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ABSTRACT
The ease of targeted genetic modification makes the mouse a valuable model to study hearing

and deafness. A powerful window into cochlear function can be obtained by recording from
single auditory (AN) fibers, primary afferents connecting cochlear inner hair cells to the brain.
This thesis provides the first systematic analysis of fundamental response properties of the
mouse AN, including rate and timing of spontaneous and sound-evoked discharge, frequency
selectivity, dynamic range, and the relations between spontaneous rate and these other response
properties. Three wildtype strains were compared: CBA/CaJ (because it retains normal cochlear
sensitivity as it ages); and C57BL/6 and 129/SvJ (because they are used in "knockout"
generation). Two lines with targeted deletion of inner ear genes were also studied.

The cochlea in mouse responds to frequencies octaves higher than in humans or most other
mammals; nevertheless, most other AN characteristics were fundamentally similar to those in
well-studied mammals. The only significant differences were 1) smaller dynamic ranges in all
three strains; and 2) high-frequency threshold elevation and tuning degradation in C57BL/6 and
129/SvJ, consistent with early-onset degeneration of basal-turn sensory cells in these strains.

The mutant lines studied included deletion of 1) Calcitonin-Gene-Related Peptide (CGRP), a
neurotransmitter expressed by cochlear efferent fibers, or 2) the a subunit of BK channels, a
large-conductance K+ channel, expressed in hair cells and AN fibers, and implicated in cochlear
tuning in lower vertebrates. Loss of CGRP had no detectable effect on AN responses, suggesting
a minimal role in cochlear processing. Loss of BK channels led to dramatic decreases in sound-
evoked discharge rates and spike synchronization, without changes in frequency selectivity.
The degraded spike synchronization likely arises from slowing rise-times of inner hair cell
receptor potentials observed in vitro; the decreased steady-state rates likely arise from
depolarization block in the AN fibers themselves.

Thesis Supervisor: M. Charles Liberman, Ph.D.
Title: Professor of Otology and Laryngology, Harvard Medical School
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Chapter 1

Introduction

The availability of transgenic and mutant lines with interesting cochlear phenotypes makes
the mouse a valuable model for the study of the auditory system. Minimally invasive measures
of auditory function are often used to assess cochlear phenotype in mice. Such measures include
distortion product otoacoustic emissions (DPOAEs), auditory brainstem responses (ABRs), and
compound action potentials (CAPs) (Maison et al. 2003; Ruttiger et al. 2004; Vetter et al. 1999).
Although these measures can rapidly provide useful information about cochlear sensitivity as a
function of cochlear location, there are many aspects of cochlear physiology that cannot be
unambiguously inferred from these gross responses, because they represent the summed activity
of numerous cochlear generators.

Although requiring more invasive procedures, recordings from single auditory nerve (AN)
fibers can provide more detailed insight into the functional state of the inner ear. The vast
majority of AN fibers in the mammalian ear make synaptic contact with only a single inner hair
cell, by means of one synaptic complex (Liberman 1980; Spoendlin 1969; Spoendlin and Schrott
1988). Thus, recording from a single AN provides a sensitive window into the microenvironment
of a single sensory cell in the inner ear and a sensitive functional metric of the transducer
apparatus on the specific inner hair cell contacted and the neighboring outer hair cells that
influence its local cochlear mechanics. Analysis of the fine timing patterns of spike discharges
(e.g. the degree of phase locking or the response adaptation) can provide insight into the
processes involved in synaptic transmission between the hair cell and its primary sensory neuron.
By sampling from numerous fibers in the same animal or mutant strain, a detailed picture can be
assembled of the outputs of the sensory transduction and synaptic transmission machinery all
along the cochlear duct.

There have been only two previous reports of single-fiber activity from the mouse AN.
These pioneering studies were not primarily interested in understanding cochlear mechanisms.
One was aimed at validating the use of the galvanic skin response as a minimally invasive
measure of cochlear sensitivity (Finck and Berlin 1965) and thus collected mainly data on single-
fiber thresholds. The other was aimed at understanding the neurophysiological bases for critical
bands and thus collected data on single fiber thresholds and on the masking of tone responses by
noise bands (Ehret and Moffat 1984). In contrast, an aim of this thesis was to describe those
fundamental aspects of auditory nerve response that may provide the most insight into the
mechanisms of transduction and synaptic transmission in the inner ear, especially when coupled
with the use of targeted genetic modification in the mouse model. Thus, in chapter 3, a
systematic description is provided of all the most fundamental response properties of the mouse
AN response, including the distribution of spontaneous rates, tuning curves, rate-vs-level
functions, dynamic range, response adaptation, degree of phase-locking and the relations
between spontaneous rate and the aforementioned response properties. Because the CBA/CaJ
mouse strain is commonly used in auditory research and has excellent cochlear sensitivity
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throughout its life span (Jimenez et al. 1999; Li and Borg 1991; Zheng et al. 1999), it was chosen
for this initial study.

Comparisons between mouse AN physiology and that of other mammals is of interest,
because the mouse cochlea is specialized for higher frequency stimuli than cat, guinea pig,
chinchilla, or gerbil, the other mammalian species in which AN response has been well studied.
It will be shown in chapter 3 that despite the difference in hearing ranges, AN responses in
mouse are qualitatively similar to that found in other mammals. This is an important finding
since it indicates that the mouse falls within the general mammalian plan as it applies to the
coding of sound in the auditory nerve. Therefore, changes in AN function observed in transgenic
and mutant lines of mice are likely to be seen in other mammalian species with similar genetic
phenotypes. This makes the mouse a valuable model for the study of the molecular mechanisms
of auditory health and disease.

A common technique used to create transgenic mice favor the use of C57BL/6 and 129/SvJ
mouse strains. In this technique, pluripotent mouse embryonic stem (ES) cells are removed from
the inner cell mass of early embryos (blastocyst) and placed in a culture dish containing a
medium which allows them to reproduce but not differentiate (Watson et al. 1998). Multiple
copies of a mutant gene are introduced into the stem cells through transfection and a screening
process is applied to identify ES cells in which homologous recombination of the mutant gene
occurred (Watson et al. 1998). The 129 strains are the most favored for recombinant genetics
because their ES cells reproduce well in culture and are more tolerant of transfection and
selection procedures than ES cells derived from other strains (Mullen and Ryan 2001). After
transfection, ES cells with homologous recombination are introduced into the embryos of mice
that have a different coat color. For example, ES cells from the 129 strain (agouti colored coats)
are usually injected into C57BL/6 mouse embryos (black colored coats). Germline chimeras are
identified by mating chimeric male offspring with C57BL/6 females. The offspring of germline
chimeras would hlave coats that display a mixture of agouti (from 129/SvJ) and black (from
C57BL/6) colors. Finally, subsequent generations are produced by interbreeding among the
hybrid offspring.

Interpretation of AN phenotypes in transgenic or mutant mice having C57BL/6 or 129/SvJ
backgrounds is complicated by the presence of cochlear pathology in the wildtype strains.
C57BL/6 mice are commonly used as animal models for the study of age-related hearing loss
(AHL); they display a severe hearing loss that starts at high-frequencies and progresses to low-
frequencies with age (Hequembourg and Liberman 2001). Studies on the morphological
correlates of age-related hearing loss in the C57BL/6 cochlea describe a base-to-apical
degeneration of hair cells, with the outer hair cells leading, along with AN fiber degeneration
(Hequembourg and Liberman 2001; Spongr et al. 1997). Physiologic correlates of age-related
hearing loss in the C57BL/6 strain include progressive elevations of CAP and ABR responses,
along with decreases in DPOAE amplitudes (Hequembourg and Liberman 2001) (Jimenez et al.
1999; Lang et al. 2002). Similar to the C57BL/6, the 129/SvJ strain displays AHL that
progresses from high-to-low frequencies (Zheng et al. 1999a). In chapter 4, the spontaneous and
sound-evoked discharge properties of AN fibers recorded from the CBA/CaJ strain, are
compared to recordings in the C57BL/6 and 129/SvJ strains. It will be shown that setting aside
differences in hearing sensitivity, AN fiber responses are qualitatively and quantitatively similar
among the three strains.

The last two chapters of the thesis provide examples of how single-fiber recordings in
knockout mice can offer insights into the molecular mechanisms that shape auditory nerve
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responses. The mutant mice studied are Calcitonin-Gene Related Peptide (CGRP) knockouts
and BK-Channel knockouts. Both knockouts have genetic mutations that affect the expression of
proteins that are found in cells thought to be important for auditory function (Maison et al. 2003;
Ruttiger et al. 2004) and have expected auditory phenotypes that can best be captured from
single AN fiber recordings. Results from these studies confirm the power of the single-fiber
approach and provides a basis on which future studies using knockout mice can be built.

14



Chapter 2

Methods

2.1 Animals, anesthesia, and surgical approach
Single-fiber recordings were made from the auditory nerve in CBA/CaJ mice aged 8 - 17

weeks, and in two knockout mouse lines with targeted gene deletion: 1) CGRP, the Calcitonin
gene related peptide (Lu et al. 1999) and 2) BK, the a subunit of the large-conductance K+

channel (Ruttiger et al. 2004). The CGRP knockout mice have a genotype that differs from that
of C57BL/6 only at the CGRP gene locus (i.e., they are congenic). Animals from the CGRP
knockout line were studied at ages 16-17 weeks, as were their wildtype littermates. The BK-
channel knockout mice are congenic with a 129/SvJ background. Animals from the BK channel
knockout line, and their wildtype littermates, were studied at ages 7 -17 weeks.

Animals were anesthetized with 10% xylazine (5 mg/kg i.p.) and 20% urethane (1.32 mg/kg
i.p.). Animal temperature was maintained near 380C with a heating pad and by maintaining the
ambient temperature in the experimental chamber at about 330 C.

For the surgical approach, the cartilaginous ear canals were removed, scalp reflected, skull
opened, and a semi-cerebellectomy performed to expose the left cochlear nucleus. Glass
microelectrodes filled with 2M KCL and 4% methyl blue were directed at the surface of the
cochlear nucleus, -1 mm medial to the edge of the temporal bone, angled anteriorly at 24 ° in the
sagittal plane and laterally at 100 in the coronal plane. All animal procedures were approved by
the IACUC of the Massachusetts Eye and Ear Infirmary.

2.2 Acoustic System
The sound system comprised dual electrostatic sound sources (TDT ED-1) and a Knowles

electret microphone coupled to a probe tube. The sensitivity of the probe-tube microphone was
calibrated for frequencies between 1.0 and 73 kHz using a calibrated Bruel & Kjaer 1/4"
condenser microphone in a coupler. In every experiment, the calibrated acoustic assembly was
fitted within the opening of the mouse ear canal. In-animal sensitivity analysis was performed
before each experiment to determine the maximum sound pressure level that could be delivered
to the mouse ear for test frequencies ranging between 1.0 and 73 kHz.

2.3 Distortion-Product Otoacoustic Emissions and Preparation Stability
Distortion-product otoactoustic emissions (DPOAEs) were monitored throughout the

experiments to assess cochlear stability. DPOAEs can be used to assess cochlear function since
the cochlea, under normal conditions, is a non-linear system that produces DPOAEs when two
pure tones (fl,f 2) are simultaneously presented. A decrease in cochlear sensitivity will be
reflected in a decrease in DPOAE amplitude. Of the distortion products produced by the
cochlea, the 2fl-f2 has the largest amplitude and is the one monitored in this study. DPOAEs
were measured at the beginning of each experiment, before cerebellar aspiration, using f2
frequencies from 5.6 to 45.2 kHz in half-octave steps.
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The DPOAE was recorded in response to primary tones fl and f2, with f2/f l =l.2 and L2 = Li -
10 dB. The ear-canal sound pressure waveform was amplified and digitally sampled at 4 ps
intervals. Fast-Fourier transforms were computed from averaged sound pressure waveforms, and
the DPOAE and surrounding noise floor were extracted. Because the noise floor amplitude is a
function of the primary-tone frequencies used, DPOAE threshold was defined differently based
on the f2 frequency used. "Threshold" was defined as the primary-tone level necessary to
produce a 2fl-f 2 DPOAE of 0 dB (f 2 = 5.6 kHz, 8 kHz, 11.3 kHz, or 16 kHz), 5 dB (f2 = 22.6
kHz), 10 dB (for f2 = 32 kHz) or 15 dB (f2 = 45.2 kHz).

During single-fiber recordings, the DPOAEs were re-checked at the f2 nearest the
characteristic frequency (CF) of each fiber studied. Data are included in the final database for
CBA/CaJ if DPOAE threshold shifts, using an f2 nearest fiber CF, were < 5 dB re initial values.
For CGRP knockout mice, and their wildtype littermates, data are included if DPOAE threshold
shifts at 2fl-f 2 were < 10 dB re initial values. A larger DPOAE threshold shift criterion was
used, because the data pool was relatively small compared to CBA/CaJ. DPOAEs could not
always be used to monitor cochlear condition in the BK channel knockouts, since most animals
had initial DPOAE threshold values too high to be able to monitor threshold changes (see
Chapter 6).

2.4 Stimuli and Response Measures
50-msec noise bursts were used as search stimuli. Tone bursts were used for all other sound-

evoked measures (except phase-locking): they were 50 msec in duration, with 2.5 msec rise-fall
and a repetition rate of 10/sec. Tuning curves were measured under computer control, and
represent isorate contours for response magnitude of 10 sp/sec > spontaneous rate (Liberman
1978). Spontaneous rates were calculated from 10 sec samples.

Rate-level functions were measured at CF with 10 - 40 tone bursts per level. Levels (in 5 dB
steps) were presented in random order. Rate-level functions were fit using a modified version of
a previously published model (Sachs et al. 1989). The published model has three components.
The first component (equation 1) passes the input sound pressure "P" through a nonlinear

attenuator to obtain a value P that is the input to a saturating non-linearity that represents the
inner ear transfer function (equation 1). 0 in equation 1 represents the "compression threshold"

of the model and the point when P stops being a linear function of the sound pressure "P". The
parameter a was fixed as 0.27. The second component (equation 2) obtains a value for the

driven rate (Rd) by passing P through a saturating non-linearity. As will be shown in later
chapters, mouse rate-level functions are generally steeper than those found in cat, the species
used by Sachs et. al. to create their model. Therefore, a modification was made to the model in
order to fit mouse rate-level functions. Namely, the input to the saturating non-linearity was
given an exponential (a free parameter) which allowed the function to have steeper slopes
(equation 2). In equation 2, RM represents the driven saturation rate of the fiber and OE gives the

value of P at which the driven rate reaches half of its maximum value. The last component
(equation 3) of the model obtains the total discharge (RTOT) rate by adding the spontaneous rate
(Rsp) to the driven rate (Rd).
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P=P. (1)

R.E 1.77

Rd P 1.77 (2)

R = R + Rs (3)RTOT =Rd +RSP

The fitting procedure was done in Matlab® using the function fminsearch, which performs
a multidimensional, unconstrained, nonlinear minimization (Nelder-Mead (Nelder and Mead
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Figure 2.1: Model fitting of rate-level functions using a modification of the formula
developed by Sachs et al (1989). Panels A and B: raw data (filled symbols) and model fit
(dashed lines) for the rate-level function for a fiber with CF = 18.8 kHz and SR = 47.6
sp/sec (A) and CF = 23.7 kHz and SR = 0.1 sp/sec (B). Dynamic range (paired vertical
lines in each panel) was defined as the difference between SPLs evoking 10% and 90% of
the (model fit) maximum driven rate. The root-mean-square-errors for the model fits were
13.2 sp/sec and 13.9 sp/sec in panels A and B, respectively.
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1965)). Dynamic range was defined as the difference between SPLs evoking 10% and 90% of
the (model fit) maximum driven rate (Figure 2.1).

Measures of synchrony were obtained from post-zero-crossing (PZC) histograms derived
from the presentation of tones of 15 sec duration. The tone frequencies were constrained (f =
1.0, 1.6, 2.0, 2.5 or 4 kHz) so that an integer number of cycles fit in the digital buffer. The
degree of phase-locking was examined using the synchronization index calculated as described
by Johnson (Johnson 1980).

When measuring phase-locking in AN response, care was taken to eliminate artifactual
synchrony due to microelectrode pick-up of cochlear microphonic potentials. A model
developed by Johnson (Johnson 1978) was used to compute a synchrony noise floor below which
synchrony may be artifactual. According to the model, the synchronization index (SI) due to the
microphonic artifact is given by:

SIartifact = d8 if yt (4)

assuming a randomly-distributed spike train contaminated by an additive sine wave at frequency
f; y is the ratio of the rms stimulus artifact amplitude to the peak spike amplitude, and t is the
rise time of the spikes. Rise time t and ratio y were calculated from measurements of digitized
spike trains obtained during each synchrony measurement: the amplitude of the sine wave
(microphonic) component at the stimulus frequency was extracted via FFT. Only the data for
which the measured SI was greater than SIartifact are included in this thesis.

2.5 Classifying Auditory Nerve Fibers
Because the auditory nerve (AN) in mouse is difficult to expose directly without

compromising cochlear function, the AN was reached via electrode penetrations which first
travel through the cochlear nucleus (CN), which can be readily exposed. Electrode angles and
insertion area were chosen to avoid the anteroventral CN, which contains cells with AN-like
responses in other mammalian species (Rouiller and Ryugo 1984). Based on surface landmarks,
most electrode penetrations entered through the anterior portions of the DCN (figure 2.2A). Cell
types encountered along the electrode track yielded post-stimulus-time (PST) histograms with
"pauser/build-up", "chopper", "onset", "primary-like with notch", and "primary-like" shapes
(Blackburn and Sachs 1989; Rhode and Smith 1986b; Rouiller and Ryugo 1984; Young et al.
1988) (figure 2.2B-F). As expected, non-primary like cells tended to be seen superficially in the
electrode tracks, whereas "primary-like" (AN) responses were almost exclusively seen at
electrodes sites deeper than 1 mm from the point of penetration.

A classification scheme based on PST shape, first spike latency (FSL), and the coefficient of
variation (CV) of the interspike intervals, was adopted to distinguish AN and CN cell types. In
cat, where AN and CN can be separately accessed by microelectrodes (with visible superficial
landmarks identifying the Schwann-glial border separating these two structures), AN responses
are more irregular (i.e., larger CV for interspike intervals) and show a smaller FSL than most CN
cells with similar characteristic frequencies and spontaneous rates (Young et al. 1988). PST
histograms used to characterize response type were based on 150-350 tone burst presentations at
CF and were always presented at 30 dB above threshold. A measure of FSL, i.e. the mode of the
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FSL distribution, and the CV, i.e. the ratio of the standard deviation to the mean of the interspike
interval distribution, were both obtained from responses to 150 CF tone bursts at 30 dB above
threshold. CV measures were derived only from spikes occurring 20-40 msec after tone-burst
onset (i.e., excluding the initial and final 10 msec, where some spike intervals may include
spontaneous discharge).

In early experiments to develop effective criteria for differentiating AN fibers from CN cells,
tone-burst responses were obtained and analyzed from all fibers encountered along each
electrode pass, Figure 2.3 shows the relationship between CV and FSL in fibers subjectively
classified by PST shapes. Results suggest that mouse AN fibers have CVs ~ 0.5 and FSLs ::; 5
msec, which are similar to values reported for cat (Young et al. 1988). As in cat, there appears to
be some overlap of CV and FSLs between AN and CN (e.g., for the "pri-notch" CN units)
(Young et al. 1988). Nevertheless, the data in Figure 2.3 suggest that the following criteria
adopted for classification as AN fiber should provide the best trade-off between sensitivity and
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Figure 2.2: AN fibers in the mouse were reached via the cochlear nucleus. Panel A: recording
electrode traverses the dorsal cochlear nucleus (DCN) and posteroventral cochlear nucleus (PVCN)
before reaching the AN. Panels B-F: PST histograms of cells encountered along the electrode tract.
PSTs were obtained from the presentation 150 CF tones 30 dB above response threshold.
Histograms of the interspike intervals and their corresponding coefficient of variation (CV) values
are shown as insets for each PST.
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specificity: 1) CV _ 0.5, (2) FSL < 5msec, (3) electrode depth > 1000 and 4) "primary-like"
PST.

In later experiments, the superficially located CN cells were bypassed in order to increase the
yield of AN fibers in each animal studied. By the end of the experimental series, the mean yield
of AN recordings had grown to 7/animal (with a maximum of 16/animal).
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Figure 2.3: Criteria for distinguishing AN fiberss from cochlear nucleus (CN) cells.
Relation between the coefficient of variation of the interspike intervals (CV) and the mode
of the first spike latency (FSL) for all units, including from the preliminary study,
encountered. CV is the ratio of the standard deviation to the mean of the interspike interval
distribution obtained from responses to 150 CF tone bursts, 30 dB above threshold.
Symbols represent the subjective classification based on PST shapes (see legend). An
acoustic delay of 0.5 msec should be subtracted from the FSL values shown in order to
obtain time re arrival of acoustic signal at the eardrum.

2.6 Robustness of criterion for identifying AN fibers
Based on the classification described in the previous section, the fiber population studied

must be dominated by AN responses. However, CN units with "primary-like" responses could
also be included, given that, in cat, there is some overlap in response latency and regularity
measures between these CN cells and AN fibers (Young et al. 1988). CN cells that can generate
primary-like responses include spherical and globular bushy cells (Blackburn and Sachs 1989)
(Smith et al. 1993).

Spherical bushy cells are located in the anterior AVCN. They receive axosomatic synapses
from AN fibers in the form of endbulbs of Held (Sento and Ryugo 1989) and are thought to be
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important for low-frequency sound localization since they preserve temporal information and
project to the medial superior olive bilaterally (Smith et al. 1993). In mouse, the spherical bushy
cell area and the medial superior olive are small compared to other mammals (e.g., cat; (Irving
and Harrison 1967); (Webster and Trune 1982)), consistent with the fact that mice are high
frequency animals and likely do not depend heavily on localization of low-frequency sounds.
Given the small size of the spherical cell area in mouse, and the fact that our electrode angle and
insertion point in the DCN is such that anterior AVCN is not traversed, it is not likely that any of
the present results are from spherical bushy cells.

Globular bushy cells are located more posteriorly in the AVCN and receive more numerous,
smaller terminals from a larger number of AN fibers than spherical cells (Harrison and Irving
1966; Rouiller et al. 1986). They generate tone-burst PST histograms described as "primary-like
with notch" (Smith et al. 1993) (Rhode and Smith 1986a). However, the distinctive notch,
located -2 msec after an initial peak, is not always present at 30 dB above threshold (Blackburn
and Sachs 1989), the level used in this study. Because globular cells are located near the AN root
in mouse (Webster and Trune 1982) and have tone burst FSLs comparable to AN fibers (Young
et al. 1988), it is possible that some globular cell responses were classified as AN fibers in the
present database. Such inclusion would have minimal affect on the conclusions, since their
responses are generally so similar to those of AN fibers. The greatest differences include a
tendency towards larger SRs, maximum driven rates and peak-to-steady state ratios in globular
cells (Rhode and Smith 1986a). Thus, these aspects of mouse AN response may be slightly
skewed towards higher values in the present study.

2.7 Genotyping
The CGRP knockout and the wildtype mice used in this thesis were bred and raised at the

Massachusetts Eye and Ear Infirmary animal care facility. The original breeding pairs were
generously given to us by Dr. Ronald Emeson, creator of the CGRP knockout line. A
genotyping protocol developed by Dr. Emeson was used to confirm the presence or absence of
the genetic mutation in each generation. The protocol required the use of the Extract-n-Amp
PCR kit (Sigma ®) to prep the DNA for PCR amplification. DNA primers were used to amplify
a segment of DNA corresponding to the CGRP gene:

(1) 5'-CCTCCCACTGCCCCATCCTGA-3' sense primer
(2) 5'-CATTCTGGGGCTGTTATCTGTTCA-3' antisense primer

The DNA segment amplified in CGRP knockout mice gave PCR products that were 224bp in
length, while that in wild-type mice gave PCR products that were in 209bp in length. Figure 2.4
shows example PCR products obtained from 6 wildtype mice (underscored in light blue) and 4
CGRP knockouts (underscored in yellow). Because longer segments of DNA need more time
to travel done the algarose gel than shorter ones, DNA segments from wildtype mice (209bp) are
closer to the bottom than the knockout mice (224bp). A 100bp ladder, last column on the right,
was included to serve as a reference.
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Figure 2.4: Oenotyping using peR. PCR products for 6 wildtype (underscored in light blue (209 bp»
and 4 CORP knockout mice (underscored in light blue (224 bp». Shown on the extreme right is a 100 bp
ladder. Since smaller segments of DNA travel faster through the agarose gel, the segment of the ladder
nearest the bottom of the image is 100bp in length.
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Chapter 3

Recordings from Single Auditory Nerve Fibers in CBA/CaJ Mice

3.1 Introduction

In this chapter, the spontaneous and sound-evoked discharge properties of 196 AN fibers
recorded from the CBA/CaJ strain are described. The characterization of CBA/CaJ single-unit
AN physiology is important since CBA/CaJ mice are commonly used in studies of the auditory
periphery. CBA/CaJ is popular for cochlear studies because their hearing sensitivity is relatively
stable up to at least 15 months of age (Jimenez et al. 1999; Li and Borg 1991; Zheng et al.
1999a). Conversely, knockout mice are produced in a variety of strains known to have early
onset age-related hearing loss. Therefore, it will be of additional use to characterize AN
physiology in the CBA/CaJ strain in order to have data that can be used as one standard of
comparison in studies performed in a number of knockout mice.

Physiologic measures commonly used to characterize AN responses are tuning curves,
spontaneous discharge rates (SRs), and discharge rate-versus-level functions for characteristic
frequency (CF) tone bursts. Fundamental features of AN response that can be extracted from
these measures are presented in this chapter, including: 1) threshold sensitivity, 2) sharpness of
tuning (QlOdB), 3) the dynamic range and maximum rates of response, 4) response adaptation, 5)
degree of phase-locking and 6) the relationships among SR, CF and all the aforementioned
response properties.

Comparisons between mouse AN physiology and that of other mammals is also of interest,
because the mouse cochlea is specialized for higher frequency stimuli than cat, guinea pig,
chinchilla, or gerbil, the other mammalian species in which AN responses have been well
studied. Despite this important difference, it will be shown that the fundamental aspects of AN
response are qualitatively similar in the mouse. This finding increases the value of the mouse
model, because it indicates that the mouse falls within the general mammalian plan and, as such,
increases the likelihood that conclusions derived from the study of the molecular mechanisms of
hearing and deafness in mouse are generalizable to all mammals.

3.2 Results

3.2.1 Rate Threshold and Tuning

A fundamental property of AN fibers is their frequency selectivity, which is often quantified
via "threshold" tuning curves which track iso-response contours in the frequency-intensity plane
(Figure 3.1). Tuning curves were obtained for all AN fibers encountered. As in other
mammalian species, mouse AN tuning curves show sharply tuned "tips", defining a characteristic
frequency (CF: frequency of maximum sensitivity) and broadly tuned low-frequency "tails". The
data in Figure 3.1 show populations of tuning curves obtained from 28 CBA/CaJ mice, clustered

23



I ou

80-%

40

CL SP 1 ANT .. __
() ILU-

co
75 40 

O
v '""

I-_

Frequency (kHz)
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middle of its respective half-octave bin. Only data from fibers with high spontaneous rate
(i.e., SR > 1 sp/sec) are shown.

according to CF. Tuning curve shapes are remarkably similar across animals. As reported for
other species (Dallos and Harris 1978; Evans 1972; Liberman 1978; Ohlemiller and Echteler
1990), tuning curves from lower CF regions tend to be more "V-shaped", with a less obvious
low-frequency tail.

Plotting thresholds at CF for all the AN fibers obtained in the present study provides an
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overview of the sensitivity and frequency range of the peripheral auditory system in this strain.
In this study, CFs ranged from 3.1 - 69.8 kHz for 196 fibers obtained in 28 animals (Figure
3.2A). A local threshold minimum was seen among fibers in the middle of that range. i.e. 12 -
24 kHz. In both strains, minimum thresholds rose for CFs below that region and the spread in
thresholds at any one region of CF was on the order of 30 dB. Threshold sensitivity near 0 dB
SPL could be seen in fibers with CF as high as 60 kHz.

The sharpness of AN tuning in mouse increased with CF. This relationship can be seen
qualitatively in Figure 3.1 and quantitatively in Figure 3.2B, which shows QiOdB (ratio of CF to
bandwidth at 10 dB above threshold at CF) for all AN fibers in the present study.

3.2.2 Spontaneous Rate

Auditory nerve fibers discharge spontaneously in the absence of sound (Kiang et al. 1965).
Figure 3.3A shows the spontaneous rate (SR) distribution for the fiber population. SRs ranged
from 0 - 120 sp/sec with 49% of the fibers having SRs < 20 sp/sec. In contrast to many other
mammalian species studied, e.g. cat (Kiang et al. 1965) or guinea pig (Tsuji and Liberman 1997),
the SR distribution in mouse is not clearly bimodal. While there is no clear relationship between
fiber SR and CF (Figure 3.3B), there is a clear relationship between fiber threshold and SR. As
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seen in other mammalian species (e.g. Liberman, 1978), fibers with the lowest relative thresholds
(with respect to the most sensitive fibers of similar CF) also had the highest SRs (Figure 3.3C).

3.2.3 Response Adaptation

PST histograms of AN fibers show a peak in discharge rate at tone-burst onset, which decays
to a steady-state response (Kiang et al. 1965; Smith 1977). Response adaptation in auditory
nerve fibers follows a multi-component time course with time constants varying from
milliseconds to minutes (Chimento and Schreiner 1991; Javel 1996; Westerman and Smith
1984). In this study, the ratio of peak to steady-state rate was used as a measure of response
adaptation; corresponding to the "short-term" component studied by Westerman and Smith
(1984). Adaptation of mouse AN responses was studied using PST histograms of responses to
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CF tone bursts at 30 dB above threshold. The histograms were divided by the number of tone
burst presentations and the histogram bin width (0.5 msec) to give the instantaneous discharge
rate.

Response adaptation is a function of both SR and CF in the mouse AN (Figures 3.4A and B).
In fibers with SR > 1 sp/sec peak-to-steady-state ratios ranged from 2.2 - 7.4, while fibers with
SR < 1 sp/sec had ratios between 1.6 and 4.2 (Figure 3.4A). Fibers with the largest peak-to-
steady state ratios had CF > 20 kHz (Figure 3.4B). The increase in peak-to-steady state ratio is
due to an increase peak rate with CF. This difference can be seen from the superimposed PST
histograms for high-SR (SR > 1) fibers with CF < 20 kHz vs. those with CF > 20 kHz (Figures
3.4C and D, respectively).

3.2.4 Rate-vs.-Level Functions and Dynamic Range

Maximum discharge rates and dynamic range of single AN fibers in mouse was investigated
by measuring discharge rate vs. sound level for tone bursts at CF (Figure 3.5). Each level
function was fit by a modified version of an existing model (Sachs et al. 1989) in order to get
better estimates of dynamic range.

In data from guinea pig AN (Winter et al. 1990), rate-level functions were categorized as
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"hard saturating", "sloping saturating", and "straight". In the CBA/CaJ AN, nearly all high-SR
fibers (SR > 1 sp/sec) had hard-saturating rate-level functions (Figure 3.5A). On the other hand,
low-SR fibers were more heterogeneous in that all three level-function categories could be found
among them (Figure 3.5B).

Among AN fibers in CBA/CaJ, there was a tendency for fibers with low-SR (< 1 sp/sec) to
show lower maximum discharge rates than those with SR > 1 sp/sec (Figure 3.6A): group mean
differences were statistically significant (P = 0.005, Student's t-test). There did not appear to be
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any relation between maximum discharge rate and CF (Figure 3.6B).
Dynamic ranges of most AN fibers were less than 15 dB (Figure 3.7): as is typically done in

AN studies, dynamic range was defined as the dB range between the 10 and 900/0 rate points).
However, larger dynamic ranges were sometimes seen among fibers with SR < I sp/sec.
Furthermore, dynamic ranges were more heterogeneous for this low SR group, ranging between
8.4 and 43.0 dB. In contrast, for high SR (2:: 1 sp/sec) fibers, the largest dynamic range was 35
dB.

3.2.5 Response Synchrony

When AN fibers respond to low-frequency tones, there is a correlation between the stimulus
periodicity and the timing of spikes (Johnson 1980), as illustrated by the post-zero crossing
histogram in the inset of Figure 3.8C. In cat, where it has been most systematically studied, this
phase-locking, or synchrony, falls off dramatically as stimulus frequency approaches 4 kHz
(Johnson 1980). In the mouse AN, there are relatively few fibers with rate threshold < 60 dB
SPL at frequencies :S 4 kHz (e.g. Figure 3.1). Thus, given that high SPL tones elicit large
cochlear microphonic potentials that can produce artifactual synchrony when picked up by the
microelectrode, response synchrony could only be studied systematically in a few fibers. A
model developed by Johnson (Johnson 1978) was used to compute a synchrony noise floor for
each recording (based on the ratio of microphonic size to spike size) to prevent pollution of data
by these microphonic-based artifacts (See chapter 2).

Although the sample size is limited by the general lack of low-frequency responsiveness in
the mouse AN, the fundamental features of response synchronization are similar to those
reported in other mammalian species. Data from one of the lowest-CF fibers in the present study
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Figure 3.8: Phase-locking in mouse AN fibers. Panels A and B show data from one well-studied
fiber (CF = 3.1 kHz, SR = 22.4 sp/sec). Synchrony (Panel B) and rate (Panel A) measures were
extracted from post-zero-crossing histograms obtained from IS-sec continuous tones. The
synchronization index (panel B) was calculated as described by Johnson (1980). Panel C:
Comparison of maximum synchrony vs. tone frequency for mouse data from panel B compared to
published cat data (shaded area (Johnson 1980)) and guinea pig data (Palmer and Russell 1986)),
excluding an outlier at 1.68 kHz. Synchrony values marked by asterisks are underestimates of the
maximum, since synchrony-level functions had not saturated at the highest sound level presented.
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illustrate the main trends of the synchrony data from mouse AN (Figure 3.8A,B). For this fiber
(CF= 3.1 kHz), rate and synchrony data were obtained for stimulus-level functions at 5
frequencies from 1 to 4 kHz. No synchrony was demonstrable in the response to 4 kHz, and
maximum synchrony increased systematically as stimulus frequency decreased towards 1 kHz
(Figure 3.8B,C). As reported in other species, the AN discharge can synchronize to the stimulus
period at lower SPLs than those at which the average rate increase (e.g. data at 1 or 2 kHz),
although this is not always the case (e.g. 1.6 kHz). Note that the maximum synchronization
index seen across all mouse AN fibers studied was lower than the values reported for similar
stimulus frequencies in the cat (gray region in Figure 3.8C) but similar to guinea pig (dotted
region in Figure 3.8C), another rodent species.

3.3 Discussion

3.3.1 Relevance to other data on auditory function in mouse

Two previous studies, Finck and Berlin (1965) and Ehret and Moffat (1984), describe
recordings from mouse AN fibers, using the CBA/J strain and the (outbred) NMRI strain,
respectively. In both studies, electrode tracks traversed the CN to access the AN, thus the
possibility for unit mis-classification exists. This possibility was acknowledged, but not
addressed, by Finck and Berlin; Ehret and Moffat developed a classification scheme based on
average FSL. Thus, as in the present study, their database may include a small population of
globular bushy cells in addition to the majority population representing AN response.

Aspects of AN physiology characterized in these previous studies included: response areas
(i.e., tuning curves), thresholds at CF, masked thresholds to tone bursts in noise, and critical ratio
bands. Since the present study did not examine noise masking, and previous studies did not
directly quantify the sharpness of tuning curves, the only point of comparison among the three
studies concerns the distribution of thresholds at CF. Threshold data from the three studies are
compared in Figure 3.9A, where curves representing the minimum thresholds at CF for AN
fibers sampled in the present study (filled circles) are compared to AN data from CBA/J (open
diamonds) and NMRI strains (open circles). Minimum thresholds for the NMRI strain are lower
at most CF regions than those seen in the present study. However, data from the present study do
not show the precipitous loss of sensitivity for CFs > 30 kHz (see below). Minimum threshold
envelopes for the CBA/J data and the present CBA/CaJ data are similar for CFs < 30 kHz. For
higher CF regions, CBA/CaJ maintains low minimum thresholds out to the high-frequency limits
of our acoustic system (-70 kHz); whereas, the CBA/J data show steeply sloping loss of
threshold sensitivity. It is not clear whether these differences in high-frequency behavior reflect
true inter-strain differences in high-frequency sensitivity, differences in acoustic calibration
procedure or artifactual loss of sensitivity in the CBA/J due, for example, to cochlear cooling in
the anesthetized preparation (Brown et al. 1983).

Comparisons of single-fiber thresholds from the present study with behavioral thresholds for
a number of mouse strains are also shown in Figure 3.9B. With the exception of an extremely
low value for l-kHz behavioral threshold in the NMRI mouse, all behavioral threshold functions
agree reasonably well with the minimum single-fiber thresholds measured in CBA/CaJ in the
present study. Note that none of the behavioral curves show the precipitous threshold elevation
for frequencies > 30 kHz seen in the CBA/J single-fiber study (Birch et al. 1968).
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Figure 3.9: Minimum thresholds as a function of characteristic frequency for all CBNCaJ AN fibers
recorded in the present study compared to minimum thresholds from other mouse studies (Panel A).
Data from CBA/CaJ strain was binned according to CF (half-octave bins), and the minimum fiber
threshold for each bin was found. Panel B: Superimposed tuning curves from all CBNCaJ fibers in
the present study (gray) compared to behavioral threshold data from other mouse studies. Behavioral
data are from the following sources: CBNCaJ mouse (Prosen et al. 2003), CBNJ mouse (Birch et al.
1968), feral house mouse (Heffner and Masterton 1980), NMRI mouse (Ehret 1974) and C57BL/6
(Mikaelian et al. 1974). AN data are from the following sources: NMRI mouse (Ehret and Moffat
1984), CBNJ (Finck and Berlin 1965), and CBNCaJ (present study).

3.3.2 Comparison to data from other mammals

3.3.2.1 Tuning-curve tips vs. tails and rate vs. synchrony coding
Tuning curves recorded from the mouse AN were qualitatively similar to those recorded in

other mammalian species. They showed sharply tuned "tips" near the characteristic frequency
and broadly tuned low-frequency "tails" (Figure 3.1). As in other mammals, mouse AN fibers
showed increasing sharpness of tuning with increasing CF (Figure 3.2B). A more quantitative
comparison of mean QlOdB values obtained from several mammalian species is shown in Figure
3.10. The combined data suggest a common relationship between QlOdB and CF, with similar
sharpness of tuning seen across several mammalian species, where CF regions overlap.

A more quantitative comparison of tuning-curve "tails" shows that low-frequency thresholds
are significantly elevated in mouse compared to other mammalian species (e.g., cat (Liberman
1978), guinea pig (Evans 1972), chinchilla (Dallos and Harris 1978), and gerbil (Ohlemiller and
Echteler 1990». For example, a direct comparison of mouse and cat tuning curves for fibers
with CF near 15 kHz (Figure 3.11) shows that, whereas thresholds in mouse increase
monotonically for frequencies below CF and rise above 90 dB for frequencies < 4 kHz,
thresholds in cat show a second minimum at low frequencies and do not rise above 90 dB SPL
until frequencies fall below -0.2 kHz.

In mammals with better low-frequency hearing than mouse, significant information is carried
in the fine timing of AN discharge, in addition to the information carried by changes in average
rate. Maximum response synchrony in cat AN is constant for frequencies < 1 kHz, rolls off
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dramatically above 1 kHz and is essentially absent for stimulus frequencies> 4 kHz (Johnson
1980). Thus, in cat or guinea pig, and probably humans, low-frequency sensitivity is such that
AN fibers spanning many octaves of CF will show phase-locked response to a moderate-level
(80 dB), low-frequency (e.g. 1 kHz) tone. In mouse AN, by contrast, there would be almost no
fibers responding to such a stimulus (See Figure 3.9B). This raises the question as to whether this
mammalian ear specialized for high-frequency hearing has also developed specializations to shift
the frequency range of AN phase-locking. Data in the present study suggest that this is not the
case: the relation between maximum synchronization index and stimulus frequency appears to be
fundamentally similar to that seen in other mammals (Figure 3.8). Indeed, if anything, the high-
frequency limit of synchronization occurs at a lower frequency than in cat. Thus, the data further
suggest that phase-locking of AN response is not a particularly important component of mouse
hearing.
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Figure 3.10: Mean QlOdB as a function
of CF for AN tuning curves in five
mammalian species (see key). Data
from each species were segregated into
groups according to characteristic
frequency (octave bins), and the
average QlOdB for each bin was placed
at the mean fiber CF. Data are only
shown for frequency bins containing at
least 5 data points. Data for mouse
(present study), cat (Liberman 1978),
guinea pig (Tsuji and Liberman 1997)
and chinchilla (Liberman, unpublished)
are all from our laboratory; thus the
methods for data aquisition and
analysis are identical. Data for gerbil
are from other investigators (Ohlemiller
and Echteler 1990).
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3.3.2.2 Spontaneous Discharge and SR groups
In cat and guinea pig, where it has been most exhaustively studied, differences in SR are

strongly correlated with differences in other response properties such as threshold sensitivity
(Liberman 1978), adaptation (Rhode and Smith 1985), susceptibility to forward masking (Relkin
and Doucet 1991) and dynamic range (Winter et al. 1990), among others.
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Figure 3.12: Comparison of SR distributions for AN fibers recorded from a number of
different mammalian species. Bimodal distributions are grouped in Panel A: cat (Liberman
1978), guinea pig (Liberman ,unpublished), rabbit (Borg et al. 1988), chinchilla (Liberman,
unpublished), and the low-CF region of the gerbil cochlea (Ohlemiller and Echteler 1990).
Non-bimodal distributions are grouped in Panel B: mouse (present study), rat (el Barbary
1991) and the high-CF region of the gerbil (Ohlemiller and Echteler 1990).

In cat, where data from hundreds of fibers can be obtained from individual animals under
highly stable recording conditions, analysis of the relation between SR and threshold sensitivity
suggested that three SR groups could be defined: high-, medium and low, with SR ranges of> 18,
0.5 to 18 and < 0.5 sp/sec respectively (Liberman, 1978). Subsequent structure-function
correlations using intracellular injection of neuronal tracers revealed that there are systematic
differences among these three groups, in 1) locus of peripheral terminal on the IHC
circumference (Liberman 1982b), 2) size and complexity of the synaptic apparatus within the
IHC (Merchan-Perez and Liberman 1996), 3) degree of branching of the central axon (Fekete et
al. 1984) and 4) the CN subdivisions to which they project (Liberman 1991, 1980). Many of the
same structure-function relationships have been corroborated in the guinea pig, suggesting that
the subdivision of AN fibers into SR-based groups is part of the fundamental mammalian plan
(Tsuji and Liberman 1997).

In cat, guinea pig, chinchilla and rabbit (Figure 3.12A) the SR distribution is fundamentally
bimodal, and fibers from the lower peak in the SR distribution have higher thresholds than those
from the high rate peak (Tsuji and Liberman 1997). Although the SR distribution in the mouse is
not as clearly bimodal as in these other species, the general relation between SR and threshold
sensitivity is maintained (although the evidence for discrete SR groups rather than a continuum
of response is not clear). Recent ultrastructural work in mouse suggests that, in this species, as
previously reported in cat and guinea pig, the AN terminals contacting the modiolar side of the
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IHC are lower in mitochondrial content than those on the pillar side (Francis et al. 2004). In cat,
these mitochondrion-poor afferents have been definitively identified as corresponding to the
high-threshold low-SR group. Thus, the same anatomical differences may underlie the observed
SR-based heterogeneity of response in mouse.

With respect to the shape of the SR distribution, mouse is similar to rat (el Barbary 1991),
another high-frequency animal, and to high-CF AN fibers in gerbil (Ohlemiller and Echteler
1990), where the SR distribution varies dramatically with CF. As can be seen in Figure 3.12B,
for rat, mouse and the basal turn of gerbils, the SR distribution is not clearly bimodal and is
shifted towards lower spontaneous rates. This association between a compressed SR distribution
and high-frequency hearing is interesting given that robust background discharge may be most
useful at frequencies < 4kHz, where response synchronization occurs, and where synchrony rises
at lower SPLs than average rate (Figure 3.8A,B).

As for cat (Rhode and Smith 1985) and guinea pig (Muller and Robertson 1991), response
adaptation in mouse AN is related to fiber SR (Figure 3.4A) and CF (Figure 3.4B). In both cat
and guinea pig, response adaptation for fibers with CF < 4 kHz was smaller than response
adaptation in fibers of higher CF (Muller and Robertson 1991; Rhode and Smith 1985). Given
that phase locking occurs for frequencies < 4 kHz (Johnson 1980), Rhode and Smith (Rhode and
Smith 1985) hypothesized that the lower peak rates observed in cat low CF fibers were due to an
interaction between phase locking and rapid adaptation. In mouse, there was a difference in
response adaptation between fibers with CF below vs. above 20 kHz (Figure 3.4B). This CF-
related difference clearly cannot be correlated with presence or absence of synchrony; rather, it
likely arises from CF-related changes in the kinetics of synaptic transmission.

3.3.2.3 Dynamic range in the auditory periphery
Rate-vs.-level functions for AN responses to CF tone bursts have been best studied in cat

(Sachs et al. 1989), guinea pig (Winter et al. 1990) and gerbil (Ohlemiller et al. 1991). In all

H SH < 1 sD/sec

Dynamic Range (dB SPL)

Figure 3.13: Comparison of dynamic ranges for cat and mouse AN fibers, separated into high and
low SR groups (Panels A and B respectively). Mouse data are from the present study. Cat data are
from a previous study (Guinan and Stankovic 1996) using an identical data acquisition paradigm, i.e.
50 msec tone bursts at CF presented in random order.
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three of these mammals, dynamic ranges depend strongly on SR: low-threshold, high-SR fibers
show hard rate-saturation and small dynamic ranges; whereas high-threshold, low-SR fibers
show sloping saturation or non-saturating rate-vs.-level functions with significantly larger
dynamic ranges. Data in the present study show that the mouse AN has fundamentally the same
behavior (Figure 3.7); thus these SR-related differences in dynamic range also appear to be part
of a general mammalian plan.

A striking difference between AN properties in mouse vs. other mammals is the small
dynamic range of the low-threshold, high-SR fibers. For example, figure 3.13 compares
dynamic ranges for high-and low-SR AN fibers from the present study to data from cat (Guinan
and Stankovic 1996) which were derived according to exactly the same stimulation and analysis
protocols. The great majority (> 90%) of high-SR fibers in the mouse had dynamic range values
less than 18 dB, while the majority (>70%) of high-SR fibers in cat showed dynamic ranges
greater than 18 dB. Gerbil high-SR fibers (Ohlemiller et al. 1991) have been shown to have even
higher dynamic range values (25-40 dB). Quantitative data for guinea pig are not available,
however visual inspection of rate-level functions shown by Winter et al. (Winter et al. 1990)
suggest that dynamic ranges in this species for high-SR fibers are comparable to those in cat.

The small dynamic ranges seen among mouse AN fibers, compared to those measured in
other mammalian ears, may be related to the fact that the mouse ear is specialized for high
frequencies: most of the hearing range is above stimulus frequencies at which response phase-
locking can be used to carry information. In the gerbil AN, there is a CF-dependence to dynamic
range (Ohlemiller et al. 1991): high-frequency fibers, with CFs above the limits of phase locking,
show a smaller mean dynamic range (-25 dB) than low-CF fibers (-35 dB). The existence of
steeper rate-vs.-Ievel functions in mouse high-SR fibers might be expected to subserve an
enhanced ability to detect small changes in stimulus intensity at levels near threshold. However,
existing measurement of intensity difference limens in mouse do not suggest any extraordinary
abilities compared to other mammalian species investigated (Fay 1988).

Figure 3.14: Comparison of
basilar membrane responses to CF
tones recorded in cat, chinchilla,
guinea pig, and mouse at locations
in the basal turn. Data for the cat,
chinchilla and guinea pig were
replotted from Robles and Ruggero
(2001). The mouse data were re-
plotted from Legan et. al. (2000).
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The steepness of rate-vs.-Ievel functions in mouse could arise at several stages in cochlear
processing. Comparison of basilar membrane displacement-vs.-Ievel functions for tones at CF
near the base of the cochlea in mouse (Legan et al. 2000) compared to other mammals (Robles
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and Ruggero 2001) do not suggest striking differences in slope (Figure 3.14). Thus, the basis for
the observed differences in dynamic range must arise within the inner hair cell, the auditory
nerve, or the synaptic transmission between the two.

3.4 Summary
This study provides the first systematic description of spontaneous and sound-evoked

discharge properties of AN fibers in mouse, specifically in CBA/CaJ. Mouse AN fibers showed
similar responses to other mammals: sharpness of tuning increased with characteristic frequency,
phase-locking falls off for frequencies > 2kHz, and low SR (< I sp sec) fibers had higher
thresholds and wider dynamic ranges than fibers with high SR. Mouse AN responses differed
from other mammals in that dynamic ranges for mouse high-SR fibers were smaller (< 20 dB)
than those seen in other mammals. In general, results from the present study indicate mouse
auditory responses fall within the general mammalian plan and as such, may serve as a good
model to study the genetic basis for auditory health and disease in mammals.
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Chapter 4

Comparison of Auditory Nerve Fiber Responses in CBA/CaJ,
C57BL/6 and 129/SvJ

4.1 Introduction
The availability of transgenic and mutant lines with interesting auditory phenotypes makes

the mouse a valuable model for the study of the auditory system; and recording from single
auditory nerve (AN) fibers provides a powerful tool for assessing the cochlear phenotype
associated with any genetic manipulation. However, the interpretation of hearing results from
mutant mouse lines is often complicated by the fact that these lines are created or maintained in
several different inbred mouse strains (e.g., C57BL/6 and 129/SvJ). There can be clearcut
interstrain differences in threshold sensitivity, as well as age-related, progressive degenerative
changes at high frequencies, that complicate the interpretation of the mutant phenotype.

In this chapter, the spontaneous and sound-evoked discharge properties of AN fibers
recorded from the CBA/CaJ strains are compared to recordings in wildtype animals from the
C57BL/6 and 129/SvJ strains, two common strains used to create transgenic mice (Mullen and
Ryan 2001) and the background strains for the knockout mice discussed in Chapters 5 and 6
respectively. Since the data collected from the C57BL/6 and 129/SvJ mice were obtained with
the explicit purpose of being used as control data, they are of ages appropriate for the knockout
studies. It will be shown that, ignoring responses from the high-frequency regions, where early-
onset pathological changes have appeared, most aspects of AN fiber responses are qualitatively
similar among the three strains tested.

4.2 Data Set
Fiber responses shown in this chapter were classified as AN fiber responses based on the

criteria described in Chapter 2 and were obtained under cochlear conditions in which the
threshold shifts for the distortion product otoacoustic emissions (DPOAEs) were < 10dB for the
C57BL/6 and 129/SvJ mice, and < 5 dB for the CBA/CaJ mice. A larger DPOAE threshold shift
criterion was used for the C57BL/6 and 129/SvJ mice, since their data pool was relatively small
compared to the CBA/CaJ due to the limited number of animals available for study. In all,
results from 196 AN fiber recordings from 28 CBA/CaJ mice aged 8-17 weeks, 72 fiber
recordings from 13 C57BL/6 mice aged 16-17 weeks, and 52 fiber recordings from 7 129/SvJ
mice aged 7-17 weeks, are presented in this chapter.

4.3 Results
4.3.1. Cochlear Sensitivity

Changes in DPOAE detection thresholds were used to monitor cochlear condition throughout
each experiment. DPOAEs can be used to assess cochlear function since the normal cochlea is a
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non-linear system that produces DPOAEs when two pure tones (fl,f2) are presented
simultaneously (Mountain 1980). The generation of DPOAEs is significantly dependent on the
condition of the outer hair cells (OHCs) (Mountain 1980; Schrott et al. 1991; Siegel and Kim
1982). Therefore, a decline in cochlear condition which affects OHC function would be
reflected in lower amplitude DPOAEs or a rise in DPOAE detection thresholds.

Figure 4.1 shows mean DPOAE thresholds obtained in CBA/CaJ (stars), C57BL/6 (triangles)
and 129/SvJ (circles) mice at the start of each experiment. As seen in previous studies where the
relationship between DPOAE amplitudes in aged C57BL/6 mice (i.e., > 3 months) and CBA/CaJ
mice are compared (e.g., (Jimenez et al. 1999)), mean DPOAE thresholds were similar at low
frequencies (i.e., f 2 < 16 kHz) but significantly different at high-frequencies, where C57BL/6
mice showed higher DPOAE thresholds. The high-frequency disparity in DPOAE amplitudes
between the two strains is likely due to basal-turn OHC loss, which is characteristic of C57BL/6
mice as they age (Hequembourg and Liberman 2001; Spongr et al. 1997). The 129/SvJ mice
showed average mean DPOAE thresholds that were higher than CBA/CaJ at all test frequencies
and higher than the C57BL/6 at all test frequencies except for f2 >32 kHz, where neither strain
showed significant DPOAE responses.
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Figure 4.1: Mean thresholds for distortion product otoacoustic emissions (DPOAEs)
recorded from animals of the three strains (see key) at the start of each experiment.
DPOAE thresholds were determined as described in Chapter 2. A DPOAE threshold of
100dB was assigned in cases in which DPOAE amplitude failed to meet criterion even
at the highest SPLs presented (80 dB).

As described in Chapter 3, a fundamental property of AN fibers is their frequency selectivity,
which is often quantified via "threshold" tuning curves which track iso-response contours in the
frequency-intensity plane. AN tuning curves show sharply tuned "tips", defining the
characteristic frequency (CF: frequency of maximum sensitivity) of the fiber, and broadly tuned
low-frequency "tails". Tuning curves were obtained for all AN fibers presented in this study.
AN fibers with CF < 15 kHz showed similar tuning characteristics among the three strains
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studied. On the other hand, AN fibers with CF ~ 15 kHz in C57BL/6 and 129/SvJ mice had
more heterogeneous tuning curve characteristics: some similar and others different from those
observed in AN fibers in CBNCaJ mice. Differences in tuning-curve characteristics found in
C57BL/6 and 129/SvJ mice include (1) tuning curves with sharp tips but elevated thresholds and
hyposensitive tails (Figure 4.2 B,F); (2) curves with broad tips, elevated thresholds and
hypersensitive tails (Figure 4.2 C,G); and (3) curves with broad tips, elevated thresholds and
normal tail sensitivity (Figure 4.2 D,H).
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Plotting thresholds at CF provides an overview of the sensitivity and frequency range of the
peripheral auditory system in these strains. In this study, CFs ranged from 3.1 - 69.8 kHz for
fibers obtained in CBA/CaJ animals, from 2.5 - 22.1 kHz for C57BL/6, and from 2.4 kHz - 25.4
kHz for 129/SvJ (Figure 4.3A).

The highest CFs obtained for C57BL/6 mice and 129/SvJ were significantly lower than that
seen in the CBA/CaJ. Given the clear trend in C57BL/6 and 129/SvJ for threshold elevations at
CFs > 15 kHz, this truncated CF range likely represents the effects of basal-turn hair cell loss in
these strains. In general, mean AN thresholds in C57BL/6 were higher than CBA/CaJ for fibers
with CF 2: 15 kHz, while mean thresholds from l29/SvJ were higher across all CFs (except for
CFs < 4 kHz) than those in either CBA/CaJ or C57BL/6 strains (Figure 4.3B). These results
correlate well with the differences in the DPOAE thresholds observed among the three strains
(Figure 4.1).

Although the low-CF limit of fibers sampled from the three strains was comparable (3.1, 2.5
and 2.4 kHz for CBACalJ, C57BL/6 and 129/SvJ, respectively), it seemed particularly difficult
to find low-CF fibers in the C57BL/6 animals. Despite explicit attempts to place the micropipets
in regions of the nerve where low-CF fibers would be expected, the yield of low-CF fibers
(CF<10 kHz) in C57BL/6 was significantly lower (19%) than that in CBA/CaJ (36%) or 129/SvJ
(38%).
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Figure 4.3: Panel A: Thresholds at CF for 196 AN fiber in 28 CBA/CaJ mice, 72 AN fibers in 13
C57BL/6 mice, and 52 AN fibers in 7 129/SvJ mice. Open symbols are from fibers with broad tuning
curves (low Q). Panel B: Mean thresholds as a function of CF. Data from each strain binned according
to CF (half-octave bins), and the average threshold for each bin was calculated.

The relationship between sharpness of tuning (QlOdB: ratio of CF to bandwidth at 10 dB
above threshold at CF) and CF was similar in all strains, except for CFs > 15 kHz where some
fibers in C57BL/6 and 129/SvJ mice displayed broader tuning than that in CBA/CaJ (Figure 4.4,
open symbols). These fibers also had higher thresholds than most CBA/CaJ fibers of similar CF
(Figure 4.3A open symbols). The presence of a broad tuning curve tip in these fibers implies
outer hair cell pathology and raises the possibility that the CF values shown may be inaccurate;
thus, these fibers will be represented by open symbols in all subsequent figures in this chapter.
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4.3.2 First Spike Latency

The first spike latency (FSL) was measured in each fiber encountered from the responses to
CF tone bursts presented at 30 dB above threshold. These data were obtained primarily to aid in
distinguishing AN fibers from cochlear nucleus cells (See Chapter 2), however, they also proved
to provide insight into the nature of the phenotype in one of the knockout strains studied (See
Chapter 6). As shown in Figure 4.5, the relation between CF and FSL, in all three strains,
showed a monotonic decrease with increasing CF, reflecting, in large part, the decreasing
traveling wave delay in the basal turn. There did not appear to be any anomalies in the FSLs of
fibers with exceptionally low Q (open symbols) .

Figure 4.4: Sharpness of tuning as
a function of CF for 196 AN fiber
in CBA/CaJ mice, 72 AN fibers in
C57BU6 mice, and 51 AN fibers
l29/SvJ mice. The CFs of fibers
with broad tuning curves (low Q)
is difficult to determine accurately
and are shown as open symbols.
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4.3.3 Spontaneous Rate

As seen in Figure 4.6, the spontaneous rate (SR) distributions for fibers sampled from the
three strains showed differences: compared to CBNCaJ, populations appeared shifted towards
low-SR fibers in C57BL/6 and towards high-SR fibers in 129/SvJ. SRs ranged from 0 - 120
sp/sec in CBNCaJ and C57BL/6, and from 0 - 155 sp/sec in 129/SvJ, with 49% (CBNCaJ),
67% (C57BL/6) and 29% (l29/SvJ) of fibers with SRs < 20 sp/sec. The SR distribution in
129/SvJ was biased towards higher SRs compared to both CBNCaJ and C57BL/6; mean SRs in
129/SvJ mice were significantly higher than CBNCaJ and C57BL/6 mice (P « 0.0001
Student's I-test).
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Figure 4.6: Spontaneous rate
distributions for fibers sampled
from the three strains. Data from
low-Q fibers are included in the
samples.

While there is no clear relationship between fiber SR and CF in either the CBNCaJ or the
129/SvJ data, there is a curious lack of high-SR fibers among the low-CF fibers sampled in
C57BL/6 animals (Figure 4.7): only 3/14 fibers with CF < 10 kHz showed SR > 10 sp/sec.

In all mammalian ears evaluated to date, there is a clear relationship between fiber threshold
and SR (Liberman 1978; Tsuji and Liberman 1997). As seen for CBNCaJ, fibers with the
lowest relative thresholds (with respect to mean thresholds of high-SR fibers of similar CF)
tended to have the highest SRs (Figure 4.8). However, the high-threshold, broadly tuned fibers in
both C57BL/6 and 129/SvJ (open symbols) tended to have high SRs. Their presence added noise
to the relationship between SR and relative threshold. Such an added spread in relative threshold
would be expected among high-SR fibers in the presence of outer hair cell pathology, since
damage to the outer hair cells should raise thresholds without affecting SR (Liberman and Dodds
1984a).

The fact that, at all CF regions, mean thresholds in the 129/SvJ AN fibers were high relative
to both C57BL/6 and CBNCaJ (see Figure 4.3), suggests that there could be a sampling bias
against high-threshold, low-SR fibers in 129/SvJ: the spectral energy of the search stimulus used
to find fibers when advancing the electrodes may not have been sufficient in 129/SvJ to excite
some of the low-SR fibers. Therefore, the SR distribution obtained in 129/SvJ may be less
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representative of the true underlying distribution than that seen for the CBA/CaJ and C57BL/6
strains.
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4.3.4 Response adaptation

PST histograms of AN fibers show a peak in discharge rate at tone-burst onset, which decays
to a steady-state response (Kiang et aI. 1965; Smith 1977). The ratio of peak to steady-state rate
is one measure of response adaptation. As will be discussed in later Chapters, the onset rate is
important, because it is a key determinant of the amplitude of commonly obtained gross cochlear
potentials such as ABR and CAP.

In the present study, adaptation of AN responses was studied using PST histograms of
responses to CF tone bursts at 30 dB above threshold. The histograms were normalized by the
number of tone burst presentations and the histogram bin width (0.5 msec), to give the
instantaneous discharge rate. Example histograms from AN fibers with CFs < 20 kHz from
CBAlCaJ, C57BL/6 and 129/SvJ mice are shown in Figure 4.9.
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Figure 4.9: Superimposed PST histograms from AN fibers in CBNCaJ (Panel A), C57BL/6 (Panel
B), and 129/SvJ (Panel C). Each histogram shows data from all fibers sampled in each strain with CF
< 20 kHz and SR > I sp/sec. Histograms are divided by the number of stimulus presentations and bin
width (0.5 msec) to give instantaneous discharge rate.

Response adaptation is a function of CF and SR in the mouse AN. Peak-to-steady-state
ratios for AN fibers in CBAlCaJ increase with CF, especially for CF > 20 kHz (Figure 4.10). A
great majority of AN fibers rec.orded from C57BL/6 (99%) and 129/SvJ (81%) in this study had
CFs < 20kHz and accordingly, an increase in peak-to-steady state ratio with fiber CF was not
observed (Figure 4.10). For fibers of all CFs, a strong determinant of adaptation for all three
strains was SR; high-SR (2: 1 sp/sec) fibers generally had larger peak-to-steady-state ratios than
10w-SR fibers (Figure 4.11).
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Figure 4.11: Response adaptation as a function of spontaneous rate. Adaptation was derived from PST
histograms based on CF tone bursts, 30 dB above threshold. Peak to steady state (SS) ratio was obtained
by dividing the maximum rate by the average rate during the last 15 ms of the tone bursts. Panel A:
Fibers with CF < 20 kHz. Panel B: Fibers with CF > 20 kHz. Symbol key on Panel A also applies toPanel B.

4.3.5 Rate-level functions and dynamic ranf?:e
Maximum discharge rates and dynamic ranges of AN fibers in C57BL/6 and 129/SvJ mice

were investigated by measuring discharge rate vs. sound level for tone bursts at CF. Each level
function was fitby a modified version of an existing model (Sachs et at. 1989) in order to better
estimate the dynamic range (see chapter 2).
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In data from guinea pig AN (Winter et al. 1990), rate-level functions have been categorized
as "hard saturating", "sloping saturating", and "straight". As seen in data from CBA/CaJ AN,
nearly all high-SR fibers (SR > sp/sec) in C57BL/6 and 129/SvJ mice had hard-saturating rate-
level functions (Figure 4.12A,C,E). Note that all broadly tuned (low-Q) fibers for which a level-
function was obtained had SR > 1 sp/sec. Low-SR fibers in CBA/CaJ and C57BL/6 were more
heterogeneous than high-SR fibers in that all three level-function shapes could be found among
them (Figure 4.12 B,D). Low-SR fibers in 129/SvJ were more homogenous: none showed hard-
saturating level functions and several had straight level functions (Figure 4.12 F).
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Figure 4.12: Shapes of rate-level functions obtained from CBA/CaJ, C57BL/6, and 129/SvJ
fibers, divided into those with SR > 1 sp/sec (Panels: A,C,E) and SR < 1 sp/sec (Panels: B,D,F).
Data for CBA/CaJ are shown in the first column, for C57BL/6 in the second column, and for
129/SvJ in the third column. All functions were normalized by: 1) dividing the vertical axis by the
maximum driven rate, and 2) shifting along the horizontal axis according to model-fit thresholds.

There was a tendency for AN fibers with low SR (< 1 sp/sec) to show lower maximum
discharge rates than those with high SR (Figure 4.13A) in the three strains studied. Group mean
differences in maximum discharge rates between high- and low-SR fibers were highly significant
(P = 0.00003, Student's t-test) when data from the three strains were pooled. There did not
appear to be any relation between maximum discharge rate and CF (Figure 4.13B) in any of the
three strains. The high-CF fibers with broad tuning curves showed no obvious difference in
maximum discharge rate compared with fibers of normal Q of similar CF.

More than 55% of AN fibers in the three strains had dynamic range less than 15 dB (Figure
4.14: dynamic range was defined as the dB range between the points corresponding to 10 and
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90% of the (model fit) maximum driven rate). However, there was a larger percentage of fibers
with SR ~ 10 sp/sec with dynamic range> 20 dB in C57BL/6 (17%) and 129/SvJ (21 %) than in
CBA/CaJ (5%) mice. In all three strains, low-SR fibers showed larger dynamic ranges than high-
SR fibers.
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4.3.6 Response synchrony

Although the sample size is limited by the general lack of low-frequency responsiveness
in the mouse AN (see Chapter 3), the fundamental features of response synchronization were
similar among CBAlCaJ, C57BL/6, and 129/SvJ fibers. Rate and synchrony data were obtained,
whenever possible, for stimulus-level functions at 5 frequencies from I to 4 kHz for CBAlCaJ
and C57BU6 mice and at 2 kHz for 129/SvJ mice. Synchrony results using a 2 kHz stimulus are
shown in Figure 4.15. It can be seen that AN fibers in all three strains (1) can synchronize to the
stimulus period at lower SPLs than those at which the average rate increase, and (2) have similar
maximum synchronization indices. Comparing maximum synchronization indices obtained
across test frequencies from AN fibers in CBAlCaJ and C57BL/6 mice (Figure 4. ]6C), it is clear
that, for both strains, there is a sharp roll off for frequencies> 2 kHz.
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Figure 4.15: Phase-locking in AN fibers from CBNCaJ, C57BL/6, and I29/SvJ. Panel A and B:
data from one CBNCaJ fiber (CF = 3.1 kHz, SR = 22.4 sp/sec), three C57BL/6 fibers (CF = 7.66
kHz, SR = 74.6 sp/sec, dark triangle; CF = 5.81 kHz, SR = 37.5, gray triangles; CF = 15 kHz, SR =
13, open triangles), and three 129/SvJ fibers (CF = 8.21 kHz, SR = 55 sp/sec, dark circles; CF = 2.54
kHz, SR = 51.3 sp/sec, gray circles; CF = 9.21 kHz, SR = 52 sp/sec). Synchrony (panel A) and rate
(panel B) were extracted from post-zero-crossing histograms obtained from 12-s continuous tones.
Synchronization index (SI: panel A) was calculated as described by Johnson (1980). Panel C:
comparison of maximum SI vs. tone frequency for data obtained in CBNCaJ, C57BU6 and 129/SvJ
fibers. Published data from cat (shaded area; (Johnson 1980) ) and guinea pig (dotted area;(Palmer
and Russell 1986)) are shown as references to maximum synchrony values obtained in other
mammals. SI values shown for test frequencies 1 kHz and 1.6 kHz are underestimates of the
maximum SI because the SI VS. level function had not saturated at the highest sound level presented.
Data shown in Panel C are all above the calculated synchrony noise floor (see Chapter 2).
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4.4 Discussion

4.4.1 Comparisons to other data on auditory function in C57BL/6 and 129/SvJ mice

As discussed in Chapter 3, all neural input to the central nervous system available for
processing auditory stimuli comes through the -20,000 fibers of the AN. Thus, the minimum
envelope of tuning curves obtained from mouse AN should relate in a relatively simple way to
behavioral measures of threshold sensitivity in this species. Figure 4.16 shows an overlay of AN
tuning curves obtained in C57BL/6. Given the progressive high-frequency hearing loss in this
strain, it is critical that animals of the same ages be compared. The data from the present study
were taken from animals aged 16-17 weeks. We found one behavioral study in the literature of
behavioral thresholds in C57BL/6 for which the age was appropriate: 16 weeks. The minimum
envelope of our single-fiber data is consistent with behavioral thresholds for C57BL/6 mice, at
least for frequencies below 20 kHz. The reason for the discrepancy at high-frequency between
the behavioral thresholds and the neural data is not clear. In neurophysiological studies such as
this one, incomplete sampling is a possible source of discrepancy. However, incomplete
sampling is probably not an issue in the present study: the steep rise in thresholds as CF
approaches 20 kHz in our data sample (Figure 4.3) strongly suggests that we have effectively
sampled fiber responses right up to the edge of the progressively extending cochlear lesion in
this strain (Hequembourg and Liberman, 2001). Comparisons between single-fiber and
behavioral thresholds could not be made for 129/SvJ mice, because behavioral measures of
auditory function in this strain were not available in the literature.
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Figure 4.16: Superimposed tuning curves
from all C57BL/6 fibers in the present
study (gray) compared to behavioral
threshold data from another study,
(Mikaelian et al. 1974». Error bars
represent one standard deviation.

Compound action potentials (CAPs) and auditory brainstem responses (ABRs) are additional
measures that have been used to assess the hearing sensitivity of C57BL/6 and 129/SvJ
(Hequembourg and Liberman 2001; Lang et al. 2002; Yoshida and Liberman 2000; Zheng et al.
1999a). CAPs recorded from the round window represent the synchronous firing of AN fibers.
Wave 1 of the ABR also represents the summed activity of AN fibers; however ABR can be
measured in a more non-invasive way. Since CAP and ABR amplitudes depend upon the
activity of AN fibers, they can be used to assess overall cochlear sensitivity. A common finding
in C57BL/6 is an elevation of CAP and ABR thresholds that progresses from high to low
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frequencies as the animals age (Hequembourg and Liberman 2001; Lang et al. 2002). However,
the extent of threshold shift is highly variable across identically aged animals from the same
strain, even between the two ears of a single animal (Francis et al. 2003). This pathology and its
variability add to the complexity of using C57BL/6 and 1295 mice as background strains for
gene mutation studies.

Comparisons between CAP and ABR thresholds from C57BL/6 (Hequembourg and
Liberman 2001; Lang et al. 2002) or 1295 (Hequembourg and Liberman 2001; Yoshida and
Liberman 2000) and superimposed AN tuning curves from this study (Figure 4.17 A,B) show
reasonably good agreement in overall pattern of threshold vs. frequency. The absolute values of
"threshold" in any study of gross or single-fiber responses, will depend critically on the criterion
used to define "threshold". This is particularly important in studies of gross potentials, since the
"threshold" value will decrease significantly as increasing numbers of responses are averaged.
Another source of uncertainty is the inter-laboratory differences in techniques for calibrating
sound pressure at these high frequencies. Given these considerations, the most informative
comparisons to be made are those between the 4-month single-fiber thresholds and the ABR
thresholds at 3 and 7 months, since these data sets were all obtained in the same laboratory using
very similar acoustic systems and calibration procedures. For frequencies at and below 20 kHz,
there is remarkably close agreement in absolute thresholds between ABR and single fiber
thresholds, for both 3-month and 7-month ABR data sets. At the highest ABR frequency (32
kHz), the 7-month ABR thresholds track the 4-month AN thresholds more closely than the 3-
month ABR data. The fact that the single-fiber data do not fall intermediately between the two
ABR data sets (as their relative ages would predict) may arise from subtle genetic differences
between the sets of animals used in the two experiments: though nominally of the same strain,
the animals used in the ABR study were from a colony maintained by Jackson laboratories,
whereas the animals in the present study were from a colony maintained by Vanderbilt
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Figure 4.17: Superimposed tuning curves from all C57BU6 (Panel A) or 129/SvJ (Panel B) fibers
in the present study (gray) compared to ABR and CAP data from other mouse studies. CAP data
are from the following sources: C57BU6 (Lang et al. 2002) and 129/SvEv (Yoshida and
Liberman 2000). ABR data are from the following sources: C57BU6 (Hequembourg and
Liberman 2001) and 129/SvJ (Zheng et al. 1999a).
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University, that was derived by backcrossing, for 10 generations, a targeted mutation in another
strain into C57BL/6. Thus, it is unlikely that the two sets of animals were truly identical
genetically.

With respect to the 129/SvJ mice, data available for comparison include 1) CAP thresholds
obtained in our laboratory, but for mice from a different 129 substrain: 10- 11 week old 129/SvEv
mice (Yoshida and Liberman 2000), and 2) ABR thresholds from the same substrain, but
obtained in a different laboratory (Zheng et al. 1999a). The CAP data from 129/SvEv track
single-fiber thresholds well for frequencies below 30 kHz (Figure 4.17B). The discrepancy at
high-frequencies may arise from differences in the progression of age-related hearing loss
between the 129 substrains. The published ABR data for 129/SvJ, the same substrain used in
this study, show an internal inconsistency: thresholds from one cohort at 13 wks are better than
thresholds from another cohort at 9 wks (Figure 4.17B). If we assume this discrepancy arises
from natural variability in the age-related progress of cochlear degeneration (see above), and
average the two ABR data sets, there is good agreement between the ABR data and the single-
fiber thresholds at all three ABR frequencies. In summary, although detailed quantitative
comparisons between threshold values is difficult for a variety of reasons, published CAP and
ABR response thresholds obtained from C57BL/6 and 129S mice, of comparable ages to the
ones used in this study, generally follow the minimum threshold envelope of single-fiber
responses.

4.4.2 CF limits and cochlear frequency maps

Knowing the range of single-fiber CF present in the mouse AN is key to constructing an
accurate cochlear frequency map, and cochlear frequency maps are critical in any attempt to
carefully correlate structural and functional changes in the mouse ear (See for example, Section
4.4.3).

CFs encountered in our combined sample of AN fibers in this thesis ranged from 1.92 kHz
to 69.8 kHz (Figure 4.3A, Figure 6.2A). We have already discussed the idea that the high-
frequency CF limit in C57BL/6 and 129/S is imposed by the apically progressing, early-onset
degeneration in the cochleas of these strains. In Chapter 3, we pointed out that the high-
frequency limit for CBA/CaJ was artificially imposed, because the probe-tube microphone
response was too attenuated at high frequencies to justify calibration above 70 kHz. In contrast,
the low-frequency CF limit of 1.92 kHz is subject only to sampling errors: i.e. low-CF fibers
were rare, and the true low-CF limit may be somewhat lower. However, the data in this thesis,
from a total of 447 AN fibers from three strains, must provide a reasonably good estimate of the
lowest CF in the mouse cochlea.

It is instructive to consider how dramatically the value chosen for apicalmost CF affects the
nature of these maps. A low-frequency CF limit of 1.92 kHz is significantly higher than the value
predicted by two older cochlear frequency maps for mouse (Ehret 1975; Ou et al. 2000),
however, it is -1 octave lower than that suggested by the most recent map (Mueller et al., 2004).
The oldest map (Ehret 1975) was derived by choosing values for the upper and lower limit of
mouse hearing from behavioral measures, and then fitting a power function of the type inferred
for the human cochlear map based on psychophysically derived critical bands (Greenwood
1961). The lower limit chosen for mouse hearing was 0.8 kHz. As shown in Figure 4.17, our
data suggest that the perception of frequencies < 1.92 kHz is mediated by excitation of the "tails"
of the apical-most AN fibers, not by fibers with CFs of 0.8 kHz.
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A second cochlear map for mouse was derived by comparing the patterns of noise-induced
hair cell lesions to patterns of threshold shift seen in ABR responses (Ou et al. 2000). The data
set did not include any frequency points below -6 kHz, but the best-fit logarithmic function
extrapolated to a value of 1.5 kHz for the apical-most CF in mouse. According to the present
results, this value may also be too low by 1 octave. A similar discrepancy between the cat
cochlear map inferred by correlating lesion site to cochlear sensitivity changes was detected
when a definitive map was derived by intracellular labeling of single physiologically
characterized nerve fibers (Liberman 1982a).

Recently, a mouse map was more directly derived by injecting HRP extracellularly into the
CN after recording neuronal responses and correlating CF with the locations of labeled terminals
in the cochlea (Mueller et al. 2004). Although there were no data points for the apical cochlea
(lowest CF was -7 kHz); the best-fit logarithmic function extrapolated to a minimum CF value
of 4.8 kHz. The present study shows that tuning in the cochlear apex extends to at least 1.92 kHz.
Thus, the simple log-frequency-to-linear-distance relation suggested Mueller et al. (2004) should
be modified to a function of the Greenwood type, such that frequency representation in the apical
turn changes more slowly with distance, as is the case in cat (Liberman 1982a). The modified
equation suggested by the data in the present study is:

f (kHz) = 9.8- (10*0.92 - 0.68) (1)

wheref is frequency and d is normalized distance from the cochlear apex (0-1).

4.4.3 Age-related cochlear pathology in C57BL/6 and 129/SvJ

C57BL/6 mice are commonly used as animal models of age-related hearing loss. Published
ABR studies show that at ages < 3 months, cochlear sensitivity in C57BL/6 is comparable to
CBA/CaJ; whereas, at later ages, severe threshold shifts set in at high frequencies and progress to
low frequencies (Hequembourg and Liberman 2001). Mice from the 129/SvJ strain also display
significant age-related hearing loss, as well as relatively poor thresholds even at 2 months of age,
when their ABR thresholds are higher than those in both CBA/CaJ and C57BL/6 (Zheng et al.
1999a).

Studies on the morphological correlates of age-related hearing loss in C57BL/6 describe a
base-to-apex degeneration of cells in the spiral ligament (e.g. type-IV fibrocytes), as well as hair
cells, with outer hair cell degeneration extending more apically than inner hair cell degeneration.
In the basal turn, there is a secondary degeneration of AN fibers in regions of significant inner
hair cells loss. In addition, there are signs of primary neural degeneration in the apical turn: spiral
ganglion cells aggregate into large clumps of tens of cell bodies, in which individual cells appear
to have lost their myelin sheaths. Furthermore, spiral ganglion cell counts show a loss of 40% in
the apical turn of 7-month old animals in the absence of significant inner hair cell loss
(Hequembourg and Liberman 2001; Spongr et al. 1997).

Morphological studies of age-related hearing loss have not been published for 129/SvJ, but
data are available for 129/SvEv, a related 129 substrain that also displays age-related hearing
loss (Ohlemiller and Gagnon 2004a). Morphological correlates of aging in this strain also
suggest differing pathologies in the apical and basal turns. In the base, there is loss of OHCs and
type-IV fibrocytes as well as supporting cell pathology. In the apical turn, there is pathology of
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the fibrocytes in the spiral limbus, and only rare signs of neuronal degeneration (Ohlemiller and
Gagnon 2004a).

The loss of spiral ganglion cells in the apical half of the C57BL/6 cochlea, which may not be
present in 129 substrains (see above), may explain why it was particularly difficult to find low-
CF fibers in C57BL/6 mice. Despite explicit attempts in all strains to place recording electrodes
in regions of the nerve where low-CF fibers were expected, our yields of low-CF fibers (CF < 10
kHz) in C57BL/6 was significantly lower (19%) than that in CBA/CaJ (36%) or 129/SvJ (38%)
mice.

Fibrocytes in the spiral ligament may participate in K+ recycling from the organ of Corti to
the scala media, and thus in maintenance of the endocochlear potential (EP) (Hequembourg and
Liberman 2001). A drop in EP will elevate thresholds and decrease SRs in all AN fibers (Sewell
1984a, b). Although both C57BL/6 and 129/SvEv display age-related type-IV degeneration, EP
does not decrease with age in these strains (Lang et al. 2002; Ohlemiller and Gagnon 2004b).
Therefore, major anomalies would not be predicted in the SR distribution seen in recordings
from AN fibers in either C57BL/6 or 129 strains: and, indeed, no major anomalies were
observed (Figure 4.6). The apparent increase in percentage of low-SR fibers seen in the fiber
sample from C57BL/6J is not the pattern of change that would be expected from a decrease in
EP, for which the mean SR for high-SR fibers would be also be decreased. Alternatively, this
apparent increase in the fraction of low-SR fibers in C57BL/6J could be related to the unique
spiral ganglion cell pathology observed in the apical half of the cochlea in this strain
(Hequembourg and Liberman, 2001). As shown in Figure 4.7, the fraction of low-SR fibers was
particularly high among the low-CF fibers sampled in this strain (43% of fibers with CF < 10
kHz), and only 3/14 fibers with CF < 10 kHz showed SR > 10 sp/sec.

Analysis of the changes in tuning curve shapes (Liberman and Dodds, 1984) in C57BL/6 and
129/SvJ can provide further insight into the nature of the functionally important structural
changes underlying the threshold shifts in these early-onset progressive pathologies. Fibers with
CF > 15 kHz in C57BL/6 and 129/SvJ mice typically showed threshold elevations consistent
with the base-to-apex progression of some cochlear pathologies in these strains (Figure 4.3).
Tuning curve shapes from these high-threshold fibers in C57BL/6 and 129/SvJ included many
with elevation of "tip" threshold and hypersensitivity of the tuning-curve "tail" (Figure 4.2). This
type of tuning curve anomaly is consistent with selective damage to outer hair cells, as has been
seen in cats with exposure to acoustic injury or ototoxic drugs (Liberman and Dodds 1984b). The
presence of hypersensitive tails effectively rules out changes in EP, as a decrease in EP will lead
to elevations of threshold on both tips and tails of tuning curves (Sewell 1984a). The further
observation that these low-Q fibers had high SRs is also consistent with selective OHC damage,
as previous studies have suggested that selective damage to the outer hair cells does not result in
a SR decrease (Liberman and Dodds, 1984b), and is further evidence against changes in EP in
these animals. Existing histological analyses of hair cell loss patterns in aging C57BL/6 mice
concluded that frank loss of outer hair cells did not extend far enough apically to account for the
border of the region of hearing loss (Hequembourg and Liberman, 2001). The above analysis of
tuning curve shapes suggests that a transition zone of damaged outer hair cells may extend
further apically from the edge of the region of hair cell degeneration.

Loss of OHCs leads to loss of compression in the basilar membrane response (Ruggero and
Rich 1991) that might increase the steepness (i.e. decrease the dynamic range) of rate-level
functions for some AN fibers. As has been argued by Heinz and Young (2004), low-threshold,
high-SR fibers should not be affected by loss of basilar membrane compression, since their
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response range spans only the lowest SPLs, at which the normal basilar membrane response is
linear. In contrast, high-threshold, low-SR fibers, with dynamic ranges spanning SPLs for which
normal basilar membrane responses are compressive, normally show "sloping" saturation;
correspondingly, their dynamic ranges might decrease after outer hair cell damage. In mouse,
sloping rate-level functions were normally seen only for fibers with SR < sp/sec (Figure 4.12).
Unfortunately, the sample of low-Q fibers recorded from 129/SvJ or C57BL/6 strains did not
include any with low SR, presumably because their thresholds were so elevated by the outer hair
cell loss that they were not stimulated by our search stimulus and therefore not identified as the
electrode was advanced.

Results from AN studies in acoustically traumatized cats suggest that tuning curves with
elevated tips and hyposensitive tails, such as those shown in Figure 4.2B,F can arise if there is
damage to, or loss of stereocilia on inner hair cells in regions where outer hair cell function
remains (Liberman and Dodds, 1984). To date, there has been no analysis of systematic
stereocilia condition in either C57BL/6 or 129/SvJ; present results suggest that such an analysis
might reveal another aspect of the functionally important histopathology in these strains.

4.5 Conclusion

The availability of transgenic and mutant lines with interesting auditory phenotypes makes
the mouse a valuable model for the study of the auditory system. However, the interpretation of
hearing results from mutant mouse lines is often complicated by the fact that these lines are
created or maintained in several different inbred mouse strains, and there can be clearcut
interstrain differences in threshold sensitivity that complicate the interpretation of the mutant
phenotype. In this chapter, the spontaneous and sound-evoked discharge properties of AN fibers
recorded from the CBA/CaJ strains were compared to recordings in animals from the C57BL/6
and 129/SvJ strains, two common strains used to create transgenic mice (Mullen and Ryan
2001). It was found that despite the presence of high-CF fibers with pathological tuning, due to
age-related cochlear pathology in C57BL/6 and 129/SvJ mice, a number of basic response
properties of AN fibers were not significantly altered, including first spike latencies, maximum
discharge rates, onset rates, response adaptation, and the dynamic ranges of AN fibers, i.e. the
range of sound pressure levels over which suprathreshold discharge rate changes from
spontaneous to saturated rate. Many fibers with CF > 15 kHz in C57BL/6 and 129/SvJ mice
displayed pathological tuning curve shapes that resemble those found in animals with outer hair
cell loss due to acoustic injury or ototoxicity. This finding, along with the observation that outer
hair cell loss in aging C57BL/6 mice does not extend far enough apically to account for the
border region of hearing loss in these animals (Hequembourg and Liberman, 2001), suggests that
the transition zone of damaged hair cells may extend further apically from the edge of the region
of hair cell degeneration. One possibility is that hair cells just apical to the region of hair cell
loss may display stereocilia damage which affects function. Indeed there are fibers that with
tuning curves that displayed elevated "tips" and hyposensitive tails, which is characteristic of
damage to inner hair cell stereocila (Liberman and Dodds 1984b). Therefore, future studies on
age-related hearing loss in C57BL/6 and 129/SvJ mice should look for stereocilia damage as
another aspect of the histopathology of age-related hearing loss.
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Chapter 5

Auditory Nerve Recordings in Mice with Targeted Deletion of
Calcitonin-Gene Related Peptide (CGRP)

5.1 Introduction
There are two subdivisions of the olivocochlear efferent system that innervate the

mammalian cochlea: lateral and medial. The lateral olivocochlear (LOC) efferents are thin
unmyelinated neurons with cell bodies in or near the lateral superior olive. Their axons project
primarily to the ipsilateral cochlea, where they form axodendritic synapses with auditory afferent
fibers and more sparsely, with inner hair cells (IHCs) (Guinan et al. 1983; Liberman et al. 1990).
The medial olivocochlear (MOC) efferents are large, myelinated neurons with cell bodies medial
to the medial superior olive. Their axons project to the contralateral cochlea and synapse with
outer hair cells (OHCs) (Guinan et al. 1983). Although much is known concerning the
physiology of MOC neurons (Cody and Johnstone 1982; Liberman and Brown 1986; Robertson
and Gummer 1985), little is known concerning the physiology or function of LOC neurons, since
it is difficult to selectively record from and electrically stimulate these unmyelinated neurons.

The LOC system is neurochemically heterogeneous and may play a number of different roles
in hearing. There are several putative neurotransmitters/neuromodulators that have been
immunolocalized within LOC efferent terminals and cell bodies: Acetylcholine, GABA, CGRP,
dopamine, enkaphalins, dynorphins, and urocortin (Abou-Madi et al. 1987; Eybalin et al. 1993;
Vetter et al. 1991; Vetter et al. 2002). It has been hypothesized that the LOC system may play a
role in the protection of primary afferent fibers from excitotoxicity. In support of this hypothesis
are findings that intracochlear application of dopamine decreases auditory nerve activity without
changing OHC function and that intracochlear application of the dopamine receptor blocker
eticlopride, leads to dendritic swelling in some auditory nerve fibers, which is an early sign of
excitotoxicity (Ruel et al. 2001). The LOC system may also be important for the normal
development of OHCs given that urocortin-deficient mice display elevated distortion product
otoacoustic emissions (DPOAEs) thresholds (Vetter et al. 2002), suggesting OHC dysfunction,
and also show shortening of the OHCs, when compared to their wildtype littermates. Lastly, the
LOC system may have a role in maintaining spontaneous rate distributions in auditory afferent
fibers given that (1) in the lateral line organ of the a Xenopus laevis, a non-mammalian hair cell
system, CGRP increases spontaneous activity in afferent fibers (Adams et al. 1987; Bailey and
Sewell 2000) and (2) in chronically de-efferentated mammals, afferent spontaneous discharge
rate distributions are lower than normal (Liberman 1990; Zheng et al. 1999b).

CGRP is a 37 amino acid peptide. It has two isoforms that differ in mice by three amino
acids and are derived from two different calcitonin genes: CGRPa and CGRPp. Two classes of
G-coupled protein CGRP receptors have been pharmacologically characterized based on various
binding studies: CGRP1 and CGRP2 (Juaneda et al. 2000). The activation of these receptors
increases the production of cyclic-AMP which may lead to the activation of protein kinases.
There are various biological effects that have been associated with CGRP release by pre-synaptic
neurons: vasodilation (Brain et al. 1985), increased desensitization of nicotinic acetylcholine
receptors (nAChRs) in mouse muscle fibers (Mulle et al. 1988), and changes in AChR
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biosysnthesis in muscle fibers (Osterlund et al. 1989). Interestingly, the CGRP knockout mice
display normal blood pressure and have normal neuromuscular development (Lu et al. 1999).

The CGRPa knockout mouse is an interesting model to study LOC function and the role of
CGRP in cochlear physiology and auditory processing. CGRP has been immunolocalized in the
cochlea to LOC efferent terminals underneath IHCs, to efferent terminals underneath OHCs, and
to the spiral modiolar artery (Carlisle et al. 1990; Maison et al. 2002; Sliwinska-Kowalska et al.
1989; Vetter et al. 1991; Ylikoski et al. 1989). An immunohistochemical study of CGRPa
knockout mice using antibodies that recognize both CGRP isoforms (i.e., CGRPa and CGRPp)
showed that CGRP is absent in the cochleae of these mice (Maison et al. 2003). CGRPa
knockout mice display normal DPOAEs, normal suppressive effects when electrically
stimulating the OC bundle at the floor of the IVth ventricle, but decreased suprathreshold
amplitudes in wave of the auditory brainstem response (ABR) (Maison et al. 2003). The
normal DPOAEs and the apparent lack of effect of CGRP deletion on the classic MOC-mediated
suppressive effects suggests that CGRP's role in the efferent terminals on outer hair cells is
minimal. Given that LOC fibers are in a position to influence auditory nerve (AN) responses
directly without influencing OHC function, and given that wave of the ABR is a measure of the
synchronous activity of AN fibers (Melcher and Kiang 1996). it is possible that the response
phenotype observed in the knockout mice reflects changes in LOC neurotransmission.

This study uses recordings from single auditory nerve fibers to better understand the
reduction in ABR wave 1 amplitude reported by Maison et. al. (2003), and more generally to
understand the contributions of CGRP to the response processing in the cochlea. There are
several mechanisms that could account for a reduction in wave 1 amplitude: larger variance in
first spike latency (FSL) response, lower instantaneous rates, a change in the unitary potential,
and a reduction in the number of fibers within the population. The first two mechanisms can be
directly tested using AN fiber recordings. An additional hypothesis of the role of CGRP comes
from the work of Bailey and Sewell (Bailey and Sewell 2000). Their study of the lateral line
organ in Xenopus laevis showed that the application of CGRP caused an increase in afferent
spontaneous activity and a decrease in response modulation and sensitivity. This result suggests
that we should also look for differences in SR, sound-evoked discharge rates, and phase-locking
between the CGRP knockout and wildtype mice.

5.2 Data Set
Fiber responses shown in this chapter were classified as AN responses based on the

classification criterion described in Chapter 2. In this Chapter, results from 72 AN fibers from
CGRP wildtype mice aged 16-17 weeks, and 70 fibers from CGRP knockout mice aged 16-17
weeks, are compared. Data from Chapter 3 summarizing responses of 196 AN fibers from
CBA/CaJ mice aged 8-17 weeks are superimposed on most Figures for an additional point of
comparison.

The decision to record from CGRP wildtype and knockout mice at 16-17 weeks of age was
based on the observation from the previous gross-potential study that differences in auditory
phenotype between wildtype and knockout animals was clearer at 16 weeks than at 8-10 weeks
(Maison et al. 2003).

The CGRP deletion was initially engineered in a mouse line that involved hybridization of
1 29/SvJ for ES cells, C57BL/6 mice for the blastocysts, and Black Swiss mice for the
back-crossing of chimeras to achieve homozygosity. Subsequently, the CGRP deletion was
backcrossed into C57BL/6 for 10 generations, thus satisfying the commonly accepted criteria for
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creation of a congenic strain, i.e. one in which the genetic background is "identical" to mice from
other C57BL/6 colonies, except for the existence of a targeted mutation at the CORP locus.

5.3 Results

5.3.1 DPOAE Data

Changes in DPOAE thresholds were used to monitor cochlear condition throughout each
experiment. Figure 5.1 compares mean DPOAE thresholds obtained in the CORP wildtype and
CORP knockout mice at the start of each experiment. Consistent with a previous study (Maison
et al. 2003), wildtype and knockout mice had similar DPOAE thresholds at all test frequencies.
Both genotypes of the CORP line had mean DPOAE thresholds which were similar to CBA/CaJ
at low frequencies (i.e., f 2 ~ 16 kHz) but significantly higher at high frequencies. The high-
frequency disparity is likely due to age-related OHC damage that is characteristic of the
C57BL/6 strain, the background strain for the CGRP line.
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Figure 5.1: Mean distortion product otoacoustic emissions (DPOAEs) recorded at the
start of each experiment for CBA/CaJ (stars), CGRP WT (triangles), and CGRP KO
(circles) mice. DPOAE thresholds were determined as described in Chapter 2. A DPOAE
threshold of l00dB was assigned when the DPOAE failed to reach criterion at the highest
SPL presented (80) dB). Error bars represent one standard deviation.

5.3.2 Rate Threshold and Tuning:

A fundamental property of AN fibers is their frequency selectivity, which is often quantified
via "threshold" tuning curves which track iso-response contours in the frequency-intensity plane.
AN tuning curves show sharply tuned "tips", defining the characteristic frequency (CF) and
broadly tuned low-frequency "tails" (see Chapter 3). Tuning curves were obtained for all AN
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fibers encountered. Plotting thresholds at CF provides an overview of the sensItIvIty and
frequency range of the peripheral auditory system. CFs ranged between 2.5 kHz - 22.1 kHz for
72 fibers obtained in CGRP wildtype mice and between 2.6 kHz - 23.7 kHz for 70 fibers in
CGRP knockout mice (Figure 5.2A).
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Figure 5.2: Panel A: Thresholds at CF for AN fibers in CBA/CaJ, CGRP wildtype mice, and
CGRP knockout mice. Open symbols are from "pathological" fibers, defined as any high-SR fiber
with threshold at CF > 30 dB higher than mean high-SR thresholds from CBA/CaJ fibers of similar
CF or low-SR fibers with threshold at CF > 35 dB higher. Panel B: Mean thresholds as a function
of CF. Data for high-SR fibers from each group (see key) were binned according to CF (half-
octaves) and average threshold for each bin was calculated. Data from pathological units were not
included in the means from the CGRP lines.
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Because the CGRP line is in a background strain (C57BL/6) that displays early-onset
cochlear degeneration (Hequembourg and Liberman, 2001), some of the AN fibers recorded in
CGRP mice of either genotype may show pathology, especially at high CF, that is due to the
background rather than the loss of CGRP (see Chapter 4). In the present study, "pathological"
fibers were defined based on their relative threshold compared to high-SR (SR>l sp/sec) fibers
of similar CF from CBA/CaJ (Chapter 3): the cutoff values for relative threshold to segregate out
pathological fibers were 30 dB for high-SR fibers and 35 dB for low-SR fibers. These
pathological fibers will be identified by unfilled symbols in all subsequent Figures

Although no significant difference was found between wildtype and knockout mice in mean
thresholds for high-SR fibers Figure 5.2B, the percentage of pathological fibers found in
knockouts (18%) was greater than that in wildtypes (7%).

No significant differences were also found in sharpness of tuning (QlOdB: ratio of CF to
bandwidth at 10 dB above threshold at CF) between CGRP knockout and wildtype AN fibers
(Figure 5.3). This finding is consistent with chronic de-efferentation studies, that show that the
presence of an efferent system is not required for AN fibers to retain their sharpness of tuning
(Liberman 1990). Note that the Q10dB values for fibers defined as pathological were almost all
lower than those seen in nonpathological fibers (Figure 5.3). This finding is consistent with the
presence of outer hair cell dysfunction at the edge of the apically progressing lesion in the
C57BL/6 background strain (See Chapter 4).

5.3.3 Spontaneous Rate

The LOC system may play a role in modulating spontaneous rates in AN fibers given that (1)
CGRP increases spontaneous activity in afferent fibers in the lateral line of Xenopus laevis, a
non-mammalian hair cell system, (Adams et al. 1987; Bailey and Sewell 2000) and (2) in
chronically de-efferentated mammals, AN spontaneous rate (SR) distributions are lower than
normal (Liberman 1990; Zheng et al. 1999b). These findings suggest that the SR distribution in
CGRP knockout mice might be biased towards low SRs as compared to wildtype mice.

Figure 5.4 shows the SR distribution of AN fibers sampled in CGRP wildtype and CGRP
knockout mice, compared to similar data from CBA/CaJ. As discussed in Chapter 4, there is a
statistically significant difference between the SR distribution in the C57BL/6 animals (i.e.
CGRP wildtypes) and the CBA/CaJ animals: there is a higher proportion of low SR units in the
former group. The CGRP knockouts also show a significantly higher proportion of low-SR units
than was seen in CBA/CaJ. Interestingly, the CGRP knockout showed an even higher proportion
of low-SR fibers than the CGRP wildtype; however, that inter-genotype difference did not reach
statistical significance (p= 0.13, bootstrap method with replacement).

Comparing CGRP wildtype and knockouts, there were no significant differences in the
relationship between SR and CF (Figure 5.5A) or between SR and relative threshold (defined
with respect to the mean threshold of high-SR fibers of similar CF in CBA/CaJ mice) (Figure
5.5B). Note furthermore, that pathological fibers in both CGRP genotypes included a wide range
of SRs (Figure 5.5A); and that, by definition, pathological fibers have high relative thresholds
(Figure 5.5B).
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5.3.4 First Spike Latency (FSL) and FSL Variance

Auditory gross potentials such as ABR are evoked by short tone pips, thus the amplitudes of
these ABR waveforms depend critically on the synchronous firing of auditory neurons (Melcher
and Kiang 1996). Thus, in addition to considering the average discharge rates (see Section 5.3.5)
of AN fibers in CGRP knockout vs wildtype mice, it is important to consider measures of
variability in spike timing. One useful measure is the variance in AN first spike latency (FSL)
seen in response to supra-threshold tone levels. Since histograms of FSLs (from 150 CF tone
bursts at 30 dB above threshold) were used to aid in differentiating AN fibers from cochlear
nucleus neurons, these data were available for all fibers. Analysis of the mode of the FSL and the
variance reveals no significant differences in FSL response between CGRP knockout mice and
CGRP wildtype or CBA/CaJ mice (Figure 5.6AB). Note however, that in both the CGRP lines
and the data from CBAlCaJ mice, there is a monotonic decrease in FSL variance as SR increases.
As discussed further in Chapter 6, this SR-related effect on spike synchronization is intimately
tied up with the monotonic increase in instantaneous onset rates as SR increases. Therefore, an
increase in the percentage of low-SR fibers in CGRP knockout mice could theoretically lead to a
decrease in ABR amplitudes (See Discussion).
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5.3.5 Rate-level functions and dynamic ranf!e

Maximum discharge rates and dynamic range of AN fibers in CGRP wildtype and knockouts
were investiga!ed by measuring discharge rate-level for tone bursts at CF. Each level function
was fit by a modified version of an existing model (Sachs et al. 1989) in order to get better
estimates of dynamic range (see Chapter 2).

As seen in AN data from CBA/CaJ and CGRP wildtypes (Figure 5.7 A,C), nearly all high-SR
fibers in CGRP knockouts had hard-saturating rate-level functions (Figure 5.8E). Low-SR fibers
in the knockout were similar to low-SR fibers in CBAlCaJ and CGRP wildtype in that they
showed a mixture of hard saturating and sloping-saturating rate-level functions (Figure
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5.7B,D,F). However, two low-SR fibers in the CGRP knockout displayed unusually large
dynamic ranges, with rate-level functions that did not saturate at the largest sound pressure levels
used (Figure 5.7F).
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Figure 5.7: Superimposed rate-level functions from CGRP wildtype (WT: Panels C and D),
CGRP knockout (KO; Panels E and F) and CBAfCaJ (Panels A and B) fibers, segregated
according to SR: SR 2: 1 sp/sec (Panels: A, C, E) and SR < 1 sp/sec (Panels: B, D, F).
Functions were normalized by: 1) dividing the vertical axis by the maximum driven rate, and 2)
shifting along the horizontal axis according to model-fit thresholds.

There was a tendency for AN fibers with low-SR « 1 sp/sec) to show lower maximum
discharge rates than those with high-SR in the three strains studied (Figure 5.8A). However,
group mean differences in maximum discharge rates between high and low-SR fibers in CGRP
knockout mice (P = 0.05, Student's (-test) were not as significant as in CGRP wildtype ( P =
0.006, Student's (-test). With respect to the relation between CF and maximum rate, no
significant differences were found between CGRP knockout and wildtype mice (Figure 5.8B).
Note that for both KO and wildtypes, there was a tendency for pathological fibers to show higher
maximum discharge rates than fibers of similar CF with threshold sensitivity closer to that seen
in CBA/CaJ.

No significant differences were found between CGRP knockout and wildtype mice in the
relationship between dynamic range and SR (Figure 5.9). This result, along with the others
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presented in this section, suggests that release of CGRP by LOC fibers does not significantly
influence rate-level responses in AN fibers.
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5.3.6 Response Adaptation

Rate-level functions of the type considered in the Section 5.3.5 display discharge rates
averaged over the entire tone-burst duration at each SPL. However, PST histograms of AN fiber
response to the tone bursts used to construct such functions show a peak in discharge rate at
tone-burst onset, which decays to a steady-state response that is significantly lower (Figure 5.10;
(Kiang et al. 1965; Smith 1977». ABR amplitude is dominated by the onset rate of auditory
neurons, rather than by their steady-state rates (Melcher and Kiang 1996). Thus, in this section,
we separately examine the onset rates and steady state rates of AN fibers in CGRP knockout vs
wildtype mice.

PST histograms of AN responses to CF tone bursts at 30 dB above threshold were obtained
from every fiber contacted. The histograms were normalized by the number of tone burst
presentations and the histogram bin width (0.5 msec) to give the instantaneous discharge rate. In
the three panels of Figure 5.10, we superimpose histograms from all high-SR fibers with CFs <
20 kHz obtained from CBA/CaJ, CGRP wildtype or CGRP knockout mice. Visual inspection of
these superimposed data suggest that loss of CGRP leads to no significant differences in peak
rates, steady-state rates, or the time constants of adaptation.
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Figure 5.10: Superimposed PST histograms for responses to CF tone bursts at 30 dB above
threshold for alliow-CF « 20 kHz), high-SR (> I sp/sec) fibers from CBNCaJ (Panel A), CORP
wildtype (WT) (Panel B), and CORP knockout (Panel C) mice. Numbers (n) of fibers in each
panel are indicated. Histogram rates are divided by the number of stimulus presentations and bin
width (0.5 msec) to give instantaneous discharge rate in spikes per second.

A more quantitative look at peak and steady-state rates is offered in Figures 5.11, where we
plot these rate measures as a function of SR, because of the clear dependence of rates on SR in
AN fibers (Chapter 3). No significant differences were found in peak rate (Figure 5.11 A) or
steady-state rates (Figure 5.11 B) between knockouts and wildtype animals.

We attempted to measure adaptation time constants in the PST histograms by fitting of
exponentials as described by Westerman and Smith (Westerman and Smith 1984). However, the
PSTs from individual fibers were too noisy (i.e. had insufficient numbers of stimulus
presentations) to produce meaningful fits. Thus, as an alternate measure of response adaptation,
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we took the ratio of peak to steady-state response. As shown in Figure 5.12, this metric of
adaptation did not differ between CGRP wildtypes and CGRP knockouts.
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Figure 5.11: Peak instantaneous rates (Panel A) and steady-state rates (Panel B)
as a function of SR. Peak rates were obtained from PST histograms such as those
shown in Figure 5.10. Steady state rate was defined as the average rate during the
last 15 ms of the tone bursts. Peak rate was defined as the maximum instantaneous
rate.
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steady state (SS) ratio was obtained by dividing the maximum rate by the
average rate during the last 15 ms of the tone burst.

5.3.7 Response Synchrony

As shown in Chapters 3 and 4, mouse AN fibers show synchrony characteristics similar to
those in other mammals (Johnson 1980), i.e. phase-locking falls off dramatically as stimulus
frequency approaches 4 kHz. In the mouse AN, there are relatively few fibers with rate threshold
< 60 dB SPL at frequencies ~ 4 kHz (see Chapter 3). Thus, given that high SPL tones elicit large
cochlear microphonic potentials that can produce artifactual synchrony when picked up by the
microelectrode, response synchrony could only be studied systematically in a few fibers.

Although the sample size is limited by the general lack of low-frequency responsiveness in
the mouse AN, response synchronization appears to be reduced in CGRP knockout AN fibers.
Synchrony data were obtained for stimulus-level functions from three CGRP wildtype and three
CGRP knockout AN fibers. Figure 5.13 shows synchrony-level functions for three test
frequencies (f = 2 kHz, 2.5 kHz, and 4 kHz). In most cases, CGRP knockout ANFs synchrony
level curves saturated at lower values than both the wildtype and CBA/CaJ mice.

Note, however, that the analysis is complicated by the fact that all four of the fibers sampled
from CGRP knockout ears were "pathological", i.e. showed relative thresholds> 30 dB higher
than those in CBA/CaJ. These pathological fibers tended to have hypersensitive tuning curve
tails (See Chapter 4), which made them tempting subjects for study of low-frequency responses.
Unfortunately, the lack of "normal" knockout fibers in the sample was not noted until after the
experimental series was complete.
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Figure 5.13: Synchrony vs. level functions for AN fibers from CBAlCaJ (1 fiber), CGRP wildtype
(3 fibers), and CGRP knockouts (4 fibers), in response to continuous tones at 2 kHz (Panel A), 2.5
kHz (Panel B) or 4.0 kHz (Panel C). Data from the same fibers are shown in the different panels.
Synchronization indices were extracted from post zero-crossing histograms obtained from 15-s
continuous tones as described by Johnson (1980). Symbol key in Panel C applies to all Panels.

5.4 Discussion

5.4.1 Predicted Effects of CGRP Loss

In this study, recordings were made from single AN fibers in CGRP knockout mice to better
understand the role played by CGRP in cochlear function. In mouse, CGRP has been
immunolocalized to olivocochlear (OC) efferent terminals in the IHC and OHC area (Maison et
al. 2002). In all these terminals, CGRP appears to be co-localized with the neurotransmitter
acetylcholine (ACh).

In other cholinergic systems, including the adrenal medulla and the neuromuscular junction,
CGRP has been implicated in the modulation of nicotonic acetylcholine receptor (nAChR)
desensitization (Nistri and Angelantonio 2002) and the expression of nAChRs and
acetylcholinesterase at the synapse (Fernandez et al. 1999). The mechanism by which CGRP is
thought to modulate neurotransmission is via second messengers, occurring downstream to
CGRP action on its G protein coupled receptor complex (Juaneda et al. 2000) or in some cases,
via direct interactions with the nAChRs (Giniatullin et al. 1999).

MOC efferent suppressive effects on OHC function are thought to be mediated through the
activation of nAChRs. Given that CGRP has been shown to modulate cholinergic
neurotransmission and that CGRP is co-localized with ACh in MOC terminals, it is possible that
loss of CGRP may change the magnitude or time course of classic MOC suppressive effects on
cochlear function. However, the findings reported by Maison et. al. (2003) indicates that classic
MOC effects and DPOAE thresholds remain unchanged in CGRP knockout mice. Consistent
with the latter, results from the present study also show that DPOAE thresholds in knockout mice
were comparable to wildtype mice (Figure 5.1). Together, these results suggest that CGRP does
not playa major role in influencing OHC function via activation of MOC efferents.
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A recent study has shown that activation of the lateral olivocochlear (LOC) system can cause
long-lasting enhancement or suppression of AN response without affecting OHC function (Groff
and Liberman 2003). This suggests that there might be at least two functional subsystems within
the LOC. An interesting possibility is that release of CGRP by LOC fibers is responsible for the
long-lasting excitation of AN responses, as discussed below.

The effects of CGRP on hair cell afferent responses have been best studied in the lateral line
organ, where both afferent fibers and cholinergic CGRPergic efferent fibers contact hair cells
(Bailey and Sewell 2000; Sewell and Starr 1991). Application of CGRP on the lateral line organ
increases the frequency of excitatory post-synaptic potentials (EPSPs) and spontaneous discharge
rates in afferent fibers (Sewell and Starr 1991). The site of action for CGRP is hypothesized to
be the hair cell, given that application of cobalt, a drug that blocks calcium-dependent
neurotransmitter release (Weakly 1973), blocks CGRP effects (Sewell and Starr 1991).
Application of CGRP on the lateral line organ has also been shown to reduce phase-locking and
decrease stimulus-evoked discharge rates in afferent fibers (Bailey and Sewell 2000). The
general process by which CGRP has been hypothesized to both increase spontaneous activity and
decrease response sensitivity in afferent fibers is as follows: CGRP released by efferent fibers
activate G-protein-coupled receptors that increase intracellular calcium levels both near
neurotransmitter release sites, thereby increasing the probability of spontaneous neurotransmitter
release, and at sites near calcium-gated potassium channels that when activated, hyperpolarize
the cell and decrease the amount of neurotransmitter release (Bailey and Sewell 2000).

Consistent with the hypothesis that release of CGRP by LOC fibers may play a role in AN
fiber excitation is the finding in a previous study that there is a 20% reduction in ABR
amplitudes at all sound pressure levels without changes in DPOAE thresholds (Maison et al.
2003) in CGRP knockout mice. Studies of chronic de-efferentation also suggests a role in AN
excitation by the efferent system given that in chronically de-efferented animals, there is a
decrease in the SR distribution seen among AN fibers (Liberman 1990; Zheng et al. 1999b) and
in one study, a decrease in maximum discharge rates in AN fibers was also found (Zheng et al.
1999b). These findings suggest that AN fibers in knockout mice might have decreased SR and
sound-evoked discharge rates and that other measures such as tuning, threshold sensitivity, or
other aspects of AN response that are shaped largely by the OHCs, would be unchanged.

5.4.2 AN phenotype in CGRP knockout animals

The interpretation of auditory phenotypes in CGRP knockout mice is complicated by the
pathologies that are associated with the background strain: for example, recordings from non-
compromised fibers with CFs > -15 kHz cannot be made. Putting aside this caveat, we found no
statistically significant differences in most aspects of AN response in the knockout animals,
including tuning, threshold sensitivity, dynamic ranges, peak or steady-state rates, the range of
SRs encountered in the nerve, or the basic relation between SR and threshold.

According to results from the lateral line organ, AN fiber responses in CGRP knockout mice
might be expected to show (1) lower spontaneous rates, (2) larger stimulus-evoked discharge
rates, and (3) better phase-locking than wildtype AN fibers. However, in this study, there were
no significant differences found in the SR distribution (Figure 5.4) or in sound-evoked discharge
rates between knockout and wildtype mice (Figure 5.8). These discrepancies may be due to the
different mechanisms of CGRP action in the mammalian cochlea versus the lateral line organ
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since the primary target of LOC neurons are the dendrites of AN fibers while that of lateral line
efferents is the hair cell itself.

We also noted a decrease in maximum synchrony in the CGRP knockouts (Figure 5.13).
However, this observation is clouded by the fact that the sample of high-CF fibers in the
knockout animal, by chance, happened to include only "pathological fibers". As discussed in
Chapter 4, the dominant pathology at the apical border of the progressive lesion in this
background strain appears to be OHC dysfunction. Outer hair cell dysfunction causes elevation
of tips and hypersensitivity of tails (Liberman and Dodds 1984b). However, these mechanical
effects would not be expected to have any effects on maximum synchrony. Effects on maximum
synchrony suggest changes in synaptic transmission at the IHC, which could be due to CGRP.
However, the direction of change is opposite to that expected from the results in the lateral line
(Bailey and Sewell 2000).

In summary, the auditory phenotype in the CGRP knockout mouse is subtle, if there is any
phenotype at all. When considering knockout animals with no obvious phenotype, one need not
conclude that the eliminated molecule has no function, because there is often a redundancy built
in, such that the missing function can be subserved by some remaining (related) element. In this
case, the possibility that CGRPS "replaces" a must be considered: however, immunological
results showed no CGRP a or 5 staining in these knockout ears (Maison et al. 2003). Similarly,
in contrast to receptor subunit knockouts, where a different subunit type could subserve many of
the functions of the missing element, the knockout in this case is of the ligand. It seems unlikely
that there are other endogenous ligands for the CGRP receptor that can compensate for the loss
of CGRP.

5.4.3 Are AN results contradictory with previous ABR results ?

A 20% reduction in suprathreshold auditory brainstem response (ABR) wave 1 amplitude in
CGRP knockouts compared to their wildtype littermates was reported by Maison et. al. (2003).
ABRs were not measured in the present study for practical reasons - the kind of testing carried
out previously requires about 1 hour of recording time. In a typical AN experiment, adding that
amount of gross-potential recording time would decrease the time available for obtain single-
fiber data by 25%.

Wave 1 amplitudes depend on (1) response synchronization in AN response to tone bursts,
(2) number of fibers responding, (3) peak onset rates in response to tone bursts, and (4) the shape
of the unitary potential, i.e. the contribution of a single spike generator to the waveform at the
recording electrode (Melcher and Kiang 1996). The variance in first spike latency (FSL) is a
good measure of response synchronization: it was unchanged by the loss of CGRP (Figure 5.6).
Threshold sensitivity, a key determinant of the number of responding fibers, was also unchanged
by the knockout (Figure 5.2); as were the magnitudes of the onset rates and the relation between
onset rates and SR (Figure 5.11). We have no data on the shape of the unitary potential; thus a
CGRP-related change in its amplitude remains a logical possibility.

Another important factor is the absolute numbers of responsive fibers. Information on
absolute numbers is difficult to determine from a single-fiber study such as this one. Without
explicit counts from histological analysis (which was not performed), the only indicator we have
available is a sense of the inter-unit density in electrode tracks. Given the difficulties in making
single-fiber recordings from mouse, specifically the frequency with which long stretches of
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electrode penetration do not yield any fiber contacts whatsoever, it would be impossible to rule
out a 20% decrease in the numbers of auditory nerve fibers in the knockout animals.

A final mechanism to consider for ABR amplitude reduction is a shift in the proportion of
low- vs. high SR fibers, given that low-SR fibers have lower onset rates by almost a factor of two
(492 vs 728 spikes/sec) (Figure 5.11). The slight increase in the proportion of low-SR fibers
noted in the CGRP knockout (46 vs 38%; Figure 5.4) is in the right direction to decrease ABR
amplitudes. However, the magnitude of the group shift is not large enough to explain a 20%
decrease in Wave 1: all other things being equal, the proportion of low-SR fibers would have to
increase from 38% to 93% to decrease the ABR by 20%.

In summary, given that all parameters that might contribute to ABR amplitudes could not be
measured here, one cannot consider the results of the two studies to be irreconcilable.
Nonetheless, there is no compelling explanation for such a reduction seen in the single-fiber data.
It must be reiterated that, for practical reasons, ABRs were not measured in the present study,
thus it cannot be stated with certainty that the animals studied here did indeed have an inter-
genotype difference in ABR amplitudes. In addition to possible genetic differences in the
background discussed below, it is also worth noting that the anesthetic used in the present study
(urethane and xylazine) differed from that used in the previous study (xylazine and ketamine),
thus providing another possible explanation for the failure to see a stronger AN phenotype.

5.4.4 Are the mice in this study genetically identical to those studied previously?

In the initial generation of typical knockout mouse, a 129/C57 hybrid genetic background is
created because 1) the genetic recombination to eliminate the gene of interest is carried out in J1
stem cells (derived from a 129/SvJ strain), 2) the stem cells are implanted into a blastocyst
derived from C57BL/6 and placed into the uterus of a C57BL/6 foster-mother and 3) the
chimeric male offspring for which the gonads are stem-cell derived are crossed with C57BL/6
females and then 4) subsequent generations are produced by interbreeding among the hybrid
offspring. The presence of this heterogenous genetic background, with multiple heterozygosities
at multiple genetic loci, adds variability to behavior of wildtype animals. This is manifest in
cochlear studies by a high degree of variance in cochlear thresholds, because both of the
originating strains (C57BL/6 and 129/SvJ) have early-onset cochlear pathologies of different
etiology (Hequembourg and Liberman 2001; Zheng et al. 1999a). For this reason, many
investigators will try to create a knockout line which is "congenic" with one of the two
originating strains, e.g. C57BL/6. A true C57BL/6 "congenic" animal is one in which all genetic
loci are once again homozygous for the C57BL/6 allele and the only difference between any
wildtype and mutant mouse is at the targeted locus. In practice, the creation of congenic line
involves backcrossing the mutation for 10 generations back into the C57BL/6 line, and
assuming, based on mathematical arguments, that > 99% of the loci have become homozygous
for the original C57BL/6 alleles, except for the targeted mutation, which is assayed at each
generation to identify the knockout animals.

The animals in the present study were said to be C57BL/6 congenics, and they were
nominally the same as those studied by Maison et al. They were derived from knockout and
wildtype breeding pairs obtained from the Emeson laboratory at Vanderbilt University (Lu et al.
1999), the same laboratory that originally supplied the mice to Maison and colleagues (Maison et
al. 2003). Animals in the present study were genotyped here in our laboratory, and the results for
all animals tested were consistent with expectations - i.e. there is no reason to doubt the
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genotypic classifications presented here (See Chapter 2, Figure 2.4). The only obvious difference
is that this study was initiated roughly 2 years later, thus, roughly 35 generations of interbreeding
had elapsed between the two sets of experiments.

Comparison of DPOAEs obtained from CGRP knockout mice in this study to the ones
obtained in Maison et. al. (2003), shows a significant difference in auditory phenotypes between
the two sets of mice (Figure 5.14). Given that the DPOAE measures were obtained in the same
laboratory, with the same equipment and same response metrics, from animals at the same ages,
the striking differences strongly suggest that the genetic background for the two groups of
animals was not identical. If the animals were still in a highly hybrid background, this would not
be at all surprising, given the continued genetic intermixing that 2 years of colony maintenance
involves. Thus, one way to interpret the present results is that the genetic heterogeneity had not
been completely removed from the "congenic" line we were studying, and that the background
of the animals in our study was systematically different from that in the previous study. That
difference in background apparently affected the degree or time of expression of the gene(s)
causing early-onset basal-turn cochlear pathology and may also have affected the way in which
GCRP deletion affects auditory function.

Whether or not this is the correct interpretation, we are still left with the overarching
conclusion that CGRP plays a minimal role in shaping the responses of the mammalian cochlea.

5.5 Conclusion
The LOC system is a neurochemically heterogeneous system whose function in audition is

not clearly understood. CGRP is a neuropeptide that has been immunolocalized to LOC efferent
terminals and cell bodies (Vetter et al. 1991). The CGRPa knockout mouse is an interesting
model to study LOC function because they display normal DPOAEs, while displaying decreased
suprathreshold amplitudes in wave 1 of the ABR (Maison et al. 2003), suggesting a direct effect
on AN fiber responses caused by changes in LOC neurotransmission. In this study recordings
from single AN fibers were used to understand better the reduction in ABR wave 1 amplitude as
reported in Maison et. al. (2003). However, results from this study were unable to explain why
wave 1 amplitudes in CGRP knockout mice were reduced compared to wildtype mice. In fact,
results from this study suggests that the presence of CGRP in the cochlea is not necessary for
normal AN fiber responses. Comparison of DPOAEs obtained from CGRP knockout mice in
this study to the ones obtained in Maison et. al. (2003), suggests that the knockout mice used in
this study had a different auditory phenotype than the ones used by Maison et. al. (2003) (Figure
5.14). This finding highlights one complex issue of studying knockout mice: auditory
phenotypes can vary significantly from individuals of different breeding pairs and generations
(Gao et al. 2004).

71



10010
F2 Frequency (kHz)

--. • CGRP KG (present study)0:100 0 CGRP KG (Maison et. aI., 2003)

(f)

~ 80
'-

"'C

a 60..c
(/)
cu
L...
..c 40
I-
l.J.J« 20oa..
o Os

Figure 5.14: Mean thresholds for DPOAEs in the CORP knockout mice
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Chapter 6

Auditory Nerve Recordings in Mice with Targeted Deletion of the
BK channel

6.1 Introduction
Large conductance voltage- and calcium-activated potassium (BK) channels are members of

a sub-family of Ca+2-gated potassium channels that display a high-unitary conductance (-250 pS
(Vergara et al. 1998)), are activated by both intracellular calcium and membrane depolarization,
and are blocked by the scorpion venoms charybdotoxin (ChTx) and iberiotoxin (IbTx) (Skinner
et al. 2003). BK channels are composed of two subunits: a and 5. The a subunit is a member of
the slo family of potassium channels, which was originally identified in Drosophila (Ruttiger et
al. 2004; Skinner et al. 2003; Vergara et al. 1998).

In hair cells of lower vertebrates, BK channels interact with voltage-gated Ca2+ channels to
produce oscillatory voltage responses (Fettiplace and Fuchs 1999). This electrical resonance acts
as an electrical filter maximizing the hair cell response at a particular sound frequency, the
resonant frequency. The number of BK channels and their dynamic properties determines the
resonant frequency of each cell (Fettiplace and Fuchs 1999). In the basilar papilla of the chick, it
is thought that the differential distribution of splice variants of the a-subunit in BK channels,
which influences the response dynamics of BK channels, is important for the generation of a
tonotopic map in this organ (Navaratnam et al. 1997; Rosenblatt et al. 1997).

In contrast to lower vertebrates, little is known concerning the role of BK channels in
mammalian hearing. In the mammalian cochlea, BK channels are found in inner hair cells
(IHCs), outer hair cells (OHCs), efferent fibers under OHCs, the stria vascularis, the spiral
ligament and spiral ganglion cells (Ruttiger et al. 2004; Shen et al. 2004; Skinner et al. 2003).
Unlike lower vertebrates, mammalian hair cells do not show electrical resonance (Skinner et al.
2003). Their presence in IHCs is thought to lower membrane time constants allowing hair cell
receptor potentials to synchronize to stimulus frequencies in the kilohertz range (Kros et al.
1998; Ruttiger et al. 2004). Pharmacological experiments performed in the guinea pig cochlea
suggests that BK channels play a role in mammalian afferent neurotransmission, because
blocking such channels with iberiotoxin or charybdotoxin significantly reduces compound action
potential (CAP) amplitudes without significantly altering distortion product otoacoustic
emissions (DPOAEs) (Skinner et al. 2003). The maintenance of DPOAEs suggests that these
drugs must be acting "downstream" of the outer hair cell's contribution to cochlear mechanics.
Because patch clamp recordings performed on individual inner hair cells (IHCs) show that
blocking BK channels removes the fast outward current and increases the membrane time
constant (Skinner et al. 2003), it is thought that the observed reduction in CAP amplitudes may
in part be due to changes in IHC physiology. However, the exact mechanism by which such
changes translate to a significant reduction in CAP amplitude is not understood.

To elucidate the role of BK channels in the development of normal mammalian hearing, a
BK channel knockout mouse model was created by Ruttiger et. al. (2004) (Ruttiger et al. 2004)
in which the gene encoding the a-subunit was deleted. In the first study of these mice, two in
vivo physiological measures were used to assess cochlear function in knockout mice aged 4-17
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weeks: click-evoked auditory brain stem responses (ABRs) and DPOAEs. The former measure
provides information concerning the synchronous firing of nerve fiber populations along the
auditory pathway and the latter measure provides information concerning OHC function because
a reduction in OHC function leads to a reduction in DPOAE amplitude (Zurek et al. 1982).
These BK a-subunit knockout mice showed elevated click-evoked ABR thresholds compared
with their wildtype littermates, and they had no measurable DPOAEs at f2 = 16 kHz, the only
frequency tested. Histological analysis of the cochleae of a-subunit knockout mice reveal a base-
to-apical progression of OHC degeneration with age that was coincident with increasing
elevations in ABR thresholds. The stria vascularis, spiral ligament, and IHCs appeared normal,
however their function was not directly assessed. These findings suggest that BK channels play
a role in OHC survival.

More recently, the in vitro electrophysiology of IHCs from the BK knockout mouse was
investigated by Dominik Oliver and colleagues (personal communication). Under whole cell
voltage clamp, normal IHCs display fast and slow outward currents for voltage steps greater than
-50 mV (Figure 6.1A). The fast component of the response is thought to be mediated through
the activation of BK channels, since application of selective BK channel blockers on IHCs has
been reported to remove this component (Skinner et al. 2003). Consistent with this prediction, in
IHCs from the BK knockout mice, the fast component of the outward currents is absent (Figure
6. IB). To more closely mimic the in vivo situation, in which IHCs are activated by sound-evoked
currents flowing through transduction channels, Oliver and colleagues measured the voltage
responses of wildtype and knockout IHCs to a 2 kHz current waveform shaped by a saturating
non-linearity meant to mimic the normal displacement-vs.current function for the IHC hair
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Figure 6.1: Voltage clamp (Panels A,B) and current clamp (Panels C,D) recordings from BK
wildtype and knockout inner hair cells (IHCs) respectively. Panels A,B: Current families in
response to voltage steps incremented by 10 mV (starting at -90 mV, holding potential was -80 mV).
Panels C,D: The "transducer current" applied to the IHCs is a 2 kHz tone passed through a transfer
function that mimics the saturating nonlinearity in the responses of IHC transduction channels to
sinusoidal hair bundle deflections. The saturating current was 1 nA. Experimental data from
Dominik Oliver, Ph.D. (personal communication).
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bundle. In response to these 2-kHz "transducer currents", IHC voltage responses in the knockout
(Figure 6.1D) displayed decreased AC responses and enhanced DC responses compared to
wildtype (Figure 6.1C), presumably because the loss of BK channels increases the membrane
time constant and increases the resistance of the cell, respectively.

The decreased AC and increased DC responses in IHCs in vitro suggest that AN responses,
in vivo, in BK knockout mice might show (1) poorer phase-locking, and (2) smaller dynamic
ranges because saturated rates would be reached more quickly as sound pressure was increased.
The changes in onset time constant in IHC responses (Figure 6.1A,B) suggest that AN fiber
responses in the knockout might show lower onset rates, due to a decreased synchronization of
first-spike latencies to tone burst stimuli. Such onset time constant changes would not be
expected to alter steady-state rates. The loss of a prominent K+ channel might also result in a
slight depolarization of the IHC's resting membrane potential. This, in turn, might be expected to
lead to a slight increase in spontaneous discharge rates.

In this study, recordings were made from single auditory nerve (AN) fibers in BK knockout
mice to describe the phenotype and compare the observations with the predictions made on the
basis of the in vitro recordings from isolated IHCs in this same mutant line. The juxtaposition of
data from isolated IHCs in vitro and individual AN fibers in vivo, in an animal model with such a
dramatic change in IHC function, provides a unique opportunity to test current views of the way
in which IHC voltage and current responses are converted into response patterns in their post-
synaptic element, the afferent fibers of the auditory nerve.

6.2 Data Set
When possible, fiber responses shown in this Chapter were classified as AN fiber responses

based on the classification criterion described in Chapter 2, which includes data on PST shape,
coefficient of variance and first spike latency obtained from responses to tone bursts at CF
delivered 30 dB above threshold. In cases where fiber threshold was within 30 dB of the
maximum SPL deliverable by the acoustic system, PST histograms were derived from responses
to tones at < 30 dB above threshold. Electrode depth was also used as a classification criterion;
all fibers shown in this chapter were found at electrode depths > mm where AN fibers are
expected to be found (see Chapter 2).

In total, recordings from 57 fiber recordings from 6 BK knockout (KO) mice aged 7-17
weeks and from 64 AN fibers in 7 wildtype (WT) mice aged 7-17 weeks are presented in this
Chapter. For an additional point of reference, these data are compared to responses from AN
fibers in CBA/CaJ mice aged 8-17 weeks, as presented in previous chapters. The wildtype and
knockout mice are from the 129/SvJ strain.

6.3 Results
6.3.1 Overall Cochlear Sensitivity

DPOAE thresholds in BK wildtype and knockout mice are more variable and generally
higher than average DPOAE thresholds from CBA/CaJ mice (Figure 6.2). This is not surprising,
given that the background strain (129/SvJ) is known to have relatively poor hearing even at
young ages (Zheng et al. 1999a). Consistent with the earlier study of ABR responses in this
knockout line, BK knockout mice had higher DPOAE thresholds than their wildtype littermates
across all test frequencies (Figure 6.2). There was, however, significant overlap in individual
cases: some knockout ears were more sensitive than many wildtype ears.
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As described in Chapter 2, DPOAE amplitude changes were typically used to monitor
cochlear condition, because other common measures of cochlear function require either
additional surgery (e.g., compound action potentials) or long recording periods (e.g., auditory
brainstem responses). In the present experiments, 3 of 6 knockout animals had DPOAE
thresholds, at the beginning of the experiment, that were close to system-distortion thresholds
(i.e., > 70dB) for nearly all test frequencies. In these cases, DPOAE thresholds were not a useful
monitor of acute changes in cochlear condition, because they could not rise significantly without
reaching the threshold for system distortion. Thus, we could not apply a maximum DPOAE-shift
criterion for database inclusion as was done in the other Chapters. For data in this Chapter, we
rely more on the AN data from CBAlCaJ mice, as a point of additional comparison, for both the
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Figure 6.2: Mean thresholds for DPOAEs recorded at the start of each experiment for
CBAlCaJ (stars), BK wildtype (circles), and BK knockout (triangles) mice. DPOAE thresholds
were determined as described in Chapter 2. Error bars represent one standard deviation.

wildtype and knockout data. We will use relative thresholds, re CBAlCaJ mean data, as a metric
of the degree of abnormality as we attempt to dissect out those response abnormalities that are
due to the BK deletion and those that arise because of the background genetics in this mutant
line.

6.3.2 Rate Threshold and Tuning

As described in Chapter 3, a fundamental property of AN fibers is their frequency selectivity,
as quantified via "threshold" tuning curves which track iso-response contours in the frequency-
intensity plane. AN tuning curves show sharply tuned "tips", defining the characteristic
frequency (CF: frequency of maximum sensitivity) of the fiber, and broadly tuned low-frequency
"tails". Tuning curves were obtained for all AN fibers in this study. Plotting thresholds at CF
provides an overview of the sensitivity and frequency range of the peripheral auditory system.
CFs ranged between 2.5 kHz and 25.4 kHz for fibers obtained in BK wildtypes and between 1.92
kHz and 20.1 kHz for fibers in BK knockouts (Figure 6.3A). Mean thresholds for high-SR
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Figure 6.3: Panel A: Thresholds at CF for 64 AN fibers in 7 BK wildtype mice, and
57 AN fibers in 6 BK knockout mice compared to data from CBNCaJ. Panel B: Mean
thresholds at CF, as a function of CF. Data for high-SR fibers from each group were
binned according to CF (half-octaves), and the average threshold for each bin was
calculated.
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Figure 6.4: Sharpness of tuning (QlOdB) (Panel A) and mean QI(>dB (Panel B) as a function of
fiber CF. To calculate mean QUX1B fibers were segregated into groups according to
characteristic frequency (half-octave bins), and the average QUXIB for each bin was placed in the
middle of the bin. Data are only shown for frequency bins containing at least 2 data points.

fibers (SR ~ 1 sp/sec) with CFs between 2 and 16 kHz in knockouts were higher than in
wildtypes (Figure 6.3B). The sign and magnitude of the differences in mean single-fiber
thresholds between the two genotypes (Figure 6.3B) are not dissimilar to the genotype
differences in mean initial DPOAE thresholds (Figure 6.2), suggesting that the AN fiber
database does not include disproportionate numbers of fibers with acute threshold shifts due to
deterioration of cochlear condition during the recording sessions.

In lower vertebrates, BK channels are implicated in electrical tuning of hair cells (Fettiplace
and Fuchs 1999). Although electrical resonance has not been found in mammalian IHCs
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- BK Knockout (n = 21)
- BK Wildtype (n = 14)

(Skinner et al. 2003), suggesting that this phenomenon is not critical for tuning in the
mammalian cochlea, measurements of QlOdBin BK knockout mice were made to verify the
expected results. As expected, QllklB values in AN fibers from the BK knockout were
comparable to those in wildtypes (Figure 6.4A), with the exception of a cluster of fibers with
CFs near 10 kHz that showed Q-values that were lower than average (Figure 6.4B).

6.3.3 Soontaneous rates

AN fibers fire spontaneously in the absence of sound (Kiang et al. 1965), and this
spontaneous discharge is highly random, having interspike intervals that display a poisson-like
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Figure 6.5: Mean histogram of the interspike intervals of spontaneous activity (SR: 50-
100 sp/sec) in 21 BK knockout fibers and 14 BK wildtype fibers. Bin width is lmsec.
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Figure 6.6: Spontaneous rate distributions for fibers from BK knockouts and BK
wildtypes compared with CBA/CaJ. Bin width = 5 sp/sec.
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distribution (Kiang et al. 1965). Mean interspike intervals of spontaneous activity (SR: 50-100
sp/sec) recorded in knockout AN fibers also show a poisson-like distribution, indistinguishable
from that found in wildtype fibers (Figure 6.5).

The spontaneous discharge rate (SR) of each fiber is an important determinant of its
threshold sensitivity, maximum discharge rate, dynamic range and other response attributes, as
discussed in Chapters 3 and 4. As discussed in the Introduction, loss of BK channels in IHCs
might be expected to slightly raise resting membrane potential, which, in turn, might lead to an
overall increase in SRs in the knockout ears.

The changes in SR distribution for fibers sampled in the BK knockout vs wildtype ears were
in the direction predicted (Figure 6.6); however the differences were either not statistically
significant or a likely artifact of the threshold elevation in knockout ears (Figure 6.2). First, there
was a decreased percentage of fibers with lower spontaneous rates: the histogram in Figure 6.6
(plotted with a bin width of 5 sp/sec) shows 4% of knockout fibers vs 18% of wildtype fibers are
found in the first bin of this histogram. Both BK genotypes, in turn, show a lower percentage
than that seen in CBA/CaJ (27%). However such differences could arise because (high-
threshold) low-SR fibers are not excited by search stimuli as the electrode is advanced; this
causes an undersampling of low-SR fibers that increases in direct proportion to the threshold
elevation in the ear. Second, the mean SR value for high-SR fibers was slightly higher in
knockout mice (65.4 sp/sec) than in wildtypes (60.6 sp/sec); however, statistical analysis
suggested that the differences were not significant (P = 0.55, Student's t-test).

6.3.4 Response Synchrony

Phase-locking was studied in BK knockout AN fibers to determine if the reduction in AC
response seen in the IHC in vitro data (Figure 6.1), was reflected in knockout mice in vivo as a
decreased synchronization index for AN responses to low-frequency tones. As discussed in
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Figure 6.7: Synchrony-level functions for AN fibers from CBAlCaJ (1 fiber), BK
wildtype (3 fibers), and BK knockout (3 fibers), in response to continuous tones at 2 kHz.
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Chapters 3 and 4, phase-locking falls off dramatically as stimulus frequency approaches 4 kHz,
and in the mouse AN, there are relatively few fibers with rate threshold < 60 dB SPL at
frequencies::; 4 kHz (see Chapter 3). Therefore, response synchrony could only be studied
systematically in a few fibers. Synchrony data was obtained for stimulus-level functions from
three BK wildtype and three BK knockout AN fibers. The stimulus frequency chosen matches
the frequency of the "transducer-like" current (i.e., 2 kHz) used in the patch clamp studies
described in the Introduction (Figure 6.1). As shown in Figure 6.7, the limited data set we
obtained in animals from the two genotypes are consistent with expectations from the in vitro
data: synchrony-level functions in the knockout mice (average maximum synchrony = 0.2673)
tended to be smaller than the wildtype mice (average maximum synchrony = 0.3432).

6.3.5 Rate-level functions and dynamic range

In vitro, IHCs from the knockout ears showed a faster rise in DC response with increasing
"transducer current" steps (Figure 6.1D), consistent with increased IHC input resistance from
loss of this large-conductance K+ channel. In vivo, if sound-driven IHC DC potentials also
increased more rapidly with increasing sound level, the dynamic ranges of AN fibers in the
knockout ears might be decreased.

To assess this prediction, discharge-rate vs. sound-level functions for tone bursts at CF were
measured in BK knockout vs. wildtype fibers. As illustrated in Figure 6.8A, the rate-vs.-Ievel
data were fit by a modified version of an existing model (Sachs et al. 1989) (see Chapter 2) to
better estimate dynamic range than can be done with the raw data.

In fact, dynamic ranges in knockout fibers were not significantly different from those in
wildtypes. As described in Chapters 3 and 4, and as illustrated in Figure 6.9, dynamic range in
the mouse AN is a strong function of SR, with the largest dynamic ranges seen in fibers with the
lowest SRs. If we consider only high-SR (SR >2 sp/sec) fibers, the mean dynamic range for
knockout fibers was 14.1 dB (+/- 1.0 SEM); whereas the mean for wildtype was 14.8 dB (+/- 0.7
SEM). These differences were not significant (p=0.52 Students t-test).

The possibility must be considered that a difference between the two genotypes was obscured
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Figure 6.8: Discharge rate versus level functions obtained for a BK knockout AN fiber (CF=8.4
kHz; SR = 64 sp/sec) using a 5 dB resolution (Panel A) and a I dB resolution (Panel B).
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by the fact that dynamic ranges in normal mice are small (10-15 dB for high-SR fibers)
compared with the default step size (5 dB) in the present study. To assess this, whenever contact
time permitted, functions obtained with 5 dB steps were compared with those from 1 dB steps.
One example is shown in Figure 6.8, from a fiber with a particularly small dynamic range: the
model-fit result for 5-dB steps was 8.4 dB; whereas that for I-dB steps was 10.6 dB. In all,
dynamic range comparisons for the two step sizes were available for 9 fibers. As shown in
Figure 6.10, the average difference between dynamic range estimates using 5-dB steps versus 1-
dB steps was 1.3 :f:: 4.6 dB, suggesting no systematic inaccuracy in the 5-dB measurements, once
they have been put through the model-fit procedure. Thus, it appears unlikely that there are any
changes in dynamic range in the knockout ears that went undetected due to the relatively large
step size.
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Figure 6.9: Relation between spontaneous rate and dynamic range for all fibers in CBA/CaJ,
BK wildtype, and BK knockout fibers from which a rate-level function was obtained.

6.3.6 Maximum discharge rates: onset vs steady state

The most dramatic difference in AN response between KG and wildtype ears was in the
maximum sound-evoked discharge rates. As discussed in Chapters 3 and 4, and as illustrated in
Figure 6.6, virtually all high-SR fibers in mouse show hard-saturating rate-level functions, with a
maximum discharge rate that is achieved within 10-15 dB above threshold levels. Superimposed
rate-level functions for all high-SR fibers obtained from wildtype and knockout ears can be seen
in Figures 6.11B and C, respectively, where they can be compared with similar data from
CBA/CaJ (Figure 6.11 A) .. The dashed line at 100 sp/sec is positioned such that virtually all
saturated rates from the normal CBA/CaJ fibers as well as BK wildtypes fall above the line; by
contrast, the majority of saturated rates in the knockout fibers fall below the line. Mean
differences in maximum discharge rates between knockout and wildtype fibers was highly
significant (P « 0.0001, Student's t-test). Data in Figure 6.8 are shown as driven rates, i.e. the
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difference between sound-evoked and spontaneous rate. The same differences are seen In

absolute maximum discharge rates, as seen in Figure 6.] 2A,B.
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Figure 6.10: Dynamic range values obtained from rate-level functions with I-dB
resolution compared to those obtained using 5-dB resolution in 9 BK knockout and
4 BK wildtvpe AN fibers.
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Figure 6.11: Superimposed rate-level functions for high-SR fibers from CBA/CaJ (Panel A), BK
wildtype (Panel B) and BK knockout (Panel C) fibers. Functions were normalized by: I)
subtracting the SR from measured rate, and 2) shifting along the horizontal axis according to
model-fit thresholds. See text for further details.

Given the slight but systematic difference in thresholds between the knockout ears and those
of wildtype littermates (e.g. Figure 6.3), and given that some knockout ears have normal
maximum rates (Figure 6.12A,B), the possibility has to be considered that difference in
discharge rates is correlated with threshold shifts. To address this issue, maximum rates are
plotted as a function of relative thresholds in Figure 6.12B. When the data are plotted this way, it
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Figure 6.12: Relation between maximum rate and (Panel A) spontaneous rate or (Panel B)
relative threshold. Data are shown for all fibers in CBA/CaJ, BK wildtype, and BK knockout
from which a rate vs. level function was obtained. Relative threshold is defined by referring the
threshold at CF of each fiber to the mean threshold of high-SR fibers (SR> I sp/sec) of similar CF
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Figure 6.13: Superimposed PST histograms for responses to CF tone bursts at 30 dB above
threshold for alllow-CF « 20 kHz), high-SR (> 1 sp/sec) fibers from CBA/CaJ (Panel A),
BK wildtype (Panel B), and BK knockout (Panel C) mice. Numbers (n) of fibers in each
panel are indicated. Histogram rates are divided by the number of stimulus presentations and
bin width (0.5 msec) to give instantaneous discharge rate in spikes per second.

is clear that the two characteristics are independent: both low- and high-threshold knockout
fibers showed abnormally low saturated discharge rates.

The analysis of rate-level functions concentrates on mean rates, averaged over the entire
tone-burst on-time. As discussed in Chapters 3 and 4, there are striking differences between the
onset rates and steady state rates in the response of AN fibers to tone bursts, and the ratio
between onset and steady state provides an important metric of the degree of adaptation in the
AN (Kiang et aI. 1965; Smith 1977). The temporal dynamics of AN response in BK knockouts
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Figure 6.14: Peak instantaneous rates (Panel A) and steady-state rates (Panel B) as a function
of SR. Peak rates were obtained from PST histograms such as those shown in Figure 6.13.
Steady-state rate was defined as the average rate during the last 15 ms of the tone bursts. Peak
rate was always seen in the first bin of the histogram. Fibers with SR=O were assigned a value
of 0.05 sp/sec.
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Figure 6.15: Peak instantaneous rates (Panel A) and steady-state rates (Panel B) as a function of
CF. Peak rates were obtained from PST histograms such as those shown in Figure 6.13. Steady-
state rate was defined as the average rate during the last 15 ms of the tone bursts. Peak rate was
defined as the instantaneous rate from the first bin of the histogram. Fibers with SR=O were
assigned a value of 0.05 sp/sec.

were studied by constructing post-stimulus time (PST) histograms of responses to CF tone bursts
at 30 dB above threshold. The histograms were normalized by the number of tone burst
presentations and the histogram bin width (0.5 msec) to give the instantaneous discharge rate.
Example histograms from AN fibers with CFs < 20 kHz and SR > 1 sp/sec in CBAJCaJ, BK
wildtype and BK knockout mice are shown in Figure 6.13.

As seen in Figure 6.14 and 6.15, both onset and steady-steady state rates from BK knockouts
tended to be lower than those seen in wildtypes. The differences were more dramatic with
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Figure 6.16: Response adaptation, measured as the ratio of onset to
steady-state rate, as a function of SR. Adaptation was derived from PST
histograms of the type shown in Figure 6.13. Peak to steady state (SS)
ratio was obtained by dividing the maximum rate by the average rate
during the last 15 ms of the tone burst.

respect to the steady state rates (6.14B, 6.15B), where the great majority of knockout fibers
showed saturated rates below 150 sp/sec. The relatively small group of fibers from knockout
ears which retained normal saturated rates (>150 sp/sec) was not concentrated in any particular
CF region (Figure 6.15B), nor were they concentrated in particular animals: the percentage of
low-rate fibers ranged from 50% (2/4) to 88% (7/8); thus every animal showed a mixture of
normal and abnormal responses.

The fractional decrease in onset rate was smaller than the fractional decrease in steady-state
rate such that the ratios of peak to steady-state rate tend to be higher in knockout fibers than in

50
0.0001 0.001 0.01

FSL Variance (msec)

1400 A

200
0.0001

• * CBAlCaJ
• BK Wildtype
• BK Knockout

0.001 0.01
FSL Variance (msec)

0.1

j 1"~*~250 •• I
,-",.'lIt *

Q.) ••• ~

& : *"".;'" *
Q.) i *_
...... -19 150 .....
(/) ..
>-. .
u .
ro
Q.)

U)

•

0.1

Figure 6.17: Peak instantaneous rates (Panel A) and steady-state rates (Panel B) as a function
of the variance of the first spike latency (FSL). Data are shown for fibers with SR > 10 sp/sec
and are extracted from the responses to 150 CF tone bursts Dresented at 30 dB above threshold.
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wildtypes (Figure 6.16). Group mean differences were highly significant (P << 0.0001, Student's
t-test). Put in other terms, the degree of post-onset adaptation in knockout fibers is greater than
that in wildtypes. This trend can also be seen in the superimposed histograms of Figure 6.13.

The observation that IHCs from BK knockouts show slower current onsets to voltage steps in
vitro (Figure 6.1A,B) might lead, in vivo, to decreased synchronization of action potentials at
tone-burst onset, and consequently to the observed decreases in onset instantaneous rates (Figure
6.15A). An informative way to examine spike synchronization at tone-burst onset is by analysis
of the variance of the first-spike latency (FSL) histograms. Recall from Chapter 2, that the mode
of the FSL histogram (computed from responses to CF tone bursts) is one criterion used to
differentiate AN fibers from cochlear nucleus cells. As shown in Figure 6.17A, there is a strict
relationship between the variance of the FSL histogram and peak rates in normal ears (including
CBA/CaJ and BK wildtypes): fibers with lower rates have larger variances. The data in Figure
6.17A also reveal several interesting aspects of AN responses in BK knockouts. First, as
predicted, most BK knockout fibers show unusually large FSL variances, greater by two orders
of magnitude than those from most normal fibers. Second, among the BK knockouts, fibers with
normal peak rates also have FSL variances that are within the normal range.

In normal AN fibers, the correlation between FSL variance and steady-state rate (Figure
6.17B) is weaker than that between FSL variance and onset rates (Figure 6.17A). Note that those
BK knockout fibers with normal FSL variances showed steady-state rates below the mean
normal values, in contrast to the situation for peak rates, as described above. The latter
observation suggests that an additional mechanism, beyond the slowing of IHC onset responses,
must be invoked to explain the decreases in steady-state rates in BK knockout fibers.

6.4 Discussion
The present results show that, despite loss of the BK channel in the mouse cochlea, a number

of basic response properties of AN fibers were not significantly altered, including 1) the normal
stochastic pattern of discharge in AN fibers (spontaneous or sound-evoked), 2) the distribution of
AN spontaneous rates, 3) the shapes of AN tuning curves, or 4) the dynamic ranges of AN fibers,
i.e. the range of sound pressure levels over which suprathreshold discharge rate changes from
spontaneous to saturated rate. The normality of tuning curve shapes in the knockout mouse
strongly suggest that, in the mammalian ear, the BK channel does not play the same key role in
establishing frequency selectivity in the inner ear as has been shown in non-mamalian
vertebrates (Fettiplace and Fuchs 1999).

In contrast, the loss of BK channels did lead to the following alterations in cochlear
responses: 1) a striking decrease in the synchronization of AN spikes at tone-burst onset, which
was highly correlated with a decrease in the AN onset rates; 2) a striking decrease in saturated
steady-state discharge rates of AN fibers; 3) a small but significant elevation in mean thresholds
(seen in both AN fibers and DPOAE responses); and, possibly 4) a reduced degree of maximum
phase locking of AN responses to continuous tones.

Studies with immunohistochemistry and/or in situ hybridization have presented evidence that
BK channels in the mouse cochlea can be expressed in inner hair cells, outer hair cells, the lateral
wall (i.e. spiral ligament or stria vascularis), and AN fibers themselves (Ruttiger et al. 2004;
Shen et al. 2004; Skinner et al. 2003). In the following sections, we consider how the AN
phenotype revealed in the present study is most parsimoniously explained based on current
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understanding of the cellular distribution for BK channels, and their postulated roles in each of
these cell types of the cochlear duct.

6.4.1 BK channels in outer hair cells and the lateral wall

A previous study of cochlear responses in the same BK line studied here showed that ABR
thresholds were normal in knockout animals at age 4 weeks, but had deteriorated by 20-30 dB re
wildtypes at age 8-17 weeks (Ruttiger et al. 2004). Although animals as young as 4 weeks were
not studied here, this ABR threshold deterioration at 8-17 weeks is comparable to that observed
in mean DPOAE thresholds in the present study for animals in a similar age range (Figure 6.2).
This agreement between the magnitude of threshold shifts measured by DPOAEs and ABRs
suggests that threshold elevation in the BK phenotype arises "upstream" of the inner hair cell
(and its afferent synaptic transmission). That is to say, the data are consistent with the view that
the threshold shifts in BK knockouts arise directly from outer hair cell dysfunction, or, even
further upstream, in the magnitude of the endolymphatic potential, which is also necessary for
the normal contribution of outer hair cells to the amplification of DPOAEs(Ruggero et al. 1997).
The possibility that a decreased endolymphatic potential also contributed to threshold elevation
in the BK knockout animals needs to be seriously considered, given that BK channels have been
immunolocalized to cells in the stria vascularis (Skinner et al. 2003) and have been implicated in
the function of spiral ligament fibrocytes using electrophysiological techniques and BK channel
blockers (Shen et al. 2004; Skinner et al. 2003). Dysfunction in either of these cell types could
lead to a decreased endolymphatic potential (Hibino et al. 1997; Takeuchi and Ando 1999) and
therefore increased DPOAE and single fiber thresholds.

The previous study of cochlear function in BK knockouts (Ruttiger et al. 2004) concluded
that outer hair cell dysfunction per se was responsible for the threshold elevation in the knockout
animals. The authors based this conclusion on the demonstration that 1) outer hair cells
immunostained for BK channels, especially in the region opposite the efferent synapses, 2) that
ABR threshold deterioration was associated with a progressive base to apical loss of outer hair
cells, 3) that this outer hair cell loss, in turn, was preceded chronologically by a decrease in outer
hair cell immunostaining for a variety of markers including the potassium channel KNCQ4, and
finally that, 4) in contrast, immunostaining of the lateral wall cells in the knockout ears revealed
no change in expression of potassium channels (Kir4.1 and Kv3.1) thought to be important for
EP generation (Hibino et al. 1997; So et al. 2001).

Data from the present study add to the evidence that threshold shifts in the knockouts do not
arise secondary to a decrease in EP from strial (or spiral ligament) dysfunction. In addition to
elevating thresholds, a reduction in EP would also decrease spontaneous rates in AN fibers
(Sewell 1984a, b), presumably by reducing the resting current through inner hair cell
transduction channels leading to an intracellular hyperpolarization. AN data from the present
study show clearly that, if anything, spontaneous rates were increased in the knockout animals
(Figure 6.6). This argues strongly against a decrease in the EP in the BK knockouts.

Damage to outer hair cells is expected to produce broad tuning in AN fibers innervating
affected regions (Liberman and Dodds 1984b), as was observed in some fibers in the knockout
animals (Figure 6.4). Outer hair cell loss is expected to cause a slight increase in AN SRs, as was
observed as well (Figure 6.6). This slight SR increase, which has been observed in cases of OHC
loss from other etiologies, may arise from a slight increase in EP due to decreased resting current
across the reticular lamina. In contrast, outer hair cell loss would not be expected to affect
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variance of the first spike latency, maximum discharge rates (either peak or steady state), or
dynamic range of response (at least for high-SR fibers: see Chapter 4). Therefore, the
mechanisms underlying these striking response abnormalities observed in the BK knockout mice
must arise further "downstream" in the transduction cascade.

6.4.2 BK channels in IHCs

In mammalian inner hair cells (IHCs), two major K-currents are activated by depolarization:
one fast (Ik,f), the other slow (Ik,s). The large conductance and fast kinetics of Ik,f imply a role
in shaping IHC voltage responses, especially at high frequencies. The pharmacological profile
suggests that Ik,f is carried by BK channels, e.g. this fast response can be blocked by iberiotoxin
or charybdotoxin in IHCs isolated from adult guinea pigs (Skinner et al. 2003). Indeed, the
changes in responses to current steps in IHCs induced by application of BK-channel blockers
are very similar to the differences seen between wildtype and knockout IHCs from the mouse
BK line, illustrated in Figure 6.1. These comparison, coupled with the immunocytochemical data
showing an IHC expression of BK channels (Ruttiger et al., 2004) presents compelling evidence
for the importance of this channel in shaping the rapid voltage responses of mammalian IHCs in
both neonatal and adult cochleas.

In the present study, two aspects of AN response were evaluated that ought to be exquisitely
sensitive to the loss of rapid voltage responses in IHCs: 1) maximum synchronization index to
tones at frequencies below 4 kHz (Figure 6.7) and 2) the variance of the first spike latencies
(FSLs) to tone bursts presented at 30 dB above threshold (Figure 6.17).

As discussed in previous chapters, data on synchronization index, or phase locking, are
difficult to obtain in the mouse AN. This is because, as in other mammals, significant phase
locking between AN spikes and the individual cycles of a stimulus sinusoid is only seen for
stimulus frequencies below 4 kHz; however, in contrast to other mammals, 4 kHz is close to the
low-frequency end of the mouse mechanical frequency map, thus few AN fibers respond to
frequencies < 4 kHz (except at very high sound pressures). Nevertheless, the few measures of
synchrony-level functions that were obtained from wildtype and knockout ears are consistent
with the idea that the degree of phase locking is reduced in the absence of the BK channels
(Figure 6.7).

More compelling evidence for disruption of rapid IHC voltage responses in vivo was seen in
the data on variance of first spike latencies in the AN fibers. As shown in Figure 6.17, many AN
fibers in the knockout ears showed increases in FSL variance of two orders of magnitude, and
this increased variance was closely tied to a decrease in the onset rates of AN fibers. Because this
onset rate is measured with time bins of 0.5 msec, it is exquisitely sensitive to the
synchronization, across stimulus presentations, of the first spike after tone burst onset. Clearly,
the loss of the BK channel has decreased the degree of synchronization. It is not hard to imagine
that this loss of synchronization is a direct result of a slower rate of rise of IHC receptor potential
after tone burst onset, as implied by the results obtained in isolated IHC with injection of
"transducer currents" (Figure 6.1C and D). As described in the Introduction, this transducer
current waveform was derived by passing a 2-kHz sinusoid through a saturating non-linearity of
the form described for the transformation between stereocilia bundle displacement and receptor
current.
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It is less clear why there should be heterogeneity in this aspect of AN response, i.e. why
some fibers in knockout ears retained near-normal onset rates coupled with near normal FSL
variances (Figure 6.17). The relatively small number of "normal" AN fibers in knockouts were
not clustered in particular animals or particular CF regions; rather they appeared to be
intermingled at random with the larger population of abnormal fibers. The existence of normal
fibers suggests that other channels in the IHC can be up- or down-regulated to compensate for
the loss of BK. Their apparent randomness suggest that such compensation is a probabilistic
event that occurs only rarely.

Although the decrease in AN onset rates is well explained by a slowing of the IHC receptor
potential at tone burst onset, it is not obvious how a decrease in steady-state rates would arise
from the same mechanism. The further observation, from Figure 6.17B, that knockout fibers with
normal FSL variances still had lower-than normal steady-state rates (despite showing normal
onset rates), also strongly suggests that a second mechanism must be invoked to explain the
observed changes in steady state rate.

There are a number of IHC-based mechanisms that contribute to the generation of a
maximum steady-state rate in the AN, from the saturating non-linearity in mechanoelectric
transduction at the apical end of the cell which produces the IHC DC receptor potential, to the
synaptic machinery at the basal end of the cell that converts that potential to an equilibrium rate
of vesicle release. There are a number of ad hoc hypotheses that could be advanced to explain
the observed decrease in steady-state AN discharge rate, based on a modification of one or more
of these IHC-based processes. For example, the loss of BK channels should lead to a slight
depolarization of the IHC resting potential; and such a sustained depolarization might directly
affect the efficacy of the afferent synapse or, by reducing stereociliary Ca++ entry, shift the
transducer set point rightward along the I,x curve, thus reducing sound-driven DC potentials and
maximum neural rates. However, in search of the mechanisms underlying decreased steady-state
rates in the BK knockout, it is also important to look further "downstream", i.e. to consider the
possibility that BK expression in the spiral ganglion cells themselves also shapes important
aspects of AN response in the adult ear.

6.4.3 BK channels in spiral ganglion cells

BK channels are known to play important roles in shaping action potential waveform
(Edgerton and Reinhart 2003; Faber and Sah 2002; Lovell and McCobb 2001; Smith et al. 2002)
and consequently, in shaping the intrinsic firing properties of neurons (Lovell and McCobb 2001;
Smith et al. 2002). Action potential waveforms recorded from Purkinje cells in cerebellar slices
from BK knockout mice showed a decrease in the after-hyperpolarization, without a significant
change in the spike waveform itself (Sausbier et al. 2004). Purkinje cells from BK knockout
mice also showed an elevated (depolarized) resting potential and greatly reduced action potential
frequency, both in spontaneous activity as well as in activity that can normally be evoked by
depolarizing pulses. In otherwise silent Purkinje cells, spikes could be evoked only by preceding
the depolarizing pulses with a hyperpolarizing current injection. Thus, the authors concluded that
"depolarization block", i.e. inactivation of Na+ channels due to the loss of BK channels and
concommitant loss of the after-hyperpolarization of the action potential, was responsible for the
decreased neural activity observed (Sausbier et al. 2004).

With respect to expression of BK channels in cochlear neurons, in vitro studies of murine
spiral ganglion cells isolated at post-natal days 3-8 (Adamson et al. 2002) show dramatic effects
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of charybdotoxin, a specific BK channel blocker, including increased latencies for the first spike
evoked by depolarizing currents near threshold. In pharmacological studies, in vivo, of cochlear
function in the adult, perfusion of BK blockers charybdotoxin or iberiotoxin can virtually
eliminate the neural compound action potential (CAP) while causing little change in the
DPOAEs or cochlear microphonics. Such a profound effect on sound-evoked neural activity
would not be predicted based on the fractional changes in onset rates associated with loss of BK
function in the adult mouse. This discrepancy suggests that there are additional channels in
either IHCs or AN fibers that are critical for synaptic transmission and are sensitive to these
pharmacological agents.

BK channels have been localized to spiral ganglion cells in the adult guinea pig using in situ
hybridization (Skinner et al. 2003). Thus, it is likely that BK channels continue to play an
important role in adult spiral ganglion cells. Combining these observation with those on the
spike-rate reductions seen in cerebellar neurons in the BK knockout, it is tempting to speculate
that the dramatic decreases in steady-state rates seen in AN fibers are due to phenomena related
to depolarization block in the neurons themselves, rather than to any changes in IHC function
associated with the loss of BK channels. Further support for this hypothesis could be obtained by
inference of the neural refractory period from construction of "hazard functions" (Li and Young
1993). However, large numbers of spike intervals are required for robust statistics and such long
runs are difficult to achieve in recordings from mouse AN.

6.5 Conclusion
BK-channels are known to play a prominent role in hair cell function where their interaction

with voltage-gated calcium channels generates an electrical resonance. In the basilar papilla of
the chick, it is believed that variations in the number and properties of BK channels, which
influences the electrical resonance of each cell, helps establish the tonotopic map in this organ
(Navaratnam et al. 1997; Rosenblatt et al. 1997). In contrast to lower vertebrates, little is known
concerning the role of BK channels in mammalian hearing. Immunohistochemical studies have
located BK channels to several cochlear structures including IHCs, OHCs, spiral ligament and
stria vascularis (Ruttiger et al. 2004; Shen et al. 2004; Skinner et al. 2003). A BK channel
knockout mouse model has been used to elucidate the role of BK channels in mammalian
hearing (Ruttiger et al. 2004). Patch clamp recordings from BK knockout IHCs reveal that these
cells have increased membrane resistance and consequently, have larger voltage responses to
step currents and longer membrane time constants (see Figure 6.1). In this chapter we show that
such changes in IHC responses are reflected in lower AN fiber maximum synchronization
indices (Figure 6.7) and larger variance of the first spike latency that is associated with lower AN
onset rates (Figure 6.17A). The finding that AN fibers also show a striking decrease in steady-
state discharge rates, which cannot be easily inferred from pre-synaptic changes in cochlear
function, suggests that there are also post-synaptic changes in cochlear function that are shaping
aspects of AN fiber response. Given that BK channels have been shown to play a role in action
potential (AP) repolarization and after-hyperpolarization (Edgerton and Reinhart 2003; Storm
1987) and that changes in AP waveform can lead to changes in the intrinsic firing properties of
neurons (Lovell and McCobb 2001; Smith et al. 2002), it is possible that loss of BK channels in
AN fibers may lead to lower discharge rates. In support of this possibility is the finding that
action potential waveforms recorded from Purkinje cells in cerebellar slices in BK knockout
mice showed a decrease in the after-hyperpolarization and greatly reduced action potential
frequency, both in the spontaneous activity as well as in activity that can normally be evoked by
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depolarizing pulses (Sausbier et al. 2004). Finally, results from the present study also show that,
despite loss of the BK channels in the mouse cochlea, a number of basic response properties of
AN fibers were not significantly altered, including 1) the normal stochastic pattern of discharge
in AN fibers (spontaneous or sound-evoked), 2) the distribution of AN spontaneous rates, 3) the
shapes of AN tuning curves, or 4) the dynamic ranges of AN fibers. The normality of tuning
curve shapes in the knockout mouse strongly suggest that, in the mammalian ear, that BK
channels do not play the same key role in establishing frequency selectivity as in non-
mammalian vertebrates (Fettiplace and Fuchs 1999).
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