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ABSTRACT

Network Clubhouse is a constructive, graphical environment which allows children to col-
laborate in a shared virtual world using Logo-like control of objects. While Logo enables
children to individually learn through design and construction, Network Clubhouse
explores learning through communities of children jointly constructing projects in a coop-
erative environment.
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Introduction
This thesis project involves the design and implementation of Network Clubhouse, a

multi-user version of Logo. I have been involved with the Network Clubhouse project

since Fall 95 and am submitting this document in partial fulfillment of a Masters of Engi-

neering degree in Electrical Engineering and Computer Science. However, I will continue

this project over Summer 96 and will substantially add to this document in my final ver-

sion. I encourage readers to refer to that document when it is completed for more timely

and useful information.

The document is designed to fulfill two goals. The first is to give researchers an idea

behind the motivation and design of Network Clubhouse. As Network Clubhouse is some-

what unique and part of a new development of networked applications, I hope this docu-

ment will clearly outline some of the potentials and limitations of those environments. The

second is to provide future developers of Network Clubhouse with a technical background

of the implementation of Network Clubhouse. I hope this document will clearly describe

the project with enough detail to facilitate future work.

This thesis arranges to present Network Clubhouse in an increasing technical manner.

The first major section outlines the background and motivation behind the project. The

second section describes some of the higher level design challenges in Network Club-

house. The third section addresses technical challenges in the implementation of Network

Clubhouse.
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Chapter 1

The Network Clubhouse Project

1.1 Overview

Network Clubhouse is based on a graphical multi-user environment similar to that of tra-

ditional MUDs. Users control graphical objects capable of basic animation and manipulate

those objects through a command interface. They communicate with others through a chat

feature. The environment itself is very general; it can pose challenges which users must

solve cooperatively or provide a forum in which users can interact with each other.

1.2 Comparison with other networked applications

In this regard, Network Clubhouse is not unique from any of the graphical multi-user

environments which currently are available in the network community or even the rising

number of networked games such as "Doom" or "Netrek" that are popular among both

children and adults. Since many networked applications which connect people together in

communities already exist, it seems that a project such as Network Clubhouse would not

be contributing to the field. However, the main difference between Network Clubhouse

and other applications lies in the focus of those applications. Networked environments

such as "Doom" typically focus on providing entertainment while minimally addressing

education and constructive interactions. Consequently, these games may promote gener-

ally destructive behavior such as violence and adversarial communities because players

compete against each other.

1.3 Goals

MUDs are usually primarily focused on solving goals posed by the environment, where



users are able but do not necessarily need to collaborate to solve those challenges. Net-

work Clubhouse environments are more built around the user; environments are created to

allow users to primarily explore interactions with each other toward some common goal.

While general MUDs tend to stress interaction with the environment, Network Clubhouse

MUDs are centered around creative writing, communication, and programmability.

Network Clubhouse an educational tool which is centered around collaborative design

and modeling projects. Its goal is to enable children to develop constructive experiences

together. Whereas traditional MUDs are generally concerned with achieving tasks that are

inherent in the environment, Network Clubhouse is distinguished because it focuses on

construction, where users create and build things together. Projects such as the "virtual

fishtank," described below, will explore new educational phenomena which are based on

extensive cooperation and group interaction.

Network Clubhouse is modelled after Logo, a general graphical programming envi-

ronment which was developed primarily as a learning tool and has challenged researchers

to rethink the role of construction and design in education.

1.4 Conclusion

A wide variety of graphical applications currently exist, and new ones are being intro-

duced at a high rate as developers recognize the appeal of networked environments for

both entertainment and interaction. However, Network Clubhouse uniquely explores the

educational possibilities of collaborative environments and may revolutionize the manner

in which children's education is integrated with new technologies.



Chapter 2

Previous Research and Motivation

2.1 Overview

The motivation behind Network Clubhouse relates to previous research at the Epistemol-

ogy and Learning Group. The primarily aim of Network Clubhouse is to provide a multi-

user version of an application called StarLogo developed by Mitchel Resnick. StarLogo,

in turn, was an extension of Logo, a familiar children's educational tool.

2.2 The Epistemology and Learning Group

2.2.1 Overview

Before presenting the Network Clubhouse project, I will introduce some background

information on the Epistemology and Learning Group at the MIT Media Lab, and particu-

larly the relationship between the goals of our group and the Network Clubhouse project.

2.2.2 Goals

The Epistemology and Learning Group at the MIT Media Lab is engaged in the explo-

ration of the role of computer tools in education. We explore how new technologies can be

integrated with education goals of learning, constructing, collaborating. Our tools are pre-

sented in educational communities such as schools and museums.

2.2.3 Traditional technological paradigms

The Epistemology and Learning Group explores the role of construction and commu-

nity in education. Traditionally, new network technologies are hailed primarily as ways of

increasing information availability. Television allows lectures to be broadcast to arbitrarily

large numbers of users, and VCRs enable students to record and share media information.



Similarly, computer network tools such as Netscape allow information to be communi-

cated and distributed.

2.2.3.1 Information delivery

Computer network tools can be used to deliver information. Students might someday

be exposed to an electronic classroom setting with multimedia tools which the instructor

could use to more effectively communicate lecture topics. Electronic whiteboards, over-

head monitors, and other audio and video devices might substantially improve the ability

of the teacher to communicate ideas. Remote video conferencing is another example of the

potential of this technology, allowing students to possibly participate in interactive lec-

tures without leaving their homes.

2.2.3.2 Information accessibility

Computer network tools can also be used to increase information accessibility. Stu-

dents could be assigned projects which required them to gather data from the web. Tech-

nologies such as Netscape would be available to search for relevant information.

* Example: Students might be presented with an art assignment and told to gather multi-
media text and graphics information from various museums. In the past, this would be
accomplished through library searches, whereas students can now easily use a Netscape
browser to almost instantly retrieve relevant information.

As search engines and data organization improve, gathering and sharing information

may becoming almost trivially easy compared to the effort current needed to gather infor-

mation.

2.2.4 The Epistemology and Learning Group paradigm

While educators hail network technologies for their role in improving information

availability, the Epistemology and Learning Group explores new ways of using the Inter-

net as a medium for construction and building community.

2.2.4.1 Construction



Students learn through exposure to information in settings such as lectures, audio

instruction tapes, and video programs. Another primary means is learning through con-

struction, or active learning. Papert's theory on constructionism refers to two types of con-

struction. The first asserts that knowledge is not simply transmitted from teacher to learner

but is actively constructed in the mind of the learner. The second states that people learn

with particular effectiveness when they are engaged in designing and constructing mean-

ingful artifacts [Papert].

Children build tools and create projects as part of their basic learning process. Interac-

tion with modelling clay such as "Play Doh" or basic construction kits such as LEGOs or

"Tinker Toys" relate to Papert's dicsussion of learning through building and designing.

" Example: The MIT 6.270 LEGO Robotics Competition illustrates how students can
learn about mechanical and hardware design on a practical, useful level by constructing
autonomous robots from LEGOs. Teams are provided with kits containing LEGOs, sen-
sors, and microprocessor circuits which they use to build an autonomous robot to per-
form specific competition tasks. While classes may prepare students with theoretical
knowledge about how to handle real-world principles and uncertainties, only through
experiencing these in a hands-on setting can students understand them at a practical
level. Many students praise 6.270 as a uniquely useful engineering class because of its
emphasis on construction.

* Example: Ten-year-old children at the Open School simulated behavior of a clown fish in
an ocean ecosystem [Kay, 140]. The clown fish interacts with a sea anemone to build
immunity to its poisonous stings, and then take refuge from predators by hiding among
the anemone's tentacles. While students could have learned about this behavior by read-
ing books and watching videos, constructing the simulation allowed them to better relate
to the challenges in the ocean environment and the benefits of symbiosis.

Information sharing through traditional non-interactive means such as lectures pro-

vides a foundation for learning, but students of all ages and fields can benefit from expo-

sure to practical constructive experiences to complete their learning experience.

2.2.4.2 Community



Network tools also provide a means for building community. The success of MUDs

(Multi-User Dungeons, or Multi-User Domains) as community-building environments

illustrates the contribution of network tools to this goal. MUDs such as IRC, chatrooms,

and other conferencing tools prove the capability of networked environments to connect

people together in a shared space.

Example: The first MUD was developed in 1979 to allow users to jointly play "Dun-
geons and Dragons." Eventually, users started emphasizing the actual goals of their envi-
ronment less and began using it more as a communication tool. In 1989, James Apnes at
Carnegie Mellon University created a project called TinyMUD where monsters and
objects were largely removed from the environment [Bruckman 1, 96]. The MUD
evolved into a forum where users could communicate virtually and extend the virtual
world together. Subsequently, some MUDs became less goal-oriented and stressed inter-
action between people in a community.

Participation in communities is an essential part of child development, allowing com-

parison and collaboration on children's projects. Communities allow children to receive

feedback on projects and build social skills.

2.2.4.3 Network Clubhouse and Community and Construction

Network Clubhouse follows the Epistemology and Learning Group's goal of using

network tools to encourage community and construction. Children build objects in the

world and are completely involved in generating the behavior of their creations. Children

can also build environments in Network Clubhouse or manipulate existing ones in this

constructive settings.

Children will interact with each other extensively in Network Clubhouse. This is not

just a peripheral capability; it is the central basis behind their involvement in the world.

Children need to cooperate to solve tasks such as designing ecosystems or addressing spe-

cific challenges presented by the environment. Not only will they be able to communicate

with each other directly through the chat feature, but their objects will also interact and



respond with each other on a meaningful level. This sense of community building will

encourage the kind of group and social skills essential in basic child development.

2.3 Logo

Logo is a programming environment for elementary school children created by Seymour

Papert [Mozes, 6]. Users manipulate a single "turtle" object in 2-D graphical space. The

turtle acts as a paintbrush by leaving a trail as it moves, allowing simple graphical

sketches to be created. This is similar to using an "Etch-A-Sketch" to create pictures. Tur-

tle manipulation is handled through a command-line interface where children can enter

simple statements such as "forward," "turn," "backward," or "penup." Users can program

behaviors into turtle objects by designing procedures which specify turtle actions.

2.3.1 Logo as an educational programming environment

Logo may resemble a basic drawing utility or application tool, but is far more comprehen-

sive. It has challenged educators to rethink the educational process and especially the role

of creation and construction in learning. Not only do children learn the fundamental pro-

gramming concepts through using Logo, but the child's relation to his turtle object also

involves basic educational concepts.

2.3.2 Active learning

The traditional learning process focuses on memorization and repetition, whether

through mathematical tables or lectures. This is passive learning, and it arguably lacks

some components which are important to learning. Students also learn through more

active processes such as building sculptures in art class or preparing presentations on sub-

jects. This is learning through construction, as described earlier.

* Example: In the college setting, it is obvious that building a compiler plays a fundamen-
tal role in learning about compilers. In MIT's 6.035 Compilers class, students partici-
pate in extensive lectures on compiler theory, but the actual design and implementation
of the compiler forms the basis of their learning experience. However, even in this exam-



ple, students are more or less handed the specifications and given little freedom for cre-
ativity.

Logo expands upon the formal teaching paradigm of passive learning by allowing

children to interact with projects, becoming active participants in their own education. The

user assumes the fundamental role as creator and designer.

2.3.3 Relationship to existing knowledge

Logo relates to the existing knowledge of children instead of dissociating teaching

from previous experience. Traditional classes treat all students of a certain maturity to the

same sets of exercises and homework without accounting for each individuals' past expe-

rience or behavior. Logo allows children to build upon concepts already understood by the

child. "Even though educational topics, examples, and subject matter structure and

sequence still need analysis are careful design, there is a broad consensus that they should

begin with the knowledge states of the learner, and build from there" [Pea, 14].

* Example: Children are traditionally taught composition of shapes based on knowledge of
algebra or geometry. Drawing these shapes, however, only requires understanding of
position and motion [Mozes, 9].

2.3.4 Logo as a feedback tool

Logo supplies immediate feedback and allows for the most primitive level of debug-

ging. Whereas debugging is traditionally viewed as a complicated, mature process, Logo

introduces debugging to children at a level they can understand.

* Example: If the child is attempting to create a box but the turtle instead draws a triangle,
he can immediately discover the problem by watching the turtle's steps and adjust the
program to correct for it. The debugging process is intuitive because the child can
"become" the turtle and trace the steps, equivalent to examining his own logic.

Enabling children to examine their own thought processes and providing immediate

feedback to allow them to explore the validity of their design leads children to improve

basic problem-solving skills.



2.4 StarLogo

StarLogo expands upon Logo to create an environment where multiple turtles can be

simultaneously controlled and programmed. Whereas Logo allows control over only a sin-

gle turtle, StarLogo can support hundreds or thousands of objects acting in parallel. In

addition, StarLogo supports patches, which are active elements that comprise the environ-

ment. While an environment is usually considered a passive space in which objects inter-

act, StarLogo patch environments can also assume a considerably active role. Patches can

contain memory, react with turtles or other patches, and otherwise mutate over time.

* Example: An oil spill might be implemented through a patch environment. Each patch
could "spread" oil to adjacent patches.

* Example: To simulate a forest fire, patches might represent grass and react to nearby fires
by changing color and become burning grass. Likewise, grass patches adjacent to burn-
ing grass would become burning grass themselves. The burning would be a time-depen-
dent phenomena where the grass would eventually stop burning, becoming dead grass,
and possibly restore to normal grass after some further time.

* Example: In a simpler case, patches might remember how many turtles have traversed
them and set some time-dependant brightness to reflect this.

The additional capabilities of StarLogo in terms of patches and multiple turtles allow

new ideas to be conveyed. Some of these will be discussed below.

2.4.1 Emergent behavior

StarLogo can be used to simulate emergent behavior in nature. Many large systems

behave as if governed by a central control, whereas in reality each component is simply

responding to the others in a limited, predictable manner. Emergent behavior is the seem-

ingly organized, higher-level behavior that arises from many individual interactions on a

lower level. Here is a series of examples that illustrate this phenomenon.

* Example: Ant colonies find and retrieve food efficiency. To the outside observer, it may
seem that ants have an organized means of scavenging food. Perhaps a central ant queen
or worker directs the actions of the colony toward a food source once one is located.



In reality, ant colonies forage for food by searching randomly and leaving a time-depen-
dent pheromone trail along the return path if they are successful. Other ants are in turn
attracted to existing pheromone trails and follow the path of any they find. Eventually, as
increasing numbers of ants locate the food source, a strong pheromone trail is developed
and the majority of the ant colony will follow this trail until the food supply is exhausted.

To the outside observer, it may appear that some sort of centralize control was "guid-

ing" the ants to the food sources. In reality, however, the simple behavior of each ant in the

decentralized system causes the emergent behavior to arise.

* Example: Flocks of birds align themselves in highly-organized V-shaped formations. An
observer might believe that birds arrange by aligning themselves in accordance to a
leader in the forefront. Perhaps each is assigned a position relative to the leader, similar
to the method by which armies and battalions are organized. Surprisingly, birds "natu-
rally" arrange themselves into regular patterns when each bird follows a simple set of
commands to respond to its environment based on the proximity of birds in its immedi-
ate vicinity.

Whereas observers may believe birds arrange according to predetermined ranks and

positions, the actual formation of flocks is a behavior that emerges from each individual

bird obeying the same set of basic instructions.

* Example: Colonies of termites form very complex, regular mounds which would seem to
indicate the management of some centralized control mechanism.

Once again, the highly organized mounds arise out of simple behavior by each termite.

* Example: Examples of emergent behavior also appear in society and economics. Macro-
economic theory is the study of the results of collective behavior from individual compa-
nies and systems. Investors recognize that highly regular, reasonably predictable stock
trends appear in the overall stock environment through the collective actions of millions
of buyers.

2.4.1.1 The importance of studying emergent behavior

Emergent systems are interesting simply from the perspective of understanding natural

processes. Studying natural phenomena and the behavior patterns of animals poses a fasci-

nating puzzle for biologists.



Exploring decentralized organizations can also aid in understanding the effectiveness

of our own human-designed control systems and the structure of our societies. Sometimes

centralized authority may be either unnecessary or even less efficient in systems. The role

of decentralized systems in our society may be understressed and underutilized.

* Example: One group of students was asked to explore traffic jams [Resnick3, 40-4 1].
Each car was programmed to obey a simple set of instructions to accelerate unless
another car was immediately ahead, and slow down if a radar trap was detected. This
arguably is an accurate enough depiction of actual driving behavior on highways. Traffic
jams formed in the vicinity of radar traps as cars slowed down and bottlenecked highway
flow. This is an example of a central object, the radar trap, determining behavior (traffic
jams) in the system (highway). However, after the radar traps were removed, traffic jam
situations still arose regularly. The completely decentralized behavior of each car in the
highway in terms of interaction with other cars continued to cause patterns of overall
behavior to emerge in the overall system. This somewhat unexpected conclusion is the
basis behind the phenomenon of emergent behavior.

2.4.1.2 StarLogo and Emergent Behavior

Arguably, each individual termite, ant, or bird can be thought of as obeying a simple

set of "code" i nature. StarLogo enables simulation of emergent behavior through the cre-

ation of hundreds or thousands of objects with similar or identical instructions. StarLogo

has successfully depicted termite mound-formation patterns, ant foraging behavior, traffic

jam phenomena, forest fires, and countless other examples of decentralized behavior.

2.4.2 Mathematical phenomena

StarLogo can also solve probabilistic computation through its ability to simulate dif-

ferent "tries" with many turtle objects. A wide variety of mathematical and geometrical

concepts can also be explored.

* Example: In traditional Logo, a turtle might draw a circle by successively moving for-
ward and rotating at predetermined rates. Using Starlogo, one might imagine starting a
number of turtle objects in one position, each facing outward at a random direction, and
causing them to move forward a certain number of steps. In this case, the turtle objects
would form the circle by "becoming" the circle themselves. Other types of geometric
puzzles can be explored using related methods. [Resnick3, 36]



2.5 Network Clubhouse

Network Clubhouse expands on StarLogo by allowing multiple users to cooperate in

the same shared virtual space. While traditional StarLogo simulations arrange interactions

between many objects with similar characteristics, Network Clubhouse can additionally

enable each user to define a unique object with appropriate behaviors.

StarLogo facilitated convenient creation of many identical turtle objects. However, it

might be impractical or tedious to, for example, ask a user to create many different variet-

ies of fishes to simulate an ocean ecosystem. The types of objects in this environment

might not only significantly differ from each other, but each might additionally obey a

more complicated set of rules than simple termites or the other types of objects described

previously.

2.5.1 Some example applications

2.5.1.1 Overview

The Network Clubhouse environment is fairly general and can potentially support

numerous types of applications and projects. This section will describe some of the poten-

tial uses of Network Clubhouse. Note that though these can be implemented using Net-

work Clubhouse, a more important issue concerns to what extent each matches with the

goals and motivations of the Network Clubhouse.

2.5.1.2 Emergent behavior

StarLogo studies in emergent behavior can be replicated using Network Clubhouse.

One potential application of Network Clubhouse might be to simulate a "virtual fishtank."

In this type of complex ecosystem, each participant would be motivated by a specific but

different set of tasks and goals. A predator such as a shark might be programmed to attack

smaller creatures. Fish might be programmed to jointly form schools (with similar com-

mands as those used to program flocks of birds, for example) and avoid predators. Educa-



tors could then challenge children to observe the types of emergent behavior that would

arise in this sort of environment.

2.5.1.3 More traditional MUDs

Since Network Clubhouse is a general tool for allowing users to coexist in a shared

environment, it is possible to also encourage the types of interactions that are typical in

traditional MUDs. For example, children can log into a dungeon or castle-like environ-

ment which contains logic puzzles or tasks which require group communication. Since

one of the goals of Network Clubhouse is to encourage teamwork and basic cooperation,

any sort of environment which is centered around this sort of behavior would be appropri-

ate. Note that this would be different from MUDs such as fantasy roleplaying environ-

ments where children would primarily interact with computer-controlled agents in the

dungeon, or adventure-type games where children would individually solve logic puzzles.

2.5.1.4 General interaction

In a more broad sense, encouraging communication is something which will be benefi-

cial for children. As described earlier, one of two main goals of the Epistemology and

Learning Group involves building community. If "meaningful" interaction can be encour-

aged in Network Clubhouse, then this sort of development will be a natural outcome.

2.5.1.5 Role Playing

I should mention role playing as a simple extension of the previous topic. Role playing

arguably encourages social development and creativity. Since Network Clubhouse allows

persistence of characters between logins, long-term, role-playing environments could be

supported. The appropriateness of role playing relates to a broader issues of whether chil-

dren's turtle objects should represent themselves or be merely objects to control. This

issue will be discussed in some further detail below.



2.5.1.6 Creativity

Network Clubhouse can support a diversity of environments and scenarios. Children

might be encouraged to build their own Network Clubhouse environments. Currently, our

focus has been on some level of adult supervision and preparation of the Network Club-

house world; however, in the future, it is not difficult to imagine providing environment-

building tools for enable children to author their own environments. These would allow

the children to exercise their imagination and presents a challenge for them to create mod-

els which are attractive enough that other children would want to explore.

Projects which are publicly exposed and receive continual feedback often are more

useful and interesting than those that do not. This is a natural social outcome, possibly

from both to the pressure of having others scrutinize the work and the additional motiva-

tion to create an impressive project in comparison to others. A community such as Net-

work Clubhouse which allows children to view and react to each other's creations will

undoubtedly encourage more thorough, well-developed, and meaningful projects.

As noted above, Network Clubhouse environments are fundamentally different from

traditional MUDs. The types of environments created by children would be focused on

user interaction and construction instead of merely solving challenges posed by the envi-

ronment. Children would create environments which would allow other children to build

and model behaviors, not design a complete environment which children could merely

interact with.

Example: A child might create a Network Clubhouse MUD of a schoolhouse model.
Other users would be able to serve the roles of students and teachers, and users would
work together to create a learning environment. Children might create tools in the envi-
ronment such as chalkboards or homework. On the other hand, a traditional schoolhouse
MUD might instead involve computer-controlled teachers and principals. Users might be
challenged to earn the best grade through interaction with the teachers and other stu-
dents. These two models differ fundamentally. In the first, children interact with each
other primarily and explore relationships and methods to evolve a learning community.



They build into the environment and create behaviors for their objects. In the second,
students react toward an individual goal in relationship with computer-controlled objects
and other users which are designed to encourage or challenge that goal in specific, gener-
ally well-defined ways. They would each control a single object and their success and
failure would be governed by the success of their representative in that environment.





Chapter 3

Application design issues

3.1 Overview

The most central issues in Network Clubhouse involve its high level design. The

actual implementation challenges are standard and not unique, or at least not as interesting

from a research standpoint. However, since we are exploring a new type of application to

encourage a new type of learning, the specific design decisions behind Network Club-

house should be addressed. Network Clubhouse contains numerous high level design deci-

sions and philosophies; some of these follow naturally from its nature as a networked

graphical MUD, while others arise specifically because of Network Clubhouse's focus as

an educational tool.

3.2 Appearance

3.2.1 Overview

The Network Clubhouse client consists of a graphics window, command line, chat

line, and function definition window. The graphics window displays the current environ-

ment, the command line allows users to send commands and receive debugging informa-

tion, and the chat feature enables users to communicate with each other.

3.2.2 Graphics verses text environments

There are many advantages of using a graphical environment verses a text-based one.

Both visual and textual media are used in our society; for example, books convey certain

types of information better than movies and both thus exist in our society. Network Club-

house will clearly benefit from using a graphical environment, however. Some of the rea-

sons will be discussed below.



3.2.2.1 Visual appeal

Graphics environments are more visually appealing. Users are presented with a semi-

realistic image of their objects and can interact in a space that is visually represented

instead of described by text.

3.2.2.2 Information

It is said that "a picture is worth a thousand words." Graphical environments more eas-

ily depict complex environments. It is much easier to draw a picture of a chess board than

to explain the position of each piece, and the picture is easier to relate to than the text.

3.2.2.3 Promoting creativity

Children generally can be more creative in graphics environments. While most young

children have not yet mastered grammatical skills well enough to be extremely creative

with text, children actively imagine in pictures and drawings, and a graphical environment

entertains this.

3.2.3 Graphics view

Currently, the graphics window is a top-down view of the gridworld, although in the

future some notion of depth and a more 3D-like view may be implemented. The tradi-

tional StarLogo model consists of a 2-D top-down view. The choice between a 2-D or 3-D

representation is an open issue; a design decision needs to involve addressing the purpose

of Network Clubhouse and the role of graphics in the application.

3.2.3.1 3-D view

3-D views, whether as "cockpit" views as in games such as Doom and Descent or

more traditional views as represented in "My Make-Believe Castle," allow some sem-

blance of height to be incorporated in the display. This also enables an additional degree of

freedom in manipulation.



3-D views are also more generally more visually appealing then their 2-D counter-

parts. Since Network Clubhouse is aimed toward children, it may be more important that

the application seem visually appealing than if Network Clubhouse were a utility for

adults.

3.2.3.2 2-D view

A 2-D view may be more desirable in an application which is aiming to use graphics to

communicate an idea instead of using graphics for the sake of being visually appealing. In

StarLogo, the 2-D model most clearly allowed the behavior of the system to be communi-

cated for each simulation. It was not necessary to make visually-appealing turtle objects or

a fancy-looking environment; the simple representation of the environment allowed the

graphics to be used as a tool for presenting ideas.

3.2.3.3 Conclusion

It is unclear whether we should adopt a simplistic 2-D model to allow for the graphics

to serve as a visualization tool, or use a more visually-appealing 3-D model with fancier

graphics to create a more interesting-looking tool. The resolution of this issue will depend

largely on what we view as the primarily goal of Network Clubhouse. If we were simply

creating a model graphical MUD, then sophisticated graphics and animation would most

closely achieve that end. If we were creating an application to study emergent behavior

and mathematical concepts, then a simpler 2-D graphics model would be desirable.

3.3 User control

3.3.0.1 Overview

Many issues related to the nature and extent of user control need to be considered.

This section will be devoted to the relationship between the users and their turtles and the

methods by which users create and possess turtles.



3.3.0.2 Persistence

Most MUDs support a notion of persistence, where users' objects are maintained

between sessions. This allows the objects to grow and evolve as they interact with the

world. Persistence is a central attribute in MUD games where the goal is usually to

improve one's character in certain ways. Network Clubhouse follows this philosophy by

allowing users to attach a persistent username to their turtle objects. When a user logs in

initially, a new turtle is created and assigned default starting attributes. The user can then

customize the turtle by defining shape, color, behaviors, and other attributes. He can also

create private, higher-level functions which are available only for his turtle. When the user

logs out, this information is maintained by the server and retrieved upon the next login so

that the exact state of the turtle is returned to the user. Thus, his previously-defined higher

level functions will be recorded as well as information on his turtle and environment.

Naturally, users should be given the option of self-destructing their own turtles and

restarting. This is basically equivalent to the user logging in under a different username to

assume control of a new turtle.

3.3.0.3 Activity between sessions

The user can specify commands for the turtle to be processed even after he logs out;

for example, a turtle can be made to endlessly walk in circles even when the user is not

active.

One issue concerns whether the user can elect to remove his turtle from the world

when he is not present. Otherwise, the presence of hundreds of idle turtles may clutter the

environment and distract users from distinguishing and interacting with active users. A

common room serving somewhat as a locker might be incorporated where users could

store their turtles when they are inactive.

e Example: In our Virtual Fishtank, a user might create a school of fish which continues to



swim in the ecosystem. The fish would be programmed with a set of behaviors which
guided them to interact with the environment. There is no reason why the fish should dis-
appear when the user logs out; instead, they should remain as a permanent part of the
ecosystem so they are available to interact with other users. The owner might desire to
inactivate his fish after his session, perhaps if their behavior is not yet completely
debugged. In this case, he could transfer the fish to a common room and retrieve them
upon his next login.

3.3.0.4 Controlling other users' turtles

For obvious reasons, users probably should not be allowed to arbitrarily control turtles

created by other users. As characters are often viewed by users as their "property," even

among adult communities, some respect of ownership should be followed. Users can inad-

vertently affect each other's turtles adversely or even engage in destructive behavior (e.g.

self-destructing another user's turtle) if this notion of privacy is not enforced.

Protection can be implemented by associating a password for each username. Compli-

cated encryption and decrypting methods probably do not need to be implemented since

users will be primarily children, who are unlikely to possess any real software or network-

ing experience.

Although users should not be given access to each other's turtles, they might be

allowed to share a common set of public turtle objects in the environment. However, to

prevent potentially abusive or destructive behavior, these objects might be restricted in the

types of operations they could perform.

* Example: In our virtual fishtank, users should collectively be allowed to alter certain
objects, patches, or characteristics in the environment. This might include the flow rate
of water in the ocean or growth rate of algae in the environment. However, users should
not be allowed to enable to, for example, make the algae eat users' objects, or make the
water poisonous.

3.3.0.5 One or more turtles



In traditional MUDs, users generally control only one object in the environment. This

rationale could either be followed by Network Clubhouse, or Network Clubhouse could

more closely model StarLogo in allowing users to control multiple turtles.

Advantages to a single turtle

Not only does restricting a user to a single object simplify the amount of

information the user needs to control at once, but it also encourages or

forces the user to interact with others in order to accomplish tasks instead

of simply controlling his own set of creatures. In addition, since there are

multiple "rooms" or environments within the server, it would be difficult to

control or represent objects simultaneously if they are in different rooms.

Finally, it is more intuitive for users to control a single object. Since users

and turtles are persistent and therefore can grow and evolve over long peri-

ods of time, the user might identify himself with one object to follow that

object's evolution.

Disadvantages to a single turtle

Restricting users to controlling only one turtle poses some limitations on

the potential usefulness of Network Clubhouse. Some StarLogo applica-

tions and mathematical phenomena involve hundreds of objects, and it

would be impractical to require that a hundred users to be present to control

that many objects. If a single user were allowed to control many objects

and simultaneously program them with a simple behavior, this would com-

plement the StarLogo paradigm for creating simulations.

* Example: In the Virtual Fishtank, since many different types of creatures would need to
be represented, each species would probably be designed by a different user. However,
multiple numbers of the same species with identical behavior should certainly fall under
the same user. In this way, schools of fish, schools of sharks, and groups of starfish could



each be controlled by one user.

Network Clubhouse simulations will generally allow for multiple turtle objects since

the paradigm is not to have a turtle "represent" the user, in which case a one-to-one map-

ping is appropriate, but to allow turtles to represent objects other than the user.

3.4 Sharing functions

3.4.1 Overview

There is generally no function sharing between users. Each user's higher-level func-

tions are only accessible by himself. If users wish to share functions, they must communi-

cate each others' function definitions through chat or other means. There is currently no

built-in mechanism in the normal case to allow users to share functions in the general

case. The reasons will be described below.

3.4.2 Simplicity

As potentially hundreds of children use Network Clubhouse and define higher level

functions, it would be unreasonable to expect users to be able to remember their own func-

tions when a library of hundreds is displayed on their function definitions window. Users

will quickly lose track of which functions they defined and which were defined by the

other users.

3.4.3 Frequency of use

Users generally design higher-level functions as shortcuts for performing a series of

commands. Therefore, users really only need to have access to shortcuts that they have

defined and are likely to use instead of hundreds of different shortcuts which they would

be unfamiliar with.

3.4.4 Programming experience



Since one of the goals of Network Clubhouse is to introduce children to computing

and programming languages, it follows naturally that students should be encouraged to

implement their own functions in order to gain the most programming experience. This

promotes the users to understand how their functions work instead of only understanding

the effects of functions borrowed from other users.

3.4.5 Different connotations

Function names may mean different things to different users. The command "jump"

may convey a wide range of behavior depending on the nature of the user or the nature of

the object. Therefore, it is more suitable to require users to each write their own "jump"

command if they desire that behavior.

Example: In our Virtual Fishtank, a "jump" command for a frog may involve finding an
adjacent lily pad and directing the frog toward that with some horizontal and vertical tra-
jectory. A "jump" command for a flying fish would involve a completely different
behavior, motivation, and destination, since flying fish require tremendous energy to
leave the water and usually do so only to catch food.

3.4.6 Conclusion

We will allow children or supervisors to submit certain functions into a standard

library which can be accessed by other users. This might be useful if children are simulat-

ing an ecosystem where each object needs to react in a standard and predictable fashion to

certain inputs. Having each user follow the same functions will guarantee a certain level

of uniformity. The creators of the environments can provide some standard functions for

children to explore and build on. Arguably, designing functions from scratch may be an

imposing challenge for some children especially in light of some of the more complicated

behavior that is needed in projects such as Virtual Fishtank. Allowing children to explore

and modify existing code written by others would be a useful learning experience.



3.5 Interface

3.5.1 Overview

It is possible to design application interfaces in many different ways. Here are a couple

that are used by Network Clubhouse.

3.5.2 Direct manipulation

Some simplistic graphical environments restrict user control of objects by use of the

mouse or simple buttons. While this type of interface is generally easy to understand and

use, it is insufficient for the type of flexibility and control which is needed for an applica-

tion such as Network Clubhouse. Children need freedom in Network Clubhouse which is

not available through a button and mouse interface. Therefore, although some buttons and

mouse control are provided, most of the manipulation to Network Clubhouse will be

accomplished through other means.

3.5.3 Command line

A text command line option affords the most flexible type of control for users. Adven-

ture MUDs often support simple parsing and interpretation of text sentences. One possible

objection to text interfaces is that the control is not as direct and immediate; for example,

the precision of control over a turtle will depend on the user's typing speed and fluency.

However, since much of the interaction between users and turtles should consist of defin-

ing behavior and then watching that behavior evolve, the frequency of commands should

be low enough to make a command line interface sufficient.

* Example: Games such a DOOM interactively respond to single keyboard strokes to con-
trol character movement and other manipulations. The type of control that is needed in
DOOM only requires simple interaction through the keyboard. It would be highly inap-
propriate to supply a command line interface which would process complete grammati-
cal sentences such as "forward 10", "rotate right 20", etc., because the attainable
frequency of command input would be intolerably slow.



As with all standard programming interfaces, the command line allows users to enter

arbitrarily long strings of text and receive feedback in the same window. Another window

is available to conveniently display user-defined functions. Users can scroll through both

the command line interface and the function window to retrieve the history of their com-

mands.

3.5.4 Rules

Another mix between direct manipulation and command line interfaces is through the

implementation of rules. User can define rules which would be associated with objects. A

user can then select a turtle, open it, and place a rule object inside to endow the turtle with

some set of behaviors.

* Example: Users might create a banana object which contains some repeating Logo code
to make objects "slip" occasionally as they move. A user might then insert a banana into
his turtle object to make it exhibit this behavior. Or

3.6 The Network Clubhouse Language

3.6.1 Overview

One of the larger research issues concerns the type of language environment which

children should use to control their turtles. Language designers work to produce languages

that are powerful but easy to understand. The balance between these issues and their rela-

tionship to the intended audience is critical in determining the success of languages.

* Example: Assembly language is a powerful, general tool, but it is primarily used by
expert programmers who are able to overcome the lack of readability and elegance in
assembly programming. C is a more traditional language which incorporates readability
with power, but many programmers are unhappy about the need for memory allocation
and pointer manipulation which arguably should be absent from higher-level languages.

Since the audience of Network Clubhouse will be young children, the language needs

to lean more toward ease of use than power. Languages for children already exist and



Logo has especially proven effective. The Network Clubhouse programming model

closely follows Logo.

3.6.2 Designing a suitable language

There are innumerable issues conerning how to make a language usable, and one could

easily devote an entire thesis study to this single issue. Fortunately, since Logo is already

available as a foundation to the Network Clubhouse language, most of the discussion

below will address why certain decisions were made in Logo or how built additional mod-

ifications have been supplied on top of the original language.

3.6.2.1 Parameter passing

Variables are passed into functions using the pass by value methodology, where a copy

of the argument is given to the function. The original variable cannot be changed by oper-

ations on the local variable. This is consistent with variable passing in most traditional

languages. Certain primitives use call by reference to permute their arguments. For exam-

ple, setvar, or =, performs a permutation operation on its first argument. However, all

user-defined functions operate on the call by value principle.

3.6.2.2 Global variables

Any variable defined within any context becomes a global variable. This includes vari-

ables defined within function calls. The "let" statement allows local scoping, while most

variables defined by children will probably be global in nature to each object. There are

several justifications behind this design.

Global variables are easier to maintain and remember.

Global variables avoid the usual complications with scoping and keeping

track of which variables are defined in what context. It is probably suffi-

ciently powerful to allow children to assume that each variable they intro-

duce maintains its value and is accessible for the remainder of the session.



Global variables allow modification of variables outside the function.

Since function calls can only report one value, programming languages

often resort to extraordinary means to allow a function to modify more than

one value. Pointers are the standard means of causing a function to modify

more than one variable in C. It is unreasonable to expect that children

would be able to understand pointer manipulation and call by reference. It

is much easier to permit global variables to be defined within functions to

allow those functions to pass back certain state other than their simple

unary output.

3.6.3 Specification

The Network Clubhouse language closely resembles Logo. A few characteristics of

the language are discussed here.

3.6.3.1 Variable definitions

Variables are introduced via a make command. Variable names can either be created

and assigned through the syntax make <variable> <value>, or introduced and later

assigned a value. Variable names are identified by a : in as the first character.

>make :x 10

>make :foo

>setfoo 10

3.6.3.2 Function definitions

Function definitions are defined via the to command, followed by the name of the

function, the number of arguments, and the body.

>to foo :a :b :c
fd :a
rotate :b



fd :c
output :c
end

A function with an output, or return, statement is considered a "reporter", meaning

that it should yield a return value along all paths.

3.6.3.3 Function calls

Function calls are invoked by indicating the function name followed by the number of

expected arguments.

>foo :a :b :c

3.7 Multi-User Environments

3.7.1 Overview

Collaborative environments allow users to cooperate in building projects and solving

problems. They have assumed an important role in our society throughout the develop-

ment of civilization, and cooperation is inherent in many daily activities such as meetings,

project development, business administration, and more mundane activities. Collaborative

environments also are finding a growing role in our work environment since the introduc-

tion of computers. Video conferencing is an example of a feature which has surfaced

recently, and other applications for business, recreation, and education are now available

through computer networking.

As described before, Network Clubhouse draws some key benefits from being a col-

laborative environment, and its multiuser support is the main feature which distinguishes

it from predecessors such as StarLogo and Logo.

3.7.2 Issues

Collaborative environments contain several key issues that need to be addressed

before they can be useful. The more major ones include time, location, and consistency



[Mozes, p. 12]. This section presents an overview of these issues and their relation to the

Network Clubhouse environment.

3.7.2.1 Time

Collaborative work can be performed either synchronously or asynchronously,

depending on the degree of real-time communication that is involved in the cooperation.

Synchronous collaboration involves situations where users are active at the same time.

This is the more commonly-used sense of collaboration involving users in the same

meeting room or environment.

* Example: Some projects are dependent upon synchronous communication. For example,
construction projects primarily involve synchronous work because workers need to
actively help each other in order to accomplish certain goals. Placing a beam on a build-
ing requires one worker to operate a forklift, another to guide the operator, and several to
secure the beam as it is being placed.

Asynchronous collaboration allows progress to be accomplished jointly but without

real-time communication. This allows a greater flexibility because users are not con-

strained to the same time schedule, but is sometimes less effective if frequent communica-

tion is required.

* Example: For example, a group of people might be working on the same software
project, where communication is infrequent and involves such medium as email. Each
person would be responsible for an independent, modular piece of code; or, each group
of people might implement a stage of the software life cycle such as writing require-
ments, developing code, or performing testing. Although the final project is the result of
the collective work of each individual, the interaction during the design and implementa-
tion may have been minimal.

3.7.2.1.1 Network Clubhouse and Time

Network Clubhouse allows both types of collaboration, although it will mostly be used

in a synchronous fashion. Users will log in simultaneously and communicate real-time

through the use of the chat feature. They will work together in parallel to solve tasks, com-

municating and providing feedback during the process. Asynchronous collaboration is



also enabled, however. Users can log in and work on sections of the projects while others

are inactive. The notion of persistence--that users' turtle objects remain in the environ-

ment even when they are not actively logged on--facilitates asynchronous work.

* Example: Several users might each be involved in a different aspects of a problem until
they are all ready for integration. In our virtual fishtank, each user could conceivably
complete his own fish or school of fish independently. After all the objects have been
developed, the users can then log in simultaneously to view the results of their work and
engage in debugging in a synchronous manner.

3.7.2.2 Location

Location simply refers to the placement of objects in the environment. As an environ-

ment might have many rooms, location will presumably affect the ability of users to com-

municate with each other.

3.7.2.2.1 Network Clubhouse and Location

Location has two implications in Network Clubhouse. First, the physical location of

the users will affect their ability to communicate. If users sitting in the same classroom,

they can use verbal and gestural communication to handle collaboration. Second, the loca-

tion of turtle objects in the virtual world will affect their ability to communicate. Turtles in

different rooms should not be able to communicate through the default of broadcasting

messages to all users in "hearing range." Location will thus provide a means of separation

and modularization in Network Clubhouse, allowing several groups of users to work on

different projects in separate rooms without the disturbance of overlapping communica-

tion.

3.7.2.3 Consistency

Consistency is a technical issue which arises in networked applications. Users should

ideally see an identical representation of their environment as all other users, and these in

turn should reflect the server's model of the environment. Consistency refers to the how



accurately the screens of participants actually match. Graphical MUDs generally focus on

creating a duplication of the surroundings for each user, enabling screens to reflect the

same environment.

3.7.2.3.1 Network Clubhouse and consistency

Maintaining consistency is a difficult but fundamental issue to address in networked

applications. Network Clubhouse does not guarantee consistency but incorporates mea-

sures which should provide a reasonable amount of accuracy. Networking issues such as

dropped packets, corrupted packets, out of order delivery, or delayed data transmission are

tolerated as an inherent source of inaccuracy. Potentially different processing speeds on

computers and differing processing loads will impact the rate at which screen updates are

maintained and thus will also affect the consistency between screens. However, since

updates occur relatively frequently in comparison to the speed in which objects in the

environment move, minor discrepancies or inaccuracies in the data should not lead to

intolerable problems.



Chapter 4

Language issues

4.1 Overview

Network Clubhouse was primarily implemented in JAVA. This section will describe the

design decisions behind using JAVA.

4.2 JAVA

4.2.0.1 Overview

JAVA is currently at the forefront of programming excitement. JAVA programming

guides can be found in almost every software company office. The network community

may view JAVA as a new revolutionary tool for communicating information, but the pro-

gramming community has the burden of exploring the feasibility and limitations of JAVA.

The Network Clubhouse project attempts to address some of these issues. This section

will explain why JAVA was chosen as the platform for the client.

4.2.0.2 The JAVA paradigm

Netscape is seen primarily as a means of communicate information to users. Using

web tools, users can make documents widely available for others to access. Netscape and

Mosaic provide a means for users to use technology to improve information accessibility.

JAVA is hailed as an addition to this capability. It allows designers to incorporate ani-

mation, thereby allowing pages to convey additional information through dynamic, inter-

active art.

* Example: One simple HTML page teaches juggling using an animation with two hands
and a few balls. Instead of simply presenting static images of successive positions of
balls, the document can illustrate the motion of the balls and hands to convey more use-
ful information.



4.2.0.3 Network Clubhouse and JAVA

While JAVA is primarily approached by the technology community as a tool for con-

veying information, Network Clubhouse focuses on a different paradigm where JAVA is

seen as an interface for building applications. JAVA presents basic graphics functionality

which can allow users to create widely accessible applications. Since JAVA is theoreti-

cally platform-independent, users can create public, JAVA-based applications which

would be accessible from any Netscape browser. This eliminates the need to port software

across platforms or require users to purchase application software.

Network Clubhouse is the first project from the Epistemology and Learning Group to

explore the usefulness of building JAVA-based applications. Network Clubhouse

addresses the exciting possibility of creating publicly available environments which users

from anywhere in the world could access.

4.2.0.4 JAVA and research

JAVA is also seen as a research area. Since JAVA is fairly new, it undoubtedly contains

bugs and other problems which might only surface when it is used to implement a large,

ambitious project such as Network Clubhouse. Working in the JAVA environment is a

means for the Epistemology and Learning Group to explore the potential of this new lan-

guage and hopefully provide meaningful input to JAVA designers.

4.3 Cocoa

4.3.0.1 Overview

Cocoa is an interpreted language written on top of Java. It was developed primarily by

Brian Silverman with the help of Andrew Begel. Although JAVA is powerful tool for cre-

ating web documents, it is also only understandable by expert programmers and software



engineers. Cocoa was designed to allow children to use a simpler model of Java to create

their own dynamic web pages.

4.3.0.2 Network Clubhouse and Cocoa

The client was implemented partially in Cocoa. Cocoa suffers limitations from speed

and performance, but is also a simpler language in which to understand, debug, and design

programs. Because of unacceptable performance problems, much of the Network Club-

house Cocoa code is being reimplemented in the underlying JAVA.





Chapter 5

Technical Design Background

5.1 Overview

This section will describe some technical background necessary for understanding the

underlying design and implementation of Network Clubhouse code.

5.2 Network strategy

5.2.1 Overview

Network communication was accomplished through TCP and UDP connections. TCP

is a guaranteed package delivery protocol which ensures that packets which are sent over

the internet eventually reach their destination. UDP is a mechanism which allows for

packet loss and packet dropping to achieve faster performance.

5.2.2 Unreliable and Reliable protocols

We recognized that some of the information passing between the client and server

needed to be guaranteed, while other data could be transmitted unreliably. Important data

included log in requests, commands, and chat requests. There all needed to be guaranteed

for fairly apparent reasons:

5.2.2.1 Login

Login should be reliably communicated. The server needed to reliably handle log in

requests where loss or corruption of information at either end would create an inconsistent

state. The client could be handed erroneous information about the environment or an inac-

curate version of his function definitions. Such errors could not be otherwise detected and

handled; a reliable data transmission protocol needs to be used. In any case, since login



does not need to be a relatively fast operation, the benefits of guaranteed transmission

could be afforded while sacrificing a tolerable performance drop.

5.2.2.2 Commands

Commands should be reliably communicated. At first it might seem that the unreliable

UDP mechanism would be sufficient for handling commands. Any erroneous command

would either be ignored by the server or produce undesired results. In either case, the

effects would be noticed and correctable by the user. This reasoning fails on several

accounts.

First, unexpected behavior may have a tendency to frustrate and confuse the user

and also make the application seem unreliable.

Second, certain types of unexpected behavior may be irreparable. (e.g. if a forward

request is somehow corrupted into a logout request).

Finally, subtle errors or corruption in data may remain unnoticed to the user for an

extended period of time (e.g. if a variable value is corrupted but not imme-

diately used).

A TCP protocol is the more desirable approach because commands are relatively

infrequent and this application needs to focus more on correctness than performance with

regard to command processing.

5.2.2.3 Chat

Chat commands should be reliably communicated. The correct implementation choice

for the chat communication was less obvious. Packet loss and corruption is not as impor-

tant an issue because receivers can easily ask for a resend, or users will usually notice if

their messages are not apparently received by their intended audience. This phenomena

occurs and is handled in both email and MIT's Zephyr service, where unreliable means are



used to transmit real-time messages across the network to specified users. However, while

UDP would provide the necessary functionality, a TCP implementation was chosen

instead because--once again--dialogue is predicted to be rather infrequent, and there is no

need to achieve a critical speed for processing chat requests. Even a delay of a several sec-

onds is tolerable.

5.2.2.4 Moving to new rooms

Changing environment information should be reliably communicated. When the user

enters another room or domain, the complete specification of that environment (e.g.

objects in the room and other features) is transmitted. Since this information is only con-

veyed once (i.e. upon entry), the specification of the environment needs to be transmitted

correctly to prevent the user from possibly being subjected to an inaccurate state for the

duration of his stay in that room.

5.2.2.5 Other

Other categories of information either required a faster communication mechanism

than TCP or could afford an unreliable transmission mechanism. The most obvious candi-

dates are user and board updates. Board updates need to be communicated relatively fre-

quently to reflect changes in turtle position or environmental changes. Because Network

Clubhouse should send at least three or four updates per second in its final form, a mecha-

nism which will allow the least amount of effort in terms of package and delivery needs to

be used. Although packets may be lost or corrupted in the process, the frequency of board

updates ensures that errors would be largely unnoticed so long as they occur relatively

uncommon.

5.2.3 TCP

TCP communication operates in two stages, a connection stage and a communication

stage. A server first opens a socket bound to a specified port. The server and client must



then establish a connection through that socket, creating a new socket. Further communi-

cation is then handled by this socket, and the original socket remains open to accept new

connections if desired.

5.2.4 UDP

UDP communication is connectionless, where the server listens on a specified socket

for incoming messages without first establishing a dedicated connection with senders.

Whenever a server receives a packet, information on the source of that packet is also

included, allowing the server to readily send data back to the client. The server can receive

and send data from an arbitrary number of hosts through a single socket.

5.2.5 Byte order

One frequent issue in network communication involves the byte order of packet infor-

mation. When communicating 32-bit integers, for example, it is possible for the receiving

end to either interpret the first 16 bytes as the high or low order bytes of the integer. There-

fore, some sort of mechanism needs to be designed to ensure that information is transmit-

ted and interpreted in a consistent manner. One obvious way is to split integers into high

and low order bytes and send those separately. The receiving end will then expect the data

to arrive in a predictable manner. Dividing an integer into high and low bytes is a fairly

standard process, where the high order bytes are "i << 16" and the low order bytes are "i

&& OxFFFF".

We have so far avoided this problem by only transferring unsigned characters, which

are single bytes. However, as data becomes more involved and complex, the need for inte-

ger communication will become necessary.

5.2.5.1 Error handling

Several types of errors need to be anticipated. First, packets can be dropped and thus

never received on the server side. Second, packets can become corrupted and deliver inac-



curate information. Finally, other applications can potentially interfere by sending bogus

information to the server.

Most of these problems can be handled simply by establishing an agreement between

the client and server as to the type of information that is expected. The client heads each

packet with an identifier byte signifying that it the information is indeed client informa-

tion, or the server will ignore or possibly log the unidentified message.

To ensure that packets are timely, a nonce is incremented and sent with each update.

Outdated packets; that is, packets which arrive out of order, can be easily detected and

ignored. Note that the same nonce is not sent to each client which is logged on; when the

client logs in, a server process is forked which is dedicated to sending updates to that cli-

ent, and the nonce is set to zero.

5.2.5.2 Network breakdown

For a couple of months, we experienced some unknown phenomena that was prevent-

ing our network communication from operating. To explain briefly, we initially were

unable to receive UDP messages, and then TCP messages.

5.2.5.2.1 UDP

UDP communication functioned from my media lab computer or Athena dialup work-

station to any other media lab or Athena workstation. Furthermore, my workstations could

correctly receive information from the client PC or from the Macintoshes in lab. However,

the server could not successfully send information to the client PC, despite checking that

the port and IP address of the return packet were correctly designed. This problem per-

sisted for many weeks, although we unsuccessfully experimented with different capture

and send mechanisms. However, it somehow magically solved itself a couple of months

later when the client PC suddenly began to receive the data. No changes had been made to

the code, so we credit this as a purely external phenomena. However, during the course of



the problem, it became beneficial to design small UDP client and server programs which

could send and receive simple messages. Specifically, I isolated the standard networking

libraries I had designed into a program which took a port number and machine and opened

either a UDP server at that port or a UDP client to the specified machine and port.

5.2.5.2.2 TCP

TCP communication suffered a similar problem where the server program was unable

to receive information from the client. Recall that in TCP communication, a connection

between the client and server needs to be established before information can be sent.

Although the connection phase could be established between the client and server, no

messages could be successfully received from the server. Messages were received and

processed correctly on the client end, but the other end was not operating correctly. Once

again, this problem seemed to solve itself after several weeks without intervention from

US.

5.2.5.3 Conclusion

Due to my limited experience with networking, it is impossible for me to determine or

even theorize as to the nature of the problems that were preventing proper communication

between our client and server. It should be noted that these problems did not occur simul-

taneously; the UDP problem surfaced and disappeared, and then the TCP problem

emerged and resolved itself. I have no advice on how to handle this problem should it

occur again in the future and I regret not having the knowledge or resources to explore it

further.

5.3 Multiple processes

5.3.1 Overview



The need for a multiple process server was critical. Most network communication

reads lock the current process until a read is completed, necessitating either a separate pro-

cess to continue server functionality or frequent timeouts. Since many clients could be

logged into a single server, it follows naturally to have a server spawn a dedicated process

to handle each client.

There are several methods to spawn and handle multiple process. I shall discuss each

below.

5.3.2 Forks

Forking is the easiest means of spawning a process. A fork request creates an identical

copy of the existing process, where the new process is given a duplicate but separate copy

of the calling process's address space. The processes are virtually indistinguishable except

that a separate process id number is assigned to the forked process.

Disadvantage

Forking is a straightforward method of creating new independent pro-

cesses. However, it does not by itself satisfy the requirements of the server

because some sort of interprocess communication is necessary.

5.3.3 Shared memory

One way to maintain contact between processes is through the use of shared memory.

Creating shared memory segments is not a difficult process, and shared memory is an easy

way to enable processes to communicate with each other.

Disadvantage

At first glance, sharing memory using C functions such as shmget and

shmat is restricted as a privileged process that can only be performed by

superuser functions. Therefore, it was impossible to easily allocate mem-

ory for sharing between processes.



5.3.4 Pipes

Pipes are another standard means of interprocess communication. Pipes open a read/

write stream between processes. Processes can then perform commands similar to file

operations through the pipe, such as reading and writing data.

Disadvantage

Although pipes are certainly useful in many applications, they may become

cumbersome as the server begins to handle many clients. Each time an

update is performed, the server must notify each client process of the new

change by writing to each pipe. Such an action may become intolerably

slow as the number of clients increases. It would be useful if some method

of simultaneously updating each client were available.

5.3.5 Threads

Fortunately, threads provide an easy means of solving the interprocess communication

issue. Threads are lightweight, allowing the server to create many processes without sig-

nificant overhead. They inherit the address space of the original process, allowing memory

to be easily shared between the thread and calling process. Furthermore, C provides vari-

ous routines for thread management, allowing calling processes to block on threads, can-

cel threads, or send other sorts of signals.

Threads and calling programs mutually share global variables. In addition, the called

thread routine can be passed an argument from the original process. Passing an address

allows sharing of the local variables referenced by that address.

* Example: An easy way to simultaneously notify all client update processes that the board
has changed is to pass the address of the board as an argument to the update process.
Whenever the board is changed in the original server process, the board will immediately
change in the client processes.



Thread cancellation provides a convenient method for calling processes to manage

threads. For example, if a client logs out, either the threads dedicated to that client needs

to be directly notified of the event and terminate themselves, or the server can force a can-

cel on the threads. While it is more elegant to handle the matter in the former way, some-

times this is not possible (e.g. if the thread is blocked on waiting for input from the user)

and the cancellation method is used instead.

5.3.6 Sproc

It is worth mentioning an analogous mechanism to threads that exist for process

spawning on SGI's. There is no thread feature in C on SGI's; however, the command

sproc is provided as a similar alternative. Like threads, sproc creates a new process which

shares the same virtual address space as the original process. Unlike threads, processes

created by sproc do not allow cancellation and blocking. This section is included in case

the server is ported to SGIs in the future.

5.3.7 Threads and Timeouts

Threads can provide a way to mimic the alarm feature. Alarms are a convenient means

of implementing timeouts for blocking processes such as network reads. Since network

reads wait indefinitely until a message is received, alarms need to be set to allow the pro-

cess to eventually give up and continue if that feature is desired. When an alarm command

is activated, a process begins which will signal the calling process if it is not cancelled

before a specified amount of time has elapsed. The calling process needs only to set a

mechanism for handling the signal, usually involving some variant of goto whenever an

alarm signal is detected. Thus, the process can jump away from a command which is wait-

ing indefinitely.

Unfortunately, the standard alarm command on DEC stations suffers from an internal

DECthreads problem which is inherent in that architecture. This problem only appears



when an alarm is called within a spawned thread, and it is unsolvable since it is a bug in

the architecture itself. Fortunately, thread programming can be used to mimic alarms.

When a function is requested to be timed by an alarm, the new alarm command spawns a

thread to allow the execution of that function. After a specified time, the alarm process

will cancel the thread if it is still active. This provides an equivalent, although less elegant,

means of handling timeouts.

5.4 Stacks

5.4.1 Overview

The interpreter is implemented as a stack machine, analogous to traditional machine

code interpreter design. Each context is given its own stack frame, and variables values

are stored on the stack. Instructions are popped off an instruction stack and pushed onto a

data stack, then popped from the data stack when they are needed by a function or primi-

tive.

The use of an instruction and data stack easily allows for scoping and presents a stan-

dard, well-known method for machine code interpretation.

5.4.2 Pointers

Various pointers are used to access elements in the stack. These will be discussed

below.

5.4.2.1 Instruction pointer

The instruction pointer points to the current instruction on the instruction stack. It is

used to determine which instruction is currently being processed. The instruction pointer

continues to increment as new commands are inserted onto the interpreter.

5.4.2.2 Stack pointer



The stack pointer points to the current entry in the stack. When data is pushed and

popped from the stack, the stack pointer keeps track of the top of the stack.

5.4.2.3 Frame pointer

The frame pointer points to the base of the stack frame. Variables addresses are deter-

mined as offsets from the frame pointer.

5.4.3 Frames

Frames are the basic components for local scoping. Each stack frame is a portion of

the stack which represents a context. The frames are comprised on several elements.

5.4.3.1 Instruction pointer

Each frame contains an old instruction pointer. This is needed because function calls

cause the instruction pointer to jump to a new location (namely, the instruction list of the

function). When the function returns and the frame is popped, the old instruction pointer

allows the interpreter to proceed with the next instruction.

5.4.3.2 Frame pointer

The frame pointer points to the beginning of the last frame. When the frame is popped,

the interpreter references this address to determine the base of the previous frame.

5.4.3.3 Variables

The variables come next. The first variable to appear is variable 0, followed by 1, etc.

5.4.3.4 Data stack

The data stack contains the pushed and popped values of arguments and can grow

arbitrarily large. Arguments are pushed onto the stack when they are read, and popped

from the stack when they are needed.

5.4.4 Variables and Functions

5.4.4.1 Local Variables



Variables are referenced as an offset from the stack pointer. Variable values appear

after the entries where instruction, frame, and stack pointers are stored. Variable numbers

are assigned starting from 0, so the variable number simply translates to the offset from

the base. A stack entry will also hold the number of variables defined in that stack frame

(i.e. the highest legal variable number for that frame). The stack implementation allows

various types of scoping to be easily accommodated. Here is a list of options and imple-

mentations:

5.4.4.1.1 Lexicographic Scoping

Lexicographic scoping means that all variables defined in a context and strictly local

to that context. If a variable is defined in a different frame than the current one, it cannot

be legally accessed unless it is a global variable.

The implementation is straightforward. A variable number is mapped to its address

and the value retrieved from there. If the variable number is greater than the legal number

of variables as indicated in the stack frame information, the variable is considered a global

and a lookup is performed in the global stack. The variable is guaranteed to be a legal

value because the compiler should check and signal an error if the user attempts to use an

undefined variable name.

5.4.4.1.2 Dynamic Scoping

Dynamic scoping means that all variables defined in the current frame or any frame

above it (all the way until the first frame, where globals are stored) are legally accessible.

The implementation is somewhat similar to that of lexicographical scoping, except

that the interpreter recursively checks through each frame starting from the current one

until it finds a legal binding for the variable. If the current frame does not contain the vari-

able, the interpreter looks up the location of the previous stack frame in the stack frame

information and recursively checks there for the variable.



5.4.4.2 Globals

Global variables are given a separate, indefinitely expandable stack space. Most lan-

guages, such as C, only allow variable definitions at the beginning of functions. Our

implementation remove this restriction by allowing variables to be defined dynamically,

on demand. This needs to be possible because users will want to define variables as they

are needed instead of somehow knowing which variables they will use for a session

beforehand. Whenever the interpreter receives a new variable definition, it first checks if

this is present in its stack of globals. If not, the interpreter increases the stack to accommo-

date the new variable and initial value.

5.4.4.3 Functions

Functions can be regarded as a special type of global variable. Like globals, they are

given a separate, indefinitely expandable stack space. Each function variable points to a

set of instructions which define the function. This instruction stack includes the number of

arguments the function is expecting and the body of the function.

5.5 Multiprocessing

5.5.1 Overview

The interpreter is a single process which needs to emulate multiprocessing by handling

commands for turtles in parallel. It simulates multiprocessing by looping through a list of

active turtles and processing one instruction set from each.

It would have been possible to implement the server as a threaded process, where

thread scheduling would automatically implement the multiprocessing. However, this was

undesirable for a number of reasons.

Disadvantage

The most obvious problem is that there would be no way to ensure that



users would be given equivalent amounts of processing time. It would be

entirely possible for one turtle to move twice for a single move from the

other, or for one thread to not be scheduled for a relatively long period of

time. If mechanisms were implemented to guarantee a fair sharing of pro-

cessing time, the implementation would begin to closely resemble the

serial process which the single process could implement anyway.

5.5.2 Requirements

The interpreter should be able to yield control to the next turtle at any point and

resume processing of any command at any stage. This means that the complete state of the

interpreter needs to be saved whenever the process switching occurs in order to not lose

any critical information between process switches. This is accomplished by saving such

data as the instruction pointer and stack pointer whenever a process yields. When the

interpreter resumes on that process in the next cycle, it can recall those values and con-

tinue from where it stopped.

5.5.3 Implementation

The processor maintains a list of turtles, their instruction stacks, and their data stacks.

It loops through the list and checks if each process has new commands to interpret, and

interprets a subset of those commands before moving to the next turtle. After processing

each turtle, the interpreter then waits for a specified amount of time before checking for

new commands.

5.5.3.1 Reasons for waiting

The interpreter could simply loop through each turtle process and parse commands

until none remained, and then continue to loop awaiting new commands. However, this

would violate the goal that a certain reasonable speed should be simulated. If the user asks

for a turtle to move forward 100 steps, the server should move the turtle at a reasonably



slow pace so its transitional behavior could be noticed by the user. Arguably, if the server

were heavily loaded and running at a slow speed, then the length of time to wait between

loops would decrease toward nothing.

5.5.3.2 Determining rate of processing

To claim that the server processes a subset of the user commands in each iteration is

somewhat vague because the number of commands to be processed has not yet been spec-

ified. Some possible proposals are discussed below:

5.5.3.2.1 Process one command for each turtle

This is the simplest method to implement. The interpreter simply reads the next com-

plete instruction, whether it is a function call or math operation or define or any of the

other commands, and processes that. It then moves on to the next turtle. This is an attrac-

tive solution because it is relatively easy to implement; whenever the turtle processes a

command, enters and leaves a frame, or enters a new frame upon entering a frame (i.e.

calls a function within a function), then one command has been processed and the inter-

preter can move on.

Disadvantage

Unfortunately, this design fails in giving equally perceived time to pro-

cesses. If a user defines ten variables in a list and then calls a forward com-

mand, it is unreasonable to expect the interpreter to process only one

variable definition per iteration instead of processing the entire set of vari-

ables and the forward command. Some more advanced notion of time shar-

ing needs to be designed.

5.5.3.2.2 Achieve a certain speed of turtle change

The most intuitive way to handle commands is to achieve a constant speed for each

client. Recall that the server waits in idle for a specified period of time between iterations



in order to create a perception of speed to the user. Therefore, in this implementation, a

turtle should be able to make one "move", whether it is a rotate, forward, or other move-

ment command, in one iteration. A variable definition or mathematical operation should

not "count" as a move; the processor should interpret an arbitrary number of these opera-

tions in one step. When a new command is requested, the interpreter will process through

the code until it encounters a command which changes the visible state of the turtle. It will

then complete processing this command and move to the next process.

* Example: If a user performs a long series of mathematical operations and then callsfor-
ward on the result, then this should count as one command even through the user might
have specified many mathematical operations.



Chapter 6

Technical Implementation Issues

6.1 Overview

The server is the main process of the application which manages all the application data

and handles interaction with users. It can be divided into several parts: the interpreter,

login manager, chat manager, board manager, and client manager. This section describes

the implementation of each pieces of the Network Clubhouse server in technical detail.

6.2 Login manager

6.2.1 Overview

The login manager handles all login requests from the client. It also keeps track of all

threads spawned for handling each client and destroys those when the client logs out.

6.2.2 Implementation

The Network Clubhouse server listens for login requests on a predetermined port. To

avoid misinterpreting bogus data, the server checks incoming packets for a login signature

code as the first byte. The remainder of the packet specifies the username of the client. The

server determines whether the user is a new or old user, possibly asking for a password to

authenticate the request, and sends back information either of the existing turtle or a newly

created one. Since all turtle information is stable and maintained by the server even after

logout, the information transmitted may include user-defined functions from previous ses-

sions.

The server packages this information along with other data specific to the state of the

environment and the characteristic of other turtles. In addition, the server sends a UDP



port number where it expects to open a connection to send unreliable data during the ses-

sion. When the client acknowledges the UDP port, the login is said to be finished.

6.3 Update manager

6.3.1 Overview

The board update manager is responsible for periodically reading the state of the envi-

ronment and creating a packet which each client process then sends to the individual cli-

ent. There are a few methods for handling updates, and some of the possible strategies will

be discussed below.

6.3.2 What to send

The first major issue involving the update manager concerns what information to send.

Various methods for handling board updates present themselves immediately. One is to

send a complete specification of the state of the environment in each update. Another is to

send information only on parts of the board which have changed since the previous

update. A third is to send information on how the information has changed. The advan-

tages and disadvantages of these approaches are discussed here:

6.3.2.1 Complete specification

Complete specification means sending each information on each part of the environ-

ment and each user of the environment in order. The complete state is communicated in

each packet.

Advantages

This requires the least amount of processing from the server end, since the

server needs only to send the environment without distinguishing how its

elements are changing.

Disadvantages



The main disadvantage of complete specification is packet size. If this was

not an issue, board specification would possibly be the ideal mechanism in

any MUD application. However, packet sizes can become unwieldy as the

environment becomes larger; for example, in our sample gridworld, a

20x20 board already requires some 400 bytes of information just to specify

the color of each grid. This would become even more intolerably large if

the grid cells contained other features such as shape and size. Additionally,

an unbounded number of turtles can exist in the environment simulta-

neously, and each turtle needs to be completely characterized in terms of

position, color, direction, and potentially many other features.

6.3.2.2 Changes only

Changes only implies sending solely what information has changed after the last

update, whether this be parts of the environment or turtles in the environment. Therefore,

the packet size will vary depending on how many elements are changing.

Advantages

This avoids many of the problems in complete specification since relatively

small amounts of state are likely to change for any given update. Sending

changes only can give packet sizes approaching zero at best when no infor-

mation is sent.

Disadvantages

The main disadvantages of sending changes only is the possibility of pro-

ducing an inaccurate state. If a grid is changed but its new state is not prop-

erly communicated, its incorrect representation will remain until it is

changed again. If a turtle moves or changes direction but this is not

updated, then it will remain inaccurate until it moves again. This is a less



severe problem since turtle state will tend to change more frequently than

that of the environment, so discrepancies will remain for shorter periods of

time. An additional disadvantage is that packet size can become even larger

than those of complete specification if enough elements in the environment

are changing rapidly. In complete specification, the position or name of

each element that is communicated does not need to be specified; the infor-

mation is simply passed in order and received in order.

Example: A 20x20 grid can be communicated as 400 successive pieces of data without
individually specifying the x,y of each grid cell, as long as the client knows what order
the information is arriving in. This mechanism is not analogous for the changes only
method. Each element must be identified when it is sent; that is, if only five grid cells
change, then their x,y positions must be communicated in addition to the changes in
order to inform the client as to what is being updated. Therefore, if even more than 1/3 of
the grid cells change in a given packet, this implementation will require a larger packet
than if the entire board was simply communicated in order.

6.3.2.3 Information only

Information only means sending the actual user commands to each client and having

the client process those commands and arrive at same result as the server and other pro-

cesses. This allows the "brains" of the application to be moved primarily to the client and

turns the server into a simple mechanism for relaying user commands and other minimal

information to the clients.

Advantages

The advantage of taking the burden of computation off the server is obvi-

ous in applications such as Network Clubhouse where the number of cli-

ents loading the server is theoretically unbounded. Obviously, server

performance will begin to degrade as it is forced to manage and communi-

cate with increasing numbers of clients. Moving the processing to the cli-

ents allows the server's responsibility to decrease.



Disadvantages

This method is discussed for the sake of completeness, although it is appar-

ent that it is not suitable for this application both from a philosophical and

design standpoint. This process is only effective if the commands are deter-

ministic; that is, there is no opportunity for a command to be processed in

more than one way. For example, any introduction of randomness into the

system will necessarily produce inaccurate views of the state by different

clients. Furthermore, it suffers the same disadvantages of the changes only

method, in that any miscommunication will produce a significant inaccu-

racy which, in this case, can never be resolved.

From a philosophical standpoint, decentralizing control to the clients

would be a poor design decision. Information is more easily handled and

maintained when it is centralized in one location. This allows the clients to

become simple dumb display devices with minimal functionality.

6.3.2.4 Conclusion

A secondary, somewhat cursory issue should be addressed to make this discussion

complete. Advantages and disadvantages were presented primarily in light of packet size

and consistency of state. Another issue involves the actual time needed by the client in

each case to process the information. If the processing power on the client side is low, par-

ticularly in terms of packet reading and parsing and graphical display, then those issues

must be considered in the discussion of implementation. However, since our experience

has shown us that this is not a significant factor, the only real drawback of the complete

specification method becomes the enormous packet size, which potentially allows for

more errors and higher processing time. Therefore, a combination of the complete specifi-

cation and change only method was implemented. The majority of the communication



between the client and server will consist of changes in the state of the environment. In

addition, a complete specification will be regularly sent to ensure that the information

remains relatively accurate. We hope this will allow us to maintain relatively high perfor-

mance and tolerably high accuracy. This theory still needs to be tested more extensively,

especially in the evolution from the Gridworld environment to the Network Clubhouse

environment.

6.3.2.5 Specific implementation

The implementation of each method will be discussed below.

6.3.2.5.1 Complete specification

Complete specification is a straightforward process so long as the client and server

agree on a standard order in which the information is to be received. Currently, only board

updates are sent through the UDP port, but the server needs to distinguish whether the

update is a complete specification or changes only update. This is handled by putting an

identifier as the first byte of the packet.

6.3.2.5.1.1 Environment

In our Gridworld, the grids in the environment are sent row-wise to reflect the way

information is traditionally stored in double arrays. That is, the first row of grid colors is

sent left to right, followed by the second, where 0,0 represents the top left corner of the

grid. Since colors range are non-negative integers from 0-139, each grid cell can be char-

acterized by a single unsigned byte (uchar).

6.3.2.5.1.2 Turtles

Turtles are identified by username, and each turtle's complete specification is sent in

the packet. This includes the name, x, y, color, dir in that order. Multiple turtles per user

may be allowed in the future and would appear with the same identifier.

6.3.2.5.1.3 Other information



Other objects will also be added into the environment as Gridworld evolves. These

will probably be treated similarly to turtles in terms of specification.

6.3.2.5.2 Update only

Most of the information will remain the same for update only packets. The only dis-

tinction is that grid changes need to be prefaced by the x,y position of the grid cell.

6.3.2.5.3 Threading

The server initially spawns one process which determines board updates and packages

them into a structure. When a client logs in, the server spawns another process which peri-

odically reads from this structure, creates a packet from it, and sends that to the client via

UDP transmission.

The reasoning follows that the updates should be sent at a constant rate independent of

actions by the user, until the user logs out, verses maybe only sending updates when

requested by the user or whenever the user sends a command.

6.3.3 When to send

A second major issue concerning the board manager involves when and under what

circumstances update information is sent.

6.3.3.1 Send only when needed

Arguably, the update manager could be implemented to only create a new packet

whenever the state of the environment changes. The client processes can then be informed

that a change has occurred and send the new information to the clients to reflect the new

state. This may reduce network traffic because packets would only be sent when neces-

sary. However, this design is undesirable for at least a few reasons.

Complexity

First, this adds another level of complexity to the system. The client pro-

cesses would be forced to detect changes and send packets at a nonconstant



rate. The server would need to be able to detect changes in the state (one

way to do this would be to set a dirty bit in the data whenever some turtle

process or patch changed). Although this method could be implemented

without too much trouble, it begs the question of whether such a compli-

cated design is necessary.

Limits on processing speed

The network communication and processing speed of the client have

shown that the client can only realistically handle around 5 updates a sec-

ond. If information happens to arrive at a higher frequency, the data would

either be processed at less than real-time speed, or the packets would be

ignored. Information will probably frequently changes at rate greater than 5

frames per second.

Example: If a hundred turtles were moving at the same time, or the patch environment
was mutating at a nontrivial rate, then the state would change at a much faster rate than
updates could handle.

Need for large numbers of updates

Even if the client could process updates in a negligible amount of time, it

would still be questionable whether this idea would be advantageous. Five

updates a second is certainly fast enough to produce smooth animation, so

a much higher resolution is probably not necessary.

6.3.3.2 Send on demand

It is also possible for the server to only send packets when requested by the client. This

would allow the server to obtain some idea as to the speed that the client is running. Also,

the server would only need to update its packet as fast as clients requested updates instead

of at a constant, arbitrary rate. This procedure is desirable in many different situations,



such as if the client is regularly sending information back to the server (e.g. if the client is

continually sending the x,y position of the mouse for real-time processing, the server

could send an update every time a new x,y position packet was received).

This protocol could be easily adapted by Network Clubhouse. The client could receive

a packet, process it and update the display, and send back a simple acknowledgment

informing the server that it is ready for more. However, we chose not to implement this

method for a few reasons.

Simplicity

The first argument is based on simplicity. It is much easier for the server to

simply blindly send packets at a constant rate instead of waiting for an

acknowledgment.

Speed

A certain amount of processing time would be needed for the additional

sending and receiving of acknowledgment packets. Although probably not

significant, this is an unnecessary overhead.

Robustness

The advantage behind UDP implementation is that acknowledgments and

delivery are not guaranteed. Therefore, it makes more sense from a design

standpoint to have the server process send UDP packets at a constant rate

regardless of whether an acknowledgment is received. Otherwise, some

error-handling mechanisms would need to be incorporated for resends and

timeouts if a packet were lost and either the server was left waiting for a

nonpending acknowledgment or the client was waiting for a nonpending

update. If implemented, the error-handling and resend mechanisms would

begin to resemble a TCP implementation, which was avoided as a design in



the first place because guaranteed packet delivery was deemed unneces-

sary.

6.3.3.3 Conclusion

It should be fairly clear that a non-regular update design is not the correct methodol-

ogy for this type of networked application. The second option of sending only on demand

was also outruled because of the need for added complexity. The philosophy behind the

board update policy was that it should be as simple as possible to allow the server to con-

centrate on other tasks without a huge overhead in sending updates. The impact of lost

packets, out of order packets, or packets sent too quickly or too slowly is minimal; as long

as the packets are sent at a reasonable rate, the client's display will be accurate to a tolera-

ble degree.

6.3.4 Client processes

Given that the main manager is updating its representation of the state at a constant

rate, each client process should read this packet at a constant rate to send to the client. For

obvious synchronization reasons, the client packet should be sending the packets at

roughly the same speed that the server is updating them.

As an added feature, the client process can check to make sure that it does not send the

same packet twice. This can be easily accomplished by adding a nonce to the server

packet which is updated whenever the packet is changed. Instead of waiting for a fixed

period of time, the client process could instead wait for the nonce to change and send the

packet. Note that this is different from the nonce that the client sends the user. When a user

logs in, it expects the first packet update to be a zero and increment by one successively.

Therefore, the client packet must keep a separate and unique nonce which it will send to

its particular user and increment each time the packet is sent. Another way to interpret this



is to say that the client process holds a certain offset from the nonce maintained by the

server packet so that the client receives whatever nonce it is expecting to.

In any case, as stated before, the client will read the packet, add its own nonce at the

head of the packet, and send the resulting output to the client process.

6.4 Chat Manager

6.4.1 Overview

The chat window provides a mechanism for users to broadcast and receive conversa-

tional messages with other users. The success of forums such as IRC and the MIT-wide

zephyr service prove the effectiveness and usefulness of this feature. Naturally, the need to

communicate among users is critical in this application both for problem solving and gen-

eral social interaction.

Chat commands are communicated through the same TCP socket as normal com-

mands. The client marks the chat message with an identifying byte in the header of the

packet to distinguish the message from normal commands. The server receives these com-

mands and broadcasts them to all visible users without interpretation of the content.

6.4.2 Features

The chat server does no processing on the actual content of the message; it only acts to

relay them to users. Some features can be easily implemented in the future to allow for

additional functionality. These include scanning for inappropriate language and specifying

group and individual messages.

6.4.2.1 Scanning for inappropriate language

It should be fairly straightforward to scan a message for inappropriate or vulgar lan-

guage. How this would be handled is more of an educational issue; the information could

be logged or the sending user could be notified and denied access in the future. The



amount of scanning also would need to be addressed; the scanner should not be confused

by valid words which happen to contain inappropriate language as substrings, but this

would leave it blind if users simply append a nonsense character before or after the vulgar-

ity. One possible solution would be to simply log "suspicious" words for an administrator

to later peruse.

6.4.2.2 Individual and group messages

Most chat forums allow users to send messages to individuals or groups of users

instead of broadcasting to all active ones. This feature can be incorporated easily by

allowing the user to specify a destination name at the head of the message. Users can then

form groups for communication; in this case, any group name which is not equivalent to

an existing username would be allowed, and messages addressed to the group would be

sent to all active users in that group. Finally, users should be allowed the capability of

ignoring message from undesired users. This can be easily implemented, although system

messages, such as from the administrator of the application, should not be overridden.

6.4.3 Implementation

There are many possible designs for a chat server. Two of the more promising methods

are discussed here.

6.4.3.1 One sending process

It is feasible to design the chat server to simply listen for requests at a single port and

blindly echo those to users who are currently logged in. The server could maintain a list of

all active users and their network addresses and simply iterate through the list and send the

message to each user on that list in order. This can be implemented by spawning one pro-

cess for each user to listen for incoming messages, and maintaining one process to handle

sending the message to all currently logged users.

6.4.3.2 Multiple sending processes



A chat server could contain multiple sending processes. This design would be similar

to the previous save that the server would spawn one process for each client to send mes-

sages to that client instead of keeping a central list of all clients. Whereas the other design

places the burden in the centralized control of the main chat process, this appears more

elegant because each process becomes responsible for communicating with its single user.

If a connection crashes or experiences difficulty, the effects are local to that process and

the server can continue to operate without being adversely affected. This design also fol-

lows more consistently with the overall strategy of spawning individual processes to han-

dle various needs associated with each client.

The chat server spawns a dedicated process for each client that logs in. This client pro-

cess then listens for chat commands and notifies the central server upon reception.

Another process listens for new messages in the chat server and broadcasts those to its cli-

ent. The main chat process waits for clients to notify it of new incoming messages. It then

processes those and transfer them to an "outgoing message" bin.

A synchronization difficulty arises because it is possible for the outgoing message

from the chat server to be changed before each chat process can send the message to its

client.

Example: Imagine that a message arrives from a client and is transferred as the incoming
message by the main chat server. The server then copies this to its outgoing message bin
and expects the individual chat processes to notice the update and send it to the clients.
However, if a chat process is slow in executing or delayed, or two incoming messages
arrive near simultaneously, it is possible for the message to be lost entirely, or at least
lost to some of the clients.

Fortunately, there are several implementations to address this issue.

6.4.3.2.1 Ignore the problem

It is arguable that the issue is not critical enough to warrant implementing a compli-

cated handling mechanism. The clients might simply assume that messages would not



arrive at such a high rate that a significant number would be mishandled. Instead of

addressing this issue at the server end, the clients could depend on the users to request

resends whenever lost messages caused confusion.

Advantages

This method is simple and elegant. There are many cases where communi-

cation is lost between parties, whether through lost post office mail, wrong

numbers, or misdirected email.

Example: MIT's zephyr service is a utility which allows users to send real-time messages
to each other's screens through a central server. Zephyr does not guarantee delivery,
however, and it is the user's responsibility to resend or request resends if messages are
expected but not received. The popularity of Zephyr proves that it is effective despite
this uncertainty.

Disadvantages

Obviously, this method should only be considered if no other feasible solu-

tion can be determined. In cases where a solution would force a slow or

overly complicated system, a less robust system might be opted. However,

it is clear in this case that several simple solutions can alleviate this prob-

lem.

6.4.3.2.2 Limit throughput

If the server forces a considerable amount of time after each incoming message arrives

before allowing another to replace it, the server can be reasonably certain that the chat

processes have each individually updated their state and sent their messages to the clients.

This is the simplest method. However, it makes no guarantees that the clients will always

receive the messages; it simply makes it more likely that they will.

6.4.3.2.3 Force notification



The server can, upon receiving a message, force each process to acknowledge that

they have received and processed the message. In this implementation, the server would

need to know the number of active clients and hold the message until all chat processes

had acknowledged the message. This method is somewhat cumbersome to implement and

the entire server would be disrupted if any client process unexpectedly died or hung for a

long period of time.

6.4.3.2.4 Implement a queue

The server can maintain a small queue size. When messages arrive, the server copies

them into its queue. Clients will notice the presence of a non-empty queue and copy the

contents to the user. In this design, messages remain in the server for a relatively long

period of time, affording the clients ample time to notice and process them.

6.4.3.2.5 Conclusion

A queue is a reasonable mechanism to ensure that chat processes are able to respond to

incoming messages before they are erased. The queue grows as messages arrive and erases

messages from the head at a constant rate, allowing clients to search the entire queue for

messages that they have not yet processed. To accomplish this, each message in the queue

will be identified by a nonce, and chat processes will handle all messages that are greater

than the last nonce they have each seen.

6.4.4 Debugging notes

The chat server was implemented as a stand-alone, independent tool. The functionality

is rather general and can be incorporated into any application which required a chat fea-

ture. The server simply listens for input and echoes it back to active clients. For debugging

purposes, a basic interface has been built which compiles with the chat code. This allows

users to independently run a chat server and log in from simple clients to send and receive

text.



6.5 Compiler

6.5.1 Overview

The compiler translate ascii text into byte codes that the interpreter can understand. A

suitable compiler must obey several principles. These will be discussed below.

6.5.1.1 Independence

The compiler must be relatively independent of the interpreter. This means that it

should not need to rely on direct communication or information from the interpreter in

order to function successfully.

6.5.1.2 Determinism

The compiler should be deterministic; that is, there should be only one means to parse

and translate each incoming command. The compiler should not need to "guess" at the

correct interpretation of the sentence or attempt multiple parsing paths before reaching the

correct one. It is tolerable for certain commands to have more than one possible interpreta-

tion, but only if the compiler can arbitrarily but consistently parse the sentence in only one

correct way.

The Network Clubhouse compiler is more of a "hack" than an elegant implementation

of a traditional language compiler. The compiler performs the usual tokenization, but pars-

ing does not follow a well-defined grammar. Nor does the compiler perform the traditional

code optimization techniques. Because the client interface to Network Clubhouse is

through an interactive command line, the compile design needs to meet different specifica-

tions than a language compiler which parses a large amount of text and generates an exe-

cutable.

6.5.1.3 Speed



Our compiler needs to be designed for optimal speed. The total response time of the

system to the user consists of the compilation time plus the execution time. Therefore, the

compiler must be optimized for reasonably fast performance.

6.5.2 Implementation overview

Our compiler operates in three stages.

6.5.2.1 First stage: function reading

In the first stage, the compiler reads all user-defined functions and primitives to deter-

mine how many arguments each function requires and whether each function outputs in

the course of its execution. This allows the compiler to determine whether proper gram-

matical rules are obeyed for function calls.

6.5.2.2 Second stage: tokenization and translation

The second stage simultaneously tokenizes words and translates them to proper nota-

tion.

6.5.2.2.1 Tokenization

Each word must be tagged with an identifier which informs the interpeter of the type

of the argument. An argument can be an integer, variable, pointer, function name, etc.

6.5.2.2.2 Translation

The main challenge of the compiler is to translate commands from infix and postfix to

prefix notation. Since the interpreter is stack-based, arguments must appear before the

function call to allow arguments to be conveniently popped from the stack and read by the

function.

6.5.2.3 Third stage: code generation

The final stage is the actual conversion of the output stream from characters to byte

codes. This is accomplished through a table lookup associating words with numbers.

6.5.3 Detailed explanation of implementation



The compiler reads through the input string and writes to an output string. A sentence

either compiles successfully, in which the compiler sends the resulting byte stream to the

interpreter, or the compiler signals a compile-time error and invokes mechanisms to alert

the user.

6.5.3.1 First step: function reading

The compiler begins by reading through the user functions and classifying them by

number of arguments and return type. If the function contains an "output" (equivalent to a

"return" command in C) within its body, the compiler classifies it as a reporter. After the

compiler has completely scanned through the user-defined functions and primitive defini-

tions, it will have a complete list of legal function names. As a further distinction, the

compiler scans through a list of infix primitives (mostly mathematical operations) and

classifies these as infix operators. The ability of the compiler to handle infix operation is

certainly necessary if mathematical constructions in the language are to be intuitive.

6.5.3.1.1 User-defined functions

For user-defined functions, the compiler compiles each function and communicates

the byte codes to the interpreter. The interpreter then stores the code of the function in its

memory to use when the function is later called.

6.5.3.2 Second step: tokenization and translation

The compiler begins to reading a word off of the input stream. The word can either be

a function call, list begin, or argument to an infix operation. Formally:

S -> AS II e

A -> F II
(S)II
A opA II
v II
n



A = argument nonterminal

F = function nonterminal (F -> function1 name II function2 name II ...)

S = start nonterminal

e = empty terminal

v = variable terminal (v -> variablel name II variable2 name II ...)

n = number terminal (n -> 0 II 1 11 2 .... 11 9)

op = infix operator terminal (op -> + II - II > II ...)

6.5.3.2.1 Functions

If the argument is a function accepting n arguments, the compiler processes the next n

arguments as function arguments and appends those to the output stream, finally adding

the identifier for the function along with the tag FUNCTION. This is equivalent to the for-

mal expression:

F -> function_name A n

If the function is expecting a return value for the argument but none is provided, then

the compiler will signal an error. While some functions, such as repeat, allow arguments

which do not return values, other functions, such as mathematical operations, require

arguments to eventually parse to values which then are then used by the operator. Note

that anything which validly reduces to one value can therefore be considered as an argu-

ment (e.g. function calls, lists, infix operations which are reporters).

6.5.3.2.2 Lists

If the function is a list, the compiler recursively processes the arguments in that list,

and finally notes whether the result of the list outputs a value. If so, the list can be validly

used as an argument for a function which expects a value. Note that our formal definition



allows sequences of commands to appear in lists and nested lists, as is appropriate in tradi-

tional list syntax.

6.5.3.2.3 Infix operators

If the argument is neither a list or a function, the compiler processes the next word,

assuming it will be an infix operator. If this is the case, the compiler then proceeds to pro-

cess the function as usual while remembering that it has already received one argument.

If the next word is not an infix operator, the function compiler signals an error.

6.5.3.2.4 Variables

Variable arguments can either be a value or pointer. Formally:

V -> RVARIABLE II LVARIABLE

Variable values are used for call-by-value operators, which our language primarily

operates on. Since most variables are global, call-by-value allows non-local variables to

be mutated inside function calls. In this case, the variable is tokenized with an rvalue tag.

A relatively small set of special primitives use call-by-reference. The most obvious is

setvar, or =. In this case, the variable is tokenized with an LVALUE tag and treated as a

pointer.

6.5.3.2.5 Numbers

Numbers are simply tagged with a NUMBER tag and passed to the output string.

6.5.3.2.6 New definitions

The compiler needs to be capable of dynamically handling new definitions of func-

tions and variables. The following section explains how new definitions are processed.

Variables

When the compiler reads a new variable definition, it adds the variable

name to its list of known variables. It also assigns a variable number identi-

fier (i.e. an increasing number starting from 0 for the first variable) as a



mapping hint. When the variable is referenced in the future, the compiler

uses this mapping to convert the variable name into a number which can be

used by the interpreter.

Functions

Function definitions are treated similarly to variable definitions except that

additional information needs to be maintained and storage must be perma-

nent. Although variables only last through the current session, functions

need to be maintained across sessions and therefore should be stored on

stable storage such as a separate file for each user.

When the compiler reads a user function definition, it adds the function to

its set of known user functions, assigns a function identifier to it (i.e. an

increasing number starting with 0 for the first function), and determines

whether the function is a reporter (i.e. if it contains a return, or output,

statement within its body). This information is stored in the user's file to be

used for processing further references to that function in function calls.

6.5.3.3 Third step: conversion

After the translation to postfix notation is completed and compile-time errors are

checked, the final stage of translating directly from characters to byte codes becomes

straightforward. The output string will be in the form of "identifier value identifier

value..."

* Example: For the primitive setxy expecting two arguments, the input might be setxy 10
10, which would translate to NUMBER 10 NUMBER 10 PRIMITIVE setxy.

The compiler simply scans through the output string and matches each token word to

its byte code and each token value to its byte code.

6.5.3.3.1 Primitives



If the token is a primitive, the compiler scans through the byte codes of primitives and

performs a stringmatch between the name and list of primitive names it is recognizes.

Since the primitive is guaranteed to match somewhere (or the compiler would have

beforehand signalled an "unknown variable name" error during compile time), this should

be a straightforward process.

6.5.3.3.2 Functions

Similarly, if the token is a function, the compiler scans through the byte codes of func-

tions and performs a stringmatch. The natural question arises as to where this mapping

between functions and numbers is stored. To answer, recall that each user possesses a

datafile containing a list of user-defined functions. The compiler scans through this list of

function definitions and assigns numbers to each function on an increasing scale starting

with 0. It then passes the function number and definition to the interpreter. Whenever a

function name appears in an input string, the compiler converts the name to a function

number based on this heuristic. The only requirement is that function numbers do not

change during the course of the session, which should not happen if new function defini-

tions during the session are handled correctly.

6.5.3.3.3 Variables

A somewhat more difficult problem presents itself in terms of variable translation.

Recall that the compiler operates with string names for variables, and the interpreter oper-

ates with number identifiers for variables. For example, the variable varl may correlate

with variable number 0 in the interpreter, corresponding to the first variable in the stack

frame.

Therefore, the compiler needs to somehow assign and translate variable names into

numbers for the interpreter, analogous to function name translation. If a variable is global,

this is not difficult. The compiler simply uses an identical algorithm to function determina-



tion, storing a mapping between variable names and increasing numbers and appending

global variables to that list whenever they are defined in the session.

However, handling local variables in functions is a somewhat more difficult process,

especially as functions can be nested. An inherent issue in local variables is that argl will

refer to one variable in one scope and another in another scope. Since variables are lexico-

graphically scoped, the compiler needs to additionally handle this translation. That is, if

argl does not appear in the current scope, the compiler should perform a lookup in the

previous scope, all the way until it searches the global scope and either find the variable

there or signals an error. There are some possible ways of accomplishing this translation:

6.5.3.3.3.1 Restrictions on the language

The easiest way to solve this problem is to restrict the type of variable names that can

be used in the language. Users could be instructed to name their variables in order; either

the first variable should be named '1' or 'A', and the second '2' or 'B', etc. This would

alleviate much of the burden of translation from the compiler, which could directly trans-

late 'A' into 0, 'B' into 1, etc., and assume that these refer to legal variables in the inter-

preter.

Disadvantage

Experienced users would not be terribly challenged in obeying this proto-

col. However, it would be somewhat disappointing if Network Clubhouse

resorted to this method since it places an unreasonable burden on the user

and violates general language methodology.

6.5.3.3.3.2 Direct translation from variable name to ascii

One possible way to handle this problem is to convert each variable name to its ascii

equivalent. For example, if all variable names were one character long, the compiler could

translate the character to its ascii representation and pass this code to the interpreter. The



interpreter would need to somehow use that value to find the appropriate address of the

variable in its stack frame.

Disadvantage

This is also a somewhat cumbersome and undesirable process. We would

like the compiler to assign meaningful numbers to the variables (e.g. vari-

able 0 for the first variable, variable 1 for the next) so that the interpreter

could easily translate those into addresses in its stack frame.

6.5.3.3.3.3 Communication with the interpreter

Since scopes change with the addition of each new stack frame, one possible way to

resolve the translation issue is to somehow include the mapping at the beginning of each

stack frame. A table of variable name to number pairs can be included in the stack.

Example: If two local variables, A and B, exist within the new stack frame, the first three
stack entries in the frame could be "<ascii value of 'A'> 0 <ascii value of 'B'> 1". Of
course, the 0 and 1 can be eliminated if the compiler can assume that the order of appear-
ance of ascii values corresponds with the order of appearance of variable numbers. The
compiler could then somehow access these entries from the interpreter to convert the
variable into its appropriate number this way; or the compiler, on receiving the ascii vari-
able name, could use this table to translate the name into the appropriate number.

Disadvantage

This process requires entirely too much communication between the com-

piler and interpreter, which should be relatively separate entities. Recall

that one of the guidelines of compiler design is that the compiler and inter-

preter should be separate entities which require minimal intercommunica-

tion.

Conceptually, the interpreter should not need to keep track of the ascii vari-

able names in order to function correctly and perform translations. Simi-

larly, the compiler should not need to inquire the stack frame of the



interpreter in order to operate correctly. Although this means was consid-

ered as a possible alternative, it was weighed more as a "hack" than an ele-

gant design solution.

A more serious problem is that although the compiler is currently implemented on the

server side, it should be moved to the client in the final version of Network Clubhouse. In

this case, the compiler and server would not be able to reasonable communicate with each

other in a manner which is suggested here.

6.5.3.3.3.4 Global variables

One attractive way to solve this issue is to restrict the appearance of local variables to

only function arguments. In this situation, any variable definition that appears at any time

should be considered a global variable and appended to the stack of global variables.

Translation can then follow easily. To handle function arguments, the compiler arbitrarily

assigns variable numbers of each variable argument that appears in the function parame-

ters. It can then translate any variable names it sees within the function body based on

those assignments while it is processing the function definition.

This follows closely with the Logo model that all variable definitions become global,

whether the variable is defined within the global context or within a local frame. This

method suffices for now; however, as let assignments and dynamic scoping become imple-

mented, a binding tree or other means of translation will be explored.

6.5.4 Additional notes

6.5.4.1 Errors

Compile-time errors should be communicated to the user. Various standard methods

can be used to allow reporting of compiler errors, and these are followed in our implemen-

tation. An error message includes the following:

* Word and line number where the error occurred



* Nature of the error
* Suggestions on how to rectify the error.

Example: "Compiler error, line 3, at word "print". Expected LIST, read PRIMITIVE."

6.5.4.1.1 Implementation

Because the compiler resides on the client machine, it is fairly easy to communicate

compiler messages to the client and request that they be displayed on the command line

screen.

6.5.4.2 Debugging

It is convenient to have a direct interface to the compiler for debugging purposes

(rather than needing to log in through the client to test commands). I have provided a short

program that interacts strictly with the compiler by asking for text from the user, reading

the results of the compiler, and printing out the resulting byte codes. This program uses a

simple command line and compiles independently with the compiler code.

6.6 Interpreter

6.6.1 Overview

The interpreter receives machine code instructions from the compiler and processes

those into turtle commands. It is also responsible for managing the functions, variables,

and memory for each individual turtle.

6.6.2 Implementation

The interpreter reads values from the instruction stack and performs operations on

them, using the data stack as "scratch space" to store and retrieve information that it

encounters as it is processing the instructions.

The compiler translates the user's commands into machine code, converting each data

or word to a pair which is comprised of the data value and type (token). Examples of the

type include NUMBER, VARIABLE, and FUNCTION. The type is the key which allows



the interpreter to determine how the data value is to be interpreted. Therefore, the inter-

preter reads off pairs of data points and expects each data point to be prefaced by its type.

A detailed explanation of each allowed type and its implementation will be discussed

here.

6.6.2.1 Numbers

When a number type is read, the interpreter simply pushes that value onto the data

stack.

6.6.2.2 Rvariables

Rvariables, or pass-by-value variables, cause the interpreter to perform a lookup of the

variable value and pop the result onto the data stack. Recall that a lookup of the variable

value simply consists of reading whatever stack entry is stored in the offset of the variable

number from the frame pointer.

6.6.2.3 Lvariables

Lvariables, or pass-by-reference variables, or pointers, cause the interpreter to pass the

actual address of the variable onto the data stack.

6.6.2.4 Function

The function type indicates that a function call is to be performed. The interpreter

determines the function address from the function identifier and proceeds to create a new

stack frame for processing the function. The instruction pointer is set to the address of the

function's instruction stack, and the number of arguments for that function is determined.

These arguments are then popped from the data stack and copied into their appropriate

addresses in the new stack frame. One subtlety is that the arguments need to be popped off

the original frame first before the new frame is created, then pushed onto the data stack of



the new frame. This implementation issue arises because a new stack frames is always

immediately appended to the end of the previous stack frame.

6.6.2.5 Function definitions

A function definition request causes the interpreter to create storage for a new function

specification. The interpreter allocates an instruction stack for the function, scans through

the function and transfers its contents to this instruction stack, and performs other book-

keeping operations such as determining the number of arguments of the function and

deciding whether the function is a report (which is true only if a RETURN command is

present within the function).

6.6.2.6 Lists

Lists allow commands to be grouped for use with operations such as REPEAT, and are

also used to implement order of operations for mathematical operations. When a list begin

is read, the contents of the list are pushed onto the stack to serve as a single argument. Of

course, lists can be nested, so the server needs to be careful enough to push the contents of

the entire list including any any nested ones.

6.6.2.7 Primitives

Primitives are predefined functions which are implemented in the underlying language

of the server. Primitives form the basis of the higher level language, and all functionality is

defined on top of the primitives layer. Primitives cause the interpreter to call a C function

which carries out the desired behavior.

6.6.3 Examples of primitives

A section is devoted to discussing a subset of the various primitives that are available

in our language. Because some of these primitives non-trivial, an explanation of their

design and implementation may be useful as a guideline to future construction.

6.6.3.1 FUNCTIONEND / RETURN



A function_end command informs the interpreter that it has reached the end of a func-

tion. The function should then restore the original instruction pointer and pop the stack

frame. Similarly, a return command also restores the original instruction pointer and stack

frame, but additionally pushes the value of the return variable onto the data stack so it can

be immediately accessed as an argument.

6.6.3.2 SETVAR

The setvar command is currently the only command which performs direct manipula-

tion on a variable's address (pointer or LVALUE) instead of its value (RVALUE). The set-

var command expects the address of the first variable (i.e. the variable's numerical id) and

its new value. It then replaces whatever is in the address of the the variable with the

requested value.

To make setvar more convenient to use, setvar <variable name> <value> is instead

syntactically equivalent to set<variable name> <value>.

>make :foo

>setfoo 10

When a variable is defined, the set<variable name> primitive is automatically defined

as well.

6.6.3.3 REPEAT

Repeat expects a numerical argument and a list and processes the contents of the list

for the number of times specified by its first argument. Most of the time, the interpreter

should process one repeat iteration and then yield to the next process.

* Example: If a turtle was requested to move 100 steps using a repeat command, the repeat
should process only one move step in each iteration, thus taking 100 cycles to complete
the command instead of only one.



This behavior is accomplished using a simple goto in the repeat procedure. When a

repeat command is encountered, the iteration number is pushed onto the data stack, and

then the list of commands to repeat. The process then interprets the list (or a subset of the

list, if there are, for example, multiple move commands within the list) and decrements the

argument by one on completion. If the iteration number is greater than zero, the interpreter

performs a jump to the beginning of the repeat command and yields to the next operation.

When dynamic scoping is fully implemented, another means of handling repeat will

be to treat repeat as a real user-defined command with one argument, so that it will create

a new stack frame with the iteration number as its single argument. The instruction pointer

will point to the beginning of the set of commands in the list and the interpreter will pro-

ceed with interpreting commands there. When the interpreter reaches the end of the list, it

will pop the stack frame as it normally would after the end of the function. However, the

old frame pointer will have been previously replaced by the beginning of the current frame

so that the interpreter really performs a simple goto to the beginning of the command

again. This will repeat until the argument is zero, after which the original old frame

pointer will be restored.

I believe this is roughly the method that is currently used in StarLogo to implement

repeat. It is seen more as a hack than an elegant design solution.

6.6.3.4 PRINT

Print allows the user to request the interpreter to display a value. Print expects one

argument and sends the desired output along the same lines at the TCP chat line.



Chapter 7

Conclusion
Network Clubhouse part of an ambitious educational effort by the Epistemology and

Learning Group at the Media Lab to expose children to networked constructive environ-

ments. It is graphical, benefiting from the natural advantages of a visual environment. It is

programmable, allowing students to learn through producing behaviors in the objects. It is

constructive, focusing on the educational goal of learning through creating and building

projects. It is networked, allowing students to cooperate and interact as part of their learn-

ing experience.

Most importantly, it is unfinished, and much work needs to be done before Network

Clubhouse becomes a reality. Efforts to implement Network Clubhouse will continue this

summer, and next year another developer will assume responsibility of the Network Club-

house task. Though much of this document was devoted to describing the implementation

challenges and design decisions, the focus of Network Clubhouse revolves around its

potential use and capabilities. How will children use and respond to Network Clubhouse?

Now successful will Network Clubhouse be in bringing communities of children together

to cooperate on ambitious learning projects? How will children react to the programming

language and features of Network Clubhouse? These questions address the exciting future

of Network Clubhouse and its potential contribution on the educational community.
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