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of the requirements for the Degree of Doctor of Philosophy in Biology

ABSTRACT

The Drosophila brain is composed of many morphologically and functionally
distinct processing centers and brain morphogenesis depends on the creation and
maintenance of distinct boundaries between adjacent regions to prevent cells from
mixing. In the Drosophila visual system, I have found that Slit and Roundabout
(Robo) proteins function to prevent cells from adjacent compartments from mixing.
I have defined a boundary between two distinct compartments, the lamina and
lobula, and find that the secreted ligand Slit is present in the lamina, while the Robo
receptors (Robo, Robo2 and Robo3) are expressed on lobula neurons. I examined
the function of theses proteins by identifying a tissue-specific allele of slit and
creating transgenic RNAi flies that inhibit the expression of the Robo proteins. Loss
of Slit or all three Robo proteins in the visual system results in the invasion of lobula
neurons into the lamina. Mixing of cells at the lamina/lobula boundary results in
glial cell mispositioning and aberrant photoreceptor axon targeting. Thus, Slit and
Robo proteins are required to restrict movement of cells across the lamina/lobula
boundary. Additionally, I have characterized Ptpmeg, a highly conserved protein
tyrosine phosphatase (PTP). In addition to the C-terminus PTP domain, Ptpmeg
contains a central PDZ domain and an N-terminus FERM domain. The in vivo role
of this family of proteins is unknown. To explore the function of Ptpmeg in flies,
mutants were generated by targeted gene disruption. Examination of the adult
nervous system of Ptpmeg mutants reveals a defect in the mushroom bodies (MB),
brain structures required for olfactory learning and memory. In mutant animals,
the MB lobes are disorganized and fail to elaborate their characteristic structure. I
find that Ptpmeg is expressed on MB axons and targeted knockdown of Ptpmeg in
the MB results in similar defects as seen in homozygous mutants. Thus, the MB
neurons appear to require Ptpmeg for proper formation.

Thesis Supervisor: Paul Garrity
Title: Assistant Professor of Biology



CHAPTER ONE

Introduction

The human brain contains more than 1012 neurons, and each neuron can make more than

1000 connections (Kandel, 2000). Each connection is precisely wired, with presynaptic

and postsynaptic partners finding each other among the milieu of many other cells. How

do axons navigate, often over long distances, to find their precise targets and how are

complex structures within the brain generated? The vertebrate brain contains many

morphologically and functionally distinct compartments, but less complex brains, such as

those of insects, are similarly compartmentalized. In this thesis, I have used the model

system of Drosophila melanogaster, which contains _105 neurons, to understand how the

separation of distinct regions of the brain is maintained and how complex neuronal

wiring is achieved.

This thesis is comprised of two parts. The first is concerned with the role of four

well characterized regulators of axon guidance and cell migration, Slit and the

Roundabout (Robo) family of proteins, in the developing visual system. The second part

of this thesis describes the first characterization of Drosophila Ptpmeg, a protein tyrosine

phosphatase (PTP) that appears to regulate axon guidance in another important region of

the brain, the mushroom bodies. How neurons reach their appropriate targets within the

brain, and how regions of the brain become compartmentalized are fundamental

questions in developmental neurobiology, and my work contributes towards an

understanding of these topics.

Here I will introduce the regions of the fly brain I have chosen to work on, the

visual system and the mushroom bodies, the molecules I have found to be important in

the development of each of these structures, Slit, Robo, and Ptpmeg, and the processes of

neural development I have studied, axon guidance and compartmentalization.

Nervous System Development in Drosophila

The impressive architecture of the brain is a product of precisely followed genetic

instructions and complex cellular interactions that begin in the earliest stages of
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development. The Drosophila embryonic CNS develops from progenitor cells called

neuroblasts (Lu et al., 2000). These neural precursors are singled out from a layer of

undifferentiated epithelial cells through complex signaling mechanisms that result in the

separation (delamination) of a neuroblast from the epithelial sheet into the embryo

(Campos-Ortega, 1988). Neuroblasts divide asymmetrically to give rise to two different

daughter cells, a ganglion mother cell (GMC) and another neuroblast (Jan and Jan, 1998;

Jan and Jan, 1999). The GMC will divide once more to produce two postmitotic neurons

or a postmitotic neuron and a glial cell. Before the neuroblast divides, certain molecules

are unequally distributed in the cell, resulting in molecularly distinct daughter cells after

division (Hirata et al., 1995; Knoblich et al., 1995; Spana and Doe, 1995; Spana et al.,

1995). Asymmetric cell division helps drive the process of differentiation. Neuroblast

divisions are repeated over and over again to generate a great diversity of neuronal and

glial cell types (Goodman, 1993). Some populations of neural progenitors are set aside

for later stages of development. They remain mitotically quiescent until reactivation

signals cause them to begin dividing again to generate mature neurons (Lu et al., 2000).

After the decision to become a neuron is ensured, axons and dendrites begin the

process of nervous system wiring. Sensory structures at the tip of neurites, termed

growth cones, guide axons and dendrites to specific targets (Goodman and Shatz, 1993).

Once the growth cone reaches the target cell or cells, connections are formed that give

rise to functional synapses. Although the cell bodies of many neurons will remain near

their place of differentiation, a large number of neurons migrate to different locations

using many of the same conserved molecules that are used by navigating axons and

dendrites (Guan and Rao, 2003). Some of these molecules will be discussed later in this

chapter. My graduate work has focused primarily on a window of neural development

that begins after cell fate has been specified and before synapses form.

Introduction to the Brain Regions

The Drosophila Visual System

The Drosophila visual system has emerged as an important model for neural

development and brain wiring (Clandinin and Zipursky, 2002; Tayler and Garrity, 2003;
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Wolff, 1997). Drosophila vision is mediated through two compound eyes that each

consist of precisely arranged ommatidia, the individual facets of the eye (Wolff and

Ready, 1993). The ommatidial lenses focus incoming light onto underlying

photoreceptors that contain light-absorbing visual pigment and through the

phototransduction process, the absorbed photons are transduced into membrane potentials

which are then converted into signals that are passed on to other neurons in the brain

(Yarfitz and Hurley, 1994). The visual ganglia, which will be discussed below, are the

image processing centers of the brain.

The Drosophila eye and brain provide exceptionally accessible systems to study

the mechanisms of axon guidance and compartmentalization. There are a large number

of molecular tools that allow disruptions in these highly ordered structures to be

identified. In addition, early cellular events that pattern the eye are well understood and

the eye is amenable to genetic manipulation, as it is dispensable for the viability of the fly

(Dickson and Hafen, 1993; Pappu, 2002). The adult eye is composed of -800 repeated

ommatidial units (Wolff and Ready, 1993). Each ommatidium contains 8 uniquely

identifiable photoreceptor neurons (or R-cell for Retinula cell). There are three subtypes

of photoreceptors, R1-R6, R7 and R8. In the adult, each subtype expresses a different

photosensitive opsin and responds to different wavelengths of light (Hardie, 1985). R-

cells differentiate in the developing eye disc and send projections through the optic stalk

into distinct layers of the brain during larval and pupal development (Meinertzhagen,

1993). R1-R6 project axons into the most superficial layer of the optic ganglion, the

lamina, while R7 and R8 send axons past the lamina, into two deeper layers of the brain

in the medulla. The developing lamina and medulla are separated from another region of

the visual system, the lobula, by a distinct boundary (Tayler et al., 2004). The R-cell

axonal projections and the developing target region can be visualized after dissection and

antibody staining. Therefore, mutations that disrupt R-cell targeting or target region

formation can be readily identified.

The Drosophila eye disc arises from a small group of cells (-20) during early

embryogenesis (Garcia-Bellido and Merriam, 1969; Wieschaus and Gehring, 1976). The

distinct morphology of the young eye disc is easily visible after hatching and the eye disc

rapidly grows in size and cell number. From the end of the first larval instar to the
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beginning of the third larval instar, cell numbers increase from approximately 130 to

more than 1300 (Becker, 1957; Wolff and Ready, 1993). The adult eye begins to take

shape at the beginning of the third larval instar. The differentiation of cell clusters that

will compose ommatidia begins at the posterior margin of the eye imaginal disc. The line

of newly differentiated cells is marked by the morphogenetic furrow (MF), which sweeps

across the eye disc toward the anterior margin (Wolff and Ready, 1993). The MF

represents the constriction and contraction of cells just prior to differentiation and appears

as an indentation in the eye disc (Tomlinson, 1985). Photoreceptor neurons differentiate

in a sequential manner: R8, followed by R2 and R5, R3 and R4, R1 and R6, and finally

R7. As the photoreceptors differentiate they secrete Hedgehog protein, a morphogen

required in many developmental pathways, which triggers the differentiation of more

anterior cells resulting in the progression of the MF (Heberlein et al., 1993; Lum and

Beachy, 2004; Ma et al., 1993). Photoreceptor differentiation begins in the posterior

margin of the eye disc at the dorsal-ventral midline. R8 is the founder cell of each

ommatidium and organizes the developmental events that follow (Wolff and Ready,

1993). Newly differentiated photoreceptor neurons begin sending out axons that travel

through the optic stalk into the brain. The axons converge on the optic stalk and then

spread out again as they enter the brain, maintaining the same position relative to their

neighbor in the eye disc and thus generating retinotopy in the brain. In the adult brain,

there are four visual processing centers: the lamina, medulla, lobula and lobula plate.

The lamina and medulla receive input directly from the retina, while the lobula and

lobula plate connect visual system neurons to higher processing centers of the brain

(Meinertzhagen, 1993).

A considerable amount of effort has been devoted to mapping the structure and

neuronal connections of the adult optic lobe (Bausenwein et al., 1992; Dittrich and

Fischbach, 1989; Meinertzhagen, 1993). However, the cellular and molecular

mechanisms that generate the precise organization of optic lobes are not well understood.

The adult optic lobes are located beneath the compound eye and consist of the four

neuropil regions mentioned above. Each neuropil contains of an orderly array of columns

that reflect the organization of the overlying eye (Meinertzhagen, 1993). The

photoreceptor axons from a single ommatidium travel into the brain together as a tightly
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fasciculated bundle. Hence, the number of columns formed in the lamina and medulla

optic lobe neuropil is nearly the same as the number of ommatdia in the eye (-800)

(Meinertzhagen, 1993). Stacks of neuronal projections running perpendicular to the

columns innervate specific layers within the optic lobes and have been postulated to have

an integrative function. In addition, the visual centers of each brain hemisphere are

connected by large tangential neurons and provide further integration of visual

information (Dittrich and Fischbach, 1989).

The adult optic lobes are derived from neuroblast proliferation centers (anlagen)

that arise during embryonic development. Two crescent-shaped neuroblast proliferation

centers create most of the optic lobe, the inner optic anlagen (IOA) and the outer optic

anlagen (OOA) (Hofbauer and Campos-Ortega, 1990). The lamina (the R1-R6 target

region) and distal medulla (R7/R8 target region) are derived from cells of the OOA. The

IOA generates neurons of the lobula, lobula plate and proximal medulla. As a result of

cell division and cell migration, the spatial relationship of the two proliferation centers

changes during the third larval instar stage, yet the cells formed remain separate and

distinct (Hofbauer and Campos-Ortega, 1990; Meinertzhagen, 1993).

Of the optic lobe structures, the lamina has received the most attention. The

differentiation of lamina precursors is triggered by photoreceptor innervation and

therefore lamina development is completely dependent on ingrowth of photoreceptor

axons (Power, 1943; Selleck et al., 1992; Selleck and Steller, 1991). The medulla, lobula

and lobula plate are less dependent on photoreceptor innervation, as the structures are still

present (although reduced in size) even when photoreceptors axons have been prevented

from entering the brain (Fischbach and Heisenberg, 1981; Power, 1943).

Although it had long been observed that the development of the optic lobes

depended on photoreceptor innervation (Power, 1943), the mechanisms governing the

induction process were unknown. Shortly after photoreceptor differentiation begins, the

first photoreceptor axons travel through the optic stalk and enter the brain. Photoreceptor

axon entry into the brain triggers a series of developmental events. Work from many

groups has shown that the migrating photoreceptor axons are primarily engaged in two

concurrent tasks: establishing the patterning of their final targets and identifying their

intermediate targets (Clandinin and Zipursky, 2002).
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The organization of the lamina target field is accomplished, in part, by the

delivery of secrected cues to precursor cells in or near the target region. Elegant studies

by Kunes and coworkers have shown that Hedgehog (Hh) protein is expressed in

photoreceptors and transported down their axons. Delivery of Hedgehog to the lamina

induces the final cell division of lamina precursor cells (LPCs), the eventual R1-R6

synaptic targets (Huang and Kunes, 1996; Huang and Kunes, 1998). Later, they showed

that Spitz, a member of the EGF family, was the factor that promoted the final

differentiation step of the lamina neurons (Huang et al., 1998).

The observation that R1-R6 growth cones terminate precisely between rows of

glia, suggested that glial cells provided the signal(s) for the R1-R6 growth cones to stop

in lamina, effectively functioning as the intermediate target of the R1-R6 axons (Perez

and Steller, 1996; Winberg et al., 1992). The lamina glia also depend on R-cell axons for

migration and these anterograde signals are essential for proper visual system

development (Poeck et al., 2001; Suh et al., 2002; Winberg et al., 1992). It has recently

been shown that retrograde signals from these glia must also be required for the R-cells to

make the correct target layer selection. In mutants in which glial cells do not migrate into

the lamina target region, R-cells fail to stop in the lamina and extend into the underlying

medulla (Poeck et al., 2001; Suh et al., 2002).

The Drosophila Mushroom Bodies

The mushroom bodies are lobed nervous system structures found in many marine

annelids and all arthropod groups except crustaceans (Strausfeld et al., 1998). Although

the basic structure is the same, the size and complexity varies widely among species and

sometimes even within species. The mushroom bodies were first described in 1850 by

the French biologist Felix Dujardin. He termed the structures "corps peloncules" (stalk-

like bodies), as their shape appeared similar to the fruiting bodies of lichens (Dujardin,

1850). Experiments that revealed a role for the mushroom bodies in learning and

memory followed the early descriptive studies of Dujardin. Ants have the ability to

navigate relatively complex mazes using specific olfactory cues and cockroaches have a

keen ability to recall the location of food sources (place memory). These abilities are

perturbed after lesioning the mushroom bodies (Mizunami, 1993; Vowles, 1964).
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Elegant genetic experiments in Drosophila later revealed a number of genes that were

required in the mushroom bodies for olfactory learning and memory (Dudai et al., 1976;

Livingstone et al., 1984; Quinn et al., 1974; Quinn et al., 1979). These experiments

importantly established that fruit flies could indeed learn and that single genes could

affect the process. Further anatomical, electrophysiological and genetic studies over

many years have contributed to the view that the mushroom bodies play a major role in

olfactory processing and the integration of other sensory modalities, such as vision, touch

and hearing (Strausfeld et al., 1998).

The Drosophila mushroom bodies (MBs) have been used as a model to study

various aspects of neuronal morphogenesis. The development of MBs is well described

and mutagenesis screens have uncovered genes that are important in regulating cell size,

neuroblast proliferation, axonal transport and axon and dendrite morphogenesis (Lee et

al., 1999; Ng et al., 2002; Reuter et al., 2003). A combination of Golgi staining and

genetic mosaic analysis has formed a comprehensive picture of mushroom body structure

and development (Kenyon, 1896a; Kenyon, 1896b; (Lee et al., 1999; Strausfeld, 1976).

There are three classes of mushroom body neurons (also called Kenyon cells), all of

which originate from four neuroblasts in each hemisphere of the embryonic brain. The

neuroblasts begin dividing during mid-embryogenesis (stage 9) and continue into the

pupal stages (Ito et al., 1997; Ito and Hotta, 1992). Densely packed Kenyon cell bodies

(-2500 in each hemisphere) are located near the dorsal-anterior surface of the brain and

are designated according to which lobes their axons innervate. y neurons are generated in

the first instar larval stage, a' and ' neurons are generated between the third instar larval

stage and puparian formation, and lastly, the a and f3 neurons are generated after puparian

formation. As the newly generated mushroom body neurons extend axons to form the

a and 13 lobes, the y neurons partially retract their axons and then re-extend toward the

midline, to form the y lobe (Lee et al., 1999). Sequential expression of transcription

factors appears to underlie the temporal development of the mushroom bodies (Isshiki et

al., 2001).

After Kenyon cells elaborate dendritic processes within the mushroom body

calyx, just beneath their cell bodies, the axons fasciculate, forming tightly bundled

parallel axon fibers called a peduncle (Strausfeld et al., 1998). As the axons exit the

10



peduncle, they bifurcate and enter dorsal and medial lobes. An interesting feature of the

mushroom bodies is the concentric development of the axons. Younger axons are found

in the interior, while the older axons are found on the exterior (Verkhusha et al., 2001).

Screens for defects in organization of the adult mushroom bodies have revealed a

number of genes that regulate MB neuroblast proliferation: the histone acetyltransferase

(enok), the p21-activated kinase-like protein serine/threonine kinase (mbt), and a coiled-

coil protein (mud) (Heisenberg, 1980; Melzig et al., 1998) (Guan et al., 2000; Scott et al.,

2001). Recent investigations have used mosaic analysis to study more specific aspects

mushroom body development such as axon growth, guidance and branching (Ng et al.,

2002; Reuter et al., 2003).

INTRODUCTION TO THE MOLECULES

In this thesis I have studied molecules required for the formation of the visual system and

mushroom bodies, and will provide some background on these molecules below.

Slit and Roundabout

Mutations in slit were originally recovered by Nusslein-Volhard and Wiechaus in

a screen for genes controlling pattern formation in Drosophila (Nusslein-Volhard et al.,

1984). A few years later slit was cloned by Artavanis-Tsakonas and coworkers after

being identified in a homology based screen (Rothberg et al., 1988). The slit embryonic

phenotype was similar to a previously characterized gene called single-minded (sim)

(Crews et al., 1988; Nusslein-Volhard et al., 1984; Thomas et al., 1988). Sim protein is

expressed by glia and neurons of the embryonic CNS midline. Loss of Sim expression

results in the collapse of the ladder-like structure of embryonic nerve cord, resulting from

the loss of midline cells. Slit protein was expressed in a similar pattern and the loss-of-

function phenotype was nearly identical to that of sim mutants. Therefore, it was

concluded that the longitudinal axon collapse phenotype seen in slit mutants, likely

resulted from loss or improper positioning of midline cells, in particular the midline glia

that had been shown to play an important role in the formation of axon commissures at

the midline (Thomas et al., 1988). More than a decade after its initial characterization,

three groups independently demonstrated the role of Slit in axon guidance decisions
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(Brose et al., 1999; Kidd et al., 1999; Li et al., 1999), axon branching (Wang et al., 1999),

and neuronal migration (Wu et al., 1999). Furthermore, these groups showed that Slit

controlled these processes through a previously characterized guidance receptor called

Roundabout (Robo).

Goodman and colleagues (Seeger et al., 1993) performed a screen for mutations

that disrupted the development of axon pathways in the developing CNS of Drosophila

embryos. The first two mutant lines to be molecularly characterized were the previously

unidentified genes roundabout (robo) and commissureless (comm). Mutations in robo

resulted in axons aberrantly crossing and recrossing the midline. Mutations in comm

caused the absence of nearly all commissures, as axons rarely approached or crossed the

midline. The robo gene was later shown to encode a highly conserved transmembrane

protein, expressed on the growth cones of axons that never cross the midline and on

axons that have recently crossed the midline (Kidd et al., 1998a; Seeger et al., 1993). It

became the founding member of a novel family of axon guidance receptors. Ectopic

expression of Robo resulted in a comm-like phenotype, where axons never entered the

midline. Comm was shown to regulate Robo by preventing Robo protein from being

expressed on the growth cone surface (Georgiou and Tear, 2003; Keleman et al., 2002).

This suggested a model in which axons that never crossed the midline express high levels

Robo protein on their growth cones, whereas axons destined to cross the midline express

little or no Robo. After crossing the midline, Robo expression is upregulated, preventing

axons from re-crossing (Kidd et al., 1998a; Kidd et al., 1998b).

The characterization of Robo as a transmembrane receptor led to the search for

the unknown ligand. In Drosophila, the midline mutagenesis screen that had identified

robo and comm, apparently covered much of the genome. However, the corresponding

robo phenotype that would be predicted for the ligand, had not been found (Seeger et al.,

1993). A closer look at other mutants recovered from the initial screen finally revealed

Slit as the missing ligand (Kidd et al., 1999). slit had initially been overlooked for two

reasons. First, the slit mutant phenotype did not fully resemble the robo mutant

phenotype. In robo mutants, too many axons cross and recross the midline, resulting in

thicker commissures and thin or missing longitudinal axons. The phenotype in slit

mutants is more dramatic: axons converge on the midline and do not reemerge. This
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issue was resolved later when two more Robo-family members were identified. It was

shown that the Robo proteins function redundantly and loss of Robo and Robo2 proteins

results in a slit-like phenotype (Simpson et al., 2000a; Simpson et al., 2000b). Second,

the similarity of the slit and sim mutant phenotypes misled researchers to believe that the

CNS collapse was due to loss or mispositioning of midline cell rather than errors in axon

guidance. Better molecular markers revealed that the midline cells of slit mutants

appeared normal (Kidd et al., 1999).

While there are multiple forms of Slit in vertebrates, there is only a single slit

gene in Drosophila. Slit is a secreted protein, containing four leucine rich repeats

(LRRs), seven EGF repeats, a laminin G domain, an Agrin-Laminin-Perlecan-Slit

(ALPS) spacer domain, and a cysteine-rich repeat. It has been shown to be expressed in

both glia and neurons (Guan and Rao, 2003; Wong et al., 2002). The binding of Slit to

Robo requires the LRRs but not the EGF repeats (Battye et al., 2001; Chen et al., 2001).

Robo receptors belong to a novel subfamily of immunoglobulin (Ig) superfamily proteins.

The extracellular portion of Robo receptors contains five Ig repeats and three fibronectin

type III (FNIII) repeats. The intracellular region contains four conserved motifs, or CC

domains, that share little homology to intracellular domains of other transmembrane

receptors. Elimination of each CC domain reduces but does not abolish Robo function,

suggesting built in redundancy of these motifs (Bashaw et al., 2000). The Robo family

consists of three members, Robo, Robo2 and Robo3. In Drosophila, differences in the

CC domain composition likely mediate differential responses to Slit (Simpson et al.,

2000a; Simpson et al., 2000b). Both Slit and Robos can be proteolytically cleaved, but

the significance of the cleavage is unclear (Wong et al., 2002).

A growing list of molecules has been identified to be important in Robo signal

transduction. Through biochemical studies, Enabled (a member of the Ena/Vasp family)

and Abelson tyrosine kinase (Abl) have been identified as binding partners of Robo

(Bashaw et al., 2000). Such interactions may be responsible for the mechanism by

which the cellular signaling events downstream of Robo are induced. Bashaw et al

(2000) showed that both Abl and Ena are able to bind to one or more of the conserved

cytoplasmic motifs found within Robo-family members. Genetic interactions suggested

that Ena functions to promote Robo repulsion while Abl, possibly through
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phosphorylation, acts to reduce Robo repulsion (Bashaw et al., 2000). Dreadlocks

(Dock), another established regulator of axon guidance events, also physically interacts

with Robo (Fan et al., 2003; Garrity et al., 1996). Previous studies had shown that Dock

binds to p21activated kinase (Pak), an evolutionarily conserved regulator of the actin

cytoskeleton (Bokoch et al., 1996; Hing et al., 1999; Leeuw et al., 1998; Sells et al.,

1997). Upon Slit stimulation, it appears that Dock and Pak are recruited to the Robo

receptor, resulting in the apparent stimulation Rac GTPase activity (Fan et al., 2003).

Slit and Robo are also expressed outside of the nervous system, where they have

been found to control the movements of cell types as diverse as trachea, muscle, and

leukocytes (Englund et al., 2002; Kramer et al., 2001; Wong et al., 2002). Drosophila

mesodermal and tracheal cell migration is directed by Slit through both repulsive and

attractive mechanisms (Englund et al., 2002; Kramer et al., 2001). This suggests that

there are conserved mechanisms that control movements in both immune system and

nervous system.

PTPMEG

Ptpmeg belongs to a class of highly conserved proteins, that contain an N-terminal FERM

domain, an internal PDZ-binding motif, and a C-terminal protein tyrosine phosphatase

domain (PTP) (Edwards et al., 2001; Gu et al., 1991; Uchida et al., 2002; Yang and

Tonks, 1991). Ptpmeg has been shown to be expressed in the nervous system of both C.

elegans and vertebrates (Hironaka et al., 2000; Uchida et al., 2002). The vertebrate

homologs have also been shown to be expressed in cancer cell lines, immune cells and

testis (Gjorloff-Wingren et al., 2000; Sahin et al., 1995). However, there are no

published in vivo loss-of-function phenotypes in any species. In Chapter 3, I present the

work that other members of the lab and I completed on Drosophila Ptpmeg. Here, I will

briefly introduce two of the domains contained within Ptpmeg that likely regulate the

protein localization and binding partners of Ptpmeg.

PDZ domains

PDZ domains were originally identified as conserved elements in the postsynaptic

density protein PSD-95/SAP90, the Drosophila septate junction protein Discs Large and
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the tight junction protein ZO-1 (Mitic and Anderson, 1998; Sheng and Sala, 2001; Woods

and Bryant, 1991). PDZ domains commonly function as protein-protein interaction

motifs and are found in a diverse set of proteins (Kim and Sheng, 2004). PDZ domains

are known to bind to the C-terminal of target proteins and several PDZ domains have

been shown to bind the plasma membrane lipid PIP2 or short internal protein sequences

(Sheng and Sala, 2001; Zimmermann et al., 2002).

The wide range of PDZ domain targets include transmembrane receptors, ion

channels and other PDZ domain proteins. These interactions suggest that PDZ domain-

containing proteins are capable of functioning in a variety of cellular processes. Proteins

with multiple PDZ domains can serve as scaffolding proteins, by assembling well-

ordered, multi-protein complexes (Sheng and Sala, 2001; Tsunoda et al., 1998).

However, Ptpmeg contains a single PDZ domain and is therefore unlikely to serve as a

typical scaffolding protein, although it could serve a signaling function within a

scaffolding protein to which it is bound.

PDZ domains also exhibit significant sequence variation, which may underlie

their ability to bind to a diverse set of ligands. Importantly, each PDZ domain appears to

bind a small number of ligands and show a high degree of target sequence specificity

(Sheng and Sala, 2001). Subcellular localization of PDZ-containing proteins suggests

that they participate in the formation of cell junctions, receptor/channel clustering and

intracellular signaling pathways (Kim and Sheng, 2004; Ponting et al., 1997).

FERM domains

Ptpmeg is a member of the FERM superfamily. FERM domains, named for prominent

family members 4.1 protein, Ezrin, Radixin, and Moesin, are found in a variety of

cytoplasmic proteins that are involved in the control of cell adhesion, cell motility, cell

shape and signal transduction (Bretscher et al., 2002). FERM domains participate in

localizing proteins to the plasma membrane and have been shown to localize to the

cytoplasmic surface of the plasma membrane and bind to PIP2 (phosphatidylinositol 4,5-

bisphosphate) and phosphatidylserine (Chishti et al., 1998). A number of FERM

proteins, such as Ezrin, Radixin and Moesin, serve as cytoskeletal-membrane linkers by

binding cell surface proteins and connecting them to the cytoskeleton through their actin-
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binding domain (Chishti et al., 1998). Unlike many other FERM domain-containing

proteins, Ptpmeg does not appear to contain an actin-binding motif.

In addition to binding to the plasma membrane, FERM domains also associate

with transmembrane proteins and PDZ domain-containing proteins (Chishti et al., 1998).

For example, the FERM domain of the protein Talin, interacts with the cytoplasmic tail

of P integrin, a transmembrane protein, and is required for integrin function (Brown et al.,

2002; Calderwood et al., 1999; Cram et al., 2003; Hynes, 2002). Although direct protein

or plasma membrane interactions of Ptpmeg are unknown, the domains contained within

Ptpmeg suggest several mechanisms by which Ptpmeg could be localized to the plasma

membrane to regulate phosphotyrosine signaling.

INTRODUCTION TO THE DEVELOPMENTAL PROCESSES

Axon Guidance

Precise neuronal wiring is fundamental to proper nervous system function. During

development, axons navigate to their appropriate targets and establish synaptic

connections (Goodman and Shatz, 1993; Tessier-Lavigne and Goodman, 1996). Axons

must be able to correctly navigate through an extracellular environment of multiple

signals and cell types and distinguish their target from an array of potential targets.

Growth cones at the tip of extending axons are largely responsible for the decisions made

by navigating axons (Bentley and O'Connor, 1994). Growth cones use dynamic, actin-

rich structures, filopodia and lamellipodia, to probe the environment. Filopodia and

lamellipodia extend and retract in response to directional cues (O'Connor et al., 1990).

The growth cone was initially described by Ramon y Cajal (1890), who observed Golgi-

stained preparations of embryonic chick spinal cord neurons (Ramon y Cajal, 1893).

From these observations he proposed that axons could be attracted by diffusible signals

emanating from a target.

It is now clear that both attractive and repulsive forces guide axons to their

destination (Guan and Rao, 2003; Mueller, 1999). For example, in the mouse embryonic

spinal cord, commissural neurons differentiate near the roof plate in the dorsal region of

the spinal cord and extend axons ventrally toward the floor plate where they cross the
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midline (Augsburger et al., 1999; Colamarino and Tessier-Lavigne, 1995). The roof plate

secretes diffusible factors that repel the commissural axons while the floor plate secretes

attractive proteins, such as Netrin, to guide the axons to the ventral midline (Kennedy et

al., 1994). The Slit protein is also secreted by the floorplate and guides Robo-expressing

axons (Long et al., 2004; Sabatier et al., 2004; Yuan et al., 1999).

Guidance cues can be diffusible, associated with the ECM, or cell-surface bound.

They often function as ligands for receptors located on the cell surface of growth cones.

It has been shown that an individual cue can be both an attractant and a repellent. For

example, C. elegans UNC-6, a Netrin homolog, is expressed in ventral regions of the

embryonic ectoderm and controls both ventral and dorsal migration of certain axons and

cells, suggesting that it can function as both an attractant and a repellent (Culotti and

Merz, 1998; Hedgecock et al., 1990; Wadsworth et al., 1996). Netrin-family proteins act

through two receptor families, the Deleted in Colorectal Cancer (DCC) and UNC-5

families. In C. elegans, the attractive response to UNC-6 requires the DCC homolog,

UNC-40. The repulsive responses involve both UNC-40 and the UNC-5 receptor,

suggesting that the combination of receptors determines the nature of the response (Kim

et al., 1999). Additional work on the Drosophila homolog of DCC (Frazzled) and UNC-

5 homolog suggests that Frazzled is required attractive as well as long-range repulsive

effects and that UNC-5 is required for short-range and long-range repulsive effects

(Keleman and Dickson, 2001; Kolodziej et al., 1996). These examples serve to illustrate

that the same cues and receptors can be used to achieve numerous effects.

The response of the growth cone to a given cue can also be affected by the

presence of other guidance cues. In Xenopus spinal neuron cultures, axons will migrate

toward a pipette dispensing Netrin (Ming et al., 1997; Song et al., 1997). However, when

the ECM component laminin is added to the substrate, axons will steer away from the

Netrin-1 source. cAMP levels in the growth cone normally increase upon Netrin-

exposure in this system. However, laminin alters signaling by lowering cAMP levels in

the growth cone. If cAMP levels are artificially elevated in the presence of laminin,

Netrin-l once again becomes attractive (Hopker et al., 1999).

In developing organisms, axons are guided by a combination of attractive and

repulsive signals that, in effect, work to push, pull, and hem in growing axons (Guan and
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Rao, 2003; Mueller, 1999). These forces, acting together, guide axons to their

appropriate targets. Dynamic remodeling of the cytoskeleton is the driving force behind

growth cone motility. Actin filament assembly and disassembly along with retrograde

flow of F-actin appear to control the rapid protrusions and retractions of the highly motile

growth cone (Lin and Forscher, 1995). Actin filaments predominate at the leading edge

of the growth cone in the lamellipodia and filopodia. Microtubules serve as the major

structural component of the axon body, but occasionally enter the leading edge (Dent et

al., 1999).

The Rho-family of small GTPases, including Rho, Rac, Cdc42 and others, are

important for axon guidance (Guan and Rao, 2003). GTPases cycle between an active

GTP-bound state and an inactive GDP-bound state. Transitions between the two states

are influenced by guanine nucleotide exchange factors (GEFs), dissociation inhibitors

(GDIs), and activating proteins (GAPs) (Kozma et al., 1997). In fibroblast injection

studies it was shown that activated Rho GTPase resulted in the assembly of stress fibers

and focal adhesion complexes, while activated Rac and Cdc42 appeared to stimulate

formation of lamellipodia and filopodia, respectively (Hall, 1998). GTPase interactors

include proteins that are involved in regulating actin dynamics. Several of these proteins

are characterized regulators of axon guidance, including UNC-73/Trio (a Rac and Rho

GEF) (Awasaki et al., 2000; Debant et al., 1996), p21-activated serine/threonine kinase

(Pak) (Hing et al., 1999) and the cell adhesion molecule N-WASP (Higgs and Pollard,

1999).

Compartments and Boundaries

The ability to keep discrete cell populations from mixing is critical for proper animal

development. One commonly used strategy to maintain the separation of adjacent cell

populations is compartmentalization (Herrup and Kuemerle, 1997; Irvine and Rauskolb,

2001). Compartments are groups of adjacent but non-intermingling cells that often arise

from distinct progenitors (Garcia-Bellido et al., 1973; Irvine and Rauskolb, 2001). A

prevailing model is that cells from different compartments have distinct adhesive

properties that prevent them from intermingling across defined boundary regions and that

differential adhesion is conferred through a developmental program controlled by
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transcriptional regulators and signaling pathways (Irvine and Rauskolb, 2001; Lumsden,

2004).

The landmark studies of Garcia-Bellido in the early 1970s firmly established the

concept of compartmentalization. Examination of mosaic animals revealed distinct

compartments in the Drosophila wing that were not marked by any visible morphological

boundary (Garcia-Bellido et al., 1973). Clonal analysis experiments revealed that cells

on either side of the boundary were restricted by their lineage. For example, along the

anterior-posterior (A/P) boundary, clonal populations would stay within the same anterior

or posterior region and if they approached the adjacent region they would spread out,

forming a smooth line, but never cross the other side. Regions on either side of the A/P

boundary were termed "compartments" (Garcia-Bellido et al., 1973; Garcia-Bellido et al.,

1976). Distinct "cell affinities" were proposed to keep adjacent cell compartments

separate (Garcia-Bellido, 1975).

The A/P boundaries of the Drosophila wing are established by engrailed gene

expression (Lawrence and Morata, 1976). Posterior cells express Engrailed which directs

expression of Hedgehog (Hh) and prevents expression of Cubiutus interruptus (Ci), a

component of Hedgehog signal transduction (Basler and Struhl, 1994). Anterior cells do

not express engrailed, thus only anterior cells of the wing respond to the Hedgehog

signal, permitting the expression of Hh target genes such as patched (a Hedgehog

receptor) and dpp (a BMP homolog) (Chen and Struhl, 1996). As a result of regulation

from both anterior and posterior cells, dpp expression is confined to the A/P boundary

(Dahmann and Basler, 2000). It is hypothesized that these and other signaling pathways

are then used to generate distinct compartments and confer differential cell adhesion

properties to adjacent compartments by regulating the expression of cell adhesion

molecules, ultimately through the regulation of transcription factors (Dahmann and

Basler, 1999; Irvine and Rauskolb, 2001).

As mentioned above, Hedgehog signaling plays an important role in A/P

boundary formation in the Drosophila wing. The Notch signaling pathway has also been

shown to be important in this process. Notch signaling is involved in many

developmental processes, including cell specification and lateral inhibition of

neurogenesis (Artavanis-Tsakonas et al., 1999; Kimble and Simpson, 1997). Notch is
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also important in the formation of compartment boundaries and specialized boundary

cells (Irvine, 1999; Tepass et al., 2002). The restriction of membrane-bound ligands

Delta and Serrate and the ligand affinity factor Fringe to distinct cell populations increase

Notch signaling specificity (Bruckner et al., 2000; Moloney et al., 2000; Munro and

Freeman, 2000; Panin et al., 1997). Consistent with previous studies that implicated

Notch signaling as an important regulator of boundary formation, Lunatic fringe (L-fng)

was found to be expressed at compartment borders and ectopic expression disrupted

border formation in the chick brain (Zeltser et al., 2001).

In some cases, specialized boundary cells are formed between adjacent

compartments. It has been postulated that these cells promote the refinement of borders

and act as a specialized signaling center that affect further patterning events (Irvine and

Rauskolb, 2001). For example, border cells along the D/V compartments in the

Drosophila wing produce specialized bristle cells (de Celis and Garcia-Bellido, 1994;

Kim et al., 1995; Rulifson et al., 1996). The establishment of these specialized cells

along the D/V border requires Notch signaling. In the vertebrate midbrain-hidbrain

junction, cells along the border help direct further cell specification events (Liu and

Joyner, 2001).

The most studied and best understood vertebrate compartments are the

rhombomeres of the developing hindbrain. As in the Drosophila wing, the partitioning of

rhombomeres into compartments is hypothesized to be driven, in part, by differential

adhesion that arises from differential expression of regulatory genes. (Dahmann and

Basler, 1999; Fraser et al., 1990; Lumsden, 2004). In the vertebrate hindbrain the

neuroepitelium is subdivided along its A/P axis. After neural tube closure, visible bulges

in the presumptive hindbrain begin to form. As rhombomere boundaries begin to form,

the movement of cells within a delineated rhombomere is restricted (Fraser et al., 1990).

Rhombomeres are arranged in a segmentally repeating pattern and distinct expression

domains are generated in an alternating pattern (Guthrie and Lumsden, 1991; Wizenmann

and Lumsden, 1997b). For example, even-numbered rhombomers (r2, r4, r6) express the

transmembrane ligand ephrin-B. Odd-numbered rhombomers (r3 and r5) express three

Eph receptors: EphA4, EphB2, EphB3. Eph receptor tyrosine kinases and their ligands,

Ephrins, are cell-cell signaling molecules that are key regulators of attractive and
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repulsive cell migration events and cell adhesion (Poliakov et al., 2004). Interactions

between this ligand-receptor pair appear to prevent cell mixing and sharpen compartment

boundaries, implicating repulsive signaling in the process of compartmentalization

(Gilardi-Hebenstreit et al., 1992; Nieto et al., 1992; O'Leary and Wilkinson, 1999).

A number of transcription factors have been shown to be crucial for hindbrain

compartment formation and their downstream control of genes such as Eph receptors and

ephrins is assumed to be important for the establishment of compartments and

maintenance of compartment boundaries (Lumsden, 2004). The zinc-finger transcription

factor Krox20 is expressed in two stripes of the neural plate before neurulation. These

regions later become rhombomeres r3 and r5 (Wilkinson et al., 1989). In Krox20

mutants, r3 and r5 are absent, resulting in partial fusion of the even-numbered

rhombomeres r2, r4 and r6. Importantly, Krox20 was found to directly regulate EphA4

expression (Theil et al., 1998). These studies established Krox20 as one of the major

upstream regulators of rhombomere development. Another transcription factor

discovered to be important in compartment formation in the hindbrain is Kreisler, a

leucine zipper containing protein. Kreisler is expressed in r5 and r6 (Manzanares et al.,

1999; Moens et al., 1998), both of which are missing in the mutant animal (McKay et al.,

1994). The Hox family of homeobox genes influence the early steps of brain patterning

in flies and vertebrates (Hirth et al., 1998). Hox gene expression occurs early in

development, before the rhombomeres have begun to form. Rhombomere identity

appears to be controlled through the combined expression of a number of Hox genes

(Keynes and Krumlauf, 1994; Krumlauf, 1994). It has been suggested that one role of

compartments is to stably maintain homeotic gene expression within a given boundary

(Struhl, 1984). Importantly, Krox-20 controls the expression of a number of Hox genes

(Nonchev et al., 1996).

As mentioned above, Eph receptors and their Ephrin ligands have been implicated

in the cell-cell signaling processes that restricts intermingling (Mellitzer et al., 1999; Xu

et al., 1999). They have been shown to mediate repulsive and attractive interactions in

axon guidance and cell migration (Wilkinson, 2001). In cell culture they were shown to

restrict cell intermingling (Mellitzer et al., 1999) and expression of a presumed dominant-

negative form of EphA4 and Ephrin-B disrupted boundary formation (Xu et al., 1999).
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Although these studies are consistent with the idea that Eph/Ephrin signaling restricts cell

mixing, loss-of-function mutations in genes encoding Ephrins and Eph receptors have not

revealed compartment boundary disruptions (Adams et al., 2001; Chen et al., 1996;

Helmbacher et al., 2000).

Differential cell adhesion likely contributes to many of the complex

morphogenetic movements that underlie nervous system development. Classical cell

aggregation experiments showed that when cells of the ectoderm and neural tube were

dissociated from amphibian embryos and then mixed together, two populations of cells

consequently separated over time, forming distinct aggregates (Townes, 1955). This

implied that cells had adhesive properties located on their surfaces that permitted

associations with cells having the same adhesive properties and excluded associations

with cells that had different adhesive properties. Differential chemoaffinity properties of

the developing hindbrain have been tested by mixing cells of dissociated rhombomeres.

Cell from even-numbered rhombomeres and odd-numbered rhombomeres do not mix and

only form aggregates with cells from the same rhombomere. The segregation was

abolished when Ca2+ was removed, suggesting that Ca2+-depedent cell adhesion

molecules, such as the cadherins, would be required for rhombomere development

(Wizenmann and Lumsden, 1997a).

Cadherins are a class of cell surface glycoproteins that play an important role in

tissue morphogenesis and cell-cell adhesion (Gumbiner et al., 1988; Takeichi, 1988).

Cells expressing cadherin proteins are able to bind to other cells expressing the same

cadherin. Homotypic binding is mediated through the extracellular domain and the

presence of calcium is required for adhesion (Nakagawa et al., 1998; Redies, 2000).

There are multiple cadherin proteins, therefore combinatorial expression of different

cadherin proteins can potentially generate numerous variations of adhesive specificity

(Redies, 2000). A family of cytoplasmic proteins, the catenins, interacts with the

intracellular domain of the cadherins. This association links the cadherins to the actin

cytoskeleton (Gooding et al., 2004). Cadherins are often restricted to discrete domains

and segments of the developing nervous system (Redies, 2000). For example, in the

developing mouse brain, cadherin-6 is expressed in the lateral ganglionic eminence of the
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telencephalon (Inoue et al., 1997; Matsunami and Takeichi, 1995). However cadherin-6

knockout mice showed no telencephalic compartment phenotypes (Inoue et al., 2001).

Although members of both the cadherin family and Eph/Ephrin family have been

implicated as molecules that restrict cell mixing across compartment boundaries within

the developing brain, loss-of-function analysis has not yet demonstrated the precise in

vivo role that these proteins play in compartmentalization (Cooke and Moens, 2002;

Inoue et al., 2001).

Concluding Remarks

In my work, I have sought to identify and characterize molecules that are required for

nervous system development. Using the developing visual system of Drosophila as a

model, I uncovered a role for the secreted guidance cue Slit and the Robo-family

receptors in visual system morphogenesis. These molecules work together to promote

compartmentalization of the visual centers in the Drosophila brain. My work provides

insight into the process of compartmentalization by identifying Slit and Robo-family

proteins as molecules that restrict cell mixing between compartments in the brain. It will

be interesting to see if the signaling pathways that are used by Slit and Robo-family

proteins in the processes of cell migration and axon guidance are also used to control

compartmentalization. It will also be of interest to determine whether other molecules

that are known to guide migrating cells and neurites also participate in

compartmentalization within the brain and other developing tissues.

Precise neuronal wiring is fundamental to proper nervous system function.

During development, axons and dendrites navigate to their appropriate targets and

establish synaptic connections. A growing list of cues and receptors has been identified

to be required for the formation of neuronal connections, although the intracellular

signaling pathways that link cell surface detection of cues to directed rearrangements of

the cytoskeleton remain less clear. Unlike Slit and Robo-family proteins, very little is

known about the in vivo function of the protein tyrosine phosphatase Ptpmeg. The

protein domains and protein localization patterns suggest that Ptpmeg could serve as a

regulator of nervous system development and my initial characterization of Ptpmeg

mutants likely indicates that this protein plays a role in axon branching in the mushroom
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bodies of the Drosophila brain. Ptpmeg is broadly expressed in neurons and it will be

interesting to determine whether Ptpmeg plays additional roles in nervous system

development. Additional work will be needed to identify Ptpmeg binding partners and

substrates and further characterization of Ptpmeg could shed light on how

phosphotyrosine signaling is used to control aspects of neural development, such as axon

guidance and branching.
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CHAPTER TWO

Compartmentalization of visual centers in the Drosophila brain requires

Slit and Robo proteins

Chapter 2 is a previously published manuscript entitled, "Compartmentalization of visual

centers in the Drosophila brain requires Slit and Robo proteins" by Timothy D. Tayler,

Myles B. Robichaux, and Paul A. Garrity. This manuscript appears in the journal

Development [2004 Dec: 131 (23): 5935-45]. Myles Robichaux provided excellent

technical assistance and constructed the Robo-RNAi transgenes. Timothy Tayler

completed all other experiments.
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SUMMARY

Brain morphogenesis depends on the maintenance of boundaries between populations of

non-intermingling cells. We have used molecular markers to characterize a boundary

within the optic lobe of the Drosophila brain and find that Slit and the Robo family of

receptors, well-known regulators of axon guidance and neuronal migration, inhibit the

mixing of adjacent cell populations in the developing optic lobe. Our data suggest that

Slit is needed in the lamina to prevent inappropriate invasion of Robo-expressing neurons

from the lobula cortex. We show that Slit protein surrounds lamina glia, while the distal

cell neurons in the lobula cortex express all three Drosophila Robos. We examine the

function of these proteins in the visual system by isolating a novel allele of slit that

preferentially disrupts visual system expression of Slit and by creating transgenic RNAi

flies to inhibit the function of each Drosophila Robo in a tissue-specific fashion. We find

that loss of Slit or simultaneous knockdown of Robo, Robo2 and Robo3 cause distal cell

neurons to invade the lamina, resulting in cell mixing across the lamina/lobula cortex

boundary. This boundary disruption appears to lead to alterations in patterns of axon

navigation in the visual system. We propose that Slit and Robo-family proteins act to

maintain the distinct cellular composition of the lamina and the lobula cortex.
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INTRODUCTION

The establishment of compartments, groups of adjacent but non-intermingling cells, is a

common method for creating organization during development and the mechanisms

underlying the generation of cellular compartments has been extensively studied

(Dahmann and Basler, 1999; Irvine and Rauskolb, 2001; McNeill, 2000; Vegh and

Basler, 2003). Compartmentalization plays a critical role in the development of the

nervous system and multiple compartments have been defined in the developing

vertebrate forebrain, midbrain and hindbrain (Irvine and Rauskolb, 2001; Larsen et al.,

2001; Lumsden and Krumlauf, 1996; Redies and Puelles, 2001; Zeltser et al., 2001).

Transcription factors, such as Kreisler (Cordes and Barsh, 1994) and Krox-20

(Schneider-Maunoury et al., 1997), and cell-cell signaling proteins, such as Notch and

regulators of Notch signaling (Cheng et al., 2004; Zeltser et al., 2001), have been

identified that have critical roles in establishing compartment boundaries during nervous

system development. These proteins appear to affect cell-mixing between compartments

by regulating the expression or activity of factors that confer distinct affinities upon cells

of different compartments (Dahmann and Basler, 1999; Irvine and Rauskolb, 2001;

McNeill, 2000; Vegh and Basler, 2003).

Mechanisms that have been proposed to restrain cell mixing between

compartments include preferential adhesion among cells within a compartment,

preferential adhesion between cells of different compartments at the compartment

boundary, and mutual repulsion between cells of different compartments (Dahmann and

Basler, 1999; Irvine and Rauskolb, 2001; McNeill, 2000; Milan et al., 2001). Members

of the Cadherin family of adhesion molecules and the Eph/Ephrin family of repellant

signaling proteins have been implicated in regulating cell mixing between compartments

in the developing vertebrate nervous system (Cooke and Moens, 2002; Inoue et al., 2001;

Redies, 2000; Xu et al., 2000). In vitro reconstitution experiments have shown that

differential Cadherin expression or Eph/Ephrin signaling is sufficient to create groups of

non-intermingling cells (Mellitzer et al., 1999; Nose et al., 1988), while ectopic

expression and dominant-negative studies have shown that these proteins can alter cell

sorting in vivo (Cooke and Moens, 2002; Inoue et al., 2001; Xu et al., 1999). However,

loss-of-function analysis has not yet demonstrated a requirement for either Cadherin
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expression or Eph/Ephrin signaling in restricting cell movement between compartments

of the developing brain (Cooke and Moens, 2002; Inoue et al., 2001).

The developing Drosophila melanogaster brain, like the vertebrate brain, contains

multiple compartments that give rise to multiple, anatomically distinct processing centers,

and recent work has begun to comprehensively detail the morphogenetic events of fly

brain development (Dumstrei et al., 2003; Hartenstein et al., 1998; Meinertzhagen et al.,

1998; Nassif et al., 2003; Younossi-Hartenstein et al., 2003). The visual centers of the fly

brain, the optic lobes, contain four ganglia (the lamina, medulla, lobula and lobula plate),

which are derived from two distinct populations of progenitor cells, the outer and inner

optic anlagen (Hofbauer and Campos-Ortega, 1990; Meinertzhagen and Hanson, 1993;

Younossi-Hartenstein et al., 1996). Progeny of the outer optic anlagen contribute to the

lamina and outer medulla, while progeny of the inner optic anlagen contribute to the

inner medulla, lobula and lobula plate. Descendents of these different anlagen lie

adjacent to one another during development without intermingling and act as distinct

developmental compartments within the brain. For example, the neurons and glia of the

developing lamina, derived from the outer optic anlagen (Dearborn and Kunes, 2004;

Meinertzhagen and Hanson, 1993), lie immediately adjacent to the neurons of the

developing lobula cortex, which are derived from the inner optic anlagen (Hofbauer and

Campos-Ortega, 1990; Meinertzhagen and Hanson, 1993), but the two cell populations

remain distinct. How these cell populations are prevented from intermingling is

unknown.

The Slit and Robo protein families are essential for axon guidance and cell

migration in worms, flies, fish and mice (Brose and Tessier-Lavigne, 2000; Wong et al.,

2002). Slits are secreted proteins that can act as either attractive or repulsive guidance

cues (Englund et al., 2002; Kramer et al., 2001), while members of the Robo family

encode transmembrane receptors for Slits (Brose et al., 1999; Rajagopalan et al., 2000b;

Simpson et al., 2000b). Drosophila has a single Slit and three Robo receptors (Robo,

Robo2 and Robo3) (Kidd et al., 1999; Rajagopalan et al., 2000a; Rajagopalan et al.,

2000b; Simpson et al., 2000a; Simpson et al., 2000b). The recent identification of

mutations in human Robo3 (Rigl) in patients with Horizontal Gaze Palsy and Progressive
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Scoliosis (HGPPS) with hindbrain dysplasia demonstrates that Robo-receptor function is

also important for human brain development (Jen et al., 2004).

In this work, we identify Slit and Robo-family members as key factors that limit

cell mixing between two adjacent cell populations in the Drosophila brain, the lamina

glia and the distal cell neurons of the lobula cortex. We characterize a set of molecular

markers that permit us to examine the behavior of cells at the boundary between the

lamina and the lobula cortex. We find that Slit protein surrounds the lamina glia, while

the distal cell neurons of the lobula cortex express multiple Robo-family receptors. We

show that either loss of Slit or the tissue-specific knockdown of multiple Robo family

members causes distal cell neurons to intermingle with the lamina glia, disrupting the

boundary between the lamina and lobula cortex. We propose that Slit and Robo family

proteins prevent cell mixing at the lamina/lobula interface, enforcing a boundary between

adjacent compartments of the developing Drosophila brain that is essential for

morphogenesis of the visual system.
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RESULTS

Organization of the developing optic lobe

The optic lobes are comprised of four processing centers derived from two distinct

populations of precursor cells. In several regions of the optic lobe, cells derived from

these different sets of progenitors lie immediately adjacent to one another, but do not

intermingle. This type of organization is found at the interface of the lamina and the

lobula cortex, which are derived from the outer and inner optic anlagen, respectively. As

shown in the horizontal section in Fig. 1A and depicted in Fig. 1C, distal cell neurons

form the anterior edge of the lobula cortex and are located immediately adjacent to the

posterior face of the lamina (dotted yellow line denotes anterior edge of lobula cortex,

Fig. 1A). The close apposition of distal cell neurons to the glia at the posterior edge of

the developing lamina is visible in the lateral section in Fig. B and depicted in Fig. D.

In this work, we examine the mechanisms that prevent the distal cell neurons of the

lobula cortex from intermingling with the lamina glia.

Slit is required for optic lobe morphogenesis

Our examination of the lamina/lobula cortex boundary initiated with the identification

from a genetic screen of a novel allele of slit, slitui (dui, disrupted innervation), that

severely disrupted photoreceptor axon innervation of the optic lobe (Fig. 2A,B). We

found that slitdui was caused by insertion of a transposable element 29,404 bases upstream

of the 5' end of the Slit transcript (see Methods for details). Similar photoreceptor

connectivity defects were obtained when slitdui was examined in combination with other

slit loss-of-function alleles, including the transposon insertion alleles slit(2)05248 (described

in greater detail below) and slitEs58 (Battye et al., 2001) (Fig. 2C,D). In particular, the

photoreceptor connectivity phenotypes of slit"ui/slit2 animals (slit2 is a previously

characterized null, Kidd et al., 1999) were indistinguishable from those of slitdui/slitdui

animals indicating that slitd"i behaved as a recessive strong loss-of-function allele in the

visual system (Fig. 2E). However, unlike previously described strong alleles of slit,

which die prior to the development of the adult optic lobe, slitdu" mutants were

homozygous viable, greatly facilitating analysis of slit function in the visual system. As
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shown below, slitdui significantly reduced Slit expression in the optic lobes without

completely eliminating Slit expression in other regions. The slit photoreceptor

connectivity defect could be rescued by expression of a Slit cDNA in the visual system

under the control of Omb-Gal4 (Fig. 2F), which drives expression broadly in optic lobe

glia and in a subset of optic lobe neurons (Dearborn and Kunes, 2004; Rangarajan et al.,

1999) and restores expression of Slit in the optic lobe neuropils (data not shown).

Examination of the photoreceptor axon target region in slit mutants showed that the

lamina glia, intermediate targets of R1-R6 photoreceptor axons, were also disrupted (Fig.

2G,H), and that regions of photoreceptor axon mistargeting correlated with areas of

lamina glial disruption (Fig. 2I,J). This raised the possibility that the photoreceptor axon

targeting defects in slit mutants could be a secondary consequence of disruptions in optic

lobe development.

Slit prevents distal cell neurons from entering the lamina

The disrupted positioning of lamina glia in slit mutants prompted us to examine whether

the adjacent distal cell neurons might be disorganized as well. In Fig. 3, post-mitotic

neurons were visualized with the nuclear marker Elav (blue), while the distal cell neurons

and their IPC neuroblast progenitors were visualized using the cell-surface marker

Fasciclin III (red), and the lamina was visualized using the photoreceptor axon marker

GMR:GFP (green). In wild type, the distal cell neurons never entered the lamina (Fig.

3A). However, in slit mutants, many distal cell neurons entered the base of the lamina

(arrow, Fig. 3B) and some distal cell neurons invaded the lamina neuropil, disrupting

photoreceptor innervation (asterisk, Fig. 3B). A lateral cross-section near the base of the

lamina further demonstrated that the normally precise boundary between distal cell

neurons and the lamina neuropil (Fig. 3C) was disrupted in slit mutants, with large

numbers of distal cell neurons invading the lamina neuropil (arrow and arrowhead in Fig.

3D). These data demonstrated that in the absence of slit, distal cell neurons invaded the

developing lamina.
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Slit protein concentrates in the lamina

To further investigate Slit function in visual system development, the pattern of Slit

expression was examined in third instar larvae. In the visual system, Slit protein

expression was detected in the medulla neuropil (medn) and at the base of the lamina

(arrow) (Fig. 4A). Consistent with genetic evidence that slitdui is a strong loss of function

allele in the visual system, Slit expression in the optic lobe was greatly reduced in slitd"i

mutants (Fig. 4B). Slit was also expressed within the midline of the ventral ganglion (vg)

and in the mushroom bodies (mb). Slit expression was partially reduced in the ventral

ganglion in slitduimutants, but not visibly altered in the mushroom bodies (Fig. 4B). Such

residual Slit expression may explain why slit"
ui mutants were viable and did not show the

midline axon guidance defects observed in lethal alleles of slit (T.D.T. and P.A.G.,

unpublished data). Taken together, these data demonstrated that Slit was expressed in the

optic lobe and that slitdu reduced optic lobe expression of Slit.

The expression of Slit was examined in greater detail. Slit mRNA production was

detected within the optic lobes, with strongest expression near the medulla neuropil (Fig.

4C). Simultaneous staining for the glial-specific nuclear protein Repo (green) and Slit

protein (magenta) demonstrated that Slit was concentrated throughout the medulla

neuropil within the region demarcated by the medulla neuropil glia (mng) (Fig. 4D). Slit

protein was also present near the base of the lamina. Three layers of glial cells, epithelial

glia (ep), marginal glia (ma), and medulla glia (mg), reside in this region and Slit protein

concentrated around these glia (Fig. 4E). When Slit protein was observed in the absence

of Repo staining, Slit localization around these glia gave the base of the lamina a

honeycomb appearance (Fig. 4F). A horizontal section demonstrated that Slit was

present immediately adjacent to the distal cell neurons (Fig. 4G). Thus, Slit protein was

found in a relatively continuous fashion from the lamina neuropil into the medulla

neuropil (depicted in Fig. 4H). The region of Slit protein concentration was immediately

adjacent to the distal cell neurons, demonstrating that Slit protein was present at the

appropriate time and place to control the behavior of distal cell neurons.

As the ingrowth of photoreceptor axons induces many developmental events in

the optic lobe, we tested whether Slit production depended upon photoreceptor axon

innervation. Slit protein was still present in the optic lobe of eyes absent (eya) mutant
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animals that had no photoreceptor neurons, indicating that photoreceptor axon

innervation was not essential for Slit production (Fig. 41).

To begin to further characterize the identity of the cells producing Slit protein in

the optic lobe, we examined optic lobe expression of an enhancer trap transposon

insertion in the Slit locus. The slitl(2)05248 insertion is located 30,258 bases upstream of

the Slit mRNA start site, 1,853 bases from the slitdu" insertion site, and behaves as a loss

of function slit allele in the visual system (see Fig. 2E). Expression of the LacZ enhancer

trap in slitl(2 )k05
24 8 resembled the Slit RNA in situ pattern, with strong expression in the

optic lobe and in the midline of the ventral ganglion, and is referred to here as Slit:LacZ.

Slit:LacZ was expressed at the base of the lamina by the medulla glia, the most basal of

the three layers of lamina glia (Fig. 4J). Slit:LacZ was also expressed by cells in the

medulla cortex (Fig. 4J). These cells lay immediately adjacent to the glia that surround

the medulla neuropil (Fig. 4K) and appear to be differentiating neurons of the medulla

cortex as they express varying levels of the neuronal marker Elav (Fig. 4L). Medulla

cortex neurons are known to project axons into the medulla neuropil and could thus

provide Slit protein to the medulla neuropil region. These Slit:LacZ enhancer trap data

combine with the Slit protein and RNA in situ data to provide a consistent picture where

expression of Slit, a diffusible protein, by cells at the base of the lamina and at the

periphery of the medulla generate a region of Slit expression extending from the lamina

into the medulla.

Distal cell neurons express Robo family proteins

Since Robo-family receptors commonly mediate responses to Slit proteins, we

characterized the distribution of the three Drosophila Robo proteins in the developing

visual system. Robo, Robo2 and Robo3 were all expressed within the developing optic

lobes (Fig. 5A,D,G). More detailed analysis of Robo and Robo2 expression showed that

both proteins were expressed by IPC neuroblasts and distal cell neurons (Fig. 5B,C,E,F).

Robo3 protein was not detected on IPC neuroblasts, but was present on distal cell

neurons (Fig. 5H,I). Thus, all three Robo receptors were expressed within the developing

lobula cortex in partially overlapping patterns, consistent with Robo-family receptors

mediating responses to Slit in this region of the visual system.
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Inhibition of Robo family protein expression using transgenic RNAi

The expression patterns of Robo proteins suggested they could mediate the effects of Slit

on distal cell neurons. To begin to address this question, we examined existing loss-of-

function mutations in robo, robo2, and robo3. Animals homozygous for the previously

described strong loss-of-function alleles robo2xJ23 or robo3' had no detectable defect in

distal cell neuron positioning. Distal cell neuron positioning could not be examined in

animals homozygous for null alleles of robo, as they died before the third instar larval

stage. Large marked clones homozygous mutant for the robo5 null allele were generated

in the visual system, but no defects were detected.

As robo, robo2, and robo3 have partially redundant functions in the embyronic

CNS (Rajagopalan et al., 2000a; Rajagopalan et al., 2000b; Simpson et al., 2000a;

Simpson et al., 2000b), we wanted to examine the effect of simultaneous disruption of

multiple Robo-family proteins in the visual system. However, analysis of Robo-family

function using existing alleles proved insufficient. First, marked clones of robo5 mutant

tissue were generated in a homozygous robo3' background, but no defects were observed

(T.D.T. and P.A.G., unpublished data). Second, robo,robo2 double mutant mosaic

analysis could not be performed because the necessary animals did not survive to form

adult visual systems and the proximity of the robo2 and robo3 genes (87 kb (Simpson et

al., 2000b)) prevented the creation of a robo2,robo3 recombinant. Third, we determined

that the only existing mutant allele of robo3 (robo3'), characterized as a strong loss-of-

function or null allele in the embryo (Rajagopalan et al., 2000b), produced substantial

quantities of full-length Robo3 protein and increased levels of a lower molecular weight

form of Robo3 in the adult head (Fig. 4A). Significant amounts of Robo3

immunostaining were also observed in the developing visual system of robo3' animals

(T.D.T. and P.A.G., unpublished data), suggesting robo3' is not a null in the visual

system. Therefore, a different strategy was needed to achieve simultaneous inhibition of

Robo, Robo2 and Robo3 in the visual system.

Tissue-specific transgenic RNA interference was used to inhibit expression of

each of the Robos. UAS-RoboRNAi, UAS-Robo2RNAi and UAS-Robo3RNAi transgenic

flies were generated and the transgenes proved effective inhibitors of their targets as
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assessed using a combination of western blot analysis and tissue staining (Fig. 6B,C,D).

As shown in Fig. 6E-M, expression of UAS-RoboRNAi, UAS-Robo2RNAi or UAS-

Robo3RNAi under the control of Gal4 substantially reduced expression of the

corresponding Robo-family protein without detectably affecting expression of other

Robo-family members. Thus, these transgenic RNAi constructs permitted inducible

knockdown of each Robo-family protein.

Inhibition of Robo family expression causes distal cell neurons to enter the lamina

We examined the function of Robo receptors in the visual system by expressing our

UAS-RNAi transgenes under the control of a variety of different Gal4 sources. The

nervous system-specific c155-Gal4 was used to drive expression of transgenic RNAi in

optic lobe neuroblasts and neurons. Expression of a single copy of UAS-RoboRNAi,

UAS-Robo2RNAi, orUAS-Robo3RNAi under the control of c155-Ga14 had no effect on

visual system development. However, simultaneous inhibition of all three Robos in

c155-Gal4, UAS-GFP, UAS-RoboRNAi, UAS-Robo2RNAi, UAS-Robo3RNAi animals had

strong visual system phenotypes (Fig. 7A,B). As in slit mutants, distal cell neurons

invaded the developing lamina in cl55-Gal4, UAS-GFP, UAS-RoboRNAi, UAS-

Robo2RNAi, UAS-Robo3RNAi animals (arrow and arrowhead, Fig. 7B). Thus, Robo-

family proteins act within the nervous system to prevent distal cell neurons from invading

the lamina.

Distal cell neuron defects were also induced by expressing UAS-RNAi transgenes

under the control of Sca-Gal4, which drives expression in a smaller subset of neuroblasts

and neurons than c155-Ga14. Expression of a single copy of UAS-RoboRNAi, UAS-

Robo2RNAi, orUAS-Robo3RNAi or simple pairwise combinations of these transgenes

under the control of Sca-Gal4 caused no phenotypes. However, simultaneous inhibition

of all three Robos in Sca-Gal4, UAS-GFP, UAS-RoboRNAi, UAS-Robo2RNAi, UAS-

Robo3RNAi animals caused distal cell neurons to invade the developing lamina (Fig.

7C,D). Simultaneous visualization of lamina glia and distal cell neurons in Robo-

knockdown animals further demonstrated the intermingling of distal cell neurons and

lamina glia in these animals (Fig. 7E,F, compare with Fig. 1B). These observations
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indicate that all three Robo family members contribute to preventing distal cells neurons

from intermingling with the lamina glia.

As the role of Slit in visual system development was initially identified through

its effect on photoreceptor axon targeting, we examined whether photoreceptor axon

targeting was similarly dependent upon Robo-family receptors. Indeed, generalized

inhibition of all three Robo receptors under the control of tubulin-Gal4 in tubulin-

Gal4, UAS-RoboRNAi, UAS-Robo2RNAi, UAS-Robo3RNAi animals disrupted

photoreceptor axon targeting in a fashion similar to that observed in slit mutants (Fig.

8A,B). Interestingly, simultaneous expression of UAS-RoboRNAi, UAS-Robo2RNAi,and

UAS-Robo3RNAi under the control of the eye-specific Gal4 source GMR-Gal4 generated

no defects in photoreceptor axon targeting (Fig. 8C), while inhibition of Robo-family

expression using Sca-Gal4 did disrupt photoreceptor axon targeting (Fig. 8D,E,F). In

fact, regions of photoreceptor mistargeting corresponded to regions where Sca-Gal4 cells

(distal cell neurons) entered the lamina (Fig. 8D,E,F). While these knockdown

experiments do not preclude a role for Robo-family receptors in the photoreceptors, they

nonetheless suggest that the misplacement of distal cell neurons contributes to

photoreceptor axon mistargeting (Fig. 8G). These data also further emphasize the

similarity of the effects of knockdown of Robo-family receptors and reductions in Slit

expression on optic lobe morphogenesis.
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Discussion

The construction of anatomically-distinct processing centers in the brain is a complex

morphogenetic task that requires segregation of adjacent groups of cells. Despite the

extensive study of how cells are segregated into distinct groups, the identities of the

molecules that prevent intermingling between adjacent groups remain largely unknown

(Dahmann and Basler, 1999; Irvine and Rauskolb, 2001; McNeill, 2000; Vegh and

Basler, 2003). Here we have identified a novel role for Slit and the Robo receptors as

key factors that prevent mixing between adjacent groups of cells in the fly brain. We

have focused on the effect of Slit and Robo family proteins on the boundary between the

glia at the posterior edge of the lamina and the neurons at the anterior edge of the lobula

cortex. We have found that the secreted protein Slit surrounds the lamina glia on one

side of the boundary while Robo-family proteins (receptors for Slit) are expressed by the

distal cell neurons on the other side of the boundary. We show that loss of Slit

expression or tissue-specific inhibition of Robo-family expression in distal cell neurons

cause the intermingling of lamina glia and distal cell neurons. We propose that Slit

protein in the lamina keeps Robo-expressing neurons within the normal confines of the

lobula cortex, establishing the sharp boundary between these two regions. Given the

conservation of Slit and Robo signaling in axon guidance throughout evolution, Slit and

Robo family members may also regulate boundary formation in the brains of other

animals. Interestingly, humans with mutations in Robo3 exhibit defects in hindbrain

morphology, although the underlying developmental defect in the human patients is not

known (Jen et al., 2004).

Slit and Robo-family proteins are regulators of boundary maintenance

Compartmentalization is important throughout nervous system development (Pasini and

Wilkinson, 2002) and structural compartmentalization underlies functional

compartmentalization in the adult brain. The adult vertebrate brain contains many

distinct compartments, such as Brodmann's areas of the cerebral cortex and the brainstem

nuclei, and anatomical studies point to similar compartmentalization in the Drosophila

brain (Younossi-Hartenstein et al., 2003). As noted above, several molecules that

regulate cell adhesion or cell repulsion have been implicated in restricting cell mixing
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between compartments in the developing nervous system, but loss of these proteins has

not been shown to cause intermingling between compartments. Here we have shown that

Slit and the Robos are required to prevent cell intermingling across a boundary in the

optic lobe.

We determined that knockdown of Robo-family protein expression in the optic

lobe using the Sca-Gal4 driver caused robust defects in distal cell neuron positioning. In

addition to driving gene expression in IPC neuroblasts and distal cell neurons, Sca-Gal4

also drives expression in R8 photoreceptor axons and neuroblasts of the Outer

Proliferation Center and neurons of the medulla cortex. As noted above, inhibition of

Robo-family expression only in the photoreceptors caused no detectable defects. In

addition, knockdown of all three Robo-family proteins in the medulla cortex using

apterous-Gal4 had no effect on distal cell neuron behavior, and no defects in medulla

neuron movement or axon targeting were identified in either slit mutants or Robo-family

knockdowns (T.D.T. and P.A.G., unpublished data). Taken together with Robo-family

protein expression data, the Robo-family knockdown analysis strongly supports a

requirement for Robo-family receptors in distal cell neurons to prevent them from

invading the lamina neuropil.

Slit and Robo-family protein expression in the optic lobe

In the Drosophila visual system, Slit protein is present in a continuous zone from the base

of the lamina extending into the underlying medulla neuropil. Although Slit mRNA is

detected within the optic lobe and Slit:LacZ expression is detected in medulla glia at the

base of the lamina and in medulla cortex neurons, the optic lobe does not appear highly

sensitive to the precise source or level of Slit. Attempts to use mosaic analysis to define

the cells in which slit function was required were unsuccessful as no phenotypes were

observed despite the generation of large marked patches of slit2 mutant tissue in the visual

system and the use of the Minute technique to maximize mutant clone size (T.D.T. and

P.A.G., unpublished data). We suspect that the diffusibility of Slit protein combined with

the large number of Slit-expressing cells in the optic lobe permitted the remaining

heterozygous and wild-type cells in the mosaic animals to provide sufficient Slit to

support proper optic lobe development. In addition, expression of Slit in photoreceptors
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under the control of GMR-Gal4 rescued the photoreceptor projection phenotype of slit

mutants as effectively as more general expression of Slit in the optic lobe using Omb-

Gal4. Thus, delivery of Slit to these neuropil regions may be sufficient to restore the

boundary between the lobula cortex and the lamina.

We also examined the effects of overexpression and ectopic expression of Slit and

Robo proteins in the optic lobe. Overexpression of Slit in the optic lobe using GMR-

Gal4, Sca-Gal4, Omb-Gal4 or the more ubiquitously expressed Tubulin-Gal4 did not

generate detectable phenotypes in the optic lobe (T.D.T. and P.A.G., unpublished data).

The failure to generate strong overexpression phenotypes could reflect the increased Slit

expression within the lamina that accompanied overexpression in other regions using

these Gal4 drivers. However, overexpression of Robo2 under the control of Sca-Gal4

dramatically distorted the shape of the lobula cortex, causing the distal cell neurons to

move around the ventral and dorsal edges of the lamina (T.D.T. and P.A.G., unpublished

data). As distal cell neurons normally encounter Slit protein at the posterior face of the

lamina, this redistribution could reflect repulsion from regions of Slit expression.

Overexpression of Robo or Robo3 caused no detectable defects.

Robo-family proteins appear to localize around the cell body periphery of newly

differentiated distal cell neurons. This cell body-associated expression contrasts with the

predominantly axonal expression of Robo-family proteins by more mature lobula cortex

neurons. Whether this reflects a regulated shift in the subcellular localization of Robo

proteins or simply the availability of axonal processes in more mature neurons is

unknown. However, as Slit and Robo-family proteins control both neuronal migration

and axon navigation (Wong et al., 2002), such a change in Robo-family protein

distribution could alter a neuron's response to Slit from one involving the cell body to

one involving just the axon. We have not detected obvious misprojections of the axons

of the distal cell neurons in our mutants (T.D.T. and P.A.G., unpublished data), although

subtle defects in targeting of these axons would not be detected using available markers.

Regulation of cell mixing at boundaries in the developing brain

Boundaries are commonly encountered during development and several mechanisms

have been proposed to prevent mixing between compartments. Our observations provide
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evidence for a signal associated with one cell population preventing the invasion of a

neighboring cell population expressing receptors for this signal. Interestingly, even when

the distal cell neurons invade the lamina in slit mutants or Robo-family knockdown

animals, they do not disperse evenly among the lamina glia. Rather the distal cell

neurons remain preferentially associated with one another, suggesting the persistence of

differential adhesion when the Slit signal is absent. Thus, multiple parallel mechanisms,

possibly involving both repulsion and differential adhesion, are potentially involved in

maintaining the normally precise distinction between lamina and lobula cortex.

Combinations of adhesion and repulsion may act at other boundaries, providing

robustness as well as functional redundancy to the molecular mechanisms of

compartment maintenance.
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MATERIALS AND METHODS

Genetics and Fly Stocks

The slitdu phenotype was originally identified in 1(2)k04807 (Karpen and Spradling,

1992; Torok et al., 1993). 1(2)k04807 contains pLacW P-element transposon insertions

located at 52D and 53C which were separated by meiotic recombination. slitdui was

associated with the 52D P-element which was inserted between bases 10,983,983 and

10,983984 on 2R with LacZ coding region oriented toward slit locus. (Slit transcript

extends from bases 10,954,579 to 10,936,369.) Precise transposon excision reverted slitd

phenotype in all 11 lines tested. slitt (2)ko5 248 (Karpen and Spradling, 1992; Torok et al.,

1993) contains pLacW transposon inserted between bases 10,985,837 and 10,985,838 on

2R, with LacZ coding region oriented away from slit locus. MARCM analysis performed

as described (Lee and Luo, 1999). Fly stocks slit2, slitl(2)k0 5 2 4 8 , Df(2R)WMG, Df(2R)Jpl,

omb-Gal4, repo-LacZ, and c155-Gal4 were obtained from the Bloomington stock center.

slitES58, slit2; UAS-Slit, loco3 '09, robo5 and robo2l23 were provided by J. Simpson, G.

Bashaw and C. Goodman, robo3' (Rajagopalan et. al., 2000) by B. Dickson, ro-tauLacZ

by U. Gaul and eya2 by I. Rebay.

Immunohistochemistry and In Situ Hybridization

Third instar whole mounts performed as described (Garrity et al., 1996). Distal cell

neuron positioning, glial positioning and photoreceptor axon targeting defects were

observed in all slit and triple Robo-family RNAi animals examined and greater than 20

hemispheres were examined for each genotype. The following primary antibodies were

obtained from the Developmental Studies Hybridoma Bank and used at the following

concentrations: 24B10 mAb (1:200), Slit C555.6D (1:200), Robo mAb 13C9 (1:200),

Robo3 mAb 14C9 (1:200), FasII 1D4 (1:200), FasIII 7G10 (1:50), Repo 8D12 (1:200),

Elav 7E8A10 (1:20), and beta-galactosidase 40-1A (1:200). Robo2 polyclonal antisera

(1:750) (Rajagopalan et al., 2000b; Simpson et al., 2000a) were provided by C. Goodman

and by B. Dickson and Repo polyclonal (1:1000) (Campbell et al., 1994) by A.

Tomlinson. Anti-phospho-Histone H3 (1:200) was purchased from Upstate

Biotechnology. Secondary antibodies were obtained from Jackson Laboratories and used
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at the following concentrations: goat-anti-mouse hrp-conjugated (1:200), goat-anti-mouse

Cy3-conjugated (1:500),goat-rat-mouse CyS-conjugated (1:400). Fluorescent samples

were visualized using a Nikon PCM2000 confocal microscope. In situ hybridization

performed as described (Wolff, 2000).

Molecular Biology

Genomic DNA flanking the slit" i P-element was isolated by plasmid rescue and

sequenced to identify the insertion site as described (Garrity et al., 1996). Western Blot

analysis used the following antibodies: Robo mAb 13C9 (1:2000), Robo3 mAb 14C9

(1:1000), Elav 7E8A 10 (1:1000), anti-hrp-conjugated secondary antibody (1:5000).

Robo-family RNAi constructs were generated using the strategy described (Kalidas and

Smith, 2002). Fragments for creating the RNAi constructs were generated by PCR

(Expand Hi-Fidelity, Roche) and cloned into pUASt (Brand and Perrimon, 1993). PCR

primers used to create UAS-RoboRNAi were: genomic fragment 5'-

ACCGGGCAGCTGATCCTAGC and 5'-

ATACTAGTCTGTCGAATAATAAGAAGATATAAAATGATTC; cDNA fragment 5'-

TGTCAGTCGCACCAGCATTAGTC and 5'-

ATACTAGTCATCTTCATAGGTGAGGGCTGTC. PCR primers used to create UAS-

Robo2RNAi were: genomic fragment 5'-GTTCCCTCTGAGGCACCATATG and 5'-

ATACTAGTGTGTGATTGCCTGCAGGTGAG; cDNA fragment 5'-

GTTCCCTCTGAGGCACCATATG and 5'-

ATACTAGTCCACGCATTGTATTTAGGGCCG. PCR primers used to create UAS-

Robo3RNAi were: genomic fragment 5'-TATATCGCAGTGGCGGCTGCC and 5'-

ATAGATCTCTGCAATTGGAGGGGATGAAATCAG; cDNA fragment 5'-

TATATCGCAGTGGCGGCTGCC and 5'-

ATAGATCTCTCTCGTAATCGGGTAGCAGC.
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FIGURE LEGENDS

Fig. 1. Developing Drosophila visual system.

(A) Horizontal view of wild type third instar visual system (anterior to left) of animal

expressing CD8:GFP under the control of Sca-Gal4 (Sca:GFP). GFP is expressed in the

outer proliferation center (OPC), inner proliferation center (IPC), medulla cortex (medc)

and portions of the lobula cortex (lobc). Sca:GFP (green). Neuronal nuclei are

visualized using anti-Elav (blue); photoreceptor axons, lamina monopolar axons, and

axons from neurons of the lobula cortex (a subset of which contact the medulla neuropil)

are visualized using anti-Fasciclin II (FasII) (red). Dotted line indicates anterior edge of

lobula cortex. os:optic stalk, lamc: lamina cortex, lamn: lamina neuropil; medn:medulla

neuropil. (B) Lateral view (anterior at bottom) of Sca:GFP animal in which neuronal

nuclei have been visualized using anti-Elav (blue) and glial nuclei using anti-Repo (red).

Schematics of (C) horizontal view and (D) lateral view indicating cell populations and

axons described in text. ep: epithelial glia, ma: marginal glia, mg: medulla glia.

Fig. 2. Slit is required for optic lobe development.

(A,B, E-H) Third instar visual systems, photoreceptor axons visualized with anti-

Chaoptin. (A) In wild type, photoreceptor axons grow into the brain through the optic

stalk. The R1-R6 subset of photoreceptor axons stop in the lamina neuropil while R7 and

R8 continue into the medulla neuropil. (B) In slit""' mutants, there are gaps in the lamina

neuropil (arrow) and increased numbers of axons enter the medulla (arrowhead). (C)Wild

type and (D) slitd"' visual systems in which R2-R5 photoreceptor axons are visualized

using Ro:tau-LacZ (as in Garrity et al., 1999). (C) In wild type, all R2-R5 axons stop in

the lamina neuropil. (D) In slitduimutants, many R2-R5 axons pass through the lamina

and enter the medulla (arrowheads). (E) slit"Ui/slitl(2 )k0 52 48, (F) slitdi/slit ES s5 and (G)

slitd"'/slit2 animals show photoreceptor axon targeting defects indistinguishable from slitd"

homozygotes with gaps in the lamina (arrow) and increased numbers of axons entering

the medulla (arrowhead). (H) Omb-Gal4;UAS-Slit; slitd"'Islit2 visual system. Slit cDNA

expression controlled by Omb-Gal4 largely rescues slit targeting defects, restoring even

layer of photoreceptor growth cones in the lamina (arrow). (I,J) Animals carrying

loco:LacZ enhancer trap (which is strongly expressed in epithelial (ep) and marginal (ma)
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glia) stained with anti-LacZ. (I) In wild type, continuous layers of epithelial and

marginal glia are observed in the lamina. (J) In slit mutants, there are clumps of glia

(arrowhead) and gaps (arrow) in the glial layers. (K,L) Photoreceptors axons are

visualized with GMR:GFP (green) and glial nuclei with Repo:LacZ (magenta). (K) In

wild type, R1-R6 axons stop in the lamina between layers of glia (open arrowheads). (L)

In slit mutants, there are gaps in the photoreceptor innervation of the lamina, correlated

with regions of the lamina devoid of glia (asterisk) and uneven innervation in regions

containing clumps of glia (arrow). The clear separation between glia at the base of the

lamina and glia surrounding the medulla observed in wild type is missing in slit mutants

(arrowhead).

Fig. 3. Distal cell neurons invade the lamina in slit mutants.

(A-D) Third instar visual systems in which IPC neuroblasts and distal cell neurons are

visualized using anti-Fasciclin III (FasII1, red), photoreceptor axons using GMR:GFP

(green), and neuronal nuclei using anti-Elav (blue). (A-B) Horizontal view (anterior to

left). (A) In wild type, IPC neuroblasts (which express FasIII) and their distal cell neuron

progeny (dcn, which express FasIII and Elav) are adjacent to the posterior edge of the

lamina (arrowhead). (B) In slitdUilslit2 mutants, distal cell neurons enter the base of the

lamina (arrow) and reach the lamina's anterior edge (arrowhead). Distal cell neurons also

enter the neuropil of the lamina (asterisk) and photoreceptor innervation is disrupted. (C-

D) Lateral view (anterior at bottom). (C) In wild type, distal cell neurons are immediately

adjacent to the posterior face of the lamina. (D) In slitdUislit2 mutants, distal cell neurons

enter the posterior face of the lamina (arrow) and reach its anterior edge (arrowhead).

Fig. 4. Slit is expressed in the developing optic lobe.

(A,B) Third instar nervous system stained with anti-Slit. (A) Slit is expressed in the

medulla neuropil (medn) and the base of the lamina (arrow), as well as ventral ganglion

midline (vg) and mushroom bodies (mb). (B) In slitd"u mutants, Slit expression is greatly

reduced in the optic lobe and ventral ganglion, though robust mushroom body staining is

still observed. (C) Slit mRNA is expressed by cells surrounding the medulla. (D,E)

Third instar visual systems stained with anti-Slit (magenta) and anti-Repo (green). (D)
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Slit protein is found throughout the medulla neuropil (arrow), which is surrounded by

medulla neuropil glia (mng). (E) Slit is present in the lamina neuropil and surrounds the

epithelial (ep), marginal (ma) and medulla glia (mg). (F) Similar view as in E, stained

with anti-Slit (magenta) and Sca:GFP (green). (G) Horizontal view stained with anti-Slit

(red), anti-Elav (blue), and Sca:GFP (green). Slit protein localizes immediately adjacent

to distal cell neurons at the base of the lamina and the optic chiasm. (H) Summary of Slit

expression. (I) Third instar eya2 mutant visual system stained with anti-Slit. Slit protein

is expressed in the medulla neuropil (arrow) in the absence of photoreceptor innervation.

(I-J) Expression of the sli( 2)k05 248 (Slit:LacZ) enhancer trap. (J, K) Optic lobes stained

with anti-LacZ (red) and anti-Repo (blue). (J) Slit:LacZ is expressed in medulla glia

(arrowhead) and cells in the medulla cortex (arrow). (K) Slit:LacZ cells in medulla

cortex (arrow) lie adjacent to medulla neuropil glia. (L) Optic lobe stained with anti-

LacZ (upper panel), anti-Elav (middle panel) and a merged image (lower panel) with

anti-LacZ in magenta and anti-Elav in green. Slit:LacZ cells in medulla cortex (arrows)

co-express varying levels of neuronal marker Elav.

Fig. 5. Robo, Robo2 and Robo3 are expressed in overlapping patterns in the visual

system.

Panels A, D, and G show third instar nervous systems stained with antisera against

indicated Robo-family member. Panels B, E, and H show lateral view of optic lobe

stained with antisera against indicated Robo-family member (magenta), neuronal nuclei

stained with anti-Elav (blue), and photoreceptor axons visualized with GMR:GFP

(green). Panels C, F and I show Robo-family staining alone. (A) Robo is expressed in

the developing optic lobes (arrowheads). (B,C) Robo is expressed by IPC neuroblasts, by

distal cell neurons, and in the medulla cortex. (D) Robo2 is expressed in the developing

optic lobes (arrowheads). (E,F) Robo2 is expressed by IPC neuroblasts and distal cell

neurons. (G) Robo3 is expressed in the developing optic lobes (arrowheads). (H,I)

Robo3 expression is not detected on IPC neuroblasts, but is detected on distal cell

neurons and in the medulla cortex as well as on photoreceptor axons.

Fig. 6. Knockdown of Robo-family proteins using transgenic RNAi.
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(A) Western blot analysis of adult heads showing that animal homozygous for robo3'

express full-length Robo3 protein (carat) as well as a truncated Robo3 (asterisk). Anti-

Elav used as loading control. (B) Western blot analysis of adult heads showing that

expression of UAS:RoboRNAi in the nervous system controlled by clS5-Ga14 reduces

Robo protein levels. (C) Ubiquitous expression of UAS:Robo2RNAi under the control of

tubulin-Gal4 reduces anti-Robo2 staining in the visual system. (D) Western blot analysis

of adult heads showing that expression of UAS-Robo3RNAi controlled by c155-Ga14

reduces Robo3 protein levels. (E-M) RNAi of an individual Robo-family member does

not detectably reduce expression of other Robo-family proteins. (E-G) Anti-Robo

staining in magenta. (H-J) Anti-Robo2 expression in magenta. (K-M) Anti-Robo3

expression in magenta. (E, H and K) Robo RNAi detectably reduces Robo expression

(open arrowhead), but not Robo2 or Robo3 (closed arrowheads). (F, I and L) Robo2

RNAi detectably reduces Robo2 expression (open arrowhead), but not Robo or Robo3

(closed arrowheads). (G, J and M) Robo3 RNAi detectably reduces Robo3 expression

(open arrowhead), but not Robo or Robo2 (closed arrowheads).

Fig. 7. Distal cell neurons intermingle with lamina glia in Robo-family knockdowns.

(A,B) Lateral view (anterior at bottom). IPC neuroblasts and distal cell neurons are

visualized with FasIII (red), c155:GFP is most strongly observed in IPC neuroblasts and

photoreceptors (green), and neuronal nuclei are visualized with anti-Elav (blue). (A)

cI55-Ga14;UAS-GFP. (B) Distal cell neurons enter the lamina in c155-Ga14;UAS-

GFP; UAS-RoboRNAi; UAS-Robo2RNAi; UAS-Robo3RNAi animals (arrow), reaching

anterior edge of lamina (arrowhead). (C-F) Animals express GFP (green) under control

of Sca-Gal4, labeling the IPC, distal cell neurons and medulla cortex (medc). Neuronal

nuclei are visualized with anti-Elav (blue). (C,D) Photoreceptor axons are visualized

using anti-Chaoptin (red). (C) Sca-Gal4;UAS-GFP animal. (D) Distal cell neurons

enter the lamina in Sca-Gal4;UAS-GFP;UAS-RoboRNAi;UAS-Robo2RNAi; UAS-

Robo3RNAi animals (arrow). (E,F) Lamina glia are visualized using anti-Repo (red).

Distal cell neurons intermingle (arrows) with lamina glia in Robo-family knockdown

animals. (E) Sca-Gal4;UAS-GFP; UAS-RoboRNAi, UAS-Robo3RNAi;UAS-

RoboRNAi, UAS-Robo3RNAi animal. (While Sca-Gal4; UAS-RoboRNAi; UAS-
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Robo3RNAi animals had no defects, animals containing two copies of both UAS-

RoboRNAi and UAS-Robo3RNAi had modest defects, consistent with overlapping roles of

Robo-family members.) (F) Sca-Gal4;UAS-GFP;UAS-RoboRNAi;UAS-

Robo2RNAi;UAS-Robo3RNAi animal.

Fig. 8. Robo-family knockdown disrupts photoreceptor axon targeting. (A-C)

Photoreceptor axons visualized using anti-Chaoptin. (A) Tubulin-Gal4;UAS-GFP

control. (B) Tubulin-Gal4;UAS-GFP;UAS-RoboRNAi; UAS-Robo2RNAi; UAS-

Robo3RNAi animal where many photoreceptor axons extend through the lamina (arrow)

and too many photoreceptor axons enter the medulla (arrowhead). (C) GMR-Gal4;UAS-

GFP; UAS-RoboRNAi;UAS-Robo2RNAi;UAS-Robo3RNAi animal. (D-F) Animals

express GFP (green) under control of Sca-Gal4 while photoreceptor axons are visualized

using anti-Chaoptin (magenta). (D) Sca-Gal4;UAS-GFP animal. (E) Sca-Gal4;UAS-

GFP; UAS-RoboRNAi, UAS-Robo3RNAi; UAS-RoboRNAi, UAS-Robo3RNAi animal in

which GFP-expressing cells in the lamina correspond to regions of photoreceptor axon

mistargeting (arrow). (F) Sca-Gal4; UAS-GFP; UAS-RoboRNAi;UAS-Robo2RNAi;UAS-

Robo3RNAi animal. (G) Schematic of observed disruptions in visual system

development. In wild type, distal cell neurons (blue) express Robos (orange outline)

while Slit protein (red) surrounds glia (yellow with black outline) at the base of the

lamina. Lamina glia serve as initial targets of incoming R1-R6 photoreceptor axons

(green). When expression of all three Robo-family members is inhibited in distal cell

neurons (robo,robo2,robo3), distal cell neurons intermingle with the lamina glia and

photoreceptor axon targeting is disrupted. Loss of Slit expression (slit) causes an

indistinguishable defect.
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Appendix to Chapter 2

The following section includes unpublished data and discussion pertaining to, but not

included in Chapter 2.

Although the analysis of the visual system in the preceding chapter concentrates on the

third larval instar stage of development, earlier and later stages of development were also

examined. The developing CNS of wild type embryos has a characteristic appearance of

a ladder-like scaffold when stained with BP102, a monoclonal antibody that labels all

longitudinal and commissural axons (Fig. 1A). In sli? null mutants, axons enter the

midline and fail to exit. The result is a collapse of the CNS axon scaffold into a single

longitudinal track within the midline (Fig. IB). The CNS axon scaffold appears normal

in slifd"' mutant embryos (Fig. 1C). Furthermore, whereas slit' mutants die during late

embryogenesis/early first larval instar, slitdu' mutants survive to adulthood. As mentioned

in Chapter 2, the likely explanation for these differences is that the slitd"' allele functions

as a tissue-specific allele of slit. This is most clearly seen in wild type third instar larvae,

where Slit protein is prominently detected within the midline and optic lobe as well as on

mushroom body axons. In slif"' mutants, Slit protein is absent in the optic lobes, reduced

Figurel
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in the midline, and present on mushroom body axons (See Chapter 2, Fig. 4A,B).

Although significantly reduced, there is likely a sufficient level of Slit expression within

the midline of slit"' mutants to achieve normal embryonic CNS patterning.

Photoreceptor axons begin entering the brain at the beginning of the third larval

instar. In order to examine the developing visual system of slit mutants before

photoreceptor axon innervation, we used a number of markers, including anti-Robo2,

anti-Fasciclin II, anti-HRP (a general neuropil marker) and the Slit:LacZ enhancer trap, to

visualize the brains of second instar larvae. Figure 2 shows wild type and slit second

instar larvae stained with anti-HRP (green) to visualize the medulla neuropil (arrow) and

anti-LacZ (red) to visualize the Slit:LacZ enhancer trap pattern (at this stage of

development the distal cell neurons and lamina neurons have not been generated). We

were unable to detect any disruptions at this stage of development and thus focused our

analysis on later stages.

Figure 2

wild type slit

The adult visual system in slit mutants and RoboRNAi animals has also been

analyzed. Adult slit mutants exhibit striking defects in visual system morphogenesis,

although it is not clear whether the adult defects are a consequence of the earlier third

larval instar defects or represent another function for Slit and the Robo-family proteins.

Cryosections of adult heads stained with anti-Chaoptin to visualize R-cells and their

projections (Fig. 3A-C) reveal that the medulla (me) is misoriented with respect to the

lamina (la) and retina (re) in slit mutants (Fig. 3B) as compared to wild type (Fig. 3A).

This defect can be rescued by expressing a slit cDNA under the control of omb-Gal4,

which drives expression broadly in the visual system (Fig 3C). Whole mount views of

photoreceptor axon innervation of the medulla in wild type (Fig. 3D), slit mutants (Fig.



3E), and Robo-family RNAi knockdowns (Fig. 3F) show a similar disorganization of the

medulla as seen in cryosections. The disruptions in adult slit mutants and adult Robo-

family RNAi knockdowns are indistinguishable and provide further evidence that the

Robo-family receptors and Slit are likely functioning to control the same developmental

process.

Fiaure 3

Examination of a subset of lobula (lob) neurons using atonal-Gal4 (Hassan et al.,

2000) to drive expression of a GFP reporter reveals defects in the positioning of ventral

brain cluster (VBC) neurons (Fig. 3G,H, arrow). As compared to wild type (Fig. 3G), the

VBC neurons in slit mutants (Fig. 3H) are located more centrally within the lobula.

Additionally, the VBC axons project to regions outside the lobula in slit mutants (Fig. 3

H, asterisk). The primary cause of these defects is not presently known.

As noted in Chapter 2, overexpression of Robo2 in the lobula generates defects at

the lamina/lobula interface. In wild type (Fig. 4A), the distal cell neurons (DCNs)

normally lie at the posterior face (dashed yellow line) of the lamina cortex (lamc).



Overexpression of a robo2 cDNA using scabrous-Gal4 causes many DCNs to move

away from the posterior face of the lamina toward the lamina edges (Fig. 4B,

arrowheads). The cells in which scabrous-Gal4 is expressed are labeled with UAS-

mCD8-GFP and all neuronal nuclei are stained with anti-Elav (blue). One interpretation

of this experiment is that increased levels of Robo2 in DCNs results in increased

repulsion of DCNs from the posterior face of the lamina where they first encounter Slit.

A caveat to this experiment is that scabrous-Gal4 is also expressed in regions of the

visual system where Robo2 protein is not detected. Therefore, it cannot be ruled out that

misexpression of Robo2 in other regions of the visual system contributes to this

phenotype.

Figure 4

wild type Sca:Robo2

As mentioned in Chapter 2, to examine the effect of the reduction of Robo-family

members in the visual system, I generated positively marked (GFP) robo mutant clones in

a homozygous robo3 mutant background (Fig. 5A,B). More than 40 third instar brain

hemispheres were examined, however no photoreceptor axon disruptions were observed

when examined with anti-Chaoptin (red). Interestingly, strong knockdown of Robo and

Robo3 through RNAi does result in visual system disruptions (See Chapter 2, Fig. 7E).

The discrepancy is likely due to the fact that robo3 allele used in this study is

hypomorphic (See Chapter 2, Figure 6A). The DCNs were not examined, as these

experiments were performed before I had discovered that the DCNs were disrupted in

slit"' mutants.

I also generated positively marked clones (GFP) of a null allele of slit (sliz) (Fig.

5C,D). No photoreceptor axon disruptions were observed in the more than 50 third instar



brain hemispheres examined. A possible explanation for this result is that the mutant

patches were not of sufficient size to generate phenotypes such as those seen in slitdu".

Slit is a secreted molecule and therefore diffusion of Slit from wild type tissue into

regions where mutant patches were generated could compensate for loss of Slit in those

regions. The MARCM system was used to generate both robo mutant clones (Fig. 5A,B)

and slit mutant clones (Fig. 5C,D) (Lee and Luo, 1999).

The transposable element that is responsible for the slit"3 mutation is located

approximately 30 kilobases away from the slit coding region. Although it is not

uncommon for tissue-specific enhancers to be located long distances from the promoter

of the regulated gene (Dorsett, 1999; Levine and Tjian, 2003; Merli et al., 1996), one

concern is that the transposable element could be disrupting the expression of other genes

in addition to slit. However, the ability to fully rescue the mutant phenotype with a slit

cDNA (See Chapter 2, Figure 2H) argues that even if another gene is disrupted by the

transposable element, it likely does not contribute to the mutant phenotype that we

observe in the visual system.

The cDNA used to rescue the phenotype has been previously described (Kidd et

al., 1999). Briefly, a slit cDNA was isolated from a Drosophila embryonic library and

the entire open reading frame was sequenced, cloned into a UAS expression vector and

subsequently transformed into flies. I expressed the slit cDNA under control of an eye-

I
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specific promoter (GMR-Gal4) to verify that the expression construct generated Slit

protein. As shown below in Figure 6 (arrows), high levels of Slit protein are detected in

the eye disc and on R-cell axons where Slit is normally not expressed. Endogenous

expression of Slit is also seen on mushroom bodies (MBs) and within the midline of the

ventral nerve cord (VNC).

Figure 7 depicts a simplified model of the primary defect seen in the visual

system of slit'mutants. In wild type (Fig. 7A), Slit protein is present within the lamina

(red) and surrounds lamina glia (white circles). All three Robo-family proteins are

expressed on the surface of distal cell neurons (DCNs) in the lobula (black circles).

Normally, there is a distinct boundary between lamina glia and DCNs and these cells do

not mix. In slitdui mutants (Fig. 7B), Slit protein localization within the lamina is

abolished, resulting in the invasion of DCNs into the lamina. The DCNs appear to ignore

the boundary that is normally enforced by Slit and enter the lamina, displacing lamina

glia. The displacement of lamina glia leads to a disruption in photoreceptor axon

targeting (see Chapter 2, Figure 8G). The identical phenotype is also seen in animals in

which the expression of Robo-family proteins is inhibited in DCNs.



Figure 7
Irn
LAN H1He

H
Hi

Lamina
Glia

*** #O0
000 C 00
ole 400

Distal Cell
Neurons

Lamina Distal Cell
Glia Neurons

References

Dorsett, D. (1999). Distant liaisons: long-range enhancer-promoter interactions in
Drosophila. Curr Opin Genet Dev 9, 505-14.

Hassan, B. A., Bermingham, N. A., He, Y., Sun, Y., Jan, Y. N., Zoghbi, H. Y. and
Bellen, H. J. (2000). atonal regulates neurite arborization but does not act as a proneural
gene in the Drosophila brain. Neuron 25, 549-61.

Kidd, T., Bland, K. S. and Goodman, C. S. (1999). Slit is the midline repellent for the
robo receptor in Drosophila. Cell 96, 785-94.

Lee, T. and Luo, L. (1999). Mosaic analysis with a repressible cell marker for studies of
gene function in neuronal morphogenesis. Neuron 22, 451-61.

Levine, M. and Tjian, R. (2003). Transcription regulation and animal diversity. Nature
424, 147-51.

Merli, C., Bergstrom, D. E., Cygan, J. A. and Blackman, R. K. (1996). Promoter
specificity mediates the independent regulation of neighboring genes. Genes Dev 10,
1260-70.



CHAPTER THREE

Ptpmeg is required for Mushroom Body Morphogenesis in Drosophila

A number of individuals have contributed significantly to the initial characterization of

Ptpmeg. Joyce Yang, a former graduate student in the lab, created the targeted disruption

through homologous recombination. Three former lab technicians also contributed to the

work. Myles Robichaux isolated the replacement allele and constructed the UAS-

PtpmegRNAi transgene. Monique Brouillette analyzed the replacement allele by PCR

and sequence analysis. Caleb Kennedy generated the peptide that was used to generate

the polyclonal antibody. Paul Garrity originally identified the adult mushroom body

phenotype. Timothy Tayler completed all other experiments. Jessica Whited, a current

graduate student, is continuing the project.
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SUMMARY

Drosophila Ptpmeg belongs to a family of highly conserved protein tyrosine

phosphatases (PTPs) that contain an N-terminus FERM domain and a single PDZ

domain. Although Ptpmeg homologs are expressed in the nervous system the

physiological function of this class of proteins in the nervous system remains largely

unknown. To study the role of Ptpmeg in Drosophila, we employed a targeted gene

knockout strategy. Through homologous recombination, we introduced a disruption in

the Ptpmeg locus that is predicted to generate a truncated form of the protein. The

Ptpmeg mutant alleles are homozygous viable and express no visible external

phenotypes. Although the homozygous mutants live to adulthood, they often fall into the

food and die shortly after hatching. Examination of the adult brain revealed a mutant

phenotype in the mushroom bodies, an important center for olfactory learning in

Drosophila. In mutant animals, the mushroom body axonal structures are disorganized

and fail to elaborate their characteristic shape. Ptpmeg is expressed on mushroom body

axons and reducing levels of Ptpmeg protein from the mushroom bodies through tissue-

specific RNAi generates the mutant phenotype. We propose that Ptpmeg is required in

mushroom body neurons for proper mushroom body axon guidance and branching.
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INTRODUCTION

Protein tyrosine phosphatases (PTPs) are signal-transducing enzymes that

dephosphorylate proteins at tyrosine residues. In a balance with protein tyrosine kinases

(PTKs), which catalyze the opposite reaction, PTPs regulate the level of protein tyrosine

phosphorylation in cells. Regulation of tyrosine phosphorylation is important in a wide

variety of cellular processes, including differentiation, proliferation, and cell growth, cell

adhesion and cell-cell contact formation, and cellular metabolism (Neel and Tonks,

1997). Further, disruptions in tyrosine phosphorylation signaling can lead to a number of

disease states (Hunter, 1997; Zhang, 2001). Depending on their cellular location, PTPs

are classified as cytosolic or receptor-like (Tonks and Neel, 2001). The cytosolic PTPs

contain a variety of non-catalytic protein domains, some of which are thought to regulate

localization to the correct subcellular compartment (Fischer, 1999; Mauro and Dixon,

1994).

FERM domains (named for prominent family members 4.1 protein/Ezrin/Radixin/

Moesin) are found in a variety of cytoplasmic proteins that are involved in the control of

cell adhesion, cell motility, cell shape and signal transduction (Bretscher et al., 2002).

FERM domains participate in localizing proteins to the plasma membrane (Chishti et al.,

1998). FERM domains have been shown to localize to the cytoplasmic surface of the

plasma membrane and bind to PIP2 (phosphatidylinositol 4,5-bisphosphate) and

phosphatidylserine (Cohen et al., 1988; Hirao et al., 1996). A number of FERM proteins

have been shown to function as membrane-cytoskeleton linkers (Chishti et al., 1998).

FERM-domain containing PTPs (FERM-PTPs) appear to fall into three classes

based on their phylogeny and are generally designated as MEG, PEZ and BAS (Bretscher

et al., 2002; Edwards et al., 2001). The MEG class has two members in vertebrates (Gu

et al., 1991; Yang and Tonks, 1991), and a single representative in both C. elegans

(Uchida et al., 2002) and Drosophila (Edwards et al., 2001). MEG proteins also contain

a single PDZ domain which are commonly known to mediate protein-protein

interactions(Kim and Sheng, 2004).
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The MEG family member in C. elegans, PTP-FERM, is expressed in the nervous

system and requires the FERM domain for its subcellular localization to the plasma

membrane (Uchida et al., 2002). However, no loss-of-function mutants have been

analyzed and the physiological role of this protein in the nervous system is not

understood. In vertebrates, MEG family members have been shown to be expressed

prominently in the brain and T-cells (Gjorloff-Wingren et al., 2000; Hironaka et al.,

2000; Sahin et al., 1995). Both PTPN3 and PTPN4 have been shown to be located in

membrane and cytoskeletal fractions and expressed in numerous cancer cell lines

(Gjorloff-Wingren et al., 2000; Gu et al., 1991; Ikuta et al., 1994; Wang et al., 2004b;

Warabi et al., 2000). PTPN4 was originally isolated as a cytosolic PTP from human

megakaryoblast cell lines (Gu et al., 1991). PTPN4 is expressed in the mouse brain and

physically associates with the glutamate receptor subunits delta-2 and epsilon (Hironaka

et al., 2000). Overexpression of PTPN4 in cultured COS-7 cells, slowed proliferation

and cell growth (Gu et al., 1996). PTPN3 was isolated from a HeLa cell library and has

been shown to disrupt T-cell signaling when overexpressed in cultured cells (Han et al.,

2000; Yang and Tonks, 1991). Although they have been predicted to have a role in

regulating signaling at the plasma membrane, the physiological function of this class of

proteins in the nervous system remains largely unknown.

In the present work, we identify Ptpmeg as a novel regulator of Drosophila

mushroom body neurogenesis. The pattern of Ptpmeg protein expression and tissue-

specific reduction of Ptpmeg suggest a role for this protein in mushroom body axon

guidance and branching. The Drosophila mushroom bodies are a bilaterally symmetric

structure in the central brain and play a key role in olfactory learning and memory

(Heisenberg, 2003). Each mushroom body is derived from four neuroblasts, and by

divisions through the embryonic, larval and pupal stages, each neuroblast generates -500

neurons (Ito et al., 1997; Ito and Hotta, 1992), which can be classified into three types

based on adult axonal projection patterns and the temporal order in which they are born.

Axons extend from the mushroom body neuron and form a tight bundle known as the

peduncle. At the base of the peduncle axons branch into dorsal and medial lobes.

Neurons that form the y lobe are born beginning in the late embryonic stages, neurons
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that form the a' and 13' lobes are born during larval development and lastly the neurons

that form the a and 3 lobe are born after puparian formation (Ito et al., 1998; Lee et al.,

1999). Mushroom body morphogenesis has been well described and more recently the

mushroom bodies have become a useful system in which to study various aspects of

neuronal development, including the growth, guidance and branching of axons (Ng et al.,

2002). Further, a number of molecules have been identified that directly regulate

mushroom body connectivity, including the cell adhesion molecules Dscam (Wang et al.,

2004a; Wang et al., 2002; Zhan et al., 2004) and Flamingo (Reuter et al., 2003), members

of the Rho family of small GTPases (Lee et al., 2000; Ng et al., 2002) as well as the Rho

GTPase activating proteins (RhoGAPs) (Billuart et al., 2001).

95



RESULTS

Targeted disruption of the Ptpmeg locus

To initiate our investigation of the function of Ptpmeg, we disrupted the genetic locus by

homologous recombination (Rong and Golic, 2000; Rong and Golic, 2001). The

homologous recombination event resulted in a partial duplication of the Ptpmeg locus

(Fig. 1A). To generate the Ptpmeg replacement allele (Gong and Golic, 2003), we

genetically introduced a DNA double-stranded break with an inducible I-CreI transgene.

The homologous recombination vector had been engineered to include an I-CreI

restriction site and initiation of the DNA double-stranded break repair mechanism

resulted in more than five putative Ptpmeg replacement alleles (Fig. 1A). In addition to

the I-CreI restriction site, the homologous recombination vector contained a four base

pair insertion to create a frameshift mutation within the Ptpmeg coding region. The

frameshift mutation is predicted to generate a truncated form of the Ptpmeg protein (see

Fig. 2A).

Several replacement events were examined by PCR, sequence analysis and

Southern blotting (Fig. B,C,D). The Ptpmeg replacement allele contained a new BsaI

restriction site and abolished an Acc65I restriction site. We first used a PCR-based assay

to determine the presence or absence of these sites. As predicted, restriction digests with

Acc65I generated two fragments in wild type, three fragments in Ptpmeg heterozygotes,

and a single fragment in Ptpmeg homozygotes, while restriction digests with BsaI

generated one, three and two fragments in wild type, Ptpmeg heterozygotes and Ptpmeg

homozygotes, respectively (Fig. 1B). Southern blot analysis also revealed the destruction

of the Acc65I site and showed that no major genomic rearrangements had occurred

within an -4Kb region that included the site of homologous recombination and gene

replacement (Fig. D). Thus, these analyses demonstrated that a targeted Ptpmeg

replacement allele had been generated and the genomic region surrounding the locus was

largely undisturbed.

Ptpmeg structure

The Ptpmeg gene, also known as CG1228, is predicted to have at least four transcripts,

encoding proteins of 952 or 791 amino acids. Ptpmeg transcripts are present in cDNA
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libraries from S2 cell, embryos, adult heads and testis (Berkeley Drosophila Genome

Project). Ptpmeg is a highly conserved protein and the two closest human homologs,

PTPN3 and PTPN4, share 32% and 38% overall amino acid identity respectively (Fig.

2B). Ptpmeg is composed of an N-terminal FERM domain, a PDZ-binding motif, and a

C-terminal protein tyrosine phosphatase domain (PTP) (Fig. 2A). We generated

antibodies to the central region of Ptpmeg, and found by immunohistochemistry that

Ptpmeg protein is not detected in Ptpmeg mutants and is reduced in Ptpmeg

heterozygotes (data not shown). Western blots probed with anti-Ptpmeg antiserum detect

a single major protein species in wild type flies, which was absent in mutant flies (Fig.

2C)

Ptpmeg is required for Mushroom Body development

Homozygous Ptpmeg mutants are viable and fertile. Adults display no visible external

defects, although many exhibit uncoordinated locomotion (J.C.Y., T.D.T. and P.A.G.,

unpublished). This observation prompted a histological investigation of the Ptpmeg

mutant nervous system. Using the axonal marker, anti-Fasciclin 2 (1D4), we identified a

defect in the mushroom bodies of the adult brain (Fig 3). In wild type adults the

mushroom bodies form prominent bilateral structures in the protocerebrum. Each

mushroom body is composed of 2500 Kenyon cells, divided into three classes based on

their axonal projection patterns into the mushroom body lobes and their time of birth.

Tightly bundled axons form 5 distinct lobes in each hemisphere of the brain, y, a, a',

3, and 3'. In the adult, anti-Fasciclin 2 strongly labels the axons of a/3 neurons, the latest

born Kenyon cells. These cells arise during puparian formation and project their

bifurcated axons into dorsally-extending a lobes and medially-extending lobes. In

addition, anti-Fasciclin 2 weakly stains y lobe axons. y neurons are born during

embryonic development and after remodeling events during development send a single

axon into the medially-extending y lobe.

We identified several common mushroom body defects in Ptpmeg mutants, most

notably, the reduction or loss of a lobe axons (Fig 3A,B arrows) and the fusion of (3 lobe

axons at the midline (Fig 3B arrowhead). a lobe reduction or loss was seen in 32.5% of

mutants, p lobe fusion was seen in 27.5% of mutants, both a lobe reduction and Pf lobe
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fusion was seen in 12.5% of mutants, while the remaining 12.5% of mutants appeared

wild type (n=40). An increase in 3 lobe size was also commonly observed (Fig 3B

arrowhead) but was not quantified. Although y lobe defects were detected, the weak and

variable staining of y lobe axons by anti-Fasciclin 2 prevented an accurate assessment of

the phenotype (T.D.T. and P.A.G., unpublished).

Using our antibody to Ptpmeg, we examined the localization of Ptpmeg within the

adult brain. While we observed Ptpmeg expression in other parts of the brain, strong

expression was detected on cells that appeared to associate with the mushroom bodies

and on the mushroom body lobes (Fig. 6A,B). Mushroom body expression of Ptpmeg

appears to be limited to the axonal lobes (Fig. 6B arrow and arrowhead). There is no

detectable staining on the mushroom body cell bodies or calyx (Fig. 6B asterisk). Thus,

it appears that Ptpmeg is expressed in mushroom bodies and preferentially localizes to

axons.

Ptpmeg is required in neurons for a and P lobe targeting

To further address the role of Ptpmeg in mushroom body morphogenesis, we used

transgenic RNAi to inhibit expression of Ptpmeg. Double-stranded RNA interference

(RNAi) has been used effectively to reduce protein expression in vitro and in vivo

(Caplen et al., 2000; Fire et al., 1998). The generation of a transgenic UAS-PtpmegRNAi

construct allowed us to knockdown expression of Ptpmeg in a tissue-specific fashion.

First we used tissue-specific RNAi to inhibit the expression of Ptpmeg in neurons. The

nervous-system specific c155-Ga14 was used to drive expression of the UAS-

PtpmegRNAi construct. Expression of UAS-PtpmegRNAi under the control of c155-Ga14

resulted in mushroom body defects similar to those seen in Ptpmeg mutant animals (Fig.

4). As in Ptpmeg mutants, 13 lobe defects included midline fusion and crossing (Fig.

4B,C arrowheads) while a lobe defects included reduction or absence (Fig. 4C). In

several instances, the y lobes appeared to fuse with the ellipsoid body structure (Fig. 4B,

asterisk) or be misplace (Fig. 4C, asterisk). Of the 12 animals scored, 8 had detectable

phenotypes (y lobe phenotypes were not scored).

Although, the phenotype of c155-Ga14; UAS-PtpmegRNAi animals strongly

resembles that of the Ptpmeg mutants, other cell types, such as glia or trachea, could not
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be formally excluded from contributing to the mutant phenotype. We therefore expressed

a Ptpmeg cDNA only in neurons under the control of elav-Gal4. The expression of this

transgene rescued the mutant phenotype (data not shown). Expression of the Ptpmeg

cDNA in the neurons of Ptpmeg mutants rescued the alpha lobe defects in 12 of 16

animals. The lobe defects could not be scored due to a dominant mushroom body

phenotype associated with the deficiency line used in the genetic cross. No mutant

phenotypes have been observed in Ptpmeg heterozygous animals (n=8, unpublished data).

Based on the phenotypes of the targeted knockout and RNAi knockdown experiments

and based on our rescue experiments, we conclude that Ptpmeg is required within

neurons for the proper establishment of the axonal lobe structures of the mushroom

bodies.

Ptpmeg knockdown in mushroom body neurons disrupts a and 15 lobes

The identification of a neuronal function for Ptpmeg prompted further investigation of the

neuronal class that required Ptpmeg activity. OK107-Gal4 drives high levels of

expression in all mushroom body neurons (Connolly et al., 1996). OK107-Gal4 driven

expression of UAS-PtpmegRNAi in Ptpmeg heterozygous animals results in strong c and

P3 lobe phenotypes (Fig. 5). UAS-mCD8-GFP was used to visualize the entire mushroom

body structure and anti-Fasciclin 2 was used to mark only the ca, 3, and lobes. We

observed either an absence of both the ca and ca' lobe with a corresponding increase in the

size of the (3 and 3' lobes (Fig. 5A,B), or an absence of the P/P' lobes with a concomitant

increase in size of the a/a' lobes (Figs. 5C and 5D). We did not observe similar defects

when UAS-PtpmegRNAi was driven by OK107-Gal4 in a wild type background. It is

apparently necessary to reduce levels of Ptpmeg protein further than what can be

achieved using UAS-PtpmegRNAi and OK107-Gal4 alone. Finally, in OK107-GaI4,

UAS-Ptpmeg-RNAi animals that are heterozygous for Ptpmeg, we observed a strong

reduction in Ptpmeg staining (Fig 6C,D). In wild type adults, mushroom body axons

bifurcate and send projections into two lobes. (The exception is neurons, which send a

single projection into the y lobe.) These data suggest that in Ptpmeg mutants, and

3 axons often fail to branch. For instance, a missing or reduced oa lobe often results in a

corresponding size increase in the lobes (See Figs. 3B,4B,5A).

99



DISCUSSION

In the present study, we have identified Ptpmeg, a FERM-containing protein tyrosine

phosphatase, as a novel regulator of mushroom body development in Drosophila.

Disruptions in mushroom body connectivity have been shown to affect the process of

olfactory associative learning and memory (de Belle and Heisenberg, 1994; Heisenberg et

al., 1985; Pascual and Preat, 2001). For instance, long-term memory requires the

presence of the a/a' lobes but not the l/P' lobes (Pascual and Preat, 2001). Ptpmeg

protein is expressed on mushroom body axons and our data suggest that it may directly

regulate mushroom body axon targeting decisions, such as axon branching. Although it

appears that Ptpmeg influences axon branching, the exact mechanism is not yet clear.

Abnormalities in axon outgrowth, branch formation, branch maintenance, or branch

retraction could potentially cause the mutant phenotypes that we have described.

Experiments to further refine Ptpmeg's role in the mushroom bodies are ongoing.

The intracellular signaling pathways that regulate axon branching are not well

understood. A number of extracellular cues have been shown to promote and restrict

axon branch formation (Bures and Kazil, 1975; Dent et al., 2004; Wang et al., 1999;

Yates et al., 2001), although the intracellular signaling pathways that are used in the

process are not well described. In the mushroom bodies known cytoskeletal effectors, the

Rac GTPases, control a number of processes including axon guidance and branching.

Additionally, mutations in Dscam, a cell adhesion molecule, and Fmrl, a mRNA binding

protein, also affect mushroom body axon branching, although the signaling mechanisms

involved are unknown (Michel et al., 2004; Pan et al., 2004; Wang et al., 2004a; Wang et

al., 2002; Zhan et al., 2004). In order to fully understand the process of axon branching,

it will be important to identify the cytoplasmic signaling molecules that link

transmembrane proteins to cytoskeleton, either directly or through effectors, such as the

Rac GTPases. Ptpmeg may serve as one of these proteins.

The observed mushroom body phenotypes in Ptpmeg mutants suggest a number

of possibilities. Ptpmeg function could be required within the mushroom bodies to

regulate some aspect of Kenyon cell differentiation or axon guidance. For instance,

missing or misguided axons could easily disrupt the overall neuropil structure of the a

and P3 lobes. Alternatively, Ptpmeg function could be required in some other cell type,
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thereby disrupting mushroom body development indirectly. For instance, glia that are

closely associated with the mushroom bodies and their axons have been shown to be

critical for their development (Awasaki and Ito, 2004; Watts et al., 2004). The

mistargeting of other neurons, such as the mushroom body targets or intermediate targets,

could also indirectly affect the pathfinding ability of a and P3 lobe axons. However, our

experiments support a model in which Ptpmeg is functioning within the mushroom

bodies themselves.

The spatial requirement of Ptpmeg appears to be in neurons and more specifically,

in the mushroom body neurons. Expression of UAS-Ptpmeg-RNAi in neurons resulted in

similar phenotypes as were seen in the targeted replacement allele mutants. The neuronal

requirement for Ptpmeg was further substantiated by rescuing an aspect of the mutant

phenotype (a lobe reduction) by expressing a Ptpmeg cDNA only in neurons of mutant

animals. Using OK107-GaI4, which is strongly expressed in mushroom body neurons,

we showed that knockdown of Ptpmeg protein in mushroom bodies results in strong

mutant phenotypes. OK107-Gal4 is weakly expressed in other regions of the brain,

however we did not observe significant reduction in Ptpmeg protein in these cells (data

not shown). Taken together, these data suggest that the function of Ptpmeg is required in

the mushroom bodies of Drosophila.

The mushroom body neurons develop in a sequential pattern. y neurons develop

first followed by a'/' neurons and then al/ neurons. The temporal requirement of

Ptpmeg appears to be after larval development. At this stage in development the y and

ac'/' neurons have already developed and the a/p neurons have begun to differentiate and

project axons to the a and P3 lobes. Since we do not observe mutant phenotypes in

Ptpmeg mutant larvae (data not shown) we believe it is likely that the axon branching

defects seen in the adult are a result of developmental events that occur during puparian

formation when the a/P neurons are developing. Therefore Ptpmeg could be required

only in a/P neurons for normal mushroom body development. Alternatively, Ptpmeg

could be required in the earlier born y or a'/l' neurons. For example, initially alp axons

migrate along the axons of the earlier born a'/' neurons. If Ptpmeg were required for the

localization or regulation of molecules that are expressed on the surface of a'/P' axons
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this may disrupt the substrate upon which al/ axons travel. Mosaic studies involving the

different classes of mushroom body neurons will be required to distinguish these models.

We also examined the effects of ectopic expression and overexpression of Ptpmeg

in the nervous system. Neither ectopic expression of Ptpmeg in neurons, using c155-

Gal4, or overexpression in the mushroom bodies, using OK107-Gal4, generated

detectable phenotypes. This could be due to compensatory effects of other proteins or

simply reflect that neurons are not sensitive to excess levels of Ptpmeg.
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MATERIALS AND METHODS

Genetics and Molecular Biology

Fly stocks and plasmids for creating the Ptpmeg replacement alleles were obtained from

K. Golic. To create the targeting construct, bases 32244-35221 from AE003468

(corresponding to 3L 332,882-335,771) were cloned into pTV2. To create a four base

insertion in the Ptpmeg coding region, the Acc65I site at base 34096 (corresponding to

3L 334,646) was filled in with Klenow polymerase. An I-SceI recognition site was

inserted at the BstEII site at base 35698 (corresponding to 3L 334,247). Two-step allelic

replacement was done as described [Rong, 2002 #1065]. Genomic DNA was prepared

for PCR as described [Sears, 2003 #1066]. Primers used to amplify the genomic DNA

surrounding the site of allelic replacement were: 5'-

GAATTAATACGACTCACTATAGGGAGAGACGTCGGTTTTATTGAACAGTGC-3'

(Primer A) and 5'-GAATTCTCATCCGATCTCATCGCTCTCCGGGAC-3' (Primer B).

PCR products were sequenced by the MGH DNA Sequencing Core Facility.

To create the UAS-Ptpmeg-RNAi construct, genomic DNA sequences from bases 36733-

37282 of AE003468 were fused via an SpeI site to an inverted Ptpmeg cDNA sequence

spanning bases 2344-1869 of LD27491 and inserted into pUASt [Brand, 1993

#253][Kalidas, 2002 #10671. Ptpmeg cDNA's LD16634 and LD27491 were inserted into

pUASt to generate UAS-Ptpmeg full-length and UAS-PtpmegAFERM (missing the N-

terminal 387 amino acids), respectively.

Western Blot

Dissected larval nervous systems were homogenized in lysis buffer consisting of PBS

(130mM NaCI, 175 mM Na2HPO4, 60mM NaH2PO4) and protease inhibitors (Roche).

Lysates were run on a 7.5% poyacrylamide gel and transferred to Hybond-P membrane

(Amersham Biosciences). Membranes were blocked overnight in 5% nonfat milk and

then probed with anti-MEG (1:5000) or control anti-Elav (1:1000). HRP-conjugated

secondary antibodies were used at a concentration of 1:5000. Each lane contained the

nervous systems of approximately 5 larvae.
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Southern Blot

Genomic DNA was isolated from 30 flies and digested with EcoRI/Acc65I or

XhoI/Acc65I. Digested DNA was electrophoresed on an 0.8% agarose gel and

transferred overnight onto a Hybond-XL nylon membrane (Amersham Biosciences). 32 p

probes were labeled with the Rediprime DNA labeling system (Amersham Biosciences).

Immunohistochemistry

Polyclonal antiserum against Ptpmeg was produced in guinea pigs (Covance) against a 31

kD peptide containing 255 amino acids of Ptpmeg (aa 359-614) fused to a 6XHis tag.

Anti-Ptpmeg antiserum was used at 1:750. Anti-Fasciclin 2 was used at 1:200.

Secondary antibodies were obtained from Jackson Laboratories and used at 1:500.

Fluorescent images were obtained using a Nikon PCM2000 confocal microscope.
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FIGURE LEGENDS

Figure 1: Disruption of the Ptpmeg locus through homologous recombination-mediated

gene targeting. (A) A P-element containing a modified fragment of the Ptpmeg

sequence, FRT sequences and a mini-white gene marker was randomly inserted into the

Drosophila genome. Expression of FLP recombinase circularized the DNA. The

plasmid was linearized through expression of the restriction enzyme I-SceI and the

linearized fragment recombined with the endogenous Ptpmeg locus. Expression of I-CreI

in fly lines carrying the gene targeting construct induces a double-stranded DNA break.

Break repair mechanisms resulted in several Ptpmeg replacement alleles that carried only

the GTAC repeat as shown by restriction digest analysis (B) and sequence analysis (C).

(D) Southern Blot analysis of Ptpmeg replacement alleles. DNA was obtained from adult

wild type or Ptpmeg replacement allele heterozygotes and digested with several

restriction enzymes. The replacement allele destroys a previously existing Acc65I

restriction site.

Figure 2: (A) Schematic of the Ptpmeg protein noting the prominent domains and the

location of the stop codon generated in the replacement allele. Polyclonal antibodies

were generated using a peptide containing amino acids 337-592, a region corresponding

to the PDZ domain. (B) Homology between Drosophila Ptpmeg and the human

homologs, PTPN3 and PTPN4. (C) Western blots containing adult head protein from

wild type, ptpmegR 4 , ptpmegR 5 or ptpmegR4 heterozygotes probed with anti-Ptpmeg

antiserum. Blots were reprobed with anti-Elav antiserum to confirm similar levels of

protein were present in each lane.

Figure 3: Ptpmeg is required for proper mushroom body morphogenesis. Adult brains

of wild type (A) and Ptpmeg mutants (B, C) stained with anti-Fasciclin 2 to reveal

mushroom body morphology. In wild type, a and f axons bifurcate forming the dorsal a

lobe and the medial P lobe. The earlier born y lobe axons are located behind the P lobe

and stain weakly with anti-Fasciclin 2. In ptpmeg mutants, the a lobes are often reduced

or missing (arrows) while the 13 lobes display defects such as thickening or fusion with

109



the other P3 lobe (arrowhead). [3 lobe absence is sometimes seen in other genetic

backgrounds (see text).

Figure 4: Knockdown of Ptpmeg protein using transgenic RNAi. (A) Wild type. (B,C)

Neuronal knockdown of Ptpmeg protein expression. c155-Gal4 driver flies were crossed

to UAS-Ptpmeg-RNAi flies. The mushroom bodies of adult progeny were examined

using anti-Fasciclin 2. Mushroom body lobe defects similar to those of Ptpmeg mutants

were identified. Knockdown of Ptpmeg protein resulted in a lobe reduction (arrow in C)

as well as P3 lobe fusion or mistargeting (arrowhead in B, C). y lobe disruptions were also

detected (asterisk in B,C). The ellipsoid body (eb) can be seen in (B) and (C).

Figure 5: Knockdown of Ptpmeg protein with the OK107-Gal4 Mushroom body driver.

(A,C) Entire mushroom body structure in UAS-GFP; UAS-Ptpmeg-RNAi / Ptpmeg R4 ;

OK107-Gal4 animals. (B,D) Same animals with anti-Fasciclin 2 alone. GFP expression

under OK107-Gal4 control shows the full mushroom body anatomy, including the

Kenyon cells (Kc) and the dendritic arborizations that make up the calyx (ca).

Knockdown of Ptpmeg protein in the mushroom bodies results in a lobe reduction (arrow

in B) and a corresponding increase in the size of the lobe (arrowhead in B). Absence of

the ' lobe is also detected (arrow in D) with an apparent increase in the a lobe as

compared to the a lobe in the other hemisphere.

Figure 6: Ptpmeg protein is detected on the a and 13 lobes of the mushroom bodies.

(A,B) Wild type and (C,D) Ptpmeg mushroom body knockdown stained with anti-

Ptpmeg (blue in A and C; white in B and D) and anti-Fasciclin 2 (red in A and C, not

present in B and D). Ptpmeg protein is expressed throughout the brain, including on the

axons that form the a and P3 lobe. (B) In wild type, Ptpmeg expression is detected on the

ct lobe (arrow) and P lobe (arrowhead), although strong staining is not detected on the

Kenyon cells or calyx (asterisk). Anti-Ptpmeg staining is reduced in Ptpmeg mushroom

body knockdown animals (Note: this is the same sample as in 5A,B.) Some anti-Ptpmeg

staining persists on wild type-appearing lobes (asterisk in 6D).
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CHAPTER FOUR

Discussion and Future Directions

In my thesis, I have shown that Slit and Robo-family proteins play a pivotal role in the

compartmentalization of visual centers in the Drosophila brain by restricting the

movement of cells across a boundary. My work defines a previously uncharacterized

boundary between cells of the lamina and lobula in the developing visual system and

provides an example of how sharp boundaries are maintained during development. I

have also shown that a previously uncharacterized phosphatase, Ptpmeg, is essential for

the development of the mushroom bodies, the center of olfactory learning and memory in

the Drosophila brain. Ptpmeg is expressed in mushroom bodies and appears to regulate

axon guidance and branching in these structures. Here, I will discuss the implications of

my work as well as future experimental directions that could provide new insight into the

processes of compartmentalization and axon guidance and branching.

Temporal requirement of Slit

My description of the slit mutant phenotype in Chapter 2 was mostly limited to the third

larval instar stage of development, and my data support the idea that visual system

development is largely normal up to that stage. However, due to some limitations in my

analysis, I was unable to conclusively rule out that earlier developmental defects do not

contribute to the mutant phenotype. Here, I will briefly discuss a number of experiments

that could resolve this concern.

My analysis of the embryonic and early larval brain revealed no obvious defects

in early visual system development. In addition, I was able to rescue the mutant

phenotype by expressing a slit cDNA with a Gal4 line that drives expression in the

photoreceptor neurons (GMR-Gal4). Because the photoreceptors develop during the

third instar stage, this suggested that Slit, in the visual system, was also required at this

stage and not earlier. However, GMR-Gal4 is also expressed in the larval optic nerve

(Bolwig nerve), which arises during embryogenesis and sends a single bundle of axons

into the brain (near the presumptive lamina and medulla regions) (Green et al., 1993).
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Could expression of Slit from the Bolwig nerve account for the rescue of the mutant

phenotype?

There are three experiments that could aid in resolving this concern. The first,

and perhaps most simple approach, is to repeat the Slit rescue experiments using a heat-

shock inducible Gal4 (hs-Gal4) line or a third instar-specific Gal4 line to restrict

expression of Slit to the beginning of the third instar. The second approach is to repeat

the Slit rescue experiments with GMR-Gal4 in an animal that is missing the Bolwig

nerve. Elimination of the Bolwig nerve could be accomplished through genetic ablation

or laser ablation (Kunes and Steller, 1991; Lohs-Schardin et al., 1979). If the mutant

phenotype can be rescued using either of these approaches, I could conclude that Slit is

required no earlier than the third instar stage, and that the phenotypes I reported in

Chapter 2 were not due to some unidentified defect from earlier stages of development.

A third complementary approach relies on the restriction of the Robo-RNAi transgenes

(described in Chapter 2) to the early third instar stage. Again, using hs-Gal4 or a third

instar-specific Gal4 line, the temporal requirement of the Robo proteins could be

assessed. The goal of these experiments is to demonstrate that the Slit and Robo proteins

exert their effects after compartment identities have been specified, further supporting our

conclusion that Slit and the Robos are required for later aspects of compartmentalization

(i.e. the establishment or maintenance of a compartment boundary).

Are the lobula neurons restricted by a repulsive signaling mechanism?

As mentioned in Chapter 1 and Chapter 2, a number of studies have convincingly shown

that Slit can mediate repulsion through Robo receptors. In my work, the restricted

movement of lobula neurons and the expression patterns of both Slit and the Robo

proteins implied that a repulsive interaction was occurring in the visual system.

However, I was not able to formally demonstrate that Slit was functioning through Robo

receptors to repel lobula neurons from the lamina. Alternative explanations could be that

Slit regulates the adhesive properties of lobula neurons (perhaps through Robo or Robo-

independent mechanisms) or that Slit and the Robo proteins are engaged in different,

independent processes that happen to result in the same phenotype. Here, I will suggest

experiments to confirm whether or not a Slit-Robo interaction is triggering a repulsive

124



signaling mechanism in the process of compartmentalization in the Drosophila visual

system.

Although, my initial experiments designed to overexpress or ectopically express

Slit and Robo were largely unsuccessful (as discussed in Chapter 2), additional ectopic

expression studies could be performed. Chimeric receptors have been used successfully

in the Drosophila embryo to switch repulsion to attraction and attraction to repulsion

(Bashaw and Goodman, 1999). As discussed in the introduction, Slit and Robo

interactions often mediate repulsion, while Netrin/Frazzled interactions often mediate

attraction (Guan and Rao, 2003). Robo/Frazzled chimeras, carrying the extracellular

domain of one receptor and the intracellular domain of the other receptor, have been

expressed in the embryonic CNS (Bashaw and Goodman, 1999). In the presence of

Netrin the Fra-Robo chimera behaves as a repulsive receptor and in the presence of Slit

the Robo-Fra chimera behaves as an attractive receptor. If the visual system is using Slit

and Robo to repel lobula neurons from the lamina then one would predict that the

expression of the Robo-Fra chimeric receptor in lobula neurons should lead to the

opposite response, resulting in lobula neurons being drawn into the lamina. In such

ectopic experiments, wild type Robo receptors would still be present in the lobula

neurons, and therefore the normal signaling mechanism would still be in place. However,

it is expected that high levels of Robo-Fra expression would "drown out" wild type

signaling. Of course, expression of Robo-Fra in otherwise wild type cells could also lead

to unforeseen consequences, such as dominant negative phenotypes. The experiment

above, therefore, would be improved by expressing the chimera in a Robo knockdown

(Robo-RNAi) animal. This would be the equivalent of a rescue experiment, but rather

than using a wild type cDNA for the rescue, the Robo-Fra cDNA would be used. Finally,

the creation of antibodies that recognize the "off" or "on" signaling state of Robo could

be used and I will discuss this idea in the next section.

Robo Receptor Signaling and the Role of Phosphorylation

The dynamic regulation of Robo signaling is important for the migration of axons,

neurons and other non-neuronal cell types (Fernandis and Ganju, 2001; Piper and Little,

2003). For example, as axons navigate across the CNS midline of the developing
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Drosophila embryo, Robo signaling is turned "off and on" to allow crossing and prevent

recrossing. Slit-expressing cells in the midline repel Robo-expressing axons by

activating Robo repulsive signaling. This causes axons that express high levels of Robo

on their growth cones to be prevented from crossing the midline, while axons that express

low levels of Robo are able to cross the midline (Kidd et al., 1998). The Commissureless

protein (Comm) negatively regulates Robo by preventing it from reaching the cell

surface, allowing certain axons to cross the midline (Georgiou and Tear, 2003; Keleman

et al., 2002). Once an axon crosses the midline, Robo levels are increased, due to a

reduction in Comm levels, and this prevents recrossing. Comm is not conserved in

vertebrates, and so vertebrates must use another mechanism to negatively regulate the

Robo receptors. Considering the high degree of conservation of the Robo proteins across

species, this mechanism of regulation may be used in Drosophila as well.

As with many receptors, phosphorylation appears to play a prominent role in

Robo signaling. In mammalian cell culture, Abelson (Abl) kinase phosphorylates an

evolutionarily conserved tyrosine residue (Y 1040) on Robo. This phosphorylation event

appears to be a critical component of Robo signaling, although there is conflicting genetic

data as to whether Abl phosphorylation antagonizes or promotes Robo signaling (Bashaw

et al., 2000; Wills et al., 2002). Y 1040 is the major phosphorylation site (when expressed

in cultured mammalian cells) and appears to be an important modulator of Robo activity.

Mutating this tyrosine to a phenylalanine (Y 1040F) in flies produces a "hyperactive"

Robo protein (Bashaw et al., 2000).

How phosphorylation modulates Robo function remains an open question. For

instance, is the phosphorylated or dephosphorylated form of Robo active? What is the

phosphorylation state of Robo when Slit is present or absent? These and other important

questions could be answered with an antibody that recognizes the phosphorylated form of

Drosophila Robo. A straightforward experiment would be to examine the Robo

phosphorylation state in the embryonic CNS of slit mutants. If the presence of Slit causes

dephosphorylation of Robo, then slit loss-of-function mutants should show increased

levels of phospho-Robo protein and Slit overexpression should decrease levels of

phospho-Robo protein. On the other hand, if Slit binding causes phosphorylation of

Robo, then the slit loss-of-function mutant should show decreased levels of phospho-
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Robo protein and slit overexpression should increase levels of phospho-Robo protein.In

the same manner, immunohistochemical examination of Abl mutants with the phospho-

Robo antibody could determine whether Abl is the primary in vivo kinase of Robo. If

Abl is the primary kinase for Robo, this would predict that phosphorylated Robo protein

would be reduced or absent in Abl mutants. If phosphorylation positively or negatively

regulates Robo signaling, dephosphorylation likely plays the opposite role. Genetic

interaction studies have implicated the receptor protein tyrosine phosphatases (RPTPs) in

Robo signaling and these same experiments could be used to help unravel their role in the

process (Bashaw et al., 2000).

How do photoreceptors reach their targets?

Signals that control target layer selection often come from a population of "intermediate"

target cells. For example, in the developing hippocampus, entorhinal axons target to their

correct layer before the arrival of their eventual targets, the pyramidal neurons (Ceranik

et al., 2000). A transient population of neurons, the Cajal-Retzius (CR) neurons, also

occupy this layer and provide targeting signals to the entorhinal axons (Ceranik et al.,

2000). Entorhinal axons fail to enter the hippocampus in the absence of the CR neurons.

This suggests that an attractive signal from the CR neurons guides the entorhinal axons to

the correct layer. Intermediate targets also play a central role in visual system axon

targeting in Drosophila.

At the time my thesis work began, Slit had recently been identified as the ligand

for the Robo receptor (Kidd et al., 1999). In Drosophila, Robo had been shown to be an

axon guidance receptor that mediated midline crossing in the embryonic CNS (Kidd et

al., 1998). Although we initially identified mutations in slit as disrupting the process of

photoreceptor axon guidance, we later discovered that Slit/Robo interactions regulated

compartmentalization in the visual system, and thereby indirectly affected axon guidance

and target selection of the photoreceptors. What then are the signals directly required for

the targeting of photoreceptors axons in the Drosophila visual system? Although the

question of how photoreceptor (R-cell) axon targeting is accomplished has received a

considerable amount of attention, the signals that are expressed and function in the optic

lobe target region to directly control R-cell axon targeting remain a mystery.
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R1-R6 photoreceptor axons project to the lamina and stop between precisely

arranged rows of glial cells. The best evidence that lamina glial cells are the intermediate

targets of R1-R6 axons is that in their absence R1-R6 axons extend past the lamina and

project into the underlying medulla region, the target area of R7 and R8 axons (Poeck et

al., 2001; Suh et al., 2002) (see Appendix for more details). These observations suggest

that the lamina glia provide a "stop signal" for R1-R6 axons. Alternatively, the lamina

glia could serve as a mechanical barrier that prevents R1-R6 axons from entering the

medulla. However, this seems unlikely, as it would be predicted to prevent R7 and R8

from entering medulla as well. Therefore, it seems probable that there are molecules

expressed on or secreted by the lamina glia that signal the R1-R6 axons to stop.

However, none of these molecules has been identified. This should emphasize the need

for directed screens that attempt to identify genes that are required in the visual system

glia for proper photoreceptor axon targeting. The identification of these genes would be

of considerable interest to the field.

Does differential cell adhesion contribute to visual system compartmentalization?

A commonly proposed mechanism for keeping cells of adjacent compartments separate is

differential cell adhesion (Garcia-Bellido, 1975; Irvine and Rauskolb, 2001). If

differential cell adhesion is playing a role in visual system compartmentalization, I would

expect to find cell adhesion molecules expressed in distinct regions of the visual system.

My analysis of the lamina/lobula boundary, in Chapter 2, identified Fasciclin III as one

such candidate. Fasciclin III is an integral membrane protein that mediates homophilic

cell adhesion and is often found as a component of septate junctions (Patel et al., 1987;

Snow et al., 1989). In the Drosophila visual system, Fasciclin III is preferentially

expressed on lobula neurons but not on cells of the lamina. It would therefore be

interesting to examinefasciclin III mutants to see if there are defects in

compartmentalization similar to slit mutants.

Integrins are a large family of transmembrane proteins that attach cells to the

extracellular matrix and are therefore important in cell adhesion and cell movement. In

Drosophila, integrin mutants were shown to genetically interact with slit mutants

{Stevens, 2002 #302}. Although the nature of the interaction is unknown it suggests that
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Slit and Integrins can work together to modulate cell motility. The cell adhesion protein,

N-cadherin, is expressed in the Drosophila visual system and is known to be important

for aspects of photoreceptor targeting (Lee et al., 2001). In vertebrate cells, Slit

activation of Robo results in the formation of a receptor complex between N-cadherin

and Robo. The interaction between Robo and N-cadherin appears to disrupt the

connection of N-cadherin to the cytoskeleton (Rhee et al., 2002). The result of this

interaction is to inhibit N-cad mediated cell adhesion. Whether these molecules disrupt

the lamina/lobula boundary in the Drosophila visual system remains to be determined.

Finally, the extracellular portion of the Robo receptor contains domains that are

commonly found in cell adhesion molecules, Ig (Immunoglobulin) domains and FNIII

(fibronectin type III) domains. This raises the possibility that the Robo proteins can

function both as cell adhesion molecules and as signaling transmembrane receptors.

Human Robo and Robo2 proteins have been shown to participate in homophilic and

heterophilic adhesion in vitro (Hivert et al., 2002).

Ptpmeg substrates and binding partners

Although the molecular mechanisms by which Ptpmeg regulates mushroom body

morphogenesis are unknown, the protein domains contained within Ptpmeg have well

characterized functions. Primarily, PDZ domains participate in protein-protein

interaction, FERM domains associate with transmembrane proteins and the plasma

membrane and PTP domains catalyze the removal of a phosphate group attached to a

tyrosine residue. Taken together, these domains suggest that at least one role of Ptpmeg

is to regulate phosphotyrosine signaling events at the cell surface.

Further characterization of Ptpmeg binding partners will be required to understand

precisely how and where Ptpmeg is required within mushroom body neurons. The

necessity of identifying the molecules that associate with Ptpmeg is clear and there are a

number of common strategies that could be employed to identify physical interactors.

Yeast two-hybrid screens have been used to identify PDZ-domain and FERM-domain

interacting proteins (Kussel-Andermann et al., 2000; Schneider et al., 1999) and could be

used to identify physical interaction with the Ptpmeg PDZ or FERM domain. Ptpmeg has

been successfully immunoprecipitated from S2 cell extracts after transfection with a
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Ptpmeg expression vector (L. Zipursky, personal communication). Hence

immunoprecipitation experiments could prove to be an effective tool for identifying

Ptpmeg partners.

"Substrate-trapping" has also been used successfully to identify the physiological

substrates of protein tyrosine phosphatases (Flint et al., 1997). Mutating an invariant

amino acid residue in the catalytic site creates a PTP domain that is able to bind but not

cleave phosphotyrosine. Interacting proteins can then be isolated and sequenced to reveal

their identity.

Mosaic Analysis

Although the initial characterization of Ptpmeg mutants revealed a requirement for its

function in mushroom body formation, a more rigorous phenotypic analysis is necessary

to understand the process that is being affected. The data presented in Chapter 3 are

consistent with a role for Ptpmeg in axon guidance and branching. However, we have

previously examined the phenotypes only at the level of the entire mushroom body. The

pathfinding ability of individual axons or small populations of axons has not been

determined. Furthermore, the branching and development of mushroom body dendrites,

which lie just beneath the cell bodies, could not be analyzed with the markers that we had

available to us. Examination of small mutant patches within an otherwise wild type or

heterozygous mushroom body will help resolve a number of questions that arose from

our work.

The MARCM (mosaic analysis with a repressible cell marker) system has been

used effectively to identify the birth order and branching pattern of neurons within the

mushroom body (Lee and Luo, 2001; Reuter et al., 2003). This technique can be used to

label single neurons or small groups of neurons in the brain. Using this method, we will

be able to selectively mark y, a'/l', and a/ neurons that are lacking Ptpmeg protein.

This will permit us to examine the behavior of individual axons that are homozygous

mutant for Ptpmeg and more thoroughly classify any observed defects in processes such

as axon growth, guidance or branching. This technique will also allow us to determine

precisely where and when Ptpmeg function is required within the mushroom body

neurons.
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APPENDIX

Axon targeting in the Drosophila visual system

The following review entitled, "Axon targeting in the Drosophila visual system" by

Timothy Tayler and Paul Garrity was published in the journal Current Opinion in

Neurobiology (2003 Feb: 13(1):90-95).

Abstract

The neuronal wiring of the Drosophila melanogaster visual system is constructed

through an intricate series of cell-cell interactions. Recent studies have identified some of

the gene regulatory and cytoskeletal signaling pathways responsible for the layer-specific

targeting of Drosophila photoreceptor axons. Target selection decisions of the R1-R6

subset of photoreceptor axons have been found to be influenced by the nuclear factors

Brakeless and Runt, and target selection decisions of the R7 subset of axons have been

found to require the cell-surface proteins Ptp69d, Lar and N-cadherin. A role for the

visual system glia in orienting photoreceptor axon outgrowth and target selection has also

been uncovered.

Introduction

The fruitfly Drosophila melanogaster has a compound eye comprising roughly 750

ommatidia, each of which contains eight uniquely identifiable photoreceptor neurons, or

'R-cells', numbered R1 to R8 [1]. The R-cells provide a favorable system for examining

axon targeting because the projections of R-cell axons are relatively simple and can be

easily visualized and genetically manipulated [2, 3, 4 and 5]. R-cells fall into three basic

classes: R1-R6, R7 and R8. R1-R6 extend axons to targets in the outermost optic

ganglion of the brain, the lamina, whereas R7 and R8 extend axons through the lamina to

targets in two distinct layers of the underlying optic ganglion, the medulla (Figure 1; [6])

precise layer-specific targeting provides a simple system for studying how axons choose

appropriate targets.
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In this review, we discuss recent progress towards understanding the molecular

mechanisms that control the projection of photoreceptor axons to their appropriate target

layers in the optic lobe.

R-cell axon extension into the optic stalk depends on retinal basal glia

The first stage of the journey of an R-cell axon involves its projection from the eye disc,

where the R-cells differentiate, into the brain. R-cell axons reach the brain by projecting

towards the posterior edge of the eye disc and through the optic stalk - a thin tube that

connects the eye disc to the brain. To enter the optic stalk, R-cell axons rely on glial cells,

known as retinal basal glia (RBG), which originate in the optic stalk and migrate into the

eye disc (Figure2a; 17 and 8]). If RBG entry into the eye disc is inhibited, R-cell axons

fail to enter the optic stalk (Figure 2b; [8]). Recent work suggests that the timing of RBG

migration into the eye disc is crucial for R-cell axon guidance.

RBG enter the eye disc as retinal patterning commences at the early third instar

larval phase with a wave of morphogenesis proceeding from posterior-to-anterior regions

of the eye disc (Figure 2a). At the leading edge of this retinal patterning wave is a

characteristic zone of cell shortening known as the 'morphogenetic furrow' 11]. The

incoming RBG also travel from posterior to anterior to fill the basal layer of the eye disc,

with the leading edge of the RBG trailing the advancing morphogenetic furrow (Figure

2a). The RBG are thus well positioned to provide a path for the R-cell axons to follow

into the optic stalk.

Hummel et al. 19] have shown that the RBG may provide such a path in

experiments that examined the effect of loss-of-function mutations in several genes,

including gish (encoding casein kinase I), that cause the RBG to enter the eye disc

prematurely before retinal differentiation. In these mutants, many RBG end up anterior to

the morphogenetic furrow and, when R-cell differentiation commences, R-cell axons

follow these ectopic RBG and project away from, rather than towards, the optic stalk

(Figure 2c). Thus, a trail of RBG leading toward the optic stalk is important for directing

R-cell axon growth into the optic stalk. The signals that RBG send the R-cell axons to

regulate their extension are not known. The signals that come from the eye disc to control
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RBG entry are also unknown, although the secreted proteins Hedgehog [9] and Dpp [10]

have been identified as potential candidates.

Targeting of R1-R6 axons to the lamina

Once R-cell axons enter the brain, they are faced with a choice between two target

regions: the lamina and the medulla (Figure 3a). What mechanisms cause the growth

cones of R1-R6 axons to stop in the lamina, but let the growth cones of R7 and R8 axons

pass through the lamina into the medulla? An important step towards answering this

question has come from genetic analysis of the nuclear protein Brakeless.

In the absence of Brakeless function, nearly all R1-R6 axons proceeded into the

medulla (Figure 3b; [11 and 12]). Brakeless controls the targeting of R1-R6 axons by

acting in the retina but, somewhat surprisingly, Brakeless protein is present in the nuclei

of all R-cell types. In addition, overexpression of Brakeless in all R-cells does not

retarget R7 or R8 axons to the lamina. Thus, Brakeless function in the eye is necessary,

but not sufficient, to target R-cell axons to the lamina.

The nuclear localization of Brakeless protein suggests that it has a role in gene

regulation. Consistent with this hypothesis, Kaminker et al. [13] find that expression of

the transcription regulator Runt is misregulated in brakeless mutants. Runt is normally

expressed only in R7 and R8, but in brakeless mutants Runt is also expressed in R2 and

R5. When Runt was ectopically expressed in R2 and R5 in otherwise wild-type animals, a

brakeless-like phenotype is observed, with R1-R6 axons projecting into the medulla.

Thus, Brakeless probably acts in concert with additional regulatory factors to restrict

Runt expression and to regulate R1-R6 axon target selection. But although Runt

misexpression may suffice to explain mistargeting in brakeless mutants, normally Runt

may act redundantly with other molecules to enforce target specificity because runt loss-

of-function mutants show no targeting defects. Although undoubtedly there are additional

factors to be identified, it is encouraging that the gene regulatory pathways that are

responsible for conferring R-cell subtype identity on their axons may be emerging.

Brakeless and Runt probably influence axon targeting by altering the composition

of the guidance machinery at the axon tip. Although no direct links have been made

among Brakeless, Runt and growth cone signaling molecules, two cell-surface proteins
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have been implicated in the decision of R1-R6 axons to stop at the lamina: the receptor-

like tyrosine phosphatases Ptp69d and Lar. In contrast to brakeless mutants, in which the

majority of R1-R6 axons are mistargeted into the medulla, in Ptp69d and Lar mutants a

minority of R1-R6 axons are mistargeted 14, 14 and 15]. This is consistent with these

receptor phosphatases having auxiliary or overlapping roles in R-cell axon targeting,

similar to their overlapping roles in motor axon targeting 1161. Like Brakeless, Ptp69d

and Lar have permissive rather than instructive roles in targeting, because the expression

of either protein in all types of R-cell does not retarget their axons to the lamina. The

molecular mechanism by which these tyrosine phosphatases influence R1-R6 axon target

selection is not known, and roles in controlling interactions among R-cell axons or

interactions between R-cell axons and their targets are both plausible.

Cytoplasmic signaling pathways that participate in stopping the R1-R6 growth

cones in the lamina have been identified but have not been linked to particular receptors

as yet. A subset of R1-R6 axons extends past the lamina in animals carrying loss-of-

function mutations in the Dock Src homology domain 2/Src homology domain 3

(SH2/SH3) adaptor protein [171 and the Misshapen serine/threonine kinase, a member of

the Ste20 family that associates with Dock 118 and 19]. Interestingly, overexpression of

Misshapen in R-cell axons causes R1-R6 axons to stop before reaching the lamina,

suggesting that activation of Misshapen at the lamina may be sufficient to stop RI-R6

axons at the lamina 181. Mutations affecting other cytoplasmic signaling molecules

required for R-cell axon navigation have been identified [20, 21 and 22] but for at least

two genes, Pak and Trio, loss of function does not detectably alter selection of the R1-R6

target layer [20 and 21 , which is consistent with the differential use of distinct

cytoplasmic signaling pathways in different R-cell axon guidance decisions.

Visual system glia regulate R-cell axon targeting

The targeting of R1-R6, R7 and R8 axons to different layers in the visual system

suggests that there are molecular labels or signals in the target that allow these layers to

be distinguished. The identity of guidance cues sent by the target are unknown, however,

it had been suggested that glial cells in the lamina might be an important source of

targeting information [23]. Although the R1-R6 axons eventually form synapses with
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lamina neurons, R1-R6 growth cones initially stop between two layers of lamina glial

cells: the epithelial glia and marginal glia (Figure 3a).

In fact, lamina neurons have been found to be dispensable for the initial stages of

R1-R6 targeting. In hhl mutant animals, no lamina neurons form but R1-R6 axons are

targeted normally [24 and 25]. By contrast, mutations that disrupt the positioning of

lamina glia severely disrupt R1-R6 targeting: both Poeck et al. [25] and Suh et al. [26]

found that large numbers of R1-R6 axons projected through the lamina into the medulla

when lamina glia were missing or reduced in number in nonstop and jabl/csn5 mutants

(Figure 3c). A key goal for the future is to understand how these glia allow the R1-R6

axons to stop selectively in the lamina.

Targeting of R7 and R8 axons to distinct layers of the medulla

Both R7 and R8 axons project through the lamina into the medulla, however, each

class of axon is targeted to a distinct layer within the medulla: R7 axons synapse with

targets in the M6 layer, whereas R8 axons recognize targets in the more superficial M3

layer (Figure 4a; [27]). Recent work has identified three cell-surface proteins necessary

for proper R7 axon targeting, the receptor tyrosine phosphatases Ptp69d and Lar (the

same receptors required for R1-R6 layer-specific targeting) and N-Cadherin [4, 5, 15 and

28]. In animals with mutations in any of these genes, a large percentage of R7 axons stop

short of their normal targets and project to M3 - the layer to which R8 axons are

targeted.

Analysis of the effects of Lar mutations on R7 axon targeting has provided a

detailed view of the R7 targeting process (Figure 4b; [15]). In Lar mutants, R7 axons

initially project beyond the tip of the R8 axons; however, the Lar mutant R7 growth

cones eventually retract to rejoin the R8 growth cones in the M3 layer. Thus, Lar mutant

R7 growth cones may transiently contact the target but fail to sustain the interaction.

The similarity of the R7 axon targeting defects in animals with mutations in Lar,

Ptp69d and N-Cadherin suggests that these genes may function together. Clandinin et al.

[15] have proposed that N-Cadherin mediates R7 axon adhesion to the target and that Lar

positively regulates N-Cadherin signaling, possibly by dephosphorylating catenin - a

downstream effector of N-Cadherin and a target of receptor phosphatase regulation in

138



vertebrates 129 and 30]. Maurel-Zaffran et al. 1281, who independently identified the R7

targeting defect of Lar mutants, showed that Trio, a Rho family guanine nucleotide

exchange factor, and Enabled, a regulator of actin dynamics, show genetic interactions

with Lar. This work implicates additional pathways through which Lar may regulate the

targeting of R7 axons to the medulla.

Conclusions

A promising start toward the dissection of R-cell axon target selection has been made. A

major challenge for the future is to explain the high degree of target-layer discrimination

that R-cell growth cones show and, in particular, to characterize the target recognition

receptors carried by the R-cell axons and the molecules produced by the targets that they

recognize. The molecules now known to regulate target-layer selection by R-cell axons

- Ptp69d, Lar and N-Cadherin - are necessary but not sufficient to target an R-cell

axon to a particular layer. Whether these molecules are part of a combinatorial code that

targets an axon to a particular layer or whether they are general mediators of growth cone

navigation that permit as yet unidentified specificity receptors to do their jobs is an

important issue for the future.

Another challenge for the future is the elucidation of the mechanisms that mediate

R-cell synapse formation 16 and 31]. The initial layer-specific targeting decisions

discussed in this review are essential for proper connectivity but are just the first step in

assembling the circuitry of the visual system. In the lamina, for example, the R1-R6

axons undergo complex, highly stereotyped rearrangements later in development to

contact their appropriate lamina neuron targets 132, 33 and 34]. The establishment of

these connections requires some of the molecules discussed above, such as Lar and N-

Cadherin [5 and 15], but the molecular dissection of this stage of visual system

development is only just beginning [35].

Acknowledgements

We thank Linda Huang for her helpful comments. Work in the authors' laboratory is

supported by the National Eye Institute, the Raymond and Beverly Sackler Foundation,

and the McKnight Foundation.

139



References

1. Wolff T, Ready DF: Pattern formation in the Drosophila retina. In The Development
of Drosophila melanogaster. Edited by Bate M, Martinez-Arias A. Cold Spring Harbor
Press; 1993:1277-1325.

2. Pignoni F, Hu B, Zavitz KH, Xiao J, Garrity PA, Zipursky SL: The eye-specification
proteins So and Eya form a complex and regulate multiple steps in Drosophila eye
development. [published erratum appears in Cell 1998 Feb 20;92(4):following 585]. Cell
1997, 91:881-891.

3. R.S. Stowers and T.L. Schwarz, A genetic method for generating Drosophila eyes
composed exclusively of mitotic clones of a single genotype. Genetics 152 (1999), pp.
1631-1639.

4. T.P. Newsome, B. Asling and B.J. Dickson, Analysis of Drosophila photoreceptor
axon guidance in eye-specific mosaics. Development 127 (2000), pp. 851-860.

5. C.H. Lee, T. Herman, T.R. Clandinin, R. Lee and S.L. Zipursky, N-Cadherin regulates
target specificity in the Drosophila visual system. Neuron 30 (2001), pp. 437-450.

6. Meinertzhagen IA, Hanson TE: The development of the optic lobe. In The
Development of Drosophila melanogaster. Edited by Bate M, Martinez-Arias A. Cold
Spring Harbor Press; 1993:1363-1491.

7. K.W. Choi and S. Benzer, Migration of glia along photoreceptor axons in the
developing Drosophila eye. Neuron 12 (1994), pp. 423-431.

8. R. Rangarajan, Q. Gong and U. Gaul, Migration and function of glia in the developing
Drosophila eye. Development 126 (1999), pp. 3285-3292.

9. T. Hummel, S. Attix, D. Gunning and S.L. Zipursky, Temporal control of glial cell
migration in the Drosophila eye requires gilgamesh, hedgehog, and eye specification
genes. Neuron 33 (2002), pp. 193-203.

10. R. Rangarajan, H. Courvoisier and U. Gaul, Dpp and Hedgehog mediate neuron-glia
interactions in Drosophila eye development by promoting the proliferation and motility
of subretinal glia. Mech. Dev. 108 (2001), pp. 93-103.

11. Y. Rao, P. Pang, W. Ruan, D. Gunning and S.L. Zipursky, brakeless is required for
photoreceptor growth-cone targeting in Drosophila. Proc. Natl. Acad. Sci. USA 97
(2000), pp. 5966-5971.

140



12. K. Senti, K. Keleman, F. Eisenhaber and B.J. Dickson, brakeless is required for
lamina targeting of R1-R6 axons in the Drosophila visual system. Development 127
(2000), pp. 2291-2301.

13. J.S. Kaminker, J. Canon, I. Salecker and U. Banerjee, Control of photoreceptor axon
target choice by transcriptional repression of Runt. Nat. Neurosci. 5 (2002), pp. 746-750.

14. P.A. Garrity, C.H. Lee, I. Salecker, H.C. Robertson, C.J. Desai, K. Zinn and S.L.
Zipursky, Retinal axon target selection in Drosophila is regulated by a receptor protein
tyrosine phosphatase. Neuron 22 (1999), pp. 707-717. SummaryPlus I Full Text + Links I
PDF (546 K)

15. T.R. Clandinin, C.H. Lee, T. Herman, R.C. Lee, A.Y. Yang, S. Ovasapyan and S.L.
Zipursky, Drosophila LAR regulates R1-R6 and R7 target specificity in the visual
system. Neuron 32 (2001), pp. 237-248.

16. C.J. Desai, N.X. Krueger, H. Saito and K. Zinn, Competition and cooperation among
receptor tyrosine phosphatases control motoneuron growth cone guidance in Drosophila.
Development 124 (1997), pp. 1941-1952.

17. P.A. Garrity, Y. Rao, I. Salecker, J. McGlade, T. Pawson and S.L. Zipursky,
Drosophila photoreceptor axon guidance and targeting requires the Dreadlocks SH2/SH3
adapter protein. Cell 85 (1996), pp. 639-650.

18. W. Ruan, P. Pang and Y. Rao, The SH2/SH3 adaptor protein dock interacts with the
Ste20-like kinase misshapen in controlling growth cone motility. Neuron 24 (1999), pp.
595-605.

19. Y.C. Su, C. Maurel-Zaffran, J.E. Treisman and E.Y. Skolnik, The Ste20 kinase
misshapen regulates both photoreceptor axon targeting and dorsal closure, acting
downstream of distinct signals. Mol. Cell. Biol. 20 (2000), pp. 4736-4744.

20. H. Hing, J. Xiao, N. Harden, L. Lim and S.L. Zipursky, Pak functions downstream of
Dock to regulate photoreceptor axon guidance in Drosophila. Cell 97 (1999), pp.
853-863.

21. T.P. Newsome, S. Schmidt, G. Dietzl, K. Keleman, B. Asling, A. Debant and B.J.
Dickson, Trio combines with dock to regulate Pak activity during photoreceptor axon
pathfinding in Drosophila. Cell 101 (2000), pp. 283-294.

22. T. Hummel, K. Leifker and C. Klambt, The Drosophila HEM-2/NAP1 homolog
KETTE controls axonal pathfinding and cytoskeletal organization. Genes Dev. 14 (2000),
pp. 863-873.

23. S.E. Perez and H. Steller, Migration of glial cells into retinal axon target field in
Drosophila melanogaster. J. Neurobiol. 30 (1996), pp. 359-373.

141



24. Z. Huang and S. Kunes, Hedgehog, transmitted along retinal axons, triggers
neurogenesis in the developing visual centers of the Drosophila brain. Cell 86 (1996), pp.
411-422.

25. B. Poeck, S. Fischer, D. Gunning, S.L. Zipursky and I. Salecker, Glial cells mediate
target layer selection of retinal axons in the developing visual system of Drosophila.
Neuron 29 (2001), pp. 99-113.

26. G.S. Suh, B. Poeck, T. Chouard, E. Oron, D. Segal, D.A. Chamovitz and S.L.
Zipursky, Drosophila JAB 1/CSN5 acts in photoreceptor cells to induce glial cells.
Neuron 33 (2002), pp. 35-46.

27. K.F. Fischbach and A.P.M. Dittrich, The optic lobe of Drosophila melanogaster. I. A
Golgi analysis of wild-type structure. Cell Tissue Res. 258 (1989), pp. 441-475.

28. C. Maurel-Zaffran, T. Suzuki, G. Gahmon, J.E. Treisman and B.J. Dickson, Cell-
autonomous and -nonautonomous functions of LAR in R7 photoreceptor axon targeting.
Neuron 32 (2001), pp. 225-235.

29. R.M. Kypta, H. Su and L.F. Reichardt, Association between a transmembrane protein
tyrosine phosphatase and the cadherin-catenin complex. J. Cell. Biol. 134 (1996), pp.
1519-1529.

30. S.M. Brady-Kalnay, T. Mourton, J.P. Nixon, G.E. Pietz, M. Kinch, H. Chen, R.
Brackenbury, D.L. Rimm, R.L. Del Vecchio and N.K. Tonks, Dynamic interaction of
PTP with multiple cadherins in vivo. J. Cell. Biol. 141 (1998), pp. 287-296.

31. I.A. Meinertzhagen and K.E. Sorra, Synaptic organization in the fly's optic lamina:
few cells, many synapses and divergent microcircuits. Prog. Brain Res. 131 (2001), pp.
53-69.

32. 0. Trujillo-Cenoz and J. Melamed, Compound eye of dipterans: anatomical basis for
integration - an electron microscope study. J. Ultrastruct. Res. 16 (1966), pp. 395-398.

33. V. Braitenberg, Patterns of projection in the visual system of the fly. I. Retina-lamina
projections. Exp. Brain Res. 3 (1967), pp. 271-298.

34. I.A. Meinertzhagen, Wiring the fly's eye. Neuron 28 (2000), pp. 310-313.

35. T.R. Clandinin and S.L. Zipursky, Afferent growth cone interactions control synaptic
specificity in the Drosophila visual system. Neuron 28 (2000), pp. 427-436.

142



FIGURES

Figure 1. Projection of R-cell axons to targets in the optic lobe. A single ommatidium

containing eight R-cell neurons is shown. The Drosophila adult eye contains about 750

ommatidia. R-cell axons project through the optic stalk into the optic lobe, where they

contact targets in two ganglia: the lamina and the medulla. The R1-R6 axons (green) stop

at their target layer in the lamina, whereas the R7 axon (red) and the R8 axon (blue)

continue into the underlying medulla, where they stop in two distinct layers.

Figure 2. R-cell axons (green) rely on glial cells (orange) to project into the optic stalk

and enter the brain. These glial cells, known as the retinal basal glia (RBG), originate in

the optic stalk and migrate into the eye disc. (a) In wild type, glia enter the eye disc as R-

cell development begins, forming a trail extending from the eye disc to the optic lobe.

The morphogenetic furrow marks the leading edge of R-cell differentiation as R-cell

development proceeds from posterior to anterior across the eye disc (from bottom to top

in this figure). (b) When glia are unable to enter the eye disc, due to expression of a

dominant-negative form of the small GTPase Ras, R-cell axons fail to enter the optic

stalk. (c) In gish mutants, glia enter the eye disc before the initiation of R-cell

differentiation and migrate to ectopic locations anterior of the morphogenetic furrow.

Many R-cell axons follow this ectopic glial trail and project away from the optic stalk

and the brain, suggesting that glial cells are important for orienting early stages of R-cell

axon outgrowth.

Figure 3. R1-R6 axon targeting to the lamina. (a) In wild type, the R1-R6 axons (green)

stop between layers of glial cells (orange), whereas the R7 axons (not shown) and the R8

axons (blue) project through these glia into the medulla. These layers of glia are referred

to as the epithelial glia (eg), the marginal glia (mg) and the medulla glia (me). (b) In

brakeless mutants, the glia assume their normal positions, but the R1-R6 axons project

through them to enter the medulla. (c) In nonstop orjabl/csn5 mutants, the number of
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glia at the lamina/medulla interface is reduced and the glia are often disorganized. In the

absence of a properly patterned target, the R1-R6 axons project into the medulla.

Figure 4. R7 and R8 axons are targeted to distinct layers of the medulla. (a) In wild type,

the R8 axon (blue) from each ommatidium enters the target first. The R7 axon (red)

projects along the R8 axon and initially stops just beneath the R8 axon. The distance

between the R7 and R8 growth cones increases during pupal development as additional

fibers enter the medulla. In the adult, the R8 axon contacts targets in the M3 layer of the

medulla, whereas the R7 axon contacts targets in the M6 layer. (b) In Lar mutants, the R7

axon initially extends beyond the R8 axon; however, the R7 growth cone is

morphologically abnormal. The R7 axon subsequently withdraws to the position of the

R8 axon tip as development proceeds, eventually terminating in the M3 layer.
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