
Data Wrapping on the World Wide Web

by

Jessica F. Qu

Submitted to the Department of Electrical Engineering
and Computer Science in Partial Fulfillment of the

Requirements for the Degree of

Master of Engineering in Electrical Engineering and
Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1996

© Massachusetts Institute of Technology, 1996. All Rights Reserved.

A uthor
Denartment of nrl "-- .- mputer Science

inuary 19, 1996

Certified by .
A I

Accepte(

Chairman,

........................

Michael D. Siegel
:ment
visor

.... ... o..........
Frederic R. Morgenthaler

Department Committee on Graduate Theses

E.ng.
MIASSACHUSETTS I-ISTUilJ "F

OF TECHNOLOGY

JUN 11 1996

LIBRARIES

r

Data Wrapping on the World Wide Web

by

Jessica F. Qu

Submitted to the
Department of Electrical Engineering and Computer Science

January 19, 1996

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In this thesis, I designed and implemented the Generic Screen Scraper. The Generic
Screen Scraper is a tool that generates data wrappers to extract requested data from data
sources on the World-Wide Web. Data wrappers isolates users from interacting directly
with heterogeneous data sources (i.e. SQL or non-SQL) by allowing all queries to be
issued using Standard Query Language based on the relational data model. Structured or
semi-structured data sources on the World-Wide can be made scrapable by the Generic
Screen Scraper, as long as the data sources are registred following some specifications.

Thesis Supervisor: Michael D. Siegel
Title: Principal Research Scientist, Sloan School of Management

Acknowledgments

I wish to thank my thesis advisor, Michael Siegel, and Professor Stuart Madnick at the

MIT Sloan School for giving me the opportunity to work in their group, and for their guid-

ance and advice.

I would like to thank everyone in the Information Technology group at the MIT Sloan

School of Management for providing a positive working atmosphere. In particular, I am

indebted to Cheng Goh for his guidance and support throughout the project.

My friends, particularly Jenny Lee, Ann Chen, Alexandra Pau, Theodore Tonchev,

Marilyn Chen, Vivian Tung, Melissa Lee, and Gloria Tsuen, have encouraged me to stay

focused and motivated in my work. I thank them for their friendship, prayers, and support.

Last but not least, I wish to thank my parents and Sung for their love, encouragement,

understanding, and support in every possible way. To them I dedicate this thesis.

Table of Contents

1 Introduction .. 11
1.1 Thesis Overview .. 12

2 B ackground 15
2.1 The World Wide Web ... 15

2.2.1 dbW eb 16
2.2.2 Other Works .. 17

2.2 Related Works..16
3 D esign 19

3.1 Design Specification ... 19
3.1.1 Role in COIN ... 19
3.1.2 Design Goals 20

3.2 Overall Architecture... 21
3.3 Main Components ... 22

3.3.1 Export Schema.. 22
3.3.2 Configuration file..22
3.3.3 Regular Expressions..22
3.3.4 SQL Parser ... 24
3.3.5 Finite State Automata Representation of Flow Control....................25

3.4 Possible Errors ... 30
4 Implementation Details ... 33

4.1 Overall Implementation ... 33
4.2 Main Components 33

4.2.1 HTTP-GET 35
4.2.2 SQL Parser ... 35
4.2.3 Export Schema Check................................ 36
4.2.4 Capabilities Check 36
4.2.5 Finite State Automata .. 37

4.3 Error Recovery...39
5 A pplications 41

5.1 Data Source Registry 41
5.2 Users 42

6 Future W ork 47
B ibliography ... 51
Appendix A Contents of NETworth Export Schema, Configuration, and Descriptor file53

A. 1 NETworth Export Schema file: Networth.text 53
A.2 NETworth Configuration file: Networth.config .. 53
A.3 NETworth Descriptor file: Networth.html..54

List of Figures

W rapper used in COIN 20
Overall Architecture of a data wrapper... 23
FactBook Table of Content 26
FactBook Homepage for China .. 27
NETworth Transition Diagram. 29
FactBook Transition diagram 29
The Wrapping Process... 34
Generic Screen Scraper User Interface. .. 44
NETworth Wrapper User Interface. 45
Final Page With Tabulated Data. 46

Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 4.1:
Figure 5.1:
Figure 5.2:
Figure 5.3:

List of Tables

Table 4.1: NETworth State Transition Table 38
Table 4.2: FactBook State Transition Table 38

Chapter 1

Introduction

Large organizations often exchange information developed on different systems, where

sources and receivers have implicit preconceived assumptions about the meaning of data.

It is thus not uncommon for system A and system B to use different terms to define the

same thing. However, in order to achieve a useful exchange of data, the individual systems

must agree on the meanings of the exchanged data. In other words, the organizations must

ensure contextual (or semantic) interoperability.

The Context Interchange Network (COIN) is designed to provide for intelligent inte-

gration of contextually heterogeneous data. It provides for (1) access to the information

the way user want it; (2) explanation of the context associated with a given piece of data;

(3) management of large data networks. [3]

At the heart of the COIN is the Context Mediator. The Context Mediator determines

the necessary transformations needed to ensure meaningful exchange of data by examin-

ing the semantic conflicts between data contexts. The Context Mediator intercepts all

requests made by the receiver and translates the queries made by the receiver to the source

context. It poses the translated query to the data source and captures the data returned.

Finally, the returned data is converted back to the receiver context and presented to the

receiver. The context mediation process enables the COIN to accurately extract disparate

data from different sources and receivers and produce consistent results. [3]

The COIN has been implemented using the client/server model in the PC environ-

ment. The context mediator is implemented in LISP on the server. The user interface is an

application in Powerbuilder that can run on any PC client. The client and server are con-

nected by Remote Procedure Calls.

Since the World Wide Web has rapidly become the pool for human knowledge

exchange, it makes an ideal environment for further development of COIN. The WWW's

phenomenal growth and abundant resources have led to the implementation of COIN in

the WWW environment to provide for semantic interoperability between heterogeneous

sources and receivers on the WWW. Additional components have been implemented for

the web-based COIN, namely the Multidatabase Browser, the Ontology/Context Editor,

and the Generic Screen Scraper. The Mutlidatabase Browser is a query builder modelled

after the QBE-like interface of Microsoft Access. It builds a query and sends it to the Con-

text Mediator. The Ontology/Context Editor is a tool for to browsing or editing the ontolo-

gies and contexts in the COIN.

The design, implementation, and application of the Generic Screen Scraper make up

this thesis. The Generic Screen Scraper generates data wrappers that isolate user from

interacting directly with heterogeneous data sources (i.e. SQL and non-SQL) by allowing

all queries to be issued using Standard Query Language based on the relational data model

[4]. A data wrapper sends the translated query from the Context Mediator to the targeted

data source and returns requested data. Disclosure is an example of SQL data sources, and

NETworth quote server is an example of non-SQL data sources that can be wrapped. In

fact, most of semi-structured data sources on the WWW can be made scrapable by the

Generic Screen Scraper. However, these data sources must be registered in the COIN fol-

lowing some specifications.

1.1 Thesis Overview

Chapter 2, Background, describes the background of the World Wide Web in detail. In

addition, some relevant works that have been done in the field of data wrapping are dis-

cussed.

Chapter 3, Design, presents the design specification, the design of the overall architec-

ture as well as the main components of the Generic Screen Scraper.

Chapter 4, Implementation Details, provides detailed descriptions of the implementa-

tion of the Generic Screen Scraper, and some of the notable components of a data wrapper

generated by the Generic Screen Scraper.

Chapter 5, Application, discusses why the Generic Screen Scraper is a good data wrap-

ping tool to have, and demonstrates who can use the Generic Screen Scraper and how it

can be used.

Chapter 6, Future Works, lists some problems with the current system, and gives some

recommendation for further improvements that can be implemented to make the system

more robust.

Chapter 2

Background

This chapter first describes in detail the World Wide Web. The World Wide Web is where

the structured and semi-structured data sources reside. Other related data wrapping works

that have been done are then discussed.

2.1 The World Wide Web

The World Wide Web (the WWW) has become a pool for human knowledge, where peo-

ple can communicate and learn from each other. Its user interface is independent of the

text format, platform, clients, and network protocols, and has thus made it a very popular

and convenient means for information exchange and sharing. [1]

The Web defines a number of things which should be distinguished. It has come to

stand for the idea of a boundless information world in which all items are retrievable by a

reference. Its address system, where Universal Resource Locators (URL) are strings used

as network addresses of objects (i.e. homepages) on the WWW, makes this boundless

information world possible despite many different protocols. The WWW's network proto-

col, Hypertext Transfer Protocol (HTTP), is an Internet protocol for transferring informa-

tion with efficiency necessary for making hypertext jumps. The basic language of

interchange for hypertext on the WWW, Hypertext Markup Language (HTML), is used

for the transmission of text, menus and simple on-line help information across the net. [1]

All these distinguishable qualities have made the WWW an ideal implementation

environment for the COIN. It offers not only boundless resources, but also real-time data

generated dynamically by the Common Gateway Interface. The Common Gateway Inter-

face (CGI) is a standard for external gateway programs to interface with information serv-

ers and it has become the mainstay of Web interactive communication via HTML.

It is also worth pointing out that the WWW does not preserve states because HTTP is

a stateless protocol. HTTP runs over a TCP connection that is held only for the duration of

one operation. [2]

2.2 Related Works

There have been some interesting and relevant works developed to access data sources

available on the WWW. Although they do not necessarily provide the same functions as

the Generic Screen Scraper, they are related to data wrapping to some extend.

2.2.1 dbWeb

dbWeb (http://www.aspectse.com/Product/dbWeb/dbWeb.html) is basically a data source

publisher that provides users with the ability to offer multi-platform access to data sources

on the WWW or on a Local Area Network (LAN). It is a Common Gateway Interface

between Open Database Connectivity (ODBC) data sources and Web server that enables

easy access to information on the WWW or on the internal LAN without specialized client

software.

dbWeb provides database connectivity for HTTP Web Servers running under

Microsoft Windows NT. It provides real time access to ODBC data sources through Web

browsers such as Netscape. dbWeb is equipped with full insert/update/delete capabilities

as well as query-by-example record selection for dynamic SQL and stored procedures.

Records are returned in tabular, detail or custom forms. Moreover, records can optionally

contain "SmartLinks" that allow hypertext-style navigation within a data source.

The administration tools provided by dbWeb makes database publishing in the WWW

possible and easy. The administrative utility helps set up a data source. A dbWeb data

source has to be created for each ODBC data source that is to be made accessible through

a Web server. The administrative utility also maintains the dbWeb database repository

which contains "schemas". A Schema contains all the information that dbWeb needs to

generate Web pages for query-by-example, tabular, and freeform display modes. These

information includes tables, views, stored procedures, attributes, properties, and relation-

ship between objects in the database.

2.2.2 Other Works

Accessing a Database Server via the World Wide Web (http://cscsunl.larc.nasa.gov/

-beowulf/db/web-access.html) created and maintained by Jeff Rowe is a useful document

that explains everything about accessing databases on the WWW. He explains how Com-

mon Gateway Interface can be used to access databases on the WWW, the user interface

types, the methods of access, and the access control of database operations.

GSQL (http://www.santel.lu/SANTEL/SOFT/starthere.html) is a simple Mosaic gate-

way to SQL databases. It parses a SQL-specification file (called a PROC file) to create a

form, and then with the user-inputs, call a database backend program to process the SQL

query. The PROC file maps components of the SQL string to widgets (fields, buttons, pull-

down menus, etc.) for user input or selection.

dbCGI (http://www.progress.com/webtools/dbcgi/dbcgi.htm) is an embedded SQL

toolkit for connecting databases to the World Wide Web. It is a CGI gateway which gives

easy access to SQL databases. dbCGI is capable of producing formatted output, forms,

tables and complex reports using SQL calls embedded in an HTML document.

DB2WWW (http://www.software.ibm.com/data/db2/db2wfac2.html) is IBM's WWW

interface to their DB2 database product. It uses standard HTML and SQL. The HTML

forms and SQL queries are stored as macro files on the Web server machine. The macro

files are processed by DB2WWW when the user requests data, and performs variable sub-

stitution to access the requested data.

Chapter 3

Design

The focus of this thesis is the Generic Screen Scraper which is basically a data wrapper

generator. The Generic Screen Scraper generates the data wrapper for a data source by

using the configuration information of the data source. The data wrapper then takes a SQL

query, parses it, and scrapes from the data source the requested data as specified in the

SQL query.

The Generic Screen Scraper is so-called because there is only one generic script writ-

ten for generating data wrappers for all different data sources. The configuration file for a

data source is all that needs to be created in order to have the Generic Screen Scraper

scrape the data source. This chapter, after discussing the design specification, describes

the design of the Generic Screen Scraper and some of its main components.

3.1 Design Specification

The design specification of the Generic Screen Scraper has been drawn according to its

role in the COIN. In addition, certain design goals have been kept in mind in the design

process.

3.1.1 Role in COIN

The Generic Screen Scraper is incorporated into the Context Interchange Network as a

black box. The Multidatabase Browser builds a SQL query from the user input. It sends

the query to the Context Mediator where the Context Mediator reformulates the query.

Ideally, if the query requests for data from multiple data sources, the Context Mediator

splits a multiple-data-source query into multiple single-data--source queries. Each single-

data-source SQL query is eventually sent to its corresponding data wrapper generated by

the Generic Screen Scraper. The data wrapper communicates with the data sources by

means of gateways. After getting either error or data back from the data sources, the wrap-

per tabulate the result and sends it back to the Multidatabase Browser for display.

Figure 3.1: Wrapper used in COIN.

3.1.2 Design Goals

Data wrappers are expected to wrap around SQL databases, flat files, as well as Non-SQL

database as illustrated in Figure 3.1. The SQL databases are easy to wrap, since any SQL

query can simply be passed along to the underlying DBMS's. The SQL capabilities in this

case depend on what the underlying DBMS's can handle. The Generic Screen Scraper

focuses on generating data wrappers for the latter two types of data sources: flat files and

non-SQL databases. These two types of data sources are also called semi-structured data

sources.

NETworth Stock Quote Server (http://quotes.galt.com/) and 1995 FactBook (http://

www.odci.gov/cia/publications/95fact/index.html) are examples of semi-structured data

I

sources. Ideally, data wrappers generated by the Generic Screen Scraper can process some

sample SQL queries sent to them and return meaningful results.

Example of SQL queries that the wrappers should be able to answer are:

* select *
from networth
where networth.ticker = 'intc'

* select networth.high, networth.low
from networth
where networth.ticker in ('orcl', 'msft')

* select FactBook.Currency, FactBook.Capital
from FactBook
where FactBook.Country = 'France'

* select FactBook.Currency, FactBook.ExchangeRate
from FactBook
where FactBook.Country = 'Ch%'

3.2 Overall Architecture

The Generic Screen Scraper is designed to be as generic as possible. It is also designed to

be a a stand-alone system that can be used independently for querying on different data

sources.

The Generic Screen Scraper takes the name of the server (where the configuration file

resides) and the name of the configuration file for a data source as inputs. It then generates

a data wrapper, passing on to it the server and document information. The wrapper expects

a SQL query input from the user. At the submission of a SQL query, the wrapper springs

into action to look for the query result. See Figure 3.2 for the overall architecture of a data

wrapper.

As the initial step, the data wrapper parses the SQL query with the SQL parser. If the

parsing is successful, the wrapper checks the parsed results against the Export Schema to

see if the selected tables and attributes exist for the particular data source. Assuming the

query passes the Export Schema test, the wrapper issues a network protocol (using the

server and the document information from the Generic Screen Scraper) to retrieve the doc-

ument that contains the configuration information for the data source being queried on.

With the information found in the configuration file, the wrapper eventually obtains

the document containing requested data as specified in the query. Consequently, it scrapes

from the document the requested data using regular expressions, and returns them in a tab-

ular form.

3.3 Main Components

To further explain the design, some of the important components in Figure 3.2 are dis-

cussed in more detail in this section.

3.3.1 Export Schema

Each data source has an Export Schema that contains the data elements available for the

data source. An Export Schema lists table(s) and attributes defined for the particular data

source. For an example of an Export Schema, see section A. 1 in Appendix A.

3.3.2 Configuration File

Configuration file is one of the vital parts of the system because without it, the Generic

Screen Scraper would not be able to start executing. A configuration file has to be created

for each data source. It should contain information about the capabilities and the flow con-

trol of the data source as well as the regular expressions created for the corresponding

attributes defined for the data source. Section A.2 in Appendix A lists the configuration

file for NETworth.

3.3.3 Regular Expressions

A regular expression is defined for every attribute available in a data source. The regular

expression corresponding to the attribute Last for NETworth as seen in section A.2 of

(Th

SQL Query

;er

attrs.

config.1
file

and
result

Figure 3.2: Overall Architecture of a data wrapper.

err
or

Appendix A is

Last\W/A\W\s+(.*?)\s+\WA

This regular expression is saying that the value for Last can be found between the strings

Last\W/A\W\s+ and \s+\WA, where \W means any non-alphanumeric such as "<", \s

means white space, and + means repeated one or more times. For more information on

regular expressions, consult the perl on-line manual.

3.3.4 SQL Parser

The SQL parser processes the SQL query submitted to the data wrapper. The parser takes

an SQL query as the input and returns the selected table, attribute(s), and search condition

if the parser successfully parses the SQL query. The parser returns the string "SQL parse

failed" if it fails in parsing the SQL query. Due to the limited scope of the problem, the

parser does not support all the SQL capabilities. It handles simple SELECT statement

with certain capabilities listed below:

* * (wild card in the target list which implies all attributes).
* AND in the search condition.
* OR in the search condition.
* IN in the search condition.

IN is an short hand for writing multiple OR's. For example,

select networth.high, networth.low
from networth
where networth.ticker in ('orcl', 'msft')

is equivalent to

select networth.high, networth.low
from networth
where networth.ticker = 'orcl' or networth.ticker = 'msft'

In the case of a SQL query containing an "IN", the SQL parser automatically expands

the search condition into a SQL query with multiple OR's.

3.3.5 Finite State Automata Representation of Flow Control

One major problem that the Generic Screen Scraper encountered is that not all the data

sources have the same user interface, that is, most data sources have different flow control.

NETworth, for instance, goes directly to the ticker query page as soon as the URL is keyed

in. Typing in the name of a ticker at this point would bring up the page containing stock

information. The 1995 World FactBook, which provides information on every country in

the world, however, can not be handled as easily. The documents for countries are num-

bered in alphabetical order. In order to reach the document for a particular country, two

different URL's are needed: one to get the document containing the table of contents for

countries so the file name for the country can be looked up (see Figure 3.3); one to get the

actual document for the country (see Figure 3.4) using the file name obtained from the

previous document.

An an initial approach, this problem is solved by modifying the configuration file. If

there are to be more than one screen (or URL) to bypass before reaching the document

containing the requested data, there has to be a regular expression after the intermediate

URL(s). The regular expression serves as the target and its found value can be appended to

the next URL to get to the subsequent screen. For instance, the URL http://www.odci.gov/

cia/publications/95fact/index.html takes the user to Figure 3.3, namely the FactBook

Table of Contents. The regular expression href="(.*?)"> is used to look up the file name

for the country being queried on from Figure 3.3. In this case, the file name ch.html is

appended to the URL http://www.odci.gov/cialpublications/95fact/ to make the transition

to Figure 3.4 possible. Data can then be scraped from Figure 3.4 which contains the cur-

rency, capital, and other information for China.

Figure 3.3: FactBook Table of Content

26

_____________________________ _________________ I

include cotton, other fibers, and oilseeds; produces variety of
livestock products; basically self-sufficient in food; fish catch
of 13.35 million metric tons (including fresh water and pond
raised) (1991)

Illicit drugs: illicit producer of opium; bulk of production is in
Yunnan Province (which produced 25 metric tons in 1994);
transshipment point for heroin produced in the Golden
Triangle

Economic aid:
donor: to less developed countries (1970-89) $7 billion
recpient: US commitments, including Ex-Im (FY70-87),
$220.7 million; Western (non-US) countries, ODA and OOF
bilateral commitments (1970-87), $13.5 billion

Currency: 1 yuan (Y) = 10 jiao

Exclhange rates: yuan (Y) per US$1 - 8.4413 (January
1995), 8.6187 (1994), 5.7620 (1993), 5.5146 (1992), 5.323
(1991), 4.7832 (1990)
note: begnning 1 January 1994, the People's Bank of China
quotes the midpoint rate against the US dollar based on the
previous day's prevailing rate in the interbank foreign
exchange market

Figure 3.4: FactBook Homepage for China

The initial approach, however, evolves to be something more sophisticated. It turns

out that the flow control of data sources can be represented using the finite state automata

model.

A finite state automaton -- "finite" because the number of possible states and the num-

ber of input are finite, and "automaton" because the change of states is totally determined

by the input -- is a collection of three things:

1. A finite set of states, one of which is designated as the start state, and some (or

none) of which are designated as final states.

2. An alphabet of possible inputs that governs one state to the next.

3. A finite set of transitions that tell for each state and each input which state to go

next. [2]

The flow control of each data source can be thought of as a finite state automaton.

Each web page is a state in a transition diagram. The initial SQL query can be interpreted

as traversing a path beginning at the homepage of a data source (start state). The document

containing the requested data can be thought of as the final state. Each state outputs infor-

mation that is needed for the next transition. The URL's (plus result from regular expres-

sion search, if any) that traverse through the one or many Web pages before reaching the

final desirable page make up the alphabet of possible inputs. This alphabet of URL's gov-

erns one state to the next. The many paths that can be taken to reach the final informative

page make up the finite set of transitions.

The flow controls of the NETworth Quote Server and the 1995 World FactBook are

represented as finite state automata as shown below in Figure 3.5 and Figure 3.6 respec-

tively.

URL URL

stock

Figure 3.5: NETworth Transition Diagram.

URL URL

country->cou.html

Figure 3.6: FactBook Transition diagram.

The transition diagrams can be easily translated into state transition tables. The state

transition tables, in turn, are represented in the configuration file. The details are discussed

in the next chapter.

3.4 Possible Errors

There are three main types of errors that can occur in this system.

* Invalid SQL Queries
* Data Source Capability Problems
* Network Errors

The first type of invalid Queries are SQL statements that are syntactically ill-formed.

Any query not following the SQL standards (i.e. missing from or where) are detected by

the SQL parser to be invalid. SQL queries that references attributes or tables undefined in

the Export Schema for the particular data source are also invalid SQL queries. They are

detected during the Export Schema check.

Queries that are beyond the capabilities of the data sources are declared invalid. Most

data sources have certain limitations. For example, NETworth only allows search on

ticker, and FactBook only allows search on country. This implies that both data sources

can not process queries that have AND embedded. A SQL query such as

select networth.high, networth.low
from networth
where networth.ticker = 'orcl' and networth.symbol = 'oracle'

is not valid, since it searches on symbol and it contains an AND. This type of invalid que-

ries is detected at the state transition level.

The third type of errors, network errors, are mainly problems that can possibly result

from network protocols. They can also be characterized as web-related errors. Such errors

are displayed to the user through the WWW Browsers. "Not found" errors resulted from

bad url's are the most frequently occurred problems. They include server not found and

document not found. "Server busy" is another possible error. Most popular Web Sites with

limited number of ports have this problem. Network errors are sometimes associated with

access authorization. This is not really a big issue because only the data sources that allow

general access to the general public should be registered.

Chapter 4

Implementation Details

This chapter discusses the specific details of the implementation of the Generic Screen

Scraper, and some main components of its generated data wrapper.

4.1 Overall Implementation

The Generic Screen Scraper is implemented as a Common Gateway Interface (CGI) pro-

gram written in Perl. The Common Gateway Interface is a standard for external gateway

programs to interface with information servers. It has become the mainstay of World Wide

Web interactive communication via HTML. Each time a client requests the URL corre-

sponding to the Generic Screen Scraper, the server executes it in real-time. The output is

displayed directly to the client. Perl is the chosen language for the Generic Screen Scraper

because it is excellent for text management and data-parsing.

CGI.pm, a Perl5 library, has been a very useful tool to deal with the stateless problem

of the World Wide Web. This Perl library uses objects to create Web fill-out forms on the

fly and to parse their contents. It provides a simple interface for parsing and interpreting

query strings passed to CGI scripts. The stateless problem of the World Wide Web is

solved because the value of the previous query is used to initialize the form, so that the

state of the form is preserved from invocation to invocation.

4.2 Main Components

Data wrappers generated by the Generic Screen Scraper are defined by some important

components such as HTTP-GET, SQL Parser, Finite State Automata whose implementa-

tions deserve to be discussed in detail. The flow of the data wrapping process is shown in

Fig. 4.1.

Process AND/OR

subroutine
calls. First line
is the subroutine
name.

calls.

Figure 4.1: The Wrapping Process.

,,,, '

4.2.1 HTTP-GET

HTTP-GET is a CGI program written in Perl and copyrighted by MIT. It takes two argu-

ments server and document (first part and second part of a URL for a Web page) and

issues an HTTP-GET request across the network and returns the resulting Web page

packet by packet to standard output.

The Generic Screen Scraper uses a modified HTTP-GET to grab web documents, then

uses regular expression match on the documents to look for the requested data. It eventu-

ally returns the data or error in a tabular format. The original HTTP-GET was modified

slightly to work for the Generic Screen Scraper. An empty text string is created initially.

After each socket call, each packet is appended to the text string. The text string, instead

of being sent to standard output, is returned as a long text string.

4.2.2 SQL Parser

The SQL parser is a modified version of the SQL parser provided in Lex & Yacc. Lex and

Yacc are used to create compilers and interpreters that transform structured input. In pro-

grams with structured input, two tasks are often involved: 1) dividing the input into mean-

ingful units, 2) discovering the relationship among the units. The division into units or

tokens is known as lexing. Lex takes a set of descriptions of possible tokens and produces

a C routine called a lexer. The process of establishing the relationship among the token is

known as parsing and the set of rules that define the relationships is a grammar. Yacc

takes a concise description of a grammar and produces a C routine that can parse that

grammar called a parser. The Yacc parser automatically detects whether or not a sequence

of input tokens matches one of the rules in the grammar. [5]

Given an SQL statement, the Lex and Yacc SQL parser merely determines whether or

not the SQL parser worked parsing the SQL statement. This information, however, is not

sufficient for the data wrapper. The wrapper needs to know what table is selected, what

attributes are in the target list, and what the search condition is. Therefore, the SQL parser

has been modified to meet the data wrapper's needs. Many additional data structures and

procedures were created in C to enable the parser to pull out what the wrapper needs to

know in addition to determining whether the SQL query is parsed.

Since the SQL parser is written in C, an executable file has been created and invoked

in Perl scripts through piping. The SQL query input from Perl is piped in to the execut-

able, the parsed result is, in turn, piped out back to Perl.

4.2.3 Export Schema Check

The data wrapper takes the target list returned from the SQL parser and proceeds with the

Export Schema Check. If the target list consists of "*", then the wrapper automatically

translates it into all the attributes for the data source by extracting them from the Export

Schema. If the target list consists of specified attribute(s), the wrapper checks the

attribute(s) against the Export Schema for the data source. The goal of the Export Schema

check is to make sure that the attribute(s) in the SQL query are defined in the Export

Schema for the data source. Specifically, all the attributes defined in Export Schema are

read into an attribute array. The Export Schema check compares the attribute(s) in the

SQL query to the members of the attribute array to see if the requested attributes are

defined for the data source.

4.2.4 Capabilities Check

After the Export Schema Check, the data wrapper proceeds to check the query against the

capabilities the data source can handle. The common SQL capabilities that are imple-

mented for the wrapper are AND, OR, and IN, where IN is basically equivalent to multi-

ple OR's.

When there is no AND, OR, or IN in a query, the data wrapper simply uses the only

search condition and gets a tuple of data back (assuming that there is no error). This is

called a tuple-at-a-time search.

When the wrapper sees an AND in the query, it checks the capability list in the config-

uration file to see if AND is allowed for the particular data source. If AND is allowed, the

wrapper appends the multiple search conditions to the URL, then proceeds as if doing a

tuple-at-a-time search.

If OR appears in a query, the wrapper splits the query into multiple tuple-at-a-time

searches each given one search condition. IN in a query is translated to multiple queries by

the SQL parser as mentioned previously.

4.2.5 Finite State Automata

The Finite State Automata Representation of different data sources can be represented in

corresponding state transition tables. For example, see the state transition tables for NET-

worth and FactBook in tables 4.1 and 4.2 respectively. The Condition field specifies the

searchable attribute(s) that are allowed for the particular data source. It is also what is

required for the transition to take place. Table 4.1 shows that ticker is the searchable

attribute for NETworth. The Expression field specifies the regular expression that is

required to transit to the next state when the Condition field is not sufficient to make the

transition happen. For example, knowing the value to the attribute country in FactBook

does not mean that we can find the homepage for the specified country. The regular

expression href="(.*?)">{} in the Expression field is used to search for the file name of

the specified country in the first Web page, namely, the FactBook Table of Contents as

seen in Figure 3.3. The search result is appended to the URL for the transition to the

homepage for the requested country. Furthermore, the Output field lists all the attributes

that can be found at the Web page. Every attribute has a regular expression associated with

URL
From To Transition Condition Expression Output
State 1 State 2 http:// ticker none o Company

quotes.galt.co \WFONT\sSIZE=\d\W(.*?),\s+\W\

m/stock- w+\Wo Ticker
clnt?stock=oTik ,\s\W(.*?)\W\WIFONTlW

o LastTrade
\Wlast trade:\s(.*?) ESTIW

o High
Day Range\WIA\W\s\WTD\W.*-
(.*?)\WA
o Low
Day Range\W/
A\W\s\WTD\W(.*?)-\s*\d

Table 4.1: NETworth State Transition Table

From To URL Transition Condition Expression Output
State 1 State 2 http:// country href="(.*?) code.html

www.odci.gov/ ">{ }
cia/publications/
95fact/
index.html

State 2 State 3 http:// code.html none o Country
www.odci.gov/ title\W(.*?)\W/

title\W#

cia/publications/ o Capital
95fact/ CapitalCapital:\s*\W/

b\W\s+(.*?)\s+

o Currency
Currency:\s*\WI
b\W\s*\d*\s+(.*?)\s+\(

Exchange_Rate
per\sUS\$1\s+-\s(.*?)\(

Table 4.2: FactBook State Transition Table

4.3 Error Recovery

Data wrappers handles errors by printing error warnings. The execution of the CGI pro-

gram halts immediately whenever an error has been detected. A Perl subroutine is written

to handle all three types of possible error that the data wrappers might encounter. The sub-

routine takes two arguments, namely, type and explanation, and use them to display a

warning message to the user.

Chapter 5

Applications

This Chapter addresses the issues about who can use the Generic Screen Scraper and how

it can be used. The Generic Screen Scraper can be used in two different ways. As dis-

cussed in Chapter 1, it can be used as a black box in the COIN. It can also be a stand-alone

system. As long as a data source is registered in the COIN, the Generic Screen Scraper can

generate a data wrapper for the data source that is capable of extracting data from it. Any

users can then use it to look up information they would like to know by just entering an

SQL query.

5.1 Data Source Registry

Data Sources can be registered with the system easily, but certain assumptions and guide-

lines have to be followed before registering a data source.

5.1.1 Assumptions

A data source is assumed to have Web pages with "GET" methods, since HTTP-GET does

not work with web pages with "POST" methods. The access control of a data source

should be as general as possible, that is, it should not have only authorized access. Due to

the limited power of regular expressions, the layout of the WWW page should have the

format attribute: value, not value displayed below attribute on the next line.

5.1.2 Guidelines

If all the assumptions are met, a data source can then be registered. The following steps

have to be followed:

* Create Export Schema file.
* Create Configuration file.

* Create Descriptor file.
* Add Descriptor file of data source to the general data source registry.

The Export Schema file, Configuration file, and Descriptor file should have the same

exact name with different extensions. The Export Schema file should end in "text". The

Configuration file should end in "config". The descriptor file should end in "html". See

Appendix A for the specific formats of the three files that have been created for NET-

worth.

5.2 Users

Normal users can use the Generic Screen Scrape to issue SQL queries to semi-structured

data sources as long as they knows where the configuration file resides. After keying in the

URL for the Generic Screen Scraper, a screen like Figure 5.1 is displayed. Figure 5.1 is the

user interface for the Generic Screen Scraper. At this point, users are expected to enter the

name of the server (where the configuration file resides) and the name of the configuration

file. "Context.mit.edu" and "Networth.config" are entered as server and document for

NETworth configuration file as shown in Figure 5.1. Submitting at this point would bring

up the subsequent data wrapper screen. Figure 5.2 is the data wrapper interface which dis-

plays the data elements defined for the NETworth and a sample query. Users are supposed

to enter a SQL query following the given example. The query

select networth.ticker, networth.company, networth.high, networth.low
from networth
where networth.ticker = 'orcl'

is entered in Figure 5.2. Eventually, data are returned and displayed in tabular format to

the users (if no error has been detected) as seen in Figure 5.3.

The other option is to go through the Multidatabase browser which lists all the data

sources registered. User can pick a data source from there, then build a query. The multi-

database browser sends the query along with the configuration information to the Generic

Screen Scraper and displays the tabulated data returned by the wrapper to the user.

Figure 5.1: Generic Screen Scraper User Interface.

44

Figure 5.2: NETworth Wrapper User Interface.

Figure 5.3: Final Page With Tabulated Data.

46

Chapter 6

Future Work

The Generic Screen Scraper has been a useful tool for generating data wrappers that iso-

late users from interacting directly with heterogeneous data sources by allowing all que-

ries to be issued using Standard Query Language. It has been smoothly incorporated into

the COIN.

The Generic Screen Scraper still has some limitations. It has not been able to scrape

data off documents that have "POST" method, probably due to the fact that HTTP-GET

does not get documents with "POST" methods successfully. More testing should be done

with more data sources to see how these "problematic" documents can be scraped. If

HTTP-GET proves to be useless in this case, programs should be written to getting docu-

ments with "POST" method.

HTTP-GET is not very stable due to the uncertainties related to the World Wide Web.

Data sources often make changes to their Web interfaces as their needs change, as they

become more experienced working on the WWW, or as more advanced development tools

have become available. The FactBook URL has been changed because 1995 statistics

replaced 1994 statistics. Therefore, a URL search engine would be useful to make sure

that the right URL is being used, even if the location or the document name of the data

sources have been changed. There has been some development in the implementation of a

name service that will allow documents to be referenced by name, independent of their

location. [1] This implementation would help the URL search engine if possibly incorpo-

rated. Another major problem is often encountered when data sources improve their user

interfaces by changing the page layout or the flow control. NETworth changed the layout

of their stock page when tables formats by Netscape were adopted widely by other WWW

users. Along with the layout change, the flow control was also changed. To solve these

problems, the data source registerer should be alert to update the configuration file as soon

as possible. The finite state automata representation of the data source in the configuration

file should be checked to see if it is still compatible with the new flow control and updated

according. If it is no longer compatible, the state transitions in the configuration file should

be re-created. When the page layout changes, the data elements defined in the Export

Schema should be updated. Moreover, regular expressions for newly defined attributes

should be created just as regular expressions for old attributes should be deleted.

There are some layouts that the data wrappers can not handle due to either the limited

functions of Perl or the limitation of regular expressions. Regular expressions are useful to

extract information they are on the same line (i.e. the value is right next to the attribute).

However, when it comes to a table that lists attributes in one row above and the values

below in the next row, regular expressions become ineffective. The Stock Quote Service

(http://www3.dbc.com/dbcc/quote.html) provided by Data Broadcasting Corporation is an

example that the Generic Screen Scraper can not scrape.

In addition, data Source Registerer might find it very cumbersome to create the Export

Schema, the configuration file (especially writing the regular expressions), and the

descriptor file. It would be more convenient to have an automatic script that takes care of

this. The automatic script should first create the Export Schema, asking the user to enter

the name for the Export Schema file, then the tables and the attributes the data source

being registered. Secondly, it should create the configuration file. Perhaps a recording

mechanism can be created to remember all the possible paths from the start state to the

final state. State transitions can then be easily generated from the recordings. A separate

subroutine has be written for automatically generating regular expressions. The subroutine

should have the user input the strings around the data that is to be extracted. Ideally, it

should convert the user input such as space and < into regular expressions such \s and \W

respectively. Although this is not an easy task, it would be very useful for registering and

maintaining data sources. It would come in very handy when a data source changes its

page layout. Finally, the script can prompt the user to input the location for the Export

Schema and the configuration file. The script should automatically write the information

to the descriptor file, then add the descriptor file to the data source registry.

Last, but not the least, the Generic Screen Scraper has been used as a black box by the

Multidatabase Browser or a stand-alone system. These developments have depended on

the client/server model of the WWW. But some useful data sources do not reside on the

WWW. As a further development, it would be good to extend the Generic Screen Scraper

and make it available for ODBC compliant applications such as Excel or Access.

References
[1] Bernes-Lee, T., Cailliau, R., Luotonen, A., Nielsen, H. F., and Secret, A. The World

Wide Web. Communications of the ACM, Vol. 37. No. 8, August 1994.

[2] Cohen, Daniel I. A., Introduction to Computer Theory. JohnWiley & Sons, Inc., New
York, 1986.

[3] Daruwala, A., Goh, C. H., Hofmeister, S., Hussein, K., Madnick, S., and Seigel, M.
The Context Interchange Network Prototype. (Atlanta, GA, Mayl0-Jun 2 1995).
Forthcoming.

[4] Goh, C. H., Madnick, S., and Seigel, M. Ontologies, Context, and Mediation: Repre-
senting and Reasoning about Semantic Conflicts in Heterogeneous and Autonomous
Systems. 1995.

[5] Levine, J. R., Mason, T., and Brown, Doug. lex & yacc. O'Reilly & Associates, Inc.,
Sebastopol, 1992.

[6] Tompa, F. WM., A Data Model for Flexible Hypertext Database Systems. University
of Waterloo, ACM Transactions on Information Systems, Vol. 7 No. 1, January 1989.

Appendix A

Contents of NETworth Export Schema, Configuration,
and Descriptor file

A.1 NETworth Export Schema file: Networth.text

networth = Company Ticker Last_Trade Last High Low Change Day_Range Prev_Close
Tick_Trend Volume Market Year High Year_Low PE_Ratio Latest_Div Annual_Div

A.2 NETworth Configuration file: Networth.config
<HTML>
<HEAD>
<TITLE>Networth Configuration</TITLE>
</HEAD>
<BODY>
<H I>Networth Configuration</H 1>

 Method

GET

 SQL Capabilities

OR, IN

 Possible Paths: 1

State 1 -> State 2#

Transition Table

State 1 -> State 2:

URL: http://quotes.galt.com/cgi-bin/stockclnt?stock={ }

Condition: ticker&

Expression: None

OUTPUT:
Company \WFONT\sSIZE=\d\W(.*?),\s+\W\w+\W#

Ticker ,\s\W(.*?)\W\WIFONT\W#

Last
Last_Trade

Last\W/A\W\s+(.*?)\s+\WA#

\Wlast trade:\s(.*?) EST\W#

High
Low
Change
Prev_Close
Tick_Trend
Volume
Market
Year_Low
Year_High
PE_Ratio
Latest_Div
Annual_Div
end

<P>

Day Range\W/A\W\s\WTD\W.*-(.*?)\WA#

Day Range\W/A\W\s\WTD\W(.*?)-\s*\d#

Change\W/A\W\s+(.*?)\n#

Prev. Close\W/A\W\s(.*?)\n#

Tick Trend\W/A\W\s+\WTD\W(.*?)\W/TD\W#

Volume\W/A\W\s+(.* ?)\s+\WA#

Market\W/A\W\s+(.*?)\n#

52 week Range\W/A\W\s+(.*?)\s+#

52 week Range\W/A\W\s+.*-\s(.*?)\n#

P/E Ratio\W/A\W\s+(.*?)\s+\WA#

Latest Div.\W/A\W\s+(.*?)\WA#

Annual Div.\W/A\W(.*?)\n#

</BODY>
</HTML>

A.3 NETworth Descriptor file: Networth.html
<HTML>
<HEAD>
<TITLE>Networth Descriptor</TITLE>
</HEAD>
<BODY>
<H 1>Networth Descriptor</H1>

export schema

http://context.mit.edu/Networth.text
wrapper<AHREF=http://context.mit.edu/cgi-bin/gss.cgi?server=con-
text.mit.edu&document=nwregexp.html&>

http://context.mit.edu/cgi-bin/gss.cgi?server=context.mit.edu&docu-
ment=nwregexp.html&
source

http://quotes.galt.com

</BODY>

