed is a crucial consideration for magnetic resonance imaging (MRI). The speed
of conventional MRI is limited by hardware performance and physiological safety measures.
"Parallel" MRI is a new technique that circumvents these limitations by utilizing arrays of
radiofrequency detector coils to acquire data in parallel, thereby enabling still higher imaging
speeds.

In parallel MRI, coil arrays are used to accomplish part of the spatial encoding that was
traditionally performed by magnetic field gradients alone. MR signal data acquired with coil
arrays are spatially encoded with the distinct reception patterns of the individual coil
elements. T[he quality of parallel MR images is dictated by the accuracy and efficiency of an
image reconstruction (decoding) strategy. This thesis formulates the spatial encoding and
decoding of parallel MRI as a generalized linear inverse problem. Under this linear algebraic
framework, theoretical and empirical limits on the performance of parallel MR image
reconstructions are characterized, and solutions are proposed to facilitate routine clinical and
research applications.

Each research study presented in this thesis addresses one or more elements in the inverse
problem, and the studies are collectively arranged to reflect three progressive stages in
solving the inverse problem: 1) determining the encoding matrix, 2) computing a matrix
inverse, 3) characterizing the error involved. First, a self-calibrating strategy is proposed
which uses non-Cartesian trajectories to automatically determine coil sensitivities without the
need of an external scan or modification of data acquisition, guaranteeing an accurate
formulation of the encoding matrix. Second, two matrix inversion strategies are presented
which, respectively, exploit physical properties of coil encoding and the phase information of
the magnetization. While the former allows stable and distributable matrix inversion using
the k-space locality principle, the latter integrates parallel image reconstruction with
conjugate symmetry. Third, a numerical strategy is presented for computing noise statistics
of parallel MRI techniques which involve magnitude image combination, enabling
quantitative image comparison. In addition, fundamental limits on the performance of
parallel image reconstruction are derived using the Cramer-Rao bounds. Lastly, the practical
applications of techniques developed in this thesis are demonstrated by a case study in
improved coronary angiography.

Thesis Supervisor: Daniel K. Sodickson, M.D., Ph.D.
Title: Assistant Professor of Radiology and Medicine, Harvard Medical School

3



4



ACKNOWLEDGEMENTS

With much joy and humility, I am here to celebrate with each and every one of you

whose love, sacrifice and guidance have helped me reach this milestone. This short

acknowledgement simply could not convey the many thoughts of mine.

My family has been the greatest blessing in my life. As I was growing up, there was

never a single day that I did not feel loved. My parents have taught me the virtue of hard

work and optimism. For the twelve years I have been at MIT, my father has worked, without

complaints, two full-time jobs to support my education. My mother, who has also made

many sacrifices, has nurtured me a relentless passion for education. My big sister, Selina,

serving the role of a parent since our immigration to the US, has, through her example,

inspired me to pursue my dreams in this land of opportunities.

I have also been blessed by an elite group of colleagues whose intellects are only

surpassed by their genialities. My thesis supervisor, Daniel Sodickson, has been instrumental

in every aspect during my formative years as a young scientist. He has provided a magical

balance of freedom and guidance, allowing me to explore my interests without getting lost.

Charles McKenzie, who has taught me everything I know about MR scanners, has also

granted me the privileges to work closely with him on many exciting projects. Aaron Grant,

5



with his vast knowledge about almost every phenomenon in physics, has equally impressive

patience in reviewing and offering suggestions to my thesis at various stages. Michael

Ohliger, my officemate for five years, has always been the first one to listen to my ideas, and

has also devoted many hours in helping refine my thesis.

I would like to express my special gratitude to my thesis committee. David Staelin

has been generous in offering his mentorship in multiple occasions. Dave was the course

director for a class which I taught as a TA, then served in my PhD qualifying committee, and

now serves in my thesis committee. Rene Botnar, who has taken the trouble to fly back from

Germany to attend my defense, has been a wonderful mentor, colleague, and friend. Rene

has demonstrated to me how to simultaneously excel in both physics and physique.

There are many friends who have been supportive along the way. William Peake, my

undergraduate academic advisor, has continued to be my source of inspiration. BakFun and

MeiKee Wong have warmly taken me to their family and provided wisdom and guidance in

my searching years. Friends in the MIT Hong Kong Student Bible Study Group, whose

heritage and faith I share, have fought side-by-side in many battles of the graduate life. To

all of us who are graduating, a job well done!

Last and most importantly, I am inexplicably blessed by my wife, Connie, who has

gone through the ups and downs in my graduate years, and is duly credited for giving this

thesis document a professional touch. Together, we are thrilled to see the conclusion of my

PhD, and ready to embark a new phase of our lives.

This research has been supported by the generosity of the Harvard-MIT Division of

Health Sciences and Technology; the National Institutes of Health; and the Whitaker

Foundation.

6



TABLE OF CONTENTS

A cknow led gem ents ...............................................................................................................................5
Table of C ontents .................. ......... ..........................................................7
List of Figures ................................................................. .....................................................................9
List of Tables ................................................................. 11
Chapter 1. Introduction ................................................................. 13

Section 1.1 General Introduction: Parallel Magnetic Resonance Imaging ......... 13
Section 1.2 Statement of the Thesis ......... ......... ......................................15
Section 1.3 Background ...................................................................................... 20
Section 1.4 General Summary .................................................................. 37

Chapter 2. Self-Calibrating non-Cartesian Parallel Imaging .............................................. 41
Section 2.1 Introduction .................................................................. 41
Section 2.2 M ethods ............................... .................................. 43
Section 2.3 Results .................................................................. 50
Section 2.4 Discussion .................................................................. 56
Section 2.5 Conclusions .................................................................. 59
Section 2.6 Future Directions . ................................................................. 59

Chapter 3. Image Reconstruction with k-space Locality Constraint .............................. 67
Section 3.1 Introduction .................................................................. 67
Section 3.2 Theory .................................................................. 69
Section 3.3 M ethods .................................................................. 73
Section 3.4 Results .................................................................. 75
Section 3.5 D iscussion ................... ......... ......... .......................................82
Section 3.6 Conclusions .................................................................. 88
Section 3.7 Appendix A ............................ ...................................... 89

Chapter 4. Image Reconstruction using Prior Phase Information ............................. 95
Section 4.1 Introduction .................................................................. 95
Section 4.2 Theory .................................................................. 98
Section 4.3 M ethods .................................................................. 106

7



Section 4.4 Results ................................................................... 108
Section 4.5 Discussion ................................................................... 112
Section 4.6 C onclusion s ............................. ....................................... 114

Chapter 5. Generalized Noise Analysis for Magnitude Image Combination with
Parallel M R I ................................................................... 119

Section 5.1 Introduction ............................. ....................................... 119
Section 5.2 Theory ............................ ........................................ 121
Section 5.3 Methods . ................................................................... 129
Section 5.4 R esults ................................................................... 131
Section 5.5 Discussion ................................................................... 136
Section 5.6 Conclusions .................................................................... 139
Section 5.7 Appendix A ..................................................................................... 140
Section 5.8 Appendix B .................................................................... 143
Section 5.9 Appendix C ................................................................... 145

Chapter 6. Fundamental Limits: Parallel Image Reconstruction as an Array
Processing Technology ................................................................... 149

Section 6.1 Introduction .................................................................... 149
Section 6.2 Theory ................................................................... 151
Section 6.3 Method ................................................................... 156
Section 6.4 Results ................................................................... 157
Section 6.5 Discussion ................................................................... 160
Section 6.6 Conclusions .................................................................... 161

Chapter 7. Adaptation of a Cardiac Imaging Technique for Parallel MRI .................. 163
Section 7.1 Introduction .................................................................... 163
Section 7.2 Methods .................................................................... 165
Section 7.3 Results ................................................................... 166
Section 7.4 Discussion .................................................................... 168
Section 7.5 Conclusions .................................................................... 171

Chapter 8. General Discussion and Future Directions ..................................................... 175
Section 8.1 Summary of Major Results .............................................................. 175
Section 8.2 Future Directions .................................................................... 177
Section 8.3 General Conclusions . ................................................................... 179

8



LIST OF FIGURES

Figure 2.1 Self-Calibrating Spiral and Radial Trajectories ........................................................... 46
Figure 2.2 Sampling Density of Spiral and Radial Trajectories ..................................................... 47
Figure 2.3 Schematic of Self-Calibrating CG-SENSE Algorithm ................................................51
Figure 2.4 2x Self-calibrated and External Calibrated Spiral and Radial Images ........................52
Figure 2.5 Image Intensity Profiles of 2x Spiral and Radial Images ............................................. 54
Figure 2.6 2x and 3x Spiral and Radial Parallel Image Reconstructions ...................................... 55
Figure 3.1 Schematic of the PARS Algorithm ........................................................... 70
Figure 3.2 Principle of k-Space Locality in Parallel MRI ............................................................ 76
Figure 3.3 Total Error Power vs Sensitivity Noise ............................................................ 77
Figure 3.4 Total Error Power vs k-space Radius ............................................................ 78
Figure 3.5 In Vivo Image Comparisons of PARS and SENSE .................................................... 80
Figure 3.6 PARS Reconstructions Using Different k-space Radii ................................................ 81
Figure 4.1 Schematic of PARS combined with Phase Constraint ..............................................104
Figure 4.2 Simulations of Partial Fourier Image Reconstructions .............................................. 109
Figure 4.3 Noise in Parallel Image Reconstructions with and without Phase Constraint ....... 110
Figure 4.4 Phantom Images from Phase-Constraint Parallel Image Reconstructions ............. 111
Figure 4.5 In-Vivo Images from Phase-Constraint Parallel Image Reconstructions ...............111
Figure 5.1 Schematic of Sum-of-Squares Combined Parallel Image Reconstruction ..............123
Figure 5.2 Probability Density Functions of Perceived Image Intensity ................................... 131
Figure 5.3 Statistical Biases of Perceived Image Intensity ........................................................... 133
Figure 5.4 Image Comparison of Sum-of-Squares PARS Image Reconstructions ..................134
Figure 5.5 Comparison of G-factors Obtained by ROI and the proposed Numerical

M ethod ............................................................ 135
Figure 5.6 Calculated G-factors vs k-space Radius ........................................................... 136
Figure 6.1 Schematic of Multiple-Input Multiple-Out (MIMO) Technology ........................... 150
Figure 6.2 Convergence of Finite-Precision MLE and Full-Matrix Inversion .......................... 158
Figure 6.3 Error Plots of Finite-Precision MLE ............................................................ 159
Figure 7.1 Spiral Coronary MRA Parallel Image Reconstructions ............................................. 167
Figure 7.2 Radial Coronary MRA Parallel Image Reconstructions ............................................168

9



10



Reconstruction Times (in sec) for Undersampled Cartesian Trajectories ................... 79
Reconstruction Times (in min) for Undersampled Spiral Trajectories ......................... 79
Changes in SNR with Increasing Acceleration Factor for in vivo Data ...................... 112
Notational Convention for Random Variables ........................................ ............. 124
Imaging Parameters for in vivo Spiral Acquisitions ..................................................... 165
Imaging Parameters for in vivo Radial Acquisitions .................................................... 166

11

LIST OF TABLES

Table 3.1
Table 3.2
Table 4.1
Table 5.1

Table 7.1

Table 7.2



12



CHAPTER 1. INTRODUCTION

SECTION 1.1 General Introduction: Parallel Magnetic
Resonance Imaging

Magnetic resonance imaging (MRI) allows non-invasive diagnostic assessment of the

human body without the risk of ionizing radiation. The quality of MR image is critically

determined by the imaging speed. However, hardware performance and physiological safety

measures have limited the speed of conventional MRI. In recent years, parallel MRI

techniques have been developed that utilize radiofrequency (RF) coil arrays to accelerate

image acquisition beyond these previous limits (1-9).

Conventional MRI uses magnetic field gradients to spatially encode the magnetic

resonance (MR) signal in order to produce an image with resolution many times finer than

the signal wavelength. This so-called Fourier encoding technique, though invented to make

MRI possible in the first place (10,11), considerably limits the image acquisition speed, since

MR signal data have to be acquired one Fourier component at a time. In 1977, the first

clinical MR image of the human body took 5 hours to acquire (12), and nowadays, after

almost three decades of research and development, a single MR image can be acquired in less

than a second. While this is a significant accomplishment, conventional MRI has more or
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less reached its imaging speed limit. Even when the most modern conventional scanner

hardware is used, cumulative acquisition times may be excessively long for clinical diagnosis

that requires datasets of particularly high spatial and temporal resolution. Unfortunately,

safety guidelines regarding magnetic field gradient switching and RF power deposition

preclude further increases in imaging speed

Prolonged acquisitions are especially problematic for imaging of moving structures

such as the heart. Even though several techniques (e.g., breath-holding (13),

electrocardiogram gating (14) and diaphragmatic tracking (15)) have been developed to help

circumvent the speed bottleneck, accelerating image acquisition remains the most attractive

and fundamental solution.

In parallel MRI, RF coil arrays are used to share the burden of spatial encoding that is

conventionally accomplished by magnetic field gradients. The spatially varying sensitivities

of an RF coil array provide additional encoding of the received MR signal data, and this

spatial information permits images to be reconstructed from a small subset of the original

Fourier-encoded dataset. In other words, some of the Fourier-encoding steps can be omitted

in the image acquisition, consequently accelerating image acquisition. In contrast to the

sequential data acquisition scheme in conventional MRI, parallel MRI techniques allow

parallel data acquisition via the use of multiple RF detector coils.

Since its first clinical demonstration in 1997 (2), investigators have reported ever

increasing acceleration factors, recently up to a factor of 16 in vivo (16). The ability to

perform markedly faster MRI not only promises many immediate benefits (e.g., improving

image quality, reducing examination time, increasing patient comfort), but also opens up new

possibilities (e.g., single breath-hold whole-heart coronary angiography) that were previously

inaccessible.
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SECTION 1.2 Statement of the Thesis
To date, various challenges in image reconstruction have complicated everyday

clinical applications of parallel MRI. This thesis formulates the image reconstruction of

parallel MPRI as a generalized linear inverse problem. Under this framework, theoretical and

practical limits on the performance of parallel MR image reconstruction are characterized. In

particular, :;ix important aspects of parallel MRI are addressed, and practical solutions are

proposed to facilitate routine clinical and research applications.

1.2.a Coil Sensitivity Calibration: Accuracy and Consistency

In parallel imaging, MR signal data are spatially encoded using RF coil sensitivities,

and parallel image reconstruction requires accurate knowledge of the underlying RF coil

reception patterns. RF coils are typically positioned close to the anatomy of interest in order

to obtain favorable signal-to-noise ratio. As a result, coil positioning and hence detailed coil

sensitivity patterns may change from patient to patient, and potentially from image

acquisition to image acquisition, (e.g., as a result of patient motion).

Coil sensitivity information for parallel MR1 can be obtained either from separate

reference scans (external calibration) or from reference scans incorporated within the

accelerated image acquisitions themselves (self calibration). The use of self-calibrating

techniques is attractive since they eliminate the need for additional calibration scans and

avoid potential mismatches between calibration scans and subsequent accelerated

acquisitions. However, most examples of self-calibrating techniques require modification of

data sampling trajectories, potentially limiting the flexibility and the maximum acceleration

factor in image acquisitions.

Chapter 2 proposes an inherently self-calibrating image acquisition that makes use of

non-Cartesian sampling trajectories. Commonly used non-Cartesian trajectories, namely

spiral and radial trajectories, offer inherent self-calibrating characteristics because of their

densely sampled centers. At no additional cost in acquisition time and with no modification

in scanning protocols, in vivo coil sensitivity maps may be extracted from the densely-
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sampled central regions of k-space. Illustrative examples are presented to demonstrate

feasibility, and physical arguments are put forward to establish the theoretical minimal

amount of calibration information required for a successful parallel image reconstruction.

Future directions for coil sensitivity calibration are outlined.

1.2.b Computational Efficiency and Stability

After the coil sensitivities are accurately calibrated, parallel MR images can in

principle be reconstructed by solving a system of linear equations. However, the system of

equations involved is typically prohibitively large for arbitrary sampling trajectories.

Efficient algorithms only exist for special cases in which data are sampled on a regularly-

spaced Cartesian grid where the Fast Fourier Transform (FFT) can be applied to reduce the

computational burden. Even then, the final solution may not be numerically stable, and the

numeric instability is especially pronounced in highly accelerated parallel imaging.

Together, the computational efficiency and stability represent critical constraints on the

performance of parallel MRI, restricting most current applications to relatively low

acceleration factors and regular sampling trajectories.

In Chapter 3, the principle of k-space locality is exploited to address some of these

computational constraints. An efficient and stable parallel image reconstruction algorithm is

proposed: Parallel magnetic resonance imaging with Adaptive Radius in k-Space (PARS). In

RF coil encoding, information relevant to reconstructing an omitted datum rapidly diminishes

as a function of k-space separation between the omitted datum and the acquired signal data.

The proposed PARS method harnesses this principle of k-space locality via a sliding-window

approach to judiciously partition the large system of equations into manageable and

distributable independent systems of equations, achieving both computational efficiency and

numerical stability. Additionally, an empirical method designed to measure total error power

is described. The total error power of PARS reconstructions is studied over a range of k-

space radii and accelerations, revealing "minimal-error" conditions at comparatively modest

k-space radii. For experimental verifications, PARS reconstructions of undersampled in vivo

Cartesian and non-Cartesian datasets are shown, and are compared selectively with standard
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parallel image reconstructions. Various characteristics of PARS (such as the tradeoff

between signal-to-noise ratio and artifact power, and the relationship with iterative parallel

conjugate- gradient approaches or non-parallel gridding approaches) are discussed.

1.2.c Phase Constraint: Exploitation of Phase Information for
Parallel MRI

When an image has a slowly spatially-varying phase, conjugate symmetry in k-space

allows that image to be reconstructed accurately using only slightly more than half of the

data which would otherwise be required. This phase-constrained approach, which can

improve image acquisition time by as much as a factor of two, is commonly referred to as

half Fourier or, more generally, partial Fourier encoding. Partial Fourier imaging (e.g., Ref.

(17)) was clinically implemented for conventional MRI before the invention of parallel MRI.

Once parallel imaging techniques became available, it was only natural to combine them with

partial Fourier encoding so as to increase imaging speeds still further. However, this

combination can also present certain challenges for image reconstruction. Most

combinations attempted so far have used sequential concatenations of partial Fourier and

parallel image reconstructions. Depending on the particular parallel imaging methods used,

and on the order of concatenations, the phase calibration or other conditions for accurate

reconstruction may cease to be valid. The lack of mathematical rigor and generality in

concatenated approaches could limit their reliablity and robustness for clinical diagnosis.

Chapter 4 presents an integrated image reconstruction approach to combine partial

Fourier encoding and parallel imaging. A generalized framework is provided for

reconstructing images encompassing either or both techniques and for comparing image

quality achieved by varying k-space sampling schemes. The theory of integrated phase-

constrained parallel MRI is outlined, and the phase calibration requirements and limitations

are discussed. A special derivation is devoted to combining the phase constraint and the k-

space locality principle. Simulations, phantom experiments, and in vivo experiments are

presented.
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1.2.d Error Analysis: Noise in Magnitude Images

Quantitative noise analysis of MR image constructions provides an objective metric

to evaluate the performance of a particular image reconstruction approach. However, no

noise analysis tool is available for parallel image reconstruction strategies which involve

magnitude operations. As a result, comparative noise analysis cannot be performed among

these parallel image algorithms, or against other approaches which do not involve magnitude

operations.

In general, noise analysis in parallel MRI is different from that of conventional MRI

in two critical aspects: First, unlike conventional MRI where noise is uniformly distributed in

the reconstructed image, the noise in parallel MR images exhibits significant spatial

variation. The signal-to-noise ratio (SNR) can no longer be calculated by a region-of-interest

(ROI) approach where the power of noise and signal is estimated in regions that are noise-

and signal-dominant, respectively. This ROI method fails because the noise in the signal-

dominant region may have different variance than that of in the noise-dominant region. A

common method of measuring SNR by taking the quotient of the signal power and the noise

power would be potentially incorrect. Secondly, and more importantly, many parallel image

algorithms (including those presented in Chapters 3 and 4) involve reconstructing

intermediate images and then performing a magnitude combination (e.g., sum-of-squares

combinations) to form a final composite image. These magnitude operations transform the

underlying noise statistics from Gaussian distributions to distributions not readily

characterized in traditional forms.

In Chapter 5, a generalized noise analysis strategy for magnitude-combined parallel

image reconstructions is proposed to provide a quantitative metric first to characterize the

new noise distribution, and eventually to provide a new basis for comparing different parallel

image reconstruction algorithms. It is shown that the new noise distribution can be

represented as a linear combination of non-central chi-squares variates. Numeric solutions

are outlined for the general case where no closed-form solution exists, and closed-form

solutions are derived for three special degenerate cases.
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1.2.e Theoretical Limits of Parallel Image Reconstruction
The work described in Chapters 2-5 addresses specific aspects of parallel MRI

including sensitivity calibration, image reconstruction and noise analysis. While this work

and other previous parallel MRI advances have been developed largely within the MRI

community,. analogous array processing technologies have also been developed in other

disciplines. In fact, the use of detector arrays is common not only in medical imaging such

as ultra-sound and multi-detector computerized tomography (MD-CT), but also in non-

medical fields such as telecommunications and radio-astronomy. The quest to find

fundamental performance limits in parallel image reconstruction has serendipitously led to a

convergent path with other array processing technologies. In particular, a close

correspondence with multi-input multi-output (MIMO) systems in telecommunications has

been reported at a recent conference. Questions have been raised as to whether current

parallel image reconstructions are statistically optimal, and if not, whether decoding

algorithms in the MIMO system can be used to improve parallel image reconstruction.

Chapter 6 tests the optimality of image reconstruction for parallel MRI by adapting

the decoding apparatus used for MIMO. Cramer-Rao bounds for parallel MRI are

established. A special case where noise is of Gaussian distribution is explored, and a

demonstration of the use of a maximum likelihood decoding algorithm, namely the Viterbi

decoding algorithm, is presented. Results from simulations are compared to those predicted

by the Cramer-Rao bounds.

1.2.f Adaptation of a Cardiac Imaging Technique to Parallel
MRI

Physiological constraints, e.g. cardiac and respiratory motion, have been a driving

force for continual improvement in MR imaging technology. Even though parallel MRI has

achieved many-fold accelerations, these physiological constraints are still important

considerations in designing imaging protocols. For example, some of the speed gained by

parallel MRI may be traded for greater tolerance of heart beat irregularity (cardiac
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arrhythmia). It is important to evaluate how the existing clinical imaging protocols could be

optimized for use with parallel imaging.

Chapter 7 presents a case study of anatomy-specific clinical applications of parallel

MRI. In MR coronary angiography, imaging parameters (e.g., magnetic field gradients, RF

excitations and receiver bandwidth) have been designed to work under the timing constraints

of conventional MRI. The added flexibility provided by parallel imaging warrants a re-

examination of these imaging parameters. Specifically, the study explores the possibility of

trading some of imaging speed gain by parallel MRI for increased tolerance for heart rate

variability. This study helps conclude the thesis work by demonstrating how a new

technological advance can be translated and refined to meet specific clinical needs.

SECTION 1.3 Background
The physical and engineering principles of MRI have been documented in many

textbooks (e.g., Ref. (18)). This section is not intended as a comprehensive exposition of

MRI. Rather, principles pertinent to the understanding of parallel MRI are reviewed in order

to provide a platform for discussion of the dissertation work. A special focus is devoted to

spatial encoding and decoding methodologies for conventional and parallel MRI. A

formulation of the linear inverse problem for MR image reconstruction is derived, and

selected examples of parallel image reconstruction methods are provided.

1.3.a The MR Signal

The MR signal originates from the quantum mechanical phenomenon of nuclear

magnetic resonance (NMR). Under the influence of an external magnetic field, the nuclear

spins of a given atomic species (e.g., hydrogen nuclei) produce a net equilibrium

magnetization Mo given by:

JM(r)= M, (r) i= B(r)p(r)i [1.1]
4kBT
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Here, r is the 3-dimensional spatial vector, y is the gyromagnetic ratio of the atomic species

of interest, h is Planck's constant, k, is Boltzmann's constant, and T is the temperature in

degrees Kelvin. B(r) is the magnitude of the external magnetic field, and p(r) is the spin

density of the atomic species. The unit vector is parallel to the external magnetic field.

The magnetization vector can be rotated from the z axis by applying a radiofrequency

(RF) excitation pulse, resulting in a time-varying magnetization in the transverse plane (x-y

plane). The overall effect of the RF excitation is summarized by the flip angle a(r), and the

magnetization vector now has a time-dependence, expressed as follows ':

M(r,t)= Mz (r)+ Re[Mx (r)e i(r) (i-i)] [1.2]

where

M (r)= cos (a(r)) M, (r)

M , (r) = sin (a(r)) M,, (r)

and w(r) is the Larmor frequency at which the nucleus precesses:

c(r)= yB(r). [1.4]

Finally, the oscillating magnetization vector produces a changing magnetic flux in a nearby

RF coil, and the voltage induced around the RF coil can be expressed in terms of a volume

integral of .iMxy,

v(t)oc ReL C(r)Mxy (r)ee-(r)ld3r]. [1.5]

Here, the spatially varying C(r) represents the RF reception sensitivity, which is a function

of the particular geometry of the coil and its position relative to the magnetization unit. C(r)

can be calculated using Maxwell's Equations (or the Biot-Savart law for sufficiently low

frequencies) in combination with the principle of reciprocity (19).

IThe rotated magnetization vector reverts to the equilibrium state with the longitudinal and transverse relaxation
time constants, T and T2 respectively. The difference of T and T2 among tissue types can be harnessed to
enhance image contrast. However, this topic is beyond the scope of the thesis. In this thesis work, the T and
1'2 effects are intentionally omitted to better illustrate the issues of spatial encoding in parallel MRI. However,
the generalized framework of this thesis does allow easy incorporation of T and T2 effects in constructing the
generalized encoding matrix described in later sections.
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The voltage v(t) is subsequently demodulated by cos(wot) and sin(cot), and the

results are combined to yield the complex MR signal s(t) as follows,

s(t) = C(r)Mxy, (r)e-'('(r)-q )'d3r, [1.6]

where wo is the demodulation carrier frequency given by:

cw = B, [1.7]

and B is the static component of B(r). (Details about B(r) will be presented later in Eq.

[1.19].)

1.3.b Imaging with the MR Signal: Spatial Encoding and Image
Reconstruction

The long wavelength of the MR signal (e.g., 5 m in vacuum at 1.5 Tesla) precludes

resolving an object within the image using traditional diffraction methods. Instead, uniquely-

identifiable spatial information must be encoded into the MR signal, and the image is

reconstructed by properly decoding the spatially-encoded MR signal. After expanding the

MR signal equation by substituting Eq., [1.1] into Eq. [1.6],

s(t)= IC(r)sin (a(r))Mo (r)e-(w(r)-)'d3r

[1.8]= Y2h2 IC(r)sin(a(r))B(r)e-i(B(r)B)(r)d3r [1.8]
4kBT

there are four spatially dependent functions inside the volume integral. Besides the spin

density, p(r), which is unknown, the other three functions (i.e., C(r), a(r) and B(r)) are

parameters that can be in principle measured a priori. Generally speaking, these three

functions reflect spatial encoding at three distinct stages: in the beginning, the RF pulse

provides an excitation pattern, a(r); at the end, the MR signal received is weighted by the
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coil sensitivity, C(r); in between the RF excitation and the signal reception, the magnetic

field, B (r), dictates the phase evolution.2

In the general case where all three functions are used to perform spatial encoding, the

spatial encoding function E; (r) may be defined as follows:

Es (r)- flC(r)sin (a(r))B(r)e (r)-), , [1.9]

where ,l denotes a scalar accounting for the constants outside of the integral of Eq. [1.8].

The discrete-time signal s:

S =S (t), [1.10]

can be interpreted as a generalized projection of p(r) onto E (r) and expressed using the

notation of the inner product,

s = (E; (r),p(r)). [1.11]

A set of basis functions then produces a signal vector with N elements,

S2N i E2(r), (r) [1.12]
SN2 E2N ( r ) , 

In theory, because p(r) is a continuous function with infinite dimensions, it would require

infinitely many projections to perfectly reconstruct p(r). In practice, however, appropriate

discretization of the continuous position vector r can be applied to p(r) at selected voxel

locations r,, resulting in a column vector p,

Py =P(rr) [1.13]

Eq. [1.12] can now be rewritten using as a matrix equation,

s=Ep [1.14]

2 B(r) also determines the equilibrium magnetization, Mo (r), which has a lesser role in spatial encoding

than the phase! evolution.
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where the entries of the encoding matrix E are:

E: E rj. [1.15]

p can be uniquely reconstructed from N linearly-independent projections, where N equals to

the number of voxels. The spatial encoding equations in Eq. [1.14] are central to this thesis

work because they immediately cast the image reconstruction problem as a generalized linear

inverse problem, which assumes a more familiar form:

b = Ax [1.16]

where b is traditionally the vector of observations, A the known matrix, and x the vector of

deterministic unknowns. Different MR image reconstruction algorithms, including those for

parallel MRI, may differ in appearance and approaches. Nonetheless, these algorithms

achieve the ultimate goal of obtaining a solution of p,

= E-'s, [1.17]

in which they explicitly or implicitly perform the three necessary steps of: a) determining the

value of the encoding matrix E, b) computing an inverse E - ', and c) minimizing the error

involved.

The remaining sections in this chapter use this linear algebraic framework to

characterize the encoding and decoding methodologies which are representative of existing

conventional and parallel MRI techniques.

1.3.c Conventional MRI

1.3.c.1 Spatial Encoding Using Magnetic Field Gradients

Conventional MRI relies on the spatially varying magnetic field B(r) in Eq. [1.9] for

spatial encoding. A uniform RF excitation pulse is typically applied to rotate the

magnetization at a flip angle a(r) = a,. The coil sensitivity C (r) is combined with the spin

density p(r) to form the coil-modulated spin density p (r). As a result, the MR signal

equation (Eq. [1.8]) is simplified to:
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s(t) =42 IfC(r)sin ((r))B(r)e-iy(B(r)-B ) p(r)d3r

4kHT

[1.18]

In most examples of clinical MRI scanners, B(r) is expressed as the sum of the

constant external magnetic field B, and linear magnetic field gradients G (r) 3,

B(r)= B, +G(r), [1.19]

where G (r) can be expressed as the dot product of a gradient vector G with r,

G(r)=G.r
= Gxr, + G,.r + G:rz

[1.20]

Moreover, Bo is typically several orders of magnitude greater than G(r), and Eq. [1.18]

becomes,

s(t) = y 2 sin (,)

sin(a,))
4k T

B (r) e-iy(B(r)-B) p (r) d3r

(B + G (r))e- ' (r) p (r)d3 r.

/h2 sin (a0) B eI(r) pc (r)d 3r4kT

Furthermore, by allowing a time-dependence in G, the phase evolution over time can be

expressed in terms of k r where the vector k is defined as,

k=-j ((t)dt. [1.22]

Eq. [1.21] can be rewritten as:

s(k) = y2 sin (,,
4kBT

)B fe krp (r)d3r. [1.23]

The spatial encoding functions from Eq. [1.9] are simplified as,

3 Nonlinearity of G (r) may occur at the edges of the MR scanner bore, and produce artifacts that can be

corrected after, the image is reconstructed.
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Ek (r)- ,eikr, [1.24]

and the matrix equation for image reconstruction becomes:

s=Ep,.. [1.25]

The encoding functions are Fourier basis functions, and hence this method of spatial

encoding is commonly called Fourier encoding. The elements in the signal vector s are the

Fourier components of the coil-modulated spin density Pc evaluated at the corresponding "k-

space" locations k. An MR dataset is acquired by traversing k-space along various values of

k 4, and an image is reconstructed by applying an inverse Fourier transformation on the

acquired dataset.

p, = E-'s [1.26]

= InverseFT(s)

In the special cases of regularly sampled k-space trajectories, the fast Fourier transformation

(FFT) algorithm can be applied. Additionally, the Fourier transformation is a unitary

transformation which provides an optimal noise averaging benefit. Here, the three necessary

steps stated in Eq. [1.17] are efficiently accomplished without an explicit effort of

determining E, computing E - ', or minimizing the error involved.5

1.3.c.2 Field of View and Spatial Resolution

The image information attainable using the Fourier encoding and decoding scheme is

summarized as follow: the field of view of the reconstructed image is determined by the k-

space inter-sample separation Ak,

Field of View =-, [1.27]
Ak

and the image spatial resolution is set by the extent of the k-space trajectory kmax 6

4 Particular traversal sequences used in different k-space trajectories (e.g. rectilinear and spiral) are topics in
later parts of the thesis.
S Substantial MR engineering efforts have been devoted to the design and building of linear magnetic gradients,
so that image reconstruction in conventional MRI can be performed with the ease of FFT.
6 The resolution and the field of view along the principal axes may be independently determined by having

different values of kmax and Ak for each axis.
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Pixel Size =- [1.28]
kmax

For regularly sampled (Cartesian) k-space trajectories, these relationships are rigorously

derived from the Nyquist sampling theorem and the discrete Fourier series. First, sampling

with an infinite impulse chain (i.e. k = +nAk, n = 0,1,2,..,oo) is equivalent to a periodic

replication of the object in the image domain. If the object is of finite length and the

2if
sampling interval in k-space satisfies the Nyquist criterion for Ak < , then the object can

be fully reconstructed without aliasing. Second, when a finite impulse chain is used (i.e.

k = nAk, and kl < kmax ), the voxels reconstructed by discrete Fourier representation are no

longer ideal delta functions. Instead, they are sinc functions with zero crossings at integral

multiples of - , which typically defines the image pixel size.
kmax

For irregularly sampled (non-Cartesian) trajectories, the non-uniform sampling

density across k-space makes it difficult to apply the straightforward relationships in Eq.

[1.27] to describe the attainable image information content (20). This challenge and its

counterpart in parallel MRI will be collectively addressed using the generalized linear inverse

framework later in the thesis.

1.3.c.3 ]Limitations on Conventional MRI Speed

The imaging speed of conventional MRI is primarily limited by the sequential data

acquisition scheme implicitly represented by Eqs. [1.22] and [1.24] where the Fourier-

encoded data s(k) are acquired one point at a time. To accelerate image acquisition for the

same k-space coverage, conventional MRI requires stronger magnetic field gradients, faster

gradient switching rates and/or more frequently applied RF pulses (which would result in

higher RF power deposition). Unfortunately, any and all of these approaches can pose

increasing risks of damaging the underlying biological tissues. In the next section, a safe

alternative strategy to accelerate image acquisition is introduced: parallel MRI techniques in

which MR data are acquired in parallel via the use of RF coil arrays.
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1.3.d Parallel MRI

1.3.d.1 Spatial Encoding Using RF Coil Sensitivities

Parallel MRI techniques make use of RF coil arrays to share the burden of spatial

encoding with magnetic field gradients. Individual coil elements have spatially varying

sensitivity patterns, and the MR signal equation (Eq. [1.6]) is modified,

s (t) = C, (r) sin (a(r))M,, (r)e(e (r)-)'d3r, [1.29]

where s, (t) represents the MR signal received by the 1 h coil with spatial sensitivity C, (r).

The values of C, (r) can be determined a priori using calibration data, which will be

described later in the chapter. Other than the multi-coil detection, the data acquisition

scheme in parallel MRI is similar to that of conventional MRI: a uniform RF excitation pulse

is initially applied to rotate the net magnetization by a constant flip angle ao, and magnetic

field gradients are used to traverse k-space. In analogy to the steps taken in Eqs. [1.21] -

[1.25], the MR signal equation for parallel imaging can be expressed as:

s (k)= I sin( 0 )B, eIkrC, (r)p(r)d 3 r [1.30]
4k T

and the spatial encoding functions are defined as follows:

Ek,l (r)- l3C, (r)ek . [1.31]

where the scalar 6 accounts for the constants outside the integral in Eq. [1.31]. Here, the MR

signal is seen as a generalized projection of spin density onto the hybrid encoding function of

magnetic field gradients and coil sensitivity. The extra index in Ekt signifies that the

number of encoding functions has increased by a factor equal to the number of array

elements, L.

1.3.d.2 Acceleration in Imaging Speed

If a dataset acquired with a one-coil system is sufficient to reconstruct an image, then

using an identical sampling trajectory in k-space, a dataset acquired with a multi-coil system

must contain redundant spatial information. In the framework of the generalized linear

inverse problem, the number of equations is increased by a factor of L while the number of
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unknowns remains the same. The matrix system is overdetermined. In parallel imaging, this

redundancy in spatial encoding is exploited to allow image acceleration. The k-space

trajectory only needs to traverse a subset of the original k-space locations, resulting in a

proportionally faster acquisition.

In principle, if there are a very large number of coil elements each with distinct

sensitivity, the spatial encoding using magnetic field gradients can be omitted altogether. In

such a scenario, MRI would be nearly instantaneous. In practice, the complementary use of

magnetic field gradients is still desirable and necessary for reasons that will become

apparent.

1.3.d.3 Parallel Image Reconstruction Methods

Image reconstruction in parallel MRI, like the generalized linear inverse framework

represented in Eqs. [1.16] and [1.17] , can also be divided into three steps: a) calibration for

the encoding matrix E; b) computing an inverse E-'; c) minimizing the error involved in the

reconstructi on.

1.3.d.3.1 Sensitivity Calibration to Obtain the Encoding Matrix E

COIL SENSITIVITY MAPS

Knowledge of the coil sensitivities C, (r) is required to formulate the encoding

functions (Eq. [1.31]) which collectively constitute the encoding matrix E. These coil

sensitivities can in principle be calculated if the coil array geometry and location are known.

In practice, however, for flexible coil arrays whose positions vary from scan to scan, the coil

sensitivity information is preferably recalibrated each time. The coil sensitivities can be

calibrated from coil-modulated images p, (r), where

p (r)= C, (r) p(r) [1.32]

is obtained using conventional MRI acquisition and image reconstruction methods (Eq.

[1.26]). These coil images may have lower spatial resolution (i.e., smaller kmax in Eq. [1.28]
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) than the accelerated diagnostic images, but are required to have a sufficient field-of-view

(i.e., large enough Ak in Eq. [1.27]) to satisfy the Nyquist criterion. To eliminate the spin

density component in p, (r), an additional image can be acquired using a bird-cage body coil

which is designed to have a uniform RF spatial reception field, Cbod_,cojl (r) = CO. A quotient

is performed between the two coil images to obtain a scaled version of C, (r),

p,(r) C (r)p(r) 1
Pbody-coai (r) Cbo,dco,, (r) p(r) C,(r) [1.33]

If a body-coil image is not available, a sum-of-squares combined image can be used to divide

out the spin density,

p,(r) C, (r)p(r) 1 (r [1.34]
p ~ (r) 22 C[1.34]

Since the multiplication of is common to all coils, it can be incorporated in the

/IIc, (r)1

formulation of an effective encoding function which differs from the original encoding

function (Eq. [1.31 ]) as follows:

Ek, (r) = Ekt (r) [1.35]

The effective spin density reconstructed by parallel MRI is expressed as,

/(r)= ,C C,(r)12p(r). [1.36]

An interesting property is illustrated here that an arbitrary function can be used in lieu of

, and p(r) can be obtained by performing a multiplication of the same

, , (r)l2

function to yield (r). This property will prove to be useful in Chapters 2-4.
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EXTERNAL SENSITIVITY CALIBRATION AND SELF-CALIBRATION

Calibration data, which are used to reconstruct the coil images in Eq. [1.32], can be

obtained from a separate scan before or after the image acquisition. Because of the

requirement of external information, this approach is generally known as external calibration.

Alternatively, the calibration scan can be incorporated as a part of the image acquisition, and

the calibration data can be extracted from the image dataset. This approach is called auto-

calibration or self-calibration7. The crucial difference between the external- and self-

calibration approaches lies in the timing of the acquisition of calibration data relative to the

image acquisition. These differences are discussed in detail in Chapter 2.

1.3.d.3.2 Image Reconstruction: Computing a Matrix Inverse E-1

Various parallel image reconstruction algorithms have been developed to solve the

generalized linear inverse problem, and Sodickson et al has shown the linkage between some

of the different approaches (7). Here, three major classes of parallel image reconstructions

(full matrix inversion, k-space block-diagonalization, and image-domain block-

diagonalization) are discussed with frequent reference to the central equation: s = Ep.

FULL MATRIX INVERSION

The full matrix inversion approach entails a straightforward inversion of Eq. [1.14],

finding a matrix inverse E- ' such that E-'E = I and thus,

Precon = E-'s, [1.37]

where I is an identity matrix. When the image acceleration factor is equal to the number of

array elements L, then the encoding matrix E is square, and E- ' is uniquely determined.

Often, however, the acceleration factor is less than L. E is rectangular with more rows than

columns, and the matrix system is overdetermined. E - is no longer unique. Instead, the

Moore-Penrose pseudo-inverse is used to provide a least-squares solution:

7 For self-calibrating parallel MRI, methods exist that allow coil sensitivity calibration without explicitly
reconstructing the calibration images. These methods however generally observe calibration requirements
similar to those described in this section.
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E-' = (EHE) EH [1.38]

where the superscript (.)H denotes Hermitian conjugation. (This equation must be modified

slightly to minimize error in the presence of noise correlations between array elements: see

Section 1.5.c.3 to follow.) While it may be numerically unstable and computationally

intensive to calculate the pseudo-inverse, the full matrix inverse approach has the appeal of a

theoretically exact solution. Notable representatives of this approach include Subencoding

(1), SENSE (3), Space-RIP (4) and GEM (7).

k-SPACE BLOCK-DIAGONALIZATION

SMASH and its derivatives rely on a different approach to matrix inversion using k-

space block-diagonalization. In the k-space block-diagonalization approach, the encoding

matrix E is first Fourier transformed to become EF7T, where EF7 = EF and F denotes a

Fourier transformation matrix. Coil sensitivities are in general band-limited -a property

that will be more fully explored later in the thesis - and as a result, the matrix EFT is

approximately band-diagonal. An inverse (EFT ) k can be determined efficiently by

applying either block-by-block inversion or sparse matrix techniques. E -l can be obtained by

performing another Fourier transformation as follows,

E = EFF - '

E-l =(EFF-I - [1.39]
[1.39]

=F(EF)-'

= F (Er )block-diag

The block-by-block inversion, while providing the advantages of numerical stability and

computational efficiency, makes the inversion inexact,

E-'E I. [1.40]

Tradeoffs between inexactness (artifact) and numerical stability will be an important subject

in later chapters. Notable representatives of this k-space block-diagonalization approach

include SMASH (2), GRAPPA (8), ASP (21), hybrid GEM (7), and generalized SMASH (9).
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IMAGE-DOMAIN BLOCK-DIAGONALIZATION

A third approach to parallel image reconstruction is more restrictive than the other

two, but it is included here in order to facilitate discussions in Chapter 6 where

correspondence between parallel MRI and wireless communications is made. In the image-

domain block-diagonalization approach, the coil sensitivity Cl (r) is assumed to have limited

spatial extent, and beyond some distance nn,,,,ledFOV from r, the value of C, (r) drops below

a threshold value ChresoId 

C, (r, + Ar) < Clhreshold for IArl > 1inlJ-FOV [1.41]

and ,mirnd-edJ1. O< Aifull-FOV. As a result of the smaller field of view, the k-space sampling can

be more sparsely without incurring aliasing. The coil images may be independently

reconstructed as in conventional MRI, and are then combined after being appropriately

shifted according to their center position r. PILS is a representative of this image-domain

block-diagonal approach (5).

1.3.d.3.3 Parallel MRI Error Estimation and Quantification

ERROR IN PARALLEL IMAGE RECONSTRUCTION

In general, there are two types of errors in parallel MR image reconstruction. The

first type involves systematic errors that may result from an inaccurate coil sensitivity

calibration or an inexact image reconstruction such as the block-diagonalization approaches.

It is difficult to quantify these errors since they depend on sporadic events (e.g., sudden

motion of the patient which shifts the coil arrays), or are related to the tradeoff between

image artifact and signal-to-noise in an inexact reconstruction. These will be discussed more

thoroughly in Chapters 3 and 5.

The second type of error is statistical error due to propagation of noise, and

algorithms have been developed to minimize this type of error. In MR signal detection, noise

manifests itself as a statistical fluctuation of voltage across the terminals of an RF coil, and

the underlying stochastic process can be characterized experimentally. In practice, noise at a

given RF coil is not temporally correlated. However, noise between the coil elements is
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typically correlated, and noise covariance matrix 'P can be defined where the entry ,, is

the noise correlation between coils and '. The overall noise covariance matrix for the

signal vector s can be expressed as:

'=P ®Idk, [1.42]

where the direct product with the identity, Idk, indicates replication for all k-space indices.

NOISE IN THE MR IMAGE

In parallel MR images reconstructed using the full matrix inversion, the image noise

covariance A can be expressed in terms of the encoding matrix inverse E -' and the signal

noise covariance matrix I,

A = (E-') v (E-)' . [1.43]

To achieve minimize noise covariance in the final image, noise decorrelation can be first

performed on the MR signal, sec,rr = L-'s and the encoding matrix E ecorr = L-'E where the

lower triangular matrix L is obtained from Cholesky decomposition of P,

P= LLH. [1.44]

The minimum-variance version of Eq. [1.38] is,

Eminvar = (EcorEdcrr )-I Ecor r 

= ((L'E)H (L'E))-' (L-E)H [1.45]

= (EH-'E)-IEH (L' )H

and the new image noise variance matrix in the final image is,

invar :((Edecorr E) ao,r ) d((Edecor ) Edcor 

deorr orr [1.46]

((EEd)H (L-'E)[1.46]
= ((L'E) (L-E))

=(EH-'E)-'

The final image reconstruction including noise correlations then becomes
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Preconstructed =EinvarSde.orr ={(E v E)l E HI }s. [1.47]

An important note should be made that the example shown here involves only linear

operations. When the parallel image reconstruction involves non-linear operations (such as

magnitude combination), the noise variance is no longer defined within traditional metrics,

and thus will require new methods such as the one proposed in Chapter 5.

NOISE AMPLIFICATION IN PARALLEL MRI

Noise metrics have been developed for parallel imaging techniques whose noise

characteristics have been characterized by Eq. [1.43]. These metrics typically focus on the

amplification of noise in an image reconstructed from an undersampled dataset compared to

that of a fully-sampled reference dataset. The noise variance in an image voxel, y, is given

by the diagonal element of A,

02 = Awt, [1.48]

and a noise amplification factor, g-factor, is defined as

/.-_! 1 SNRr49=g Hi = a SN "[1.49]
g= 1.2 R -R SNR0 ,., 1 '

where 0,e, and -ef are the noise variances in the parallel and conventional MR images

respectively, and R is the image acceleration factor between the parallel and reference

images. In general, the decrease in SNR in a parallel MR image reconstruction is due two

factors: the inherent loss of noise averaging due to the reduction of data samplings and the

non-orthogonality of RF coil encoding. For example, the Fourier encoding functions in

conventional MRI are orthogonal, allowing a unitary matrix inversion with optimal noise

averaging. However, the generalized encoding functions in parallel MRI are not orthogonal

because of the overlapping of broad coil sensitivities. As a result, the matrix inversion in

parallel image reconstruction is no longer unitary. Only in the ideal case when the coil

sensitivities are perfectly orthogonal would g-factor reach the theoretical lower bound of 1.

In practice, the g-factor provides an internal assessment of the spatial encoding capability of

a particular RF coil array. However, a more definitive assessment is to evaluate the absolute
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SNR (or noise variances) of the image reconstruction. Paradoxically, a coil array carefully

optimized for g-factor may yield a lower absolute SNR than an array whose g-factor is

otherwise not optimized.

1.3.e Transmit Encoding
SPATIAL ENCODING WITH SPATIALLY-SELECTIVE RF PULSES

The remaining spatially-varying term in Eq. [1.6] is the flip angle a(r). This

component does not provide an immediate benefit of accelerating image acquisition, and

parallel MRI until recently has not incorporated this component. In fact, this thesis work

assumes spatially uniform RF excitations. A portion of Chapter 7 proposes a strategy

involving the use of various flip angles, but it is not intended for the purpose of spatial

encoding. For the interest of completeness and also for future directions of MRI, it is

important to note the potential of using RF pulses to performing additional spatial encoding.

Volume-selective RF pulses are commonly used to provide uniform excitation within

a volume V,

{a, forrE V
a(r) ao,, for re V [1.50]

0, otherwise j

More complex excitation patterns can be achieved by using appropriate combinations of RF

and gradient waveforms, or else by using RF coil arrays to transmit. Active research is

exploring the expansion of spatial encoding capabilities to realize a full complement of

encoding functions:

Eki ,m (r) - fsin ( m (r))C, (r)e- kr . [1.51]

Here, the added index m denotes the different excitation patterns that can be applied at

different time points (22), or else in different excitation coils (23,24). The number of basis

functions in the new encoding matrix E, as well as its over-determinacy, has increased by a

factor of m. When the extra encoding is applied at different time points, it comes at a cost of

increasing the acquisition time by the same factor, but this approach may be used to tailor

encoding functions so as to provide numerical stability that is not achievable otherwise.
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When the extra encoding is applied using arrays of transmit coils, the duration of RF pulses

and or the RF power deposition may be reduced for any given pulse profile (this approach is

commonly referred to as "Transmit Parallel Imaging.") An in-depth exposition of the full

potential of spatially varying RF excitation is beyond the scope of this dissertation.

Nevertheless, the last dimension in MR spatial encoding and decoding is an important subject

for ongoing research (23,24).

SECTION 1.4 General Summary
The organization of the thesis can be best presented in relation to the generalized

linear inverse problem. Chapters 2-7, though designed to be individually self-contained, are

collectively arranged in logical sequence to address the different elements of the inverse

problem. Chapter 2 establishes an accurate and robust method for measuring E. Chapter 3

proposes an efficient algorithm to invert E based on a special RF encoding characteristic.

Chapter 4 focuses on a physical property of p that facilitates the matrix inversion. Chapter 5

analyzes the effects of noise and systematic errors on the reconstruction of p. Chapter 6

derives the theoretical limits on the overall inverse problem s = Ep. Chapter 7 reports a

practical case study in clinical cardiac imaging using the techniques developed in this thesis.
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CHAPTER 2. SELF-CALIBRATING NON-
CARTESIAN PARALLEL IMAGING8

Image reconstruction for parallel MRI has been formulated in Chapter 1 as a linear

inverse problem,

s=Ep, [2.1]

where the observation vector s corresponds to the MR signal acquired, the matrix E the

generalized MR encoding matrix, and the unknown vector p the spin density of interest. This

chapter is devoted to the development of an inherently self-calibrating strategy to determine

E.

SECTION 2.1 Introduction
The accuracy of coil sensitivity estimates is a major determinant of the quality of

parallel magnetic resonance image reconstructions. While the level of tolerance for

sensitivity rniscalibration differs from technique to technique, any significant discrepancy in

coil sensitivity references introduces systematic errors in reconstructed images while

8 The work in this chapter has been adapted for publication as "Yeh EN, Stuber M, McKenzie CA, Botnar RM,
Leiner T, Ohliger MA, Grant AK, Willig-Onwuachi JD, Sodickson DK. Inherently Self-Calibrating Non-
Cartesian Parallel Imaging. Magn Reson Med. (In Press)"
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degrading overall image quality. Self-calibrating parallel imaging techniques that employ

variable-density k-space acquisition schemes have been demonstrated (1-4). Self-calibration

eliminates the need for an external sensitivity reference, making parallel image

reconstructions less susceptible to miscalibration and image degradation resulting from bulk

patient motion.

Self-calibrating parallel image reconstructions have been commonly implemented for

rectilinear (or Cartesian) trajectories. Phase-encoded lines in the outer k-space region are

omitted at a chosen outer reduction factor, whereas those in the central k-space region remain

densely sampled. The densely-sampled central lines are used for calibration, either through

fitting directly in k-space (1-3), or through Fourier transformation to generate low-resolution

in vivo sensitivity maps (4). The omitted phase-encoded lines are then reconstructed by a

parallel imaging technique of choice.

It has been noted that non-Cartesian trajectories such as spiral and radial trajectories

are logical candidates for self-calibration due to their characteristic oversampled k-space

center (4). Even for accelerated acquisitions, the center of k-space will generally be sampled

with sufficient density to enable the creation of reliable low-resolution maps of component

coil sensitivities without aliasing artifacts. These low-resolution maps can then provide the

coil sensitivity references required for reconstruction of the outer k-space signal data.

However, non-Cartesian k-space trajectories pose greater challenges for parallel

image reconstruction than their Cartesian counterparts due to the memory requirements and

computational demand of inverting large matrices. Recent work on non-Cartesian sensitivity

encoding (non-Cartesian SENSE) using efficient iterative algorithms has brought non-

Cartesian parallel image reconstructions into the realm of feasibility (5). In this work,

images of accelerated spiral and radial acquisitions are reconstructed by combining self-

calibrated sensitivities and non-Cartesian SENSE, verifying the inherently self-calibrating

nature of the trajectories and demonstrating the feasibility of self-calibrated non-Cartesian

parallel imaging.
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SECTION 2.2 Methods

2.2.a k-Space Trajectories

Spiral and radial trajectories, two common non-Cartesian trajectories, were used in

this work. 'The selected spiral trajectory was a multi-interleaf Archimedian spiral, described

by the following general equations:

kmax t+O<t<T
k, (t) =0 (T) (n = n... N [2.2]

0, = 2n / N

0(t) = ot ' O < t < T. [2.3]
1 +t T

T is the duration of one interleaf, N is the number of spiral interleaves, and 0, is a phase

offset. The nth interleaf trajectory k, (t) covers a disk of radius kmax centered at the origin of

k-space (for simplicity of notation, kax and any subsequent references to k-space index are

expressed iin units of ). 0(t) increases monotonically over time, and is
Field of View

proportional to the rotation angle and the radius of the spiral. The constant parameter Scan

be chosen to realize different types of spirals with various linear or angular velocities in k-

space. coo is determined by , T, N, and the target image matrix size:

2,r (Matrix Size)
"c o o~~~ =T ~~ --2~ · [2.4]T 2N

In our implementation, a ; value of 3 and a Matrix Size of 512 were used. The value of kmax

was Matrix Size/2 = 256. Each spiral data set consisted of 42 azimuthal interleaves with

6250 sampled data points on each interleaf.

The radial trajectory used in this work is described by Eq. [2.5],

O<t<T 1
k,(t)= kmaxF(t)e'", = l..N [2.5]

n = n/NJ

43



F(t) is a ramp function from -1 to 1, and kmax is set to 190. Each radial data set consisted of

380 projections with 760 points on each projection, (oversampled by a factor of 2 along the

readout direction.) The projections are azimuthally separated by phase offset 4,, where N is

the number of projections.

2.2.b In vivo scans

In vivo data were acquired in a volume containing either the left or right coronary

arteries of healthy adult volunteers. A 1.5T Gyroscan ACS-NT whole body MR system

(Philips Medical Systems, Best, NL), equipped with a commercial five-element Synergy coil

array was used for data acquisition. The array consists of two flexible circular elements

placed on the chest wall and three rectangular elements contoured to the table and arranged

left-to-right at the subject's back.

For spiral acqusitions, a navigator gated and corrected, ECG triggered 3D pulse

sequence (6) was used. Data were acquired at a rate of two interleaves per R-R interval, and

a total of 42 spiral interleaves were acquired. This sequence used the stack of spirals

approach (7), with conventional phase encoding in the slice-selection direction (12 phase

encode steps, 30 mm slab thickness) and variable angular speed spiral encoding in-plane

(effective TE 1.5 ms, sampling window 70 ms, RF excitation angles = 45° and 60°, 360 mm

x 360 mm FOV, 512 x 512 matrix).

For radial acquisitions, data were acquired at a rate of 17 projections per R-R interval,

using a navigator gated and corrected, ECG triggered, arrhythmia rejected 3D steady-state

free precession sequence (balanced TFE, TR=5.6ms, TE=2.8ms, RF excitation angle = 110°)

(8). A total of 380 projections were acquired. This sequence also used the stack approach,

with conventional phase encoding in the slice-selection direction (12 phase encode steps, 30

mm slab thickness).
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In the twofold (threefold) accelerated cases only every second (third)

interleaf/projection was acquired, analogous to omission of phase-encoded lines in the case

of rectilinear trajectories.

2.2.c Sensitivity Extraction for Self-Calibration

The spiral and radial trajectories have densely sampled centers, such that even for

accelerated acquisitions, the central k-space regions are still sufficiently sampled. Fig. 2.1

illustrates two-fold accelerated spiral and radial trajectories. kNyquist denotes the extent of the

central regions from which unaliased low resolution coil sensitivities can be extracted and

used as self-calibrated references for parallel imaging. To satisfy the Nyquist sampling

criterion in the most straightforward sense, the sampling density inside the central region

must be greater than or equal to 1.

The semilog graphs of Fig. 2.2 illustrate the sampling density for the actual

trajectories (spiral and radial with 1-fold and 2-fold undersampling) as a function of the

distance from the k-space origin. This local sampling density was determined by averaging

the number of sampling points within the 4-by-4 vicinity of each Cartesian grid point. More

sophisticated methods such as the use of Voronoi areas (9) were not used because the added

precision gave no apparent benefit in the present case. The reference trajectories maintain a

sampling density greater than 1, as mandated by a Nyquist-like criterion to prevent aliasing.

However, fr 2-fold undersampled trajectories, the density is less than I in the outer region

of k-space. Starting from the center and moving outward radially in k-space, the sampling

density changes from an oversampled condition to a critically sampled and eventually to an

undersampled condition. A Nyquist-like threshold would suggest that the 2-fold

undersampled spiral and radial trajectories should have sufficiently sampled regions up to

kNyquist=55 and kNyquist= 10, respectively.
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FIGURE 2.1 Self-Calibrating Spiral and Radial Trajectories

For spiral and radial trajectories, image acquisition can be accelerated by omitting
interleaves or projections. a) Schematic of a twofold-accelerated spiral trajectory
(reduced from 4 to 2 interleaves). b) Schematic of a twofold accelerated radial trajectory
(reduced from 12 to 6 projections). Black dots represent k-space data points acquired,
and gray dots represent k-space data points omitted. Even in an accelerated acquisition,
the center of k-space (shaded regions) is still fully sampled up to a radius of kNyquist.Low-
resolution in vivo sensitivities can be extracted from this region to permit self-calibrated
parallel image reconstruction . .1kmu denotes the maximum separation of k-space points
in the outer region. Both kNyquisland .1kmu are important determinants of the quality of
self-calibrating parallel image reconstructions.

In order to ensure accurate extraction of sensitivity information, we chose a more

stringent sensitivity extraction cutoff kcutotT at twice the Nyquist threshold, that is, by

including only points with a local sampling density greater than 2. (To observe the Nyquist

criterion, kcutotT~ kNyquist.)Consequently, coil sensitivity maps were extracted only from

regions with kcutotF18 and kcutotF40 (kcutotF10 and kcutotF25), for the 2-fold (3-fold)

undersampled spiral and radial trajectories, respectively. The extracted central k-space

regions were then regridded with a Kaiser-Bessel kernel of width=3 and ~= 13.9086 (Table 2

of Ref. (10)). The resulting low-resolution images were then used as sensitivity references as
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described in the following section. An alternative method to obtain the low-resolution

sensitivity maps is to employ a direct matrix inversion. The small size of the extracted

sensitivity data sets dramatically reduces the burden of the matrix inversion approach,

rendering it feasible with current computer hardware.

50 100 150 200 250
distance from the k-space center

3
10

2

10
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50 100 150 200 250
distance from the k-space center

FIGURE 2.2 Sampling Density of Spiral and Radial Trajectories

Semilog plots of the sampling density of a) the unaccelerated and the 2-fold-accelerated
spiral trajectories; and b) the unaccelerated and the 2-fold-accelerated radial
trajectories. The unaccelerated trajectories maintain a sampling density greater than I
everywhere - a Nyquist-like requirement. At twofold acceleration, the outer part of k-
space becomes undersampled. However, the center of k-space is sufficiently sampled up
to k=:55 and k=110, for spiral and radial trajectories respectively. Note that a sampling
density of I corresponds to a k-space separation of 2t/Field Of View.
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2.2.d Image Reconstruction

Following the extraction of internal sensitivity maps, we performed parallel image

reconstruction based on the conjugate-gradient (CG) matrix inversion approach of non-

Cartesian SENSE (5), in which the generalized encoding matrix equation (Eq. [1.14]) is

modified,

(EH-'E)p = EH?-'s [2.6]

and then solved iteratively. Here, (.)H indicates a Hermitian transpose, and (.)-1 indicates a

matrix inverse. is the sample noise covariance matrix (Eq. [1.42]), p is a vector of image

voxel values (Eq. [1.13]), s is a vector of measured signal values for parallel MRI (Eq.

1.30]), and the encoding matrix E has elements

E(.,or = ei
k 
u r

. C (r r ) [2.7]

where C,(rr) is the sensitivity of coil I at the center position r of the h image voxel. As

demonstrated in Ref (5) and also in Section 1.3.d.3, the noise covariance matrix can be

readily eliminated by creating a set of virtual receiver channels of zero noise correlation:

sdecorr L -I
[2.8]

Edecorr = L-1E

where the matrix L is obtained by Cholesky decomposition of ?:

? = LLH [2.9]

After substitution with Eq. [2.8] and dropping the superscript for decorrelation, Eq. [2.6] is

simplified to:

(EHE)p = EHs [2.10]

The noise decorrelation only needs to be performed once on the received MR signal data.

The corresponding matrix E, formed by sensitivities extracted from the decorrelated data, has

conveniently incorporated the effect of the multiplication of L- ', eliminating the need to

perform an explicit matrix multiplication L-'E.

In this work, the 6-criterion of convergence was set to 0.025 (Ref. (5), Appendix C).

The matrix-vector multiplication on the right-hand side of Eq. [2.10] was accomplished using
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the regridding procedure described in Ref. (5), which takes advantage of the harmonic terms

in the encoding matrix to accelerate the computation. In lieu of repeated ungridding and

regridding for the iterated multiplication on the left-hand side, the convolution approach

described in (11) was used. This approach identifies a convolution kernel G in the

multiplication by the composite matrix EHE:

(EHEp) = ZC(r)X e Ik ( r)py
/ \ K [2.11]

= C; (r.)[G (C,s)]r
I

The convolution kernel G(r)= e- ik r is calculated once by gridding onto a Cartesian
K

matrix twice the size of the target image in each dimension. The multiplication in Eq. [2.11]

is then carried out by multiplying each trial image pixel by the corresponding pixel value of

each coil sensitivity in turn, performing a Cartesian convolution with the kernel, multiplying

again by the complex conjugate of the coil sensitivity, and summing over all coils. Some

evidence exists that a tailored gridding-ungridding approach can outperform this convolution

algorithm (12); however, the convolution approach was found to be efficient and easily

coded in MATLAB (The Mathworks, Natick, MA) for our reconstructions.

Acquisition of a separate body coil image for determination of pure coil sensitivities

C,(r.) would defeat the purpose of self-calibration. Instead, the reference images extracted

from the k-space center, as described in the previous section, were used directly for the

multiplications in Eq. [2.11]. Following the conclusion of conjugate gradient iterations, the

reconstructed image was postmultiplied by the sum of squares of these reference images to

yield the final result. It has been demonstrated previously (4,13) that use of uncorrected low-

resolution reference images followed by postmultiplication eliminates all dependence upon

the underlying magnetization density in the reference images, and the same result may easily

be shown to hold in the current case. Images formed using this approach will have the same

appearance as images formed using relative coil sensitivities divided beforehand by the sum

of squares of the reference images, but the potentially numerically unstable step of pixelwise

division is avoided.
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Fig. 2.3 summarizes the overall strategy of the self-calibrated non-Cartesian SENSE

algorithm used in this work. For comparison with parallel image reconstructions,

unaccelerated and accelerated signal data were reconstructed to a 512x512 in-plane image

matrix using a standard gridding algorithm with a Kaiser-Bessel kernel of width=3 and

3=13.9086 (Table 2 of Ref. (10)). A sum-of-squares combination was performed on the

gridded component coil images. Self-calibrated parallel image reconstructions were also

compared with externally calibrated parallel image reconstructions, in order to assess the

accuracy of the extracted internal sensitivities. The external sensitivity maps were fully-

sampled but low-resolution in vivo images obtained from separate acquisitions.

SECTION 2.3 Results

Fig. 2.4 compares two-fold accelerated reconstructions using the gridding method (a:

spiral, d: radial), the parallel imaging method with self-calibrated sensitivity (b: spiral, e:

radial) and the parallel imaging method with external sensitivity (c: spiral, f: radial). Simple

regridding of the undersampled spiral acquisition (Fig. 2.4a) resulted, as expected, in

appreciable spiral aliasing artifacts, which were removed by parallel image reconstructions

using self-calibrated sensitivity (Fig. 2.4b) and external sensitivity (Fig. 2.4c). For the radial

trajectory, only subtle radial streak artifacts (which appeared as pseudo-noise) were visible

with simple regridding at two-fold acceleration (Fig. 2.4d). This reflects the well-known

robustness of radial trajectories to undersampling. Both parallel image reconstructions using

self-calibrated sensitivity (Fig. 2.4e) and external sensitivity (Fig. 2.4f) reduced these streak

artifacts and preserved the high image quality. The numbers at the bottom right corner of the

images in Fig. 2.4b, c, e, and f indicate iteration counts to reach the convergence criterion.
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k-space
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Channels Trajectory

Conjugate gradient method

ntensity correction

Density correction

Multiply by in-vivo sensitivity
of y-th coil.
Multiply by complex conjugate
of in-vivo sensitivity of y-th coil

Complex sum of input images

EL]

Fourier transform to image domain
1. Convolve with gridding kernel
2. Oversample 2x along Cartesian grid
3. FFT to image domain
4. Trim image matrix
5. Divide by Fourier transform of gridding

by in-vivo sensitivity of y-th coil.

Convolve with kernel G

k-space filter

FIGU RE 2.3 Schematic of Self-Calibrating CG-SENSE Algorithm

Summary of the algorithm for self-calibrated non-Cartesian parallel image
reconstructions. The CG-SENSE algorithm described in (5) uses a separately acquired
sensitivity reference. In our self-calibrating approach, in vivo sensitivity maps are
extracted from the densely-sampled k-space and are used in place of the external
reference. An additional post-multiplication step is required in the self-calibrated case to
remove underlying magnetization density in the extracted sensitivity references.
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Reconstructions
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FIG U R E 2.4 2x Self-calibrated and External Calibrated Spiral and Radial
Images

Two-fold accelerated in vivo images showing the right (a-c) and the left main (d-f)
coronary artery in a healthy adult subject. a,d) spiral (a) and radial (d) images
reconstructed with a convolution-based gridding method without any parallel
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reconstruction algorithm; b,e) spiral (b) and radial (e) images reconstructed using self-
calibrated parallel imaging; c,f) spiral (c) and radial (f) images reconstructed using
externally-calibrated parallel imaging. The streaking artifacts in panels a and d, which
result from azimuthal undersampling, are noticeably reduced in panels b, c, e and f.
Moreover, the image quality of self-calibrated parallel image reconstructions (b) and (e)
is comparable with externally-calibrated counterparts (c) and (f), respectively. The
numbers at the bottom right corner of the images in panels b, c, e, and f indicate
iteration counts to reach the convergence criterion.

Fig. 2.5 compares image intensity profiles taken from the central horizontal lines (line

number 256 of 512) of images reconstructed by the conventional gridding method and the

self-calibrating parallel imaging method for twofold accelerated spiral (a) and twofold

accelerated radial (b) trajectories. Parallel imaging results in different types of image quality

improvement for spiral and radial datasets. For the undersampled spiral datasets (Fig. 2.5a),

the self-calibrated parallel image reconstruction shows higher spatial resolution that the

regridded counterpart (e.g. notice the sharper peak near location 230). For the undersampled

radial datasets (Fig. 2.5b), the self-calibrated parallel image reconstruction shows decreased

pseudo-noise background in noise-dominated regions. Higher levels of undersampling,

perhaps with larger numbers of array elements, will clearly be required to make best use of

parallel imaging to remove more substantial streaking artifacts.

Fig. 2.6 shows a comparison of unaccelerated spiral (a) and radial (d) images with

self-calibrated parallel image reconstructions at various acceleration factors. Apart from the

expected SNR loss compared to the unaccelerated image, the 2- and 3-fold accelerated spiral

images (Fig. 2.5b and c) and radial images (Fig. 2.5e and f) show preserved image quality for

depiction of the right and left coronary arteries. Once again, the numbers in selected images

indicate iteration counts to reach the convergence criterion.
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FIG U R E 2.5 Image Intensity Promes of 2:1:Spiral and Radial Images

Image intensity profiles taken from the central horizontal Unes of images reeonstructed
from twofold undersampled spiral (a) and radial (b) datasets. Reconstruction with a
convolution-based gridding method is shown by the grey Hne, and that of self-caUbrated
paraDel imaging is shown by the black Hne.
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FIGURE 2.6 2x and 3x Spiral and Radial Parallel Image Reconstructions

Details from ill vivo images comparing various acceleration factors. a,d) unaccelerated
reference spiral (a) and radial (d) images. b,e) 2-fold accelerated spiral (b) and radial (e)
images using self-calibrated parallel imaging; c,1) 3-fold accelerated spiral (c) and 3-fold
accelerated radial (I) images using self-calibrated parallel imaging. The numbers at the
bottom right corner of the images in panels b, c, e, and f indicate iteration counts to
reach the convergence criterion.
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SECTION 2.4 Discussion

These initial results demonstrate the potential of self-calibrated non-Cartesian parallel

imaging as a viable means of obtaining accelerated datasets, for example for high-quality

coronary MR angiography. Such an approach is time-efficient (requiring no more time than

the undersampled acquisition itself), and excludes the potential for geometry mismatches that

can hamper traditional parallel imaging calibrations.

In this work, an iterative non-Cartesian SENSE algorithm was used to illustrate the

principle and demonstrate the feasibility of inherent self-calibration. Alternative algorithms

such as PARS (14), SMASH (15), or GRAPPA (16) may also be used.

2.4.a Criteria for Sensitivity Extraction from Undersampled
Trajectories

Apart from an intrinsic SNR loss, the principal constraint on acceleration factors

achievable with inherently self-calibrated non-Cartesian parallel imaging is related to the

spatial frequency content of the coil sensitivities. First of all, the central region of Nyquist or

greater k-space density must extend far enough to represent faithfully the spatial variations of

coil sensitivities. A more subtle constraint, which might manifest itself at higher

accelerations, may be appreciated from the schematic trajectories in Fig. 2.1: the maximum

separation Akmax of the sampling points in the outer region must be smaller than the radius

kNyqulst of the fully-sampled central region. (Akmax kNyquist) Since the extracted coil

sensitivities by definition will have no spatial frequency content beyond kNyquist, they cannot

be used to span distances in k-space larger than kNyquist without introducing imperfections into

the reconstruction. The balance of kNyqUist and Akmax is determined by the level of

undersampling (see Fig. 2. 1), and this balance constitutes an additional limit on the degree of

acceptable undersampling.

For low acceleration factors where kNyqlist is adequately larger than Akmax, a user-

defined sensitivity extraction cutoff kctoff may be flexibly chosen such that:
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Akmax < kcutoff < kNyquist [2.12]

As illustrated in Fig. 2.4, the self-calibrating parallel image reconstructions and the externally

calibrated reconstructions have comparable image quality, despite the difference in the

method and resolution of the sensitivity calibration. Qian et al (17) have recently studied the

effect of k-space cutoff on reconstructed image quality for self-calibrated spiral trajectories,

finding that an optimum cutoff could be defined for particular trajectories and image content.

Their reported optima occurred at substantially lower values of kcutoff than were used here,

but the error minima were comparatively broad for in vivo imaging situations. Thus, in

general, once the criterion imposed by Eq. [2.12] is satisfied, fine-tuning for an optimal kcutoff

may not yield much added benefit, though this remains a subject for further study. Other

implementation-specific considerations (e.g. speed and memory, error tolerance of extraction

method) may favor one value of kutotff over others.

For the spiral trajectory employed in this work, there is sufficient central k-space

density to reconstruct in vivo sensitivity maps of matrix size 18x18 at an acceleration factor

of two. Other than omitting spiral interleaves, no pulse sequence modifications were

required, since the principal spatial variations in coil sensitivities are typically well-

represented at this level of spatial resolution. However, at a higher acceleration factor of 3,

the fully-sampled central region is reduced in size to 10x10. At an even higher acceleration,

the region of sufficient sampling may become so small that the low-resolution sensitivity

maps may no longer adequately represent the actual coil sensitivities, while at the same time

the size of the fully sampled region may begin to approach the maximum k-space separation.

Therefore, for self-calibrated spiral acquisitions with higher acceleration factors, trajectory

modification may be necessary to ensure that the sufficiently sampled region of k-space is

large enough to represent the low-resolution coil sensitivities. Variable-density spiral

trajectories (18), though not originally proposed for applications related to parallel imaging,

may be a good match for self-calibrated non-Cartesian parallel imaging.

For radial trajectories, because of the even more densely-sampled center, in vivo

sensitivity maps of sizes 40x40 and 25x25 were extracted for acceleration factors of 2 and 3,
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respectively. Accurate sensitivity maps can be extracted from datasets with even higher

accelerations without modification of the trajectories.

2.4.b Effect of Parallel Imaging on Different Non-Cartesian
Trajectories

Non-Cartesian parallel imaging, irrespective of the sensitivity calibration method,

offers different qualitative improvements for different non-Cartesian trajectories. Even

though the focus of this work is not to evaluate the effectiveness of parallel imaging on

various non-Cartesian trajectories, preliminary observations can be made from Fig. 2.4 and 5.

For the twofold undersampled spiral trajectory, the image reconstructed by the gridding

method shows both considerable aliasing artifacts (Fig. 2.4a) and reduction in image

resolution (Fig. 2.5a). Parallel imaging is effective in both removing the artifacts (Fig. 2.4b

and 2.4c) and improving the image resolution (Fig. 2.5a).

For the twofold undersampled radial trajectory, the image reconstructed by the

gridding method (Fig. 2.4d and 2.5b) has an elevated pseudo-noise background due to radial

streaking artifacts but the image resolution is otherwise unaffected. This preservation of

image resolution in the signal-rich region comes at the expense of increased artifacts in the

noise-dominated region. Given the relative robustness of radial trajectories subjected to

undersampling, there is less room for improvement in the signal-rich region for parallel

imaging. In fact, Fig. 2.5b shows an almost perfect tracking in the central region between the

image profiles of the gridding method and the self-calibrated parallel imaging method.

However, in the noise-dominated regions, parallel imaging shows an appreciable reduction of

pseudo-noise (Fig 3.4e, 3.4f and 3.5b).

It should be noted that even with nominally fully-sampled non-Cartesian trajectories,

residual aliasing artifacts may remain due to inherent constraints in the traditional regridding

procedure (10). Self-calibrated parallel imaging, without the burden of acquiring a separate

sensitivity reference, can readily be used to reduce these residual alasing artifacts.
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While the current work has focused on exploring the desirable properties of spiral and

radial trajectories, analogous benefits may be expected, in general, for any arbitrary

trajectory containing a sufficiently densely sampled k-space center.

SECTION 2.5 Conclusions
Preliminary results from in vivo image reconstructions demonstrate that self-

calibrated spiral and radial parallel imaging are feasible, allowing accelerated high-resolution

scans without the acquisition of any additional calibration data. Accelerated 3D coronary

MR angiography studies were demonstrated here. The intrinsic self-calibrating nature of

spiral and radial trajectories also makes them a natural choice for dynamic imaging

applications, body screening studies, or other areas in which traditional sensitivity

calibrations must contend with physiologic motion.

SECTION 2.6 Future Directions

A logical extension of this self-calibrating work is to determine the theoretical

minimal requirements for sensitivity calibration information. The minimal calibration

requirements for existing self-calibrating techniques have already been clearly stated in

Section 2.5. However, it is conceivable that an unconventional self-calibrating approach may

require less or even no sensitivity calibration. Two plausible approaches, one linear and one

non-linear, are discussed here for future explorations.

2.6.a Recursive Auto-calibration with Nth Order Root

In SMASH and related parallel imaging methodologies, omitted signal data

sI (k + Ak) are reconstructed by a linear combination of signal data acquired at a nearby k-

space neighbor s, (k):

s, (k + Sk)E w)s, ks(k ) . [2.13]
1'
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The complex weights, w(Ak) (denoted by the superscript (Ak) for a particular k-spaceThe complex weights~~~~~~~,1't

separation), are computed from the coil sensitivities by performing a least-squares fit:

C (r)ei Akr ~wfk)C, (r). [2.14]
I'

This relationship can be expressed in matrix form,

CD (Ak) = W(Ak)C

W(Ak) = CD(A)CH (CCH)- [2.15]

where the entries of C , D, and W are defined as follows,

C/ak = C/ (r)

D(Ak) = eky [2.16]
Wj(.k) (Ak)

It has been speculated (19) that by recursively applying Eq. [2.13], a series of omitted signal

data at equidistant k-space interval can be reconstructed:

st (k + nAk) E w ) E W n (k). [2.17]
I" " I'

In matrix form, this would imply that the knowledge of the weight matrix W for a particular

Ak would allow the computation for weight matrices for arbitrary nAk,

W(nAk) =(W(Ak [2.18]

If Eq. [2.18] were true, it would have two very dramatic implications. First, this would

potentially allow an indefinite number of recursive reconstructions, and MR data acquired at

a single k-space location could reconstitute an entire dataset. This would violate the spirit

that the number of observations must be greater than the number of unknowns for any

invertible system. However, a potential explanation of the paradox of Eq. [2.18] would be

that since the data reconstruction is only a least-squares fit (as indicated by the approximate

equality in Eqs. [2.13] and [2.14]), error propagation and amplification would prevent an

indefinite recursive reconstruction. The use of a small number of recursions (n = 2) has been

reported (19).
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The second implication comes from a minor rearrangement of Eq. [2.18], that a lower

order W could be computed by taking the nth root of a higher order W,

W(Ak) = IW(Ak) . [2.19]

This would be especially attractive for an undersampled trajectory which was not typically

self-calibrating. For example, in a regularly twofold undersampled dataset, the weight matrix

for the Is t spatial harmonic W(+®) would be required for parallel image reconstruction. If Eq.

[2.19] were true, then W(+') could be computed by taking the square root of W(+2 ),

W(+ ) = .W+2) [2.20]

The remaining uncertainties would be the signs of the eigenvalues of W(+® ), which could be

determined by adding a very small amount of a priori information (20).

A closer examination of Eq. [2.15], however, suggests that neither Eqs. [2.18] or

[2.19] could be true in general. In a simple case that n = 2 and Ak = +1,

W(+) = CD(+i)CH (CCH )- [2.21

(W(+)2 CD(+')CH (CCH)-1 CD(+lCH (CCH )

and

W(2 ) = CD(+2 )CH (CCH) . [2.22]

In a special case that,

CH (CCH )-C = I, [2.23]

then

(WI))=CD )CH (CCH)-' CD(ICH (CCH )

= CD(+I)D(+)CH (CC") [2.24]

= CD(+2)CH (CCH )-

= W(+ 2)

where

D(+ 2) - D(+')D(+I) [2.25]
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However, unless C happened to be an invertible square matrix which allows the distribution

of the inverse within the parenthesis in Eq. [2.23], the relationship remains an inequality in

general,

CH (CCH)-) C I. [2.26]

Then again, CH (CCH )-C may only need to be approximately equal to the identity matrix

to allow the nth root operation in Eq. [2.20]. Early attempts at calibration-free parallel image

reconstructions as part of this thesis work met with limited success, and, despite the

subsequent claims advanced by another group in recent conferences (e.g., (19)), it has yet to

be shown rigorously how to guarantee such an approximation without obtaining explicit

knowledge of C.

2.6.b Nonlinear Search for Parameterized Coil Sensitivity

A non-linear iterative approach for calibration-free parallel image reconstruction has

also being tested as part of this thesis work, but definitive conclusions are deferred to future

studies. In this approach, some a priori information about coil geometry was incorporated

into coil models from which coil sensitivities could be calculated using a finite set of

parameters, and a non-linear search was performed within the possible range of the parameter

values. An evaluation function was used to quantify the degree of self consistency of the

calculated sensitivities against the undersampled dataset. Starting with rigid coil arrays, the

location and conductor geometry of the array would be pre-determined. Coil sensitivities

could be computed using the Biot-Savart law and the principle of reciprocity. The

assumption of rigidity could be relaxed to accommodate flexible or otherwise mobile coil

arrays, and in this case additional search parameters would be required to specify the position

of each coil element and/or the curvature due coil bending.

Nonlinear searches are in general computationally intensive and may not yield unique

solutions. However, the ability to perform entirely calibration-free parallel imaging is

increasingly appealing especially for highly accelerated studies in which calibration time
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becomes a significant portion of the overall examination time. Thus, the search for nonlinear

self-calibralting approaches is likely to continue in times to come.
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CHAPTER 3. IMAGE RECONSTRUCTION

WITHI k-SPACE LOCALITY CONSTRAINT9

This chapter is devoted to the development of a stable and efficient algorithm for

solving the matrix inversion for the generalized MR equation, s Ep, especially in the

general case when a direct matrix inversion of E is neither desirable nor feasible.

SECTION 3.1 Introduction
There are two practical challenges in the direct inversion of the generalized encoding

matrix E. First, this matrix inversion can be memory- and computation-intensive,

particularly for non-Cartesian MR signal data. Second, at high acceleration factors, the

encoding matrix becomes poorly conditioned, making the inversion numerically unstable,

and therefore leading to high noise amplification.

In the special case when datasets are Cartesian sampled in at least one direction, it is

possible to reduce the memory and computational burden of the encoding matrix inversion

9 The work in this chapter has been adapted for publication as "Yeh EN, McKenzie CA, Ohliger MA,
Sodickson SK. Parallel magnetic resonance imaging with Adaptive Radius in k-Space (PARS): Constrained
Image Reconstruction using k-space Locality in Radiofrequency Coil Encoded Data. Mag Reson Med. (In
Press)"
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by applying a fast Fourier transform (FFT) in the Cartesian sampled directions (1-4). For

other more general trajectories, a simple FFT cannot be applied; instead, an iterative

approach using conjugate gradient techniques and gridding has been proposed (5).

In an effort to improve numerical stability, matrix regularization methods are

commonly used. However, many of these methods - for example, truncation of unstable

singular values in a singular value decomposition (SVD) - are themselves memory- and

computation-intensive, potentially annulling the advantages provided by the iterative

approach.

Parallel magnetic resonance imaging with Adaptive Radius in k-Space (PARS) (6),

the technique to be described in this work, provides a simultaneous solution to these two

challenges by efficiently inverting the encoding matrix while ensuring numerical stability. In

PARS, omitted signal data are reconstructed using only acquired signal data that lie within a

small (and adjustable) radius in k-space from each omitted signal datum. A localized

encoding matrix is created and inverted, and the omitted data are reconstructed locally. This

process is repeated for each missing k-space location until a complete dataset is

reconstructed.

Instead of reconstructing the complete dataset with a direct matrix inversion, PARS

performs point-by-point data reconstruction by inverting many small matrices. As a result, it

eliminates the need to store and manipulate the prohibitively large encoding matrix. The

independent matrix inversions allow the computation to be easily distributed across a parallel

computing environment. More importantly, PARS explicitly uses the physical principle of k-

space locality, which asserts that in the reconstruction of an omitted datum, the contribution

of other signal data diminishes as a function of the k-space separation between the omitted

point and the signal data used in the reconstruction. PARS efficiently eliminates the less

relevant data and their corresponding signal equations, thereby improving the conditioning of

the localized encoding matrices. This matrix regularization, unlike mathematically-based

approaches such as truncated SVD, is founded upon a physical property of RF coils. While

previous parallel imaging techniques have either implicitly or explicitly used k-space locality
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(3,7-10), the PARS implementation with an adaptive k-space radius allows an intuitive and

flexible handle to harness k-space locality.

Preliminary implementations of PARS have been described, with a minimum of

methodological detail, in a recent clinical comparative study (11). In this work, we provide a

full theoretical description of the PARS technique. We formulate the algorithm using the

perspective of k-space locality, and propose an empirical approach to establish a suitable k-

space radius. Next we report the results of phantom and in vivo experiments using PARS on

undersampled Cartesian datasets. Images reconstructed using PARS are compared to those

reconstructed with SMASH and SENSE techniques. In addition, we use PARS to reconstruct

undersampled spiral datasets to illustrate the versatility of the technique in handling multi-

dimensionally accelerated non-Cartesian datasets. Lastly, we discuss how PARS is related to

other traditional and parallel image reconstruction techniques in order to characterize the

associated tradeoffs between Signal-to-Noise Ratio (SNR) and residual aliasing artifact.

SECTION 3.2 Theory
As a review of Eq. [1.30], the MR signal data received in an RF detector coil can be

expressed as:

s (k) = e'lkrc,(r)p(r)dr [3.1]

where s(k) is the signal received in the Ith coil at k-space position k, Cl is the coil sensitivity

of the ith coil and p is the excited spin density at position-space vector r.

In parallel imaging, some of the k-space sampling locations are omitted in order to

accelerate image acquisition. PARS reconstructs these omitted data points by linearly

combining the acquired data in the k-space vicinity defined by the k-space radius kR.

Z E WAk /Sr1 (krecon -Ak) = s, (kre)con,), Akj < kR [3.2]
Ak '=1
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Here, wakr are complex weights to be derived in Eqs. [3.3]-[3.11]. 1' is the summation

variable for the component coils. s(krecon - Ak) are the data acquired at k-space offset Ak

with respect to krecon. · denotes Euclidian distance.

B

I0·

.nI

In I

FIGURE 3.1 Schematic of the PARS Algorithm

Schematic illustration of the PARS algorithm applied to 1-, 2-, and 3-dimensional non-
Cartesian sampling patterns (a-c). K-space sampling locations are represented by solid
dots, colored black if lying within the k-space radius (kR = 4) and gray if lying outside.
PARS selects only proximal signal data (black dots) for the reconstruction of the omitted
data of interest (indicated by the star at the center). The sliding kernel approach of
PARS is illustrated in (d): after an omitted datum is reconstructed, the circle (or sphere)
is moved to the next k-space location to be reconstructed. The process is repeated until
the dataset is complete.

Fig. 3.1 illustrates the application of the k-space locality constraint in 1-, 2- and 3-

dimensional data acquisition schemes. MR signal data are acquired at k-space locations
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represented by solid dots. The unit distance on the Cartesian grid is conventionally defined

27r 8ff
as r . In this example, we select kR to be 4, or Sampling

Field of View Field of View

points lying within the circle (or sphere) of radius kR are drawn in black, and their

corresponding signal data are used in the reconstruction of sl(kreco,). This process is repeated

for each krfcon until a complete dataset is reconstructed. Here, krecon are set to coincide with

the Cartesian grid points, so that a component coil image for the Ith coil can be obtained by

taking the F FT of the PARS reconstructed signal set Sl(krecon).

The complex weights wk,,l, are computed by performing a least-squares fit that

satisfies the following equation:

EEWAk.e (r) C, _(r) k < kR [3.3]
Ak 1'=1

Details of the least-squares fitting procedure are presented later in Eqs. [3.8] - [3.1 1].

By substituting Eq. [3.3] into the signal equation (Eq. [3.1]), we obtain:

s, (krec., ) = e'kr 'nrC (r) p(r)dr, jAk < k R

L

f felkr C r w ie r(kCe (r)p(r)dr
Ak 1'=1

E wAk, lek . ...re'(-k)rC, (r)p(r)dr [3.4]
Ak /'=1

EE WAk, Seik '"'"-k) rC, (r)op(r)dr
Ak /'=1

L

= "E WkSl' (krcon, -Ak)
Ak /'=1

In the limit where kR is set to be minimal and if only one term remains in the first summation

series Y . i.e. only the nearest neighbor point contributes to the reconstruction of a given
Ak

missing point,

L

S, (k,,on,)- WS, (k nr.t-neghbor) [ 5]
/'=I
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then the PARS reconstruction converges to SMASH (Fig 3.4b). However, this special

convergence does not occur if there are two or more equidistant nearest neighbors, which is

generally the case for undersampled Cartesian trajectories (Figs. 3.4a and 3.4c). In the

opposite limit where kR is infinite, the reconstruction becomes a "strong" version of SENSE

in which a full complement of encoding functions are transformed by least-squares fitting to

ideal voxel shape functions. An analogous derivation showing these convergences has been

reported in Ref. (3). Another interesting limit is when the number of coils L in the second

L

summation series becomes one (as in non-parallel imaging), in which case PARS
/'=1

converges to a variant of the Block Uniform ReSampling (BURS) reconstruction (12).

s(krco ) wkS(kr,,,,,con -Ak), IlAkl < kR [3.6]
Ak

In our current implementation of PARS, component images are first reconstructed

coil-by-coil and are then combined as the sum-of-squares, a strategy that has been reported in

Refs. (9) and (13) and that serves to improve the quality of the least-squares fit. In a coil-by-

coil reconstruction, a different set of weights is calculated for each coil dataset (Eq. [3.3]),

yielding a weight matrix table W:

Wl,(Ak, I ') = [WAk,' .fir ] he h coil d [3.7]

With appropriate discretization of the continuous position vector r to selected voxel locations

ry, Eq. [3.3] can be reformulated into the following matrix representation:

WE = C [3.8]

where the entries of the encoding matrix E are:

E k,'),=e'(-k)rr C (rr), [3.9]

and the entries of the coil sensitivity matrix C are:

City = C, (ry) [3.10]

The least-squares solution for W is derived by taking the Moore-Penrose pseudo-inverse,

WE C

W=CEH (EEH ) [311
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SECTION 3.3 Methods
Two sets of experiments were performed with Cartesian and non-Cartesian data

acquisitions respectively. Image reconstruction algorithms in this work were implemented

using MATLAB (MathWorks, Natick, MA, USA) on a Windows-based AMD Athlon XP

2500+ system.

3.3.a Cartesian Sampled Data
DATA ACQUISITION

The first set of experiments was performed on a 1.5T TwinSpeed System (GE

Healthcare, Waukesha, WI, USA). Data were acquired in a 14.8 x 15 x 37.2 cm rectangular

phantom using a coil array of eight independently-positionable elements (Model NMSC-

010B-1.5TGE, Nova Medical, Inc., Wakefield, MA, USA). Each coil element measured 8 x

18 cm. The eight elements were divided into two sets of 4-element arrays each of 32 x 18 cm

total extent, positioned on the top and bottom of the phantom. A 3-D spoiled gradient echo

pulse sequence was used (TE = 2.9 ms, TR = 6.2 ms, RF excitation angle = 15°, 380 mm x

380 mm FC)V, 256 x 256 matrix, 16 slices, 4mm slice thickness). Data were acquired in an

axial volume with frequency encoding performed in the foot-head direction. The data

acquisitions were accelerated 1- to 4-fold in the left-right direction. A low-resolution coil

sensitivity reference was acquired in a separate scan.

In vivo scans of a healthy adult volunteer were performed on the same GE scanner,

and the pulse sequence parameters, coil configuration and acceleration factors were set up to

match those of the phantom experiment (with the exception of a slightly smaller 340 mm x

340 mm FOV).

DATA RECONSTRUCTION AND ANALYSIS
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PARS reconstructions using kR's from 1 to 18 were performed on the phantom

datasets. The PARS reconstructed sum-of-squares images were quantitatively compared to

unaccelerated fully sampled sum-of-squares reference images by calculating total error

power as follows:

IReference(x, y)- PARS(x, y) 2

Total Error Power = xjy EFOV [3.12]
E Reference(x,)] 2

x,y EFOV

Here, the summation E spans the entire field of view (FOV). The kR that yielded the
x,y eFOV

least total error power at a particular acceleration factor was designated as the "minimal-

error" kR.

This empirically determined minimal-error kR was then used in the PARS

reconstruction of the in vivo datasets. PARS-reconstructed in vivo images were qualitatively

compared to SENSE-reconstructed images.

3.3.b Non-Cartesian Sampled Data

DATA ACQUISITION

The second set of experiments was performed on a 1.5T Gyroscan ACS-NT whole

body MR system (Philips Medical Systems, Best, NL). In vivo data were acquired in a

volume containing the coronary arteries of healthy adult volunteers with a commercial five-

element Synergy coil array (two flexible circular elements placed on the chest wall and three

rectangular elements contoured to the table and arranged left-to-right at the subject's back).

Navigator gated and corrected, ECG triggered 3D spiral pulse sequences were used with

conventional phase encoding in the slice-selection direction (13 phase encode steps, 30 mm

slab thickness along the approximately superior-inferior direction) (14). One spiral interleaf

was acquired per R-R interval, using variable angular speed spiral encoding in-plane

(effective TE 1.5 ms, sampling window 20 ms, RF excitation angle = 90°, 360 mm x 360 mm

FOV, 512 x 512 matrix). A total of 42 spiral interleaves were acquired in a fully sampled
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dataset. Threefold acceleration was achieved by acquiring only every third of the spiral

interleaves.

DATA RECONSTRUCTION AND ANALYSIS

Low-resolution in vivo sensitivity maps were extracted from the densely sampled k-

space center using methods described in Ref. (15). SVD conditioning (truncation of singular

values less than 0.01 of the maximum singular value) was used to further enhance the stable

inversion of the localized encoding matrices. Three comparative PARS reconstructions were

performed with k-space radii kR = 1, 2, 3.

SECTION 3.4 Results
Fig. 3.2 illustrates the contribution of neighboring data in the reconstruction of an

omitted datum in a twofold undersampled dataset. Complex weights used by parallel image

reconstructions were calculated based on simulated coil sensitivities (a-c), or acquired coil

sensitivities (d-f). Three reconstruction methods were used in calculating the weights: a,d)

SENSE, b,e) PARS with kR = 1, and c,f) PARS with kR = 5. The omitted datum to be

reconstructed was located at k= 0, and MR data were acquired at k= -127, -125,..., 125, 127

(a two-fold accelerated acquisition). The magnitude of the weights of one of eight coils is

plotted. K-space locality of RF coil encoded data is demonstrated by the diminishing

contribution of signal data as a function of k-space separation from the omitted datum (a,d).

PARS effectively enforces this k-space locality by allowing a finite number of non-zero

values at the center but setting all other weights to zero, as illustrated by the central spikes

whose widths are equal to twice the chosen kR value (i.e. 2 in (b,e) and 10 in (c,f),

respectively).
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FIGURE 3.2 Principle of k-Space Locality in Parallel MRI

Illustration of the inherent k-space locality in parallel MRI. Complex reconstruction
weights were calculated based on a-c) simulated coil sensitivities, and d-e) acquired coil
sensitivities. Three reconstruction methods were used: a,d) SENSE, b,e) PARS with kR

= 1, and c,f) PARS with kR = 5. The omitted datum was located at k = 0, and MR data
were acquired at k = -127, -125,..., 125, 127 (a 2-fold undersampling). The magnitude of
the weights of one of eight coils is plotted as a function of k-space position.

Fig. 3.3 illustrates the effects of two types of noise (noise in signal data and in coil

sensitivities) for SENSE and PARS image reconstructions of a simulated 3-fold one-

dimensionally accelerated dataset. Signal data noise was simulated with standard deviations

equal to 0.01 (a), 0.02 (b) and 0.05 (c) of the maximum image intensity. The square root of

the total error power is plotted on a log-log scale as a function of sensitivity noise with

standard deviations ranging from 10-4 to 10- 1 of the maximum coil sensitivity.
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FIGILIRE 3.3 Total Error Power vs Sensitivity Noise

Illustration of the effect of signal data noise and sensitivity noise in SENSE and PARS
image reconstructions. Three-fold one-dimensionally-accelerated datasets were
simulated with signal data noise standard deviations equal to 0.01 (a), 0.02 (b) and 0.05
(c) of the maximum image intensity, and coil sensitivities were simulated with noise
standard deviations ranging from 10- 4 to 10-1 of the maximum coil sensitivity. The
square root of the total error power in the reconstructed images is plotted on a log-log
scale as a function of sensitivity noise.

Fig. 3.4 plots the total error power as a function of the k-space radius kR in the

phantom experiments. The datasets were regularly undersampled in the left-right direction

by factors of two (a), three (b), and four (c). PARS reconstructions with a range of kR were

performed, and the total error power was calculated as described by Eq. [3.12]. Similarly,

SMASH and SENSE reconstructions were performed. The corresponding total error power
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is plotted. Different acceleration factors yielded different "minimal-error" kR's. As shown in

this figure, the total error initially decreases and then increases as a function of k-space

radius. Relatively broad minima occur at some mid-range k-space radii. The total error

power of SMASH and SENSE are consistently higher than those of the PARS minima.

1-D 2-fold acceleration 1-D 3-fold acceleration 1-D 4-fold acceleration

A- PARS
-SENSE
. SMASH

10
kR

FIGURE 3.4
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Total Error Power vs k-space Radius

Total error power as a function of the k-space radius kR in PARS reconstructions.
Phantom datasets were undersampled in one dimension on a Cartesian grid, and image
reconstructions were performed using PARS with a range of k-space radii. The total
error power of PARS, SENSE, and SMASH reconstructions were calculated by a pixel-
by-pixel subtraction against a fully-sampled reference image (see text). The minimal
total error power occurred at kR = 3 for 2-fold acceleration; at kR = 7 for 3-fold
acceleration; and at kR = 9 for 4-fold acceleration.
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Fig. 3.5 illustrates the PARS reconstructions of 1-D accelerated in vivo data. The

empirically determined "minimal-error" k-space radii were used. For twofold acceleration,

k = 3 (a); for threefold acceleration, kR = 7 (b); and for fourfold acceleration, kR = 9 (c).

SENSE image reconstructions (d-f) at the corresponding acceleration factors are displayed

for comparison. Corresponding computation times of different techniques are shown in

Table 3.1.

Fig. 3.6 illustrates PARS reconstructions of 2-D accelerated non-Cartesian in vivo

data. A fi.lly sampled spiral image (a) and PARS reconstructed images for threefold

undersampled spiral trajectories (b-d) using different kR's are compared. kR's used for the

PARS reconstructions were I (b), 2 (c) and 3 (d). Corresponding computation times of

different techniques are shown in Table 3.2.

2-fold 3-fold 4-fold

SMASH 5.0 5.9 6.2

PARS (kR = 3) 11.1 6.3 7.0

PARS (kR = 7) 57.4 32.1 27.5

SENSE 5.1 4.0 3.6

TABLE 3.1 Reconstruction Times (in sec) for Undersampled Cartesian Trajectories.

3-fold

PARS (kR = 1, using 1 processor)

PARS (kR = 1, using 2 parallel processors)

PARS (kR = 2, using 1 processor)

PARS (kR = 2, using 2 parallel processors)

Iterative SENSE (using I processor)

13

7

75

38

3

TABLE 3.2 Reconstruction Times (in min) for Undersampled Spiral Trajectories.
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FIGURE 3.5 In Vivo Image Comparisons of PARS and SENSE

Comparison of parallel image reconstructions of in vivo datasets at various acceleration factors.
a-c) PARS reconstructions using the "minimal error" kR obtained from the phantom experiment
(kR = 3 for twofold acceleration (a), kR = 7 for threefold acceleration (b), and kR = 9 for fourfold
acceleration (c». d-f) SENSE reconstructions at the corresponding acceleration factors.
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FIGURE 3.6 PARS Reconstructions Using Different k-space Radii

PARS reconstructions of data acquired with 2-D accelerated non-Cartesian trajectories.
Unaccelerated reference image (a) and PARS reconstructed images of threefold
accelerated spiral trajectories with k-space radii kR=I (b), kR=2 (c), kR= 3 (d).
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SECTION 3.5 Discussion

3.5.a k-space locality and computational efficiency

By imposing the k-space locality constraint, PARS exploits the physical

characteristics of RF coil sensitivity encoding to improve parallel image reconstruction. It

has been shown in Ref. (7) that RF surface coils of simple conductor geometry have

sensitivity profiles that are smooth in the object domain and band-limited in k-space. The

effect of multiplication of the imaged object by these coil sensitivities (e.g. Eq. [3.1]) is

therefore a finite-kernel convolution in k-space. The original Fourier components of the

object of interest are locally spread in the acquired MR signal data. Conversely, acquired

signal data proximal to a given omitted signal datum are expected to have the greatest

contribution in reconstructing that datum, as is shown in Fig. 3.2. Exploiting this physical

property dramatically reduces the computational burden associated with inverting the full

non-Cartesian encoding matrix while preserving the dominant behavior of the full inverse. In

addition, the PARS sliding-kernel approach allows data to be directly reconstructed on a

Cartesian grid, eliminating the need to regrid the reconstructed data points.

3.5.b Effect of noise and artifact on total error

In a noise-free scenario, the choice of kR is analogous to the width of the convolution

kernel in non-parallel image reconstruction approaches such as the gridding algorithm (16).

For a gridding reconstruction, increasing the kernel width results in reducing the artifact

power. The benefit of minimizing artifact comes at a cost in computation time and memory.

In the gridding algorithm, it has been shown that an infinite sinc function, i.e. kR = o, is the

ideal kernel, in spite of the long computation time. The same may be argued for kR in PARS,

as long as the noise-free assumption holds.

Once noise is introduced into coil sensitivities (as shown in Figs. 4.2d-f and 4.3a-c),

however, the k-space locality constraint imposed by PARS becomes a powerful tool: a larger

kR inevitably includes diminishingly smaller coefficients of the noise-corrupted sensitivities

and leads to a more inaccurate encoding matrix, counterbalancing the benefit of artifact
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reduction. Thus, the truncation of the inverse problem at a modest kR not only improves

computational tractability but also serves to regularize the inversion. The accuracy of the

inversion is improved in exchange for a moderate level of artifact, which can be tuned to fall

underneath the baseline noise level. In certain special scenarios, as illustrated in Fig. 3.3c

where PARS image reconstructions achieve minimal error around sensitivity noise = 2x10-2,

PARS perfoirmance may be paradoxically improved by injecting some low level of noise in

the coil sensitivity. The numerical conditioning effect of noise has been previously reported

in Ref. (17), and its overall effect is analogous to that of numerical conditioning procedures

that have begun to be applied in many current parallel imaging algorithms (for example,

Tikhonov regularization, c.f. (18)).

Traditional conditioning methods also have the potential to complement the inherent

PARS regularization. When comparing the effects of conditioning between PARS and other

parallel imaging reconstructions, it is important to note that the computational feasibility of

traditional conditioning methods is strictly dictated by the size and structure of the encoding

matrix. In Cartesian sampling where the encoding matrix can be partitioned simply by

performing an FFT, traditional conditioning methods can be easily implemented for most

parallel imaging techniques. In non-Cartesian sampling where simple block diagonalization

by FFT is not available, however, the k-space locality constraint in PARS provides an

enabling advantage by allowing a different local partitioning of the prohibitively large

matrix, thereby facilitating additional numerical conditioning. Furthermore, the use of

independent matrix inverses provides a high degree of flexibility, including the ability to

apply variable conditioning thresholds for different k-space clusters.

3.5.c Total error power

The total error power calculation used in this work constitutes a single integrated

metric to quantify the overall error in parallel image reconstruction. This metric measures

the combined effect of artifact and noise amplification. The commonly used geometry factor

(g-factor) only accounts for noise amplification, and therefore is not adequate to characterize
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parallel imaging techniques that trade artifact for improved matrix inversion accuracy and/or

reduced noise amplification.

PARS reconstructions using a very small k-space radius are typically relatively

immune to error in coil sensitivities, which can be advantageous for noise-prone coil

sensitivity calibrations (Fig. 3.3). However, because of the limited number of encoding

functions, the least-squares fit in Eq. [3.3] may not be very good. Consequently, the artifact

term dominates in the total error calculation. As the k-space radius increases, more equations

are included in the least-squares fit, resulting in a better fit with decreased residual artifact.

However, the amplification of noise or errors in coil sensitivities increases and becomes

dominant.

As expected, the SMASH reconstruction has a relatively large artifact power due to

the constraint of using only the nearest neighbor. In the special case of kR = 1 at 3-fold

acceleration (Fig. 3.4b), PARS converges to SMASH because at any omitted data location,

only one acquired MR signal datum can be reached by a k-space radius of 1. The SENSE

reconstruction used in this work is a weak case of SENSE which, unlike the strong version,

has some degrees of freedom to optimize SNR. Nonetheless, the total error power of SENSE

is higher than the minimal-error PARS reconstruction in the phantom experiments.

Fig. 3.3 illustrates the tradeoff between artifact power and error amplification at

various simulated noise values. SENSE is a so-called "exact" reconstruction such that in the

limit of infinite SNR in both sensitivity and signal data, the total error approaches zero (that

is, ignoring the often modest variances from any chosen target image associated with

reconstructed point spread functions). On the other hand, since PARS (like other constrained

parallel imaging techniques) has a non-zero artifact power for limited k-space radius, the total

error in the limit of infinite SNR asymptotically approaches the value of that residual artifact

power. However, at typical in vivo operating SNR (e.g. SNR < 100), the total error power is

dominated by error resulting from noisy sensitivity and signal data, and in this case, PARS

can demonstrate definitive advantages over an exact reconstruction.

84



3.5.d Qualitative image comparisons
For in vivo datasets acquired on Cartesian trajectories, PARS reconstructed images

show reduced noise amplification and increased immunity to coil sensitivity error as

compared with corresponding SENSE images. At higher acceleration factor (e.g. three- and

four-fold), the noise reduction is more pronounced visually. Also, because the sensitivity

reference was acquired in a separate scan, image registration is a particular problem at the

edges of the object. This calibration error results in conspicuous artifacts in the reconstructed

images, in particular for the four-fold SENSE reconstruction. This challenge has been

addressed for SENSE-like reconstructions by implementing techniques for sensitivity

extrapolation and smoothing. On the other hand, PARS automatically accomplishes the same

effect through the k-space locality constraint.

For the in vivo spiral datasets, the PARS reconstructed images demonstrate the

principle of k-space locality in two dimensions. The PARS threefold accelerated

reconstruction using kR=l has the highest visible noise background whereas those of kR=2

and kR=3 show comparable image quality. Also, the k-space radius can be made adaptive in

this example. As shown in Fig. 3.4, in the 1-D case, the "minimal-error" kR is different for

different undersampling factors. Since the spiral trajectory (as well as other non-Cartesian

trajectories) has variable local sampling density, it is possible to have an adaptive kR that

varies as a function of the local sampling density.

On the other hand, Fig. 3.4 also illustrates that at a given acceleration factor, the total

error power varies slowly around the "minimal-error" kR. These broad minima suggest that a

"good-enough" kR can be coarsely determined, with some tolerance to moderate variations in

acceleration and other scanning parameters (e.g. FOV and image plane orientation). Once a

"good-enough" kR has been determined for a given coil array, the same kR can be routinely

used for PARS reconstructions, without the need for careful optimization.
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3.5.e Characteristics of magnitude noise in sum-of-square
combination

GRAPPA (9) and PARS share the feature that reconstructions are performed in a coil-

by-coil fashion followed by sum-of-squares combination. In this case, the noises across the

reconstructed component coil images are correlated and have non-identical variances (13).

The effect of sum-of-squares combination on non-white, non-identical noises has not been

fully characterized, since existing work only addresses the special case when the coil noises

are uncorrelated and of identical variance (19,20). Preliminary work on the development of a

new generalized model for magnitude noise analysis will be presented in Chapter 5 of this

thesis. This new analysis is required to determine the theoretical effect of varying k-space

radius on the SNR of PARS reconstructions. In the meantime, the total error power

calculation proposed in this work serves as a convenient and, in some ways more relevant,

metric to empirically determine the "minimal-error" k-space radius.

3.5.f PARS and BURS

PARS, in its application of k-space locality and choice of kernel size, bears a close

analogy with the Block Uniform ReSampling (BURS) algorithm, (12,21,22) a "regridding"

algorithm for non-parallel imaging. As shown in Eq. [3.6], PARS may be formulated as a

generalization of BURS that incorporates coil sensitivities in forming the coil-gradient

modulated encoding functions. The addition of the coil dimension in PARS expands the

number of encoding functions by a factor equal to the number of coils. In the case of an

accelerated acquisition, the expanded encoding function set in PARS enables a successful

reconstruction of the undersampled data.

3.5.g Iterative and non-iterative approaches to non-Cartesian
parallel imaging

In addressing the computational burden of 2-D non-Cartesian imaging, an iterative

variant of SENSE has been proposed to avoid the creation and manipulation of the

generalized encoding matrix. This implementation of SENSE (5) employs repeated gridding
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and ungridding procedures within a conjugate gradient algorithm. In our implementations

using MATLAB, iterative SENSE reconstructions tended to have a shorter total run time than

PARS reconstructions. This is demonstrated in Table 4.2. (Computation times in both Table

4.1 and Table 4.2 were benchmarked using prototype Matlab code with little optimization -

absolute performances are typically many times faster when implemented and optimized

using low-level languages such as C.) However, because PARS involves inverting many

small and independent matrices, the algorithm is massively parallelizable for a distributed

computing environment (23). This is also demonstrated in Table 4.2. In the 2D non-

Cartesian image reconstructions, PARS simply distributes the point-by-point data

reconstructions across parallel processors with minimal overhead. Moreover, instead of

requiring complete acquisition of the full data set prior to the initiation of image

reconstruction, the PARS reconstruction can begin as soon as a local cluster of acquired

signal data becomes available. This is expected to provide advantages for low-latency

reconstructions in real-time applications of self-calibrating parallel imaging.

The advantage of only requiring a small subset of acquired data to reconstruct any

particular k-space point will become increasingly important as parallel imaging expands to

the realm of three-dimensionally accelerated non-Cartesian trajectories. For example, a

256x256x2:56 volumetric dataset acquired with a multi-element coil array will occupy on the

order of gigabyte of storage space. Even simple operations such as loading and storing the

dataset in a conventional memory space will require special effort in system engineering.

Algorithms such as PARS, which can judiciously partition the dataset and distribute the

computational burden to parallel processors will be much easier to implement. Lastly, unlike

the iterative conjugate gradient approach, PARS computes the actual reconstruction weights

that are responsible for noise amplifications, permitting explicit g-factor maps to be

calculated accordingly (24). This property may prove useful in verifying for non-Cartesian

trajectories the SNR advantages that are expected from two- and three-dimensional

acceleration (25). Appendix A describes a general strategy to calculate the noise

amplification in PARS reconstruction.
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SECTION 3.6 Conclusions
We have outlined the theory and implementation of the PARS algorithm, which

exploits the common physical characteristic of k-space locality that is inherent in RF coil

encoded data. Instead of inverting a prohibitively large encoding matrix, the PARS

algorithm partitions the inversion burden into manageable and distributable independent

matrix inverses. These small inversions are not only computationally efficient, but also have

a desirable regularization effect which is critical for parallel imaging at high acceleration

factors. As parallel imaging expands to highly accelerated 3-D trajectories with many-

element coil arrays, PARS promises an attractive solution to critical issues such as data

volume, computability, numerical stability, and the desirable balance of SNR and artifact

power.
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SECTION 3.7 Appendix A
A GENERAL STRATEGY TO CALCULATE G-FACTOR FOR PARS
RE C ON ST[' RU CT IO NS

The PARS weight matrices, computed by independent inversions of localized

encoding matrices (Eq. [3.11]), can be collectively arranged to form a reconstruction matrix

Q, such that:

Slecon = s-ac q [3.13]

In a coil-by-coil reconstruction, S "" is the PARS reconstructed signal vector of the th

component coil, and s"q is the acquired signal vector from the coil array. The size of is

potentially very large, as in the case of non-Cartesian multi-dimensional trajectories.

However, Sl is extremely sparse because of the PARS k-space locality constraint, with the

degree of sparseness of Q determined by the k-space radius kR. A coil image is reconstructed

by performing an inverse Fourier transformation on s" 

pi = Fsecon = F sa cq [3.14]

Here, p is the component coil image, and F is the inverse Fourier transform matrix. APARS,

the noise covariance matrix for the component coil image, is expressed as:

PA,,S = F (FQ) [3.15]

where w is the noise covariance matrix of the acquired signal, and (.)H is the Hermitian

conjugate operator. When a Cholesky factorization is performed

= LLH [3.16]

to decorrelate and normalize noise in the acquired signal (5), Eq. [3.15] simplifies to:

A,,AR = FH FH [3.17]

where QL = QL . The yh diagonal element of APARS corresponds to the noise power at the l/"

voxel location, and can be computed as follows:
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(IARS )i = (F IHF H)

=(F^ ) 2 [3.18]

2

= E E Fr,m-m,nn m

The double summations here can be implemented efficiently in computation and memory

storage by taking advantage of the sparseness of Q and the fast Fourier transform (FFT).

Finally, g, the g-factor at the Yh voxel location, can be expressed as:

gy (APA s ) [3.19]

where R is the acceleration factor and ARef is the noise covariance matrix of the unaccelerated

reference image.

While Eqs. [3.15]-[3.19] present a g-factor calculation strategy for PARS

reconstructed component coil images, the g-factor for the final PARS sum-of-squares image

requires additional calculations that are beyond the scope of this manuscript. The sum-of-

squares combination of coil images, performed at the very end of the PARS algoirthm,

involves nonlinear magnitude and square root operations which perturb the noise statistics.

A strategy that accounts for these additional effects will be studied in detail in Chapter 5.
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CHAPTER 4. IMAGE RECONSTRUCTION
USING PRIOR PHASE INFORMATION10

This chapter is devoted to the development of an integrated approach which

efficiently incorporates phase information into parallel image reconstruction. In the

generalized matrix equation for parallel MRI:

s = Ep, [4.1]

all three components (the signal vector s, the encoding matrix E and the spin density p) are

intrinsically complex-valued. However, if the phase of p can be accurately determined a

priori, the real and imaginary components of s and E can be separated, facilitating a better-

conditioned matrix inversion.

SECTION 4.1 Introduction
Parallel MRI techniques utilize prior knowledge of coil sensitivities in order to reduce

the k-space sampling density required for image reconstruction (1-9). Other techniques have

10 The work in this chapter has been adapted for publication as "Willig-Onwuachi JD, Yeh EN, Grant AK,
Ohliger MA, McKenzie CA, Sodickson SK. Phase-Constrained Parallel MRI Image Reconstruction. J Magn
Reson. (In Review)" ENY was primarily responsible for the work in the Theory section while JDW was
responsible for designing and implementing the experiments and data analysis described in the Methods and
Results sections.
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also used different types of prior knowledge to reduce the amount of data required.

Constrained reconstructions (10), for example, reconstruct k-space lines not acquired during

the scan using a priori knowledge about the underlying spin density. Phase-constrained

(commonly referred to as partial-Fourier) techniques, in particular, like the Margosian

(11,12) or Projection Onto Convex Sets (POCS) (13-16), exploit the assumption that a

conjugate (Hermitian) symmetry is embedded in MR signal data. With an accurate

knowledge of a slowly varying phase map, these techniques only require data acquisition in

half of k-space to reconstruct a full image.

The complementary use of prior knowledge available for partial-Fourier imaging and

for parallel MR has many potential benefits. For example, the two methods can be combined

to further reduce imaging time, and various methods of combination have been demonstrated

to improve the performance of real-time imaging (17) and the spatial resolution of single-

shot imaging (18,19). In spite of some early empirical success, proper combination of the

two techniques is not in general straightforward. Instead, rigorous mathematical treatment is

warranted in order to avoid unsuspecting pitfalls as well as to harness the full combined

potential of the two approaches.

To date, the parallel MR and partial-Fourier reconstructions are performed in two

separate steps. The order of the steps, however, is primarily determined by the type of

parallel image reconstruction being used. For parallel imaging techniques that reconstitute

omitted data points in k-space (e.g. SMASH and GRAPPA), it is natural to perform the

parallel reconstruction first, followed by the partial-Fourier reconstruction. On the other

hand, when using a pixel-by-pixel reconstruction method like Cartesian SENSE, the partial-

Fourier technique generally precedes the parallel reconstruction in order to first produce an

aliased image. The parallel image technique can then "unfold" the aliased image pixel by

pixel. Additionally, careful planning is required because a particular strategy of combining

partial-Fourier and parallel MR will alter the allowable k-space sampling patterns and the

feasible methods for measuring the phase map and coil sensitivities. For these reasons,

creating general procedures for partial Fourier parallel MRI can become an interesting and

non-trivial exercise.
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Further complications for SENSE-like applications are associated with the extraction

of the required phase map from the intermediate aliased image. In this case, the critical

assumption of a slowly varying phase may no longer to true. The phase of an aliased image,

in fact, depends on both the phase and the magnetization density of the object being imaged.

A naive Margosian or POCS reconstruction based on an incorrect phase map introduces

severe systematic errors in the final image reconstruction.

To illustrate this potential pitfall, consider a pixel of an intermediate image

reconstructed from an N-fold regularly undersampled dataset. The complex value of the

pixel is the summation of the spin density (magnitude, p, and phase, r) from N aliased

locations labeled by indices r,

N

pe' = p e ' . [4.2]
=l1

The pixel phase can be written as

= arctan [4.3]

Note that the spatial variation of q depends on the variation of the phases and the magnitudes

at the N aliasing points. While the phase of the fully sampled image may vary slowly, it is

difficult to assume that the phase of the aliased image will vary slowly as well. At high

acceleration factors where N is sufficiently large, the phase o at each aliased pixel becomes

more statistically uncorrelated, and a low-resolution phase map is no longer an accurate

estimate of the high-resolution version.

The phase equation (Eq. [4.3]) does not imply that a segmented partial-Fourier

SENSE reconstruction will necessarily fail or cannot be modified to be more robust. When N

is very small (e.g. N= 2), it is conceivably that the assumption for slowly varying phase may

still be true in the aliased image. It should be noted, however, that for such a combination

strategy, where a partial-Fourier reconstruction of an aliased image is required, disentangling

the magnitude and phase information opens up the possibility of serious errors.
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In this chapter, an integrated approach is proposed to combine parallel MRI and

phase-constrained concepts into a single reconstruction that rigorously incorporates the phase

constraint to avoid potential phase aliasing problems. In addition, this general formalism

enables the reconstruction of a wide variety of k-space trajectories. The theory of phase-

constrained parallel MR image reconstructions will be discussed, implementations in

phantoms and in vivo will be demonstrated, caveats and limits for practical implementation

will be outlined, and potential tailored sequences will be suggested. Our earlier work in this

area was presented at the 2003 ISMRM conference (20). Further studies have appeared

subsequently exploring combined partial-Fourier parallel MRI methods (21-23).

SECTION 4.2 Theory

4.2.a Phase-Constrained Equations and Image Reconstruction

As already stated in Eq. [1.30], the MR signal can be expressed as an integral of the

spin density, p, against the coil sensitivity, C, and the complex sinusoidal modulations

induced by the gradient coils,

s,(k)= felk rC(r)p(r)dr, [4.4]

and subsequently rewritten in the form of a matrix equation:

s = Ep. [4.5]

where the encoding matrix, E, which contains the coil sensitivity and gradient coil

modulations, has matrix elements defined by:

E(,),Y = ei (r ' ) [4.6]

Eq. [4.5] can be written in explicit real representation as

Re (s) Re (E) - Im (E)lRe (p)[47]

Im(s) = Im(E) Re(E) LIm(p) [4.7]

Eq. [4.7] will be important for comparison with an analogous phase-constrained equation

below (Eq. [4.10]).
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The complex image intensity can be written in terms of its magnitude and phase:

p(r) = (r'le (r ) , where (r) is a real quantity proportional to the spin density, and (r) is

the image phase. We can then rewrite Eq. [4.5] as

s = Ep = EO, [4.8]

where p _ (, E(D is the new encoding matrix, and (D is a diagonal matrix containing the

common fully encoded (unaliased) phase with matrix elements defined by:

Dmr e , ' [4.9]

Eq. [4.8] is a complex matrix equation, but can be written in an explicit real representation as

[Re (s)l =Re(E~))I [4.10]

Im(s)] Im(E* 15,

or alternatively,

gS=E[ where E F Re(ED)l and - Re(s)l [4.11]
LIm(E4)j LIm(s)]

Maximal SNR is achieved by using a modified Moore-Penrose pseudoinverse (3,7)

Einverse = (Et-f'E)l) EtTia , [4.12]

where P is a modified version of the noise covariance matrix (Eq. [1.42]) representing the

correlation of noise between the real and imaginary channels:

( Re nRe n,) (Im nRen',l
= Idk. [4.13]

( Ren, Imn) (Imn, Imn,.)

The brackets with an overbar, (.), indicate a time average over noise samples, n. A subset

of coil indices, and 1', is shown to indicate the matrix structure, and the direct product with

the identity, Idk, indicates that these elements are replicated for all k-space indices. This

inversion, as shown, is like SENSE but can be tuned to be more SMASH-like or GRAPPA-

like by inverting smaller subblocks of the encoding matrix (7). As an illustration, derivations

for PARS reconstruction using a priori phase information are shown in a later section.
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In practice, v may be measured by acquiring noise records in all coils, (e.g. in a

short noise-only scan), separating them into real and imaginary parts, and computing the

relevant correlations. This procedure is essentially equivalent to the one used for

unconstrained reconstructions, but with separated real and imaginary channels.

The solution vector 15 in the phase-constrained problem (Eq. [4.10]) is half the size of

the solution vector in the standard problem (Eq. [4.7]). The a priori knowledge of the phase

map has effectively eliminated half of the unknowns by setting up to be strictly real. In

other words, the constrained problem is twice as overdetermined as the unconstrained

problem, and the level of undersampling at which the encoding matrix remains invertible is

twice what it is for the unconstrained case, assuming the constraint is valid and the rows of

E are linearly independent (as discussed below). This implies that up to half as many k-

space sampling points may be omitted. In additional, at a given acceleration factor, more

degrees of freedom are available for SNR optimization-leading to reductions in noise

amplification, as compared with the unconstrained case alone. Note also that because of the

use of the generalized encoding matrix, this method allows for a one-step calculation of the

noise amplification from the acquired MR signal to the final image pixel.

The expression for SNR in the constrained reconstruction is analogous to that for the

unconstrained case. The SNR loss compared to a fully gradient-encoded image is quantified

by the noise amplification factor, or geometry factor, g (3). In order to calculate the g-factor,

we first express the noise variance, ay, in any voxel yof the reconstructed image as the

diagonal element of a transformed noise covariance matrix, as in (3):

ar = (EinverseP inverse )w

= (( ) -I *- ) p((EC-E) I )/ [4.14]

=(EE'TTE) 
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The g-factor is then proportional to the ratio of the noise standard deviation, ay, to the

corresponding orul, which would have been obtained in an unaccelerated reconstruction.

This ratio is scaled by the square root of the acceleration factor, R, to account for a loss in

temporal averaging and yield a pure measure of the SNR loss from geometric factors alone:

g- -1 rn · [4.15]

The value of cr in the numerator of Eq. [4.15] may be calculated from Einverse and as

shown in Eq. [4.14]. The value of fu"' may be calculated using the unconstrained version of

Eq. [4.14] with R=1. For k-space trajectories on a Cartesian grid, aou reduces to the square

root of the simplified expression in Eqs. 20-21 of (3), which can be written in the current

notation as

2
- ful - C= \ C (r) 'C(rry) [4.16]

Here the elements of the standard noise resistance matrix, A,l = (nin,'), describe correlations

among complex noise records, and Npix is the number of pixels in the phase-

encode direction.

The phase variations in may arise from the transmit RF phase, gradient non-

linearities, susceptibility variations, special techniques such as flow encoding, or various

other sequence-dependent factors. Independently acquired phase information, for example

from a body coil image, may be used to generate tI for a phase-constrained (also referred to

in this paper simply as constrained) reconstruction. Additional images are not, however,

required. Measuring the coil sensitivities in vivo (7) can provide both the sensitivity and

phase calibration.

For in vivo sensitivity calibration, reference component-coil images in the target

image plane are obtained either from a separate acquisition (external calibration) or from a

set of central k-space lines (self-calibration) (24). These reference images, which may be of
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lower spatial resolution than the target image, not only can be used for sensitivity calibration

but also contain information about the complex spin density. Consequently, an encoding

matrix constructed using in vivo sensitivities already contains the phases needed for the

constrained reconstruction," and no phase estimation is required.

Mathematically, the in vivo sensitivities can be expressed as:

C,"- vv (r) = C, (r) pI- res (r), [4.17]

and the MR signal equation (Eq. [4.4]) as:

,,w--er (r) pwrd
SI (k) = fe C (r)powres (r) dr

= e krC,"-viv (r) w1(8)dr,

= e k rC" -" ' vi (r)p q"
O

" " "
e (r)dr

where

plqulien, (r)= p(r) [4.19]
p;oW-res(r)

Similarly, the modified encoding matrix Ein-
vivo can account for the effect of the in vivo

sensitivities:

n-vivo ik,-ik-'r fn - vivoE =in-e.io ) [4.20]

Finally, Eq. [4.5] can be rewritten as

s = Ein-vivopquoient, [4.21]

The low-resolution spin density typically has the same phase variation as the full-resolution

spin density, pt'"-'" (r)=- '" 1-re. (r)e'p(r), where ° "res (r) is a real quantity. When this

condition is in fact true, the vector pqu"°"'n is strictly real since it is the quotient of two real

quantities,

" With the assumptions that the phase properties of the reference and acquisition sequences match and that the
resolution of the reference data is sufficient.
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quotient (r)= p(r)
ow-res()

/ol -res ( r)Im -res(~.)I~o~r) [4.22]

The constrained form of Eq. [4.21] follows naturally:

Re (s)l Re (E-o" )l .en[4.23]

Im (s) Im (E'-,vo P [4.23]

As has been described in earlier work (7), after obtaining a solution for pquotent (r), all factors

originating from the reference spin density may be removed by post-multiplication,

p(r) = p o"'res (r)pqouient (r) .12

4.2.b k-Space Trajectories and Symmetry

When using this technique only for improved parallel imaging, the benefits resulting

from constrained versus unconstrained reconstruction depend both upon the sensitivity

patterns of the coil array and upon the symmetry of the data about k-0. To maximally

benefit frorn the constraint, both the real and the imaginary components of each encoding

function (or-, equivalently, each row of real-value E) should be linearly independent.

The condition of linear independence, however, breaks down in a plausible scenario

when the coil sensitivity C(r) is purely real and the sampling trajectory contains k-space

conjugate pairs k, = -k., resulting degenerate encoding functions,

ekr C, (r) = (e C, (rr)) . [4.24]

12 In practice, this is done by multiplying by the square root of the sum of the squared reference images.
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Numerically real sensitivities do occur in selected circumstances, for example along an axis

of symmetry oriented in the direction of the main magnetic field, but in most cases of

practical interest coil sensitivities will have distinct phases, allowing improved reconstruction

of full-Fourier trajectories. For numerically real sensitivities, trajectories that do not include

k-space conjugate pairs guarantee distinct encoding functions, and may yield additional

gains. For complex sensitivities, the distinctness of encoding functions has a more

complicated dependence on coil geometry, acceleration factor, image plane orientation, and

k-space trajectory.

FIG U R E 4. I Schematic of PARS combined with Phase Constraint

Schematic illustration of the PARS algorithm applied without (a) and with (b) phase-
constraint. K-space sampling locations are represented by solid dots, colored black if
lying within the k-space radius (kR = 4) and gray if lying outside. a) The original PARS
selects only proximal signal data (black dots) with the circle (solid) for the
reconstruction of the omitted data of interest (indicated by the star at the center). b)
The combined PARS and phase-constraint adds a second circle (dotted) in the conjugate

symmetric neighborhood, i.e. (kx' ky) = (-kx' -ky).

4.2.c PARS Reconstruction Using A Priori Phase Information

The generalized encoding matrix formalism allows flexible combination of the phase-

constraint method with a parallel imaging algorithm of choice. In particular, the
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effectiveness of the PARS reconstruction (Chapter 3) can be enhanced when a priori phase

information is available. Conceptually, the conjugate relationship places k-space points into

the same effective neighborhood as points with inverted k vector, and the k-space locality

principle can be readily extended to the conjugate neighborhood. In Fig. 4.1, the PARS

sliding window is modified to incorporate the phase-constraint, in which a second circle

selects relevant data in the conjugate neighborhood for PARS image reconstruction.

Derivations of the phase-constraint PARS theory are presented here. The modified

MR signal equation (Eq. [4.18]), which expresses the received MR signals in terms of the in

vivo coil sensitivities Ci"'"""(r) and the real quantity p""en"(r), provides an intuitive handle

to exploit conjugate symmetry, such that

sI (k) = Jek r"-vvo (r)pquoiet (r)dr

SI (-k) = le-'k rCln-viv (r)ptq
lloietI (r)dr

[4.25]
s (-k) = (e-'k rC"-I'""(r)p""oe"' (r)) dr 

= fek r (n-viv (r)) pquoe (r)dr

where (ab)* = a'b for any complex numbers a and b.

The complex conjugation of the coil sensitivities in Eq. [4.25] effectively doubles the

number of encoding functions that can be used for PARS reconstruction, and the new coil

sensitivities Ci"-v"' (r) are complex conjugate pairs of the original Ci"-vivo (r)

1< tr)<L'"-"""' (r) -, . [4.26]
(C-iL (r)), L < I < 2L[4.26]

Similarly, the PARS least-squares fit equation (Eq. [3.3]) is expanded to

2L

wAkil e'(-Ak) rC",-'9vo q) cn-"'"" (,) [4.27]
Ak 1'=1

and the PARS reconstruction equation (Eq. [3.4]) to:

~sI~ (k w, S, (kcon - Ak)+ WaIk,sL (-kec,,on -Ak) , [4.28]
Ak 1'=1 1'=1.
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where JIAkJ < kR denotes all acquired data points within a k-space radius k of reconstruction

krecon and its conjugate counterpart -krecon.

In summary, as shown by Eqs. [4.27] and [4.28], the incorporation of the phase-

constraint to the PARS algorithm requires minimal modification, and would merit future

investigation to quantify the potential benefits.

SECTION 4.3 Methods

Simulations were performed to test the basic theory for phase-constrained parallel

image reconstruction. Simulation results were then verified with phantom and in vivo

experiments.

For the simulations in Fig. 4.2, a slowly varying phase (a linear phase ramp from -re

to 7n) along both axes with the period equal to the FOV) was imposed on a real-valued 64 x

64 voxel image. This complex image was multiplied by coil sensitivities calculated using the

Biot-Savart Law for a planar array of four overlapping loop elements. The simulated loops

were 20 cm x 9 cm, spaced by 7.2 cm in the narrow dimension, and located 10 cm from a

coronal image plane. The principal axis of the array and the phase-encode axis were oriented

in the left-right direction. The FOV was 30 cm square. Resulting component coil images

were Fourier transformed, and various combinations of phase-encode lines were selected to

mimic undersampled datasets.

For the simulations in Fig. 4.3, a real-valued 128 x 128 voxel image was multiplied

by simulated coil sensitivities. The virtual array consisted of four 24 cm x 8.4 cm elements

spaced by 6.72 cm, and it was situated 4.8 cm away from a coronal image plane. The FOV

and orientation were the same as for Fig. 4.2. Fourier decimation was used to simulate

undersampling.
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The experimental phantom (Fig. 4.4) and in vivo data (Fig. 4.5 and Table 4.1) were

acquired on a GE TwinSpeed 1.5T imaging system with EXCITE technology (GE Medical

Systems, Milwaukee, Wisconsin, USA) using an FSE-XL sequence with TE = 42 ms

(phantom) or 60 ms (in vivo), TR = 1000 ms, echo train length = 4 (phantom) or 8 (in vivo),

bandwidth -: +/-31.25 kHz, FOV = 340 mm (phantom) or 370 mm (in vivo), slice thickness =

5 mm, and matrix size = 256 x 128 (phantom) or 256 x 192 (in vivo). These data were

acquired using a custom designed coil array (Nova Medical, Inc., Wakefield, Massachusetts,

USA) with four independently-positionable 89 mm x 178 mm rectangular elements and low

input-impedance preamplifiers. The elements were arranged in a non-overlapping fashion in

the left-right direction across the bottom of the phantom or the back of a healthy volunteer.

The image plane was coronal and parallel to the array plane. Two separate fully sampled

data sets were acquired in each case. One was Fourier decimated to yield regularly

undersampled data (e.g. for R=4 in Fig. 4.4, every fourth phase-encode line was used, for a

total of 32,). The other was used for coil sensitivity and phase calibration. This method

provides an identical target image for various sampling and reconstruction schemes allowing

straightforward comparison, while in theory mimicking the exact behavior of directly

acquired aliased data. The calibrations for Fig. 4.4 and Table 4.1 employed full resolution

along the phase-encode direction. Calibration data for Fig. 4.5 had one-twelfth the spatial

resolution of the undersampled data in the phase-encode direction.

Images were generated using both phase-constrained and unconstrained

reconstructions. The traditional encoding matrix E or the constrained encoding matrix E

was formed as outlined in the Theory section, inverted, and multiplied by the appropriate

signal vector to yield an image. A serial combination of standard Margosian (10) and

unconstrained reconstructions was used for Fig. 4.2. g-factor maps were calculated using Eq.

[4.15]. Changes in SNR relative to baseline (R=I) images that result from noise

amplification can be computed from the inverse of the ratio of noise levels,

SNR/SNRfU=cofu"/la(3). The g-factor already contains this information (Eq. [4.15]), and thus

was used to compute the decreases in SNR shown in Table 4.1 (see Eq. 24 from (3)):

KSNR [4.29]
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Here the angle brackets represent an average over all pixels. Average increases in SNR

resulting from application of the phase constraint were computed by averaging a pixel-by-

pixel ratio of the unconstrained to constrained g-factor maps over the image plane

SNRu)gc P [4.30]

where pc (uc) stands for phase-constrained (unconstrained). For unaccelerated magnitude

images, the SNR was calculated by selecting signal and noise-only regions and accounting

for the Rician distribution of noise using the methods in (25).

SECTION 4.4 Results

Fig. 4.2 demonstrates how a simple serial combination of partial-Fourier and image-

space parallel reconstructions can introduce errors. In this case, the Margosian

reconstruction of an aliased image, (a), does not faithfully reproduce the original partial-FOV

image, (b), even though the full-FOV image phase is slowly varying. The errors seen in (a)

are propagated through the unconstrained parallel reconstruction, (d), but do not appear in the

constrained reconstruction, (e). The central eight lines of the phase were used for the

constrained reconstruction-the same number of lines used by the Margosian (even-

numbered lines of the central 16). The simulated phase here is slowly varying-completely

specified in the central eight lines of the Fourier transform. The standard single-coil

Margosian reconstruction is shown for reference in Fig. 4.2c.

Fig. 4.3 displays g-factor maps for simulations using unconstrained and phase-

constrained reconstructions with different two-fold and three-fold undersampling schemes.

The 1 st and 3rd columns contain the results for a phase-encode scheme with lines placed

symmetrically about k=0 (each line +k has a paired conjugate line -k) for R=2 and R=3,

respectively. The 2nd and 4 th columns contain results for corresponding asymmetric

(unpaired) phase-encode schemes. Grayscale images of the g-factor are shown for

unconstrained and constrained reconstructions. Note that R=2 plots are scaled differently

than R=3 plots for better visualization. As expected, noise amplification is reduced with
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constrained versus unconstrained reconstruction for all trajectories shown (mean g labeled

below each plot). It can also be seen that the noise amplification is reduced most for the

asymmetric trajectories.

a) c) d) e)

FIGURE 4.2 Simulations of Partial Fourier Image Reconstructions

Simulated illustration of partial-Fourier error when reconstructing an aUased image.
Half-FOV images from one component coil are shown comparing a) a Margosian
reconstructed half-FOV image using even lines k={-8,-6 ... 28,30} to b) the original half-
FOV image, lines k={-J2,-JO 28,30}. c) A single coil standard Margosian
reconstruction of lines k={-4,-J 29,30} is shown for reference. Full-FOV images
reconstructed from lines k={-8,-6 28,30} are shown using: d) serial Margosian and
unconstrained reconstructions and e) phase-constrained reconstruction (with low-
resolution phase calibration). Phase-encode direction is left-right.

Fig. 4.4 displays phase-constrained reconstructions of four-coil phantom data with

acceleration factors ranging from one to eight. Unconstrained images for R of one to four

show the usual degradation in SNR as the acceleration factor approaches the total number of

coils. In comparison, the constrained reconstructions show a more gradual degradation in

apparent SNR as the acceleration factor is increased. Additionally, the constrained

reconstructions here remain artifact-free up to R=8 (twice the coil count). Fig. 4.5 illustrates

the improved image quality for in vivo four-coil data with fixed acceleration, R=4, using a

coil/phase calibration at one-twelfth resolution along the phase encode axis (i.e. 16 phase

encode lines were used for calibration).
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FIGURE 4.3 Noise in Parallel Image Reconstructions with and without Phase
Constraint

Comparison of noise amplification using unconstrained and phase-constrained parallel
image reconstructions for simulated data at two-fold and three-fold acceleration. The
selected undersampling schemes are: R=2 symmetric (lit column), R=2 asymmetric (2nd

column), R=3 symmetric (3rd column), and R=3 asymmetric (last column). Simplified
illustrations of each phase encoding (PE) trajectory is shown along the top row. Solid
squares (empty circles) indicate data points acquired (skipped). Second and third row:
g-factor maps for unconstrained and constrained reconstructions, respectively, with
mean g-factor labeled below each. Note: R=3 plots are scaled differently than R=2 plots.

Rows 1 and 2 of Table 4.1 quantify, for an in vivo dataset, the decrease in average

SNR at acceleration factors of one to four resulting from g-factor alone (described above and

seen qualitatively in Fig. 4.4). These numbers are relative to the SNR of the respective R=I

reconstruction for each method, estimated to be 54 and 75 for the unconstrained and

constrained methods, respectively. This difference results from a noise filtering effect

(discussed later) intentionally excluded from these calculations. Row 3 of Table 4.1

illustrates the average increase in SNR from applying the constraint for R =1 to 4, again only

including g-factor effects.
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FIG U R E 4.4 Phantom Images from Phase-Constraint Parallel Image Reconstructions

Phantom images from constrained parallel reconstructions (bottom two rows) of four-
channel data with acceleration factor, R, of 1 through 8. Unconstrained reconstructions
are shown in the top row for R of 1 through 4.

FIGURE 4.5 In-Vivo Images from Phase-Constraint Parallel Image Reconstructions

Accelerated ill vivo images with R=4 and four coils comparing unconstrained (left) and
constrained (right) reconstructions. 16 phase encode lines were used for coil and phase
calibration.
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TABLE 4.1 Changes in SNR with Increasing Acceleration Factor for in vivo Data.

The second and third rows show the degradation in average SNR relative to the baseline (R=1)
images using unconstrained and phase-constrained reconstructions respectively (see Eq. [4.291
). The fourth row shows the average increase in SNR of the phase-constrained reconstruction
(pc) versus the unconstrained reconstruction (uc) (see Eq. 14.301). All calculations show
relative changes that result from noise amplification (g-factor) alone.

SECTION 4.5 Discussion
The phase-constrained parallel image reconstruction method presented in this chapter

provides an integrated combination of partial-Fourier and parallel imaging techniques that

offers a rigorous incorporation of the phase constraint and is capable of avoiding errors

arising from partial-Fourier reconstruction of aliased images. The potential for these errors is

illustrated in Fig. 4.2. The example of Fig. 4.2 may not be representative of all partial-

Fourier reconstructions, coils, or objects being imaged, but it provides anecdotal evidence

motivating further exploration.

From the point of view of partial-Fourier imaging, our reconstruction can be viewed

as a generalized phase-constrained reconstruction with coil sensitivities included as prior

information. From the point of view of parallel imaging, the constraint assists in generating

skipped lines in a new way-through conjugate symmetry. For traditional partial-Fourier

trajectories (i.e. for trajectories with sampling omitted on one side of k-space), use of this
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Unconstrained SNR, \SNR(R=) 1 0.643 0.417 0.244

SNR I
Constrained SNR, \SNR(R=) 1 0.675 0.500 0.372

Change in SNR, SNR 'P 1 1.06 1.24 2.05
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conjugate symmetry provides essentially the same result as a straightforward combination of

parallel MRI with partial-Fourier reconstruction (assuming that such a combination is

successful). However, the generalized form of the reconstruction proposed here is

compatible with many different types of undersampled k-space trajectories. For example, we

have shown results using full-Fourier trajectories (i.e. both sides of k-space sampled) which

are either symmetric or asymmetric about k=O. Variable-density trajectories (such as those

used in self-calibrating reconstructions) and even non-Cartesian trajectories may also be

treated using the same formalism.

For the purposes of exploring this new reconstruction, we have chosen in most cases

to compare its performance to standard full-Fourier SENSE reconstruction. This serves as a

good reference point for which we can quantify meaningful performance related factors such

as noise amplification. We have demonstrated that, as expected, when a phase constraint is

imposed on parallel MRI reconstructions, lower noise amplifications (see Fig. 4.3 and Table

4.1) and higher achievable net acceleration factors (see Fig. 4.4) are observed.

For the asymmetrically sampled full-Fourier cases, such as those represented in the

second and fourth columns of Fig. 4.3, some component of the reduced noise amplification

could likely be achieved by combining partial-Fourier and parallel MR reconstructions in a

two-step fashion (with a cautionary reminder of the possibility for errors). In such cases, for

example, separate partial-Fourier reconstructions could be performed on both halves of the

data yielding a symmetric data set suitable for image-domain parallel image reconstruction.

In the second column of Fig. 4.3, the interlaced placement of acquired and corresponding

conjugate lines allows the filling of lines using symmetry alone, which may explain the g

factor very near one. In the symmetric cases illustrated in Fig. 4.3, however, the Margosian

cannot generate any missing lines, and the improvements result only from the combined

effects of coil sensitivity information (mixing predominantly nearby k-space lines) and

conjugate symmetry (mixing only conjugate lines). For such trajectories, one might

consider using a more general partial-Fourier reconstruction algorithm, such as POCS, in

combination with parallel imaging. Such a combination, however, would also not involve

simple sequential application of existing techniques. The POCS-SENSE algorithm (23), for
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example, requires recasting the parallel image reconstruction in terms of an interactively

applied projection.

Phase-constrained reconstruction gives improved SNR compared with unconstrained

reconstruction even for R=1 images, despite identical unitary g-factors. The constrained

inversion intrinsically eliminates the imaginary channel noise. This results in an approximate

2 reduction in noise as compared with an unconstrained magnitude image containing noise

from both real and imaginary channels. Of course, the component of the improvement in

SNR that results from noise filtering could also be accomplished by rephasing an

unconstrained reconstruction and taking its real part. This baseline improvement, then, is not

unique to the constrained case, and it was excluded from the calculations for Table 4.1. One

benefit of the constrained technique, however, is that this rephasing occurs automatically.

Sensitivity to phase errors is the principal weakness of this proposed technique. The

phase information must be accurate and works best when the underlying phase is slowly

varying and motion between the calibration and the accelerated scan is minimal. Tissue

interfaces with large susceptibility discontinuities can result in rapid phase variations, posing

problems for low-resolution phase maps. The amount of phase calibration information

required depends on many factors and was not specifically explored in this study. The

limitations of phase calibration need to be explored further, along with possible solutions

such as phase extrapolation or smoothing.

SECTION 4.6 Conclusions

Results from simulations and in vivo experiments have been presented to illustrate

specific benefits of phase-constrained parallel image reconstructions. The general formalism

of the technique enables the combination of partial-Fourier and parallel MR imaging into a

single-step exact-inversion method and enables the use of non-Cartesian sampling schemes

that cannot be handled using traditional combinations of parallel MRI and partial-Fourier

reconstructions. As a consequence of the phase constraint, the solution vector in the

constrained inversion problem is reduced in size, and the inversion is more overdetermined
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than in the unconstrained case. This results in more available degrees of freedom in the

inversion to minimize noise amplification. Aside from improving SNR compared with the

unconstrained reconstructions without partial-Fourier, this also allows the extension of

achievable undersampling factors beyond the total number of coils used, even for acquisition

trajectories that would not normally allow additional acceleration using partial-Fourier

techniques. This technique can also be used to avoid potential errors introduced by serial

combinations of partial-Fourier and SENSE-like reconstructions. One important limitation

which is common among any phase-constrained reconstruction methods, however, is the

necessity for accurate phase calibration data.
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CHAPTER 5. GENERALIZED NOISE
ANALYSIS FOR MAGNITUDE IMAGE

COMBINATION WITH PARALLEL MRI13

This chapter develops a generalized method to analyze the noise statistics in parallel

image reconstructions which involve magnitude combinations of intermediate solutions for

the generalized MR matrix equation, s=Ep. These magnitude operations irreversibly

transform the underlying complex Gaussian noise statistics, requiring modification of the

traditional noise analysis shown in Eq. [1.46]. For the general case of magnitude-combined

images, a numerical strategy is developed to compute the new noise distribution. Analytic

solutions are noted for special cases which can be expressed in terms of Rayleigh, Ricean,

modified Bessel functions.

SECTION 5.1 Introduction

Even though MR images are generally complex, magnitude MR images are often

viewed and analyzed in clinical setting. The traditional practice of reading x-ray images on

films, which are strictly magnitude images, probably gave rise to radiologists' preference for

13 The work in this chapter has been presented as "Yeh EN, McKenzie CA, Grant AK, Ohliger MA, Willig-
Onwuachi JD., Sodickson DK. Generalized Noise Analysis for Magnitude Image Combination in Parallel MRI.
Proc. 1 Ith Annual Meeting ISMRM; 2003; Toronto, Canada. p 21."
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magnitude MR images. Hence, the noise distribution in magnitude MR images is an

important determinant of perceived image quality. Magnitude noise distributions for

conventional (non-parallel) MRI were studied in Refs. (1,2). For individual images, the

magnitude operation transforms a complex Gaussian (normal) variate to a Ricean variate (1).

When component coil images from an RF coil array are combined as the sum-of-square

magnitudes, the distribution is described by a modified Bessel function of the first kind (2).

Two critical assumptions were made in Ref. (2). It was assumed that the noise at a

given pixel position across the component coil images was a) uncorrelated and b) of identical

variance. For conventional MRI, this can be accomplished in theory by decorrelating noise

in signal data from different component coils prior to the reconstruction of individual coil

images. The two critical assumptions can then be satisfied, and the noise analysis method

described by Ref. (2) can be applied in the final sum-of-squares composite image. However,

in practice, noise decorrelation is rarely performed, except in the context of parallel imaging.

In parallel imaging methods that perform coil-by-coil reconstruction followed by a

sum-of-squares combination (3-5), the two assumptions just described no longer hold, even

when the noise in the component-coil signal data is decorrelated prior to image

reconstruction. Coil-by-coil reconstructions have certain advantages (e.g., improved least-

squares fits for the block-diagonalization approaches such as PARS), and a final composite

image is subsequently obtained by sum-of-squares combination. As illustrated in Fig. 5.1,

intermediate images are typically targeted to emulate coil-modulated images, but they can

emulate other profiles as well. For this type of image reconstruction approach, parallel image

reconstruction invariably re-introduces noise correlation across the intermediate images. In

addition, the noise amplitude varies from one coil to the next and from one pixel to the next

in the reconstructed image.

To date, no noise analysis tool has been developed for sum-of-squares parallel

imaging. Instead, an alternative method of measuring the total error power in reconstructed

images is used (Eq. [3.12]). This empirical method calculates the total error power of
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parallel MR images based on an unaccelerated reference. In the event that obtaining an

unaccelerated reference is not feasible (e.g. when parallel imaging is a necessity instead of an

option), or when motion spoils the comparison between referenced and accelerated images,

the error power method cannot be applied. A comprehensive and rigorous analysis method is

required in order to assess the general behavior and practical performance of sum-of-squares

parallel imaging techniques, and to enable future research in areas such as noise filter design.

In this chapter, the noise characteristics of magnitude images are generalized for both

parallel and non-parallel imaging. A numerical approach is proposed for the general case,

while analytic solutions are derived for three special cases. Calculation of noise

amplification (g-factor) for magnitude images is demonstrated using the new noise analysis

tool, and an SNR-optimal k-space radius for the PARS technique (Chapter 3) is determined.

SECTION 5.2 Theory

5.2.a Noise Decorrelation

The MR signal data s (k), received by coil at k-space position k, has a noise

covariance matrix described by Eq. [1.42]. This noise covariance matrix Tcan be

eliminated by creating noise-decorrelated signal data lec'"rr (k) using the Cholesky

decomposition process previously described in Eq. [1.44]. The signal data to be used in

subsequent derivations will be taken to be noise-decorrelated, and the superscript will be

dropped to simplify the notation.

5.2.b Reconstruction of Intermediate Images

The reconstruction of an intermediate image can be expressed as a matrix operation,

p() = EinverseS [5.1]
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where p') is the vector representing the intermediate image , and Eerse is the

reconstruction matrix computed by a parallel MRI technique of choice (e.g., PARS or

GRAPPA). It should be noted that even though the number of intermediate images generally

equals the number of physical coils L, this is not a requirement. Since there is no noise

correlation in s, the noise covariance matrix between the pixels in the intermediate images I

and 1' can be expressed as:

0 (/' ') = E--),ere (En'ver.,e ) [5.2]

For example, the noise covariance between pixel r in image I and pixel ' on image 1' is

defined as,

C2(i i Zy yr )-09(i]1' . [5.3]

5.2.c Sum-of-Squares Combinations

Until now, we have used only linear operations in our reconstruction, and the noise

distribution in each image pixel remains Gaussian. However, the sum-of-squares

combination that follows will transform the noise characteristics to a non-analytic expression

in general.

Sum-of-squares combinations, despite their nonlinearity, are preferred over linear

phased-sum combinations in order to eliminate the potential risk of phase cancellation due to

coil sensitivity modulation (3). The final solution vector p(SS) is obtained by element-wise

sum-of-squares combination of the intermediate solution vectors p(') at each pixel position y,

p(os) = / )2 [5.4]

The flow diagram in Fig. 5.1 schematically summarizes coil-by-coil parallel image

reconstruction approaches.
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FIG URE5.1 Schematic of Sum-of-Squares Combined Parallel Image Reconstruction

Schematic illustration of the coil-by-coil approach used by parallel image reconstruction
techniques such as PARS and GRAPPA. Intermediate coil images are first
reconstructed in order to improve the least-squares fits used SMASH, GRAPPA and
PARS. The underlying object in these intermediate images is modulated by the
corresponding coil sensitivity, and the coil sensitivities have different phases. A simple-
sum combination of the intermediate images risks potential phase cancellation. Instead,
a sum-of-squares combination is typically performed to obtain the final composite
image.

5.2.d Notational Convention for Random Variables

The remaining sections of this chapter, as well as the appendices, are devoted to

technical aspects of the proceeding discussion. In order to enhance readability and allow

easy reference to standard literature, we adopt a common convention for random variables,

such that italic capital letters (e.g., X, Y, Z) denote random variables, and the corresponding

italic lowercase letters (e.g., x, y, z) denote sample values and dummy arguments. The
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probability density function (pdf) of random variable X is denoted as Px (x), with mean, m,,

and variance, cy. We refer to the Fourier transform of a variable's pdf as its "characteristic

function," denoted as ¢x (jo). Vectors of random variables will be denoted using bold

lowercase letters (e.g., x, y, z), where x=[XI,X 2,...,X,] ,with mean vector, m x, and

covariance matrix x ',. The notation x - N(m, , ) is used for random variable vectors of

Gaussian (normal) distributions. Table 5.1 summarizes the random variable notation

convention used in this chapter.

Random Variable X

Sample Values and x
Dummy Arguments

Probability Density Function (pdf) Px (x)

Characteristic Function x (Jo))

Mean and Variance m, and a'

Mode mode(x) = arg max Px (x)
x

Vector of Random Variables x [X, X2, .. , Xn ]T

Mean Vector and Covariance Matrix mE and Ox

Gaussian (Normal) Distribution x N(m , x )
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5.2.e Changes of Variables

To simplify the noise analysis in Eq. [5.4], we will consider only one particular pixel

position . New variable names are introduced in order to eliminate the irrelevant indices,

R p(OS)
[5.5]

Eq. [5.4] is reformatted,

R = , ZZ [5.6]

The random variable R is the perceived intensity of pixel ,, on the sum-of-squares combined

image. The probability density function, p (r), is to be determined. The Z, 's have

complex Gaussian distributions, with mean vector m, and covariance matrix ., or

equivalently in our convention, z = [Z, Z2 ,. .,Z. Z] and z - N(m, P ). Conceptually, the

elements of' m are the values of pixel ,, for each component coil image. Mathematically,

m. is expressed as,

m:= [E(L.,,er,Ep] '[ErEP ," [EeEP"y] [5 7]

and the entry (, l') of VZ is extracted from Eq. [5.2],

v z (1, ') = 2 (,l' y, yo )- (l')] [5.8]

Since P is a Hermitian matrix, we can use a similarity transformation (Ref. (6), Section 5.5,

Property 4) to find A and Q such that

v =QAQH, [5.9]

where Q is an orthogonal matrix (Q-' = QH), and A is a diagonal matrix with non-negative

entries A =A1 ,,. Now, define X=A-"/2Q-z, and where X= [XIZ2'X2 ...* and

X - N (m,, , ), m = A-1/2Q-Im and
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[5.10]

, = A :Q z (A ,1,Q )

= A 1 /2 A (A-1 2
)H

= Id

Eq. [5.6] can be expressed in terms of the new variable,

R = Z> Z = 
1=1

= J(QA'/2x)H QAI/"2x

= XnAX = i X;X =
1=1

[5.11]

A1iX21m I

Because X 's are uncorrelated Gaussian variates, each term l is a non-central chi-square

variate, where the notation X2,m uniquely defines the variate 2 with d degrees of freedom

and a noncentrality parameter m2 . Now R is expressed as the root of a linear combination of

independent non-central chi-square variates.

5.2.f A Numerical Method to Compute the Probability Density
Function of R

The pdf PR (r) for R does not have an analytic expression in general. However,

PR (r) can be numerically computed using the following method.

First, the characteristic function, Or (jco), of random variable Y, where Y = R2 , has

an analytic expression as shown in Eq. [5.51] in Appendix B. (Appendices A and B provide

detailed derivations of Or (jo).) The pdf of Y, p, (y), can be obtained numerically by

performing a fast Fourier transform (FFT) on discretized ¢y (n),

VY (n) = l (jnAw), n = 0,+1,+2,...

where Ao represents a sufficiently small frequency interval.
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After finding p, (y), a change of variables can be applied to compute p, (r) using

the following relationships in the corresponding cumulative density functions (cdf),

R Y

JP, (r)dr = py (y)dy, [5.13]
o o

where

dy = 2rdr. [5.14]

The mean of R, mr, can be computed by performing a simple numerical integration,

Mr = E[R]= rpR (r)dr, [5.15]
0

and the variance of R, ar2 can be calculated using

=E [R]-(E[R])
=E[Y]-(m,) 2 [5.16]

=) ()l jo -(mr)2

Finally, the "perceived SNR" is expressed in terms of mr and Ur as

perceived SNR = Mr [5.17]

while the g-factor calculation adapted from Eq. [1.49] is expressed as

g - [5.18]

A2 AccelFactor [5.18]

where 0-He, and -v are the noise variances of the accelerated and reference images,

respectively, calculated using Eq. [5.16], and AccelFactor is the acceleration factor.

127



5.2.g Analytic Expressions for Special Cases

There are three special cases in which PR (r) does have analytic expressions. First, if

the pixel y, is in a noise-only region, the non-centrality parameter m2 becomes zero, and

X2 degenerates to a central chi-square variate *20 . In this case, PR (r) can be expressed

as a weighted sum of Rayleigh distributions (Appendix A, Eq. [5.43]),

PR(r)= qre '2 r>O [5.19]

where

L 

q / l_(4 ) [5.20]

Also, the nth moment, E R" , also has an analytic expression,

L

E[R" = q (2 )n2 Fr(1 + n/2), [5.21]
/=1

where F() is the gamma function. Eq. [5.21] can be used to calculate the mean and

variance of R.

In the second special case, parallel imaging techniques that directly reconstruct to one

final image without going through intermediate coil images (e.g. SENSE (7)) fall under the

trivial degenerate case for which L = 1 and R is a scaled Ricean variate, as already shown in

Ref. (1) and also in Appendix B, Eq [5.50].

Finally, for parallel image reconstruction using the PILS technique (8) and also non-

parallel image reconstruction in general, the diagonal matrix in the similarity transformation

(Eq. [5.9]) ,A, is a scalar multiple of the identity matrix, i.e. = / ,,. Eq. [5.11] can be

simplified to,
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R-L 2

1=1

=ito 2e f '[5.22]

where the new chi-square variate X4 , h is of 2L degrees of freedom and noncentrality

parameter Hm. The expression of PR (r) assumes the form that has been derived in Ref.

(2), which is also shown in Eq. [5.48] in Appendix B.

SECTION 5.3 Methods

Simulations and in vivo experiments were performed, and 2-fold accelerated parallel

image reconstructions were performed using the sum-of-squares PARS method. Individual

component coil images were first reconstructed to offset approximations inherent in the

assumption of k-space locality, and then combined as the sum-of-squares in order to

eliminate potential phase cancellations.

SIMULAT IONS

For simulations, sensitivities of a 6-element rectangular coil array were generated

using a Biot-Savart algorithm. Each array element measured 180x80mm, and the array

covered a total extent of 180x393mm. A 2-fold accelerated MR dataset was simulated

(400x400 mm Field of View, 256 x 256 matrix). A k-space radius of 4 was used in the

PARS reconstruction. And without any loss of generality, the noise covariance matrix of

simulated signal data was set to the identity. As discussed in the Theory section, noise in

acquired signal data can be decorrelated by a Cholesky decomposition prior to image

reconstruction. The use of the identity noise matrix in simulated data serves to simplify the

analysis.
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After the generation of signal data, coil-by-coil PARS image reconstructions were

performed, and the component coil images were combined using sum-of-squares. The noise

covariance matrices Py of the component coil images were calculated using the PARS

reconstruction weights (as shown in Eq. [5.8]). Two pixel positions were considered: the

central pixel (128,128) and a /4 FOV off-center pixel (128, 192).

The pdf of the perceived intensity, PR (r), is expected to vary both with actual object

intensity (due to the nonlinear transformations described above) and with pixel position (due

to spatially varying weights in the parallel image reconstruction). Thus, PR (r) was

calculated for actual object intensities ranging from 0 to 6, for both pixel positions.

IN VIVO EXPERIMENTS

In vivo data were acquired on a Siemens Symphony 1.5T MR imaging system

(Siemens Medical Systems, Iselin, NJ, USA) with a maximum gradient strength of 30mT/m

and a rise time of 300 sec. One reference image and one two-fold accelerated image

volume were acquired with a commercially available four-element body array (2 anterior and

2 posterior elements, each element measured 140x135mm) using Volumetric Interpolated

Breath-hold Examination (VIBE) (9) (TR 4.2 ms, TE 1.88 ms, 12° flip angle, 180 mm thick

slab, 72 partitions, 225x300 mm Field of View, 146x256 matrix, 2.5xl.54xl.17 mm spatial

resolution).

PARS reconstructions using various k-space radii were performed. For the image

reconstructed using k-space radius of 4, g-factors were obtained using both the traditional

ROI method and the numerical method proposed in Section 5.2.f. Additionally, the median

and mean g-factor values for PARS reconstructions using k-space radii ranging from 2 to 20

were calculated and plotted for analysis.
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FIGURE 5.2 Probability Density Functions of Perceived Image Intensity

Probability density functions of tbe perceived image intensity in a simulated 2-fold
accelerated PARS image reconstruction. Solid lines represent tbe pdf of tbe central
image pixel and dasbed lines represent tbe pdf of a pixel offset by ~ of tbe FOV from
tbat central pixel. Because of tbe magnitude operations involved in tbe image
reconstruction, tbe pdf no longer assumes a Gaussian distribution. As sbown by tbe
different sbapes of pdf's, tbe perceived noise variances would also depend on tbe actual
underlying image intensity (illustrated by tbe different widtbs of tbe peaks) and tbe
position oftbe pixel (illustrated by tbe dasbed and solid lines).

SECTION 5.4 Results

Fig. 5.2 shows the probability density functions of the perceived image intensity in a

simulated 2-fold accelerated PARS image reconstruction. Solid lines represent the pdf of the

central image pixel and dashed lines represent the pdf of a pixel offset by If.. of the FOV from

that central pixel. It is important to note that prior to the sum-of-squares combination, each

image pixel of a component coil image has a complex Gaussian pdf whose mean corresponds

to the actual coil-modulated spin density. However, the sum-of-squares combination

transforms the complex image pixel to the magnitude image pixel, which assumes a strictly

positive real value. As illustrated, the perceived image intensity has a non-Gaussian pdf, and

the mean of the pdf no longer corresponds to the actual image intensity. Also, the noise
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variances vary depending on the actual underlying image intensity (illustrated by the

different widths of the peaks) and the position of the pixel (illustrated by the dashed and solid

lines). It should be clear from this figure that a g-factor calculation using the ROI method

would not provide an accurate answer.

Fig. 5.3 plots the statistical biases between the perceived and actual intensities. The

generalized noise analysis used the noise covariance matrix of the central pixel in the 2-fold

accelerated in vivo image reconstructed by PARS (kR = 4). Statistical biases were calculated

by subtracting the actual image intensity from the mode and mean of the perceived image

intensity and were plotted on a linear scale (a). Fractional biases were calculated by dividing

the absolute biases over the actual image intensity and were plotted on a semi-logarithmic

scale (b).

Fig. 5.4 qualitatively compares the PARS reconstructions of 2-fold accelerated in vivo

data using various k-space radii: kR = 2 (a), 4 (b), 20 (c). Intermediate coil images were first

reconstructed and then combined using the sum-of-squares. Upon visual inspection, (a) and

(b) have comparable image quality, while (c) has an elevated noise floor. A quantitative

method, such as g-factor calculation using the proposed generalized noise analysis, is

required to characterize the difference between (a) and (b).

Fig 5.5 demonstrates two methods to determine g-factor. The first method (a) used a

region-of-interest (ROI) approach, which estimated the SNR of the reconstructed image by

manually defining a noise-dominant region and a signal-dominant region and measuring the

noise and signal power in respective regions. The g-factor was erroneously determined to be

less than 1, the theoretical lower bound. The second method (b) used the numerical method

proposed in Section 5.2.f to calculate the noise power directly in the signal-dominant region.

The g-factor was then computed using the generalized noise statistics.
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FIG URE5.3 Statistical Biases of Perceived Image Intensity

Statistical biases between the perceived and actual intensity. Biases were calculated by
subtracting the actual image intensity from the mode and mean of the perceived image
intensity and were plotted on a linear scale (a). Fnctional biases were calculated by
dividing the absolute biases over the actual image intensity and were plotted on a semi-
logarithmic scale (b).
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FIGURE 5.4 Image Comparison of Sum -of-Squares PARS Image Reconstructions

Qualitative image comparison of PARS reconstructions. Images were reconstructed
from 2-fold accelerated in vWo data using PARS k-space radii of 2 (a), 4 (b), and 20 (c).
Intermediate coil images were fint reconstructed and then combined sum-of-squares. a
and b have comparable image quality, whlle c has an elevated noise Door.

Fig. 5.6 plots the mean and median g-factors of PARS reconstructions of in vivo data

as a function of k-space radius. 2-fold accelerated in vivo images were reconstructed using k-

space radii ranging from 2 to 20, and the g-factors of the images were computed pixel-by-

pixel using the proposed generalized noise analysis method in Section 5.2.f. The mean and

median of the g-factors in a PARS reconstructed image were determined and plotted

according to the k-space radius used in the reconstruction. The g-factor plots correctly

predict the visually noticeable elevation of noise background in Fig. 5.3c compared to Figs.

5.3a and 5.3b. In addition, these plots provide a quantitative comparison between Fig 5.2a

and Fig 5.2b that would be difficult to distinguish by visual inspection. This analysis shows

that the optimal k-space radius for PARS (i.e., the radius that minimizes the g-factor) is kR =
4.
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(A) ROI Approach

Signalrej= 0.30
(Jref= 0.0316

SNRrej= 9.54

Signal2x = 0.27
(J2x = 0.0320

SNR2x = 8.63

g-factor = 0.782 < 1

2x PARS
(B) New Approach:

Noise is directly
calculated

in the signal region.
(green box)

(Jre( = 0.062

g-factor = 1.31

FIGURE 5.5 Comparison of G-factors Obtained by ROt and the proposed Numerical
Method

Demonstration of two methods to determine g-factor. The first method (a) used a
region-of-interest (ROI) approach, which estimated the SNR of the reconstructed image
by manually defining a noise-dominant region (red boxes) and a signal-dominant region
(green boxes) and measuring the noise and signal power in the respective regions. The
g-factor was erroneously determined to be less than I, the theoretical lower bound. The
second method (b) used the generalized noise analysis method to calculate the noise
power in the signal-dominant region, and used that to determine the g-factor.
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FIGURE 5.6 Calculated G-fadors vs k-space Radius

The mean and median g-fadors were plotted as functions of l-space radii. The PARS
technique reconstructed 2-fold accelerated in vivo datasets using l-space radD ranging
from 2 to 20. G-fadors were calculated one pixelloc:ation at a time nsing the proposed
generalized noise analysis method. The mean and median of the g-factors of a PARS
reconstructed image were determined, and were plotted ac:c:ordingto the k-space radius
used in the reconstruction.

SECTION 5.5 Discussion

5.5.a Bias in Noise-dominant Region and Signal-dominant
Region

As shown in Fig. 5.3, the bias introduced by the sum-of-squares combination displays

different characteristics in the noise- and signal-dominant regions. In noise-dominant region,

the bias can be estimated by the Rayleigh equations (Eqs. [5.19]-[5.21 D. In the intermediate

region where the noise power and the actual object intensity are comparable, the bias reaches

a minimum at an actual object intensity of roughly 2 (in units where the noise variance is 1),

while the fractional bias decreases monotonically. As the object intensity continues to

increase, the bias increases in direct proportion to the object intensity, and Fig. 5.3b

illustrates that the fractional bias asymptotically approaches 0.4%.
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While Fig. 5.3 represents the results of one in vivo experiment of a particular

acceleration factor, it is reasonable to expect that the general trend of these results can be

applied to current parallel MRI techniques where the number of elements and the factor of

achieved acceleration are relatively small. For highly accelerated parallel MRI with many-

element coil arrays, it can be speculated that the same general trend may still be applied. The

physical attenuation of coil sensitivities, commonly referred as the PILS effect (8) where

coils that are positioned proximal to the image pixel will contribute the most in the

reconstruction of the coil-by-coil image reconstruction, will naturally limit the number of

effective coils in the coil-by-coil image reconstruction. However, future studies are required

to verify these conjectures.

5.5.b Intensity Correction Using a Maximum Likelihood
Estimation Method

An aposteriori intensity correction can be performed to eliminate the intensity bias in

order to enhance image contrast. In particular, the noise-dominant region will benefit the

most because this is the region with the largest fractional bias. The bias function, b(r), can

be determined using a maximum likelihood (ML) estimation method,

SML (r)= argmax p(r,)(r s), [5.23]
s E all possible s

and

b (r) = r - sA,, (r), [5.24]

where R is the perceived object intensity, and SML (r) is the ML estimator of the actual object

intensity, S. More discussion on the ML estimation is deferred to Chapter 7.

It should be noted even though the bias function varies pixel to pixel, it only varies

slowly (except at sharp aliasing boundaries) because the coil sensitivities used in spatial

encoding also vary slowly. A similar trend has been observed in Fig. 5.2 that the pdf's at

pixel positions separated by a quarter field-of-view only vary slightly. The bias function

calculated fbr a particular pixel location can be applied to its proximal neighbors. Therefore,
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once a small but clinically interesting region is identified, a posteriori intensity correction

can be applied, and image contrast can be enhanced in that region. On the other hand, if a

systematic bias correction is needed for the entire image, selected pixel locations

representing different regions can be selected to generate bias functions for their

corresponding neighborhoods.

5.5.c Computational Requirement for Numerical Integration
Numerical integration was used to derive the probability distribution function and

also the noise characteristics for the general case where the analytical expressions given

above are not applicable. The computation time for the numerical method for a 2-D image

set was in the order of minutes when implemented using MATLAB (MathWorks, Natick,

MA, USA) on a Windows-based AMD Athlon XP 2500+ system. With appropriate code

optimization and translation to a low-level language such as C, the projected computation

time may be short enough to permit implementation as an interactive tool for real-time

clinical applications.

5.5.d g-factor Calculation and Optimal PARS k-Space Radius

A theoretically-consistent g-factor (>1) was calculated using the method proposed,

whereas the g-factor derived from the ROI approach was incorrect. The ability to explicitly

calculate g-factor for sum-of-squares parallel MRI allows a common quantitative metric to be

used across parallel MRI techniques. Perhaps more importantly, the g-factor calculation

provides a means for internal optimization. For example, an SNR-optimal k-space radius of

PARS can be determined by plotting the g-factors at various k-space radii. Similarly, the

GRAPPA algorithm, which relies on a less rigorously defined SNR optimization technique to

resolve over-determinacy, can use the g-factor metric for optimization.

It should be noted, however, that the g-factor has limited physical meaning since it

only accounts for the amplification of the noise variances. In magnitude-combined parallel

image reconstructions, the non-Gaussian noise can no longer be completely characterized
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using only the variance. A g-factor analysis should be supplemented by other statistical

methods such as the bias estimation/correction.

SECTION 5.6 Conclusions
A theoretical model of noise statistics has been derived for sum-of-squares-combined

parallel image reconstructions. The g-factor map of magnitude images can be explicitly

computed at any given underlying object intensity. While the general case requires

numerical methods, analytic expressions exist for three special cases. For the PARS

reconstruction, the SNR-optimal k-space radius is predicted based upon the knowledge of the

coil sensitivities and an estimate of the underlying object intensity. An additional benefit is

anticipated for non-Cartesian parallel imaging: proposed iterative reconstruction algorithms

for non-Cartesian trajectories do not allow calculation of a g-factor, but g-factor maps are

now available for non-Cartesian PARS reconstructions. Thus, this generalized noise analysis

tool will enable quantitative SNR analysis for parallel imaging techniques, coil geometries,

and k-space trajectories of choice.
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SECTION 5.7 Appendix A

DERIVATION OF CENTRAL CHI SQUARE DISTRIBUTION WITH
DISTINCT VARIANCES

Traditionally, a central chi-square random variable Y is constructed by:

= I Z, [5.25]
n

with the Z, i = 1, 2, ..., n, being statistically independent and identically distributed Gaussian

random variables with zero mean and variance 02. When n = 1, the probability density

function (pdf) can be expressed as:

1 2
2

P (Y)=e 2a, y>0 [5.26]

and the characteristic function:

r (Jw)= leI' Yp p (y)dy

I . [5.27]

(1-j)202) '/2

Because of the statistical independence, in cases n > 1, the characteristic function becomes:

1
Yr (j c )

2 [5.28]
(1 - j2o2 )

Equation [5.28] has a well-known inverse Fourier transform,

() = Y n/2-le-y/22, y O. [5.29]
a 2n/2 rF n

When n = 2, i.e. = X2 +X 22, the pdf becomes:

1 -y

PY(y)= e 2a2, y 0 . [5.30]

Now, suppose we define a new random variable

R =ii= Z+ Z. [5.31]

By a change of variables in Eq. [5.30], we obtain a Rayleigh distribution:
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r22.2
pR(r)= -e , r>0. [5.32]

For magnitude image of a single coil receiver, this Rayleigh distribution governs the noise in

image regions when no MR signal is present (1). Here, Z, and Z2represent the real and

imaginary components of a noise-only pixel. For an array with L receivers, we can similarly

express the sum-of-squares Y in the noise-only region as:

Y E ( Zr' )a + (, Za. )g [5.33]
/=1

Substituting 2L = n to Equation [5.29], we get

1 L-1 202py (y) = 722r y e , y . [5.34]

This derivation has been shown in Ref. (2). Here, Eq. [5.34] assumes two conditions: 1) the

noise received by each coil is statistically independent, 2) the noises across the receivers have

identical variance. In the derivation below, we proceed to relax the second condition.

Suppose each channel (real or imaginary) has distinct variance o 2. The

characteristic function then becomes:

i= 1QYcjo0)n(1-jw2o7)" 2 [5.35]

However, since it is generally true that the real and imaginary noises received by the same

RF coil would have identical variances a, we can rewrite Equation [5.35] as:

L

Y(J )( j2-) [5.36]

Eq. [5.36] assumes the following general form:

f(x)=n , [5.37]

and by the partial fraction expansion, Eq. [5.37] can be expressed as:

f(x) = E (x'a), [5.38]
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where b, 's are computed by evaluating f (x) at the removable singularities,

b, =[(x -a )f(X)]x= [5.39]

Equation [5.36] can be expressed in terms of as a summation,

L

O0 (I-JJ2o=)' [5.40](J = (l-jw2-2)

where q,'s are the appropriate coefficients determined by partial fraction expansion by

substituting o- in place of b. Now each of the terms in the summation series is just the

characteristic function of a Rayleigh distribution of variance o12. Taking the advantage of

linearity, the inverse Fourier transform yields:

Pr (y)=E q e 2 2 y2 0. [5.41]
1=1 2y

Equivalently, we can express R and its pdf as follows:

R = = (Zea) 2Z eI )Z; + mag ) 2 [5.42]
/=1

and

r2

pR (r la)= e 2a, r >0. [5.43]

Interestingly enough, the final pdf is expressed in terms of a weighted sum of the pdf's of

Rayleigh distributions with variance 012
.
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SECTION 5.8 Appendix B
DERIVATION OF NON-CENTRAL CHI SQUARE DISTRIBUTION WITH
DISTINCT MEANS AND DISTINCT VARIANCES

To generalize further from the results of Appendix A, we can derive the pdf for non-

central chi square distribution with distinct variances. To begin, we define a random variable

Y such that:

=zz [5.44]

with the X, i=1,2,...,n, being statistically independent Gaussian random variables with

distinct means m, and distinct variance a, . When n =1, the probability pdf can be

expressed as:

1
(y+m2) cosh( 2

e y20, [5.45]

The characteristic function associated with the pdf in Eq. [5.45] is

y (jo))= e'' pi, (y) dy

[5.46]jwm
2

1 (I-jo2l 2 )/2

(I - jo2 2 e

We note here that when m = 0, Eqs. [5.45] and [5.46] readily degenerate to Eqs. [5.26] and

[5.27] respectively. Once again by the argument of statistical independence, in cases n > 1,

the characteristic function becomes:

n Ii1/2e7l-w2))
1

0Y(jc) = rl e ()"e [5.47]

Further simplification of Eq. [5.47] is possible should the variances a, 's be identical (2).

PY(Y) = 2(2

(n-2)14

s 2 In 2-I Y2 y20, [5.48]

where I,,, (.) is the m-th order modified Bessel function of the first kind. In particular, for the

case n = 2 and a, = 2 = ca (1), we obtain the pdf and the characteristic equation of Y as:
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("2 Y)

_ e 2(2 i
(Y) 2 2 oy VY-or

Y ( J) 1 (I jw2o2) )

(I - jW2o2)

y0>O

[5.49]

where s2 = m' + m2. With a change of variable R = 2 + Z2 , we arrive at the Ricean

distribution:

PR (r) = e 20 I 2 s2 07 2 9
y0>. [5.50]

When s = 0, Eq. [5.50] reduces to Eq. [5.32], the Rayleigh distribution (1).

Now, we are ready to derive the pdf of the sum-of-squares Y of an L-coil array with noise of

distinct means m and distinct variances %a. To begin, let each coil have two independent

noise channels (real and imaginary) of the identical variance Uo. Letting 2L = n, we can

rewrite Eq. [5.47] as:

L 1

,=, (- j20.) [5.51]

where s =(me ) + a ) The pdf of Yis obtained by taking the inverse Fourier

transform of Eq. [5.51].

1
P (Y) =I- | y (j)e -Ydcdw

j ( ) -

= 2 2 -1 ej-IwU2)e ,Yd2z =, (1 - j2cr2)

[5.52]

y>O

The function inside the integral has L different essential singularities (poles of infinite order)

1
located at jco= 2 . In order to determine the coefficient of the pole of

2a,
-1 th order, a full

Laurent expansion is needed at each singularity, resulting an Lth-time nested infinite

summation of the coefficients of Laurent series. To the author's knowledge, no analytic

solution has been determined.
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SECTION 5.9 Appendix C
This appendix provides a summary of literature search for an analytic form of the pdf

PR (r) of the perceived intensity R. The efforts were met with little success, but the author

decided that the findings would merit documentation anyway. The following equations were

transcribed from the cited sources largely unchanged, but with minor adaptations for the

notation convention used in this chapter.

A solution for a special case of Eq. [5.52] exists (Theorem 4 in p.59 of Ref. (10))

when there are only two distinct variances among the , 's, that is,

=, iO,
0.7 

[5.53]
i= ..., D

i=D+l,., L

And rewriting Equation [5.25]

Y = Z
i=l
21L

1=l

2D
=YW2+

i=1

[5.54]

2(1L-1))

vV2
i=l

where W, and VK are the noncentral Gaussian random variables of variances0,2 and 0,2

respectively.

In this special case, the pdf of Y is expressed as:

(21-2)

r Y(Y) = 21 -2 2
la 2 0. I

a
2 2

-a2v+,2

e 2e 2
X=olya=o =o

F(D+a+/) 
a!/!(D+ a) 

I fl) ja
2 \\ w

where
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2a,2
Ia

)

a
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ID
a= |(s ) [5.56]

I=l

and

b = E(Si )2 [5.57]
i=L)+I

The nested infinite summation of Bessel functions in Eq. [5.55] is not attractive

computationally. Unfortunately, if there are more than two distinct variances, the expression

will further develop into a high order of nested summation.

A slightly more general approach was taken by Press et al (11). The derivation

depends on the fact that the pdf of noncentral chi-square variate X2's of d degrees of freedom

and s2 noncentrality parameter can be expressed as a weighted sum of central chi-square

variates with the weights equal to the probabilities of a Poisson distribution.x, S e22 ,2,=) .2[5.58]
If there are L distinct variance or 's, and 2L = n, then we can express Eq. [5.54] as:

n 2L L= Zz= Z (Z'(Zre. ) + (ZmLg )2
i-l i=l 1=1 [5.59]
L

= E 'X,sX
/=1

To match the convention used in Press, we let = I-I:

L-I

Y =A

1=0 [5.60]
=, V'si, + a 2az ]

where =o 02 and a, =2 for l=1,..,L-1. We will drop the tilde from from here

onward. Now we are ready to express the pdf of Y.
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Pi (y) qPx2,, where q, > 0, = 1 . [5.61]
y=o y=o

The weighting constants, q's are a function of s/ and a/.

qO =(Pa, exp sj, ), [5.62]
1=1 / =0

and for all y 0,

qy= , e-S'2 (d 2 /2) /(y - a)!]Ka (r), [5.63]
a=O

and the Ka (y) satisfy K (y) < 1, and

Ka (1)= ha),

Ka (2) = E hhl ), . [5.64]
i, =o/l0

Ka (3)= E h h,(_ i h(l etc
=0 2 =0

The h are: defined by

h(') =Zke d -/2 (d 12 ) /(, -k)!] C (ip-k) [5.65]
P=0 k=O

where the (' ) , and the g(ik) are defined by

Ca =a, 2 (-a, ') F(m, /2+a)/F(a+l)F(m, /2), [5.66]

g, =a-k - )), (I_ 2 a1, go 1. [5.67]

In summary, neither of the two approaches shown in this appendix provides any

obvious computational benefits for the generalized noise analysis in this chapter.

Paradoxically, speculations can be made that should an analytic solution actually exist, it

would invariably assume complicated expressions similar to those of the two approaches.

The numeric approach described in the Theory section may still be the best alternative.
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CHAPTER 6. FUNDAMENTAL LIMITS:
PARALLEL IMAGE RECONSTRUCTION AS AN

ARRAY PROCESSING TECHNOLOGY 14

This chapter studies the theoretical and numerical correspondence between parallel

MRI and wireless communications, both of which belong to the general family of array

processing technology. In particular, the work in this chapter addresses the question whether

parallel image reconstructions (i.e., the linear inverse problem s = Ep) could be improved by

adapting methods from the wireless community.

SECTION 6.1 Introduction

A close correspondence has recently been reported between parallel MRI and

multiple-input multiple-output (MIMO) wireless communications (1). (Fig. 6.1 provides a

schematic illustration of MIMO.) Both fields utilize measured "sensitivity" information in

multiple detectors to unfold aliased data. However, in MIMO, maximum likelihood

estimation (MLE) has been shown to outperform matrix inversion techniques for signal

decoding (2). One might speculate, therefore, that MLE might also yield improved

14 The work in this chapter has been accepted for presentation as "Yeh EN, Ohliger MA, Cheng MC, Grant AK,
Sodickson DK. Can Maximum Likelihood Estimation Outperform Matrix Inversion in Parallel Image
Reconstruction? Proc. 13'h Annual Meeting ISMRM; 2005; Miami Beach, USA."
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performance for parallel MRI, in particular if the reconstructed signal data assume finite bit

precision. This study addresses this question by first deriving the theoretical bounds of

parallel image reconstruction, then outlining a general theory of MLE and also the special

conditions under which MLE and encoding matrix inversion become mathematically

equivalent. A practical adaptation of MLE for parallel image reconstruction with finite bit

precision is then described. Lastly, the results of numerical simulations comparing MLE and

matrix inversion are presented and discussed.

y=Ax+n
X y

# of Transmit
Antennae: M

A
Channel
Matrix

n
Gaussian

noise # of Receive
Antennae: N

FIGURE 6.1 Schematic of Multiple-Input Multiple-Out (MIMO) Technology

Schematic of the multiple-input multiple-output technology in wireless communications.
Multiple antennae are transmitting simultaneously in the same channels. The signals
traverse different paths, and hence experience different channel conditions, before
reaching the multiple receive antennae. The aliased signals can be resolved
algebraically using prior knowledge of the channel matrix A (shown here), or using a
maximum-likelihood estimation algorithm (not shown here).
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SECTION 6.2 Theory
6.2.a The Cramer-Rao Bound for Parallel MRI

The Cramer-Rao bound (CRB) gives the lower bound on the variance of any valid

estimator x(y) for x. Traditionally, the application of the CRB has been limited to the class

of unbiased estimators. However, recent work has expanded it to include the class of biased

estimators (3,4). This section provides the derivations of the CRB for two major classes of

parallel MRI reconstruction techniques described in Sec. 1.5.c.2: the full matrix inversion

approach (e.g., unbiased reconstruction in SENSE (5)) and the k-space block-diagonalization

approach (e.g., biased reconstruction in PARS, SMASH (6) and GRAPPA(7)). The third, but

minor class of parallel MRI reconstruction techniques - the image-domain block-

diagonalization, PILS (8)- will be presented in the Discussion section where it is compared

to the channel allocation strategy used in wireless communications prior to the development

of MIMO.

UNBIASED ESTIMATION

In both parallel MRI and MIMO, a vector of observations, y, can be expressed in

terms of a linear system A, an unknown vector of nonrandom parameters x, and a noise

vector n,

y = Ax+n, [6.1]

where n NV(O,), denoting zero-mean Gaussian distribution with covariance matrix T. If

an estimator i(y) has an expected value equal to the unknown x, i.e.,

E[i(y)] = x, [6.2]

then i(y) is said to be unbiased. The familiar least-squares (Moore-Penrose) pseudo-

inverse solution (Eq. [1.38]) provides an unbiased estimator,

i(y) = (AHA) AHy [6.3]

since
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E[i(y)] = E[(AHA) AHy]

= E[x]+E (AHA)- AHn]. [6.4]

=X

More generally, when a matrix A- ' satisfies the condition A-'A = Id where Id is an identity

matrix, the estimator defined by,

i(y)= A-'y [6.5]

is unbiased. The CRB for the covariance matrix of any unbiased estimator, Aunbiased (X), is

given by

Aunbla.ed (X) > Iy (x), [6.6]

where Iy (x) is the Fisher information matrix,

ax axI( x) = Er PY (Y;x) a In py (y;x) ] [6.7]
[6.7]

-E a' In py (y;x)1
ax2

and py (y;x) is the probability density of function of y parameterized by x. As shown in

Eq. [3.260] of Ref. (9), the Fisher information matrix for a linear system with Gaussian noise

can be expressed as

Iy (x) = AH-'A, [6.8]

and the CRB is

A,. biased > (AH v-'A)-'. [6.9]

Eq. [6.9] interestingly coincides with the noise covariance matrix derived for the minimum-

variance unbiased (MVU) reconstruction (Eqs. [1.44]-[1.46]), such that,

XMVU (Y) = A-VUY

an(dH~r1Ay1 AH~Wly [6.10]
= (AHn-'A)-I ANd-ly

and
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AMVU = (AH-'A) - ' = CRB. [6.11]

In other words, for unbiased parallel image reconstructions, the full matrix approach with

Cholesky decomposition has already achieved the theoretical lower bound imposed by the

CRB, and is therefore an optimal method for unbiased reconstructions.

BIASED ESTIMATION

In parallel imaging, an inexact image reconstruction, where AlsedA : Id, is often

preferred in order to achieve computational efficiency and/or better conditioning in the

matrix inversion. PARS and other k-space block-diagonalization methods belong to this

category. To characterize the inexactness of the reconstruction, a bias gradient matrix B is

defined as

B= AaedA-Id. [6.12]

The biased estimator, Xia,,ed (y)= A,,,y dY, then has a bias vector that is expressed in terms of

B and x,

b(y) = EL hiased (Y)] -X

= EAla. y I-iE[Ase~dy] X [6.13]
= E Abiased AX] + E iaedn -

=A-' AAX-x = Bx

This bias is not removable because it is a function of the unknown parameter x. The class of

matrices A,,ed for a given B can be expressed as follows,

AIC = (Id + B) A'had [6.14]

where A -,xed is any matrix which satisfies the condition A2bacdA = Id .

The unbiased CRB stated in Eq. [6.6] can be modified to compute the biased CRB

(BCRB) (Eq. [3], in Ref. (4)),

Ahjad (x) > (Id + B)I ' (Id + B)H [6.15]
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A biased estimator hbaSd (y) = A' sedY has "biased" minimum variance (MVB) if and only if

Abi,ed can be expressed in terms of:

A-i =A-' =(Id+B)A-' [6.16]
biased - MVB Mvu

and the covariance matrix achieves the BCRB,

AMB =(I+B) A-v ((I+B)A-' )H

=(I+B)A-'vu (A'vu)H (I+B)H [6.17]

=(I+B)I- (I+B)H

= BCRB

In fact, when given any matrix Abse,, the corresponding AMVB, which yields the same bias

gradient B can be determined by a matrix multiplication by AA-MVU,

AMVB = iaed MVU [6.8]
[6.18]

= (Id + B) A-'MVU

The ability to determine the minimum-variance A-'B for any A-'b (or any B) is valuable

for inexact parallel imaging techniques such as SMASH, GRAPPA and PARS as discussed

in Chapter 3. For example, a PARS reconstruction matrix A-',, (expressed in terms of FQ

in Eq. [3.14]) can be optimized in regard to noise amplification using

AV-'AR =A-' AAA-'U while maintaining the same level of image artifact power. The total

power plotted in Figs. 3.3 and 3.4. will likely decrease, apart from the uncertain effects of

magnitude combinations. However, it should be noted that this noise optimization can only

be performed when AAM'VU can be computed efficiently and accurately. In the general case

(e.g., non-Cartesian trajectories) where PARS is needed in order to invert large and unstable

encoding matrices, it will not be feasible to compute AA-Mvu. AS, even though not

necessarily optimized for noise consideration, is still an attractive alternative. And once

again, when PARS-reconstructed coil images are combined using sum-of-squares, the BCRB

no longer applies to the composite image.

Recent work has developed further applications of the BCRB by deriving an

"average-case" BCRB and a "worst-case" BCRB. (3,4). These metrics are particularly
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relevant to PARS and other inexact parallel MRI technique since the metrics provide flexible

operator-defined parameters to constrain the overall artifacts in image reconstruction. In

both cases, the class of biased estimators is no longer defined by a given B. Instead, any

biased estimator whose B has a norm bounded by a constant,

Tr (BBH)< ,. [6.19]

is included. Here, Tr(.) denotes the trace of the matrix (i.e. sum of the diagonal elements).

The "average-case" BCRB gives the lower bound in terms of total variance, A2,,, ,

a,, l =Tr((I + B)Iy' (I + B)H), [6.20]

whereas the worst-case BCRB gives the lower bound in terms of the maximum variance,

inax '

kax =max (diag ((I+B)Iyl (I+B)H)). [6.21]

While this new approach may provide additional tools to fine-tune the PARS technique,

future studies are required to explore potential benefits of the case-based BCRB for parallel

MRI in general.

6.2.b Can Maximum Likelihood Estimation Outperform Matrix
Inversion in Parallel Image Reconstruction?

To simplify the comparison with MLE, only unbiased image reconstructions were

considered for the remaining sections. The previous section has shown that parallel image

reconstructions, when solutions of the inverse problem s=Ep are obtained by linear

algebraic methods, achieve the CRB. They are so-called efficient estimators. As shown in

Eqs. [3.198-1-[3.201] in Ref. (9), if an efficient estimator exists, it is a maximum likelihood

estimator. When the noise has a non-Gaussian distribution (i.e., Chapter 5), an efficient

estimator may not exist. MLE can still be derived, but it need not have any special

properties.
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The puzzle remains that in MIMO where x takes discrete values from a finite

alphabet, MLE outperforms that of the linear algebraic least-squares solution, which is

sometimes referred to in this context as "zero-forcing" (1). This suggests that the least-

squares solution for MIMO does not reach the CRB. The simulations in the Method section

investigate whether the MLE approach can also outperform the matrix least-squares approach

in parallel MRI when the estimated assumes finite bit precision to represent the underlying

magnetization density.

SECTION 6.3 Method

6.3.a Maximum Likelihood Estimation

In MLE, a solution vector i (out of an exhaustive set of candidate x's) is obtained

which maximizes the probability of the observation vector y parameterized by x,

x= argmax P(y;x) (y;x) [6.22]
x e all possible x's

The discreteness of x in MIMO allows MLE detection using multiple-hypothesis testing, (M-

ary hypothesis testing, Sec. 2.8, Ref. (9)). This detection approach is inherently non-linear,

and subsequently outperforms that of the linear inversion.

6.3.b Convolutional Codes and Viterbi decoding algorithm
The Viterbi algorithm (10), a computationally efficient MLE decoder for

convolutional codes in wireless system, was adapted to perform MLE for parallel imaging.

A large degree of correspondence can be drawn from the two technologies. First, Cartesian

sampled MR signal data, instead of the traditional integral form, can be equivalently

expressed as a convolution of the Fourier transformations of the underlying spin density and

the coil sensitivities,

s, (k)= p(r)C, (r)e'krdr

= FT(p(r)C, (r)) [6.23]

= FT(p(r)) FT(C, (r))
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Each coil sensitivity function can be treated as a convolutional polynomial used in forward

error correction (FEC) channel coding, and the MR signal stream s, (k) is equivalent to a

codeword. The subsequent undersampling (downsampling) procedure for parallel MRI can

be represented as a puncturing procedure where selected coded symbols are omitted.

In our implementation of Viterbi decoding, low-resolution approximations of coil

sensitivities were used in order to reduce the complexity of the Viterbi algorithm, which

scales exponentially with the length of the convolutional polynomials. By initially

quantizing to a limited bit precision, a coarse MLE solution was obtained after the first

iteration. Successive iterations added bit precision to the MLE solution by refining the

quantization levels. Each iteration added /2 bit of resolution to the MLE solution. A total of

24 iterations were required to obtain the 12-bit precision that is typical in MR images.

Signal data were simulated using a coil array of 8 rectangular elements (400x60mm

each), covering a total area of 400x400mm (also the field of view of the image). Various

levels of Gaussian noise were added. Parallel image reconstructions were performed from

datasets with various acceleration factors, using both the MLE algorithm described above

and the standard SENSE least-squares pseudo-inverse reconstruction (5). Total error power

was plotted as a function of bit precision.

SECTION 6.4 Results

Fig 6.2 illustrates the simulation results, which are consistent with the theoretical

expectations that, in the limit of infinite bit resolution, the MLE and least-squares matrix

inverse approaches converge. Two-fold accelerated MR signal data were used in the image

reconstructions. The least-squares matrix inverse approach, which has been shown to be an

efficient estimator, defines the lower bound toward which the solution from the finite-

precision Viterbi decoding algorithm asymptotically converges.
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MLE vs SENSE Reconstructions (baseline SNR = 57)
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FIGURE 6.2 Convergence of Finite-Precision MLE and FuD-Matrix Inversion

Numerical simulations confirm theoretical expectations that, in the limit of
infinite bit resolution, the MLE and least-squares matrix inverse approaches
converge. Two-fold accelerated MR signal data were used in the image
reconstructions. The least-squares matrix inverse approach, which has been
shown to be an efficient estimator, defines the asymptotic lower bound towards
which the solution from the f"mite-precision Viterbi decoding algorithm
converges.

Fig. 6.3 illustrates the error plots of two-fold (a) and three-fold (b) reconstructions at

various noise levels. The total error power monotonically decreases as a function of the bit

precision, but at some bit level, it becomes asymptotic. This strongly suggests that the

baseline SNR u]timately dictates the realizable bit precision of an image, and added precision

to the image reconstruction solution has diminishing yields after the lOlh bit.
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FIGURE 6.3 Error Plots of Finite-Precision MLE

Error plots of MLE reconstructions of two-fold (a) and three-fold (b)
accelerated datasets at various noise levels. The total error power
monotonically decreases as a function of the bit precision, but at some bit level,
it becomes asymptotic. This strongly suggests that the baseline SNR ultimately
dictates the realizable bit precision of an image, and added precision to the
image reconstruction solution has diminishing yields after the 1001 bit.
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SECTION 6.5 Discussion
CONVERGENCE TO OTHER ARRAY PROCESSING TECHNOLOGIES

This work provides a demonstration of the correspondence between two array

processing technologies. Even though the fields of parallel MRI and MIMO wireless

communications have been developed independently, they are on a converging path to the

same fundamental stochastic limits, such as those imposed by the CRB. A minor note should

be made that the image-domain block-diagonalization approach, e.g., PILS, bears much

resemblance of the pre-MIMO state of cellular communications. Both techniques, instead

actively resolving the aliasing of the signal using measured sensitivity, use a passive method

of avoiding aliasing by guaranteeing adequate spatial separation. As the sensitivities drop off

naturally, channel allocation algorithms in cellular networks minimize channel interference

by assigning different channels to adjacent cells. The signal from the next-nearest neighbor

cell is assumed to drop off sufficiently so that the attenuated signal appears to be noise-like.

The advent of MIMO has increased the channel capability by many-fold, where bandwidth is

the limiting commodity. In MRI where the imaging speed is critical, the expanded

"bandwidth" made available by parallel MRI is harnessed to achieve markedly accelerated

data acquisition instead.

Additional correspondence can be made with other array processing technologies,

such as those used in radio astronomy where the notation of k-space and the regridding

algorithm were first developed, or in multi-detector computerized tomography (MDCT)

where rows of scintillation detectors are added to accelerate the imaging speed. As the field

of parallel MRI continues to mature, new breakthroughs may come from cross-fertilization

with other already matured array processing technologies.

GENERALIZATION FOR NON-GAUSSIAN NOISE

The least-squares solution is equivalent to MLE only when the noise has Gaussian

distribution. In the event that the noise is no longer Gaussian, the least-squares solution is no

longer optimal. The Viterbi decoding algorithm, in this case, provides an attractive

alternative since it can be adapted to a different noise metric to provide a non-linear solution.
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For current applications, the Viterbi decoding algorithm provides an illustrative linkage

between wireless communication and parallel MRI which has no immediate computational

advantage.

SECTION 6.6 Conclusions

This work has established the CRB for both unbiased and biased parallel image

reconstruction techniques. It has also tested the potential benefit of MLE for parallel image

reconstructions of finite bit precision. Preliminary results suggest that assuming a solution of

moderate but finite bit precision gives no apparent advantage over the linear least-squares

approach. One might imagine only very specialized circumstances with limited precision

requirements for which the MLE algorithm might provide a specific SNR advantage. That

said, the stochastic approach in MLE does offer new generalities in accommodating different

noise behaviors (e.g. non-Gaussian), a priori information, and means to non-linear solutions

for future developments of parallel imaging.
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CHAPTER 7. ADAPTATION OF A CARDIAC

IMAGING TECHNIQUE FOR PARALLEL MRI15

A preliminary case study using a cardiac imaging technique is presented to

demonstrate how existing clinical scanning protocols can be adapted for parallel MRI.

Parallel image reconstruction techniques developed in this thesis were used, and additional

imaging parameters not explicitly studied in the previous chapters were considered. As the

last subject presented in the dissertation, this chapter offers a forward-looking perspective on

how clinical MRI protocols are being reengineered to take full advantage of parallel MRI.

SECTION 7.1 Introduction
In coronary MR angiography (MRA), clinical diagnosis of pathology in the coronary

vasculature requires image sets of particularly high spatial resolution. Because of the

prolonged acquisitions, these datasets are highly susceptible to cardiac and respiratory

motion artifacts. Prior to the invention of parallel MRI, methods have been devised to

overcome these constraints. To minimize cardiac motion artifacts, coronary MRA strategies

typically restrict data acquisitions to a short temporal window (e.g., 200ms or shorter) around

15 The work described in the chapter has been presented as "Yeh EN, Botnar RM, Leiner T, McKenzie CA,
Sodickson DK. Adaptation of Coronary Imaging Pulse Sequences for Self-Calibrated Non-Cartesian Parallel
Imaging. Proceedings of the 12th ISMRM Scientific Meeting, Kyoto, Japan, 2004."
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end-diastole when the heart is relatively stationary (1). MRA data acquisitions, which

generally require much longer than the duration of a single acquisition window, are then

segmented over multiple cardiac cycles. Additionally, the length of the acquisition window

and the electrocardiogram (ECG) trigger delay are subject-specific, but even after careful

calibration, they are susceptible to normal or pathological heart beat variability. Arrhythmia

rejection techniques have been proposed to further safeguard the reliability of the acquired

data (2).

To minimize respiratory motion artifacts, two different approaches have been

developed. In the breath-hold approach, the patient is asked to hold his/her breath during

data acquisition, of which by design must be completed within a single breath-hold (3). The

quality of the MR images greatly depends on the patient's ability to hold his/her breath

during the exam. Alternatively, in the free-breathing approach, the patient can breathe

normally, but a diaphragmatic navigator is used to gate and compensate for the respiratory

motion (4). A typical free-breathing coronary protocol, however, takes tens of minutes.

The advent of parallel MRI warrants a re-examination of these pulse sequence

designs. In addition to providing accelerated imaging speeds, parallel imaging enables a new

degree of freedom in designing coronary protocols where not only speed but also the timing

of data acquisition is crucial. Furthermore, parallel imaging now has the capability to

perform self-calibrated reconstruction on MR data acquired with non-Cartesian trajectories,

(e.g., Ref. (5-7) and also Chapters 2 and 3), making many existing coronary MRA sequences

readily adaptable to parallel imaging. Without the need of acquiring sensitivity calibration

scans or modifying sampling trajectories, images reconstructed from accelerated datasets can

be directly and fairly compared to the non-parallel counterparts.

In this chapter, 3-D non-Cartesian MRA sequences (diaphragmatic navigator gated

and corrected; ECG triggered; free-breathing) were tested with various lengths of data

acquisition windows, acceleration factors and RF excitation pulses. Parallel image

reconstructions were performed, and images were evaluated qualitatively to explore an

improved design of cardiac parallel imaging protocols.

164



SECTION 7.2 Methods

DATA ACQUISITION

All scans were performed on a 1.5T Gyroscan ACS-NT whole body MR system

(Philips Medical Systems, Best, The Netherlands). MR signal data of coronary arteries of

healthy volunteers were acquired with a commercial 5-element array. Two ECG-triggered,

navigator-gated/corrected non-Cartesian MRA sequences were used as references: a 3-D

spoiled gradient echo (SPGR) spiral sequence (42-interleaf spiral, 2 interleaves per RR

interval, flip angles 450-60°, sampling window 70ms) (8) and a 3-D steady-state free-

precession (SSFP) radial sequence (368 projections, balanced TFE, TR 5.6ms, flip angle

1100, sampling window 200ms) (2). Both sequences used conventional phase encoding in

the slice direction (12 slices, 30-mm slab thickness) (9). Prior to data acquisition in each RR

interval, T2 preparation pulses (for myocardial signal suppression) and fat-saturation pulses

(for pericardial fat signal suppression) were applied. The two data acquisition sequences

were subsequently modified with various undersampling factors and acquisition window

durations, resulting in different overall acceleration factors. Tables 7.1 and 7.2 summarize

and compare the important imaging parameters.

TABLE 7.1 Imaging Parameters for in vivo Spiral Acquisitions.

The number of spiral interleafs per R-R interval decreases from 3 (a) to I (b) and (c),
making it possible to use a full 900 excitation to capture all the magnetization energy in
the sole spiral interleaf. The single-interleaf per RR acquisition has the benefits that it
results in a shorter acquisition window (yielding greater tolerance for heart rate
variability), and that it eliminates artifacts due to partial TI recovery in between the
excitations of the first and second RF pulses.
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# of Spiral # of Interleaves Acquisition Undersampling Overall
Interleaves per RR Interval Window Factor Acceleration

a) 42 (ref) 2 (45 °/60 0) 70 ms 1.0 1

b) 21 1 (90 ) 35 ms 2.0 1

c) 14 1 (90 ) 35 ms 3.0 1.5



TABLE 7.2 Imaging Parameters for in vivo Radial Acquisitions.

The number of radial projections per R-R interval decreases from 368 (a) to 250 (b)
and to 123 (c). Since a steady-state free-precession sequence was used, the
transverse magnetization vector was supposed to be identical for each data
acquisition. However, because of the much longer acquisition windows (as
compared to spiral sequences), image artifacts due to the diminishing effectiveness
of T2 preparation and fat-saturation were potentially more prominent. By
shortening the acquisition windows using parallel MRI, both image quality and
tolerance to heart rate variability would increase without the penalty of increased
imaging time.

IMAGE RECONSTRUCTION

For undersampled datasets, images were reconstructed using a self-calibrating version

of the PARS technique described in Chapter 3. Low-resolution in-vivo coil sensitivities were

extracted from the sufficiently sampled center of k-space. PARS parallel image

reconstruction was then performed using a k-space radius of 2. Reference datasets were

reconstructed with a standard gridding algorithm with a Kaiser-Bessel kernel of width = 3

and = 13.9086 (Table 2 of Ref. (10)).

SECTION 7.3 Results

Image reconstructions corresponding to the entries of Tables 7.1 and 7.2 are shown in

Figs 7.1 and 7.2.

7.3.a Spiral Image Reconstructions

Fig. 7.1a and b display comparable baseline SNR despite the fact that b was

reconstructed from a two-fold undersampled dataset. This is consistent with our expectation
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Projections RR Intervals Window Factor Acceleration

a) 368 (ref) 25 200ms 1.0 1

b) 250 17 140ms 1.4 1

c) 123 12 l00ms 3.0 1.5



because unlike a which splits the magnetization energy between the two spiral interleaves in

the same RR interval, b can take advantage of a full 90° RF excitation. Besides the g-factor

penalty (Eq. [1.49]), there is no theoretical SNR loss between the two. b also carries an

advantage that every acquisition receives the same magnetization energy, whereas a needs to

address the effect of T 1 recovery between the two RF excitations (e.g., the 45° and 60°

pulses). c shows a visible SNR loss compared to b in exchange for an accelerated acquisition.

FIG U R E 7.1 Spiral Coronary MRA Parallel Image Reconstructions

Spiral coronary MRA images acquired using 42-interleaves (a), 21-interleaves (b), and
14 interleaves (c). Data acquisition for (a) were performed using two-interleaves per RR
interval with flip angles 45 ° and 90°, and (b) and (c) using one-interleafwith a single flip
angle 90°. The rest of the corresponding imaging parameters are shown in Table 7.2.
(a) and (b) display comparable baseline SNR despite the fact that (b) was reconstructed
from a two-fold undersampled dataset. This is consistent with our expectation because
unlike a which splits the magnetization energy between the two spiral interleaves in the
same RR interval, (b) can take advantage of a full 90° RF excitation. Besides the g-
factor penalty, there is no theoretical SNR loss between the two. (b) also carries an
advantage that every acquisition receives the same magnetization energy, whereas a
needs to address the effect of T 1 recovery between the two RF excitations (e.g., the 45°
and 60° pulses). (c) shows an noticeable SNR loss compared to b in exchange for a
slightly accelerated acquisition.

7.3.b Radial Image Reconstructions

Fig. 7.2, a and b display apparently similar baseline SNR, even though there is an

expected loss of SNR from a to b due to undersampling, in addition to the associated g-

factor. c shows a more appreciable SNR loss compared to a and b but has the shortest

acquisition window, advantageous in overcoming beat-to-beat heart rate variations.
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Additionally, image artifacts are introduced due to the diminishing effectiveness of T2-

preparation and fat-saturation pulses in projections acquired late in the acquisition window.

These image artifacts directly influence the perceived image quality. In general, the longer

the acquisition window, the larger the amount of undesirable variation there is between the

first and last projections collected, and the lower the image quality.

FIGURE 7.2 Radial Coronary MRA Parallel Image Reconstructions

Radial coronary MRA images acquired using 368 projections (a), 250 projections (b),
and 123 projections (c). The rest of the corresponding imaging parameters are shown in
Table 7.2. (a) and (b) display apparently similar baseline SNR, even though there is an
expected SNR loss in additional to the associated g-factor. (c) shows a visible SNR loss
compared to (a) and (b) but has the shortest acquisition window, advantageous in
overcoming beat-to-beat heart rate variations. The diminishing effectiveness of T2-
preparation and fat-saturation pulses (especially in projections acquired late in the RR
interval) also influences the perceived image quality. In general, the longer the
acquisition window, the larger the amount of undesirable variation there is between the
first and last projections collected, the lower the image quality.

SECTION 7.4 Discussion

SHORTER ACQUISITION WINDOW

The shorter acquisition windows used In table entries 7.1 a-b and 7.2a-b provide

greater tolerance for beat-to-beat variation, which is especially critical for patients with

existing cardiovascular pathology. In this study, the datasets were collected from healthy

volunteers with no known history of arrhythmia. Fig. 7.la and 7.2a are arguably the best

case scenarios since there is no arrhythmia. It is reasonable to speculate that in future clinical
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studies conducted with arrhythmic patients, the image quality for the approaches represented

in Fig. 7.l1 a and 7.2a are expected to decrease.

RF EXCITATION ANGLE AND T1 RECOVERY

The nature of the SPGR pulse sequence used in the spiral imaging experiments limits

the total magnetization energy available in each RR interval. The employment of different

RF excitation angles in the spiral acquisition was intended to optimally and evenly distribute

the magnetization energy among each intra-interval spiral interleaf. (Here, the flip angles

were not used as a means of spatial encoding, whose potential to create a full complement of

generalized encoding functions has been discussed in Chapter 1.)

Ideally, if T recovery is negligible between the intra-interval excitations, the

successive flip angles, a,,,, are expressed as follows in order to evenly split the total

magnetization,

a, = sinj- + m=1,...,M, [7.1]

where M is the total number of intra-interval interleafs. In a two-interleafs/RR scheme, for

example, the ideal flip angles should be 45° and 900. However, in practice, Ti recovery is

not negligible between RF excitations. As a result, the second RF pulses excite a larger

transverse magnetization, creating image artifacts as a result of the modulation of signal

amplitude on every other spiral interleaf. Rather, an empirically determined flip angle

combination (45°, 600) has been used in this example for routine clinical exams. Even

though this combination reduces the modulation and improves image quality, it is clear that

this too is not an optimal combination because of the residual magnetization left in the z-axis

after the last pulse. An additional optimization is required.

Parallel MRI, on the other hand, offers a straightforward alternative. With the ability

to reconstruct a full image from a reduced number of spiral interleafs, a strategy of a single

interleaf per RR with a 900 excitation can be implemented to ensure optimal use of

magnetization energy and elimination of modulation. The noticeable loss of SNR for 3-fold
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undersampled spiral in Fig .c is mainly a result of an unfavorable g-factor particular to the

5-element array. As MR hardware advances continue to increase the number of coil

elements, the g-factors of relatively low accelerations are expected to converge to the

theoretical lower bound of 1 (11). In the foreseeable future, the imaging parameters in Table

7.1c and Figure 7.1c will serve as an illustrative example in accelerating overall imaging

speed while simultaneously improving image quality.

STEADY STATE SEQUENCE AND DIMINISHING EFFECTIVENESS OF

PREPARATION PULSES

The radial experiments used an SSFP sequence to explore another potential benefit of

parallel imaging. In a steady-state sequence, the magnitude of the magnetization vector is

presumably kept in steady-state by periodic RF excitations. While the variation in the signal

amplitude has been reduced, there is a noted diminishing effectiveness of T2 preparation and

fat-saturation pulses due to the typically longer acquisition time. The gradual recovery of the

myocardial and fat signals would disturb the equilibrium, possibly broadening the point-

spread function and resulting in a blurring of the image. Methods that insert additional T2

preparation and fat-saturation pulses in the middle of the steady-state sequence have been

proposed (12). These methodologies generally require careful manipulations of the steady-

state magnetization to prevent undesirable perturbation. Moreover, the extra preparation

pulses prolong the overall acquisition time.

Parallel imaging, by shortening the acquisition time, preserves (or even improves) the

effectiveness of the preparation pulses. Fig. 7.2b displays a slightly sharper image than Fig.

7.2a, but the difference is very subtle. Cardiac images, in general, may not be able to fully

demonstrate the difference of the point-spread functions because the cardiac cycles have

limited the length of the continuous acquisition window. In applications such as abdominal

imaging where a steady-state sequence is used to collect the entire dataset continuously

without interruption, the diminishing effectiveness of the preparation pulses will be more

pronounced. Lastly, the inherent robustness of radial imaging, as described in the Discussion

section of Chapter 2, makes the qualitative image comparisons even more difficult.
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SECTION 7.5 Conclusions
This work has demonstrated the feasibility and benefits of adapting coronary MRA

sequences to parallel imaging. Imaging parameters such as acquisition windows, flip angles,

and preparation pulses have been redesigned in order to take advantage of the capabilities of

parallel MRI. A study using parallel imaging to optimize SNR has recently been reported

(13), affirming a growing interest in the MR community to explore a broader use of parallel

MRI beyond mere image acceleration. As parallel imaging moves forward to many-element

coils with better spatial encoding abilities (e.g., (14)), future clinical protocol designs will

have to fully integrate parallel MRI in order to optimally harness these various new

capabilities.
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CHAPTER 8. GENERAL DISCUSSION AND

FUTURE DIRECTIONS

Advances in parallel MRI signify an exciting breakthrough in accelerating imaging

speed beyond previous limits. Clinical practitioners have begun to harness the benefits of

accelerated imaging to enhance diagnostic accuracy, reduce medical costs and increase

patient comfort. At the same time, active research continues to address various challenges

posed by parallel MRI. In this dissertation work, six specific issues pertaining to parallel

image reconstruction have been explored, and theoretical and practical solutions have been

proposed.

This chapter begins with a summary of the major results in each area of the thesis,

proceeds to briefly discuss future directions, and concludes with a speculative outlook on

parallel MRI in general.

SECTION 8.1 Summary of Major Results
As previously shown, image reconstruction in parallel MRI can be formulated as a

generalized linear inverse problem, where the MR matrix equation can be expressed as

s = Ep, where s is the signal, E the encoding matrix, and p the spin density. Each piece of
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work in this thesis is thematically related to explorations of one or more components of this

matrix equation. Collectively, Chapters 2-7 have presented a logical progression in solving

an inverse problem, that is: a) determine the encoding matrix E, b) compute an inverse E - ',

and c) characterize and minimize the error involved.

Chapter 2 presented a method for computing the encoding matrix E that exploits the

inherently self-calibrating characteristics of many non-Cartesian k-space trajectories to obtain

accurate and consistent results. This method can be applied to existing pulse sequences

without modification, and does not require any additional scan time in order to obtain

necessary coil sensitivity calibration information.

Chapters 3 and 4 discussed methods that exploit physical properties of E and p, for

efficient and stable inversion of E. In Chapter 3 presented the PARS technique, which

exploits the principle of k-space locality to simplify the inversion of E. In many cases, the

encoding matrix is too large to invert directly. The PARS technique judiciously partitions E

into many small and sub-blocks that can be inverted independently, making the overall

process of the matrix inversion E efficient and stable.

To further facilitate the matrix inversion process, Chapter 4 has integrated a priori

phase information of the underlying spin density p into the parallel image encoding matrix.

Instead of performing partial Fourier reconstruction and parallel image reconstruction

separately, this integrated approach incorporates a phase constraint of p to transform the

inherently complex-valued matrix equation s=Ep into a strictly real-valued one. The

number of unknowns is reduced by a factor of two, and the solution p can be obtained in a

single step.

Chapters 5 and 6 have explored characterization and minimization of errors in parallel

image reconstruction. Chapter 5 presented a numerical technique for computing the noise

distribution in magnitude-combined parallel image reconstructions. This in turn has enabled

quantitative comparisons among different parallel MRI reconstruction techniques. Analytic

176



solutions have been noted for special cases. In addition, a bias correction algorithm based on

a maximum-likelihood estimation has been presented.

In Chapter 6, parallel imaging has been studied as an array processing technology.

Theoretical lower bounds on noise variance have been derived using the Cramer-Rao bounds

for exact (unbiased) and inexact (biased) parallel image reconstructions. In this chapter it

was shown that existing unbiased parallel image reconstruction strategies have already

achieved the Cramer-Rao bounds. For biased parallel image reconstruction strategies which

may or may not have converged to the Cramer-Rao bounds, a noise-minimization algorithm

has been proposed to ensure such convergence.

Lastly, Chapter 7 has reported a preliminary case study in clinical cardiac imaging

using some of the techniques developed in this thesis. Additional imaging parameters such

as RF excitation angles, data acquisition windows, effects of T1 recovery, and the relative

effectiveness of T2-preparation and fat-saturation pulses have been considered. Tradeoffs

between imaging speed, image artifact and noise amplification have been evaluated.

SECTION 8.2 Future Directions

The evolution of parallel MRI points toward a persistent quest for faster and better

medical imaging. The familiar matrix equation s=Ep provides valuable insights that

parallel imaging can go faster and better by carefully designing a better encoding matrix E.

As discussed in Chapter 1 and other places in the thesis, the quality of reconstructed images

relies heavily on the distinctiveness of the spatial information embedded in E. Conventional

MRI has made image reconstruction both robust and seemingly trivial by the use of Fourier

encoding. The engineering efforts required to achieve that goal, however, were not trivial.

The same argument can be made with parallel imaging. At the current stage, parallel image

reconstruction techniques (including those proposed in this thesis) are capable of providing

robust image reconstruction at relatively low acceleration factors. Higher acceleration

factors will necessitate a full complement of the generalized encoding functions (as discussed
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in Eq. [1.9]) in order to ensure a well-conditioned E. Continual engineering efforts will be

required to achieve this goal.

8.2.a Advanced Spatial Encoding Using Magnetic Field Gradients

Non-Cartesian trajectories, as demonstrated in Chapters 2, 3, and 7, provide many

benefits for parallel imaging. In addition to the inherently self-calibrating capability, non-

Cartesian parallel imaging provides an efficient sampling strategy, especially for multi-

dimensional accelerated parallel MRI. The spiral and radial parallel image reconstructions

performed in this thesis are a demonstration of two-dimensional accelerated parallel imaging.

The ability to accelerate in several dimensions allows optimal use of spatial encoding by RF

coil arrays. It has been shown in recent work that at a given total acceleration factor, a 2-D

accelerated method will have less noise amplification than a corresponding 1-D counterpart

(1). The natural implication is that a 3-D acceleration scheme is highly desirable, and may

even be necessary for applications at very high acceleration factors. Future development of a

3-D non-Cartesian trajectory, which can flexibly traverse the 3-D k-space in order to

complement the limitations on the underlying RF coil encoding functions, will provide

definitive spatial encoding advantages over conventional Cartesian acquisitions.

8.2.b Advanced Spatial Encoding Using Many-Element Coil Arrays

MR hardware development, which made parallel MRI possible in the first place, will

continue to be a critical area of research. There is little question that the trend of hardware

development is pointing toward "more". The number of coil elements in an array will

continue to increase. At the time this dissertation work began, a typical RF coil array had

four to six elements. Nowadays, new coil arrays for parallel imaging have been designed

with 32 elements (2). The primary limitation on the number of coil elements, at least for

now, is the number of RF receiver channels available on commercial MRI scanners. Major

vendors are introducing MRI scanners with more RF receiver channels, and the gap between

research scanners and commercial products is closing. When the number of coil elements is

large enough (e.g., 128), this trend may lead to the design of grid-based coil arrays, where
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there will be more emphasis on the overall arrangement of the array pattern, and arguably

less emphasis on the design of an individual element. At that point, parallel imaging may

have an even closer correspondence with other array processing technologies.

8.2.c Advanced Spatial Encoding Using Spatially-Selective RF Pulses

As discussed in Chapter 1, the possibility of using spatially-selective RF pulses to

tailor the generalized spatial encoding remains an intriguing proposition (3). Currently, the

field of "transmit" parallel imaging, which usies coil arrays to the shorten RF excitation time

for a given excitation pattern, is undergoing rapid development (4,5). Perhaps in due time,

the field of "receive" parallel imaging discussed in this thesis can also benefit from these

developments.

SECTION 8.3 General Conclusions
The thesis work has been devoted to the investigation of the physical and engineering

principles of spatial encoding and decoding in parallel MRI. MR image reconstruction has

been formulated as a generalized inverse problem. Under this linear algebraic framework,

the results of several original research studies have been presented, and solutions to the

constraints of parallel image reconstruction have been proposed. This dissertation will

provide useful tools and insights for future developments in parallel MRI, and lead to better

and faster clinical imaging.
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