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Interpretability has emerged as a crucial aspect of building trust in machine learning
systems, aimed at providing insights into the working of complex neural networks that are
otherwise opaque to a user. There are a plethora of existing solutions addressing various
aspects of interpretability ranging from identifying prototypical samples in a dataset to
explaining image predictions or explaining mis-classifications. While all of these diverse
techniques address seemingly different aspects of interpretability, we hypothesize that a
large family of interepretability tasks are variants of the same central problem which is
identifying relative change in a model’s prediction. This paper introduces MARGIN, a
simple yet general approach to address a large set of interpretability tasks MARGIN
exploits ideas rooted in graph signal analysis to determine influential nodes in a graph,
which are defined as those nodes that maximally describe a function defined on the graph.
By carefully defining task-specific graphs and functions, we demonstrate that MARGIN
outperforms existing approaches in a number of disparate interpretability challenges.
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INTRODUCTION

With widespread adoption of deep learning solutions in science and engineering, obtaining post-hoc
interpretations of the learned models has emerged as a crucial research direction. This is driven by a
community-wide effort to develop a new set of meta-techniques able to provide insights into complex
neural network systems, and explain their training or predictions. Despite being identified as a key
research direction, there exists no well-accepted definition for interpretability. Instead, in different
contexts, it may refer to a variety of tasks ranging from debugging models (Ribeiro et al., 2016), to
determining anomalies in the training data (Koh and Liang, 2017). While some recent efforts
(Lipton, 2016; Doshi-Velez and Kim, 2017) provide a more formal definition for interpretability as
generating interpretable rules, these focus on instance-level explanations, i.e. understanding how a
network arrived at a particular decision for a single instance. In practice, interpretability covers a
wider range of challenges, such as characterizing data distributions and separating hyperplanes of
classifiers, identifying noisy labels during training, detecting adversarial attacks, or generating
saliency maps for image classification. As discussed below, solutions to all such problems have
been proposed each using custom tailored, task-specific approaches. For example, a variety of tools
aim to explain which parts of an image are the most responsible for a prediction. However, these
cannot be easily re-purposed to identify which samples in a dataset were most helpful or harmful to
train a classifier.

Instead, we argue that many existing interpretability techniques solve a variant of essentially the
same task–understanding relative changes in the model’s prediction, where the changes are either
global in nature, i.e., across an entire distribution or local, i.e., within a single sample. In this paper, we
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propose the MARGIN (Model Analysis and Reasoning using
Graph-based Interpretability) framework, which directly applies
to a wide variety of interpretability tasks. MARGIN poses each
task as an hypothesis test and derives a measure of influence that
indicates which parts of the data/model maximally support (or
contradict) the hypothesis. More specifically, for each task we
construct a graph whose nodes represent entities of interest, and
define a function on this graph that encodes a hypothesis. For
example, if the task is to determine which samples need to be
reviewed in a dataset containing noisy labels, the domain is the set
of samples, while the function can be local label agreement that
measures how misaligned are the neighborhoods of the input
samples (or their features) and their corresponding labels. Using
graph signal processing (Sandryhaila and Moura, 2013; Shuman
et al., 2013) one can then identify which nodes are essential to
reconstructing the chosen function (hypothesis), which most
likely will correspond to those with flipped labels. In order
words, through a careful selection of graph construction
strategies and hypothesis functions, this general procedure can
be used to solve a wide-range of post-hoc interepretability tasks.

This generic formulation, while extremely simple in its
implementation, provides a powerful protocol to realize several
meta-learning techniques, by allowing the user to incorporate
rich semantic information, in a straightforward manner. In a
nutshell, the proposed protocol is comprised of the following
steps: 1) identifying the domain for interpretability (for e.g. intra-
sample vs inter sample), 2) constructing a neighborhood graph to
model the domain (for e.g. pixel space vs. latent space), 3)
defining an explanation function at the nodes of the graph, 4)
performing graph signal analysis to estimate the influence
structure in the domain, and 5) creating interpretations based
on the estimated influence structure. Figure 1 illustrates the steps
involved in MARGIN for a posteriori interpretability.

Overview
Using different choices for graph construction and the
explanation function design, we present five case studies to
demonstrate the broad applicability of MARGIN for a
posteriori interpretability. First, in Case Study I—Prototypes
and Criticisms we study a unsupervised problem of identifying
samples which well characterize the underlying data distribution,
referred to as prototypes and criticisms respectively (Kim et al.,

2016). We show that the MARGIN is highly effective at
characterizing data distributions and can shed light into the
regimes where classifier performance can suffer. In Case Study
II—Explanations for Image Classification, we obtain pixel-level
explanations from an image classifier using MARGIN, without
the need to access the model internals, i.e., black-box and show
that the inferred feature importance estimates are meaningful. In
Case Study III—Detecting Incorrectly Labeled Samples, we employ
MARGIN to identify label corruptions in the training data and
demonstrate significant improvements over popular approaches
such as influence functions. In Case Study IV—Interpreting
Decision Boundaries, we illustrate the application of MARGIN
in analyzing pre-trained classifiers and identifying the most
influential samples in describing the decision surfaces, akin to
memorable examples in continual learning (Pan et al., 2020).
Finally, in Case Study V—Characterizing Statistics of Adversarial
Examples we extend two recently proposed statistical techniques
to detect adversarial examples from harmless examples, and
demonstrate that incorporating them inside MARGIN
improves their discriminative power significantly.

RELATED WORK

We outline recent works that are closely related to the central
framework, and themes around MARGIN. Papers pertinent to
individual case studies are identified in their respective sections.
Our goal in this paper is to design a core framework that is
capable of being repurposed to interpretability tasks, ranging
from explaining decisions of a predictive model, detecting outliers
to identifying label corruptions in the training data. While post-
hoc explanation methods are the modus-operandi in interpreting
the decisions of a black box model, their scope has widened
significantly in the recent years. For example, popular sensitivity
analysis such as LIME (Ribeiro et al., 2016) and SHAP (Lundberg
and Lee, 2017) or gradient-based methods such as Saliency Maps
(Simonyan et al., 2013), Integrated Gradients (Sundararajan et al.,
2017), Grad-CAM (Selvaraju et al., 2017), DeepLIFT (Shrikumar
et al., 2017) and DeepSHAP (Lundberg and Lee, 2017) are
routinely used to produce sample-wise, local explanations by
measuring the sensitivity of the black-box to perturbations in
the input features (Fong and Vedaldi, 2017). Despite their

FIGURE 1 |MARGIN—An overview of the proposed protocol for post-hoc interpretability tasks. In this illustration, we consider the problem of identifying incorrectly
labeled samples from a given dataset. MARGIN identifies the most important samples that need to be corrected so that fixing them will lead to improved predictive
models.
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wide-spread use, they cannot be readily utilized to obtain dataset-
level explanations, e.g., which are the most influential examples
in a dataset for a given test sample, or to detect distribution
shifts (Thiagarajan et al., 2020). On the other hand, in (Koh and
Liang, 2017), the authors proposed a strategy to select influential
samples by extending ideas from robust statistics, which was
shown to be applicable to a variety of scenarios. However, such
methods cannot be used for obtaining feature importance
estimates. Another important challenge with most existing
post-hoc explanation techniques is their computational
complexity. In contrast, MARGIN leverages the generality of
graph structures to scalably generate explanations, and through
of use of appropriate hypothesis functions can support a large-
class of interpretations.

In a nutshell, MARGIN reposes the problem of generating
explanations as an influential node selection problem, wherein
the node can correspond to a sample-level or feature-level
explanations and the influence is measured based on a
hypothesis function. Defining suitable objectives for detecting
influential features in an image or influential samples in a dataset
has been an important topic of research in explainable AI. For
example, CXPlain (Schwab and Karlen, 2019) and Attentive
Mixture of Experts (Schwab et al., 2019) utilize a Granger-
causality based objective to quantify feature importances. In
addition, prediction uncertainties Chakraborty et al. (2017) or
even loss estimates Thiagarajan et al. (2020) have been widely
adopted to characterize vulnerabilities of a trained model. Note
that, MARGIN can directly use any of these objectives to choose
the most relevant explanations. In this paper, we consider a
variety of interpretability tasks and recommend suitable
hypothesis functions for each of the tasks.

Since MARGIN relies on ideas from graph signal processing
(GSP) to select the most relevant explanations, we briefly review
existing work in this area. Broadly, there are two classes of
approaches in GSP–one that builds on spectral graph theory
using the graph Laplacian matrix (Shuman et al., 2013), and the
other based on algebraic signal processing that builds upon the
graph shift operator (Sandryhaila and Moura, 2013). While both
are applicable to our framework, we adopt the latter formulation.
Our approach relies on defining a measure of influence at each
node, which is related to sampling of graph signals. This is an
active research area, with several works generalizing ideas of
sampling and interpolation to the domain of graphs, such as
(Pesenson, 2008; Gadde et al., 2014; Chen et al., 2015).

A GENERIC PROTOCOL FOR
INTERPRETABILITY

In this section, we provide an overview of the different steps of
MARGIN and describe the proposed influence estimation
technique in the next section.

Domain Design and Graph Construction
The domain definition step is crucial for the generalization of
MARGIN across different scenarios. In order to enable instance-
level interpretations (e.g. creating saliency maps), a single

instance of data, possibly along with its perturbed variants,
will form the domain; whereas a more holistic understanding
of the model can be obtained (e.g. extracting prototypes/
criticisms) by defining the entire dataset as the domain.
Regardless of the choice of domain, we propose to model it
using nearest neighbor graphs, as it enables a concise
representation of the relationships between the domain elements.

More specifically, given the set of samples {xi}, we construct a
k-nearest neighbor domain graph that captures local geometry of
the data samples. The metric for graph construction (that
determines neighborhoods/edges) can arise from prior
knowledge about the domain or designed based on latent
representations from pre-trained models. For example, if we
use the latent features from AlexNet (Krizhevsky et al., 2012),
the resulting graph respects the distance metric inferred by
AlexNet for image classification. Though the difficulty in
choosing an appropriate k for designing robust graphs is well
known, designing better graphs is beyond the scope of this paper.
In our experiments, we find that our results are not very sensitive
to the choice of k.

Formally, an undirected weighted graph is represented by the
triplet G � (ν,Ε,W), where ν denotes the set of nodes, Ε denotes
the set of edges and W is an adjacency matrix that specifies the
weights on the edges, whereWn,m corresponds to the edge weight
between nodes vn and vm. Let Nn � {m∣∣∣∣W1

n,m0} define the
neighborhood of node vn, i.e. the set of nodes connected to it.
The normalized graph Laplacian, L, is then constructed as
I − D−1/2WD−1/2, where Dnn � ∑mWn,m is the degree matrix
and I denotes the identity matrix.

Explanation Function Definition
A key component of MARGIN is to construct an explanation
function that measures how well each node in the graph
supports the presented hypothesis. The function acts on
each vertex of the graph as: f (n) : vnaR for all n vertices in
the graph G. This function is also referred to as the graph signal
defined on the graph domain. We expect this function to
capture properties of the explaination that are deemed
important. Let us illustrate this process with an example–in
order to create saliency maps for image classification, one can
build a graph where each node corresponds to a potential
explanation (i.e. a subset of pixels), while the edges can
measure how likely can two explanations produce similar
predictions. In such a scenario, one can hypothesize that an
ideal explanation will be sparse, in terms of the number of
pixels, since that is more interpretable. Consequently, the size
of an explanation can be used as the function. Case Studies will
present a more detailed discussion.

Influence Estimation
This is the central analysis step in MARGIN for obtaining
influence estimates at the nodes of G, that can reveal which
nodes can maximally describe the variations in the chosen
explanation function. Implicitly, this step can be viewed as a
soft-sample selection strategy with respect to the structure
induced by the domain graph. We propose to perform this
estimation using tools from graph signal analysis. Proposed
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Influence Estimation describes the proposed algorithm for
influence estimation.

From Influence to Interpretation
Depending on the hypothesis chosen for a posteriori analysis, this
step requires the design of an appropriate strategy for transferring
the estimated influences into an interpretable explanation.

PROPOSED INFLUENCE ESTIMATION

Given a nearest neighbor graph G along with an explanation
function f , we propose to employ graph signal analysis to estimate
node influence scores. Before we describe the algorithm, we will
present a brief overview of the preliminaries.

Definitions. We use the notation and terminology from
(Sandryhaila and Moura, 2013) in defining an operator
analogous to the time-shift or delay operator in classical signal
processing. The function f assigns a scalar value to each vertex as
defined earlier, as a result the entire function is written as
f : ν1RN , where |ν| � N , i.e., f is a collection of scalar values
at each vertex, ordered according to the same order of vertices in
the graph. When the graph does not have any special structure
(i.e., it is Euclidean), f is nothing but a vector valued function. We
consider the simplest scenario here where the function only takes
a scalar value at each node, however more general cases maybe
considered where the value at each node is multi-dimensional.
During a graph shift operation, the function f (n) at node vn is
replaced by a weighted linear combination of its neighbors:
f̂ � Af , where A is the graph shift operator, which is the
simplest, non-trivial graph filter. Commonly used choices for
A include the adjacency matrix W, transition matrix D−1W and
the graph Laplacian L.

The set of eigenvectors of the graph shift operator is referred to
as the graph Fourier basis, A � UΛUT , where U ∈ RN×N , and the
Fourier transform of a signal f ∈ RN is defined as UTf . The
ordered eigenvalues corresponding to these eigenvectors
represent frequencies of the signal, with λ1 to λN representing
the smallest to largest frequencies. The notion of frequency on the
graph corresponds to the rate of change of the function across
nodes in a neighborhood. A higher change corresponds to a high
frequency, while a smooth variation corresponds to a low
frequency. In this context, the graph filtering using a graph
shift operator corresponds to a low-pass filter that dispenses
high frequency components in the function. Similarly, a
simple high-pass filter can be easily designed as f̂h � f − f̂ .

Algorithm 1 MARGIN’s simple influence estimation.

Algorithm: The overall procedure to obtain influence scores at the
nodes of G can be found in Algorithm 1. Intuitively, we design a
high-pass filter that eliminates the low frequency content and
retains the signal energy only at those nodes that characterize the

extreme variations of the function. Following the high-pass
filtering step, the influence score at a node is estimated as the
magnitude of the filtered function value at that node:

I(i) �
�������f̂h(i)

�������
2

2
∀i ∈ ν, (1)

where f̂h corresponds to the high-pass filtered version of f .
Interestingly, we find that analyzing the high frequency
components of the explanation function often leads to a sparse
influence structure, indicating the presence of multiple local
optima that corroborate the hypothesis. Conversely, the
influence structure obtained from low frequency components
is typically dense and hence requires additional processing to
qualify regions of disagreement.

Sensitivity to Graph Construction
A critical step in MARGIN is the graph construction process for
datasets that do not naturally have a graph structure. In this work,
we rely on a simple nearest neighbor graph for construction
which can vary depending on the size of the neighborhood. This
is a hyper parameter that must be set with validating examples,
and in all our case studies we found a neighborhood size of 20-40
to be quite good in terms of computational efficiency in
constructing the graph. This directly influences the quality of
low pass filtering of a graph signal similar to the case in Euclidean
signal processing in choosing a size of the window. As the
neighborhood size increases, the filtering at each node
becomes more aggressive since it averages the across several
neighboring nodes, while for a small neighborhood the
smoothing may not have any effect at all. MARGIN is
agnostic to the type of graph construction used, since it
ultimately only relies on the graph filtering process, and as a
result it is applicable to more other graph constructions such as
Reeb graphs (Pascucci et al., 2007) or β−skeletons.

CASE STUDIES

Considering MARGIN is very generic in nature, it is easy
applicable to a wide variety of interpretability tasks. In this
section we illustrate this felxibility on several example tasks.
Table 1 shows the domain design, graph construction, and
function definition choices made for different use cases. Note
in each case study, we construct a k-nearest-neighbor graph
followed by the application of MARGIN with the main
difference is in how the nodes of the graph are defined,
followed by the type of function that is defined at each node.

Case Study I—Prototypes and Criticisms
A commonly encountered problem in interpretability is to
identify samples that are prototypical of a dataset, and those
that are statistically different from the prototypes (called
criticisms). Together, they can provide a holistic
understanding about the underlying data distribution. Even in
cases where we do not have access to the label information, we
seek a hypothesis that can pick samples which are representatives
of their local neighborhood, while emphasizing statistically
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anomalous samples. One such function was recently utilized in
(Kim et al., 2016) to define prototypes and criticisms, and it was
based on Maximum Mean Discrepancy (MMD).

Formulation
Following the general protocol in Figure 1, the domain is defined
as the complete dataset, along with labels if available. Since this
analysis does not rely on pre-trained models, we construct the
neighborhood graph based on the Euclidean distance using k �
25 nearest neighbors. Inspired by (Kim et al., 2016), we define the
following explanation function: For each sample xi, we remove
the chosen sample and all its connected neighbors from the graph
to construct the set Xi � {xj, j ∉ (i∪Ni)}, and estimate the
function at the ith node as f (i) � MMD(Xi,Xi∪xi). MMD
gives us a way to measure the difference between two
distributions, and since we artficially construct the two
distributions by removing a single sample, we are able to
determine the importance of an individual sample (and its
neighbors) within the dataset using MARGIN. Let k : X ×
X→R be a kernel such as the radial basis function (RBF)
kernel, and X � Xi∪xi, then we can use the approximation for
MMD given in (c.f. Eq. 5 in Kim et al. (2016)) as:

MMD(xi) � 1∣∣∣∣X i

∣∣∣∣
∑

xm ∈ X i

k(xi, xm) + 1

|X | ∑
xj ∈ X

k(xi, xj). (2)

In cases of labeled datasets, the kernel density estimates for the
MMD computation are obtained using only samples belonging to
the same class. We refer to these two cases as global (unlabeled
case) and local (labeled case) respectively. The hypothesis is that
the regions of criticisms will tend to produce highly varying
MMD scores, thereby producing high frequency content, and
hence will be associated with high MARGIN scores. Conversely,
we find that the samples with low MARGIN scores correspond to
prototypes since they lie in regions of strong agreement of MMD
scores. More specifically, we consider all samples with low
MARGIN scores (within a threshold) as prototypes, and rank
them by their actual function values. In contrast to the greedy
inference approach in (Kim et al., 2016) that estimates prototypes
and criticisms separately, they are inferred jointly in our case.

Experiment Setup and Results
We evaluate the effectiveness of the chosen samples through
predictive modeling experiments with the idea that the most
helpful samples should result in a good classifier, whereas a the
most unhelpful/confusing samples should result in a poor
classifier. We use the USPS handwritten digits data for this

experiment, which consists of 9,298 images belonging to 10
classes. We use a standard train/test split for this dataset, with
7,291 training samples and the rest for testing. For fair
comparisons with (Kim et al., 2016), we use a simple 1-nearest
neighbor classifier. As described earlier, we consider both
unsupervised (global) and supervised (local) variants of our
explanation function for sample selection.

We expect the prototypical samples to be the most helpful in
predictive modeling, i.e., good generalization. In Figure 2A, we
observe that the prototypes from MARGIN perform
competitively in comparison to the baseline technique. More
importantly, MARGIN is particularly superior in the global case,
with no access to label information. On the other hand, criticisms
are expected to be the least helpful for generalization, since they
often comprise boundary cases, outliers and under-sampled
regions in space. Hence, we evaluate the test error using the
criticisms as training data. Interestingly, as shown in Figure 2B,
the criticisms from MARGIN achieve significantly higher test
errors in comparison to samples identified using MMD-critic
based optimization in (Kim et al., 2016). Furthermore, examples
of the selected prototypes and criticisms from MARGIN are
included in Figure 2C.

Case Study II—Explanations for Image
Classification
Generating explanations for predictions is crucial to
debugging black-box models and eventually building trust.
Given a model, such as a deep neural network, that is designed
to classify an image into one of r classes, a plausible
explanation for a test prediction is to quantify the
importance of different image regions to the overall
prediction, i.e. produce a saliency map. We posit that
perturbing the salient regions should result in maximal
changes to the prediction. In addition, we expect sparse
explanations to be more interpretable. In this section, we
describe how MARGIN can be applied to achieve both these
objectives.

Formulation
Since we are interested in producing explanations for instance-
level predictions using MARGIN, the domain corresponds to a
possible set of explanations for an image. Note that, the space of
explanations can be combinatorially large, and hence we adopt
the following greedy approach to construct the domain. We run
the SLIC algorithm (Achanta et al., 2012) with varying number of
superpixels, say {50, 100, 150, 200, 250, 300}, and define the

TABLE 1 | Using MARGIN to solve different commonly encountered interpretability tasks.

Task Domain Nodes in G Function Explanation Modality

Prototypes/ Criticisms Complete dataset Samples MMD (Global,Local) Sample sub-selection
Explain prediction Single image Explanations Sparsity Saliency maps
Detect noisy-labels Complete dataset Samples Local label-agreement Samples to fix
Detect adversarial-attacks Attacks/Noisy samples Perturbed samples MMD (Global) Attack statistics
Study discrimination Complete dataset Samples Local label-agreement Confusing samples
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domain as the union of superpixels from all the independent runs.
In our setup, each of these superpixels is a plausible explanation
and they become the nodes of G. The edge between nodesm and n
of this graph is defined based on the relative importance of each
super-pixel, i.e., emn �

∣∣∣∣∣
∣∣∣∣∣pj(I) − pj(Im)

∣∣∣∣∣ −
∣∣∣∣∣pj(I) − pj(In)

∣∣∣∣∣
∣∣∣∣∣, where I

is the original image, and Im is the image with themth super-pixel
masked out, and pj( ) extracts the softmax scores for the jth class
in the image. This relative importance captures how two super-
pixels are related in terms of the predictive model, which is related
to a causal objective that is used in CXPlain Schwab and Karlen
(2019).

For each of the explanations (super-pixels) m, we mask its
pixels in the image and use the pre-trained model to obtain a
measure of its saliency as before as

∣∣∣∣∣pj(I) − pj(Im)
∣∣∣∣∣. Using these

estimates, we obtain pixel-level saliency, S, as a weighted
combination of their saliency from different superpixels
(inversely weighted by the superpixel size). This dense saliency
is similar to previous approaches such as (Zeiler and Fergus, 2014;
Zhou et al., 2014).

Note that, this saliency estimation process did not impose the
sparsity requirement. Hence, we use MARGIN to obtain
influence scores based on their sparsity. The explanation
function at each node is defined as the ratio of the size of the
superpixel corresponding to that node and the size of the largest
superpixel in the graph. Intuitively, MARGIN finds the sparsest
explanation for different level sets of the saliency function.
Subsequently, we compute pixel-level influence scores, I, as a
weighted combination of their influences from different
superpixels. The overall saliency map is obtained as
Sfinal � S⊙I, where ⊙ refers to the Hadamard product.

Experiment Setup and Results
Using images from the ImageNet database (Russakovsky et al.,
2015), and the AlexNet (Krizhevsky et al., 2012) model, we
demonstrate that MARGIN can effectively produce
explanations for the classification. Figure 3 illustrates the
process of obtaining the final saliency map for an image from
the Tabby Cat class. Interestingly, we see that the mouth and
whiskers are highlighted as the most salient regions for its
prediction. Figure 4 shows the saliency maps from MARGIN
for several other cases. For comparison, we show results from

Grad-CAM (Selvaraju et al., 2017), which is a white-box approach
that accesses the gradients in the network. We find that, using
only a black-box approach, MARGIN produces explanations that
strongly corroborate with Grad-CAM and in some cases
produces more interpretable explanations. For example, in the
case of an Ice Cream image, MARGIN identifies the ice cream,
and the spoon, as salient regions, while Grad-CAM highlights
only the ice cream and quite a few background regions as salient.
Similarly, in the case of a fountain image, MARGIN highlights the
fountain, and the sky, while Grad-CAM highlights the
background (trees) slightly more than the fountain itself,
which is not readily interpretable.

Case Study III—Detecting Incorrectly
Labeled Samples
An increasingly important problem in real-world applications is
concerned with the quality of labels in supervisory tasks. Since the
presence of noisy labels can impact model learning, recent
approaches attempt to compensate by perturbing the labels of
samples that are determined to be high-risk of being corrupted, or
when possible have annotators check the labels of those high-risk
samples. In this section, we propose to employMARGIN to recover
incorrectly labeled samples. In particular, we consider a binary
classification task, where we assume β% of the labels are randomly
flipped in each class. In order to identify samples which were
incorrectly labeled, we select samples with the highest MARGIN
score, followed by simulating a human user correcting the labels for
the top K samples. Ideally, we would like K, the number of samples
checked by the user, to be as small as possible.

Formulation
Similar to Case Study I, the entire dataset is used to define the
domain. Since we expect the flips to be random, we hypothesize
that they will occur in regions where the labels of corrupted
samples are different from their neighbors. Instead of directly
using the label at each node as the explanation function, we
believe a more smoothly varying function will allow us to extract
regions of high frequency changes more robustly. As a result, we
propose to measure the level of distrust at a given node, by
measuring how many of its neighbors disagree with its label:

FIGURE 2 | Using MARGIN to sample prototypes and criticisms. In this experiment, we study the generalization behavior of models trained solely using prototypes
or criticisms.
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f (i) � 1 −∑jεNi
L(j, i)
|Ni| , (3)

where L(j, i) is 1 only if nodes j and i share the same label; |.|
denotes the cardinality of a set.

Experiment Setup and Results
We perform our experiments on two datasets: 1) the Enron Spam
Classification dataset (Metsis et al., 2006), containing 4138
training examples, with an imbalanced class split of around
70:30 (non-spam:spam), and 2) 3000 random images from

FIGURE 3 | We show the entire process of constructing the saliency map for one particular image (Tabby Cat) from ImageNet. From left to right: original image
(dense) saliency map S, sparsity map I, and finally the explanation from MARGIN, Sfinal .

FIGURE 4 | Our approach identifies the most salient regions in different classes for image classification using AlexNet. From top to bottom: original image,
MARGIN’s explanation overlaid on the image, and Grad-CAM’s (Selvaraju et al., 2017) explanation. Note our approach yields highly specific, and sparse explanations
from different regions in the image for a given class.
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Kaggle dog v cat classification dataset with almost equal number of
images from each class1. Following standard practice, we randomly
corrupt the labels of 10% of the samples. For the Enron Spam
dataset, we extracted bag-of-words features of 500 dimensions
corresponding to the most frequently occurring words. We
observed these features to be noisy, so we use a simple PCA
pre-processing step to reduce the dimensionality of the data down
to 100. For Kaggle, we use penultimate features from AlexNet
Krizhevsky et al. (2012) in order to construct a neighborhood
graph. In both cases we use k � 20 as the number of neighbors for
this purpose, we observed stable performance even when k � 30 or
k � 40. The use of features instead of the data directly has become
standard practice in several applications as it reduces the
dimensionality of the data, while also providing a more
semantically meaningful notion of neighborhood. We report
average results from 10 repetitions of the experiment.

We compare our approach with three baselines: 1) Influence
Functions: We obtain the most influential samples using
Influence Functions (Koh and Liang, 2017). 2) Random
Sampling 3) Oracle: The best case scenario, where the number
of labels corrected is equal to the number of samples observed.
Following (Koh and Liang, 2017), we vary the percentage of
influential samples chosen, and compute the recall measure,
which corresponds to the fraction of label flips recovered in
the chosen subset of samples.

As seen in Figure 5, we see that our method is nearly 10
percentage points better than the state-of-the-art Influence
Functions, achieving a recall of nearly 0.95 by observing just
30% of the samples. This difference is further improved when
observing a balanced dataset like the Kaggle dogs v cats, as seen in
Figure 5B where MARGIN outperforms Influence functions
signficantly. On examining how MARGIN picks the samples,
we see a clear trend which indicates a strong preference for
samples that lie farther away from the classification boundary. In

other words, this corresponds strongly to correcting the least
number of samples which can lead to the most gain in validation
performance when using a trained model.

Case Study IV—Interpreting Decision
Boundaries
While studying black-box models, it is crucial to obtain a holistic
understanding of their strengths, and more importantly, their
weaknesses. Conventionally, this has been carried out by
characterizing the decision surfaces of the resulting classifiers. In
this experiment, we demonstrate how MARGIN can be utilized to
identify samples that are the most confusing to a model, or more
precisely those examples which are likely to be mis-classified by a
pre-trained classifier. By definition these are images that are closest
to the decision boundary inferred by the classifier.

Formulation
In order to adopt MARGIN for analyzing a specific model, we
construct a nearest neighbor graph (k � 30) using latent
representations inferred from the pre-trained classifier in
consideration. This achieves two things–it gives us a semantic
similarity measure as interpreted by the classifier, i.e., which
similarities are considered important for the classification task.
More importantly for this case study, this automatically distills
the information regarding confusing samples into the graph that
is constructed, since these samples are likely to be in regions of the
neighborhood with high prediction uncertainty. Next, since the
decision surface characterization is similar to case Study III, we
use the local label agreement measure in (3) as the explanation
function. This disagreement between the function and the
neighborhood shows up as high frequency information which
is exploited by MARGIN to identify the decision surface.

Experiment Setup
We perform an experiment on 2-class datasets extracted from
ImageNet andMNIST. More specifically, in the case of ImageNet,

FIGURE 5 |MARGIN can be used to find samples with incorrect labels efficiently, much better than competing influence sampling based approaches. The “Oracle”
here is the best case scenario, where the samples checked are exactly the ones that are corrupted.

1https://www.kaggle.com/c/dogs-vs-cats/data
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we perform decision surface characterization on the classes Tabby
Cat and Great Dane. We used the features from a pre-trained
AlexNet’s penultimate layer to construct the graph. For the
MNIST dataset, we considered data samples from digits ‘0’
and ‘6’, and we used the latent space produced using a
convolutional neural network for the analysis. A selected
subset of samples characterizing the decision surfaces of both
datasets are shown in Figure 6.

Results
From Figure 6A, we see that the model gets confused whenever
the animal’s face is not visible, or if it is in a position facing away
from the camera. This is reasonable since we are only measuring
the most confusing samples between the Tabby Cat and Great
Dane classes which share a lot of semantic similarity. Similarly, in
the MNIST dataset, the examples shown depict atypical ways in
which the digits ‘0’ and ‘6’ can be written. These results suggest
that MARGIN is effective in identifying these examples, with a
combination of the appropriate neighborhoods (in the latent
space of the model) and labels.

Case Study V—–Characterizing Statistics of
Adversarial Examples
In this application, we examine the problem of quantifying the
statistical properties of adversarial examples using MARGIN.
Adversarial samples (Biggio et al., 2013; Szegedy et al., 2013)
refer to examples that have been specially crafted, such that a
particular trained model is ‘tricked’ into misclassifying them. This
is done typically by perturbing a sample, sometimes in ways
imperceptible to humans, while maximizing misclassification
rates. In order to better understand the behavior of such
adversarial examples, there have been studies in the past to
show that adversarial examples are statistically different from
normal test examples. For example, an MMD score between
distributions is proposed in (Grosse et al., 2017), and a kernel
density estimator (KDE) in (Feinman et al., 2017). However, these
measures are global, and provide little insight into individual
samples. We propose to use MARGINto develop these statistical
measures at a sample level, and study how individual adversarial
samples differ from regular samples.

Formulation
As in other case studies, MARGIN constructs a graph, where each
node corresponds to an example that is either adversarial or harmless,
and the edges are constructed using neighbors in the latent space of
the model, against which the adversarial examples have been
designed. We consider two kinds of functions in this experiment: 1)

MMD Global
Similar to Case Study I—Prototypes and Criticisms, we use the
MMD score between the whole set, and the set without a
particular sample and its neighbors. This provides a way to
capture statistically rarer samples in the dataset; 2)

Kernel Density Estimator
We also use the KDE of each sample, as proposed in (Feinman
et al., 2017), where we measure the discrepancy of each sample
against the training samples from its predicted class. While these
measures on their ownmay not be very illustrative, they are useful
functions to determine influences within MARGIN.

Experiment Setup and Results
We perform experiments on 2000 randomly sampled test images
from the MNIST dataset (LeCun, 1998), of which we adversarially
perturb 1000 images. We measure MARGIN scores using both
MMD Global, and KDE, against two popular attacks–the Fast
Gradient Sign Method (FGSM) attack (Goodfellow et al., 2014),
and the L2-attack (Carlini and Wagner, 2017b). We use the same
setup as in (Carlini and Wagner, 2017a), including the network
architecture for MNIST. The resulting MARGINscore determined
using Algorithm 1, is more discriminative, as seen in Figure 7. As
noted in (Carlini and Wagner, 2017a), the MMD and KDE
measures were not very effective against stronger attacks such
as the L2-attack. This is reflected to a much lower degree even in
our approach, where there is a small overlap in the distributions.
We also find that the overlapping regions correspond to samples
from the training set that are extremely rare to begin with (like
criticisms from Case Study I—Prototypes and Criticisms).

Case Study VI—Active Learning on Graphs
To demonstrate the applicability of MARGIN to work with graph
structured data, we study the problem of active learning on

FIGURE 6 | Using MARGIN to sample near decision boundaries.
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graphs, or in other words, generating highly influential samples for
a label propagation task. Label propagation is a semi-supervised
learning problem, where the task is to propagate labels from a small
set of nodes to all the other nodes of the graph. In order to evaluate
the samples chosen using our method, we study the test accuracies
for varying sizes of the training set. In order to perform the semi-
supervised learning, we use the Graph Convolutional Network
(GCN) implementation by Kipf and Welling (2017), with 3 graph
convolutional layers comprising 16 graph filters each, and a
learning rate of 0.01. The rest of the hyper-parameters are those
recommended in the GCN implementation2.

Formulation
Since the attributes are independently defined on each node, they
do not contain information about the neighborhoods in the graph
and therefore do not directly provide us a notion of influence.
Instead, we first embed the attributes using a graph convolutional
autoencoder Kipf and Welling (2016), and compute the
explanation function f as the as the norm of each latent feature
at each node. Next, using MARGIN we compute the influences of
the training samples alone, and sort them in decreasing order.

Datasets and Baselines
We consider two popularly used citation network datasets–Cora
and Citeseer Sen et al. (2008). The Cora dataset consists of 2,708
nodes and 5,429 edges, while the Citeseer dataset consists of 3,327
nodes and 4,732 edges. The attributes at each node are comprised

of a sparse bag-of-words feature vector with 3,703 dimensions for
Citeseer, and 1,433 dimensions for Cora.

We compare with two baselines: 1) Probabilistic resampling on
graphs: The resampling strategy was proposed in Chen et al.
(2017) as a way to efficiently resample dense point clouds. In this
approach, the magnitude of the features at each node after a high
pass filtering is directly used as a probability of influence at that
node, p(n). This is followed by a resampling of the nodes on the
graph according to p(n). While it is an effective strategy to
resample dense point clouds, it tends to be less reliable for the
label propagation experiment, as shown in Figure 8. Since we are
sampling from a distribution, we sample 10 times, and report the
mean and standard deviation. 2) Random sampling: We also
randomly sample from each class on the graph, and repeat this 10
times, while reporting the mean and standard deviation.

Results
In all cases, the accuracy of label propagation is measured on a test
set of size 1,000 samples, by training on only 10-100s of samples.
Figure 8 shows the accuracy of label propagation for varying
number of training set sizes. It is clear that our proposed
sampling achieves state-of-theart performance on the graph. The
performance is around 10–15%points higher in accuracy compared
to the baseline techniques, especially in small training set regimes.
While MARGIN’s resampling method is deterministic, we repeat
the other baselines 5 times and report average and standard
deviation. As we observe in Figure 8, the influence computed by
MARGIN is significantly better and more stable than the influence
obtained by directly using the attributes as the function, as done in
the case of probabilistic resampling. It is also interesting to note that
this probabilisticmethod is highly unstable for a very low number of

FIGURE 7 | We compare histograms of scores obtained from adversarial samples with and without incorporating graph structure. We see that including the
structure results in a much better separation between adversarial and harmless examples. In addition, regions of overlap can easily be explained.

2https://github.com/tkipf/gcn
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samples, as it was originally proposed to resample dense point
clouds. Finally, random sampling itself is a competitive baseline as
the number of samples under consideration is very small.

CONCLUSION

We proposed a generic framework called MARGIN that is able to
provide explanations to popular interpretability tasks in machine
learning. These range from identifying prototypical samples in a
dataset thatmight bemost helpful for training, to explaining salient
regions in an image for classification. In this regard, MARGIN
exploits ideas rooted in graph signal processing to identify themost
influential nodes in a graph, which are nodes that maximally affect
the graph function. While the framework is extremely simple, it is
highly general in that it allows a practitioner to include rich
semantic information easily in three crucial ways–defining the
domain (intra-sample vs inter-sample), edges (pre-defined/native/
model latent space), and finally a function defined at each node.
The graph based analysis easily scales to very sparse graphs with
tens of thousands of nodes, and opens up several opportunities to
study problems in interpretable machine learning.

PYTHON IMPLEMENTATION OF MARGIN

The graph analysis based influence estimation in MARGIN is
extremely simple, in that it can be implemented using a few lines
of python code.

import numpy as np

import networkx as nx

import scipy.sparse as sp

’’’

Inputs:

adj: adjacency matrix

f: function defined at each node

p: number of hops from each node

for filtering

Output:

I: Influence score per node

’’’

def MARGIN(adj,f,p�1):
G � nx.Graph(adj) #graph object

N � adj.shape[0] #number of nodes

degree � G.degree()

deg � [1./d[1] for d in degree.items()]

tmp � np.zeros((N,N))

Dinv � sp.csr_matrix(tmp)

idx0,idx1 � np.diag_indices(N)

Dinv[idx0,idx1] � deg

A_n � np.sqrt(Dinv)*adj*np.sqrt(Dinv)

P � np.power(A_n,p)

M � np.sum(P>0,axis�1,dtype�np.float)
f_0 � np.matrix(f)

f_1 � (P*f_0)/M

f_filter � f_1-(P*f_1)/M

I � np.abs(f_filter)

I � I/np.max(I)

return I.A
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