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Abstract

The medical field, and surgeons in particular, are turning to engineers to develop

systems that help them learn their craft better. Mannequin-based systems, animal
labs and surgery on cadavers each have drawbacks that could be addressed through
realistic computer-based surgical simulation systems. To generate a simulation that

includes both tactile/haptic and visual feedback, one must know what the material
properties of tissue are, so that a finite element or other model can generate the

proper predictions for interactions between surgical instruments and tissue.

This thesis presents the design, construction, characterization, and use of a mini-

mally invasive surgical instrument designed to measure the linear visco-elastic prop-

erties of solid organs. The Tissue Material Property Sampling Tool, or TeMPeST
1-D, applies a small amplitude vibration normal to the surface of an organ such as
liver or spleen, and records the applied force and displacement. It has a range of
motion of up to 1mm, and can apply up to 300mN force with a 5mm right circular
indenter. The open loop bandwidth of the system is approximately 100Hz, which is

greater than the bandwidth of both the human visual and motor control systems.

The relationships between indentation force and displacement and material prop-
erties such as the elastic modulus of tissue are presented, and models are developed
that show the expected response to a standard tissue model. Characterization and
calibration tests demonstrate the response of the prototype components. Experi-
ments performed on spring and mass elements and on silicone gel samples, which
mimic tissue response, show that the TeMPeST 1-D can accurately measure their
force-displacement responses.

The TeMPeST 1-D and its data acquisition system are intended to be portable,
to be easily transported to and used in an operating room. The system was used
in proof-of-concept experiments performed on live pigs; an example of the measured
properties of porcine liver is presented.

The TeMPeST 1-D is the first in a series of instruments that will be developed to

support the generation of a comprehensive atlas of tissue material properties.



Thesis Supervisor: Dr. J. Kenneth Salisbury
Title: Principal Research Scientist, Mechanical Engineering, MIT
Professor, Departments of Computer Science and Surgery, Stanford

Thesis Committee:

Dr. J. Kenneth Salisbury, Chairperson
Principal Research Scientist, Mechanical Engineering, MIT
Professor, Departments of Computer Science and Surgery, Stanford

Dr. Mandayam A. Srinivasan
Principal Research Scientist, Department of Mechanical Engineering, MIT

Dr. David L. Trumper
Associate Professor of Mechanical Engineering, MIT



Acknowledgments

This work was supported in part by:

the Center for Innovative Minimally Invasive Therapy (CIMIT) at Massachusetts

General Hospital (MGH), with funding from the Department of the Army, under con-

tract number DAMD12-99-2-9001. The views and opinions expressed do not neces-

sarily reflect the position or the policy of the government, and no official endorsement

should be inferred;

a National Science and Engineering Research Council (NSERC) of Canada PGS-B

scholarship.

There are probably more people than I can say who have helped me to complete

this work and keep me on track. In particular, I'd like to thank:

my committee members, Prof. Ken Salisbury, Dr. Mandayam Srinivasan and

Prof. Dave Trumper, for their support, advice, and good ideas, and especially for

helping to define a realistic scope for this research;

Dr. Karen Moodie, Prof. Joe Rosen and Dr. William Laycock of Dartmouth

Medical School and Onux Medical, Inc. for their assistance in gaining access to the

Dartmouth Animal Resources Center pigs; and Karen again (especially for help with

the paperwork), Greg Burke and Sam Weinstein for taking care of the pigs while my

data was being acquired;

Joe Samosky (for being amazed with the work) and Rachel Oppenheimer of Dr.

Martha Gray's cartilage biomechanics and imaging laboratory at the Harvard Insti-

tutes of Medicine, for assistance in measuring the properties of my standard materials;

Dr. Robert Howe of Harvard University and Dr. Parris Wellman for the idea for

and data on the silicone gel that I used as a prelude to real tissue;

Professors Chris Scott and Anne Mayes, and You-Yeon Won, of the Department

of Material Science and Engineering, for providing access to their materials testing

apparatus and help in measuring the properties of the standard gels;

Dr. David Schloerb for assistance with the MIT Laboratory for Human and

Machine Haptics tactile stimulator.



Dr. Steven Dawson and Dr. Stephane Cotin of the Simulation Group of CIMIT

at MGH for their support and interest throughout the research, and CIMIT for the

funding that supported it;

Ela, Jesse, Arrin, Andrew and Brian and the other Haptics Lab members who've

passed through and made the stay more enjoyable - movie night anyone?

Ron Wiken of the Artificial Intelligence Lab, for advice, assistance, and keeping

the shop facilities in such great shape - it's been a joy to build stuff here;

all of the other people whose paths I've crossed and have helped me get just that

much farther;

and last, but certainly not least, my parents, Peter and Erika, my sisters, Susan

and Andrea, and my girlfriend, Rene, who have seen me through the last four and a

half years with love and understanding - I'm finally done!

"0 frabjous day! Callooh! Callay!"

He chortled in his joy.

Lewis Carroll, Jabberwocky



Contents

1 Introduction

2 Background

2.1 Basics of visco-elastic behavior . . . . . . . . . . . . . . . . . . . . . .

2.2 G eom etric Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2.1 Semi-infinite body approximation . . . . . . . . . . . . . . . .

2.3 Tissue property review . . . . . . . . . . . . . . . . . . . . . . . . . .

2.4 Tissue property measurement techniques . . . . . . . . . . . . . . . .

2.4.1 Non-invasive tissue property measurement techniques . . . . .

2.4.2 Invasive tissue property measurement techniques . . . . . . . .

3 TeMPeST 1-D

3.1 Design considerations for minimally invasive linear property measure-

m en t . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2 Actuator options: linear actuators . . . . . . . . . . . . .

3.2.1 Voice coil actuators and solenoids . . . . . . . . .

3.2.2 Piezo-electric actuators . . . . . . . . . . . . . . .

3.3 Position sensor options . . . . . . . . . . . . . . . . . . .

3.3.1 Optical encoders . . . . . . . . . . . . . . . . . .

3.3.2 Laser interferometry . . . . . . . . . . . . . . . .

3.3.3 Linear variable differential transformers (LVDTs)

3.4 Force sensor options . . . . . . . . . . . . . . . . . . . .

3.5 System layout options . . . . . . . . . . . . . . . . . . .

7

21

29

30

35

38

42

44

44

47

53

. . . . . . . 54

. . . . . . . 56

. . . . . . . 56

. . . . . . . 58

. . . . . . . 59

. . . . . . . 60

. . . . . . . 60

. . . . . . . 62

. . . . . . . 62

. . . . . . . 64



3.6 TeMPeST 1-D design details . . . . . . . . .

3.6.1 Voice coil and suspension design . . .

3.6.2 LVDT . . . . . . . . . . . . . . . . .

3.6.3 Force sensor . . . . . . . . . . . . . .

3.6.4 TeMPeST 1-D electronics . . . . . .

3.6.5 Flexible arm and fine positioning cam

4 System modeling and characterization

4.1 TeMPeST 1-D System Modeling . . .

4.1.1 Voice coil actuator model . .

4.1.2 Tissue contact I . . . . . . . .

4.1.3 TeMPeST 1-D in free motion

4.1.4 Tissue contact II . . . . . . . .

4.2 TeMPeST 1-D Characterization . . . .

4.2.1 Warm-up characteristics . . . .

4.2.2 LVDT calibration . . . . . . . .

4.2.3 Force sensor calibration . . . .

4.2.4 Voice coil calibration . . . . . .

4.2.5

4.2.6

Position sensor frequency response

Force sensor frequency response .

4.2.7 Flexure stiffness; actuator effective damping and mass .

5 GUI and controller development

5.1 TlDgui: graphical user interface for the

TeM PeST 1-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.1.1 Waveform type selection . . . . . . . . . . . . . . . . . . . . .

5.1.2 Sampling and waveform parameters . . . . . . . . . . . . . . .

5.1.3 Function buttons . . . . . . . . . . . . . . . . . . . . . . . . .

5.2 T1D.exe: real-time control and data acquisition for the TeMPeST 1-D

8

66

69

74

75

75

80

83

83

84

84

88

89

92

92

93

95

95

97

98

101

105

105

106

108

109

111



6 Validation Tests and Tissue Property Measurements

6.1 Testing on Mechanical Springs . . . . .

6.1.1 Spring testing apparatus . . . .

6.2 Testing on Inertial Load . . . . . . . .

6.2.1 Inertial load testing method . .

6.3 Testing on Silicone Gel Samples . . . .

6.3.1 ARES standard testing of gels .

6.3.2 Cartilage press standard testing

6.3.3 TeMPeST 1-D testing of gels .

6.4 In Vivo Solid Organ Measurements .

6.4.1 Laparoscopic testing . . . . . .

6.4.2 Open surgical testing . . . . . .

6.4.3 In vivo solid organ test results .

. . . . . . . . . . . . . . . . . 114

. . . . . . . . . . . . . . . . . 115

. . . . . . . . . . . . . . . . . 119

. . . . . . . . . . . . . . . . . 119

. . . . . . . . . . . . . . . . 121

. . . . . . . . . . . . . . . 122

of gels . . . . . . . . . . . . . 124

. . . . . . . . . . . . . . 126

. . . . . . . . . . . . . . . 128

. . . . . . . . . . . . . . . 129

. . . . . . . . . . . . . . . . 131

. . . . . . . . . . . . . . . . . 131

7 Contributions, Discussion and Further Directions

7.1 Sum m ary . . . . . . . . . . . . . . . . . . . . . . .

7.2 Instrument and measurement comments . . . . . .

7.3 Future work . . . . . . . . . . . . . . . . . . . . . .

A Nomenclature

B Flexure masks and etch sequence

C TeMPeST 3-D

D TlDgui

9

135

135

137

142

145

147

151

155

113



10



List of Figures

1-1 Tissue Material Property Sampling Tool. . . . . . . . . . . . . . . . . 24

1-2 TeMPeST 1-D sensor/actuator package . . . . . . . . . . . . . . . . . 25

1-3 Laparoscope view of TeMPeST 1-D testing liver response. . . . . . . . 26

2-1 (a) Maxwell and (b) Voigt body lumped parameter models . . . . . . 30

2-2 Maxwell and Voigt body responses to step loads and displacements.

Note continuous change in displacement of Maxwell body to step load,

and impulse force response of Voigt body to step displacement. . . . . 31

2-3 K elvin body. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2-4 Kelvin body responses to step load and displacement. . . . . . . . . . 33

2-5 Kelvin body Bode plots. . . . . . . . . . . . . . . . . . . . . . . . . . 33

2-6 Prismatic element under simple loading and equivalent spring model. 36

2-7 Equivalent magnitude-phase and complex modulus representations of

visco-elastic responses. y-axes are linear scale. Derived from Kelvin

body with k, = 10k 2, b= k2 1s, unit dimensions. . . . . . . . . . . . 38

2-8 Decreasing indentation magnitude (Z -+ Z -+ z) on a body with char-

acteristic dimension, R, begins to approximate indentation of a semi-

infinite body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2-9 Elastography conceptual diagram: (a) undeformed soft material with

hard inclusion, (b) deformed geometry under loading, (c) strain field. 45

2-10 Dundee single point compliance probe [6] . . . . . . . . . . . . . . . . 49

11



2-11 Piezo-tube-based anisotropic stiffness measurement device [27]. (1) is

the piezo-electric tube, and (15) includes part of the electronics to drive

the tube at resonance. ...... .......................... 50

2-12 Force reflecting endoscopic grasper [15] . . . . . . . . . . . . . . . . . 51

2-13 Bicchi device [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3-1 Force on current carrying conductor in magnetic field: (a) single con-

ductor (b) coil in radial magnetic field . . . . . . . . . . . . . . . . . 57

3-2 Moving-coil voice coil designs: (a) radially magnetized ring magnet, (b)

flux focusing design, (c) bonded windings design (coil is load-bearing) 58

3-3 Piezo-electric actuator design examples: stack, tube and bi-morph. . . 60

3-4 Optical encoder operation. Spacing between light sources/detectors is

some whole multiple of the grating spacing (n -A), plus A/4 . . . . . . 61

3-5 Laser interferometry component arrangement (simplified) . . . . . . . 61

3-6 LVDT component arrangement and operation . . . . . . . . . . . . . 62

3-7 Examples of force sensor designs: (a) micro-machined piezo-resistive

diaphragm, (b) piezo-electric sensors [21], (c) custom designed sensor

with silicon strain gages . . . . . . . . . . . . . . . . . . . . . . . . . 64

3-8 System layout options: (a) collocated sensors/actuator, (b) external

sensors/actuator, (c) external actuator/internal sensors . . . . . . . . 65

3-9 TeMPeST 1-D sensor/actuator package fully assembled (left) and mov-

ing core alone, mounted on flexures (right) . . . . . . . . . . . . . . . 67

3-10 Sensor/actuator components. . . . . . . . . . . . . . . . . . . . . . . 67

3-11 TeMPeST 1-D system components . . . . . . . . . . . . . . . . . . . 68

3-12 Separable components so that sensor/actuator package can be sterilized. 69

3-13 Typical FEMM flux density/field line plot. . . . . . . . . . . . . . . . 71

3-14 Force constant vs. position from model . . . . . . . . . . . . . . . . . 72

3-15 Flexural suspension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3-16 Single flexure FEA output: spring constant = 105N/m. For applied

force = 0.05N, z=0.48mm, maximum Von Mises stress = 132.4MPa . 74

12



3-17 Modified force sensor components . . . . . . . . . . . . . . . . . . . . 76

3-18 TeMPeST 1-D body, housing force sensor balance and instrumentation

amplifier circuits, and the current source for the voice coil . . . . . . 76

3-19 Direct voltage to current amplifier circuit . . . . . . . . . . . . . . . . 78

3-20 Force sensor, balance and instrumentation amplifier circuit. . . . . . . 79

3-21 Modified Mediflex laparoscope/instrument holder and fine positioning

cam. The cam provides fine position control over a range of 0.5" . . . 80

3-22 Details of fine positioning cam geometry. Pins on TeMPeST 1-D shaft

follow cam in disk mounted to Mediflex arm. In this configuration,

clockwise rotation about the axis generates linear motion of the shaft

towards the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4-1 Second order model of voice coil actuator in free motion. . . . . . . . 85

4-2 Position and measured force of voice coil actuator in contact with un-

known (Kelvin) tissue. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4-3 Free space tip response for TeMPeST 1-D on Mediflex arm, with base

motion (Xb/Fil) shown for comparison. . . . . . . . . . . . . . . . . 89

4-4 Full TeMPeST 1-D in contact with Kelvin body (top); magnitude and

phase of measured force, position and base motion (middle); magnitude

and phase of Xlvdt/Fmeas and ideal Kelvin response (bottom). .... 91

4-5 Measurements of compliance of mechanical springs made with TeMPeST

1-D fixed in vice and mounted on Mediflex arm . . . . . . . . . . . . 92

4-6 Initial zero-force/zero-displacement warm-up response of position and

force sensors. Force sensor 5% settling time is approx. 12 min. ..... 93

4-7 Calibration jig for LVDT, as well as testing fixed displacement tests of

voice coil and force sensor. . . . . . . . . . . . . . . . . . . . . . . .. 94

4-8 Calibration curves for LVDT and position constant. Voltage offset can

be adjusted by the signal conditioner, but only slope is needed for

frequency domain analysis. N=200 for each position. . . . . . . . . . 94

13



4-9 Force sensor final calibration method: standard masses loaded on tip

of inverted TeMPeST 1-D. . . . . . . . . . . . . . . . . . . . . . . . . 96

4-10 Force sensor calibration data. Voltage offset can be adjusted with the

bridge balance circuit, but only slope is needed for frequency domain

analysis. N=200 for each force value. . . . . . . . . . . . . . . . . . . 96

4-11 Force constant vs. axial position for voice coil. This is equivalent to

the torque constant for a motor. . . . . . . . . . . . . . . . . . . . . . 97

4-12 LVDT frequency response. Flat response to 500Hz, gain and phase

response consistent with transport lag due to sequential analog mea-

surem ents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4-13 Force sensor frequency response (magnitude). . . . . . . . . . . . . . 100

4-14 Static, quasi-static and dynamic force-displacement response for the

indenter. Ideal second order response overlaid over data. . . . . . . . 103

5-1 Control panel for graphical user interface. Includes controls for wave-

form type, sampling rate and duration, waveform amplitude, offset and

frequency or frequency range. ..... ...................... 106

5-2 Types of waveforms supported by the TlDgui . . . . . . . . . . . . . 107

5-3 FFTs of linear and exponential chirp signals. All signals defined with

1Hz and 100Hz initial and final frequencies . . . . . . . . . . . . . . . 108

6-1 Testing of spring array with CBIL cartilage press (left) and TeMPeST

1-D (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6-2 Spring testing array force-displacement response using CBIL cartilage

press. Hysteretic 4-spring data caused by lags between force and posi-

tion sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6-3 Spring array stiffness under 0.1Hz sinusoidal excitation using CBIL car-

tilage press (CP: +) and TeMPeST 1-D (TID: o), and chirp excitation

with TeM PeST 1-D. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6-4 Test arrangement for inertial load experiments. . . . . . . . . . . . . 120

6-5 Bode plots of response of inertial loads . . . . . . . . . . . . . . . . . 120

14



6-6 Parallel plate shear modulus testing geometry . . . . . . . . . . . . . 122

6-7 RTV silicone solidifying in molds. . . . . . . . . . . . . . . . . . . . . 123

6-8 Magnitude and phase of shear modulus (G) (n.b. modulus is inverse

of compliance, hence positive phase) . . . . . . . . . . . . . . . . . . . 124

6-9 CBIL cartilage press being used to test silicone gel sample. . . . . . . 125

6-10 Elastic modulus of RTV samples. Includes TeMPeST 1-D chirp, paral-

lel plate rheometer (ARES), cartilage press (CP) data and TeMPeST

1-D fixed frequency sinusoidal response (30:70 sample only). . . . . . 127

6-11 Exterior view of operating field for laparoscopic sessions . . . . . . . . 130

6-12 Typical view of TeMPeST 1-D approaching contact with liver . . . . 131

6-13 View of TeMPeST 1-D used during open surgical measurements of spleen 132

6-14 Non-parametric elastic modulus of liver. Spike at 60Hz is due to elec-

trical interference in force signal. . . . . . . . . . . . . . . . . . . . . 134

7-1 Pivot-mounted force sensors with torsional actuator, riding on air-

bearing supported carriage (left) deployable, surface mounted sensor/actuator

package (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7-2 Concept for large-scale, 3-D motion force-displacement probe, the TeMPeST

3-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

B-I A completed sheet of flexures. The stiffest flexure is at the top left, the

softest at the lower right. Flexures forming the fixed-fixed cantilever

beams of a 1-axis force sensor occupy the bottom row. . . . . . . . . 148

B-2 Front and back sides of typical suspension and force sensor flexures,

post-etching (from lower left corner of flexure sheet in figure B-1).

Front side shows boss surfaces for clamping to TeMPeST 1-D body

and core, back side shows cantilever and break-out tabs. . . . . . . . 148

B-3 Complete set of masks, used to generate a series of flexures with dif-

ferent stiffnesses and cantilever beam elements for 1-D force sensor. . 149

B-4 Photomask and etch sequence for generating flexures . . . . . . . . . 149

15



B-5 CAD model of the etched flexures. Note thinner cantilever and break-

out tab regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

C-1 An early conceptual model for the TeMPeST 3-D. Apart from computer

control, this model demonstrated an early concept for the cable drive,

with motions in the pitch, yaw and thrust directions. . . . . . . . . . 151

C-2 A more fully fleshed out version, including motors at the base, a uni-

versal joint near the tip, and a 3-axis force sensor behind the blunt

probe. Position sensing in this version is done with the encoders on

the motors, but redundant sensors closer to the tip would improve

accuracy.......................................... 152

C-3 Tip design for the TeMPeST 3-D. A universal joint permits motion in

pitch and yaw, but prevents rotation of the tip about the shaft. Linear

bearings in the sleeve support the axial motion of the tip. A novel 3-

axis force sensor (pitch- and yaw-moment, and axial thrust) measures

the reaction forces of the tissue. . . . . . . . . . . . . . . . . . . . . . 152

C-4 Cable drive system for the TeMPeST 3-D. The top motor controls pitch

of the probe, the side motors are redundant in controlling yaw, and all

together they move the central carriage along the shaft of the tool. Not

shown are linear bearings which would support the shaft at the upper

right, and lower left, as well as at the tip of the tube (see figure C-2). 153

C-5 TeMPeST-power: the interface box underneath the docking station

houses a power source, PWM current amplifiers and interface circuitry

to support the TeMPeST 1-D, the TeMPeST 3-D, and potentially other

devices to be developed later. . . . . . . . . . . . . . . . . . . . . . . 153

D-1 The TeMPeST 1-D graphical user interface. . . . . . . . . . . . . . . 156

D-2 Instantaneous frequency of chirp vs. time and drive current vs. instan-

taneous frequency. . . . ... . .. .. . . . . . . . . . . . . . . . . . 157

16



D-3 Fast Fourier transform of the drive current signal. For linear chirp,

transform has flat magnitude within chirp frequency range. For expo-

nential chirp, log(magnitude) falls with a slope of -0.5 with respect to

log(angular frequency). . . . . . . . . . . . . . . . . . . . . . . . . . . 157

D-4 Raw voltage output from the TeMPeST 1-D, including pre- and post-

measurement offset voltages (upper and lower left). Upper traces in

each plot are force sensor voltage, lower traces are LVDT voltage. . . 158

D-5 Processed position and force signals. Position is positive for increasing

indentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

D-6 Fast Fourier transform of position. . . . . . . . . . . . . . . . . . . . 159

D-7 Fast Fourier transform of force. . . . . . . . . . . . . . . . . . . . . . 159

D-8 Measured material compliance: ratio of fast Fourier transforms of po-

sition and force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

17



18



List of Tables

2.1 Simple deformations of elastic, semi-infinite bodies with rigid, right

cylindrical indenter of radius a. Shear cases require no-slip condition

at interface. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 40

2.2 Examples of reported tissue properties . . . . . . . . . . . . . . . . . 43

6.1 Measured spring stiffness summary. . . . . . . . . . . . . . . . . . . . 117

6.2 Best fit values for standard masses . . . . . . . . . . . . . . . . . . . 121

6.3 Cartilage Press quasi-static elasticity data . . . . . . . . . . . . . . . 125

6.4 Experimental parameters for in vivo tests of solid organs . . . . . . . 133

19



20



Chapter 1

Introduction

Surgical training in teaching hospitals today is often performed based on the familiar

adage "see one, do one, teach one," in which new surgeons and medical students first

observe experts performing operations, then perform them under supervision, and in

turn pass their skills on to newer doctors. This sequence depends on the arrival, in the

operating or emergency room, of patients with conditions requiring the operation to

be taught. Not only can such an environment be highly stressful to the new surgeon,

but clearly the health and well-being of the patient is risked on the incompletely

developed skill-set of the surgeon.

Recent years have seen the nascence of the field of surgical simulation, in which

a surgeon may learn, practice and be evaluated on mannequin- and computer-based

systems. Such systems will be able to provide a solid base of skills to new surgeons

so that when they finally do have contact with patients, they will be more familiar

with the cognitive and manual skills required to successfully perform their tasks.

Surgical, and more generally medical simulations take a page from a field where

simulation has become very important, that of flight simulation. In modern flight

simulators, well developed models of the dynamics of flight and the performance of

given aircraft are linked to hardware interfaces that are similar to those in real aircraft.

With this combination, pilots can be exposed to the basics of flying under normal

conditions, as well as being faced with scenarios where problems and complications

arise, without risk to themselves or their potential passengers. In fact, private pilots
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may apply training time spent in a flight simulator towards up to 20% of total flight

training hour requirements [10], or even more depending on the type of aircraft.

One of the key features of developing a flight simulator is developing accurate

models of the behavior of the aircraft and its environment, including aerodynamics

and the responses of the controls and actuator systems, as well as audio, visual and

motion/haptic feedback from the simulated environment. In the same vein, a surgical

simulation system will require models of the human body, including its geometry,

the mechanical and physiological responses of the organs and tissues, models of the

instruments to be used and hardware interfaces so that the surgeons can see, hear and

feel what they are training on. The models and feedback systems must be realistic

enough so that the trainees can "suspend disbelief", feeling that they are actually

performing on real tissues, and so that they do not learn bad habits from a simulator

that deviates too far from reality.

Creating a realistic simulation depends in large part on developing accurate models

of the mechanical response of the organs and tissues to deformation with surgical

instruments. As will be discussed further, there are numerous ways of modeling the

response of visco-elastic (or more complex) responses of tissues, including lumped-

parameter and finite element techniques. Some (e.g. finite element modeling or

FEM) are inherently more accurate than others (e.g. lumped-parameter) for the

complex geometry and properties of tissues, which may be non-linear, inhomogeneous,

anisotropic or time-dependent (amongst others). Accuracy is traded-off at the cost

of additional computation and slower response of the simulation, which must be fast

enough to appear to run in real-time to the user.

Whatever method of modeling is used, however, all depend on knowledge of the

material properties of the tissue being simulated. If a simple, lumped-parameter

model is to be used, then spring constants and damping coefficients are required,

which can be determined from the geometry and inherent material properties of

the tissue. For finite element models, for example, the material properties, such

as Young's modulus, the Poisson ratio and damping ratio would be included directly

as parameters for the model. Thus, some method of acquiring these data is necessary
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to make simulation systems that are based on the physics governing the response of

real tissues.

Tissue properties have been determined in the past by extracting samples from

the organ of interest, and measuring their responses on devices similar to those used

to measure the properties of engineering materials (e.g. steel or concrete). Tissue

samples removed from the living state can radically change in their responses, as the

blood supply to the cells is cut off, as temperature and humidity change, and as the

boundary conditions of the sample in the organ are different from those in the testing

device.

Recent work in measuring tissue properties has begun looking at tissues in vivo

and in situ, that is in the living state and in the environment of the body, without

removal. Toward these tests, many methods, ranging from surgically invasive, to

minimally invasive and entirely non-invasive, are being developed.

This thesis presents the design and development of a minimally invasive surgical

instrument (see figure 1-1) which can measure the force-displacement response of

solid organ tissues over small deformations and forces, and over a range of frequencies

relevant to surgical simulation with both visual and haptic feedback.

The following chapters begin with an introduction to basic aspects of tissue mod-

eling, and some of the simplifications that can be made to conveniently extract tissue

properties from knowledge of the force-displacement response of visco-elastic media.

The primary simplification employed in this work is the approximation that for small

deformations, large organs can be modeled as semi-infinite bodies. This simplification

permits the use of closed form expressions relating force, displacement and the mate-

rial properties of the organ. Chapter 2 also includes a review of existing and planned

methods and devices for measuring tissue properties in vivo. These are divided into

a class of non-invasive techniques, which employ magnetic resonance or other imag-

ing techniques to examine deformation fields within the body, and a class of invasive

techniques which record the mechanical response of tissue, at discrete points, to some

known load or displacement. This section concludes with a brief comment on one

class of measurements that has not been covered by these techniques, namely the
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Figure 1-1: Tissue Material Property Sampling Tool.

investigation of the frequency dependence of tissue properties in the range relevant

to simulation with haptic feedback.

The Tissue Material Property Sampling Tool, or TeMPeST 1-D, which is the sub-

ject of this thesis, is described in detail in chapters 3 through 6. Chapter 3 begins

with a discussion on the design criteria and available options for the system compo-

nents, including force and position sensing and linear actuation. The second half of

the chapter goes into a detailed discussion of the TeMPeST 1-D prototype and its

systems. The sensor/actuator package that was developed (see figure 1-2) includes a

novel voice-coil actuator combined with a specially modified force sensor and a posi-

tion sensor. The entire package has a 12mm outer diameter, so that the instrument fits

through standard laparoscopic ports. The electronics and other system components

are also described. The entire system is designed to be easily portable, supporting

transport to and use in the operating room for acquisition of tissue properties in vivo.

Chapter 4 begins with the development of mathematical models of the instru-

ment and hypothetical models of contact with visco-elastic media. A simple second
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Figure 1-2: TeMPeST 1-D sensor/actuator package.

order model is used to illustrate how the transfer function of the tissue can be deter-

mined from measurements of applied force and displacement. A fourth order model

includes the contributions of the dominant dynamic elements of the system, including

the actuator and the body of the TeMPeST 1-D mounted on a surgical instrument

holder. This model is used to examine the kinds of distortions that the real system

would introduce in comparison with the ideal (second order) model. The bulk of the

chapter is devoted to calibration and characterization tests to populate the models

with parameters for the real instrument. These tests include the determination of

the force and position vs. voltage constants for the sensors as well as their dynamic

responses. These sections also cover the determination of the effective stiffness, mass

and damping of the sensor/actuator package and the force constant of the voice coil

actuator.

Chapter 5 is a short chapter that describes the graphical user interface (GUI)

and real-time control/data acquisition program. The GUI includes pre-processing

functions that generate the waveforms used to excite the tissue, and post-processing

elements to analyze the force-displacement data acquired during testing. The princi-

ple output is a non-parametric representation of the frequency-dependant compliance
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Figure 1-3: Laparoscope view of TeMPeST 1-D testing liver response.

of the tissue. Using the geometric information developed in chapter 2, these data

can be used to determine models of the visco-elastic properties of tissue. The real-

time data acquisition code runs the TeMPeST 1-D in open-loop, sending current to

the voice coil and recording the measured force and displacement sensor voltages at

speeds up to 2kHz.

Experiments performed on standard materials, including springs, masses and sil-

icone gel, are described in chapter 6. These tests were performed to verify that the

TeMPeST 1-D can be used to correctly extract the characteristics of materials whose

properties are known a priori. As a proof of concept demonstration, the TeMPeST

1-D was used to perform in vivo tests on the liver and spleen of pigs at the Dartmouth

College medical school. Figure 1-3 is the view through a laparoscope of the instru-

ment measuring the properties of liver in minimally invasive conditions. Chapter 6

concludes with the details and results of these experiments, including the determi-

nation that, given the semi-infinite body approximation, porcine liver is primarily

elastic from 0.1 to 100Hz, and has an elastic modulus between 10 and 15kPa.

Chapter 7 summarizes the contributions and implications of this work. It revisits

the important elements of the preceding chapters, and looks at directions for further

research. This includes concepts for new instruments to resolve some of the limitations
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of the TeMPeST 1-D, as well as instruments to measure properties of organs and

tissues for which TeMPeST 1-D is not suited.

To supplement the material in the text of this thesis, appendices are included

which summarize the nomenclature used in the thesis; describe the manufacture of

the TeMPeST 1-D flexural bearings; present some details of a design for a proposed

device called the TeMPeST 3-D, which will extend the range of force-displacement

tests that can be performed into the non-linear and potentially anisotropic regime;

and present a sequence of images of the graphical user interface and pre- and post-

processing output.
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Chapter 2

Background

Computer-based surgical simulation begins with the development of models of the

mechanical response of organs and tissues. Depending on the desired level of realism,

they may range from simple lumped parameter models, such as the two-parameter

Voigt and Maxwell, and three-parameter Kelvin models [12], to full-blown finite ele-

ment models, which are computationally expensive, to intermediate representations

like the "water-bed" model [8], which balances between complete accuracy and speed

of calculation. In the first part of this chapter, some of the simpler models will be

discussed in relation to how they may be used in determining material properties of

tissue from measurements of force-displacement responses. Mention will also be made

of the types of data required, in light of the perceptions of the user of a simulation

system.

The second part of the chapter will review the two classes of measurement tech-

niques that are used to determine tissue properties: non-invasive methods, employing

global scanning technologies such as magnetic resonance imaging and ultrasound, to

acquire strain field measurements under known external loading conditions; and in-

vasive methods that impose and record local loads or displacements made directly

upon organs and tissues.

The chapter will conclude with a discussion of what areas of tissue property mea-

surement have not been covered by the existing body of research, and look towards

the development of the TeMPeST 1-D.
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Figure 2-1: (a) Maxwell and (b) Voigt body lumped parameter models

2.1 Basics of visco-elastic behavior

In observing the response of many biological tissues to mechanical loading, a number

of dominant characteristics are observed. Consider the case of a sample of tissue,

attached at both ends to the jaws of a testing device and subjected to different kinds

of loading.

If a step in applied force is made on the sample, the tissue can behave elastically

over short time scales, in that a step change in the length of the sample is observed.

Thus, a very simple model of tissue might be to represent it as a spring element with

a known spring constant. If however, the load is maintained for some time period

after the initial step, one might observe the length of the tissue to increase further

than the initial response, a phenomenon called creep. Since this property occurs over

time, some additional element should be included in the model of this "visco-elastic"

material, typically a lumped damping element, such as an idealized dashpot.

Alternatively, if a step change in length is made (impossible in reality, but illustra-

tive for the purposes in modeling), the applied force at very short time scales would

be proportional to the strain imposed on the tissue, but as time passes, the force

would fall, a phenomenon called stress relaxation. Again, an elastic and a dissipative

element need to be included in a model to describe the tissue.

Two models with these two elements are possible: the Maxwell body which treats

the tissue as a series spring-dashpot system, or a Voigt body, which models the tissue

as a spring and dashpot in parallel [12]. Figures 2-1 and 2-2 show the models of the

tissue and the step responses to both applied load and displacement. Equations 2.1-

2.4 present the governing equations for these systems, and their transfer functions.
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Figure 2-2: Maxwell and Voigt body responses to step loads and displacements. Note
continuous change in displacement of Maxwell body to step load, and impulse force
response of Voigt body to step displacement.
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Maxwell body : x = + dt) f (2.1)

X(S) Hm (s) = ( + - (2.2)
F(s) bs k

Voigt body: f = k + b d)x (2.3)
dt

X(s) -1

F(S) H(s)= 1 (2.4)
F(s) bs+ k

Each of these models captures part of the observed behavior of tissue, but the

Maxwell body exhibits continuous creep under a step force, with no limits on ultimate

displacement (not observed in most biological tissues over the time scales relevant to

surgery), while the Voigt model would predict an impulse response to a step change

in displacement, which is also not observed.

Increasing the complexity of the model to the three parameter Kelvin body [12],

as shown in figure 2-3, solves this problem. The response to step loads shows the

initial elastic response as well as creep to a final length, while the response to a

step displacement shows a finite value for the initial force, relaxing to some limiting

value (figure 2-4). The time response, equation 2.5 can be characterized by three

parameters: the relaxation time constant, Tr, the creep time constant, mc, and the

relaxed stiffness, k., where the time constants are the time required for the visco-

elastic portion of the response to reach (1 - e- 1) x 100% of the final response, and

k, is the ratio of the force and displacement of the step deformation response as time

approaches infinity. Equations 2.7 - 2.9 provide the relationships between kr, r, and

Tc and the values for the springs and dampers in the Kelvin model. The Bode plots

for the Kelvin body are shown in figure 2-5.

bd+1 f k2 b -+1 x (2.5)
k 2dt k1 k2 dt

X(s) 1 rs + 1X=) Hk (s) =- (2.6)+
F(s)krs+
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Figure 2-4: Kelvin body responses to step load and displacement.
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Figure 2-5: Kelvin body Bode plots.
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kr = k2 (2.7)

_ (k1 + k2)b
k1k2

b
Tr - (2.9)

k1

More complex behaviors can be generated by creating series and parallel networks

of Kelvin or other models, with the limiting case of an infinite number of elements to

create an arbitrary response [12].

The sinusoidal response of a Kelvin material is characteristic of a lag filter; at low

frequencies, the damping effects are negligible, so the stiffness corresponds with only

one of the spring elements. At high frequencies, the damping element acts as a rigid

element, so the stiffness is the sum of the two springs. The break frequencies for the

rise and plateau correspond with the creep and relaxation time constants.

The transition between low and high frequencies depends on the tissue and the

damping mechanism involved. Cartilage, for example, exhibits a poro-visco-elastic

response, in which one damping mode is the motion of fluid through the matrix of

the tissue. Based on the results of some experiments [26], the division between high

and low, ((TrTc)-1/ 2 ), can be as low as 0.01Hz. Above this frequency, fluids do not

have enough time to migrate out of the tissue, so the tissue stiffness is effectively

higher than that below (TrTc)- 1/ 2 .

Figure 2-5 presents the sinusoidal response of the Kelvin body as the compliance,

or apparent softness, versus frequency. As will be revisited later when material prop-

erties, rather than lumped parameters, are examined, is it common to present the

stiffness (inverse of compliance) of the tissue. As far as the preceding discussion, this

simply involves inverting the transfer function, as well as the magnitude and phase

plots, so that apparent stiffness increases with frequency, and the phase is positive

(see figure 2-7, for example).

With respect to surgical simulation, the sensing and control capabilities of the

human user set guidelines for the frequency domain of interest. Clearly static forces

can be applied and perceived by a user. Human control of hand motions is limited
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to a range on the order of a 1-10Hz, or a few repetitive motions per second-we

simply cannot move our fingers faster than this. At the same time, we have mechano-

receptive nerve endings in our skin, some of which have peak sensitivity to vibrations

in the 100's of Hz range [4]. With these issues in mind, testing should be done, and

tissue properties be determined such that behavior over the whole range of the human

"sensorium" is covered.

2.2 Geometric Effects

The preceding discussion is essentially specific to the geometry of a given material

sample, looking only at its force-displacement response to different loading conditions.

For such data to be useful beyond the test bench, the parameters characterizing the

response need to be transformed into material properties which are independent of ge-

ometry. In the thought experiments described above, the material being tested would

typically have simple, known geometry, such as a rectangular or circular prism. Such

geometries permit simplifying assumptions such as uni-axial and uniform stress dis-

tributions in the sample, and simple (e.g. uniform) strain distributions. With these

assumptions made, simple relationships between geometry-dependent lumped param-

eters describing the force-displacement behavior and geometry-independent material

properties can be determined.

Consider a sample that might behave like a spring (figure 2-6). In the case of a

prismatic test element with cross sectional area, A, the force (f) is imposed uniformly

across the ends of the sample, causing the length to change from lo to 1. The sequence

leading to equation 2.10 demonstrates that the material's elastic modulus can be

determined from the lumped spring constant and the known geometry.

k =f
x

E E

x = --10
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Figure 2-6: Prismatic element under simple loading and equivalent spring model.

- f
A
x
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f
x - A

k- (2.10)
A

This expression is valid for static deformations where elasticity is the only mate-

rial parameter needed. It can, however, be extended to the frequency domain, which

is necessary to describe visco-elastic materials, through the "correspondence princi-

ple" [12], in which the static value for the elastic modulus, E, is replaced with a

frequency dependent expression, called the complex modulus, E(iw).

E(iw) is the geometry independent, elastic form of H(iw), which was the transfer

function for the lumped parameter model compliance. It is derived simply by sub-

stituting the transfer function for stiffness (the inverse of equation 2.6 in the case of

a material acting like a Kelvin body) into equation 2.10. Equation 2.11 shows the

result for the Kelvin material example.

lciJ +±1 - ciW + 1
EE(i) = k,- = Er (2.11)

Aww r + 1  Triw + 1

It is typically presented graphically in one of two equivalent forms: plots of the
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magnitude, IE(iw) , and phase, 6, of the sinusoidal response versus frequency (equa-

tion 2.12)1; or as the elastic (Ee, in-phase) and dissipative (Ed, out-of-phase) compo-

nents of the complex modulus versus frequency, which are also the real and imaginary

components of E(iw) (equation 2.13). Figure 2-7 shows the response of a Kelvin body

in both forms.

E(iw) = E(iw) I e6 (2.12)

= Ee (w) + iEd(W) (2.13)

Ee(w) !R(E(iw)

- E(iw) I cos(6)

Ed(w) = a(E(iw)

= E(iw) I sin(6)

Data presented for the experiments described in chapter 6 will be shown in the

magnitude-phase form since it is more convenient to determine the transfer function

parameters from this representation. If the low and high frequency magnitude asymp-

totes are El and Eh, and the frequency at maximum phase is wim, then the parameters

of equation 2.11 are given by equations 2.14 to 2.16.

Er El (2.14)

Eh
-C = (2.15)

Etom

Tr = E (2.16)
EhWm

1An alternative to presenting phase is to present tan6, the "internal friction"
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Figure 2-7: Equivalent magnitude-phase and complex modulus representations of
visco-elastic responses. y-axes are linear scale. Derived from Kelvin body with k, =

10k 2, b= k2 - 1s, unit dimensions.

2.2.1 Semi-infinite body approximation

As was mentioned in the introduction, real tissues do not typically take such conve-

nient forms as those presented above. Liver, kidney, spleen, and other solid tissues

have both complex surface and internal geometries. However, when one considers

small regions of the organ relative to the bulk, and small deformations within that

region, some simplifying assumptions can still be made.

Consider the example of figure 2-8. In this case, the deformation imposed by

an indenter is also fairly large compared with the characteristic dimension of the

body. If one magnifies the region of contact and reduces the depth of indentation

(and to a lesser extent, the size of the indenter), in the limit it begins to take on the

appearance of a semi-infinite body, with a surface extending in all directions away from

the point of contact, and the material extending indefinitely below the surface. For

this geometry, in the case of a right circular indenter applying a load to the surface, a

number of closed form solutions have been derived describing the relationship between

force, displacement, and the material properties of the body. Different loads may be

applied to the surface, for which a few of the governing relationships are summarized
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Figure 2-8: Decreasing indentation magnitude (Z -+ Z -+ z) on a body with charac-

teristic dimension, R, begins to approximate indentation of a semi-infinite body

in table 2.1 (derived from [19]).

For normal indentation, uniform displacement in the z-direction, and friction-

free contact are assumed, so that sliding of tissue across the surface of the indenter is

permitted (equation 2.17). If the punch adheres perfectly to the surface, equation 2.18

applies. However, because of the (1 - 2v) term, this expression is highly sensitive to

the value of the Poisson ratio (v) when it is close to 0.5. Since this condition applies

for many tissues (see below), it would be preferred to arrange experiments such that

the friction-free expression applies. 2

For tangential shear, uniform displacement in x is assumed, but slight deformation

above and below the plane of the surface is permitted. The rotational shear case

assumes no z-axis motion and uniform rotation of the tissue under the indenter.

Each of these expressions includes the two unknowns E (Young's modulus) and

v, so both cannot be determined from measurements made using only one type of

deformation. For example, a normal indentation and a rotational shear (or some

other combination) would have to be performed to fully determine both parameters.

However, much of the literature on biological tissue reports that it is often nearly

incompressible (not surprising considering the large water content, which is also nearly

2During laparoscopic surgery, the atmosphere inside the abdomen is very humid, and all of the

tissue surfaces are slick, so for a non-porous indenter, the friction-free, or at least a low-friction,

condition applies.
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Table 2.1: Simple deformations of elastic, semi-infinite bodies with rigid, right cylin-
drical indenter of radius a. Shear cases require no-slip condition at interface.

Normal Indentation Tangential Shear Rotational Shear

2aa2a

Esl (1--V2) fZ (2+ V+ V2)f, E 3(1 +v)-F
si'2a6, 2,a6,, 8a00

(2.17) (2.19) (2.20)

c - (1+v)fZ
Estick - 2a6z ln3-4v

1-2v

(2.18)

incompressible), so the Poisson ration, v, has a value very close to 0.5 [36, 32, 20]. If

the expression relating force, deformation, E and v is insensitive to small errors in the

estimate for v only one type of experiment is needed to determine the properties of

the material. By performing tests over a range of frequencies of interest, the frequency

dependent expression for E can be determined.

Note that such deformation tests need to closely approximate the assumed con-

ditions: deformations must be small relative to the geometry of the tissue, and local

tissue/organ curvature should similarly be small. At the same time, it should be

recognized that since these small deformation/large body conditions are the same

ones that would lead to assumptions of linear behavior in the material, this implies

that these expressions could be superposed, so that deformations in the normal and

tangential shear directions, for example, could be described by a vector sum of the
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two components.

The semi-infinite assumption eventually breaks down as organ sizes may be too

small or deformations too large to justify it. At this point, numerical solutions to

the governing elastic equations, including finite element or other techniques, must be

turned to. One set of solutions is an extension to the normal indentation case de-

scribed above, for soft materials with known thickness bonded to a rigid substrate [16].

In this case, a correction factor, which depends on the ratio between indenter radius

and sample thickness, a/h, and the Poisson ratio, is applied to equation 2.17 yielding

equation 2.21. An extension to this solution, which takes into account not only finite

thickness, but also the mean depth of indentation has been derived (equation 2.21),

which essentially increases the value of K as indentation depth increases [34].

E = (1 v 2 ) f (2.21)
2a6,K {, , v}

K > I

lim K =1
h-+oo

If a/h = 0.2 and v = 0.5, then a fit for K is [34]:

K = 1.23 + 1.26-Z (2.22)
h

This extension takes into account some of the effects of preloading the body being

tested. For a true semi-infinite body, the depth of indentation should not affect

the linear relationship between force and displacement. For non-ideal bodies, the

apparent stiffness will increase, so some information about either the mean pre-load

or mean depth of indentation is important to include in property extraction. These

issues were taken into account in performing measurements on silicone gel samples,

described in chapter 6.

In still more complex geometries, finite element techniques can be used in which

the material properties are iterated, and simulations performed, until the simulation
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yields the same response as the measured tissue.

To this point, certain tacit assumptions have been made. These include material

homogeneity and isotropy. In real organs, tissue properties may vary from location

to location both on the surface of the organ, and within an organ. Such inhomogene-

ity can be seen in the difference in stiffness between skin on the back of the hand,

and calloused skin under the heel of the foot. Since these differences are location

dependent, a series of measurements can be made over different locations so that a

complete map of the variation in properties can be generated. Tissues are also often

anisotropic. Good examples include tendon and muscle, which have different stiff-

nesses and strengths along and across the length of their fibers [9]. Normal indentation

and rotational shear would not typically provide information about the directional

variation in properties, but tangential shear might, by examining the responses to

shear deformation in different directions along the surface of an organ.

2.3 Tissue property review

Measurements have been made of the material properties of different kinds of tissues

for many years. Some sources for data from human and animal tissues include [9]

and [35]. These data are primarily taken from measurements made in vitro, under

a variety of conditions differing from the normal living state. The first of these is

the lack of blood perfusion, and therefore oxygenation, blood pressure, and supply

of energy to the cells, so the tissue is either beginning to die, or is long dead. In

the case of Yamada's summary [35] for example, samples were permitted to age for

some period to reach a "steady-state" value before being measured.3 Humidity may

not necessarily be controlled in all experiments and temperature may vary from the

phyiological state. Some tissue has even been packed in ice and thawed prior to

testing [7]. Further, the boundary conditions of a sample, and therefore its internal

stress state will change when the sample is cut away from the rest of the organ.

Ideally, one would prefer to measure tissues in situ, so that the loads imposed by

3Some data indicate the factor by which "steady-state" and tissue in vivo differ.
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adjacent tissue and organs are as close to normal as possible [12].

Beyond the circumstances of testing, insufficient data is available regarding a

complete description of the tissue in question. Most often, a single stiffness or strength

parameter is reported for the case of static or quasi-static testing. Ultimate strength

measurements are often reported, but are not useful for simulations that do not

cause damage (tearing or cutting) to tissue, which constitute much of what must

be modeled. Tissues are generally non-linear, so some more comprehensive set of

parameters, or family of describing curves would be desirable. Inhomogeneity is

often a characteristic of organs, so multiple stiffnesses would be needed for a detailed

description. In addition, many tissues exhibit anisotropy in their properties, so some

description of the variation in stiffness, damping or non-linearity with orientation

would also be desirable from the standpoint of developing a library of tissue properties.

A brief review of some of the data available, including information regarding the

testing methods and source, is included in table 2.2. Sources such as Yamada [35] and

Duck [9] cover many more types of tissues than are included here, but are subject to

some of the problems described above.

Table 2.2: Examples of reported tissue properties

As can be seen from this short table, the available data comes from numerous

testing techniques, with widely varying results. More recent data presented in other

sources, such as [25] and [5] are in forms that are not conveniently converted to stiff-

ness moduli because the necessary geometric parameters were unreported.6 Further,
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tissue/property value measurement method
Liver

Kb, human [9] 2.53-2.70GPa ultrasonic velocity
E, rabbit [35] 5.6kPa indentation 4

19.4kPa tensile5

E, bovine [7] 0.43-1.68kPa compression (c < 5%)
Kidney

Kb, human [9] 2.54GPa ultrasonic velocity
E, rabbit [35] 8.8kPa tensile5



converting from the adiabatic bulk modulus data (Ka) to Young's modulus is not

possible without a good estimate for the Poisson ratio. As can be seen from equa-

tion 2.23, when v is close to 0.5, small errors can dramatically change the calculated

value for E based on Ka.

E = 3Ka(1 - 2v) (2.23)

2.4 Tissue property measurement techniques

Since tissue properties measured in vitro may be significantly different from those

measured in vivo, a number of research groups are developing methods and devices

for taking data from living tissues, often in situ. There are two general classes of

measurement techniques: non-invasive methods, which apply an external load to the

body and measure the internal strain or vibration fields with scanning techniques such

as magnetic resonance imaging (MRI) or ultrasound; and invasive methods, which

typically apply local loads to tissue and examine the force-displacement response.

Several examples of each technique will be discussed in the following sections.

2.4.1 Non-invasive tissue property measurement techniques

A number of non-invasive methods have been developed over the last few decades to

determine the internal structure of the body, including ultrasound, magnetic reso-

nance imaging, and computed tomography imaging, using X-rays.

Ultrasound has been used to directly measure the stiffness of tissues, by exam-

ining the relationship between the speed of sound through tissue, and the tissue

elasticity [22]. In solid mechanics, for typical engineering materials, there is a direct

relationship (equation 2.24, Kb = bulk modulus, p = density) between sonic velocity

4 2.63mm indentation, using 10g load on 5mm round flat indenter
5 estimate of slope in linear (c <10%) range of stress strain curves, Figures 175 and 181 of [35]
6 E.g. [25] report stress and the thickness ratio achieved with their device, but not data on the

thickness of the tissue relative to the size of the compression surfaces, and [5] does not define the
way that strain was calculated, or describe the indentation tip (see section 2.4.2).
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Figure 2-9: Elastography conceptual diagram: (a) undeformed soft material with
hard inclusion, (b) deformed geometry under loading, (c) strain field.

and elasticity which is generally applicable. However, because ultrasound transducers

typically operate in the kilohertz to megahertz range, rather than in the DC to tens

or hundreds of Hertz range, elasticity derived in this manner may not be applicable

for surgical simulation [32]. As was mentioned in section 2.1, transitions between dif-

ferent stiffness regimes may occur at frequencies much lower than those employed in

ultrasound. Some measurements which directly compared static stiffness with sonic

velocity, by simultaneously measuring with a load cell and an ultrasound transducer,

found no significant relationship [22].

Kb

E
3(1 - 2v)p (2.24)

Ultrasound, MRI and CT methods can be used, however, in other ways. One

method, which looks at the static properties of tissue, involves taking two successive

scans of the tissue in question, before and after applying a simple load to the outside

of the body. Originally devised for ultrasound (and called "elastography" [23]), this

method is equally applicable for use with other methods.

Essentially, elastography depends on the inverse relationship between the stiffness

of a deformable body, and the strain that it undergoes when loaded. The first scan

provides a baseline for comparison (see figure 2-9a). Then some load (as simple as
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possible) is imposed on the surface of the body. A second scan is made (2-9b), which

is compared with the first to determine the magnitude and direction of deformations

within the body. From the deformation data, a map of the strain field within the

tissue is generated (figure 2-9c), and this strain field processed, to determine the

relative local moduli of all of the tissue within the scan field.

This description significantly simplifies the calculations involved in determining

the strain field, and thus the elasticities. A number of difficulties are inherent in

this technique, which have limited its use to date. First, stress and strain are tensor

quantities; individual ultrasound, MRI and CT scans, however, are two-dimensional

cross sections of the tissue, and therefore cannot directly capture out-of-plane defor-

mations. Since the separation between scans can be 10 times larger than in-plane

resolution [33], calculation of strain in the third dimension is problematic.7 Assump-

tions such as incompressibility [32] or uniform stress distribution at the surface [20]

can provide sufficient constraints to determine strain fields.

Second, some calculation techniques do not handle high-contrast elasticity changes

well. For example, when a hard inclusion is present in a soft material, the strain

field calculations will predict "shadow artifacts" [20], which are erroneous regions of

hardness within what should be soft tissue. For simple geometries, such artifacts can

be neglected as being obviously in error. However, for unknown, complex geometries,

such as those found in the internal organs, the shadows could be confused with actual

changes in elasticity.

One last item is that elastograms are unable to directly measure the absolute value

of the elasticity of tissues, but only the relative stiffnesses between tissues. This is

because the applied stress field is often not known, nor does any material within the

strain field have a known elasticity. One solution is to deliberately include a known

material within the field, and compare all of the tissues to it. For example, in work

done to detect breast tumors, a layer of rubber of known modulus was placed between

'Some researchers [18] are developing instruments with 2-D arrays of ultrasound transducers to
permit scanning of pyramidal volumes of tissue, but such systems have not been used for tissue
property measurement.
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the tissue and the ultrasound scanner (which also applied the load), so that its strain

was also calculated to serve as a reference for all of the other tissues [31].

A second approach using scanning techniques uses a dynamic load to excite vibra-

tions within tissue. Vibration amplitude, and therefore local velocities, are related to

the tissue stiffness, and can be determined using Doppler velocimetry.

Called "sonoelastography" when used with ultrasound [24], and MRI elastography

for the corresponding magnetic resonance technique [30], this method involves apply-

ing a small amplitude vibration, typically tangentially, to the surface of the body,

while simultaneously measuring the velocity field within the body. Different groups

have used vibrations from as low as 20Hz to the low kHz range [24]. By sweeping the

frequency over a range of interest, or testing at different constant frequencies within

the range, damping coefficients or time constants for the tissues could, in principle,

be determined. No examples, however, of this sort of measurement were found.

2.4.2 Invasive tissue property measurement techniques

Because the non-invasive techniques cause no trauma, they might be ideal for studying

human tissue properties. They have, however, not yet been used to generate a library

of tissue property data, in part because of the complexity of the calculations involved

(a primary area of research). In addition, the cost of MRI or CT machines (or access

to them) can be prohibitively high for many researchers, and in the case of CT,

requires subjects to be exposed to X-rays.

As an alternative, a number of devices have been developed to perform measure-

ments directly on tissues, so that their force-displacement responses can be deter-

mined. Generally speaking, a load is applied with an instrument of some geometry,

and the force or displacement of the region of contact is measured. By making cer-

tain approximations regarding the geometry and characteristics of the tissue (such

as those described earlier in this chapter), material properties of the tissue can be

determined from the force-displacement response.
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Dundee Single Point Compliance Probe

This device (figure 2-10) has been developed to perform indentation tests on solid

organs (e.g. liver, spleen, kidney). It consists of a rigid rod attached to a 1-axis force

sensor, and a surrounding sleeve which slides relative to the rod and whose relative

position is measured with a linear position sensor. The hand-held device is used

during open surgery; it is brought into contact with the tissue, and pushed gently

until the rigid rod has indented the tissue by 5mm relative to the sleeve. Force and

displacement are recorded as the indentation occurs. In a preceding step, the thickness

of the organ is measured with an ultrasound probe to provide a characteristic length

from which to define strain.

The DSPCP has been used to perform tests on human liver in vivo during the

course of elective surgery, and on a variety of other tissues, the results for which

are expected to be published in the near future. They show significantly non-linear

responses, and variation in stiffness both between organs, and between healthy and

diseased tissue [5].

This device is suitable for taking quasi-static measurements on tissue, and is one

of very few that have been used to take measurements in vivo on human organ tissue.

Since it is hand-held, it would be difficult to use to acquire data over a range of

frequencies above that at which the user could move the device. However, having the

quasi-static data would provide a reference for further property measurement.

Anisotropic tissue property measurement device

Tissues such as skin often exhibit anisotropy in their stiffnesses, which can be inter-

rogated in a number of ways, such as through the use of a device found in the US

patent literature. The device shown in figure 2-11 makes use of a piezo-electric tube,

fixed at one end, and contacting the tissue at the other [27]. The piezo-tube can be

driven to resonate in an arbitrary orientation, the frequency of which will depend on

the stiffness of the tissue it contacts. By sweeping the orientation and recording the

resonant frequency at different locations on the tissue surface, a map of the tissue
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Figure 2-10: Dundee single point compliance probe [6]

stiffness anisotropy can be generated.

While designed for external use, it could be used during open surgery, or with

some modifications, in minimally invasive surgery. From the available literature, it

is not clear if it has been used to measure tissue properties yet, and if so, would not

have been used to measure the properties of internal organs.

Force reflecting endoscopic grasper (FREG)

In addition to surgical simulation, some researchers are investigating methods for

performing remote, or tele-surgery. An essential component of such a system is the

"slave" manipulator, which performs the grasping or cutting of the tissue (under

the control of the "master" which the surgeon manipulates). The slave manipulator

can also be used as a robotic device, grasping tissue under computer control, and

recording the applied forces. The FREG (figure 2-12) has been used to perform tests

on tissue in this fashion. Using a Babcock grasper, which has rectangular, roughly

parallel jaws, tissue can be grasped and force and displacement of the jaws recorded.

Tests have been done on living tissue, including liver and spleen, by applying short
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Figure 2-11: Piezo-tube-based anisotropic stiffness measurement device [27]. (1) is
the piezo-electric tube, and (15) includes part of the electronics to drive the tube at
resonance.

1Hz oscillations and yielding some quasi-static stiffness information, including force-

displacement hysteresis information [25].

Enhanced force feedback device

Another modified minimally invasive tool is that shown in figure 2-13. In this case,

the goal was to provide enhanced force-feedback to the surgeon performing minimally

invasive surgery, by instrumenting a surgical grasper, and providing a separate force-

feedback device. The second device would generate a response to touch that mimicked

the response of the real tissue [28]. The intent here was not the measurement of tissue

properties specifically, but determination of a force-displacement response model for

the tissue. Some properties could be extracted from the data if the tissue contact

geometry was known. This is the prime difficulty of using this tool for these purposes-

with a regular surgical grasper, the contact region is significantly more complex than

that of the FREG, so without additional sensors, it would be difficult to determine

geometry independent material parameters for any tissue measured.
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Figure 2-12: Force reflecting endoscopic grasper [15]

Figure 2-13: Bicchi device [3]
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Other devices

The devices described above by no means represent a complete survey of all of the

existing devices that have the capacity to acquire in vivo tissue data. Two other meth-

ods include a pipette aspiration technique, where deflection vs. vacuum pressure in a

tube touching the tissue is used [1]; and a stylus-mounted ultrasound transducer/force

sensor, designed for use in measuring the stiffness of amputee stump tissue. The lat-

ter measures depth of compression via ultrasound echoes, and applied force with the

force sensor [36].

TeMPeST 1-D

An open question in surgical simulation is how much accuracy is required in the

models of organs to achieve the desired educational goals. For cognitive training,

where perhaps only the sequence of tasks is to be learned, then very simple (or no)

models are needed. Training sensor-motor skills, however, will typically require some

fidelity in the simulation's force feedback. Going further, tissue simulation could be

used to develop new procedures, or evaluate designs for new surgical instruments

with reduced need for animal testing. These applications require increasing levels of

accuracy, but what is not known is exactly what level of realism is necessary. To be

able to answer this question, very detailed models should be available, which can be

degraded to observe the effects on the application.

One part of generating such an accurate model is knowledge of how tissue proper-

ties change over the range of frequencies relevant to simulation with haptic feedback.

The frequency dependent properties of solid organs is one of the domains of tissue

property measurement that has not been significantly investigated. To begin this in-

vestigation, a device was designed to examine the linear response of tissue over these

frequencies. This device and its use will be the subject of the following chapters.

52



Chapter 3

TeMPeST 1-D

As was shown in the previous chapter, a number of instruments and methods for tissue

measurement exist, which look at specific aspects of tissue behavior. At the outset

of the research described here, two different domains of tissue measurement were

considered for study: large scale deformation in three dimensions, and small scale,

one-axis deformations, but with the capability to examine a wide range of frequencies.

Preliminary designs were developed for both, and the latter was developed into the

complete instrument described herein. As this work is the beginning of a longer term

body of research, the three-axis device remains to be developed further, although the

preliminary design is discussed in chapter 7.

The one-axis Tissue Material Property Sampling Tool (TeMPeST 1-D) was de-

veloped to provide force-displacement data suitable for the determination of linear

material properties over a range of frequencies relevant to surgical simulation with

haptic feedback. It was designed for use in minimally invasive or open surgical set-

tings, keeping in mind issues such as electrical, mechanical and biological safety. The

following sections consider the requirements for such a device, options for sensor and

actuator systems, and go into detail regarding the design of the prototype.
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3.1 Design considerations for minimally invasive

linear property measurement

To perform the force-displacement measurements required to characterize the tissue,

a number of different components must be part of any instrument. These include

methods for measuring the displacement of the tissue and the force response, and

some means of applying a deformation to the tissue.

Since linear properties are desired, this implies that only small deformations need

to be (or alternatively, can be) applied, giving some guidance towards actuator and

position sensor selection. The definition of "small deformations" depends on the ma-

terial and geometry of the structure being examined. As was shown in the summary

of existing liver property data, for example, strains of a few percent, implying defor-

mations of no more than a few millimeters, remain in the linear stiffness regime [5].

Again taking liver as an example, since it is a large organ with significant regions

where the local curvature of the tissue is low, millimeter-scale deformations are on

the scale of a few percent, using the local thickness of the liver as a characteristic

dimension1 .

As shown in section 2.2 a number of simple motions can be imposed on tissues

under which extraction of material properties is fairly simple. Linear indentation,

rotational shear and tangential shear are all possible deformation modes. A basic

requirement for the shear modes, and the "stick" mode of indentation is that non-

sliding contact is maintained between the tissue and the device, generated by an

adhesive or roughened surface, for example. Adhesives might be difficult to remove

from the tissue without damaging it or leaving some part of the indenter tip behind,

and roughened surfaces may need to be so rough that the non-ideal geometry may

introduce unmodeled tissue-probe interactions, distorting the measurements. For

example, [27] suggests the use of a short needle piercing the surface of the tissue

'The liver's longest dimension is approximately 20-22.5cm, transverse to the body, and its thick-
ness (upper to lower surface) between 15 and 17.5cm [14]. It is, however, wedge shaped, narrowing
towards the left, so depending on the location, the characteristic dimension or thickness will be
smaller than this, as the front or left edge are approached.
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to maintain the position of their vibrating piezo-tube tip. On the other hand, the

frictionless indentation solution is easier to achieve, since the wet surfaces of the living

tissue already provide some lubrication, and additional lubricant could be applied

to guarantee low friction contact. For these reasons, the "slip" mode of normal

indentation was chosen for the TeMPeST 1-D.

Considering linear indentation, the existing stiffness data and the use of the semi-

infinite body expressions provide guidelines for the force that an actuator should be

able to provide to create deformations on the scale described. For liver, using the

maximum value for Young's modulus from table 2.2, a 5mm diameter punch, and

a nominal indentation depth of 1mm, a rearranged form of equation 2.17 yields a

minimum force of:

2aE6z
f = v 2  (3.1)

1 - V2

2(2.5mm)(19.4kPa)(1mm)
1 - (0.5)2

= 0.13N

Further, since property variation over a range of frequencies relevant to simulation

with haptic feedback (i.e. DC to >100Hz) is of interest, the actuators, sensors and

the system as a whole need to have steady DC response, and bandwidth preferably

larger than the maximum frequency to be considered.

These values represent minimum design goals. Because the tool is intended for

use in a minimally invasive environment, two further constraints must be taken into

account.

First, a device will typically take the form of a long shaft with an outside diameter

corresponding with a standard size for surgical trocars and cannulas. 2 Many com-

mercial instruments (e.g. shears, grippers, laparoscopes, surgical staplers) come in 5

2 Trocar: sharp-pointed instrument used to pierce abdominal wall to permit placement of cannula.

Cannula: tube with "trap-door" seal, inserted through abdominal wall to permit passage of surgical
instruments, while maintaining elevated pressure inside abdominal cavity.
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or 10mm sizes, but 12mm devices are also fairly common, and 12mm cannulas were

available in the animal testing facilities that will be described in section 6.4.

Second, if a device will eventually be used to measure human tissue properties, any

element that enters the body must be sterilizable, implying that either the whole tool,

or some detachable part of it must be tolerant of one or more sterilization techniques.

Some of these include autoclaving (high temperature saturated steam "bath") and

placement in an anoxic environment with special gases (such as ethylene oxide [13])

to destroy pathogenic organisms.

3.2 Actuator options: linear actuators

Based on the requirements just discussed, a number of candidate classes of actua-

tors that support small deformations and forces are immediately apparent. Voice

coil motors and solenoids, shape memory alloy (SMA), and piezoelectric and magne-

tostrictive actuators, among others, were examined to determine whether they could

be used to generate motions on the order of those considered here. SMA wire actu-

ators are limited by the thermal time constant of the wire, and provide only tensile

loading, however strains of up to approximately 5% can be achieved. Piezoelectric

and magnetostrictive materials respond up to very high frequencies, but can only gen-

erate strains on the order of parts per million; they would be difficult to use to create

an actuator with millimeter-scale displacements. Voice coils and solenoids can be

designed to have large displacements, reasonable bandwidth, and apply both tensile

and compressive loading. They will be examined in additional detail as they were the

prime candidates for use in the TeMPeST 1-D. Piezoelectrics will also be illustrated

as a representative of the class of solid state actuators.

3.2.1 Voice coil actuators and solenoids

Voice coil actuators convert electric current to applied force through the relation

d= I - I x 79, appropriately cast for the particular geometry of the actuator.

dj is the force applied to conductor element Id, I is the current passing through
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Figure 3-1: Force on current carrying conductor in magnetic field: (a) single conductor
(b) coil in radial magnetic field

the element, and 1 is the flux density in the region of the conductor element (see

figure 3-1).

Voice coil actuators typically employ permanent magnets to generate the B field,

and a coil placed such that the B field is perpendicular to its conductors. Running

a current through the coil creates a force on the coil. If the coil (or the magnet) is

mounted to bearings, it will move under the influence of the applied force, and this

motion could be used in this case, to deform the tissue. Alternating current passed

through the coil would therefore generate an oscillating force and displacement. A

common example of a voice coil actuator is a loudspeaker. When mounted on flexural

bearings (as is the case for a loud speaker), the actuator can generate motion in either

direction from the rest position and may have nanometer resolution with proper

control. Other applications include disk drive head positioning and wafer stepper

fine positioning. Range of motion is typically in the millimeter to centimeter range,

depending on the design of the actuator [29]. Constant force can be generated, and

the bandwidth is limited by the coil/actuator mass and the spring constant of any

suspension. One drawback is the heat generated in the coils when large forces must be

generated. Some examples of coil and magnet arrangements are shown in figure 3-2.

Solenoids use a current carrying coil, but typically have the coil fixed in place, and

have a moving ferrous core piece, which is drawn into the coil when current is applied.

Force is inversely proportional to the square of the air gap width between pole pieces.

A spring is used to return the core piece to its rest position when the current is turned

off. Solenoids are often used in switching applications, so that only the end points of
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Spermanent magnetI" U soft iron pole pieces
current carrying coil

non-ferrous structure

Figure 3-2: Moving-coil voice coil designs: (a) radially magnetized ring magnet, (b)
flux focusing design, (c) bonded windings design (coil is load-bearing)

motion are important [29]. However, by varying the applied current, position control

can be achieved. Since the rest position corresponds with one end of the range of

motion, to achieve oscillatory motion, a non-zero offset current can be applied, and

an oscillation imposed on top of that. As with the voice coil actuators, Joule heating

occurs in the windings, potentially raising the temperature of the device.

Range of motion depends on the length of the coil and core piece, and can be

10cm or greater. As with voice coils, static forces can be applied, and bandwidth is

determined by the mass of the core piece and the stiffness of the return spring.

Rotary solenoids and voice coil-type motors can also be generated, as well as

galvanometer-like actuators, but these would require some rotary to linear transmis-

sion to generate the desired linear indentation motion.

3.2.2 Piezo-electric actuators

Piezoelectric materials undergo mechanical strains when electric fields are applied

across them. Common geometries include stacks of elements, whose total displace-
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ment is the sum of the elements in series, and cantilevered elements which flex, pro-

viding comparatively large amplitude motions at the cantilever end (figure 3-3).

Range of motion is typically very small, as strains are typically less than 0.1%.3 As

a result, stacks of electrically parallel and series mechanical piezoelectric elements are

assembled, so that net deformation is increased, but even so deflections are typically

on the order of tens of microns. Further, large voltages (~100 - 1000V) typically

need to be applied to generate the maximum strain values [29].

Steady displacements can be generated, and bandwidth can be extremely high.

This is partially due to the high stiffness of the material. With respect to tissue prop-

erty measurement, however, high stiffness and low range of motion are disadvantages.

As was shown earlier, to achieve a reaction force in the 100mN range, displacements

of approximately 1mm are necessary (and greater for softer tissues). To generate

such a displacement with a piezo-stack, the stack would have to be over one meter

long! The smaller forces that would be generated with smaller displacements would

be increasingly difficult to measure accurately.

Flexing, bimorph elements can achieve larger displacements, but typically only

do so when they are driven at resonance, so that the tip motion is amplified. Since

examination of properties over a range of frequencies is of interest, bimorphs would

not be appropriate either (and could be difficult to fit into a 12mm shaft and still

generate motion in a useful direction).

3.3 Position sensor options

To measure the deformation of the tissue, it may be sufficient to measure the displace-

ment of the tip of the tool. To avoid introducing friction (such as would be present

in a potentiometer), non-contact position sensors were considered for the TeMPeST

1-D.

3e.g. a low voltage piezo stack, part TS18H5-104, from Piezo Systems, Inc. of Cambridge, MA

is 18mm long and can deflect by 13.5pm, or 0.07%.
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Figure 3-3: Piezo-electric actuator design examples: stack, tube and bi-morph.

3.3.1 Optical encoders

Optical encoders measure position by detecting changes in light transmitted through

a moveable grating (figure 3-4). Often two light sources/detectors are placed such

that the light/shadow patterns that are generated when the grating moves are in

"quadrature". This allows the determination of the direction of grating motion rel-

ative to the sources/detectors. When properly aligned, the source/detectors and the

grating do not contact each other, allowing friction-free position measurement.

Encoders are limited in resolution to the line spacing on the grating, and ultimately

for very high resolution devices, by diffraction effects. Output is digital.

Since it is often desirable for sensors and actuators to be co-located, this would

require that the encoder be placed near the tip of the shaft of the tool. There are,

however, few commercially available encoders that could fit within the confines of a

12mm (or smaller) minimally invasive tool shaft.

3.3.2 Laser interferometry

Constructive and destructive interference between two light beams can also be used to

measure position. As shown in figure 3-5, a beam of laser light is split, and the beams

follow different paths, reflecting off of either a fixed mirror, or one whose motion is

to be measured. The beams are recombined and will constructively or destructively
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Figure 3-4: Optical encoder operation. Spacing between light sources/detectors is
some whole multiple of the grating spacing (n - A), plus A/4
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Figure 3-5: Laser interferometry component arrangement (simplified)

interfere with each other depending on the difference in the two path lengths. By

placing an optical sensor in the path of the recombined beam, and measuring the

rise and fall in intensity, path length differences of fractions of a wavelength can be

measured. By counting rises and falls, large motions can be tracked. Very precise

placement and alignment of the components must be ensured to reliably measure

position. For a minimally invasive surgical (MIS) instrument, the measurement beam

could pass down the shaft of the tool, reflect off a small mirror attached to the moving

tip, and provide position measurements. The optics and associated electronics can

be expensive.
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Figure 3-6: LVDT component arrangement and operation

3.3.3 Linear variable differential transformers (LVDTs)

A transformer functions because current passing through one set of windings induces a

magnetic field, which in turn induces a current in a second set of typically interleaved

windings. The induced current is a function of the mutual inductance between the

windings, which can be varied by changing the position of ferrous core elements within

the windings (see figure 3-6).

An LVDT uses this principle to measure position. A ferrous core, attached to the

moving element, is placed within the windings of the LVDT. An alternating current

is passed through the primary windings. The direction and magnitude of the current

induced in the secondary windings depends on the position of the core piece. Within

a small range near the mid-point of device, the relationship between core position

and induced voltage (measured across the secondary winding terminals) is linear.

3.4 Force sensor options

A means for measuring applied force is also required for a force- displacement mea-

surement tool. Many commercial force sensors make use of a flexible member of

some geometry, and a strain gauge sensor to determine its deformation under load-

ing. Another class of sensors uses a piezo-electric element, effectively the inverse
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of the actuators described above. When loaded in the proper direction, the charge

developed across the sensor can be measured.

One example of a strain gage-based sensor, the Cooper Instruments & Systems

LPM 562 500G, is shown schematically in figure 3-7a. This sensor uses a micro-

machined silicon diaphragm, with piezo-resistors mounted near its edge. The piezo-

resistors are connected in the form of a full-bridge Wheatstone bridge to maximize the

response to loading. A ball bearing ensures that loading is normal to the diaphragm,

minimizing off-axis effects. It can only be used to measure compressive forces because

tensile loading would cause the ball-bearing to leave the surface of the diaphragm.

For the normal indentation tests described in chapter 2, this is not a concern.

Many piezo-electric sensors are available, but few commercial devices were located

that would fit within the envelope defined by the 12mm minimally invasive entry port,

and fewer designed to measure forces in the Newton to sub-Newton range. A typical

sensor is shown in figure 3-7b. This sensor, a model 9211 from Kistler Instrument

Corp., at 6mm in diameter would easily fit inside even a 10mm instrument, but its

lead wires extend from the side (a common feature) preventing its use near the tip

of the instrument. The model 9207 has leads extending from the back end, but is

much larger, so placing it near the tip of the actuated indenter is difficult. As will

be described further in the next section, other placement options exist, but these

are non-optimal, especially when compared with the solution that was chosen. Some

piezo-electric plastic sensors are also available4 , but no suitable stock commercial

versions were found.

Before the Cooper Instruments device was located, another concept for a force

sensor was developed for the TeMPeST 1-D, shown in figure 3-7c. This sensor would

use two fixed-fixed cantilever beams with silicon strain gages mounted at points of

maximum strain, again wired in the form of a full Wheatstone bridge. Lead wires

would extend along the axis of the sensor, rather than out the side. Development was

discontinued before completion because the Cooper sensor satisfied the requirements,

and cost significantly less in parts and time required for completion. This device may

4e.g. Measurement Specialties, Inc., Valley Forge, PA
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Examples of force sensor designs: (a) micro-machined piezo-resistive
(b) piezo-electric sensors [21], (c) custom designed sensor with silicon

be developed further, as it could be used to measure both compressive and tensile

loads, which would be interesting to apply to examine the properties of tissue without

any pre-loading. 5

3.5 System layout options

With a choice of sensors and actuators comes the question of arrangement and place-

ment of the components. Some of the options that were considered are shown in

figure 3-8.

The collocated design permits the closest placement of sensors to the tip where

loads and displacements are applied to the tissue. Minimizing the mass of elements

between the force sensor and the tip reduces inertial loads being measured by the

force sensor. Since force sensors are typically very stiff compared with the expected

values for the organs, there would be little error between the position of the actuator

and that of the tip on the other side of the force sensor, so position sensor placement

is not critical.

5This would, of course, require the development of some method for attaching the indentation
tip to the tissue, which, as described earlier, is problematic, and perhaps another topic for further
development.
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Figure 3-8: System layout options: (a) collocated sensors/actuator, (b) external sen-
sors/actuator, (c) external actuator/internal sensors

The second design places all of the major components outside of the shaft of the

tool. This permits the use of more powerful actuators, potentially with large ranges

of motion. Flexibility in the shaft driving the tip would be an issue, as buckling

would drive the shaft against the wall of the tube, and would reduce the accuracy of

positions measured at the actuator. In addition, the mass of the indenter shaft would

cause additional dynamics to be measured by the force sensor (i.e. the inertial load

of the shaft), which would have to be modeled and removed during data analysis.

Placing the actuator at the external end of a long shaft, while the sensors remain

within the main tube would solve one of the problems of design (b), in that the

reaction force of the tissue is measured directly, rather than including the inertial

load of the moving shaft. Unlike design 1, a much stronger actuator would be needed

to drive the long shaft and all of the sensors at high frequencies. More importantly, if

the shaft of the tool were to be sterilized, separately from the handle, both mechanical

and electrical connections would be required, complicating the mechanism.

The first design argues for a voice coil actuator, as it can be compact, yet yield

a range of motion comparable to its size. A piezoelectric stack, on the other hand,

would need to be exceedingly long to accomplish millimeter-scale motions. Safety

issues also argue for the voice coil; low voltages drive the coil, which are not typically
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dangerous to living organisms (though large currents can be generated), while piezo-

electric elements require large voltages, which could generate large currents passing

through the tissues should something critical fail.

The final design for the TeMPeST 1-D makes use of the co-located design concept,

a voice-coil motor, and commercial force sensors and LVDTs.

3.6 TeMPeST 1-D design details

Figure 3-9 shows the complete TeMPeST 1-D sensor/actuator package, in both as-

sembled form, and with the moving core elements and flexures shown separately.

Figure 3-10 shows an "exploded" view of all of the parts, prior to assembly. The in-

strument makes use of a custom-made voice-coil linear actuator to drive the indenter.

The position of the tip is measured with an LVDT sensor (Schaevitz6 , 099 XS-B)

mounted in the tool. While the voice coil output is a force, because the force acts on

the indenter mass and pushes against the stiffness of the flexural support bearings,

the actual force exerted on the tissue will differ from the commanded value. For this

reason, a force sensor (modified Cooper Instruments & Systems7 LPM 562 500G)

placed at the indenter tip is used to determine the actual load imposed on the tissue.

In the current version of the device, a small preload must be applied to the tissue to

ensure that contact between the tip and the tissue is maintained. In future revisions,

a suction or adhesive system may be implemented so that measurements with zero

mean force can be made. In addition, with the Cooper force sensor, only compressive

loading can be measured, as will be described.

Typical signals that the TeMPeST 1-D can impose on the tissue include sinu-

soids and chirps within the TeMPeST 1-D bandwidth, steps and saturating ramps,

and other force profiles, depending on the type of analysis required (e.g. measuring

frequency response or time domain analysis). A Gateway' Solo 366MHz Pentium II

laptop with a docking station (figure 3-11) provides the control and data acquisition

6Hampton, VA
7Warrenton, VA
8North Sioux City, SD
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Figure 3-9: TeMPeST 1-D sensor/actuator package fully assembled (left) and moving
core alone, mounted on flexures (right)

Figure 3-10: Sensor/actuator components.
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Figure 3-11: TeMPeST 1-D system components

interface to the device through a Servo To Go, Inc.9 (STG) eight channel motion

controller card (Model 2). The voltage output from the STG card controls an analog

current amplifier, which in turn drives the voice coil. A single chip instrumentation

amplifier (Burr-Brown10 , INA125) provides a stable voltage source and amplification

for the force sensor Wheatstone bridge output. The docking station is also used

to supply power to the TiD, which has the current and instrumentation amplifiers

mounted in the handle.

The drive and sensor unit and the main shaft of the tool can be detached (figure 3-

12) so that they can be sterilized in an ethylene oxide atmosphere. Sterilization in

an autoclave is not possible because the temperature approaches the recommended

maximum operating temperature for the rare earth (NdFeB) magnet, beyond which

it loses strength, and the high pressure steam will cause the iron pole pieces and the

magnet to corrode. The varnish used to coat and provide strength to the voice coil

windings is water based, and has unknown solubility in liquid bath sterilization, so

9 Redmond, WA
10 Tucson, AZ
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Figure 3-12: Separable components so that sensor/actuator package can be sterilized.

this method is not recommended.

A flexible arm which can be attached to an operating table was used to hold the

TeMPeST 1-D. Since fine positioning of the TeMPeST 1-D with the arm was difficult,

a manual cam actuator with a range of motion of 0.5" was constructed to provide

this capability.

3.6.1 Voice coil and suspension design

No commercially available voice coil or solenoid actuators were found that would

support the size limitations, desired range of motion and mounting of both position

and force sensors. For this reason, an actuator was designed specifically for the

TeMPeST 1-D.

Constraints on and specifications for the actuator include a maximum diameter of

12mm, a desired range of motion of t0.5mm, the ability to apply approximately O.1N

force, heating and temperature considerations, and the limits of available materials.

As was shown in figure 3-11a, the voice coil actuator is made up of a cylindrical

magnet, an internal and external pole pieces, and the armature. The central shaft

69



of the armature provides a rigid link between the coil, and the force and position

sensors. It also provides mounting points for the flexural suspension. The coils used

were manufactured by hand, using a wax coated mandrel which supported the shape

of the coil as the water-based varnished dried, and permitted the release of the coil

upon heating.

To maximize the flux density in the gap, a rare-earth, neodymium-iron-boron

(NdFeB-50) magnet", among the most powerful commercially available materials at

this time, was employed. The remanence of the magnet is on the order of 1.4T, with

a nominal energy product of 50MGOe.

The pole pieces were fashioned from low carbon steel (grade indeterminate). Pure

iron has a saturation flux density on the order of 2T, and low carbon steel somewhat

lower than this. Since the flux density of the magnet was already close to that of

the pole piece saturation, the focusing arrangement (figure 3-2) was not necessary.

Also, due to space constraints, the radially oriented ring magnet type was also not

used. In addition, such a magnet would have a very short effective length, and would

provide a lower flux density in the gap than a longer magnet, oriented as was done

in the TeMPeST 1-D. To prevent any "bottle-necks" in the magnetic circuit due to

saturation of the pole pieces, all of the components were designed so that the cross

sectional area perpendicular to the magnetic field lines was greater than or equal to

the cross sectional area of the magnet.

Modeling of the magnetic field and the force on a coil with a given current density

was performed using a "free-ware" magnetic field simulator called FEMM1 2 , a finite

element modeling tool which can be used to analyze 2-D planar and axi-symmetric

geometries. This tool permitted iteration of the design of the actuator to maximize

the gap flux density while staying within the maximum diameter limits. Figure 3-13

shows a typical result from the simulation showing flux density and the magnetic

field lines throughout the circuit. Figure 3-14 shows the force/current constant (Kcf)

"Magnet Sales and Manufacturing, Culver City, CA
'2 Finite Element Method Magnetic, version 2.1, @1999, Dr. David C. Meeker. http: //members.

aol. com/dcm3c, 2 Jan 2001, last update 21 Nov. 2000
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Figure 3-13: Typical FEMM flux density/field line plot.

for a coil wound with 34 gage insulated magnet wire. As can be seen, Kf is nearly

constant across a range of motion of greater than ±0.5mm, satisfying the range of

motion requirement.

To provide friction-free actuation, a flexural bearing system was developed for

the TeMPeST 1-D. Sliding bearings introduce friction between the moving surfaces,

and ball or roller bearings are not generally suited for very small, repetitive motions.

Hydrostatic bearings (oil, water or air) were considered, but have additional difficul-

ties such as sealing the system to prevent contamination of the organs and dealing

with the pressurized environment in laparoscopic surgery (in addition to the precision

manufacture of more parts). Mounting the moving elements on flexures eliminates

these problems. A number of designs were considered for the flexures, and an example

of the final version is shown in figure 3-15.

While flexures provide friction-free motion, this comes at the cost of exerting a

restoring force on the actuator. The applied force for a given displacement is less

than that generated by the voice coil alone, and is zero when the displacement is

equal to the voice coil output force divided by the flexure spring constant. Further,
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Figure 3-14: Force constant vs. position from model.

combining the mass of the moving elements with the elastic suspension creates a

second order system, which will have undesired large amplitude oscillations when

driven at or near its resonant frequency. A trade-off exists between minimizing the

current needed to exert a desired force, which argues for low flexure stiffness, and

achieving a resonant frequency above the frequency range of interest, which requires

a higher spring constant (and low mass). From early mass estimates for the actuator

and a desired minimum resonant frequency around 100Hz, the flexures were designed

to have a minimum stiffness of approximately 100N/m.

The design chosen for the TeMPeST 1-D is a fixed-fixed cantilever design, clamped

to the moving armature and fixed housing at the inner and outer bosses respectively,

with the cantilever wrapped around the central axis of the armature. To provide

flexibility in design, a series of flexures was manufactured, each version with a different

cantilever length, and thus a different stiffness.

On its own, a single flexure would tend to bend out-of-plane when an axial load

is applied, and would thus exert a bending moment on the armature away from the

axis of the actuator. As shown in figure 3-9, two flexures are used to support the

armature, so the lateral stiffness of each flexure prevents the other from bending

off-axis, thereby achieving the desired motion.
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breakout tab outer boss

cantilever inner boss

Figure 3-15: Flexural suspension

The flexures were manufactured by photo-etching 0.015" thick T2024-T3 alu-

minum. Other materials were considered, including copper and copper alloys, as

well as steel. Aluminum was chosen as it had the lowest elastic modulus of the

available materials; a lower modulus permits the design of slightly larger elements,

which are less sensitive to the tolerance limits of the mask alignment process. Since

photo-etching permits the simultaneous manufacture of a number of parts, a series

of flexures with a range of stiffnesses was created, providing flexibility in tuning the

behavior of the actuator.

The masks used to create the flexures are included in appendix B. Isotropic

etching of the aluminum produced components which have full thickness at the inner

and outer mounting bosses, but only 0.005" thick cantilevers. The masks include

allowance for breakout tabs to prevent the flexures from separating from the rest of

the sheet during etching.

Finite element analysis was performed using SDRC I-DEAS Master Series 7 to

estimate the minimum stiffness of the longest cantilever design, and verify that the

normal range of motion would not exceed the fatigue strength of the alloy.1 4 A typical

result is shown in figure 3-16, as are expected force-displacement data, showing that

the flexures behave like linear springs within the normal range of motion.

73

1 3MicroPhoto, Inc., Roseville, MI14 140Mpa for 500,000,000 cycles [2]



I-DFAS Maste- Sexes Sim i 50

RSLTS: 2- B.C. ISTRESS.2,LOAD SET I
STRESS - VIH ISH N: 5.9S0+0 MAX: i.3~E+0
DEFRMTION: i- B.C. i,DIGPLA M JLOAD SET ±
DISPLACEENT - W40 MN: 0.00E -04 VALLE OPTISNATUA 40
FRME OF RE: PET

i.19E

1.06E+ z-3

R.27E+0

7.94E+O 0

6.62E+0

2.605i

.32E+ F - | R= 104.8
5.90E+ 0-

0 0.1 0.2 0.3 0.4 0.5
position (mm)

Figure 3-16: Single flexure FEA output: spring constant = 105N/m. For applied
force = 0.05N, z=0.48mm, maximum Von Mises stress = 132.4MPa

Total combined stiffness for the two flexures plus the six lead wires connecting

the force sensor and voice coil to the amplifier and drive circuitry is approximately

275N/m (see section 4.2.7), indicating that the model agrees closely with the fabri-

cated components used in the TeMPeST 1-D, and that the components match the

desired stiffness.

3.6.2 LVDT

The Schaevitz, 099 XS-B LVDT was used unmodified, with the LVDT coils mounted

in the aluminum housing (figure 3-11a), and the core element attached to the moving

armature of the voice coil actuator. This LVDT has a nominal linear range of motion

of t2.4mm, with a rated linearity of 1.0% of full scale maximum. Careful placement

of the photo-etched flexures automatically aligns the armature so that the LVDT core

does not rub against the inner surface of the coils.

The LVDT drive oscillation and signal conditioning of the response are performed

by a Schaevitz ATA 2001 signal conditioner. Front panel controls permit gain, phase

and offset adjustments, which are stored in non-volatile memory. It provides an

analog bipolar voltage output with a range of ±1OV.
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3.6.3 Force sensor

A Cooper Instruments LPM 562 50OG force sensor measures the force exerted on the

tissue. The device makes use of a micromachined silicon diaphragm with piezoresistors

embedded near the edges. The resistors and embedded circuitry create a full bridge

Wheatstone circuit (figure 3-17).

Silicon diaphragms can be used as pressure sensors, where a pressure difference

across the diaphragm causes it to deform elastically. The deformation causes a change

in the resistance of the piezoresistors, proportional to the local strain. To be used

as a force sensor, a ball bearing held in a collar pushes against the mid-point of the

diaphragm, generating a near-point force. Whether a distributed pressure or a point

load is applied, the bridge circuit will respond, and the load can be detected.

Because the ball bearing does not rise very far above the sensor package, the

modified version shown in figure 3-17 was constructed. The base of the package,

the silicon structure and the ball bearing were retained, and an additional collar and

indenter with a right circular tip were added. The indenter is fixed to the ball bearing

with epoxy; the diameter of the additional collar is smaller than the ball bearing, so

no components can fall out during use. In turn, the diameter of the indenter tip

shaft is slightly smaller than the collar diameter, so that a free sliding fit is achieved,

thereby avoiding significant friction that would corrupt the force measurement.

Since no method was available to permit adhesion or other non-damaging attach-

ment to tissue, tensile loading is not used. For this reason, the modified force sensor,

which detects only compressive forces, is acceptable for the measurements.

3.6.4 TeMPeST 1-D electronics

The TeMPeST 1-D body houses two circuits: one to drive the current in the voice

coil actuator, and one to balance and amplify the force sensor output. The system

implemented is shown in figure 3-18. The circuits were assembled on a perforated

protoboard using wire-wrap sockets to permit easy placement (or replacement) of the

components.
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Figure 3-17: Modified force sensor components

Figure 3-18: TeMPeST 1-D body, housing force sensor balance and instrumentation
amplifier circuits, and the current source for the voice coil
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In addition to the electronics in the instrument, a laptop and a docking station

with a motion controller card provide for control, data acquisition and analysis.

Analog current source

The voice coil actuator converts current passing through conductors in a magnetic

field into force. The digital to analog converter (DAC) on the motion controller card

can only supply a few mA of current, so an additional power source and voltage to

current converter is necessary. Power can be supplied from the docking station power

supply, providing ±12V and ground connections. Voltage controlled current sources

are commercially available, but [17] describes a simple one-chip analog current source

which suits the needs for the prototype TeMPeST 1-D. Figure 3-19 shows a modified

version of the circuit. The original version holds R1/R 2 = 1, but by altering the

ratio, the gain of the system can be changed, independently of the value of the sense

resistor, Rs. Since power dissipation in the sense resistor varies as 12R, a smaller

resistor reduces heating, and wasted power; 0.5Q power resistors were available on

hand and one was used in the final design. However, since in the original design,

output current is proportional to V1K/R, smaller resistors increase the voltage to

current gain. Since the DAC range is ±1OV, and the output current will be typically

smaller than 500mA, the modified gain section of the circuit is necessary to scale

down the large voltage to a proportionally small current.

The most important component of this circuit is the high-power operational am-

plifier, which must be able to supply the full current. The Barton-Barr OPA2544 is a

dual power op-amp chip, one half of which was used as the power op-amp, while the

other serves the role of buffer amplifier, and carries only minimal current.

For this circuit, the relationship between input voltage and output current is

shown in equation 3.2. With an input voltage range of ±10V from the STG card, the

maximum current that the source will generate is 500mA. Power dissipation in the

power-op amp is given by equation 3.3. Maximum dissipation is 5.9W, and coincides

with the 10V maximum input voltage. This is a non-trivial amount of heat, so the

power op-amp chip was mounted to a heat sink to prevent overheating, and windows
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Figure 3-19: Direct voltage to current amplifier circuit

were designed into the housing to permit natural convection to carry heat away. As

will be apparent in chapter 6, in all experimental cases current was only supplied for

periods on the order of 30 seconds or less, and maximum current was never used;

heating was not a significant concern.15

Iout = VinRsR1
= 1-in 

(3.2)
20

R2-2 R2VP = (12- Vin J RR I
3 1

Vn 800 2  (3.3)

Force sensor bridge and instrumentation amplifier

The force sensor described in section 3.6.3 is a Wheatstone bridge design which uses

a fixed voltage across the source and ground terminals. Its output is the difference

between the voltages at the V+ and V_ terminals. Since the differential signal is

typically on the order of millivolts, it must be amplified so that quantization noise

in the ADCs and additional noise picked up by the wires between the sensor and

the ADCs are not significant. In addition, the force sensor bridge circuit is not

completely balanced, so a balance circuit with a potentiometer was added so that the

offset voltage could be zeroed and to compensate for any effects of room temperature

1 5Even after minutes of driving the voice coil with a constant current of up to 200mA during
calibration and other tests, the heat sink never became too hot to touch, remaining below about
45 0C.
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Figure 3-20: Force sensor, balance and instrumentation amplifier circuit.

variation. 16 The circuit diagram is shown in figure 3-20.

As with the current source, a single chip design was possible using the Burr-Brown

INA125, which includes a stable voltage source to provide the supply voltage to the

bridge, and an instrumentation amplifier with a gain that can be set by using one

additional resistor. The output is linear with force over the range of interest, as

described in section 4.2.3.

Computer and motion controller

To generate the open loop trajectories, control the system, and acquire and analyze

data, a laptop, docking station and motion controller card were purchased. Important

applications installed on the laptop include Microsoft Visual C++ and Mathworks

MATLAB. MSVC++ was used to create the real-time control and data acquisition

application, while the graphical user interface, trajectory generator and analysis seg-

ments were developed in MATLAB. Use of a laptop permitted convenient off-line (and

off-site) data analysis.

The Gateway 2000 laptop was selected in part because it is compatible with a full

docking station which has two dual ISA/PCI interface card slots. The power source

supplying the docking station and the laptop (when docked) was modified to supply

power to the TeMPeST 1-D as well.

The interface card is an eight channel ServoToGo model 2 ISA motion controller.

16 Piezoresistive strain gages are more sensitive to temperature than normal metal foil or wire
gages, though since the resistors will vary roughly in line with each other, temperature variation is
a second order effect.
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Figure 3-21: Modified Mediflex laparoscope/instrument holder and fine positioning

cam. The cam provides fine position control over a range of 0.5"

It supports up to eight 13-bit ADC channels, eight 13-bit DAC channels, four optical

encoders and 32 bits of digital I/O. While not all of this functionality is necessary

for the TeMPeST 1-D, it is anticipated that this same system will be used to support

additional instruments, such as the TeMPeST 3-D, described in appendix C. The

input and output range are t1OV, so the resolution of the ADC and DAC channels

is 2.44mV.

3.6.5 Flexible arm and fine positioning cam

To rigidly attach the TeMPeST 1-D to an operating table, a Mediflex' Bookler la-

paroscope/instrument holder, model no. 69045-D (see figure 3-11b), which is designed

to support a laparoscope or other instruments, was employed. While it can be ar-

bitrarily positioned, locking the arm in place requires tightening of a nut to create

enough friction between the links to prevent motion. Using the arm to position the

tip of the TeMPeST 1-D to the sub-millimeter accuracy required to contact soft tis-

sue was not found to be possible, so a manual cam system was developed to permit

precision positioning. Figure 3-21 shows the flexible arm, and a close up of the fine

positioner.

The fine positioner consists of a sliding joint between the arm and the cam made

of Delrin to provide a guide for axial motion. Attached to the shaft of the TeMPeST

"Islandia, NY
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Figure 3-22: Details of fine positioning cam geometry. Pins on TeMPeST 1-D shaft

follow cam in disk mounted to Mediflex arm. In this configuration, clockwise rotation

about the axis generates linear motion of the shaft towards the right.

1-D above and below the sliding joint are two pins which act as cam followers, and

drive the motion of the TeMPeST 1-D shaft. The cam followers ride in a pair of

helical grooves cut into an aluminum disk which turns on a screw attaching the disk

to the Mediflex arm.

The shape of the cam is designed so that the length of a straight line passing

through the pivot point, from one half of the cam path to the other has a constant

length. This length is the same as the distance between the two cam follower pins.

By rotating the disk, the proportions of the line segments between the cam followers

shifts from lying above the pivot to below. A rotation of 1800 results in a fine motion

of 0.5". Assuming that the smallest rotation that a user can generate is on the order

of 2 , then the TeMPeST 1-D can be positioned to better than 0.2mm. Figure 3-22

illustrates the geometry and motion of the fine positioner.
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Chapter 4

System modeling and

characterization

This chapter will begin with the development of lumped parameter models which can

be used to examine the behavior of the TeMPeST 1-D, both in free motion, and in

contact with some unknown material. This modeling will permit the extraction of

force-displacement models of the tissue from the measured force and displacement

from the system, and from there, the determination of material properties.

The system model requires the determination of a number of parameters to de-

scribe each of the major elements, including the force and position sensors, the voice

coil and its suspension. Experiments to calibrate and characterize each of these sub-

systems will be described and their results presented.

4.1 TeMPeST 1-D System Modeling

The lumped parameter models for the TeMPeST 1-D will be developed from the

simplest, second order description for the voice coil actuator alone, to more complex

models including the dynamics of the TeMPeST 1-D mounted on the articulated arm

and simple models of the tissue.
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4.1.1 Voice coil actuator model

The dominant elements of the voice coil are the stiffness of the flexures and the

mass of the armature, which includes the coil, the force sensor, and the core of the

LVDT. For this model, the mass is estimated based on the volume and density of the

materials used in the armature and the stiffness on that calculated from the finite

element model of the flexures. Calculating the damping from first principles based

on viscous forces due to air in the actuator or material damping properties would be

extremely difficult. However, for the purposes of modeling, knowing that damping

from air would be small, a damping ratio of 5% is assumed. Figure 4-1 shows the

lumped parameter model for this system, and its frequency response. Equations 4.1

are the state space model of the system.

z0 1 X 0
k b + I fcoil(M = (r )( .) ( )

Xmeas (1 0 (4.1)

4.1.2 Tissue contact I

Assuming now that the TeMPeST 1-D is rigidly mounted while in contact with tissue

with transfer function H(s), a more complex model describes the response. The tip

position and force measured at the tip can be determined analytically. As shown in

the sequence of equations 4.2 which follow, the ratio of the transforms of position to

force is equal to the transfer function of the tissue, permitting reconstruction of H(s)

from position and force data. For the purposes of generating equations 4.2 and the

Bode plots, a Kelvin tissue model is included in the system.
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0 1 0 x 0
= k+kk2  b __ck

KkJ 0 1 kkI l X 0

x

Xmeas 1 0 0

fmeas kk2 0 kk1 (4.2)
\ k

Transforming the equation for Xk and the output equations to the Laplace domain

and continuing:

Xmeas(s) X(s) (4.3)

Fmeas(S) = kk 2X(s)+ kklXk(S) (4.4)

sXk(s) = sX(s) - bk Xk(s) (4.5)

Solving equation 4.5 for Xk(s) in terms of X(s) and substituting the result into

equation 4.4 (and dropping 's' for convenience) yields:

Fmeas = ((kk1 + kk2)s + kklkk2 X (4.6)
bk

And finally dividing Xmeas =L{Xmeas} by Fmeas = {frmeas} generates the desired

result:

Xmeas bk (4.7)

Fmeas (kkl+ kk2)s+ kkk2

1 kkl (4.8)
kk2 kkl+kk2bs + 1kklkk2

= H(s) (4.9)
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which is the same expression as was derived for the Kelvin body in section 2.1.

This is a very simple example of a system identification problem, in which the sys-

tem is the tissue being studied, and the parameters describing it are desired. Using

the ratio of the transforms of position and force leads first to a non-parametric graph-

ical representation for the transfer function of the tissue. Once the non-parametric

form has been determined, one can decide what sort of system best fits the observed

behavior, and then determine the parameters to achieve a best fit between the model

and the tissue response.

For example, for an unknown material exhibiting a Kelvin body characteristic

response, the unknown parameters could be calculated from measurements of the high

and low frequency asymptotes in compliance (ci, c2), and by the frequency where the

phase is maximum (wi, in rad/sec). The relationships between these values and the

parameters introduced in figure 2-3 and equation 2.5 are developed in equations 4.10

- 4.13.

k,= c- (4.10)

k2 c2 -c 1 1 (4.11)

WM = (TCr)-1/2

b k1 +k2 1/2 (.2= -- __ (4.12)
k1 k2

b =CI - C2) 1/2 (4.13)

The preceding equations were developed assuming that the force and position

signals were continuous in time, permitting the use of the Laplace transform. For

sampled data, the Discrete Fourier Transform, or the Fast Fourier Transform can be

used to generate non-parametric representations of the materials in question. One

method for doing this is to generate an input signal with frequency content spread over

a range of interest, such as a chirp. Then the ratio of the DFTs of force and position

is found, and is used as an approximation to the frequency response of the tissue.
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This method, described in more detail in [11] is used in some of the characterization

exercises used to determine the TeMPeST 1-D parameters later in this chapter, as

well as the measurements of properties of real materials (chapter 6).

4.1.3 TeMPeST 1-D in free motion

The next level of complexity arises from the inclusion of the mass of the entire in-

strument and the flexibility of the Mediflex arm into the system. The additional

kinetic and potential energy storage elements introduce two additional states into the

system, beyond those in the free-motion second-order system, as shown in figure 4-3.

In modeling, stiffness is taken to be that of a round cantilevered rod with length,

diameter and density equal to that of the Mediflex arm. Mass is equal to that of the

TeMPeST 1-D body (without armature) plus the equivalent mass of the cantilever

arm. With this model, the open loop response of the motion of the indenter tip is

shown in figure 4-3. In this case, the unmeasured resonant motion of the TeMPeST

1-D body introduces a small distortion to the ideal response discussed above. How-

ever, since this distortion is local for a lightly damped system (which is true for the

TeMPeST 1-D and arm in free space) and because the stiffness of the Mediflex arm

is large compared with the flexures, the dominant characteristics of the system are

still those of the voice coil actuator. This continues to permit use of the second-order

model of the actuator (equation 4.1) as a useful approximation.

Xb0 1 0 0 Xb0

b_ b bbbb k b
M M M M Xb M

0 0 0 1 x 0

k b k _ b 1
\ / \ m m m m/ \m

/Xb
X 0 0 1 0

Xb 1 0 0 0 (4.14)

r~bJX

Xlvdt 1 0 1 0
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Figure 4-3: Free space tip response for TeMPeST 1-D on Mediflex arm, with base

motion (Xb/Fcojj) shown for comparison.

4.1.4 Tissue contact II

Again adding contact with Kelvin tissue to the model, the system (figure 4-4) is

now 5 th order, as shown in equations 4.15. As was done earlier, the ratio of the

applied force and measured displacement is found, and in this case, the effect of arm

resonance is clear in both the magnitude of the compliance and the phase value. The

unmeasured base motion is now larger at the resonant frequency, because the applied

force (and reaction from the tissue) is much larger than inertial forces due to the

motion of the actuator in free motion.

Despite this larger error in the calculation for the frequency response of the tissue,

since the error is still local, as discussed earlier, the gross characteristics of the tissue

can be calculated based on, for example, equations 4.10 - 4.13.
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Xb 0 1 0 0 0 Xb 0

- k+kb b+bb k b 0 0
M M M M M

= 0 0 0 1 0 x + 0 fcoi

k b kkkl+kk 2 b k 1\

Xk 0 0 1 0 0

Xb

Xb 1 0 0 0 0 (4.15)

Xlvdt -1 0 1 0 0

fmeas 0 0 kkl + kk2 0 -kk2

Xk

In addition, as is shown in the Xmeas/Fmeas plots of figure 4-4, at low frequency,

the calculated compliance is slightly higher than the model compliance. While not as

large as at arm resonance, there is still a small unmeasured motion of the base, which

makes the apparent stiffness of the material slightly smaller than would normally be

calculated. However, if the stiffness of the base is much larger than that of the tissue

being measured, this difference is very small. As solid organs will be tested, rather

than bone or cartilage, this approximation is reasonable.

While the experiments performed with the TeMPeST 1-D will be discussed in

chapter 6, figure 4-5 presents an example of the contrast between tissue measurements

made with the TeMPeST 1-D clamped in place (equivalent to figure 4-2), and the

same measurement made with the TeMPeST 1-D attached to the arm, which is free

to resonate. As was shown above, the gross characteristics of the tissue (a mechanical

spring array, discussed in section 6.1) are preserved in the resonating arm case, with

only a local error introduced around the arm's resonant frequency.
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Figure 4-4: Full TeMPeST 1-D in contact with Kelvin body (top); magnitude and

phase of measured force, position and base motion (middle); magnitude and phase of

Xlvdt/Fmeas and ideal Kelvin response (bottom).
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Figure 4-5: Measurements of compliance of mechanical springs made with TeMPeST
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4.2 TeMPeST 1-D Characterization

In the preceding sections, models for the system, a method to determine non-parametric,

graphical representations of the tissue response and equations to find the parameters

for assumed Kelvin behavior have been presented. It remains to fill in the true val-

ues for the prototype device, as well as to determine the calibration constants for the

sensors and actuator. These measurements will be presented in the following sections.

4.2.1 Warm-up characteristics

Before making any measurements with the TeMPeST 1-D, it is important that all of

the electronic components have warmed-up to their normal operating temperatures.

This true especially for the LVDT and the force sensor, since determination of tis-

sue properties depends on accurate measurement of position and force, but is fairly

independent of the precise trajectory followed by the actuator.

Figure 4-6 shows plots of force and position sensor voltage output (or more pre-

cisely, output of the instrumentation amplifier and the LVDT signal conditioning

hardware) versus time after applying power. From this plot, the force sensor appears
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Figure 4-6: Initial zero-force/zero-displacement warm-up response of position and
force sensors. Force sensor 5% settling time is approx. 12 min.

to have a heavily damped second order response with a 5% settling time of approxi-

mately 12 minutes, while the position sensor settles almost immediately. The LVDT

users manual recommends a 15-minute warm-up period, which is on the same order

as the settling time of the force sensor, so this period is recommended to ensure that

the TeMPeST 1-D has reached a condition that can be considered steady state.

4.2.2 LVDT calibration

The Schaevitz 099 XS-B LVDT is manufactured to have a linearity of ±1.0% of the

full range maximum. The initial calibration sequence described in the user's manual

for the Schaevitz ATA 2001 signal conditioner uses the neutral rest- and full scale

positions to set the gain and offset. To verify the calibration constant and linearity,

a micrometer-based calibration jig was developed, as shown in figure 4-7. With the

system warmed up, measurements of output voltage were taken at 0.002" increments,

the results of which are presented in figure 4-8. The calibration constant for position

sensing is approximately 10.2V/mm.
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Figure 4-7: Calibration jig for LVDT, as well as testing fixed displacement tests of
voice coil and force sensor.
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Figure 4-8: Calibration curves for LVDT and position constant. Voltage offset can
be adjusted by the signal conditioner, but only slope is needed for frequency domain
analysis. N=200 for each position.
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4.2.3 Force sensor calibration

The nominal response of the force sensor is rated to be 0.024±0.004mV/V/gram

(i.e. mV output per volt excitation per gram load), or for the 1OV drive used from

the instrumentation amplifier chip, 24.5piV/mN. Since the resolution of the ADC is

approximately 2.5mV/bit, the sensor output needs to be amplified.

A preliminary version of the circuit was constructed on a protoboard, including

the sensor, mounted to the board itself. Standard laboratory masses ranging from

2g to over 50g were loaded onto the indenter tip, and the data acquisition card was

used to record the voltage output of the amplifier. Various gains were tried until the

amplifier output for the maximum expected load (approximately 0.5N) corresponded

with the range of the acquisition card (1OV) with some safety margin to permit over

load conditions to be detected. A 40Q gain resistor yields a gain of approximately

1500.

The fully assembled TID was calibrated again, with the TID clamped in a vertical

position, and the tip loaded with the masses (figure 4-9). Typical calibration data

are shown in figure 4-10. The slope is approximately 34.5V/N, and this value was

used in the data acquisition and analysis software that will be described in chapter 5.

Linearity is approximately ±1% of the full scale voltage.

4.2.4 Voice coil calibration

With the force and position sensors calibrated, they can be used to aid in the cali-

bration of the other components of the TeMPeST 1-D. The first of these is the force

output of the voice coil actuator. Since the models presented so far assume that force

is the input to the system, rather than current to the voice coil, the force-current

constant (and its linearity) need to be found.

Coil calibration was accomplished using the same jig as was used in LVDT cal-

ibration (figure 4-7). With the TeMPeST 1-D clamped in the jig, the micrometer

was adjusted to set the position of the actuator, and then current was increased and

decreased in a linear ramp. Commanded current and force measured by the force
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Figure 4-9: Force sensor final calibration method: standard masses loaded on tip of

inverted TeMPeST 1-D.
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Figure 4-10: Force sensor calibration data. Voltage offset can be adjusted with the

bridge balance circuit, but only slope is needed for frequency domain analysis. N=200

for each force value.
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Figure 4-11: Force constant vs. axial position for voice coil. This is equivalent to the
torque constant for a motor.

sensor were recorded. This was repeated at a number of positions within the range

of motion of the actuator. For positions where the micrometer does not compress

the actuator (i.e. z > 0 in figure 4-7), a DC current was applied before the ramps to

offset the position of the tip.

Figure 4-11 shows the current-force constant at each position within the range

of motion of the TeMPeST 1-D, and shows a mean value of the force constant of

0.61N/A. It also demonstrates that the prediction of constancy of the current-force

relationship from the magnetic finite element model is valid, and that the predicted

value is close to that of the real device.

4.2.5 Position sensor frequency response

The ATA 2001 signal conditioner for the LVDT uses a 10kHz excitation frequency,

and the users manual reports that the output drops by 3dB at 1kHz. Since the

TeMPeST 1-D is intended for use at frequencies no higher than a few hundred Hertz,

the dynamics of the position sensor are not expected to have any influence on the

measured position. However, since the STG motion controller samples the force and
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position signals sequentially, the lag between force and position measurement can

introduce additional phase lag between the two signals. To verify the magnitude

response of the position sensor, and investigate the phase effects, the TeMPeST 1-

D was tested with a vibratory stimulator in the MIT Laboratory for Human and

Machine Haptics (or Touch Lab).

The Touch Lab stimulator (TLS) uses a galvanometer actuator to drive a small

indenter, which is used to investigate the mechanical response of the human fingerpad.

With the gain on the position controller (and thus the stiffness of the actuator) turned

down, and the TeMPeST 1-D indenter driving the motion of the Touch Lab stimulator

indenter, the position response to chirp waveforms was measured by both instruments.

The TLS analog output was measured with the channel normally allocated to the force

sensor, to make any lag between the force and position measurement apparent in the

phase between the two position measuring instruments.

The Bode plots of the transfer function between the two position signals is shown

in figure 4-12. Assuming that a pure transport lag between the two signals describes

the transfer function, the best fit model, described by equation 4.16 is overlaid on the

data.

Xtd(s) _3.27E-4s (4.16)
Xu (s)

From these results, it can be seen that the position response is constant over the

range of frequencies covered by the TeMPeST 1-D, and that the lag between the two

analog readings is approximately 0.33ms. Knowledge of the transfer function of the

position sensor can be used to correct measurements made on unknown materials

later on.

4.2.6 Force sensor frequency response

The INA125 instrumentation amplifier documentation indicates that as gain is in-

creased, the break frequency falls from the 100kHz range (G=4), to the 100Hz range

(G>1000). Since these are nominal values, a test was performed to determine the

98



100
X

10

?,<-20

x -30
V

-40

-_2 10~1 100 10 102

H(s) = e-3.27

10-2 101 100 10 102

frequency (H z)

Figure 4-12: LVDT frequency response. Flat response to 500Hz, gain and phase

response consistent with transport lag due to sequential analog measurements

true performance of the force sensor and amplifier. The test involved applying force

over a range of frequencies with the voice coil with the tip of the indenter held fixed.

In this way, the measured force should be the same as the force applied by the voice

coil.

In conducting such a test, the voice coil force amplitude would need to remain

constant over the frequency range of consideration. This depends on the performance

of the analog current source (the OPA2544 power op-amp in particular) at high

frequencies. For closed loop operation, the break frequency depends on the gain,

according to the limits imposed by the gain-bandwidth product. For the OPA2544,

the product is 1.4MHz, and the gain in the feedback loop is 1/40, so the op-amp closed

loop bandwidth should be 56MHz. While the series sense resistor and voice coil form

an LR filter, since current is being controlled directly, the LR load should not affect

the bandwidth of the source-load system. For this reason, it can be expected that

this test determines the bandwidth of the force sensor/amplifier without distortion

from the actuator.

Figure 4-13 shows the magnitude plot for the transfer function between com-
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Figure 4-13: Force sensor frequency response (magnitude).

manded and output force. Shown are the data for the INA125 with a gain of 1500

and 3000, with the drop in bandwidth clearly visible. Also shown are the magnitudes

of first order continuous systems with unity DC gain and a break frequencies of 380Hz

and 240Hz, which closely approximate the behavior of the force sensor/amplifier sys-

tem with the two gains, respectively. As a compromise between sensor bandwidth

and amplifier gain (which improves the signal to quantization noise ratio), a gain of

1500 was used.

By combining the transport lag data from the LVDT dynamic calibration with

the first order response of the force sensor, an expression for the filtering effects of

the TeMPeST 1-D can be determined (equation 4.17). The inverse of this filter can

be applied to the force-displacement response of materials tested with the TeMPeST

1-D, to determine more accurate descriptions of their true responses.

-3.27E-4s

27r380s + 1
(4.17)
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4.2.7 Flexure stiffness; actuator effective damping and mass

As was described in the second order model earlier, the actuator can be modeled

as a three parameter system, with stiffness, a damping element and a mass. These

parameters can be extracted from the free motion frequency response as follows.

The combined stiffness of the two flexures (and the force sensor/voice coil wires)

can be determined in two ways. The first uses the LVDT calibration jig micrometer

to push against the tip of the indenter, while recording the force sensor output. The

alternate approach is to pass current through the voice coil, using the known current-

force constant to calculate force, and record the position response with the LVDT.

If a series of sinusoids of different frequencies, or a chirp signal covering a range of

frequencies is used to drive the voice coil, the resonant frequency, and therefore the

effective mass, of the actuator can also be determined.

Figure 4-14 shows data points for the static and quasi-static compliance of the

flexure. The quasi-static data are taken in two forms: the slope of the least-squares

fit of the force-displacement data; and also as the ratio of the FFT magnitudes of

the force and position at 0.05Hz1 . As shown in the figure, they overlay each other

precisely. Taking the ratio of the FFTs also yields a phase value for the quasi-static

case, showing that there is no lag between force and displacement. The low frequency

asymptote of the chirp response also corresponds with the static and quasi-static data.

From these results, the equivalent stiffness of the flexures is found to be 276N/m.

The damping ratio (and damping coefficient, b) due to air motion within the

actuator, material damping, and friction between the moving and stationary parts

can be determined from the ratio between the resonant and static compliance (MP)

by using equation 4.18 (and 4.20). It can also be determined by performing a best fit

on the phase lag to that of an ideal second order system with damping as an unknown

parameter. The resonant and static compliances and damped natural frequency are

shown in figure 4-14.

'well below the dominant system resonances.
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MP = (2( 1-(

(- 1 2

2 0.1
=0.14 (4.18)

With a value for C, the effective mass can be found using the damped natural

frequency, Wd (see equation 4.19). Using a chirp signal on the (rigidly clamped)

TeMPeST 1-D, the damped natural frequency was found to be 65.8Hz, yielding an

equivalent mass of 1.6 grams. This value is on the same order as an estimate based

on the designs for the individual components of approximately 1.2g. This estimate,

however, did not include the effective mass of the moving part of the flexures, small

amounts of epoxy used to bond parts together, and short lengths of copper wire

connecting the moving force sensor and voice coil to the fixed housing.

k _ Wd

Vm /1 - 22

k(1 - 2 2 )

= 1.6g (4.19)

Comparing the denominators of

equation 4.1 and a unity gain second

coefficient (equation 4.20):

the transfer functions of a normalized form of

order system permits calculation of the damping

2 b k
s2 +-s +-- =-

m m
= b =

s2 + 2(2s + w

2m(w,

0.20Ns/m (4.20)
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Figure 4-14 shows the frequency response of an ideal second order system with

these parameters overlaid on the non-parametric tranfer function determined from

the ratio of the position and force FFTs.
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Chapter 5

GUI and controller development

A graphical user interface (figure 5-1), developed using MATLAB, v5.0 and the GUI

Design Environment (GUIDE), provides a convenient interface to generate open-loop

current trajectories for the TeMPeST 1-D and perform post-processing. Real-time

control of the TeMPeST 1-D, including commanding voice coil current and perform-

ing data acquisition from the force sensor and LVDT, is performed by a console

application written in C++ with Microsoft Visual C++ v5.0. Detailed descriptions

of the function of these elements follow.

5.1 TlDgui: graphical user interface for the

TeMPeST 1-D

Since the physical input for the TeMPeST 1-D is the current driven in the voice coil

actuator, a means for generating the current trajectory is required. Similarly, after

position and force data are acquired, some basic post-processing is desired to ensure

that no errors or failures occurred during acquisition, and to provide guidance as to

which additional experiments should be performed (e.g. different range of frequencies,

different amplitudes). The MATLAB-based graphical user interface shown in figure 5-

1 provides all of this functionality.
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Figure 5-1: Control panel for graphical user interface. Includes controls for wave-
form type, sampling rate and duration, waveform amplitude, offset and frequency or
frequency range.

5.1.1 Waveform type selection

TlDgui allows the generation of four different waveforms (and can be easily extended

if necessary): sine, square, and two chirp waveforms (figure 5-2).

The sine wave permits the testing of tissue response at specific frequencies, or over

a range of frequencies by examining them one at a time. The square wave allows time

domain analysis by providing input for step response examination. The chirp signals

allow examination of response over a range of frequencies in a short time interval,

necessary for performing the in vivo tests that will be described in chapter 6.
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Figure 5-2: Types of waveforms supported by the TlDgui
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The equations for sine and square waveforms (equations 5.1 and 5.2) are familiar.

Chirp signals are essentially sinusoidal signals, but have instantaneous frequencies

which vary with time. A commonly used chirp is one where the frequency varies

linearly with time (equation 5.3), either increasing or decreasing at a constant rate.

Changes in the relative contribution of low or high frequency components can be

achieved by altering the way that instantaneous frequency changes. An example of

this is a chirp with frequency which changes exponentially with time (equation 5.4).

This difference is shown in (figure 5-3), which compares the magnitudes of the fast

Fourier transforms of chirp signals with the same starting and end frequency (1.0

to 100Hz), and unity amplitude. Two signals were 215 samples long, with a 2kHz

sampling rate, while the other two were 213 samples long.

From the FFTs of the chirp signals, it is immediately seen that the low frequency

content of the exponential chirps is greater than that for the linear chirps. The time

domain corollary of this is that while the linear chirp has few complete oscillations
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Figure 5-3: FFTs of linear and exponential chirp signals. All signals defined with

1Hz and 100Hz initial and final frequencies

per unit bandwidth at low frequencies, and many oscillations per unit bandwidth at

high frequencies, the number of oscillations per unit bandwidth for the exponential

chirp is constant; there are as many oscillations as the signal shifts from 1 to 5Hz (for

example) as there are between 101 and 105Hz. This permits acquisition of data with

a higher signal to noise ratio at low frequencies than the linear chirp.

Chirps are by no means the only kind of signal which has broad-band frequency

content. White or pink (i.e. band-limited) random signals could be used to excite

the tissue, and the resulting force and position responses analyzed in the same way

as the chirp responses.

5.1.2 Sampling and waveform parameters

Once the waveform type has been chosen, the control panel is used to set various

parameters related to the trajectory to be generated.

The first two fields permit the user to select the Sampling Rate and Duration

of the tests. The ServoToGo motion controller card can run at a sampling rate of

up to 2kHz, though lower sampling rates are available (the setting in figure 5-1 is

500Hz, for example). The duration list options correspond with 2n samples at the

given sampling rate. Typically, 215 samples were chosen at a rate of 2kHz, for a total

sampling time of approximately 16.4s This time period is convenient both from the
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standpoint of performing FFT analysis (i.e. number of samples must be a multiple

of 2), and also from an experimental standpoint; as will be described in section 6.4.3,

large organ motions due to breathing can be safely suspended for periods of roughly

20 seconds. Together, the period required to make contact with an organ and a 16

second sampling window make full use of the safe "breathhold" period.

Amplitude is self-explanatory, and Offset is the DC current which is added to

the trajectory to ensure that a preload is applied to the tissue. For sinusoidal and

square wave trajectories, the Start Freq. field is disabled, while the End Freq. field

is used to generate the waveform. For chirps, the start and end frequencies define the

range spanned by the trajectories. The end frequency need not be greater than the

starting value; chirps with decreasing frequency can also be generated if desired.

The Color list menu is a feature which determines the appearance of the post-

processing output plots. It is useful when comparing multiple data sets, so that the

results can be distinguished by color.

5.1.3 Function buttons

Plot waveforms extracts the user-defined settings then generates and plots the de-

sired trajectory in the plot window. A number of informational plots are generated by

W/F Freq. Plots, which generates plots of instantaneous frequency versus time, the

trajectory plotted against instantaneous frequency, and Bode plots for the trajectory.

Load data permits the user to recall archived data for off-line analysis. It opens

a separate window which summarizes the details of all stored data and allows basic

manipulation of the files. Once a data set has been recalled, the current trajectory

which was used to generate it is reconstructed and displayed to the user.

Start Sampling performs slightly different functions depending on the settings

of the checkboxes above it. With both the Acquire Data and Save Copy boxes

checked, this button calls a function which saves the trajectory to an ASCII file,

together with the parameters used to generate the trajectory. It then calls the real-

time control program (see section 5.2) which drives the TeMPeST 1-D and records

the data. When complete, copies of the data files are saved to an archive (which is
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accessed by the Load Data function), and post-processing commences.

Plots are shown of the unprocessed position and force offset voltage signals (mea-

sured before and after running the desired oscillation), followed by the unprocessed

position and force voltage responses. Some basic error correction is performed on the

signal' and the user is given the option to filter the data. In the current implemen-

tation, a simple first-order, low-pass digital filter is used with a break frequency 10

times higher than the instantaneous frequency, to remove high-frequency noise from

the force and position response. Since the filter is applied to both signals, when the

ratio of the force and position FFTs is taken, the contribution of the filter cancels

out, as it exists in both the numerator and denominator of the equivalent transfer

function.

After error correction and optional filtering, the position and force are presented

in the time domain, converted from voltage to micrometers and millinewtons, respec-

tively. FFTs of both are displayed, as is a plot of the magnitude and phase of the

measured compliance. Appendix D show a typical sequence of the output plots.

Since the FFTs include magnitude data for frequency data outside of the range

where they have any significance, Extract F(x/f) is used to extract values only in

the range covered by the start and end frequencies. This is convenient for saving

more compact data sets and further post-processing.

With the Acquire data checkbox off, Start sampling does not call the real-

time code, analyzing instead whatever data file is in the working directory (which

may have been copied from the archives by using the Load Data function). This is

'The multiplexer, which precedes the ADC on the STG motion controller card, occasionally
reads the same channel twice in a given cycle, so similar voltages are measured for both force and
position. In addition, the Windows operating system overhead sometimes takes priority over the
"real-time" acquisition program, causing some measurements to be skipped. In the former case,
the data is checked and flagged when nearly coincident values are found. Linear interpolation is

performed using values preceding and following the flagged data points to replace them. This is

typically sufficient to correct the data, since two or more close values rarely occur consecutively.
The skipped readings are also filled in by linear interpolation. With a high sampling rate compared

to the instantaneous frequency of the signal, the errors introduced by linear interpolation are small,
and significantly better than the errors generated by mis-reads. In certain cases the errors cannot

be corrected in this automatic manner, so a separate GUI was written to permit manual correction

of data.
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typically used for off-line processing of data.

When the Save Copy checkbox is off, no copy of the working data is archived.

5.2 T1D.exe: real-time control and data acquisi-

tion for the TeMPeST 1-D

This program is called by the TlDgui. It calls the DAC to sends a voltage signal to

the current source, and reads the voltage outputs of the LVDT signal conditioner and

the force sensor instrumentation amplifier.

The program accesses the ASCII trajectory file generated by the Start Sampling

function of TlDgui, and loads it into a dynamically allocated array. At the same

time, memory is allocated to accommodate the force and position signals which will

be measured.

It then prompts the user to position the TeMPeST 1-D in free space so that the

force and position sensor offset voltages can be measured. One second of data is read

and saved to a file in ASCII format with timestamp, force and position readings.

Since the current trajectory oscillations all start at zero plus the pre-load offset,

the first value in the trajectory, representing only the pre-load, is sent to the current

source. This drives the voice coil to some non-zero position. The position is displayed

to the user via a simple ASCII cursor. The user brings the TeMPeST 1-D into contact

with the tissue using the fine positioning cam (see section 3.6.5). As the indenter

makes contact, the actuator is pushed back towards the neutral position, as shown to

the user via the ASCII cursor. Once the cursor has returned to the zero position, the

actuator is also at the neutral position, so the preload determined by the trajectory is

the same as that being exerted by the actuator (i.e. the flexures are at their neutral

position and do not contribute to or subtract from the commanded force). With the

actuator at neutral, the user starts the real-time control and acquisition part of the

code.

By observing an onboard clock, which increments once every sampling period, the
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program can regularly measure the force and position signals and update the DAC

value to the next point in the trajectory. A hardware interrupt can be generated with

the motion controller card, but the available drivers do not provide direct access to

this information. The "clock-watching" system performs the same job as an interrupt

handler would, but occupies the majority of the system resources while T1D.exe is

running. However, since no other operations need to be performed during sampling,

this is a satisfactory solution.

When the trajectory has been completed, the DAC is set to zero so that the

current source commands zero current, and the arrays in which the force and position

data have been stored are written to a text file. A second set of sensor voltage offset

data is taken and saved, and control is returned to TlDgui.

The motion of the actuator is controlled in open loop for simplicity; since the

applied force and displacement are measured directly, following any trajectory with

frequency components in the range of interest is sufficient for data extraction. As will

be shown in the chapter 6, in some cases it would be convenient to perform closed loop

control on position or force. For example, as a chirp signal approaches the actuator

resonant frequency, oscillation amplitude increases under open loop control, so the

commanded values used in a given test must be small enough over the entire range

to avoid driving the actuator into its end stops at resonance. An ideal closed loop

system would generate constant amplitude vibrations through the resonant regime,

and also be sufficient to recognize the limits of the current amplifier, especially above

the resonant frequency of the actuator.

However, as mentioned in section 3.1, since the model of the TeMPeST 1-D in

contact with an unknown material is approximately known a priori at best, it would

be difficult to implement a stable classical controller with desirable characteristics

like high bandwidth (or equivalently fast response). A pole-cancellation controller

was investigated briefly, but the open loop system was found to be more than satis-

factory for the level of analysis performed to date. More advanced control schemes

such as adaptive control were not pursued, but could be implemented with further

development.
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Chapter 6

Validation Tests and Tissue

Property Measurements

As a proof-of-concept demonstration, the TeMPeST 1-D was used to make in vivo

measurements on organ tissues to demonstrate that it could be used to acquire ma-

terial properties in a surgical environment. Prior to these tests, the TeMPeST 1-D

was used to measure the responses of compliant, inertial, and viscoelastic media to

verify that it performed as expected, and could be relied upon to accurately measure

their properties.

The first experiments were performed on a series of mechanical springs whose

stiffnesses were independently measured. Spring stiffness should be constant over a

range of frequencies, with no phase lag between reaction force and displacement. The

measured stiffness should also correspond with that determined by an independent

testing method.

The second set of experiments were performed on inertial loads. As with spring

elements, pure inertial loads will yield frequency responses of known form: a fall in

gain by a factor of 100 per decade of increasing frequency, and a phase lag between

position and force of 180'. Known masses are easily available by using standard

balance masses.

Pure damping experiments were not performed because the force sensor on the

TeMPeST 1-D can only measure compressive loading; during half of a cycle of motion
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of a plunger driven through a fluid, the sensor would have to support tensile loading.

While this would also apply for inertial loads, the weight of the mass due to gravity can

be used as a pre-load to ensure that the net force on the sensor remains compressive.

The third series of validation tests dealt with a set of silicone gel samples, prepared

from mixtures of different proportions of two component liquids. By varying the pro-

portions, gels with different stiffnesses could be created, and the differences measured

both with standard testing machines and with the TeMPeST 1-D. The silicone gel is

a material with visco-elastic properties, so measurements of variation in stiffness and

phase angle could be made, and compared between the two measurement techniques.

Finally, four sets of in vivo measurements on porcine organ tissues, including

liver and spleen, were made. The first, third and fourth sets of measurements were

made under laparoscopic conditions, while the second was performed during open

surgery. These limited tests should be considered proof-of-concept demonstrations

rather than a source for precise values of tissue properties. Future tests, and the

conditions necessary to make the results meaningful will be discussed in section 7.2

6.1 Testing on Mechanical Springs

One of the simplest mechanical elements is the spring, which has a relationship (and

its Laplace transform) between applied force, f and displacement, x of the form:

f(t) kx(t) (6.1)

F(s) kX(s) (6.2)

where k is a constant of proportionality (spring constant). This expression and

the behavior of real springs under normal operating conditions are independent of

the kind of motion or force imposed, and so are equally valid for static or dynamic

conditions'. Because of the simple nature of the relationship, it is a good starting

'Although at high frequencies, the mass and material damping properties of a real spring may
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point for validating the performance of the TeMPeST 1-D as a device for measuring

the material properties of compliant objects, and eventually tissues.

6.1.1 Spring testing apparatus

A array of mechanical springs was arranged, such that the TeMPeST 1-D indenter

tip would deflect one or more springs in parallel, thereby permitting a number of

different equivalent spring constants to be measured. As shown in figure 6-1, from

one to four springs would be deflected and their reaction forces measured.

The spring arrays were independently measured using the custom-made cartilage

press (CP) (figure 6-1) at the Cartilage Biomechanics and Imaging Laboratory at the

Harvard Institutes of Medicine. This compression testing system, originally designed

to apply loads to cartilage samples, was used to apply sinusoidal displacements at

0.1Hz, with amplitudes of 1.0mm, and either 1.2 or 2.0mm offset in the mean position

of oscillation. Figure 6-2 shows the force-displacement data and the best fits. The

"hysteresis" loop (small for 0.1Hz, larger for 0.4Hz) is due to a 0.11s sample hold of

the force measurement (sampling rate is 4Hz), rather than the response of the spring

(which ideally should have no hysteresis). From the 0.1Hz data, however, it is clear

that the springs behave linearly.

The TeMPeST 1-D was set up as shown in figure 6-1, rigidly mounted so that

any resonant excitation of the body due to any flexibility in the vice would occur at

frequencies much higher than those which would be used in testing.2

The springs were tested at 0.1Hz to match the conditions used with the CP, and

over a range of frequencies with the chirp signals described in section 5.1.1. The low

frequency sinusoidal stiffness as well as the ratios of the fast Fourier transforms of the

measured force and displacement of the chirp signals are shown in figure 6-3. Also

included are the CP measurements of stiffness for comparison. Table 6.1 summarizes

the stiffnesses measured by the various methods.

begin to alter the relationship.
2in contrast with the resonant frequency of the TeMPeST 1-D on the Mediflex arm, which occurs

around 10Hz, well inside the test range.
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Figure 6-1:
1-D (right)

Testing of spring array with CBIL cartilage press (left) and TeMPeST

0 0.5 1 1.5
displacement (mm)

2 2.5 3

Figure 6-2: Spring testing array force-displacement response using CBIL cartilage

press. Hysteretic 4-spring data caused by lags between force and position sensing.
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Table 6.1: Measured spring stiffness summary.

Stiffness ±1a (N/m)
# springs CP TiD (0.1Hz) I TiD chirp mean

1 121.8 120 8 121 ± 7
2 216.1 204 14 196 ± 9
3 377.6 382 10 279 ± 15
4 471.9 419 32 343 ± 19

The springs exhibit constant stiffness up to approximately 100Hz, and a no phase

difference between measured force and displacement. Above this frequency, additional

dynamics at and beyond resonance distort the compliance magnitude and phase,

and the time lag between the force and position measurements adds an additional

component to the phase difference. As such, for the system in its current form,

frequency dependent values above 100Hz are not reliable. Improvements to extend

the range and eliminate the time lag problem will be discussed in chapter 7. However,

since human motor responses have a bandwidth of O(10Hz), the range covered by

the existing device may be sufficient for many purposes.

The 0.1Hz sinusoidal results from the cartilage press and the TeMPeST 1-D agree

within one standard deviation for one through three springs. The chirp data for one or

two springs are similarly in agreement with 0.1Hz data. However, the sinusoidal data

for four springs, and the chirp data for three or four springs undershoot the value

determined by the cartilage press. The cause for this disagreement has not been

completely determined, but one possible cause is imperfectly matched spring lengths

in the three and four spring arrays. If the preload was not sufficient to ensure that

all of the springs were being compressed throughout the entire cycle, a lower stiffness

would be measured due to loss of contact with one or more springs at the upper limit

of motion. Another possibility is some non-linearity in the springs, which had a slight

taper at their ends, which might also contribute to erroneous measurements. For the

more ideal cases of one or two springs, the results were in good agreement.
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Figure 6-3: Spring array stiffness under O.1Hz sinusoidal excitation using CBIL carti-
lage press (CP: +) and TeMPeST I-D (TID: o), and chirp excitation with TeMPeST
1-D.
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6.2 Testing on Inertial Load

As with the springs, inertias have simple forms for the relationship between applied

force and position:

f (t) = m: (t) (6.3)

F(s) = ms2X(s) (6.4)

where m is the mass of the load. Because of the second derivative relating force

and position, there is a phase difference of 1800 between a sinusoidal applied force

and the measured position.

6.2.1 Inertial load testing method

The TeMPeST 1-D was inverted and clamped in position. Five and ten gram masses

were placed on the indenter tip, and held in place with double-sided adhesive tape to

prevent them from sliding off during vibratory testing (figure 6-4). Chirp and pure

sinusoidal signals were used to drive the indenter at frequencies from 1 to 400Hz, the

results for which are shown in figure 6-5.

As can be seen, at low frequencies, the magnitude of the response falls below the

ideal response. This is because at such slow excitation frequencies, the acceleration

of the mass, and therefore the applied force, are smaller than detectable by the force

sensor. At high frequencies, the amplitude of vibration falls, reducing the signal to

quantization noise ratio. This makes the ratio of the force and displacement FFTs

noisier at high frequencies.

Since the magnitude of an inertia's frequency response has the form:

X(jw) 1
F(jw) mw 2

the mass can be calculated at any given frequency from:

119



Figure 6-4: Test arrangement for inertial load experiments.
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Figure 6-5: Bode plots of response of inertial loads
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1
m = 1(6.6)

jX(jw)/F(jw) w 2

Fitting a line of slope -2 to the logarithm of the magnitude and frequency, the

mass can be read directly as the inverse of the magnitude at one radian per second.

This calculation was performed by minimizing the error between the logarithm of

the data and a line with -2 slope but unknown intercept at logw = 0. Table 6.2

summarizes the calculated masses, which are both within 10% of the true values.

Table 6.2: Best fit values for standard masses

True mass best fit

5g 4.58g
log 9.28g

6.3 Testing on Silicone Gel Samples

A spring-dashpot, such as a shock absorber would have a two parameter ideal model

with both compliant and viscous elements. The behavior of such a system is the

same as that of a Voigt body, described in section 2.1 (see figure 2-1b). Commercially

available products 3 , can be described by such a model, but are not available with

both stiffnesses and time constants (T b/k) in the range of the TeMPeST 1-D.

As an alternative, and as an example of a material more closely approximating

tissue, a silicone gel (GE RTV 6166) was used to make phantoms with different

stiffnesses and damping properties. It has been used by other researchers [34] to

test devices designed to evaluate the material properties of cancerous tissues. GE

RTV 6166 is made of a mixture of two liquid components, parts A and B, which are

normally mixed in equal amounts. Mixing them in different proportions yields gels

with a range of elastic moduli, over the range expected for living tissue based on the

literature.
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Figure 6-6: Parallel plate shear modulus testing geometry

6.3.1 ARES standard testing of gels

To provide a standard measurement of the properties of the gels, thin samples were

prepared for testing in a Rheometric Scientific ARES parallel plate rheometer in the

MIT Polymer Processing Research Laboratory. Testing with this device involves plac-

ing a sample between two circular plates, and rotating one plate relative to the other.

This applies a torsional shear loading to the sample, while torque and angular dis-

placement are recorded. Separation between the plates, measured by the rheometer,

and the plate diameter fully determine the geometry of the sample (see figure 6-6),

and shear modulus, G, can be found from equation 6.7.

TG=
tan a
2Trh 

(6.7)
dO

Four mixtures were prepared, and poured into cylindrical molds, yielding large

samples 85mm in diameter and 12.5mm thick, and small samples 30mm in diameter

and approximately 2.5mm thick (figure 6-7). The small samples were tested in the

rheometer, after being trimmed to the 25mm diameter of the testing plates, except

for the 60:40 mixture, which did not solidify completely.

The first test performed on each sample was to determine the range of strain in

which the gel has a linear stress-strain relationship. Strain sweeps were performed, in

which sinusoidal oscillations with increasing amplitudes were applied to the gel. The

shear modulus remained constant at least up to 50% strain for each of the gels tested.

The materials were tested at both 1Hz and 50Hz to verify that the linear range did
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Figure 6-7: RTV silicone solidifying in molds.

not fall below 50% in the range of frequencies of interest.

While all of the samples remained linear at each frequency, the shear modulus

was higher at 50Hz, which implies that the gels have a frequency dependent response.

This is desirable, because it means that a more complex relationship exists in the

frequency range of interest than that of the spring.

After determining a lower bound for the range of linearity, frequency sweeps, with

an amplitude of 10% strain and frequency range from 0.01 to 80Hz (the upper limit

of the ARES equipment) were performed on the samples to determine the frequency

response of the gel. Figure 6-8 shows the frequency responses of the samples, con-

verted from the complex shear modulus output of the ARES system, to shear modulus

magnitude/phase plots.

All of the samples exhibit a flat response at low frequency, with phase lag ap-

proaching zero. This indicates that the static moduli are likely the same as the value

for the minimum frequency tested. Another feature of the behavior is that the harder

samples exhibit an increase in stiffness beginning at higher frequencies than the softer

samples. The change in phase follows similar trends, with the increase occurring at

lower frequencies for the softer samples.

The responses, however, do not correspond with either Kelvin or any of the other

models for tissue discussed so far. The changes in stiffness and phase occur over a
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broader range of frequencies than would be the case for such simple models. Without

resorting to more complex models, the gel samples can be approximated as elastic at

frequencies below about 10Hz.

The samples were tested first approximately two days after mixing (with a rec-

ommended cure time of 24 hours at room temperature), and again at five days, and

showed only slight changes in the response. Since both increases and decreases were

noted, the changes are more likely due to slight damage to the samples due to handling

and imperfect placement of the sample during the second test.4

6.3.2 Cartilage press standard testing of gels

In addition to the ARES testing, the large gel samples were also tested using the CP,

using a 5mm right cylindrical punch (see figure 6-9). The punch was designed to have

the same geometry as the tip of the TeMPeST 1-D, to provide an independent test as

close to those that would be performed with the instrument as possible. Because the

4 A1 of the gels were sticky, the softest gel especially so. Precise re-placement of the samples

was impossible, and the softest sample underwent some plastical deformation on removal from the

storage container and the parallel plates of the rheometer.
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Figure 6-9: CBIL cartilage press being used to test silicone gel sample.

Table 6.3: Cartilage Press quasi-static elasticity data

Gel sample stiffness (N/m) Young's modulus (kPa)

30:70 130.9 15.3
40:60 67.1 7.63
50:50 22.0 2.39

Poisson ratio of the gel is unknown 5 the assumption that it has a value of 0.5 could

result in errors in converting between shear and Young's modulus.

As with the spring testing (section 6.1), sinusoidal displacements were imposed

on the gels at 0.1 and 0.4Hz, with an offset to ensure contact between the punch and

the gel. The responses are linear over this range of displacements. This implies that

measurements made with the TeMPeST 1-D, which would have smaller amplitudes,

will also be linear, and more importantly, that the solutions for linear materials

described earlier could be applied to permit extraction of material properties.

Table 6.3 summarizes the stiffnesses of the gels. Because of the time lag between

position and force measurements, phase measurements could not be determined from

the data.

As discussed in section 2.2, for compliant bodies supported by rigid surfaces, a

correction to the semi-infinite body solution can be made to calculate the elastic

modulus. For the indenter punch with a radius of 2.5mm, and a thickness of the

5not reported in the product literature, and might be different for different mixtures.
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material of 12.5mm, the correction factor for equation 2.21 rises from 1.24 to 1.42 as

indentation depth increases from 1% to 15% [34]. Using this equation, and correction

factors for mean indentation equal to the ratio between the mean applied force and

the measured spring constant, the elastic modulus values calculated are included in

table 6.3. The specification sheet for RTV6166 does not indicate a value for Poisson's

ratio; however, rubber typically has a value close to 0.5, so this value is assumed in

calculating E, Young's modulus.

6.3.3 TeMPeST 1-D testing of gels

The large gel samples were tested with the TeMPeST 1-D using exponential chirp

signals running from 0.04 to 400Hz, with nominal preloads of 90mN for the stiffer

gels (40:60 and 30:70) and 45mN for the 50:50 gel. The command amplitudes were

120mN for frequencies away from the resonance, and 60mN around resonance to avoid

driving the actuator into the hard end stops. In addition, tests using sinusoidal signals

with the same preload and amplitude, at a few fixed frequencies over the range, were

performed on the hardest (30:70) gel sample to verify that the chirp signal response

corresponded with the fixed frequency sinusoidal response.

As with the spring testing, the TeMPeST 1-D was fixed in a vice to avoid any

effects of the resonance of the TeMPeST 1-D on the Mediflex arm. Experiments

were also run with the TeMPeST 1-D mounted to the Mediflex arm to verify that

no differences in the response appeared at frequencies other than the low frequency

resonance.

As mentioned in chapter 2, for indentation there are solutions for both friction-free

(equation 2.17) and no-slip (2.18) assumptions, which yield different results for the

same measured force-displacement response. Since the friction-free expression is less

sensitive to the estimated value of the Poisson ratio, a drop of light instrument oil

was placed between the indenter tip and the gel sample to approach this condition.

Without the oil, the 30:70 gel is somewhat sticky, and the 50:50 gel extremely so, and

would much more closely be described by the no-slip expression.

Figure 6-10 shows the Bode plots for the three gel samples, together with the
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Figure 6-10: Elastic modulus of RTV samples. Includes TeMPeST 1-D chirp, parallel
plate rheometer (ARES), cartilage press (CP) data and TeMPeST 1-D fixed frequency

sinusoidal response (30:70 sample only).

results from the ARES tests and the CP indentation tests for comparison. The shear

modulus ARES data were converted to Young's modulus form using equation 6.8,

and an assumed value for v of 0.56

E = 2(1 + v)G (6.8)

There is good agreement between the TeMPeST 1-D and CP tests at low fre-

quencies, showing that even on materials with more complex behavior than lumped

elements, the TeMPeST 1-D can reliably measure the same force-displacement re-

sponse as other systems with the same test geometry. The ARES and TeMPeST 1-D

6 Provided that v > 0.45, E will be overestimated by 3.5% at most
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results also correspond well, again especially over frequencies away from the system

resonance. This is encouraging, demonstrating that the same properties are measured

using two entirely different testing methods.

The small disagreement between the testing methods can have a number of sources.

As discussed in the previous section, idealized approximations for a rigid indenter im-

pinging on an elastic medium exist. However, the true experiments do not necessarily

meet all of the assumptions used to derive them. For example, the assumed pressure

distribution predicts infinite stress at the edges of the indenter [19] and implies a sharp

discontinuity in the slope of the surface at the edges, which is clearly non-realistic.

In addition, the theoretical development assumed that there was frictionless contact

between the indenter tip and the material, which may not be entirely valid, even with

the use of the instrument oil.

The largest contribution is likely distortions introduced by the TeMPeST 1-D as

the excitation frequency approaches resonance.

6.4 In Vivo Solid Organ Measurements

In vivo experiments were conducted to test the performance of the TeMPeST 1-D

under the conditions of the operating room. An experimental protocol for tests on

porcine organs was developed in cooperation with the Animal Resources Center at

Dartmouth College, and was approved by the Institutional Animal Care and Use

Committee at Dartmouth as well as by the Committee on Animal Care at M.I.T.

These tests were performed as an extension to a surgical training protocol, so no

additional pigs were used to acquire the data.

Four female Yorkshire pigs7 were being used for other laparoscopic or open sur-

gical investigations. Anesthesia was induced with 20mg/kg ketamine and 2mg/kg

xylazine via intra-muscular injection. 0.04mg/kg atropine was also administered to

reduce bradycardia and salivation. The animals were intubated and placed on as-

sisted ventilation using 100% oxygen, with 1-5% halothane or isoflurane to maintain

7Parson's Farms, Hadley, MA, all approximately 30 kg, fasted overnight
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an adequate plane of anesthesia. The animals' depth of anesthesia was monitored

continuously by observing heart and respiratory rate, as well as jaw tone and corneal

reflex. An intravenous catheter was maintained to administer fluids, and injectible

anesthetics and analgesics were available on hand in case depth of anesthesia could

not be deepened rapidly enough using only inhalant anesthesia. The base protocol,

for which the tissue property measurements were an extension, called for euthanasia

of the animals before recovery from anesthesia, accomplished with concentrated KCl

solution administered intravenously or by intracardiac injection.

6.4.1 Laparoscopic testing

In the cases when the tests were performed laparoscopically, the abdominal cavity

was insufflated with carbon dioxide, to provide a working space within the body. A

12mm cannula was placed subumbilically and a 300 laparoscope was inserted. Other

cannulas were inserted under visual guidance in different locations depending on the

procedures scheduled, including at least one other 12mm cannula.

After completion of the surgical exercises, all tools except for the laparoscope were

removed. The TeMPeST 1-D, attached to the Mediflex arm was inserted through the

second 12mm cannula (see figure 6-11), and under guidance from the laparoscope, the

tip was brought to within one half inch of the surface of either the liver, or the spleen,

depending on the test being performed. While difficult due to the limited depth

perception available through the laparoscope view, positioning of the TeMPeST 1-

D perpendicular to the tissue surface was attempted to provide conditions as close

to ideal as possible. In addition, as much as possible, contact was made in regions

overlying the thickest sections of the organs, again to approximate the semi-infinite

body approximation described in section 2.2. The flexible arm was locked in position,

and the data acquisition program started.

Because of normal breath motions, the organs shift in response. This is especially

true for the liver, which lies on the other side of the diaphragm from the chest cavity.

This motion can drive the indenter tip to its limit of motion; to minimize gross

motion of the organs caused by breathing, assisted ventilation can be suspended for
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Figure 6-11: Exterior view of operating field for laparoscopic sessions

short periods of time. Because the pigs are breathing pure oxygen, their blood oxygen

saturation is close to 100%, so this is less stressful than brief breath holding, and does

not cause injury. During an approximately 20 second suspension of ventilation, the

TeMPeST 1-D was brought into contact with the surface of the organ using the fine

adjustment cam, vibration applied and force and position measurements were made.

At the end of the measurements, ventilation was restored. Blood oxygen saturation

was monitored throughout the testing, and was never observed to fall below 98%.

In addition to the force and displacement measurements, the video image from

the laparoscope was recorded for later analysis. Figure 6-11 shows an exterior view of

the pig's abdomen showing the TeMPeST 1-D in position and the laparoscope being

hand-held in position. Figure 6-12 is a typical image of the view of the interior of

the abdomen, with the indenter tip in the holding position before being brought into

contact with the liver.

When appropriate, the laparoscope and the TeMPeST 1-D were swapped between

ports to provide better access to the organs, or access to different organs. Details on

the specific tests performed will be described in section 6.4.3.
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Figure 6-12: Typical view of TeMPeST 1-D approaching contact with liver

6.4.2 Open surgical testing

One session afforded the opportunity to take measurements during open surgery. In

this case, an incision had been made along the midline of the abdomen, from below

the sternum to the area of the umbilicus providing access to the surface of the spleen.

While visible, very little of the liver was exposed, and then only the thin edges

of the lobes, making highly suspect the "semi-infinite" assumption upon which the

calculation of E is based. Open surgery permitted much simpler positioning of the

TeMPeST 1-D with respect to the organs, and was recorded with a digital camcorder

only. Data acquisition was performed in the same way as for the laparoscopic testing;

positioning of the TeMPeST 1-D, holding ventilation, data acquisition and restoration

of ventilation, all within a period of approximately 20 seconds.

Figure 6-13 shows an image of the TeMPeST 1-D in position over the spleen from

the recording of the open surgical session.

6.4.3 In vivo solid organ test results

As the surgical testing was to be a "trial-by-fire", the learning experience was to be

the most significant result. Some useful liver data were, however, obtained in the last
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Figure 6-13: View of TeMPeST 1-D used during open surgical measurements of spleen

operating room session, under laparoscopic conditions. The previous sessions served

to guide a number of small modifications to the TeMPeST 1-D, some of which will be

enumerated in table 6.4 and others discussed in chapter 7. The liver data obtained,

and comments about the measured response follow.

Figure 6-14 shows the data for the last laparoscopic liver test, performed with

a replacement force sensor.8 Spleen data could not be taken during this session

because the placement of the surgical ports did not allow sufficient access to the

spleen. Additional testing was not possible due to time and animal lab scheduling

constraints.

The elastic modulus is nearly constant over the range from 0.1 to 100Hz, increasing

by less than a factor of two, and phase is approximately zero over the frequency range.

The spike at 60Hz corresponds with electrical noise, and can be safely ignored. From

these results, porcine liver can be approximated as an elastic material, with a Young's

modulus of 10-15kPa. In comparing this with the survey of tissue properties of

table 2.2, it falls within the range established by other measurements. While there

8The original force sensor was either damaged early in development or was defective, but was
not detected as there was no basis for comparison at the time. The effect was to reduce the signal
to noise ratio by roughly two orders of magnitude, compared with the replacement.
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Table 6.4: Experimental parameters for in vivo tests of solid organs

Experiment Notes
Laparoscopic 1 liver:

right side port, above umbilical line

4 chirp sets, covering range 0.1 < f < 150Hz
umbilical port

3 chirp sets, 0.1 < f < 150Hz
spleen:

umbilical port
non-ideal approach

o data degraded by force sensor noise problem
Laparoscopic 2 o increased size of indenter tip from 2.5 to 5.0mm to permit

application of larger forces with same indenation depth
o angled tip cover back to improve visibility of contact point

liver:

7 chirp sets, 0.1 < f < 100Hz
3 square wave tests: pulsatile motion due to cardiac

action makes step tests difficult to interpret

spleen:

6 chirp sets, 0.1 < f < 100Hz
2 square wave tests: cardiac pulsation

Open 1 spleen:
11 chirp sets, 0.06 < f < 200Hz

o significantly simpler perpendicular alignment without
restriction of fixed entry port

Laparoscopic 3 o acquired new force sensor with 100x lower noise
liver:

7 chirp sets, 0.04 < f < 500Hz
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Figure 6-14: Non-parametric elastic modulus of liver. Spike at 60Hz is due to electrical
interference in force signal.

is no reason to believe that rabbit, bovine and porcine liver should have the same

properties, that the results are similar is valuable from a validation perspective.

Given the accuracy that was achieved with the silicone gel samples however, 9

the increase in modulus with frequency could be viewed as a reliable element of the

response, so a more complex tissue model might be employed in simulation. Returning

to the Kelvin model introduced in chapter 2, this response might be characteristic of

the regime slightly below the transition frequency. If the TeMPeST 1-D was modified

to examine frequencies up to about 1kHz, or a different instrument employed, this

behavior could be verified. Further comments on the performance of the device and

directions for future research will be discussed in the next chapter.

9especially the medium and hard samples, with stiffness on the same order calculated for the

liver

134

0 . 0 0

0 .0 b'o 0 0 0 0O0 0~
0 0 .0 0

. 0 . : . .

i. .Qn1

* 0 0 . 0

o 0 8 0 0 0

- - -8 - -

0 .00 0

. . . ..: 0 . 0 . . . . . . . . . . . . . . . . . . . . . . ..

10 2

10-1 10 2



Chapter 7

Contributions, Discussion and

Further Directions

7.1 Summary

The Tissue Material Property Sampling Tool, or TeMPeST 1-D, was conceived to

address the need for data on the properties of living organs, to support high fidelity

surgical simulation systems. Such systems will eventually become part of the medi-

cal curriculum, and have applications beyond the training of new surgeons, such as

prototyping of new medical instruments and procedures with reduced use of animal

testing.

A key requirement of simulation systems is the availability of accurate models

of tissue behavior, and these in turn, depend on measurements of the mechanical

properties of living tissue. Some of the simpler models and their parameters were

presented in chapter 2. Given the assumption of a particular tissue model, means

for extracting the parameters from measurements of applied force and displacement

were presented. To provide guidance on the kinds of responses to expect, some of the

available literature on tissue properties was investigated, and typical results presented.

Chapters 3 through 5 illustrated the development of the first minimally invasive

surgical instrument to look specifically as the frequency response of solid organ tissues.

Given the constraints of the minimally invasive environment in which this device
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was meant to be used, and the selection of normal indentation of the tissue surface as

a measurement mode, a series of potential design options were considered, converging

on a design in which the sensors and actuator are co-located at the tip of the surgical

instrument. This design presented several challenges, including the design of a system

that could fit within a 12mm envelope, complete with a novel voice coil actuator, and

position and force sensors. The design also permits separation of the sensor/actuator

package from the amplifier electronics so that it can be sterilized.

Theoretical models, ranging from a second order spring-mass-damper approxima-

tion to the system, to a more complete model including contact with tissue and a

compliant support structure were developed in parallel with the designs, providing

some estimates on performance. The models were also used to demonstrate the rela-

tionship between the measurements that would be taken and the parameters of the

tissue models presented earlier. The system models were populated with the param-

eters of the real TeMPeST 1-D through a series of calibration experiments, which

included investigations of the static and frequency responses of the sensors and actu-

ator. These experiments permitted the determination of the filtering characteristics

of the TeMPeST 1-D, so that measured tissue frequency responses could be corrected

for known measurement artifacts.

A graphical user interface was also developed to support the use of the TeMPeST

1-D. It includes means to generate a variety of waveforms which can be used to

stimulate the tissue to examine different kinds of responses. Time domain response

can be studied with square waves, while the frequency domain can be examined

with either fixed frequency sine waves, or chirp signals, which have frequency content

spread over a range of interest. A real-time control system was developed to drive

the TeMPeST 1-D and acquire force and position data at frequencies up to 2kHz.

The output of the system is in the form of force and position trajectories, as well as

non-parametric, graphical representations of the tissue properties calculated from the

FFTs of the force and position signals.

Through the course of testing on materials with independently measured re-

sponses, including springs, masses and silicone gel samples, the ability to accurately
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measure force-displacement data was demonstrated. The final phase of the work,

namely taking the system into the operating room, demonstrated both the capabili-

ties and the limits of the device, and yielded preliminary data on the elastic properties

of porcine liver in vivo. The elastic modulus was found to be approximately 12.5kPa,

and nearly constant over the frequency range from 0.1 to 100Hz. These data represent

perhaps the first frequency response data for porcine liver in vivo. The capabilities of

the TeMPeST 1-D suggest directions for further development, and its successful use

in the operating room is one of the first steps in filling in a comprehensive atlas of

the mechanical properties of living tissues.

7.2 Instrument and measurement comments

As a functioning prototype for measuring tissue properties, the TeMPeST 1-D, has

satisfied many of the criteria that were laid out for it. It is a minimally invasive

instrument, so it can be used to sample living tissue properties with minimal trauma,

or can be used in open surgery when such opportunities arise.

A number of areas where improvements can be made include the following:

Perpendicular orientation with respect to tissue

Indentation testing involves making a number of geometric assumptions, including,

in this case, perpendicular indentation and semi-infinite extent of the tissue. Posi-

tioning of any laparoscopic tool is limited by the fulcrum action of the port through

the abdominal wall. As a result, while the tip can be arbitrarily positioned, the pitch

and yaw angles of the tip are completely constrained. For example, on an organ with

a curved surface, perpendicular contact is only possible at a point where the surface

normal vector passes through the pivot location of the cannula. Clearly, creating

multiple entry points for many cannulae would be impractical (and not necessar-

ily justifiable) for animal testing. If human tests were to be performed during an

operation, they would likely be limited to only those ports needed for the operation.

Adding an "elbow" joint to the shaft of the tool, and making use of the roll axis
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of the tool would permit positioning of the tip in five degrees of freedom, sufficient

to enable perpendicular contact at any point. Since the tool tip is axisymmetric, it is

not necessary to control the roll orientation of the tip. Endoscopes and a number of

other minimally invasive instruments are steerable in this manner, and the existing

TeMPeST 1-D has significant unused space in the tool shaft so the implementation

of an actuated elbow is possible, whether through a manually controlled linkage or a

servo controlled joint. One issue that would need to be taken into account in such a

system would be the limited space in the abdomen, and the length of the cannula-

in the experience of the operating room tests that were performed, often less than

one inch of the TeMPeST 1-D extended from the inner end of the cannula before

contacting tissue.

Rejecting breathing and cardiac rhythm induced motion

Another problem encountered was that of organ motion due to breathing. With a

tool fixed to an external reference frame, breath and cardiac motion are superimposed

on the motion due to the applied force. Since tissue may exhibit non-linear behavior

under the larger deformations generated by such motion, and because the motion is

typically not perpendicular to the axis of the indenter, the additional unmeasured

motions can corrupt the measurements. Beyond that, in the case of the TeMPeST

1-D, the breathing motions could easily drive the indenter tip to the limits of its

motion.

The solution that was used in these experiments was to suspend ventilation during

data acquisition. The animal subjects, which were anesthetized and on ventilators,

effectively had their breath held for periods of about 20 seconds, to eliminate breath

motion. While harmless to the animals, approval for such a technique would be less

likely for human testing.

Cardiac motion was present in the measurements, but by looking at the ratio of

FFT's of the position and force, this motion did not appear to affect the calculation

of the tissue frequency response. It did, however, make time domain data (from step

responses) impossible to interpret.
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Decoupling the sensor/actuator package from the external frame could solve the

breath motion problem. One solution might make use of a pair of force sensors

mounted on a pivot (see figure 7-1). The force sensors would contact the tissue,

with a preload applied by an air-bearing mounted carriage. Driving oscillations at

the pivot would generate normal indentation of the tissue at both locations, with

differential and mean force and differential position as the outputs. Because the

pre-loaded carriage would not be rigidly mounted to the external frame, the pivot-

mounted sensors would follow the organ motion, and the differential values would

provide the desired data.

A more radical approach to decoupling might be to deliver a voice coil or piezo-

buzzer package connected to an accelerometer directly to the surface of an organ on

the end of a minimally invasive instrument, and deposit it there. The accelerations

due to vibration would be measured, and compared with the applied force of the

buzzer. Since the response would be modulated by the impedance of the tissue, the

impedance of the tissue alone could be separated from the response of the buzzer-

package alone. Since the hardware would be mounted directly to the surface of the

tissue, gross organ motion would not affect measurements made relative to the surface

of the organ.

Signal generation and processing

As was seen especially in the liver data, the use of the ratio of force and position

FFTs can introduce significant noise into the measured response of the tissue. This

can be reduced by extending the length of time over which sampling is performed,

but this conflicts with the limits on the safe length of time during which animal

breathing was suspended. The other option is to conduct more tests, each over a

short period, so in a more comprehensive protocol, the chirp techniques used might be

discarded in favor of performing sine wave responses over a series of fixed frequencies.

When such techniques are used, there are powerful tools available to isolate responses

only at the desired frequencies (including some which can be implemented in analog

hardware). The scope of the current work did not extend to all of the issues involved
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breathing/cardiac motion

Figure 7-1: Pivot-mounted force sensors with torsional actuator, riding on air-bearing
supported carriage (left) deployable, surface mounted sensor/actuator package (right).

in signal processing, but they must be considered before beginning work to acquire

more comprehensive sets of data.

Related to this is the choice of data acquisition hardware, and the physical char-

acteristics of the actuator. As was found, at frequencies approaching the resonance

of the device, the measured responses begin to deviate from the ideal. One way to

extend the range of use of the device would be to increase its resonant frequency. This

can be done by stiffening the suspension1 , or by reducing the mass of the actuator.

There are a number of areas where this could be accomplished, but for a significant

increase in bandwidth, significant reductions in mass would be necessary. Optical

position measurement (e.g. by laser interferometry) could eliminate the mass of the

LVDT core and the elements connecting it to the rest of the actuator (about 25%

of total), and the force sensor could be replaced with a layer of piezo-electric film

(another 15% or so). Further redesign could reduce mass by a total of 50% or more.

1which can be done by choosing a flexure with a shorter cantilever-the series of flexures that were
photo-etched provide a range of stiffnesses.
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The phase lag introduced by the lag between position and force sensing could be

eliminated through the use of other data acquisition systems, which might also have

higher sampling frequencies. However, if human perception cannot distinguish high

frequency phenomena very well, then increasing the bandwidth significantly many

not be necessary.

Experimental protocol

Because the in vivo testing was performed as an extension to an existing protocol,

tests on tissue could only be performed during breaks in, or after, prior tests. As a

result, testing time was limited, and the approaches to different organs were those

determined by the procedure being performed.

Acquisition of a more complete set of data could proceed in two directions. The

first would be a set of dedicated animal tests, in which the placement of cannulas was

determined to achieve optimal access to the organs in question. In such tests, time

would not be as limiting a factor as it was, and sufficient tests could be performed

to achieve results with lower uncertainty than was the case shown in chapter 6. As

mentioned in reference to signal processing, a series of fixed frequency sinusoids could

be performed using the full "breath-hold" period for each frequency.

In addition, with the ability to define the locations for insertion, one could begin

to generate a map of the variation of tissue properties across the organs, leading

to information about homogeneity. Such tests could also serve to populate a "look-

up" table of local stiffnesses, to support some real-time simulations that use simpler

schemes than FEM to generate the force-displacement response. In conjunction with

this sort of experiment, more detailed descriptions of the geometry of the organ should

also be acquired. By using MRI (or other imaging technique) to reconstruct the three-

dimensional structure of the organs, better estimates of the geometric factors involved

in the conversion from force and displacement to elastic moduli could be made.

The alternate, and ultimately preferred direction, is to redesign the tool so that

it would be suitable for use in human testing. Among the changes would be: some-

thing like the elbow joint, described above, so that available access ports would be
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acceptable, or the use of an alternative form of instrument which supports the same

measurements; and reduced instrument diameter, especially since the trend in mini-

mally invasive surgery is to use narrower instruments, so opportunities for sampling

with a 12mm tool would grow fewer and fewer. Human experiments should be guided

by such issues as the psychophysics of touch, in that there are limits to human per-

ception, so experiments might not need to be done that provide information beyond

that level.

7.3 Future work

At the outset of this work, development was begun on two tools, which were to be

used in complementary fashion. The TeMPeST 1-D was the first, and was to be

used to acquire the linear properties of tissues. As shown, it was completed, and can

perform this task well.

The second tool, called the TeMPeST 3-D, was intended to look at how tissue

responds to larger scale deformations, as might be imposed by a blunt probe, and

look at motions in arbitrary directions. A CAD drawing of the concept for the

TeMPeST 3-D is shown in figure 7-2.

The TeMPeST 3-D, in its current embodiment, would make use of a cable drive

system to cause the blunt probe at the tip to move in pitch and yaw, and would

translate an inner carriage along the axis of the tool to provide motion along the

z-axis. The volume of the workspace would be approximately one cubic inch.

Where the TeMPeST 1-D was an instrument for acquiring tissue properties, the

TeMPeST 3-D would be useful as a validation tool. For example, one could generate a

pre-programmed sequence of motions with the TeMPeST 3-D and record the reaction

forces of the tissue. If the geometry of the whole organ and its surroundings were

determined (e.g. by MRI), an organ-specific simulation could be generated, using the

tissue properties previously determined by the TeMPeST 1-D, or other devices. By

simulating the same sequence of motions that the real TeMPeST 3-D had imposed

on the tissue, one could generate a set of reaction force data that could be compared
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Figure 7-2: Concept for large-scale, 3-D motion force-displacement probe, the

TeMPeST 3-D.

with the real data. In this way, the loop of measuring tissue compliance, generating

tissue properties, and simulating organs, is closed through validation measurements

make by the TeMPeST 3-D. In this way, the verisimilitude of a simulation can be

evaluated long before a surgeon uses a simulation only to find that some aspect of

the response differs significantly from reality.

Additional images of the components of the TeMPeST 3-D are included in ap-

pendix C. As many of the physical components were acquired during the course of

this work, it is very likely that the TeMPeST 3-D will be completed in the near future.
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Appendix A

Nomenclature

variable definition

phase

indentation, shear displacement

strain

damping ratio

angular frequency

maximum phase, damped natural,

natural frequency

Poisson ratio

density

stress

torque

creep, relaxation time constant

indenter radius

area

damping coefficient

magnetic flux density

spring compliance
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6

6S, 6X

Wmi, Wd, Wn

p

Te, Tr

a

A

b

B

C

units

rad

m

rad-s- 1

rad-s-1

kg-m-3

Pa

N-m

s

m

m2

N-s-m-

T

m-N-'



definitionvariable

E, El, Eh,

E(iw), Ee, Ed

f, f (t), F, F(s)

fcoi, fmeas, Fcoil, Fmeas

f2, fX

fo, fi

G

h

Hm, Hv, Hk

1(t), 10, 11

k

kr

K

Kb

m, M

P

R

R

t

V

V

x, x(t), X, X(s)

Xmeas, Xlvdt, Xb

zZ Z)
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units

Young's (elastic) modulus, low & high asymptotes,

complex, elastic, dissipative

force

voice coil output, measured force

indentation, shear force

initial, final frequency

shear modulus

gel sample thickness

Maxwell, Voigt and Kelvin body

transfer functions

electric current, offset, amplitude

spring constant

relaxed stiffness

semi-infinite layer correction factor

adiabatic bulk modulus

length, original length

mass

power

resistance

characteristic radius

time

velocity of sound

voltage

position

position: measured, LVDT, base

velocity

acceleration

indentation depth

Pa

N

N

N

Hz

Pa

m

A

N-m-1

N-m-1

Pa

m

kg

W

Q

m

s

V

m

m

m-s-1

m



Appendix B

Flexure masks and etch sequence

The flexures used to support the moving coil in the actuator were fabricated by

isotropically etching aluminum. Figure B-1 shows a sheet of flexures with a series of

stiffnesses, the softest of which is approximately lOON/m. The details of the top and

bottom post-etched surface features are shown in figure B-2, and the full mask set

is shown in figure B-3. Note that the masks that were created by the manufacturer

(Microphoto, Inc., Roseville, MI) and used to create the flexures are mirror images

of the designs shown here.

Also included in the masks are the patterns used to make the cantilever elements

for a 1-axis force sensor (see figure 3-7c) which was not completed in favor of the

Cooper Instruments LPM 562 force sensor.

Figure B-4 shows the sequence of photomask application and isotropic etching

through the aluminum, as well as how the thin cantilevers were preserved during the

etch.

Figure B-5 shows a CAD model of the flexures. The CAD package used (I-DEAS

master series 7, SDRC) could not generate all of the curved surfaces resulting from

isotropic etching, but the image shows the essential features of the flexures used in

the TeMPeST 1-D.
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Figure B-1: A completed sheet of flexures. The stiffest flexure is at the top left,
the softest at the lower right. Flexures forming the fixed-fixed cantilever beams of a

1-axis force sensor occupy the bottom row.

F r o n t ac

Figure B-2: Front and back sides of typical suspension and force sensor flexures, post-

etching (from lower left corner of flexure sheet in figure B-1). Front side shows boss

surfaces for clamping to TeMPeST 1-D body and core, back side shows cantilever and

break-out tabs.
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Figure B-3: Complete set of masks, used

stiffnesses and cantilever beam elements
to generate a series of flexures with different

for 1-D force sensor.

*
negative of
masks

aunexposed
photoresist

exposed and
developed

photoresist

2

Aluminum cantilever

-------------- ---------- inner/outer
-- - - ------- ss

completed flexure

Figure B-4: Photomask and etch sequence for generating flexures
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breakout tab

cantilever

outer bass

/
/

/
//

/ /
I)

\ ,// I
/ /

/
N>

inner boss

Figure B-5: CAD model of the etched flexures. Note thinner cantilever and break-out
tab regions.
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Appendix C

TeMPeST 3-D

Figure C-1: An early conceptual model for the TeMPeST 3-D. Apart from computer
control, this model demonstrated an early concept for the cable drive, with motions
in the pitch, yaw and thrust directions.
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Figure C-2: A more fully fleshed out version, including motors at the base, a universal
joint near the tip, and a 3-axis force sensor behind the blunt probe. Position sensing
in this version is done with the encoders on the motors, but redundant sensors closer
to the tip would improve accuracy.

Figure C-3: Tip design for the TeMPeST 3-D. A universal joint permits motion in
pitch and yaw, but prevents rotation of the tip about the shaft. Linear bearings in
the sleeve support the axial motion of the tip. A novel 3-axis force sensor (pitch- and
yaw-moment, and axial thrust) measures the reaction forces of the tissue.
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Figure C-4: Cable drive system for the TeMPeST 3-D. The top motor controls pitch

of the probe, the side motors are redundant in controlling yaw, and all together they

move the central carriage along the shaft of the tool. Not shown are linear bearings

which would support the shaft at the upper right, and lower left, as well as at the tip

of the tube (see figure C-2).

Figure C-5: TeMPeST-power: the interface box underneath the docking station
houses a power source, PWM current amplifiers and interface circuitry to support
the TeMPeST 1-D, the TeMPeST 3-D, and potentially other devices to be developed

later.
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Appendix D

TlDgui

The functions of the graphical user interface for the TeMPeST 1-D are described in

detail in chapter 5. The following figures show the TlDgui with typical settings,

and a series of output plots. These plots were generated with data acquired from

measurements of one of the silicone gel samples.

With the settings shown in figure D-1, the program will generate a chirp signal

with frequency increasing exponentially from 0.06 to 6 Hz, an amplitude of 200mA

and an offset of 100mA. If the indenter tip is held in place, this corresponds with a

force amplitude of 120mN and a 60mN offset. The sampling frequency is 500Hz, and

a measurement window of 16.4s has been chosen.

Figures D-2 and D-3 are two auxiliary plots showing the instantaneous frequency

vs. time, the output vs. instantaneous frequency, and the magnitude and phase of

the FFT of the current that will be sent to the voice coil actuator.

Figures D-4 to D-8 are output plots generated after the real-time data acquisition

program has returned control to the graphical user interface.
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Figure D-1: The TeMPeST 1-D graphical user interface.
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Figure D-2: Instantaneous frequency of chirp vs. time and drive current vs. instan-

taneous frequency.

Figure D-3: Fast Fourier transform of the drive current signal. For linear chirp,

transform has flat magnitude within chirp frequency range. For exponential chirp,

log(magnitude) falls with a slope of -0.5 with respect to log(angular frequency).
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Figure D-4: Raw voltage output from the TeMPeST 1-D, including pre- and post-

measurement offset voltages (upper and lower left). Upper traces in each plot are

force sensor voltage, lower traces are LVDT voltage.

Figure D-5: Processed position and force signals. Position is positive for increasing

indentation.
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Figure D-6: Fast Fourier transform of position.

Figure D-7: Fast Fourier transform of force.
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Figure D-8: Measured material compliance: ratio of fast Fourier transforms of position

and force.
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