
Fractal Vasculature and Vascular Network Growth
Modeling in Normal and Tumor Tissue

by

Yuval Gazit

B.Sc., Tel-Aviv University (1991)

Submitted to the Harvard-M.I.T. Division of Health Sciences and Technology
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Medical Physics

at the MIT LIBRARIES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1996
SCHERING

© Massachusetts Institute of Technology 1996. All rights reserved.

A uthor
Harvard-M.I.T. liYvisi6n- of He~a-Tth Sciences and Technology

March 19, 1996

Certified by
Rakesh K. Jain

Andrew Werk Cook Professor of Tumor Biology
A Thesis Supervisor

Certified by
Laurence T. Baxter

Assistant Professor of Radiation Oncology
Thesis Supervisor

V

Accepted by.............................
Richird J. Coheni

-n. Thesis Committee

A ccepted by
.Gray

Co-Director, Harvard-MIT Division of Health Sciences and 1rinology
,,ASSACHUSE.TS INST!TUTE

OF TECHNOLOGY

APR 2 4 1996

LIBRARIES

Fractal Vasculature and Vascular Network Growth Modeling in Normal

and Tumor Tissue

by
Yuval Gazit

Submitted to the Harvard-M.I.T. Division of Health Sciences and Technology
on March 19, 1996, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Medical Physics

Abstract

Tumor vascular networks are different from normal vascular networks, but the mechanisms underly-
ing these differences are not known. Understanding these mechanisms may be key to improving the
efficacy of the treatment of solid tumors. We studied the scale-invariant behavior of two-dimensional
normal and tumor vascular networks grown using a murine dorsal chamber preparation and imaged
with an intravital microscopy station. Our studies show that several types of fractal dimensions
can quantitatively distinguish different types of vascular networks. We find that vascular networks
exhibit three types of fractal behavior. Tumor networks display percolation-like scaling, representing
the first evidence for a biological growth process whose key determinants are local substrate proper-
ties. Normal networks belong to one of two other classes of fractal structures: normal arteriovenous
networks display diffusion-limited scaling, and normal capillary networks are compact (space-filling)
structures.

An apparent contradiction arises between the accepted view that angiogenesis is controlled by
diffusion and the observation that normal capillary networks are not diffusion-limited structures. A
growth model is developed to determine potential mechanisms responsible for the compact shape
of normal capillary networks. The model suggests that in normal angiogenesis it is an autocrine
mechanism that is key to the formation of a space-filling capillary bed. The growth model is extended
to tumor networks by suggesting that substrate inhomogeneity, most likely due the effect of the
extracellular matrix in tumor tissue, is responsible for tumor networks' observed fractal properties.
The growth model is explored over a range of parameter values.

A growth model is also advanced for the formation of arteriovenous networks. Although ar-
teriovenous networks display diffusion-limited scaling, they are known to form by the remodeling
of a pre-existing compact capillary network, where some capillaries get larger while others are re-
sorbed. The growth model shows that a shear stress based remodeling rule for terminal vessels
leads to selective resorption of capillaries, transforming a space-filling capillary mesh into a tree-like
network.

The percolation-like nature of tumor vasculature is shown to have important transport impli-
cations. It may explain why tumor networks have elevated resistance to blood flow compared to
normal networks. Furthermore, by elucidating the scaling of avascular spaces and vessel tortuousity,
it is shown that percolation-like tumor networks possess inherent architectural obstacles to delivery
of diffusible substances to tumor tissue.

Thesis Supervisor: Rakesh K. Jain
Title: Andrew Werk Cook Professor of Tumor Biology

Thesis Supervisor: Laurence T. Baxter
Title: Assistant Professor of Radiation Oncology

Acknowledgments

My thesis research would not have been possible without the support of many individuals. However,

I would like to dedicate this work to two dear people who made this research slightly impossible:

my daughter, Ronie, and my son, Yonatan.

Many people deserve whole-hearted thanks for making this thesis a reality. First and foremost,

my thesis supervisors, Rakesh Jain and Larry Baxter, who supported me unwaveringly throughout

my three years at the Steele Laboratory for Tumor Biology. Rakesh and Larry taught me a great

deal about conducting scientific research, yet also demonstrated that research can have a warm

personal side too. Other people at the Steele Laboratory also contributed to this research. Michael

Leunig, David Berk, Dai Fukumura, and Nina Safabakhsh were instrumental in the experimental

stage, facilitating the acquisition of the dorsal chamber data. Their experimental acumen was key

to the success of this research. Jim Baish from Bucknell University, who visited the lab for a year,

became an invaluable collaborator and a close friend. Jim's penetrating insight and comments as

well as the occasional piece of child-rearing advice helped advance this research at a brisk pace.

Hera Lichtenbeld and Gabriel Helmlinger contributed their time and expertise to facilitate the in

vitro experiments. I am grateful for their enthusiasm and good will. Fan Yuan, Bob Melder, Sybill

Patan, and others assisted this research through the questions and comments they generated at lab

meetings and through their keen interest in the results and implications of this research.

Outside the lab, I am much indebted to Richard Cohen, who served as my HST academic advisor

and as my thesis committee chairman, and provided me with precious advice and comments. Gene

Stanley from Boston University, who also served on my thesis committee, was a source of unending

support and encouragement. I found his passion and enthusiasm very contagious.

Other people in the M.I.T. and Harvard communities with whom I had more limited contacts,

but were still a source of learning and inspiration include: Roger Mark, HST's retiring co-director;

Toyoichi Tanaka, my Physics departmental advisor; Justin Pearlman, my research supervisor at

the NMR Center; Farrish Jenkins, the legendary anatomy professor; and Jim McIntyre and Simon

Powell, radiation oncologists at MGH.

The administrative side of my graduate studies was surprisingly smooth due to the devoted

services of an extraordinary staff. On the HST side: Patty Cunningham, Keiko Oh, Fred Bowman,

Sally Mokalled, Ron Smith, Chris Newell, Carol Campbell, and the late Gloria McAvenia. On the

MGH side: Carol Lyons and Phyllis McNally, the omnipotent divas of the Steele Laboratory.

And last but most certainly not least, my wife Inna, who silently shared the burden while raising

two children and pursuing a career of her own. It was research that brought us together, and I feel

truly blessed to have met her. Knowing that Inna was by side helped me overcome even the most

daunting obstacles. My love and thanks to you, Inna.

rjj'7 ni'l MM =7133

('C7 ,'X l)i)

(Proverbs 1:5)

Contents

1 Introduction

1.1 Motivation .

1.2 Current State

1.3

1.4

1.5

Long-Term Goal

Hypotheses ...

Organization . .

2 Background

2.1 Angiogenesis

2.1.1 Experimental Observations . . .

2.1.2 How is Angiogenesis Expressed?

2.2 Network Analysis

2.2.1 Characterizing Vascular Trees .

2.2.2 Characterizing Vascular Arcades

2.2.3 Fractal Description of Networks.

2.3 Fractal Growth Processes

3 Methods

3.1 Dorsal Window Preparation

3.2 Image Acquisition

3.3 Image Analysis

3.4 Fractal Dimension Calculation

3.4.1 Box-Counting Algorithm

3.4.2 Sandbox Algorithm

3.4.3 Correlation Algorithm

3.4.4 Algorithm Verification

3.4.5 Minimum Path

3.5 Statistical Significance Tests

17

. 17

. 17

33

. 33

. 34

. 35

. 35

. 36

. 36

. 37

. 38

. 38

. 39

.o o•oo o o o. .

. .

.

3.6 Computer Modeling 39

3.7 Plotting . 40

4 Fractal Dimensions of Vascular Networks 41

4.1 Normal Networks 41

4.1.1 Arteriovenous Networks 42

4.1.2 Capillary Networks 42

4.2 Tumor Vascular Networks 42

4.2.1 Tumors of Fixed Size 44

4.2.2 Tumor Networks Over Time 44

4.3 Verification of Fractal Range 45

4.4 Statistical Significance of Results 47

4.4.1 Between and Within-Class Separation . 47

4.4.2 Effect of Imaging Method 48

4.5 D iscussion . 49

4.5.1 Normal Vascular Networks 49

4.5.2 Tumor Vascular Networks 50

5 Modeling Normal Capillary Network Growth 51

5.1 Basic Growth Model 52

5.2 Local Amplification vs. Low Interaction Probability 52

5.3 Model Units and Reality 55

5.4 Model Evaluation 56

6 Modeling Tumor Network Growth 59

6.1 Growth Model Modification 59

6.2 M odel Results .. 59

6.3 Correlation with Biological Observations . 60

6.4 Conclusions . 61

6.5 Evaluation and Comparison with "Classic" Percolation 62

7 Modeling Arterial and Venous Network Growth 67

7.1 Role of Stress in Vessel Remodeling 68

7.2 Shear-Stress Based Arterialization Model . 69

7.3 M odel Results 71

7.3.1 Self-Loop Resorption . 71

7.3.2 Complex Loop Resorption . 72

7.3.3 Resorption on a Lattice 73

7.4 Model Evaluation

7.5 Venous Network Formation 76

8 Transport Implications 79

8.1 Geometric Resistance 80

8.2 Scaling of Avascular Regions 81

8.3 Oxygen Transport 82

8.4 Clinical Implications 84

9 Future Directions 87

9.1 Extension to Three Dimensions 87

9.2 Artery and Vein Formation Experiments . 89

9.3 Scale-Invariant Networks in Transport Models . 90

A Source Code 93

A.1 External Pascal Routines 93

A.2 Box Counting Algorithm 94

A.3 Sandbox Algorithm 100

A.4 Correlation Algorithm 107

A.5 Minimum-Path Algorithms 114

A.5.1 Minimum-Path Identification . 114

A.5.2 Minimum-Path Dimension . 118

A.6 2-D Growth Modeling Program 126

A.7 3-D Growth Modeling Program 143

A.8 Stress-Based Remodeling Program 163

A.8.1 M ain Routine 163

A.8.2 Supporting Functions 165

B Correlation Dimension Measurements 167

C Fractal Dimensions in Tumor Regression 171

D In Vitro Verification of Autocrine Mechanism 173

Bibliography 177

List of Figures

2-1 Mechanisms Involved in Tumor Angiogenesis 25

Dorsal Window Preparation.

Image Analysis Process

Minimum Path in Tumor Vasculature

Fractal Dimensions of Vascular Networks

Skeletonized Images of Vascular Networks

Fractal Dimensions of LS174T Tumor Networks Over Time . . .

Plots for Determination of Fractal Dimension and Range

Effects of Low Interaction Probability and Local Amplification .

Growth Time and Efficiency

Effect of Substrate Inhomogeneity

Fractal Dimension as a Function of Model Parameters

Fractal Domains as a Function of Model Parameters

Minimum-Path Dimension as a Function of Model Parameters. .

Minimum-Path Domains as a Function of Model Parameters...

Self-Loop Resorption

Complex Loop Resorption

Loop Resorption on a Square Lattice

Three Generations of Remodeling on a Square Lattice

Fraction of Tissue More Distant in Normal and Tumor Tissue . .

Oxygenation Contours on a Percolation Network

.. . 34

... 36

. . . 39

3-1

3-2

3-3

4-1

4-2

4-3

4-4

5-1

5-2

6-1

6-2

6-3

6-4

6-5

7-1

7-2

7-3

7-4

8-1

8-2

82

S 83

9-1 Fractal Dimensions in 3-D Growth Model

B-1 Correlation Dimensions of Vascular Networks .

. 60

. 62

. 63

. 64

. 64

. 71

. 72

. 73

. 74

167

C-1 Fractal Dimensions of Shionogi Tumor Networks During Regression 172

D-1 Morphological Archetypes in Endothelial Cell Cultures 174

List of Tables

Angiogenic Polypeptides and Their Actions

Verification of Fractal Dimension Algorithms

Fractal Dimensions of LS174T Tumor Networks Over Time

Vascular Network Class Separation Based on Fractal Measurements .

Effect of Imaging Method on Fractal Dimension

Vascular Network Class Separation Based on Correlation Dimension .

Fractal Dimensions of Regressing Shionogi Tumor Networks

Morphological Characteristics of Endothelial Cell Cultures

. 24

. 38

. 44

. 48

. 49

. 168

. 172

. 175

2.1

3.1

4.1

4.2

4.3

B.1

C.1

D.1

Chapter 1

Introduction

1.1 Motivation

The formation of new blood vessels, or angiogenesis, is a key process in the growth and metastasis of

tumors [33]. If a tumor is unable to generate its own blood supply it will not increase in size beyond

a diameter of approximately a millimeter. While our understanding of the process of angiogenesis

has been greatly enhanced on the molecular level over the last two decades [33], there has been little

progress in understanding the angiogenic process on the organ and tissue levels. In particular, it

is unclear why tumor vascular networks look so different from normal vascular networks although

presumably the same growth factors and inhibitors are involved in their formation. Little is known

about the determinants of vascular network formation and architecture - the way in which vessels

are arranged and interconnected. This knowledge is important in understanding the differences

between physiologic and pathophysiologic angiogenesis, and in designing interventions that modify

angiogenesis. Furthermore, this knowledge is essential for characterizing flow and transport in

tumor vascular networks so that various therapeutic agents (e.g., drugs, heat, antibodies), which

have proved effective in vitro, can be better delivered to their target in vivo [61, 62].

1.2 Current State

Three major areas of deficiency are noted when trying to study and compare tumor and normal

vascular networks:

* To date, there has been no general network description scheme used to study and compare

vascular networks. Commonly used schemes [106] are either limited to a particular network

topology [29], or to organ-specific [26] or tumor-specific networks [76] and cannot be utilized

to describe a wide range of networks.

* While the visual qualitative differences between normal and tumor vascular networks can be

readily appreciated, there is little quantitative knowledge about the architectural differences

between the two types.

* Currently there is no comprehensive growth model that is able to reproduce the spatial char-

acteristics of tumor and normal vascular networks.

1.3 Long-Term Goal

In view of the above, the goal of this research was to develop a vascular network growth model

based on experimental observations, that would facilitate the understanding of the dynamics and

determinants of network growth, shape and architecture, and elucidate the characteristics of flow

and transport in normal and tumor vascular networks.

1.4 Hypotheses

In order to achieve the long term goal, the following hypotheses were postulated and tested:

1. A general fractal-based non-deterministic network description scheme can quantitatively dif-

ferentiate normal from tumor vascular networks.

2. Tumor and normal vascular networks correspond to different statistical growth structures based

on fractal measurements.

3. The determinants of tumor vascular network architecture are different from those of normal

networks.

1.5 Organization

This report is divided into the following chapters:

Chapter 2 provides a thorough background on the relevant facets of the three major disciplines

this work encompasses: angiogenesis, network analysis, and fractal analysis. It describes the

current state of knowledge and points out the gaps and limitations which this work seeks to

overcome.

Chapter 3 discusses the experimental methods used in this research. It includes a description of

the animal preparations, the image acquisition and analysis process, the fractal dimension

calculation algorithms, and the programming platforms used for modeling.

Chapter 4 describes the fractal dimension measurement results. The statistical significance of the

results is calculated, and the implications for growth modeling are discussed.

Chapter 5 is dedicated to the formulation of a normal capillary network growth model. This model

helps to identify the key determinants of normal vascular network formation.

Chapter 6 is dedicated to the formulation of a tumor vascular network growth model. This model

helps to identify the key determinants of tumor vascular network formation.

Chapter 7 is dedicated to the problem arteriovenous network formation. A vascular resorption

model, the missing element in Laplacian arteriovenous growth models, is developed and dis-

cussed.

Chapter 8 analyzes the transport implications of the scale-invariant properties of tumor vascular

networks. These include elevated geometric resistance in tumors and inadequate delivery of

diffusible substances to tumor tissue.

Chapter 9 discusses future directions for extending and applying the research and results discussed

in this thesis.

Publications

Some of the results detailed in the following chapters have now been published. The full citations

are listed in bibliography References [5, 6, 7, 41, 42, 43, 44, 45, 46].

Chapter 2

Background

This thesis encompasses several traditionally disparate disciplines. In order to permit proper evalu-

ation of this report's contents, some background material will be given in each of these disciplines.

First, I will describe the relevant state-of-the-art knowledge in the field of angiogenesis. Second, I

will provide a brief review of the traditional methods of vascular network analysis and outline their

shortcomings. I will follow with a summary of fractal descriptors that can be potentially applied

to vascular networks. Last, I will present a short summary of fractal growth processes. With this

background, I hope that the significance of the findings of this research will be clearly understood.

2.1 Angiogenesis

Angiogenesis, the formation of new blood vessels, is essential to reproduction, development, and

wound repair. Under normal conditions angiogenesis is highly regulated, activated for short periods

and then fully inhibited. There are, however, disease states that are characterized by persistent

and unregulated neovascularization. Unregulated angiogenesis occurs most commonly in neoplastic

disease, and it is now well-established that tumor growth and metastasis are angiogenesis-dependent.

Other disease states that are characterized by unregulated angiogenesis include arthritis, psoriasis,

hemangiomas, and approximately 20 ocular diseases. My research focused on tumor angiogenesis.

During the last decade the field of angiogenesis has advanced considerably. At least 25 endogenous

molecules stimulating or suppressing angiogenesis have been identified [30]. While much information

has been gathered about the biochemical and structural properties of these molecules, there is only

a hazy conception regarding the ways these molecules mediate angiogenesis in vivo and how they are

regulated in both normal and tumor tissue. Furthermore, the interrelations between the different

molecules and the interrelations between possible angiogenic pathways are virtually unknown. Since

most angiogenesis research has concentrated on the identification of single effector molecules, it is

less than surprising that there are only dim ideas regarding the mechanisms which determine the

shape and architecture of a whole network of blood vessels.

In the following paragraphs I will outline some basic experimental observations which are ger-

mane to this research, and describe the current biological concepts regarding the expression of the

angiogenic phenotype in tumors.

2.1.1 Experimental Observations

Most neovascularization studies [20, 33, 88] have shown that vascular growth occurs on the capillary

or post-capillary venule level. One study, dealing with tumor neovascularization in the rat, proposed

indirect evidence for angiogenesis on the terminal arteriole level [53]. Generally, however, there is a

consensus that only remodeling of existing vessels occurs on the artery-vein level (see Chapter 7).

The dependence of tumors on angiogenesis has been observed in a multitude of experimental

models. A tumor's ability to neovascularize is not necessarily connected to its mitotic capability and

hence a pre-vascular phase is recognized in tumor development. Lesions at this phase are spherical or

flat, grow at a slow linear rate, and rarely metastasize. When neovascularization occurs, the tumor

enters a vascular phase which is characterized by rapid exponential growth and increased metastatic

potential. The tumor cells prefer to grow around blood vessels, forming cylindrical outshoots into the

surrounding tissue. This "preference" is not necessarily connected to the nutrient supply furnished

by blood, since this observation has also been made in vitro where there was no blood flow in

capillaries [100]. The hyperpermeability of the new vessels coupled with the absence of lymphatics

lead to an elevation in interstitial fluid pressure (IFP) in tumors. Observed avascular necrotic centers

in growing tumors are generally attributed to compression and occlusion of vessels due to growing

cancer cells and constantly generated matrix. There are also avascular regions in tumors which never

become vascularized, with sizes of up to several hundred microns. It appears that once a threshold

number of cells have switched to the angiogenic phenotype, sufficient neovascularization occurs so

that the whole tumor population can expand [33]. It should further be mentioned that there are

cases in which an angiogenic capability in and by itself is not sufficient for the progression of a

solid tumor, since there are benign tumors which are highly vascularized (e.g., adrenal adenomas,

hemangiomas).

2.1.2 How is Angiogenesis Expressed?

In the course of investigating the molecular promoters of angiogenesis it became clear that the

situation was much more complex than the simple picture of a few molecules secreted by tumor

cells which directly influence vascular endothelial cells. There are both inhibiting and activating

angiogenic molecules which normally act in concert to maintain a quiescent microvascular network,

where the turnover rate of endothelial cells is measured in thousands of days. Even in tumors it

has been observed that both proteases and their inhibitors are secreted simultaneously, and that the

balance between them regulates the level of extracellular proteolysis, thus promoting or suppressing

angiogenesis. During periods of regulated angiogenesis, as in wound healing, vascular endothelial

cells can undergo rapid proliferation, and their turnover is then measured in days, but this process is

also rapidly inhibited at the appropriate time. In tumor angiogenesis, the angiogenic phenotype may

present in a variety of ways, listed below, that point out to several qualitative classes of processes.

Not all of these processes occur in all tumors: some are more common and general, and some occur

only in specific tumor types.

Angiogenic molecules effect angiogenesis in various ways:

* Direct mitogenic and/or chemotactic effect on vascular endothelial cells.

* Mitogenic and/or chemotactic effect on other cell types (fibroblasts, macrophages, mast cells)

which then produce angiogenic factors.

* Indirect effects on the endothelium (e.g., increase in permeability) and the extracellular matrix

(ECM) which initiate a cascade of events leading to angiogenesis.

To complicate the experimental assessment of the effects of these molecules, some molecules may

exhibit conflicting effects, depending on the route of administration (e.g., TNF-a is angiogenic when

injected extravascularly, but may cause tumor necrosis if injected intravascularly). A list of the eleven

best known angiogenic polypeptides and their effects appears in Table 2.1. A diagram adapted from

Reference [36] showing a simplified model of angiogenic phenotype expression in tumors is shown

in Figure 2-1. The variety and complexity of actions and interactions even in this simple model

is evidently great. Nevertheless, several important qualitative features should be noted. First, no

matter which molecules are involved, an initial diffusive stage is always present. Second, the diffusing

molecules may affect the endothelial cells directly, or by a series of mediators. The possibility of

various mediating effects is key to understanding why a simple diffusive model is not sufficient

to explain the formation of vascular networks. Third, the complex tumor angiogenesis activation

process, as evidenced in Figure 2-1, does not necessarily contain any novel mechanisms which do not

occur in normally regulated angiogenesis. Although there are presumably no growth factors which

are unique to tumor angiogenesis, it is certain that the processes described in Figure 2-1 can be

significantly influenced by changes in the microenvironment of the growing vessels.

As we stand entangled in the myriad of molecular and cellular events involved in angiogenesis

and given the large gaps of knowledge even on these levels, it is clear that if one were to take a

bottom-to-top approach to unmasking the behavior of vascular networks on the tissue and organ

levels, one should expect to spend an extremely long time' untangling these mysteries. It is rather

simplistic to think that the determinants of vascular network formation can be unlocked by the

characterization of one molecule or another.

'Longer, even, than the time it takes to complete a Ph.D. thesis.

Table 2.1: Angiogenic Polypeptides and Their Actions (after References [33, 35])
Molecule Effects I Other Properties

aFGF & bFGF Mitogenic and chemotactic for Biological activities mediated by heparin
vascular endothelial cells, fibrob- or heparin-like molecules. bFGF is se-
lasts, and smooth muscle cells. questered in ECM around blood vessels.

Both FGFs are cell-associated and are nor-
mally not secreted.

Angiogenin Does not appear to be mitogenic Present in normal cells and some neoplas-
or chemotactic to vascular en- tic cells. Angiogenin is a secreted pro-
dothelial cells. tein. Mechanism of angiogenic action not

understood.

TGF-a Mitogenic for vascular endothe- Secreted by macrophages and some tumors
lial cells, fibroblasts, and epithe- such as sarcomas.
lial cells.

TGF-,3 Inhibits growth of many cell Secreted by many cells in an inactive form.
types including endothelial cells Activated by heat, acid, proteases. An-
in vitro, but induces angiogenesis giogenetic activity may be mediated by
in vivo. macrophages. May have a bifunctional ef-

fect on angiogenesis depending on local tis-
sue density of macrophages. Appears to
be involved in wound healing, inflammation
and differentiation of mesenchymal tissues.

TNF-a Inhibits endothelial cell prolifera- Secreted by tumor cells as well as by
tion in vitro, but induces angio- activated macrophages. Thought to be
genesis in vivo. Chemotactic for one of the major angiogenic molecules of
endothelial cells. macrophages.

PD-ECGF Mitogenic for endothelial cells. Thought to act physiologically as a mainte-
nance factor for vascular endothelium.

VEGF Mitogenic for endothelial cells. Isolated from various neoplastic cells.
Increases vascular permeability.

GM-CSF Endothelial mitogen in vitro. Granulocyte colony-stimulating factor. Di-
rectly augments tumor growth.

PGF Endothelial mitogen in vitro. Placental growth factor.

IL-8 Endothelial mitogen in vitro. Directly augments tumor growth.

HGF Endothelial mitogen in vitro. Hepatocyte growth factor.

EndothelialDIRECT EFFECTS

TUMOR

Secretion
of angiogenic
molecules

Down-
regulation
of inhibitory
molecules

Diffi

m s111 aU0 Cll

chemotaxis
INDIRECT EFFECTS

Endothelium-
induced degra-
dation of ECM Growth factors-- Growth factors

--- in ECM are mo-
,Lbilized

Tumor-induced bilized

degradation of
ECM

Recruitment
of macrophages, Production of
fibroblasts, growth factors
mast cells

Leakage of pla-
Increased vessel sma proteins &
permeability formation of ex-

travascular clot

Endothelial
production of
growth factors

Figure 2-1: Mechanisms Involved in Tumor Angiogenesis

-1

2.2 Network Analysis

Since the question of the determinants of vascular network shape formation cannot be readily an-

swered by considering angiogenesis on the molecular and cellular level, a top-to-bottom approach

may prove more practical. Using such an approach, analysis of the properties of the whole network

could possibly shed new light on the mechanisms which underlie its formation. This would be bene-

ficial in two ways: in creating a basis for studying the transport properties of vascular networks by

facilitating the creation of realistic network models; and in pointing out the key qualitative pathways

and cascades in the expression of the angiogenic phenotype. To this end, an overview of "traditional"

deterministic network analysis schemes will be given. In delineating their shortcomings, I will lay

the ground for the introduction of a non-deterministic (fractal) network analysis scheme.

The most important task in any attempt at network analysis is to develop a description scheme,

which functions as the "language" by which the network's features are described. Such a scheme

must be self-consistent so that a unique description is obtained for every network analyzed. Such

a scheme should also be generalizable and portable, so that it can be applied to different types

of networks. Historically, network description schemes were first developed as a tool in geological

research, and were then adopted and expanded by researchers of microcirculation. The researchers

were primarily interested in the flow behavior of the systems under study, and thus the descriptors

that were developed were not geared towards characterizing the spatial behavior of networks. These

descriptors were very useful for designing computer models which reproduced the flow behavior of

the experimentally observed networks, but were not concerned with reproducing the spatial behavior

of those networks. Only with the advent of fractal geometry did a descriptive tool become available

for spatial characterization.

Deterministic network description schemes seek to characterize two major facets of network

construction: network topology and network geometry. The topology of the network deals with the

way in which vessels are connected to each other, while the geometry of the network deals with the

geometric parameters that characterize each vessel in the network (diameter, length, branching angle,

taper, cross-sectional shape). The simplest networks to describe are vascular trees. The situation

becomes much more difficult if one tries to describe other types of networks. We therefore end up

in a situation where network description schemes [106] are either limited to a particular network

topology [29), or are limited to organ-specific [26] or tumor-specific networks [76] and cannot be

utilized to describe a wide range of networks.

2.2.1 Characterizing Vascular Trees

Two basic methods are used to characterize the vascular topology of trees. The two methods

originate from the different ways in which vessel generations can be ordered. The first method to be

employed for microvasculature description classified the vessels according to a centrifugal scheme.

The first order was given to the largest vessel in the network, and at each bifurcation the vessels

were assigned the same or the next order. This method relied on geometric characteristics of the

vessels (diameter, branching angle) to determine the order. In this respect, it is rather arbitrary and

impairs the capability to compare the topological characteristics of different networks. Later on, the

centripetal method of ordering was applied to vessel networks [291. In this method, known as the

Strahler method, the first order is assigned to the terminal vessels of the network. Subsequently,

when two vessels of the same order join together, a next order vessel is formed, and when two vessels

of different orders are joined together, the higher order of the two is retained. This method has a

major advantage over the centrifugal scheme, since it does not employ any geometric information

in classifying the vessels, and therefore the geometric characteristics of the network can be studied

independently. Such studies reveal constant branching ratio, diameter ratio and length ratio between

different pairs of vessels of consecutive orders [106]. These experimental findings are also known as

Horton's laws. Thus, we can define ratios based on the whole network as:

K-1

R 1 K qk (2.1)
K - 1 E qk+lk=1

where K is the highest order in the network, and q is the quantity measured (number of vessels,

length, or diameter). The values of these ratios are not independent of each other [67]. The nature

of this method allows comparison between different trees, and thus makes it a useful tool for building

computer models.

There have been many extensions of the basic features of the ordering schemes outlined above.

One such extension [79], for example, used the centrifugal scheme but avoided the reliance on

geometric characteristics by incrementing the vessel order automatically at each bifurcation. On

one hand, such a method is advantageous for studying the vessels connecting the arteriolar and the

venous trees, which are topologically similar in the classic Strahler ordering scheme. On the other

hand, it does not elucidate the general geometric properties as the Strahler scheme does.

2.2.2 Characterizing Vascular Arcades

Arcades, or loops, do not lend themselves to such useful general schemes as trees do. In one study

of arterial arcades [261, an attempt was made to draw a list of variables that would characterize

the arcade, such as the number of feeder arterioles, the number of bifurcations inside or on the

perimeter, etc. The independent variables were identified and measurements were made. Although

this provided a scheme for quantifying the arcade, there was very little geometric information that

could be drawn from such an analysis. Furthermore, it is not a useful scheme for modeling, since it

averages out the variances in the data, and it is not generalizable to other types of networks.

There has been an attempt to characterize the complex tumor microvasculature [76] using an

adaptation of a centrifugal scheme. The major flaw in such an approach is, again, the reliance on

apriori geometric information to characterize the topology, thus inserting a non-negligible arbitrari-

ness into the results, and making them very hard to compare with theoretical models or with other

experimental results.

Graph theory provides a convenient way to describe pure topological characteristics of any ar-

rangement of vessels. Although a detailed analysis of vascular topology can be made [132], virtually

no geometric or spatial information can be drawn from such an analysis.

Other mathematical representations of vascular networks have been suggested. Such representa-

tions [19] inevitably fall into the trap that a generally applicable deterministic method requires so

much information about each and every vessel that it cannot be practically applied to the analysis

and modeling of large networks.

In summary, this synopsis of the attempts to characterize vessel networks leads to a conclusion

that because of the complexity and variability of the structures involved, any method which is based

on a vessel-by-vessel analysis is bound to fail. This is especially true when trying to study the erratic

architecture of tumor networks. Perhaps the only plausible approach is a non-deterministic analysis

of the structure-as-a-whole, which is the topic that will be addressed next.

2.2.3 Fractal Description of Networks

In view of the limitations of the traditional network description schemes, the approach which this

research took was a non-deterministic one, where the statistical properties of the network-as-a-whole

were described, and vessel-by-vessel analysis was disposed with. Fractal analysis, which relies on the

scale-invariant properties of the analyzed objects, offers such an approach (a general introduction

to fractals can be found in References [27, 85]). Previous fractal analyses of vascular networks have

been mostly limited to measurement of the fractal dimension of the whole network in the natural

two-dimensional compartment of the retinal vasculature [28, 72, 82]. As I will next describe, more

measurements can be made, from which valuable information and insight can be gained. This

is important because different statistical growth processes lead to structures with different fractal

dimensions, and by measuring different dimensions one may be able to accurately associate a given

structure with a certain statistical growth process (e.g., the fractal dimension df of a diffusion-

limited aggregate and that of a percolation cluster are the same when both are embedded in three

dimensions, but they have a different minimum-path dimension dmin).

It should be mentioned that there are various algorithms for measuring fractal dimension. While

these algorithms will be discussed in detail in section 3.4, it is important to note that they can yield

slightly different results. Measurements of fractal dimension can be applied to carefully defined sub-

sets of the network. The fractal dimensions that can potentially be measured for vascular networks

are:

* The dimension of the network-as-a-whole df; this number characterizes the overall scaling

behavior of the structure and gives an idea of how "dense" the network is.

* The dimension of the minimum-path between two opposite sides of the network dmin; this

number provides an idea of the efficiency of propagation through the network without revisiting

sites [126]. In biological terms it is a measure of the scale-invariant tortuousity of the vessels.

As mentioned above, the benefit of using fractal measurements for characterizing vascular networks

does not lie only in the meaningful fractal dimensions that can be measured, but also in the fact that

specific values correspond to specific statistical growth processes, which can then be incorporated

into growth models. The models' attributes can then be correlated with the biological processes

underlying angiogenesis. A discussion of fractal growth processes follows in section 2.3.

As a final note, there is another benefit to measuring fractal dimensions in view of the traditional

methods: Horton's ratios can be derived from fractal dimension measurements instead of the tedious

vessel-by-vessel analysis. To show this derivation, I will use the concept of the diameter exponent A

that was introduced by Mandelbrot [85]. This diameter (or radius) exponent appears in the equation

relating the radii of vessels at a bifurcation:

ro =r= + r (2.2)

The diameter exponent is equal to the fractal dimension df for self-similar trees [85]. With Equa-

tion 2.2 in mind, and with the assumption that at a bifurcation the difference between vessel orders

can be 1 at most 2 , it follows that E r is constant for each branching order i and therefore:

ni nk

SrP. =,-Erk(2.3)
j=1 j=1

where k, i are any two branching orders, and nk, ni are the numbers of vessels in each order, respec-

tively. Taking into account Horton's laws one can then write:

ni nk/

r.j= =R j= 1(2.4)

where RB and RD are the braching ratio and the diameter ratio, respectively.

2In practice, this assumption is only partially valid. Studies of the pig coronary arterial tree [65] and the dog
pulmonary venous tree [40] have shown that some bifurcations violate this assumption. It should be noted that these
studies used a diameter-dependent vessel ordering scheme and not the classic Strahler scheme which is independent
of geometric parameters.

Combining equations 2.3 and 2.4 it follows that:

Re -R7 = 1 (2.5)

and therefore3 :
In RB

df = lnRB (2.6)
In RD

Other authors have further shown that [110]:

dy In Redf - (2.7)
dmin In RL

2.3 Fractal Growth Processes

Fractal growth processes reflect non-equilibrium growth phenomena which lead to the formation of

scale-invariant structures. While the physical mechanisms that govern the growth may vary from

one structure to another, these physical mechanisms can usually be correlated with more general

statistical growth rules which group these growth phenomena into four broad classes described below.

Generally, each process in each class is defined by a set of statistical growth rules that reflect growth

on a square lattice by the addition of identical particles. I will rely on the assumption that if one

observes a physical structure whose fractal properties are similar to properties of structures formed

by a certain fractal growth process, one can then gain intuition as to the physical mechanisms

underlying the growth. With this intuition one can then construct realistic growth models of these

structures.

Local Growth Processes

If the statistical growth rule for a particular process depends only on the immediate environment

of the site where growth occurs, the growth process is considered local [131]. Examples of such

processes are spreading percolation (e.g., as manifested in epidemic spread or flame propagation),

invasion percolation (e.g., as manifested by one fluid displacing another in a porous medium). Per-

colation structures are generally characterized by loops and voids of many length scales and a fractal

dimension of df d 1.9 when embedded in two dimensions. To date, no biological growth process has

been found to be adequately modeled by a local growth process.

3 Equation 2.6 can be verified experimentally for the bronchial tree, which, by virtue of its function, is the only
biological tree close to being space-filling. For such a tree we would expect df to be close to 3. Indeed, published
values for RB and RD in the bronchial tree of 4 species [54] concur with our expectation. These values yield a mean
df of 2.885 in human, 2.831 in dog, 2.809 in rat, and 2.903 in hamster bronchial tree.

Laplacian Growth Processes

Growth processes which are governed by the spatial distribution of a Laplacian field-like quantity

(which is inherently non-local) are called Laplacian or "diffusion-limited" [131] (since the probability

field of finding a diffusing particle at a given point is a Laplacian quantity). Other such quantities

include temperature or electric potential fields. The spatial behavior of these quantities obeys the

Laplace equation with moving boundary conditions. Examples of such processes include diffusion-

limited aggregation [133] (e.g., as an archetype for bacteria colony formation or viscous fingering),

diffusion-limited deposition (e.g., as manifested in electrodeposition), and their many variations.

Diffusion-limited aggregation has been found to be a good model for biological growth processes

such as neurite growth [18] and bacterial colony growth [10, 87]. Diffusion-limited structures are

generally characterized by a tree-like morphology with no loops and a fractal dimension of df ~ 1.7

when embedded in two dimensions.

Self-Affine and Compact Growth Processes

Not all objects have a non-trivial fractal dimension. There are many growth processes which produce

space-filling structures whose dimension is equal to the Euclidean embedding dimension. These

structures are known as "compact". In some of these structures the surface (or interface) is fractal.

Irreversible growth processes rarely result in smooth interfaces. If the scaling properties of such an

interface are not isotropic it is called "self-affine". The first model of self-affine interface growth, the

Eden model, was actually proposed in conjunction with tumor growth modeling [131]. Other such

processes include ballistic aggregation and deposition (e.g., in vapor deposition on a cold substrate).

By virtue of its space-filling nature, compact growth implies that there are no variations in local or

non-local properties that influence the growth perimeter.

Cluster-Cluster Growth Processes

There are many physical processes where diffusion-limited aggregates (or clusters) are allowed to

diffuse themselves. Such processes can modeled by cluster-cluster aggregation (CCA). CCA well

represents the physical mechanisms in an actual system of aggregating particles (e.g., smoke parti-

cles), unlike DLA which is more of a general paradigm of Laplacian growth [131]. It is therefore not

immediately germane to the problem at hand.

Several qualifying statements should be made regarding the above list:

* There are many variations of these archetypical processes which involve modifications to the

growth rules and are too numerous to list. A statistical growth process should be modified

according to the scaling properties of the observed objects, so that it can reproduce these

properties.

* While many growth processes are closely related or may display some similar fractal character-

istics, there have been extensive studies which have yielded more esoteric exponents that can

differentiate among the growth processes [126]. It is then the analyst's task to assign physical

meaning to these exponents.

* These archetypical processes are idealizations. They approximate reality only to a limited

extent for two reasons:

- Because of the complexity and variety of physical mechanisms involved.

- Because of the inherent randomness in the physical mechanisms and the models them-

selves.

It is useful to think of these statistical growth processes as limiting cases of different physical mech-

anisms. For example, if one considers flow through a porous medium where both capillary forces

and viscous forces are at play, one can see that in the limit where capillary forces are dominant

the invasion percolation model holds, and in the limit where viscous forces are dominant the DLA

model holds [75]. I will show that vascular networks also display different domains of scale invariant

behavior which correspond to different classes of fractal growth processes.

Chapter 3

Methods

This chapter describes the experimental methods used to study vascular networks in this research.

It will encompass the procedures implemented in growing the vascular networks, the imaging proce-

dures, and the analysis procedures. The in vitro experiments are described separately in Appendix D.

3.1 Dorsal Window Preparation

Two-dimensional vascular networks were generated using the murine dorsal skinfold chamber prepa-

ration (Figure 3-1) [73, 78]. The experiments were performed in three mouse strains: C3H, T-cell

deficient nude, and severe combined immunodeficient (SCID) mice. The latter two serve as conve-

nient animal models to grow human tumor xenografts without rejection. The mice were bred and

maintained in a pathogen-free environment in our laboratory. In an initial surgical procedure, two

symmetrical titanium frames (total weight 3.2 g) which are mirror images of each other (Workshop,

Department of Radiation Oncology, Massachusetts General Hospital) were implanted in the back of

the mouse so as to sandwich the extended double layer of skin. One layer of skin was then micro-

surgically removed in a circular area of approximately 15 mm in diameter, and the remaining layer

consisting of epidermis, subcutaneous tissue, and thin striated skin muscle was then covered with a

coverslip incorporated into one of the frames. Following implantation of the transparent chamber,

the animals were allowed to recover for 24 hours [78].

For the study of tumor vascular networks, human colorectal adenocarcinoma LS174T was used

in SCID and nude mouse preparations. In addition, three murine tumor cell lines were used in C3H

mice: Sal murine sarcoma, SCC7 murine squamous cell carcinoma, and MCaIV murine mammary

carcinoma 1 . The choice of these tumor cell lines was due to previous experience with them in our

laboratory and to the existence of published descriptions of their pathophysiologic behavior [1, 78].

1 Near the completion of this study another tumor line, Shionogi (SC115) murine mammary carcinoma, was briefly
used in SCID mice. See Appendix C for further details.

Figure 3-1: Dorsal window preparation in a nude mouse. This chamber was implanted with the

LS174T human adenocarcinoma cell line. The tumor is now fully vascularized. The blood in the

tumor gives it its dark appearance in relation to the underlying tissue.

The coverslip of the chamber was removed, 2 pl of a dense tumor cell suspension from cell culture

(- 2 .10*5 cells) were inoculated onto the upper tissue layer of the chamber preparation (striated skin

muscle), and the coverslip was replaced. The relatively small volume of tumor cells was used so as

to avoid disseminated growth of tumors in the whole chamber.

For the study of normal vascular networks two preparations were used. One preparation con-

sisted of the dorsal chamber with no implanted material. This preparation was used to study the

normal subcutaneous vascular networks. In a second preparation, bone-implanted nude mice cham-

ber preparations (77] were used. After sacrifice of newborn nude mice, both femora of each animal

were blunt dissected in 10 ml Hanks balanced salt solution (HBSS, Gibco Laboratories, Grand Is-

land, NY) at room temperature and cleaned from soft tissue. Afterwards, femora were transferred

to a second dish containing fresh HBSS at room temperature. Only femora without signs of tissue

damage (fracture, cartilage damage) as verified under a stereotactic microscope were used for im-

plantation. The coverslip of the chamber was removed, a fresh femur, after 60 minutes of ischemia,

was implanted onto the upper tissue layer of the chamber, and the coverslip was replaced [77].

3.2 Image Acquisition

Images of dorsal chamber vascular networks in nude and C3H mice were acquired when the tumors

were approximately 4 mm in diameter (7-16 days old). The mice were anesthetized (s.c. injection of

ketamine hydrochloride, 0.1 mg, and xylazine, 0.01 mg, per g body weight) and were then positioned

in a polycarbonate tube of 25 mm diameter. The tube was then directed so that the chamber

was placed on the stage of an upright microscope (Zeiss Universal; Thornwood, NY) and imaged.

Brightfield images were directed to an intensified CCD camera (model 2400; Hamamatsu, Japan).

In the intravital microscopy station outside the pathogen-free colony, the video signal was digitized

using a PC-AT computer (IBM; Boca Raton, FL) equipped with a DT-2851 image processing board

(Data Translation; Marlborough, MA). In the intravital microscopy station inside the pathogen-

free colony, the video signal was recorded on a videocassette recorder (model AG-6500; Panasonic;

Secaucus, NJ). Images were then digitized using a videocassette player (model SVO-9500MD; Sony,

Japan), a time-base corrector (model TBC-IV with ES-2200 expansion system; D.P.S., Florence,

KY), and a Macintosh IIfx (Apple Computer; Cupertino, CA) equipped with a DT-2255 image

processing board (Data Translation; Marlborough, MA). For contrast enhancement of some normal

subcutaneous vascular networks, a bolus of 0.1 ml of fluorescein isothiocyanate-labeled dextran

(FITC-dextran, Mr 150000; 5 mg/100 yl of 0.9% NaCl; Sigma, St. Louis, MO) was injected into

the tail vein of the mice approximately 5 minutes prior to image acquisition. Epiillumination was

achieved by a 100W mercury lamp (model 770; Opti-Quip, Highland Mills, NY) using an excitation

filter (485-505 nm), a dichroic mirror (510 nm) and a barrier filter (530 nm).

3.3 Image Analysis

Image analysis was performed on a Macintosh LC III (Apple Computer; Cupertino, CA) using NIH-

Image software (Wayne Rasband, N.I.H.; Bethesda, MD). Raw grayscale images were first processed

to maximize contrast. Because the background illumination was markedly uneven, background level-

ing was achieved by performing grayscale dilation and then smoothing with a Gaussian kernel [111].

The image was subsequently divided into a series of parts. In each part thresholding was performed

and the vascular network was traced out. Network tracings were then converted into binary images

and skeletonized automatically to prevent artifacts in the subsequent fractal analysis [18]. The image

analysis process is summed up in Figure 3-2. Each skeletonized image was verified by projecting it

onto the raw grayscale image to assure that no vessels were excluded.

3.4 Fractal Dimension Calculation

The fractal dimension (df) of the whole network was measured using three different algorithms.

The algorithms were verified against known fractal and whole-dimensional structures (see subsec-

tion 3.4.4). The algorithms were implemented using the THINK Pascal programming language

(Symantec; Cupertino, CA) on a Macintosh LC III (Apple Computer; Cupertino, CA).

Figure 3-2: The image analysis process: (a) A raw grayscale image of LS174T tumor network in a
nude mouse. (b) The subsequent binary skeletonized image. The latter image is the input for the
fractal dimension calculation program.

3.4.1 Box-Counting Algorithm

In general, if F is a fractal subset of Rn and N6 (F) is the smallest number of hypercubes of size 6

which can cover F, then the box dimension of F is defined as [27]:

dbo =- lirn log N6s (F) (31)
6-+0 - log 6

In practice this means that if one tiles a fractal object, embedded in two dimensions, with boxes of

side e and counts the minimum number of boxes N(e) occupied by the object, a power law will be

observed:

N(e) oc D (3.2)

over the range in which the object is scale-invariant. When a logarithmic plot of N(E) vs. e is

obtained, the fractal dimension is then derived as the absolute value of the slope (dboa = IDI) of the

straight line fit. The implementation of this algorithm iterated over all possible tiling configurations

with an e-mesh to find the configuration with minimum boxes. The source code used to implement

the box-counting algorithm is listed in section A.2.

3.4.2 Sandbox Algorithm

One can select a pixel i on the fractal, surround it with boxes of increasing side I and count the

number of occupied pixels Mi(f) in the box. If one repeats this procedure for n different points on

the fractal (i = 1,... ,n), one can obtain the mean number of occupied pixels in a box of side £ [14]:

M(f) = (£) (3.3)
n

i=1

The scale-invariant nature of the object implies that a power law will be observed:

M(£) oc £D (3.4)

When a logarithmic plot of M(i) vs. i is obtained, the fractal dimension is then derived as the

slope (dsand = D) of the straight line fit. Formally speaking, this algorithm is similar to the box-

counting algorithm only if there is no mass-multifractality. Otherwise, it is important to average

over many points (Equation 3.3). For a single point, if there is mass-multifractality, then dbox = Do

and drand = D-o (the indices 0 & -co refer to the order of the generalized dimension [131]). In my

implementation of the sandbox algorithm, I averaged over all points on the fractal that were within

more than half the maximum box-length £max from the nearest border of the region-of-interest

(ROI). The maximum box-length £maz is defined as twice the distance from the center of mass to

the nearest border of the ROI. This choice of points circumvented artifacts due to boundary effects.

The source code used to implement the sandbox algorithm is listed in section A.3.

3.4.3 Correlation Algorithm

The two-point correlation function c(r) of a fractal object of dimension df depends on r as [131]:

c(r) r Tdf - de (3.5)

where de is the Euclidean embedding dimension. Capitalizing on this property, the algorithm chose

a pixel i on the object and counted the number of occupied pixels Mi(r) within a spherical shell

of radius r and width 0.1r. The same calculation was repeated for n occupied pixels (i = 1,... , n)

and then normalized by n and by the total number of pixels (occupied and unoccupied) within each

spherical shell Npixea (r- 1.1r) to estimate the correlation function:

c(r) 1 Mi(r) (3.6)
n YNpizels(r--+ 1.1r)

Center pixels were chosen according to the same criterion as for the sandbox algorithm to avoid

effects due to the boundary region. When a logarithmic plot of c(r) vs. r is obtained the fractal

dimension is derived from the slope D of the straight line fit: dcorr = D + 2. The source code used

to implement the correlation algorithm is listed in section A.4.

Table 3.1: Verification of Fractal Dimension Algorithms
Structure Theoretical Box Sandbox Correlation

Dimension Dimension Dimension Dimension

1-D Cantor Set In 2 -In 3 = 0.63 0.65 + 0.02 0.64 ± 0.02 0.58 ± 0.25
2-D Cantor Set 1 + (In 2 - In 3) = 1.63 1.63 ± 0.03 1.63 ± 0.02 1.63 + 0.05
Koch Curve In 4 -In 3 = 1.26 1.28 + 0.01 1.27 + 0.00 1.24 ± 0.03
Sierpinski Gasket In 3 ± In 2 = 1.58 1.60 ± 0.00 1.59 ± 0.00 1.56 ± 0.02
Sierpinski Carpet In 8 + In 3 = 1.89 1.87 + 0.01 1.88 ± 0.00 1.87 ± 0.01
Straight Line 1.00 1.00 ± 0.00 1.00 + 0.00 0.93 ± 0.08
Circle - Frame 1.00 1.01 ± 0.00 1.00 ± 0.00 1.01 ± 0.02
Circle - Filled 2.00 1.98 ± 0.00 2.00 ± 0.00 2.00 ± 0.00
Square - Frame 1.00 1.01 + 0.00 1.02 ± 0.00 0.95 + 0.04
Square - Filled 2.00 2.00 ± 0.00 2.00 + 0.00 2.00 : 0.00

3.4.4 Algorithm Verification

In order to verify that the source code implementing the three algorithms above is free of bugs, the

algorithms were tested on a variety of fractal and whole-dimensional structures. The results of these

tests are presented in Table 3.1. The results show that the box-counting and sandbox algorithms,

as implemented in the source code listed in sections A.2 and A.3, are accurate and robust. The

correlation algorithm, as implemented in the source code listed in section A.4 is less accurate than

the other two in most of the cases.

3.4.5 Minimum Path

In addition to measuring the fractal dimension of the whole network, the fractal dimension of the

minimum path dmin between two opposite sides of the network [126] was measured. In order to find

the minimum path, all the points on one edge of the ROI were first marked and assigned a value of 1.

Their nearest neighbors were then identified, and assigned a value of 2. The procedure continued in

a similar fashion, marking the nearest neighbors in each subsequent iteration with an integer value

incremented by 1. Once a value was assigned to a point, it could not be reassigned. The iterations

continued until a point of the opposite edge of the ROI was reached. Then the program worked

backwards from that point to find points with decreasing value, thus marking the minimum path.

An example of a minimum path can be seen in Figure 3-3. The fractal dimension of this minimum

path was measured by a modified box-counting algorithm. The "boxes" were rendered as straight

lines, whose origin and end must fall on the minimum path. In this respect, the fractal dimension

measurements were similar to the Richardson method used to measure coastlines [84]. In order to

assure the accuracy of the results, the algorithm iterated over all possible configuration for covering

the minimum path. The configuration utilizing the minimum number of lines was then chosen for

the calculation. The calculation was performed as described in subsection 3.4.1. The source code

used to identify the minimum path and calculate its fractal dimension is listed in section A.5.

Figure 3-3: An example of the minimum path in tumor vasculature. The vascular network shown
is from SCC7 tumor implanted in C3H mouse. The minimum path appears in bold. The fractal
dimension of this minimum path is 1.16 ± 0.01.

3.5 Statistical Significance Tests

In cases where the statistical significance of the difference between two unpaired groups of observa-

tions needed to be measured, two different unpaired comparison tests were used:

* The unpaired t-test, which compares the means of two groups and determines the likelihood

of the observed difference occurring by chance, under the hypothesis that the means of the

two groups are equal. This likelihood is reported as a p-value. This test assumes that the

observations in each group are normally distributed.

* The Mann-Whitney U-test, which is the nonparametric version of the unpaired t-test. The

Mann-Whitney U-test does not make any assumptions about the underlying distribution of

the observations in the two groups. It tests the hypothesis that the distributions underlying

the two groups are the same. The result is also reported as p-value.

3.6 Computer Modeling

Computer modeling of tumor and normal capillary growth was performed using two different plat-

forms. Initial modeling efforts were carried out using the THINK Pascal programming language

(Symantec; Cupertino, CA) on a Macintosh LC III (Apple Computer; Cupertino, CA). This pro-

gramming environment offered a user-friendly interface which provided instant visual feedback about

the model results, albeit at the expense of computing time. Once the model was verified to be

bug-free (to a satisfactory degree of certainty), it was reprogrammed using the FORTRAN 77 pro-

gramming language on a much faster UNIX platform.

The random number generator used in the modeling was of the congruential multiplicative type:

xi - cx•i 1 mod (2 31 - 1) (3.7)

with a multiplier c = 950706375 and with shuffling. This specific generator stood up to extensive

empirical tests [32]. It was employed via the FORTRAN routine package IMSL STAT/LIBRARY

(IMSL; Houston, TX).

Computer modeling of arteriovenous network growth was performed using the MATLAB (Math-

Works; Natick, MA) matrix manipulation software on various UNIX platforms provided by MIT's

Project Athena.

3.7 Plotting

The plots in this document were generated using the public domain plotting package Gnuplot.

The interpolations were generated with the MATLAB package using a cubic smoothing spline. The

smoothing parameter sp was in the range [0.999,1]. For sp = 0, one obtains the least-squares straight

line fit. On the other extreme, for sp = 1, one obtains the "natural" cubic spline interpolant.

Chapter 4

Fractal Dimensions of Vascular

Networks

Fractal dimensions were measured in a variety of normal and tumor vascular networks grown in

the two-dimensional murine dorsal chamber preparation described in section 3.1. Results of these

measurements (using the box-counting and sandbox algorithms) are summarized in Figure 4-1. A

skeletonized image typical of each class of vascular networks discussed below is shown in Figure 4-2.

Results of measurements using the correlation algorithm are listed separately in Appendix B, since

benchmark tests showed that this algorithm is less accurate than either the box-counting or sandbox

algorithms (see subsection 3.4.4).

4.1 Normal Networks

Normal networks can be broadly divided into two categories: arteriovenous networks and capillary

networks. Arteries and veins are different from capillaries in several ways. Histologically, arteries and

: > OOO>•x A AAW W< x

-HH~-H+ 0*
a *

I I I II

1.6 1.7 1.8 1.9 2
Box Dimension

LS174T (nude) 0
MCaIV (C3H) 0

Sal (C3H) A
SCC7 (C3H) O0
Normal A-V +

Bone-Induced A-V x
Normal Capillary *

9~0 **x xx x<x x A ,, *

++ +H0H0 DO

b *
I I I I I

1.6 1.7 1.8 1.9 2
Sandbox Dimension

Figure 4-1: Fractal dimensions of the observed vascular networks. (a) As measured with the box-
counting algorithm. (b) As measured with the sandbox algorithm.

veins contain smooth muscle cells and an adventitial layer, whereas capillaries do not [63]. Geomet-

rically, arteries and veins are of consistently larger diameter than capillaries. Topologically, arteries

and veins usually form a tree-like structure, whereas capillaries form a mesh-like structure [106]. The

dorsal window provides a convenient preparation in which the arteriovenous and capillary networks

can be easily differentiated since the arteriovenous network resides in a focal plane different from

the striated skin muscle capillary network connected to it.

4.1.1 Arteriovenous Networks

Measurements of normal subcutaneous arteriovenous networks yielded values of dbox = 1.70±0.03

and deand = 1.70±0.03 in nude mice (n = 12); and dbox = 1.72±0.02 and dsand = 1.71±0.03 in SCID

mice (n = 23). The minimum-path dimension measured was dmin= 0.99:±0.02 in nude mice and

dmin=1.00±0.01 in SCID mice. The normal subcutaneous arteriovenous networks were quiescent

and were not growing at the time of measurement. In order to verify these results in a growing normal

vascular network, the fractal dimension in bone-induced arteriovenous networks [77] was measured.

In this preparation, the networks grew on a topologically two-dimensional surface (the bone surface).

However, since this surface is not two-dimensional in the Euclidean sense, the field of view in which

the network was in focus was more limited than in the standard dorsal window. Measurements of

bone-induced arteriovenous networks (n = 10) yielded dbox = 1.65 ±0.04 and dsand = 1.66±0.05. The

minimum-path dimension was dmin•= 1.00±0.01.

4.1.2 Capillary Networks

All capillary networks were imaged with the aid of a fluorescent contrast material (see section 3.2),

since the relatively low number of red blood cells in each of these thin vessels could not provide

enough contrast. Only intact quiescent networks where the vessels were not leaky could be im-

aged with this method. Measurements of normal striated skin muscle capillary networks in nude

mice (n = 12) yielded dbox = 1.99±0.00 and dsand = 1.97±0.01. The minimum-path dimension was

dmin = 1.00± 0.02.

4.2 Tumor Vascular Networks

The vascularization of tumors is a dynamic process. In the first stages of vascularization, the

new vessels are not fully formed. This condition produces microhemorrhages in the tumor, which

make the observation of the new vasculature virtually impossible [78]. In addition, the rate of

vascularization may vary significantly between tumors. Taking into account that tumor size in the

vascular phase of tumor growth is directly dependent on the level of vascularization, it was decided to

study tumors of comparable sizes (approximately 4 mm in diameter). Tumors from the same cell line

5001m 500pm

500pm

Figure 4-2: Typical skeletonized images of the three observed classes of vascular networks. (a) Nor-
mal subcutaneous arteriovenous network in a SCID mouse; (b) Normal subcutaneous capillary
network in a nude mouse; (c) LS174T tumor network in a nude mouse. The minimum path is in
bold.

Table 4.1: Fractal Dimensions of LS174T Tumor Networks Over Time
Dimension day 10 day 14 day 18 day 22

Box-Counting 1.69 ± 0.07 1.81 ± 0.05 1.83 ± 0.02 1.84 ± 0.04
Sandbox 1.72 ± 0.06 1.84 ± 0.03 1.85 ± 0.02 1.85 ± 0.03

Minimum Path 1.10 ± 0.03 1.08 ± 0.02 1.09 ± 0.02 1.09 ± 0.03

reached this size in approximately the same time1 . In a separate study, one type of tumor (LS174T

implanted in SCID mice) was followed for a period of 12 days, measuring the fractal dimensions

every 4 days. The duration of the experiment was limited by the viability of the dorsal chamber.

In tumors, unlike normal tissue, arteries, veins and capillaries cannot be distinctly classified [60].

The vessels' geometric parameters can vary dramatically, regardless of topological parameters or

histological characteristics [68]. Therefore, in tumors the fractal dimension was measured for all

observed vessels taken together.

4.2.1 Tumors of Fixed Size

Measurements of human adenocarcinoma LS174T vascular networks (n = 12) in nude mice yielded

dbo- = 1.88±0.04 and dsand = 1.89±0.04. The minimum-path dimension was dmin = 1.10±0.04. To

test the generalizability of these results, fractal dimensions were measured in C3H mice implanted

with three different murine tumor cell lines (n = 3 for each). The results of these measurements are

summarized in Figure 4-1. One can see that the additional results are consistent with the results

for the LS174T tumor networks.

4.2.2 Tumor Networks Over Time

Fractal dimension measurements of human adenocarcinoma LS174T vascular networks (n = 7) were

performed on images acquired on days 10, 14, 18 and 22 after tumor cell inoculation (only on day 10

does the optical quality of the tumor become sufficient for these measurements). The measurements

are summarized in Table 4.1 and presented graphically in Figure 4-3.

These results show that approximately on day 14 after inoculation the fractal dimension of the

whole network reaches a "steady-state" value. The reason for the initial period of rising fractal

dimension lies in the fact the the inoculated tumor cell mass lacks any vessels, so only around day

14 does the tumor become "fully" vascularized (afterwards vascularization follows tumor growth).

This explanation is consistent with the observation that tumor vascular density in the same animals

also reached a "steady-state" value at approximately day 14 [78]. The mean fractal dimension values

in Table 4.1 are slightly lower than the mean values reported in LS174T tumor networks in nude

mice (see subsection 4.2.1). This is most likely due to the lower quality of images acquired using the

I Even if the tissue environment was exactly the same in all mice, there would be inevitable variations due to the
inaccuracy in measuring the initial amount of tumor cell inoculate.

2.0-
1.9-
1.8-

8 1.7-
6 1.6-
S1.5-

' 1.4-
C.),

1.3-
1.2-
1.1 -

1.0-

Box Dimension--
Sandbox Dimension

Min. Path Dimension

10 14 18 22

Time (days)
Figure 4-3: Fractal dimensions of LS174T tumor networks over time. Each point represents the
mean and standard deviation of measurements in 7 different animals.

analog image acquisition system neccessary for following the same animal over time (see section 3.2).

The minimum-path dimension, however, remained statistically unchanged during the whole mea-

surement period, and it was nearly identical to the minimum path dimension measured in tumor

networks in nude mice (see subsection 4.2.1). Since the minimum-path dimension does not reflect

the degree of overall vascularization but rather the scale-invariant tortuousity of single vascular

paths, the constant minimum-path dimension seems to imply that the determinant of the elevated

minimum-path dimension (e.g., substrate heterogeneity - see Chapter 6) remained largely un-

changed throughout the measurement period.

As this thesis was nearing completion, a regressing tumor model (Shionogi mammary carcinoma

in SCID mice) was being developed in our lab. Preliminary results of fractal dimensions during

tumor regression (n = 2) are described in Appendix C.

4.3 Verification of Fractal Range

As detailed in section 3.4 the fractal dimension is measured by fitting a straight line to a logarithmic

plot of a measure of mass 2 as a function of ruler size (In r). However, in nature there is only a

limited range over which this linear relation holds. Figure 4-4a shows a typical logarithmic plot of

measurement results obtained by the box-counting algorithm. Two gross observations can be made:

* For large r we see that N(r) is constant, due to the finite size of the image.

* For small r we see that the slope d() is no longer constant and gradually decreases. This is

due to finite vessel-to-vessel distances (the average distance between capillaries is rarely below

50 pm).

2 This can be a direct measure of mass as in the sandbox method (In Mr), or an indirect measure as in the box-
counting method (In Nbo0).

IN

----------------- ----------------- I ----------------- 1

Z.U

1.8 00000-o

1.6 -
1.4 -

o 1.2
- 1.0

5 0.8
0.6
0.4
0.2 b
n..

0 1 2 3 4 5 6 1 2 3 4 5
In r In r

Figure 4-4: The plots used for determination of fractal dimension and range. (a) Logarithmic plot
of number of occupied boxes (In N(r)) as a function of box-size (In r) and its linear fit; (b) Plot of
the local slope as a function of box-size (In r). The local slope was calculated for each series of five
consecutive points. These plots were derived from analysis of the SCC7 vascular network shown in
Figure 3-3. The slope of the linear fit yields a box-counting dimension of dbox = 1.81+0.01.

These observations underscore the importance of verifying the fractal range (i.e., the linear range of

the logarithmic plot).

The fractal range can be verified by plotting the local slope of the plot against the ruler size

(In r), as shown in Figure 4-4b. The local slope can be calculated by fitting two or more consecutive

points to a straight line. In Figure 4-4b five consecutive points were used to calculate the local

slope. The flat part of the plot delineates the fractal range. Furthermore, this plot is a useful tool

for uncovering slow crossover phenomena 3

In the vascular networks observed, fractal ranges were invariably limited by capillary-to-capillary

distances, giving a lower cutoff of approximately 50 pm. For normal capillary networks the theoretical

upper cutoff would be the macroscopic length scale of the tissue, since capillary networks must be

space-filling. In practice, this upper cutoff is determined by the image size.

For normal arteriovenous networks, one would expect a crossover from DLA-like scaling to com-

pact scaling, because maximal artery-vein distances are determined by the distance that blood can

travel through the capillary network before it is depleted of oxygen. This distance is on the order

of several millimeters in skeletal muscle [105, 123], similar to the size of the whole image. Hence, no

crossover was observed in the arteriovenous data.

For tumor networks, there is no good intuition for the upper bound of the fractal range. The

measurements show that tumors are fractal below approximately 900 Mm, yet no crossover phenom-

ena was observed for tumors, because above 900 pm the finite image size introduces non-negligible

3For example, if the plot would never flatten, but would slowly slope upwards toward a value of 2.0, we could say
that there is crossover to a compact structure. However, such crossover behavior was not observed.

z

A

artifacts into the results.

4.4 Statistical Significance of Results

The separation of vascular networks into three classes of scale invariant behavior is clearly evident in

Figure 4-1. Nevertheless, this separation should be formalized using appropriate unpaired statistical

comparison tests. Two unpaired comparison tests were used for significance testing: the unpaired

t-test and the Mann-Whitney U-test (described in section 3.5).

4.4.1 Between and Within-Class Separation

The data from Figure 4-1 were divided into five pairs of groups. The first three pairs were used to

measure between-class separation and consisted of all possible pairings of the groups:

* Arteriovenous networks - normal subcutaneous and bone-induced networks in nude mice

(n = 22).

* Tumor networks - tumor networks in nude and C3H mice (n = 21).

* Capillary networks - normal capillary networks in nude mice (n = 12).

The last two pairs were used to measure within-class separation within the artriovenous network

class and within the tumor network class:

* Bone-induced arteriovenous networks in nude mice (n = 10) vs. subcutaneous arteriovenous

networks in nude mice (n = 12).

* LS174T tumor networks in nude mice (n = 12) vs. various tumor networks in C3H mice

(n =9).

All tests were performed for three different fractal dimensions: box-counting dimension, sandbox

dimension, and minimum-path dimension. The results are summarized in Table 4.2.

Between-Class Separation

The p-values in Table 4.2 show that both the box-counting dimension and the sandbox dimension

clearly separate the three classes of two-dimensional vascular networks observed: normal arteriove-

nous networks, normal capillary networks, and tumor networks. The minimum-path dimension is

useful in distinguishing tumor networks from normal networks. Normal arteriovenous and capillary

networks, however, have statistically similar minimum-path dimensions.

Table 4.2: Vascular Network Class Separation Based on Fractal Measurements
Network Box-Counting Sandbox Minimum-Path
Classes M-W t-test M-W t-test M-W t-test
Tumor

vs. p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001
Capillary
Tumor

vs. p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001
A-V
A-V
vs. p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p = 0.8854 p = 0.9681

Capillary
Bone A-V

vs. p = 0.0240 p = 0.0006 p=0.0479 p = 0.0788 p = 0.6444 p = 0. 7 12 8

S.C. A-V
Tumor (nude)

vs. p =-- 0.8312 p = 0.6966 p =- 0.1356 p = 0.2372 p = 0.1769 p = 0.1443
Tumor (C3H)

Within-Class Separation

The p-values in Table 4.2 show that the box-counting dimensions of bone-induced and subcutaneous

arteriovenous networks are not statistically similar, and that their sandbox dimensions are marginally

similar. The mean differences of 0.05 for dbox and 0.03 for deand, are most likely due to the difficulty

of keeping all arteries and veins on the curved bone surface in focus (see subsection 4.1.1). The

minimum-path dimensions of these two types of arteriovenous networks are statistically similar.

Fractal dimensions for tumor networks in nude mice (LS174T tumors) and tumor networks in

C3H mice (MCaIV, SCC7 and Sal tumors) are statistically similar. This observation suggests that

the fractal dimensions for two-dimensional tumor networks are relatively independent of host and

tumor type.

4.4.2 Effect of Imaging Method

A separate series of measurements was performed in normal arteriovenous networks in SCID mice.

The imaged networks were divided into two groups. The first group (n = 12) was imaged using trans-

mitted light microscopy, and the second group (n = 11) was imaged using fluorescence microscopy

(see section 3.2). The fractal dimensions of the two groups were compared statistically. The com-

parison results appear in Table 4.3. These results show that there are no significant differences in

fractal dimensions due to the use of transmitted light or fluorescence microscopy

4It should be noted that measurements of vessel diameter are known to be sensitive to imaging method [81]. These
differences are presumably due to the plasmatic zone between erythrocytes and the vessel wall, and hence should have
no effect on fractal dimension measurements.

Table 4.3: Effect of Imaging Method on Fractal Dimension
Imaging Box-Counting Sandbox Minimum-Path
Methods M-W t-test M-W t-test M-W t-test

Trans. Light
vs. p = 0.9999 p = 0.8546 p = 0.2423 p = 0.4690 p = 0.196 2 p = 0.1028

Fluorescence

4.5 Discussion

The separation of vascular networks into three classes based on fractal measurements has impor-

tant implications, because these classes correspond to different statistical growth processes (see

section 2.3).

4.5.1 Normal Vascular Networks

The measurements in normal arteriovenous networks are in concert with the fractal dimensions of

two-dimensional diffusion-limited aggregates (df = 1.71 and dmin, = 1.0) [91, 131]. These results agree

with previously published fractal measurements of retinal arterial and venous networks5 [28, 72, 82],

the retinal vasculature being a routinely observed naturally occurring two-dimensional network.

On the face of it, these results seem consistent with the accepted view of the angiogenic process,

where growth factors initially diffuse from low-nutrient or hypoxic regions and induce growth. Under

such circumstances, the diffusion-limited behavior of the arteriovenous network is quite understand-

able. This explanation, however, is fatally flawed because angiogenesis does not seem to occur on the

artery-vein level. Rather, vascular growth occurs at the capillary or post-capillary level [20, 33, 88].

This vascular growth (on the capillary and post-capillary level) does not, however, form diffusion-

limited structures. Neovascularization studies [2, 20, 88] have shown that newly formed capillaries

grow in a compact mesh and not in a tree-like structure, contrary to the expected structure in

diffusion-limited growth. Our measurements corroborated these observations by showing that the

normal subcutaneous striated muscle capillary bed is also a compact structure. These observations

5There is one account [23] which claims that retinal vessels display percolation-like scaling. That account, however,
was not peer-reviewed and used only the correlation method for measuring fractal dimension. Another account [72]
claimed that at high resolution (small r) there is a crossover to another fractal domain with df 1.2. This is most
likely due to a misinterpretation of the logarithmic plot (such as the one in Figure 4-4a). This misinterpretation can
be avoided by examining the local slope, as shown in Figure 4-4b. The authors of that particular study did not take
this extra precaution.

In a paper on the modeling of arterial networks as minimum energy dissipation vascular systems [128], it was
claimed that arterial networks are space-filling, and that fractal dimensions of df < 2 are a crossover effect. This
claim was based on the assumption that distances between the ends of adjacent terminal arterioles are equal for all
terminal arterioles in a network. Experimental evidence indicates that this assumption is clearly wrong [105]. The
distance between the ends of adjacent terminal arterioles is bounded from above by the distances which erythrocytes
can travel before their oxygen is depleted in the capillary network (typically several millimeters), and from below by
the capillary spacing (typically 50 am). My measurements were all carried in the range bounded by those values.
Clearly, on the whole-organ scale the arteriovenous network can be viewed as space-filling.

are also supported by many published images of normal capillary beds including lung capillary

bed [83], colon capillary bed [124], ocular capillary beds [37, 70, 112], cardiac and skeletal muscle

capillary beds [107], and the chorioallantoic capillary bed [16].

Clearly, we need to explain what causes the capillary networks to attain a compact structure.

How can we settle this apparent contradiction between the commonly accepted hypothesis that

growth factor diffusion initiates the angiogenic process and the observation that newly growing

capillaries form a compact structure? This issue will be dealt with in Chapter 5.

4.5.2 Tumor Vascular Networks

The fractal measurements in tumor vasculature show that the tumor vessels do not form a compact

structure, but are consistent with measurements for the critical percolation cluster (df = 1.896 and

dmin = 1.13) [50, 127]. This observation represents the first evidence for a biological growth pro-

cess whose key determinants are local properties. Furthermore, measurements of fractal dimension

over time indicate that the percolation-like nature of tumor vascular networks is not a transient

phenomenon. Tumor vascular networks, like percolation clusters, are characterized by loops and

avascular areas of many different length scales (see Figures 3-2, 3-3, 4-2c, and References [1, 68, 76)).

Percolation being a local growth process [131] suggests that there exists some local substrate prop-

erty which determines tumor capillary growth. Three biological observations suggest that this local

property can be hypothesized to be matrix inhomogeneity. First, tumor tissue does not possess the

regular periodic geometry formed by cells in normal tissue, and has different phenotypic subpopula-

tions. Second, extracellular matrix (ECM) is a larger and more heterogeneous component of tumor

tissue compared to normal tissue [49, 59, 99, 129]. Third, "blood channels", blood pathways through

tissue not lined by endothelium, have been observed in tumors [60]. Such channels can be viewed as

evidence of percolation phenomena through the ECM. This hypothesis and its compatibility with

the normal vascular growth model will be explored in Chapter 6.

Chapter 5

Modeling Normal Capillary

Network Growth

In subsection 4.5.1 I detailed the fundamental problem in modeling normal capillary network growth.

The problem lies in the apparent contradiction between the commonly accepted hypothesis that

growth factor diffusion initiates the angiogenic process and the observation that the newly growing

capillaries form a compact structure. While diffusion is inevitably a component in the process of

vascular growth (see Figure 2-1), a compact structure is no longer diffusion-limited because the

diffusion field is "masked", so the growth becomes insensitive to variations in the diffusion gradient.

We therefore need a new mechanism that causes growth factor concentration to increase through-

out the growth perimeter, thus "masking" the diffusion field and promoting uniform growth. Con-

ceptually, the source of growth factors near the growth perimeter could either be the hypoxic tis-

sue [93, 121] or the growing structure itself. If the source is solely the hypoxic tissue, high growth

factor concentrations near the growth perimeter could be achieved if the rate of growth factor recep-

tion or removal at the growth perimeter is slow compared to the diffusion rate. In biological terms,

this can be achieved by the existence of low-affinity receptors, for example. In physical terms, it

is tantamount to a low interaction probability between growth factors and the growing structure.

If, however, the main source of growth factors near the growth perimeter is the growing structure

itself, then at each growth site we have a local amplification of growth factor which then propagates

to neighboring sites. In biological terms, local amplification of growth factor levels can be achieved

by autocrine or paracrine release of growth factors [34, 35], or by the release of growth factors se-

questered in the endothelial basement membrane [21, 35]. In physical terms, it is tantamount to a

process where a growth event is accompanied by a uniform increase of growth probability in sites

neighboring the growth site.

The above hypotheses for capillary network formation were compared using a growth model.

5.1 Basic Growth Model

The basic growth model incorporated diffusion of growth factor and vascular growth in response

to growth factor reception, in the presence of either a low interaction probability (i.e., the "low

affinity hypothesis") or local amplification (i.e., the "autocrine hypothesis"). The growth model was

implemented according to the following rules:

* Growth begins at a single central seed.

* Growth factor "particles" diffuse from points removed at least some minimum distance from

the structure.

* When a "particle" hits the growing structure it is taken up with a preset probability Pi.

* All uptaken particles are recorded as "hits" within a fixed time period.

* At the end of the period growth occurs at all hit sites.

* If there is local amplification, F additional particles are released at each growth site. F is the

"local amplification factor".

* There is a fixed growth factor production rate per unit area of "hypoxic" tissue.

* The model is implemented on a 128 x 128 square lattice with periodic boundary conditions,

unless otherwise noted.

The source code for the model, including the parameters used in all later enhancements of the model,

is listed in section A.6.

5.2 Local Amplification vs. Low Interaction Probability

The model presented in section 5.1 was used to examine whether the local amplification mechanism

or the low interaction probability mechanism could account for the compact structure of normal

capillary networks. The results are shown in Figure 5-1. One can observe that for pi = 1 and no

local amplification the classic diffusion-limited structure is obtained. As pi is decreased the structure

becomes more compact and regular. When local amplification is activated, a compact structure is

obtained for F > 1. We can therefore conclude that either of these mechanisms, if strong enough,

can lead to the formation of a compact capillary network.

We can assess which of the two mechanisms is a more likely determinant of the compact structure

by examining two parameters as a function of fractal dimension, as seen in Figure 5-2 (the closer

the fractal dimension is to 2.0, the closer the model network is to being compact).

o 2.0

1.9

S1.8

S1.7

0.001 0.01 0.1

c 2.

- 1.8

S1.7-

/

0 0.5 1 1.5 2 2.5 3
Interaction Probability Local Amplification Factor

Figure 5-1: Effects of (a) low interaction probability and (b) local amplification on fractal dimension.

The first parameter, the growth time per unit mass, is obtained by dividing the total growth

time (in arbitrary model time units) by the number of occupied lattice sites in the final structure.

It is motivated by the reasoning that there is an advantage in growing blood vessels relatively fast

towards the hypoxic region.

The second parameter, the growth efficiency, is motivated by the reasoning that in order for

growth to be efficient, the hypoxic tissue should produce as little growth factor as possible to induce

the formation of new capillaries. The growth efficiency is obtained by dividing the total number of

growth factor particles originating beyond the network by the number of occupied lattice sites in

the final structure.

Although at first thought the two parameters may seem to work in opposite directions, they do

not. Figure 5-2a shows that when the interaction probability is lowered, growth time per unit mass

does not change significantly; but when local amplification is incorporated, the growth time per unit

mass for a compact structure decreases by an order of magnitude. Figure 5-2b shows that with local

amplification, compact growth efficiency increases by more than an order of magnitude, compared

to no significant change in growth efficiency when low interaction probability is incorporated.

Another approach to comparing the two mechanisms is to measure the percentage of unoccupied

lattice sites within the structure perimeter. This value is an indicator of the number of poorly

vascularized areas which a given mechanism would create. For compact structures with similar

/
b

I I I I

\

10

Low Int. Probability
Local Amplification ------

0
1-

I I I II I I I I |1.75 1.80 1.85 1.90 1.95 2.00 1.75 1.80 1.85 1.90 1.95 2.00
Fractal Dimension Fractal Dimension

Figure 5-2: Comparison of the local amplification and the low interaction probability mechanisms:
(a) growth time per unit mass and (b) growth efficiency. Clearly, growth with the local amplification
mechanism is both faster and more efficient as the fractal dimension nears 2.0.

fractal dimensions (df , 1.99), the percentage of lattice sites left unoccupied with the low interaction

probability is approximately 5%, and with the local amplification mechanism less than 1%.

In view of these results, it seems reasonable to suggest that local amplification, corresponding to

the biological autocrine mechanisms of growth factor release, is the key determinant of the observed

compact shape of normal capillary networks.

This suggestion is corroborated by several pieces of experimental evidence. A recent study of

rabbit corneal endothelial cells [69], provided evidence showing the existence of an autocrine growth

mechanism utilizing PDGF. A previous study showed that capillary endothelial cells express bFGF,

and raised the possibility that the formation of new capillaries is induced by the endothelial cells

themselves [113]. Furthermore, a study of low-affinity bFGF binding sites in a variety of cells ranging

from baby hamster kidney cells to bovine capillary endothelial cells [96], showed that these binding

sites are most likely cell-associated heparin-like molecules and that only high-affinity binding sites

stimulated plasminogen activator production by bovine capillary endothelial cells, thus suggesting

that only the high-affinity binding sites are receptors mediating growth stimulus.

In an attempt to corroborate experimentally the existence of an autocrine mechanism for en-

dothelial cell growth, we performed a series of in vitro experiments. In these experiments bFGF was

administered to endothelial cells in a culture dish either in a single dose, which created a uniform

concentration in the dish, or by controlled release, which presumably created a gradient in the dish.

If an autocrine mechanism was at work, one would expect the growth patterns in both cases to

look similar and have little directional dependence. Indeed, this was the outcome (see Appendix D

for details). Recently, however, a much more elegant in vitro experiment was published [48], which

showed the existence of an autocrine mechanism for angiogenesis. In that experiment, mouse aor-

tic endothelial cells were stably transfected with a retroviral expression vector harboring a human

0.1

b

bFGF cDNA. The transfected cells showed marked sprouting activity in vitro, forming networks

of cord-like structures. Remarkably, this activity was suppressed by administration of anti-bFGF

antibodies, thus revealing the autocrine nature of the angiogenic process [48].

5.3 Model Units and Reality

The model proposed in section 5.1 seems to do a good job in explaining the observed shape of capillary

networks. However, it still remains to be proven that model parameters and results are consistent

with physiological behavior when translated into "real-life" units. The following calculations are

presented for this purpose.

The lattice constant a of the model lattice, representing the minimal vessel-to-vessel distance,

can be reasonably assumed to be in the lower range of naturally observed capillary-to-capillary

distances [123]:

a , 50pm (5.1)

The diffusion constant in tissue of a growth factor such as VEGF (molecular weight z 45000) can

be approximated as [12]:

D 5- 10- 7 cm2 /sec (5.2)

If the length unit is taken to be the lattice constant a, then D becomes:

D 2- 10-2 a2 /sec (5.3)

Therefore, the time it takes a particle to "explore" a unit lattice cell of area a2 is on the order of:

a2 50 secs (5.4)

In the model, 1 unit of model-time (umt) equals the time it takes to advance a particle one lattice

constant a. In real units. this would therefore be on the same order as the time in Equation 5.4.

Hence:

I umt a 50 secs (5.5)

The model lattice is approximately 100 x 100 units, or in real lengths (Equation 5.1): 5 x5 mm 2.

The time to it takes to grow a vascular network of such dimensions can be reasonably estimated

as [77, 78, 119, 134]:

to ~~ 106 secs (5.6)

which is equivalent to 11.5 days. In a compact structure (as capillary networks are), virtually every

site is occupied. Therefore, the growth time per unit mass (or area), in real time, would be:

9real - 10 secs/a 2 (5.7)
grea 100 x 100

In Figure 5-2a we saw that the model yielded a value of:

gmodel ?: 0.1 umt/a 2 (5.8)

Are these two values comparable? Indeed they are. In Equation 5.5 we defined 1 umt as approxi-

mately 50 secs. Therefore:

gmodel ~ 5 secs/a 2 (5.9)

which is of the same magnitude as greal (Equation 5.7). Keeping in mind the approximations made

in the process, it is notable that the two values for g are so close.

In summary, we see that the model and its parameter estimates produce results which are in

concordance with physiological values. This concord lends further credence to conclusions drawn

from the model.

5.4 Model Evaluation

The model offered in this chapter rests on two pillars. First, it attempts to reproduce the observed

scale-invariant properties of capillary networks. Second, it is based on accepted physiological phe-

nomena, such as growth factor diffusion and autocrine growth factor release mechanisms. Most

previously reported models have failed to incorporate either one or both of these elements [9].

Virtually all previously proposed models have ignored the apparent paradox between the compact

nature of the capillary network and the supposedly key role of growth factor diffusion in angio-

genesis [9]. Some models [47, 71] have gone as far as assuming that capillaries grow in a tree-

like branching network, an assumption that is clearly contradicted by most experimental evidence.

Arterial and venous networks indeed display a morphology reminiscent of diffusion-limited processes,

but these networks form by the remodeling of existing vessels and not by formation of new ones (see

Chapter 7).

The model presented in this chapter does not assume a specific mechanism of capillary tube for-

mation. Some models have been based on a particular mechanism, such as sprouting [8], although

there is another mechanism - intussusception - which may be involved in capillary tube forma-

tion [15, 103]. The model proposed here is equally valid when either sprouting or intussusception is

assumed as the mechanism of capillary tube formation.

This model is also unique in offering a clear distinction between normal and tumor capillary

network formation (see Chapter 6). Other models tended to blur this distinction [8]. This was due

to the fact that until the present study, the unique scale-invariant properties of tumor networks

were not known, and there seemed to be no need for different growth models for normal and tumor

capillary networks. This model allows, for the first time, to differentiate the key determinants of

normal and tumor capillary network formation.

Clearly, this model provides information about only a small subset of the properties of newly

forming capillary networks. Other models, based on ad-hoc growth rules, have tried to reproduce

other properties such as branching angle distribution [66]. Since this model is founded on basic

physiologic phenomena and does not delve into the minutiae of the physiologic mechanisms involved,

it is limited in the scope of the properties it can predict or reproduce without resorting to ad-hoc

assumptions or rules. However, the model fully meets the goals of this research to uncover the key

determinants of vascular network formation. The analysis in the preceding sections has shown that

when growth factor diffusion is combined with an autocrine mechanism of growth factor release by

endothelial cells, a compact capillary network is obtained. Furthermore, the analysis has shown that

an autocrine mechanism is a relatively efficient and fast mechanism for capillary growth, and that

the model's growth rates are in order-of-magnitude agreement with "real-life" growth rates.

Chapter 6

Modeling Tumor Network Growth

In subsection 4.5.2 we saw that the measured fractal dimensions of tumor vascular networks are

consistent with the fractal dimensions of the critical percolation cluster. Percolation being a local

growth process [131], suggested that there exists some local substrate property which determines

tumor capillary growth. Biological observations suggest that this local property can be hypothesized

to be extracellular matrix inhomogeneity (see subsection 4.5.2). In order to examine this hypothesis,

the previous growth model (see section 5.1) was modified so that a randomly selected subset of all

lattice sites became inaccessible to growth.

6.1 Growth Model Modification

In the modified version of the growth model, each lattice site is assigned a random number R in the

range [0,1]. Growth occurs at all particle reception sites where R < T. T is a preset number in the

range [0,1] and represents the fraction of lattice sites which are accessible to growth (T is also called

the "accessibility", and reported as a percent). If no site with R < T is available for growth in a

given cycle, growth occurs at the site with the lowest R (R > T). The local amplification mechanism

is taken into account as described in section 5.1.

6.2 Model Results

The model results are shown in Figure 6-1. Two important points are evident in these results.

First, we see that as the threshold T drops and more sites become inaccessible to growth, the

transition zone between the compact phase and diffusion-limited phase becomes larger and more

blurred. Furthermore, an increasing local amplification factor (F) is required to achieve a given

fractal dimension as T decreases. Theoretically, below the site-percolation threshold for a square

lattice (T < 0.6), a compact structure cannot be achieved even as F -+ oo. In reality, F is finite and

2.00

1.95

1.90

1.85J

1.80

4 1.75

1.70

T=1.0
T=0.9 --
T=0.8
T=0.7 ----

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Local Amplification Factor

Figure 6-1: Effect of substrate inhomogeneity on fractal dimension. The different curves represent
different degrees of inhomogeneity as represented by the accessibility parameter T. The lines rep-
resent cubic splines with a smoothing parameter sp = 0.9995 (see section 3.7). Error bars were
omitted for clarity. Note that the line with T -1 is the same line as in Figure 5-1b.

not every lattice site is necessarily explored at each growth cycle so that for F = 3, for example,

T < 0.7 is sufficient to ensure a percolation-cluster type of vasculature.

Second, we see that without local amplification, the structure remains diffusion limited with

df 1.7, relatively insensitive to variations in the accessibility T. This observation further empha-

sizes the possible importance of the local amplification (i.e., autocrine) mechanisms in normal and

tumor vascular network formation. Figure 6-1 demonstrates that in the presence of local amplifica-

tion (F = 3.0) and 30% inaccessibility, a non-compact structure reminiscent of tumor vasculature

was obtained.

6.3 Correlation with Biological Observations

The model results are quite striking in showing that the modification of a single parameter in the

normal growth model leads to the formation of pathological-looking networks, similar in appearance

and fractal characteristics to tumor vascular networks. In subsection 4.5.2 the hypothesis was

advanced that this parameter (substrate inhomogeneity) is associated with matrix properties in

tumors. The question now arises whether there exists any experimental evidence which demonstrates

that changes in the extracellular matrix (ECM) can indeed modify angiogenesis. The answer is

positive.

It is well-known that when endothelial cells are cultured in a collagen gel they reorganize into a

network of capillary-like tubes [94]. Recent in vitro studies of endothelium-ECM interactions have

shown that ECM molecules have the ability to induce endothelial cell differentiation and growth by

chemical and mechanical means [22, 58]. Chemically, the binding of transmembrane integrin recep-

tors induces these effects. Mechanically, the effects are mediated by the resistance to cell-generated

loads applied to the integrin receptors. One such study showed that as fibronectin concentrations in

culture are increased, endothelial cell proliferation rate increases too [57] (fibronectin is a constituent

of the ECM). Another study demonstrated that in vitro capillary tube formation can be modified

by the application of anti-integrin antibodies [39].

Recent in vivo studies on the control of angiogenesis by the extracellular matrix also support

the model. In one study [135] the local composition of the ECM was manipulated by varying the

GM3:GD3 ganglioside ratio in the rabbit cornea. The study showed that these variations could either

stimulate or repress angiogenesis. Another study [13] showed that by administering an antagonist to

integrin a,33, the most promiscuous of the integrin family, ECM interaction with endothelial cells

was inhibited and angiogenesis repressed.

6.4 Conclusions

The main conclusion from the model is that substrate inhomogeneity may be a key determinant

of tumor vascular network formation. The studies cited in section 6.3 show this conclusion to

be consistent with known properties of the ECM. This conclusion implies that in order to modify

tumor vasculature significantly, the underlying substrate properties must also be modified. However,

modification of the ECM may have two effects with uncertain therapeutic implications. On the one

hand, if ECM inhomogeneity is reduced, vascular network formation will be more uniform, and the

extent of the avascular areas will diminish. This may improve nutrient supply to tumor cells, but

it will also assure a more homogeneous delivery of therapeutic agents. On the other hand, if ECM

inhomogeneity is increased, the extent of the avascular areas will be greater, more tumor cells will

be deprived of nutrients, but the delivery of therapeutic agents to tumor cells may be hampered.

These contradictory effects may be part of the reason why tumors display an enormous variability

in their responses to therapeutic interventions.

While it is uncertain whether this model's conclusions can be extended to other forms of patho-

logical angiogenesis, it should be noted that some of the architectural features of tumor vasculature

(e.g., increased avascular areas) are also present in other states of abnormal neovascularization such

as diabetic retinopathy [3].

2

1.95

C 1.9
.25

4 1.85
E

1.8

LL 1.75

1.7

F 0 0.6 T

Figure 6-2: Fractal dimension as a function of model parameters. The horizontal axis represents the
level of substrate inhomogeneity as expressed by the substrate threshold parameter T. The vertical
axis represents the local amplification factor F.

6.5 Evaluation and Comparison with "Classic" Percolation

The growth model described in this chapter differs from "classic" percolation growth models such

as spreading percolation and invasion percolation [131] in several important aspects. In traditional

percolation models every perimeter site is a potential candidate for growth. In the model described

in this chapter, some perimeter sites may be excluded from consideration in a particular growth

cycle because they did not receive any growth factor "particles". This means that the threshold

parameter T in this model is not equivalent to the threshold probability p in percolation [127]. An

effective threshold probability p can be associated with this model, and it is generally less than T,

unless we can assure that every perimeter site is explored (i.e., when the local amplification factor

F is high, since limF- c T = p).

The interplay of the local amplification factor F and the substrate inhomogeneity T provides a

large domain in which percolation-like scaling can be observed. Figure 6-2 shows a surface plot of

fractal dimension as a function of substrate inhomogeneity (T) and local amplification (F). Two

trends are evident in this plot. First, the fractal dimension increases as inhomogeneity decreases

(i.e., as T -+ 1.0). This trend is expected from well-known percolation properties [127]. Second,

the fractal dimension increases as the local amplification factor F increases. This trend can be

understood by noting that an increase in F is tantamount to an increase in the effective threshold

probability p.

By calculating the contour lines which correspond to the domains of scale invariance described in

1

4

3

2

1

0

= 1.97

= 1.96

= 1.80

= 1.76

0.6 0.7 0.8 0.9 1

T

Figure 6-3: Fractal domains as a function of model parameters. The horizontal axis represents
the level of substrate inhomogeneity as expressed by the threshold parameter T. The vertical axis
represents the local amplification factor F. The contour lines separate this two-dimensional space
into three morphological domains: compact (df > 1.97), tumor-percolation (1.80 < df < 1.96) and
tree-like (df < 1.76). The contour line values were chosen at two standard deviations from the
experimentally observed values (see Chapter 4).

Chapter 4, one can see how this model helps explain the large variations observed in tumor networks.

Figure 6-3 shows contour lines drawn at two standard deviations from the observed fractal dimensions

in normal capillary, normal arteriovenous, and tumor networks (see Chapter 4). These contour lines

divide the T-F space into three domains with thin transition zones between them. Figure 6-3

illustrates that a normal capillary network (i.e., compact) morphology can be achieved even when

the substrate is not perfectly homogeneous, provided the local amplification mechanism is strong

enough to push p well above the percolation threshold. Furthermore, it illustrates that within the

tumor network morphology domain small variations in local amplification or substrate inhomogeneity

can lead to relatively large variations in fractal dimensions. This observation provides a possible

explanation as to the reason why the standard deviation of fractal dimension measurements in tumor

networks is 4 times that of normal capillary networks (see Chapter 4).

The variability in tumor network characteristics can be further explored by plotting the minimum-

path dimension as a function of substrate inhomogeneity (T) and local amplification (F), as shown

in Figure 6-4. Two trends are evident in this plot. First, the minimum-path dimension decreases

as inhomogeneity decreases (i.e., as T -+ 1.0). Second, the minimum-path dimension decreases as

the local amplification factor F increases. These trends can be understood by noting that either an

increase in F or an increase in T makes more sites effectively available for growth, thus reducing the

average length of a path between any two points. Figure 6-5 shows a contour line corresponding to

Figure 6-4: Minimum-path dimension as a function of model parameters. The horizontal axis
represents the level of substrate inhomogeneity as expressed by the threshold parameter T. The
vertical axis represents the local amplification factor F. Note that the T and F axes are reversed in
comparison with Figure 6-2.

0
0.6

- 1.04

0.7 0.8 0.9 1

T

Figure 6-5: Minimum-path domains as a function of model parameters. The horizontal axis repre-
sents the level of substrate inhomogeneity as expressed by the threshold parameter T. The vertical
axis represents the local amplification factor F. The contour lines separate this two-dimensional
space into two morphological domains: straight (dmin < 1.04) and tortuous (dmin > 1.04). The
contour line value was chosen at two standard deviations from the experimentally observed value
for normal networks (see subsection 4.1.2).

dmin = 1.04, a value which is two standard deviations above the observed dmin of normal capillary

networks. This contour line separates the T-F space into two morphological domains - a "straight"

vessel domain and a "tortuous" vessel domain. Furthermore, this contour line splits the tumor

network domain in Figure 6-3 into two nearly equal parts. By doing so it provides an explanation

to the observation that the minimum-path dimension variance in tumors is 4 times that of normal

networks (see Chapter 4). Figure 6-5 also points out that a large part of the domain with df < 1.76

in Figure 6-3 does not correspond to "classic" DLA structures. While a tree-like morphology is

often observed in this domain, the structures tend to be much more tortuous than DLA clusters.

The significance of this domain for the formation of capillary networks is rather limited, however,

because tree-like capillary networks are very rare in nature [89].

It should be noted that the contours in Figures 6-3 and 6-5 are not exact, since the fractal

dimensions of the model networks were calculated with a standard error of 2% (or less). Although

the position of the contour lines may shift slightly, the qualitative results and conclusions are not

affected.

Chapter 7

Modeling Arterial and Venous

Network Growth

In subsection 4.1.1 we saw that the fractal dimensions of arteriovenous networks are consistent with

the fractal dimensions of DLA clusters. As discussed in subsection 4.5.1, these results may seem

consistent with the previously accepted view of the angiogenic process where growth factors initially

diffuse from low-nutrient or hypoxic regions and induce growth. Under such circumstances, the

diffusion-limited behavior of the arteriovenous network is quite understandable. This explanation,

however, is flawed because angiogenesis does not seem to occur on the artery-vein level. Arteries

and veins form by remodeling of existing capillaries.

However, if one thinks of the capillary mesh as a regular lattice (which it often appears to be -

see, for example, Figure 2 in Reference [124]), one can view artery-vein formation as a remodeling

process following Laplacian growth rules that occurs on a fully-occupied pre-existing capillary lattice.

Indeed, experimental evidence has shown that arterialization occurs in the capillaries which are

directly connected to the tips of the terminal arterioles [108] and not at random sites in the capillary

mesh. If this is the case, one needs to explain what is the the biological equivalent of the Laplacian

field which governs the remodeling process. If one assumes, as the biological evidence suggests, that

artery-vein formation is a slow process, which occurs after a capillary network has largely formed,

then one cannot assume that arteries and veins respond to the same growth factors as do newly

forming capillaries. There could be, however, certain growth factors which are potent mitogens for

smooth muscle cells and not for endothelial cells. Therefore, one possibility for the Laplacian field is

a diffusion field of such a growth factor, set up by the secretion of these growth factors in low-flow

regions. DLA-based vascular growth models published to date [51, 71], have all implicitly assumed

such a diffusion field.

There is also another possibility for the source of gradient-sensitive growth of arteries and veins. It

has been observed in many microvascular studies that the steepest pressure gradients in the vascular

system occur in the terminal arterioles' [80, 136]. This observation may lead us to postulate that if

the remodeling rate (length/time) is dependent on the pressure gradient in the vessel, we could have

a situation analogous to the process of viscous fingering2 [101]. Yet regardless of the biological source

of the Laplacian field associated with the ramified structure of arteriovenous networks, a fundamental

problem remains. When a compact capillary mesh remodels into a vascular tree, some vessels must

be resorbed, since a vascular tree is different from a vascular mesh not only geometrically (e.g., vessel

diameters) but also topologically (i.e., in its connectedness). All DLA-based growth models fail on

this point because they ignore the issue of capillary resorption.

In this chapter I would like to present a possible mechanism for vessel resorption, based on

acceptable biological assumptions. I do not intend to claim that this is the actual physiological

mechanism, since there is no currently known way to validate such a claim. I simply intend to show

that using a general assumption about the role of shear stress in vessel remodeling, it is possible to

develop a novel (yet simple) model, under which a perturbation in shear stress can lead to divergent

behavior of vessel diameter.

7.1 Role of Stress in Vessel Remodeling

The hypothesis that vessel growth and resorption may be linked to stress in the vessel has been

advanced in the past, on the basis of three empirical observations [38]. First, transport through cell

membranes depends on the strain in the membranes. Second, the behavior of actin and actin-myosin

bridges is strain-dependent. Third, chemical reaction rates are dependent on pressure, stress and

strain. In this context, Fung [38] postulated that there should be a homeostatic stress state, and

that deviations from this state could lead to either growth or resorption (depending on direction and

magnitude of stress change), subsequently returning the stress level to its homeostatic state. Recent

molecular biologic studies [55, 98, 102, 122] lend further credence to the hypothesis that vessel growth

may be stress dependent, by showing upregulation of growth factors, adhesion molecules, and other

bioactive compounds in response to shear stress changes. There has also been one study showing that

changes in circumferential wall stress could be responsible for arterial tree remodeling [109]. In the

latter report, a model was proposed in which input pressure changes were shown to cause terminal

arteriole formation or rarefaction by assuming a stress-dependent growth rule. In addition, a plethora

of in vivo experimental evidence shows that hypertension can lead to vessel rarefaction [120].

1Theoretically, it can be shown that in any vascular tree which obeys Murray's law [97], Q oc r3 , the pressure
gradient VP in a vessel is inversely proportional to the vessel radius r: VP oc r - .

2 Viscous fingering occurs when a less viscous fluid is injected into a more viscous fluid under conditions in which
the viscous forces alone determine the flow. Under such conditions a fingered interface emerges. It can be shown that
the situation is analogous to Laplacian growth because the interface velocity is proportional to the interface pressure
gradient (6 oc VP).

The existence of a constant homeostatic shear stress level in a vascular tree can also be de-

rived [117] from Murray's law [97]. Murray's law states that if one minimizes the energy required to

maintain flow in a given vessel segment, then the volumetric flow Q, obeys:

Q = kr3 (7.1)

where r is the vessel radius, and k is a constant depending on blood viscosity and endothelium

metabolism. The average velocity in the vessel therefore obeys V oc r. If one assumes Poiseuille flow,

then the velocity profile is given by:

v(x) = Vmax 1 (- r 2 (7.2)

where x is the distance from the vessel wall. The shear stress at the wall (x = 0) is therefore:

dv 2
vmax

7 C - (7.3)
dx -=0 r

but since in Poiseuille flow vmax = 2f, we see that the shear stress in all vessels obeying Murray's

law is the same. Experimentally, many arterial systems obey Murray's law [118].

While the role of stress in vessel remodeling seems important, to date no model has been proposed

for stress-based capillary network remodeling.

7.2 Shear-Stress Based Arterialization Model

Using the most general assumptions and trying to avoid ad-hoc growth rules, an arterialization

model for a capillary lattice will now be advanced. In general, the model operates on a graph whose

connectivity matrix is known. All capillary segments connecting adjacent nodes (i.e., lattice sites)

are assumed to be of equal length L. Initially, all segments are also of equal diameter d. The

conductance Cij of a capillary segment between nodes i and j, assuming Poiseuille flow [80] and

fixed viscosity (71) is:
7rd " 4

Cij = 128i (7.4)
S12877L

Designating Pi as the pressure at node i, the flow Qij between nodes i and j is then obtained as:

Qij = Cij(Pj - PA) (7.5)

The wall shear stress in segment ij is then given as (adapting Equation 7.3):

dv 4 vmax
S= - O (7.6)

du== d

Since in Poiseuille flow vmax = 2V, and f is defined as the volumetric flow divided by the vessel

cross-section, one obtains:
32 Qj

(77)i rj d3 (7.7)

When the capillary lattice is in its initial state, the shear stresses Tij are calculated and assumed to

represent the homeostatic state of each vessel segment ij. Subsequently, a perturbation is introduced.

In this model, the perturbation was chosen to be a diameter change in one or more of the vessels3 .

The new shear stresses are calculated, and "eligible" vessel diameters are modified according to a

shear stress remodeling rule (see Equation 7.8 below). A capillary can be "eligible" for remodeling

only if it is directly connected to a previously modified vessel.

At the heart of the model is a time-dependent shear stress remodeling rule. Looking at a

single vessel, the homeostatic shear stress level will be designated as r(0). The time-dependent

diameter d(t) of the vessel is assumed to obey the difference equation:

Ad r(t) - r(O)
= sd(t) () (7.8)At r(0)

where s is a parameter representing the sensitivity of relative diameter changes to relative shear

stress changes. Equation 7.8 simply states that the relative rate of diameter change is directly

proportional to the relative deviation from the homeostatic shear stress level. At each time step At,

the shear stress is calculated for all vessels in the network, and the diameter change Ad is calculated

for each "eligible" vessel. The process progresses in time until all "eligible" vessel diameters reach

a steady state value. If the steady state diameter drops below 0.1d(0), it is set to zero4 . Depending

on the specific capillary network, a new generation of "eligible" vessels may be defined and the

whole remodeling process repeated. In all simulations input pressure was fixed at Pinput = 1 and

output pressure was fixed at Pouplt = 0 (it was assumed that the system is linear in AP). In

order to simplify calculations the fixed vessel length was set at L = r/128ij in the appropriate units

without loss of generality. Initial capillary diameters were chosen as d(0) = 1, unless otherwise noted.

To avoid numerical instabilities, the time step At was chosen small enough to obtain a "smooth"

response. The simulations were implemented using the MATLAB matrix manipulation software.

The model routines are listed in section A.8.

3 Any other perturbation which induces asymmetric shear stress changes would be adequate. Such perturbations
include length change and pressure or flow changes (if the feeder vessels are not identical).

4 A diameter drop to 0.1d(0) represents a 10000-fold decrease in conductance. For all effective purposes, there will
be no flow through this capillary, and it can be assumed resorbed.

1.4-
1.2-

0.8-
0.6-
0.4-
0.2-

0-

d2
d3--

0 50 100 150 200 250

Time

Figure 7-1: Self-loop resorption: (a) The initial self-loop with all diameters being unity; (b) The
remodeled structure, after the diameter of vessel 2 was initially perturbed to 1.01, shows that vessel 3
has been resorbed; (c) The time course of the diameter changes. Note that d2 reaches a steady state
before d3 because when d3 is small enough it no longer has a significant effect on the flow behavior
of the structure. The sensitivity parameter was s = 0.05 in this simulation.

7.3 Model Results

In the following sections, I will present several examples showing that this arterialization model

produces the desired results. I will start with the simplest example - a self-loop (a loop with 2

nodes on its perimeter). I will then go on to a loop with 3 nodes on its perimeter. Subsequently, I

will explore the model on a capillary lattice. I will show that in all cases selective vessel resorption

occurs. This resorption remodels a mesh into a tree-like structure.

7.3.1 Self-Loop Resorption

A self-loop, the simplest of all vascular loop structures, is shown in Figure 7-1a. Such a loop has only

two nodes on its perimeter. The loop shown in Figure 7-1a has an input vessel (vessel 1), an output

vessel (vessel 4) and two loop vessels (vessels 2 and 3). All vessels start off with a unity diameter,

and only vessels 2 and 3 are allowed to remodel. Figure 7-1b shows the resulting vasculature after

vessel 2 is perturbed and its diameter increased to 1.01. The time course of the diameter changes of

vessels 2 and 3 is shown in Figure 7-1c. A similar result is obtained if vessel 3 is the one perturbed

and its diameter initially decreased.

Self-loop resorption is not a purely theoretical exercise. Self-loops occur occasionally in vascu-

lature. Furthermore, self-loop resorption may be a key process in the formation of rare tree-like

capillary networks seen in some marsupials [891.

2

b

C
\

S--

I __________________________ I L J

1.6-
1.4-
1.2-

S 1-
0.8-

0 0.6-
0.4-
0.2-

0

d24 ------
d34

0 50 100 150 200 250

Time

Figure 7-2: Complex loop resorption: (a) The initial structure with dl1 = 1.50, d23 = 1.30, and
all other diameters being unity; (b) The remodeled structure, after d23 was initially perturbed to
1.33, shows that vessel 24 has been resorbed; (c) The time course of the diameter changes. The
sensitivity parameter was s = 0.05 in this simulation.

7.3.2 Complex Loop Resorption

Figure 7-2a shows a loop with three nodes on its perimeter (called a "complex" loop), representing

a typical situation during the arterialization process. Segments 12 and 23 are already arterialized.

For the arterialization to proceed, either capillary 24 or capillary 34 has to be resorbed. The

perturbation in this case is an increase in the diameter of arteriole 23 (from 1.30 to 1.33). Only

capillaries 24 and 34 are allowed to remodel. The input and output pressures were fixed so P1 = 1

and P5 = P6 = 0. Figure 7-2b shows the resulting vasculature after vessel diameters d24 and d34

reach a steady state. The time course of the diameter changes is shown in Figure 7-2c.

The choice of the initial perturbation is important in determining which capillary is resorbed. In

the network depicted in Figure 7-2a, a perturbation that slightly increases the diameter of capillary 24

would result in the resorption of capillary 34. In general, however, the key observation is that in

this model a small perturbation tends to be amplified, resulting in the resorption of vessels. The

choice of sensitivity parameter s was observed to affect only the rate at which the vessels reach their

steady-state diameters.

C

I I I 1

16

9

5 6

1 2 3
a

16

9

5 6

1b 2 3
b

1.2-

1-

a 0.8-
.V 0.6-

0.4-

0.2-

0

d23 -
d26 ------
d56 -------
d59

0 100 200 300 400

Time

Figure 7-3: Loop resorption on a 3 x 3 square lattice: (a) The initial lattice with all diameters being
unity except d12 = 1.21 and d15 = 1.19; (b) The remodeled structure, showing that vessel 56 has
been resorbed; (c) The time course of the diameter changes. The sensitivity parameter was s = 0.05
in this simulation.

7.3.3 Resorption on a Lattice

In order to assess whether the proposed model yields the desired results in a network consisting of

multiple loops, simulations were performed on a square capillary lattice. The input was selected at

the lower left corner and output at the upper right corner. In these simulations, the perturbation

used was an asymmetrical increase in the diameters of the two vessels connected to the lower left

corner (node 1) to 1.21 and 1.19.

Figure 7-3 presents the results obtained on a lattice of 3 x 3 segments, where remodeling was

allowed for one generation. The input and output pressures were fixed so P1 = 1 and P16 = 0. All ves-

sels directly connected to the perturbed vessels were allowed to remodel (i.e., capillaries 23,26,56,59).

Clearly, for a tree structure to develop, either capillary 26 or capillary 56 must be resorbed. Fig-

ure 7-3b shows the resulting vasculature after vessel diameters reached a steady state. The time

course of the diameter changes is shown in Figure 7-3c. As seen, vessel 56 is resorbed, and the tree

structure gains another generation.

Figure 7-4 presents the results obtained on a lattice of 5 x 5 segments, where remodeling was

performed for three generations. The input and output pressures were fixed so P1 = 1 and P3 6 = 0.

In each generation, only capillaries directly connected to previously remodeled vessels were allowed

c -- --- --- -a I

1.4-
1.2-

I ~1-
0.8-
0.6-
0.4-
0.2-

0

d45 -
d410 ------
d910 -------
d915
d1415 -.-----
d1420 -.----
d1920 -
d1925 ------..

0 300 600 900 1200 1500

Time

Figure 7-4: Three generations of remodeling on a 5 x 5 square lattice: (a) The initial lattice with all
diameters being unity except dl2 = 1.21 and d17 = 1.19; (b) The remodeled structure, after three
generations of remodeling showing that several vessels have been resorbed; (c) The time course
of the diameter changes of the third generation. The sensitivity parameter was s = 0.05 in this
simulation.

to remodel. Before the third generation remodels, nodes 10, 15, and 20 each have two inflow vessels

and two outflow vessels. In order for the tree structure to continue into its third generation, one

of the inflow vessels into each of these nodes has to be resorbed. Figure 7-4b shows the resulting

vasculature after the third generation vessel diameters reach a steady state. The time course of the

diameter changes during the third generation remodeling is shown in Figure 7-4c. It is clear that

only those vessels which were superfluous for the formation a tree-like topology were resorbed. It

is also important to note that the time needed to reach a steady state in the third generation is

approximately 4 times longer than the time needed to reach a steady state in the first generation

(compare Figure 7-4c with Figure 7-3c - the different lattice size has negligible effect on first

generation remodeling time).

Similar resorption patterns were obtained when the model was implemented on a hexagonal

lattice. While a hexagonal lattice does not seem to differ from a square lattice in the potential of

certain capillary segments to be resorbed, it seems to be less sensitive to small perturbations to the

36

25

19 20

13 14 15

7 8 9 10

1 2 3 4 5 41

36

25

19 20

13 14 15

7 8 9 10

1R 2 3 4 5

- -:- --- -

l• c,

symmetry of the lattice. For example, a perturbation of feeder vessel diameters to 1.19 and 1.21 (as in

the square lattice case) could not elicit a resorption response. However, a perturbation of feeder vessel

diameters to 1.01 and 1.21 elicited a multi-generation resorption of vessels (on a hexagonal lattice

of 4 x 4 hexagons). Since a hexagonal lattice is probably more representative of the connectivity

properties of real capillary beds, the above observation insinuates that the connectivity properties

of the whole network may temper the divergent nature of stress-induced remodeling.

7.4 Model Evaluation

The results from the simple arterialization model described above contain two salient elements.

First, they show that a shear-stress based remodeling rule can result in vessel resorption (and vessel

enlargement). Second, they show that this resorption is selective in the sense that only vessels which

form connections that are superfluous for tree topology are resorbed. Selective vessel resorption is

a key element which must accompany any Laplacian remodeling process in order for the arterial

network to achieve a tree structure. This model assumed an "eligibility" criterion, which stated

that only vessels connected to previously modified vessels could be remodeled. In real life, vessel

"eligibility" could possibly be established by the Laplacian field itself. For example, if a large

pressure gradient in a vessel was to cause the smooth muscle cells on the vessel to proliferate and

migrate, then arterial growth would occur mostly at the terminal arteriole level.

A model which combines Laplacian growth and stress-based remodeling is easy to conceptualize.

In essence, the previous model needs to be implemented on a larger lattice and the eligibility criterion

made dependent on the Laplacian field gradient. A larger lattice is needed for two reasons. First, it

is impossible to accurately simulate Laplacian growth on a 5 x 5 lattice. Second, on a 5 x 5 lattice the

total length of all arterial segments is comparable to the total length of all capillary segments. While

this situation may be appropriate in simulations of the local mechanism of stress-based remodeling,

it is inappropriate in simulations of the global behavior of gradient-sensitive remodeling. This is

due to the fact that in real life, the total length of arteries is small compared to the total length

of capillary segments. Since capillaries form a mesh and arteries form a tree, the pressure behavior

of the capillary bed will be relatively unaffected by upstream changes (the effects of such changes

will be felt mostly in the terminal branches of the arterial tree). A situation in which total artery

length is small compared to total capillary length can only be achieved on a large lattice, where the

remodeling of a few capillaries will not drastically alter the properties of the capillary bed as a whole.

Unfortunately, such a large lattice (at least 500 x 500) requires prohibitive amounts of computing

time. At each remodeling generation, at least several hundred time steps are required to achieve a

steady-state. At each time step, the flows and pressures must be calculated in the whole network. A

500 x 500 lattice would have 2.5 105 nodes, necessitating the simultaneous solution of this number

of equations (for pressures and flows) at each time step. This computation requirement was beyond

the resources available for this research. It will be left, sadly, for some unspecified future time.

When a simulation on a larger lattice is conducted, it will also be able to address another

issue which the model raises. Some readers may find it troublesome that the vascular system in

this model bears the inherent instabilities shown in section 7.3. If a small perturbation can cause

profound changes in a vascular network, then the network will fail to provide a stable blood supply to

the tissue. This problem is partly addressed by the "eligibility" criterion, which restricts the number

of vessels that can be remodeled at a given time. In addition, simulations on square and hexagonal

lattices point to a global effect which may act to stabilize the local instabilities introduced by stress-

based remodeling. In subsection 7.3.3 it was observed that as the number of vessels that are allowed

to remodel simultaneously increases, the remodeling process takes significantly longer to reach a

steady state. Furthermore, it was observed, that a hexagonal lattice was less sensitive to small

initial perturbations than a square lattice. Experimental evidence of integration of biological signals

by capillary networks [125] may suggest that in a large capillary network multiple perturbations are

needed to induce arteriolar response. These observations may lead one to hypothesize the existence of

a global stabilizing effect dependent on network size and connectivity. However, a solid confirmation

of this effect can only be performed with large lattice simulations.

7.5 Venous Network Formation

The model discussed in previous sections explicitly assumed that the remodeling was occurring

from the inflow direction, thus simulating the process of arterialization. There is no mathematical

obstacle to extending this sort of remodeling to the outflow side of the network as well, since the

mass conservation equations (Ej Qij = 0 at each node i) involved in solving for the flow (and hence

the shear stress) hold true if the direction of flow is reversed. Thus, one may argue that a branching

venous network may form by the same stress-dependent mechanism.

While capillary resorption leading to the formation of post-capillary venules may occur by a

mechanism similar to that leading to the formation of terminal arterioles, the source of the "eligi-

bility" criterion in this case is less obvious. If the "eligibility" criterion is gradient-sensitivity, as

postulated in the arterial case, then the source of the Laplacian field is more obscure in the ve-

nous case, because the pressure gradients throughout the venous side are relatively low. A possible

solution to this problem lies in the observation that the histological difference between capillary

and venule is less pronounced than the difference between capillary and arteriole [63], although,

on average, venules have larger lumen diameters than arterioles. This may lead us to suspect that

resorption of capillaries leading to the formation of venules may have a passive component to it.

Such a component would manifest itself in the enlargement of diameter in response to increased

flow without an active mechanism (e.g., stress-based) for vessel resorption. In this scenario, some

vessels would be resorbed when a neighboring vessel becomes large enough to occlude them or to

draw enough flow away from them (by virtue of increased conductance) so as to collapse them.

Due to the limited and controversial knowledge about the mechanical nature of vessel collapse and

occlusion, this hypothesis should be regarded as highly speculative. Unfortunately, there have been

no comprehensive studies of the dynamics of concomitant arterial and venous network formation.

Such a study is necessary to determine whether the same time constants are involved and whether

the same resorption patterns are observed. Until then, the model proposed in this chapter can apply

to both arterial and venous network formation.

Chapter 8

Transport Implications

The transport of diffusible substances in tumors is a key process in the growth and treatment

of solid tumors [61, 62). For example, adequate oxygen supply is critical for tumor growth but

also for successful radiation therapy. The scale-invariant behavior of vascular networks uncovered in

Chapter 4 leads to important insights about the transport characteristics of tumors. It will be shown

that by using percolation-like scaling as a paradigm for tumor vasculature, important experimental

observations can now be explained.

Historically, most transport models have relied on drastic simplifications of vascular architecture.

The most commonly used model, the Krogh cylinder, is based on the assumption of uniformly spaced

straight parallel vessels [104]. The Krogh cylinder model is appropriate in the case of a vasculature

which displays compact scaling behavior, such as the normal capillary bed. Indeed, one of this

model's most profound impacts has been in the study of oxygen exchange in skeletal muscle [104],

where capillaries can be accurately approximated to be parallel and arranged on a two-dimensional

hexagonal lattice when viewed in cross section [11]. However, in this study it has already been

shown that tumor vasculature does not display compact scaling but rather percolation-like scaling

(section 4.2). Tumors are known for tortuous vessels and for avascular areas of many different

sizes [1, 60, 68, 76], thus violating the assumptions necessary for the application of the Krogh

cylinder model. Given the unavailability of a general vascular architecture model in tumors, there

have been some attempts to quantify the transport characteristics of tumors by using reconstructions

of small regions of tumor vasculature [114]. While these studies were important in demonstrating

that the Krogh cylinder model was indeed inappropriate for quantifying the transport characteristics

of tumors, their conclusions could not be extended to other tumor networks because the studies did

not include a quantitative model of vascular architecture. By using the findings of this research, I will

show that a general paradigm can be developed for assessing the transport behavior of scale-invariant

vascular networks.

8.1 Geometric Resistance

The percolation-like (dy 1 1.9) behavior of tumor vasculature helps explain a long-standing paradox

regarding the geometric resistance of tumors. Experimentally, it has been observed that tumors

display elevated geometric resistance to blood flow when compared to normal tissues of similar

weight [115]. However, it has also been observed that tumor vessels increase in diameter as the

tumor grows. The mean diameter d of tumor vessels can often be more than 100% larger than that

of normal vessels [52]. Since the geometric resistance is proportional to d-4, we can see that, ceteris

paribus, the geometric resistance of tumors would have to decrease in comparison to normal tissue.

One can argue that in tumors one usually sees a decrease in the vascular density when compared

to normal tissue. However, if one assumes that the vascular density is uniformly decreased in the

tumor, then in order to counteract a 100% increase in vessel diameter to obtain elevated geometric

resistance, the vascular density would have to decrease by a factor larger than 16. Published figures

about vascular density in tumors show that it is typically 2-4 times less than normal tissue [25, 78].

Therefore, the source of the elevated geometric resistance remained shrouded in mystery.

The observed scale-invariant properties of tumor vasculature undermine the assumption that

vascular density is uniformly reduced in tumors. Since tumors behave like percolation clusters, the

large body of work dealing with the electrical resistance of random resistor networks [127] can be

applied to explain the aforementioned paradox. In general, the resistance zo of a percolation cluster

above the percolation threshold is known to obey the power law:

zo oc (- pc)-" (8.1)

where p represents the occupancy level, pc is the percolation threshold, and p is a positive number.

In two dimensions Ip R 1.3 [127]. We see that close to the percolation threshold (df f. 1.9) the

resistance diverges, consistent with the observation for tumor networks.

Given the similarity between tumor networks and percolation clusters, one can also cite two

intuitive reasons for the elevated resistance in tumor networks. First, the connectivity properties of

percolation networks are such that there may be a few flow paths that will carry a disproportionately

large part of the flow (technically known as "singly connected bonds" [126]). In contrast, in a compact

network the symmetry of the structure assures a fairly homogeneous flow distribution. Second, the

flow paths in tumor networks tend, on average, to be longer than flow paths in normal networks,

as shown by the elevated minimum path dimension dmin in tumor networks (Section 4.2). Since

the geometric resistance is directly proportional to the length of the flow path, a tumor vessel with

elevated dmin will have higher geometric resistance compared to a normal vessel, provided that both

vessels are of equal diameter and connect equally distant points.

8.2 Scaling of Avascular Regions

The percolation-like (df . 1.9) structure of tumor vasculature has important implications for trans-

port of diffusible substances in tumors. The number of vascular regions Nvasc of length scale L

scales as:

Nvasc =) d (8.2)

where Lo is the upper boundary of the fractal scaling range. The number of all regions (both vascular

and avascular) Nau of length scale L scales as:

Nalu = D (8.3)

where D is the embedding Euclidean dimension (D = 2 in our case). Therefore, the fraction of

tissue favasc consisting of avascular areas of length scale L scales as:

Nau - Nose = Lo d f - D
fvasc - Na - Nvasc = 1 (L) dfD (8.4)

Nail L

This implies that for structures with df z 1.9 and D = 2 there exist a few large avascular areas and

many smaller avascular areas. The number of cells in the few large avascular areas is not negligible,

however. For the observed value of Lo z 900 pm and a single-cell length scale of 10 pm, it can be

calculated that 39% of all cells will lie in avascular areas of length scale L > 200 pm. In a three-

dimensional percolation-like structure (df ý 2.5 and D = 3), 59% of the cells lie in avascular areas

of the same length scale. These percentage figures should not be regarded as more than order-of-

magnitude estimates, but they point to the observation that the relatively scarce but large avascular

areas have the most clinical significance, since they are the areas most prone to resist drug treatment

or to be hypoxic and resist radiation treatment.

The relationship stated in Equation 8.4 can be demonstrated by measuring the distance of each

point in the tissue to the nearest vessel. Figure 8-1 shows the cumulative distribution of the fraction

of tissue at or above a given distance from the nearest vessel (the fraction at or above 1 distance unit

(approximately 6 pm) was normalized to be 1.0). The distribution is shown for three representative

normal subcutaneous striated muscle capillary networks and three representative LS174T tumor

vascular networks. It is evident that the distance distribution in tumors has a much longer tail than

that in normal tissue. The long tail reflects the existence of the large avascular areas in tumors.

The differences among tumor distributions reflect the variability in size and number of the largest

avascular areas. The normal vasculature distributions, however, show little variability. This is due

to the relatively uniform intervessel spacing observed in normal tissue. The distributions shown in

Figure 8-1 are very similar to those derived from invasion percolation clusters [7].

0
4-

0.1

0.2
2 0.3
o

S0.4
0.5

~ 0.6
o 0.7
0 0.8

S0.9
1

Normal -

Tumor ------

1 5 9 13 17 2125

Distance (1 unit = 6 microns)

Figure 8-1: Fraction of tissue more distant from nearest vessel as measured from images of normal
subcutaneous muscle capillary networks and LS174T tumor networks. The long tail of the tumor
distributions reflects the existence of large avascular regions in tumor tissue. The variability in
tumor distributions reflects the variability in the size and number of the largest avascular spaces.
Note that the horizontal axis is logarithmic.

8.3 Oxygen Transport

Examination of oxygen transport is a useful paradigm in explaining the general transport properties

of diffusible substances in tumors. Like many other nutrients or drugs, oxygen is transported via

convection in blood and then diffusion from the blood into the extravascular space. Experimentally,

tumors are known to display large variations in oxygenation measurements [130]. Hypoxic and

anoxic regions are frequently found in tumors [64], but rarely in normal tissue.

The spacing between vessels is an important determinant of oxygen levels in tissue. Under steady

diffusion in one dimension, the maximum distance dma,,, that oxygen can diffuse from blood vessels,

assuming uniform tissue oxygen solubility a and uniform tissue oxygen consumption Mo, is given

by [114]:

dma 2DP = (8.5)
Mo

where D is the diffusivity and P, is the partial oxygen pressure in the vessel. Experimentally derived

values for Da, P, and Mo in tumors show that dmax can range from 41 pm to 183 pm [114]. In

normal tissue, the avascular spaces are relatively uniform in size and the intervessel distances are

well below 2 dmax. In tumors, however, the large avascular spaces discussed in section 8.2 can lead

to the creation of hypoxic regions.

The effects of the percolation-like nature of tumor networks on oxygen delivery are not limited

to the creation of hypoxic regions in the large avascular spaces. The increased resistance of tumor

networks reduces flow to the tumor as a whole, thus aggravating hypoxic conditions. The existence

pO 2(out) =
0.57 pO2(in)

-Limited

Figure 8-2: Oxygenation contours on a percolation network. Contours reflect 10% increments in
oxygen concentration. The above network was generated on a 32 x 32 lattice with an invasion
percolation algorithm, which continued until the backbone had a 60% occupancy level. The input
was chosen at the lower right corner with 100% oxygen saturation. The output was chosen at the
upper left and the flow rate adjusted so the partial oxygen pressure at the exit would be 57% of the
inlet oxygen pressure. A locally flow-limited hypoxic region is evident in the lower right.

of a few flow paths which carry a disproportionately large share of the flow in a percolation network

(the "singly connected bonds") makes oxygen delivery by such networks much more sensitive to

intermittent flow cessation (e.g., by vessel collapse) in random vessels, whereas normal capillary

networks are relatively insensitive to flow cessation in a few random capillaries [56]. Furthermore,

the flow heterogeneity in a percolation network can result in hypoxic regions due to local flow

limitations, even when those regions are fully vascularized.

The effects of percolation-like scaling on oxygen delivery were quantitatively examined in a

recent study [7] based on the work described in this thesis. In that study an invasion percolation

model was used to generate two-dimensional networks on a a square lattice. Using finite difference

techniques, the oxygen convection and diffusion equations were solved for the oxygen concentrations

throughout the lattice. The results show that even when oxygen concentration at the network outlet

is maintained at relatively high levels, there will still be hypoxic regions due to the effects described

above. This can be seen in Figure 8-2 adapted from Reference [7]. The outlet partial oxygen pressure

pO2 (in)

pO2 (out) was set at 0.57 -pO 2 (in) by maintaining a high enough inflow rate. Hypoxic regions are

evident in the large avascular areas, yet there is also a hypoxic region that is well-vascularized

but flow-limited. In the aforementioned study [7] many additional networks were generated and

oxygenation levels measured in the model networks were used to generate cumulative oxygenation

histograms. These histograms bore a striking similarity to experimentally obtained oxygenation

histograms. The small qualitative differences that existed between the in vivo measurements and

the model's results could be attributed to the neglect of three-dimensional effects [7].

8.4 Clinical Implications

The inherent limitations to oxygen transport in tumor tissues having percolation-like vascular net-

works can be generalized to include most other substances that are delivered to target cells by similar

convective and diffusive processes. Such substances include both nutrients (e.g., glucose) and ther-

apeutic agents (e.g., drugs or antibodies). As demonstrated in Figure 8-2, even when the tumor as

a whole does not deplete the blood of a particular diffusible substance, there will still be regions in

the tumor, both vascular and avascular, that will have very low levels of the particular substance.

The clinical implication of this observation is that interventions designed to enhance blood flow in

tumors may be inadequate to assure delivery of drugs to all tumor cells. In order to assure better

delivery of drugs to tumor tissue an intervention that promotes the formation of a more compact

and uniform vascular network is necessary. However, the formation of compact vascular networks in

tumors may have the detrimental effect of speeding up tumor growth by providing a more uniform

supply of nutrients to tumor cells.

Another important implication lies in the potential efficacy of anti-angiogenic interventions. Such

interventions are targeted against tumor vessels and are intended to retard tumor growth by cutting

off the blood supply to tumor cells. Anti-angiogenic interventions are often combined with standard

chemotherapeutic regimens. The effects of such treatments can depend greatly on the manner in

which blood vessels are affected. If vessels are resorbed in a random manner, then it is conceivable

that anti-angiogenic treatment may push the vascular network closer to the percolation threshold

or even below it, thus depriving more tumor tissue of nutrient supply but also reducing the efficacy

of any drugs. If vessels, however, are resorbed in manner which creates a sparser yet more compact

network, both nutrient supply and drug delivery to tumor cells may become more uniform.

While the conclusions regarding oxygen transport can be readily applied to the transport of

most diffusible substances, they may not be valid for heat transfer. Both experimental [74] and

theoretical [4] studies have shown that vessels with diameters less than 100 pm are insignificant

for heat transfer. In the tissues studied in my experiments virtually no vessels of diameters larger

than 100 ptm were present. Such vessels can be seen in tissue samples whose dimensions are much

larger than those studied. This implies that in the case of tumor specimens of millimetric size, the

heat transfer properties are determined largely by the vasculature of the surrounding tissue and not

by the vasculature of the tumor itself. Furthermore, the tissue length scales at which thermally

significant vessels are found are most likely above the upper boundary of the fractal range observed

in this study (length scales larger than 1 mm). At these length scales the tumor vasculature may

no longer display percolation-like scaling (see section 4.3).

Chapter 9

Future Directions

The results described in the preceding chapters can be further explored and developed in the future.

The main directions for future research involve three areas:

* Extension of experiments to three dimensions.

* Experiments directed towards refinement of shear-stress based artery-vein growth model.

* Incorporation of the scale-invariant properties of vascular networks into transport models.

9.1 Extension to Three Dimensions

The measurements of fractal dimensions reported in this thesis were performed in a unique quasi-

two-dimensional transparent preparation of transplanted tumor cells. Most of the studies of tumor

vasculature to date have been performed in transplanted tumors in various specialized preparations.

However, it has been suggested that the vasculature of transplanted tumors may show some differ-

ences when compared to the vasculature of the primary tumor [31], although the differences reported

are mostly physiological and not morphological. Clearly, it would be ideal if the three-dimensional

vasculature of a primary lesion could be imaged in situ.

Virtually all possible three-dimensional imaging methods were explored as candidates for imaging

vasculature. The requirements for images to be suitable for fractal dimension measurements are those

of resolution. The resolution must be high enough that individual vessels could be identified, but

low enough to assure that enough vessels will be included in each image so that fractal dimension

measurements will be reliable and that a large enough number' of vascular networks could be

processed in a reasonable time.

1In this study fractal dimensions were measured in a total of 106 vascular networks.

One tried method for the imaging of three-dimensional vasculature is that of quantitative recon-

struction using serial sections [17]. However, this method has two shortcomings. First, preparing

and imaging the serial sections is an extremely laborious process making the imaging of large number

of vascular networks practically impossible. Second, this method is destructive, making repeated

measurements of the same network impossible.

Another commonly used method for visualization of vessels in their three-dimensional arrange-

ment is that of corrosion casting [116]. Using this technique, a cast is made by injecting a compound

into the vessels, the compound subsequently hardens, and the tissue is digested chemically. Tradi-

tionally, these casts have been observed using electron microscopy. However, the electron microscopic

approach does not offer a way to image the whole three-dimensional structure, but merely to observe

limited portions of it. In order to use the corrosion casts for obtaining a three-dimensional vascular

image, a truly three-dimensional technique should be used to image them. However, no such tech-

nique exists for direct three-dimensional image acquisition (the resolution of NMR microscopy is not

sufficient).

Laser scanning confocal microscopy (LSCM) has been used to image vessels at varying focal

depths [92]. However, limits on the total thickness and on the minimum focal slice size under

the relatively low magnifications necessary for imaging a large enough number of vessels make

this method, too, impractical for imaging three-dimensional vascular networks for the purpose of

measuring fractal dimensions.

In summary, at this stage no currently known method can produce three-dimensional vascular

images of the desired quality and quantity necessary for fractal dimension measurements. These

measurements should be performed when an acceptable imaging technique is available.

Extending Computer Algorithms to 3-D

The computer algorithms used to measure fractal dimensions can be trivially extended to three

dimensions. The only practical limitation is that of computing time. In order to show that the

2-dimensional tumor vascular growth model (see Chapter 6) can be extended to three dimensions,

the source code was modified to incorporate a third spatial dimension (see section A.7). The model

was applied to a 32 x 32 x 32 square lattice, with a local amplification factor of F = 3, and with a

series of accessibility parameters T ranging from 30% to 100% (the percolation threshold in three

dimension is p = 0.3116 [127]). For each T value, n = 10 runs were performed. The relatively small

lattice size and sample size were chosen because of computing time limitations. The resulting fractal

dimensions are graphed in Figure 9-1.

Figure 9-1 shows that, as in the 2-dimensional case, there is a transition from a non-space-filling

fractal vasculature to a space-filling compact vasculature. Furthermore, structures with fractal di-

mension similar to a three-dimensional critical percolation cluster (df ~ 2.5 [127]) occur for T - 0.5,

3.I.,

2.9
* 2.8
" 2.7
. 2.6

2.5
- 2.4
• 2.3

2.2
2.1

I I I I I I I0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
T

Figure 9-1: Fractal dimensions in 3-D growth model. The tumor vasculature growth model from
Chapter 6 was modified to include a third spatial dimension. The model was applied to a 32 x 32 x 32
square lattice, with a local amplification factor of F = 3, and accessibility parameter T ranging from
0.3 to 1.0. The transition from a non-space-filling structure to a space-filling structure is evident.
The relatively large error bars are due to the small sample size (n = 10 in the 3-dimensional runs
vs. n = 100 in the 2-dimensional runs).

higher than the percolation threshold (p = 0.3116) for a three-dimensional square lattice. This be-

havior is qualitatively similar to the 2-dimensional case. It is due to the fact that not all perimeter

sites are explored at each growth cycle because of the finite local amplification factor F (see sec-

tion 6.5).

In order to further verify the 3-dimensional model, the model was run with parameters corre-

sponding to diffusion-limited aggregation (F = 0 and T = 1.0) on the same 3-dimensional square

lattice. The mean fractal dimension (n = 10) calculated was df = 2.49 ± 0.09, in agreement with

the reported value of df ~ 2.5 for three-dimensional DLA [90].

The availability of a robust 3-dimensional vascular growth model should further encourage the

development of an experimental design to facilitate the measurement of fractal dimensions of three-

dimensional vascular networks in tumors in situ.

9.2 Artery and Vein Formation Experiments

The shear-stress based model for vessel growth and resorption presented in Chapter 7 offers a

good argument that shear stress variations may be important in the process of artery and vein

formation. A large body of existing evidence shows that shear stress variations induce a variety

of changes at the molecular and cellular levels in endothelial cells [55, 98, 102, 122]. Furthermore,

studies at the network level have suggested that states of altered shear stress are associated with

vessel rarefaction [109, 120]. However, to date there have been virtually no studies following the

arterialization (or vein formation) process at the single vessel and network levels.

Before the artery-vein growth model can be expanded and improved, several key experimental

observations must be made. First, the process of artery and vein formation should be observed in

vivo, to establish the time course and the spatial progression of capillary enlargement and resorption.

Second, the process of arterialization should be correlated with the hemodynamic behavior preceding

it or occurring concomitantly with it. Then experiments should be performed in which shear stress

is modified in the observed vessels and the effects of these changes on the process of arterialization

are explored. In addition, the process of vein formation should be observed and compared to the

arterialization process.

Even if the experiments verify the model's basic assumptions of shear stress based remodeling,

there will still be important questions regarding the nature of the homeostatic shear stress levels.

Flow changes (and hence shear stress changes) occur constantly in quiescent vascular networks.

Therefore, the homeostatic shear stress level may be some sort of average level sensed by the en-

dothelium. Is the homeostatic shear stress level averaged over time, over space, or both? Are there

factors which influence the stability of the homeostatic shear stress level? These questions can only

be answered by careful experimentation.

9.3 Scale-Invariant Networks in Transport Models

Modeling vascular networks as scale-invariant structures grown according to a specific statistical

growth process can contribute to the understanding and modeling of transport processes in tissue

by providing a general paradigm to study the effects of various parameters on transport properties.

This is important because in tissues with dramatically heterogeneous hemodynamic and geometric

vascular parameters (such as tumors), the study of a particular experimental preparation is of limited

use. Thus, an approach, such as the growth of percolation networks, that can statistically reproduce

these heterogeneities is of interest.

In Chapter 8 it was shown that the scale-invariant nature of tumor networks helps explain the

elevated geometric resistance of these networks, and also predicts the scaling of avascular spaces in

tumor tissue. Furthermore, a simple oxygen transport model using a percolation network with a

single inlet, a single outlet, and uniform vessel diameters produced results which were in agreement

with experimentally observed oxygen transport properties in tumors.

The model presented in Chapter 8 can be further extended in several directions.

* The transport properties of a network can be studied at several stages during its growth. This

would help determine if there are particular stages in a network's development during which

transport properties are particularly different than other stages.

* Including more than one outlet or inlet. In real networks there is rarely a single outlet or inlet.

The effects of multiple inlets or outlets should be determined (e.g., is flow reversal more likely

in one setting or another?).

* Incorporating heterogeneous diameters. In real tumor networks the diameters vary signifi-

cantly, even along a particular segment. The effect of diameter variability should be explicitly

studied.

* Introducing physiologic parameters into the model such as active flow control mechanisms

(e.g., vasoconstriction).

By allowing computer simulations of many networks which are different in geometric parameters yet

are similarly scale-invariant, the most important determinants of tumor network transport properties

may be identified. Such a finding could be important for enhancing drug and nutrient delivery.

Aside from molecular transport, the implications of the scale-invariant nature of vascular net-

works for heat transfer should also be examined. It is important to examine whether the existence

of large avascular spaces in tumors may alter the vessel size which is to be considered as thermally

significant. In normal tissue, vessels smaller than 100m in diameter are considered thermally in-

significant. Whether this conclusion holds in the case of tumor tissue, where vessel diameter and

spacing vary much more than in normal tissue, needs to be explored.

Appendix A

Source Code

Following are listings of the key computer programs written and used in this research. Fractal dimen-

sion calculation programs were written using the THINK Pascal programming language (Symantec;

Cupertino, CA) and incorporated into the NIH-Image software'. The modeling program was writ-

ten using FORTRAN 77. The stress-based remodeling program was written using MATLAB matrix

manipulation software.

A.1 External Pascal Routines

The following external Pascal routines are referred to in the Pascal programs:

DisposPtr frees the memory used by a given pointer variable.

GetDateTime retrieves the system time in seconds.

IUTimeString formats the system time for display.

PutMessage displays a message using a note alert [86].

PutChar writes a character to NIH-Image's text buffer.

PutReal writes a real variable to NIH-Image's text buffer.

PutString writes a string to NIH-Image's text buffer.

SaveAsText saves NIH-Image's text buffer to a file, based on the information obtained through

the SFPutFile routine.

SelectAll defines the whole image as the region of interest.

1NIH-Image is a public domain program. The software and all supporting documentation are available by anony-
mous ftp from zippy.nimh.nih.gov.

SFPutFile brings up Macintosh's file saving dialog box and obtains the file saving information

from the user [86].

ShowMessage displays a string in NIH-Image's Info window.

A.2 Box Counting Algorithm

procedure DoBoxDimension;
const
NUM BOX SIZES = 25;
BOXES WITHNOITERATIONS = 3;
INCLUDE_SECONDS = FALSE;
WIDTH_TOTAL = 10;
WIDTHFLOAT = 8;
MAXLENGTH = 1024;

type
ImageType = array[0..MAX LENGTH, 0..MAXLENGTH] of Boolean; 10
ImageTypePtr = ^ImageType;

var
imageArray: ImageTypePtr;
vstart, vend, hstart, hend, width, widthl, height, heightl, hloc,

vloc, k, j, i, i9, dbmFirst, dbmLast: integer;
sizeIndex, e, el, endl, xs, ys, xMargin, yMargin, nBoxX, nBoxY,

nolterationsCount, dbcFirst, dbcLast: integer;
xO, yO, cx, cy, xStart, yStart, xEnd, yEnd, maxL, LARGESTBOXINDEX,

FIRSTBOX INDEX, LASTBOX INDEX: integer;
longtmpl, longtmp2, e2, occBox, minOccBox, configIdx, timeInSeconds, 20

dbint, dbdecl, dbdec2, sddbint, sddbdecl, sddbdec2: longint;
templ, temp2, xr, yr, dbcmn, sddbcmn: extended;
sx, sy, st2, db, ss, sxoss, t, intcp, sintcp, sddb,

chi2, chi2Min, sigdat, dbmax, sddbmax: extended;
theLine: LineType;
boxSizes: array[1..NUM BOXSIZES] of integer;
occupiedBoxes: array[1..NUMBOX SIZES] of longint;
InBoxSizes, InOccupiedBoxes, localSlope:

array[1..NUM BOX SIZES] of extended;
smessage, smessagel, timeString, strtemp: Str255; 30
where: point;
reply: SFReply;
AutoSelectAll: Boolean;

begin
with info^ do begin

if BinaryPic then begin
TextBufSize := 0;
boxSizes[l] := 512;
templ := 512.0;
for k := 2 to NUMBOXSIZES do begin 40

repeat
temp2 := 0.793700526 * templ;
j := round(temp2);
templ := temp2
until j <> boxSizes[k - 1];
boxSizes[k] := j;

end;

AutoSelectAll := not RoiShowing;
if AutoSelectAll then 50
SelectAll(false);

if roiType <> RectRoi then begin
PutMessage('I can only deal with a rectangular ROI!');

exit(DoBoxDimension);
end;

with RoiRect do begin
hend := right;
vend := bottom; 60
vstart := top;
hstart := left;
width := right - left;
height := bottom - top;
end;

widthl := width - 1;
heightl := height - 1;
if width > height then
maxL := width
else 70
maxL := height;

smessage := concat('Idx', tab, 'Size');
LARGESTBOX_INDEX := 0;
repeat
LARGESTBOX_INDEX := LARGESTBOX INDEX + 1;

until boxSizes[LARGESTBOX INDEX] < maxL;

imageArray := ImageTypePtr(NewPtr(SizeOf(ImageType)));
if imageArray = nil then begin 80

DisposPtr(ptr(imageArray));
PutMessage('Insufficient memory');
exit(DoBoxDimension);
end;

if (height > MAXLENGTH) or (width > MAXLENGTH) then begin
longtmpl := MAXLENGTH;
DisposPtr(ptr(imageArray));
PutMessage(concat(' Image width/length must be less than ',
long2str(longtmpl), ' for dimension calculation!', cr, 'Change

MAXLENGTH constant in source code for larger image.')); 90
exit (DoBoxDimension);

end;
for vloc := 0 to heightl do begin

GetLine(hStart, vloc + vstart, width, theLine);
for hloc := 0 to widthl do begin

if theLine[hloc] = 0 then
imageArray^[hloc, vloc] := FALSE

else
imageArray ^ [hloc, vloc] := TRUE;

end; 100
end;

for k := LARGESTBOX_INDEX to NUM_BOX SIZES do begin
longtmpl := k;
longtmp2 := boxSizes[k];
if k < 10 then
smessage := concat(smessage, cr, '0', long2str(longtmpl),

tab, long2str(longtmp2))
else
smessage := concat(smessage, cr, long2str(longtmpl), 110

tab, long2str(longtmp2));
end;

smessage ;
smessagel : ;

PutString(concat('Number', tab, 'Box Size', tab, 'Occupied Boxes',
tab, 'ln [Box Size]', tab, 'ln [Occupied Boxes]', tab,
'Local Slope', cr));

120
GetDateTime(timeZero);
nolterationsCount := 0;

for sizeIndex := LARGESTBOX_INDEX to NUMBOX SIZES do begin
noIterationsCount := noIterationsCount + 1;
e := boxSizes(sizeIndex];
el := e - 1;
if noIterationsCount > BOXES WITH NO ITERATIONS then
endl := el

else
endl := 0; 130

longtmpl := endl + 1;
e2 := longtmpl * longtmpl;
configIdx := 0;
longtmpl := width;
longtmp2 := height;
minOccBox := longtmpl * longtmp2;
for xs := 0 to endl do begin

for ys := 0 to endl do begin
configIdx := configIdx + 1;

140
if CommandPeriod then begin

beep;
DisposPtr(ptr(imageArray));
exit(DoBoxDimension);

end;

xMargin := width + xs;
yMargin := height + ys;
occBox := 0;

150
xr := xMargin / e;
longtmpl := trunc(xr);
templ := longtmpl;
if templ = xr then
nBoxX := longtmpl - 1

else
nBoxX := longtmpl;

yr := yMargin / e;
longtmp2 := trunc(yr); 160
temp2 := longtmp2;
if temp2 = yr then
nBoxY := longtmp2 - 1

else
nBoxY := longtmp2;

for i := 0 to nBoxX do begin
for j := 0 to nBoxY do begin

x0 := i * e;
yO := j * e; 170

CX := XO - xs;
if cx < 0 then
xStart := 0

else
xStart := cx;

cx := xO - xs + el;
if cx > widthl then
xEnd := widthl 180

else
xEnd := cx;

cy := yO - ys;
if cy < 0 then
yStart := 0

else
yStart := cy;

cy := yO - ys + el; 190

if cy > heightl then
yEnd := heightl
else
yEnd := cy;

for vloc := yStart to yEnd do begin
for hloc := xStart to xEnd do begin

if imageArray^ [hloc, vloc] then begin
occBox := occBox + 1;
vloc := yEnd; 200
hloc := xEnd;

end;
end;

end;
end;

end;
if occBox < minOccBox then
minOccBox := occBox;

end;
ShowMessage(concat(smessage, cr, cr, 'Configuration ', 210

long2str(configIdx), ' out of ', long2str(e2),
cr, 'Minimum occupied boxes: '
long2str(minOccBox)));

end;
occupiedBoxes[sizeIndex] := minOccBox;
GetDateTime(timelnSeconds);
timeInSeconds := timelnSeconds - timeZero;
IUTimeString(timelnSeconds, INCLUDE SECONDS, timeString);
longtmpl := boxSizes[sizelndexl;
longtmp2 := occupiedBoxes[sizelndex]; 220
smessage := concat(smessagel, cr, long2str(longtmpl), tab,

long2str(longtmp2));
ShowMessage(concat('Sz', tab, 'Occupied', smessage, cr,

'Time: ', timeString));
smessagel := smessage;
smessage := concat(smessage, cr, 'Time: ', timeString);
InBoxSizes[sizelndex] := Ln(boxSizes[sizeIndex]);
InOccupiedBoxes[sizelndex] := Ln(occupiedBoxes[sizelndex]);
end;

230
for sizelndex := LARGEST BOX_INDEX to NUMBOX_SIZES do begin

if (sizeIndex > LARGEST BOX_INDEX + 1) and
(sizeIndex < NUMBOX SIZES - 1) then begin

sx := 0.0;
sy := 0.0;
st2 := 0.0;
db := 0.0;
for i9 := sizeIndex - 2 to sizeIndex + 2 do begin

sx := sx + InBoxSizes[i9);
sy := sy + InOccupiedBoxes[i9]; 240
end;

ss := 5.0; {number of points to calculate local slope }
sxoss := sx / ss;
for i9 := sizeIndex - 2 to sizeIndex + 2 do begin

t := InBoxSizes[i9] - sxoss;
st2 := st2 + t * t;
db := db + t * InOccupiedBoxes[i9];
end;

db := 0.0 - db / st2;
localSlope[sizeIndex] := db; 250

end
else
localSlope[sizeIndex] := 0.0;

longtmpl := sizeIndex;
strtemp := long2str(longtmpl);
PutString(strtemp);
PutChar(tab);

longtmpl := boxSizes[sizeIndex];
strtemp := long2str(longtmpl); 260
PutString(strtemp);
PutChar(tab);
longtmp2 := occupiedBoxes[sizeIndex];
strtemp := long2str(longtmp2);
PutString(strtemp);
PutChar(tab);
PutReal(lnBoxSizes[sizeIndex], WIDTHTOTAL, WIDTHFLOAT);
PutChar(tab);
PutReal(lnOccupiedBoxes[sizeIndex], WIDTHTOTAL, WIDTHFLOAT);
PutChar(tab); 270
PutReal(localSlope[sizeIndex], WIDTHTOTAL, WIDTHFLOAT);
PutChar(cr);

end;

where.v := 100;
where.h := 100;
SFPutFile(where, 'Save the results as?', concat(title, '.box'),

nil, reply);
if reply.good then
with reply do 280
SaveAsText(fname, vRefnum);

TextBufSize := 0;
PutString(concat('No. of pts. ', tab, '1st box no. ', tab,

'Last box no.', tab, 'lst box size', tab,
'Last box size', tab, 'Box Dimension', tab,
'Std Error', cr));

smessagel := concat('Pts', tab, 'Dbox');

for j := 7 to NUM BOX_SIZES - LARGESTBOXINDEX + 1 do begin 290
dbmax := 0.0;
chi2Min := 9999999999.9;
for LAST BOX INDEX := NUM BOX SIZES downto

LARGEST_BOX INDEX + j - 1 do begin
FIRSTBOX _INDEX := LASTBOX INDEX - j + 1;
sx := 0.0;
sy:= 0.0;
st2 := 0.0;
db := 0.0;
for i := FIRST BOXINDEX to LAST BOXINDEX do begin 300

sx := sx + InBoxSizes[i];
sy := sy + InOccupiedBoxes[i];
end;

ss:= LAST BOXINDEX - FIRSTBOXINDEX + 1.0;
Sxoss := SX / ss;

for i := FIRST BOX INDEX to LAST BOXINDEX do begin
t := InBoxSizes[i] - sxoss;
st2 := st2 + t * t;
db := db + t * InOccupiedBoxes[i]; 310

end;
db := db / st2;
intcp := (sy - sx * db) / ss;
sintcp := Sqrt((1.0 + sx * sx / (ss * st2)) / ss);
sddb := Sqrt(1.0 / st2);
chi2 := 0.0;

for i := FIRSTBOX INDEX to LAST_BOX_INDEX do begin
templ := InOccupiedBoxes[i] - intcp - db * InBoxSizes[i];
chi2 := chi2 + templ * templ; 320

end;
sigdat := Sqrt(chi2 / (ss - 2.0));
sintcp := sintcp * sigdat;
sddb := sddb * sigdat;
db := 0.0 - db;
if db > dbmax then begin

dbmax := db;
sddbmax := sddb;
dbmFirst := FIRST BOX INDEX;
dbmLast := LAST BOXINDEX; 330

end;
if chi2Min > chi2 then begin

chi2Min := chi2;
dbcmn := db;
sddbcmn := sddb;
dbcFirst := FIRST BOX INDEX;
dbcLast := LAST BOX INDEX;

end;
end;

340
longtmpl := j;
strtemp := concat('MX ', long2str(longtmpl));
PutString(strtemp);
PutChar(tab);
longtmpl := dbmFirst;
strtemp := long2str(longtmpl);
PutString(strtemp);
PutChar(tab);
longtmpl := dbmLast;
strtemp := long2str(longtmpl); 350
PutString(strtemp);
PutChar(tab);
longtmpl := boxSizes[dbmFirst];
strtemp := long2str(longtmpl);
PutString(strtemp);
PutChar(tab);
longtmp2 := boxSizes[dbmLast];
strtemp := long2str(longtmp2);
PutString(strtemp);
PutChar(tab); 360
PutReal(dbmax, WIDTH_TOTAL, WIDTHYLOAT);
PutChar(tab);
PutReal(sddbmax, WIDTHTOTAL, WIDTHFLOAT);
PutChar(cr);

longtmpl := j;
strtemp := concat('BS ', long2str(longtmpl));
PutString(strtemp);
PutChar(tab);
if j < 10 then 370
strtemp:= concat('0', long2str(longtmpl))
else
strtemp := long2str(longtmpl);
smessagel := concat(smessagel, cr, strtemp);
longtmpl := dbcFirst;
strtemp := long2str(longtmpl);
PutString(strtemp);
PutChar(tab);
longtmpl := dbcLast;
strtemp := long2str(longtmpl); 380
PutString(strtemp);
PutChar(tab);
longtmpl := boxSizes[dbcFirst];
strtemp := long2str(longtmpl);
PutString(strtemp);
PutChar(tab);
longtmp2 := boxSizes[dbcLast];
strtemp := long2str(longtmp2);
PutString(strtemp);
PutChar(tab); 390
PutReal(dbcmn, WIDTHTOTAL, WIDTH FLOAT);
PutChar(tab);
PutReal(sddbcmn, WIDTH TOTAL, WIDTHFLOAT);
PutChar(cr);

dbint := trunc(dbcmn);
dbdecl := trunc(dbcmn * 10.0) - dbint * 10;
dbdec2 := trunc(dbcmn * 100.0) - dbint * 100 - dbdecl * 10;
sddbint := trunc(sddbcmn);
sddbdecl := trunc(sddbcmn * 10.0) - sddbint * 10;
sddbdec2 := trunc(sddbcmn * 100.0) - sddbint * 100 -

sddbdecl * 10;
smessage := concat(smessagel, tab, long2str(dbint), '.',

long2str(dbdecl), long2str(dbdec2), '-',
long2str(sddbint), '. ', long2str(sddbdecl),
long2str(sddbdec2));

ShowMessage(smessage);
smessagel := smessage;
end;

where.v := 100;
where.h := 100;
SFPutFile(where, 'Save the results as?', concat(title, '.slopes'),

nil, reply);
if reply.good then
with reply do
SaveAsText(fname, vRefnum);

DisposPtr(ptr(imageArray));

end
else begin

PutMessage('This is not a binary image!');
exit (DoBoxDimension);

end;
end;

end;

A.3 Sandbox Algorithm

procedure DoSandDimension;
label
1120;

const
NUM BOX SIZES = 25;
BOXESWITH_NO ITERATIONS = 3;
INCLUDESECONDS = FALSE;
WIDTHTOTAL = 10;
WIDTH FLOAT = 8;
MAX LENGTH = 1024;
type
ImageType = array[0..MAX LENGTH, 0..MAX LENGTH] of Boolean;
ImageTypePtr = ^ImageType;
var
imageArray: ImageTypePtr;
vstart, vend, hstart, hend, width, widthl, height, heightl, hloc,

vloc, k, j, i, i9, dbmFirst, dbmLast: integer;
sizeIndex, e, xs, ys, minLengthY, minLengthX, xr, yr, minLength,

dbcFirst, dbcLast: integer;
xO, yO, xStart, yStart, xEnd, yEnd, LARGEST_BOX INDEX,

FIRST BOX INDEX, LASTBOX INDEX: integer;
longtmpl, longtmp2, mass, configIdx, timeInSeconds, timeZero,

numParticles, xc, yc, two, numIter: longint;
dbint, dbdecl, dbdec2, sddbint, sddbdecl, sddbdec2: longint;
templ, temp2, dbcmn, sddbcmn: extended;

100

sx, sy, st2, db, ss, sxoss, t, intcp, sintcp, sddb, chi2,
chi2Min, sigdat, dbmax, sddbmax: extended;

theLine: LineType;
boxSizes: array[1..NUM BOX_SIZES] of integer;
totalMass: array[l..NUM BOX_SIZES] of longint; 30
InBoxSizes, InTotalMass, localSlope:

array[l..NUMBOX_SIZES] of extended;
smessage, smessagel, timeString, strtemp: Str255;
where: point;
reply: SFReply;
AutoSelectAll: Boolean;

begin
with info ^ do begin

if BinaryPic then begin
TextBufSize := 0; 40
boxSizes[1] := 512;
templ := 512.0;
for k := 2 to NUMBOX SIZES do begin

repeat
temp2 := 0.793700526 * templ;
j := round(temp2);
templ := temp2

until j <> boxSizes[k - 1];
boxSizes[k] := j;
end; 50

AutoSelectAll := not RoiShowing;
if AutoSelectAll then
SelectAll(false);

if roiType <> RectRoi then begin
PutMessage('I can only deal with a rectangular ROI!');
exit (DoSandDimension);

end;
60

with RoiRect do begin
hend := right;
vend := bottom;
vstart := top;
hstart := left;
width := right - left;
height := bottom - top;

end;
widthl := width - 1;
heightl := height - 1; 70

numParticles := 0;
smessage := concat('Idx', tab, 'Size');

imageArray := ImageTypePtr(NewPtr(SizeOf(ImageType)));
if imageArray = nil then begin

DisposPtr(ptr(imageArray));
PutMessage(' Insufficient memory');
exit(DoSandDimension);

end; 80
if (height > MAXLENGTH) or (width > MAXLENGTH) then begin

longtmpl := MAX LENGTH;
DisposPtr(ptr(imageArray));
PutMessage(concat('Image width/length must be less than ',

long2str(longtmpl), ' for dimension calculation! ',
cr, 'Change MAX-LENGTH constant in source code for

larger image.'));
exit (DoSandDimension);

end;
for vloc := 0 to heightl do begin 90

GetLine(hStart, vloc + vstart, width, theLine);
for hloc := 0 to widthl do begin

if theLine[hloc] = 0 then

101

imageArray ^ [hloc, vloc] := FALSE
else begin

numParticles := numParticles + 1;
imageArray ^ [hloc, vloc] := TRUE;
end;

end;
end; 100

GetDateTime(timeZero);

{ Find center of mass }
xc:= 0;
yc:= 0;
for vloc := 0 to heightl do begin

for hloc := 0 to widthl do begin
if imageArray ^ [hloc, vloc] then begin

xc := xc + hloc; 110
ye :c yc + vloc;

end;
end;

end;
xc := round(xc / numParticles);
ye := round(yc / numParticles);

if xc < yc then begin
if xc < width - xc - 1 then begin

if xc < height - yc - 1 then begin 120
minLength := xc;

end
else begin

minLength := height - yc - 1;
end;

end
else begin

if width - xc - 1 < height - yc - 1 then begin
minLength := width - xc - 1;

end 130
else begin

minLength := height - yc - 1;
end;

end;
end

else begin
if yc < width - xc - 1 then begin

if yc < height - yc - 1 then begin
minLength := yc;

end 140
else begin

minLength := height - yc - 1;
end;

end
else begin

if width - xc - 1 < height - yc - 1 then begin
minLength := width - xc - 1;

end
else begin

minLength := height - yc - 1; 150
end;

end;
end;

minLength := minLength div 2;

for i := 0 to minLength do begin
for vloc := -i to i do begin
for hloc := -i to i do begin

if imageArray^[(xc + hloc), (ye + vloc)] then begin 160
xc := xc + hloc;

102

ye := yc + vloc;
goto 1120;

end;
end;

end;
end;
PutMessage('Could not find occupied pixel around center of mass');
exit(DoSandDimension);

170
1120:

if xc < width - xc - 1 then
minLengthX := xc

else
minLengthX := width - xc - 1;

if yc < height - yc - 1 then
minLengthY := yc

else
minLengthY := height - yc - 1; 180

if minLengthY < minLengthX then
minLength := minLengthY

else
minLength := minLengthX;

minLength := minLength div 2;
minLengthX := minLengthX div 2;
minLengthY := minLengthY div 2;

190
LARGEST BOX INDEX := 1;
while (boxSizes[LARGEST BOX INDEX] >= minLength) do begin

LARGEST BOX INDEX := LARGEST BOX INDEX + 1;
end;

ShowMessage(concat(long2str(minLength), cr, 'CM: ', long2str(xc),
',', long2str(yc)));

for k := LARGEST3BOX_INDEX to NUMBOXSIZES do begin
longtmpl := k; 200
longtmp2 := boxSizes[k];
if k < 10 then
smessage := concat(smessage, cr, '0', long2str(longtmpl),

tab, long2str(longtmp2))
else
smessage := concat(smessage, cr, long2str(longtmpl), tab,

long2str(longtmp2));
end;

smessage : ' '; 210
smessagel := ;

PutString(concat('Number', tab, 'Box Size', tab, 'Total Mass',
tab, 'ln [Box Size]', tab, 'ln [Total Mass]',
tab, 'Local Slope', cr));

{ Find mass per radius }

for sizelndex := LARGEST_BOX_INDEX to NUM3BOX SIZES do begin
totalMass[sizeIndex] := 0; 220
InBoxSizes[sizeIndex] := Ln(2 * boxSizes[sizeIndex] + 1);

end;

two := 2;
numIter := (two * minLengthX + 1) * (two * minLengthY + 1);
configIdx := 0;
for yr := (yc - minLengthY) to (yc + minLengthY) do begin

for xr := (xc - minLengthX) to (xc + minLengthX) do begin
if imageArray^[xr, yr] then begin

103

configIdx := configIdx + 1; 230
for sizeIndex := LARGEST BOX INDEX to NUM BOX SIZES do begin

mass := 0;
yStart := yr - boxSizes[sizeIndex];
yEnd := yr + boxSizes[sizeIndex];
xStart := xr - boxSizes[sizeIndex];
xEnd := xr + boxSizes[sizeIndex];
for vloc := yStart to yEnd do begin

for hloc := xStart to xEnd do begin
if imageArray ^ [hloc, vloc] then
mass := mass + 1; 240

end;
end;

totalMass[sizelndex] := totalMass[sizeIndex] + mass;
end;

end;
end;

GetDateTime(timeInSeconds);
timeInSeconds := timeInSeconds - timeZero;
IUTimeString(timelnSeconds, INCLUDE_SECONDS, timeString); 250
ShowMessage(concat('Time: ', timeString, cr, 'Iteration: ,

long2str(configIdx), cr, ' Area: ', long2str(numIter)));

end;

for sizeIndex := LARGEST BOX INDEX to NUM BOXSIZES do begin
InTotalMass[sizeIndex] := Ln(totalMass[sizeIndex] / configIdx);

end;

260
for sizeIndex := LARGEST BOX INDEX to NUMBOXSIZES do begin

if (sizeIndex > LARGESTBOXINDEX + 1) and
(sizeIndex < NUMBOX SIZES - 1) then begin

sx := 0.0;
sy := 0.0;
st2 := 0.0;
db := 0.0;
for i9 := sizeIndex - 2 to sizeIndex + 2 do begin

sx := sx + InBoxSizes[i9];
sy := sy + InTotalMass[i9]; 270

end;
ss := 5.0; {number of points to calculate local slope }
sxoss := sx / ss;
for i9 := sizeIndex - 2 to sizeIndex + 2 do begin

t := InBoxSizes[i9] - sxoss;
st2 := st2 + t * t;
db := db + t * InTotalMass[i9j;

end;
db := db / st2;
localSlope[sizeIndex] := db; 280

end
else
localSlope[sizeIndex] := 0.0;

longtmpl := sizeIndex;
strtemp := long2str(longtmpl);
PutString(strtemp);
PutChar(tab);
longtmpl := 2 * boxSizes[sizeIndex] + 1;
strtemp := long2str(longtmpl); 290
PutString(strtemp);
PutChar(tab);
longtmp2 := totalMass[sizeIndex];
strtemp := long2str(longtmp2);
PutString(strtemp);
PutChar(tab);
PutReal(lnBoxSizes[sizeIndex], WIDTHTOTAL, WIDTH_FLOAT);

104

PutChar(tab);
PutReal(lnTotalMass[sizeIndex], WIDTHTOTAL, WIDTHFLOAT);
PutChar(tab); 300
PutReal(localSlope[sizeIndex], WIDTHTOTAL, WIDTHFLOAT);
PutChar(cr);
end;

where.v := 100;
where.h := 100;
SFPutFile(where, 'Save the results as?', concat(title, '.sand'),

nil, reply);
if reply.good then
with reply do 310
SaveAsText(fname, vRefnum);

TextBufSize := 0;
PutString(concat('No. of pts.', tab, '1st box no.', tab,

'Last box no.', tab, 'lst box size', tab,
'Last box size', tab, 'Sandbox Dimension',
tab, 'Std Error', cr));

smessagel := concat('Pts', tab, 'Dbox');

for j := 7 to NUM BOX SIZES - LARGESTBOX INDEX + 1 do begin 320
dbmax := 0.0;
chi2Min := 9999999999.9;
for LAST BOX INDEX := NUM BOX SIZES downto

LARGESTBOX_INDEX + j - 1 do begin
FIRST BOX INDEX := LASTBOXINDEX - j + 1;
sx := 0.0;
sy := 0.0;
st2 := 0.0;
db := 0.0;
for i := FIRST_BOX INDEX to LASTBOX INDEX do begin 330

sx := sx + InBoxSizes[i];
sy := sy + InTotalMass[i];

end;
ss:= LAST BOX INDEX - FIRST BOX INDEX + 1.0;
sxoss := sx / ss;

for i := FIRST BOX INDEX to LAST BOX INDEX do begin
t := InBoxSizes[i] - sxoss;
st2 := st2 + t *t;
db := db + t * InTotalMass[i]; 340

end;
db := db / st2;
intcp := (sy - sx * db) / ss;
sintcp : Sqrt((1.0 + sx * sx / (ss * st2)) / ss);
sddb:= Sqrt(1.0 / st2);
chi2 := 0.0;

for i := FIRST BOX INDEX to LASTBOX INDEX do begin
templ := InTotalMass[i] - intcp - db * InBoxSizes(i];
chi2 := chi2 + templ * templ; 350

end;
sigdat := Sqrt(chi2 / (ss - 2.0));
sintcp := sintcp * sigdat;
sddb := sddb * sigdat;
if db > dbmax then begin

dbmax := db;
sddbmax := sddb;
dbmFirst:= FIRST BOX INDEX;
dbmLast := LASTBOX_INDEX;

end; 360
if chi2Min > chi2 then begin

chi2Min := chi2;
dbcmn := db;
sddbcmn := sddb;
dbcFirst := FIRST_BOX INDEX;

105

dbcLast := LAST BOX INDEX;
end;

end;

longtmpl := j; 370
strtemp := concat('MX ', long2str(longtmpl));
PutString(strtemp);
PutChar(tab);
longtmpl := dbmFirst;
strtemp := long2str(longtmpl);
PutString(strtemp);
PutChar(tab);
longtmpl := dbmLast;
strtemp := long2str(longtmpl);
PutString(strtemp); 380
PutChar(tab);
longtmpl := 2 * boxSizes[dbmFirst] + 1;
strtemp := long2str(longtmpl);
PutString(strtemp);
PutChar(tab);
longtmp2 := 2 * boxSizes[dbmLast] + 1;
strtemp := long2str(longtmp2);
PutString(strtemp);
PutChar(tab);
PutReal(dbmax, WIDTH_TOTAL, WIDTHFLOAT); 390
PutChar(tab);
PutReal(sddbmax, WIDTHTOTAL, WIDTHFLOAT);
PutChar(cr);

longtmpl := j;
strtemp := concat('BS ', long2str(longtmpl));
PutString(strtemp);
PutChar(tab);
if j < 10 then
strtemp := concat('0', long2str(longtmpl)) 400

else
strtemp := long2str(longtmpl);

smessagel := concat(smessagel, cr, strtemp);
longtmpl := dbcFirst;
strtemp := long2str(longtmpl);
PutString(strtemp);
PutChar(tab);
longtmpl := dbcLast;
strtemp := long2str(longtmpl);
PutString(strtemp); 410
PutChar(tab);
longtmpl := 2 * boxSizes[dbcFirst] + 1;
strtemp := long2str(longtmpl);
PutString(strtemp);
PutChar(tab);
longtmp2 := 2 * boxSizes[dbcLast] + 1;
strtemp := long2str(longtmp2);
PutString(strtemp);
PutChar(tab);
PutReal(dbcmn, WIDTH-TOTAL, WIDTHFLOAT); 420
PutChar(tab);
PutReal(sddbcmn, WIDTHTOTAL, WIDTH_FLOAT);
PutChar(cr);

dbint := trunc(dbcmn);
dbdecl := trunc(dbcmn * 10.0) - dbint * 10;
dbdec2 := trunc(dbcmn * 100.0) - dbint * 100 - dbdecl * 10;
sddbint := trunc(sddbcmn);
sddbdecl := trunc(sddbcmn * 10.0) - sddbint * 10; 430
sddbdec2 := trunc(sddbcmn * 100.0) - sddbint * 100 -

sddbdecl * 10;
smessage := concat(smessagel, tab, long2str(dbint), '.',

106

long2str(dbdecl), long2str(dbdec2), '±',
long2str(sddbint), '. ', long2str(sddbdecl),
long2str(sddbdec2));

ShowMessage(smessage);
smessagel := smessage;

end;
440

where.v := 100;
where.h := 100;
SFPutFile(where, 'Save the results as?', concat(title, '.slopes'),

nil, reply);
if reply.good then
with reply do
SaveAsText(fname, vRefnum);

DisposPtr(ptr(imageArray));
450

end
else begin

PutMessage('This is not a binary image! ');
exit(DoSandDimension);

end;
end;

end;

A.4 Correlation Algorithm

procedure DoCorrDimension;
label
1120;

const
NUM BOX SIZES = 25;
EMBEDDING-DIM = 2;
INCLUDE_SECONDS = FALSE;
WIDTH TOTAL = 10;
WIDTH FLOAT = 8;
MAX LENGTH = 1024; 10

type
ImageType = array[0..MAX LENGTH, 0..MAX LENGTH] of Boolean;
ImageTypePtr = ^ImageType;
var
imageArray: ImageTypePtr;
vstart, vend, hstart, hend, width, widthl, height, heightl, hloc,

vloc, k, j, i, i9, dbmFirst, dbmLast: integer;
sizelndex, e, xs, ys, minLengthY, minLengthX, xr, yr, minLength,

dbcFirst, dbcLast: integer;
xO, yO, xStart, yStart, xEnd, yEnd, LARGEST BOX INDEX, 20

FIRST BOX INDEX, LAST BOX INDEX: integer;
longtmpl, longtmp2, mass, configldx, timeInSeconds, timeZero,

numParticles, xc, yc, two, numIter: longint;
dbint, dbdecl, dbdec2, sddbint, sddbdecl, sddbdec2: longint;
templ, temp2, dbcmn, sddbcmn, distance: extended;
sx, sy, st2, db, ss, sxoss, t, intcp, sintcp, sddb, chi2, chi2Min,

sigdat, dbmax, sddbmax: extended;
theLine: LineType;
boxSizes: array[l..NUM BOX.SIZES] of integer;
totalMass: array[1l..NUMBOXSIZES] of longint; 30
InBoxSizes, InTotalMass, localSlope, normalizationFactor:

array[l..NUM BOX SIZES] of extended;
smessage, smessagel, timeString, strtemp: Str255;

107

where: point;
reply: SFReply;
AutoSelectAll: Boolean;

begin
with info^ do begin

if BinaryPic then begin
TextBufSize := 0; 40
boxSizes[1] := 512;
templ := 512.0;
for k := 2 to NUM BOX SIZES do begin

repeat
temp2 := 0.793700526 * templ;
j := round(temp2);
templ := temp2

until j <> boxSizes[k - 1];
boxSizes[k] := j;

end; 50

AutoSelectAll := not RoiShowing;
if AutoSelectAll then
SelectAll(false);

if roiType <> RectRoi then begin
PutMessage('I can only deal with a rectangular ROI!');
exit(DoCorrDimension);

end;
60

with RoiRect do begin
hend := right;
vend := bottom;
vstart := top;
hstart := left;
width := right - left;
height := bottom - top;

end;
widthl := width - 1;
heightl := height - 1; 70

numParticles := 0;
smessage := concat('Idx', tab, 'Size');

imageArray := ImageTypePtr(NewPtr(SizeOf(ImageType)));
if imageArray = nil then begin

DisposPtr(ptr(imageArray));
PutMessage('Insufficient memory');
exit(DoCorrDimension);
end; 80

if (height > MAX LENGTH) or (width > MAX-LENGTH) then begin
longtmpl := MAX LENGTH;
DisposPtr(ptr(imageArray));
PutMessage(concat('Image width/length must be less than ',

long2str(longtmpl), ' for dimension calculation!',
cr, 'Change MAX_LENGTH constant in source code for

larger image.'));
exit (DoCorrDimension);
end;

for vloc := 0 to heightl do begin 90
GetLine(hStart, vloc + vstart, width, theLine);
for hloc := 0 to widthl do begin

if theLine[hloc] - 0 then
imageArray ^ [hloc, vloc] := FALSE

else begin
numParticles := numParticles + 1;
imageArray^[hloc, vloc] := TRUE;

end;
end;

end; 100

108

GetDateTime(timeZero);

{ Find center of mass }
xc := 0;
yc := 0;
for vloc := 0 to heightl do begin

for hloc := 0 to widthl do begin
if imageArray ^ [hloc, vloc] then begin

xc := xc + hloc; 110
yc := ye + vloc;

end;
end;

end;
xc := round(xc / numParticles);
yc := round(yc / numParticles);

if xc < yc then begin
if xc < width - xc - 1 then begin

if xc < height - yc - 1 then begin 120
minLength := xc;

end
else begin

minLength:= height - yc - 1;
end;

end
else begin

if width - xc - 1 < height - yc - 1 then begin
minLength := width - xc - 1;

end 130
else begin

minLength := height - yc - 1;
end;

end;
end

else begin
if yc < width - xc - 1 then begin

if yc < height - yc - 1 then begin
minLength := yc;

end 140
else begin

minLength:= height - yc - 1;
end;

end
else begin

if width - xc - 1 < height - yc - 1 then begin
minLength := width - xc - 1;

end
else begin

minLength:= height - yc - 1; 150
end;

end;
end;

minLength := minLength div 2;

for i := 0 to minLength do begin
for vloc := -i to i do begin
for hloc := -i to i do begin

if imageArray^ [(xc + hloc), (ye + vloc)] then begin 160
xc := xc + hloc;
yc := yc + vloc;
goto 1120;
end;

end;
end;

end;
PutMessage('Could not find occupied pixel around center of mass');
exit(DoCorrDimension);

109

1120:
if xc < width - xc - 1 then
minLengthX := xc
else
minLengthX := width - xc - 1;

if yc < height - yc - 1 then
minLengthY:= yc
else
minLengthY := height - yc - 1; 180

if minLengthY < minLengthX then
minLength := minLengthY

else
minLength := minLengthX;

minLength := minLength div 2;
minLengthX := minLengthX div 2;
minLengthY := minLengthY div 2;

190
LARGEST BOX INDEX := 1;
while (boxSizes[LARGEST_BOX INDEX] >= trunc(minLength / 1.1))
do begin
LARGESTBOXINDEX := LARGEST BOXINDEX + 1;
end;

ShowMessage(concat(long2str(minLength), cr, 'CM: ',
long2str(xc), ',', long2str(yc)));

for k := LARGESTBOX_INDEX to NUMBOX_SIZES do begin 200
longtmpl := k;
longtmp2 := boxSizes[k];
if k < 10 then
smessage := concat(smessage, cr, '0', long2str(longtmpl),

tab, long2str(longtmp2))
else
smessage := concat(smessage, cr, long2str(longtmpl), tab,

long2str(longtmp2));
end;

210
smessage :=
smessagel :=

PutString(concat('Number', tab, 'Radius', tab, 'Total Mass',
tab, 'ln [Radius]', tab, 'ln [Norm Mass]', tab,
'Local Slope', cr));

{ Find mass per ring }

for sizeIndex := LARGESTBOX INDEX to NUMBOX_SIZES do begin 220
totalMass[sizeIndex] := 0;
InBoxSizes[sizeIndex] := Ln(2 * boxSizes[sizeIndex] + 1);

end;

two := 2;
numIter := (two * minLengthX + 1) * (two * minLengthY + 1);
configIdx := 0;
for yr := (yc - minLengthY) to (yc + minLengthY) do begin

for xr := (xc - minLengthX) to (xc + minLengthX) do begin
if imageArray ^ [xr, yr] then begin 230

configIdx := configIdx + 1;
for sizeIndex := LARGEST_BOX_INDEX to NUM BOX_SIZES do begin

mass := 0;
yStart := yr - round(1.1 * boxSizes[sizeIndex]);
yEnd := yr + round(1.1 * boxSizes[sizeIndex]);
xStart := xr - round(1.1 * boxSizes[sizeIndex]);
xEnd := xr + round(1.1 * boxSizes[sizelndex]);

110

for vloc := yStart to yEnd do begin
for hloc := xStart to xEnd do begin

if imageArray^ [hloc, vloc] then begin 240
distance := sqrt(1.0 * (hloc - xr) * (hloc - xr) +

1.0 * (vloc - yr) * (vloc - yr));
if ((distance <= 1.1 * boxSizes[sizelndex]) and

(distance >= 1.0 * boxSizes(sizelndex])) then
mass:= mass + 1;

end;
end;

end;
totalMass[sizeIndex] := totalMass[sizeIndex] + mass;

end; 250
end;

end;

GetDateTime(timelnSeconds);
timelnSeconds := timelnSeconds - timeZero;
IUTimeString(timeInSeconds, INCLUDE SECONDS, timeString);
ShowMessage(concat('Time: ', timeString, cr, 'Iteration:

long2str(configIdx), cr, 'Area: ', long2str(numIter)));

end; 260

for sizeIndex := LARGESTBOX INDEX to NUM BOX SIZES do begin
mass := 0;
yStart := -round(1.1 * boxSizes[sizeIndex]);
yEnd := round(1.1 * boxSizes[sizeIndex]);
xStart := -round(1.1 * boxSizes[sizelndex]);
xEnd := round(1.1 * boxSizes[sizeIndex]);
for vloc := yStart to yEnd do begin
for hloc := xStart to xEnd do begin

distance := sqrt(1.0 * hloc * hloc + 1.0 * vloc * vloc); 270
if ((distance <= 1.1 * boxSizes[sizeIndex)) and (distance >= 1.0 * boxSizes[sizeIndex])) then
mass := mass + 1;

end;
end;

normalizationFactor[sizeIndex] := 1.0 * mass;
end;

for sizeIndex := LARGEST BOX INDEX to NUMBOX SIZES do begin
InTotalMass[sizeIndex] := Ln(totalMass[sizeIndex] / 280

(configIdx * normalizationFactor[sizeIndex]));
end;

for sizeIndex := LARGEST BOX INDEX to NUM BOXSIZES do begin
if (sizeIndex > LARGEST BOXINDEX + 1) and

(sizeIndex < NUM BOX_SIZES - 1) then begin
sx := 0.0;
sy := 0.0;
st2 := 0.0;
db := 0.0; 290
for i9 := sizelndex - 2 to sizeIndex + 2 do begin

sx := sx + InBoxSizes[i9];
sy := sy + InTotalMass[i9];

end;
ss := 5.0; {number of points to calculate local slope }
sxoss := sx / ss;
for i9 := sizeIndex - 2 to sizeIndex + 2 do begin

t := InBoxSizes[i9] - sxoss;
st2 := st2 + t * t;
db := db + t * InTotalMass[i9]; 300

end;
db := db / st2;
localSlope[sizelndex] := db + EMBEDDINGDIM;

end
else

localSlope[sizeIndex] := 0.0;

longtmpl := sizeIndex;
strtemp := long2str(longtmpl);
PutString(strtemp); 310
PutChar(tab);
longtmpl := boxSizes[sizeIndex];
strtemp := long2str(longtmpl);
PutString(strtemp);
PutChar(tab);
longtmp2 := totalMass[sizeIndex];
strtemp := long2str(longtmp2);
PutString(strtemp);
PutChar(tab);
PutReal(lnBoxSizes[sizeIndex], WIDTHTOTAL, WIDTHFLOAT); 320
PutChar(tab);
PutReal(lnTotalMass[sizeIndex], WIDTH_TOTAL, WIDTH_FLOAT);
PutChar(tab);
PutReal(localSlope[sizeIndex], WIDTH TOTAL, WIDTHFLOAT);
PutChar(cr);

end;

where.v := 100;
where.h := 100;
SFPutFile(where, 'Save the results as?', concat(title, '.corr'), 330

nil, reply);
if reply.good then
with reply do
SaveAsText(fname, vRefnum);

TextBufSize := 0;
PutString(concat('No. of pts.', tab, '1st rad no.', tab,

'Last rad no.', tab, 'ist rad size', tab,
'Last rad size', tab, 'Corr Dimension', tab,
'Std Error', cr)); 340

smessagel := concat('Pts', tab, 'Dbox');

for j := 7 to NUMBOX SIZES - LARGESTBOXJINDEX + 1 do begin
dbmax := 0.0;
chi2Min := 9999999999.9;
for LAST BOX INDEX := NUM BOX SIZES downto

LARGEST BOX INDEX + j - 1 do begin
FIRSTBOX_INDEX := LAST BOXINDEX - j + 1;
sx := 0.0;
sy := 0.0; 350
st2 := 0.0;
db := 0.0;
for i := FIRSTBOXINDEX to LASTBOX_INDEX do begin

sx := sx + InBoxSizes[i];
sy := sy + InTotalMass[i];

end;
as := LAST BOXINDEX - FIRSTBOXINDEX + 1.0;
sxoss := sx / ss;

for i := FIRST BOX INDEX to LASTBOXINDEX do begin 360
t := InBoxSizes[i] - sxoss;
st2 := st2 + t *t;
db := db + t * InTotalMass[i];

end;
db := db / st2;
intcp := (sy - sx * db) / ss;
sintcp:= Sqrt((1.0 + sx * sx / (ss * st2)) / ss);
sddb := Sqrt(1.0 / st2);
chi2 := 0.0;

370
for i := FIRSTBOXINDEX to LAST.BOX_INDEX do begin

templ := InTotalMass[i] - intcp - db * InBoxSizes[i];
chi2 := chi2 + templ * templ;

112

end;
sigdat := Sqrt(chi2 / (ss - 2.0));
sintcp := sintcp * sigdat;
sddb := sddb * sigdat;

db := db + EMBEDDING DIM;
if db > dbmax then begin 380

dbmax := db;
sddbmax := sddb;
dbmFirst := FIRST BOX INDEX;
dbmLast := LASTBOX_INDEX;

end;
if chi2Min > chi2 then begin

chi2Min := chi2;
dbcmn := db;
sddbcmn := sddb;
dbcFirst := FIRST BOX INDEX; 390
dbcLast := LASTBOX_INDEX;

end;
end;

longtmpl := j;
strtemp := concat('MX ', long2str(longtmpl));
PutString(strtemp);
PutChar(tab);
longtmpl := dbmFirst;
strtemp := long2str(longtmpl); 400
PutString(strtemp);
PutChar(tab);
longtmpl := dbmLast;
strtemp := long2str(longtmpl);
PutString(strtemp);
PutChar(tab);
longtmpl := boxSizes[dbmFirst];
strtemp := long2str(longtmpl);
PutString(strtemp);
PutChar(tab); 410
longtmp2 := boxSizes[dbmLast];
strtemp := long2str(longtmp2);
PutString(strtemp);
PutChar(tab);
PutReal(dbmax, WIDTH TOTAL, WIDTH_FLOAT);
PutChar(tab);
PutReal(sddbmax, WIDTH_TOTAL, WIDTH_FLOAT);
PutChar(cr);

longtmpl := j; 420
strtemp := concat('BS ', long2str(longtmpl));
PutString(strtemp);
PutChar(tab);
ifj < 10 then
strtemp:= concat('0', long2str(longtmpl))

else
strtemp := long2str(longtmpl);

smessagel := concat(smessagel, cr, strtemp);
longtmpl := dbcFirst;
strtemp := long2str(longtmpl); 430
PutString(strtemp);
PutChar(tab);
longtmpl := dbcLast;
strtemp := long2str(longtmpl);
PutString(strtemp);
PutChar(tab);
longtmpl := boxSizes[dbcFirst];
strtemp := long2str(longtmpl);
PutString(strtemp);
PutChar(tab); 440
longtmp2 := boxSizes[dbcLast];

113

strtemp := long2str(longtmp2);
PutString(strtemp);
PutChar(tab);
PutReal(dbcmn, WIDTH TOTAL, WIDTHFLOAT);
PutChar(tab);
PutReal(sddbcmn, WIDTH_TOTAL, WIDTHFLOAT);
PutChar(cr);

450
dbint := trunc(dbcmn);
dbdecl := trunc(dbcmn * 10.0) - dbint * 10;
dbdec2 := trunc(dbcmn * 100.0) - dbint * 100 - dbdecl * 10;
sddbint := trunc(sddbcmn);
sddbdecl := trunc(sddbcmn * 10.0) - sddbint * 10;
sddbdec2 := trunc(sddbcmn * 100.0) - sddbint * 100 -

sddbdecl * 10;
smessage := concat(smessagel, tab, long2str(dbint), '.'

long2str(dbdecl), long2str(dbdec2), '±',
long2str(sddbint), '. ', long2str(sddbdecl), 460
long2str(sddbdec2));

ShowMessage(smessage);
smessagel := smessage;

end;

where.v := 100;
where.h := 100;
SFPutFile(where, 'Save the results as?', concat(title, '.slopes'),

nil, reply);
if reply.good then 470
with reply do
SaveAsText(fname, vRefnum);

DisposPtr(ptr(imageArray));

end
else begin

PutMessage('This is not a binary image!');
exit(DoCorrDimension);
end; 480

end;
end;

A.5 Minimum-Path Algorithms

A.5.1 Minimum-Path Identification

procedure DoFindMinPath;
const
MAXLENGTH = 640;

type
ImageType = array[0..MAX LENGTH, 0..MAX_LENGTH] of integer;
ImageTypePtr = ^ImageType;

var
vstart, vend, hstart, hend, width, widthl, width2, height, height1,

height2, hloc, vloc: integer;
stepIndex, breakPoint, x, y, xe, ye, xs, ys: integer; 10
longtmpl: longint;
imageArray: ImageTypePtr;
theLine: LineType;
AutoSelectAll, BreakThrough, noProgress: Boolean;

begin

with info ^ do begin
if BinaryPic then begin

AutoSelectAll := not RoiShowing;
if AutoSelectAll then 20
SelectAll(false);

if roiType <> RectRoi then begin
PutMessage('I can only deal with a rectangular ROI! ');
exit(DoFindMinPath);

end;

with RoiRect do begin
hend := right;
vend := bottom; 30
vstart := top;
hstart := left;
width := right - left;
widthl := width - 1;
width2 := width - 2;
height := bottom - top;
heightl := height - 1;
height2 := height - 2;

end;
40

imageArray := ImageTypePtr(NewPtr(SizeOf(ImageType)));
if imageArray = nil then begin

DisposPtr(ptr(imageArray));
PutMessage(' Insufficient memory');
exit (DoFindMinPath);
end;

for vloc := 0 to heightl do begin
for hloc := 0 to widthl do begin

imageArray ^ [hloc, vloc] := 0; 50
end;

end;

noProgress := TRUE;
BreakThrough := FALSE;
stepIndex := 1;
GetLine(hstart, vstart, width, theLine);
for hloc := 0 to widthl do begin

if theLine[hloc] = 255 then begin
imageArray^[hloc, 0) := stepIndex; 60

end;
end;

repeat
vloc := 0;
hloc := 0;
if imageArray ^ [hloc, vloc] = stepIndex then begin

GetLine(hstart, vloc + vstart, width, theLine);
if (theLine[hloc + 1] = 255) and

(imageArray^[hloc + 1, vloc] = 0) then 70
imageArray^[hloc + 1, vloc] := stepIndex + 1;
GetLine(hstart, vloc + vstart + 1, width, theLine);
if (theLine[hloc] = 255) and (imageArray^[hloc, vloc + 1] = 0) then
imageArray^[hloc, vloc + 1] := stepIndex + 1;

if (theLine[hloc + 1] = 255) and
(imageArray^[hloc + 1, vloc + 1] = 0) then

imageArray^(hloc + 1, vloc + 1] := stepIndex + 1;
noProgress := FALSE;
end;

80
for hloc := 1 to width2 do begin

if imageArray ^ [hloc, vloc] = stepIndex then begin
GetLine(hstart, vloc + vstart, width, theLine);

115

if (theLine[hloc - 1] = 255) and
(imageArray^[hloc - 1, vloc] = 0) then

imageArray^[hloc - 1, vloc] := stepIndex + 1;
if (theLine[hloc + 1] = 255) and

(imageArray^[hloc + 1, vloc] = 0) then
imageArray^[hloc + 1, vloc] := stepIndex + 1;

GetLine(hstart, vloc + vstart + 1, width, theLine);
if (theLine[hloc - 1] = 255) and

(imageArray^[hloc - 1, vloc + 1] = 0) then
imageArray^[hloc - 1, vloc + 1] := stepIndex + 1;

if (theLine[hloc] = 255) and (imageArray ^ [hloc, vloc + 1] = 0) then
imageArray^[hloc, vloc + 1] := stepIndex + 1;

if (theLine[hloc + 1] = 255) and
(imageArray^[hloc + 1, vloc + 1] = 0) then

imageArray^[hloc + 1, vloc + 1] := stepIndex + 1;
noProgress := FALSE;

end;
end;

hloc := widthl;
if imageArray^[hloc, vloc] = stepIndex then begin

GetLine(hstart, vloc + vstart, width, theLine);
if (theLine[hloc - 1] = 255) and

(imageArray^[hloc - 1, vloc] = 0) then
imageArray^[hloc - 1, vloc] := stepIndex + 1;
GetLine(hstart, vloc + vstart + 1, width, theLine);
if (theLine[hloc - 1] = 255) and

(imageArray^[hloc - 1, vloc + 1] = 0) then
imageArray^[hloc - 1, vloc + 1] := stepIndex + 1;

if (theLine[hloc] = 255) and (imageArray^[hloc, vloc +
imageArray^[hloc, vloc + 1] := stepIndex + 1;

noProgress := FALSE;
end;

1] = 0) then

for vloc := 1 to height2 do begin
hloc := 0;
if imageArray^ [hloc, vloc] = stepIndex then begin

GetLine(hstart, vloc + vstart, width, theLine);
if (theLine[hloc + 1] = 255) and

(imageArray ^ [hloc + 1, vloc] = 0) then
imageArray^[hloc + 1, vloc] := stepIndex + 1;
GetLine(hstart, vloc + vstart - 1, width, theLine);
if (theLine[hloc] = 255) and (imageArray^[hloc, vloc - 1] = 0) then
imageArray^[hloc, vloc - 1] := stepIndex + 1;

if (theLine[hloc + 1] = 255) and
(imageArray^[hloc + 1, vloc - 1] = 0) then

imageArray^[hloc + 1, vloc - 1] := stepIndex + 1;
GetLine(hstart, vloc + vstart + 1, width, theLine);
if (theLine[hloc] = 255) and (imageArray^[hloc, vloc + 1] = 0) then
imageArray^[hloc, vloc + 1] := stepIndex + 1;

if (theLine[hloc + 1] = 255) and
(imageArray^[hloc + 1, vloc + 1] = 0) then

imageArray^[hloc + 1, vloc + 1] := stepIndex + 1;
noProgress := FALSE;

end;
for hloc := 1 to width2 do begin

if imageArray ^ [hloc, vloc] = stepIndex then begin
GetLine(hstart, vloc + vstart, width, theLine);
if (theLine[hloc - 1] = 255) and

(imageArray^[hloc - 1, vloc] = 0) then
imageArray^[hloc - 1, vloc] := stepIndex + 1;

if (theLine[hloc + 1] = 255) and
(imageArray^[hloc + 1, vloc] = 0) then

imageArray^[hloc + 1, vloc] := stepIndex + 1;

GetLine(hstart, vloc + vstart - 1, width, theLine);
if (theLine[hloc - 1] = 255) and

116

(imageArray ^[hloc - 1, vloc - 1] = 0) then
imageArray^[hloc - 1, vloc - 1] := stepIndex + 1;

if (theLine[hloc] = 255) and
(imageArray^[hloc, vioc - 1] = 0) then

imageArray^[hloc, vloc - 1] := stepIndex + 1;
if (theLine[hloc + 1] = 255) and

(imageArray^[hloc + 1, vloc - 1] = 0) then
imageArray^ [hloc + 1, vloc - 1] := stepIndex + 1;

160
GetLine(hstart, vloc + vstart + 1, width, theLine);
if (theLine[hloc - 1] = 255) and

(imageArray ^ [h loc - 1, vloc + 1] = 0) then
imageArray^[hloc - 1, vloc + 1] := steplndex + 1;

if (theLine[hloc] = 255) and
(imageArray ^ [hloc, vloc + 1] = 0) then

imageArray^[hloc, vioc + 1] := stepIndex + 1;
if (theLine[hloc + 1] = 255) and

(imageArray^[hloc + 1, vloc + 1] = 0) then
imageArray^[hloc + 1, vloc + 1] := stepIndex + 1; 170

noProgress := FALSE;
end;

end;
hloc := widthl;
if imageArray^[hloc, vloc] = stepIndex then begin

GetLine(hstart, vloc + vstart, width, theLine);
if (theLine[hloc - 1] = 255) and

(imageArray^[hloc - 1, vloc] = 0) then
imageArray^[hloc - 1, vloc] := stepIndex + 1;
GetLine(hstart, vloc + vstart - 1, width, theLine); 180
if (theLine[hloc - 1] = 255) and

(imageArray ^ [hloc - 1, vloc - 1] = 0) then
imageArray^[hloc - 1, vloc - 1] := stepIndex + 1;
if (theLine[hloc] = 255) and (imageArray^[hloc, vloc - 1] = 0) then
imageArray^[hloc, vloc - 1] := stepIndex + 1;

GetLine(hstart, vloc + vstart + 1, width, theLine);
if (theLine[hloc - 1] = 255) and

(imageArray^[hloc - 1, vloc + 1] = 0) then
imageArray^[hloc - 1, vloc + 1] := stepIndex + 1;
if (theLine[hloc] = 255) and (imageArray^[hloc, vloc + 1] = 0) then 190
imageArray^[hloc, vloc + 1] := steplndex + 1;

noProgress := FALSE;
end;

end;

longtmpl := stepIndex;
ShowMessage(concat('stepIndex=', long2str(longtmpl)));
if noProgress then begin

DisposPtr(ptr(imageArray));
PutMessage('Was not able to break through.'); 200
exit(DoFindMinPath);

end;
stepIndex := stepIndex + 1;
vloc := heightl;
for hloc := 0 to widthl do begin

if imageArray^ [hloc, vloc] <> 0 then begin
BreakThrough := TRUE;
ShowMessage(' Breakthrough');
breakPoint := hloc;
hloc := widthl; 210

end;
end;

until BreakThrough;

for vloc := 0 to height1 do begin
for hloc := 0 to widthl do begin

theLine[hloc] := 0;
end;
PutLine(hstart, vloc + vstart, width, theLine);

117

end;

vloc := heightl;
hloc := breakPoint;
stepIndex := imageArray ^ [hloc, vloc] - 1;
imageArray ^ [hloc, vloc] := -1;

while vloc > 0 do begin
xs := hloc - 1;
if xs < 0 then
xs := 0; 230

ys := vloc - 1;
if ys < 0 then
ys := 0;

xe : hloc + 1;
if xe > widthl then
xe := widthl;

ye := vloc + 1;
if ye > heightl then
ye := heightl;
for y := ys to ye do begin 240
for x := xs to xe do begin

if imageArray^ [x, y] = stepIndex then begin
imageArray^ [x, y] := -1;
stepIndex := stepIndex - 1;
hloc := x;
vloc := y;
y := ye;
x := xe;
end;

end; 250
end;

end;

KillRoi;
for vloc := 0 to height1 do begin
for hloc := 0 to widthl do begin

if imageArray ^ [hloc, vloc] = -1 then
theLine[hloc] := 255

else
theLine[hloc] := 0; 260

end;
PutLine(hstart, vloc + vstart, width, theLine);

end;

UpdatePicWindow;

DisposPtr(ptr(imageArray));
ShowMessage(' OK');

end
else begin 270

PutMessage('This is not a binary image!');
exit (DoFindMinPath);

end;
end;

end;

A.5.2 Minimum-Path Dimension

procedure DoMinPathDim;
const
NUM BOX SIZES = 25;
INCLUDE SECONDS = FALSE;
WIDTHTOTAL = 10;
WIDTHFLOAT = 8;

118

MAX LENGTH = 1024;
type
ImageType = array[0..MAXLENGTH, 0..MAX LENGTH] of Boolean;
ImageTypePtr = ^ImageType; 10

var
imageArray: ImageTypePtr;
vstart, vend, hstart, hend, width, widthl, height, heightl, hloc, vloc,

k, j, i, i9, dbmFirst, dbmLast: integer;
sizeIndex, x, y, neighbors, initPoints, pointIndex, pointLoc, dbcFirst,

dbcLast: integer;
xO, yO, xStart, yStart, xEnd, yEnd, maxL, LARGEST BOX INDEX,

FIRST BOX INDEX, LAST BOX INDEX: integer;
longtmpl, longtmp2, e2, occBox, minOccBox, configIdx, timeInSeconds,

timeZero, dx, dy: longint; 20
dbint, dbdecl, dbdec2, sddbint, sddbdecl, sddbdec2: longint;
templ, temp2, rl, r2, eSize, dbcmn, sddbcmn: extended;
sx, sy, st2, db, ss, sxoss, t, intcp, sintcp, sddb, chi2, chi2Min,

sigdat, dbmax, sddbmax: extended;
theLine: LineType;
minPath: array[0..MAX LENGTH, 0..1] of integer;
boxSizes: array[1..NUMBOX SIZES] of integer;
occupiedBoxes: array[1..NUMBOXSIZES] of longint;
InBoxSizes, InOccupiedBoxes, localSlope:

array[1..NUM BOX SIZES] of extended; 30
smessage, smessagel, timeString, strtemp: Str255;
where: point;
reply: SFReply;
AutoSelectAll, doneAll: Boolean;

begin
with info ^ do begin

if BinaryPic then begin
TextBufSize := 0;
boxSizes[1] := 512;
templ := 512.0; 40
for k := 2 to NUMBOX SIZES do begin
repeat
temp2 := 0.793700526 * templ;
j := round(temp2);
templ := temp2
until j <> boxSizes[k - 1];
boxSizes[k] := j;

end;

AutoSelectAll := not RoiShowing; 50
if AutoSelectAll then
SelectAll(false);

if roiType <> RectRoi then begin
PutMessage('I can only deal with a rectangular ROI!');
exit(DoMinPathDim);

end;

with RoiRect do begin
hend := right; 60
vend := bottom;
vstart := top;
hstart := left;
width := right - left;
height := bottom - top;
end;

widthl := width - 1;
heightl := height - 1;
if width > height then
maxL := width 70

else
maxL := height;

smessage := concat('Idx', tab, 'Size');

119

LARGEST BOX INDEX := 0;
repeat
LARGEST BOX INDEX := LARGEST BOXINDEX + 1;
until boxSizes[LARGEST BOX INDEX] < maxL;

imageArray := ImageTypePtr(NewPtr(SizeOf(ImageType))); 80
if imageArray = nil then begin

DisposPtr(ptr(imageArray));
PutMessage('Insufficient memory');
exit(DoMinPathDim);

end;
if (height > MAXLENGTH) or (width > MAXLENGTH) then begin

longtmpl := MAXLENGTH;
DisposPtr(ptr(imageArray));
PutMessage(concat('Image width/length must be less than ',

long2str(longtmpl), ' for dimension calculation!', cr, 90
'Change MAXLENGTH constant in source code for larger

image.'));
exit(DoMinPathDim);

end;

for vloc := 0 to heightl do begin
GetLine(hStart, vloc + vstart, width, theLine);
for hloc := 0 to widthl do begin

if theLine[hloc] = 0 then
imageArray^[hloc, vloc] := FALSE 100
else
imageArray ^ [hloc, vloc] := TRUE;

end;
end;

initPoints := 0;
for vloc := 0 to heightl do begin

for hloc := 0 to widthl do begin
if imageArray^ [hloc, vloc] then begin

xStart := hloc - 1; 110
if xStart < 0 then
xStart := 0;

yStart := vloc - 1;
if yStart < 0 then
yStart := 0;

xEnd := hloc + 1;
if xEnd > widthl then
xEnd := widthl;

yEnd := vloc + 1;
if yEnd > heightl then 120
yEnd := heightl;

neighbors:= -1;
for y := yStart to yEnd do begin

for x := xStart to xEnd do begin
if imageArray ^ [x, y] then
neighbors := neighbors + 1;

end;
end;

if (neighbors < 1) or (neighbors > 2) then begin
DisposPtr(ptr(imageArray)); 130
PutMessage('Minimum path must be a continuous

skeletonized line! ');
exit(DoMinPathDim);

end
else if neighbors = 1 then
if initPoints = 0 then begin

minPath[0, 0] := hloc;
minPath[0, 1] := vloc;
initPoints := 1;
end 140

else begin
initPoints := initPoints + 1;

120

if initPoints > 2 then begin
DisposPtr(ptr(imageArray));
PutMessage('Minimum path must be a continuous line! ');
exit(DoMinPathDim);

end
end;

end;
end; 150

end;

pointIndex := 0;
repeat
doneAll := TRUE;
hloc := minPath[pointIndex, 0];
vloc := minPath[pointIndex, 1];
imageArray^[hloc, vioc] := FALSE;
xStart := hloc - 1;
if xStart < 0 then 160
xStart := 0;

yStart := vloc - 1;
if yStart < 0 then
yStart := 0;

xEnd := hloc + 1;
if xEnd > widthl then
xEnd := widthl;

yEnd := vloc + 1;
if yEnd > heightl then
yEnd := heightl; 170

for y := yStart to yEnd do begin
for x := xStart to xEnd do begin

if imageArray ^ [x, y] then begin
doneAll := FALSE;
pointIndex := pointIndex + 1;
minPath[pointIndex, 0] := x;
minPath(pointIndex, 1] := y;
y := yEnd;
x := xEnd;
end; 180

end;
end;

until doneAll;

longtmpl := pointIndex;
ShowMessage(concat('Points: ', long2str(longtmpl)));

for k := LARGESTBOX INDEX to NUM_BOX_SIZES do begin
longtmpl := k;
longtmp2 := boxSizes[k]; 190
if k < 10 then
smessage := concat(smessage, cr, '0', long2str(longtmpl),

tab, long2str(longtmp2))
else
smessage := concat(smessage, cr, long2str(longtmpl), tab,

long2str(longtmp2));
end;

smessage := '
smessagel := ; 200

PutString(concat('Number', tab, 'Box Size', tab, 'Occupied Boxes',
tab, 'ln [Box Size]', tab, 'ln COccupied Boxes]',
tab, 'Local Slope', cr));

GetDateTime(timeZero);
for sizeIndex := LARGEST_BOX_INDEX to NUMBOX_SIZES do begin

eSize := 1.0 * boxSizes[sizeIndex];
if CommandPeriod then begin
beep; 210

121

DisposPtr(ptr(imageArray));
exit(DoMinPathDim);

end;

minOccBox:= MAX_LENGTH + 1;

for configIdx := 0 to pointIndex do begin
occBox := 0;
pointLoc := configIdx;

220
for i := configIdx downto 0 do begin

dx := minPath[i, 0] - minPath[pointLoc, 0];
dy := minPath[i, 1] - minPath[pointLoc, 1];
rl := sqrt(dx * dx + dy * dy);
if rl >= eSize then begin
dx:= minPath[i + 1, 0] - minPath[pointLoc, 0];
dy:= minPath[i + 1, 1] - minPath[pointLoc, 1];
r2 := sqrt(dx * dx + dy * dy);
if (rl - eSize) < (eSize - r2) then begin

pointLoc := i; 230
occBox := occBox + 1;

end
else begin

pointLoc := i + 1;
i := i + 1;
occBox := occBox + 1;

end
end;

end;
if pointLoc > 0 then 240
occBox := occBox + 1;

pointLoc := configIdx;
for i := configIdx to pointIndex do begin

dx := minPath[i, 0] - minPath[pointLoc, 0];
dy:= minPath[i, 1] - minPath[pointLoc, 1];
rl := sqrt(dx * dx + dy * dy);
if rl >= eSize then begin
dx:= minPath[i - 1, 0] - minPath[pointLoc, 0];
dy:= minPath[i - 1, 1] - minPath[pointLoc, 1]; 250
r2 := sqrt(dx * dx + dy * dy);
if (rl - eSize) < (eSize - r2) then begin

pointLoc := i;
occBox := occBox + 1;

end
else begin

pointLoc := i - 1;
i := i - 1;
occBox := occBox + 1;

end 260
end;

end;
if pointLoc < pointIndex then
occBox := occBox + 1;

if occBox < minOccBox then
minOccBox := occBox;

end;

occupiedBoxes[sizeIndex] := minOccBox; 270
GetDateTime(timelnSeconds);
timelnSeconds := timeInSeconds - timeZero;
IUTimeString(timeInSeconds, INCLUDESECONDS, timeString);
longtmpl := boxSizes[sizeIndex];
longtmp2 := occupiedBoxes[sizelndex];
smessage:= concat(smessagel, cr, long2str(longtmpl),

tab, long2str(longtmp2));
ShowMessage(concat('Sz', tab, 'Occupied', smessage, cr,

122

'Time: ', timeString));
smessagel := smessage;
smessage := concat(smessage, cr, 'Time: ', timeString);
InBoxSizes[sizeIndex] := Ln(boxSizes[sizeIndex]);
InOccupiedBoxes[sizeIndex] := Ln(occupiedBoxes[sizelndexl);

end;

for sizeIndex := LARGEST BOXINDEX to NUMBOXSIZES do begin
if (sizelndex > LARGEST BOX INDEX + 1) and

(sizelndex < NUMBOX SIZES - 1) then begin
sx := 0.0;
sy := 0.0;
st2 := 0.0;
db := 0.0;
for i9 := sizeIndex - 2 to sizeIndex + 2 do begin

sx := sx + InBoxSizes[i91;
sy := sy + InOccupiedBoxes[i9];
end;

ss := 5.0; {number of points to calculate local slope }
sxoss := sx / ss;
for i9 := sizeIndex - 2 to sizeIndex + 2 do begin

t := InBoxSizes[i9] - sxoss;
st2 := st2 + t *t;
db := db + t * InOccupiedBoxes[i9];
end;

db := 0.0 - db / st2;
localSlope[sizeIndex] := db;

end
else
localSlope[sizeIndex] := 0.0;

longtmpl := sizeIndex;
strtemp := long2str(longtmpl);
PutString(strtemp);
PutChar(tab);
longtmpl := boxSizes[sizeIndex];
strtemp := long2str(longtmpl);
PutString(strtemp);
PutChar(tab);
longtmp2 := occupiedBoxes[sizeIndex];
strtemp := long2str(longtmp2);
PutString(strtemp);
PutChar(tab);
PutReal(lnBoxSizes[sizelndex], WIDTH TOTAL, WIDTH_FLOAT);
PutChar(tab);
PutReal(InOccupiedBoxes[sizeIndex], WIDTH TOTAL, WIDTH_FLOAT);
PutChar(tab);
PutReal(localSlope[sizeIndex], WIDTH_TOTAL, WIDTHYFLOAT);
PutChar(cr);
end;

where.v := 100;
where.h := 100;
SFPutFile(where, 'Save the results as?', concat(title, '.box'),

nil, reply);
if reply.good then
with reply do
SaveAsText(fname, vRefnum);

TextBufSize := 0;
PutString(concat('No. of pts.', tab, '1st box no.', tab, 'Last box no.',

tab, '1st box size', tab, 'Last box size', tab, 'Box
Dimension', tab, 'Std Error', cr));

smessagel := concat('Pts', tab, 'Dbox');

for j := 7 to NUMBOX_SIZES - LARGEST.BOX_INDEX + 1 do begin
chi2Min := 9999999999.9;
dbmax := 0.0;

123

for LAST BOX INDEX := NUM BOX SIZES downto
LARGEST BOX INDEX + j - 1 do begin

FIRST BOXINDEX := LASTBOX_INDEX - j + 1;
sx:= 0.0; 350
sy := 0.0;
st2 := 0.0;
db := 0.0;
for i := FIRST BOX INDEX to LASTBOX INDEX do begin

sx := sx + InBoxSizes[i];
sy := sy + InOccupiedBoxes[i];

end;
ss:= LASTBOXINDEX - FIRSTBOXINDEX + 1.0;
sxoss := sx / ss;

360
for i := FIRST BOX INDEX to LAST_BOX_INDEX do begin

t := InBoxSizes[i] - sxoss;
st2 := st2 + t * t;
db := db + t * InOccupiedBoxes[i];

end;
db := db / st2;
intcp := (sy - sx * db) / ss;
sintcp := Sqrt((1.0 + sx * sx / (ss * st2)) / ss);
sddb := Sqrt(1.0 / st2);
chi2 := 0.0; 370

for i := FIRST BOX INDEX to LASTBOXINDEX do begin
templ := InOccupiedBoxes[i] - intcp - db * InBoxSizes[i];
chi2 := chi2 + templ * templ;

end;
sigdat := Sqrt(chi2 / (ss - 2.0));
sintcp := sintcp * sigdat;
sddb := sddb * sigdat;
db := 0.0 - db;
if db > dbmax then begin 380

dbmax := db;
sddbmax := sddb;
dbmFirst := FIRST BOX INDEX;
dbmLast := LASTBOX_INDEX;

end;
if chi2Min > chi2 then begin

chi2Min := chi2;
dbcmn := db;
sddbcmn := sddb;
dbcFirst := FIRST BOX INDEX; 390
dbcLast := LAST BOX INDEX;
end;

end;

longtmpl := j;
strtemp := concat('MX ', long2str(longtmpl));
PutString(strtemp);
PutChar(tab);
longtmpl := dbmFirst;
strtemp := long2str(longtmpl); 400
PutString(strtemp);
PutChar(tab);
longtmpl := dbmLast;
strtemp := long2str(longtmpl);
PutString(strtemp);
PutChar(tab);
longtmpl := boxSizes[dbmFirst];
strtemp := long2str(longtmpl);
PutString(strtemp);
PutChar(tab); 410
longtmp2 := boxSizes[dbmLast];
strtemp := long2str(longtmp2);
PutString(strtemp);
PutChar(tab);

124

PutReal(dbmax, WIDTHTOTAL, WIDTHFLOAT);
PutChar(tab);
PutReal(sddbmax, WIDTHTOTAL, WIDTHFLOAT);
PutChar(cr);

longtmpl := j; 420
strtemp := concat('BS ', long2str(longtmpl));
PutString(strtemp);
PutChar(tab);
ifj < 10 then
strtemp := concat('0', long2str(longtmpl))
else
strtemp := long2str(longtmpl);
smessagel := concat(smessagel, cr, strtemp);
longtmpl := dbcFirst;
strtemp := long2str(longtmpl); 430
PutString(strtemp);
PutChar(tab);
longtmpl := dbcLast;
strtemp := long2str(longtmpl);
PutString(strtemp);
PutChar(tab);
longtmpl := boxSizes[dbcFirst];
strtemp := long2str(longtmpl);
PutString(strtemp);
PutChar(tab); 440
longtmp2 := boxSizes[dbcLast];
strtemp := long2str(longtmp2);
PutString(strtemp);
PutChar(tab);
PutReal(dbcmn, WIDTH_TOTAL, WIDTH FLOAT);
PutChar(tab);
PutReal(sddbcmn, WIDTH-TOTAL, WIDTH FLOAT);
PutChar(cr);

dbint := trunc(dbcmn); 450
dbdecl := trunc(dbcmn * 10.0) - dbint * 10;
dbdec2 := trunc(dbcmn * 100.0) - dbint * 100 - dbdecl * 10;
sddbint := trunc(sddbcmn);
sddbdecl := trunc(sddbcmn * 10.0) - sddbint * 10;
sddbdec2 : trunc(sddbcmn * 100.0) - sddbint * 100 - sddbdecl * 10;
smessage:= concat(smessagel, tab, long2str(dbint), '.',

long2str(dbdecl), long2str(dbdec2), ' ',
long2str(sddbint), '. ', long2str(sddbdecl),
long2str(sddbdec2));

ShowMessage(smessage); 460
smessagel := smessage;

end;

where.v := 100;
where.h := 100;
SFPutFile(where, 'Save the results as?', concat(title, '.slopes'),

nil, reply);
if reply.good then
with reply do
SaveAsText(fname, vRefnum); 470

DisposPtr(ptr(imageArray));

end
else begin

PutMessage('This is not a binary image!');
exit(DoMinPathDim);
end;

end;
end; 480

125

A.6 2-D Growth Modeling Program

PROGRAM DoModelTime

REAL*4 RNUNF

* Assign parameters:
INTEGER*4 AUTO ITERATIONS,MAX LENGTH,MAX_LENGTH1
PARAMETER (AUTO ITERATIONS=100,MAXLENGTH=128,MAXLENGTH1=127)
INTEGER*4 MAX TIME,MAX NUM PARTICLES
PARAMETER (MAX TIME=1000000,MAX NUMPARTICLES=100000)
INTEGER*4 NO PROD RADIUS 10
PARAMETER (NO PROD RADIUS=10)
INTEGER*4 NUM BOX SIZES
PARAMETER (NUM BOX SIZES=25)
INTEGER*4 MAX PATH LENGTH
PARAMETER (MAX PATH LENGTH=1000)

* Declare image-size variables:
INTEGER*4 width,widthl,width2,height,heightl,height2
REAL*4 imageArea

20
* Declare multi-purpose variables:

INTEGER*4 vloc,hloc,xTemp,yTemp,xNo,yNo,yT,xT
INTEGER*4 k,i,j
INTEGER*4 longtmp(0:3)
LOGICAL*4 bTempl,bTemp2
REAL*4 numerator,denominator
INTEGER*4 compTime,tArray(1:3)

* Declare model parameters:
INTEGER*4 halfLife,growthWaitUnits,intL 30
INTEGER*4 numGroups,growthThreshold,releaseThreshold
LOGICAL*4 homogeneousSub,homogeneousDif,centerSeed
REAL*4 productionRate,stickingProb,extraRelease,growthRange
REAL*4 releaseAtGrowthSite,tau,fintL
LOGICAL*4 waitUnit,uniformParticleDist

* Declare model variables:
INTEGER*4 xCntr,yCntr,release,numRelease,autoCounter
INTEGER*4 timeUnits,hitUnits,numDecayed,numParticles,occNeighbors
INTEGER*4 totalTime,highestParticle,numNew,emptyParticle 40
INTEGER*4 totalParts,tissueParts,extraParticles,growthSites
REAL*4 decayProb,weakest,frac
LOGICAL*4 BreakThrough,keepWaiting,foundEmpty
INTEGER*4 furthest,bestDistance,bestMass

* Declare final image variables:
INTEGER*4 pGroupSize,pAge

* Declare arrays:
INTEGER*4 imageArray(0:MAXLENGTH1,0:MAXLENGTH1) 50
REAL*4 strengthArrayDif(0:MAX LENGTH1,0:MAX LENGTH1)
REAL*4 strengthArraySub(0:MAXLENGTH1,0:MAXLENGTH1)
INTEGER*4 hitArray(0:MAX LENGTH1,0:MAX LENGTH1)
INTEGER*4 xParticle(l:MAX NUM PARTICLES)
INTEGER*4 yParticle(l:MAX NUM PARTICLES)
INTEGER*4 ageParticle(l:MAX_NUM PARTICLES)
LOGICAL*4 activeParticle(l:MAX NUM_PARTICLES)

* Declare result variables:
INTEGER*4 bestImage(0:MAX LENGTH1,0:MAX LENGTH1) 60
INTEGER*4 heavyImage(0:MAX LENGTH1,0:MAX LENGTH1)
REAL*4 dimList(0:AUTO_ITERATIONS)
REAL*4 sdDimList(0:AUTO ITERATIONS)
REAL*4 mpdimList(0:AUTOITERATIONS)

126

REAL*4 sdMpdimList(0:AUTO_ITERATIONS)
REAL*4 timeMassList(O:AUTO ITERATIONS)
REAL*4 tissueEffList(0:AUTO ITERATIONS)
REAL*4 totalEffList(O:AUTO ITERATIONS)
INTEGER*4 timeList(0:AUTO ITERATIONS),massList(0:AUTOITERATIONS)
INTEGER*4 tissuePartList(0:AUTO ITERATIONS)
INTEGER*4 totalPartList(O:AUTO ITERATIONS)
INTEGER*4 decayPartList(0:AUTO ITERATIONS)
REAL*4 timeMassAvg,totalEffAvg,tissueEffAvg,timeAvg,massAvg
REAL*4 tissuePartAvg,totalPartAvg,decayPartAvg
REAL*4 timeMassSD,totalEffSD,tissueEffSD,timeSD,massSD
REAL*4 tissuePartSD,totalPartSD,decayPartSD
REAL*4 mpdim,sdmpdim

* Declare mass-radius variables:
INTEGER*4 sizeIndex,xStart,yStart,xEnd,yEnd,mass,xc,yc
INTEGER*4 xr,yr,minLength
INTEGER*4 LARGESTBOXINDEX,FIRSTBOX_INDEX,LAST BOX INDEX
REAL*4 templ,temp2
REAL*4 sx,sy,st2,db,ss,sxoss,t,sddb,chi2,sigdat,intcp
INTEGER*4 boxSizes(l:NUM BOX SIZES),totalMass(1:NUMBOX_SIZES)
REAL*4 lnBoxSizes(1:NUM BOX SIZES),lnTotalMass(1:NUM_BOX SIZES)

* Declare minimum path variables:
LOGICAL*4 noProgress
INTEGER*4 minPathArray(0:MAX LENGTH1,0:MAXLENGTH1)
INTEGER*4 stepIndex,vstart,vend,hstart,hend
INTEGER*4 breakPoint,x,y,xe,ye,xs,ys
INTEGER*4 minPath(0:MAX_PATH LENGTH,0:1)
INTEGER*4 pointIndex,pointLoc,occBox,configIdx
INTEGER*4 dx,dy
REAL*4 eSize,rl

CALL ITIME(tArray)
compTime=tArray(3)+tArray(2)*60+tArray(1)*3600

* Initialize parameters:
intL=32768
fintL=32768.0

* Initialize size variables:
width = MAX LENGTH
widthl = width - 1
width2 = width - 2
height = MAX LENGTH
heightl = height - 1
height2 = height - 2

* Initialize dimension measurement parameters:
boxSizes(1) = 512
templ = 512.0
DO 5 k=2,NUMBOX SIZES

4 temp2 = 0.793700526*templ
j = NINT(temp2)
templ = temp2
IF (j.EQ.boxSizes(k-1)) GO TO 4
boxSizes(k) = j

5 CONTINUE

* Assign Parameters:
homogeneousSub = .TRUE.
homogeneousDif = .TRUE.
centerSeed = .TRUE.
waitUnit = .TRUE.
growthWaitUnits = 10
halfLife = 1000000
tau = FLOAT(halfLife)/ALOG(2.0)

127

numGroups = 250
uniformParticleDist = .FALSE.
imageArea = FLOAT(height)*FLOAT(width)
productionRate = 0.000056234133
stickingProb = 1.0
extraRelease = 0.0
releaseAtGrowthSite = 0.0
growthThreshold = 1 140
releaseThreshold = 1
growthRange = 1.0

OPEN (UNIT=15,FILE= 'Model. Specs' ,STATUS= 'NEW')
WRITE (15,2200) 'Model Specifications:'
IF (homogeneousSub) THEN
WRITE (15,2200) 'Homogeneous Substrate'

ELSE
WRITE (15,2200) 'Inhomogeneous Substrate'

ENDIF 150
IF (homogeneousDif) THEN
WRITE (15,2200) 'Homogeneous Diffusion'

ELSE
WRITE (15,2200) 'Inhomogeneous Diffusion'

ENDIF
IF (centerSeed) THEN
WRITE (15,2200) 'Center Seed'

ELSE
WRITE (15,2200) 'Multiple Seeds'

ENDIF 160
IF (waitUnit) THEN
WRITE (15,2200) 'Wait Unit: TIME'

ELSE
WRITE (15,2200) 'Wait Unit: HIT'

ENDIF
WRITE (15,2210) 'Growth Wait Units :',growthWaitUnits
WRITE (15,2210) 'Particle Half-life: ',halfLife
IF (uniformParticleDist) THEN
WRITE (15,2200) 'Uniform particle origin'

ELSE 170
WRITE (15,2200) 'Particle origin beyond network'

ENDIF
WRITE (15,2220) 'Production Rate: ',productionRate,
C 'particles/pixel*time'
WRITE (15,2230) 'Interaction Probability: ',stickingProb
WRITE (15,2230) 'Extra release per hit: ',extraRelease
WRITE (15,2230) 'Extra release at growth site:',

C releaseAtGrowthSite
WRITE (15,2210) 'Growth threshold:',growthThreshold
WRITE (15,2210) 'Extra release threshold: ',releaseThreshold 180
WRITE (15,2230) 'Growth Range: 0.0 - ' ,growthRange
CLOSE (UNIT=15)

OPEN (UNIT= 16,FILE= 'Model .Data' ,STATUS= 'NEW')
WRITE (16,2270)

C ' No Dm-r Dmp T/M tis-E',
C ' tot-E Time Mass Tis Tot Dec'

bestDistance = MAX_LENGTH/2
bestMass = 0 190

* Seeding code:
CALL RNOPT(6)
CALL RNSET(0)

* End of seeding code

* Initialize iteration counter:
autoCounter = 0

10 autoCounter = autoCounter + 1
200

128

* Assign growth substrate strengths:
IF (.NOT.homogeneousSub) THEN

PRINT *,'Generating random substrate strengths...'
DO 110 vloc=0,heightl
DO 100 hloc=0,widthl
strengthArraySub(hloc,vloc)= RNUNF()

100 CONTINUE
110 CONTINUE 210

PRINT *,'Random growth substrate generated.'
ELSE

DO 130 vloc=0,heightl
DO 120 hloc=0,widthl
strengthArraySub(hloc,vloc)=0.5

120 CONTINUE
130 CONTINUE

ENDIF

220
* Assign diffusion substrate strengths:

IF (.NOT.homogeneousDif) THEN
PRINT *,'Generating random diffusion strengths...'
DO 160 vloc=0,heightl
DO 150 hloc=0,widthl
strengthArrayDif(hloc,vloc)= RNUNFO

150 CONTINUE
160 CONTINUE

PRINT *,'Random diffusion substrate generated.'
ENDIF 230

* Initialize model variables:

DO 200 i=1,MAX NUM PARTICLES
activeParticle(i)=.FALSE.

200 CONTINUE

BreakThrough = .FALSE.
numDecayed = 0 240
totalTime = 0
totalParts = 0
tissueParts = 0
extraParticles = 0

DO 220 vloc=0,heightl
DO 210 hloc=0,widthl
imageArray(hloc,vloc)=0

210 CONTINUE
220 CONTINUE 250

IF (centerSeed) THEN
yCntr = height/2
xCntr = width/2
numParticles = 1
imageArray(xCntr,yCntr)=numParticles

IF (.NOT.uniformParticleDist) THEN
DO 250 yNo=-NOPROD_RADIUS,NOPROD_RADIUS
yT = yNo + yCntr 260
IF (yT.GT.heightl) yT=yT-height
IF (yT.LT.0) yT=height-yT
DO 240 xNo=-NO PROD_RADIUS,NOPROD_RADIUS
xT = xNo + xCntr
IF (xT.GT.widthl) xT=xT-width
IF (xT.LT.0) xT=width-xT
IF (SQRT(FLOAT(xNo*xNo+yNo*yNo)).LT.NO PROD RADIUS) THEN
IF (imageArray(xT,yT).EQ.0) imageArray(xT,yT)=-1

ENDIF
240 CONTINUE 270
250 CONTINUE

ENDIF
ELSE
PRINT *,'Only center-seed option is available!'
STOP
ENDIF

* ####### Main loop until BreakThrough #######
DO 1000 WHILE (.NOT.BreakThrough) 280
keepWaiting=.TRUE.
timeUnits=0
hitUnits=0

DO 310 vloc=0,heightl
DO 300 hloc=0,widthl
hitArray(hloc,vloc)=0

300 CONTINUE
310 CONTINUE

290
highestParticle=0
DO 320 i=1,MAX NUM PARTICLES
IF (activeParticle(i)) highestParticle=i

320 CONTINUE

* Loop waiting for time for growth:
DO 700 WHILE (keepWaiting)

timeUnits=timeUnits+1
totalTime=totalTime+ 1 300

* Advance existing particles:
DO 400 i=1l,highestParticle
IF (activeParticle(i)) THEN

ageParticle(i)=ageParticle(i)+1

Takes into account only the case where homogeneousDif=TRUE:
k=AINT(4.0*RNUNFo) + 1
GO TO (350,360,370,380), k 310

350 xTemp = xParticle(i) + 1
yTemp = yParticle(i)
IF (xTemp.EQ.width) xTemp=0
GO TO 390

360 xTemp = xParticle(i) - 1
yTemp = yParticle(i)
IF (xTemp.EQ.-1) xTemp=widthl
GO TO 390

370 yTemp = yParticle(i) - 1
xTemp = xParticle(i) 320
IF (yTemp.EQ.-1) yTemp=heightl
GO TO 390

380 yTemp = yParticle(i) + 1
xTemp = xParticle(i)
IF (yTemp.EQ.height) yTemp=0

390 IF (imageArray(xTemp,yTemp).LE.0) THEN
xParticle(i)=xTemp
yParticle(i)=yTemp
ENDIF

ENDIF 330
400 CONTINUE

* Produce new particles:

numNew=AINT(productionRate*imageArea)
frac=productionRate*imageArea- 1.0*FLOAT(numNew)

130

IF (RNUNF0.LT.frac) numNew=numNew+l
emptyParticle = 1
DO 460 i=l,numNew
xTemp = NINT(RNUNF()*widthl) 340
yTemp = NINT(RNUNF(*heightl)
IF (imageArray(xTemp,yTemp).EQ.0) THEN
foundEmpty = .FALSE.
k = emptyParticle - 1
DO 450 WHILE (k.LT.MAX NUM PARTICLES)
k=k+1
IF (.NOT.activeParticle(k)) THEN
emptyParticle = k
foundEmpty = .TRUE.
k = MAX NUM PARTICLES 350

ENDIF
450 END DO

IF (.NOT.foundEmpty) THEN
PRINT *,'Too Many Particles!'
STOP

ENDIF

tissueParts = tissueParts + 1
totalParts = totalParts + 1 360
activeParticle(emptyParticle)=.TRUE.
xParticle(emptyParticle)=xTemp
yParticle(emptyParticle)=yTemp
ageParticle(emptyParticle)=1
IF (emptyParticle.GT.highestParticle)

C highestParticle=emptyParticle
ENDIF

460 CONTINUE

370
* Degrade old particles:

DO 500 i=1l,highestParticle
IF (activeParticle(i)) THEN
decayProb = EXP(-FLOAT(ageParticle(i))/tau)/tau
IF (RNUNF0.LT.decayProb) THEN
numDecayed = numDecayed + 1
activeParticle(i)=.FALSE.

ENDIF
ENDIF 380

500 CONTINUE

* Mark hits:
DO 600 i=1,highestParticle
IF (activeParticle(i)) THEN
xTemp = xParticle(i)
yTemp = yParticle(i)
bTempl = ((xTemp.LT.widthl).AND.(yTemp.LT.heightl))
bTemp2 = ((xTemp.GT.0).AND.(yTemp.GT.0))
IF (bTempl.AND.bTemp2) THEN 390
longtmp(0)=AINT(FLOAT(intL- 1+imageArray((xTemp+l1),yTemp))/

C fintL)
longtmp(1)=AINT(FLOAT(intL- 1+imageArray((xTemp-1),yTemp))/

C fintL)
longtmp(2)=AINT(FLOAT(intL-1+imageArray(xTemp,(yTemp+l1)))/

C fintL)
longtmp(3)=AINT(FLOAT(intL- l+imageArray(xTemp,(yTemp-1)))/

C fintL)
occNeighbors=longtmp(0)+longtmp(1)+longtmp(2)+longtmp(3)
IF (occNeighbors.GT.0) THEN 400
IF (RNUNF().LT.(stickingProb*FLOAT(occNeighbors))) THEN
activeParticle(i)=.FALSE.
hitArray(xTemp,yTemp)=hitArray(xTemp,yTemp)+1
hitUnits = hitUnits + 1

131

IF (MOD(hitArray(xTemp,yTemp),releaseThreshold).EQ.0) THEN
emptyParticle = 1
numRelease = AINT(extraRelease)
frac = extraRelease - FLOAT(numRelease)
IF (RNUNF0.LT.frac) numRelease=numRelease+1
DO 580 release=1,numRelease 410
foundEmpty=.FALSE.
k=emptyParticle - 1
DO 540 WHILE (k.LT.i)
k=k+1
IF (.NOT.activeParticle(k)) THEN
emptyParticle = k
foundEmpty = .TRUE.
k=i

ENDIF
540 END DO 420

IF (.NOT.foundEmpty) THEN
k=highestParticle
DO 560 WHILE (k.LT.MAXNUM PARTICLES)
k=k+1
IF (.NOT.activeParticle(k)) THEN
emptyParticle = k
foundEmpty = .TRUE.
k = MAX NUM PARTICLES

ENDIF
560 END DO 430

ENDIF
IF (.NOT.foundEmpty) THEN
PRINT *,'Too Many Particles!'
STOP

ENDIF
extraParticles = extraParticles + 1
totalParts = totalParts + 1
activeParticle(emptyParticle) = .TRUE.
xParticle(emptyParticle) = xTemp
yParticle(emptyParticle) = yTemp 440
ageParticle(emptyParticle) = 1

580 CONTINUE
ENDIF

ENDIF
ENDIF

ENDIF
ENDIF

600 CONTINUE

* Check if time for growth: 450
IF (waitUnit) THEN
IF (timeUnits.EQ.growthWaitUnits) keepWaiting=.FALSE.

ELSE
IF (hitUnits.GE.growthWaitUnits) keepWaiting=.FALSE.

ENDIF

IF (totalTime.EQ.MAX TIME) THEN
PRINT *,'Time exceeded maximum'
STOP

ENDIF 460

700 END DO
* End of loop waiting for growth event time

* Begin growth:
IF (hitUnits.GT.0) THEN
growthSites = 0
weakest = 1.0
DO 720 vloc=0,heightl 470
DO 710 hloc=0,widthl
IF (hitArray(hloc,vloc).GE.growthThreshold) THEN

132

IF (strengthArraySub(hloc,vloc).LT.weakest) THEN
weakest=strengthArraySub(hloc,vloc)
ENDIF

ENDIF
710 CONTINUE
720 CONTINUE

DO 900 vloc=0,heightl 480
DO 890 hloc=0,widthl
IF (hitArray(hloc,vloc).GE.growthThreshold) THEN
bTempl=(strengthArraySub(hloc,vloc).LE.growthRange)
bTemp2=(strengthArraySub(hloc,vloc).EQ.weakest)
IF (bTempl.OR.bTemp2) THEN

xTemp = hloc
yTemp = vloc
growthSites = growthSites + 1
numParticles = numParticles + 1 490
imageArray(xTemp,yTemp) = numParticles
bTempl=((xTemp.EQ.width2).OR.(xTemp.EQ.1))
bTemp2=((yTemp.EQ.height2).OR.(yTemp.EQ.1))
IF (bTempl.OR.bTemp2) BreakThrough=.TRUE.

Mark no production area:
IF (.NOT.uniformParticleDist) THEN
DO 760 yNo=-NO PROD RADIUS,NO PROD RADIUS
yT = yNo + yTemp
IF (yT.GT.heightl) yT=yT-height 500
IF (yT.LT.0) yT=height-yT
DO 750 xNo=-NO PROD RADIUS,NO PROD RADIUS
xT = xNo + xTemp
IF (xT.GT.widthl) xT=xT-width
IF (xT.LT.0) xT=width-xT
IF (SQRT(FLOAT(xNo*xNo+yNo*yNo)).LE.NO PROD RADIUS) THEN
IF (imageArray(xT,yT).EQ.0) imageArray(xT,yT)=-1

ENDIF
750 CONTINUE
760 CONTINUE 510

ENDIF
* End marking no production area

* Remove additional particles currently residing on growth site:
DO 770 i=1l,highestParticle
IF (activeParticle(i)) THEN
IF ((xParticle(i).EQ.xTemp).AND.(yParticle(i).EQ.yTemp))

C activeParticle(i)=.FALSE.
ENDIF

770 CONTINUE 520
* End removal

* Release additional particles to nearest neighbors of growth site:
DO 780 i=0,3
longtmp(i)=0

780 CONTINUE
IF (imageArray((xTemp+l),yTemp).LE.0) longtmp(0)=l
IF (imageArray((xTemp-1),yTemp).LE.0) longtmp(1)=1
IF (imageArray(xTemp,(yTemp+l)).LE.0) longtmp(2)=1
IF (imageArray(xTemp,(yTemp-1)).LE.0) longtmp(3)=1 530
numRelease = AINT(releaseAtGrowthSite)
frac = releaseAtGrowthSite - FLOAT(numRelease)
IF (RNUNFO.LT.frac) numRelease=numRelease+1
bTempl=((longtmp(0)+longtmp(1)+longtmp(2)+longtmp(3)).EQ.0)
IF (bTempl) numRelease=0
release = 0
DO 870 WHILE (release.LT.numRelease)
Takes into account only the case where homogeneousDif=TRUE
release = release + 1
k = AINT(4.0*RNUNFo) 540

133

IF (k.EQ.4) k=3
IF (longtmp(k).NE.1) THEN
release=release- 1

ELSE
foundEmpty = .FALSE.
i= 0
DO 810 WHILE (i.LT.MAX NUM PARTICLES)
i=i+1
IF (.NOT.activeParticle(i)) THEN
emptyParticle = i 550
foundEmpty = .TRUE.
i = MAX NUM PARTICLES
ENDIF

810 END DO
IF (foundEmpty) THEN
extraParticles = extraParticles + 1
totalParts = totalParts + 1
activeParticle(emptyParticle) = .TRUE.
ageParticle(emptyParticle) = 1
k=k+l 560
GO TO (820,830,840,850), k

820 xParticle(emptyParticle) = xTemp + 1
yParticle(emptyParticle) = yTemp
GO TO 860

830 xParticle(emptyParticle) = xTemp - 1
yParticle(emptyParticle) = yTemp
GO TO 860

840 xParticle(emptyParticle) = xTemp
yParticle(emptyParticle) = yTemp + 1
GO TO 860 570

850 xParticle(emptyParticle) = xTemp
yParticle(emptyParticle) = yTemp - 1
GO TO 860

860 ENDIF
ENDIF

870 END DO
* End release

ENDIF
ENDIF 580

890 CONTINUE
900 CONTINUE

* Print '(IX,A,I5,4X,A,18,4X,A,I6,4X,A, 15)',
* C ' Counter: ',autoCounter, ' Time: ',totalTime, ' Hits: ',
* C hitUnits, ' Growth Sites: ',growthSites

ENDIF
* End Growth

1000 END DO
590

PRINT *, 'Breakthrough'

* Find center of mass:
xc = 0
ye = 0
DO 1050 vloc=0,heightl
DO 1040 hloc=0,widthl
IF (imageArray(hloc,vloc).GT.0) THEN
xc = xc + hloc 600
ye = ye + vloc

ENDIF
1040 CONTINUE
1050 CONTINUE

xc = NINT(FLOAT(xc)/FLOAT(numParticles))
yc = NINT(FLOAT(yc)/FLOAT(numParticles))

minLength=MIN(xc,yc,(MAXLENGTH-xc-1),(MAXLENGTH-yc-1))/2

134

DO 1110 i=0,minLength 610
DO 1100 vloc=0-i,i
DO 1090 hloc=0-i,i
IF (imageArray((xc+hloc),(yc+vloc)).GT.0) THEN
xc = xc + hloc
ye = yc + vloc
GO TO 1120

ENDIF
1090 CONTINUE
1100 CONTINUE
1110 CONTINUE 620

PRINT *,'Could not find occupied pixel around center of mass'
STOP

1120 minLength=MIN(xc,yc,(MAXLENGTH-xc-1),(MAXLENGTH-yc-1))/2
LARGEST BOX INDEX = 1
DO WHILE (boxSizes(LARGEST BOXINDEX).GE.minLength)
LARGEST BOX INDEX = LARGEST BOX INDEX + 1

END DO

630
pGroupSize = AINT(FLOAT(numParticles)/FLOAT(numGroups))+1
DO 1140 vloc=0,heightl
DO 1130 hloc=0,widthl
pAge=imageArray(hloc,vloc)
IF (pAge.GT.0) THEN
imageArray(hloc,vloc)=254-AINT(FLOAT(pAge)/FLOAT(pGroupSize))
ELSE
imageArray(hloc,vloc)=0

ENDIF
1130 CONTINUE 640
1140 CONTINUE

PRINT *,'Find best images'

furthest = 0
DO 1160 vloc=0,heightl
DO 1150 hloc=0,widthl
IF (imageArray(hloc,vloc).GT.0) THEN
yTemp = vloc
GO TO 1170 650

ENDIF
1150 CONTINUE
1160 CONTINUE
1170 IF (yTemp.GT.furthest) furthest=yTemp

vstart=yTemp

DO 1190 vloc=heightl,0,-1
DO 1180 hloc=0,widthl
IF (imageArray(hloc,vloc).GT.0) THEN 660
yTemp = vloc
GO TO 1200

ENDIF
1180 CONTINUE
1190 CONTINUE
1200 IF ((heightl-yTemp).GT.furthest) furthest=heightl-yTemp

vend=yTemp

DO 1220 hloc=0,widthl 670
DO 1210 vloc=0,heightl
IF (imageArray(hloc,vloc).GT.0) THEN
xTemp = hloc
GO TO 1230

ENDIF
1210 CONTINUE

135

1220 CONTINUE
1230 IF (xTemp.GT.furthest) furthest=xTemp

hstart=xTemp 680

DO 1250 hloc=widthl,0,-1
DO 1240 vloc=0,heightl
IF (imageArray(hloc,vloc).GT.0) THEN
xTemp = hloc
GO TO 1260

ENDIF
1240 CONTINUE
1250 CONTINUE
1260 IF ((widthl-xTemp).GT.furthest) furthest=widthl-xTemp 690

hend=xTemp

IF (furthest.LT.bestDistance) THEN
bestDistance=furthest
DO 1290 vloc=0,heightl
DO 1280 hloc=0,widthl
bestImage(hloc,vloc)=imageArray(hloc,vloc)

1280 CONTINUE
1290 CONTINUE 700

ENDIF

IF (numParticles.GT.bestMass) THEN
bestMass = numParticles
DO 1330 vloc=0,heightl
DO 1320 hloc=0,widthl
heavylmage(hloc,vloc)=imageArray(hloc,vloc)

1320 CONTINUE
1330 CONTINUE

ENDIF 710

PRINT *,'Find mass per radius'

DO 1340 sizelndex=LARGESTBOX_INDEX,NUM BOX_SIZES
totalMass(sizelndex) = 0
InBoxSizes(sizeIndex) = ALOG(FLOAT(boxSizes(sizeIndex)))

1340 CONTINUE

configIdx = 0 720
DO 1390 yr=(yc-minLength/2),(yc+minLength/2)
DO 1380 xr=(xc-minLength/2),(xc+minLength/2)
IF (imageArray(xr,yr).GT.0) THEN
configIdx = configIdx +1
DO 1370 sizeIndex=LARGEST BOX INDEX,NUM BOX_SIZES
mass = 0

yStart = yr - boxSizes(sizeIndex)
yEnd = yr + boxSizes(sizelndex)
xStart = xr - boxSizes(sizeIndex)
xEnd = xr + boxSizes(sizeIndex) 730
DO 1360 vloc=yStart,yEnd
DO 1350 hloc=xStart,xEnd
templ=SQRT(FLOAT(vloc-yr)**2+FLOAT(hloc-xr)**2)
IF (templ.LE.FLOAT(boxSizes(sizelndex))) THEN
IF (imageArray(hloc,vloc).GT.0) mass=mass+1l

ENDIF
1350 CONTINUE
1360 CONTINUE

totalMass(sizelndex) = totalMass(sizeIndex) + mass
1370 CONTINUE 740

ENDIF

1380 CONTINUE
1390 CONTINUE

136

DO 1400 sizeIndex=LARGEST BOX INDEX,NUM BOX SIZES
InTotalMass(sizeIndex) =

C ALOG(FLOAT(totalMass(sizeIndex))/FLOAT(configIdx))
1400 CONTINUE

750
PRINT *,'Calculating dimension'

LAST BOX INDEX = 24
FIRST BOX INDEX = LARGEST BOX INDEX
j = LAST BOX_INDEX - LARGEST_BOXINDEX + 1
sx = 0.0
sy = 0.0
st2 = 0.0
db = 0.0
DO 1420 i=FIRST BOX INDEX,LAST BOX INDEX 760
sx = sx - InBoxSizes(i)
sy = sy + InTotalMass(i)

1420 CONTINUE
ss = FLOAT(LASTBOXJINDEX - FIRST BOXINDEX) + 1.0
sxoss = SX/ss

DO 1440 i=FIRSTBOXINDEX,LAST BOX INDEX
t = InBoxSizes(i) - sxoss
st2 = st2 + t*t
db = db + t*lnTotalMass(i) 770

1440 CONTINUE
db = db/st2
sddb = SQRT(1.0/st2)
intcp = (sy - sx*db)/ss
chi2 = 0.0

DO 1460 i=FIRST BOX INDEX,LAST BOX INDEX
templ = InTotalMass(i) - intcp - db*lnBoxSizes(i)
chi2 = chi2 + templ*templ

1460 CONTINUE 780
sigdat = SQRT(chi2/(ss - 2.0))
sddb = sddb*sigdat

dimList(autoCounter)=db
sdDimList(autoCounter)=sddb
timeMassList(autoCounter)=FLOAT(totalTime)/FLOAT(numParticles)
tissueEffList (autoCounter) =FLOAT (numParticles)/FLOAT(tissueParts)
totalEffList(autoCounter)=FLOAT(numParticles)/FLOAT(totalParts)
timeList(autoCounter)=totalTime
massList(autoCounter)=numParticles 790
tissuePartList(autoCounter)=tissueParts
totalPartList(autoCounter)=totalParts
decayPartList(autoCounter)=numDecayed

PRINT *,'Find minimum path'

DO 1620 vloc=0,heightl
DO 1610 hloc=0,widthl

minPathArray(hloc,vloc)=0 800
1610 CONTINUE
1620 CONTINUE

noProgress = .TRUE.
BreakThrough = .FALSE.

stepIndex = 1
DO 1630 hloc=hstart,hend
IF (imageArray(hloc,vstart).GT.0) THEN
minPathArray(hloc,vstart)=stepIndex 810
ENDIF

1630 CONTINUE

137

DO 1680 WHILE (.NOT.BreakThrough)
DO 1660 vloc=vstart,vend
DO 1650 hloc=hstart,hend
IF (minPathArray(hloc,vloc).EQ.stepIndex) THEN

bTempl=(imageArray((hloc+1l),vloc).GT.0)
bTemp2=(minPathArray((hloc+1),vloc).EQ.0) 820
IF (bTempl.AND.bTemp2) minPathArray((hloc+l),vloc)=stepIndex+l

bTempl=(imageArray((hloc-1),vloc).GT.0)
bTemp2= (minPathArray((hloc-1),vloc).EQ.0)
IF (bTempl.AND.bTemp2) minPathArray((hloc-1),vloc)=stepIndex+l

bTempl=(imageArray(hloc,(vloc+ 1)).GT.0)
bTemp2=(minPathArray(hloc,(vloc+l1)).EQ.0)
IF (bTempl.AND.bTemp2) minPathArray(hloc,(vioc+1))=stepIndex+1

830
bTempl=(imageArray(hloc,(vloc-1)).GT.0)
bTemp2=(minPathArray(hloc,(vloc-1)).EQ.0)
IF (bTempl.AND.bTemp2) minPathArray(hloc,(vloc-1))=stepIndex+l

noProgress = .FALSE.
ENDIF

1650 CONTINUE
1660 CONTINUE

IF (noProgress) THEN 840
PRINT *,'No Progress Finding Minimum Path'
STOP

ENDIF

stepIndex=stepIndex+ 1

vloc = vend
hloc = hstart - 1
DO 1670 WHILE (hloc.LT.hend)
hloc = hloc + 1 850
IF (minPathArray(hloc,vloc).NE.0) THEN
BreakThrough = .TRUE.
PRINT *,'Breakthrough minimum path'
breakPoint = hloc
hloc = hend
ENDIF

1670 END DO

1680 END DO
860

LARGEST BOX INDEX = 1
DO WHILE (boxSizes(LARGEST_BOXINDEX).GE.((vend-vstart)/4))
LARGESTBOXINDEX = LARGEST BOX INDEX + 1

END DO

vloc = vend
hloc = breakPoint
pointIndex = 0
stepIndex = minPathArray(hloc,vloc) - 1
minPathArray(hloc,vloc) = -1 870
minPath(pointIndex,0) = hloc
minPath(pointIndex,1) = vloc

DO 1720 WHILE (vloc.GT.vstart)
xs = hloc - 1
ys = vloc - 1
xe = hloc + 1
ye = vloc + 1
DO 1710 y=ys,ye
DO 1700 x=xs,xe 880

138

IF (minPathArray(x,y).EQ.stepIndex) THEN
minPathArray(x,y) = -1
stepIndex = stepIndex - 1
pointIndex = pointIndex + 1
hloc = x
vloc = y
minPath(pointIndex,0) = hloc
minPath(pointIndex,1) = vloc
GO TO 1720

ENDIF 890
1700 CONTINUE
1710 CONTINUE
1720 END DO

DO 1780 sizeIndex=LARGEST BOXINDEX,NUM BOX SIZES
eSize = FLOAT(boxSizes(sizeIndex))
occBox = 0
pointLoc = 0
DO 1760 i=0,pointIndex
dx = minPath(i,0) - minPath(pointLoc,0) 900
dy = minPath(i,1) - minPath(pointLoc,1)
rl = SQRT(FLOAT(dx*dx) + FLOAT(dy*dy))
IF (rl.GE.eSize) THEN
pointLoc = i
occBox = occBox + 1

ENDIF
1760 CONTINUE

IF (pointLoc.LT.pointIndex) occBox=occBox+l
910

totalMass(sizeIndex) = occBox
InBoxSizes(sizeIndex) = ALOG(FLOAT(boxSizes(sizeIndex)))
InTotalMass(sizeIndex) = ALOG(FLOAT(totalMass(sizeIndex)))

1780 CONTINUE

PRINT *,'Calculating minimum-path dimension'

LAST BOX INDEX = 24
FIRST BOX INDEX = LARGEST BOX INDEX
j = LAST-BOXINDEX - LARGEST BOX INDEX + 1 920
sx = 0.0
sy = 0.0
st2 = 0.0
db = 0.0
DO 1820 i=FIRST BOX INDEX,LASTBOX INDEX
sx = sx + InBoxSizes(i)
sy = sy + InTotalMass(i)

1820 CONTINUE
ss = FLOAT(LAST BOX INDEX - FIRSTBOXINDEX) + 1.0
sxoss = sx/ss 930

DO 1840 i=FIRSTJBOX INDEX,LAST BOX INDEX
t = InBoxSizes(i) - sxoss
st2 = st2 + t*t
db = db + t*lnTotalMass(i)

1840 CONTINUE
db = db/st2
sddb = SQRT(1.0/st2)
intcp = (sy - sx*db)/ss
chi2 = 0.0 940

DO 1860 i=FIRST BOX INDEX,LAST BOX INDEX
templ = InTotalMass(i) - intcp - db*lnBoxSizes(i)
chi2 = chi2 + templ*templ

1860 CONTINUE
sigdat = SQRT(chi2/(ss - 2.0))
sddb = sddb*sigdat

139

mpdimList(autoCounter)=0.0-db
sdMpdimList(autoCounter)=sddb 950

i=autoCounter
WRITE (16,2250) i,dimList(i),sdDimList(i),

C mpdimList(i),sdMpdimList(i),timeMassList(i),
C tissueEffList(i),totalEffList(i),timeList(i),
C massList(i),tissuePartList(i),
C totalPartList(i),decayPartList(i)

PRINT '(lX,A,I5,A,I5) ','Finished Iteration l,autoCounter,
C ' out of ',AUTO ITERATIONS 960

IF (autoCounter.LT.AUTOITERATIONS) GO TO 10

CLOSE (UNIT=16)

denominator = 0.0
numerator = 0.0
DO 1880 i=1,AUTO ITERATIONS
denominator=denominator+1.0/sdMpdimList(i)**2
numerator=numerator+mpdimList(i)*(1.0/sdMpdimList(i)**2) 970

1880 CONTINUE
mpdim=numerator/denominator

numerator = 0.0
DO 1890 i=1,AUTO ITERATIONS
numerator=numerator+(mpdimList(i)-mpdim)**2

1890 CONTINUE
sdmpdim=SQRT(numerator/FLOAT(AUTOITERATIONS-1))

denominator = 0.0 980
numerator = 0.0
DO 1900 i=1,AUTO_ITERATIONS
denominator=denominator+1.0/sdDimList(i)**2
numerator=numerator+dimList(i)*(1.0/sdDimList(i)**2)

1900 CONTINUE
db=numerator/denominator

numerator = 0.0
DO 1910 i=1,AUTO ITERATIONS
numerator=numerator+(dimList(i)-db)**2 990

1910 CONTINUE
sddb=SQRT(numerator/FLOAT(AUTO ITERATIONS-1))

numerator = 0.0
DO 1920 i=1,AUTO ITERATIONS
numerator=numerator+timeMassList(i)

1920 CONTINUE
timeMassAvg=numerator/FLOAT(AUTO ITERATIONS)

numerator = 0.0 1000
DO 1930 i=1,AUTOITERATIONS
numerator=numerator+(timeMassList(i) -timeMassAvg)**2

1930 CONTINUE
timeMassSD=SQRT(numerator/FLOAT(AUTO ITERATIONS-1))

numerator = 0.0
DO 1940 i=1,AUTOITERATIONS
numerator=numerator+tissueEffList (i)

1940 CONTINUE
tissueEffAvg=numerator/FLOAT(AUTOITERATIONS) 1010

numerator = 0.0
DO 1950 i=1,AUTOITERATIONS
numerator=numerator+ (tissueEffList(i)-tissueEffAvg)**2

1950 CONTINUE
tissueEffSD=SQRT(numerator/FLOAT(AUTO ITERATIONS-1))

140

numerator = 0.0
DO 1960 i=1,AUTOITERATIONS
numerator=numerator+totalEffList(i) 1020

1960 CONTINUE
totalEffAvg=numerator/FLOAT(AUTO_ITERATIONS)

numerator = 0.0
DO 1970 i=1,AUTO ITERATIONS
numerator=numerator+(totalEffList(i)-totalEffAvg)**2

1970 CONTINUE
totalEffSD=SQRT(numerator/FLOAT(AUTO ITERATIONS-1))

numerator = 0.0 1030
DO 1980 i=1,AUTO ITERATIONS
numerator=numerator+FLOAT(timeList(i))

1980 CONTINUE
timeAvg=numerator/FLOAT(AUTO ITERATIONS)

numerator = 0.0
DO 1990 i=1,AUTO ITERATIONS
numerator=numerator+(FLOAT(timeList(i))-timeAvg)**2

1990 CONTINUE
timeSD=SQRT(numerator/FLOAT(AUTO ITERATIONS-1)) 1040

numerator = 0.0
DO 2000 i=1,AUTOJITERATIONS
numerator=numerator+FLOAT(massList(i))

2000 CONTINUE
massAvg=numerator/FLOAT(AUTOITERATIONS)

numerator = 0.0
DO 2010 i=I,AUTOITERATIONS
numerator=numerator+(FLOAT(massList(i))-massAvg)**2 1050

2010 CONTINUE
massSD=SQRT(numerator/FLOAT(AUTO ITERATIONS-1))

numerator = 0.0
DO 2020 i=1,AUTO ITERATIONS
numerator=numerator+FLOAT(tissuePartList(i))

2020 CONTINUE
tissuePartAvg=numerator/FLOAT(AUTO_ITERATIONS)

numerator = 0.0 1060
DO 2030 i=1,AUTO ITERATIONS
numerator=numerator+ (FLOAT(tissuePartList(i))-tissuePartAvg)**2

2030 CONTINUE
tissuePartSD=SQRT(numerator/FLOAT(AUTO ITERATIONS-1))

numerator = 0.0
DO 2040 i=1,AUTOITERATIONS
numerator=numerator+FLOAT(totalPartList(i))

2040 CONTINUE
totalPartAvg=numerator/FLOAT(AUTOITERATIONS) 1070

numerator = 0.0
DO 2050 i=1,AUTO ITERATIONS
numerator=numerator+(FLOAT(totalPartList(i))-totalPartAvg)**2

2050 CONTINUE
totalPartSD=SQRT(numerator/FLOAT(AUTOITERATIONS-1))

numerator = 0.0
DO 2060 i=1,AUTO ITERATIONS
numerator=numerator+FLOAT(decayPartList(i)) 1080

2060 CONTINUE
decayPartAvg=numerator/FLOAT(AUTOITERATIONS)

numerator = 0.0

141

DO 2070 i=1,AUTO ITERATIONS
numerator=numerator+(FLOAT(decayPartList(i))-decayPartAvg)**2

2070 CONTINUE
decayPartSD=SQRT(numerator/FLOAT(AUTO_ITERATIONS-1))

CALL ITIME(tArray)
compTime=tArray(3)+tArray(2)*60+tArray(1)*3600-compTime
PRINT ' (X,A,II0) ','Execution Time (secs): ',compTime

OPEN (UNIT=19,FILE= 'Model. Averages' ,STATUS= 'NEW')
WRITE (19,2200) ' '
WRITE (19,2200) 'Averages:'
WRITE (19,2240) 'Fractal Dimension: ',db,' +/-',sddb
WRITE (19,2240) 'Minimum-Path Dimension:',mpdim,' +/-',sdmpdim
WRITE (19,2240) 'Time/Mass:',timeMassAvg,' +/-',timeMassSD
WRITE (19,2240) 'Tis. Efficn. :',tissueEffAvg,' +/-',tissueEffSD
WRITE (19,2240) 'Tot. Efficn. :',totalEffAvg,' +/-',totalEffSD
WRITE (19,2240) 'Time: ',timeAvg,' +/-',timeSD
WRITE (19,2240) 'Mass:',massAvg,' +/-',massSD
WRITE (19,2240) 'Tis. Prtcls:',tissuePartAvg,' +/-',tissuePartSD
WRITE (19,2240) 'Tot. Prtcls:',totalPartAvg,' +/-',totalPartSD
WRITE (19,2240) 'Dec. Prtcls:',decayPartAvg,' +/-',decayPartSD
CLOSE (UNIT=19)

OPEN (UNIT=17,FILE=-' Model. Best ',STATUS=' NEW')
DO 2120 vloc=0,heightl
DO 2110 hloc=0,width2
WRITE (17,2260) bestImage(hloc,vloc),'T'

2110 CONTINUE
WRITE (17,2260) bestImage(widthl,vloc), 'C'

2120 CONTINUE
CLOSE (UNIT=17)

OPEN (UNIT=18,FILE= 'Model .Heavy' ,STATUS= 'NEW')
DO 2140 vloc=0,heightl
DO 2130 hloc=0,width2
WRITE (18,2260) heavylmage(hloc,vloc),'T'

2130 CONTINUE
WRITE (18,2260) heavyImage(widthl,vloc),'C'

2140 CONTINUE
CLOSE (UNIT=18)

2200 FORMAT (1X,A)
2210 FORMAT (1X,A,I9)
2220 FORMAT (1X,A,F9.7,1X,A)
2230 FORMAT (1X,A,F9.5)
2240 FORMAT (1X,A,F16.7,A,F16.7)
2250 FORMAT (1X,I3,1X,F6.4,1X,F6.4,1X,F6.4,1X,F6.4,

C F8.5,F8.5,F8.5,I7,I6,I7,I7,I6)
2260 FORMAT (1X,I4,A)
2270 FORMAT (1X,A,A)

END

142

1090

1100

1110

1120

1130

A.7 3-D Growth Modeling Program

PROGRAM DoModelTime

REAL*4 RNUNF

* Assign parameters:
INTEGER*4 AUTOITERATIONS,MAX LENGTH,MAXLENGTH1
PARAMETER (AUTOITERATIONS=10,MAX_LENGTH=32,MAX_LENGTH1=31)
INTEGER*4 MAX TIME,MAX NUM PARTICLES
PARAMETER (MAX TIME=1000000,MAX NUMPARTICLES=50000)
INTEGER*4 NO PROD RADIUS 10
PARAMETER (NO PROD RADIUS=5)
INTEGER*4 NUM BOX SIZES
PARAMETER (NUM BOXSIZES=25)
INTEGER*4 MAX PATH LENGTH
PARAMETER (MAX PATH LENGTH=1000)

* Declare image-size variables:
INTEGER*4 width,widthl,width2,height,heightl,height2
INTEGER*4 depth,depthl,depth2
REAL*4 imageVolume 20

* Declare multi-purpose variables:
INTEGER*4 vloc,hloc,xTemp,yTemp,xNo,yNo,yT,xT
INTEGER*4 zloc,zTemp,zNo,zT
INTEGER*4 k,i,j
INTEGER*4 longtmp(0:5)
LOGICAL*4 bTempl,bTemp2
REAL*4 numerator,denominator
INTEGER*4 compTime,tArray(l:3)

30
* Declare model parameters:

INTEGER*4 halfLife,growthWaitUnits,intL
INTEGER*4 numGroups,growthThreshold,releaseThreshold
LOGICAL*4 homogeneousSub,homogeneousDif,centerSeed
REAL*4 productionRate,stickingProb,extraRelease,growthRange
REAL*4 releaseAtGrowthSite,tau,fintL
LOGICAL*4 waitUnit,uniformParticleDist

* Declare model variables:
INTEGER*4 xCntr,yCntr,release,numRelease,autoCounter 40
INTEGER*4 zCntr
INTEGER*4 timeUnits,hitUnits,numDecayed,numParticles,occNeighbors
INTEGER*4 totalTime,highestParticle,numNew,emptyParticle
INTEGER*4 totalParts,tissueParts,extraParticles,growthSites
REAL*4 decayProb,weakest,frac
LOGICAL*4 BreakThrough,keepWaiting,foundEmpty
INTEGER*4 furthest,bestDistance,bestMass

* Declare final image variables:
INTEGER*4 pGroupSize,pAge 50

* Declare arrays:
INTEGER*4 imageArray(0:MAX LENGTH1,0:MAX.LENGTH1,0:MAXLENGTH1)
REAL*4 strengthArrayDif(O:MAXLENGTH1,0:MAX_LENGTH1,0:MAXLENGTH1)
REAL*4 strengthArraySub(0:MAX_LENGTH1,0:MAXLENGTH1,0:MAX LENGTH1)
INTEGER*4 hitArray(O:MAX LENGTH1,0:MAXLENGTH1,0:MAXLENGTH1)
INTEGER*4 xParticle(1:MAX_NUM PARTICLES)
INTEGER*4 yParticle(l:MAX_NUM PARTICLES)
INTEGER*4 zParticle(l:MAX NUM PARTICLES)
INTEGER*4 ageParticle(l:MAXNUMPARTICLES) 60
LOGICAL*4 activeParticle(1:MAX NUM PARTICLES)

* Declare result variables:
INTEGER*4 bestImage(0:MAX_LENGTH1,0:MAXLENGTH1,0:MAX LENGTH1)

143

INTEGER*4 heavyImage(0:MAX_LENGTH1,0:MAXLENGTH1,0:MAX LENGTH1)
REAL*4 dimList(0:AUTO ITERATIONS)
REAL*4 sdDimList(0:AUTO ITERATIONS)
REAL*4 mpdimList(O:AUTO ITERATIONS)
REAL*4 sdMpdimList(0:AUTO ITERATIONS)
REAL*4 timeMassList(0:AUTO ITERATIONS) 70
REAL*4 tissueEffList(O:AUTO ITERATIONS)
REAL*4 totalEffList(0:AUTOITERATIONS)
INTEGER*4 timeList(0:AUTO ITERATIONS),massList(0:AUTO ITERATIONS)
INTEGER*4 tissuePartList(O:AUTOITERATIONS)
INTEGER*4 totalPartList(0:AUTOITERATIONS)
INTEGER*4 decayPartList(O:AUTOITERATIONS)
REAL*4 timeMassAvg,totalEffAvg,tissueEffAvg,timeAvg,massAvg
REAL*4 tissuePartAvg,totalPartAvg,decayPartAvg
REAL*4 timeMassSD,totalEffSD,tissueEffSD,timeSD,massSD
REAL*4 tissuePartSD,totalPartSD,decayPartSD 80
REAL*4 mpdim,sdmpdim

* Declare mass-radius variables:
INTEGER*4 sizeIndex,xStart,yStart,xEnd,yEnd,mass,xc,yc
INTEGER*4 zStart,zEnd,zc
INTEGER*4 xr,yr,minLength
INTEGER*4 zr
INTEGER*4 LARGEST BOX INDEX,FIRSTBOX INDEX,LASTBOX INDEX
REAL*4 templ,temp2
REAL*4 sx,sy,st2,db,ss,sxoss,t,sddb,chi2,sigdat,intcp 90
INTEGER*4 boxSizes(l:NUM BOXSIZES),totalMass(1:NUM BOX SIZES)
REAL*4 InBoxSizes(l:NUM BOX_SIZES),lnTotalMass(1:NUM BOX_SIZES)

* Declare minimum path variables:
LOGICAL*4 noProgress
INTEGER*4 minPathArray(O:MAX LENGTH1,0:MAXLENGTH1,0:MAXLENGTH1)
INTEGER*4 stepIndex,vstart,vend,hstart,hend
INTEGER*4 dstart,dend
INTEGER*4 breakPoint,x,y,xe,ye,xs,ys
INTEGER*4 zbreakPoint,z,ze,zs 100
INTEGER*4 minPath(0:MAX PATH LENGTH,0:2)
INTEGER*4 pointIndex,pointLoc,occBox,configIdx
INTEGER*4 dx,dy
INTEGER*4 dz
REAL*4 eSize,rl

CALL ITIME(tArray)
compTime=tArray(3)+tArray(2)*60+tArray(1)*3600

* Initialize parameters: 110
intL=32768
fintL=32768.0

* Initialize size variables:
width = MAX LENGTH
widthl = width - 1
width2 = width - 2
height = MAX LENGTH
heightl = height - 1
height2 = height - 2 120
depth = MAXLENGTH
depthl = depth - 1
depth2 = depth - 2

* Initialize dimension measurement parameters:
boxSizes(1) = 512
templ = 512.0
DO 5 k=2,NUM BOX SIZES

4 temp2 = 0.793700526*templ
j = NINT(temp2) 130
templ = temp2
IF (j.EQ.boxSizes(k-1)) GO TO 4

144

boxSizes(k) = j
5 CONTINUE

* Assign Parameters:
homogeneousSub = .FALSE.
homogeneousDif = .TRUE.
centerSeed = .TRUE. 140
waitUnit = .TRUE.
growthWaitUnits = 10
halfLife = 1000000
tau = FLOAT(halfLife)/ALOG(2.0)
numGroups = 250
uniformParticleDist = .FALSE.
imageVolume = FLOAT(height)*FLOAT(width)*FLOAT(depth)
productionRate = 0.000056234133
stickingProb = 1.0
extraRelease = 0.0 150
releaseAtGrowthSite = 3.0
growthThreshold = 1
releaseThreshold = 1
growthRange = 0.5

OPEN (UNIT=15,FILE= 'Model. Specs' ,STATUS= 'NEW')
WRITE (15,2200) 'Model Specifications:'
IF (homogeneousSub) THEN
WRITE (15,2200) 'Homogeneous Substrate'

ELSE 160
WRITE (15,2200) 'Inhomogeneous Substrate'

ENDIF
IF (homogeneousDif) THEN
WRITE (15,2200) 'Homogeneous Diffusion'
ELSE
WRITE (15,2200) 'Inhomogeneous Diffusion'

ENDIF
IF (centerSeed) THEN
WRITE (15,2200) 'Center Seed'

ELSE 170
WRITE (15,2200) 'Multiple Seeds'

ENDIF
IF (waitUnit) THEN
WRITE (15,2200) 'Wait Unit: TIME'

ELSE
WRITE (15,2200) 'Wait Unit: HIT'

ENDIF
WRITE (15,2210) 'Growth Wait Units :',growthWaitUnits
WRITE (15,2210) 'Particle Half-life: ',halfLife
IF (uniformParticleDist) THEN 180
WRITE (15,2200) 'Uniform particle origin'

ELSE
WRITE (15,2200) 'Particle origin beyond network'

ENDIF
WRITE (15,2220) 'Production Rate: ',productionRate,
C 'particles/pixel*time'
WRITE (15,2230) 'Interaction Probability:',stickingProb
WRITE (15,2230) 'Extra release per hit: ',extraRelease
WRITE (15,2230) 'Extra release at growth site:',

C releaseAtGrowthSite 190
WRITE (15,2210) 'Growth threshold:',growthThreshold
WRITE (15,2210) 'Extra release threshold:',releaseThreshold
WRITE (15,2230) 'Growth Range: 0.0 -',growthRange
CLOSE (UNIT=15)

OPEN (UNIT=16,FILE= 'Model. Data' ,STATUS=' NEW')
WRITE (16,2270)
C ' No Dm-r Dmp T/M tis-E',
C ' tot-E Time Mass Tis Tot Dec'

200

145

bestDistance = MAX LENGTH/2
bestMass = 0

* Seeding code:
CALL RNOPT(6)
CALL RNSET(0)

* End of seeding code

* Initialize iteration counter:
autoCounter = 0 210

10 autoCounter = autoCounter + 1

* Assign growth substrate strengths:
IF (.NOT.homogeneousSub) THEN

PRINT *,'Generating random substrate strengths...'
DO 110 vloc=0,heightl
DO 105 hloc=0,widthl
DO 100 zloc=0,depthl 220
strengthArraySub(hloc,vloc,zloc)= RNUNFO

100 CONTINUE
105 CONTINUE
110 CONTINUE

PRINT *,'Random growth substrate generated.'
ELSE

DO 130 vloc=0,heightl
DO 125 hloc=0,widthl
DO 120 zloc=0,depthl
strengthArraySub(hloc,vloc,zloc)=0.5 230

120 CONTINUE
125 CONTINUE
130 CONTINUE

ENDIF

* Assign diffusion substrate strengths:
IF (.NOT.homogeneousDif) THEN

PRINT *,'Generating random diffusion strengths...
DO 160 vloc=0,heightl 240
DO 155 hloc=0,widthl
DO 150 zloc=0,depthl
strengthArrayDif(hloc,vloc,zloc)= RNUNFO

150 CONTINUE
155 CONTINUE
160 CONTINUE

PRINT *,'Random diffusion substrate generated.'
ENDIF

250
* Initialize model variables:

DO 200 i=1,MAX NUM PARTICLES
activeParticle(i)=.FALSE.

200 CONTINUE

BreakThrough = .FALSE.
numDecayed = 0
totalTime = 0
totalParts = 0 260
tissueParts = 0
extraParticles = 0

DO 220 vloc=0,heightl
DO 215 hloc=0,widthl
DO 210 zloc=0,depthl
imageArray(hloc,vloc,zloc)=0

210 CONTINUE

146

215 CONTINUE
220 CONTINUE 270

IF (centerSeed) THEN
yCntr = height/2
xCntr = width/2
zCntr = depth/2
numParticles = 1
imageArray(xCntr,yCntr,zCntr)=numParticles

IF (.NOT.uniformParticleDist) THEN
DO 260 zNo=-NO_PRODRADIUS,NOPRODRADIUS 280
zT = zNo + zCntr
IF (zT.GT.depthl) zT=zT-depth
IF (zT.LT.0) zT=depth-zT
DO 250 yNo=-NO PROD RADIUS,NO _PRODRADIUS
yT = yNo + yCntr
IF (yT.GT.heightl) yT=yT-height
IF (yT.LT.0) yT=height-yT
DO 240 xNo=-NO PROD RADIUS,NOPROD RADIUS
xT = xNo + xCntr
IF (xT.GT.widthl) xT=xT-width 290
IF (xT.LT.0) xT=width-xT
k=xNo*xNo + yNo*yNo* + zNo*zNo
IF (SQRT(FLOAT(k)).LT.NO PROD RADIUS) THEN
IF (imageArray(xT,yT,zT).EQ.0) imageArray(xT,yT,zT)=-1

ENDIF
240 CONTINUE
250 CONTINUE
260 CONTINUE

ENDIF
ELSE 300
PRINT *,'Only center-seed option is available!'
STOP

ENDIF

* ####### Main loop until BreakThrough #######
DO 1000 WHILE (.NOT.BreakThrough)
keepWaiting=.TRUE.
timeUnits=0
hitUnits=0 310

DO 310 vloc=0,heightl
DO 305 hloc=0,widthl
DO 300 zloc=0,depthl
hitArray(hloc,vloc,zloc)=0

300 CONTINUE
305 CONTINUE
310 CONTINUE

highestParticle=0 320
DO 320 i=I,MAX NUM PARTICLES
IF (activeParticle(i)) highestParticle=i

320 CONTINUE

* Loop waiting for time for growth:
DO 700 WHILE (keepWaiting)

timeUnits=timeUnits+1
totalTime=totalTime+1

330
* Advance existing particles:

DO 400 i=1,highestParticle
IF (activeParticle(i)) THEN

ageParticle(i)=ageParticle(i)+1

147

Takes into account only the case where homogeneousDif=TRUE:
k=AINT(6.0*RNUNF 0) +±1
GO TO (330,340,350,360,370,380), k

330 zTemp = zParticle(i) + 1 340
yTemp = yParticle(i)
xTemp = xParticle(i)
IF (zTemp.EQ.depth) zTemp=0
GO TO 390

340 zTemp = zParticle(i) - 1
yTemp = yParticle(i)
xTemp = xParticle(i)
IF (zTemp.EQ.-1) zTemp=depthl
GO TO 390

350 xTemp = xParticle(i) + 1 350
yTemp = yParticle(i)
zTemp = zParticle(i)
IF (xTemp.EQ.width) xTemp=0
GO TO 390

360 xTemp = xParticle(i) - 1
yTemp = yParticle(i)
zTemp = zParticle(i)
IF (xTemp.EQ.-1) xTemp=widthl
GO TO 390

370 yTemp = yParticle(i) - 1 360
xTemp = xParticle(i)
zTemp = zParticle(i)
IF (yTemp.EQ.-1) yTemp=heightl
GO TO 390

380 yTemp = yParticle(i) + 1
xTemp = xParticle(i)
zTemp = zParticle(i)
IF (yTemp.EQ.height) yTemp=0

390 IF (imageArray(xTemp,yTemp,zTemp).LE.0) THEN
xParticle(i)=xTemp 370
yParticle(i)=yTemp
zParticle(i)=zTemp

ENDIF
ENDIF

400 CONTINUE

* Produce new particles:

numNew=AINT(productionRate*imageVolume)
frac=productionRate*imageVolume-l.0*FLOAT(numNew) 380
IF (RNUNF0.LT.frac) numNew=numNew+l
emptyParticle = 1
DO 460 i=1,numNew
xTemp = NINT(RNUNFo*widthl)
yTemp = NINT(RNUNF()*heightl)
zTemp = NINT(RNUNF()*depthl)
IF (imageArray(xTemp,yTemp,zTemp).EQ.0) THEN
foundEmpty = .FALSE.
k = emptyParticle - 1
DO 450 WHILE (k.LT.MAXNUM PARTICLES) 390
k=k+1
IF (.NOT.activeParticle(k)) THEN
emptyParticle = k
foundEmpty = .TRUE.
k = MAX NUM PARTICLES

ENDIF
450 END DO

IF (.NOT.foundEmpty) THEN
PRINT *,'Too Many Particles!' 400
STOP

ENDIF

tissueParts = tissueParts + 1

148

totalParts = totalParts + 1
activeParticle(emptyParticle) =.TRUE.
xParticle(emptyParticle)=xTemp
yParticle(emptyParticle)=yTemp
zParticle(emptyParticle)=zTemp
ageParticle(emptyParticle)=1 410
IF (emptyParticle.GT.highestParticle)

C highestParticle=emptyParticle
ENDIF

460 CONTINUE

* Degrade old particles:

DO 500 i=l,highestParticle
IF (activeParticle(i)) THEN 420
decayProb = EXP(-FLOAT(ageParticle(i))/tau)/tau
IF (RNUNF0.LT.decayProb) THEN
numDecayed = numDecayed + 1
activeParticle(i)=.FALSE.

ENDIF
ENDIF

500 CONTINUE

* Mark hits:
DO 600 i=1l,highestParticle 430
IF (activeParticle(i)) THEN
xTemp = xParticle(i)
yTemp = yParticle(i)
zTemp = zParticle(i)
bTempl = ((xTemp.LT.widthl).AND.(yTemp.LT.heightl))
bTempl = (bTempl.AND.(zTemp.LT.depthl))
bTemp2 = ((xTemp.GT.0).AND.(yTemp.GT.0))
bTemp2 = (bTemp2.AND.(zTemp.GT.0))
IF (bTempl.AND.bTemp2) THEN
longtmp(0)= 440

C AINT(FLOAT(intL-1+imageArray((xTemp+l),yTemp,zTemp))/
C fintL)

longtmp(1)=
C AINT(FLOAT(intL- +imageArray((xTemp-1),yTemp,zTemp))/
C fintL)

longtmp(2)=
C AINT(FLOAT(intL- 1+imageArray(xTemp,(yTemp+1),zTemp))/
C fintL)

longtmp(3)=
C AINT(FLOAT(intL- 1+imageArray(xTemp,(yTemp-1),zTemp))/ 450
C fintL)

longtmp(4)=
C AINT(FLOAT(intL- l+imageArray(xTemp,yTemp,(zTemp+ 1)))/
C fintL)

longtmp(5)=
C AINT(FLOAT(intL- l+imageArray(xTemp,yTemp,(zTemp-1)))/
C fintL)

occNeighbors=longtmp(0)+longtmp(1)+longtmp(2)+longtmp(3)+
C longtmp(4)+longtmp(5)

IF (occNeighbors.GT.0) THEN 460
IF (RNUNF(.LT.(stickingProb*FLOAT(occNeighbors))) THEN
activeParticle(i)=.FALSE.
hitArray(xTemp,yTemp,zTemp)=hitArray(xTemp,yTemp,zTemp) + 1
hitUnits = hitUnits + 1
IF (MOD(hitArray(xTemp,yTemp,zTemp),releaseThreshold).EQ.0)

C THEN
emptyParticle = 1
numRelease = AINT(extraRelease)
frac = extraRelease - FLOAT(numRelease)
IF (RNUNFo.LT.frac) numRelease=numRelease+l1 470
DO 580 release=1,numRelease
foundEmpty=.FALSE.

149

k=emptyParticle - 1
DO 540 WHILE (k.LT.i)
k=k+1
IF (.NOT.activeParticle(k)) THEN
emptyParticle = k
foundEmpty = .TRUE.
k=i

ENDIF 480
540 END DO

IF (.NOT.foundEmpty) THEN
k=highestParticle
DO 560 WHILE (k.LT.MAX_NUMYPARTICLES)
k=k+1
IF (.NOT.activeParticle(k)) THEN
emptyParticle = k
foundEmpty = .TRUE.
k = MAX NUM PARTICLES

ENDIF 490
560 END DO

ENDIF
IF (.NOT.foundEmpty) THEN
PRINT *,'Too Many Particles!'
STOP

ENDIF
extraParticles = extraParticles + 1
totalParts = totalParts + 1
activeParticle(emptyParticle) = .TRUE.
xParticle(emptyParticle) = xTemp 500
yParticle(emptyParticle) = yTemp
zParticle(emptyParticle) = zTemp
ageParticle(emptyParticle) = 1

580 CONTINUE
ENDIF
ENDIF

ENDIF
ENDIF

ENDIF
600 CONTINUE 510

* Check if time for growth:
IF (waitUnit) THEN
IF (timeUnits.EQ.growthWaitUnits) keepWaiting=.FALSE.

ELSE
IF (hitUnits.GE.growthWaitUnits) keepWaiting=.FALSE.

ENDIF

IF (totalTime.EQ.MAX TIME) THEN
PRINT *,'Time exceeded maximum' 520
STOP

ENDIF

700 END DO
* End of loop waiting for growth event time

* Begin growth:
IF (hitUnits.GT.0) THEN
growthSites = 0 530
weakest = 1.0
DO 720 vloc=0,heightl
DO 715 hloc=0,widthl
DO 710 zloc=0,depthl
IF (hitArray(hloc,vloc,zloc).GE.growthThreshold) THEN
IF (strengthArraySub(hloc,vloc,zloc).LT.weakest) THEN
weakest=strengthArraySub(hloc,vloc,zloc)

ENDIF
ENDIF

710 CONTINUE 540

150

715 CONTINUE
720 CONTINUE

DO 900 vloc=0,heightl
DO 890 hloc=0,widthl
DO 880 zloc=0,depthl
IF (hitArray(hloc,vloc,zloc).GE.growthThreshold) THEN
bTempl=(strengthArraySub(hloc,vloc,zloc).LE.growthRange)
bTemp2=(strengthArraySub(hloc,vloc,zloc).EQ.weakest)
IF (bTempl.OR.bTemp2) THEN 550

xTemp = hloc
yTemp = vloc
zTemp = zloc
growthSites = growthSites + 1
numParticles = numParticles + 1
imageArray(xTemp,yTemp,zTemp) = numParticles
bTempl=((xTemp.EQ.width2).OR.(xTemp.EQ.1))
bTempl=(bTempl.OR.((zTemp.EQ.depth2).OR.(zTemp.EQ.1)))
bTemp2=((yTemp.EQ.height2).OR.(yTemp.EQ.1)) 560
IF (bTempl.OR.bTemp2) BreakThrough=.TRUE.

Mark no production area:
IF (.NOT.uniformParticleDist) THEN
DO 760 zNo=-NO_PROD RADIUS,NO PROD RADIUS
zT = zNo + zTemp
IF (zT.GT.depthl) zT=zT-depth
IF (zT.LT.0) zT=depth-zT
DO 755 yNo=-NO PROD RADIUS,NO PROD_RADIUS
yT = yNo + yTemp 570
IF (yT.GT.heightl) yT=yT-height
IF (yT.LT.0) yT=height-yT
DO 750 xNo=-NO PROD RADIUS,NO PROD RADIUS
xT = xNo + xTemp
IF (xT.GT.widthl) xT=xT-width
IF (xT.LT.0) xT=width-xT
k=xNo*xNo + yNo*yNo + zNo*zNo
IF (SQRT(FLOAT(k)).LE.NO PROD RADIUS) THEN
IF (imageArray(xT,yT,zT).EQ.0) imageArray(xT,yT,zT)=-1

ENDIF 580
750 CONTINUE
755 CONTINUE
760 CONTINUE

ENDIF
* End marking no production area

* Remove additional particles currently residing on growth site:
DO 770 i=1,highestParticle
IF (activeParticle(i)) THEN
bTempl = (xParticle(i).EQ.xTemp) 590
bTemp2 = (yParticle(i).EQ.yTemp)
bTemp2 = (bTemp2.AND.(zParticle(i).EQ.zTemp))
IF (bTempl.AND.bTemp2)

C activeParticle(i)=.FALSE.
ENDIF

770 CONTINUE
* End removal

* Release additional particles to nearest neighbors of growth site:
DO 780 i=0,5 600
longtmp(i)=0

780 CONTINUE
IF (imageArray((xTemp+1l),yTemp,zTemp).LE.0) longtmp(0)=1
IF (imageArray((xTemp-1),yTemp,zTemp).LE.0) longtmp(1)=1
IF (imageArray(xTemp,(yTemp+l),zTemp).LE.0) longtmp(2)=l
IF (imageArray(xTemp,(yTemp-1),zTemp).LE.0) longtmp(3)=1
IF (imageArray(xTemp,yTemp,(zTemp+1)).LE.0) longtmp(4)=l
IF (imageArray(xTemp,yTemp,(zTemp-1)).LE.0) longtmp(5)=l

numRelease = AINT(releaseAtGrowthSite)
frac = releaseAtGrowthSite - FLOAT(numRelease) 610
IF (RNUNFO.LT.frac) numRelease=numRelease+1
bTempl=((longtmp(0)+longtmp(1)+longtmp(2)+longtmp(3)+

C longtmp(4)+longtmp(5)).EQ.0)
IF (bTempl) numRelease=0
release = 0
DO 870 WHILE (release.LT.numRelease)
Takes into account only the case where homogeneousDif=TRUE
release = release + 1
k = AINT(6.0*RNUNF())
IF (k.EQ.6) k=5 620
IF (longtmp(k).NE.1) THEN
release=release-1

ELSE
foundEmpty = .FALSE.
i= 0
DO 810 WHILE (i.LT.MAX NUM PARTICLES)
i=i+1
IF (.NOT.activeParticle(i)) THEN
emptyParticle = i
foundEmpty = .TRUE. 630
i = MAX NUM PARTICLES

ENDIF
810 END DO

IF (foundEmpty) THEN
extraParticles = extraParticles + 1
totalParts = totalParts + 1
activeParticle(emptyParticle) = .TRUE.
ageParticle(emptyParticle) = 1
k=k+l
GO TO (820,830,840,850,852,854), k 640

820 xParticle(emptyParticle) = xTemp + 1
yParticle(emptyParticle) = yTemp
zParticle(emptyParticle) = zTemp
GO TO 860

830 xParticle(emptyParticle) = xTemp - 1
yParticle(emptyParticle) = yTemp
zParticle(emptyParticle) = zTemp
GO TO 860

840 xParticle(emptyParticle) = xTemp
yParticle(emptyParticle) = yTemp + 1 650
zParticle(emptyParticle) = zTemp
GO TO 860

850 xParticle(emptyParticle) = xTemp
yParticle(emptyParticle) = yTemp - 1
zParticle(emptyParticle) = zTemp
GO TO 860

852 xParticle(emptyParticle) = xTemp
yParticle(emptyParticle) = yTemp
zParticle(emptyParticle) = zTemp + 1
GO TO 860 660

854 xParticle(emptyParticle) = xTemp
yParticle(emptyParticle) = yTemp
zParticle(emptyParticle) = zTemp - 1
GO TO 860

860 ENDIF
ENDIF

870 END DO
* End release

ENDIF 670
ENDIF

880 CONTINUE
890 CONTINUE
900 CONTINUE

* Print '(1X,A,I5,4X,A,I8,4X,A,I6,4X,A,I5)',
* C 'Counter: ',autoCounter,' Time: ',totalTime, 'Hits: ',

152

* C hitUnits,'Growth Sites: ',growthSites
ENDIF

* End Growth
680

1000 END DO

PRINT *,'Breakthrough'

* Find center of mass:
XC = 0
yc = 0
zc = 0
DO 1050 vloc=0,heightl 690
DO 1045 hloc=0,widthl
DO 1040 zloc=0,depthl
IF (imageArray(hloc,vloc,zloc).GT.0) THEN
xc = xc + hloc
ye = ye + vloc
zc = zc + zloc

ENDIF
1040 CONTINUE
1045 CONTINUE
1050 CONTINUE 700

xc = NINT(FLOAT(xc)/FLOAT(numParticles))
yc = NINT(FLOAT(yc)/FLOAT(numParticles))
zc = NINT(FLOAT(zc)/FLOAT(numParticles))

minLength=MIN(xc,yc,zc,(MAX LENGTH-xc-1),(MAX LENGTH-yc-1),
C(MAXLENGTH-zc-1))/2

DO 1110 i=0,minLength
DO 1100 vloc=0-i,i
DO 1095 hloc=0-i,i 710
DO 1090 zloc=0-i,i
IF (imageArray((xc+hloc),(yc+vloc),(zc+zloc)).GT.0) THEN
xc = xc + hloc
yc = yc + vloc
zc = zc + zloc
GO TO 1120

ENDIF
1090 CONTINUE
1095 CONTINUE
1100 CONTINUE 720
1110 CONTINUE

PRINT *,'Could not find occupied pixel around center of mass'
STOP

1120 minLength=MIN(xc,yc,zc,(MAX LENGTH-xc-1),(MAXLENGTH-yc-1),
C(MAXLENGTH-zc-1))/2
LARGEST BOX INDEX = 1
DO WHILE (boxSizes(LARGESTBOX INDEX).GE.minLength)
LARGESTBOX_INDEX = LARGEST_BOXINDEX + 1

END DO 730

pGroupSize = AINT(FLOAT(numParticles)/FLOAT(numGroups))+1
DO 1140 vloc=0,heightl
DO 1135 hloc=0,widthl
DO 1130 zloc=0,depthl
pAge=imageArray(hloc,vloc,zloc)
IF (pAge.GT.0) THEN
imageArray(hloc,vloc,zloc)=

C 254- AINT(FLOAT(pAge)/FLOAT(pGroupSize)) 740
ELSE
imageArray(hloc,vloc,zloc)=0
ENDIF

1130 CONTINUE

153

1135 CONTINUE
1140 CONTINUE

PRINT *,'Find best images'

furthest = 0 750
DO 1160 vloc=0,heightl
DO 1155 hloc=0,widthl
DO 1150 zloc=0,depthl
IF (imageArray(hloc,vloc,zloc).GT.0) THEN
yTemp = vloc
GO TO 1170

ENDIF
1150 CONTINUE
1155 CONTINUE
1160 CONTINUE 760
1170 IF (yTemp.GT.furthest) furthest=yTemp

vstart=yTemp

DO 1190 vloc=heightl,0,-1
DO 1185 hloc=0,widthl
DO 1180 zloc=0,depthl
IF (imageArray(hloc,vloc,zloc).GT.0) THEN
yTemp = vloc
GO TO 1200 770

ENDIF
1180 CONTINUE
1185 CONTINUE
1190 CONTINUE
1200 IF ((heightl-yTemp).GT.furthest) furthest=heightl-yTemp

vend=yTemp

DO 1220 hloc=0,widthl
DO 1215 vloc=0,heightl 780
DO 1210 zloc=0,depthl
IF (imageArray(hloc,vloc,zloc).GT.0) THEN
xTemp = hloc
GO TO 1230

ENDIF
1210 CONTINUE
1215 CONTINUE
1220 CONTINUE
1230 IF (xTemp.GT.furthest) furthest=xTemp

790
hstart=xTemp

DO 1250 hloc=widthl,0,-1
DO 1245 vloc=0,heightl
DO 1240 zloc=0,depthl
IF (imageArray(hloc,vloc,zloc).GT.0) THEN
xTemp = hloc
GO TO 1260

ENDIF
1240 CONTINUE 800
1245 CONTINUE
1250 CONTINUE
1260 IF ((widthl-xTemp).GT.furthest) furthest=widthl-xTemp

hend=xTemp

DO 1272 zloc=0,depthl
DO 1271 vloc=0,heightl
DO 1270 hloc=0,widthl
IF (imageArray(hloc,vloc,zloc).GT.0) THEN 810
zTemp = zloc
GO TO 1273

154

ENDIF
1270 CONTINUE
1271 CONTINUE
1272 CONTINUE
1273 IF (zTemp.GT.furthest) furthest=zTemp

dstart=zTemp
820

DO 1277 zloc=depthl,0,-1
DO 1276 vloc=0,heightl
DO 1275 hloc=0,widthl
IF (imageArray(hloc,vloc,zloc).GT.0) THEN
zTemp = zloc
GO TO 1278

ENDIF
1275 CONTINUE
1276 CONTINUE
1277 CONTINUE 830
1278 IF ((depthl-zTemp).GT.furthest) furthest=depthl-zTemp

dend=zTemp

IF (furthest.LT.bestDistance) THEN
bestDistance=furthest
DO 1290 vloc=0,heightl
DO 1285 hloc=0,widthl
DO 1280 zloc=0,depthl
bestlmage(hloc,vloc,zloc)=imageArray(hloc,vloc,zloc) 840

1280 CONTINUE
1285 CONTINUE
1290 CONTINUE

ENDIF

IF (numParticles.GT.bestMass) THEN
bestMass = numParticles
DO 1330 vloc=0,heightl
DO 1325 hloc=0,widthl
DO 1320 zloc=0,depthl 850
heavyImage(hloc,vloc,zloc) =imageArray(hloc,vloc,zloc)

1320 CONTINUE
1325 CONTINUE
1330 CONTINUE

ENDIF

PRINT *,'Find mass per radius'

DO 1340 sizeIndex=LARGEST BOXINDEX,NUM BOX_SIZES 860
totalMass(sizeIndex) = 0
InBoxSizes(sizeIndex) = ALOG(FLOAT(boxSizes(sizeIndex)))

1340 CONTINUE

configIdx = 0
DO 1390 yr=(yc-minLength/2),(yc+minLength/2)
DO 1385 xr=(xc-minLength/2),(xc+minLength/2)
DO 1380 zr=(zc-minLength/2),(zc+minLength/2)
IF (imageArray(xr,yr,zr).GT.0) THEN
configIdx = configIdx +1 870
DO 1370 sizeIndex=LARGEST BOXINDEX,NUM BOX SIZES
mass = 0
yStart = yr - boxSizes(sizeIndex)
yEnd = yr + boxSizes(sizeIndex)
xStart = xr - boxSizes(sizeIndex)
xEnd = xr + boxSizes(sizeIndex)
zStart = zr - boxSizes(sizeIndex)
zEnd = zr + boxSizes(sizeIndex)
DO 1360 vloc=yStart,yEnd
DO 1355 hloc=xStart,xEnd 880

155

DO 1350 zloc=zStart,zEnd
templ=SQRT(FLOAT(vloc-yr)**2+FLOAT(hloc-xr)**2+

C FLOAT(zloc-zr)**2)
IF (templ.LE.FLOAT(boxSizes(sizeIndex))) THEN
IF (imageArray(hloc,vloc,zloc).GT.0) mass=mass+l

ENDIF
1350 CONTINUE
1355 CONTINUE
1360 CONTINUE

totalMass(sizeIndex) = totalMass(sizeIndex) + mass 890
1370 CONTINUE

ENDIF

1380 CONTINUE
1385 CONTINUE
1390 CONTINUE

DO 1400 sizelndex=LARGEST_BOX INDEX,NUM_BOXSIZES
lnTotalMass(sizeIndex) =

C ALOG(FLOAT(totalMass(sizeIndex))/FLOAT(configIdx)) 900
1400 CONTINUE

PRINT *,'Calculating dimension'

LAST BOX INDEX = 24
FIRST BOX INDEX = LARGESTBOX INDEX
j = LAST BOXINDEX - LARGESTBOX_INDEX + 1
sx = 0.0
sy = 0.0
st2 = 0.0 910
db = 0.0
DO 1420 i=FIRSTBOXINDEX,LASTBOXINDEX
sx = sx + InBoxSizes(i)
sy = sy + InTotalMass(i)

1420 CONTINUE
ss = FLOAT(LAST BOX INDEX - FIRSTBOX INDEX) + 1.0
sXOSS = SX/ss

DO 1440 i=FIRSTBOXINDEX,LASTBOXINDEX
t = InBoxSizes(i) - sxoss 920
st2 = st2 + t*t
db = db + t*lnTotalMass(i)

1440 CONTINUE
db = db/st2
sddb = SQRT(1.0/st2)
intcp = (sy - sx*db)/ss
chi2 = 0.0

DO 1460 i=FIRST BOXINDEX,LASTBOX INDEX
templ = InTotalMass(i) - intcp - db*lnBoxSizes(i) 930
chi2 = chi2 + templ*templ

1460 CONTINUE
sigdat = SQRT(chi2/(ss - 2.0))
sddb = sddb*sigdat

dimList(autoCounter)=db
sdDimList(autoCounter)=sddb
timeMassList (autoCounter) =FLOAT(totalTime)/FLOAT(numParticles)
tissueEffList (autoCounter)=FLOAT(numParticles)/FLOAT(tissueParts)
totalEffList(autoCounter)=FLOAT(numParticles)/FLOAT(totalParts) 940
timeList(autoCounter)=totalTime
massList(autoCounter)=numParticles
tissuePartList(autoCounter)=tissueParts
totalPartList(autoCounter)=totalParts
decayPartList(autoCounter)=numDecayed

PRINT *,'Find minimum path'

156

DO 1620 vloc=0,heightl 950
DO 1615 hloc=0,widthl
DO 1610 zloc=0,depthl
minPathArray(hloc,vloc,zloc)=0

1610 CONTINUE
1615 CONTINUE
1620 CONTINUE

noProgress = .TRUE.
BreakThrough = .FALSE.

960
stepIndex = 1
DO 1630 hloc=hstart,hend
DO 1629 zloc=dstart,dend
IF (imageArray(hloc,vstart,zloc).GT.0) THEN
minPathArray(hloc,vstart,zloc)=stepIndex

ENDIF
1629 CONTINUE
1630 CONTINUE

DO 1680 WHILE (.NOT.BreakThrough) 970
DO 1660 vloc=vstart,vend
DO 1655 hloc=hstart,hend
DO 1650 zloc=dstart,dend
IF (minPathArray(hloc,vloc,zloc).EQ.stepIndex) THEN

bTempl=(imageArray((hloc+l),vloc,zloc).GT.0)
bTemp2=(minPathArray((hloc+1),vloc,zloc).EQ.0)
IF (bTempl.AND.bTemp2) minPathArray((hloc+l),vloc,zloc)=

C stepIndex+l
980

bTempl=(imageArray((hloc- 1),vloc,zloc).GT.0)
bTemp2=(minPathArray((hloc-1),vloc,zloc).EQ.0)
IF (bTempl.AND.bTemp2) minPathArray((hloc-1),vloc,zloc)=

C stepIndex+l

bTempl=(imageArray(hloc,(vloc+1l),zloc).GT.0)
bTemp2=(minPathArray(hloc,(vloc+1),zloc).EQ.0)
IF (bTempl.AND.bTemp2) minPathArray(hloc,(vloc+1),zloc)=

C stepIndex+1
990

bTempl=(imageArray(hloc,(vloc- 1),zloc).GT.0)
bTemp2= (minPathArray(hloc,(vloc- 1),zloc).EQ.0)
IF (bTempl.AND.bTemp2) minPathArray(hloc,(vloc-1),zloc)=

C stepIndex+1l

bTempl= (imageArray(hloc,vloc,(zloc+1)).GT.0)
bTemp2=(minPathArray(hloc,vloc,(zloc+l)).EQ.0)
IF (bTempl.AND.bTemp2) minPathArray(hloc,vloc,(zloc+1l))=

C stepIndex+1
1000

bTempl=(imageArray(hloc,vloc,(zloc-1)).GT.0)
bTemp2=(minPathArray(hloc,vloc,(zloc- 1)).EQ.0)
IF (bTempl.AND.bTemp2) minPathArray(hloc,vloc,(zloc-1))=

C stepIndex+l

noProgress = .FALSE.
ENDIF

1650 CONTINUE
1655 CONTINUE
1660 CONTINUE 1010

IF (noProgress) THEN
PRINT *,'No Progress Finding Minimum Path'
STOP

ENDIF

157

stepIndex=stepIndex+1

vloc = vend
hloc = hstart - 1 1020
DO 1670 WHILE (hloc.LT.hend)
hloc = hloc + 1
zloc=dstart-1
DO 1668 WHILE (zloc.LT.dend)
zloc=zloc+1l
IF (minPathArray(hloc,vloc,zloc).NE.0) THEN
BreakThrough = .TRUE.
PRINT *,'Breakthrough minimum path'
breakPoint = hloc
zbreakPoint = zloc 1030
zloc = dend
hloc = hend

ENDIF
1668 END DO
1670 END DO

1680 END DO

vloc = vend
hloc = breakPoint 1040
zloc = zbreakPoint
pointIndex = 0
stepIndex = minPathArray(hloc,vloc,zloc) - 1
minPathArray(hloc,vloc,zloc) = -1
minPath(pointIndex,0) = hloc
minPath(pointIndex,1) = vloc
minPath(pointIndex,2) = zloc

DO 1720 WHILE (vloc.GT.vstart)
xs = hloc - 1 1050
ys = vloc - 1
zs = zloc - 1
xe = hloc + 1
ye = vloc + 1
ze = zloc + 1
DO 1710 y=ys,ye
DO 1705 x=xs,xe
DO 1700 z=zs,ze
IF (minPathArray(x,y,z).EQ.stepIndex) THEN
minPathArray(x,y,z) = -1 1060
stepIndex = stepIndex - 1
pointIndex = pointIndex + 1
hloc = x
vloc = y
zloc = z
minPath(pointIndex,0) = hloc
minPath(pointIndex,1) = vloc
minPath(pointIndex,2) = zloc
GO TO 1720

ENDIF 1070
1700 CONTINUE
1705 CONTINUE
1710 CONTINUE
1720 END DO

DO 1780 sizeIndex=LARGEST BOX INDEX,NUM BOX_SIZES
eSize = FLOAT(boxSizes(sizeIndex))
occBox = 0
pointLoc = 0
DO 1760 i=0,pointIndex 1080
dx = minPath(i,0) - minPath(pointLoc,0)
dy = minPath(i,1) - minPath(pointLoc,1)
dz = minPath(i,2) - minPath(pointLoc,2)
rl = SQRT(FLOAT(dx*dx) + FLOAT(dy*dy) + FLOAT(dz*dz))

158

IF (rl.GE.eSize) THEN
pointLoc = i
occBox = occBox + 1

ENDIF
1760 CONTINUE

1090
IF (pointLoc.LT.pointIndex) occBox=occBox+l

totalMass(sizelndex) = occBox
InBoxSizes(sizeIndex) = ALOG(FLOAT(boxSizes(sizeIndex)))
lnTotalMass(sizeIndex) = ALOG(FLOAT(totalMass(sizelndex)))

1780 CONTINUE

PRINT *,'Calculating minimum-path dimension'

LAST BOX INDEX = 24 1100
FIRST BOX INDEX = LARGEST BOX INDEX
j = LASTBOXINDEX - LARGEST BOXINDEX + 1
sx = 0.0
sy = 0.0
st2 = 0.0
db = 0.0
DO 1820 i=FIRSTBOX_INDEX,LASTBOX_INDEX
sx = sx + InBoxSizes(i)
sy = sy + InTotalMass(i)

1820 CONTINUE 1110
ss = FLOAT(LAST BOXINDEX - FIRSTBOXINDEX) + 1.0
sxoss = SX/SS

DO 1840 i=FIRST_BOXJINDEX,LASTBOX INDEX
t = InBoxSizes(i) - sxoss
st2 = st2 + t*t
db = db + t*lnTotalMass(i)

1840 CONTINUE
db = db/st2
sddb = SQRT(1.0/st2) 1120
intcp = (sy - sx*db)/ss
chi2 = 0.0

DO 1860 i=FIRST BOX_INDEX,LAST_BOXINDEX
templ = InTotalMass(i) - intcp - db*lnBoxSizes(i)
chi2 = chi2 + templ*templ

1860 CONTINUE
sigdat = SQRT(chi2/(ss - 2.0))
sddb = sddb*sigdat

1130
mpdimList(autoCounter)=0.0-db
sdMpdimList(autoCounter)=sddb

i=autoCounter
WRITE (16,2250) i,dimList(i),sdDimList(i),
C mpdimList(i),sdMpdimList(i),timeMassList(i),
C tissueEffList(i),totalEffList(i),timeList(i),
C massList(i),tissuePartList(i),
C totalPartList(i),decayPartList(i)

1140
PRINT '(1X,A,I5,A,I5) ','Finished Iteration ',autoCounter,
C ' out of ',AUTO ITERATIONS

IF (autoCounter.LT.AUTO ITERATIONS) GO TO 10

CLOSE (UNIT=16)

denominator = 0.0
numerator = 0.0
DO 1880 i=1,AUTOITERATIONS 1150
denominator=denominator+1.0/sdMpdimList(i)**2
numerator=numerator+mpdimList(i)*(1.0/sdMpdimList(i)**2)

159

1880 CONTINUE
mpdim=numerator/denominator

numerator = 0.0
DO 1890 i=1,AUTO ITERATIONS
numerator=numerator+(mpdimList(i) -mpdim)**2

1890 CONTINUE
sdmpdim=SQRT(numerator/FLOAT(AUTOITERATIONS-1)) 1160

denominator = 0.0
numerator = 0.0
DO 1900 i=1,AUTOITERATIONS
denominator=denominator+1.0/sdDimList(i)**2
numerator=numerator+dimList(i)*(I.0/sdDimList(i)**2)

1900 CONTINUE
db=numerator/denominator

numerator = 0.0 1170
DO 1910 i=1,AUTO ITERATIONS
numerator=numerator+(dimList(i)-db)**2

1910 CONTINUE
sddb=SQRT(numerator/FLOAT(AUTO ITERATIONS-1))

numerator = 0.0
DO 1920 i=1,AUTO ITERATIONS
numerator=numerator+timeMassList(i)

1920 CONTINUE
timeMassAvg=numerator/FLOAT(AUTO ITERATIONS) 1180

numerator = 0.0
DO 1930 i=1,AUTO ITERATIONS
numerator=numerator+(timeMassList(i)-timeMassAvg)**2

1930 CONTINUE
timeMassSD=SQRT(numerator/FLOAT(AUTO ITERATIONS-1))

numerator = 0.0
DO 1940 i=1,AUTO ITERATIONS
numerator=numerator+tissueEffList(i) 1190

1940 CONTINUE
tissueEffAvg=numerator/FLOAT(AUTO ITERATIONS)

numerator = 0.0
DO 1950 i=1,AUTO ITERATIONS
numerator=numerator+(tissueEffList(i) -tissueEffAvg)**2

1950 CONTINUE
tissueEffSD=SQRT(numerator/FLOAT(AUTO_ITERATIONS-1))

numerator = 0.0 1200
DO 1960 i=1,AUTOITERATIONS
numerator=numerator+totalEffList (i)

1960 CONTINUE
totalEffAvg=numerator/FLOAT(AUTO ITERATIONS)

numerator = 0.0
DO 1970 i=1,AUTO ITERATIONS
numerator=numerator+(totalEffList(i)-totalEffAvg)**2

1970 CONTINUE
totalEffSD=SQRT(numerator/FLOAT(AUTO ITERATIONS-1)) 1210

numerator = 0.0
DO 1980 i=1,AUTO ITERATIONS
numerator=numerator+FLOAT(timeList(i))

1980 CONTINUE
timeAvg=numerator/FLOAT(AUTO_ITERATIONS)

numerator = 0.0
DO 1990 i=1,AUTO ITERATIONS
numerator=numerator+ (FLOAT(timeList(i)) -timeAvg)** 2 1220

160

1990 CONTINUE
timeSD=SQRT(numerator/FLOAT(AUTO ITERATIONS- 1))

numerator = 0.0
DO 2000 i=1,AUTO ITERATIONS
numerator=numerator+FLOAT(massList(i))

2000 CONTINUE
massAvg=numerator/FLOAT(AUTOITERATIONS)

numerator = 0.0
DO 2010 i=1,AUTO ITERATIONS
numerator=numerator+(FLOAT(massList(i)) -massAvg)**2

2010 CONTINUE
massSD=SQRT(numerator/FLOAT(AUTO ITERATIONS-1))

numerator = 0.0
DO 2020 i=1,AUTO ITERATIONS
numerator=numerator+FLOAT(tissuePartList(i))

2020 CONTINUE
tissuePartAvg=numerator/FLOAT(AUTO ITERATIONS)

numerator = 0.0
DO 2030 i=1,AUTO ITERATIONS
numerator=numerator+(FLOAT(tissuePartList(i))-tissuePartAvg)**2

2030 CONTINUE
tissuePartSD=SQRT(numerator/FLOAT(AUTO ITERATIONS-1))

numerator = 0.0
DO 2040 i=1,AUTO ITERATIONS
numerator=numerator+FLOAT(totalPartList(i))

2040 CONTINUE
totalPartAvg=numerator/FLOAT(AUTOITERATIONS)

numerator = 0.0
DO 2050 i=l,AUTOITERATIONS
numerator=numerator+(FLOAT(totalPartList(i))-totalPartAvg)**2

2050 CONTINUE
totalPartSD=SQRT(numerator/FLOAT(AUTO ITERATIONS-1))

numerator = 0.0
DO 2060 i=1,AUTOITERATIONS
numerator=numerator+FLOAT(decayPartList(i))

2060 CONTINUE
decayPartAvg=numerator/FLOAT(AUTO ITERATIONS)

numerator = 0.0
DO 2070 i=1,AUTO ITERATIONS
numerator=numerator+(FLOAT(decayPartList(i))-decayPartAvg)**2

2070 CONTINUE
decayPartSD=SQRT(numerator/FLOAT(AUTO_ITERATIONS-1))

CALL ITIME(tArray)
compTime=tArray(3)+tArray(2)*60+tArray(1)*3600-compTime
PRINT '(IX,A,I10) ','Execution Time (secs): ',compTime

OPEN (UNIT=19,FILE= 'Model. Averages' ,STATUS=' NEW')
WRITE (19,2200) ' .
WRITE (19,2200) 'Averages:'
WRITE (19,2240) 'Fractal Dimension:',db,' +/-',sddb
WRITE (19,2240) 'Minimum-Path Dimension: ',mpdim,' +/-',sdmpdim
WRITE (19,2240) 'Time/Mass:',timeMassAvg,' +/-',timeMassSD
WRITE (19,2240) 'Tis. Efficn.:',tissueEffAvg,' +/-',tissueEffSD
WRITE (19,2240) 'Tot. Efficn. :',totalEffAvg,' +/-',totalEffSD
WRITE (19,2240) 'Time: ',timeAvg,' +/-',timeSD
WRITE (19,2240) 'Mass: ',massAvg,' +/-',massSD
WRITE (19,2240) 'Tis. Prtcls:',tissuePartAvg,' +/-',tissuePartSD
WRITE (19,2240) 'Tot. Prtcls:',totalPartAvg,' +/-',totalPartSD
WRITE (19,2240) 'Dec. Prtcls: ',decayPartAvg,' +/-',decayPartSD

1230

1240

1250

1260

1270

1280

CLOSE (UNIT=19)
1290

OPEN (UNIT= 17,FILE= 'Model. Best ',STATUS=' NEW')
zloc = depth/2
DO 2120 vloc=0,heightl
DO 2110 hloc=0,width2
WRITE (17,2260) bestImage(hloc,vloc,zloc),'T'

2110 CONTINUE
WRITE (17,2260) bestImage(widthl,vloc,zloc),'C'

2120 CONTINUE
CLOSE (UNIT=17)

1300
OPEN (UNIT=18,FILE= 'Model. Heavy' ,STATUS=' NEW')
DO 2140 vloc=0,heightl
DO 2130 hloc=0,width2
WRITE (18,2260) heavyImage(hloc,vloc,zloc),'T'

2130 CONTINUE
WRITE (18,2260) heavylmage(widthl,vloc,zloc),' C'

2140 CONTINUE
CLOSE (UNIT=18)

OPEN (UNIT=18,FILE= 'Model3. Heavy' ,STATUS= ' NEW') 1310
DO 2160 vloc=0,heightl
DO 2155 hloc=0,width2
zloc=depth
DO 2150 WHILE(zloc.GT.0)
zloc=-zloc-1
IF (heavyImage(hloc,vloc,zloc).GT.0) GO TO 2152

2150 END DO
2152 WRITE (18,2260) zloc,'T'
2155 CONTINUE

WRITE (18,2260) heavyImage(widthl,vloc,zloc), 'C' 1320
2160 CONTINUE

CLOSE (UNIT=18)

2200 FORMAT (1X,A)
2210 FORMAT (1X,A,I9)
2220 FORMAT (1X,A,F9.7,1X,A)
2230 FORMAT (1X,A,F9.5)
2240 FORMAT (1X,A,F16.7,A,F16.7)
2250 FORMAT (lX,I3,1X,F6.4,1X,F6.4,1X,F6.4,1X,F6.4,

C F8.5,F8.5,F8.5,I7,I6,I7,I7,16) 1330
2260 FORMAT (1X,I4,A)
2270 FORMAT (1X,A,A)

END

162

A.8 Stress-Based Remodeling Program
The stress-based remodeling program and supporting functions used in the modeling of arteriovenous
network formation are listed below. The program and its functions were written using MATLAB.

A.8.1 Main Routine

% This routine remodels a square capillary lattice according
% to a shear-stress dependent rule

% latsize = number of nodes per side
latsize=6;

% s = sensitivity parameter
s=0.05;

% dt = time step 10
dt=1
tfinal=1000

% d = segment diamter matrix
% Initially, d is the connectivity matrix
d=conmsq(latsize);

% L = segment length matrix
L=d;

20
size=latsize^2;
G=zeros(size);

% G = segment conductance matrix
G(L-=0)=(d(L-=0).^4)./L(L-=0);

known=[1 size];

pknown=[1 0];
30

% p = node pressure vector
p=pressure(G,known,pknown);

% Q = segment flow matrix
Q=flow(G,p);

% tau = segment shear stress matrix
% tau0 = segment homeostatic shear stress matrix
tau=zeros(size);
tau0=zeros(size); 40
tauo(d-=0)=Q(d=0)./((d(d(d=0)). 3);

% Set initial perturbation:
d(1,2)=1.21;
d(2,1)=1.21;
d(1,(latsize+1))=1.19;
d((latsize+1),1)=1.19;

% artern = vector of inflow nodes into previously modified segments
artern=[1]; 50
% perimn = vector of inflow nodes into segments eligible for remodeling
perimn=[2 (latsize+1)];

d45=[1];
d410=[1];
d910=[1];
d915=-[1];

163

d1415=[1];
d1420=[1];
d1920= [1]; 60
d1925=[1];

% Main loop:
% iterns = number of generations for remodeling
for iterns=1:3

% dper = diameter matrix of segments eligible for remodeling
dper=zeros(size);
dper(perimn,:)=d(perimn,:);
dper(:,perimn)=d(:,perimn); 70
dper(perimn,artern)=zeros(length(perimn),length(artern));
dper(artern,perimn)=zeros(length(artern),length(perimn));

% Time stepping loop:
for t=dt:dt:(tfinal*iterns)

% Calculate pressures, flows and shear stresses in all segments:
G(L-=0)=(d(L=0).^4)./L(L~-=0);
p=pressure(G,known,pknown);
Q=flow(G,p); 80
tau(d-=0)=Q(d-=0)./((d(d~=0)).^3);

% Change diameter of eligible segments:
d=d-dper;
dper(dper~=0)=dper(dper - =0).*(1+(s*dt).*(tau(dper~=0)-tau0(dper ~=0))./tau0(dper"=0));
d=d+dper;

d45=[d45 d(4,5)];
d410=[d410 d(4,10)];
d910=[d910 d(9,10)]; 90
d915=[d915 d(9,15)];
d1415=[d1415 d(14,15)];
d1420=[d1420 d(14,20)];
d1920=[d1920 d(19,20)];
d1925=[d1925 d(19,25)];

end

% Set segment diamter to zero if less than 0.1:
d(d<0.1)=0.*d(d<0.1); 100

% Define new set of eligible segments:
artern=[artern,perimn];
contem=sum(d(perimn,:));
itemp=ones(1,length(contem));
itemp(artern)=zeros(1,length(artern));
contem=itemp & contem;
itemp=1:size;
perimn=itemp(contem);

110
end

164

A.8.2 Supporting Functions

Connectivity Matrix Generation

% function to create a connectivity matrix for a square lattice
% arguments: side = number of nodes per side
% returns: connectivity matrix

function C=conmsq(side)

C=zeros(side*side);

for i=0:(side-2)
for j=1:(side-1) 10

k=i*side + j;
C(k,k+1)=l;
C(k,k+side)=l;

end
k=(i+l)*side;
C(k,k+side)=l;
k=side*(side-1) + (i+1);
C(k,k+l)=1;

end
20

C=C+C' ;

Pressure Calculation

% function to find the pressures in a network
% courtesy of Dr. James Baish, Bucknell University
% arguments: G = conductance matrix,
% known = vector of nodes at which pressure is known,
% pknown = vector of known pressures
% returns: pressure vector

function p=pressure(G, known,pknown)

% n=number of nodes 10
n=length(G);
% i=indices of nodes
i=-l:n;
p=0*i;
% all pressures set to zero except known pressures
p(known)=pknown;
% sum conductances over columns (sumG is a vector)
sumG=sum(G);
% subtract sum from main diagonal
A=G-diag(sumG,0); 20
[x,y]=meshgrid(i,known);
% unknown=indicesof unknown pressures
unknown=i(-any(x==y));
% right hand side of matrix equation
B=-G*p';
% right hand side of matrix equation for unknowns only
B=B(unknown);
% left hand side of matrix equation for unknowns only
A=A(unknown,unknown);
% solve matrix equation 30
p(unknown)=(sparse(A)\sparse(B))' ;

165

Flow Calculation

% function to find the flow through a network
% courtesy of Dr. James Baish, Bucknell University
% arguments: G = conductance matrix, p = pressure vector
% returns: volumetric flow

function f=flow(G,p)

% n=number of nodes
n=length(G);
% i,j are indices of all non-zero conductances 10
[i,j,G]=find(G);
% calculate all pressure differences
dp=p(j)-p(i);
% find flows into each node
f=G'.*dp;
% put result in a sparse matrix
f=sparse(i,j,f,n,n);

166

Appendix B

Correlation Dimension

Measurements

This appendix contains the fractal dimension measurements of the observed vascular networks in

the murine dorsal chamber obtained using the correlation algorithm (see subsection 3.4.3). These

measurements are listed separately from the box-counting and sandbox measurements of Chapter 4

because the correlation algorithm was shown to be less accurate than either the box-counting or

sandbox algorithms in benchmark tests (see subsection 3.4.4).

Measurements of normal subcutaneous arteriovenous networks in nude mice (n = 12) yielded a

value of dor,,, = 1.71 ± 0.04. Measurements of bone-induced arteriovenous networks in nude mice

(n = 10) yielded a value of dcorr = 1.72 ± 0.05. Measurements of normal striated skin muscle

capillary networks in nude mice (n = 12) yielded a value of dc,,,, = 2.01 ± 0.02. Measurements

of human adenocarcinoma LS174T vascular networks in nude mice (n = 12) yielded a value of

dcorr = 1.94 0.04. The results of all these measurements are summarized in Figure B-1. Correlation

dimensions measured in C3H mice implanted with three different murine tumor cell lines (n = 3 for

.* LS174T (nude) O
xxx x>x * MCaIV (C3H) o

A * Sal (C3H) A
0 00 SCC7(C3H) O++ 1WHH- +-*

- *•o P Normal A-V +
Bone-Induced A-V x

1.6 1.7 1.8 1.9 2.0 NormalCapillary *

Correlation Dimension

Figure B-1: Correlation dimensions of the observed vascular networks.

167

Table B.1: Vascular Network Class Separation Based on Correlation Dimension
Network Correlation Algorithm
Classes M-W t-test
Tumor

vs. p < 0.0001 p < 0.0001
Capillary

Tumor
vs. p < 0.0001 p < 0.0001

A-V
A-V
vs. p < 0.0001 p < 0.0001

Capillary
Bone A-V

vs. p = 0.6924 p = 0.6006
S.C. A-V

Tumor (nude)
vs. p = 0.0646 p = 0.2412

Tumor (C3H)

each) fell within the approximate range of the LS174T measurements (see Figure B-1).

When compared to the values obtained using the box-counting or sandbox algorithms (see Chap-

ter 4), the values obtained by the correlation algorithm are slightly but consistently higher. In order

to verify whether the correlation dimension results can also be used to separate the observed vascu-

lar networks into three distinct classes of scale-invariant behavior, statistical significance tests were

carried out similar to those detailed in subsection 4.4.1. The data from Figure B-1 were divided

into five pairs of groups. The first three pairs were used to measure between-class separation and

consisted of all possible pairings of the groups:

* Arteriovenous networks - normal subcutaneous and bone-induced networks in nude mice

(n = 22).

* Tumor networks - tumor networks in nude and C3H mice (n = 21).

* Capillary networks - normal capillary networks in nude mice (n = 12).

The last two pairs were used to measure within-class separation within the arteriovenous network

class and within the tumor network class:

* Bone-induced arteriovenous networks in nude mice (n = 10) vs. subcutaneous arteriovenous

networks in nude mice (n = 12).

* LS174T tumor networks in nude mice (n = 12) vs. various tumor networks in C3H mice

(n = 9).

The results are summarized in Table B.1.

168

The p-values in Table B. 1 show that the correlation dimension clearly separates the three observed

classes of two-dimensional vascular networks: normal arteriovenous networks, normal capillary net-

works, and tumor networks. The p-values in Table B.1 also show that the correlation dimensions of

bone-induced and subcutaneous arteriovenous networks are statistically similar. Correlation dimen-

sions for tumor networks in nude mice (LS174T tumors) and tumor networks in C3H mice (MCaIV,

SCC7 and Sal tumors) are also statistically similar.

The results listed above are in accord with the results obtained using the box-counting and

sandbox algorithms in Chapter 4. Therefore, the conclusions reached in Chapter 4 are valid for

correlation dimension measurements too.

169

Appendix C

Fractal Dimensions in Tumor

Regression

In subsection 4.2.2 the time dependence of vascular network fractal dimensions during tumor growth

was described. As this thesis was nearing completion, a new in vivo hormone-dependent regressing

tumor model was being developed in the lab. In this appendix, the fractal dimension measurements

from two individual regressing tumors are described. While many of the conclusions are not final

due to the small sample size (n = 2), some general trends can be discerned.

The tumor line used was Shionogi (SC115) murine mammary carcinoma, whose growth is known

to be androgen-dependent [24]. The tumors were grown using the dorsal window preparation in

SCID mice. The experimental methods used to grow the tumors, acquire the images, and measure

the fractal dimensions were similar to those described in Chapter 3, with one exception. In the

experiments described in Chapter 3, a dense tumor cell suspension from cell culture was inoculated

onto the dorsal skinfold. In the Shionogi tumor experiments, a piece of tumor tissue (from another

animal) having a linear dimension of 2 mm was placed in the dorsal chamber of male mice. This

difference was due to the inability to grow the tumor rapidly in the dorsal chamber from a cell

suspension.

Preliminary microscopic observations showed that as the tumor grew, blood vessels became larger

and more tortuous. After hormone depletion by orchiectomy, tumor microvascular morphology

changed markedly. As the tumor shrank, vessel diameters decreased and vessels assumed a more

linear appearance. Vessel rarefaction appeared to precede tumor regression.

Fractal dimensions were measured when there was a large enough number of vessel segments in

the tumor. Since recordings were not made daily, measurements were performed on images acquired

on days 11,15,16,18 after tumor implantation. Orchiectomy was performed on day 14, and the

tumor regressed during the days that followed. The measurements were performed for the two

Table C.1: Fractal Dimensions of Regressing Shionogi Tumor Networks
Dimension day 11 day 15 day 16 day 18

dbox (tumor 1) 1.87 ± 0.02 1.85 ± 0.03 1.78 ± 0.01 1.79 ± 0.01
dbox (tumor 2) 1.87 ± 0.02 1.91 ± 0.02 1.82 ± 0.03 1.81 ± 0.03
dmin (tumor 1) 1.15 ± 0.01 1.12 ± 0.01 1.09 ± 0.01 1.09 ± 0.01
dmin (tumor 2) 1.07 ± 0.01 1.08 ± 0.01 1.05 ± 0.01 1.07 = 0.01

2.0-
1.9-
1.8-

o. 1.7-
I 1.6-

1.5-
1.4-
1.3-

" 1.2-
1.1-
1 0 -

Box Dimension - tumor 1 -
Box Dimension - tumor 2 ---.-

Min. Path Dimension - tumor 1 ------
Min. Path Dimension - tumor 2 -------

11 12 13 14 15 16 17 18

Time (days)

Figure C-1: Fractal dimensions of Shionogi tumor networks during regression. Orchiectomy was
performed on day 14, after which the tumors began regressing.

tumors whose optical quality was adequate during all four recording days. The measured values are

reported in Table C.1. The values are reported with the standard error of the curve fit. A graphic

representation of these results is shown in Figure C-1.

The fractal dimension values measured on day 11, when the tumor was in the growth phase,

and on day 15, immediately after orchiectomy, are consistent with the values reported for all other

growing tumors (see section 4.2). However, from day 15 to day 16, there is a significant reduction

in all fractal dimensions. The decreasing fractal dimension implies that the size of avascular areas

increased from day 15 to day 16 (relative to tumor size). This finding is consistent with the obser-

vation that vessel rarefaction appeared to precede tumor regression. The decreasing minimum-path

dimension is consistent with the observation that vessels appeared to assume a more linear mor-

phology. From day 16 to day 18 there appear to be no statistically significant changes in fractal

dimensions. This finding can be interpreted as there having been achieved some sort of balanced rate

for vessel resorption and tumor regression. From a scale-invariant vantage, such a balance would

maintain the same fractal dimension as the tumor shrank.

The above conclusions are speculative in nature because of the small sample size (n = 2) involved.

However, they point to one potentially important hypothesis - that the Shionogi tumor networks

regress because of vessel resorption (and not vice versa). Measurements in a larger number of tumors

are necessary to confirm the aforementioned findings.

172

*----------------------- W__-_
,, ~ ~ ~ ~ ~ ~ ~:7 ---.-.-- I-.-----

--

Appendix D

In Vitro Verification of Autocrine

Mechanism

The growth model for normal capillary networks advanced in Chapter 5 suggested that an autocrine

mechanism for growth factor release by endothelial cells is key to normal angiogenesis. In order

to corroborate that suggestion, a series of in vitro experiments was designed to examine whether

directional dependence in growth factor administration would manifest itself in the morphology of

an endothelial cell layer in culture.

While this experiment was being conducted, other investigators published the results of a differ-

ent experiment which demonstrated more conclusively and elegantly the existence of an autocrine

mechanism for angiogenesis [48] (described briefly at the end of section 5.2). It is for this reason

that the results of our in vitro experiments are relegated to an appendix, and will be described here

in brief only.

In Chapter 5, the autocrine mechanism was proposed to explain the observed absence of gradient

sensitive growth during normal angiogenesis. Therefore, it was hypothesized that if growth factor

was administered in vitro to an endothelial cell monolayer either in a single dose, which would create

a uniform concentration, or by controlled release, which would create a gradient, the morphologic

attributes of the layer would be essentially the same in both systems, because the autocrine release

of growth factor would "mask" the gradient.

We set out to test this hypothesis by looking at the orientation of endothelial cells in vitro

following administration of bFGF. Bovine capillary endothelial cells were prepared and plated on a

collagen gel covered with a liquid medium using standard techniques described in the literature [95].

In one set of dishes bFGF in concentrations of 25, 50, or 100 ng/ml was applied topically in one

dose 2 days after plating. This procedure assured uniform bFGF concentration throughout the dish.

In another set of dishes, a disk approximately 2 mm in diameter composed of heparin sepharose

(a) (b)

(c)
Figure D-1: Morphological archetypes in endothelial cell cultures: (a) Newly plated endothelial
cells showing random orientation and typified by cell-less voids; (b) Endothelial cells in vicinity of
disk 5 days after plating, showing locally oriented groups of cells yet no global orientation (i.e., it is
impossible to discern the location of the disk); (c) Randomly oriented endothelial cell sprouts in a
culture where bFGF was topically applied.

coated beads bound with bFGF, was implanted in the periphery of the dish. Since heparin strongly

binds bFGF [33], the bFGF was slowly released, thus creating a growth factor gradient across the

culture dish. The heparin concentration was adjusted to the level just necessary to elicit visible

morphological effects in the endothelial cells.

After approximately a week of transient morphological changes, the endothelial cells achieved

a nearly constant morphology, regardless of initial growth factor concentration. This morphology

was characterized by dividing the layer into three areas: disk vicinity ("Area 1"), center of dish

("Area 2"), and diametrically opposite the disk ("Area 3"). In dishes without disks corresponding

areas were chosen. In each of these areas the morphology of the monolayer and of the sprouts, if

any, was described. The monolayer morphology was divided into one of three classes: randomly

oriented cells with no directionality, cells in groups of uniform (yet unpredictable) directionality, or

cells with a global orientation (as would be observed in gradient-sensitive growth). The sprouts were

also visually examined for any preferred orientation, either linear or radial. Results are summarized

in Table D.1. The morphological archetypes described in Table D.1 are demonstrated in Figure D-1.

The most important finding was that under no circumstances was global directionality observed

in the monolayer of endothelial cells. While groups of cells could be found oriented in a uniform

174

(a) (b)

Controlled Release Single Dose
Area 1 Area 2 Area 3 Area 1 Area 2 Area 3

Monolayer LO LO RO LO LO LO
Sprouts RO No sprouts No sprouts RO RO RO

RO = Randomly oriented, no particular orientation
LO = Locally oriented groups, but no global orientation

GO = Globally oriented, as would be expected in diffusion-limited growth

direction (see Figure D-lb), this direction would change randomly from one group to another, thus

arguing for the existence of a local mechanism for determining orientation, but little global influence.

Furthermore, the orientation of the sprouts (tube-like structures resembling capillaries) was random

in all cases that sprouts were observed. A weak directional influence was observed in the dishes

with disks since sprouts were found only in the proximity of the disks. However, the lack of global

endothelial cell orientation even near the disk seems to argue against gradient-sensitive growth. This

observation could be explained by postulating that bFGF levels away from the disk had fallen so

much that even the autocrine mechanism could not be triggered beyond a certain distance from the

disk.

In summary, the lack of any morphological attributes typical of diffusion-limited growth [131]

supports the idea of an autocrine mechanism that "masks" the gradients generated using the heparin

sepharose disk system. While these experiments were limited in scope, they represented an important

preliminary step in corroborating the predictions of Chapter 5. The recent publication of a more

definitive experiment [48] provided unequivocal evidence for an autocrine mechanism underlying

endothelial cell proliferation.

175

Table D.1: Morphological Characteristics of Endothelial Cell Cultures

Bibliography

[1] H. Ahlstrom, R. Christofferson, and L. E. Lorelius. Vascularization of the continuous human

colonic cancer cell line LS 174 T deposited subcutaneously in nude rats. APMIS, 96:701-710,

1988.

[2] W. E. Allen and D. J. Wilson. Early embryonic angiogenesis in the chick area vasculosa. J

Anat, 183:579-585, 1993.

[3] 0. Arend, S. Wolf, F. Jung, B. Bertram, H. P6stgens, H. Toonen, and M. Reim. Retinal

microcirculation in patients with diabetes mellitus: Dynamic and morphological analysis of

perifoveal capillary network. Brit J Ophthalmol, 75:514-518, 1991.

[4] J. W. Baish. Formulation of a statistical model of heat transfer in perfused tissue. J Biomech

Eng, 116:521-527, 1994.

[5] J. W. Baish, Y. Gazit, D. A. Berk, L. T. Baxter, and R. K. Jain. Fractal dimension as a

measure of microvascular heterogeneity in tumors: Implications for transport. In Proc. 42nd

Annual Conference of the Microcirculatory Society, April 1995.

[6] J. W. Baish, Y. Gazit, D. A. Berk, M. Nozue, L. T. Baxter, and R. K. Jain. An invasion

percolation model of architectural obstacles to transport in tumors. Ann Biomed Eng, 23:S-28,

1995.

[7] J. W. Baish, Y. Gazit, D. A. Berk, M. Nozue, L. T. Baxter, and R. K. Jain. Role of tumor

vascular architecture in nutrient and drug delivery: An invasion percolation based network

model. Microvasc Res, In press, 1996.

[8] D. Balding and D. L. S. McElwain. A mathematical model of tumour-induced capillary growth.

J Theor Biol, 114:53-73, 1985.

[9] J. B. Bassingthwaighte, L. S. Liebovitch, and B. J. West. Fractal Physiology. Oxford University

Press, New York, 1994.

177

[10] E. Ben-Jacob, H. Shmueli, O. Shochet, and A. Tenenbaum. Adaptive self-organization during

growth of bacterial colonies. Physica A, 187:378-424, 1992.

[11] R. A. O. Bennett, R. N. Pittman, and S. M. Sullivan. Capillary spatial pattern and muscle

fiber geometry in three hamster striated muscles. Am J Physiol, 260:H579-H585, 1991.

[12] D. A. Berk, F. Yuan, M. Leunig, and R. K. Jain. Fluorescence photobleaching with spatial

Fourier analysis: Measurement of diffusion in light-scattering media. Biophys J, 65:2428-2436,

1993.

[13] P. C. Brooks, A. M. P. Montgomery, M. Rosenfeld, R. A. Reisfeld, T. Hu, G. Klier, and

D. A. Cheresh. Integrin av3 antagonists promote tumor regression by inducing apoptosis of

angiogenic blood vessels. Cell, 79:1157-1164, 1994.

[14] A. Bunde and S. Havlin. A brief introduction to fractal geometry. In A. Bunde and S. Havlin,

editors, Fractals in Science, pages 1-25. Springer, Berlin, 1994.

[15] P. H. Burri and M. R. Tarek. A novel mechanism of capillary growth in the rat pulmonary

microcirculation. Anat Rec, 228:35-45, 1990.

[16] G. J. Burton and M. E. Palmer. The chorioallantoic capillary plexus of the chicken egg: A

microvascular corrosion casting study. Scanning Microscop, 3:549-558, 1989.

[17] N. A. Busch and I. A. Silver. Three dimensional reconstruction of branched tree structures

from serial sections. Adv Exp Med Biol, 222:77-86, 1988.

[18] F. Caserta, H. E. Stanley, W. D. Eldred, G. Daccord, R. E. Hausman, and J. Nittmann.

Physical mechanisms underlying neurite growth: A quantitative analysis of neuronal shape.

Phys Rev Lett, 64:95-98, 1990.

[19] I. I. H. Chen and R. L. Prewitt. A mathematical representation for vessel network. J Theor

Biol, 98:211-219, 1982.

[20] S. E. Connolly, T. A. Hores, L. E. H. Smith, and P. A. D'Amore. Characterization of vascular

development in the mouse retina. Microvasc Res, 36:275-290, 1988.

[21] P. A. D'Amore. Modes of FGF release in vivo and in vitro. Cancer Metast Rev, 9:227-238,

1990.

[22] G. E. Davis and C. W. Camarillo. Regulation of endothelial cell morphogenesis by integrins,

mechanical forces, and matrix guidance pathways. Exp Cell Res, 216:113-123, 1995.

[23] A. Daxer. Fractals and retinal vessels. Lancet, 339:618, 1992.

178

[24] W. J. Desmond, Jr., S. J. Wolbers., and G. Sato. Cloned mouse mammary cell lines requiring

androgens for growth in culture. Cell, 8:79-86, 1976.

[25] M. W. Dewhirst, C. Y. Tso, R. Oliver, C. S. Gustafson, T. W. Secomb, and J. F. Gross. Mor-

phologic and hemodynamic comparison of tumor and healing normal tissue microvasculature.

Int J Rad Oncol Biol Phys, 17:91-99, 1989.

[26] E. T. Engelson, T. C. Skalak, and G. W. Schmid-Schonbein. The microvasculature in skeletal

muscle. I. Arteriolar networks in rat spinotrapezius muscle. Microvasc Res, 30:29-44, 1985.

[27] K. J. Falconer. Fractal Geometry: Mathematical Foundations and Applications. Wiley, Chich-

ester, 1990.

[28] F. Family, B. R. Masters, and D. E. Platt. Fractal pattern formation in human retinal vessels.

Physica D, 38:98-103, 1989.

[29] B. M. Fenton and B. W. Zweifach. Microcirculatory model relating geometrical variations to

changes in pressure and flow rate. Ann Biomed Eng, 9:303-321, 1981.

[30] I. J. Fidler and L. M. Ellis. The implications of angiogenesis for the biology and therapy of

cancer metastasis. Cell, 79:185-188, 1994.

[31] S. B. Field, I. A. Burney, S. Needham, R. J. Maxwell, J. Coggle, and J. R. Griffiths. Are

transplanted tumours suitable as models for studies on vasculature? Int J Radiat Biol, 60:255-

260, 1991.

[32] G. F. Fishman and L. R. Moore III. A statistical evaluation of multiplicative random number

generators with modulus 2'31-1. J Am Stat Assoc, 77:129-136, 1982.

[33] J. Folkman. Tumor angiogenesis. In J. F. Holland, E. Frei, R. C. Bast, D. W. Kufe, D. L.

Morton, and R. R. Weichselbaum, editors, Cancer Medicine, pages 153-170. Lea & Febiger,

Philadelphia, 1993.

[34] J. Folkman. Seminars in medicine of the Beth Israel Hospital, Boston: Clinical applications

of research on angiogenesis. N Engl J Med, 333:1757-1763, 1995.

[35] J. Folkman. Tumor angiogenesis. In J. Mendelsohn, P. M. Howley, M. A. Israel, and L. A.

Liotta, editors, The Molecular Basis of Cancer, pages 206-232. W. B. Saunders, Philadelphia,

1995.

[36] J. Folkman and Y. Shing. Angiogenesis. J Biol Chem, 267:10931-10934, 1992.

[37] A. W. Fryczkowski and M. D. Sherman. Scanning electron microscopy of human ocular vascular

casts: The submacular choriocapillaries. Acta Anat, 132:265-269, 1988.

179

[38] Y. C. Fung. Biomechanics: Motion, Flow, Stress, and Growth. Springer, New York, 1990.

[39] J. R. Gamble, L. J. Matthias, G. Meyer, P. Kaur, G. Russ, R. Faull, M. C. Berndt, and M. A.

Vadas. Regulation of in vitro capillary tube formation by anti-integrin antibodies. J Cell Biol,

121:931-943, 1993.

[40] R. Z. Gan, Y. Tian, R. T. Yen, and G. S. Kassab. Morphometry of the dog pulmonary venous

tree. J Appl Physiol, 75:432-440, 1993.

[41] Y. Gazit, J. W. Baish, L. T. Baxter, and R. K. Jain. A model for the formation of arterial

networks. Bull Amer Phys Soc, 41:429-430, 1996.

[42] Y. Gazit, D. Berk, M. Leunig, L. T. Baxter, and R. K. Jain. Fractal analysis of two-dimensional

normal and tumor vascular networks. Bull Amer Phys Soc, 39:596-597, 1994.

[43] Y. Gazit, D. Berk, M. Leunig, L. T. Baxter, and R. K. Jain. Fractal analysis of two-dimensional

normal and tumor vascular networks and its implications. In Proc. 41st Annual Conference of

the Microcirculatory Society, page 42, April 1994.

[44] Y. Gazit, D. A. Berk, L. T. Baxter, and R. K. Jain. Vascular network growth modeling based

on fractal analysis. Bull Amer Phys Soc, 40:411, 1995.

[45] Y. Gazit, D. A. Berk, M. Leunig, L. T. Baxter, and R. K. Jain. Scale-invariant behavior and

vascular network formation in normal and tumor tissue. Phys Rev Lett, 75:2428-2431, 1995.

[46] Y. Gazit, S. Patan, D. Berk, M. Leunig, L. Munn, L. Baxter, and R. K. Jain. New insights into

the structure of tumor vasculature: From fractal dimensions to intussusception. Biorheology,

32:112, 1995.

[47] M. E. Gottlieb. Angiogenesis and vascular networks: Complex anatomies from deterministic

non-linear physiologies. In J. M. Garcia-Ruiz, E. Louis, P. Meakin, and L. M. Sander, editors,

Growth Patterns in Physical Sciences and Biology, pages 267-276. Plenum, New York, 1993.

[48] A. Gualandris, M. Rusnati, M. Belleri, E. E. Nelli, M. Bastaki, M. P. Molinari-Tosatti,

F. Bonardi, S. Parolini, A. Albini, L. Morbidelli, M. Ziche, A. Corallini, L. Possati, A. Vacca,

D. Ribatti, and M. Presta. Basic fibroblast growth factor overexpression in endothelial cells:

An autocrine mechanism for angiogenesis and angioproliferative diseases. Cell Growth Dif,

7:147-160, 1996.

[49] P. M. Gullino. Extracellular compartments of solid tumors. In F. F. Becker, editor, Cancer:

A Comprehensive Treatise, volume 3, pages 327-354. Plenum, New York, 1975.

[50] H. J. Herrmann and H. E. Stanley. The fractal dimension of the minimum path in two- and

three-dimensional percolation. J Phys A, 21:L829-L833, 1988.

180

[51] L. Hesse, J. Chofflet, and Y. Le-Mer. Simulation of the growth pattern of the central retinal

artery using a fractal modeling technique. German J Ophthalmol, 2:116-118, 1993.

[52] D. E. Hilmas and E. L. Gillette. Morphometric analysis of the microvasculature of tumors

during growth and after x-irradiation. Cancer, 33:103-110, 1974.

[53] K. Hori, M. Suzuki, S. Tanda, and S. Saito. In vivo analysis of tumor vascularization in the

rat. Jpn J Cancer Res, 81:279-288, 1990.

[54] K. Horsfield and A. Thurlbeck. Relation between diameter and flow in branches of the bronchial

tree. Bull Math Biol, 43:681-691, 1981.

[55] H.-J. Hsieh, N.-Q. Li, and J. A. Frangos. Shear stress increases endothelial platelet-derived

growth factor mRNA levels. Am J Physiol, 260:H642-H646, 1991.

[56] A. G. Hudetz. Percolation phenomenon: The effect of capillary network rarefaction. Microvasc

Res, 45:1-10, 1993.

[57] D. E. Ingber. Fibronectin controls capillary endothelial cell growth by modulating cell shape.

Proc Nat Acad Sci USA, 87:3579-3583, 1990.

[58] D. E. Ingber. Extracellular matrix as a solid-state regulator in angiogenesis: Identification of

new targets for anti-cancer therapy. Semin Cancer Biol, 3:57-63, 1992.

[59] R. K. Jain. Transport of molecules in the tumor interstitium: A review. Cancer Res, 47:3039-

3051, 1987.

[60] R. K. Jain. Determinants of tumor blood flow: A review. Cancer Res, 48:2641-2658, 1988.

[61] R. K. Jain. Delivery of novel therapeutic agents in tumors: Physiological barriers and strate-

gies. J Natl Cancer Inst, 81:570-576, 1989.

[62] R. K. Jain. Barriers to drug delivery in solid tumors. Sci Am, 271:58-65, July 1994.

[63] L. C. Junqueira, J. Carneiro, and J. A. Long. Basic Histology. Lange, Los Altos, CA, fifth

edition, 1986.

[64] F. Kallinowski, R. Zander, M. Hoeckel, and P. Vaupel. Tumor tissue oxygenation as evaluated

by computerized pO0 2 histography. Int J Rad Oncol Biol Phys, 19:953-961, 1990.

[65] G. S. Kassab, C. A. Rider, N. Tang, and Y.-C. B. Fung. Morphometry of pig coronary arterial

trees. Am J Physiol, 265:H350-H365, 1993.

[66] M. F. Kiani and A. G. Hudetz. Computer simulation of growth of anastamosing microvascular

networks. J Theor Biol, 150:547-560, 1991.

181

[67] A. Koller, B. Dawant, A. Liu, A. S. Popel, and P. C. Johnson. Quantitative analysis of

arteriolar network architecture in cat sartorius muscle. Am J Physiol, 253:H154-H164, 1987.

[68] M. A. Konerding, F. Steinberg, and V. Budach. The vascular system of xenotransplanted

tumors - scanning electron and light microscopic studies. Scanning Microsc, 3:327-336,

1989.

[69] N. Koyama, S. Watanabe, M. Tezuka, N. Morisaki, Y. Saito, and S. Yoshida. Migratory and

proliferative effect of platelet-derived growth factor in rabbit retinal endothelial cells: Evidence

of an autocrine pathway of platelet-derived growth factor. J Cell Physiol, 158:1-6, 1994.

[70] R. Krauss. New technique to demonstrate the network of blood capillaries of the human

retina in their three-dimensional arrangement. Graefe's Arch Clin Exp Ophthalmol, 228:187-

190, 1990.

[71] G. Landini and G. Mission. Simulation of corneal neovascularization by inverted diffusion

limited aggregation. Invest Ophthalmol Vis Sci, 34:1872-1875, 1993.

[72] G. Landini, G. P. Mission, and P. I. Murray. Fractal analysis of the normal human retinal

fluorescein angiogram. Curr Eye Res, 12:23-27, 1993.

[73] H. A. Lehr, M. Leunig, M. D. Menger, D. Nolte, and K. Messmer. Dorsal skinfold chamber

technique for intravital microscopy in nude mice. Am J Pathol, 143:1055-1062, 1993.

[74] D. E. Lemons, S. Chien, L. I. Crawshaw, S. Weinbaum, and L. M. Jiji. Significance of vessel

size and type in vascular heat transfer. Am J Physiol, 253:R128-R135, 1987.

[75] R. Lenormand. Flow through porous media: Limits of fractal patterns. In M. Fleischmann,

D. J. Tildesley, and R. C. Ball, editors, Fractals in the Natural Sciences, pages 159-168.

Princeton University Press, Princeton, 1990.

[76] J. R. Less, T. C. Skalak, E. M. Sevick, and R. K. Jain. Microvascular architecture in mammary

carcinoma: Branching patterns and vessel dimensions. Cancer Res, 51:265-273, 1991.

[77] M. Leunig, F. Yuan, D. A. Berk, L. E. Gerweck, and R. K. Jain. Angiogenesis and growth of

isografted bone: Quantitative in vivo assay in nude mice. Lab Invest, 71:300-307, 1994.

[78] M. Leunig, F. Yuan, M. D. Menger, Y. Boucher, A. E. Goetz, K. Messmer, and R. K. Jain.

Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure

during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res, 52:6553-

6560, 1992.

[79] K. Ley, A. R. Pries, and P. Gaehtgens. Topological structure of rat mesenteric microvessel

networks. Microvasc Res, 32:315-332, 1986.

182

[80] H. H. Lipowsky and B. W. Zweifach. Network analysis of microcirculation of cat mesentery.

Microvasc Res, 7:73-83, 1974.

[81] F. Mahler, G. Nagel, H. Saner, and F. Kneubuhl. In vivo comparison of the nailfold capillary

diameter as determined by using the erythrocyte column and FITC-labelled albumin. Int J

Microcirc Clin Exp, 2:147-155, 1983.

[82] M. A. Mainster. The fractal properties of retinal vessels: Embryological and clinical implica-

tions. Eye, 4:235-241, 1990.

[83] J. E. Maloney and B. L. Castle. Pressure-diameter relations of capillaries and small blood

vessels in frog lung. Resp Physiol, 7:150-162, 1969.

[84] B. Mandelbrot. How long is the coast of Britain? Statistical self-similarity and fractional

dimension. Science, 156:636-638, 1967.

[85] B. B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman, San Francisco, 1982.

[86] D. Mark and C. Reed. Inside the Toolbox using THINK Pascal, volume 1 of Macintosh Pascal

Programming Primer. Addison-Wesley, Reading, 1991.

[87] M. Matsushita and H. Fujikawa. Diffusion-limited growth in bacterial colony formation. Phys-

ica A, 168:498-506, 1990.

[88] D. S. McLeod, G. A. Lutty, S. D. Wajer, and R. W. Flower. Visualization of a developing

vasculature. Microvasc Res, 33:257-269, 1987.

[89] P. G. McMenamin and W. J. Krause. Morphological observations on the unique paired capil-

laries of the opossum retina. Cell Tissue Res, 271:461-468, 1993.

[90] P. Meakin. Diffusion-controlled cluster formation in 2-6-dimensional space. Phys Rev A,

27:1495-1507, 1983.

[91] P. Meakin, I. Majid, S. Havlin, and H. E. Stanley. Topological properties of diffusion limited

aggregation and cluster-cluster aggregation. J Phys A, 17:L975-L981, 1984.

[92] F. A. Merchant, S. J. Aggarwal, K. R. Diller, and A. C. Bovik. In-vivo analysis of angiogenesis

and revascularization of transplanted pancreatic islets using confocal microscopy. J Microscop,

176:262-275, 1994.

[93] J. W. Miller, A. P. Adamis, D. T. Shima, P. A. D'Amore, R. S. Moulton, M. S. O'Reilly,

J. Folkman, H. F. Dvorak, L. F. Brown, B. Berse, T.-K. Yeo, and K.-T. Yeo. Vacular en-

dothelial growth factor/vascular permeability factor is temporally and spatially correlated

with ocular angiogenesis in a primate model. Am J Pathol, 145:574-584, 1994.

183

[94] R. Montesano, L. Orci, and P. Vassalli. In vitro rapid organization of endothelial cells into

capillary-like networks is promoted by collagen matrices. J Cell Biol, 97:1648-1652, 1983.

[95] R. Montesano, M. S. Pepper, and L. Orci. Paracrine induction of angiogenesis in vitro by

Swiss 3T3 fibroblasts. J Cell Sci, 105:1013-1024, 1993.

[96] D. Moscatelli. High and low affinity binding sites for basic fibroblast growth factor on cultured

cells: Absence of a role for low affinity binding in the stimulation of plasminogen activator

production by bovine capillary endothelial cells. J Cell Physiol, 131:123-130, 1987.

[97] C. D. Murray. The physiological principle of minimum work. I. The vascular system and the

cost of blood volume. Proc Nat Acad Sci USA, 12:207-214, 1926.

[98] T. Nagel, N. Resnick, W. J. Atkinson, C. F. Dewey, Jr., and M. A. Gimbrone, Jr. Shear

stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human

vascular endothelial cells. J Clin Invest, 94:885-891, 1994.

[99] J. A. Nagy, L. F. Brown, D. R. Senger, N. Lanir, L. van de Water, A. M. Dvorak, and H. F.

Dvorak. Pathogenesis of tumor stroma generation: A critical role for leaky blood vessels and

fibrin deposition. Biochim Biophys Acta, 948:305-326, 1988.

[100] R. F. Nicosia, R. Tchao, and J. Leighton. Angiogenesis-dependent tumor spread in reinforced

fibrin clot culture. Cancer Res, 43:2159-2166, 1983.

[101] J. Nittmann, G. Daccord, and H. E. Stanley. Fractal growth of viscous fingers: Quantitative

chracterization of a fluid instability phenomenon. Nature, 314:141-144, 1985.

[102] M. U. Nollert, N. J. Panaro, and L. V. McIntire. Regulation of genetic expression in shear

stress-stimulated endothelial cells. Ann NY Acad Sci, 665:94-104, 1992.

[103] S. Patan, L. L. Munn, and R. K. Jain. Intussusceptive microvascular growth in a human

colon adenocarcinoma xenograft: A novel mechanism of tumor angiogenesis. Microvasc Res,

51:260-272, 1996.

[104] R. N. Pittman. Influence of microvascular architecture on oxygen exchange in skeletal muscle.

Microcirc, 2:1-18, 1995.

[105] M. J. Plyley, G. K. Sutherland, and A. C. Groom. Geometry of the capillary network in

skeletal muscle. Microvasc Res, 11:161-173, 1976.

[106] A. S. Popel. Network models of peripheral circulation. In R. Skalak and S. Chien, editors,

Handbook of Bioengineering, pages 20.1-20.24. McGraw-Hill, New York, 1986.

184

[1071 R. F. Potter and A. C. Groom. Capillary diameter and geometry in cardiac and skeletal muscle

studied by means of corrosion casts. Microvasc Res, 25:68-84, 1983.

[108] R. J. Price, G. K. Owens, and T. C. Skalak. Immunohistochemical identification of arteriolar

development using markers of smooth muscle differentiation. Circ Res, 75:520-527, 1994.

[109] R. J. Price and T. C. Skalak. Circumferential wall stress as a mechanism for arteriolar rar-

efaction and proliferation in a network model. Microvasc Res, 47:188-202, 1994.

[110] R. Rosso, B. Bacchi, and P. La Barbera. Fractal relation of mainstream length to catchment

area in river networks. Water Resour Res, 27:381-387, 1991.

[111] J. C. Russ. The Image Proccesing Handbook. CRC Press, Boca Raton, second edition, 1994.

[112] S. Schr6der, M. Brab, G. W. Schmid-Schonbein, M. Reim, and H. Schmid-Schonbein. Mi-

crovascular network topology of the human retinal vessels. Fortschr Ophthalmol, 87:52-58,

1990.

[113] L. Schweigerer, G. Neufeld, J. Friedman, J. A. Abraham, J. C. Fiddes, and D. Gospodarowicz.

Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes

their own growth. Nature, 325:257-259, 1987.

[114] T. W. Secomb, R. Hsu, M. W. Dewhirst, B. Klitzman, and J. F. Gross. Analysis of oxygen

transport to tumor tissue by microvascular networks. Int J Rad Oncol Biol Phys, 25:481-489,

1993.

[115] E. M. Sevick and R. K. Jain. Geometric resistance to blood flow in solid tumors perfused ex

vivo: Effects of tumor size and perfusion pressure. Cancer Res, 49:3506-3512, 1989.

[116] A. A. Shah-Yukich and A. C. Nelson. Characterization of solid tumor microvasculature: A

three-dimensional analysis using the polymer casting technique. Lab Invest, 58:236-244, 1988.

[117] T. F. Sherman. On connecting large vessels to small. The meaning of Murray's law. J Gen

Physiol, 78:431-453, 1981.

[118] T. F. Sherman, A. S. Popel, A. Koller, and P. C. Johnson. The cost of departure from optimal

radii in microvascular networks. J Theor Biol, 136:245-265, 1989.

[119] Y. Shing, J. Folkman, C. Haudenschild, D. Lund, R. Crum, and M. Klagsburn. Angiogenesis

is stimulated by a tumor-derived endothelial cell growth factor. J Cell Biochem, 29:275-287,

1985.

[120] A. C. Shore and J. E. Tooke. Microvascular function in human essential hypertension. J

Hypertens, 12:717-728, 1994.

185

[121] D. Shweiki, A. Itin, D. Soffer, and E. Keshet. Vascular endothelial growth factor induced by

hypoxia may mediate hypoxia-initiated angiogenesis. Nature, 359:843-845, 1992.

[122] Y.-J. Shyy, H.-J. Hsieh, S. Usami, and S. Chien. Fluid shear stress induces a biphasic response

of human monocyte chemotactic protein 1 gene expression in vascular endothelium. Proc Natl

Acad Sci USA, 91:4678-4682, 1994.

[123] T. C. Skalak and G. W. Schmid-Schonbein. The microvasculature in skeletal muscle.

IV. A model of the capillary network. Microvasc Res, 32:333-347, 1986.

[124] S. A. Skinner, P. J. M. Tutton, and P. E. O'Brien. Microvascular architecture of experimental

colon tumors in the rat. Cancer Res, 50:2411-2417, 1990.

[125] H. Song and K. Tyml. Evidence for sensing and integration of biological signals by the capillary

network. Am J Physiol, 265:H1235-H1242, 1993.

[126] H. E. Stanley. Fractals and multifractals: The interplay of physics and geometry. In A. Bunde

and S. Havlin, editors, Fractals and Disordered Systems, pages 1-49. Springer, Berlin, 1991.

[127] D. Stauffer and A. Aharony. Introduction to Percolation Theory. Taylor & Francis, London,

1992.

[128] T. Sun, P. Meakin, and T. Jossang. Minimum energy dissipation and fractal structures of

vascular systems. Fractals, 3:123-153, 1995.

[129] A. Timmer, J. W. Oosterhuis, H. S. Koops, D. T. Sleijfer, B. G. Szabo, and W. Timens.

The tumor microenvironment: Possible role of integrins and the extracellular matrix in tumor

biological behavior of intratubular germ cell neoplasia and testicular seminomas. Am J Pathol,

144:1035-1044, 1994.

[130] P. Vaupel, F. Kallinowski, and P. Okunieff. Blood flow, oxygen and nutrient supply, and

metabolic microenvironment of human tumors: A review. Cancer Res, 49:6449-6465, 1989.

(131] T. Vicsek. Fractal Growth Phenomena. World Scientific, Singapore, second edition, 1992.

[132] E. M. Wahl, F. H. Daniels, E. F. Leonard, C. Levinthal, and S. Cortell. A graph theory model

of the glomerular capillary network and its development. Microvasc Res, 27:96-109, 1984.

[133] T. A. Witten and L. M. Sander. Diffusion-limited aggregation, a kinetic critical phenomenon.

Phys Rev Lett, 47:1400-1403, 1981.

[134] D. F. Zawicki, R. K. Jain, G. W. Schmid-Schoenbein, and S. Chien. Dynamics of neovascu-

larization in normal tissue. Microvasc Res, 21:27-47, 1981.

186

[135] M. Ziche, L. Morbidelli, G. Alessandri, and P. M. Gullino. Angiogenesis can be stimulated in

vivo by a change in GM3:GD3 ganglioside ratio. Lab Invest, 67:711-715, 1992.

[136] B. W. Zweifach and H. H. Lipowsky. Quantitative studies of microcirculatory structure and

function. III. Microvascular hemodynamics of cat mesentery and rabbit omentum. Circ Res,

41:380-390, 1977.

187

