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ABSTRACT
Breast cancer is the most commonly diagnosed cancer among women in the United States. It
is the most common cause of death in women ages 45-55. Optical techniques can potentially
play a diagnostic role in several aspects of breast cancer evaluation and treatment. This
thesis outlines progress on the use of Raman spectroscopy to diagnose breast cancer.
Laboratory studies on fresh-frozen tissues are used to demonstrate that the detailed
information provided by Raman spectroscopy yields accurate breast disease diagnosis. A
Raman spectroscopic-based diagnostic algorithm was developed which classifies samples
into four categories according to specific pathological diagnoses: normal, fibrocystic change,
fibroadenoma, and infiltrating carcinoma. Cancerous lesions were separated from non-
cancerous tissues with a sensitivity of 94% and a specificity of 95%. Further, use of a
spectral model based on the morphological structures that comprise breast tissue allows
increased understanding of the relationship between a Raman spectrum and tissue disease
state. Based on the excellent results of our laboratory work, two clinical studies were
undertaken. These studies translate Raman spectroscopy from a laboratory technique into a
clinically useful tool. The first study tests the diagnostic algorithm in a prospective manner
on freshly excised tissue. Preliminary results are promising. The second study is the first
demonstration of in vivo data acquisition of Raman spectra of breast tissue. The culmination
of this research is the demonstration of accurate intra-operative margin status assessment
during partial mastectomy surgeries. Application of our previously developed diagnostic
algorithm resulted in perfect sensitivity and specificity in this small in vivo data set. These
preliminary findings indicate that Raman spectroscopy has the potential to lessen the need for
re-excision surgeries resulting from positive margins and thereby reduce the recurrence rate
of breast cancer following partial mastectomy surgeries. The experiments and theory
presented throughout this thesis demonstrate that Raman spectroscopy is a viable clinical tool
that can be used to accurately diagnosis breast cancer and breast disease.

Thesis Supervisor: Michael S. Feld, Ph.D.
Title: Professor of Physics
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Chapter I. Introduction

The work in this thesis develops analytical Raman spectroscopy into a tool for the diagnosis

of breast cancer. Laboratory studies on fresh-frozen tissues are used to demonstrate that the

detailed information provided by Raman spectroscopy yields accurate breast disease

diagnosis. Further, use of a spectral model based on the morphological structures that

comprise breast tissue allows increased understanding of the relationship between a Raman

spectrum and tissue disease state. Based on the excellent results of our laboratory work, two

clinical studies were undertaken. These studies translate Raman spectroscopy from a

laboratory technique into a clinically useful tool. The first study tests the diagnostic

algorithm in a prospective manner on freshly excised tissue. Preliminary results are

promising. In the second study, data was acquired in vivo during partial mastectomy

surgeries. This is the first demonstration of in vivo collection of Raman spectra of breast

tissue. These advances culminated in an approach that was employed intra-operatively

during partial mastectomy surgeries to accurately assess margin status.
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I. A. Objectives

Develop a Spectral Model for Diagnosing Breast Disease

Statistical interpretations of the Raman spectra acquired from biological tissue can diagnose

disease. Indeed, previous investigations using principal component analysis demonstrated

that Raman spectroscopy is capable of accurately diagnosing breast cancer. Although it is

possible to use statistical methods of analysis to provide diagnoses, there is a wealth of

information in Raman spectra that enables enhanced understanding of disease etiology. One

goal of this research is the development of a spectroscopic model based on tissue

morphology. We utilize confocal Raman microscopy to examine the various morphological

structures present in normal and diseased breast tissues. Our model identifies the

morphological components present in breast tissue through their unique Raman spectra and

uses them as basis spectra to describe the morphology of macroscopic data. Such a model

translates spectroscopic analysis into terminology commonly used by pathologists and can be

used to diagnose breast cancer.

Derive of an Analytical Method of Estimating Chemometric Prediction Error

Another aim of the research is the derivation and validation of an analytical formula that

estimates the uncertainty in concentrations predicted by our spectral model. In biological

samples, such as tissue, obtaining reference concentrations to assess measurement error is not

straightforward. The ability to make predictions concerning the concentration error is

valuable to the process of developing and refining analytical measurements.

Develop an Algorithm for Breast Cancer Diagnosis Using our Spectral Model

Development of an algorithm to diagnose breast cancer is a central objective of this thesis.

-15-



We employ our spectral model to diagnose normal, benign and malignant lesions in

specimens of fresh-frozen human breast tissue, based on their morphological compositions.

Assess the Diagnostic Importance of Microcalcifications

In our ex vivo studies, we see relatively little contribution from the two types of calcifications

found in breast tissue and included in our spectral model, calcium hydroxyapatite and

calcium oxalate dihydrate. Due to their diagnostic importance, microcalcifications in fresh

breast tissue are not typically made available for scientific research and thus our studies did

not include lesions containing microcalcifications. For this reason, we investigate the

diagnostic power of Raman microscopy of microcalcifications in thin sections of

deparaffinized fixed breast tissue. Results can be coupled with the diagnostic algorithm

developed using fresh-frozen tissues to create a powerful new tool for the diagnosis of benign

and malignant breast lesions.

Prospective Validation of the Diagnostic Algorithm

The main goal of this study is to validate our diagnostic algorithm developed on fresh-frozen

tissues with a large data set that closely mimics an in vivo environment. In this work, we

utilize freshly excised tissues. Further, we aim to elucidate differences between the Raman

spectra of fresh-frozen and fresh breast tissues. Additional goals include expanding our

diagnostic algorithm to include pathologies not seen in our ex vivo laboratory data and

incorporating microcalcifications into our diagnostic scheme.

Demonstrate In Vivo Application of Raman Spectroscopy to Breast Cancer Diagnosis

-16-



Ultimately, this thesis culminates in the translation of Raman spectroscopy from a laboratory

technique to a clinical tool. To collect the first in vivo Raman spectra of breast tissue, we

employ our Raman optical fiber probe to acquire data from patients undergoing partial

mastectomy procedures. This study serves to demonstrate the feasibility of in vivo Raman

spectroscopy for the diagnosis of breast cancer.

I. B. Accomplishments

The experiments and theory presented throughout this thesis demonstrate that Raman

spectroscopy can be used to accurately diagnosis breast cancer and breast disease.

Furthermore, we have demonstrated extension of the technique to in vivo clinical applications

with excellent results. We have developed a spectral model based on the major morphological

structures in breast tissue, including epithelial cell cytoplasm, the cell nucleus, fat, -carotene,

collagen, calcium hydroxyapatite, calcium oxalate dihydrate, cholesterol-like lipid deposits

and water. A diagnostic algorithm, which utilizes this spectral model, was developed in the

laboratory with samples of fresh-frozen breast tissue. This diagnostic algorithm, which

encompasses all data and classifies samples according to specific pathological diagnoses,

results in high sensitivity and specificity.

Based on the excellent results of these laboratory studies, we sought to employ

Raman spectroscopy clinically. Studies were undertaken to validate our algorithm on a large

data set of freshly excised tissue as well as demonstrate in vivo data acquisition. Preliminary

results in which the diagnostic algorithm is used in a prospective manner to examine fresh

tissue are encouraging, although further data analysis is necessary. This thesis culminates in

a demonstration of in vivo data acquisition during partial mastectomy surgeries. The study
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was the first in vivo acquisition of Raman spectra of breast tissue and thus extends the

technique from a laboratory to a clinical setting. Further, using our diagnostic algorithm

developed on ex vivo tissues, we were able to accurately provide intra-operative margin

assessment. The work demonstrates that Raman spectroscopy can be used for real-time

breast cancer diagnosis in a clinical setting.

I. C. Outline

The goals and accomplishments of this thesis are further elucidated as follows:

Chapter II. Breast Cancer

Raman spectroscopy can potentially play a diagnostic role in several aspects of breast cancer

evaluation and treatment. Research to develop new diagnostic modalities must be grounded

in knowledge of both the disease progression and current medical practices. Only with this

information as a basis can diagnostic schemes be created that provide relevant information

and are easily incorporated into clinical practice. This chapter details fundamentals of breast

cancer. Anatomy and pathology of the breast are discussed, along with a critique of the

current methods used for disease diagnosis.

Chapter III. Raman Spectroscopy

The Raman effect and its application to biomedical spectroscopy are presented along with the

previous work that has been accomplished in this field. Competing research technologies for

breast cancer diagnosis are also discussed. The experimental instrumentation used

throughout this research is presented.
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Chapter IV. Data Processing

This chapter presents approaches that we use to analyze Raman spectra. The motivation for

the development of a Raman spectroscopic morphological model is explained. Techniques

for the development of this model and its application to disease diagnosis are described. In

addition, an analytical formula that estimates the uncertainty in concentrations predicted by

our spectral model is derived and validated. By understanding the sources of prediction

error, efforts can be made to reduce it scientifically. Further analytic methods for calculating

the concentration error allow smart experimental design to detect moieties of interest with the

appropriate accuracy.

Chapter V. Raman Spectroscopic Breast Cancer Diagnosis: Ex Vivo Studies

We employ Raman spectroscopy to diagnose normal, benign and malignant lesions in

specimens of human breast tissue, based on their morphological compositions. The

morphologic makeup of the tissue is determined through the application of our spectral

model. A diagnostic algorithm is presented that was developed in the laboratory with

samples of fresh-frozen human breast tissue. The diagnostic algorithm, which encompasses

all data and classifies samples according to specific pathological diagnoses, is used to

identify those lesions that would need to be excised. This algorithm results in a positive

predictive value of 85% and a negative predictive value of 100%, indicating that no

malignant lesions in our data set are left unexcised. The excellent results of this study thus

supported moving the technique to a clinical setting for further testing of its efficacy in breast

cancer diagnosis. Preliminary results in which the diagnostic algorithm is used in a

prospective manner to examine fresh tissue are also presented.
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Chapter VI. Raman Microscopy of Microcalcifications

In our ex vivo studies, we see relatively little contribution from the two types of calcifications

found in breast tissue and included in our spectral model, calcium hydroxyapatite and

calcium oxalate dehydrate. Microcalcifications are a feature of particular diagnostic

significance on a mammogram. However, due to their diagnostic importance,

microcalcifications in fresh breast tissue are not typically made available for scientific

research and thus our studies did not include lesions containing them. For this reason, we

have investigated the diagnostic power of Raman microscopy of microcalcifications in thin

sections of deparaffinized fixed breast tissue. We were able to distinguish

microcalcifications occurring in benign and malignant ducts with a sensitivity of 88% and a

specificity of 93%. This is a significant improvement over current X-ray mammography

techniques which are unable to reliably differentiate microcalcifications in benign and

malignant lesions.

Chapter VII. Raman Spectroscopic Breast Cancer Diagnosis: In Vivo Studies

The final objective of this thesis, the in vivo application of Raman spectroscopy for

diagnosing breast cancer, is described in this chapter. The culmination of this work is the

demonstration of accurate intra-operative margin status assessment. Application of our

previously developed diagnostic algorithm resulted in perfect sensitivity and specificity in

this small data set. Significantly, we detected a grossly invisible cancer that, upon

pathological review, required the patient to undergo a second surgical procedure. Had

Raman spectroscopy been employed in a real-time fashion during the procedure, the

additional re-excision surgery would have been avoided. These preliminary findings indicate

that Raman spectroscopy has the potential to lessen the need for re-excision surgeries
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resulting from positive margins and thereby reduce the recurrence rate of breast cancer

following partial mastectomy surgeries.

Chapter VIII. Other Applications of Raman and Fluorescence Spectroscopies

Although there are many advantages to Raman spectroscopy, other optical techniques may

also play a role in breast cancer diagnosis. Preliminary investigations have examined the

diagnostic potential of fluorescence and reflectance spectroscopies. Studies have also been

conducted using spectroscopic techniques that have only recently been applied to tissue, such

as surface enhanced Raman spectroscopy and fluorescence lifetime measurements. Finally,

Raman and fluorescence spectroscopies are used in a synergistic manner to elucidate the

mechanism of ceroid formation in situ. Ceroid is an insoluble lipid-protein complex

characteristic of atherosclerotic plaques. The mechanism of ceroid formation has been

extensively studied but despite intensive research, ceroid is only defined empirically through

its fluorescence properties and its behavior during various staining processes. The synergy of

these two types of spectroscopy allows for the identification of ceroid via its fluorescence

signature and the subsequent elucidation of its chemical composition through the acquisition

of a Raman spectrum. A better understanding of the mechanism of ceroid formation may

suggest avenues to induce regression or prevent progression of atherosclerotic plaques with

medical therapy

Chapter IX. Future Directions

Future directions, comprised of both clinical and basic studies, are presented. With the

successful demonstration of in vivo Raman spectroscopy for breast cancer diagnosis, there

are many clinical applications that can be addressed. Clinical studies to further investigate
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the role of Raman spectroscopy for intra-operative margin assessment are discussed. Also,

development of a side-looking optical fiber Raman probe for transdermal needle

measurements is detailed. Basic research will focus on quantitative analysis and spectral

model refinement. Our current spectral model only provides relatively quantitative data and

does not utilize the intensity information contained within the spectra. Studies to incorporate

intensity information into our diagnostic schemes and to extract quantitative morphological

information are presented. These studies simultaneously provide a basis for model

refinement as well as insight into the lower detection limits of the approach. Finally,

approaches to combining Raman spectroscopy with fluorescence and reflectance data are

presented. The combination of these spectroscopic modalities may provide an even more

powerful tool for guiding patient care.
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Chapter II. Breast Cancer

Breast cancer is the most common female cancer in the United States, the second most

common cause of cancer death in women (after lung cancer), and the main cause of death in

women ages 45 to 55 [Jemal et al. 2004]. Optical techniques can potentially play a

diagnostic role in several aspects of breast cancer evaluation and treatment. Numerous

spectroscopic modalities are currently under investigation for this purpose. This thesis

outlines progress on the use of Raman spectroscopy to diagnose breast cancer. Research to

develop new diagnostic modalities must be grounded in knowledge of both the disease

progression and current medical practices. Only with this information as a basis, can

diagnostic schemes be created that provide relevant information and are easily incorporated

into a clinical setting. This chapter details fundamentals of breast cancer. Both breast

anatomy and pathology are described, thereby providing a framework for interpretation of

spectroscopic data. To astutely apply spectroscopy to breast cancer diagnosis, an extensive

understanding of breast pathology and the morphologic changes associated with each disease

is imperative. Also summarized in this chapter are current diagnostic strategies for breast

cancer as well as breast cancer staging, prognosis, and treatment. With knowledge of the

current biopsy and surgical approaches, areas where spectroscopic modalities can play

beneficial roles in breast cancer diagnosis and treatment are evident. As spectroscopic

techniques move into the clinic, a through understanding of surgical procedures also allows

smart study designs that utilize existing procedures. Further, tissue changes induced by

therapy and the effect this will have on spectroscopic data must be considered. Knowledge

of the strengths and limitations of breast cancer diagnosis and treatment is key for developing

new diagnostic modalities.

-23-



II. A. Breast Anatomy

The mature breast serves as:a secretory, milk producing, gland [Cotran et al. 1999]. Breast

tissue extends from below the collarbone to the level of the sixth or seventh rib, and from the

breastbone to the axilla. In the center of the breast are the nipple and areola. Fibrous

connective tissue, called fascia, lies between the breast tissue and the skin, and separates

breast tissue from the chest muscles. Cooper's ligaments, made of elastin, run from the deep

fascia throughout the breast tissue and attach to the dennis providing a supportive network

schematic of the female breast. The

from the breasts. The surface veins of the

for the breast. Figure 11.1 shows a

andaxillary,mammary,

blood; and the internal mammary, axillary,

intercostal arteries supply the breasts with

internal

to the internal mammary, axillary, and

breast encircle the nipple and carry blood

and intercostal veins carry blood away

intercostal veins, and to the lungs. Breast
Figure 11.1. Schematic of the female breast.

@ Bristol-Myers Squibb

cancer cells can travel to the lungs via surface veins and form metastatic tumors. The

intercostal veins join a complex network of vertebral veins in and around the spine, providing

a path for breast cancer cells to spread to bone tissue. Most lYmphatic vessels in the breast

drain into a network of lymph nodes located around the breast's edges, in the underarm, and

near the coJ1arbone. Axillary lymph nodes are often the first site of breast cancer metastasis.

The skin of the upper breast is innervated by nerves that branch from a network of nerves in

-24-



the neck. The long thoracic nerve innervates the muscle that helps move the upper arm.

Surgeons must be careful not to sever or injure this nerve when operating near underarm

lymph nodes. Chest muscles located under the breasts include the major and minor pectorals,

the serratus magnus and the rectus abdominus. Some mastectomy procedures, excision of

the entire breast, involve removing the fascia overlying the chest muscles, while others

involve removing the muscles themselves.

II. A. 1. Normal Breast Tissue

The breast itself is composed of three types of tissue; adipose, fibrous, and glandular. A

microscopic image of a thin section of normal breast tissue stained with hematoxylin and

eosin (H&E) is shown in Figure II.2a. The three tissue types comprising normal breast can

be visualized in this image. In the histopathological diagnosis routine, tissue is fixed,

sectioned, stained, visually examined by a pathologist and evaluated for abnormalities

[Burkitt et al. 1996]. H&E is applied to tissues fixed in formalin or alcohol and is the most

commonly used technique in routine pathology. The basic dye, hematoxylin, stains acidic

structures a purplish blue. Nuclei, ribosomes and the rough endoplasmic reticulum have a

strong affinity for this dye owing to their high DNA and RNA content, respectively. In

contrast, eosin is an acidic dye that stains basic structures red or pink. Most cytoplasmic

proteins are basic and hence the cytoplasm usually stains pink or pinkish red. Fibrous tissue

is also composed of basic proteins and thus stains pink, as can be seen in Figure II.2a. Also

seen in the image, are the purplish appearing ducts and lobules that are lined with glandular

epithelium. Epithelium is membranous tissue composed of one or more layers of cells

separated by very little intercellular substance. It forms the covering of most internal and
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external surfaces of the body and its organs. The epithelium appears purple due to the

abundance of cell nuclei. Adipose tissue can be visualized as clear spaces in Figure II.2a

because fat is washed away during the tissue processing.

The primary composition of normal breast is fatty tissue interspersed with fibrous or

connective tissue. Together, these two types of tissue make up the stroma, or tissue lying

between the glands. The fatty tissue contains cells, called adipocytes, which harbor copious

amounts of cytoplasmic fat. The fibrous tissue is mainly composed of collagen and small

amounts of glycosaminoglycans. The stroma also contains fibroblasts and blood vessels

[Sternberg, 1997]. Fibroblasts are stellate or spindle-shaped cells capable of producing

connective tissue by forming collagen fibers. The glandular tissue is comprised of several

lobes or milk glands connected to a conduit of ducts that carry milk to the nipples. Each lobe

is autonomous and empties into its own excretory duct. The lobes themselves are divided

into smaller units called lobules, which in turn are made up of acini. The lobules are the

functional, milk producing, units of the mammary parenchyma. The lobular units and the

ducts that connect them are separated from the stroma by a basement membrane, primarily

composed of collagen. Figure II.2b depicts the high magnification appearance of a normal

breast acinus. In the image, a low, flattened layer of contractile cells, some slightly

vacuolated, can be identified beneath the more prominent lining epithelium. Indeed, the

larger ducts in the breast consist of a double layer of cuboidal cells, an inner layer of

epithelial cells surrounded by a layer of myoepithelial cells. The myoepithelial cells are

smooth muscle like cells found in between the epithelium and the basement membrane.

They contain myofilaments, are flatter than epithelial cells and are oriented parallel to the
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long axis of the duct, enabling them to control the transport of milk. As the ducts become

smaller, they are reduced to a single layer of epithelial cells.

II. A. 2. Menstrual Cycle, Pregnancy and Menopause

The breast undergoes significant changes in response to hormonal influences, such as during

the menstrual cycle, pregnancy, and menopause [Cotran et aL 1999]. In the first half of the

menstrual cycle, the lobules are relatively quiescent. After ovulation, under the influence of

estrogen and rising progesterone levels, cell proliferation increases as does the number of

acin per lobule. When menstruation occurs, the fall in estrogen:and progsterone levels is

followel:byapoptosis, a form of programmed epithelial cell death. It-is only with the onset
. " .. , -:''. . .... . . . .

of plregnay:t hat the breast assumes its complete morphboloi :maturation and functional

activity. During pregnancy, the female breast underges lobar hyiertrophy, resulting in

dense; clusters of epithelial cells, so that following birthlatation can occur.- As such, there is

a reversal'of the usual stromal-epithelial relationship so- that by the end of the pregnancy the

breast is cmposed almost entirely of lobules. The breast, w h istologically is a modified

sweat giand, secretes milk by budding off portions of cell cytplasm. The epithelial cells

lining the lumen in Figure II.2b demonstrate apocrine secretion: with:snouting, or cytoplasmic

extrusions, into the lumen. About 15 to 20 ducts come togethernear the areola to form

reservoirs of milk to be drawn from the nipple. After cessation of lactation, the lobules

regress and atrophy, and the total breast size diminishes remarkably. Female breast also

undergoes substantial biochemical alterations at menopause. The ducts and lobules atrophy

with concurrent shrinkage of the stroma and a large amount of collagen is replaced by fat.

The lobular acini and stroma may almost disappear in the very aged, leaving only ducts to
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create a morphologic pattern that resembles that of the male breast. Males have a small

amount of breast tissue, but it consists of just a few ducts, without lobules, in a fibrous

stroma.-

II. B. Breast Pathology

II. B. 1. Benign Breast Lesions

Fibrocystic changes account for the majority of "breast lumps" that are found in women of

reproductive years, particularly between age 30 and menopause [Cotran et al., 1999]. Table

II.1 displays the typical distribution of findings in women seeking evaluation of breast lumps,

an important consideration when developing a

No Disease 30% diagnostic modality. Fibrocystic change is a benign

Benign 60% condition which can manifest itself as fibrosis
Fibrocystic Change 40%

Miscellaneous Benign 13% (formation of fibrous tissue), adenosis (increase in
Fibroadenoma 7%
Cancer 10% the number of ductules) or cyst formation (dilation

Table II.1. Distribution of the findings in of ducts and lobules with semi-transparent fluid).
women seeking evaluation of breast lumps.

Each of these changes can occur with or without the

presence of others. Figure II.2c depicts the histologic appearance of fibrocystic changes in

the breast. Cystically dilated ducts lined by a single layer of epithelial cells can be seen.

There are also areas of lobules that are laced with abundant fibrous connective tissue

(sclerosing adenosis), and stromal fibrosis. Additionally, there is a small area of

microcalcification, highlighted with an arrow. Microcalcifications form as a result of either

calcified secretory material or necrotic debris. No atypical changes are seen in Figure II.2c.
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Atypia refers to abnormality of a cell, which may or may not be associated with later

malignancy.

Fibroadenoma, illustrated in Figure II.2d, is the most common benign tumor of the

human female breast. Its growth is induced by estrogen and often stimulated by lactation and

pregnancy. Most cases of fibroadenoma arise in younger women. Because of the lack of

estrogen after menopause, regression occurs which can result in mucoid degeneration,

hyalinization, involution of the epithelial component and calcification. On physical

examination, the mass feels firm because of proliferative fibrous stroma and its glandular

composition. The tumor is relatively mobile because it does not induce peripheral fibroblast

proliferation, and is rarely tender and painful. To the right in Figure II.2d, compressed breast

connective tissue forming a "capsule" to the mass can be seen. The tumor itself is composed

of a fibroblastic stroma that contains elongated compressed ducts lined by benign appearing

epithelium. Lesions diagnosed as fibroadenoma show an accumulation of collagen due to

fibroblast proliferation which results in expansion of the stroma. Thus, although

fibroadenoma is a benign lesion, it often grows rapidly resulting in significant morbidity, and

thus is typically excised [Khan et al. 2001]. Fibroadenoma is most closely related to

phylloides tumors, the malignant counterpart of which is not carcinoma but cystosarcoma

phylloides, in which the stroma rather than the epithelium is malignant.

Intraductal papilloma, a benign epithelial tumor projecting from the ductal surface, is

often associated with a serous or bloody nipple discharge. In Figure II.2e, a small intraductal

papilloma appears in a breast duct. They are typically in one of the main lactiferous ducts

beneath the areola and thus may cause some nipple retraction. Figure II.2e demonstrates a
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fine pink collagenous stroma within the papilloma and epithelial cells that do not show

atypia.

Fat necrosis of the breast is a less prevalent benign pathology descriptive of focal

areas of fat destruction. The most common etiology is trauma but fat necrosis can also occur

with surgery and radiation therapy. It can be a localized, firm area with scarring that may

mimic a breast carcinoma. Microscopically, fat necrosis consists of irregular steatocytes with

no peripheral nuclei and intervening pink amorphous necrotic material. Steatosis refers to

abnormal accumulation of triglycerides within a parenchymal cell, in this case the adipocyte.

Inflammatory cells, including foreign body giant cells, responding to the necrotic fat cells are

also present. A foreign body giant cell is a very large cell, containing several nuclei and

formed by the fusion of multiple macrophages. Macrophages are large, phagocytic cells that

engulf dead and dying cells as well as antigens that enter the body. Figure II.2f shows fat

necrosis at high magnification. Some lipid-laden macrophages can be seen between the

necrotic adipose tissue cells.

Ductal epithelial hyperplasia (DEH), shown in Figure II.2g, is a pathology

characterized by intraductal proliferation of epithelial cells. In DEH, the epithelial cells

encroach into the duct lumen, producing solid masses, whereas in sclerosing adenosis, also

characterized by epithelial cell proliferation, the epithelial cells continue to form well-defined

glandular units despite somewhat distorted cells. Epithelial hyperplasia is defined by an

increase in the layers of cells and may be due to increased proliferation or, more likely,

failure of cells to undergo apoptosis. Here it is florid and occurs in the setting of fibrocystic

change. DEH confers a slightly increased risk, 1.5 to 2 times normal, for breast carcinoma

[Page et al. 1990]. Figure II.2h shows atypical DEH of the breast. Atypical DEH is
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recognized by its histologic resemblance to ductal carcinoma in situ. However, the lesions

are characteristically limited in extent, and the cells are not completely monomorphic in type

or fail to completely fill ductal spaces. Monomorphic refers to cells that have the same

phenotype. This occurs in tumors as the neoplastic cells often arise from a single progenitor

cancerous cell. In breasts with invasive cancer, multiple independent atypical clones may be

present, suggesting that this is a multicentric process and that only a minority of these lesions

progress to malignancy [Cotran et al. 19991. However, a significantly increased risk, 5 times

normal, for breast carcinoma occurs with cytologically atypical epithelial hyperplasia Page

et al. 19901.

Like the female breast, the male breast is subject to hormonal influences which can

cause gynecomastia, a benign condition characterized by enlargement of the male breast. It

is estimated that 15% of men have gynecomnastia ICotran et al. 19991. It can be characterized

by DEH or prominent periductular edema and may be unilateral or bilateral. Gynecomastia

results from an imbalance between estrogens, which stimulate breast tissue, and androgens,

which counteract these effects. It can occur at puberty or with aging. Gynecomastia may

also occur as a result of cirrhosis of liver, Leydig cell tumors of the testis, or drugs.

II. B. 2. Breast Cancer

The incidence of breast carcinoma increases with age, with 85% of cases arising in women

older than 30 years. The largest proportion of cases, 50% of breast carcinomas, occur in the

upper outer quadrant of the breast. Most breast cancer develops in glandular tissue,

epithelium, and is classified as adenocarcinoma. Cancer is characterized by abnormal cell

proliferation as well as abnormal maturation of cells. Genetic mutations often override the
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Figure 11.2. H&E images of a-b) normal and c-h) benign tissues.

normal cell signaling system allowing cellular proliferation and growth to occur in the

absence of any external stimulus. Thus, unlike normal cells, malignant cells do not stop

reproducing after they have doubled 50 or 60 times. They may also become more resistant to
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MaliQnant Breast PatholoQies

apoptosis than normal cells, thereby ultimately forming a monomorphic tumor that is made

up of billions of copies of the original cancerous cell. A schematic illustrating the start of

this process is shown in Figure 11.3. Differentiation, a feature of normal tissue growth, refers
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to the maturation of cells into a form

differentiated, whereas stem cells are

adapted to a specific function. Thus, a

highlyasdescribedISline

fully mature cell of any particular cell

Figure 11.3. Schematic illustrating uncontrolled
relatively undifferentiated. Cancerous neoplastic cell growth and monomorphic expansion.

cells exhibit variable states of differentiation and often fail to achieve a highly differentiated

state. Poorly differentiated cancers typically confer a worse prognosis. In general, the cells

Normal

~

Hyperplasia

(increase in number of cells)

~

Atypical Hyperplasia

(increase in number of cells, cells exhibit abnormalities)

~
Carcinoma in situ

(cancer exists but is confined to the ducts or lobules)

~
Invasive Cancer

(cancer exists and has spread beyond the breast ducts or lobules)

Figure 11.4. Rowchart describing the breast cancer 'continuum'.

of benign lesions are well differentiated. A simple flowchart detailing the breast cancer

"continuum" is shown in Figure 11.4.
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The earliest form of breast cancer, ductal carcinoma in situ (DCIS), develops solely in

the milk ducts. Figure II.2i is a high power microscopic view demonstrating DCIS.

Malignant cells are still within the ductules and have not broken through the basement

membrane and into the stroma. The two large lobules in the center contain

microcalcifications. The classic cribriform pattern of DCIS of the breast, shown in Figure

II.2j, is characterized by holes with sharp margins as though punched out by a cookie cutter.

The neoplastic epithelial cells within the duct show minimal hyperchromatism and

pleomorphism. Hyperchromatism is an increase in the chromatin content in the cell nucleus.

It can be visualized as an increased staining capacity of the cell nuclei for hematoxylin.

Pleomorphism refers to cells of the same species which occur in more than one

morphological form, in other words cells which have a variety of shapes and sizes.

Hyperchromatism, pleomophism, atypical mitoses, DNA aneuploidy and nuclear

enlargement are all hallmarks of cancer. However, they are not observed in this tissue

section because cribriform DCIS is typically a low grade lesion. Tumor grade is an

important indicator of prognosis, with low grade cancers behaving less aggressively than

high grade tumors. Comedocarcinoma, shown in Figure II.2k, is a less common type of

intraductal carcinoma characterized by the presence of rapidly proliferating, high grade

malignant cells. The cells in the center of ducts with comedocarcinoma are often necrotic

and calcify, as can be seen in Figure 1.2k. This central necrosis leads to the gross

characteristic of extrusion of cheesy material from the ducts with pressure, comedone-like.

Comedocarcinoma is much more likely to exhibit hyperchromatism, pleomorphism, atypical

mitoses, DNA aneuploidy and nuclear enlargement than cribriform DCIS due to its high

grade.
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The most common type of breast cancer, invasive ductal carcinoma (IDC), develops

from DCIS, spreads through the duct walls, and invades the breast tissue. Lesions diagnosed

as infiltrating carcinoma exhibit increases in cellularity and often increases in collagen due to

fibroblast proliferation in response to stromal invasion by the malignant epithelial cells. IDC

arises from breast ducts and accounts for 70-80% of cases of breast cancer [Cotran et al.

1999]. The IDC of the breast, shown in Figure II.21, is poorly differentiated with very

pleomorphic cells.

Lobular carcinoma in situ (LCIS) consists of neoplastic proliferation in the terminal

breast ducts and acini. The cells are small and round. LCIS is seen in Figure II.2m. Though

these lesions are low grade, they confer a 30% risk for development of invasive carcinoma in

the same or the opposite breast [Cotran et al. 1999]. Invasive lobular carcinoma (ILC)

accounts for 5-15% of invasive breast cancers. ILC of the breast is shown in Figure II.2n.

There is roughly a 20% chance that the opposite breast will also be involved, and many ILCs

arise multicentrically in the same breast. ILCs often have a diffusely invasive pattern

causing tumors to be difficult to detect by either physical examination or mammography.

There are several less common types of breast cancer. A phyllodes tumor of the

breast, the malignant counterpart to fibroadenoma, is shown in Figure II.2o. They arise from

interlobular stroma, but unlike fibroadenomas are not common and are much larger. They

are low-grade neoplasms which are more cellular than fibroadenomas but rarely metastasize.

From the Greek word phyllodes, meaning leaf-like, these tumors are characterized by

projections of stroma into the ducts which create a leaf-like pattern. Inflammatory

carcinoma, shown in Figure II.2p, tends to spread quickly. It is characterized by breast tissue

that is warm and appears red. The hallmark of inflammatory carcinoma can be seen in the
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skin overlying the breast which

has prominent lymphatic spaces

filled with small metastases from

breast carcinoma. Medullary

carcinoma originates in central

breast tissue. Interestingly, it has

a slightly better prognosis than

do most carcinomas, despite the

almost universal presence of poor

Histologic Type Total Cancers
In Situ Carcinoma 15°/o-30%
Ductal carcinoma in situ 80%
Lobular carcinoma in situ 20%

Invasive Carcinoma 70%85%
Ductal carcinoma 79%
Lobular carcinoma 10%
Tubular/cribriform carcinoma 6%
Mucinous carcinoma 2%
Medullary carcinoma 2%
Papillary carcinoma 1%

Table 1.2. Frequency of histologic types of breast cancer.

prognostic factors. Mucinous carcinoma, also called colloid carcinoma, is a rare type of

invasive cancer that usually occurs in postmenopausal women. It arises from mucin

producing cells and tends to grow slowly. Mucinous carcinoma is characterized by abundant

extracellular mucin surrounding nests of carcinoma cells. Paget's disease of the nipple

originates in the milk ducts and spreads to the skin of the nipples or areola. Table 11.2 shows

AtypicalDuctal
Epithelial tal

~Hyperplasia
Fibrocystic HyperplasiaNormal
Changes Lobular Atypical

Noma Lobular -
Hyperplasia HyperplasiaHyperplasia

Ductal Infiltrating
Carcinoma -~ Ductal

In Situ Carcinoma

Lobular Infiltrating
Carcinoma o- Lobular

In Situ Carcinoma

Normal Fibroadenoma
Normal <

Benign Phyllodies Tumor - Malignant Phyllodies Tumor
("Giant Fibroadenoma") (Cystosarcoma Phylloides)

Figure 11.5. Flowchart depicting the relationship between the breast lesions encountered in our studies.
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the distribution of the histologic types of breast cancer. Tubular carcinoma is a small tumor

that is often undetectable by palpation. It is a well differentiated form of invasive breast

carcinoma and is usually associated with foci of DCIS. Tubular carcinomas are almost

always less than 2 cm in greatest dimension. Sarcomas, cancer of the connective tissue, and

lymphomas, cancer of the lymph tissue, rarely develop in the breasts. Figure II.5 shows a

flowchart depicting the relationship of breast lesions encountered in our studies.

Although the majority of breast cancers are confined to women, carcinoma in the

male breast does arise. It is a rare occurrence, with a frequency ratio to breast cancer in the

female of less than 1:100. The dearth of glandular tissue in the male breast is a significant

reason for the rarity of male breast cancer. However, the scant amount of breast tissue in

men also results in malignant neoplasms that rapidly infiltrate to become attached to the

overlying skin and underlying thoracic wall. Metastasis follows the same pattern as in

women, and axillary lymph node involvement is present in about half of the cases of male

breast cancer at the time of lesion discovery. Although men present at higher stages, when

they are matched by stage, prognosis is similar in men and women [Cotran et al. 1999].

II. C. Breast Cancer Risk Factors

Most women who develop breast cancer have no identifiable risk factors other than their

gender. The growth of breast cancer tumors is often affected by the presence of estrogen and

progesterone. The following risk factors result from exposure to these hormones: age greater

than 50 years, first pregnancy after age 30 years, long-term hormone replacement therapy

(more than 5 years), menstruation before age 12 years, menopause after age 50 years, and

nulliparity (not bearing children). Other risk factors include a family history of the disease,
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which means a mother or sister has been affected with premenopausal breast cancer, a

genetic link, a history of breast biopsy or chest radiation, moderate alcohol use (2 to 5 drinks

daily), obesity, a personal history of disease (women with a history of breast cancer are 3 to 4

times more likely to have a recurrence), race (breast cancer is slightly more common in

Caucasians), and a sedentary lifestyle.

Approximately 5% of breast cancer cases have a genetic link that results from an

inherited mutation in genes identified as BRCA1 (BReast CAncer 1) and BRCA2 (BReast

CAncer 2) [Radford et al. 1996]. BRCA1, on chromosome 17, and BRCA2, on chromosome

13, are autosomal dominant tumor suppressor genes first identified in 1994 [Miki et al. 1994;

Wooster et al. 1995]. Until recently, the function of these genes was not known. However,

studies on a related protein in yeast revealed that the genes code for proteins which

participate in repairing radiation-induced breaks in deoxyribonucleic acid (DNA) [Zhang et

al. 1998]. It is thought that mutations in BRCA1 or BRCA2 disable this mechanism, leading

to more errors in DNA replication and ultimately to cancerous growth. Patients who inherit

an altered BRCAl or BRCA2 gene have an increased risk for developing premenopausal

breast cancer and are more likely to have family members with the condition. Studies have

shown that for women who inherit a BRCA1 or BRCA2 mutation, breast cancer risk could be

as high as 80% to 90% by the age of 70. These mutations are particularly prevalent in the

Ashkenazi Jewish population [Beller et al. 1997]. Both mutations also carry an increased

risk of developing ovarian cancer. Genetic testing can be performed to determine BRCA1

and BRCA2 status and patients carrying the genes may choose preventative measures such as

prophylactic mastectomy or prophylactic medication. Prophylactic mastectomy, which can

reduce the risk of breast cancer by 90%, is the removal of one or both breasts [Hartmann et
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al. 1999]. However, surgeons can never be certain that they have removed all of a patient's

breast tissue and in 10% of cases tissue that eventually develops cancer is left behind. In

1998, tamoxifen became the first drug approved by the U.S. Food and Drug Administration

(FDA) to prevent breast cancer. Research has shown that it reduces the chance of developing

breast cancer by 49% in women at high risk [Fletcher et al. 1998]. While tamoxifen reduces

the chance of breast cancer in women with the BRCA2 mutation, it doesn't appear to work

for women with the BRCA1 mutation [King et al. 2001]. Tamoxifen is discussed in more

detail in section II.F.5.

Genetic screening for breast cancer is complicated by the fact that both BRCA genes

are extremely large and may harbor hundreds of possible mutations. Therefore genetic

testing is often performed with affected and unaffected family members and comparison is

used to pinpoint the exact location of the mutation. For people of Ashkenazi Jewish descent

genetic testing is somewhat simplified. This is because in 90% of cases, an Ashkenazi Jewish

family with a pattern of hereditary breast and ovarian cancer will have one of three specific

mutations [Roa et al. 1996]. This has made it possible to develop a test that looks for the

presence or absence of these three specific mutations, rather than the hundreds that can be

associated with these types of cancer in other populations.

II. D. Breast Cancer Screening

The American Cancer Society recommends these guidelines for women who do not have

symptoms of breast cancer:

Women at age 20 should learn about the benefits and limitations of breast self-
examination (BSE). The American Cancer Society considers performing BSE to be
optional.
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* Women between the ages of 20 and 39 should have a clinical breast examination by a
physician or other health care practitioner every 3 years.

* Women age 40 and older should have a clinical breast examination and mammogram
annually.

* Older women with serious health problems should evaluate the benefit of screening
with their physician.

* Women with a family history of breast cancer should discuss early detection testing,
breast ultrasound, and MRI with their physician.

II. E. Breast Cancer Diagnosis

Cancers of the breast are usually first discovered by a woman or her physician as a solitary,

painless mass in the breast or because of mammographic abnormalities during screening. On

average, palpable invasive carcinomas are 2 to 3 cm in size when they are first found, and

approximately one third have already spread to axillary or other lymph nodes. In contrast,

mammographically detected invasive carcinomas average 1 cm in size and less than one fifth

will have axillary metastases. The older the patient at the time of discovery, the more likely

the lesion is to be cancer. Diagnosis of breast cancer is made through a process called triple

assessment, which includes:

· clinical examination,

· imaging procedures (mammogram, breast ultrasound), and

· biopsy of a mass detected by clinical examination or mammogram.

However, it is important to note that biopsy and pathological review are the final arbiters of

clinical condition.
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II. E. 1. Clinical Examination

During clinical breast examination (CBE), the health care provider examines the breasts

including the nipples and areola for retractions, skin changes, and discharge [Donegan and

Spratt, 1995]. Next, the breasts and underarms are palpated. If a mass is found, texture and

mobility are assessed. On physical examination, benign lesions are typically mobile while

cancers are often firm and immovable due to stromal invasion. If a lesion is identified during

CBE, the health care provider will likely order additional studies. Typically, health

professionals perform a CBE once every three years between the ages of 20 and 40 and once

a year for patients over 40 years of age.

II. E. 2. Imaging Techniques

Mammography and ultrasound are important counterparts to physical examination that allow

many cancers to be discovered at an early stage. Both are imaging techniques, which rely on

density changes in the breast to detect cancers.

II. E. 2. a) Mammography

Mammography is a non-invasive imaging procedure that uses x-rays to create images of

breast tissue [Dahnert 1999; Feig and Piccoli 1997]. During a mammogram, the breast is

compressed between a compression paddle and a film holder or digital detector that is used to

record the attenuation of x-rays as they traverse the tissue. Compression of the breast

reduces tissue thickness, thereby producing improved images. However, the compression

causes moderate discomfort. A mammogram is a screening test, not a diagnostic test. An

abnormal mammographic result cannot alone indicate cancer. In most cases further testing
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shows masses detected via mammography to be benign, and in 10% of cases, radiologists can

interpret normal tissue as abnormal [NCI 2002]. An abnormal screening mammogram

indicates that further testing should be done, such as a diagnostic mammogram, ultrasound,

or biopsy. There are two basic forms of mammography: screening and diagnostic.

A screening mammogram is used to look for cancer in women with no symptoms and

no history of breast surgery. The mammogram is first checked by the technologist and then

read by a diagnostic radiologist. The radiologist looks for unusual shadows, masses,

distortions, special patterns of tissue density, and differences between the two breasts.

Mammograms are used for comparative study, that is, the left breast is compared to the right

breast, and current films are compared to older films. The goal of regular mammographic

screening is to detect small breast cancers because they are easier to treat and present a better

prognosis for the patient. How often women under age 50 should have a screening

mammogram continues to be controversial. However, most prominent health organizations

(e.g., World Health Organization, National Cancer Institute, American Cancer Society) agree

that women between the ages of 40 and 69 can significantly reduce their risk for dying of

breast cancer by having a mammogram every 1 or 2 years. Women who have significant risk

factors for breast cancer should discuss whether to begin screening earlier, and how often,

with their physicians.

In standard mammography studies two images of each breast are obtained for

evaluation: a mediolateral oblique view, side, and a cranial-caudal view, from above.

Different tissues in the breast absorb different amounts of x-rays, producing varying shades

of black, gray, and white on the film. Fatty tissue absorbs a relatively small amount of x-rays

and thus appears black or dark gray. Normal fibrous and glandular tissues contain water that
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causes absorption of a moderate amount of x-rays and thus appear light gray. Dense breast

tissue, with more collagen, can make mammogram evaluation difficult because the tissue can

obscure small cancers. Younger women and those with fibrocystic change typically have a

more dense breast stroma, however there is significant variation. Many mammograms show

nontransparent white specks. These are calcium deposits known as calcifications and they are

a key component that radiologists look for in a mammogram. Although there is no reliable

way to distinguish between calcifications occurring in benign and malignant lesions in a

clinical mammogram, their presence does provide some insight into the underlying tissue

pathology.

calcifications.

Changing of mammographic views may cause disappearance of the

If there is a new mass, has been a change in the size or the shape of the edges of a

mass, or if a suspicious calcification within a mass is seen, the radiologist is likely to order

additional studies. An area in one breast that has a distinctly different appearance than the

same area in the other breast is referred to as asymmetric density. In Figure 11.6 an

asymmetric density can be seen in both the mediolateral oblique and cranial-caudal views.

Figure 11.6. Mammograms exhibiting asymmetric densities.
@ The MIAS Digital Mammography Database.
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This finding necessitates additional studies. A new mass or a mass that has grown since the

last mammogram was taken is usually evaluated with ultrasound to assess cyst formation, as

cancers do not typically grow so rapidly. The shape of a mass detected by mammography is

important for differentiating benign and malignant lesions.

A growth that is benign, such as a cyst or fibroadenoma, generally looks smooth,

round and has a clearly defined edge. Figure 11.7

displays a mammogram of a cystic lesion.

Several masses may be seen in women who

harbor fibrocystic change and microcalcifications

may be present in foci of fibrocystic change

containing cysts. When the calcium sediments at Figure 11.7. Mammogram showing a cyst.
@ Mammography Specialists Medical Group, Inc.

the bottom of a cyst, crescent-shaped calcification

is produced. The calcification evident in Figure II.8a appears to rim the entire cyst. In a

breast lobule, epithelial hyperplasia may also appear as crescent-shaped calcification as it

Figure 11.8. Mammographic manifestations of microcalcifications, highlighted by arrows, occurring in
a) a cystic lesion, b) fibroadenoma, and c) Monkeburg's arteriosclerosis.

(!) The MIAS Digital Mammography Database.
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finger-like

On

outline with

extensions.

often causes dilatation of acini and formation of cysts. The mammogram in Figure 1I.9a

demonstrates a suspicious area with microcalcifications that could be a carcinoma or just an

area of fibrocystic changes. On biopsy, this lesion had areas of fibrocystic change with

epithelial hyperplasia. Sclerosing adenosis, another manifestation of fibrocystic change, is

often difficult to distinguish from cancer. Its gross and mammographic appearance may

mimic carcinoma, and the two can be difficult to distinguish on frozen section. The

mammogram in Figure H.9b demonstrates a suspicious lesion that could be a carcinoma or

just an area of pronounced sclerosis with fibrocystic changes. On biopsy it was found to be

benign. In older woman with fibroadenoma, atrophy may give rise to calcification. As a

result, the "pop-corn" calcification, seen in Figure 1I.8b, is considered a pathognomonic

feature of fibroadenoma. Benign calcifications are usually associated with clusters of

apocrine cysts, sclerosing adenosis, fat necrosis, or hyalinized fibroadenomas. Idiopathic

arterial calcification, Monkeburg' s arteriosclerosis, is common on mammograms and

attributed to the ageing process. On mammography, arterial calcifications are observed as

two parallel continuous or discontinuous calcific lines along the vessel wall, as seen in Figure

H.8c. These calcifications

are unrelated to breast lesion

formation.

In contrast to well

circumscribed lesions, breast

cancer often has an irregular

Figure 11.9. Mammograms demonstrating suspicious lesions.
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mammography, a spiculated carcinoma is seen as a star-shaped mass with irregular borders

due to a desmoplastic process in conjunction with a possibly infiltrating tumor. Postsurgical

scarring (from a previous biopsy), trauma, and infection may also produce a lesion with

spiculated margins. IDC and ILC exhibit irregular borders, as can be seen in Figure 11.10.

However, many breast cancers appear circumscribed and thus may resemble benign lesions.

Medullary carcinoma, papillary carcinoma and some of the ductal carcinomas show this

feature. Higher density, irregular and non-homogeneous opacities, disruption of nonnal

architecture, increased vascularity, and perifocal haziness

are features which assist in distinguishing them from a

benign lesion. Microcalcification due to necrotic debris

can often be seen within or outside a cancerous mass.

This type of calcification is much fmer than that of

fibroadenoma. Calcifications associated with malignancy

are more commonly small, irregular, numerous, and

clustered or linear and branching. About half of the

'cancers found by mammography are detected as clusters

of microcalcifications. Clusters of numerous

Figure 11.10. Mammogram
demonstrating a spiculated mass.

e USF Image Analysis Research Laboratory.

microcalcifications in one area are often a sign of DCIS. In fact, DCIS is most commonly

detected as mammographic calcifications and only rarely as a palpable or radiographic mass.

DCIS is important to detect because it is limited to the breast and most cases can be cured by

local treatment. Any mammographic abnormality suggestive of cancer indicates that further

testing should be done, such as a diagnostic mammogram, ultrasound, or biopsy.
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Diagnostic imaging refers to special mammographic views and ultrasound. It may be

necessary in patients with breast implants, severe fibrocystic disease, or surgery for early

breast cancer that did not remove the entire breast. Diagnostic imaging is required for an

abnormal finding on a screening mammogram and a new finding during CBE. If the findings

obtained from diagnostic imaging indicate that there is a solid lesion, a biopsy is

recommended for final diagnosis. Special mammographic views include magnification and

spot compression. Magnification produces an enlarged image of a portion of the breast that

contains small calcifications or small masses. Spot compression applies pressure to a small

region in the breast. This is used to thin out an area of dense tissue so that a clearer image is

produced. Sometimes, views of the breast from different angles are required to better

visualize a questionable area. Typical additional views include: cleavage view (both breasts

are compressed between a set of panels at the same time providing a top-to-bottom view),

rolled view (the breast is rolled to the right or left, compressed, and a top-to-bottom view is

taken), mediolateral view (from the center of the chest to the outer side of the breast),

lateromedial view (from the outer side of the breast to the center of the chest).

Because small cancers are difficult to distinguish from normal breast tissue on a

mammogram and may not be palpable, some go undetected. Cases that elude diagnosis are

referred to as false-negatives. Other conditions in the breast may look similar to cancer, such

as calcifications or cysts. In this situation, additional studies that focus on the area of the

breast where the suspicious lesion is located will be performed. If additional studies are

inconclusive, a biopsy is recommended. If the biopsy proves to be benign, the finding is

called a false-positive. The high rate of false-positive readings in mammography is why it is

not a diagnostic modality and must be followed by biopsy. Age of the patient as well as
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breast tissue characteristics are factors in the false-positive rate. Most women who have

received false-positive readings are younger women whose breasts tend to be dense, women

with a history of breast biopsies, women with a family history of breast cancer, and women

who are taking hormone replacement therapy. There is also the possibility of misreading of a

mammogram by an unskilled or inexperienced radiologist. Research reports a correlation

between a radiologist inaccurately reading a mammogram and his or her experience and

training [Elmore et al. 2002]. A recent ten year study found that when subjects underwent a

median of four mammograms and five CBEs, approximately 32% experienced at least one

false-positive from either test [Elmore et al. 1998]. Consequently, each year a large number

of unnecessary breast biopsies are performed.

II. E. 2. b) Digital Mammography

Digital mammography promises to be a significant improvement over conventional

mammography in the early detection of breast cancer. In digital mammography, the film

normally used for recording the image is replaced by an electronic x-ray detector [Wu et al.

1992]. Instead of acquiring an image on film, a digital image is generated. This image can be

displayed and adjusted by the radiologist to facilitate detection of small breast cancers. With

digital mammography, the magnification, orientation, brightness, and contrast of the image

may be altered after the exam is completed to help the radiologist more clearly see certain

areas without having to take an additional image. Further, digital mammography allows

correction for under or over exposure after the exam is completed. Advances in image

registration, allow doctors to view the entire breast in one image. Digital mammograms also

offer the potential for more efficient access to past mammograms as they can be
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electronically transmitted to another hospital. This is important as mammograms are most

effective when used for comparative study.

Several studies have demonstrated that digital mammography is at least as accurate as

standard mammography and the FDA has recently approved a digital mammography system

to screen for breast cancer. Small studies have shown that digital mammography may

provide additional benefits, such as lower radiation doses and higher sensitivity to

abnormalities. Also, research efforts are focusing on use of automated programs to search

the digital images for telltale patterns of cancer, enabling radiologists to make diagnoses

based on subtle patterns in tumor architecture. The largest U.S. federally-funded clinical trial

on medical imaging will soon be underway to determine whether digital mammography is

equal or superior to standard film mammography in helping to detect breast cancer.

While digital mammography is quite promising, it still has additional hurdles to

undergo before it replaces conventional mammography. Digital mammography lacks the

spatial resolution of standard mammography. High resolution is especially useful for

imaging microcalcifications and very small abnormalities that may indicate early breast

cancer. While digital mammography lacks the spatial resolution of film, clinical trials have

shown it to be at least equivalent to standard film screening mammography. This is thought

to be because digital mammography has the benefit of providing improved contrast, which

may make abnormalities easier to see. Efforts to develop digital mammography systems with

resolution equivalent to standard film mammography are underway. The high cost of digital

mammography is another obstacle in its implementation. Standard mammography systems

are currently installed in over 10,000 locations across the United States. It may take years for
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this current equipment to be updated or replaced and for digital mammography to become

widespread.

II. E. 2. c) Ultrasound

Ultrasound uses high-frequency sound waves to create an image of the breast. It is

performed with a smaIl, handheld device called a transducer. A gel is spread on the skin of

the breast and the radiologist passes the transducer over the breast, directing sound waves

through the skin and into the body. Thus, ultrasound allows significant freedom in obtaining

images of the breast from almost any orientation. It is typically used to determine if a mass

is a cyst or a solid lesion, possibly a cancer. Figure II.lla shows an ultrasound of a breast

cyst with sharp walls and internal septation while Figure 11.11b displays a large cyst with

layered debris and a solid component. The ultrasound image in Figure 11.11c shows ductal

invasion associated with a malignant breast mass. Ultrasound is also useful when evaluating

dense fibrous breasts where contrast is limited. Though breast ultrasound has excellent

contrast, it lacks the spatial resolution of mammography. As a consequence, it is unable to

reliably image microcalcifications. Therefore, ultrasound is not approved by the FDA as a

screening tool for breast cancer. Rather, ultrasound is used as an adjunct to further

investigate an abnormality detected by mammography or during a eBB [Gordon 2002].

Figure 11.11. tntrasound of a) a breast cyst, b) a large cyst with layered debris, and c) an infiltrating ductal
carcinoma.

<D Siemens Medical Systems.
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II. E. 3. Biopsy

II. E. 3. a) Excisional Biopsy

Biopsy refers to the process of removing tissue from patients for diagnostic examination.

Traditionally, suspicious lesions undergo open excisional biopsy under general anesthesia in

the operating room. This procedure is preformed by a surgeon. Excisional biopsy removes

the entire lesion, which can range from a spheroid several centimeters in diameter to the

entire breast. With the increasing use of mammographic screening, a growing number of

breast biopsies are performed because of an abnormality detected by mammography in the

absence of a palpable mass. Nonpalpable lesions are surgically identified by mammographic

placement of a localizing wire within the lesion [Schnitt and Connolly 1992; Bennginton and

Lagios 1992]. A radiologist perfonns needle localization prior to surgery and the wire is

used as a guide to precisely locate the mammographic abnormality for excision. The most

frequent mammographic abnormalities prompting biopsy are microcalcifications, a soft tissue

density or a combination of the two. Specimen radiography, acquiring an x-ray of the

excised lesion, is used to document the presence of the lesion or

microcalcifications detected by mammography in the excised

tissue. It is also used to localize the suspicious area for histologic

examination. An example of a specimen radiograph is shown in

Figure 11.12. The localizing wire can be seen in the upper right of

the image. Specimen radiographs are compared with the
Figure D.I2. A

specimen radiograph.

preoperative mammograms to be certain that the lesion of concern has been excised.

After radiography of the intact specimen has demonstrated that the lesion of interest

IS present within the specimen, this area must be identified by the pathologist. Some
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specimens will contain a grossly evident tumor, in which case further efforts to demonstrate

the lesion are not necessary. If, however, there is no grossly evident lesion, a number of

methods can be used to identify the location of the lesion within the specimen. One simple

method consists of comparing the gross specimen with the specimen radiograph and placing

a pin or needle into the specimen at the site of the mammographic lesion to permit the

identification of its location by the prosector. Another method consists of performing the

initial specimen radiograph after placing the tissue in a specimen holder that incorporates a

grid that is visible on the radiograph. The holder containing the specimen and the specimen

radiograph are then compared to precisely locate the target lesion using the X and Y

coordinates of the grid. Once the excised lesion is located, the suspicious tissue is placed in a

cassette to be sectioned, stained, and examined microscopically by a pathologist. Pathology

is the gold standard for disease diagnosis and diagnostic algorithm development.

II. E. 3. b) Needle Biopsy

In recent years, less invasive needle based biopsy techniques have been developed and are

being used more frequently. Needle biopsies are performed in a radiologist's office on an

outpatient basis under local anesthesia. Needle procedures are less intrusive and less

disfiguring than excisional biopsy and yield equal diagnostic accuracy [Parker et al. 1994].

In light of the fact that up to 80% of breast biopsies are found to be benign upon tissue

excision, needle biopsy is an attractive alternative to excisional biopsy [Johnson et al. 1999].

If the lump to be biopsied cannot be felt, stereotactic mammography or ultrasound may be

utilized to help the physician guide the biopsy needle. Patient positioning depends on the

imaging method employed. If the procedure uses ultrasound, a doctor will obtain images of
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the breast tissue while the patient lies on her back.

In stereotactic procedures, patients lie facedown on

a special table, shown in Figure 11.13. The woman's

breast protrudes through a hole in the table's

surface, where it is compressed and immobilized

while mammograms are taken from two angles and

a computer maps the precise location of the lesion

me_~

Figure D.13. Instrumentation used in
stereotactic biopsy procedures.

C Ethicon Endo-Surgery, Inc.

to be biopsied. The sensitivity of the needle biopsy procedure is in large part related to the

size of the needle. In one study, for example, the sensitivity for malignancy was 65%, 92%,

and 100% for 18, 16, and 14-gauge needles, respectively [Nath et ale 1995]. Spectroscopic

modalities have the ability to provide minimal invasiveness, similar to fine needle aspiration,

with sensitivity to a larger tissue volume. Several types of needle biopsy will now be

described.

II. E. 3. c) Fine Needle Aspiration

In fine needle aspiration the doctor uses a hollow needle that is attached to a syringe to

extract fluid from a cyst or cells from a solid lesion. The needle used in this Proced~ is very

small, 20-25 gauge (0.89-0.51 mm). The procedure is performed under local anesthesia and

requires a small incision. The procedure takes a few minutes and typically leaves no scarring

and does not require stitches. Fine needle aspiration is the easiest and fastest method of

obtaining a breast biopsy, and is very effective for women who have fluid filled cysts.

However, the pathological evaluation can be incomplete because the tissue sample is

extremely small. As with many procedures, the effectiveness of fine needle aspiration
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depends on the skill of the surgeon or radiologist who performs it. Needle placement can be

guided by stereotactic mammography or ultrasound, but even with this guidance, insufficient

sampling is a problem. A study of fme needle aspiration found that 34% of patients were

insufficiently sampled, requiring further biopsy [Pisano et al. 1998].

II. E. 3. d) Core Needle Biopsy

Core needle biopsy is similar to fine needle aspiration, but the needle is larger, 14-18 gauge

(2.11-1.25 mm), enabling a larger sample to be obtained. It removes a cylinder of tissue

typically 1 mm in diameter and several centimeters long. Although less invasive than

excisional biopsy, core needle biopsy requires the collection of at least five specimens to

ensure proper sampling [Liberman et al. 1994]. The needle, shown in Figure 11.14, is

deployed by a spring-loaded device. Also shown in Figure 11.14 is a schematic of tissue

removal procedure. Repeated needle insertions are necessary to obtain each biopsy sample.

Figure 11.14. Biopsy needle and schematic of the
tissue removal procedure.

Core needle biopsy is also perfonned under

local anesthesia and ultrasound or

stereotactic mammography is used if the

lump cannot be felt. The procedure takes a

few minutes and no stitches are required.

Core needle biopsy may provide a more accurate analysis and diagnosis than fine needle

aspiration because tissue is removed, rather than just cells. However, this procedure is not

accurate in patients with very small or hard lumps. Specimen radiography is also used to

document the presence of the lesion or microcalcifications in tissue excised via core needle

biopsy. In biopsies performed for microcalcifications, the likelihood that the pathologist will
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be able to render a specific diagnosis is significantly greater when calcifications are

identified on the specimen radiograph than when they are not [Mainiero et al. 1996]. In one

study, a specific diagnosis was rendered in 81% of core biopsies in which calcifications were

present on the specimen radiograph compared with only 38% of cases in which calcifications

were not radiographically identified in the core biopsy specimens [Liberman et al. 1994].

II. E. 3. e) Vacuum-Assisted Biopsy

This method utilizes a vacuum-like device to remove breast tissue. Under local anesthesia,

following manual incision of the skin, a canula between 0.5 to 2 cm in diameter containing a

circular blade is advanced to the lesion position as identified by digital spot view

mammography. The needle is inserted only once to obtain multiple samples. As depicted in

Figure II1.15, when suction is applied, the
Position- WaCuiUmv i imb' Re

breast tissue is drawn into the needle and a : 

blade sections the trapped tissue. The Figure II.15. Schematic of vacuum-assisted biopsy.
© Ethicon Endo-Surgery, Inc.

suction also draws out the breast tissue and

the samples are passed through the hollow chamber of the probe and into a collection

chamber. Successive biopsies can be performed over 360 ° around the axis of the needle

without any need to withdraw the needle between biopsies. Typically twelve cores of tissue

are removed and in some cases, the entire lesion may be excised. 11 or 14 gauge needles are

used. At the completion of the procedure, a small metallic clip may be deployed through the

needle to mark the biopsy site in case therapeutic lumpectomy and/or radiation therapy, both

described in section II.F, need to be performed for invasive cancer. Vacuum-assisted biopsy

is safe, reliable, and valuable for patients who wish to avoid excisional biopsy.
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II. E. 3. f) Large Core Biopsy

Presently, large core biopsy, also called advanced breast biopsy instrumentation (ABBI), has

been FDA approved for diagnostic biopsy only. However, in the future ABBI may provide

an alternative for patients who prefer a less invasive procedure than surgery. This technique

can completely excise small lesions from the breast with clear histologic margin. ABBI

assemblies are available which can provide core tissues of 5, 10, 15, or 20 mm in diameter.

In this procedure, the radiologist localizes the lesion with a needle in the center of the device.

A surgeon then removes a core of tissue from the breast using a circular oscillating blade

which is advanced concentrically over the initial localization needle. The procedure is

performed through a skin incision, large enough to accommodate the blade, made under local

anesthesia and sutured closed by the surgeon at the completion of the procedure.

II. E. 3. g) Sentinal Node Biopsy and Axillary Node Dissection

Sentinal node biopsy and axillary node dissection are performed following a positive biopsy

to determine if cancer has spread beyond the breast. The axillary lymph nodes are located

under the arm. The sentinel node is the first axillary lymph node that filters fluid from the

breast. Cancer cells found in the lymph nodes suggest that the cancer has metastasized and

the patient may need more aggressive treatment. Many cancer experts believe that malignant

cells reach the sentinel node first and that this lymph node is more likely to contain cancer

cells. If the sentinel node is free of cancer cells, then it is highly unlikely that the other nodes

are positive. The results of this test are important for the patient and physician to plan the

best course of therapy.
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Sentinal node biopsy, combined with lumpectomy, is easily performed as an

outpatient procedure and causes less pain and deformity than an axillary node dissection.

After the patient is given general anesthesia in the operating room, a radioactive tracer or

blue dye is injected into and around the tumor. The material passes naturally through the

nearby lymphatics to the sentinal node for that area of the breast. With a small, hand-held

Geiger counter or by eye, the surgeon tracks the path the tracer takes as it travels away from

the breast and under the arm to the sentinal lymph node. Once located, the sentinel node is

removed and sent for histopathology and diagnosis. If the results are negative, it is assumed

that the cancer has not spread and there is no need for further surgery. If the sentinel node is

positive, the surgeon may perform an axillary node dissection to assess how many other

lymph nodes are affected. Because sentinel node biopsy removes fewer lymph nodes than

axillary lymph node dissection, many patients have no side effects. Pain, nerve damage, and

lymphedema (swelling of the arm caused by scarring of the lymph vessels) are more common

when additional lymph nodes are removed with the sentinel node.

After the sentinel node has been removed, it is examined by a pathologist. There are

two stains typically employed, H&E and an immunohistochemical stain for cytokeratin. The

standard test has always been the H&E stain, and prognostic estimates have been based on

seeing cancer cells in a lymph node through this method of staining. However, the

cytokeratin IHC stain is more sensitive than the H&E stain, and thus it picks up nodes that

are negative by H&E. Initially, it was thought this would allow more accurate diagnosis.

However, there are often a few cells dislodged during surgery that make it to the lymph

nodes, called micrometastases. Micrometastases do not appear to be the same as cancer cells

that find their own way to the lymph nodes, called macrometastases, and do not appear to
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affect overall survival [Ollila et al. 2001]. There are two clinical trials currently underway to

determine whether cytokeratin IHC staining should become a routine part of the sentinel

node analysis. Researchers experience with IHC staining has taught us that increases in

sensitivity do not necessarily translate into increases in a technique's efficacy. This lesson is

important to keep in mind when developing a new diagnostic modality.

An axillary node dissection removes all of the axillary lymph nodes and may be done

at the same time as a lumpectomy or a mastectomy. The surgeon makes an incision under

the arm and removes a pad of fat in which 10 to 20 lymph nodes are embedded. The incision

is sutured and a drain may be put in to remove excess fluid. The procedure takes between 1

and 2 hours. Complications include, permanent numbness under the arm, lymphedema and

infection of the incision site. An axillary dissection removes many of the lymph nodes that

protect against infection, and the hand and arm on the affected side may become more

susceptible. Blood should not be drawn from this arm, and minor injuries should be reported

to a physician. The hand and arm should be checked regularly for inflammation or cuts.

II. F. Breast Cancer Treatment

II. F. 1. Staging and Prognosis

The prognosis and therapeutic course for patients with breast cancer depends on the stage of

the disease at diagnosis as well as a number of other factors. If a diagnosis of breast cancer is

made, the cancer is staged. The American Joint Committee on Cancer Staging divides the

clinical stages as follows:

Stage 0. DCIS or LCIS, 5-year survival rate 92%.
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Stage I. Invasive carcinoma 2 cm or less in size without nodal involvement and no distant
metastases, 5-year survival rate 87%.

Stage II. Invasive carcinoma 5 cm or less in size with involved but movable axillary nodes
and no distant metastases, or a tumor greater than 5 cm without nodal involvement or distant
metastases, 5-year survival rate 75%.

Stage III. Breast cancers greater than 5 cm in size with nodal involvement; or any breast
cancer with fixed axillary nodes; or any breast cancer with involvement of the ipsilateral
internal mammary lymph nodes; or any breast cancer with skin involvement, pectoral and
chest wall fixation, edema, or clinical inflammatory carcinoma, if distant metastases are
absent, 5-year survival rate 46%.

Stage IV. Any form of breast cancer with distant metastases, 5-year survival rate 13%.

Axillary lymph node status is a key prognostic factor used in stage determination.

Lymphovascular invasion, in which tumor cells are seen within vascular spaces surrounding

the lesion, is strongly associated with the presence of lymph node metastases. The presence

of tumor cells in lymphatics of the dermis is strongly associated with the clinical appearance

of inflammatory cancer and bodes a very poor prognosis, with 3-year survival only 3% to

10%. Also, tumors invading skin or skeletal muscle are frequently associated with

concurrent or subsequent distant disease. Tumor size is another important prognostic factor

also used in staging a lesion, as a larger tumor increases the risk of axillary and systemic

metastasis. However, although rare, very small tumors are capable of distant metastasis.

There are a number of additional factors that influence the prognosis and clinical

course of women with breast cancer [Cotrain et al. 1999]. Histologic subtype plays a role in

prognosis. The 30-year survival of women with special types of invasive carcinomas

(tubular, colloid, medullary, lobular, and papillary) is more than 60%, compared with less

than 20% for women with cancers of no special type (ductal carcinomas).
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Tumor grade as well as receptor status are also important indicators of prognosis. A

low grade cancer is likely to be less aggressive in its behavior than a high grade tumor. The

most commonly used grading system, the modified Bloom and Richardson grading system

shown in Table II.3, combines nuclear grade, tubule formation (percentage of cancer

Grade Descrintion Score 5 vr. survival 7 vr. survival
Grade 1 Well-differentiated breast cells; 3,4,5 95% 90%

cells generally appear normal
and are not growing rapidly;
cancer arranged in small tubules.

Grade 2 Moderately-differentiated breast cells; 6,7 75% 63%
have characteristics between
Grade I and Grade 3 tumors.

Grade 3 Poorly differentiated breast cells; 8,9 50% 45%
Cells do not appear normal and tend to
grow and spread more aggressively.

Table II.3. Bloom-Richardson grade system.

composed of tubular structures), and mitotic rate (rate of cell division). In general, each

element is given a score of 1 to 3 (1 being the best prognosis and 3 the worst) and the score

of all three components are added together to give the "grade" [Bloom and Richardson 1957;

Scarff et al. 1968; Elston and Ellis 1991]. The lowest possible score (1+1+1=3) is given to

well differentiated tumors that all form tubules and have a low mitotic rate. The highest

possible score is 9 (3+3+3=9). However, several large-scale studies suggest that mitotic rate

alone can be as predictive as the grading system [Clayton 1991]. Cancers with high levels of

hormone receptors, such as estrogen and progesterone, have a slightly better prognosis than

those without receptors.

DNA ploidy (amount of DNA) is another important prognostic factor. Cancers with

the same amount of DNA as normal cells are called diploid and those cancers with either

more or less than that amount are called aneuploid. About two-thirds of breast cancers are

aneuploid. Several studies have shown that aneuploid cancers tend to be more aggressive
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than normal cancers. Expression of oncogenes (Her2/neu, c-myc, ras p21) or loss of

expression of tumor-suppressor genes (INT2, p53, NM23), angiogenesis (blood vessel

formation), and proteases (stromal proteases are thought to be involved in tumor invasion by

degrading extracellular matrix) also influence prognosis. All biopsies are tested for Her2

over-expression since results of the test may help determine a course of treatment.

The course of treatment depends on both the stage of the disease and the patient's

preference. Treatment options include, surgery, radiation therapy, chemotherapy, hormone

therapy, and immunotherapy. If no axillary metastases are present, some patients may not

receive systemic therapy, depending on the characteristics of the tumor. Almost all women

with one to three positive axillary nodes receive some form of standard systemic treatment,

either hormonal therapy or chemotherapy. Women with four to nine positive axillary nodes

are eligible for clinical trials using high-dose chemotherapy. If ten or more nodes are

positive, women are eligible for other experimental treatments, such as autologous bone

marrow transplantation.

II. F. 2. Surgery

Surgery combined with radiation and/or chemotherapy is the most common treatment for

breast cancer. The type of surgical procedure recommended to the patient depends on the

stage of the disease. Lumpectomy and mastectomy are both commonly performed surgical

procedures.

A lumpectomy, also known as a partial mastectomy or breast conserving surgery, is

the surgical removal of a tumor. Lymph nodes may also be removed during this procedure,

depicted in Figure II.16a. When excising the tumor, the surgeon strives to encase the lesion

in normal tissue to ensure that all of the cancerous tissue has been removed. In routine
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practice, the evaluation of breast lumpectomy specimens to ensure complete excision is

assisted by the use of various tissue marking inks to delineate surgical margins and preserve

tissue orientation. If cancer cells are found touching or near (2 to 5 mm although definitions

11.16a 1.16b - 11.16 11.16d
lip hwlw~tet.mNaom/E ,,t,EWDOCSBYID)FA1DF

Figure 1.16. Schematic representations of breast cancer surgeries: a) lumpectomy or partial mastectomy, b)
simple mastectomy, c) modified radical mastectomy, and d) radical mastectomy.

© Amoena

vary) the inked regions, it is assumed that malignant cells are likely still present in the

patient. The color of ink harboring the malignant cells identifies their location in the patient.

Many surgeons also remove several small samples of tissue, called margins, from different

areas of the surgical cavity. Following surgery, the margins are examined by a pathologist to

see if any cancer cells are present in the presumed normal tissue. If no cancer cells are found

in the margins they are called "clean margins". If cancer cells are found in the margin tissue

or near the inked region of the excised tumor, the surgeon will recommend additional steps,

which typically include another surgical procedure, called a re-excision, in which remaining

cancerous tissue is removed. The area to be excised is identified by which margin or which

face of the tumor the cancerous cells are found in. In general, lumpectomy procedures take

60 to 90 minutes. After a lumpectomy with clean margins, most women receive six to seven

weeks of radiation therapy, in order to eliminate any cancer cells that may remain after

surgery.

There are three types of mastectomies: simple, modified radical and radical

mastectomies, depicted in Figure II.16b-d. A simple mastectomy includes removal of the
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breast tissue, skin and nipple but rarely lymph nodes. This procedure is often performed for

prophylactic reasons when a strong probability of developing breast cancer exists, for

instance in patients who harbor a BRCA mutation. A modified radical mastectomy is the

most common form of mastectomy performed. This procedure includes removal of the entire

breast, nipple and areola and varying amounts of lymph nodes in the underarm region. The

procedure can also be performed through a much smaller incision near the areola to create a

skin sparing mastectomy. Skin sparing mastectomies work well if immediate reconstruction

is planned. A radical mastectomy includes the removal of the breast tissue, skin, nipple,

areola, underlying chest muscles and varying numbers of lymph nodes in the underarm

region. Prior to 1970 this was a common surgery used for breast cancer but is now reserved

for treatment of advanced disease as studies have shown survival rates are equal with that of

the less invasive modified radical mastectomy [Papatestas and Lesnick 1975]. Radical

mastectomy typically creates more difficulty with range of motion in the arm and shoulder on

the operative side. All mastectomies require general anesthesia and a hospital stay. Drains

are often placed in the breast and underarm area and are removed two weeks after the

surgery. A woman may opt for breast reconstruction or choose to wear a breast prosthesis

following a mastectomy. Patients often receive breast reconstruction immediately following

the mastectomy and as part of the same surgical procedure. Breast reconstruction falls into

two general categories: implant type restorations and those using the patient's own tissues.

For procedures using the patient's own tissues, the most common donor site is the abdomen,

the Transverse Rectus Abdominus skin-Muscle, or TRAM.
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II. F. 3. Radiation Therapy

Radiation therapy uses high-energy x-rays to destroy cancer cells. Treatment is delivered

externally or by radioactive "seeds" that are placed directly into the tumor, called

brachytherapy. Breast cancer is usually treated using highly focused and targeted external

radiation [Fletcher 1972]. Radiation may be used to shrink the tumor before surgery, called

neoadjuvant therapy, or may be used after surgery to destroy cancer cells that remain in the

breast, chest wall, or underarm, called adjuvant therapy [Ragaz et al. 1997; Overgaard et al.

1997; Overgaard et al. 1999]. Radiation therapy is performed in a hospital or outpatient

center. Each treatment lasts a few minutes and treatment is usually given 5 days per week,

for 6 weeks. Side effects include fatigue, reddening of the skin, and swelling.

II. F. 4. Chemotherapy

Chemotherapy is a systemic treatment that travels throughout the body via the bloodstream.

It often relies on a combination of drugs to slow tumor growth and destroy cancer cells.

Drugs may be administered orally or intravenously. Chemotherapy is also used as both

neoadjuvant and adjuvant therapy [Eifel et al. 2001; Goldhirsch et al. 2001]. One of the

main advantages of neoadjuvant chemotherapy is that it allows for assessment of pathologic

response to treatment. There are several pathologic changes associated with response to neo-

adjuvant chemotherapy. Tumor replacement by loose fibrosis is the most common pathologic

event. In most cases, the intensity of fibrotic change is proportional to the degree of clinical-

mammographic reduction of the tumor mass. Studies have also observed a decrease in tumor

cellularity, from 40% in core needle biopsy to 10% in resection specimens [Rajan et al.
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2004]. These changes in tissue morphology must be considered when collecting spectra from

patients who have undergone neo-adjuvant chemotherarpy.

The combination most commonly prescribed to treat breast cancer is doxorubicin and

cyclophosphamide. Paclitaxel (Taxol®) is often prescribed after this combination treatment,

when breast cancer has metastasized to the lymph nodes. It is also often prescribed following

breast cancer surgery. Other chemotherapy drugs include docetaxel and gemcitabine. Side

effects are typically severe and include fatigue, fever, alopecia (hair loss), infection, anemia

(low red blood cell count), neutropenia (low neutrophil count), thrombocytopenia (low

platelet count), and nausea.

II. F. 5. Hormone Therapy

Endocrine manipulations are among the most effective, and least toxic, of the systemic

therapies currently available for the management of hormone-responsive breast cancers.

Estrogen, a hormone produced by women's ovaries, promotes the growth of some breast

cancers, particularly those with detectable amounts of estrogen receptor protein. Estrogen

and progesterone receptors are intracellular steroid-hormone receptor proteins. 50% to 85%

of tumors exhibit estrogen receptors. Such tumors are more commonly found in

postmenopausal women. Hormone therapy involves blocking the effect of estrogen or

lowering estrogen levels. It can be used to treat breast cancer as both a neoadjuvant and

adjuvant therapy and to treat cancer that has spread or come back after it was first treated.

75% of tumors with estrogen receptors regress after hormonal manipulation, whereas only

5% of those that are negative respond [Early Breast Cancer Trialists' Collaborative Group
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2004]. The highest response rates are in patients with tumors exhibiting both estrogen and

progesterone receptors.

Several drugs, classified as anti-estrogen therapy, have been developed to treat breast

cancer that is responsive to estrogen. Selective estrogen-receptor agonists, such as tamoxifen

and raloxifene, inhibit the effects of estrogen on breast cancer cells [Early Breast Cancer

Trialists' Collaborative Group 1998]. Tamoxifen works by competing with estrogen to bind

to estrogen receptors in breast cancer cells. Tamoxifen is formally known as a selective

estrogen receptor modulator (SERM). By blocking estrogen in the breast, it helps slow the

growth and reproduction of breast cancer cells. Tamoxifen is taken in pill form, usually for 5

years after breast cancer surgery to prevent recurrence. After 5 years medication must be

discontinued because patients taking tamoxifen have an increased risk for uterine cancer.

The most common side effect of this medication is hot flashes. Other side effects include

depression, dizziness, alopecia, headache, and swelling. Fulvestrant destroys estrogen

receptors. It is used to treat metastatic breast cancer in postmenopausal women who have

been treated unsuccessfully with tamoxifen. This treatment is administered once a month by

intramuscular injection. Side effects include nausea, hot flashes, and weight gain.

Aromatase inhibitors, such as anastozole, letrozole and exemestane, are also prescribed for

postmenopausal women with advanced breast cancer that has been unsuccessfully treated

with tamoxifen [Goss et al. 2003]. They inhibit the action of the enzyme aromatase,

involved in small amounts of estrogen production in postmenopausal women. Side effects

include cough, depression, diarrhea, dizziness, fatigue, headache, hot flashes, increase

appetite, nausea, and pain. Goserelin is a synthetic form of luteinizing hormone-releasing

hormone that is prescribed to treat metastatic breast cancer in premenopausal women. This
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medication is a pituitary downregulator, signaling the body to stop producing estrogen,

thereby depriving the tumor of the estrogen it needs to grow. This therapy is not appropriate

for postmenopausal women because their ovaries no longer produce estrogen. Several weeks

of treatment are needed before tumor growth slows. Side effects include hot flashes, sexual

dysfunction, increased pain, and rash.

II. F. 6. Immunotherapy

Immunotherapy involves using trastuzumab (Herceptin®) to inhibit tumor growth and

enhance the immune system's ability to fight cancer. The Her2/neu oncogene encodes for a

185 KD transmembrane glycoprotein with intracellular tyrosine kinase activity [King et al.

1985]. The Her2 receptor belongs to the epidermal growth factor receptor family of

receptors, which are critical in the activation of subcellular signal transduction pathways

controlling epithelial cell growth and differentiation [Karunagaran et al. 1996; Klapper et al.

1999]. Amplification of Her2 or overexpression of its protein product is observed in 20% to

40% of human breast cancers [Slamon et al. 1987; Slamon et al. 1989]. All biopsies are

tested for Her2 over-expression since results of the test may help determine a course of

treatment. Her2 receptor protein overexpression correlates with several negative prognostic

variables in breast cancer, including estrogen receptor-negative status and high nuclear grade

[Sjogren et al. 1998]. Breast cancers that overexpress the Her2 receptor protein can be

therapeutically targeted with trastuzumab anti-Her2 monoclonal antibody therapy [Burstein

et al. 2003]. It also may be combined with chemotherapy as a first line treatment for

metastatic breast cancer and may be used after chemotherapy or anti-estrogen therapy to

improve the effectiveness of the treatment. When used alone or in combination, side effects
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include cardiac dysfunction resulting in headache, fever and chills, weakness, nausea and

vomiting, and anemia and neutropenia.

I1. G. Summary

The incidence of breast cancer has been increasing steadily from an incidence of 1:20 in

1960 to 1:8 women today. It is three times more common than all gynecologic malignancies

put together. As such, breast cancer is truly an epidemic among women. Breast cancer is

considered a heterogeneous disease, meaning that it is a different disease in different women,

a different disease in different age groups and has different cell populations within the tumor

itself. Due to its heterogeneity, complexity and numerous manifestations, an understanding

of breast pathology is necessary for intelligent diagnostic algorithm development. Further,

through knowledge of current approaches to breast cancer diagnosis and treatment,

spectroscopic modalities can be developed to aid in numerous aspects of breast cancer

management.
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Chapter III. Raman Spectroscopy

In this thesis we employ Raman spectroscopy to diagnose breast cancer. This chapter

outlines the general theory of Raman spectroscopy as well as its strengths and weaknesses.

Biomedical considerations of Raman spectroscopy are also presented. Previous work

applying Raman spectroscopy to breast cancer diagnosis is summarized and competing

research technologies for breast cancer diagnosis are discussed. Finally, the experimental

instrumentation used throughout this work is presented.
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III. A. General Theory

III. A. 1. Raman Spectroscopy

Raman scattering, discovered by the Indian physicist C.V. Raman in 1928, is a relatively new

effect [Raman and Krishnana 1928]. It arises when a photon incident on a molecule interacts

with the electron cloud of that molecule. In classical terms, the interaction can be viewed as

a perturbation of the molecule's electric field. In quantum mechanics, the Raman effect

describes a scattering interaction between light and matter. When light is scattered from a

molecule the majority of photons are elastically scattered. In elastic scattering, the scattered

photons have the same energy and, therefore, wavelength, as the incident photons. In Raman

spectroscopy, the wavelength and intensity of light inelastically scattered from a sample is

measured. Inelastic scattering refers to the process in which the energies of the incident and

scattered photons are different. In Raman spectroscopy an incident photon, with energy hvL

where h is Planck's constant (J s) and vL is the frequency of the excitation laser (s-l), excites a

molecule into a virtual state that is lower in energy than an electronic transition. A new

photon is created and scattered from this virtual level [Diem 1993; McCreery 2000]. The

scattering event occurs almost instantaneously, typically in 10-14 s. or less. If a molecule

begins in the vibrational ground state, then the final state can be either the vibrational ground

state (elastic scattering), called Rayleigh scattering, or an excited vibrational state, called

Stokes-Raman scattering. In Stokes-Raman scattering photons lose energy by exciting a

vibration within the sample molecule and thus the scattered light appears at a lower

frequency than the incident photon. In this case, the Raman scattered light will have an

energy of h(vL-VR), where VR is the frequency of the Raman scattered light (s'l). The

molecule can also begin in an excited vibrational state and proceed, via the virtual state, to
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the vibrational ground state. This process is called anti-Stokes-Raman scattering and in this

case photons gain energy from the molecular vibrations and the scattered signal appears at a

higher frequency. In anti-Stokes-Raman scattering the Raman scattered light will have an

energy of h(vL+vR). At room temperature the thermal population of vibrational excited states

is low, although not zero. The number of scattering molecules in a given state, N, is

governed by the Boltzmann distribution, ehv/kT, in which hv is the energy of the state, k is the

Boltzmann factor (J K'), and T (K) is the temperature. Therefore, at room temperature anti-

Stokes-Raman scattering is only strong enough to be useful for vibrational frequencies less

than about 1500 cm- , defined in Eq. III.1. The Stokes and anti-Stokes Raman spectra

contain identical frequency information. Thus, the ratio of anti-Stokes to Stokes intensity at

any vibrational frequency can be used as a measure of temperature.

Individual bands in the Raman spectrum are characteristic of specific molecular

motions. By measuring the energy of the emitted photon after the scattering event, and
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knowing the energy of the incident photon, one can assess the structure of the molecule being

probed. Because the Raman effect is weak and comprises a very small fraction, about 1 in

107, of the incident photons, the intense Rayleigh background must be suppressed so that it

does not overwhelm the Raman scattered light. The processes of Rayleigh, Stokes-Raman,

and anti-Stokes Raman scattering are depicted schematically in Figure III.1. Also shown for

comparison are the processes of absorption and fluorescence. The lower energy levels in

Figure III.1 represent the ground electronic state, So, while the upper levels represent the first

excited electronic state, S'. Within the ground and excited electronic states are vibrational

and rotational energy levels. The open arrows represent the incident light, VL, and the solid

arrows the re-emitted light.

Numerically, the energy difference between the initial and final vibrational levels, ,

or Raman shift in wavenumbers (cm71), is calculated through Eq.III.1:

= (VLC1 ) - (VRC) (III.1)

in which c is the speed of light (cm s'). Raman frequency shifts are always the same,

regardless of the frequency of the incident light. The vibrational energy is ultimately

dissipated as heat. Because of the low probability of Raman scattering, the heat dissipation

does not cause a measurable temperature rise in the material, allowing safe biomedical

application. In clinical implementation, the largest source of heating is absorption of the

excitation light by the surrounding tissue. The energy of a particular vibrational mode

depends on molecular structure and environment. Atomic mass, bond order, molecular

substituents, molecular geometry and inter-molecular interactions, such as hydrogen bonding,

all effect the vibrational force constant which, in turn dictates the vibrational energy.
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Vibrational Raman spectroscopy is not limited to intra-molecular vibrations. Crystal

lattice vibrations and other motions of extended solids are also Raman active. Their spectra

are important in such fields as polymers and semiconductors. In the gas phase, rotational

structure is resolvable on vibrational transitions. The resulting vibration/rotation spectra are

widely used to study combustion and gas phase reactions. Vibrational Raman spectroscopy

in this broad sense is an extraordinarily versatile probe into a wide range of phenomena

ranging across disciplines from materials science to medicine.

mi. A. 2. Raman Selection Rules and Intensities

A simple classical electromagnetic field description of Raman spectroscopy can be used to

explain many of the important features of Raman band intensities. The dipole moment, P,

induced in a molecule by an external electric field, E, is proportional to the field as shown in

Eq. 111.2.

P=aE (111.2)

The proportionality constant a is the polarizability of the molecule. The polarizability

measures the ease with which the electron cloud around a molecule can be distorted. The

induced dipole emits or scatters light at the optical frequency of the incident light wave.

Raman scattering occurs because a molecular vibration can change the polarizability of the

molecule. The selection rule for a Raman-active vibration, that there be a change in

polarizability during the vibration, is given in Eq. 111.3, where Q is the normal coordinate of

the vibration.

a/iDQO0 (II1.3)
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The Raman selection rule is analogous to the more familiar selection rule for an infrared-

active vibration, which states that there must be a net change in permanent dipole moment

during the vibration. From group theory it is straightforward to show that if a molecule has a

center of symmetry, vibrations which are Raman-active will be silent in infrared

spectroscopy, and vice versa.

The Raman effect is weak, comprising a very small fraction, about 1 in 107, of the

incident photons. Typical non-resonant Raman cross-sections are on the order of 10-30 cm2

per molecule. The Raman scattering cross-section indicates the strength of the Raman signal

of a particular moiety at unit concentration. The Raman scattered intensity is given by

I=vL4IoNf(o2 ) (111.4)

where lo is the intensity and VL is the frequency of the excitation light, N is the number of

scattering molecules in a given state, and a is the polarizability of the sample. f(a2 )

describes a function in which scattering intensity is proportional to the square of the induced

dipole moment, that is to the square of the polarizability derivative, Eq. III.3. If a vibration

does not greatly change the polarizability, then the polarizability derivative will be close to

zero, and the intensity of the Raman band will be low. The vibrations of a highly polar

moiety, such as the O-H bond, are usually weak because an external electric field cannot

induce a large change in the dipole moment. This is advantageous for biomedical Raman

spectroscopy, as water signals do not overwhelm the spectrum. Typical strong Raman

scatterers are molecules with distributed electron clouds, such as those containing double

bonds. The pi-electron cloud of the double bond is easily distorted in an external electric

field.
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Raman scatter is partially polarized, even for molecules in a gas or liquid, where the

individual molecules are randomly oriented. The effect is most easily seen with an exciting

source that is plane polarized. In isotropic media, polarization arises because the induced

electric dipole has components that vary spatially with respect to the coordinates of the

molecule. Raman scatter from totally symmetric vibrations will be strongly polarized

parallel to the plane of polarization of the incident light. The scattered intensity from non-

totally symmetric vibrations is 3/4 as strong in the plane perpendicular to the plane of

polarization of the incident light as in the plane parallel to it.

III. A. 3. Resonance Enhanced Raman Scattering

Raman spectroscopy is conventionally performed with green, red or near-infrared (NIR)

lasers. These excitation wavelengths are below the first electronic transitions of most

molecules. However, if the wavelength of the exciting laser is within the electronic spectrum

of a molecule, the intensity of some Raman active vibrations increases by a factor of 102-104.

This is known as resonance enhanced Raman scattering.

Vibrations whose Raman bands are resonance enhanced fall into two general classes.

The most common case is Franck-Condon enhancement, in which a component of the normal

coordinate of the vibration is in a direction in which the molecule expands during an

electronic excitation. The more the molecule expands along this axis when it absorbs light,

the larger the enhancement factor. The in-plane ring breathing expansion modes of

porphyrins fall into this class. Vibrations which couple two electronic excited states are also

resonance enhanced. This mechanism is called vibronic enhancement. In both cases

enhancement factors roughly follow the intensities of the absorption spectrum [Myers and

Mathies 1987]. Resonance enhancement does not begin at a sharply defined wavelength. In
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fact, enhancements of 5x to 10x are commonly observed if the exciting laser is even a few

hundred wavenumbers below the electronic transition of a molecule. -carotene exhibits this

type of pre-resonance enhancement in our experimental data. Resonance enhancement can

also be implemented in the deep UV.

The resonance Raman effect can be quite useful. Because the spectrum of a

particular molecule is resonance enhanced and that of the surrounding sample is not,

selective monitoring of that moiety, without spectral interference from other components, is

easily attainable. This allows biological molecules to be examined in their natural

environments. Metalloporphyrins, carotenoids and several other classes of biologically

important molecules have strongly allowed electronic transitions in the visible. These

molecules often make up the active site of enzymes. Resonance Raman spectroscopy has

been successfully employed in vivo to quantitatively measure macular carotenoids. Levels

were compared in patients with age-related macular degeneration and normal subjects to

assess the role of dietary carotenoids in protecting against age-related visual loss [Bernstein

et al. 2002].

III. A. 4. Surface Enhanced Raman Spectroscopy

The Raman scattering from a compound adsorbed on or within a few Angstroms of a

structured metal surface can be 103 to 1010 times greater than in solution. This technique,

called surface enhanced Raman scattering (SERS), arises from two mechanisms. The first is

an enhanced electromagnetic field produced at the surface of the metal [Otto 1984; Campion

and Kambhampati 1998; Kneipp et. al 1999]. When the wavelength of the incident light is

close to the plasma wavelength of the metal, conduction electrons in the metal surface are
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excited into an extended surface electronic excited state called a surface plasmon resonance.

Thus, molecules adsorbed or in close proximity to the surface experience an exceptionally

large electromagnetic field. Vibrational modes normal to the surface are most strongly

enhanced. In addition to this "electromagnetic field enhancement," the electronic interaction

between the molecule and the metal can result in an increase of the Raman scattering cross-

section itself, called "chemical or electronic enhancement." Several mechanisms are

discussed to account for this chemical SERS enhancement, such as a resonance Raman

effect, which becomes operative due to possibly shifted and broadened electronic levels in

the adsorbed molecule compared to the free molecule or due to a new electronic transition in

the metal-molecule system [Otto 1984; Campion and Kambhampati 1998]. In many

experiments, the "chemical effect" provides a very small contribution and the total SERS

enhancement is determined by electromagnetic field enhancement [Kniepp et al. 1997].

SERS is strongest on silver, but is observable on gold and copper as well. The

intensity of the surface plasmon resonance is dependent on many factors including the

wavelength of the incident light and the morphology of the metal surface. The wavelength

should match the plasma wavelength of the metal. This is about 382 nm for a 5 gm silver

particle [Kerker et al. 1982], but can be as high as 600 nm for larger ellipsoidal silver

particles. The plasma wavelength is to the red of 650 nm for copper and gold [Morris 1992],

the other two metals which exhibit SERS at wavelengths in the 350-1000 nm region. The

best morphology for surface plasmon resonance excitation is a small (<100 nm) particle or an

atomically rough surface. Molecules with lone pair electrons or pi-electron clouds show the

strongest SERS.

SERS was first used to study monolayers of materials adsorbed on metals, including
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electrodes, however, many other formats can be used. The most popular include colloids,

metal films on dielectric substrates and, recently, arrays of metal particles bound to metal or

dielectric colloids through short linkages. The effect was first discovered with pyridine

[Jeanmaire and Van Duyne 1977]. Other aromatic nitrogen or oxygen containing

compounds, such as aromatic amines or phenols, are strongly SERS active. The effect can

also been seen with other electron-rich functionalities such as carboxylic acids. Recently,

SERS has been applied to the detection of glucose [Shafer-Peltier et al. 2003]. Although

SERS allows easy observation of Raman spectra from solution concentrations in the

micromolar range, slow adsorption kinetics and competitive adsorption have limited its

application in analytical chemistry.

III. B. Biomedical Considerations

Raman shifts are independent of excitation wavelength. This gives an important degree of

flexibility in generating a Raman spectrum; ultraviolet (UV), visible or infrared excitation

light can all be used, and in each case the Raman fingerprints will be the same. Thus, in

contrast to many spectroscopic techniques, the excitation frequency can be chosen such that

it is tailored to the specific application. For biological samples, NIR radiation is typically

employed, 770 nm to 1500 nm. The use of NIR excitation light confers three advantages to

biomedical Raman spectroscopy: a reduction of background fluorescence, deeper sampling

depths (>1 mm), and less laser-induced photothermal degradation. Reduced fluorescence

occurs because the lowest lying excited electronic state of biological molecules, responsible

for fluorescence, correspond to visible wavelengths and therefore cannot be excited by lower

energy NIR light. Background fluorescence is a competing process that can often obscure
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the Raman bands. It adds shot noise to the data, thereby degrading the signal-to-noise ratio

(SNR). Because Raman scattering is a weak process and clinical implementation

necessitates rapid data acquisition, attention must be paid to maintaining adequate SNR.

Further, the background must be removed prior to data analysis, which inherently results in

distortion of the Raman spectrum. We have found that excitation with 785 nm, employed by

several laboratories for biological Raman spectroscopic studies, results in at least a four-fold

increase in tissue fluorescence when compared with 830 nm excitation. Although excitation

wavelengths longer than 830 nm further reduce tissue fluorescence, the Raman scattering

cross-sections are simultaneously reduced because they depend on the excitation frequency

to the fourth power. Also, longer excitation wavelengths prohibit the use of CCD detectors.

Large penetration depths, the second advantage of using NIR excitation light, are obtained by
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working in a spectral region with minimal absorption. Figure III.2 shows spectra of the

predominant tissue absorbers. A group of minima can be seen in the NIR region below 1000

nm. The large penetration depth conferred by working in this wavelength region, often

referred to as the diagnostic window, provides the opportunity to observe subsurface

structures, regions which cannot be examined using conventional white light techniques.

Also, thermal and photochemical damage are minimized by the use of low energy NIR light.

NIR wavelengths are not mutagenic and absorption is relatively low so tissue heating is

minimized. Finally, when employing 830 nm frequency excitation, the resultant fingerprint

region of Raman shifts falls in a wavelength range that is efficiently transmitted by fused

silica optical fibers. Such fibers can be readily incorporated into optical fiber probes thereby

allowing remote sensing for in vivo clinical applications.

Because each molecule possesses a unique pattern of Raman shifts, the chemical

composition of the tissue can be determined via Raman spectroscopy. Raman spectra

provide direct chemical information and are capable of characterizing a sample both

qualitatively and quantitatively without the use of fluorescent tags or stains. Unlike

fluorescence, reflectance, and NIR absorption spectroscopies, Raman spectroscopy provides

narrow spectral bands, with high information content, that can be assigned to specific

molecular vibrations. To illustrate this, Figure 111.3 displays a fluorescence spectrum of

NADH and a Raman spectrum taken from cholesterol. Raman spectral band widths for

biological molecules are on the order of 10 cm -1 . Whereas there are relatively few

endogenous biological fluorophores, many of whose spectra significantly overlap, there exist

a multitude of Raman active chemicals in tissue that have unique spectra and which can be

specifically related to healthy and diseased conditions. Table III.1 displays the Raman band
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assignments for a number of biological moieties [Sadtler 1974; Manoharan et al. 1992;

Baraga et al. 1992; Diem 1993; Manoharan et al. 1993; Manoharan et al. 1996]. Given the

heterogeneity and complexity of breast disease, presented in Chapter II, the ability to

measure several different chemicals is of particular importance in studying breast cancer.

Although Raman spectra provide high information content, the signals are orders of

magnitude weaker than fluorescence. However, with careful system design collection of

clinical data in relevant times with safe levels of laser power can be accomplished. For these

reasons, we have investigated the use of Raman spectroscopy as a clinical tool for the

examination of a variety of breast pathologies.
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Raman Molecule/Molecular Class Group/Vibration
Shift (cm '1)

702 Cholesterol/Cholesterol esters Sterol ring breathing
719 Phospholipids Symmetric choline stretch
762 Phospholipids Symmetric O-P-O stretch

801-805 CholesteroVCholesterol esters Sterol ring breathing
841-850 Cholesterol/Cholesterol esters Sterol ring breathing

853 Proteins C-C tyrosine ring breathing
855 (Hydroxy)Proline (collagen) C-C stretch
878 Cholesterol/Cholesterol esters Sterol ring breathing
878 Phospholipids Asymmetric O-P-O stretch

871-882 Cholesterol/Cholesterol esters Sterol ring breathing
923 Cholesterol/Cholesterol esters Sterol ring breathing
933 Proline (collagen) C-C stretch
940 Proteins C-C or C-H stretch
957 Cholesterol/Cholesterol esters Sterol ring breathing

959-962 Calcium hydroxyapatite Symmetric P043'
1004 Phenylalanine Phenyl ring breathing
1034 Proteins C-C or C-H stretch
1071 Calcium carbonate Symmetric C0 3'-, asymmetric P043-
1085 Cholesterol C-C stretch
1104 Desmosine/Isodesmosine (elastin) Ring breathing
1160 _-carotenoids C=C stretch
1176 Cholesterol C-C stretch
1245 Proteins Amide III, random coil
1264 Proteins Amide III (C-N stretch), a-helix
1268 Proteins Amide III, a-helix
1270 Cholesterol/Cholesterol esters -CH2, -CH3 bending
1274 Cholesterol -CH2, -CH3 bending
1299 Cholesterol/Cholesterol esters -CH2, -CH3 bending/twist
1301 Triglycerides -CH2, -CH3 bending/twist
1328 Cholesterol -CH2, -CH3 bending
1336 Proteins Amide III and -CH2, -CH3 wag
1336 Desmosine/Isodesmosine (elastin) -CH bending
1439 Cholesterol/Cholesterol esters -CH2, -CH3 bending
1440 Triglycerides -CH2, -CH3 bending
1443 Lipids -CH2, -CH3 bending
1449 Proteins -CH2, -CH3 bending

1451-1455 Proteins CH2 deformation, C-H bend
1523 -carotenoids C-C stretch
1660 Proteins Amide I
1654 Triglycerides, Proteins C=C stretch, Amide I, a-helix
1664 Proteins Amide I (C=0, C-N), a-helix
1668 Lipids C=C stretch
1671 Cholesterol/Cholesterol esters C=C stretch
1735 Cholesterol esters C=O stretch (ester)
1747 Triglycerides C=O stretch (ester)

Table III.1. Raman band assignments for morphological structures.
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111. C. Raman Spectroscopy for Breast Cancer Diagnosis: Previous Studies

III. C. 1. Raman Spectroscopy of Breast: Other Laboratories

The first Raman spectroscopy measurements of human breast tissue used 1064 nm excitation

and a Fourier transform Raman system [Alfano et al. 1991]. Collection times were 4 to 5

min. and employed a power density of less than 10 watt/cm2 . The area probed was 6x6 mm.

No depth information was provided. Histology of the tissue samples was performed before

the measurements and spectra were acquired from formalin-fixed tissue. Fourteen breast

tissue specimens were examined, 3 normal specimens, 4 benign tumors, and 7 malignant

tumors. No more detailed pathology information was provided. Four to 15 spectra were

collected per sample. Surprisingly, no significant changes in the Raman spectra were

observed between different locations on a single sample. This may be a function of relatively

noisy data provided by this now outdated experimental system. All specimens were found to

have peaks at 1445 cm 1l and 1651 cm 1l, while normal tissue also had peaks at 1078 cm l1 and

1330 cm 'l and benign at 1240 cm l. The 1445 cm 1 peak results from the -CH2 and -CH 3

bending modes and is indicative of lipids. The 1651 cm 1 peak was assigned to the C=O

stretching Amide I vibration, indicative of proteins. The 1240 cm1 band results from the

Amide mI vibration and the 1300 cm'I and

1078 cm l1 bands were assigned to C-C and Pathology I1651 cm')I(1445 cm)

C-N stretching vibration modes. The Normal 0.80±0.09

relative intensities of the 1445 cm'1 and
Benign 1.08+0.03

1651 cm l1 bands were reported to correlate
Malignant 1.15±0.05

with disease classification although no
Table III.2. Summary of the results of Alfano and co-

diagnostic algorithm was presented. Table workers from their initial investigation of breast tissue
using Raman spectroscopy.
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III.2 summarizes these initial results.

In 1993, Redd et al. examined the application of Raman spectroscopy to 35 samples

of breast tissue using visible excitation [Redd et al. 1993]. They employed <50 mW or 0.4 to

1.0 watt/cm2 incident power and integration time was varied to optimize SNR, 2.5 to 50 s.

Differences between normal, benign and malignant samples were examined, as well as the

effects of excitation wavelength and formalin fixation on the Raman spectrum. Several

Raman bands, which were not observed in the Alfano study, were reported. Further, unlike

Alfano, Redd and coworkers observed variability of the Raman spectrum between different

locations on a single sample. This is not surprising considering the anatomic heterogeneity

of breast tissue. The additional peaks as well as the increased spectral variability observed in

this study may be attributable to a higher SNR, evident through comparison of the spectra

presented in each manuscript. Interestingly, Redd and coworkers debate several of the band

assignments made in the study of Alfano et al. Among other discrepancies, they attribute the

1651 cm- l peak to lipids, C=C stretching from the hydrocarbon region, rather than to

proteins. Due to the biochemical complexity of tissue, several chemicals often contribute

intensity to a particular Raman band. Clearly, spectral analysis based on peak heights is not

sufficient to elucidate the moieties responsible for the Raman signal.

The Raman spectra in Redd's study predominately contained features attributed to

various amounts of carotenoids and lipids. A small contribution from a heme-type signal, at

1358 cm', was detected in some samples of benign breast tissue, while a much stronger

heme-type signal was detected in most of the breast cancers. Thus far, we have not observed

contribution from heme containing species in our studies. The reason for this has not been

investigated, but is likely explained by resonant enhancement of the heme signal at visible
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excitation frequencies. Raman spectra of diseased breast tissue, both benign (fibrocystic

change) and malignant (mammary carcinoma), also showed markedly diminished to absent

contributions from lipids and reduced contributions from carotenoids. The concentration of

carotenoids often mirrors that of lipids as they are typically extremely lipophilic moieties.

This study also examined the effects of excitation wavelength on the Raman spectrum of

normal breast tissue, varied from 406.7 to 647.8 nm. The contribution of lipids was best

observed with 406.7 nm excitation while the contributions of carotenoids were found to be

enhanced at longer excitation wavelengths. In accordance with theory, they observed a

reduction in the fluorescence background with increasing excitation wavelength. Last, in an

effort to document possible changes in breast tissue following formalin fixation, a specimen

of normal breast tissue was studied in the fresh state, and then again after 24 hours of

formalin fixation. No new spectral lines were noted and the formalin fixation showed no

evidence of significant Raman features. However, the primary effect of fixation is cross-

linking the collagen proteins, a component not present in significant quantities in normal

breast tissue. Thus it is difficult to draw conclusions about the effect of formalin fixation

from this study. All other tissues examined in this study were formalin-fixed.

Frank and coworkers also examined the optimal excitation wavelength, ranging from

406 nm to 830 nm, to employ for Raman spectroscopy of breast tissue. Their objective was

to produce a detailed characterization of the Raman spectrum of normal human breast tissue

samples with visible and NIR excitation. Consistent with the studies of Redd et al., spectra

of formalin-fixed breast tissue revealed features of lipids and carotenoids. However, in

contrast to the results of Redd and coworkers, the best defined lipid features were observed

for 782 nm and 830 nm excitation, while carotenoid features were strongest in the 488 nm to
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515 nm range due to resonant enhancement. As expected, the fluorescence background was

reduced when working at longer wavelengths, and thus 691 nm to 832 nm excitation was

suggested for future breast studies. Lastly, a compact, portable, diode laser based system

with fiber optic sampling was used to demonstrate the clinical potential of Raman

spectroscopy. Using 7 mW of 782 nm light and a 60 s. integration time, they were able to

collect a Raman spectrum of normal tissue. However, normal breast tissue is mainly

composed of fat, which has a relatively strong Raman scattering cross-section. Again,

normal breast tissue is naively used as a representative sample for all types of breast

pathologies. The silica fiber background was clearly visible in the probe acquired spectra.

Frank et al. followed their preliminary investigations with a diagnostic study. In this

work, Raman spectra of histologically normal human breast biopsy samples were compared

to those exhibiting IDC and fibrocystic change. The study employed 784 nm excitation, 10-

200 mW laser power, 300 to 600 sec. integration times and formalin-fixed tissue. A total of

123 spectra from 12 patients were examined. The Raman spectra changed dramatically in

diseased specimens, with much weaker lipid bands being evident. This is consistent with our

studies and the findings of Redd and coworkers. A shift of the prominent 1439 c' feature

in normal tissue to 1450 cm' in IDC was noted and attributed to different CH2 deformation

frequencies in fatty acids and proteins. The spectrum of IDC samples was similar to that of

human collagen. Differences between fibrocystic and malignant lesions were smaller than

those between normal and IDC specimens, but were still reproducible. The fibrocystic

spectra had smaller amide I, 1656 cm'1, and amide III, 1259 cm7 , intensities relative to the

1449 cml CH 2 deformation band and the CH 2 deformation was shifted to a lower frequency

(1446 cmq1 vs. 1449 cm-'). In addition, structure in the 850 cm ' to 950 cm' region differed,
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with only two resolvable peaks in the fibrocystic specimens and four in the case of IDC.

However, the authors report that too few samples were evaluated to determine the statistical

significance of their findings. Again, fiber optic sampling through a hypodermic needle and

with a remote probe was demonstrated.

Treado and coworkers employed Raman imaging of breast tissue. Initially, they used

the technique to identify foreign polymer inclusions anchored in fibrous breast tissue

surrounding silicone implants [Schaeberle et al. 1996]. Their imaging system employed an

acousto-optical tunable filter for wavelength selection. In this implementation, the Raman

spectra obtained from breast tissue itself were extremely noisy. However, Dacron polyester,

the foreign polymer inclusion, has a strong Raman signal and thus it was possible to image

the polymer material within the breast tissue matrix. Using an improved device, outfitted

with a liquid crystal tunable filter, they were able to image characteristic bands of lipid and

protein in chicken breast, a poor model for human breast tissue [Kline and Treado 1997].

Although previous studies indicate the promise of Raman spectroscopy for breast

cancer diagnosis, they are exploratory in nature, and none contain a diagnostic algorithm.

These studies have consistently shown differentiation of normal and malignant breast

specimens, however, none have demonstrated statistically meaningful differences between

malignant and benign samples. Given the intended application, in which there is an a priori

expectation of non-normal tissue, accurate differentiation of benign and malignant lesions is

a crucial and significant step in the field. Both Alfano and Frank were able to distinguish

malignant and normal tissue based on the 1654 cm7' and 1439 cm71 bands. This difference

was attributed to increased protein concentrations in malignant samples and is consistent with

the results presented in this thesis. Further, previous studies relied on simple peak height
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ratios for analysis. The wealth of information available from Raman spectroscopy coupled

with the biochemical complexity of tissue necessitates a method of analysis that utilizes the

entire spectrum. Lastly, all of the previous work used formalin-fixed breast tissue. The

fixation process chemically alters the tissue and thus the Raman spectrum. The primary effect

of fixation is cross-linking the collagen proteins, a component which our studies show to be a

key diagnostic feature. To address these concerns and to fully assess the ability of Raman

spectroscopy to improve breast cancer diagnosis, especially the ability to distinguish benign

lesions from malignant lesions, we have undertaken further studies.

III. C. 2. Raman Spectroscopy of Breast: Our Laboratory

Our initial data set included 61 spectra obtained from 13 patients: 15 normal, 15 benign, and

31 malignant [Manoharan 1998]. Specifically, 11 normal, 4 normal glandular, 11 fibrocystic

change, 4 adenosis, 2 carcinoma in situ and 29 IDC. Fat and glandular samples were

grouped to form the normal category, fibrocystic change and adenosis into benign and

carcinoma in situ and infiltrating ductal carcinoma comprised malignant. Spectra were

acquired from fresh-frozen, but unfixed, samples of human breast tissue with 80 mW of 830

nm excitation and 100 sec. integration time. Absolute intensities were preserved by using

ethanol as an intensity standard and keeping the light delivery/collection geometry fixed for

all measurements. A third-order polynomial was fit to the spectra by least-square

minimization to remove the fluorescence background. To assess the degree of agreement

between our data and previous studies, we plotted the shift of the 1442 cmn' peak against the

ratio of the 1445 cm' and 1650 cn 1 bands, shown in Figure III.4. Trends in our data were

consistent with previous results. Specifically, I(1650/I(1445) generally increased from normal to
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benign to malignant samples. Further, the CH 2 deformation band appeared at lower

frequencies for normal and benign specimens. This algorithm, based on previous studies,

used features of the Raman spectra that are sensitive to differenced in lipid and protein
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Figure III.4. Elementary breast cancer diagnostic plot.

modes. Because lipids dominate in normal tissue and proteins dominate in abnormal tissues,

this simple empirical diagnostic algorithm can differentiate normal and malignant samples.

However, it is clear that a more sophisticated approach in necessary to identify benign

lesions. As discussed above, accurate differentiation of benign and malignant lesions is

crucial for reducing the percentages of false positives and false negatives through Raman

assisted diagnosis.

In order to capitalize on the wealth of information available from Raman

spectroscopy, we employed principal component analysis (PCA). PCA is a multivariate

statistical method of analysis, discussed in detail in Chapter IV. It does not assume any
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knowledge about the chemical composition of the tissue. Rather, it resolves the spectra of

the entire data set into a small number of principal components (PC) that accurately

characterize the entire range of spectral variations. All 61 spectra in this study could be

accurately modeled, above the noise level, using 12 principal components. The scores were

then used to develop a diagnostic algorithm to classify the tissue into normal, benign and

malignant categories. Logistic regression was used to correlate the fit coefficients with the

pathological categories. This study did not employ cross-validation.
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Figure 111.5. Comparison of pathology and the PCA based Raman diagnosis.

Four PCs were found to be statistically significant classification indicators at the

P=0.05 level. They account for 98.70% of the variance in the data. PC 1, accounting for

96.770/0 of the data variance, closely resembles the Raman spectrum of fat while PC 4, 0.600/0

of the variance, exhibits features indicative of carotenoids. PC 2, which accounts for 1.24%

of the data variance, is somewhat reminiscent of cholesterol and PC 6, 0.09% of the variance,

has features of both collagen and epithelial cell cytoplasm. The 4 PCs were used to estimate

the probability for each sample that it belongs to one of the above three diagnostic categories.
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Figure 111.5 shows the resulting predicted classifications, determined using the algorithm,

versus the pathologic diagnosis. This decision algorithm enabled us to diagnose correctly 14

out of 15 normal samples, 13 out of 15 benign samples and 31 out of 31 malignant samples.

This initial success indicated there are consistent spectral differences among normal, benign

and malignant breast tissue samples and opened the possibility that NIR Raman spectroscopy

can be used for clinical diagnosis. Although PCA does not provide information about the

chemical basis responsible for diagnosis, this initial success demonstrated that there are

consistent spectral differences among normal, benign and malignant breast tissue samples

and motivated the development of our Raman spectral model of breast tissue, discussed in

Chapter IV.

III. D. Research Technologies for Breast Cancer Diagnosis

New technologies for breast cancer detection fall primarily into two categories: adapted

technologies and novel technologies. Adapted technologies are those that involve the

adaptation of devices used elsewhere in the clinic to the breast, such as ductal lavage,

ductoscopy, MRI and PET. Novel technologies refer to those that have not been employed

clinically outside of the research setting. Currently, a variety of optical imaging and

spectroscopic techniques are being explored to improve breast cancer diagnosis. They

employ visible or near-infrared light, have the potential to provide chemical information and

are less invasive than current diagnostic procedures. Optical techniques are only now being

introduced clinically and represent relatively new lines of research.

-96-



III. D. 1. Ductal Lavage

The majority of breast cancers begin in the epithelium lining the breast ducts. It can take

many years for these cells to grow into a tumor large enough to be detected by

mammography, -1 cm in diameter, or felt during a physical breast exam. Ductal lavage is a

minimally invasive procedure that involves collecting samples of cells washed out from the

breast ducts and pathological examination to determine whether they are normal, atypical, or

malignant. The idea of testing fluid from the nipple was first suggested in the 1950s by Dr.

Papanicolaou, the physician who developed the pap smear to test for cervical cancer.

In the procedure, gentle suction is applied to identify which

milk ducts produce droplets of fluid on the nipple surface. Next, a

microcatheter is inserted into the milk duct and sterile saline is

slowly infused to rinse the duct and collect cells. The collected

ductal fluid is then stained and microscopically analyzed by a

pathologist. A schematic detailing the ductal lavage procedure is

shown in Figure 111.6. Ductal lavage is not a replacement for

standard breast cancer detection tools such as mammography or

physical exam.

A multi-center clinical study of over 500 high-risk women

in the United States and Europe examined ductal lavage. All of the

women enrolled had normal mammograms and physical exams

Figure DL6. Ductal
lavage schematic.

to ~Duct Health.

within 12 months prior to their participation in the study. Preliminary results showed that

ductal lavage detected atypical cells in 23.5% of the breasts studied and malignant cells in

0.5% of the breasts studied. However, the presence of atypical cells does not necessarily
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signify subsequent breast cancer. In fact, it is believed that, in most cases, these cells don't

progress to cancer.

III. D. 2. Ductoscopy

Fiberoptic ductoscopy adapts endoscopes developed to detect cancer in organs such as the

colon, cervix, and esophagus to the study of breast ducts [Berna et al. 1991]. It is used to

directly visualize the epithelial lining of the breast ducts as well as provide access for

retrieval of epithelial cells, by lavage. Because the majority of both benign and malignant

breast disease originates in the epithelium, development of a minimally invasive procedure

which can directly assess early epithelial changes has important applications to the detection

and treatment of these conditions. In the ductoscopy procedure, the breast is first massaged

to promote nipple-aspirate fluid, serving to visually identify a ductal orifice. The duct is then

dilated and the ductoscope advanced under direct visualization. The ductoscope is typically

0.9 mm in diameter and contains an outer sheath, through which insufflation can occur

during the procedure and aspiration can be performed to retrieve epithelial cells for cytologic

analysis. The interior of the duct is illuminated, viewed via fiberoptics, and catalogued by

videotape [Shen et al., 2000]. If an intraluminal pathology is identified, it can be surgically

removed or marked with a small metallic clip for image-guided core biopsy. The limitations

of this approach stem from the fact that early cancers are difficult to identify visually, even in

organs where clinicians have significant experience using endoscopic devices.

Ductoscopy is primarily used in patients with pathologic nipple discharge [Yamamoto

et al. 2001]. This population is ideally suited for the ductoscopy procedure, as they generally

demonstrate single-duct discharge, making identification of the ductal orifice harboring the
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pathology straightforward. Additionally, many of these patients have ductal dilation or

ectasia, which makes maneuvering of the scope easier. Over 70% of patients undergoing

ductoscopy for nipple discharge are found to have an intraductal papilloma. The papilloma

can be localized and excised with the ductoscope. An example of typical fmdings during

mammary ductoscopy in a patient with pathologic nipple discharge are shown in Figure 111.7.

Ductoscopy is also being evaluated for intra-operative surgical margin assessment and in

patients who are at high-risk for developing cancer but have a normal breast exam and

imaging studies. There is an isolated report of a series of patients with known breast cancer

who underwent intra-operative ductoscopy to assess surgical margins with promising results

[Dooley 2000]. The use of ductal lavage for risk assessment has generated a population of

high-risk patients who have no imaged evidence of breast malignancy yet are found to have

atypical cells within one or more ductal systems. There are a small number of reports of

patients who have had mammary ductoscopy of the same ductal system that yielded atypical

cytology from ductal lavage, and a variety of pathologic lesions have been identified which

range from intraductal papillomas to DCIS and atypical DEH [Dooley et al. 2001].

Figure 111.7. Ductoscopy images: a) a normal bifurcation and b) an intraductal papilloma obstructing the
ductallumen.

CDCleveland Clinic Foundation.

-99-



However, the clinical significance of these findings has not yet been elucidated. Ductoscopy

may provide a means for spectroscopic access to the breast and identification of pre-

cancerous changes.

III. D. 3. Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) non-invasively monitors the distribution of water in the

body. MRI machines operate through high powered magnets in two groups, a stable field,

produced by a main magnet, and a variable field, produced by three gradient magnets. These

magnets manipulate the spin properties of hydrogen contained in the water comprising the

majority of the human body. A hydrogen atom without an external field will spin on its own

in random alignment. In an external magnetic field, the atoms spin will align parallel to the

applied field. In an MRI, the main magnet produces an applied magnetic field that aligns the

hydrogen atoms in the patient's body parallel to the field. When the magnetic field is turned

off, the hydrogen atoms return to regular alignment. In making this spin alignment shift, a

change in magnetization results and is detected.

MRI has been considered the imaging procedure of choice in the evaluation of breast

implant rupture. Some investigators have found that MRI increased sensitivity for the

detection of breast cancer as compared with conventional imaging techniques [Orel 2000].

MRI has been successful in detecting cancers that are mammographically and clinically

occult. The ability to detect cancer by MRI relies almost exclusively on the fact that tumors

exhibit angiogenesis to support their growth. In order to effectively distinguish small cancers

from fatty tissue, contrast material must be administered intravenously. Detection of

invasive breast cancer by MRI has sensitivity approaching 100%, but some breast lesions,
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such as DCIS, may have much lower rates of detection, 40% sensitivity, due to variable

angiogenesis [Morris et al. 1997]. MRI is emerging as a valuable diagnostic test for young

women in whom the sensitivity of mammography is reduced and appears more accurate than

mammography in annual breast cancer surveillance in women with a hereditary risk of breast

cancer. In a cohort of 179 women at high risk for developing cancer, mammography

detected 7 cancers while MRI detected 13 cancers [Stoutjesdijk et al. 2001]. In addition,

MRI appears equally sensitive, 99.2%, to the triple diagnostic technique in detecting breast

cancer [Drew et al. 1999].

Several problems with MRI imaging will require future resolution. Signals from

many benign lesions and even normal breast tissue may be enhanced following contrast

administration, thereby degrading specificity. Further, there is no universally accepted

standard or optimal technique for MRI imaging of the breast and there are no commercial

needle localization systems for use with MRI. Lastly, MRI is more expensive than other

currently used imaging techniques.

The history of MRI provides a relevant framework for the development of new

medical technologies. MRI has become the primary technique throughout the body in the

routine diagnosis of many disease processes. Similar to Raman spectroscopy, MRI developed

out of a laboratory technique, nuclear magnetic resonance (NMR). During the 1950's and

1960's NMR spectroscopy became a widely used technique for the non-destructive analysis

of small samples. Like Raman spectroscopy, many of its applications were at the

microscopic level. Initially, MR images were noisy and it took close to five hours to produce

a single image. Today, it is possible to image in seconds what used to take hours. The term

MRI was adopted soon after imaging of the human body became possible as the public could

-101-



more easily adopt a term for an imaging modality without the word "nuclear" in it.

III. D. 4. Positron Emission Tomography

Positron Emission Tomography (PET) is already in clinical use to image the brain, but its

application to other organs is only now being explored. PET involves labeling biochemicals,

such as sugars, with positron emitting isotopes, and imaging their uptake in the organ of

interest [Phelps 2000]. Once a positron, an antielectron, is emitted, it combines with an

electron and annihilation occurs producing two photons traveling in opposite directions.

Detectors placed in a ring around the patient record the arrival of the photons. By monitoring

the arrival time and positions, the origin of the photon can be calculated and three

dimensional images constructed. In contrast to standard methods of anatomical imaging,

such as mammography and MRI, PET represents a form of functional imaging of the breast.

PET scanning exploits the metabolic difference between benign and malignant cells [Morris

et al. 2001]. Tumor cells demonstrate increased glucose metabolism, and thus the labeled

sugar molecules are proposed to preferentially accumulate in malignant tumors.

F-fluorodeoxyglucose (FDG)-PET imaging allows accurate diagnosis of breast

carcinoma, with sensitivity and specificity for both ranging from 80% to 100% [Delbeke and

Martin 2001]. By designing better molecular probes, improved diagnostic accuracy may be

possible and significant research is focused on this area. However, PET scanning can

produce false negative results with small lesions (< 1 cm in size) and well differentiated

tumors, such as tubular carcinoma and carcinoma in situ. False positive results may occur

with inflammatory breast conditions or in breast tissue soon after surgery. FDG-PET

scanning may have its greatest value in the local and regional staging of newly diagnosed
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breast cancer. Most women with primary invasive breast cancer undergo axillary lymph

node dissection, a costly procedure that can be associated with complications. However, now

many primary cancers are diagnosed as small invasive cancer without axillary node

involvement. PET scanning may help evaluate the status of the axilla and stage patients with

locally advanced disease.

III. D. 5. Diffuse Optical Tomography

Diffuse Optical Tomography (DOT), a promising optical imaging technique, studies the

propagation of amplitude modulated pulses of light through the breast. Similar in approach

to traditional x-ray mammography, it is non-invasive and can detect lesions deep within the

tissue [Tromberg et al. 1997; Fantini et al. 1998; Quaresima et al. 1998; Hebden et al. 2001].

An arrangement of sources and detectors in a measurement cup enables three-dimensional

images to be constructed. By using light of several different wavelengths, information about

the scattering and absorption can be extracted to measure oxy- and deoxy-hemoglobin

concentrations and the presence of lipids. However, DOT can only detect a limited number

of chemicals and is generally of low resolution, causing small lesions to go undetected.

Resolutions of 4 to 13 mm, depending on measurement geometry and a number of other

factors, have been reported [Culver et al. 2001]. Furthermore, in order to obtain the

sensitivity and specificity required for lesion detection in vivo, exogenous agents to improve

contrast are often employed [Ntziachristos et al. 2000]. Based on this approach, ViOptix,

Inc., has developed an instrument which provides two-dimensional maps of hemoglobin

distribution and oxygen saturation. The device was employed to 50 mammogram-positive
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patients. As an adjunct to mammography, the approach resulted in 92% sensitivity and 67%

specificity for detecting ductal carcinoma [Cheng et al. 2003].

II. D. 6. Fluorescence and Diffuse Reflectance Spectroscopies

Optical spectroscopic techniques are also under investigation for breast cancer diagnosis.

Unlike DOT, these techniques sample the tissue locally. Light delivery and collection can be

accomplished by means of optical fibers that could readily be incorporated into a biopsy

needle. As the needle was inserted or withdrawn, depth information would be obtained. As

opposed to standard biopsy, a spectroscopic transdermal needle measurement has the

advantage of providing immediate diagnosis. As a result, spectroscopy has the potential to

reduce both the likelihood of a non-diagnostic biopsy that would require repeat needle or

surgical biopsy, and patient anxiety by eliminating the currently unavoidable wait for a

traditional histopathology diagnosis. Furthermore, with the development of minimally

invasive breast cancer therapies, such as radiofrequency ablation which relies on insertion of

a thin metal probe into the breast, there is the potential that diagnosis and treatment could be

performed in a single procedure [Fornage et al. 2004]. Optical spectral techniques that have

been applied to breast tissue analysis include fluorescence, diffuse reflectance, and Raman

spectroscopies.

Fluorescence is emission of light from a singlet excited state, in which the electron in

the excited orbital has the same spin orientation as the ground state electron. The fluorescing

molecule stays in the excited state for a finite time, usually 1-10 nanoseconds. Fluorescence

spectra can be used to identify fluorophores and their concentrations in the tissue. Various

endogenous tissue flourophores include metabolic substances such as the reduced form of
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nicotinamide adenine dinucleotide (phosphate) NAD(P)H and flavins, aromatic amino acids

such as tryptophan, tyrosine and phenylalanine, structural proteins such as collagen and

elastin, several porphyrins, and some lipids such as ceroid and lipofuscin. Each of these

fluorophores is excited and emits at a specific wavelength in the near UV/visible range of

light. Fluorescence spectroscopy has been applied to ex vivo breast tissue for disease

diagnosis and trends which correlate with disease have been observed [Gupta and Majumder

1997; Yang et al. 1996; Majumder et al. 1998]. Fluorescence produces relatively large

signals. However, the small number of endogenous fluorophores present in breast tissue

coupled with their broad spectral lineshapes are limiting factors. Fluorescence spectroscopy

of breast has the potential to provide information not available from Raman data and is

discussed in greater detail in Chapter VIII. However, fluorescence spectra can be distorted

by the interplay of tissue scattering and absorption.

Preliminary studies have examined the efficacy of diffuse reflectance spectroscopy in

the diagnosis of breast lesions, as well as in the assessment of tumor margins and sentinel

lymph node metastasis [Bigio et al. 2000]. These studies monitor changes in the absorption

and reduced scattering coefficients among tissues with different pathologies. Combining

fluorescence and diffuse reflectance spectroscopies has shown promise in the breast [Yang et

al. 1996]. Studies are currently underway in our laboratory to assess the power of

fluorescence and diffuse reflectance spectroscopies for breast cancer diagnosis. The

preliminary data analysis is presented in Chapter VIII.
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III. E. Raman Instrumentation

III. E. 1. General Considerations

Despite its rich information content, Raman spectroscopy has not experienced extensive

clinical investigation because the Raman effect is weak, comprising a very small fraction,

about 1 in 107, of the incident photons. However, within the past few decades a variety of

instrumental developments, primarily new lasers, detectors and methods for rejecting

elastically scattered light, have expanded the utility of Raman spectroscopy for biomedical

applications. Compact diode lasers can provide stable narrow-line excitation over a range of

wavelengths in the NIR region. Silicon deep-depletion charge coupled device (CCD)

detectors are best suited for tissue Raman spectroscopy, because of their relatively high

sensitivity and lack of fixed-pattern noise [Murray and Dierker 1986].

Advances in thermoelectrically cooled detectors may soon allow them to replace

liquid nitrogen cooled cameras, allowing easier clinical implementation. The application of

holographic filter technology to Raman spectroscopy has also led to increased utilization of

the technique in medical settings [Carabba et al. 1990]. Because the Raman effect is weak,

the intense elastically scattered light must be removed so that it does not overwhelm the

Raman signal. Holographic notch filters are devices for rejecting scattered light and are

specific for the excitation wavelength employed. These new technologies make rapid data

acquisition as well as the design of compact, robust Raman instruments, needed for clinical

applicability, a reality.

III. E. 2. Laboratory Raman System: Confocal Microscope and Macroscopic System

The experimental system, shown in Figure 11.8, utilized for our in vitro Raman spectroscopy
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studies, is designed for versatility. It is capable of collecting spectra from both macroscopic

size biopsies and thin microscopic sections of tissue. It is also capable of collecting data at a

wide range of wavelengths given the appropriate beamsplitters and notch filters. The

versatility of this system is ideal for exploring new approaches to studying Raman

spectroscopy of human tissue. Raman excitation is provided by an argon ion laser-pumped

Ti:sapphire laser (Coherent Innova 90C/Spectra Physics 3900S, Coherent Inc., Santa Clara,

CA). The Ti:sapphire laser is tunable from 720 nm to 1000 ~ however for biological

Raman studies we employ 830 nm excitation. Laser power is continuously monitored by a

PDA55 photodiode (ThorLabs, Newton, NJ). The excitation laser beam traverses a bandpass

830 nm
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Figure 111.8. Schematic of the laboratory Raman system.
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filter (Kaiser Optical Systems, Ann Arbor MI) and is collimated by two lenses to improve the

spatial resolution of the confocal Raman microscope. The excitation laser beam can either be

focused onto a macroscopic sample or launched into the microscope via a prism that can be

translated in and out of position.

III. E. 2. a) Confocal Raman Microscope

When the prism is out of position, the collimated laser is coupled into a microscope (Zeiss

Axioscope 50, Zeiss, Thornwood, NY) and deflected towards the sample via a dichroic

beamsplitter. A CCD camera atop the microscope allows for registration of the focused laser

spot with a white light image to verify the morphologic structures from which the spectra

were collected. The microscope is fitted with two phase contrast objectives (10x and 63x)

which are used for visual inspection of the samples. By adjusting the flip-mirror so that the

light is directed towards the CCD camera, a VCR and frame-grabber can be used to record

image.

The microscope itself is equipped with a range of objectives, both normal and phase

contrast. For the studies presented here we used a 63x infinity-corrected water immersion

objective (Zeiss Achroplan, NA 0.9). This microscope objective both focuses the excitation

and collects the Raman scattered light in a backscattering geometry. Lateral resolution of

this lens is -2 gm. The Raman microscope is equipped with a mapping stage enabling

Raman micro-imaging. As both the detector and the microscope stage are computer

controlled. spectral maps of the tissue can be created by moving the translation stage in a

raster-scan pattern under the microscope objective. The minimum step size of the motorized

translation stage (Prior Scientific) is 1 m in the x direction and 1.1 gm in the y direction. A
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dichroic beamsplitter and mirror combination redirect the Raman-scattered light to the

spectrograph system. The light is passed through a confocal pinhole to increase axial

resolution, filtered by a holographic Raman notch filter (Kaiser Optical Systems, Ann Arbor

MI) for laser line removal, and coupled into an f/4 0.25 m Czerny-Turner spectrograph

(Chromex 250IS/SM spectrograph monochromator, Albuquerque, NM) with an f/4

achromatic lens. At the smallest confocal aperture diameter, -300 gm, the spatial resolution

of the microscope is -(2 gm)3 .

The spectrograph itself has an adjustable slit and a turret, which holds three gratings

for a range of measurements. For the Raman studies a 600 grooves/mm grating blazed at 1

gum, linear dispersion of 4.3 nm/mm, was used along with the 140 ugm spectrograph entrance

slit setting, providing - 8.5 cm' resolution. The grating disperses the light onto a back-

illuminated, deep depletion, liquid nitrogen cooled CCD detector (Princeton Instruments,

Princeton, NJ). The CCD is composed of a 256x1024 array of 27 glm x 27 gm pixels and is

controlled by WinSpec software (Roper Scientific). A spectral range of -200-2000 cm is

typically collected.

Simply by changing the excitation source, the filters/beamsplitters, and spectrograph

grating, the system can be adapted for fluorescence spectroscopy. Fluorescence

measurements can be obtained at a variety of excitation wavelengths. In particular 352 nm,

476 nm, and 647 nm excitation light can be delivered to the system via fiber optics from an

argon ion laser (Coherent Innova 700, Coherent Inc., Santa Clara, CA) in an adjacent

laboratory. The switch between Raman and fluorescence can be made in less than one

minute.
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III. E. 2. b) Raman Macroscopic System

The excitation laser light can also be diverted from the microscope via a prism to study

macroscopic samples. In this case, the light is focused and directed to the sample via a

mirror at a 60° angle. The excitation spot is ....100 Jlm in diameter. Diffusion in the tissue

results in a sampling volume of -1 mm3
, depending on the sample properties. The Raman

scattered light is collected with an fJ 1.2 camera lens, notch filtered and then focused onto the

spectrograph. The switch between the Raman macroscopic and microscopic systems

involves considerably more system realignment than the switch between Raman and

fluorescence.

ID. E. 3. Clinical Raman System: Raman Optical Fiber Probe

For clinical studies, we have developed portable compact instrumentation including a Raman

Figure 111.9. Clinical Raman system and Raman optical fiber probe.
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optical fiber probe for remote sampling during surgical procedures. Photographs of the

instrumentation and Raman probe are shown in Figure III.9. A schematic of the

Figure III.10. Schematic of the clinical Raman system.

experimental system used in the clinical studies, Chapters V and VII, is shown in Figure

III.10. Light from an InGaAS diode laser (Process Instruments, Salt Lake City, UT), tuned to

830 nm, is collimated by two cylindrical lenses, directed through a bandpass filter (Kaiser

Optical Systems, Inc., Ann Arbor, MI), redirected by a gold coated mirror and focused into

the Raman probe excitation fiber by a 10x microscope objective (Newport, Irvine, CA). The

laser output is under computer control. A shutter (Uniblitz, Rochester, NY) is employed

prior to the microscope objective to prevent laser light from emerging from the probe except

when collecting data. The shutter is also under computer control and is triggered by the

onset of data collection. The proximal linear array of collection fibers from the Raman probe

are input to the f/1.8 spectrograph (Kaiser) which collimates the light before it passes through
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an RG850 long wavelength-pass filter (Schott, Elmsford, NY), to reduce an intense portion

of the silica fiber background, and the Rayleigh line removed with a notch filter. The light is

then focused onto a slit and re-collimated for dispersion by the holographic grating. Finally,

the dispersed light is focused onto a liquid nitrogen cooled, back-illuminated, deep depletion

CCD detector. The CCD is interfaced with a computer and controlled with code written in

LabVIEW (v. 6.1, National Instruments, Inc., Austin, TX). The grating dispersion of 0.04

cmfl/mm yields a two pixel spectral resolution of 9.4 cm 1 for the 200 gm collection fiber/ slit

diameter.

III. E. 3. a) Raman Optical Fiber Probe

Minimally invasive clinical applications of Raman spectroscopy require remote sampling via

optical fiber probes. These probes must be able to collect high SNR spectra in clinically

relevant timeframes with safe levels of laser exposure. This requires maximizing signal

collection and efficiency while minimizing all sources of noise. Our Raman optical fiber

probe implements an optical design strategy to fully utilize system throughput by

characterizing the Raman distribution from tissue [Motz et al. 2004]. The approach

optimizes collection efficiency, minimizes noise and has resulted in a small diameter, highly

efficient Raman probe capable of collecting high-quality data in 1 s.

The design of Raman fiber optic probes is quiet challenging. Efficient transmission

of NIR light for remote detection requires the use of fused silica optical fibers [Shim and

Wilson 1997]. However, even with low laser excitation powers, below 10 mW, the fused

silica fiber background is intense and saturates the detector for collection times under 0.1 s.

The fiber background is comprised of Raman light from the fused silica core, fluorescence
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from impurities and dopants used to produce fibers of a particular numerical aperture (NA),

and signal from various jacket materials. This fiber background, generated from 2 to 3 feet

traversed in the fibers, masks the tissue Raman signal which is generated from only a 1 mm

depth of tissue. In addition to obscuring and distorting the spectrum of interest, the intense

fiber background adds shot-noise to the signal.

To remove much of this background, we employ dielectric filters at the distal end of

the probe. The delivery fiber is terminated with a short wavelength-pass, or band-pass, filter

that transmits the laser excitation light while blocking the longer wavelength spectral

background generated in the delivery fiber. Also, the distal end of the collection fibers are

preceded by a long wavelength-pass, or notch, filter, which transmits the tissue Raman
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Figure 111.11. Schematic of the Raman optical fiber probe.
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spectrum, while blocking backscattered laser light. The filters must perform these functions

over the range of angles corresponding to the NA of the fibers they serve.

The laboratory currently has two prototype versions of Raman optical fiber probes

that are front-viewing. The first, shown in Figure III.11, contains 15 collection fibers,

resulting in a probe diameter of 2.5 mm. The second is a smaller diameter probe with 9

collection fibers and a 2.0 mm diameter. The probes are otherwise identical. The left hand

side of Figure III.11 is a longitudinal view of the probe tip, while the right hand side is a

cross-sectional view at the level of the fiber-filter interface. There is a central excitation fiber

with an aluminum jacket for optical isolation. The central excitation fiber has a 200 gm core

with a 0.22 NA. The collection fibers are also 200 gm core, but have a 0.27 NA which is

closely matched to that of the spectrograph. The filters are secured to the fibers with sodium

silicate and the entire fiber bundle/filter module is encased with black Teflon for binding and

protection. The distal tip of the probe contains an anti-reflection coated sapphire ball lens

(MKPhotonics, Albuquerque, NM) secured in a crimped stainless steel tube with epoxy.

Sapphire was chosen as it exhibits no fluorescence and has sharp prominent Raman bands,

only one of which falls within the spectral range utilized for data analysis. The steel tube is

also affixed to the fiber-bundle/filter assembly. The probe length is 4 meters. All

components of the probe are constructed of medical grade materials that can withstand

standard cold gas ethylene oxide sterilization for surgical procedures.

The proximal end of the excitation fiber is terminated with a standard FC connector

that provides a relatively reproducible fiber geometry and straightforward laser coupling in

the clinical environment. The linear array of collection fibers are terminated with a modified

BNC connector and coupled to the spectrograph with a customized adaptor plate that was
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built in house. The BNC connector snaps into place on the adaptor plate, however, this

coupling is problematic for a number of reasons and is currently being updated. The

coupling does not ensure precise alignment of the linear array with the spectrograph slit and

alignment must be checked prior to data collection. Perpendicular alignment of the linear

area of collection fibers can usually be achieved with operating room (OR) lights. However,

OR lights are bright and can saturate the detector. Further, the BNC connector is the portion

of the clinical instrumentation that allows the majority of light to enter the system. Thus,

when acquiring data with a light tight box, as in Chapter V.B, the BNC coupling to the

spectrograph must be covered with a black cloth.

The first Raman optical fiber probe contained a dual ring of collection fibers. This

may prove useful for obtaining depth information on Raman scatterers by collecting light

from the inner and outer rings separately. The laboratory also has a side viewing probe

prototype. It is based on a design which replaces the sapphire ball lens with a half-ball lens

backed by a mirror. Lens and mirror are configured at 450 providing collection capabilities

similar to the front viewing probe. The performance of the side-viewing probe is currently

being tested. There are some problems with heating of the stainless steel tube associated

with the side viewing Raman probe.

Acknowledgements

Jason Motz was responsible for the development of the Raman optical fiber probe as well as
the clinical instrumentation. Many of the images in this chapter have been reproduced from
Applied Optics [Motz et al. 2003] with permission from The Optical Society of America,
Photochemistry and Photobiology [Manoharan et al. 1998] with permission from The
American Society for Photobiology, and Techniques in Gastrointestinal Endoscopy [Tunnell
et al. 2003] with permission from Elsevier.

-115-



References

Alfano RR, Liu CH, Sha WL, Zhu HR, Akins DL, Cleary J, Prudente R and
Cellmer E (1991). "Human Breast Tissues Studied by IR Fourier Transform Raman
Spectroscopy." Lasers Life Sci 4: 23-28.

Baraga JJ, Feld MS and Rava RP (1992). "In situ Optical Histochemistry of Human
Artery Using near Infrared Fourier Transform Raman Spectroscopy." Proc Natl Acad
Sci 89(8): 3473-3477.

Berna JD, Garcia-Medina V and Kuni CC (1991). "Ductoscopy: A New Technique for
Ductal Exploration." Eur J Radiol 12(2): 127-9.

Bernstein PS, Zhao DY, Wintch SW, Ermakov IV, McClane RW and Gellermann W
(2002). "Resonance Raman Measurement of Macular Carotenoids in Normal Subjects
and in Age Related Macular Degeneration Patients" Opthalmology 109(10): 1780-7.

Bown SG, Briggs G, Kelley C, Lakhani S, Pickard D, Ripley PM, Rose IG and Saunders
C and Bigio IJ (2000). "Diagnosis of Breast Cancer Using Elastic-Scattering
Spectroscopy: Preliminary Clinic Results." J Biomed Opt 5: 221-228.

Campion A and Kambhampati P (1998). "Surface-Enhanced Raman Scattering." Chem
Society Reviews 27(241): 241-250.

Carabba MM, Spencer KM, Rich C, and Rauh D (1990). "The Utilization of a Holographic
Bragg Diffraction Filter for Rayleigh Line Rejection in Raman Spectroscopy," Appl
Spectrosc 44: 1558-1561.

Cheng XF, Mao JM, Bush R, Kopans DB, Moore RH and Chorlton M (2003). "Breast
Cancer Detection by Mapping Hemoglobin Concentration and Oxygen Saturation."
ApplOQpt 42(31): 6412-6421.

Culver JP, Ntziachristos V, Holboke MJ and Yodh AG (2001). "Optimization of Optode
Arrangements for Diffuse Optical Tomography: A Singular-Value Analysis." Opt
Lett 26: 701-703.

Diem M (1993). Introduction to Modern Vibrational Spectroscopy. New York, Wiley.
Dooley WC (2000). "Endoscopic Visualization of Breast Tumors." JAMA 284(12): 1518.
Dooley WC, Ljung BM, Veronesi U, Cazzaniga M, Elledge RM, O'Shaughnessy JA, Kuerer

HM, Hung DT, Khan SA, Phillips RF, Ganz PA, Euhus DM, Esserman LJ, Haffty
BG, King BL, Kelley MC, Anderson MM, Schmit PJ, Clark RR, Kass FC, Anderson
BO, Troyan SL, Arias RD, Quiring JN, Love SM, Page DL and King EB (2001).
"Ductal Lavage for Detection of Cellular Atypia in Women at High Risk for Breast
Cancer." J Natl Cancer Inst 93:1624-32.

Drew PJ, Turnbull LW, Chatterjee S, Read J, Carleton PJ, Fox JN, Monson JRT and Kerin
MJ (1999). "Prospective Comparison of Standard Triple Assessment and Dynamic
Magnetic Resonance Imaging of the Breast for the Evaluation of Symptomatic Breast
Lesions." Ann Surg 230(5): 680-685.

Fantini S, Walker SA, Franceschini MA, Kaschke M, Schlag PM and Moesta KT, (1998).
"Assessment of the Size, Position, and Optical Properties of Breast Tumor In Vivo by
Noninvasive Optical Methods." Appl Opt 37: 1982-1989.

Fornage BD, Sneige N, Ross MI, Mirza AN, Kuerer HM, Edeiken BS, Ames FC,
Newman LA, Babiera GV and Singletary SE (2004). "Small (<= 2 cm) Breast Cancer
Treated with US-Guided Radiofrequency Ablation: Feasibility Study." Radiology
231(1): 215-224.

-116-



Frank CJ, McCreery RL and Redd DCB (1995). "Raman Spectroscopy of Normal and
Diseased Human Breast Tissues." Anal Chem 67: 777-783.

Frank CJ, Redd DCB, Gansler TS and McCreery RL (1994). "Characterization of Human
Breast Biopsy Specimens with Near-IR Raman Spectroscopy." Anal Chem 66: 319-
326.

Gupta PK, Majumder SK and Uppal A (1997). "Breast Cancer Diagnosis Using N 2 Laser
Excited Autofluorescence Spectroscopy." Lasers Surg Med 21: 417-422.

Hebden J, Veenstra H, Dehghani H, Hillman E, Schweiger M, Arridge S and Delpy D
(2001). 'Three-Dimensional Time-Resolved Optical Tomography of a Conical Breast
Phantom." Appl Opt 40: 3278-3287.

Jeanmaire DL and Van Duyne RPV (1977). "Surface Raman Spectroelectrochemistry .1.
Heterocyclic, Aromatic, and Aliphatic-Amines Adsorbed on Anodized Silver
Electrode." J Electroanal. Chem 84(1): 1-20.

Kerker M, Wang DS, Chew H, Siiman O and Bumm LA (1982). Surface Enhanced Raman
Scattering. Chang RK and Furtak TE Eds., New York, Plenum Press:109-128.

Kline NJ and Treado PJ (1997). "Raman Chemical Imaging of Breast Tissue." J Raman
Spectrosc 28: 119-124.

Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR and Feld MS (1997).
"Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)."
Phys Rev Lett 78, 1667-1670.

Kneipp K, Kneipp H, Itzkan I, Dasari RR and Feld MS (1999). "Ultrasensitive Chemical
Analysis by Raman Spectroscopy." Chemical Reviews 99: 2957.

Majumder SK, Gupta PK, Jain B and Uppal A (1998). "UV Excited Autofluorescence
Spectroscopy of Human Breast Tissues for Discriminating Cancerous Tissue from
Benign Tumor and Normal Tissue." Lasers Life Sci 00: 1-16.

Manoharan R, Baraga JJ, Feld MS asnd Rava RP (1992). "Quatitative Histochemical
Analysis of Human Artery using Raman Spectroscopy." Photochem Photobio B: Biol
16: 211-233.

Manoharan R, Baraga JJ, Rava RP, Dasari RR, Fitzmaurice M and Feld MS (1993).
"Biochemical Analysis and Mapping of Atherosclerotic Human Artery Using FT-IR
Microspectroscopy." Atherosclerosis 103: 181-193.

Manoharan R, Wang Y and Feld MS (1996). "Review: Histochemical Analysis of Biolgical
Tissues uing Raman Spectroscopy." Spectroschim Acta Part A 52: 215-249.

Manoharan R, Shafer K, Perelman L, Wu J, Chen K, Deinum G, Fitzmaurice M, Myles J,
Crowe J, Dasari RR and Feld MS (1998). "Raman Spectroscopy and Fluorescence
Photon Migration for Breast Cancer Diagnosis and Imaging." Photochem Photobiol
67: 15-22.

McCreery RL (2000). Raman Spectroscopy for Chemical Analysis. New York, Wiley.
Morris EA, Schwartz LH, Dershaw DD, van Zee KJ, Abramson AF and Liberman L

(1997). "MR Imaging of the Breast in Patients with Occult Primary Breast
Carcinoma." Radiology 205:437-40.

Morris MD (1992). Applied Laser Spectroscopy. Andrews, DL Ed., VCH Publishers Inc.
New York, Chapter 6.

Motz JT, Hunter M, Galindo LH, Gardecki JA, Kramer JR, Dasari RR and Feld MS
(2003). "Optical Fiber Probe for Biomedical Raman Spectroscopy." Appl Opt 43:
542-554.

-117-



Murray CA and Dierker SB (1986). "Use of an Unintensified Charge-Coupled Device
Detector for Low-Light-Level Raman Spectroscopy," J Opt Soc Am 3: 2151-2159.

Myers AB and Mathies RA "Biological Applications of Raman Spectroscopy"
Resonance Raman Spectra of Polyenes and Aromatics. Vol. 2, Spiro TG Ed., John.

Ntziachristos V, Yodh AG, Schnall M and Chance B (2000). "Concurrent MRI and
Diffuse Optical Tomography of Breast After Indocyanine Green Enhancement." P
Natl Acad Sci USA 97: 2767-2772.

Orel SG (2000). "MR Imaging of the Breast." Radiol Clin North Am 38: 899-913.
Otto A (1984). "Surface- Enhanced Raman Scattering: 'Classical' and 'Chemical'

Origins." Light Scattering in Solids IV. Cardona M and Guntherodt G Eds. Berlin,
Germany, Springer-Verlag, 1984: 289.

Phelps ME (2000). "Positron Emission Tomography Provides Molecular Imaging of
Biological Processes." PNAS 97: 9226-9233.

Quaresima V, Matcher SJ and Ferrari M (1998). "Identification and Quantification of
Intrinsic Optical Contrast for Near-Infrared Mammography." Photochem Photobiol
67(1): 4-14.

Raman CV, Krishnan KS (1928). "A New Type of Secondary Radiation." Nature 121: 501-
502.

Redd DCB, Feng ZC, Yue KT and Gansler TS (1993). "Raman Spectroscopic
Characterization of Human Breast Tissues: Implications for Breast Cancer
Diagnosis." Appl Spectrosc 47: 787-791.

Sadtler (1974). Sadtler Standard Spectra. Philadelphia, Sadtler Research Laboratories.
Schaeberle MD, Kalasinsky VF, Luke JL, Lewis EN, Levin IW and Treado PJ (1996).

"Raman Chemical Imaging: Histopathology of Inclusions in Human Breast Tissue."
Anal Chem 68: 1829-1833.

Shah N, Cerussi A, Eker C, Espinoza J, Butler J, Fishkin J, Hornung R and Tromberg B
(2001). "Noninvasive Functional Optical Spectroscopy of Human Breast Tissue." P
Natl Acad Sci USA 98(8): 4420-4425.

Shafer-Peltier KE, Haynes CL, Glucksberg MR, Van Duyne RP (2003). 'Toward a Glucose
Biosensor Based on Surface-Enhanced Raman Scattering." J Am Chem Soc 125: 588-
593.

Shen KW, Wu J, Lu JS, Han QX, Shen ZZ, Nguyen M, Shao ZM and Barsky SH (2000).
"Fiberoptic Ductoscopy for Patients with Nipple Discharge." Cancer 89(7): 1512-
1519.

Shim M and Wilson B (1997). "Development of an In Vivo Raman Spectroscopic System for
Diagnostic Applications." J Raman Spectrosc 28: 131-142.

Stoutjesdijk MJ, Boetes C, Jager GJ, Beex L, Bult P, Hendriks JHCL, Laheij RJF, Massuger
L, van Die LE, Wobbes T and Barentsz JO (2001). "Magnetic Resonance Imaging
and Mammography in Women with a Hereditary Risk of Breast Cancer." J Natl
Cancer Inst 93(14):1095-1102.

Tromberg BJ, Coquoz O, Fishkin JB, Pham T, Anderson ER, Butler J, Cahn M, Gross JD,
Venugopalan V and Pham D (1997). "Non-Invasive Measurements of Breast Tissue
Optical Properties Using Frequency-Domain Photon Migration." Philos Trans R Soc
Lond B 352(1354), 661-668.

Yamamoto D, Shoji T, Kanawashi H, Nakagawa H, Haijima H, Gondo H and Tanaka K

-118-



(2001). "A Utility of Ductography and Fiberoptic Ductoscopy for Patients with
Nipple Discharge." Breast Cancer Res Treat 70(2): 103-108.

Yang Y, Katz A, Celmer EJ, Zurawska-Szczepaniak M and Alfano RR (1997).
"Fundamental Differences of Excitation Spectrum Between Malignant and Benign
Breast Tissues." Photochem Photobiol 66(4): 518-522.

-119-



Chapter IV. Data Processing

Raman spectroscopy is a powerful tool for determining chemical information about a

biological specimen. It has been used in numerous applications to obtain both qualitative and

quantitative analyses of samples. As a result, many analytical techniques of varying degrees

of sophistication have emerged for analyzing Raman spectra. The challenge is to condense

the large amount of spectral information provided by Raman spectroscopy into an accurate

and easily interpretable form. Researchers have applied a range of techniques, from peak-

height ratios to multivariate models, to extract chemical information about a sample. The

purpose of this chapter is to discuss approaches that are commonly used to analyze Raman

spectra.
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IV. A. Data Preprocessing

Proper interpretation of Raman spectra requires several preprocessing steps to calibrate the

data and configure it into its most useful form. The Raman data acquired undergoes similar

preprocessing whether it is collected using the macroscopic laboratory system, the

microscope, or the clinical Raman system via the Raman probe. This ensures reproducibility

of the data between systems, users, and daily conditions.

IV. A. 1. Wavenumber Calibration

Each day, a wavenumber calibration must be performed to determine the Raman band

frequencies. Significant changes may occur in the pixel position of a particular band with

changes in the alignment of the instrumental system. The linear relationship between

wavelength and dispersion by the spectrograph provides an easy method for wavelength

calibration by using the spectral lines from atomic emissions, which are readily available

from pen lamps containing gases such as neon. However, accurate conversion from

wavelength (nm) to Raman shift (cmnf) requires precise knowledge of the excitation laser

wavelength. Even slight day-to-day drift in the laser wavelength can cause errors on the

order of a few wavenumbers, depending on the wavelength region used. For example, a

change from 830 nm to 830.2 nm, which is a typical daily variation observed with diode

lasers, results in a 2.9 cm' shift. Thus in Raman spectroscopy, a wavenumber calibration

can either be performed by measuring both the laser line frequency and spectral lines or more

simply the bands from a well-characterized Raman scatterer can provide calibration in a

single measurement. This single measurement automatically accounts for variations in laser

frequency because the Raman shifts are measured relative to the excitation wavelength.
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Toluene, a liquid, and 4-acetamidophenol, a solid, both provide excellent standards for

wavenumber calibration in our region of analysis. Their Raman spectra, acquired with 830

nm excitation, are shown in Figure IV. 1. Because of the inverse relationship between Raman

shift and wavelength, the correlation of CCD pixel to wavenumber is most accurately

established by calibration through a forth order polynomial. This relationship is then applied

to the data, providing Raman band assignments.
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Figure I.1. Raman spectra of species used for wavenumber calibration: a) toluene and b) 4-
acetamidophenol.

6000. 2. Spectral Response Correction

It is also necessary to correct Raman spectra for the system wavelength response. This

allows comparison of spectra taken from different experimental systems or from the same

system on different days. Correction is accomplished by collecting light from a wavelength-

calibrated tungsten white light source. Our current white light source is a tungsten halogen

l amp (LS-1, Oce an Optics, (m-L). The light is scattered from a reflectamandard t hat has a

flat spectra l r esponseically BaSO4. The r eflectance standard is tightly packed and placed

in the sample position. Division of the data by this calibration white light spectrum corrects
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for spectral variations induced by optical component absorption losses, filter responses, notch

filter position or angle, the grating efficiency, the quantum efficiency of the CCD detector,

and fixed pattern noise. White light spectra from the macroscopic and microscopic

laboratory systems as well as the clinical Raman system are shown in Figure IV.2.
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Figure IV.2. White light spectra acquired with different instruments: a) the clinical system and Raman
optical fiber probe, b) the macroscopic and c) microscopic laboratory systems.

IV. A. 3. Filtering

When a cosmic ray, a particle from outer space such as a helium nucleus, interacts with the

CCD, it creates charge in those pixels it passes through. As a result, sharp spectral features

often appear in the data in addition to the Raman bands. Cosmic rays distort the intensity of

Raman bands and produce errors in data analysis. Contributions from cosmic rays are

removed using a derivative filter. Derivative filters provide a quantitative measurement for

the rate of change in pixel brightness. Because cosmic rays are quite narrow compared to

Raman peaks, derivative filtering is an effective method for their removal. Specifically, if

any term in the derivative of the spectrum is greater than 2.5 times the average derivative of

the neighboring 15 pixels, then the corresponding term in the spectrum is replaced with the

average of the two values 3 pixels away on either side.
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IV. A. 4. Fluorescent Background Removal

Raman spectra of biological samples are often accompanied by strong background

fluorescence. This background fluorescence varies from sample to sample and when

particularly strong inhibits our ability to interpret the Raman spectrum. The origin of the

fluorescence from tissue at 830 nm excitation is presently unknown, although collagen,

elastin, calcifications, ceroid, and necrotic materials are all thought to fluoresce at this

excitation wavelength. The background fluorescence interferes with multivariate analysis

methods and must be removed prior to data analysis. This can be accomplished by a variety

of methods including Fourier transforms, differential Raman spectroscopy, point difference

derivatives, spline fitting, and Savitsky-Golay derivatives [Baraga et al. 1992; Shaver 2001].

Since the fluorescence background has much broader features than the Raman bands, we

typically employ a fifth order polynomial fit and subtraction for background removal.

Previous experiments in our laboratory have shown that the background can be satisfactorily

removed by using this approach and that a fifth-order polynomial accurately emulates the

slowly varying fluorescence spectrum [Brennan 1995; Brennan et al. 1997]. Resultant
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Figure IV.3. Background removal: a) Raman spectrum (solid line), fifth order polynomial fit (dotted line) and

b) resultant Raman spectrum with fluorescence background removed.
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Raman spectra will always have negative regions when using this approach. Figure IV.3

shows a measured Raman spectrum of breast tissue, acquired on the macroscopic laboratory

system. Also shown are the fifth order polynomial fit and resultant Raman spectrum with

background removed. The models used to interpret the Raman data, discussed in section

IV.C, must be processed in the same manner, using fifth order polynomial subtraction.

However, the process of background removal produces slight distortions in the Raman

spectrum resulting in errors in analysis. There are ongoing investigations in our laboratory to

quantify the effect of increasing background fluorescence on the prediction error. Also,

methods are under development to reduce the slight error induced by the fifth order

polynomial background removal.

IV. A. 5. Normalization

There are many approaches to intensity normalization that can be taken, depending on the

application. Strict quantitative analysis requires accurate normalization. This can be

accomplished through the use of an internal standard that produces a well-defined Raman

band of known intensity for the experimental setup in use. Such an internal standard can be

included in the sample preparation or in the case of optical fiber probes, can potentially be

introduced into the optical design [Zheng et al. 2001]. An external standard may also be

used. However, great care must be taken to ensure standard sample position reproducibility.

Qualitative or relatively quantitative analyses are not as restrictive and alternative

normalizations can be used to provide intra-model calibrations. For example, Raman spectra

can be normalized to the area of a particular vibration or the spectra can be scaled to have a

particular maximum intensity. Thus far, we have scaled our spectra to have a maximum
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intensity of one and have not included intensity information in our data analysis. The Raman

optical fiber probe, discussed in Chapter III, provides a reproducible geometry for data

collection, allowing examination of spectral data that has not been normalized. However, as

long as the normalization technique is standardized and consistent, the data can be

appropriately interpreted.

IV. A. 6. Mean Centering

It is often useful to mean center data prior to the application of many analytical algorithms

other than ordinary least squares (OLS) and classical least squares (CLS), discussed below.

Mean centering refers to subtracting the mean spectrum of the data set from each spectrum in

the data set. Conceptually, mean centering accentuates the differences among spectra.

Mathematically, it reduces the complexity of the data by one degree of freedom and prevents

certain spectra in the data set from being weighed more than other spectra. Statistically, it

maps the data onto an abstract space where the mean of the mean centered data does not have

any directionality [Kramer 1998]. For certain techniques, such as principal component

analysis (PCA) and partial least squares (PLS), mean centering is recommended. In the

absence of mean centering, the first spectral component of analysis will be the statistical

mean of the data set.

IV. A. 7. System Specific Calibrations

Certain experimental systems have additional calibration steps specific to the instrumentation

or application. In the case of data collected with the confocal Raman microscope, the

substrate background, typically MgF2, must be subtracted prior to fluorescence background
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removal. Although a confocal data collection geometry minimizes contributions from the

substrate background, its removal is still necessary. Similarly, data collected on the clinical

system with the light tight box employs a background removal step. Data collected on the

clinical system using the Raman probe must also utilize methods for dealing with

confounding signals from optical fibers. Although more than 95% of the Rayleigh scattered

excitation light is eliminated via long-pass filters on the collection fibers, the remaining fiber

background, mainly quartz, must be removed from the raw tissue data. The fiber background

is characterized by collecting the laser light reflected from a block of aluminum. This

spectrum is then subtracted from the white light corrected tissue data to remove the probe

background. A sixth order polynomial is employed for fluorescence background removal

when using the Raman optical fiber probe [Motz 2003].

IV. B. Chemometric Techniques

The general term for techniques used to derive chemical information from data is

chemometrics. Such analysis methods can be separated into two distinct classes, univariate

and multivariate. A time honored technique for extracting sample information is by

examination of a particular peak height. This is an example of a univariate technique as the

analysis depends on the value of a single variable of interest [Shaver 2001]. However, this

approach only takes advantage of a small portion of the data available. In complex biological

samples, where several distinct moieties may contribute intensity to a particular Raman band,

it is necessary to incorporate all of the spectral information in order to differentiate moieties.

Further, to capitalize on the high information content provided by Raman spectroscopy, more

sophisticated modeling techniques that incorporate the full spectral range of data available
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are required. The key is to compress the information into a manageable, yet still informative

form.

The notation for the equations in this thesis uses bold upper case letters to denote

matrices, bold lower case letters for vectors and lower case letters to indicate scalars. The

superscript T denotes matrix transposition while the superscript (-1) indicates matrix

inversion.

Extracting meaningful information from a complex data set, such as that of biological

tissue, can be accomplished by use of a set of mathematical techniques known as multivariate

analysis. Raman data can be modeled using linear analysis. Two assumptions are associated

with this type of modeling. One is that the Raman spectrum of a mixture of chemicals is a

linear superposition of the mixture's component spectra. The second is that there is a linear

relationship between signal intensity and chemical concentrations [Manoharan et al. 1992].

Manoharan and co-workers conducted a study on Raman spectra of mixtures similar in

composition to that of biological tissue and verified that both of these conditions hold within

experimental accuracy. For breast tissue, the linear superposition can be formulated:

Sbreast tissue=Cfat 'Pfat + CcollagenPcollagen + caroteneoPklcarotene + .... - - -(IV. 1)

Where Sbreast tissue is the Raman spectrum of breast tissue, ci is the concentration of component

i, and Pi is the Raman spectrum of component i. For an entire data set, Eq. IV.1 can be

expressed in matrix form:

S=C.P (IV.2)

Where S is the matrix of Raman spectra, C is the matrix of component concentrations and P

is the matrix of basis spectra. When the number of samples is n, the number of components

is p, and the number of wavelength points in each spectrum is m, S is an nxm matrix, C is an

-128-



nxp matrix and P is a pxm matrix. The basis spectra, P, can be the Raman spectra of the pure

chemical constituents in the mixture, the Raman spectra of individual morphological

components of the tissue, or even mathematically derived lineshapes. The spectral matrix S

is a measured set of data for which we want to obtain the concentration information C. This

can be obtained through a series of matrix manipulations, resulting in

C=S.B (IV.3)

Where B is the matrix of orthogonal projection vectors (or b-vectors). For each chemical in

the data set, there exists only one ideal projection vector that models the data set most

accurately. When each multivariate technique is applied carefully, the projection vectors

obtained with different methods of analysis should all closely approximate the ideal

projection vector.

Multivariate analysis for extracting concentrations is typically performed in two

steps, calibration and prediction. Calibration is the process of developing a mathematical

relationship between physical quantities, for example the spectra and concentrations or the fit

coefficients and disease classification. Prediction is the process of applying the mathematical

model developed during calibration to extract information from spectra. Choice of the

optimal linear multivariate calibration technique depends upon the extent of the calibration

data. Explicit techniques are those in which the linear model is completely defined, and

therefore the linear superposition properties can be directly applied. Some examples are OLS

and CLS [Haaland and Thomas 1988]. In other techniques, called implicit techniques, not all

of the component spectra or concentrations are known [Geladi and Kowalski 1986]. PCA

and PLS are examples of implicit techniques. Explicit methods are more robust, but they

require the composition of the mixture to be completely characterized. Implicit and explicit
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models each have their advantages. Because explicit models use information about every

species, they are capable of providing superior calibrations. However, implicit models

require information only about a single species and thus they can be significantly easier to

implement. In addition, explicit models suffer when a species is mischaracterized or omitted

or when spectral artifacts such as baselines are present. In these cases, implicit models tend

to be more robust [Thomas and Haaland 1990]. We will be concerned with only those

methods that have been applied to the analysis of breast tissue. These include PCA and OLS.

The quantitative methods of CLS, PLS, and principal component regression (PCR) all require

concentration information from a reference technique for model calibration, which is difficult

to obtain for solid tissue, such as breast.

IV. B. 1. Principal Component Analysis

PCA is useful when it is not possible to identify all of the component spectra or

concentrations a priori. It can be used as a proof-of-principal analysis to demonstrate that

there is sufficient information contained within a data set to yield accurate disease diagnosis.

PCA has been used to classify diseased tissue samples in several organ systems [Mahadevan

and Richards-Kortum 1996; Manoharan et al. 1998; Denium et al. 1999]. It uses the entire

Raman spectrum and does not assume any knowledge about the chemical composition of the

tissue. PCA resolves the spectra of an entire data set into a small number of orthogonal

principal component (PC) basis spectra. These PC spectra can have negative and positive

components and form a complete basis set that accurately describes all the data (within

limitations imposed by noise) if the PCs are multiplied by the proper weighting coefficients.
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These weighting coefficients, called fit coefficients, are analogous to chemical concentrations

however they provide much less direct chemical information.

We use a singular value decomposition (SVD) algorithm (Matlab V.6.5.0, The

Mathworks, Natick, MA) to determine the PCs of our data sets. SVD computes all n PCs,

one for each spectrum or CCD pixel. In SVD the data, S, an mxn matrix, can be

reconstructed by multiplying its eigenvectors, Q, by their k eigenvalues (also call scores or

fit coefficients).

S=U.X.QT (IV.4)

Here, U.X are the fit coefficients and QT is a (kxn) matrix whose columns are the PCs,

analogous to P in Eq. IV.2. X is a diagonal matrix containing square roots of the

eigenvalues, and U is an (mxk) matrix.

Data sets are typically mean centered prior to performing PCA in order to remove

features common to all spectra, thereby highlighting spectral variance. The first PC will

contain the maximum amount of variation in the data, with each subsequent PC spectrum

representing sequentially less variation. The contributions of each PC to subsequent samples

can then be calculated:

C -U.X=S.Q.(QT.Q)4=S.Q (IV.5)

PCA provides little physical information in and of itself; however, it is adept at isolating

spectral trends that correlate with physical information and thereby provides a basis for

development of diagnostic algorithms. Furthermore, by comparing the lineshapes of the

diagnostic PC spectra with the spectra of pure chemicals, it is possible to ascribe some

meaning to them. For example, features related to Raman bands of particular chemicals can
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be identified in the PCs used for breast cancer diagnosis. A detailed discussion is presented

in section III.C.2.

To further illustrate the information conveyed by PCA, an analysis was preformed on

the fresh-frozen breast data presented in Chapter V. Figure IV.4 displays the first 3 PCs of

the data set. The data was not mean centered prior to PCA and thus the first PC, shown in

Figure IV.4a is the statistical mean of the data set. PC 1 represents 41% of the data variance

and is very similar to the morphologically derived Raman spectrum of fat. PC 2 also

resembles a morphologically derived Raman spectrum, that of collagen. It represents 11% of

the data variance. PC 3, shown in Figure IV.4c, accounts for less than 1% of the data

variance. It exhibits more complex structure as well as negative and positive components

thus illustrating the difficulty in interpreting PCs and the limitations of this approach.

Interestingly, collagen and fat are the two components found to be diagnostic in our

modeling studies, presented in Chapter V.
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Figure IV.4. Principal component basis spectra of fresh-frozen breast data set. a) PC 1 (solid line) and fat
(dotted line). b) PC 2 (solid line) and collagen (dotted line). c) PC 3

IV. B. 2. Ordinary Least Squares Regression

OLS is used to extract concentrations of all important components present in the samples. As

input, it requires Raman spectra of all components that contribute signal to the spectral data
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set. When the number of spectra and the number of variables in the spectra are equal and the

matrix P is invertible, we can directly obtain concentrations from

C=S.P"- (IV.6)

However, the number of spectra and the number of variables in the spectra are rarely equal

resulting in a matrix P that is not invertible. In fact, it is preferable to have a data set

composed of many more spectra than variables. To obtain the concentration in this case, we

multiply Eq. (IV.2) by the transpose of P:

S.PT=C.P.PT (IV.7)

If ppT is invertible, we can derive an equation for the concentration matrix, C:

C=S.PT.(P.PT) ' (IV.8)

And thus via comparison with Eq. VI.3, a matrix of projection vectors:

B=P.(P.PT)-' (IV.9)

OLS is a simple but powerful technique in spectral analysis. However, an error in the

number of model components can result in erroneous regression results. Additionally,

spectra of certain chemicals vary with environment, which can also lead to inaccurate OLS

analysis. In the next section, development of our spectral model used in OLS analysis is

presented.

IV. C. Spectral Modeling: A Morphologic Assay of Breast Tissue

IV. C. 1. Motivation and Assumptions

Although it is possible to use simple correlation analyses of particular Raman bands or

lineshapes to diagnose disease, there is a wealth of information in the spectra that enables

enhanced understanding of disease etiology. Thorough understanding of the
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chemical/morphological Raman spectrum of breast tissue is a necessary step in developing

Raman spectroscopy as a tool for breast cancer diagnosis. To understand the relationship

between the Raman spectrum of breast tissue and its disease state we developed a Raman

spectroscopic model [Shafer-Peltier et al. 2002]. This model is based on the morphological

structures that comprise breast tissue.

Construction of a morphological model of breast tissue relies on three assumptions.

First, as discussed above, that the Raman spectrum of a mixture is equal to the weighted sum

of the individual components of the mixture. Second, that biological morphological features,

such as cells, have a similar Raman spectrum from one patient to another. Finally, that the

elements included in the model are sufficiently distinct to enable their differentiation based

on their Raman spectrum and a given SNR in the data.

Our model identifies the morphological components present in breast tissue through

their unique Raman spectra and uses them as basis spectra to describe the morphological

features of macroscopic spectra. These basis spectra are derived from Raman microscopy of

the epithelial cell cytoplasm, the cell nucleus, fat, [-carotene, collagen, calcium

hydroxyapatite, calcium oxalate dihydrate, cholesterol-like lipid deposits and water. The

resulting fit coefficients yield the contribution of each basis spectrum to the macroscopic

tissue spectrum, thereby elucidating the chemical/morphological makeup of the lesion. The

model explains the spectral features from a range of normal and diseased human breast tissue

samples, thereby relating the Raman spectrum of a breast tissue sample to diagnostic

parameters used by pathologists.

Morphologically derived basis spectra have several advantages over spectra obtained

from pure chemicals. First, the spectra are collected in situ and are therefore subject to
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perturbations naturally present when tissue is examined in vivo. In other words, pure

chemicals are not identical to those found in tissue. For example, most proteins are

commercially available in a powdered form, not hydrated as they are in human tissue.

Second, the number of components in the model is reduced to spectra of a few key

morphological features, rather than the large number of chemicals that are present in tissue.

This simplification has the potential to reduce error in the model fits by limiting the spectral

overlap of the model. For instance, collagen is present in human tissue in many different

forms, each producing a slightly different Raman spectrum. The collagen found in breast

tissue is predominately composed of type I collagen with minor contributions from types III,

IV, and V [Alini and Losa, 1991]. To avoid data over-fitting, a morphological spectrum of

collagen, encompassing the average of the different types, is included in our model. Also,

identifying each chemical present in a complex biological environment, such as cell

cytoplasm, is challenging. Finally, the model interprets the traditional chemical information

contained in Raman spectra into terms that are commonly used by pathologists during

histologic analysis. However, Raman spectra of pure chemicals do provide insight into the

make up of morphological features and when necessary, synthesized or commercially

available chemicals were used.

IV. C. 2. Samples Preparation and Data Acquisition

Samples of breast tissue were obtained from surgical biopsy specimens, snap frozen in liquid

nitrogen, and stored at -85 C until spectroscopic examination. Samples were then mounted

on a cryostat chuck using Histoprep and sliced into 6 gtm to 8 m thick sections using a

microtome. These sections were mounted on MgF2 flats, selected because of their small
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Raman background signal, and kept moist with phosphate buffered saline (PBS) at

physiological pH.

Raman spectra underwent processing to ensure reproducibility of the data from day to

day. First, they were corrected for the spectral response of the system using a tungsten light

source. The data were frequency calibrated using the known Raman lines of toluene. The

MgF2 background spectrum was subtracted and the broad fluorescence background was

removed by fitting the spectrum to a fifth order polynomial and subsequent subtraction of

this polynomial. Also, contributions from cosmic rays were removed, if necessary, using a

derivative filter.

Our model was built using the phase contrast microscope, discussed in Chapter III, to

identify morphological features and collect confocal Raman spectra from those features.

Raman maps were also employed for comparison with serial H&E stained sections. This

allows identification of morphological features difficult to locate with phase contrast alone,

for example fibroblasts buried in the extracellular matrix. As an example of this approach, a

Raman map of a normal breast duct and the corresponding phase contrast image are shown in

Figure IV.5. The circular structure of the duct can be discerned in the phase contrast image,

Figure IV.5a, however the image shows few other features. By plotting the contribution of

certain morphological features to the Raman map, we observe a supportive collagen network

surrounding the duct. The single layer of epithelial cells forming the duct itself and the

location of the nuclei within these cells can be seen in images IV.5c and IV.5d. Also the

presence of fat in the lumen of the duct is visible in image IV.5e.

Libraries of spectra for each morphological feature were generated. When possible,

examples of each morphological element were identified from a variety of patients and
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Cell Nucleus Fat

Figure IV.5. Raman map of a normal breast duct with the corresponding a) phase contrast image.
Each Raman image represents the contribution of a specific morphological element to the region

mapped: b) collagen, c) cell cytoplasm, d) cell nucleus and e) fat.

disease states. Raman spectra from normal, benign and malignant samples were collected

into separate libraries for analysis. Each library typically contained 60 to 80 spectra from 5

or 6 patients. If spectra in a library did not vary greatly or consistently, the spectra were

averaged to create the morphologically derived basis spectrum used in our model. If

consistent differences were observed, as was the case for the cellular components, the

number of independently varying contributors was identified with peA and used to extract

independent basis spectra. In cases where single spectra had unique Raman bands when

compared with other spectra in that morphological category, those spectra were removed

from the category and analyzed independently to ensure that their spectral features could be

explained by other elements in the model. If the spectral features could not be explained by

the current morphological model, a new category was added and the database of Raman

maps was searched for similar spectral signatures. When matches were found, phase contrast

images and serial stained sections corresponding to the Raman map were reviewed.
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Using our library of Raman maps, 9 key basis spectra were identified to comprise our

spectral model. Their Raman spectra are shown in Figure IV.6. Some features identified

during the Raman mapping experiments were not included in the model because they were

not found to contribute appreciably to macroscopic data (1 mm3 volume) acquired from

biopsy samples. This could be because they are not present in large quantities or because
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Figure IV.6. Morphological spectral model of breast tissue.

they have small Raman scattering cross-sections and thus do not contribute appreciably to

bulk tissue spectra.

IV. C. 3. Epithelial Cell Cytoplasm and Cell Nucleus

There are several types of cells in normal breast tissue: epithelial, myoepithelial, and

fibroblasts. Inflammatory cells are present when there is a host response to an irritant.

Malignant cells are typically derived from epithelial cells that have undergone a number of
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genetic transformations. Thus, the
IV.7a

degree of inter-patient and disease

dependent variation was largest for : IV.7b

the epithelial cell cytoplasm basis Z'

spectrum. Figure IV.7 displays IV.7

Raman spectra of different cells
IV.7d

occurring in the breast. Shown are

600 800 1000 1200 1400 1600 1800
the spectra of an epithelial cell in a

Raman Shift (cm 'l )

normal duct, an epithelial cell in a Figure IV.7. Raman spectra of cells occurring in the breast:
a) a fibroblast occurring in normal stroma, b) an epithelial cell

in a focus of fibrocystic disease, c) an epithelial cell in a
focus of fibrocystic disease, a normal duct, and d) a malignant epithelial cell.

malignant epithelial cell, and a fibroblast occurring in normal stroma. The main difference

among Raman spectra of a range of cells was determined to result from varying ratios of the

cell cytoplasm to the cell nucleus. Differences in this ratio are most emphasized when

comparing normal and malignant cells.

Because the ability to collect pure spectra from the cell cytoplasm and the cell

nucleus is somewhat limited by the collection volume of the Raman confocal microscope, the

two basis spectra were separated mathematically. To separate the two components, spectra

of hundreds of cells from 8 different patients were collected using the Raman microscope.

Initially areas in the Raman map corresponding to cell nucleus and cell cytoplasm were

identified by comparison to the Raman spectrum of DNA, purchased from Sigma. Next, two

libraries were constructed, one high in DNA, corresponding to spectra acquired from nuclear

regions and one with little or no DNA, collected from regions in the cytoplasm. The mean

DNA-rich spectrum was then subtracted from the mean cytoplasm spectrum, thereby
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Figure IV.8. Raman spectra of cellular components. a) DNA,
b) cell nucleus, c) actin and d) epithelial cell cytoplasm.

subtracting the epithelial cell cytoplasm model fit from

removing all the residual cell

nucleus bands from the cytoplasm

rich spectrum and all the cytoplasm

contributions from the cell nucleus

spectrum. The resultant two

spectra, cell nucleus and epithelial

cell cytoplasm, were used to re-fit

the original cell spectral data. The

final cell nucleus model basis

spectrum was derived by

each Raman spectrum in the original

cell data set and calculating the mean of the residual spectrum. The same procedure was

followed to produce the epithelial cell cytoplasm spectrum. This iterative process minimizes

artifacts due to the inability of the Raman spectrum of commercially available DNA to

accurately model the cell nucleus. The model basis spectra representing epithelial cell

cytoplasm and cell nucleus are shown in Figure IV.8. Shown for comparison, are Raman

spectra acquired from commercially available actin and DNA

Other differences between the cells found in breast tissue are incorporated into other

model components. For instance, signal from collagen can be seen in the Raman spectrum

from a fibroblast. Fibroblasts are cells responsible for making and maintaining the

extracellular matrix. In order to do so, they produce collagen, fibrinogen, and

glycosaminoglycans.

-140-

0
h

._

C
C



IV. C. 4. Fat

Fat is one of the strongest contributors to the Raman spectrum of normal breast tissue. Fat is

present in large quantities and has a large Raman scattering cross-section. Fat storage in

humans primarily takes the form of triglycerides, especially triolein. The morphological

spectrum of fat is very similar to the Raman spectrum of triolein. The fat spectrum included

in our model is the average of 28 spectra collected from 5 patients. There was little

variability in the Raman spectrum of fat with either patient or disease state.

IV. C. 5. P-Carotene

5-carotene is resonance enhanced when excited with 830 nm light. As a result, it has an

extremely strong Raman signal. It is lipophillic and is often found in conjunction with fat

throughout the breast. To eliminate the need for extracting the fat content from the hundreds

of morphologically-derived -carotene spectra, we used the spectrum acquired from

commercially available -carotene. Using our morphologically-derived Raman spectra of P-

carotene, we confirmed that the commercially available sample was an accurate

representation of the -carotene found in tissue.

IV. C. 6. Collagen

Collagen is the major protein of the white fibers of connective tissue, cartilage, and bone. It

is insoluble in water, but can be altered to a soluble gelatin form by boiling in water, dilute

acids, or alkalies. It is high in glycine, alanine, proline and hydroxyproline, but is low in

sulfur and has no tryptophan. Collagen comprises a family of genetically distinct molecules

all of which have a unique triple helix configuration of three polypeptide subunits known as
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both the extracellular matrix and the

basement membrane are comnosed
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structural proteins, such as Figure IV.9. Raman spectra of collagen: a) commercially
available collagen type I and b) morphologically-derived

fibrinogen, fibronectin, and collagen, mainly type I with minor contributions from types
III, IV, and V.

proteoglycans, are also present but in

minute quantities and with such small Raman scattering cross-sections that they do not

contribute significantly to the bulk Raman spectra. Figure IV.9 compares the mean spectrum

of morphologically-derived collagen, mainly type I with minor contributions from types III,

IV, and V with the Raman spectrum of commercially available collagen type I [Alini and

Losa, 1991]. The morphologically-derived collagen spectrum is the mean of 215 spectra

taken from 7 different patients.

IV. C. 7. Microcalcifications

Two major types of microcalcifications are found in breast tissue. Type I deposits consist of

calcium oxalate dihydrate, a birefringent colorless crystal, while type II deposits are

composed of calcium phosphates, mainly calcium hydroxyapatite. Type II

microcalcifications are typically basophilic on light microscopic examination of H&E stains

and nonbirefringent. Both type I and type II microcalcifications are strong Raman scatterers.

There is no reliable way to distinguish between type I and type II microcalcifications in a
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clinical mammogram, but the type is thought to correlate with disease [Radi 1989]. Calcium

oxalate dihydrate crystals are most frequently seen in benign ductal cysts and are rarely

found in foci of carcinoma, while calcium phosphate deposits are most often seen in

proliferative lesions, including carcinoma. This distribution is consistent with the hypothesis

that type I microcalcifications are a product of secretions, whereas type II calcium deposits

result from cellular degradation or necrosis. The Raman spectra of type I and II

microcalcifications are distinct and shown in Chapter VI.

Despite the significant role they play in breast cancer, microcalcifications are not

commonly found in our frozen breast tissue specimens. This is because calcifications are

important for medical diagnosis and therefore tissue containing calcifications is not

commonly released for scientific study. As a result, we expanded our studies to include

deparaffinized tissue sections. Calcium hydroxyapatite was identified in fresh frozen

specimens from 3 patients and in deparaffinized tissue sections from 11 patients. The

calcium hydroxyapatite basis spectrum included in the model is an average of these spectra.

Calcium oxalate was only observed in one deparaffinized tissue sample. Therefore, calcium

oxalate dihydrate was synthesized for incorporation into our model [Kontoyannis et al.

1997]. In subsequent microcalcification studies on deparaffinized sections, the spectrum of

calcium oxalate dehydrate was found to be very reproducible. Both calcification spectra

resemble Raman spectra published in the literature [Kodati et al. 1990, Kodati et al. 1991].

IV. C. 8. Cholesterol-like Lipid Deposits

The necrotic core is essentially the product of cellular degradation. Consequently, its

composition varies significantly from location to location even within a single duct. Necrosis
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can occur within a malignant duct or in the center of a tumor. Analysis of Raman spectra

from three patients indicated that the necrotic core contains: fat, collagen, calcium

hydroxyapatite, cholesterol, cholesterol linoleate and cellular material. As the ratios of these

elements can vary significantly, the spectrum included in our model, cholesterol-like,

represents the common elements of these spectra not represented elsewhere in the model.

The spectrum includes features indicative of cholesterol and cholesterol linoleate, although

there are small contributions from cellular material and triglycerides. The necrotic core is

not the only element in breast tissue containing cholesterol and cholesterol linoleate, for

example, the cell membrane contains both these chemicals.

IV. C. 9. Water

Although not a strong Raman scatterer,

water constitutes -80% of human tissue

by weight and thus our data contains '

contributions from water. The Raman X
N

spectrum of water is well known and in

our region of data acquisition has a z

our region of data acquisition has a
ll1glv, rIeLVely UlUaL JaXilUi UDanU 600 800 1000 1200 1400 1600 1800

Raman Shift (cm-1)
centered at 1650 cm ' . The Raman Figure IV.10. Raman spectra of water: in the breast

spectral model (solid line) and in the artery spectral model
spectrum of water is shown in Figure (dotted line).

IV.10. Also shown in Figure IV.10 is the Raman spectrum used in the Raman artery studies.

The two spectra exhibit different background structure and SNRs. Studies to determine

which spectrum more accurately fits our Raman data should be undertaken.
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IV. C. 10. Inter-patient Variation of Elements

Model development via averaging spectra from many patients and pathologies ensures that

our model includes the common elements to all morphological features. However, one of the

keys to successful morphological modeling is that there is minimal inter-patient variation in

the model elements. For some model components there is very little inter-patient variation.

For instance, the extracellular matrix spectrum is primarily collagen, regardless of the

patient. Likewise the fat spectrum is similar to triolein, although small variations can be seen

across samples. For other model components, such as calcium hydroxyapatite and

cholesterol-like, more variation is observed. In our present clinical data, subtle variations are

typically overwhelmed by noise. However, as instrumentation and data analysis techniques

improve, new components corresponding to smaller chemical variations will need to be

included in our model.

IV. C. 11. Future Directions: Quantitative Analysis

In order to collect Raman spectra for truly quantitative analysis, data must be independent of

the experimental system. In addition to the steps discussed above, the system throughput

must be assessed and data must be corrected for the CCD gain so that the number of

collected photoelectrons is determined. Our current morphological model of breast only

provides relatively quantitative data and is therefore, not subject to these more advanced

considerations. Although strict quantification is desirable, it is challenging to establish

Raman scattering cross-sections for the components present in biological tissue. However,

with instrumental advances and a deeper understanding of the theoretical accuracy of our
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approach we have planned a study to make our morphological models quantitative. In this

study, data will be acquired from thin sections of fresh-frozen breast tissue using our Raman

microscope. This data will be acquired using a low magnification objective to ensure that the

spectroscopic signal is representative of the entire breast tissue section. Data will not be

collected confocally and spectra will be acquired for long integration times, conferring high

SNR Raman data. Addition of a photodiode to the laboratory microscopy system allows for

correction for laser intensity variations. Each thin section of breast tissue spectroscopically

examined will then be reviewed by a pathologist. A combination of staining techniques and

morphometric analysis will be used to obtain an estimate of the volume occupied by each

morphological feature represented in our Raman spectral model. These volumes will then be

correlated with the fit coefficients from the corresponding spectrum. Half of the data will be

used to scale the basis spectra such that the fit coefficients are representative of the

pathologically determined volumes. The remaining data will be used for validation of the

intensity corrected model. I anticipate that some model elements, such as fat and

microcalcifications, will quite accurately reflect their morphological volumes while others,

such as epithelial cell cytoplasm and cholesterol-like, will not. This will allow us to identify

areas of the model which are representative of several morphological features and provide a

basis for model refinement. The prediction error equation, presented below, can be used to

estimate reasonable errors.
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IV. D. Diagnostic Algorithm Development

IV. D. 1. Calibration

Many techniques have been developed to aid researchers in producing decision algorithms to

classify data according to specific parameters. These include discriminant analysis [Fisher

and Van Belle, 1993], logistic regression [Fisher and Van Belle, 1993; Pagano and

Gauvereau, 1993], and neural networks [Robb and Munk, 1990]. Discriminant analysis and

logistic regression are very similar linear techniques. Both assume that the samples are

binomially distributed within each classification. Discriminate analysis, which applies

Bayes' Theorem, is the more restrictive in its assumptions. It allows only for normally

distributed input variables, whereas logistic regression allows for discrete (e.g. only integer

values) or categorical (e.g. cancerous/non-cancerous) variables. We typically employ

logistic regression in our algorithm development as it can easily incorporate binary

categorical information into the decision scheme. Neural networks simulate the processing

of signals in the brain. In such a system, information is processed by a network of

interconnected units according to a pattern established during the calibration process.

Neural networks do not require the data to be normally distributed and can be used to

describe non-linear systems as well as linear ones. However, it is especially important to

perform proper calibration and validation of neural network based decision algorithms

because physical interpretation of the coefficients is difficult and robustness is not always

easy to achieve.
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IV. D. 2. Logistic Regression

Logistic regression is well suited to the purpose of developing classification algorithms from

Raman spectral data as it allows us to classify samples according to discrete categories

[Sharma 1996]. It is used to correlate the fit coefficients, obtained via modeling, with disease

classifications provided by a pathologist. Pathology serves as the gold standard in all of our

diagnostic algorithm development. Logistic regression is used extensively throughout this

thesis for algorithm development. The underlying assumption of logistic regression is that

the probability, pi, that the ith sample in a set of spectral data belongs to a particular category,

for example that the sample is malignant, is described by the logistic function of the form:

pi=(1+exp(a+Yzjxj))-' (IV. 10)

With xj the score or fit coefficient associated with the jth basis spectrum. The parameters pj

and a are to be determined. pi varies from zero to one in a sigmoidal fashion as a function of

xj. It is small for large values of xj and approaches unity for small values. Logistic

regression introduces the likelihood function, L, defined as the probability of observing a

specific set of diagnoses in a set of samples. This can be calculated as the product of the

probabilities, Pi, that each individual sample belongs to a given category:

L= Pl p2-p3. · · Pn (IV. 11)

The first step in implementing logistic regression is to choose a particular basis set and apply

these basis spectra to a set of calibration data to obtain a set of fit coefficients, xj, for each of

the i samples. In this thesis we use both the spectral model, described above, as well as PCA

to generate fit coefficients for algorithm development. To determine values for the Rjs and ca,

the maximum likelihood principle is used. It states that the values for the parameters of the

likelihood function should be chosen to maximize the probabilities predicted for obtaining
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the specific set of diagnoses for the sample set. The expression for L is obtained by inserting

Eq. IV.10 into Eq. IV.11 and the values for the js and a are found by applying this

expression to the calibration data set. The values for the Rjs and a are chosen to maximize

the agreement between L and the known classifications of the calibration data set. Once the

values for the js and a have been obtained, Eq. IV.10 can be used to predict the probability

that a new sample falls into a given category. Different combinations and numbers of

spectral components should be assessed in selecting the relevant number of parameters with

diagnostic potential.

Once a diagnostic algorithm is developed, its performance must be assessed. This

can be accomplished by calculating the sensitivity and specificity of the approach.

Sensitivity refers to the proportion of individuals with the disease who are correctly

identified by the diagnostic algorithm. Specificity is the proportion of individuals without the

disease who are correctly identified by the diagnostic algorithm. Sensitivity and specificity

are typically expressed as percentages. If the sensitivity and specificity are both 100%, then

the diagnostic algorithm is equivalent to the gold standard. However, in practice, sensitivity

is gained at the expense of specificity and vice versa. The trade off between sensitivity and

specificity is often displayed as a Receiver Operator Characteristic (ROC) curve. Whether

we aim for a high sensitivity or high specificity depends on the condition we are trying to

detect and the implications for the patient of a false negative or false positive test result. For

conditions that are easily treatable, a high sensitivity is preferable. However, for conditions

that are serious and untreatable, a high specificity is preferable in order to avoid making a

false positive diagnosis.
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IV. D. 3. Validation

It is necessary to check the accuracy of a diagnostic algorithm after it is built. An

independent data set, which does not include the data used for calibration, is often used for

testing the robustness of a diagnostic algorithm. If the diagnoses obtained by using a

prediction scheme in a prospective manner and the diagnoses provided by a pathologist are

statistically similar, the diagnostic algorithm is validated and considered clinically accurate.

This process of testing an algorithm is called validation.

Although it is desirable to use an independent data set for validation, this requires a

large number of samples, often difficult to achieve with biological tissues. When the number

of samples is not sufficient to perform an independent validation, cross-validation can be

performed. Cross-validation allows for the efficient use of a data set because only a small

number of samples are reserved, and the spectra of the remaining samples are used for

calibration. The developed algorithm is then used to extract diagnoses from the spectra of

the reserved samples and the disease classifications are compared with the pathological

diagnosis. One example of cross-validation is the leave-one-out method, in which one

spectrum at a time is left out of the calibration. In this process, the diagnostic algorithm is

calibrated using logistic regression excluding a single spectrum. The excluded datum is used

for validation and the prediction made on it is compared to the diagnosis provided by a

pathologist. Each spectrum is, in turn, excluded and the procedure repeated. By cycling

through left-out samples in this way, a relatively small data set can be used efficiently and

without bias to establish the robustness of a model. Several other variations of cross-

validation analysis exist. Data from a single patient may be omitted or the data can be

divided into a number of sets. In these versions of cross-validation, the diagnostic algorithm
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is calibrated using logistic regression on all spectra except those from a single patient or a

single.set. Again the excluded data is used for validation. The patients or sets are then

rotated, with each in turn serving as the validation set. When separating data into sets, it is

important that multiple spectra from a single patient are kept as part of the same data set and

also that data collected during different acquisition time periods is carefully mixed between

the sets. Finally, normal, benign, and malignant samples should be evenly distributed among

the sets. All algorithm development presented in this thesis employs leave-one-out cross-

validation in which a single spectrum is excluded. Algorithms are also validated

prospectively on independent data sets.

IV. E. Real-Time Analysis

A final step in the development of clinical Raman spectroscopy is the ability to provide real-

time diagnosis. Real-time analysis is also a useful experimental tool. As such, we have

developed clinical Raman instrumentation that provides real-time diagnoses [Motz et al. in

press]. Following accumulation of the data, the spectrum is analyzed with the appropriate

model. Data, model fit, and fit coefficients are then displayed. A diagnostic plot is also

shown indicating the samples' disease state. Different diagnostic algorithms and spectral

models can be chosen depending on the application. LabVIEW is the primary platform for

data acquisition and analysis in the real-time clinical Raman system. In addition to providing

flexibility for interfacing with various devices in the system, LabVIEW allows automation of

spectral calibration and data analysis in Matlab, V.6.5.0 (The Mathworks, Natick, MA).

Diagnosis is obtained in less than 1 sec. following data acquisition.
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Real-time feedback can be used to direct biopsy, thereby reducing the likelihood of a

non-diagnostic biopsy that would require repeat needle or surgical biopsy. Also, with the

development of minimally invasive breast cancer therapies, such as radiofrequency ablation,

which relies on insertion of a thin metal probe into the breast, there is the potential that

diagnosis and treatment of some lesions could be performed in a single procedure. Our real-

time Raman system has been used successfully for a variety of preliminary clinical studies.

Applications include targeting moieties of interest during data collection and real-time in vivo

diagnosis. The system was used ex vivo to target microcalcifications in breast biopsies,

discussed in Chapter V.B.5, and in vivo to provide margin assessment at breast cancer

surgery, Chapter VII.

IV. F. Analytical Method of Estimating Chemometric Prediction Error: Ac

We present an analytical formula that estimates the uncertainty in concentrations predicted

by linear multivariate calibration, particularly OLS. We emphasize the analysis of

spectroscopic data. The formula is expressed in terms of easily quantifiable experimental

parameters and is straightforward to evaluate. To test this formula, we performed OLS

analysis upon simulated spectra and upon experimental Raman spectra of dissolved

biological analytes in water. In each instance, the root-mean-squared error of prediction was

compared to the estimate from the formula. We observe excellent agreement between the

formula and data for these simple systems. The ability to make predictions concerning the

concentration error is valuable to the process of developing and refining analytical

measurements.
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IV. F. 1. Introduction

Raman spectroscopy provides detailed quantitative information about sample composition

and thus is a promising technique for the examination of biological systems [Raman and

Krishnan 1928; Pupples et al. 1990; Mahadevan-Jansen and Richards-Kortum 1996; Hanlon

et al. 2000]. However, it is often difficult to interpret Raman spectra of biological samples

due to their complexity. Noise as well as the presence of multiple components, resulting in

overlapping Raman bands, complicates attempts to use Raman peak intensities for accurate

quantitative analysis. This has led to the application of multivariate techniques, which utilize

the entire spectral range, to the analysis of Raman spectra [Shaver 2001]. Multivariate

analysis is part of the general field used to derive chemical information from data, known as

chemometrics. The goal of multivariate methods of analysis is to find a projection vector

that extracts concentration information from the data. The concentration errors resulting

from chemometric analysis are typically assessed by comparison with a reference

measurement. Reference measurements have the disadvantage of introducing an additional

source of error, contained in the reference concentration. Further, in many biologic samples,

such as tissue, obtaining reference concentrations is not straightforward. Although, reference

measurements can be used to assess the overall error of an approach, they provide little

insight into the origins of that error.

We have derived a formula for the chemometric prediction error in a noise-limited

data set. This formula relates easily measurable experimental parameters to concentration

uncertainty. These parameters are the noise in the data, the signal of the component of

interest at unit concentration and the overlap factor. The overlap factor accounts for the

similarity between the Raman spectrum of the component of interest and the spectra of all
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other moieties present in the sample. By understanding the sources of prediction error,

efforts can be made to reduce it scientifically. Further analytic methods for calculating the

concentration error allow smart experimental design to detect moieties of interest with the

appropriate accuracy. Most importantly, the formula provides a means to predict the smallest

concentrations measurable or the signal to noise ratio necessary to observe a moiety of

interest with the appropriate accuracy.

The prediction error formula presented in this manuscript is derived for OLS

regression. OLS is a simple, yet powerful technique in spectral analysis [Haaland and

Thomas 1988]. It is useful when it is desirable to know the concentrations of all constituents

present in the sample. Although OLS provides detailed information about sample

composition, it requires knowledge of the number of important components in the sample as

well as their Raman spectra. The Raman spectra of the constituents form a set of basis

spectra that are fit to the data in a linear least-squares fashion. In this procedure, the sum of

the squares of the residual, the difference between the model fit and the data, are minimized

to obtain the optimal fit. The amount that each basis spectrum is weighted in order to

achieve this fit, the fit coefficient, provides the concentration of that species.

Although derived for OLS, the formula can readily be extended to other multivariate

techniques, as long as the projection vectors for OLS and the other method of analysis are

similar. For each species in the data set, there exists only one ideal projection vector that

models the data set most accurately. When distinct multivariate methods are applied

successfully, the projection vectors obtained with different techniques should closely

approximate each other. If there are differences between the projection vectors, this

methodology will not provide accurate errors for other multivariate techniques.
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In this section we derive an analytical formula for the prediction error. The

concentration errors given by this formula are compared with those provided by a chi-

squared analysis, a standard but more cumbersome method of calculating error. Next, the

analytical expression is validated through both simulated and experimental data. In the

simulations, excellent agreement is obtained for various levels of noise, as well as different

concentration mixtures. Experimental data, acquired from biological analytes dissolved in

water, also exhibits good agreement with the analytical formula. The ability to predict the

smallest concentrations measurable or the signal to noise ratio necessary to observe a moiety

of interest is an important step towards quantitative biomedical Raman spectroscopy.

IV. F. 2. Sample Preparation and Data Acquisition

IV. F. 2. a) Raman Spectroscopic Measurements

Data were acquired using the macroscopic Raman laboratory system that has been described

in Chapter III. In short, the excitation laser beam, 830 nm, is focused and directed to the

sample via a mirror at a 60 ° angle. The Raman scattered light is detected by a deep-depletion

CCD detector cooled to -110 °C. Raman spectra in this study were acquired with a 500 s.

integration time for basis spectra (1s. per frame x 500 frames) and a 1 s. integration time for

data. Data and basis spectra were collected with the same integration time per frame in order

to remove distortions in intensity caused by the shutter. All data have a spectral resolution of

8 cmrr. The average laser excitation power was 100 mW. Laser power was continuously

monitored by a PDA55 photodiode (ThorLabs) which reads out every 10 ms. Photodiode

values were averaged for the time of data collection.
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IV. F. 2. b) Simulated Data

Basis spectra, collected during this study or previously, were used as 'noiseless' Rarian

spectra to generate simulated data. Both the amount of noise and the basis spectra mixtures

were varied in our simulations. Simulated data corresponding to different concentration

mixtures were obtained from mathematical manipulation of basis spectra. In order to attain

sufficient sample statistics and avoid statistical abnormalities sometimes encountered with

small data sets, 500 sources of noise were added to the basis spectra for each simulation. To

generate uncorrelated spectral noise of varying magnitudes, values returned by the randn

function in Matlab (The Math Works, Inc., Natick, MA) were multiplied by a constant. The

data was then analyzed using OLS and the root mean standard error of prediction (RMSEP)

was compared to the prediction error given by the analytical formula.

IV. F. 2. c) Experimental Data

All chemicals used in this study were purchased from Sigma (St. Louis, MO). Glucose and

creatinine were chosen for experimental data as they are water soluble and do not appear to

interact with one another. Stock solutions of both analytes at 0.4 M were created with

deionized water. These stock solutions were then used to obtain basis spectra as well as

create all mixtures examined in this study. Data were acquired from mixtures of varying

concentrations of glucose and creatinine. For each mixture examined, 500 Raman spectra

were sequentially collected. Errors in reference concentrations of the mixtures, resulting

from fluctuations in pipeting volumes, were probably less than a part in 500. The magnitude

of noise was calculated from the experimental residuals, which were devoid of Raman

features.
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IV. F. 2. d) Data Processing

Data processing was preformed in Matlab 5.31. Spectra were Raman shift frequency-

calibrated using known spectral lines of toluene. Individual spectra were divided by the

photodiode output to correct for fluctuations in laser power. A fifth order polynomial was fit

to the spectra by least-square minimization and subsequently subtracted to remove the slowly

varying background [Brennan et al. 1997]. Cosmic rays were removed through the use of a

derivative filter. Model fitting was performed using a linear combination of basis spectra

with a non-negativity constraint. The fit coefficients, provided by the model, were used to

predict sample concentrations and calculate RMSEP values.

IV. F. 3. Theory

Multivariate methods of analysis provide concentration measurements via a projection vector

that extracts concentration information from the spectral data set, as in Eq. IV.3. We assume

that the noise in the spectral data set is the only source of error. This is an appropriate

assumption for Raman spectra of biological tissues as the shot noise resulting from the

fluorescence background is the dominant source of noise. If we have an accurate B matrix,

the noise in matrix S induces errors in the predicted concentration. The errors can be

expressed:

C+ACnois=(S+SN) -B (IV. 12)

where ACnoise is the matrix of error in concentration and SN is the matrix of noise in the signal

matrix S. By subtracting Eq. IV.3 from Eq. IV.12, we obtain:

ACoise = SN.B (IV.13)

Since the projection vector B is universal, we can insert the projection vector for OLS, given

in Eq. IV.9 into Eq. IV.13 to obtain:

-157-



ACnoise=SNOP T (P.PT)4I (IV.14)

When the number of samples is r, the number of components p and the number of

wavelength points in each spectrum m, S is an rxm matrix, C is an rxp matrix, and P is a pxm

matrix.

In concentration predictions, prediction errors indicate the quality of the approach.

For each sample, the prediction error is the difference between the predicted concentration

and the concentration measured by a reference technique. This is formulated:

Ac Cpredictioni-Creference=J (IV. 15)

where Aci is the prediction error for the i-th sample, Cprediaioni is the predicted concentration

for the i-th sample, and cferfenc, is the concentration measured by the reference technique for

the i-th sample. For a set of samples, the prediction error for a data set is the standard

deviation of the prediction errors for all samples:

AC=(Cprediction,i-refeene,i)/N (IV. 16)

Where AC is the predicted error for the data set and N is the number of samples in the data

set. AC is also called the RMSEP. The prediction accuracy is defined as the ratio of the

mean concentration to the prediction error (C/AC). By using the definition of standard

deviation, the prediction error of the k-th element due to noise, Acnise, is expressed:

ACnoise,k=4diagk(ACnoise ACoi se ) /N (IV. 17)

where diagk(X) is the diagonal k-th element of matrix X. Each diagonal element of the

ACnoiseT . ACnoise is related to the error in the concentration measurement of each component.

Inserting Eq. IV.14 into Eq. IV.17, we obtain:

ACnoiS,k=/diagk{ [(p.pT)l] T.p.SNT SNS.p T (P.PT)-I }/N (IV. 18)
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In the covariance matrix of shot noise, the diagonal elements are dominant. By using an

approximation which neglects the off diagonal elements of the covariance matrix:

SNT-SNn2.NI (IV. 19)

where n is the magnitude of the noise and I is the N-by-N identity matrix, Eq. IV.19 can be

greatly simplified:

ACnOise,kEn4diagk { (p.pT)- } (IV.20)

The matrix of basis spectra, P, contains spectra of pure components at unit concentrations.

We can expand the matrix P so that:

Q=P/s (IV.21)

where Q is the matrix of generalized component spectra and s is the signal intensity. P/s is

purely lineshape without intensity information. The signal intensity is the Euclidean norm of

the spectrum of the k-th pure component [Strang 1988].

s=4diagk(P.PT) (IV.22)

By inserting Eq. IV.21 into Eq. IV.20 we obtain:

Ack-(nldiia gk(Q.QQT))/s (IV.23)

The ratio of concentration ck and error in concentration Ack is the prediction accuracy. In this

equation, there are two significant factors that determine the prediction error: the signal to

noise ratio and the spectral overlap. The first term, s/n, is the signal to noise ratio of the

target chemical. It is determined by the integrated signal (norm) of the component of interest

at unit concentration and the noise (standard deviation) in the data set. The prediction

accuracy increases linearly with the SNR, which has been confirmed previously [Berger and

Feld 1997]. The second term describes the effect of overlap in basis spectra. Q is the matrix

of generalized component spectra, the basis spectra without intensity information. When the
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covariance matrix of Q has dominant diagonal elements, the spectral overlap is small and the

overlap factor is close to 1, its maximum possible value. When the non-diagonal elements

are comparable in magnitude to the diagonal elements, the spectral overlap is significant and

the overlap factor is close to 0. The spectral overlap is affected by the number of basis

spectra as well as their resolution and spectral range. Defining the overlap factor, olf, as:

olf=l/4diagk(Q QT)- (IV.24)

The prediction error equation can be written as:

1 ne ormula assumes tnat the noise in

the spectral data set is the only source

of error and that the basis spectra are

noise free [Koo 1996]. These are

reasonable assumptions, as the shot

noise resulting from the fluorescence

background is the dominant source of

noise in the Raman spectrum of

biological tissues and basis spectra are

Io o oo 2o ooaocollected for long integration times and
600 800 1000 1200 1400 1600 1800

Raman Shift (cm-) may be averaged over many samples.
Figure IV.11. Comparison of the experimentally observed

noise (below) and the simulated noise (above).
The formula also assumes that the

noise is uncorrelated. In other words, the noise behaves as white-noise, which is evenly

distributed throughout the spectral range. Although our spectra are governed by shot-noise,

the broad fluorescence background we observe with tissue measurements slopes gently
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across our spectral region of interest. This background produces the dominant source of

noise in our data and thus our experimental noise is similar to white- noise. A comparison

between the uncorrelated noise used in the simulations and the experimentally observed noise

is shown in Figure IV. 11.

IV. F. 4. Comparison with Chi-Square Analysis

Chi-square analysis is a well established method for assessing the accuracy of a modeling

technique. We compare this approach with our analytical formula for calculating

concentration error. A simple simulation using only the spectrum of glucose, at a signal of

""A no :s . ...---- J_ To1^ : .: .... 1- --
'.Y I / UTILS, IS exaUmmeu. I ilUS slmula1Ion,

noise is the only source of concentration

error, there is no overlap factor. Shown in

Figure IV.12, is the parabola generated by

constraining the glucose fit to the simulated

spectrum with a magnitude of noise of 0.094 0.5 1 1.5Concentration

counts. The equation of this parabola is Figure IV.12. Chi-square error analysis.

given by X2=(5.6(C-1) 2+1)546, where 546 represents the degrees of freedom in our system.

The error for a one component system, is inversely one half of the second derivative of X2

with respect to C [Bevington and Robinson 1992]. This results in a concentration error of

0.018 comparable with that given by the prediction error formula, 0.019.

Although the chi-square approach provides a means to calculate concentration error,

complex systems with several basis spectra result in time consuming and cumbersome
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analysis. The formula presented in this thesis allows rapid and straightforward calculation of

prediction error and relates this error to quantifiable experimental parameters.

IV. F. 5. Simulated Data

The prediction error expression can easily be validated with simulated data. Further,

simulations are used as a direct comparison with experimental data. Simulations also allow

examination of deviations from the formula due to system drift and data pre-processing

techniques. Both the amount of noise and the basis spectra mixtures were varied in our

simulations.
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Figure IV.13. Results of a simulation with a low amount of spectral overlap. a) Comparison of the RMSEP
of the simulated data (dots) and the prediction error given by the analytical formula (line) as a function of

noise. b) Basis spectra of creatinine and glucose used in the simulation. Shown above are simulated
mixture spectra with the minimum and maximum amounts of noise employed in the analysis.

Figures IV.13 and IV.14 show plots of prediction error as a function of the magnitude

of noise in the data. These Figures correspond to simulations with different degrees of

spectral overlap. The signals have been scaled to be comparable between the two

simulations, shown in Figures IV.13 and IV.14, in order to highlight the effects of noise and

spectral overlap. Figure IV.13a displays results of a simulation using glucose and creatinine

in equal proportions. These two basis spectra have little spectral overlap, seen in Figure
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IV.13b, and thus an overlap factor of 0.99. Also shown in Figure IV.13b are the simulated

mixture data with the maximum and minimum magnitudes of noise examined. The solid

lines in Figure IV.13a represent concentration errors given by the analytical formula while

the dots are the RMSEP values obtained from OLS modeling of the simulated data. The

simulated data exhibits excellent agreement with the prediction error formula. Figure IV.14a

displays results of a simulation using cholesterol and two cholesterol esters, cholesterol

linoleate and cholesterol oleate, in equal proportions. As seen in Figure IV.14b, these three

basis spectra are very similar and have a large amount of spectral overlap. The overlap

factors of cholesterol, cholesterol linoleate, and cholesterol oleate are 0.54, 0.37 and 0.34,

respectively. The concentration errors in this analysis are much larger due to the high degree

of spectral similarity in the system. Again, we obtain excellent agreement between the

simulated data and the analytical formula. As expected, the prediction error increases

linearly with the amount of noise in both simulations. From these simulations, we conclude

that Eq. IV.25 provides accurate error estimates over a wide range of experimental

conditions.
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Figure IV.14. Results of a simulation with a high amount of spectral overlap. a) Comparison of the RMSEP
of the simulated data (dots) and the prediction error given by the analytical formula (line) as a function of
noise. b) Basis spectra of cholesterol, cholesterol linoleate and cholesterol oleate used in the simulation.

Shown above are simulated mixture spectra with the minimum and maximum amounts of noise employed in
the analysis.
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Simulated data sets were constructed to closely mimic the experimental data

presented below. An amplitude of noise consistent with the noise observed experimentally

was used (n=13.4 counts). In this simulation, basis spectra mixtures are varied. Results are

displayed in Table IV.1. Concentrations are obtained by averaging the fit coefficients for all

500 spectra and thus are expected to be within known concentrations by a factor of the

prediction error divided by the square root of 500. Again, these simulations agree well with

the prediction error formula and provide a means for direct comparison with experimental

data.

IV. F. 6. Experimental Data

Experimental results are also displayed in Table IV. 1. Although simulated data confirms the

Simulated Data Experimental Data

Glucose (mM) Creatinine (mM) Glucose (mM) Creatinine (mM) Glucose (mM) Creatinine (mM)

400.0 0.0 400.0 0.3 399.9 0.2

0.0 400.0 0.7 400.0 1.2 400.6

100.0 300.0 100.1 300.0 99.2 299.8

200.0 200.0 200.1 200.0 197.2 201.1

300.0 100.0 300.1 100.0 294.3 100.4

AC.us. Acmaad RMSEPi. RMSEPrj., RMSEPgwe RMSEPctj..

1.5 0.7 1.5 0.4 2.8 0.5

1.5 0.7 0.9 0.7 1.6 1.5

1.5 0.7 1.5 0.7 2.3 1.4

1.5 0.7 1.5 0.7 2.3 1.1

1.5 0.7 1.5 0.7 2.0 0.9

Table IV.1. Comparison of theory, simulations and experimental data of different concentration mixtures of
glucose and creatinine.
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accuracy of the formula, rarely are the ideal assumptions about errors observed with real

data. Many factors cause these deviations such as spectrometer drift and nonlinear response

as well as distortions due to data pre-processing. Experimental data tests our ability to

achieve the theoretical error, provided by the analytical formula, with our instrumentation

and data pre-processing techniques. As expected, the experimental data shows deviations

from the theoretical predictions. However, the experimental results exhibit reasonable

agreement with the analytical formula. The RMSEP is typically within a factor of two of

theory and the absolute concentration is bracketed by the prediction error, although not by

the prediction error divided by 500. It should be noted that the values in Table IV.1.

represent ideal experimental conditions and cannot be reliably collected using our current

instrumentation. Deviations are thought to be due to limitations in the ability to correct for

fluctuations in laser power, pipeting errors and data pre-processing techniques, such as

background and cosmic ray removal. Studies are currently underway to assess the impact of

each of these factors.

IV. F. 7. Conclusions

We have derived an analytical formula that estimates the uncertainty in concentrations

predicted by linear multivariate calibration, particularly OLS. The equation is expressed in

terms of easily quantifiable experimental parameters and is straightforward to evaluate. Both

simulated spectra and experimental data have been used to validate the formula. This

approach allows calculation of the ideal concentration error and is not subject to errors

introduced from reference measurements or data pre-processing techniques. Thus, it

provides insight into the fundamental limits of concentration accuracy as well as the sources
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of prediction error. The ability to predict concentration errors without the use of a reference

measurement is particularly useful in biological systems. With this formula, one can

calculate, a priori, the level of signal to noise ratio needed in order to achieve a specified

level of prediction accuracy. The ability to predict the smallest concentrations measurable or

the signal to noise ratio necessary to observe a moiety of interest is an important step towards

quantitative biomedical Raman spectroscopy.
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Chapter V. Raman Spectroscopic Breast Cancer Diagnosis: Ex
Vivo Studies

We employ Raman spectroscopy to diagnose normal, benign and malignant lesions in

specimens of human breast tissue. In this Chapter, Raman spectra are acquired from intact,

ex vivo samples of human breast tissue. The volume sampled is 1 mm3. Data are fit to a

linear combination of the model basis spectra. The resulting fit coefficients provide insight

into the chemical/morphological makeup of the tissue and are used to develop diagnostic

algorithms. A diagnostic algorithm was developed in the laboratory with samples of fresh-

frozen breast tissue. 130 tissue sites from 58 patients are examined with four pathologies

predominating: normal, fibrocystic change, fibroadenoma, and infiltrating carcinoma. The fit

coefficients corresponding to fat and collagen, represented by two basis spectra, are found to

be the key diagnostic parameters in distinguishing pathologies. The resulting diagnostic

algorithm, that encompasses all data and classifies samples according to specific pathological

diagnoses, yields a sensitivity of 94% (29/31), a specificity of 95% (90/95) and an overall

accuracy of 85% (107/126). The excellent results of this study thus supported moving the

technique to a clinical setting for further testing of its efficacy in breast cancer diagnosis. As

such, we undertook two clinical studies. The first, presented in this Chapter, was preformed

immediately following tissue excision. Motivation and preliminary results are presented in

Section V.B. The second, presented in Chapter VII, demonstrates in vivo data collection.
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V. A. Raman Spectroscopy of Fresh-Frozen Breast Tissue

Breast cancer accounts for nearly one in every three cancers diagnosed in American women.

In the US, approximately 212,600 new cases are diagnosed each year and 40,000 women die

from the disease [NCI 2003]. Mammography is the most common technique for detecting

non-palpable, highly curable breast cancer. It employs x-rays to quantitatively probe density

changes in breast tissue. However, these density changes are not uniquely correlated with the

probability of breast cancer. Because of this, mammography serves as a screening technique

rather than a diagnostic tool. This is evidenced by the fact that 70 to 90% of

mammographically detected lesions are found to be benign upon biopsy [Johnson et al.

1999]. Thus, if a lesion is found through either clinical breast examination or

mammography, the suspect tissue is always biopsied. Breast biopsy is often performed by a

surgical excision to remove the entire lesion, but more recently, a less invasive procedure

using a needle to remove a core sample of the lesion has gained acceptance. Core needle

biopsy removes only a cylinder of tissue typically 1 mm in diameter and several centimeters

long. Although less invasive than surgical biopsy, it requires the collection of at least five

specimens to ensure proper sampling and often as many as twelve cores of tissue are

removed [Lieberman et al. 1994]. As a consequence of the limitations of current techniques,

each year a large number of breast biopsies are performed on lesions ultimately diagnosed as

benign. The complete diagnostic process, from start to finish, may take months and include

multiple biopsies.

The desirability of reducing the number of benign excisional biopsies preformed,

patient trauma, time delay, and the high medical costs associated with biopsy has motivated

researchers to explore minimally invasive optical methods for diagnosing breast lesions. The
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studies below assess the ability of Raman spectroscopy to diagnose breast cancer.

V. A. 1. Sample Preparation and Data Acquisition

All studies involving human tissue were approved by the University Hospitals of Cleveland

and Case Western Reserve University Institutional Review Board and the Massachusetts

Institute of Technology Committee On the Use of Humans as Experimental Subjects.

Samples were provided by the Cooperative Human Tissue Network from surgical biopsy

specimens, reduction mammoplasties and prophylactic mastectomies.

V. A. 1. a) Tissue Preparation

Breast tissue was obtained from patients undergoing surgical procedures. Upon removal, the

samples were snap frozen in liquid nitrogen and stored at -80 °C until examination. Samples

were passively thawed at room temperature and kept moist with phosphate buffered saline

(PBS). Following spectral acquisition, specimens were marked with India ink to indicate the

region sampled, and fixed in formalin. The fixed tissue samples were routinely processed,

paraffin embedded, cut through the marked locations in 5 gm thick sections, and stained with

H&E. The histological slides were examined by an experienced breast pathologist who was

blinded to the outcome of the Raman spectroscopy analysis. A total of 130 spectra from 58

patients was examined using Raman spectroscopy, 49 spectra from normal breast tissue, 47

from benign lesions, 3 from lesions diagnosed as DEH, and 31 from malignant lesions.

Normal tissue from 25 patients was examined (20 female/2 male/3 unknown; 8 Caucasian/12

Black/5 unknown) with a mean age of 34.3 years and an age range of 13-75 years.

Fibrocystic change was studied in 16 patients (10 female/1 male/5 unknown; 5 Caucasian/3
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Black/8 unknown) with a mean age of 40.3 years and an age range of 13-75 years. Tissue

diagnosed as fibroadenoma was obtained from 6 patients (4 female/2 unknown; 2 Black/4

unknown) with a mean age of 20.8 years and an age range of 13-40 years. All malignant

samples were diagnosed as infiltrating carcinoma (10 ductal/2 lobular/1 ductal and lobular/ 1

mammary, not otherwise specified). Infiltrating carcinoma was examined in 16 patients (8

female/8 unknown; 5 Caucasian/2 Black/9 unknown) with a mean age of 57.6 years and an

age range of 46-77 years. DEH was encountered in 2 female Caucasian patients with ages of

11 and 49 years. Patient information was not available for the sample diagnosed as fat

necrosis.

The mean ages and age ranges for the patients in this study reflect the natural age

incidence of each lesion [Rosen and Oberman 1992]. The peak age of incidence for stromal

fibroplasia, the predominant manifestation of fibrocystic change encountered in this study, is

in the 4th and 5th decades (30's and 40's). The peak age of incidence of fibroadenoma is

much earlier, the 3rd decade (20's), and fibroadenomas account for the majority of breast

lesions requiring biopsy in that age range. The peak age of incidence for infiltrating

carcinoma is the 6th decade (50's).

As multiple spectra are collected from each patient, some tissue samples are included

in both the normal and diseased categories, depending on the pathology underlying the exact

region of data collection. Specifically, three tissue samples with fibrocystic change also

contained normal breast tissue, one sample with fibrocystic change also contained DEH, one

sample with fibroadenoma contained adjacent fibrocystic change, and one sample contained

foci of infiltrating carcinoma, fibrocystic change and normal breast tissue.
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V. A. 1. b) Raman Spectroscopic Measurements and Data Processing

Data were acquired using the laboratory Raman macroscopic system shown in Figure III.8

and detailed in Chapter III.E.2. Raman spectra in this study were acquired with a 10 to 30

sec. integration time, depending on signal intensity, with a spectral resolution of 8 cm' 1. The

average laser excitation power varied between 100 and 150 mW. No tissue damage was

observed, either grossly or upon histological review.

Data processing was preformed in Matlab 5.30. Spectra were Raman shift frequency-

calibrated using known spectral lines of toluene. A fifth order polynomial was fit to the

spectra by least-square minimization and subsequently subtracted to remove the slowly

varying fluorescence background. Cosmic rays were removed through the use of a derivative

filter. Raman spectra were divided by a white light spectrum to account for the spectral

response of the system. Model fitting was performed using a linear combination of basis

spectra with a non-negativity constraint. The contribution of each basis spectrum, obtained

from the spectral model described in Chapter IV.C, to the breast tissue specimens was

acquired by normalizing the fit coefficients (excluding water, as it is applied exogenously)

such that they sum to one. Logistic regression, a discriminate analysis technique, was used to

correlate the normalized fit coefficients with the diagnostic categories. Using logistic

regression, we examined the diagnostic capability of all combinations of the eight

morphological components in the model. The diagnostic algorithm presented below resulted

in the highest sensitivity and specificity. In order to cross validate our algorithm, we

employed a leave-one-out cross validation analysis. The diagnostic decision lines displayed

in the figures were obtained using logistic regression with all samples included. However, to

obtain the sensitivities and specificities reported in this thesis, logistic regression with leave-

-173-



one-out cross validation was used. These methods of data analysis and diagnostic algorithm

development are detailed in Chapter IV.

Receiver operating characteristic (ROC) curves were generated by changing the

probability threshold for assigning a classification (e.g. changing the probability threshold for

cancer:non-cancer discrimination from 50%:50% to 45%:55%). Sensitivity and specificity

were calculated in increments of 5% from 0% to 100%. Figures display unique values of

sensitivity and specificity.

V. A. 2. Model Fits

To understand the relationship between a tissue sample's Raman spectrum and its disease

state, we examined the contribution of each model basis spectrum to spectra acquired from a

variety of pathologies. Model fits to Raman spectra acquired from normal, benign, and

malignant samples of breast tissue are shown in Figure V.1, along with the corresponding

images from H&E stained sections used to make the histopathologic diagnosis. The India

ink used to record the region of spectral examination can be seen as a black line on the tissue

surface in the H&E images. The difference between the measured spectrum and the model

fit, the residual, is shown below each spectrum in Figure V.1. The lack of significant

structure in the residuals demonstrates that the model accounts for the majority of the

spectroscopic features observed and describes the data well. The fit coefficients, also

displayed in Figure V.1, represent the amount that each model basis spectrum must be

weighted in order to recreate the tissue spectrum, thereby providing insight into the

chemical/morphological makeup of the tissue. Fit coefficients are a function of both the

concentration of a particular model component and its Raman scattering cross-section.
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Figure V.l. Normalized Raman spectra (solid line), model fit(dotted line), residual (shown below), fit
coefficients. and H&E images (size bars 100 Jlm) representative of a) normal breast tissue, b)

fibrocystic change, c) fibroadenoma, and d) infiltrating carcinoma.

Four of the 130 spectra in our data set were excluded from the analysis due to an
insufficient number of samples. Three of these spectra were acquired from samples
diagnosed by histopathology as DEH and one was acquired from a benign sample diagnosed
as fat necrosis. The sample diagnosed as fat necrosis exhibited an intense fluorescent
background. This is most likely due to lipids oxidized during tissue necrosis and, with a
larger data set,may prove to be diagnostic of fat necrosis.
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V. A. 3. Spectral Fit Coefficients and Tissue Morphology

The fit coefficients given by the model and normalized to sum to one, represent contributions

of chemicals and morphological features to the macroscopic tissue spectrum. Figures V.2a

and V.2b display histograms of the average fit coefficients associated with normal breast

tissue, fibrocystic change, fibroadenoma, and infiltrating carcinoma. In Figure V.2a data are

grouped according to pathologic diagnosis while in V.2b data are clustered by model

component. In Figure V.2b, each histogram cluster is normalized to the largest of the four

values in order to highlight the relative changes between pathologies. The amount of water

present in the lesions has been excluded, as PBS is applied to keep the samples moist during

examination, and thus the amount of water is not indicative of disease state. The presence or

absence and variation in concentration of a particular model component between samples

with similar pathologies is displayed in Figure V.2 as error bars which represent the root

mean square of the fit coefficients of the data set.

Examination of the fit coefficients for each pathology provides insight into the

chemical changes associated with breast disease. The fit coefficients of normal breast tissue

indicate that it is primarily composed of fat. Normal breast tissue contains both glandular

and adipose tissues [Rosen 19971. Glandular tissue consists of ducts lined by epithelial cells

and a supportive collagenous extracellullar matrix. Adipose tissue is primarily composed of

adipocytes, cells containing large amounts of cytoplasmic fat, although small quantities of

extracellular matrix are mixed throughout. In most women, ducts represent only a small

volume of the breast tissue and thus our model accurately characterizes normal breast tissue

as predominately comprised of fat with small contributions from collagen. Contributions

from fat are particularly prominent because relative to most other model components,
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adipose tissue has a large Raman scattering cross-section. The model does not show a

contribution from epithelial cells to normal breast tissue. However, this does not mean that

the normal samples do not contain epithelial cells, simply that they are not present in

sufficient quantities or with a strong enough Raman scattering cross-section to appreciably

contribute to the macroscopic Raman spectrum. The fit coefficients of the breast lesions

indicate a markedly different chemical/morphological composition than that of normal breast

tissue. First, the amount of collagen increases in all abnormal breast pathologies. This is

consistent with known breast pathology, as lesion formation is often accompanied by

fibrosis, a scarring process characterized by an increased stromal component, and thus by

both proliferation of fibroblasts and accumulation of collagen. The relative increase in

collagen is most pronounced in fibrocystic change, a benign condition which can manifest

itself as fibrosis, adenosis (increase in the number of ductules) or cyst formation (dilation of

ducts and lobules with fluid). Each of these changes can occur with or without the presence

of the others. In the fibrocystic lesions examined in the present study an increase in the fit

coefficients of the collagen, epithelial cell cytoplasm and cholesterol-like basis spectra

replace the large contribution from fat in normal breast tissue.

Fibroadenoma is a benign tumor of a completely different lineage than all other

lesions in this study [Houssami et al. 2001]. It is most closely related to phylloides tumors,

the malignant counterpart of which is not carcinoma but cystosarcoma phylloides, in which

the stroma rather than the epithelium is malignant. Lesions diagnosed as fibroadenoma

show an increased contribution from collagen due to fibroblast proliferation and

accumulation of collagen that results in expansion of the stroma [Cotran et al. 1989]. They

also show an increased contribution from both the cell nucleus and epithelial cell cytoplasm
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Figure V.2. Histogram displaying the average composition of samples diagnosed as normal (hatched),
fibrocystic change (gray), fibroadenoma (striped), and infiltrating carcinoma (solid). A) Data are

grouped according to pathologic diagnosis. B) Data are clustered by model component and each cluster
is normalized to the largest of the four values.

basis spectra as a consequence of the number of fibroblasts and epithelial cells present.

Similar to fibroadenoma, lesions diagnosed as intiltrating carcinoma show an

increased contribution from collagen, in this case due to fibroblast proliferation in response
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to stromal invasion by the malignant epithelial cells [Cotran et al. 1989]. The fit coefficients

of such lesions also display an increase in the amount of epithelial cell cytoplasm and cell

nucleus. Both infiltrating carcinomas and fibroadenomas exhibit large increases in the

number of cells relative to other lesions. However, a key signature of carcinoma is

enlargement of cell nuclei, and thus a higher nuclear to cytoplasm (N/C) ratio than in benign

conditions. Nuclear enlargement and atypia are hallmarks of cancer, thus the N/C ratio is a

diagnostic criterion routinely used by pathologists [Elston and Ellis 1991; Hoda and Rosen

2002]. In our studies, the spectroscopic parameter characterizing the N/C ratio is obtained by

dividing the fit coefficient of the cell nucleus basis spectrum by the fit coefficient of the

epithelial cell cytoplasm basis spectrum. Fibrocystic change has a mean N/C parameter of

0.01, fibroadenoma 0.04, and infiltrating carcinoma a much higher mean N/C parameter of

0.08.

Further differences between lesions diagnosed as fibroadenoma and infiltrating

carcinoma exist in the amount of fat present. Samples diagnosed as fibroadenoma have less

fat than those diagnosed as infiltrating carcinoma, as can be seen in Figure V.2. This is

because fibroadenoma is an expansile lesion that grows by pushing the fatty breast tissue

aside. Infiltrating carcinoma, on the other hand, infiltrates in between the fat cells, so some

adipocytes will be retained within the carcinoma.

Other breast pathologies are much less common and were not represented in the study

specimens. Three samples diagnosed as DEH have not been included in the diagnostic

analysis due to their small number. DEH is a proliferation of the ductal epithelium which

confers a significantly increased risk for breast cancer [Page and Dupont 1990]. The mean

N/C parameter of these three lesions is 0.05, intermediate between those of normal breast and
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infiltrating carcinoma, indicating the potential for detecting pre-cancerous changes in the

breast using Raman spectroscopy.

The histograms in Figure V.2 exhibit relatively little contribution from the two types

of calcifications found in breast tissue, calcium hydroxyapatite and calcium oxalate

dihydrate. Due to their diagnostic importance, microcalcifications in fresh breast tissue are

not typically made available for scientific research, and thus our study did not include lesions

containing microcalcifications. For this reason, we undertook a parallel study to examine the

diagnostic information contained in Raman spectra of microcalcification, discussed in

Chapter VI. Although small contributions from microcalcifications can be seen in some of

our data, as this technique moves into a clinical setting microcalcifications will be

encountered more frequently and in greater abundance.

Table V.1 displays the fit coefficient error associated with each model component.

Model Signal OLF AcnDM Acfimc cbmges Afibo ccr

N=0.0091 N=0.0406 N=0.0113 N=0.0337

Calcium Oxalate Dihydrate 2.68 0.96 0.004 0.016 0.004 0.013

Calcium Hydroxyapatite 2.85 0.93 0.003 0.015 0.004 0.013

Cholesterol-like 4.48 0.28 0.007 0.032 0.009 0.027

Water 7.04 0.64 0.002 0.009 0.003 0.008

1-Carotene 3.67 0.84 0.003 0.013 0.004 0.011

Fat 4.97 0.40 0.005 0.020 0.006 0.017

Collagen 8.12 0.45 0.003 0.011 0.003 0.009

Cell Nucleus 5.96 0.69 0.002 0.010 0.003 0.008

Epithelial Cell Cytoplasm 6.32 0.31 0.005 0.021 0.006 0.017

Table V.I. Fit coefficients errors for the fresh-frozen Raman breast data.

The method used for calculating prediction error is presented in section IV.F. Errors are

broken down by diagnosis, as spectra corresponding to different pathologies contained
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dissimilar amounts of noise. It is important to note that these errors represent the lowest

attainable accuracy and are not achieved experimentally.

V. A. 4. Diagnostic Algorithm

The fit coefficients not only provide insight into the composition of the tissue but are also

used to develop diagnostic algorithms. The morphological changes that characterize breast

disease are manifested as chemical changes that can be reproducibly assessed. We begin

with a pairwise analysis in which cancerous specimens are separately distinguished from

normal breast tissue, fibrocystic change, and fibroadenoma, respectively. We then employ

the insight gained through these individual comparisons to develop a single diagnostic

algorithm encompassing all pathologies. Logistic regression was used to correlate the fit

coefficients, obtained via modeling, with the diagnostic categories provided by a pathologic

examination. A leave-one-out cross validation analysis was also employed. In each case, the

diagnostic power of all 8 model

components, alone and in

combination, was assessed.

Normal breast and

infiltrating carcinoma can be

differentiated with 100%

sensitivity and 100% specificity

using the fit coefficients for

collagen and fat, FC(Coll) and

0.7

0.6

0.5

0.4

2 0.3

0.2

0.1

n
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FC(Fat)

Figure V.3. Diagnostic plot illustrating the excellent
separation between infiltrating carcinoma (squares) and normal

breast tissue (stars).

FC(Fat), respectively. Figure V.3
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shows a scatter plot of FC(Coll) and FC(Fat) corresponding to each of the normal and

malignant samples examined. The decision line for separating normal and malignant

samples is given by FC(Coll)=-1.71FC(Fat)+1.11. These two parameters result in the ability

to separate normal and malignant tissues and they are consistent with known architectural

changes that accompany breast disease. The normal data point that lies closest to the

diagnostic decision line was acquired from a specimen that contains adjacent fibrocystic

change. This may explain the increase in collagen and reduction in fat seen in this sample

compared to other normal samples. Although the diagnostic algorithm depicted in Figure

V.3 results in exact separation, any other model component, when combined with fat, also

provides perfect discrimination. This is because our model characterizes normal breast tissue

as composed almost exclusively of fat.

Figure V.4 displays the diagnostic algorithm resulting in the highest sensitivity and

specificity for distinguishing fibrocystic change from infiltrating carcinoma. Again, we are

: O
·

U .. 0 * "

0 0.1 0.2 U.3 0.4 0.5 U.b U.7 O.i O.

FqFat)
Figure V.4. The diagnostic algorithm for infiltrating

carcinoma (squares) and fibrocystic disease (diamonds).

able to separate fibrocystic change

and malignant lesions based on the

amount of collagen and fat. In this

case, the equation for the decision

line is FC(Coll)=-0.71FC(Fat)+0.51.

Based on these two parameters, we

are able to correctly predict 29 out of

31 malignant samples and 29 out of

31 samples diagnosed as fibrocystic

change. This results in a sensitivity
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of 94%, a specificity of 94%, and a positive predictive value of 94%. Although clear

differences in the spectroscopic parameter characterizing the N/C ratio exist between

fibrocystic change and infiltrating carcinoma, inclusion of the fit coefficients for epithelial

cell cytoplasm and cell nucleus did not improve the sensitivity and specificity of the

diagnostic algorithm. The sensitivity and specificity for differentiating fibrocystic change

and infiltrating carcinoma based solely on the N/C parameter are 65% and 90%, respectively.

Figure V.5 displays a scatter plot of the diagnostic algorithm resulting in the highest

sensitivity and specificity for differentiating fibroadenoma and infiltrating carcinoma. In this

case, fat is the only diagnostic parameter. Collagen is no longer diagnostic in differentiating

between these two data sets. Using the amount of fat, the two pathologies can be

differentiated with a sensitivity of 90%

and a specificity of 80%. Thus, the

algorithm provides a positive predictive .
,0.35 ·

value of 90% and accurately predicts 28 _
L·L .0.25 .

out of 31 malignant samples and 12 out .
0.15

of 15 samples diagnosed as
0.050 0.10 0.20 0.30 0.40

fibroadenoma. The equation for the
FC(Fat)

Figure V.5. The diagnostic algorithm for infiltrating
decision line is given by FC(Fat)=0.03. carcinoma (squares) and fibroadenoma (triangles).

As discussed above, fibroadenoma and infiltrating carcinoma have distinct natural

ages of incidence. Thus, age could provide useful information to enhance the diagnostic

algorithm. Unfortunately, in the present study we did not have patient information for all of

our samples. In future studies, it will be interesting to see the extent to which the inclusion of

patient age improves the diagnostic algorithm. Based on insight gained through the pairwise
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diagnostic comparisons, a single diagnostic algorithm encompassing all pathologies was

developed. The algorithm examines all the data simultaneously and separates samples

according to specific pathological diagnoses. As noted from the diagnostic algorithms

displayed in Figures V.3, V.4, and V.5, all pathologies can be separated based on the same

two parameters, fat and collagen. Further, in our studies there are clearly two tissue types

with relatively low fat and collagen values and two pathologies with higher values. From

this observation, the samples were initially divided into two groups based on their collagen

and fat contents. The equation for the decision line, drawn by logistic regression, is

FC(Coll)=-0.80FC(Fat)+0.55. The inclusion of additional model components did not
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Figure V.6. Diagnostic algorithm displaying the fat and collagen content for all pathologies

encountered in this study. Normal (gray stars), Fibrocystic Change (diamonds), Fibroadenoma
(triangles), Infiltrating Carcinoma (squares), Ductal Epithelial Hyperplasia (white stars).
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improve the accuracy of this separation. The resulting two clusters, one containing

infiltrating carcinoma and fibroadenoma lesions, which have relatively less collagen and fat,

and the second composed of normal and fibrocystic lesions, were then further subdivided.

Fibrocystic change and normal tissue were separated based on their fat and collagen contents.

The decision line for separating fibrocystic change and normal tissue is given by FC(Coll)=-

0.06FC(Fat)+0.10. As in Figure V.5, fibroadenoma and infiltrating carcinoma are separated

based on their fat content. The decision line for this separation, FC(Fat)=0.02, is based on a

different probability threshold than that in the individual comparison of fibroadenoma and

infiltrating carcinoma. This was done because of the prognostic importance of correct cancer

diagnosis and was accomplished by moving to a different location on the ROC curve.

Pathology Normal Fibrocystic Fibroadenoma Infiltrating
Dagnosis Change Carcinoma

Diagnosis \ (49 spectra) (31 spectra) (15 spectra) (31 spectra)

Normal 45 1 0 0

Fibrocystic Change 4 22 0 0

Fibroadenoma 0 7 11 2

Infiltrating Carcinoma 0 1 4 29

Table V.2. Comparison of pathologic diagnosis with that of the Raman diagnostic algorithm. The Raman
diagnostic algorithm results in an overall accuracy of 85% (107/126).

Figure V.6 displays a scatter plot of FC(Coll) and FC(Fat) for all pathologies

encountered in this study, as well as the decision lines that separate samples according to

diagnoses. Table V.2 compares the pathologic diagnosis with that of the Raman diagnostic

algorithm for our data set. The algorithm results in a sensitivity for detecting infiltrating

carcinoma of 94% (29/31), a specificity of 95% (90/95), and an overall accuracy of 85%

(107/126). Also shown in Figure V.6 are the fat and collagen fit coefficients for the three
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samples diagnosed as DEH. The sample diagnosed as fat necrosis was not analyzed due to a

poor SNR resulting from excessive shot noise generated via the intense fluorescent

background. In future applications, this diagnostic algorithm will be used in a prospective

manner, and the fit coefficients of collagen and fat simply plotted to determine where they

fall in the diagnostic plane.

Figure V.7 displays a ROC curve, shown as a dotted line, that illustrates the ability of

Raman spectroscopy to separate lesions diagnosed as infiltrating carcinoma from benign and

normal breast tissues. A ROC curve illustrates the tradeoff between sensitivity and

specificity by plotting the true positive rate against the false positive rate for the different

possible probability thresholds of a diagnostic test. The closer the curve comes to the 45-

degree diagonal, shown as a dashed line in Figure V.7, the less accurate the diagnostic test.

B This ROC curve clearly illustrates

the ability of Raman spectroscopy

to accurately diagnose breast

*r. 0., focancer and demonstrates how the

0. diagnostic scheme can be adjusted

0.2 //// to obtain the desired degree of

sensitivity at the cost of specificity.
0 0.2 0.4 0.6 0.8 1

1-Specificity From a practical clinical
Figure V.7. Receiver operating characteristic (ROC) curves

illustrating the ability of Raman spectroscopy to separate standpoint, Raman spectroscopy is
lesions diagnosed as infiltrating carcinoma from benign and

normal breast tissues, dotted line and lesions which need to be well suited to identify lesions that
excised (infiltrating carcinoma and fibroadenoma) from those

which don't (normal and fibrocystic change), solid line. need to be excised. Malignant

lesions such as infiltrating carcinoma need to be excised, whereas most benign lesions, such
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as fibrocystic change, do not. However, fibroadenomas, although benign, continue to grow

and produce significant morbidity unless excised [Kahn and Badve 2001]. Results using the

overall diagnostic algorithm to differentiate infiltrating carcinoma and fibroadenoma (lesions

to be excised) from fibrocystic change and normal breast tissue are displayed in Figure V.7

as a solid line. In this case, sensitivity and specificity, identified on the ROC curve by the

letter A, are 98% and 94%, respectively. This corresponds to a positive predictive value of

90% and a negative predictive value of 99%, indicating that if a lesion is not excised there is

only a 1% chance that it is cancerous. Alternatively, a different threshold can be set in which

all malignant lesions are excised, identified in Figure V.7 with the letter B. Using this

threshold, 10 out of every 100 benign lesions examined will be unnecessarily removed. This

results in a positive predictive value of 85% and a negative predictive value of 100% in this

small data set, signifying that if a lesion is not excised there is no chance that it is malignant.

This indicates that Raman spectroscopy has the potential to safely reduce the number of

excisional biopsies performed on lesions eventually diagnosed as benign.

V. A. 5. Effect of Age/Menopause on Diagnostic Algorithm

Female breast undergoes substantial biochemical alterations at menopause. Specifically, a

large amount of collagen is converted to fat, resulting in breast tissue that is overall less

dense on mammography. Because our diagnostic algorithm is based on the fat and collagen

content as assessed by Raman spectroscopy, we investigated trends in these two parameters

as a function of patient age (female breast density typically decreases with age). It is notable

that although the normal samples span a wide age range, our technique characterizes them as

predominately composed of fat. As explained above, this is because the Raman scattering
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cross-section is much higher for fat than for collagen. Thus, we only observe significant

contributions from collagen when it is present in large quantities, for instance in the setting of

dense stromal fibrosis. To rigorously confirm that our diagnostic algorithm is not influenced

by patient age, we examined the correlation between the spectroscopic parameter

characterizing the fat to collagen ratio, obtained by dividing FC(Fat) by FC(Coll), and age.

Fibroadenoma was excluded from this analysis because it is a juvenile disease and has a

much different age range than the other pathologies in our study. We found a correlation

coefficient of -0.140 for the spectroscopic parameter characterizing the fat to collagen ratio

and age. We also examined the relationship between the fat to collagen ratio and age within

individual pathologies. For invasive carcinoma, fibrocystic change, and normal samples, we

obtained correlation coefficients of -0.104, 0.137, and -0.025, respectively. Thus, we do not

observe age dependent trends in the fat and collagen contents of our data. Our results

indicate that Raman spectroscopy is much less sensitive to breast density and menopausal

status than many other optical techniques.

V. B. Raman Spectroscopy of Fresh Breast Tissue

The excellent results of our studies on fresh-frozen tissue demonstrated that Raman

spectroscopy can classify breast lesions with high accuracy. The study thus supported

moving the technique to a clinical setting for further testing of its efficacy in breast cancer

diagnosis. As a result, we expanded our studies to the examination of fresh breast tissue.

Data was collected in the University Hospitals of Cleveland pathology suite, typically within

half an hour of surgical tissue excision. The main goals of this study are to validate our ex

vivo diagnostic algorithm on a large data set which closely mimics an in vivo environment
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and to elucidate differences between the Raman spectra of fresh-frozen and fresh breast

tissues. Additional goals include expanding our diagnostic algorithm to include pathologies

not seen in our ex vivo laboratory data and targeting microcalcifications.

V. B. 1. Sample Preparation and Data Acquisition

This study was carried out in collaboration with Drs. Fitzmaurice, Shenk, Wang, and Klein at

University Hospitals of Cleveland and Case Western Reserve University. All studies

involving human tissue were approved by the University Hospitals of Cleveland and Case

Western Reserve University Institutional Review Board and the Massachusetts Institute of

Technology Committee On the Use of Humans as Experimental Subjects. Informed consent

was obtained from all subjects prior to the surgical procedures.

V. B. 1. a) Tissue Preparation

Breast tissue was obtained from patients immediately following surgical lumpectomy, re-

excision, or mastectomy procedures. Upon removal, the samples were sectioned per the

normal pathology protocol and Raman spectra acquired from locations chosen by the

pathologist. The number of spectra taken per patient was extremely variable, depending

primarily on the pathological manifestations grossly visible. Because it was not possible to

turn the lights off in the pathology suite, samples were placed in a light tight box prior to

examination. Following spectral acquisition, specimens were marked with India ink to

indicate the region sampled, and fixed in formalin. The fixed tissue samples were routinely

processed, paraffin embedded, cut through the marked locations in 5 gm thick sections, and

stained with H&E. The histological slides were examined by an experienced breast
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pathologist who was blinded to the outcome of the Raman spectroscopy analysis. A total of

150 spectra from 25 patients was examined using Raman spectroscopy, 42 spectra from

normal breast tissue, 82 from benign lesions, and 26 from malignant lesions. Benign

pathologies consisted of 73 fibrocystic lesions and 9 fibroadenoma tumors. Malignant

pathologies consisted of 6 infiltrating ductal carcinomas (IDC) and 20 lesions diagnosed as

ductal carcinoma in situ (DCIS). DCIS is a pathology we did not encounter in our fresh-

frozen studies.

V. B. 1. b) Raman Spectroscopic Measurements and Data Processing

Data were acquired using the clinical Raman system and Raman optical fiber probe shown in

Figure III.9 and detailed in Chapter III.E.3. Raman spectra in this study were acquired with a

10 to 30 s. integration time, depending on signal intensity, and a spectral resolution of 8 cmnf.

The average laser excitation power varied between 100 and 150 mW. No tissue damage was

observed, either grossly or upon histological review.

At the start of each day, calibration data were collected for spectral corrections.

Wavenumber calibration was established with a spectrum of 4-acetamidophenol. Chromatic

intensity variations were corrected by collecting the spectrum of a tungsten white light source

diffusely scatted by a reflectance standard (BaSO4). The remaining probe background

generated in the optical fibers was characterized by collecting the scattered excitation light

off of a roughened aluminum surface. This background was optimally subtracted from the

data in an iterative loop by using a scaling factor related to the tissue's optical properties

[Motz et al. 2004]. The tissue fluorescence background was modeled with a sixth-order

polynomial. Finally, the data was fit via non-negativity constrained least-squares

minimization with the spectral model developed previously for the diagnosis of breast cancer
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[Shafer-Peltier et al. 2002]. In order to accurately model the data, spectra of probe

components, epoxy and sapphire, were included in the model. Also, a background acquired

in the light tight box with no sample was included in the model. This background mainly

consisted of features due to light contamination. In accordance with our initial diagnostic

study, the contribution of each basis spectrum, obtained from the spectral model described in

Chapter IV.C, to the breast tissue specimens was obtained by normalizing the fit coefficients

such that they sum to one. However, in the present analysis, the two types of

microcalcifications, calcium hydroxyapatite and calcium oxalate dihydrate, were excluded

from this normalization as these species were not present in the tissue samples used for the

diagnostic algorithm development. We also observed increased contributions from

cholesterol-like in this data set and thus this component was excluded from normalization.

V. B. 2. Agreement with Fresh Frozen Diagnostic Algorithm

Data was analyzed with the diagnostic algorithm developed on fresh-frozen tissues, shown in

Figure V.8. Application of this algorithm in a prospective manner resulted in a sensitivity of

83%, correctly diagnosing 5 of 6 IDCs, and a specificity of 89% for separating cancerous

Pathology Normal Fibrocystic Fibroadenoma Infiltrating
Raman Diagnosis Change Carcinoma

Diagnosis (42 spectra) (73 spectra) (9 spectra) (6 spectra)

Normal 38 13 0 0

Fibrocystic Change 4 54 0 0

Fibroadenoma 0 0 1 1

Infiltrating Carcinoma 0 6 8 5

Table V.3. Comparison of pathologic diagnosis with that of the Raman diagnostic algorithm. The Raman
diagnostic algorithm results in an overall accuracy of 75% (98/130).
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LL

FC(Fat)
Figure V.8. Diagnostic algorithm displaying the fat and collagen content for all pathologies encountered

in this study. Normal (stars), Fibrocystic Change (diamonds), Fibroadenoma (triangles), Infiltrating
Carcinoma (squares).

lesions from benign and normal tissues. This corresponds to an overall accuracy of 75%,

(98/130). As expected, the prospective use of the diagnostic algorithm yields results,

summarized in Table V.3, which are degraded when compared with the initial performance

of the diagnostic algorithm. The reduction in sensitivity in the fresh tissue studies may be

due to the small number of cancerous samples encountered. Although the algorithm only

incorrectly diagnoses 1 malignant sample, this results in a sensitivity of 83% due to the

dearth of cancerous data points in this study. The overall accuracy may be affected by

encountering a broader range of manifestations of each pathology. For example, in the fresh-

frozen studies, the predominant manifestation of fibrocystic change in our data set was

stromal fibrosis. In the clinical study of fresh tissue, all three manifestations of fibrocystic

change were observed, stromal fibrosis, cyst formation, and adenosis. This increase in tissue
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heterogeneity may contribute to the degradation of the overall accuracy in the fresh tissue

studies. Results may also have been degraded by a lower SNR in this data set. Most notably,

a reduced SNR may have affected the diagnosis of fibroadenoma because its area in the

diagnostic plane is smallest. Thus slight variations in FC(Fat) will result in misdiagnosis.

This effect may be evident in Figure V.8 as the 3 samples diagnosed as fibroadenoma that lie

slightly to the right of the diagnostic line. Analysis using the equation derived in Chapter IV

will shed light on the effect of error on algorithm performance.

Although the performance of the diagnostic algorithm is degraded when it is used

prospectively to distinguish cancerous and non-cancerous lesions, it remains quite robust

when used to identify those lesions which need to be excised. Prospective application of the

diagnostic algorithm to differentiate infiltrating carcinoma and fibroadenoma (lesions to be

excised) from fibrocystic change and normal breast tissue results in a sensitivity of 100%

(15/15) and a specificity of 95% (109/115). As in the fresh-frozen studies, this signifies that

if a lesion is not excised there is no chance that it is malignant.

This initial analysis excludes
0.7

patients who have undergone pre- 0.6

operative chemotherapy or are 0.5

0.4
undergoing re-excision surgery. Such o

. 0.3

patients harbor pathological tissue 02
0.2

changes that we have not previously o.1

t~

U i_

., 0"- .

examined. Pre-operative chemotherapy o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FC(Fat)

is used as a neo-adjuvant therapy to Figure V.9. Scatter plot displaying the fat and collagen
content for data acquired from patients who underwent

pre-operative chemotherapy. Normal (stars), Fibrocystic
shrink large tumors. Tumor Change (diamonds), Infiltrating Carcinoma (squares).
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replacement by loose fibrosis is the most common pathologic event resulting from neo-

adjuvant chemotherapy [Moreno et al. 2002]. An increase in collagen is seen in all samples

from patients receiving pre-operative chemotherapy, shown in Figure V.9. A similar,

although less pronounced trend in collagen is seen in patients undergoing a re-excision

surgery, seen in Figure V.10. Pathological changes induced by surgical procedures depend

on the interval between the initial and re-excision surgeries. Variability in this interval may

account for the heterogeneity in fit coefficients observed in the re-excision specimens. Early

pathological findings are local

hemorrhage, disrupted tissue and

epithelial cell displacement, whereas,

fibrosis, fat necrosis and

inflammatory reaction are observed

later in time [Tardivon et al. 2002].

6_
U 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 OW 0.9 T Because both pre-operative

FC(Fat)
Figure V.10. Scatter plot displaying the fat and collagen chemotherapy and prior surgery are
content for data acquired from patients undergoing re-
excision surgeries. Normal (stars), Fibrocystic Change

(diamonds), Infiltrating Carcinoma (square).

these patients may be treated separately and a distinct diagnostic algorithm developed.

V. B. 4. Diagnostic Algorithm Encompassing New Pathologies

In this study, we acquired Raman spectra from 20 lesions diagnosed as DCIS. Although

DCIS was not a pathology encountered in our laboratory studies, the spectra were analyzed

with the diagnostic algorithm developed on fresh-frozen tissues, shown in Figure V.11. The

DCIS samples are widely distributed throughout the diagnostic plane. It is clear that
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( 0.3
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0.1

0

FC(Fat)
Figure V.11. Scatter plot displaying the fat and collagen content for
all pathologies encountered in this study. Normal (stars), Fibrocystic
Change (diamonds), Fibroadenoma (triangles), Infiltrating Carcinoma

(squares). Ductal Carcinoma In Situ (circles).

additional model

parameters need to be

investigated for the

accurate diagnosis of DCIS.

Studies to incorporate

additional fit coefficients

and intensity information

into the diagnostic scheme

are currently underway.

V. B. 5. Stereotactic

Needle Biopsy to Target

Microcalcifications

In the ex vivo study, the real-time Raman system was used to acquire data from

microcalcifications contained in stereotactic needle biopsies of mammographically

suspicious breast lesions. Microcalcifications are a feature of particular diagnostic

significance on a mammogram and often geographically identify the location of the most

important abnormality within the breast to be targeted at biopsy IJohnson et al. 19991. Due

to their diagnostic importance, microcalcifications in fresh breast tissue are not typically

made available for scientific research. Thus, our laboratory studies on the use of Raman

spectroscopy to diagnose breast disease have not included lesions containing

microcalcifications Haka et al. submitted . For this reason, we investigated the ability of

Raman spectroscopy to diagnose microcalcifications by performing confocal microscopy of
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microcalcifications in thin sections of deparaffinized fixed breast tissue. detailed in Chapter

V I IHaka et al. 20021. This study resulted In high sensitivities and specificities and

demonstrated the diagnostic potential of Raman spectroscopy to differentiate

microcalcifications found in benign and malignant breast lesions that cannot currently be

distinguished by mammography. Our recent studies have focused on extension of these

results to unfixed microcalcifications contained in freshly excised breast tissue.
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Figure V.12. a) Specimen radiograph of a stereotactic needle biopsy of the breast with
microcalcilications (circle). 0) Raman spectrum acquired from the necdle biopsy c) Raman spectrum

also acquired from the tissue demarcated by a box in ligure V.12a. The spectrum exhibits features
indicativc of calcium hydroxyapatitc, particularly a peak at 960 em- 1 (arrow). d) Histopathology

corresponding to the Raman spectrum with a large contrihution from calcium hydroxyapatite showing
microcalcifications (arrow) within a benign lesion.

In our clinical studies of fresh tissue. stereotactic biopsies are examined with the real-

time Raman system. allowing us to acquire Raman spectra from microcalcifications in fresh
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breast tissue. Stereotactic biopsy, often used when mammography shows a cluster of

microcalcifications, is performed under x-ray guidance using intersecting coordinates to

ensure precise sampling of a mammographic abnormality. Radiography is routinely

performed on these needle biopsy samples to ensure that the microcalcifications seen at

mammography were sampled during the biopsy. Thus, by comparison with the

corresponding radiograph, the approximate location of microcalcifications within the sample

can be ascertained. Acquisition and real-time analysis of a Raman spectrum allows

pinpointing the exact position of the microcalcifications. Figure V.12a is a specimen

radiograph of a stereotactic biopsy that exhibits microcalcifications. A Raman spectrum

obtained from this specimen in the approximate region of the microcalcifications is shown in

Figure V.12b. Also shown are the real-time model fit, residual and relevant fit coefficients.

The lack of significant contribution from calcium hydroxyapatite or calcium oxalate

dihydrate, the two types of microcalcification found in breast, indicates that the probe is not

placed directly over the microcalcifications. By translating the probe along the biopsy

specimen and examining the calcification contribution at various locations, we were able to

identify the exact position of the microcalcifications and collect a Raman spectrum. The

Raman spectrum, acquired from the microcalcification highlighted by a small box in Figure

V.12a, is shown in Figure V.12c. The fit coefficient of 21% for calcium hydroxyapatite

signifies the presence of a type II microcalcification. This is evident in the spectrum as a

band at 960 cm, the V1(PO4 ) totally symmetric stretching mode. We also see contributions

from fat and collagen. Histopathology, shown in Figure V.12d, confirmed the presence of

microcalcifications at this site. The green ink in Figure V.12d indicates the region of data

acquisition for spectrum V.12b while the orange ink marks the position where spectrum
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V.12c was collected. As the diagnostic importance of microcalcifications has been shown in

our previous Raman microscopy studies, their inclusion in our current analysis should result

in increased sensitivity and specificity. The real-time Raman system provides a means to

obtain data from microcalcifications in fresh biopsy samples, allowing us to couple the

results from our Raman microscopy studies of microcalcifications with our ex vivo diagnostic

algorithm to create a powerful new tool for the diagnosis of benign and malignant breast

lesions.

V. B. 6. Future Directions

Upcoming studies will focus on further analysis of the clinical data set containing Raman

spectra of fresh tissues. New diagnostic algorithms will be developed which incorporate

additional model parameters, microcalcifications, and intensity information. These

algorithms will be used to identify DCIS and possibly different manifestations of a single

pathology. The incorporation of microcalcifications and intensity information are expected

to strengthen the performance of our diagnostic algorithms. The Raman optical fiber probe

provides a reproducible geometry for data collection, allowing examination of spectral data

that has not been normalized. Ultimately, we strive to obtain quantitative information by

incorporating the Raman scattering cross-sections of the model components into the data

analysis routine. Studies to extract quantitative morphological information will correlate fit

coefficients with the percent morphology as determined via pathology. This information can

also be used to provide insight into the lower detection limits of the approach.

-198-



V. C. Summary

In this chapter our Raman spectroscopic model of breast tissue is used to characterize the

chemical/morphological composition of different breast pathologies. We analyze Raman

spectra from a range of ex vivo tissue specimens and pathologies to assess the ability of the

model to predict breast tissue disease state. The data demonstrate the efficacy of the model

in both diagnosing breast disease and in understanding the chemical/morphological variations

associated with disease progression. The results indicate that the technique has the potential

to be applied in vivo to accurately classify breast lesions.
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Chapter VI. Raman Microscopy of Microcalcifications

In our ex vivo studies, we see relatively little contribution from the two types of calcifications

found in breast tissue and included in our spectral model, calcium hydroxyapatite and

calcium oxalate dihydrate. Microcalcifications are a feature of particular diagnostic

significance on a mammogram and often geographically target the location of the most

important abnormality within the breast [Johnson et al. 1999]. Due to their diagnostic

importance, microcalcifications in fresh breast tissue are not typically made available for

scientific research, and thus our studies did not include lesions containing

microcalcifications. For this reason, we have investigated the diagnostic power of Raman

microscopy of microcalcifications in thin sections of deparaffinized fixed breast tissue [Haka

et al. 2002]. Using PCA, we were able to distinguish microcalcifications occurring in benign

and malignant ducts with a sensitivity of 88% and a specificity of 93%. This is a significant

improvement over current X-ray mammography techniques, which are unable to reliable

differentiation microcalcifications in benign and malignant lesion.
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VI. A. Microcalcifications

Two major types of microcalcifications are found in breast tissue. Type I deposits consist of

calcium oxalate dihydrate, a birefringent colorless crystal, while type II deposits are

composed of calcium phosphates, mainly calcium hydroxyapatite. Type II

microcalcifications are typically basophilic on light microscopic examination of H&E stains

and nonbirefringent.

There is no reliable way to distinguish between type I and type II microcalcifications

in a clinical mammogram, but the type of microcalcification is thought to correlate with

disease [Radi 1989]. Calcium oxalate dihydrate crystals are most frequently seen in benign

ductal cysts and are rarely found in foci of carcinoma, while calcium phosphate deposits are

most often seen in proliferative lesions, including carcinoma. This distribution is consistent

with the hypothesis that type I microcalcifications are a product of secretions, whereas type II

calcium deposits result from cellular degradation or necrosis.

Type II microcalcifications are estimated to occur two to three times more frequently

than type I [Rosen 1997]. Nonpalpable type II microcalcifications discovered by

mammography frequently geographically target the location of the most important

abnormality within the breast [Johnson et al. 1999]. As such, calcifications are a key

component that radiologists look for in a mammogram. Several algorithms have been

proposed that attempt to correlate parameters such as the shape, size, number, and roughness

of mammographically detected microcalcifications with disease [Markopoulos et al. 2001;

Betal et al. 1997; Shen et al. 1994]. However, these studies often exclude cases due to dark

mammographic backgrounds, low density calcific flecks, or densely clustered calcifications

and thus are limited to only certain patients and mammograms. To our knowledge, the
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highest reported sensitivity and specificity for a cross validated algorithm based on

mammography is 71% and 74% respectively [Betal et al. 1997]. Although these studies

show promising results, the diagnosis of breast carcinoma using mammographically detected

microcalcifications remains elusive. While the mammographic appearance of

microcalcifications bears some relationship to the histological type of the lesion, currently

diagnosis cannot be reliably made on this basis.

Because calcium deposits in breast tissue have only been categorized

morphologically, significant insight may be gained by examining them using a more rigorous

method. Raman spectroscopy is well suited to further the study of microcalcifications in

breast tissue, as it can provide a definitive chemical analysis of these morphologic structures

in vitro. In fact, Raman spectroscopy has been used successfully to study calcium deposits in

several other organs, such as the kidney and urinary tract [Kodati et al. 1990; Kodati et al.

1991; Kodati et al. 1993; Pestaner et al. 1996; Kontoyannis et al. 1997].

In this study, we have employed Raman spectroscopy to highlight differences in the

chemical composition or structure of microcalcifications that exist in different lesions in the

breast. Results from this study will further our understanding of the chemical changes

accompanying the onset and progression of breast disease and provide an important

parameter for the diagnosis of breast disease using Raman spectroscopy.

VI. B. Sample Preparation and Data Acquisition

VI. B. a) Sample Preparation

Raman spectra were acquired from 6 im thick deparaffinized sections of formalin fixed,

paraffin embedded breast tissue. Due to their diagnostic importance, microcalcifications in
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fresh breast tissue cannot typically be spared for scientific research and thus our study was

confined to examining microcalcifications in fixed tissue sections. Since microcalcifications

are relatively inert, the protein crosslinking effects of the fixative should be minimal.

Furthermore, Raman spectral lineshapes from the calcifications examined in this study are

consistent with previously published data acquired from unfixed tissue in other organ

systems [Kodati et al. 1990; Kodati et al. 1991; Kodati et al. 1993; Pestaner et al. 1996;

Kontoyannis et al. 1997]. Samples were mounted on MgF2 flats (Moose Hill Enterprises

inc., Sperryville, VA). Each microcalcification studied was photographed using a phase

contrast microscope. The phase contrast images and H&E stained serial sections were

reviewed by an experienced pathologist, who was blinded to the spectroscopy results and

rendered a histologic diagnosis of the disease state of regions where data was acquired. A

total of 30 type I and 60 type II microcalcifications in breast biopsies from 11 patients were

examined using Raman spectroscopy, 74 from histologically benign ducts and 16 from

histologically malignant ducts. Histologic diagnoses for benign ducts ranged from ductal

epithelial hyperplasia (DEH) (3), sclerosing adenosis (19), fibrocystic change (43), and

fibroadenoma (5), to Monckeberg's arteriosclerosis (4), while all 16 malignant ducts were

diagnosed as ductal carcinoma in situ (DCIS). No invasive carcinomas were encountered in

the regions where data was acquired. All 11 patients were Caucasian females with a mean

age of 53.4 years (range 41 to 85 years) and had undergone excisional breast biopsy for

suspicious microcalcifications found on mammography. These patients had no palpable

breast lesions and, with the exception of the fibroadenomas, had no mass lesion or other

significant findings on mammography.

-204-

--



VI. B. b) Data Acquisition

Data was acquired using the laboratory confocal Raman microscopy system detailed in

Chapter III.F.2. In short, Raman excitation light, 830 run, is launched into a confocal

microscope and focused to a spot size of approximately 2J.1.m. All Raman spectra in this

study were acquired with a 60 sec. integration time and a spectral resolution of 8 cm-1• The

average laser excitation power used varied between 100 and 150 mW.

VI. C. Raman Spectra

Figure VI.la is a specimen radiograph which exhibits features indicative of the presence of

microcaIcifications, while Figure VI. 1b displays a phase contrast image collected from a thin

section of this specimen. The Raman spectrum of a type I microcaIcitication acquired from

the deposit highlighted by a smaIl box in image VI. 1b is shown in Figure VI. 1c. Based on

the overall histology of this sample as we]] as the specific features apparent in the phase

contrast image, this lesion was diagnosed as fibrocystic change. Vibrational features
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Raman Shift (em-')115/lm
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~
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VI.1 c

Figure VI.I. a) Specimen radiograph and b) phase contrast image taken from a section of the same sample.
c) Raman spectrum of a type I calcification arising in association with secretions in the lumen of a duct cyst
in a focus of fibrocystic disease. The region from which the Raman spectrum was acquired is highlighted by

a box.
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characteristic of calcium oxalate dihydrate can be seen at 912 cm-1
, 1477 cm-1

, and 1632 cm-

These Raman features are attributed to C-C stretching, and C-O symmetric and

asymmetric stretching respectively and are consistent with previously published Raman

spectra of calcium oxalate dihydrate [Kodati et al. 1990; Pestaner et at. 1996; Kontoyannis et

at. 1997].

Figures VI.2a and VI.2b display a phase contrast image of a type II microcalcification

in a malignant duct and the corresponding specimen radiograph. Figure VI.2c shows the

Raman spectrum acquired from the deposit highlighted in image VI.2a by a small box.

Through examination of this spectrum, it is evident that the microca1cification is not

composed of pure calcium hydroxyapatite. The Raman spectrum of pure stoichiometric

calcium hydroxyapatite contains four phosphate internal vibrational modes as well as bands

due to the hydroxyl ion stretching and librational modes. Two of the phosphate vibrational

modes are out of the spectral range we have chosen to examine as well as both of the

hydroxyl ion modes. The large band at 960 cm-1 is the vI(P04) totally symmetric stretching

mode of the 'free' tetrahedral phosphate ion. Another phosphate VI mode occurs at 948 em-I

VI.2c
-:i
cO

115 J.Lm 600 800 1000 1200 1400 1600 1800

Raman Shift (cm-1)

Figure VI.2. a) Specimen radiograph and b) phase contrast image taken from a section of the same sample. c)
Raman spectrum of a type II calcification in a malignant breast lesion. The region from which the Raman

spectrum was acquired is highlighted by a box.
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but is obscured by the broad phosphate stretching mode at 960 cm '1. Overlapping Raman

structure resulting from five v3(P0 4) bands can be seen between 1028 cm '1 and 1061 cmn' .

The sixth v3(PO4) mode appears at 1075 cm'. The phosphate features present are consistent

with previously published Raman spectra of calcium hydroxyapatite [Kodati et al. 1991;

Kodati et al. 1993; Kontoyannis et al. 1997]. In addition to the phosphate peaks resulting

from calcium hydroxyapatite there are several other vibrational modes present in this

spectrum. Protein contributions can be seen at 1445 cm ' and 1650 cml. Also the sharp

peak present at 1004 cm' l can be attributed to phenylalanine. Small contributions from lipid

are manifest as a C-C stretch and C-H (CH2) bend at 1130 cm 1 and 1300 cm 1 respectively.

Initially, data acquired from type I and type II microcalcifications were separated

based on their Raman spectra. The presence or absence of vibrational intensity at specific

wavenumbers was used to distinguish between type I and type II microcalcifications. Spectra

containing large peaks at 912 cmrf and 1477 cm', characteristic of calcium oxalate dihydrate,

were grouped into the type I category while spectra displaying intensity at 960 cm' 1,

characteristic of calcium hydroxyapatite, were grouped into the type II category. In the

current analysis, the separation into type I and type II microcalcifications was performed by

visual inspection. However, an automated computer algorithm which normalizes the spectra

and distinguishes them based upon an intensity value of one occurring at either 960 cm',

type II, or 1477 cm ' , type I, could easily be implemented. All 30 type I microcalcifications

we examined were formed in loci of fibrocystic disease and thus all 30 type I

microcalcifications were diagnosed as benign. This is consistent with the fact that type I

microcalcifications are formed as a product of secretions and are typically located in cystic

lesions. Although type I microcalcifications have been found in malignant lesions,
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specifically lobular carcinoma in situ, it is exceedingly rare [Frappart et al. 1984; Frappart et

al. 1986].

VI. D. Principal Component Analysis

In order to differentiate type II microcalcifications occurring in benign and malignant breast

lesions, we employed PCA, described in Chapter IV.B.1 [Geladi and Kowalski 1986].

Although PCA provides little physical information in and of itself; however, it is adept at

isolating spectral trends that correlate with physical information and thereby provides a basis

for development of a diagnostic algorithm. Furthermore, by comparing the lineshapes of the

diagnostic PC spectra with the spectra of pure chemicals, it is possible to ascribe meaning to

them. More importantly, this method of analysis provides a proof of principle that there is

indeed important diagnostic information contained within the Raman spectra of type II

microcalcifications.

We used a singular value decomposition algorithm to determine the principal

components of our data set. The data set was normalized to the 960 cmn' peak height to

remove any possible intensity biases and subsequently mean centered prior to performing

PCA in order to remove features common to all spectra thereby further highlighting spectral

variance. All 60 spectra could be accurately modeled above the noise level using 9 principal

components. The first 6 PCs account for more than 97 % of the total variance in the data.

Next, we used logistic regression, a discriminate analysis technique, to generate a diagnostic

algorithm that was used to classify the breast lesions into benign and malignant categories

[Shama 1996]. Logistic regression correlates the weighting coefficients (scores) of the

principal components calculated for each Raman spectrum with the diagnostic categories.
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Diagnoses were provided by pathologist blinded to the outcome of the spectroscopic

measurements. A leave one out cross-validation analysis was employed in order to obtain a

robust diagnostic algorithm.

VI. E. Diagnostic Algorithm

Fibroadenoma is a benign tumor of a completely different lineage than all other lesions we

have examined [Rosen 1997]. It is most closely related to phylloides tumors, the malignant

counterpart of which is not carcinoma but cystosarcoma phylloides, in which the stroma

rather than the epithelium is malignant. Furthermore, the clinician typically knows that a

breast lesion is in the fibroadenoma/phylloides tumor family based on physical examination

and features other than microcalcification on mammography [Houssami et al. 2001]. As

these lesions must be surgically excised for treatment, physicians would be unlikely to use a

technique like Raman spectroscopy as an adjunct tool for diagnosis of fibroadenoma. For

these reasons, we assessed the performance of the algorithm after excluding samples

diagnosed as fibroadenoma from our analysis.

Using a combination of PCA and logistic regression, we were able to examine Raman

spectral signatures of type II microcalcifications to determine whether or not breast disease

diagnosis could be made on this basis. We obtained good diagnostic accuracy with 3 PC

scores. The significant scores are associated with PC 2, PC 3, and PC5 . PC5 accounts for 1.0%

of the total variance in the data, while PC 2 and PC3 account for 8.8% and 5.2% respectively.

Using these three principal components and a leave one out cross validation method we were

able to predict 14 out of 16 DCIS and 34 out of 39 benign samples correctly. Thus, type II

microcalcifications occurring in benign and malignant breast ducts could be distinguished
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with a sensitivity of 88%

and a specificity of 87%. If

88% with a drop m

A

are only slightly degraded,

maintaining a sensitivity of

we retain all samples, the

sensitivity and specificity

sensitivity to 80%.

graphic representation of

the diagnostic algorithm for

Figure VI.3. Diagnostic algorithm for type n microcalcifications
based on the scores of three principal components: benign (triangles),

malignant (circles).

type II microcalcifications is shown in Figure VI.3. In order to condense the algorithm into a

two-dimensional representation, PCs and PC2, which both have higher scores for benign

microcalcifications, were added together to form a single axis. Based on this algorithm, all

of the samples diagnosed as DEH and sclerosing adenosis, the benign conditions most

commonly confused morphologically with carcinoma, were predicted correctly. 4 out of 5

type II stromal calcifications occurring in fibroadenoma were misdiagnosed, as well as 2 of 4

arterial calcifications in Monkeberg's arteriosclerosis and 3 out of 13 ductal calcifications in

fibrocystic disease.

In general, only one microcalcification was studied from each lesihn. However, in

two samples, multiple microcalcifications were studied from the same lesion and no

significant differences were seen in the spectra for each given lesion. When we combine data

acquired from both type I and type II microcalcifications we obtain an overall sensitivity of

88% and a specificity of 93%. This corresponds to a positive predictive value of 74% and a
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negative predictive value of 97%. A

1.0

0.8

(.,

< 0.4

0.2

0.0

receiver operating characteristic curve

generated from these results is shown

in Figure VI.4. Based on these in vitro

results in fixed tissue, we believe that

Raman spectroscopy has the potential

0.0 0.2 0.4 0.6 0.8 1.0 to discriminate microcalcifications
1 -Specificity

associated with benign and malignant
Figure VI.4. Receiver operating characteristic (ROC)

curve which illustrates the ability of Raman breast lesions more accurately than
spectroscopy to separate microcalcifications occurring
in benign and malignant breast lesions. A simulated

ROC curve of two indistinguishable populations, mammography. Further studies
represented by the dashed line, is included for

comparison. performed in vitro on fresh tissue and

ultimately in vivo are planned to better evaluate the clinical utility of Raman spectroscopy as

compared to X-ray mammography for the diagnosis of breast cancer.

VI. F. Chemical Analysis

Through examination of the three diagnostic principal component spectra, we can gain

insight into the physical basis responsible for this discrimination. The most diagnostically

significant PC spectrum was PC 5, shown in Figure VI.5a. Examination of this PC spectrum

reveals a broadening of the 960 cm 1 phosphate stretching peak. This broadening is clearly

demonstrated in Figure VI.5b, in which PC 5 is overlaid with the mean spectrum from all type

II microcalcifications. Broadening of this peak has been reported in the literature to result

from the presence of calcium carbonate [Nelson and Williamson 1982; de Mul et al. 1998].

In these studies, the application of Raman spectroscopy to carbonated apatite model systems
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Figure VI.5. a) Principal Component spectrum 5. b) Principal Component spectrum 5 (solid line)

overlaid with the mean spectrum from all type II microcalcifications (dotted line) to illustrate
broadening of the 960 cm-1 peak (arrow).

demonstrated a broadening of the phosphate peak with increased carbonate content. The

introduction of carbonate ions into the apatite structure reduces the symmetry of its' unit cell.

The peak broadening results from a loss of long-range translational order in the apatite

structure as the carbonate content of the sample increases. The study found a linear

relationship between the Full Width at Half Maximum (FWHM) of the 960 cm '1 phosphate

stretching mode and the calcium carbonate content of the sample. Evidence that the

broadening at 960 cm ' in PC5 may result from variations in the calcium carbonate content of

the microcalcifications is manifest in a peak at 1070 cml attributable to the calcium

carbonate VI(CO3) mode. However, the difficulty in interpreting PC spectra conferred by the

inclusion of both positive and negative features necessitates further investigation.

If indeed PC 5 accounts for variations in the amount of calcium carbonate present, then

spectra that have a higher score for PC5 will contain a larger amount of calcium carbonate

than spectra with a lower weighting coefficient. As benign spectra typically have a larger

score for PC5 than malignant spectra, we postulate that type II microcalcifications occurring

in benign lesions of the breast contain a larger amount of calcium carbonate than those
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deposits found in DCIS. To check our hypothesis, the FWHM was calculated for the 960 cm'

I phosphate stretching peak in each Raman spectrum in our study. In accordance with the

theory that type II microcalcifications formed in benign lesions have a larger calcium

carbonate content, we found that type II microcalcifications occurring in benign breast

lesions had an average FWHM of 18.0 0.5 cm l, while deposits in lesions diagnosed as

DCIS had an average FWHM of 17.0 0.5 cm 1. The significance of this difference is

reflected in a p-value of 0.03. This value was calculated based on the Wilcoxon rank sum

test which does not assume a normal distribution of data. Furthermore, if we examine the

FWHM of those samples incorrectly diagnosed, we found the opposite trend. The FWHM of

benign samples incorrectly diagnosed as malignant was 15.8 +0.5 cm 'l while that of

malignant samples incorrectly diagnosed as benign was 17.5 0.5 cm', indicating that the

width of the phosphate stretching mode is a key diagnostic feature. However, although the

peak height of the 1070 cml carbonate stretching mode is on average four times larger in

benign samples, it does not correlate linearly with the FWHM of the 960 cm 1 phosphate

stretching mode. This indicates that additional impurities in the apatite structure contribute

to disruption of the symmetry and thereby the broadening of the 960 cmf peak. These

impurities are manifest in the complex vibrational structure of PCs, but presently have not

been identified. PC5 also contains several features representative of proteins such as the CH2,

CH3 bending mode at 1445 cm ' and the Amide I vibration at 1650 cm 1. Unlike the calcium

carbonate features, which have a positive intensity, the protein features are negatively

directed. This indicates that the protein and carbonate contents are negatively correlated, and

thus that benign samples tend to have a lower protein content than malignant samples.
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The amount of protein

and calcium carbonate present in

type II calcifications in benign ,

and malignant lesions is further >

confirmed by examination of
conirmed by examination of VI.6. This

PC2, shown in Figure VI.6. This

spectrum also appears to contain I
600 800 1000 1200 1400 1600 1800

positively directed calcium Raman Shift (cm-')
Figure VI.6. Principal Component spectrum 2 exhibiting a

carbonate features, particularly at large, second derivative-like feature around 960 cm-1 (arrow).

1070 cml, as well as negatively directed protein features and contributes more, on average,

to the Raman spectra of microcalcifications formed in benign ducts. Additionally, PC2

exhibits a large, second derivative-like feature around 960 cm 1. This type of structure

accounts for peak broadening in the data and further supports our hypothesis that type II

microcalcifications formed in benign ducts tend to have a larger amount of calcium

carbonate, and thus more broadening of the 960 cm'1 peak, than those formed in malignant

ducts.

PC3 was also found to be diagnostically significant. It is shown in Figure VI.7. PC3,

however, contributes more to Raman spectra acquired from type II calcifications in

malignant ducts. It has positively directed protein features, thus lending further support to

the theory that microcalcifications formed in malignant ducts have a larger amount of protein

than deposits in benign ducts. The amount of protein in microcalcifications in benign and

malignant ducts is confirmed by monitoring the peak height of the Amide I vibration at 1650

cm'1. The intensity of this mode is approximately one and a half times greater in type II
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microcalcifications formed in

malignant lesions. Additionally,

|- - | / >I contributions from phenylalanine, an

2a 9 1 Aamino acid often found in

conjunction with collagen and other

proteins, can be seen in PC 3 at 1004

600 800 1000 1200 1400 1600 1800

Raman Shift (cm-') derivative-like feature at -960 cm'.

Figure VI.7. Principal Component spectrum 3 This feature accounts for a peak shift
exhibiting positively directed protein features such as
the peak at 1445 cm-1, the Amide I vibration at 1650

cm-1, and the phenylalnine feature at 1004 cm- the phosphate stretching mode

which is positively correlated with the protein features. The presence of these protein

features may explain the misdiagnosis of stromal calcifications in fibroadenomas and arterial

calcifications in Monkeberg's arteriosclerosis, which are the result of stromal or arterial

degradation similar to the cellular degradation that occurs in DCIS.

VI. G. Summary and Discussion

This study demonstrated the diagnostic potential of Raman spectroscopy to differentiate

microcalcifications found in benign and malignant breast lesions. Additionally, using PCA

we have discovered subtle differences in the chemical composition of type II

microcalcifications occurring in benign and malignant breast lesions. Based on our results,

we postulate that type II microcalcifications occurring in benign lesions of the breast have

both a lower protein and a higher calcium carbonate chemical content than those formed in

malignant lesions. Although we have identified a few of the chemicals responsible for the
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differences between benign and malignant type II microcalcifications, there are several other

chemical species represented in the rich structural content of the diagnostic PC spectra which

are as yet unidentified. Elucidation of the additional chemical species present in type II

breast microcalcifications may yield further insight into the mechanisms by which they are

formed.

Further studies are needed to identify these chemical species, and fresh breast tissue

may be necessary for these studies. We have found few microcalcifications in the fresh

frozen breast tissue from surgical specimens currently available to us for study because they

are important for medical diagnosis and therefore not usually released for scientific study. It

is for this reason that we used deparaffinized fixed tissue sections for this study. As a result

of the fixation process, the fluorescence occurring as a background on the Raman spectrum

could not be reliably analyzed. However, the development of fiberoptic probes for Raman

spectroscopy may soon allow real time studies of microcalcifications in fresh breast tissue in

the clinical setting prior to pathologic examination. Based on the findings of this study, we

expect type II calcifications occurring in benign and malignant lesions to have distinct

fluorescent properties due to the known fluorescence characteristics of proteins and calcium

carbonate [Fujimoto et al. 1977; Aminzadeh 1997]. Additional differences in the

fluorescence profile of type II microcalcifications formed in benign and malignant lesions

due to as yet unidentified chemical species may also become apparent, once

microcalcifications in unfixed tissue are studied. Thus, the fluorescence of type II

microcalcifications could easily be exploited to increase the diagnostic accuracy of this

methodology. Furthermore, we plan to couple these results with a previously described

Raman spectroscopic model of breast tissue to create a powerful new tool for the diagnosis of
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benign and malignant breast lesions [Shafer-Peltier et al. 2002]. The Raman technique may

be applied first in vitro in breast biopsies in which little tissue is obtained and the lesion may

not be well represented but microcalcifications are present. Ultimately, it may be used as an

in vivo adjunct to mammography to help select those patients with microcalcifications who

need to go on to biopsy.
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Chapter VII. Raman Spectroscopic Breast Cancer Diagnosis: In
Vivo Studies

Previous studies have demonstrated the ability of Raman spectroscopy to diagnose breast

cancer using ex vivo tissues. The final objective of this thesis, the in vivo application of

Raman spectroscopy for diagnosing breast cancer, is described in this chapter. Our in vivo

studies were performed at the Cleveland Clinic Foundation in collaboration with Dr. Joseph

Crowe. Data were collected with our front-viewing Raman optical fiber probes during

lumpectomy and mastectomy surgical procedures. The goals of this study were to

demonstrate our ability to collect in vivo data and make accurate diagnoses using our

previously developed diagnostic algorithm, discussed in Chapter V.A. This study represents

the first demonstration of in vivo collection of Raman spectra of breast tissue. The

culmination of this thesis results in an approach that was employed intra-operatively during

partial mastectomy surgeries to accurately assess margin status.
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VII. A. Introduction

Having established that Raman spectroscopy is a useful technique for evaluating breast

cancer ex vivo, preliminary in vivo investigations are the next step to clinical implementation.

To date, only a handful of in vivo studies using Raman spectroscopy have been undertaken

[Caspers et al. 1998; Bakker Schut et al. 2000; Caspers et al. 2000; Hata et al. 2000;

Utzinger et al. 2001; Shim et al. 2000]. The majority have been targeted towards easily

accessible organs, such as skin, and require relatively long collection times. However, the

recent development of a small diameter high throughput Raman probe provides the ability to

study remote organs with real-time diagnostic capability. In this chapter, the first

demonstration of in vivo collection of Raman spectra of breast tissue is presented. Data were

acquired during mastectomy surgeries. Although we ultimately strive for transdermal needle

probe measurements, for initial investigations, probe positioning and contact can be more

accurately controlled in a surgical environment. However, preliminary results using Raman

spectroscopy for intra-operative margin assessment are promising and may represent a viable

clinical application in addition to transdermal needle probe measurements.

Because we have demonstrated the safety of this technique, we bypassed animal

studies and proceed directly to human investigations [Motz 2003]. Further, animal models,

which would normally be used for initial in vivo studies, are not appropriate for development

of this technology due to species specific variability in the spectra collected.

VII. B. Data Acquisition

The experimental system and optical fiber Raman probes used for these procedures are
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described in detail in section III.E.3. All room and surgical lights were turned off during

each measurement. The spectrally examined tissue was then excised by the surgeon and

underwent conventional pathological examination. Spectra were collected for a total of 1 s.

A range of powers, 82-125 mW, were used depending on the probe employed.

Following each procedure, calibration data were collected for spectral corrections.

Wavenumber calibration was established with a spectrum of 4-acetamidophenol. Chromatic

intensity variations were corrected by collecting the spectrum of a tungsten white light source

diffusely scatted by a reflectance standard (BaSO4). The remaining probe background

generated in the optical fibers was characterized by collecting the scattered excitation light

off of a roughened aluminum surface. This background was optimally subtracted from the

data in an iterative loop by using a scaling factor related to the tissue's optical properties

[Motz et al. 2003]. The tissue fluorescence background was modeled with a sixth-order

polynomial. Finally, the data was fit via non-negativity constrained least-squares

minimization with our spectral model of breast tissue, described in section IV.C. In order to

accurately model the in vivo data, spectra of probe components, epoxy and sapphire, were

included in the model. In accordance with our initial diagnostic study, the fit coefficients of

fat, collagen, cell nucleus, epithelial cell cytoplasm, and cholesterol-like were normalized to

sum to a total contribution of one. In the present study, the two types of microcalcifications,

calcium hydroxyapatite and calcium oxalate dihydrate, were excluded from this

normalization as these species were not present in the tissue samples used for the diagnostic

algorithm development. We also observed increased contributions from It-carotene in our in

vivo data and thus this component was excluded from normalization.
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VII. B. 1. Raman Optical Fiber Probes

Four different probes were used in the in Probe Laser Power

vivo clinical studies presented in this
D (15 collection fibers) 161.9 mW

chapter. Probes D and F have 15
F (15 collection fibers) 118.2 mW

collection fibers and a diameter of 2.5
G (9 collection fibers) 109.1 mW

mm. Probes G and H have 9 collection
H (9 collection fibers) 78.5 mW

fibers and a smaller diameter of 2.0 mm.
Table VII.1. The throughput of the probes used in the in

The throughput of each probe, assessed vivo studies.

as the laser power emerging from the distal tip, is give in Table VII.1. These values were

obtained with 1260 mV, the maximum laser output.

The day prior to each clinical procedure, the experimental system was aligned and the

probes submitted for cold-gas ethylene oxide sterilization. Just before surgery, the proximal

ends of the sterilized Raman probe were coupled to the experimental system. The distal end

of the probe was kept sterile and placed in gentle contact with the tissue while spectra were

acquired. In the studies of atherosclerosis by Motz and coworkers, a single procedure was

performed per day [Motz et al. submitted]. This allowed alignment of the specific probe to

be used and the experimental system the day prior to intra-operative data collection. The

probe was then submitted for ethylene oxide cold gas sterilization and the instrumental

system aligned for precise coupling of the laser and the sterilized probe. To maximize the

data collection in the mastectomy studies, spectra were acquired during as many as 4

surgeries in a single day. Because it is difficult to align the system while ensuring probe

sterility, the instrument was aligned for best laser coupling with all 4 probes prior to

sterilization. To assess how to optimally align the system for all 4 probes, each probe was
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aligned and the throughput of the other 3 probes measured at this alignment. Results are

shown in Table VII.2. Based on these results, the system was aligned for either probe H or

probe G depending on the number of surgeries scheduled during the next day of data

collection.

The linear array of
Probe Optimally Aligned Other Probe Throughputs

collection fibers are
Probe F 73.7 mW

Probe D Probe G 91.5 mWterminated with a

Probe H 66.6 mW modified BNC connector

Probe D 169.5 mW
and coupled to the

Probe H Probe F 91.4 mW
spectrograph with a

Probe G 99.1 mW

Probe D 125.9 mW customized adaptor plate

Probe G Probe F 94 mW that was built in house.

Probe H 73.5 mW The BNC connector

Table VII.2. Probe throughputs with different laser coupling snaps into place on the
alignments.

adaptor plate, however,

the coupling does not ensure precise alignment of the linear array with the spectrograph slit

Vertical alignment of the linear array is necessary to assure adequate spectral resolution and

thus alignment must be checked in the surgical suite prior to data collection. Perpendicular

alignment of the linear area of collection fibers can usually be achieved with OR lights.

However, OR lights are bright and can saturate the detector. Further, the BNC connector is

the portion of the clinical instrumentation that allows the majority of light to enter the

system. Each probe also has a different focal plane within the spectrograph. Thus, prior to

each procedure the spectrograph must be focused in the OR. Again this can typically be
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done using the OR lights. Precision refining of the collection fiber/ spectrograph coupling

will result in less instrumental adjustments in the OR and easier clinical implementation.

VII. C. Margins

VII. C. 1. Introduction

Breast cancer is the most common female cancer in the United States, the second most

common cause of cancer death in women (after lung cancer), and the main cause of death in

women ages 45 to 55 [Jemal at al. 2004]. Breast cancer surgery has changed dramatically

over the past several decades, and continues to evolve. With the emergence of the partial

mastectomy, women may now preserve their breast without sacrificing oncologic outcome.

Partial mastectomy is the surgical removal of the tumor, also known as breast conservation

surgery or lumpectomy, followed by radiation therapy to eradicate any residual disease.

Several clinical trials directly comparing partial mastectomy with traditional mastectomy,

removal of the entire breast, have shown equivalent survival rates between the two treatment

approaches [Early Breast Cancer Trialists' Collaborative Group 1995]. The goals of partial

mastectomy are to provide a low rate of cancer recurrence in the treated breast while

maintaining a cosmetically acceptable breast.

Complete surgical excision of the primary tumor is key to reducing the risk of local

recurrence in women undergoing partial mastectomy procedures while minimizing the

amount of breast tissue removed is the main factor in preserving cosmetic appearance. Thus,

in successful partial mastectomy surgeries, complete resection of the cancer must be

balanced with tissue conservation. To ensure that all malignant tissue is removed, a small

margin of normal breast tissue surrounding the lesion is also excised. After surgery, a

pathologist checks to make sure the surgeon has removed the entire cancerous lesion by
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histologic assessment of the tissue margins. Margin status is gauged by pathological

examination of the border of the excised lesion. Additionally, six small tissue samples are

often taken from locations within the surgical cavity and examined for the presence of

malignancy. Negative resection margins, typically defined as the absence of either invasive

or intraductal carcinoma, have lower associated rates of local recurrence following partial

mastectomy than do positive resection margins [Gage et al. 1996; Park et al. 2000; Smitt et

al. 1995; Anscher et al. 1993; Borger et al. 1994]. Positive or unknown histologic margins

usually prompt re-excision of the initial surgical site, since such patients are at higher risk for

local recurrence even when radiation therapy is administered. In clinical practice, as many as

20%-55% of patients undergoing partial mastectomy will require a second surgical procedure

due to positive margins indicative of incomplete cancer excision [Walls et al. 1995;

Klimberg et al. 1998].

As a consequence of the large number of re-excision surgeries performed, there are

numerous approaches under investigation to enhance intra-operative margin assessment.

Gross inspection of the specimen in the operating room, with or without frozen section

analysis, may permit identification of positive or close margins and immediate re-excision.

However, routine frozen section analysis is time consuming and can lead to inadequate

assessment of tumor margins in large specimens, and loss of diagnostic material in small

specimens [Ferreiro et al. 1995; Johnson et al. 2001; Rubio et al. 1998]. Time intensive

techniques, such as frozen section analysis, also have the disadvantage of prolonging the

surgical procedure, thereby increasing the time the patient remains anesthetized. Therefore,

many intra-operative techniques, which can provide real-time feedback, are under

investigation. Intra-operative ultrasound may assist in assuring negative margins, although it
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is generally of low resolution and thus its use does not preclude the presence of microscopic

tumor on permanent sections [Klimberg et al. 1999]. Sehgal and coworkers used tissue

echogenicity, the angular variance in echogenicity around the circumference of the lesion,

and the patients age to obtain a sensitivity and specificity of 95% and 63%, respectively

[Sehgal et al. 2004]. Optical techniques are also capable of providing immediate diagnosis

and thus can assist in tumor resection during partial mastectomy surgeries. Currently, a

variety of optical imaging and spectroscopic techniques are being explored to improve breast

cancer diagnosis. These techniques employ visible or near-infrared light, are of high

resolution when compared with ultrasound, and provide chemical information about the

tissue being studied. Preliminary in vivo investigations have examined the efficacy of diffuse

reflectance spectroscopy in the diagnosis of breast lesions, as well as in the assessment of

tumor margins [Bown et al. 2000]. Diffuse reflectance spectroscopy monitors changes in

the absorption and reduced scattering coefficients among tissues with different pathologies.

It yielded a sensitivity and specificity of 67% and 79%, respectively.

In this study, we present the first demonstration of in vivo collection of Raman

spectra of breast tissue. Data were collected during partial mastectomy surgeries to

demonstrate the feasibility of in vivo Raman spectroscopy for intra-operative margin

assessment and diagnosis of breast cancer. The research serves to extend and confirm the

results of our ex vivo studies. The results of this study indicate that Raman spectroscopy has

the potential to aid in intra-operative tumor resection. Accurate in vivo margin assessment

techniques will allow numerous re-excision surgeries to be avoided. They may also extend

partial mastectomy procedures to those women who do not harbor sufficiently small or

localized breast cancers to qualify by current standards.
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VII. C. 2. Sample Preparation

The clinical protocol has been approved by both the MIT Committee on the Use Of Humans

as Experimental Subjects and the Institutional Review Board of the Cleveland Clinic

Foundation. Informed consent was obtained from all subjects prior to the surgical

procedures.

This study utilizes partial mastectomy surgery to demonstrate the feasibility of in vivo

Raman spectroscopy. The standard of care at the Cleveland Clinic Foundation involves the

excision of 6 margin specimens from the surgical cavity. Raman spectra were collected from

several of these margins prior to excision and thus only tissue that would normally be excised

during the procedure was removed. A total of 30 Raman spectra were collected from 9

patients, 29 from margins subsequently found to be negative on pathology examination and 1

spectrum from a margin subsequently found to be positive on pathology examination. Of

the 29 negative margins, 21 were comprised of normal breast tissue and 8 contained tissue

diagnosed as fibrocystic change. The 1 positive margin was diagnosed as high-grade ductal

carcinoma in situ (DCIS). We are able to accurately fit all 30 spectra with our previously

developed spectral model of breast [Shafer-Peltier et al. 2002].

Two spectra were excluded from the present analysis. The first, a benign papilloma,

is a pathology not encountered in our previous studies and thus our diagnostic algorithm does

not encompass this type of tissue. The second is a margin noted by the pathologist to harbor

significant cautery effects resulting from the surgical procedure. This was the only specimen

where cautery of this degree was seen.
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VII. C. 3. Model Fits

Model fits to in vivo Raman spectra acquired from normal, benign, and malignant breast

tissues are shown in Figure VII. 1. The difference between the measured spectrum and the

model fit, the residual, is shown below each spectrum. The lack of significant structure in

the residuals demonstrates that the model accounts for the majority of the spectroscopic

features observed and describes the data well. The fit coefficients, also displayed in Figure

VII.I, represent the amount that each model basis spectrum must be weighted in order to

recreate the tissue spectrum, thereby providing insight into the chemical/morphological

makeup of the tissue.
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Figure VII.1. Normalized Raman spectra (solid line), model fit (dotted line), residual (shown below),
and fit coefficients representative of a) normal breast tissue, b) fibrocystic change, and c) ductal

carcinoma in situ.

Fit coefficients are a function of both the concentration of a particular model

component and its Raman scattering cross-section (which indicates the strength of the signal
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at unit concentration). The fit coefficients of normal breast tissue exhibit a large contribution

from fat. This is because normal breast tissue is predominately comprised of adipocytes,

cells containing large amounts of cytoplasmic fat, and also because relative to most other

model components, fat has a large Raman scattering cross-section. This explains the

excellent signal to noise ratio evident in the spectrum acquired from normal breast tissue,

Figure VII. 1 a. Although there is more noise evident in spectra acquired from diseased tissue,

data analysis still yielded excellent model fits.

Fibrocystic change is a benign condition that can manifest itself as fibrosis (a scarring

process characterized by an increased stromal component, and thus by accumulation of

collagen), adenosis (increase in the number of ductules) or cyst formation (dilation of ducts

and lobules with fluid). The margin which harbors fibrocystic change shows an increase in

the fit coefficients of collagen due to fibrosis and epithelial cell cytoplasm as a consequence

of adenosis. The fit coefficients of the positive margin, diagnosed as high-grade ductal

carcinoma in situ (DCIS), also display an increase in the amount of epithelial cell cytoplasm.

However, a signature of carcinoma is enlargement of cell nuclei, and thus a higher nuclear to

cytoplasm (N/C) ratio than in benign conditions. Nuclear enlargement and atypia are

hallmarks of cancer. Thus, the N/C ratio is a diagnostic criterion routinely used by

pathologists [Elston and Ellis 1991; Hoda and Rosen 2002]. In our studies, the spectroscopic

parameter characterizing the N/C ratio, obtained by dividing the fit coefficient of the cell

nucleus basis spectrum by the fit coefficient of the epithelial cell cytoplasm basis spectrum,

is much larger for the cancerous specimen, shown in Figure VII.lc, than for any of the

fibrocystic lesions encountered in this study.
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Table VII1.3 displays the fit coefficient error associated with each model component.

The method used for calculating prediction error is presented in section IV.F. Errors are

broken down by diagnosis, as spectra corresponding to different pathologies contained

dissimilar amounts of noise. The amount of noise was extremely variable even within

pathologies due to collection with different Raman probes as well as day to day variations in

laser coupling.

Table VII.3. Fit coefficient errors for the in vivo data.

VII. C. 4. Diagnostic Algorithm

Figure VII.2 displays a scatter plot of the fit coefficients for collagen and fat,

FC(Coll) and FC(Fat), respectively, for all data acquired in this study. Also shown are the

decision lines that separate samples according to diagnoses. The diagnostic algorithm shown

in Figure VII.2 was developed previously using 126 spectra from 58 patients and is used in a

prospective manner in this study [Haka et al. submitted]. Table VII.4 compares the

pathologic diagnosis with that of the Raman diagnostic algorithm for our data set. The
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N-0.0451 N=0.0927 N=0.1841

Calcium Oxalate Dihydrate 2.68 0.96 0.02 0.04 0.07

Calcium Hydroxyapatite 2.85 0.93 0.02 0.03 0.07

Cholesterol-like 4.48 0.28 0.04 0.07 0.15

Water 7.04 0.64 0.01 0.02 0.04

O-Carotene 3.67 0.84 0.01 0.03 0.06

Fat 4.97 0.40 0.02 0.05 0.09

Collagen 8.12 0.45 0.01 0.03 0.05

Cell Nucleus 5.96 0.69 0.01 0.02 0.04

Epithelial Cell Cytoplasm 6.32 0.31 0.02 0.05 0.09
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Figure VI.2. Scatter plot displaying the fat and collagen content for the in vivo Raman spectra

acquired margin specimens. Normal (stars), Fibrocystic Change (diamonds), Ductal Carcinoma In
Situ (square).

algorithm results in a sensitivity for detecting carcinoma of 100%, a specificity of 100%, and

an overall accuracy of 93% (28/30). We note, that although there is only one malignant

sample in the present data set, this algorithm has been previously validated with 31 cancerous

specimens. The high grade DCIS correctly identified by Raman spectroscopy was grossly

invisible. Upon pathologic review, the finding that this margin was positive necessitated that

the patient undergo a second surgery to excise the remaining cancerous cells. Had Raman

spectroscopy been employed in a real-time fashion to guide excision during the initial

surgery, the additional procedure could have been avoided.
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Pathology Normal Fibrocystic Cancer
Diagnosis Change

Raman
Diagnosis (21 spectra) (8 spectra) (1 spectrum)

Normal 21 2 0

Fibrocystic Change 0 6 0

Cancer 0 0 1

Table VII.4. Comparison of pathologic diagnosis with that of the Raman diagnostic algorithm for
margin specimens. The Raman diagnostic algorithm results in an overall accuracy of 93% (28/30).

VII. C. 5. Discussion

This pilot study is the first use of Raman spectroscopy to examine breast cancer in vivo. It

clearly demonstrates the feasibility of Raman spectroscopy as a clinical technique for breast

cancer diagnosis. The data exhibit good agreement with our previously developed spectral

model and diagnostic algorithm. Studies with a larger patient pool are currently underway to

further expand and validate our diagnostic algorithm. Further, we have developed and

demonstrated real-time Raman diagnosis with our clinical instrumentation thus allowing its

implementation in upcoming studies [Motz et al. in press]. These excellent results indicate

that Raman spectroscopy has the potential to provide real-time margin assessment thereby

reducing the recurrence rate of breast cancer following partial mastectomy surgeries.

As the first in vivo demonstration of Raman spectroscopy of breast tissue, this study

has implications beyond margin assessment. There are several areas where Raman

spectroscopy may aid in breast cancer diagnosis and treatment. In particular, optical

techniques are less invasive than current diagnostic procedures. The results of this study

illustrate the potential for transdermal needle measurements to provide breast cancer

diagnosis. As opposed to standard biopsy, a spectroscopic transdermal needle measurement

would have the advantage of providing immediate diagnosis. As a result, Raman
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spectroscopy has the potential to reduce both the likelihood of a non-diagnostic biopsy that

would require repeat needle or surgical biopsy, and patient anxiety by eliminating the

currently unavoidable wait for a traditional histopathology diagnosis. Furthermore, with the

development of minimally invasive breast cancer therapies, such as radio frequency ablation,

which relies on insertion of a thin metal probe into the breast, there is the potential that

diagnosis and treatment could be performed in a single procedure [Fornage et al. 2004].

VII. D. Mastectomies

VII. D. 1. Sample Preparation

The clinical protocol has been approved by both the MIT Committee on the Use Of Humans

as Experimental Subjects and the Institutional Review Board of the Cleveland Clinic

Foundation. Informed consent was obtained from all subjects prior to the surgical

procedures.

This study utilizes mastectomy surgenes to

demonstrate the feasibility of in vivo Raman

spectroscopy. Spectra were acquired from the

mastectomy specimen prior to removal of the breast.

Locations of data acquisition were selected by the

Figure VII.3. Schematic of a
mastectomy surgery.

surgeon. Small samples of tissue were taken from the spectrally examined region of the

breast. As the entire breast is excised during a mastectomy procedure, only tissue that would

normally be excised during the surgery was removed. A total of 32 Raman spectra from 9

patients was collected, 24 spectra from normal breast tissue, 6 from tissue diagnosed as

fibrocystic change, and 2 spectra from cancerous lesions. The malignant tissue was
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diagnosed as intermediate-grade DCIS. We are able to accurately fit all 32 spectra with our

previously developed spectral model of breast [Shafer-Peltier et al. 2002]. In the mastectomy

procedures, spectra were acquired from more peripheral tissue sites than in the margin

specimens. The surgical procedure, diagramed in Figure VII.3, illustrates the area of data

collection from deep within the breast, closer to the chest wall.

Seven spectra were excluded from the present analysis. The first, a lesion diagnosed

ik0Ca,E

bUU UU lWO 1U 14UU 1600 100 600 800 1000 1200 1400 1600 1800

Raman Shift (cm-') Raman Shift (cmn ') Raman Shift (cml')
Figure VII.4. a) A Raman spectrum contaminated with light. Also shown are the model fit (dotted line)
and residual (below). b) A spectrum obtained by shining light onto the probe/ spectrograph connection.
c) Raman spectrum shown in a. The light spectrum, shown in b, is included in the model resulting in

the fit (dotted line) and residual (below) shown in c.

as granulomatous response, is a pathology not encountered in our previous studies and thus

our diagnostic algorithm does not encompass this type of tissue. Six spectra, all from a

single patient, were excluded due to distortions from light contamination. Figure VII.4

shows a Raman spectrum contaminated with light. Although the OR lights were turned off

during data acquisition, it did not result in complete darkness due to windows in the surgical

suite and computer monitors. The light was found to enter through the probe spectrograph

BNC connection. Only probe D exhibited this type of light contamination. In latter data

collection, the BNC connection was covered with a black cloth. A spectrum of the light

entering probe D is shown in Figure VII.4b. When this light spectrum was included in the

model, fits were improved as seen in Figure VlI.4c. However, all 6 spectra were still
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incorrectly diagnosed and thus excluded from the analysis. Refinement of the light spectrum

shown in Figure VII.4b may further improve the accuracy of the model fit.

VII. D. 2. Model Fits

Model fits to in vivo Raman spectra acquired from normal, benign, and malignant breast

Cu
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Fat 0.79

Collagen 0.01
Cell Nucleus 0.00

Cell Cytoplasm 0.01
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Figure VII.5. Normalized Raman spectra (solid line), model fit (dotted line), residual (shown below),
and fit coefficients representative of a) normal breast tissue, b) fibrocystic change, and c) ductal

carcinoma in situ.

tissue are shown in Figure VII.5. The difference between the measured spectrum and the

model fit, the residual, is shown below each spectrum. All 3 spectra were acquired from the

same patient. Some structure is visible in the residuals. Much of the structure in the

residuals results from spectral broadening as a consequence of incomplete vertical alignment

of the probe fibers and the detector. The BNC connectors on some probes prevent vertical

alignment. However, the model still accounts for the majority of the spectroscopic features
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observed and describes the data well. It is notable that all 3 spectra, regardless of diagnosis,

are predominately composed of fat. Because most spectra acquired in the mastectomy

studies contain large signals from fat, the noise in the data is similar regardless of the

corresponding diagnosis. Thus, the fit coefficient error for all data, regardless of pathology,

is similar to the error shown for normal samples in Table VII.3.

VII. D. 3. Diagnostic Algorithm

Figure VII.6 displays a scatter plot of

acquired from mastectomy specimens.

samples according to diagnoses. Table

the Raman diagnostic

algorithm for our data set. The 0.7

0.6

algorithm results in a

sensitivity of 0%, a specificity 04

U
O

0.3

of 100%, and an overall
0.2

accuracy of 81% (26/32). 0.1

Clearly, the results from the

the fit coefficients for collagen and fat for the data

Also shown are the decision lines that separate

VII.5 compares the pathologic diagnosis with that of

0

Fibrocystic Change

+

+

FC(Fat)

mastectomy specimens are
Figure VII.6. Scatter plot displaying the fat and collagen content

for the in vivo Raman spectra acquired during mastectomy
different than those firom the surgeries. Normal (stars), Fibrocystic Change (diamonds), Ductal

Carcinoma In Situ (squares).
margin tissues. In particular all

of the mastectomy data, regardless of pathology, exhibits large contributions from fat. We

are currently investigating the reason for the difference between the in vivo Raman spectra

acquired from mastectomy and margin specimens.
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Pathology Normal Fibrocystic Cancer
Diagnosis Change

Raman
Diagnosis (24 spectra) (6 spectra) (2 spectra)

Normal 22 2 2

Fibrocystic Change 2 4 0

Cancer 0 0 0

Table VII.S. Comparison of pathologic diagnosis with that of the Raman diagnostic algorithm for
mastectomy specimens. The Raman diagnostic algorithm results in an overall accuracy of 81% (26/32).

One possibility is that the tissue examined in the mastectomy surgeries was more

peripheral than the specimens in the lumpectomies. This peripheral tissue is further from the

core area of the breast, which contains the ductal system, and thus may have a higher fat

content, as shown in Figure VII.7. Future studies of Raman spectra at different locations

with in the breast can be used to examine the effect of anatomical position on spectrally

extracted composition. Misdiagnoses may also arise from the fact that in the 2 cancerous

mastectomy specimens malignant cells

only occupied 10% and 20% of the

volume of tissue spectrally examined.

It is possible that this level of

cellularity provides insight into our

lower detection limits. Future studies,

aimed at obtaining quantitative fit

coefficients, will elucidate lower

detection limits as well as Raman

Figure VII.7. Schematic of the breast illustrating the
distribution of the ductal system.

o ADAM.

scattering cross-sections of our model cOmPOnents. However, it is also possible that there

was a slight registration error between the excised tissue and the spectroscopic data. Such

-238-



registration errors have presented problems in many of our studies, including our in vivo

examination of atherosclerosis [Motz et al. submitted].
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Chapter VIII. Other Applications of Raman and Fluorescence
Spectroscopies

Although there are many advantages to Raman spectroscopy, other optical techniques may

also play a role in breast cancer diagnosis. Preliminary investigations have examined the

diagnostic potential of fluorescence and reflectance spectroscopies. Studies have also been

conducted on spectroscopic techniques that have only recently been applied to tissue, such as

surface enhanced Raman spectroscopy and fluorescence lifetime measurements. Finally,

Raman and fluorescence spectroscopies are used in a synergistic manner to elucidate the

mechanism of ceroid formation in situ. Ceroid is an insoluble lipid-protein complex

characteristic of atherosclerotic plaques. The mechanism of ceroid formation has been

extensively studied but despite intensive research, ceroid is only defined empirically through

its fluorescence properties and its behavior during various staining processes. The synergy of

these two types of spectroscopy allows for the identification of ceroid via its fluorescence

signature and the subsequent elucidation of its chemical composition through the acquisition

of a Raman spectrum. A better understanding of the mechanism of ceroid formation may

suggest avenues to induce regression or prevent progression of atherosclerotic plaques with

medical therapy
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VIII. A. Fluorescence and Reflectance of Breast

Although there are many advantages to Raman spectroscopy, other optical techniques may

also play a role in breast cancer diagnosis. In particular, several studies examining

fluorescence spectroscopy for the diagnosis of cancer have shown promising results,

particularly for the detection of precancerous changes. Because fluorescence spectroscopy is

fast, easily implemented, and has relatively strong signals, many researchers have employed

it for tissue diagnosis. As such, we are investigating the diagnostic role of fluorescence and

reflectance spectroscopies in breast cancer. The techniques may provide complementary

information to that obtained with Raman spectroscopy. To assess this, each fluorescence and

reflectance data set acquired in this study corresponds to a Raman spectrum obtained from

the same region of tissue. Preliminary results of the corresponding Raman spectral data set

are presented in Chapter V.B. In combination, these techniques may provide a more

complete understanding of the biochemical and/or morphological changes that take place

during the progression of breast disease. Ultimately all three modalities may be combined

into a single spectroscopic technique for the diagnosis of breast cancer. The overall goal of

this research project is to develop fluorescence and reflectance spectroscopies as a diagnostic

tool for the detection and differentiation of various breast diseases. We have collected a

large pool of data from a wide range of samples in order to further our understanding of

breast disease progression. Using this data we shall determine the key diagnostic features

contained within the fluorescence and reflectance spectra and utilize them in the development

of a diagnostic algorithm for the differentiation of normal, benign and malignant breast

tissue.
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VIII. A. 1. Introduction

The energy of visible and UV light can elevate the electrons in molecules and atoms to

excited energy states. These energy states exist as discrete levels, and can be excited only by

photons of a frequency that corresponds to the energy difference between level. The

structure of the molecule determines which incident frequencies will be absorbed. In many

cases light absorbed by a molecule is converted into heat; however, an absorbed photon can

also be re-emitted as fluorescence. Fluorescence emission typically occurs at a lower energy

than the absorption energy of the incident photons.

Fluorescence spectra in tissue can be used to identify fluorophores and monitor their

concentrations. Various tissue fluorophores include metabolic substances such as NADH

and flavins, aromatic amino acids such as tryptophan, tyrosine and phenylalanine, structural

proteins such as collagen and elastin, several porphyrins, and lipids such as ceroid and

lipofuscin. Each of these fluorophores has specific wavelengths for excitation and emission.

The fluorescence emitted by a molecule in tissue depends on the energy level difference

between the electronic ground state and excited state and the distribution of vibrational and

rotational levels within these states. These energy states can shift in the presence of different

local environmental factors, such as pH, temperature and oxygenation. In the progression of

disease the local environment in which the fluorophores are embedded changes, as well as

their relative concentrations, thus leading to changes in the observed fluorescence intensity

and lineshape.

The measured reflectance spectrum contains both diffuse reflectance (multiply

scattered) and singly backscattered light. The penetration depth of the diffusive component

is 0.5 mm to 1.5 mm, and therefore, diffuse reflectance spectroscopy (DRS) predominately
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provides information about the morphology and absorption of the tissue stroma. The

absorption spectrum of tissue depends on the type of predominant absorbing molecules or

chromophores and therefore, provides information about its chemical composition. Water is

a strong tissue absorber in both the UV and IR regions. DNA and proteins absorb in the UV

region, while hemoglobin, melanin and [l-carotene absorb in the visible region. Other tissue

chromophores include porphyrin-like structures such as bilirubin, myoglobin, cytochrome c

oxidase and protoporphyrin. For breast tissues, the diffuse reflectance spectra can be

analyzed using a mathematical model based on the diffusion approximation to extract the

hemoglobin and -carotene concentrations, oxygen saturation, average diameter and density

of scatterers [Zonias et al. 1999].

Extraction of the singly backscattered spectrum, which comprises a small fraction

(2% to 5%) of the entire reflectance spectrum, can be achieved by subtracting the diffuse

reflectance fit from the measured reflectance spectrum [Perelman et al. 1998]. The resulting

singly backscattered spectrum, referred to as light scattering spectroscopy (LSS), exhibits an

oscillatory behavior in wavelength. When arising from epithelium, the frequency of these

oscillations corresponds to the nuclear size distribution within the epithelial cells [Perelman

et al. 1998]. In breast, where the architecture of the tissue examined does not consist of a

layer of epithelial cells overlying the stroma, it is not clear what type of information LSS will

provide.

Fluorescence photons are scattered and absorbed during their path to the tissue

surface where they are collected. Therefore, the spectral features of the collected

fluorescence can be significantly distorted, making the extraction of the biochemical

composition of the tissue from the measured signal difficult. This is a particular problem in
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the presence of strong tissue absorbers such as hemoglobin. Intrinsic fluorescence

spectroscopy (IFS) is a technique that extracts the fluorescence of molecules unaffected by

absorption and scattering events [Zhang et al. 2000; Muller et al. 2001]. Because diffuse

reflectance undergoes similar absorption and scattering events as fluorescence, information

contained within the reflectance spectra can be used to extract the intrinsic fluorescence from

the measured fluorescence spectra. An example of measured fluorescence and reflectance

data and the corresponding intrinsic fluorescence spectrum is shown in Figure VIII.1. A

large dip, due to hemoglobin absorption, 10
0.8

can be seen at 420 nm in both the 8 337 n
O0.4

measured reflectance and fluorescence U. 0.2
00

300 400 500 600 700 800

spectra. This feature is not present in the Wavelength (nm)
0.40

intrinsic fluorescence because effects due 8
0.30

to tissue scattering and absorption have 0.20

been removed. The three techniques, IFS, 0.103 400 500 00 700 800

Wavelength (nm)
DRS and LSS, can be combined into a Figure VIII.l. Measured tissue fluorescence (dashed

line) and reflectance (solid line below) used to extract
single spectroscopic modality. This the intrinsic fluorescence spectrum (solid line above).

technique, known as tri-modal spectroscopy (TMS), provides biochemical, structural, and

morphological information simultaneously [Georgakoudi et al. 2001, 2002; Muller et al.

2002].

Several studies have fueled our interest in the use of fluorescence spectroscopy as a

diagnostic tool for the detection of breast disease [Yang et al. 1996, 1998; Gupta et al. 1997;

Majumder et al. 1998]. Previous research has demonstrated the ability of fluorescence

spectroscopy to differentiate benign and malignant tumors at certain key excitation
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wavelengths. owever, tnere are

several questions that these

studies have left unanswered.

First, their data was acquired at

least 4 hours after the tissue was

excised, well after key

fluorophores, such as NADH,

have decayed. This results in

diagnostic schemes that may not
Figure VIII.2. Schematic layout of the FastEEM clinical

spectrophotometer. LI, L2, L3, LA are lenses. M1 and M2 are be applicable to in vivo studies.
mirrors.

Second, previous studies have

only explored a limited number of excitation wavelengths. Third, the groups' results are not

consistent, raising questions regarding reproducibility of the data. Our experience in

fluorescence spectroscopy of human tissues places us in a good position to take this research

a step further. We have optical fiber fluorescence probes, as well as a special instrument, the

FastEEM (excitation-emission matrix), shown in Figure VIII.2, for collecting fluorescence

and reflectance data [Muller et al. 2002]. This instrument provides a broader range of

excitation wavelengths than was available in previous studies. Not only can we verify prior

published results, but it is possible that we can achieve superior diagnostic information by

employing a wider range of excitation wavelengths.

Additionally, a recent publication has indicated the utility of diffuse reflectance

spectroscopy for breast cancer diagnosis [Bown et al. 2000]. Our FastEEM instrument also

allows for the collection of reflectance data. A diagnostic algorithm that combines both
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fluorescence and reflectance data could result in significantly more accurate diagnoses. Our

current protocol for examining fluorescence spectra allows for the removal of artifacts

resulting from tissue absorption and scattering, factors which were not taken into account in

previous studies. Removal of features resulting from scattering and absorption is crucial for

both an in depth understanding of the origins of tissue fluorescence and for obtaining

reproducible data. Further, we have the ability to examine the tissue within minutes of

excision. Our capability to examine a wide range of excitation wavelengths, our previous

experience with fluorescence and reflectance data processing protocols, and the collection of

data immediately following tissue excision should result in more accurate diagnoses and a

deeper understanding of the chemical and physical changes accompanying the onset of breast

cancer.

vmI. A. 2. -Carotene Absorption

Analysis of the FastEEM data of breast tissue revealed contributions from -carotene, a

moiety not encountered in previous studies. We were unable to fit the reflectance data of

breast tissue using an absorption spectrum of -carotene dissolved in hexane

[http://omlc.ogi.edu/spectra/photochemCAD/html/beta-carotene.html]. This is because the

absorbance properties of carotenoids are highly dependent on their chemical environment

[Zang et al. 1997]. fl-carotene is extremely lipophillic and not soluble in water. In

physiologically relevant environments l-carotene is typically dissolved in adipose tissue, and

thus it is difficult to select an appropriate solvent for its' examination. For this reason, we

employed an absorption spectrum that was obtained by manipulating a diffuse reflectance

spectrum of a sample of breast tissue known to contain high concentrations of f-carotene.

This reflectance spectrum was inverted, smoothed using a five point adjacent averaging
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algorithm, and scaled to encompass a

similar intensity range as an absorption

spectrum of known [-carotene

concentration in hexane. The

manipulated reflectance spectrum was

subsequently averaged with the

absorption spectrum of -carotene

dissolved in hexane. Figure VIII.3

shows the absorption spectrum of 3-

carotene in hexane, the diffuse

reflectance spectrum used in this analysis
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Figure VIII.3. Absorption spectrum of b-carotene in
hexane (dashed line), inverted reflectance spectrum

(dotted line) manipulated to generate the 'b-carotene'
absorption spectrum used for fitting diffuse reflectance

of breast and artery (solid line).

and the resultant absorption
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Figure VIII.4. Reflectance data (solid lines) model fits (dotted lines) using the
absorption spectrum of b-carotene in hexane (left) and the mathematically

derived 'b-carotene' absorption spectrum (right).

spectrum used to fit

our diffuse

reflectance data.

This absorption

spectrum provides

superior reflectance

fits as it more

closely mimics the

properties of P-

carotene in its

natural

environment.

Reflectance fits
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using the absorption spectrum of -carotene in hexane and the mathematically derived

absorption spectrum are shown in Figure VIII.4. Using an integrating sphere, it should be

possible to obtain a more accurate absorption spectrum of -carotene in its natural

environment, tissue.

VIII. A. 3. Data Acquired at the Cleveland Clinic Foundation

This study was carried out in collaboration with Drs. Crowe and Dawson at the Cleveland

Clinic Foundation. All studies involving human tissue were approved by the Cleveland

Clinic Foundation Institutional Review Board and the Massachusetts Institute of Technology

Committee On the Use of Humans as Experimental Subjects. Informed consent was obtained

from all subjects prior to the surgical procedures.

VIII. A. 3. a) Sample Preparation and Data Acquisition

Breast tissue was obtained from patients immediately following surgical lumpectomy or

mastectomy procedures. Upon removal, the samples were sectioned per the normal

pathology protocol and spectral data acquired in the pathology suite at CCF. Locations for

data acquisition were chosen by the pathologist. Several sites were studied per patient (-3 to

4 depending on the size of the sample). Following spectral acquisition, specimens were

marked with India ink to indicate the region sampled, and fixed in formalin. The fixed tissue

samples were routinely processed, paraffin embedded, cut through the marked locations in 5

gm thick sections, and stained with H&E. The histological slides were examined by an

experienced breast pathologist who was blinded to the outcome of the spectroscopy analysis.
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Thirteen patients were examined corresponding to 6 FastEEM data sets from normal tissues,

11 from benign and 6 from malignant samples.

Reflectance and fluorescence spectra were obtained with an old version of FastEEM

instrumentation [Zangaro et al. 1996]. A xenon flash lamp (EG&G Optoelectronics, FX-139,

Salem, Massachusetts) was used as a white-light source to acquire reflectance spectra in the

360-700 nm range. Excitation light sources for fluorescence measurements were provided by

a 337 nm wavelength nitrogen laser (Laser Science, Inc., Franklin, Massachusetts) and 10

different dye lasers (358 nm to 610 nm), sequentially pumped by the nitrogen laser. The dye

cuvettes were mounted on a rotating wheel driven by a stepper motor. Light was delivered to

the tissue and collected by means of a probe containing seven optical fibers (200 Im core

diameter, 1 fiber used for light delivery and 6 for collection). At the distal tip the collection

fibers surrounded the delivery fiber and were fused together, creating a quartz shield

approximately 1.5 mm in diameter, which was beveled and then polished at a 170 angle to

reduce internal reflections at the boundary between glass and tissue. During a measurement,

the probe tip was brought into contact with the sample under investigation, thus providing a

fixed light delivery collection geometry. A wheel of long-pass filters was used to prevent

reflected laser excitation light from reaching the spectrograph (CP 200, Jobin Yvon SA,

Edison, New Jersey) and the intensified diode array detector (EG&G Princeton Applied

Research, Trenton, New Jersey). Fluorescence spectra at 11 excitation wavelengths and a

reflectance spectrum were collected in less than 5 s. The incident laser light was sufficiently

low in energy, -400 mJ/cm2, that no tissue damage was observed. The wavelength scale was

calibrated with a mercury lamp. A concentrated barium sulfate suspension (concentration

>20%) was used for reflectance calibration.

-251-



VIII. A. 3. b) Results 13
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Figure VIII.5. Diffuse reflectance spectra of breast
can be seen in the intrinsic fluorescence tissue.

spectra. Normalized intrinsic fluorescence spectra, averaged by pathology, are shown in

Figure VIII.6b. The cancerous samples have the smallest FWHM and the normal samples
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Figure VIII.6. a) Raw fluorescence spectra and b) normalized intrinsic fluorescence spectra of breast
tissues at 342 nm excitation. Cancer (solid lines), Fibrocystic Change (dashed lines), Normal (dotted

lines).
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the largest. This is not consistent with previous fluorescence studies in our laboratory. In

these studies, cancerous sample typically have the largest FWHM due to increased

contributions from NADH. The discrepancy between previous studies and the fluorescence

observed in breast is not surprising. Prior work using fluorescence to diagnose cancer has

mainly examined dysplasia in epithelial tissues. NADH is observed in higher concentrations

in dysplastic tissues, possibly as a result of an increase in epithelial thickness and/ or higher

metabolic activity of the cells. In contrast to breast, studies of dysplastic tissues provide a

well defined tissue architecture consisting of epithelial tissue overlaying stroma. Although

tissue changes occur during dysplasia, the overall tissue architecture, epithelial cells

overlying stroma, remains largely unchanged. This is in contrast to breast where samples

may be composed of fat, collagen, a cellular tumor, or any combination of features.

vm. A. 4. Data Acquired at University Hospitals of Cleveland

This study was carried out in collaboration with Drs. Fitzmaurice, Shenk, and Wang at

University Hospitals of Cleveland and Case Western Reserve University. All studies

involving human tissue were approved by the University Hospitals of Cleveland and Case

Western Reserve University Institutional Review Board and the Massachusetts Institute of

Technology Committee On the Use of Humans as Experimental Subjects. Informed consent

was obtained from all subjects prior to the surgical procedures.

VIII. A. 4. a) Sample Preparation and Data Acquisition

Breast tissue was obtained from patients immediately following surgical lumpectomy, re-

excision or mastectomy procedures. Tissue was examined as detailed in section VIII.A.3a.
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However, in this study a newer version of the FastEEM instrumentation was employed

[Tunnell et al. 2003]. Further, two identical FastEEM data sets were acquired from each

tissue location to assess measurement error. Raman spectra were also obtained from the

same location as the fluorescence and reflectance data.

VIII. 4. b) Results

Preliminary data analysis is promising, indicating that fluorescence and diffuse reflectance

not only contain diagnostic information, but may also be most accurate in differentiating

pathologies where Raman is least accurate. Figure VIII.7a shows average IFS data from the

pathologies encountered in this study. The trend in intensity seen in the CCF data is not

recapitulated and no clear trend in intensity is observed. However, lineshape trends, as can

be seen in Figure VIII.7b, are similar to those observed in the CCF data with normal samples

having a larger FWHM than benign or IDC samples. DCIS, a pathology not encountered in

the CCF studies, has the largest FWHM, potentially indicating an increase in NADH. The
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Figure VIII.7. a) Raw fluorescence spectra and b) normalized intrinsic fluorescence spectra of breast

tissues at 342 nm excitation. IDC (solid black lines), DCIS (solid gray lines), Fibrocystic Change
(dashed black lines), Fibroadenoma (dashed gray lines), Normal (dotted lines).
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reason for these lineshape trends is currently not well understood.

The basis spectra, used to model the IFS data, were extracted using multiple curve

resolution (MCR), an iterative statistical technique [Tauler et al. 1994]. The basis spectra

obtained using MCR are though to represent NADH and collagen because they have similar,

but not identical, lineshapes to spectra of commercially available NADH and collagen. The

basis spectra extracted at 340 nm excitation are shown in Figure VIII.8. Also shown for

comnarison is a snectrum acauired from

breast tissue. However, MCR provides no

information as to the source of the basis

spectra fluorescence. Further, MCR can "

generate erroneous results if the number of

fluorophores present in the tissue, an input
350 400 450 500 550 600

parameter, is guessed incorrectly. It is also Wavelength (nm)
Figure VIIL8. Emission spectra of NADH (dashes)

possible that the basis spectra do indeed and collagen (dots) at 340 nm excitation. Also
shown for comparison is a spectrum acquired from

represent NADH and collagen and that the breast tissue (solid).

amount of NADH seen in normal samples is a consequence of large numbers of adipocytes.

The literature should be examined to determine the relative amounts of NADH contained in

adipocytes and epithelial cells in order to explore this possibility. Whether the trends

observed for the tissue fluorophores are the result of inaccurate basis spectra, additional

tissue fluorophores, or unexpected pathology requires further investigation.

Figure VIII.9 displays the excellent separation obtained between fibroadenoma and

cancerous specimens. The separation is based on a single parameter. The diagnostic

parameter, A, is extracted from the diffuse reflectance fit. It represents the density of
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scatterers in the stroma. Two

identical FastEEM data sets were

acquired of each sample to assess

measurement reproducibility. The

parameters corresponding to both

data sets are shown in Figure

VIII.9 to provide insight into the
0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

A error of the measurements. These
Figure VIII.9. Diagnostic plot showing the difference between
benign and cancerous tissues. Fibroadenoma (triangles), IDC diagnostic categories, cancer and

(squares) and DCIS (circles).

fibroadenoma, pertain to the lowest sensitivities and specificities obtained with Raman

spectroscopy. Sensitivities and specificities for distinguishing individual pathological

categories using intrinsic fluorescence and diffuse reflectance data are displayed in Table

VIII. 1.

Normal Normal Fibrocystic Fibroadenoma DCIS
Change

Fibrocystic A/N-Carotene
Change Se=100%

Sp=75%

Fibroadenoma NADH/p-Carotene A/Collagen
Se=100% Se=94%
Sp=100% Sp=87%

DCIS A/Collagen A/Hb A/Collagen
Se=100% Se=100% Se=100%
Sp=100% Sp=100% Sp=100%

IDC A/Collagen A/Hb A/Collagen AINADH
Se=100% Se=100% Se=100% Se=100%
Sp=100% Sp=100% Sp=100% Sp=100%

Table VIII.1. Sensitivities and specificities for distinguishing individual pathological categories
using IFS and DRS.
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VIII. A. 5. Future Directions

Preliminary results are very promising and convey that fluorescence and reflectance

spectroscopies do contain diagnostic information. However, a significant amount of data

analysis still remains. Additional cancerous samples must be examined as the algorithms

currently only contain 5 malignant data points, 2 IDC and 3 DCIS. A comprehensive

diagnostic algorithm must be developed which examines all data simultaneously. Further,

there is currently little comprehension of the correlation between the tissue pathology and

spectroscopic parameters. The tissue fluorophores and scatterers responsible for

differentiation must be identified. Future analysis will also focus on correlating information

obtained from FastEEM data and Raman spectroscopy. As a starting point, species that both

approaches are sensitive too, such as collagen and p-carotene, can be compared. Ultimately,

if the results warrant it, all three modalities (fluorescence, reflectance and Raman) may be

combined into a single spectroscopic technique for the diagnosis of breast cancer.

VIII. B. Effects of Tissue Freeze-Thaw on Fluorescence and Reflectance

In developing spectroscopic modalities for the in vivo detection of disease, it is often

necessary to perform preliminary studies on excised tissue. However, unlike Raman

spectroscopy, fluorescence and reflectance spectroscopies are very sensitive to the process of

tissue excision and freezing. These processes can have profound effects on the spectroscopic

properties of the tissue resulting in significant changes in intensity and lineshape relative to

in vivo data. Given the frequent necessity of ex vivo measurements, it is crucial to understand

the effects of tissue removal and freeze-thaw on fluorescence and reflectance data. Although
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studies have been conducted which examine these effects, they did not account for distortions

of the fluorescence spectra caused by tissue scattering and absorption [Palmer et al. 2002].

Accounting for absorption was particularly important in prior studies as they observed

increased hemoglobin absorption in freeze-thaw tissues, possibly due to red blood cell lysis.

Increased tissue absorption will concomitantly reduce the tissue fluorescence. Indeed less

fluorescence was observed in the freeze-thaw samples. However, without correcting the

fluorescence data for the effects of scattering and absorption, it is difficult to relate the

observed changes to specific parameters. In other words, it is not clear if the decrease in

fluorescence intensity resulted solely from increased absorption or if changes in intrinsic

tissue fluorescence were also present. Our study examines normal rat esophagus and

esophageal papillomas. Further, our analysis allows for disentangling the effects of

scattering and absorption from tissue fluorescence.

VIII. B. 1. Sample Preparation and Data Acquisition

In an effort to examine the effect of tissue removal and the freeze-thaw process on spectral

features, a number of rat esophagi were examined as a function of time following tissue

removal and pre- and post- tissue freezing. Data was collected with the FastEEM

instrumentation described in section VIII.A.4 from both normal esophageal tissue and

papillomas. After the removal of the esophagus, the tissue was examined in two ways. To

assess the effect of excision, a spectrum was taken immediately following tissue removal,

with periodic sampling every 10 min. for a total of 30 min. After 30 min. the intervals were

lengthened to every half hour with a total monitoring period of 2 hours. To assess the effect

of freeze-thaw, the esophagus was sampled immediately after removal and then snap-frozen
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in liquid isopentane for a period of 20 min. after which the tissue sample was thawed and a

second spectrum taken.

A rat model for human esophageal squamous cell carcinoma was investigated using

DRS and IFS as an opportunity to examine the freeze-thaw process. Fisher 344 rats were

injected with the carcinogen N-nitrosomethylbenzylamine (NMBA). Within 15-20 weeks

visible polypoid tumors ("papillomas") developed, after proceeding through dysplastic stages

characterized by cellular proliferation and keratinization.

VIIL. B. 2. Preliminary Results

A decrease in fluorescence intensity was

·E_ _ _ ~ ._ . / .. / a. · .-

observed as a unctlon or time ollowing tissue

excision at all excitation wavelengths. Figure

VIII.10 shows an example of the decrease

observed at 337 nm excitation for a sample of

300 400 500 600 700 800
Wavelength (nm) normal rat esophagus. The magnitude of the

Figure VIII.10. Changes in intrinsic
fluorescence of normal rat esophagus at 337 nm intensity decrease varied between samples. No
excitation 20 min. (solid line), 40 min. (dotted
line), 60 min.(dashed line), and 80 min.(lower

dotted line), following tissue excision.

time. The freeze-thaw process was found to cause both intensity and lineshape changes.

Figure VIII. 11 demonstrates a decrease in the fluorescence intensity at 337 nm excitation,

resulting from the freeze-thaw process. Such a decrease was witnessed for all samples.

Lineshape changes can also be seen in Figure VIII. 11. These lineshape changes were

particularly pronounced for esophageal papillomas. A large increase in porphyrin

fluorescence was observed in fresh-frozen papillomas compared to that seen in the freshly

-259-

40
35
30

mS 25
i 20
u 15
E 10

5- 
0



1.2

VII/.lla VIII.llb

300

200
100 A
0

300 400 500 600 700 800 300 400 500 600 700 800
Wavelength(nm) Wavelength (nm)

300 >- 1.2..
250 V111.11c

Uic VIII.11d
~ 200

CD

en S
c 150 "0
CD CD

.5 !!
100 "iE
50 ...

0
0 z

0

300 400 500 600 700 800 300 400 500 600 700 800
Wavelength(nm) Wavelength (nm)

Figure VIII.II. Intrinsic fluorescence spectra at 337 nm excitation showing intensity and lineshape
changes resulting from the freeze-thaw process in a &b) normal esophagus and c &d) an esophageal

papilloma. Fresh tissue (solid line) Fresh-frozen tissue (dotted line)

excised tissue. An example of the increase in porphyrin fluorescence is shown in Figure

VIII. 12.
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Figure VIII.l2. Intrinsic fluorescence spectra at 412 nm excitation showing differing effects of the
freeze-thaw process on porphyrin fluorescence in a) normal esophagus and b) an esophageal papilloma.

Fresh tissue (solid line) Fresh-frozen tissue (dotted line).

The reflectance spectra also exhibited differences between fresh and fresh-frozen

tissues. An increase in the oxygen saturation parameter is observed in the fresh-frozen
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tissues. Absorption techniques are widely used for the purpose of evaluating tissue

oxygenation and are the basis of pulse oxymetry [Takatani and Ling 1994]. The

measurement relies on the slight change in the hemoglobin absorption spectrum with

oxygenation. Oxy-hemoglobin has a strong absorption peak in the blue region at 415 nm and

a smaller double peak at 542 nm and 577 nm, while deoxy-hemoglobin has a strong peak at

430 nm and a single smaller peak at 560 nm. The absorption spectra of oxy- and deoxy-

hemoglobin are shown in Figure VIII.13a. Also shown are representative reflectance spectra

and model fits of fresh and fresh-frozen tissue. Changes in the hemoglobin oxygen

saturation for several different samples are included in Figure VIII.13 as a table. No

significant increase in the amount of hemoglobin was observed following the freeze-thaw

process, indicating that red blood cell lysis was minimal.
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Figure VIII.13. Changes in the hemoglobin oxygen saturation induced by the freeze-thaw process.
a) Absorption spectra of oxy- (solid line) and deoxy- (dotted line) hemoglobin. b) Diffuse

reflectance spectrum (solid line) and model fit (dotted line) of freshly excised tissue and c) fresh-
frozen tissue. Also shown are the changes in the hemoglobin oxygen saturation for several

different samples.
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Hemoglobin Oxygen Saturation Parameter

Ex vivo Freeze/Thaw

Sample 1 0.55 0.83

Sample 2 0.53 0.50

Sample 3 0.70 0.85

Sample 4 0.48 0.70

Sample 5 0.53 0.72
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From these studies, we can conclude that the effects of tissue removal are minimal

within a time period of 1.5 hrs. Although changes in intensity occur with tissue excision, we

do not observe changes in lineshape or reflectance. However, the freeze-thaw process results

in significant differences in both the diffuse reflectance and the intrinsic fluorescence.

Consequently, data acquired shortly after tissue excision should accurately mimic an in vivo

environment while studies on fresh-frozen tissues are not appropriate for extension to clinical

data.

VIII. C. Fluorescence Lifetime Measurements

Most in vivo fluorescence spectroscopy studies to date have focused on monitoring the

steady-state intensity of fluorescence emitted at one or more wavelengths (i.e. the

fluorescence induced by constant excitation light). An alternative approach measures the

time-resolved fluorescence (the time-decay of the fluorescence excited by a short pulse).

Typically, this time-decay is typically on the order of nanoseconds. The method is

technically more demanding than steady-state measurements, as it requires the use of a very

short excitation pulse and special detectors. However, the time dependence of fluorescence

emission can be very sensitive to changes in the environment of the fluorescent species.

Furthermore, as time-resolved measurements are unaffected by tissue elastic scattering and

absorption, they can provide diagnostic information that might otherwise be convoluted when

measured with steady-state fluorescence.

VIII. C. 1. Sample Preparation and Data Acquisition
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Picosecond fluorescence

spectra were obtained

with the laser system,

shown in Figure VIII.14.

Excitation wavelengths

from 250 nm to 360 nm

and 450 nm to 750 nm
Figure IIIV.14. Laser System for Picosecond Spectroscopy

were available. Most

studies presented here employed 330 nm excitation light. The pulse length was 150 fs

FWHM however the temporal resolution was limited by the streak camera detection limit of

10 ps. A spot size of 5 mm was used with an average pulse power of <1 mJ per pulse and a

repetition rate of I KHz. No photobleaching was observed on the samples examined.

Average data acquisition times were on the order of 15 min.

VIII. C. 2. Preliminary Results
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Figure IIIV.15. Fluorescence Decay of NADH in PBS: T'

Component Fit and Residual

To begin our studies we

examined the time-decay

spectra of two biological

moieties often encountered in

our steady-state fluorescence

work, NADH and collagen.

Data were acquired from

wo NADH in solution. NADH has
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two decay times, resulting from different conformations, 240 ps and 550 ps [Couprie et al.

1994]. Our data, shown in Figure VIII.15, exhibits excellent agreement with the literature

values. We extracted lifetimes of 243 ps and 547 ps. This two component fit corresponded

to a 2 value of 1.08. We also examined the
., [ V,1R11.U ....

- 0.8

>, 0.6

0 0.4
0

0.2

decay properties of collagen. Commercially

available collagen is powdered while collagen is

present in the body in a hydrated form. We

0o.o0I . exammeeu type collagen in otM poweredu orm
360 380 400 420 440 40 480 500 520

Wavenumber (nm) and as a hydrated collagen gel. A three
Figure VIII.16. Fluorescence time-decay
data of cervical tissue. a) Fluorescence component fit was necessary to. describe the

lineshape variations as a function of decay
time. 100 ps (solid line) 5.7 ns (dotted line). data. Differences in lifetimes were found as a

The steady state spectra of collagen and
NADH are included for comparison (dashed
lines). Also shown are decay rates and their function of environment. Powdered collagen

relative amplitudes in spectral regions
corresponding to b) collagen and c) NADH. had

decay times of 798 ps, 3.54 ns and 10.03 ns, while

the collagen get had shorter lifetimes of 442 ps,

2.06 ns and 6.57 ns. 2 values were slightly higher

for the data acquired from collagen, 1.1 to 1.2, but

still good. . . . .0 10 20 30 40 50
fVII1.16c Time (ns)

We also examined the fluorescence time-

decay properties of cervical tissue. Fluorescence -

lineshape changes were observed as a function of
. Tl

time. These lineshape changes, shown in Figure t
2 t

Al/2=1 ;.J1
VIII. 16a, are consistent with a faster decay for , . . . . .0 10 20 30 40 50

Time (ns)
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NADH. Decays from two different spectral regions, known to correspond predominately to

NADH and collagen fluorescence, were examined. The decay with dominant contributions

from collagen fluorescence was obtained by averaging the spectral range from 400 nm to 415

nm and is shown in Figure VIII. 16b. Lifetimes found in this spectral region were 997 ps and

5.57 ns with a relative amplitude ratio of 477. In the spectral region from 450 nm to 465 nm,

indicative of NADH, comparable lifetimes of 881 ps and 5.87 ns were obtained. However, in

this spectral region, shown in Figure VIII. 16c, the relative amplitude ratio was 1361. This is

indicates a larger contribution from the shorter lifetime decay in the spectral region

dominated by NADH fluorescence. The lineshape changes and decay analysis of different

spectral ranges are consistent and allow us to conclude that NADH has the faster decay rate

and collagen the slower. It is notable that extension of the results from pure component

chemicals to tissue was not straightforward. Further studies are necessary to confirm these

findings. Also, lifetime variations between tissue types must be examined within a single

tissue type and between normal and diseased tissues.

VIII. D. Surface Enhanced Raman Scattering

A great disadvantage of Raman spectroscopy results from the extremely small scattering

cross-section of the Raman process. Surface enhanced Raman scattering (SERS) is a

spectroscopic technique that results in strongly increased Raman signals when molecules are

attached to nanometer-sized gold or silver structures. The effect provides the structural

information content of Raman spectroscopy together with ultrasensitive detection limits.

Further, since SERS occurs in the local fields of metallic nanostructures, the lateral

resolution is determined by the confinement of the local fields and can be orders of
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magnitude better than the diffraction limit. Another advantage of SERS is that the

fluorescence background, which often complicates the accurate analysis of Raman spectra, is

quenched by nonradiative decay channels provided by the metallic nanostructure. For theses

reasons, SERS has the possibility to greatly advance biomedical Raman spectroscopy. To

this end, we have begun an investigation of SERS of both cells and tissues.

VIII. D. 1. SERS Cell Studies

Within the recent decade, Raman spectroscopy was successfully applied to living cells

[Puppels et al. 1990; Peticolas et al. 1996; Otto et al. 1997; Sijtesema et al. 1998, 2000;

Feofanov et al. 2000; Shafer-Peltier et al. 2002]. Measurements on cell monolayers using

confocal Raman systems show clear differences in the Raman spectra of the cell nucleus and

the cell cytoplasm. Excellent Raman spectra of DNA in the nucleus of a living cell can be

obtained using a laser Raman microscope, where the sample is inside the laser cavity

[Patapoff et al. 1988; Peticolas et al. 1990].

Raman scattering is an inefficient effect, with typical non-resonant Raman scattering

cross-sections on the order of 10-30 cm2 per molecule. Typical collection times for a

spontaneous Raman spectrum of a living cell (using 5-10 mW laser excitation and a confocal

Raman system) can be hundreds of seconds. This results in very long data acquisition times

to generate a "Raman map" of a cell [Shafter-Peltier et al. 2002], Further, many chemicals

are present in a cell at very low concentrations and the excitation laser intensity is limited by

effects of cell degeneration, the Raman signal observed from a single cell is extremely weak.

Thus it is difficult to study viable cell lines.

In SERS, Raman signals can be enhanced by many orders of magnitude. SERS
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occurs when the probed molecules are attached to metallic nanostructures. Raman scattering

takes place in the high local optical fields of these nanostructures [Otto et al. 1984;

Moskovits 1985; Campion and Kambhampati 1998; Kneipp et al. 1999]. Areas of enhanced

local optical fields occur due to resonances of the applied optical fields with the surface

plasmon oscillations of the metallic nanostructures. In addition to this "electromagnetic field

enhancement," the electronic interaction between the Raman molecule and the metal can

result in an increase of the Raman scattering cross-section itself, called "chemical or

electronic enhancement". In the visible and NIR frequency range, silver and gold colloidal

clusters or island films of these materials can result in electromagnetic SERS enhancement

factors up to 10 to 12 orders of magnitude [Kneipp et al. 1995, 1997, 1998].

The field enhancement effect is also operative in fluorescence. Although the effect of

surface-enhanced fluorescence has been observed for a few molecules, in many cases, the

metal provides strong nonradiative decay channels [Weitz et al. 1983; Sokolov et al. 1998].

This fluorescence quenching effect can compensate for the field enhancement, resulting in a

net fluorescence signal much smaller than that measured without the metal. That explains

why in many experiments the surface enhanced resonance Raman (SERRS) spectrum does

not show the expected fluorescence background [Bachackashvilli et al. 1983, 1984; Kneipp

et al. 1983; Pettinger 1984].

SERS studies have also been performed on living cells [Manfait et al. 1990, 1992;

Nabiev et al. 1991; Morjani et al. 1993]. In these experiments, colloidal silver particles were

incorporated inside the cells and SERS was applied to monitor the intracellular distribution

of drugs. Surprisingly, these experiments show SERS spectra of the drug but no SERS

spectra of the native cell constituents themselves were detected.
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In general, due to its chemical inactivity, gold is the more suitable metal for

incorporation inside living cells. It has been shown that gold colloidal clusters have SERS

enhancement factors comparable to silver clusters when NIR excitation is applied [Kneipp et

al. 1993]. Moreover, NIR is the desired excitation range for Raman measurements of cells

since the lower energy photons reduce the fluorescence background in biological samples

and also the risk of cell damage [Hanlon et al. 2000; Shafter-Peltier et al. 2002].

In this study we report NIR SERS studies of living cells using colloidal gold as the

SERS active substrate [Kneipp et al. 2002]. In contrast to previous SERS studies using

colloidal silver, we measure strong SERS signals from the native chemical constituents of the

cell. Thus, this work provides a tool for the sensitive detection of native chemicals inside a

cell as well as their intracellular distribution, suggesting many applications in biomedical

research.

VIII. D. 1. a) Cell Preparation

Differentiated intestinal epithelial cells HT29 (gift of the Harvard Digestive Diseases Center)

were grown on 25 mm round coverglasses for SERS measurements and on formvar-carbon

coated grids for electron microscopy studies. Cells were grown with Dulbecco's high-

glucose modified Eagle medium (DMEM) supplemented with 10% fetal calf serum, 100

units/ml penicillin and 100 g/ml streptomycin (Gibco BRL, Life Technologies, Grand

Island, NY). Cells were grown to confluency at 370 C in a humidified atmosphere of 5%

CO2 in air. Monolayers were loaded with colloidal gold by fluid-phase uptake.

Approximately 24 hours prior to data collection, the culture medium was supplemented with

the colloidal gold suspension either at either -3,300 particles/cell or -330 particles/cell.
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Immediately before the experiments, free gold was removed by rinsing the monolayers in

Hank's Balanced Salt Solution (HBSS) without sodium bicarbonate or phenol red, buffered at

pH 7.4 with 10 mM HEPES (Sigma, St. Louis, MO). Cells remained in the same buffer

throughout the measurements. The salts in the buffer solution induce the formation of small

colloidal aggregates with sizes of a few hundred nanometers. Cluster-cluster aggregation

inside the cell results in the formation of larger gold colloidal clusters, discussed further

below.

VIII. D. 1. b) SERS Measurements and Data Processing

Raman measurements were carried out on single cells using the confocal microscope,

discussed in Chapter III. 830 nm excitation and a spot size of -1 gm were employed.

Application of 2 to 5 mW NIR excitation did not

result in any cell damage. Good SNR SERS

spectra were measured with a 1 s. collection time.

For mapping experiments, the cell monolayer was

moved in 1 gm steps under the laser focus,

covering a total area of 30 x 30 gm.

VIII. D. 1. c) Results

Figure VIII. 17 shows examples of unprocessed

SERS spectra measured at different places on the

cell monolayer incubated with colloidal gold. The
Figure VIII.17. Typical unprocessed

spectra acquired in 1 s. show a very good SNR surface enhanced Raman spectra.
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allowing for the possibility of much shorter collection times. The SERS signal appears on

the order of thousands of counts per second compared to signals of counts per second

measured in "normal" Raman spectroscopy of single cells.

In general, all 900 spectra measured at different locations within the cells are distinct.

The variety of lineshapes, relative Raman amplitudes and Raman line widths observed

indicate a sensitive means to measure the inhomogenity of a cell. The Raman lines can be

assigned to native chemical constituents in the cell nucleus and cytoplasm, such as DNA,

RNA, phenylalanine, and tyrosine. The 1120 cm 1 line is characteristic of an O-P-O DNA

backbone vibration [Puppels et al. 1990; Peticolas et al. 1996]. Raman lines around 1300

cm-' are related to adenine and guanine vibrations, however, RNA also has strong SERS

bands in this frequency region [Kneipp et al. 1991]. The spectral region around 1000 cm 1

may result from phenylalaline at 1004 cm-' and a C-O DNA backbone vibration at 980 cm'.

The bands at about 830 cm' l are likely due to a sugar-phosphate backbone vibration. The

frequency of these bands is slightly different for B- and A-forms of DNA [Peticolas et al.

1996]. The absence of a strong SERS line at 735 cm', which arises from the adenine ring

breathing mode, indicates that native, and not denatured, DNA contributes to the spectra

[Kneipp and Flemming 1986; Chumanov and Cotton 1999]. SERS spectra also show the

conformationally sensitive guanine lines around 650 and 670 cmri [Peticolas et al. 1996].

The spectrum in Figure VIII. 17a exhibits a strong SERS line at 650 cm'l. This peak

is likely a guanine vibration superposed with a strong tyrosine vibration and thus also not

indicative of DNA denaturation [Peticolas et al. 1996]. In contrast to "normal" Raman

spectra of living cells, where strong Raman bands appear around 1450 cm-' (protein CH

deformation vibration) and at 1650 cm 'l (Amide I), in the SERS spectra these bands exhibit
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almost no enhancement. In a few spectra, a very weak SERS band appears at about 1450

Figure VIII.18 displays

200 run

electron micrographs showing the

distribution of colloidal gold particles

inside a cell monolayer. The colloidal

particles form small colloidal clusters

between 100 nm and a few microns in

stze. The largest clusters can also be

Figure VIII. IS. Electron micrographs of colloidal gold
particles inside a cell monolayer.

seen in the phase contrast microscope

views in Figure VIII.19. The higher magnification image, shown in Figure V1I1.18b,

demonstrates that the gold clusters are made of 60 nm colloidal gold spheres. Extension from

NIR SERS experiments performed on DNA attached to similar gold colloidal cluster, allows

us to infer a minimum enhancement factors of 103 - IU" for DNA IKneipp and Remming

19861. This estimate is based on the assumption that all DNA molecules contribute to the

S ERS signal.

Figure VIII.19

acquired from these cells.

4 and the Raman map
3

image of two living cells

shows a phase contrast
9

8

7

6

a) 10 JlIll b) 10~
The image was created by

Figure VIII.I9. a) Phase contrast image of two living cells and b) the
image of the total SERS signal.

summing the total Raman
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signal obtained at each location. The image shows that the SERS signal does not appear over

the entire cell and that parts of the cell show no Raman signal. Since it is unlikely that there

are regions of the cell that do not contain Raman scatterers, it follows that the lack of a SERS

signal results from the absence of a colloidal gold particle. Variations in the signal strength

in the "SERS-active" or gold occupied cell regions may be due to a non uniform

electromagnetic SERS enhancement factor within the cell or may retlect a very

inhomogeneous distribution of the scattering substance inside the cell.

In order to image the distribution of a particular substance using SERS, the signal of a

Raman line resulting from that substance must be normalized to the SERS enhancement

factor operative at each location. The SERS features appear on a broad background, which

we ascribe to surface-enhanced fluorescence signals from the cell. The lateral distribution of

the broad surface-enhanced fluorescence

signal (with contributions from many

tluorophores) should roughly monitor

the distribution of the field enhancement.

Therefore. the signals are normalized to

the average fluorescence signal between

400 and 1700 cm-I.

Example of SERS mappmg,

Figures VII1.20a and V1I1.20b, show the

distribution of phenylalanine and DNA

"

a) b)

•••",
... 1

2over a 30x30 Jlm cell monolayer based

on the areas of the 1004 cm-1 Phe- and

Figure VIII.20. Distribution of a) phenylalanine and b)
DNA over a 30x30}im2 cell monolayer. SERS spectra
represent locations of the maximum signals of the two

modes used to generate the Raman maps.
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1120 c' O-P-O DNA backbone peaks, respectively. Also shown in Figure VIII.20 are

SERS spectra taken from regions of high intensity in each map. In general, the cell nucleus

should contain a larger amount of DNA, whereas phenylalanin should be present mainly in

the cytoplasm [Pupples et al. 1990; Shafter-Peltier et al. 2002].

Figure VIII.20 demonstrates the feasibility of using SERS for generating Raman

images. The strongly enhanced Raman signals allow one to generate a surface-enhanced

Raman map of a cell (approximately 15x15 #,m) with 1 #.m lateral resolution in about 5

minutes (1 s. per mapping point) using 2 to 5 mW NIR excitation. It should be noted, that

these first SERS images are "qualitative". The Raman signal appears as a superposition of

the concentration of the Raman molecule and SERS enhancement factor. At present, the

normalization scheme accounts for the electromagnetic SERS enhancement. For further

development of this technique, nanotechnologies should be explored which generate a

uniform distribution of the SERS-active nanostructures over the cell and show only a weak

substance-specific chemical SERS enhancement.

To summarize, we have demonstrated the feasibility of measuring SERS spectra of

native constituents within a single viable cell and generating a SERS map showing the

distribution of specific chemicals within the cell. A SERS spectrum provides rich chemical

information about the cell and allows observation of small structural modifications.

Moreover, the strong Raman signals allow Raman mapping over single cells in very short

times compared to normal Raman measurements. Ultrasensitive Raman spectroscopy inside

living cells opens up exciting opportunities for the diagnosis of diseases at a very early stage.

It may allow the detection of subcellular chemical changes that are the precursors of larger
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morphological changes. In this way, exciting opportunities are opened up for the diagnosis

of diseases to be made at very earlier stages.

VIII. D. 2. SERS Tissue Studies

We have also conducted reliminarv 1400r

investigations of SERS with tissue. 1200

Both homogenized and thin slices of 1000
C

tissue were examined using the (

600

confocal Raman microscope. Figure
400

WTT "1 o,.'IlI a ...- ,,12.rt',lm
V 111. .1 11UW ! a LX1.. ;l..1UlII

200
200 400 600 800 1000 1200 1400 1600 1800 2000

obtained from a sample of
Raman Shift (cm- 1)

homogenized breasttissue. Samples Figure VIII.21. SERS spectrum of homogenized breast
homogenized breast tissue. Samples tissue.

were prepared by spreading homogenized tissue mixed with nanoparticle solution onto an

MgF2 flat for microscopy. The spectrum, displayed in Figure VIII.21, was collected in 1 s.

with very low levels of laser power (>5 mW). It exhibits a large number of sharp Raman

peaks indicating high information content. SERS opens the possibility to examine chemicals

present in very low concentrations in the tissue. However, identification of the species

responsible for these peaks is challenging.

The distribution of chemicals within a tissue can rapidly be probed using SERS.

Figure VIII.22 is a SERS map of a thin section of breast tissue. Nanoparticles were applied

to the sample by allowing the colloid solution to evaporate from the tissue surface. The

nanoparticles form small colloidal clusters, which can be seen in the phase contrast image

shown in Figure VIII.22a. The SERS map, displayed in Figure VIII.22b, was generating by
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plotting the area under the Raman spectrum acquired at each location. Regions of high SERS

intensities correlate well with the colloidal clusters seen in the phase contrast image. SERS

spectra obtained from regions of high intensity on the map are shown in Figure VIII.22c. By

500 1000 1500
Wavenumber (em-)

VII1.22c

10000

12000

"" 8000
C~
8 6000

4000 l
Mi"A;......... ~ ,.............. 2'000. l

Figure VIII.22. SERS map of breast tissue.

utilizing nanotechnology techniques, such as period particle arrays, a uniform distribution of

nanoparticles can be achieved thereby providing chemical inforrnation at regular intervals

across the tissue sample.

During our preliminary investigations into SERS of tissue, we noted unusual spectral

behavior. Occasionally, while focusing the microscope to obtain maximum signal, the

spectral lineshape would exhibit time dependent fluctuations. An example of such behavior

can be seen in SERS spectra of carotid artery. Each of the 4 spectra in Figure VIII.23 was

integrated for I s. and the spectra were collected sequentially with no change in focus.
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Raman peaks grow in size, appear and disappear

dependant fluctuations is not known. It may be

suggestive of single molecule dynamics as moieties

move in and out of the nanoparticle zone of

enhancement. Such time dependent fluctuations

were also observed in the SERS cells study

discussed above.

with time. The cause of these time
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VIII. E. Mechanism of Ceroid Formation

in Atherosclerotic Plaques: Studies Using a

Combination of Raman and Fluorescence

Spectroscopy
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Accumulation of the insoluble lipid-protein 200 600 1000 1400 18O

complex, ceroid, is a characteristic of Wavenumber (cm-')

atherosclerotic plaques. The mechanism of ceroid Figure V1i.23. SERS spectra of crotidartery exhibiting time dependent
fl Ictilationls.

formation has been extensively studied as the

complex is postulated to cause cell injury and necrosis ultimately resulting in plaque

irreversibility. Despite intensive research, ceroid is only defined empirically through its

fluorescence properties and its behavior during various staining processes, while its precise

chemical composition remains unknown. By using our combined Raman and fluorescence

microscopy system we have examined the chemical composition of ceroid deposits in situ in

aorta and coronary artery atherosclerosis. 'The synergy of these two types of spectroscopy

allows for the identification of ceroid via its fluorescence signature and the subsequent
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elucidation of its chemical composition through the acquisition of a Raman spectrum.

Analysis of the Raman spectra from numerous ceroid deposits demonstrates that several

different mechanisms contribute to its formation in vivo. Data indicate that the primary mode

of lipid peroxidation resulting in the production of ceroid occurs through a Fenton reaction

while the principal method of protein modification is direct oxidation of amino acids.

Furthermore, we compare the chemical composition of intracellular and extracellular ceroid

deposits thereby providing a timeframe for the order of chemical reactions which ultimately

result in ceroid deposition within atherosclerotic plaques.

VIII. E. 1. Introduction

It has been suggested that the progression of a fatty streak to an advanced atherosclerotic

lesion with necrosis results from toxic products of lipid oxidation produced by macrophages.

Incubation of macrophages with oxidized low density lipoprotein (oxLDL) has been shown

to induce lipid loading [Steinbrecher et al. 1990; Witztum and Steinberg 1991]. Ultimately,

most of this lipid is contained within the macropahge lysosomes, primarily in the form of the

lipid-protein complex called ceroid [Ball et al. 1986]. Ceroid is thought to have detergent

properties, which dissolve the foam cell membrane leading to extravasation of the complex

into the extracellular space and eventually permanent tissue damage. Ceroid is described as a

golden yellow, granular or globular, lipoid pigment. It is histochemically identified by

insolubility in a variety of lipid solvents and stainability with lipid dyes [Hartroft and Porta

1965; Porta and Hartroft 1969; Wolman 1980; Pearse 1985]. In addition, ceroid is

characterized by the emission of intense yellow autofluorescence when it is excited with

ultraviolet (UV) light [Mitchinson et al. 1985; Fitzmaurice et al. 1989; Verbunt et al. 1992].
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This definition, however, provides no information as to the origin or definitive chemical

nature of ceroid.

Pappenheimer and Victor were the first to report the presence of ceroid in

atherosclerotic plaques [Pappenheimer and Victor 1946]. Since then, several reports have

described its prevalence in the full spectrum of atherosclerotic lesions [Burt 1952; Hartroft

1953; Slater and Smith 1972; Mitchinson 1982]. Ceroid is not found in normal vessels or

thrombi. In small uncomplicated plaques, it initially appears within the cytoplasm of

superficial macrophage-like foam cells and is rarely associated with smooth-muscle cells or

endothelial cells. It has therefore been suggested that macrophages might be responsible for

ceroid accumulation in the plaque, with potentially damaging consequences, such as cell

injury, necrosis, and the release of insoluble material into the extracellular space, ultimately

causing the plaque to become irreversible. In accordance with this theory, most of the ceroid

in advanced plaques is extracellular appearing as solid granules or ring structures in the

necrotic base.

Detection of ceroid has proven to be diagnostic of atherosclerotic disease using both

standard histopathology and fluorescence spectroscopy. Additionally, several reports suggest

that there is a correlation between the amount of ceroid present and the severity of an

atherosclerotic lesion [Burt 1952; Slater and Smith 1972]. However, relatively little is

known of the chemical composition of ceroid deposits and their role in the progression of

atherosclerosis. This is primarily because ceroid is insoluble in organic solvents and cannot

be extracted from the plaques and purified for chemical analysis.

Although the definitive mechanisms leading to the production of ceroid are unknown,

several routes of formation have been proposed based on biochemical studies, in vitro cell
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culture experiments, and animal models. These investigations have established that

modification of proteins during lipid peroxidation produces fluorescence similar to that

observed in situ in atherosclerotic lesions and attributed to the presence of ceroid [Kikugawa

and Beppu 1987]. Further, experiments in which homogenized tissue or macrophages are

exposed to conditions that promote lipid peroxidation witness an increase in the overall

fluorescence of the sample consistent with the fluorescence observed in samples containing

ceroid [Tsuchida et al. 1985; Esterbauer et al. 1986; Hoff et al. 1992; Nilsson and Yin

1997]]. As a result, protein modifications ensuing during lipid peroxidation have been

intensely investigated and implicated in the formation and deposition of ceroid. Mechanistic

insight into ceroid formation is further complicated by the wide variety of fluorophores

which emulate ceroid fluorescence and can be produced in different in vitro model systems

using biological materials as substrates. Based on such studies, copious routes of ceroid

formation have been proposed [Yin 1996]. In this manuscript, we investigate the presence of

chemical moieties from several of these potential routes of formation in ceroid deposits in

human aorta and coronary artery.

The majority of experiments which strive to identify the principal route of formation

of ceroid focus on modifications of low density lipoprotein (LDL) as clinically, elevated

serum LDL levels predict risk of coronary artery atherosclerosis, while elevations of very

low density lipoprotein (VLDL) and high density lipoprotein (HDL) levels do not. The

Fenton reaction is one of the earliest proposed and most broadly accepted mechanisms of

ceroid formation [Dillard and Tappel 1971]. In this schema, hydrogen peroxide, produced by

the electron transport chain of mitochondria, forms a hydroxyl radical in the presence of

ferrous iron. The highly reactive hydroxyl radical is postulated to peroxidize the
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polyunsaturated fatty acids (PUFAs) associated with LDL. Thus, iron and oxygen free

radical related peroxidation of LDL may occur inside lysosomes resulting in the formation of

cross linked biocomplexes that are undegradable and thought to be ceroid. Also formed

during this reaction are lipid hydroperoxides and cyclic peroxides which further decompose

into various saturated or unsaturated carbonyl compounds, mainly aldehydes. These reactive

aldehydes, such as malondialdehyde and 4-hydroxynonenal, produce fluorescent compounds

which exhibit fluorescence characteristic of ceroid [Chio and Tappel 1969; Esterbauer et al.

1986].

Further support for this pathway is derived from examining the distribution of iron in

vivo. Heavy metals such as iron have been found in the lysosomes of most cells as a

consequence of normal autophagocytic degradation of metalloproteins [Vatassery et al. 1989;

Brunk et al. 1992]. This mechanism is particularly appealing in the case of atherosclerosis as

macrophages may become iron enriched during the phagocytosis of red blood cells or cell

debris. Additionally, colocalization of ceroid and iron has been histologically demonstrated

[Lee et al. 1998]. However, controversy concerning the feasibility of this mechanism in vivo

stems from the weak prooxidant nature of the ferrous ion. Further, for this mechanism to

proceed at a reasonable rate, iron must be present in its reduced form [Dunford 1987].

Conditions capable of converting the ferric ion to its active reduced form are speculative and

direct oxidation of pure lipids by iron has not been demonstrated under physiologically

relevant conditions.

As a consequence of concerns with the physiological plausibility of the Fenton

reaction, studies have focused on alternative pathways of lipoprotein modification. When

serum LDL is metabolized by foam cells, the apoproteins are first removed by proteolytic
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enzymes, the cholesterol esters are then degraded into free fatty acids and free cholesterol.

Free cholesterol is toxic to the foam cells, and is either exported from the cells or detoxified

by re-esterification into cholesterol esters. The accumulation of free cholesterol eventually

causes the foam cells to lyse thus releasing free fatty acids, free cholesterol, cholesterol

esters, phospholipids, and enzymes, such as myeloperoxidase, into the extracellular space.

Hypochlorite, a two-electron oxidant produced by myeloperoxidase, generates a high uptake

form of LDL primarily by oxidizing the protein component [Hazel and Stocker 1993]. The

peroxidation of LDL produces, among other things, HOOA and HODA, two molecules

reported to have similar fluorescence properties to ceroid. Other protein oxidation products,

such as dityrosine, the oxidation product of tyrosine, have also been suggested as possible

sources of ceroid fluorescence [Amado et al. 1984].

Whereas the majority of mechanistic studies examine LDL associated fluorophores,

reactions between various carbohydrates also give rise to a group of molecules with ceroid

like fluorescence. These reactions are termed glycation or Maillard reactions [Maillard

1912]. This pathway involves the production of Schiff bases through the interaction of

reducing sugars, such as glucose or fructose, and amino compounds. The Schiff bases

rearrange to more stable ketoamine compounds called Amadori products. Although fairly

stable, deamidation or dehydration of the Amadori complex may occur resulting in a variety

of unsaturated carbonyls. Further reactions between these carbonyls results in the formation

of yellow brown advanced glycation end-products (AGEs), which have fluorescence

analogous to ceroid [Baynes and Monnier 1989].

Several molecules have been implicated in both the inhibition and the promotion of

ceroid formation. For example, ascorbic acid is a water soluble antioxidant which has been
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implicated in the recycling of a-tocopherol [Frei et al. 1989; Vatassery et al. 1989].

However, ascorbic acid can alternatively induce free radical related lipid peroxidation in the

presence of transition metals, such as iron and copper. Further, it has been reported that

ceroid like fluorophores have been observed in reaction products between ascorbic acid and

various amino acids [Yin and Brunk 1999]. Additionally, a-tocopherol, generally

considered an endogenous LDL antioxidant, has been implicated in the reduction of the ferric

ion necessary to initiate peroxidation of LDL through a Fenton reaction [Yamamoto and Niki

1988]. There are other antioxidants whose roles in atherogenesis and particularly ceroid

formation are controversial including several polyenic compounds. Among these we have

included 13-carotene and retinal palmitate in our study [Karnaukhov et al. 1972; Szweda

1994].

The purpose of this study is to more completely characterize the chemical nature of

ceroid deposits in human atherosclerotic plaques in an effort to shed light on the process of

ceroid formation. This is accomplished by the acquisition of Raman spectra from ceroid

deposits in situ in samples of coronary artery and aorta. Raman spectra consist of unique

combinations of sharp bands, resulting from molecular vibrations, which allow for

identification of the chemical species in the sample. The utility of NIR Raman spectroscopy

for probing the biochemical composition of human tissue has been well established

[Mahadevan and Richards-Kortum 1996; Manoharan et al. 1996; Hanlon et al. 2000].

Furthermore, a preliminary study illustrating the utility of this approach for the

characterization of the chemical makeup of ceroid in situ has recently been published [van de

Poll 2002]. Although the study provides a comprehensive illustration of the approach, few

deposits were examined thus precluding an insightful analysis of the mechanisms leading to
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ceroid formation in vivo. Our work extends this approach by examining the chemical

makeup of numerous ceroid deposits in samples of both aorta and coronary artery.

Due to the strong correlation between the presence and amount of ceroid and the

severity of atherosclerotic lesions, it is of crucial importance to fully understand the

mechanism of ceroid formation. Insight into the chemical composition of ceroid will shed

light on the process of lipoprotein degradation and deposition in atherosclerotic plaques and

will address the validity of several theories that have been proposed for ceroid formation.

Additionally, a better understanding of the mechanism of ceroid formation may suggest

avenues to induce regression or prevent progression of atherosclerotic plaques with medical

therapy.

VIII. E. 2. Sample Preparation and Data Acquisition

VIII. E. 2. a) Tissue Samples

Raman spectra were collected from frozen sections of coronary artery and aorta obtained

from either explanted recipient heart specimens or at the time of autopsy. The samples were

rinsed with phosphate-buffered saline (PBS), pH 7.4, frozen in liquid nitrogen, and stored at

-85C until use. The samples were then mounted in histoprep (Fisher Diagnostics,

Orangeburg, NY), sectioned, 6 gm thick, on a cryomicrotome (Leica), and mounted on 1 mm

thick MgF2 flats (Moose Hill Enterprises Inc., Sperryville, VA) for microscopy. Contiguous

6 gm thick frozen tissue sections were mounted on glass microscope slides, underwent lipid

extraction, and were then stained with Oil Red O (ORO) (Poly Scientific R&D Corporation,

Bay Shore, NY). Lipid extraction was accomplished by passing the sections through 50%,

75%, and 100% ethanol for 5 minutes each, followed by rehydration in 50% and 25%

-283-



ethanol. Ceroid deposits were identified by a combination of histology (lipid extraction and

ORO staining) and fluorescence spectroscopy and their chemical composition subsequently

examined using Raman spectroscopy. A total of 39 ceroid deposits were examined in 5

samples of coronary artery and 27 ceroid deposits in 6 samples of aorta from 11 patients.

VIII. E. 2. b) Instrumentation

The fluorescence and Raman spectra of both tissues and reagent chemicals used in the model

described below were acquired using the confocal microscope, section III.F.2. The

microscope itself is equipped with a range of objectives, both normal and phase contrast. For

the studies presented here we used a 63x infinity-corrected water immersion objective (0.9

NA), although water immersion was not used. Raman excitation at 830 nm with output

powers of approximately 150 mW was employed. The spectrograph itself has an adjustable

slit and a turret, which holds three gratings for a range of measurements. For the Raman

studies a 600 grooves/mm grating blazed at 1 Lm was used along with the 140 m

spectrograph entrance slit setting, providing - 8 cm 1 resolution. Simply by changing the

excitation source, the filters/beamsplitters, and spectrograph grating, the system can be

adapted for fluorescence spectroscopy. For the fluorescence measurements, 476 nm

excitation light, typically 5 mW, was delivered to the system via fiber optics from an argon

ion laser (Coherent Innova 700, Coherent Inc., Santa Clara, CA) in an adjacent laboratory. A

600 grooves/mm grating blazed at 500 nm was used for the fluorescence measurements. The

switch between Raman and fluorescence is made in less than one min.

VIII. E. 2. c) Data Processing
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Fluorescence data were typically collected for 0.5 sec. to 5 sec. Raman spectral data were

collected for 60 sec. to 500 sec. depending on the Raman scattering cross-section of the

deposit. Often it was necessary for the ceroid deposits to be photobleached for several

minutes to reduce the background fluorescence before acquiring a Raman spectrum. All

spectral data processing was preformed in MATLAB 5.31 (MathWorks, Inc.). Both Raman

and fluorescence data were corrected for the spectral response of the system using a tungsten

light source. The data was next frequency calibrated using the known Raman lines of toluene

or, in the case of fluorescence, a mercury lamp. Cosmic rays were removed with a derivative

filter and the small background from the MgF2 flat was subtracted. Raman data were fit with

a fifth order polynomial which was subtracted from the spectrum in order to remove any

fluorescence background.

VIII. E. 2. d) Chemical Samples and Spectral Modeling

The chemical composition of the ceroid deposits was determined by analyzing each Raman

spectrum with a model. The model contains Raman spectra of several chemicals postulated

in the literature to comprise ceroid deposits. These spectra, called basis spectra, are linearly

combined with the appropriate weighting factors to recreate the Raman spectrum acquired

from a deposit. These weighting factors, called fit coefficients, indicate the amount of each

chemical present in the ceroid deposit. Modeling is based on the assumptions that the Raman

spectrum of a mixture is a linear superposition of the spectra of its components and that

signal intensity and chemical concentration are linearly related. Non-negative OLS fitting of

the Raman spectrum of ceroid yields the contribution of each basis spectrum to the entire

data spectrum. Model basis spectra are derived by directly taking the Raman spectra of

chemicals either synthesized in the laboratory or purchased from commercial sources.
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Similar modeling approaches have been used previously to extract the chemical composition

of both artery and breast tissues [Buschman et al. 2001; Shafter-Peltier 2002].

The Raman model used in this analysis contains chemicals often found in arterial

tissue as well as chemicals representative of several of the pathways of ceroid formation

discussed above. Acquisition of the first six model components; -carotene, calcium

hydroxyapatite, cholesterol linoleate, cholesterol oleate, free cholesterol, and collagen has

been previously described [Buschman et al. 2001]. All chemicals listed below were

purchased from Sigma (St. Louis, MO) unless otherwise stated. Spectra of HDL (human

plasma) and LDL (human plasma) were obtained using the instrumentation described above.

The Raman spectrum of a sample of Cu2+ oxLDL (courtesy of Dr. H. Hoff, Cleveland Clinic

Foundation, Department of Vascular Cell Biology and Atherosclerosis) was incorporated to

assess the contribution of the Fenton

reaction to ceroid formation. The

importance of protein oxidation was

assessed through the inclusion of

myeloperoxidase/NO2 oxLDL

(courtesy of Dr. H. Hoff) and diacetyl

dityrosine (courtesey of Dr. L. Sayer).

The Maillard reaction is represented by

the Raman spectrum acquired from the

product of human serum albumin (fatty

acid free) and D(-) fructose

synthesized according to the method of

Model Signal OLF Ac

N=0.056

a-Tocopherol 5.09 0.49 2.2

B-Carotene 4.22 0.54 2.5

Ascorbic Acid 5.62 0.74 1.3

Retinal Palmitate 3.28 0.89 1.9

Collagen 7.68 0.43 1.7

Hemoglobin 8.34 0.84 0.8

Cholesterol 4.15 0.45 3.0

Cholesterol Linoleate 4.25 0.21 6.4

Cholesterol Oleate 4.36 0.27 4.7

HDL 6.37 0.34 2.6

LDL 5.08 0.41 2.7

Fenton Reaction 4.72 0.23 5. 1

Protein oxLDL 6.36 0.23 3.8

Diacetyl Dityrosine 5.50 0.24 4.3

Ascorbic Acid Ox 4.42 0.18 7.2

Maillard Reaction 8.14 0.74 0.9

Calcification 2.38 0.78 3.0

Table VIII.2. Fit coefficient errors for the ceroid data.
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McPherson et al; I McPherson et al. 1988 i. To investigate the role of ascorbic acid in ceroid

formation, the Raman spectrum of both L-ascorbic acid and a mixture of L-ascorbic acid and

L-Glutamine incubated in PBS was included in our model Yin 19921. This pathway

represents the proposed route of fluorophore formation during ascorbic acid initiated

peroxidation. Ceroid like fluorescence was observed following incubation. In addition to f-

carotene, -tocopherol and retinal palmitate (all trans) were incorporated into the analysis as

representative polyenic molecules. Also, the Raman spectrum of hemoglobin (Human, A,,

ferrous) was included to examine the distribution heme or heme degradation products within

the deposits. Table V111.2 displays fit coefficient errors calculated using the analytical

equation derived in Chapter IV. Also shown are the parameters used for error calculation.

The noise in Table V11I.2 is the mean noise from all data. Noise in the coronary and aorta

data sets was comparable, N=0.060.02 and 0.05)0.02, respectively.

VIII. E. 3. Results

Ceroid rich regions in each tissue section were identified through a combination of histology

and fluorescence spectroscopy. Our combined Raman and fluorescence microscopy

instrumentation allows for the identification of ceroid, through its fluorescence signature, and

the subsequent acquisition of Raman spectroscopic data from the same region. Ceroid

deposits were presumptively identified by comparison of the phase contrast image of the

unstained section used for spectroscopy and lipid extracted ORO stained serial sections. A

fluorescence spectrum was obtained from each ceroid deposit so identified, to confirm the

presence of fluorescence features characteristic of ceroid. Figure VIII.24 shows one example

of the data used to identify ceroid deposits. Figure VIII.24a displays a phase contrast image
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Figure VIII.24. a) Phase contrast image of a ceroid deposit in a sample of coronary artery (size bar 25
11m). b) White light image demonstrating a positive ORO stain for ceroid. c) Fluorescence spectrum

acquired from the deposit and exhibiting a red shift when compared with the fluorescence spectrum of
collagen or elastin.

of a ceroid deposit as identified through comparison with a lipid extracted ORO stained

section, shown in Figure VIII.24b. Figure VII1.24c shows the fluorescence spectrum

acquired from the deposit shown in image VIII.24a and highlighted by a small box. The

fluorescence spectrum of the ceroid deposit exhibits a red shift compared to the fluorescence

spectrum of collagen or elastin, the two major fluorophores found in artery at this excitation

wavelength. Their spectra, which have similar fluorescence characteristics at this excitation

wavelength, are also shown in Figure VIII.24c. A Raman spectrum was subsequently

collected from each of the ceroid deposits that exhibited both stainablity with ORO following

lipid extraction and a red shifted fluorescence spectrum characteristic of ceroid.

After acquisition of a Raman spectrum, the chemical composition of the ceroid

deposit is extracted through modeling. The advantage of this approach is that the basis

spectra are correlated with the presence of specific chemicals, thereby providing information

about ceroid composition in situ. The accuracy of a given model can be qualitatively
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determined by observing the residual, calculated by subtracting the model fit from the Raman

spectrum of the deposit. The smaller the residual, the more completely the model has

accounted for all of the observed spectral features and thus the better the chemical analysis.

Figure VIII.25a shows the Raman spectrum of the ceroid deposit pictured in Figure VIII.24a.

Also shown are the model fit and the residual. The small size of the residual and its lack of

structure indicate a good fit. Although the model employed in this analysis was generally

able to account for the majority of the spectral features observed, several Raman spectra

exhibited a broadening of the 1650 cmn peak which was not present in any of the basis

spectra. A spectrum of ceroid displaying this broadening is shown in Figure VIII.25b along

with its model fit and residual. The persistence of the broadened feature in the residual

i
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C
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U):t=CACr(D

C
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Figure VIII.25. a) Raman spectrum acquired from the ceroid deposit pictured in image 2A. The

corresponding model fit (open circles) and residual are also pictured. b) Raman spectrum displaying a
broadening of the 1650 cm- 1 peak highlighted by the black circle.

attests to the inability of the model to account for this element.

From the model fit we can extract the chemical composition of the ceroid deposit.

Bar graphs showing the chemical compositions of all of the ceroid deposits examined in

coronary arteries and aorta are shown in Figures VIII.26 and VIII.27, respectively. The fit

coefficients are normalized to sum to one and thus each bar represents the percentage
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contribution of the corresponding basis spectrum to the deposit composition. Variation in the
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Figure VIII.26. Bar graph showing the chemical compositions of all of the ceroid deposits
examined in coronary arteries. The error bars represent the standard error of the mean and display

variation in the amount of a particular chemical between the deposits examined.

amount of a particular chemical between the deposits examined is displayed in the figure as

error bars calculated as the standard error of the mean. The smaller the error bar, the more

consistently the component of interest is incorporated in similar quantities into all of the

ceroid deposits examined. Many error bars are large, indicating that the chemical

composition of the deposits examined has significant variability. Chemical heterogeneity

among ceroid deposits was also observed in the preliminary study by Puppels and coworkers

[van de Poll et al. 2002].

The most notable feature of the bar graphs is that a variety of mechanisms suggested

by in vitro studies contribute to ceroid formation in vivo. Moieties from the Fenton reaction,

the Maillard reaction, protein oxidation, and ascorbic acid peroxidation are all present. In

accordance with theory, LDL appears within the deposits primarily in its peroxidized form.
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Large amounts of free cholesterol are seen in several of the deposits which may indicate

foam cell lysis. a-tocopherol is present within ceroid deposits in extremely small quantities,

supporting its role as the primary antioxidant associated with LDL. Further, the results

support the role of -carotene as an antioxidant. If, as conjectured, -carotene prevents

oxidation of LDL you would not expect it to be present in ceroid, since presumable only

those lipoproteins deficient in -carotene are susceptible to oxidization. Although small

contributions from 13-carotene are seen, these correspond to extremely low concentrations as

5-carotene is resonance enhanced at this excitation wavelength. As a result, extremely small

concentrations generate an intense Raman signal. Conversely, retinal palmnitate is present in

relatively high concentrations within the deposits indicating that either it plays a role in the

formation of ceroid rather than as an antioxidant or it is a less important antioxidant than

other polyenic molecules examined. The contribution of collagen to deposit composition is

in agreement with electron microscopy studies of ceroid which have shown a core of

collagen and elastin-like fibers. Further, hemoglobin is present in the deposits, consistent

with both previous Raman studies of ceroid and histochemical studies reporting the co-

localization of ceroid and hemoglobin [Nahiev et al. 1991: van de Poll et al. 2002]. Lastly,

many deposits contain contributions from calcium mineral salts. Therefore, it is possible that

ceroid deposition may provide a basis for hydroxyapatite nucleation and ultimately formation

of calcifications.
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Figure V11.27. Histogram showing the chemical compositions of all of the ceroid deposits
examined in aorta. The error bars represent the standard error of the mean and display

variation in the amount of a particular chemical between the deposits examined.

Because the overall Raman signal intensity is a function of both the Raman scattering

cross-section and the amount of the molecule of interest, fit coefficients are not direct

reflections of chemical concentration. Although the absolute Raman scattering cross-section

of these model components is not known, and thus a rigorous quantitative analysis cannot

presently be preformed, basis spectra with a high degree of spectral similarity should have

comparable Raman scattering cross-sections. Thus the fit coefficients of these pathways can

be directly compared. For instance, in ceroid deposits occurring in both aorta and coronary

arteries, the predominate mode of lipid peroxidation appears to be mediated by transition

metals. Ascorbic acid initiated free radical lipid peroxidation also contributes but only as a

minor pathway as witnessed by the smaller percent contribution of this model component

compared to the model component representative of the Fenton reaction. Likewise, protein

oxidation is present and appears to proceed mainly through direct modification of amino
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acids while LDL oxidation by myeloperoxidase is not witnessed to a large degree. Again.

these two pathways can be compared dueto their large degree of spectral overlap, olf=0.39,

and thus similar Raman scattering cross-sections. It should be noted that LDL oxidation by

myeloperoxidase was present with a contribution of 10.3% in one deposit examined. The

significance of this observation and the role of myeloperoxidase in ceroid formation are not

clear from this study. Although the relative importance of certain mechanisms can be

assessed, direct comparison between the extent of lipid peroxidation and protein oxidation is

not feasible without knowledge of the Raman scattering cross-sections of these molecules.

Much of the wide variation in chemical composition among the ceroid deposits can

be attributed to examination of the deposits during different stages of formation. In an effort

to provide additional insight into the mechanism of ceroid formation, we have compared data

acquired from intra- and extra-cellular deposits. The separation into intra- and extra-cellular

ceroid is based on the amount of cholesterol linoleate and cholesterol oleate present in each

deposit as determined by their fit coefficients. Deposits containing predominately cholesterol

oleate were labeled as intracellular while those containing mainly cholesterol linoleate were

categorized as occurring extracellularly. Deposits with roughly equal amounts of cholesterol

linoleate and cholesterol oleate (less than 10% difference) or with neither molecule, were

omitted from this analysis. 10% was chosen as our experimental errors are typically twice

that predicted by the analytical formula, section IV.F.6. This distinction is based on the fact

that incubation of mouse peritoneal macrophages with cholesteryl linoleate/ bovine serum

albumin emulsions induces significant cell damage whereas the addition of cholesteryl

oleate/ bovine serum albumin does not [Reid et al. 1992]. The separation results in 13

intracellular and 6 extracellular deposits in coronary arteries. Only 2 ceroid deposits
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examined in aorta contained cholesterol linoleate in a 10% excess over cholesterol oleate.

For this reason, the chemical composition of ceroid deposits occurring intra- and extra-

cellularly was only examined in coronary arteries.

The disproportionately larger amount of intracellular ceroid deposits examined in

aorta provides some insight into the differences in fit coefficients, seen in Figures VIII.26

and VIII.27, between coronary arteries and aorta. Frrst, the polyenic molecules are present in

smaller amounts in coronary arteries. This is consistent with their role as antioxidants as the

depletion of protective molecules should be greater in more advanced deposits. Another

molecule postulated to playa protective role in atherosclerosis is HDL. Again, we see much

smaller contributions from HDL in the deposits examined in coronary arteries than in those

examined in aorta.

While this classification of intracellular and extracllular deposits may seem somewhat

arbitrary, differences in chemical composition and morphology of the two types of deposits

were observed and provide further confirmation of the validity of this separation. Structural

examination of the deposits by an experienced pathologist indicates that all intracellular

deposits appear to have a similar globular morphology, whereas the extracellular deposits

Figure VIII.28. a) Phase contrast image of an intracellular ceroid deposit displaying a globular
morphology. b) Phase contrast image of an extracellular ceroid deposit displaying a diffuse

morphology. (Size bar 25 f.1m)
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have a different diffuse morphology. Figure VIII.28 displays phase contrast images

demonstrating the noted intra- and extra- cellular morphologies. A bar graph comparing the

composition of intra- and extra-cellular ceroid deposits in coronary artery is shown in Figure

VIII.29. The white bars in the figures correspond to intracellular deposits while the shaded

lines represent extracellular deposits. Chemicals which did not vary significantly between

extracellular and intracellular deposits are excluded from the figure. From this analysis, it is

evident that the presence of 3-carotene is slightly higher in intra- than extra- cellular

deposits. This provides further support for its role as an antioxidant and contradicts

suggestions that carotenoids do not play a significant role in protecting LDL against

oxidation [Halliwell 1990]. Retinal palmitate is also present in higher quantities

9-r i
.o

- 20

E
o 15

10-

5

A-

l * I

I

I

6-

T

SP WO OP·p~9% J 0

Figure VIII.29 Histogram showing the chemical compositions of intra- (white bars) and extra- (gray
bars) cellular ceroid deposits occurring in coronary arteries. The error bars represent the standard

error of the mean and display variation in the amount of a particular chemical between the deposits
examined.
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intracellularly. This may suggest that it plays a less crucial role as an antioxidant than P-

carotene and thus is consumed in latter stages of ceroid formation. oa-tocopherol is not

present in appreciable quantities in either intra- or extra- cellular deposits, again indicating

that it is the principal antioxidant associated with LDL and has been consumed prior to the

initiation of lipid peroxidation. Also as expected, free cholesterol is higher intracellularly.

This is in accordance with previous literature which reported that incubation with oxLDL led

to macrophage accumulation of unesterified cholesterol [Maor and Aviram 1994].

Peroxidized lipids, such as transition metal oxLDL and ascorbic acid initiated lipid

peroxidation, are more prevalent extracellularly. This observation lends support to theories

which link ceroid accumulation to cell death and necrosis. In fact, ascorbic acid initiated

lipid peroxidation appears to occur entirely extracellularly. This observation can also explain

why little contribution from this pathway is seen in the predominately intracellular deposits

examined in aorta. The reason for this trend is presently not known. It is possible that ceroid

induced macrophage lysis results in extravasation of the ferrous ion contained within the

deposits thereby providing the heavy metal needed for ascorbic acid initiated lipid

peroxidation. Consistent with this theory, hemoglobin contributes to ceroid composition

predominately extracellularly. No significant differences were observed in the fluorescence

characteristics of the intracellular and extracellular deposits.

VIII. E. 4. Conclusions

In this study, we analyze the chemical composition of ceroid deposits within atherosclerotic

plaques, without the need for extraction or purification, using Raman microscopy. This

allows assessment of the physiological relevance of several of the in vitro model studies
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undertaken in an effort to elucidate the chemical composition of ceroid. Results demonstrate

that a variety of mechanisms play a role in ceroid formation in vivo. Further, our studies

show that the predominate mode of lipid oxidation occurs through a Fenton reaction while

oxidative modification of proteins proceeds mainly through direct oxidation of amino acids.

Data support the roles of a-tocopherol and n-carotene as antioxidants. The elucidation of the

composition of ceroid deposits provides insight into the underlying biochemical mechanism

of ceroid formation thereby advancing the understanding of the atherosclerotic disease

process.
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Chapter IX. Future Directions

This chapter discusses the future of Raman spectroscopy in breast cancer diagnosis and

treatment. Upcoming clinical and basic studies are detailed. With the successful

demonstration of in vivo Raman spectroscopy for breast cancer diagnosis, there are many

clinical applications that can be addressed. Approaches to transdermal needle measurements

for breast cancer diagnosis are presented as well as future intra-operative studies for margin

assessment. These clinical studies will be accompanied by diagnostic algorithm validation

and extension using our data set acquired from freshly excised tissue. Basic experiments will

focus on quantitative analysis and spectral model refinement. Finally, the prospects for a

multi-spectroscopic optical fiber probe that may provide enhanced optical diagnosis are

presented.
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IX. A. The Future of Raman Spectroscopy in Breast Cancer Diagnosis

The experiments and theory presented throughout this thesis demonstrate that Raman

spectroscopy can be used to accurately diagnosis breast cancer and breast disease.

Furthermore, we have demonstrated extension of the technique to preliminary in vivo clinical

applications with excellent results. However, additional clinical studies are needed to fully

assess the utility of Raman spectroscopy for breast cancer diagnosis and treatment.

IX. A. 1. Transdermal Needle Measurements

Optical techniques are less invasive than current diagnostic procedures. The results of our

initial in vivo studies illustrate the potential for Raman spectroscopic transdermal needle

measurements to provide breast cancer diagnosis. As opposed to standard biopsy, a

spectroscopic transdermal needle measurement would have the advantage of providing

immediate diagnosis. As a result, Raman spectroscopy has the potential to reduce both the

likelihood of a non-diagnostic biopsy that would require repeat needle or surgical biopsy, and

patient anxiety by eliminating the currently unavoidable wait for a traditional histopathology

diagnosis. Furthermore, with the development of minimally invasive breast cancer therapies,

such as radiofrequency ablation, which relies on insertion of a thin metal probe into the

breast, there is the potential that diagnosis and treatment could be performed in a single

procedure [Fornage et al. 2004]. Spectroscopic diagnosis also confers economic advantages.

There are numerous people as well as supplies and equipment involved in the biopsy

procedure, tissue processing, and histopathology diagnosis making needle biopsy an

expensive enterprise.
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Transdermal needle measurements can be preformed with either a front-viewing or a

side-viewing Raman optical fiber probe. A front-viewing probe can be used in conjunction

with a vacuum-assisted biopsy procedure, discussed in section II.E.3e. A schematic of a

transdermal needle measurement that employs the front-viewing Raman probe is shown in

Figure IX.I a. In this configuration, the spectroscopic measurement will always sample the

proximal end of the biopsy tissue. Although the current reduced diameter front-viewing

Raman probe is compatible with an 11 gauge needle, often used in these procedures, studies

must be undertaken to investigate whether the vacuum device and overall setup can be used

in conjunction with the probe.

A side-viewing Raman probe can also be used for transdermal needle measurements,

as depicted in Figure IX.l b. The laboratory has a side-viewing probe prototype based on a

design that replaces the sapphire ball lens with a half-ball lens backed by a mirror. Lens and

mirror are configured at 45° providing collection capabilities similar to the front-viewing

probe. The performance of the side-viewing probe is currently being tested. The side-

viewing Raman probe can be used in conjunction with either a spring deployed or a vacuum-

assisted biopsy needle. However, side-viewing measurements will necessitate a method for

registering the tissue examined spectroscopically, which will lie somewhere in the middle of

Figure IX.I. Transdermal needle measurements with the a) front-viewing and b) side-viewing
Raman optical fiber probe.
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the biopsy sample, with that examined by the pathologist. Ultimately, a side-viewing

implementation is preferable as it allows spectral interrogation of a larger tissue volume.

Successive measurements can be performed over 3600 around the axis of the needle and

depth information obtained as the needle is inserted or withdrawn.

Another potential implementation of Raman spectroscopy is in conjunction with

ductoscopy. Fiberoptic ductoscopy adapts endoscopes developed to detect cancer in organs

such as the colon, cervix, and esophagus to the study of breast ducts [Berna et al. 1991]. It is

used to directly visualize the epithelial lining of the breast ducts. Because the majority of

both benign and malignant breast disease originates in the epithelium, development of a

minimally invasive procedure which can directly assess early epithelial changes has

important applications to the detection and treatment of these conditions. Adding spectral

information to the white light images recorded during ductoscopy provides the ability to

detect pre-cancerous changes in the breast. However, a reduced diameter side-viewing

probe, less than 1 mm in diameter, must be developed for incorporation in the ductoscope.

IX. A. 2. Intra-Operative Margin Assessment

Our pilot study, presented in Chapter VII, is the first use of Raman spectroscopy to examine

breast cancer in vivo. In addition to establishing Raman spectroscopy as a viable clinical

technique, the study also revealed a new application for the approach. The results indicate

that Raman spectroscopy has the potential to aid in intra-operative tumor resection. Accurate

in vivo margin assessment techniques will reduce the recurrence rate of breast cancer

following partial mastectomy surgeries and allow numerous re-excision surgeries to be

avoided. They may also extend partial mastectomy procedures to those women who do not
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harbor sufficiently small or localized breast cancers to qualify by current standards.

However a larger data set with additional positive margin specimens is necessary to fully

investigate the ability of Raman spectroscopy to aid in intra-operative tumor resection.

Further, for such an implementation to be successful, a thorough understanding of the

lower detection limits of the approach is necessary. Experiments that determine the Raman

scattering-cross sections of our model components as well as the volume of probed tissue

which must harbor malignant cells to be correctly diagnosed are presented below. Future

studies may be preformed with the existing Raman optical fiber probe or alternatively, an

imaging device could be developed. An imaging modality, which samples a larger surface

area, may be preferable for intra-operative margin assessment.

IX. A. 3. Real-Time Analysis

We have recently developed and demonstrated real-time Raman diagnosis with our clinical

instrumentation thus allowing its implementation in upcoming studies [Motz et al. in press].

Both clinical studies presented above should employ real-time analysis. This will provide a

basis for testing the real-time system as well as feedback from clinicians for display

improvement. The real-time Raman system also provides a means to target features of

interest during data collection. For example, collecting data from microcalcifications will

allow us to couple the results from our Raman microscopy studies of microcalcifications with

our ex vivo diagnostic algorithm to create a powerful new tool for the diagnosis of benign and

malignant breast lesions, as discussed in Chapter V. Ultimately, our real-time diagnostics

may be used as a guide to biopsy or tumor resection.
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IX. A. 4. Diagnostic Algorithm Validation and Extension

Studies with a large patient pool are currently underway to further expand and validate our

diagnostic algorithm. Preliminary results are presented in Chapter V. Upcoming studies will

focus on analysis of the clinical data set containing Raman spectra of fresh tissues. The

research serves to extend and confirm the results of our ex vivo studies on fresh-frozen tissue.

New diagnostic algorithms will be developed which incorporate additional model

parameters, microcalcifications, and intensity information. These algorithms will be used to

identify DCIS and possibly different manifestations of a single pathology. The incorporation

of microcalcifications and intensity information are expected to strengthen the performance

of our diagnostic algorithms. The Raman optical fiber probe provides a reproducible

geometry for data collection, allowing examination of spectral data that has not been

normalized. Ultimately, we strive to obtain quantitative information by incorporating the

Raman scattering cross-sections of the model components into the data analysis routine.

Studies to extract quantitative morphological information are discussed below.

IX. B. Spectral Model Refinement

Although our current morphological spectral model of breast tissue provides excellent

diagnostic information, there are several areas where the model can be improved.

IX. B. 1. Quantitative Studies

Our current spectral model of breast only provides relatively quantitative morphological

information. Thus, our present diagnostic schemes incorporate structural information and do

not utilize intensity information. Although strict quantification is desirable, it is challenging

to establish Raman scattering cross-sections for the components present in biological tissue.
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However, with instrumental advances and a deeper understanding of the theoretical accuracy

of our approach we have planned a study to make our morphological models quantitative.

In this study, data will be acquired from thin sections of fresh-frozen breast tissue

using our Raman microscope. This data will be acquired using a low magnification objective

to ensure that the spectroscopic signal is representative of the entire breast tissue section.

Data will be acquired for long integration times conferring high SNR Raman data. Each thin

section of breast tissue spectroscopically examined will then be reviewed by a pathologist. A

combination of staining techniques and morphometric analysis will be used to obtain an

estimate of the volume occupied by each morphological feature represented in our Raman

spectral model. These volumes will then be correlated with the fit coefficients from the

corresponding spectrum. Half of the data will be used to scale the model basis spectra such

that the fit coefficients are representative of the pathologically determined volumes. The

remaining data will be used for validation of the intensity corrected model. The prediction

error equation, presented in Chapter IV, can be used to estimate reasonable fit coefficient

errors. This study will also provide insight into the lower detection limits of the approach.

IX. B. 2. Microscopy Studies

Studies to make our spectral model quantitative will also provide a basis for model

refinement. I anticipate that some model elements, such as fat and microcalcifications, will

quite accurately reflect their morphological volumes while others, such as epithelial cell

cytoplasm and cholesterol-like, will not. This will allow us to identify basis spectra that are

representative of a variety of morphological features thereby providing a basis for model

refinement. Ensuing microscopy studies can be used to update the morphological spectral

model. Such studies may begin with the examination of normal and cancerous cell lines. A
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key signature of carcinoma is enlargement of cell nuclei, and thus a higher nuclear to

cytoplasm (N/C) ratio than in benign conditions. Although we observe disease dependent

trends in the spectroscopically obtained N/C parameter, these trends have not translated into

diagnostic information. Microscopy studies of cell lines may shed light on ways to extract

diagnostic information from the Raman spectrum that are related to tissue cellularity.

Microscopy studies can also be used to examine changes in the stroma induced by disease.

Ability to detect desmoplastic changes may be of particular importance as previous results

indicate that Raman spectroscopy is more sensitive to stromal rather then cellular changes.

As instrumentation and data analysis techniques improve, new components corresponding to

smaller chemical variations will need to be included in our model.

IX. C. Combining Fluorescence, Reflectance and Raman Spectroscopies

Preliminary results examining fluorescence and reflectance spectroscopies of breast tissues

are very promising and convey that the techniques contain diagnostic information. However,

a more rigorous understanding of the relationship between data analysis parameters and

tissue morphology is necessary. Microscopy studies, similar to those used to develop the

Raman spectral model, may provide a basis for understanding the fluorescence and

reflectance signals obtained from breast tissue. As a starting point the fluorescence of

adipocytes and epithelial cells should be examined. This will shed light on whether the

fluorescence trends observed are the result of inaccurate basis spectra, additional tissue

fluorophores, or unexpected pathology.

Future analysis will focus on correlating information obtained from FastEEM data

and Raman spectroscopy. In order to successfully combine the optical modalities, a rigorous
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understanding of the probe volume and sensitivity of each technique is necessary. As a

starting point, species that both approaches are sensitive too, such as collagen and [5-carotene,

can be compared. Ultimately, if the results warrant it, all three modalities (fluorescence,

reflectance and Raman) may be combined into a single spectroscopic technique for the

diagnosis of breast cancer.
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Chapter X. Conclusion

X. A. Review of Goals and Accomplishments

The overall goal of this thesis was to develop Raman spectroscopy into a clinical tool for

breast cancer diagnosis. This process involved many steps, including model and diagnostic

algorithm development in the laboratory with subsequent extension of these experimental

approaches to a clinical environment. Each of these steps has been addressed in separate

chapters, supported by sections that delve deeply into fundamental considerations important

for attaining these goals.

The spectral model that was developed in Chapter IV provides a new approach to

analyzing Raman spectra. A diagnostic algorithm which utilizes this spectral model, was

developed in the laboratory with samples of fresh-frozen breast tissue. This diagnostic

algorithm, that encompasses all data and classifies samples according to specific pathological

diagnoses, results in high sensitivity and specificity. Based on the excellent results of these

laboratory studies, we sought to employ Raman spectroscopy clinically. Studies were

undertaken to validate our algorithm on a large data set of freshly excised tissue as well as

demonstrate in vivo data acquisition.

The clinical studies translate Raman spectroscopy from a laboratory technique into a

clinically useful tool. The first study, tests the diagnostic algorithm in a prospective manner

on freshly excised tissue. Preliminary results are promising. In the second study, data were

acquired in vivo during partial mastectomy surgeries. This is the first demonstration of in
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vivo collection of Raman spectra of breast tissue. These advances culminated in an approach

that was employed intra-operatively during partial mastectomy surgeries to accurately assess

margin status.

X. B. Final Remarks

The research presented in this thesis has brought the powerful analytical technique of Raman

spectroscopy into a new regime where it can be employed clinically. We have demonstrated

the use of Raman spectroscopy for the intra-operative identification of positive margins.

Minor modifications to our Raman probe design will readily allow transdermal needle

measurements, thereby opening additional clinical applications of Raman spectroscopy. The

experiments and theory presented throughout this thesis demonstrate that Raman

spectroscopy can be used to accurately diagnosis breast cancer and breast disease. Thus,

Raman spectroscopy has the potential to play a diagnostic role in several aspects of breast

cancer evaluation and treatment.

-314-


