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Abstract
The design of an integrated accelerometer controller IC is described. The IC is

designed to be stitch-bonded to a micromechanical structure to form a closed loop hybrid
accelerometer. The micromechanical structure (fabricated as part of a companion project)
consists of a silicon proof mass supported by long silicon tethers which act as springs.
Fixed electrodes are placed above and below the proof mass to capacitively sense the posi-
tion of the proof mass. The accelerometer controller includes a capacitance sensor, lead-
lag compensation, and a third order Delta-Sigma modulator as components of its main
feedback loop. A secondary feedback loop containing a separate proportional-plus-deriv-
ative compensation is used to reset the accelerometer when necessary.

The capacitance sensor determines the deflection of the proof mass away from its
equilibrium position. A lead-lag compensation network placed at the output of the C-V
sensor is used to provide a large DC gain to the loop and provide positive phase shift at the
system crossover frequency to ensure stable closed loop operation. The output of the
Lead-Lag compensation is passed to the third order Delta-Sigma modulator which con-
verts the analog input voltage into a high frequency bit stream. The digital output from the
modulator is used to determine the feedback force to be applied to the proof mass. If the
output of the modulator is a "1", the fixed electrodes are charged such that an electrostatic
restoring force is placed on the proof mass in the direction of the lower electrode. If a "0"
is output from the modulator, the electrodes are oppositely charged and a restoring force is
directed towards the upper electrode.

When the proof mass is located more than a certain distance from its center point,
the main feedback loop can become unstable as a result of nonlinearities within the loop.
When this occurs, a second order reset loop is used to restore the proof mass close enough
to its center position to resume higher order operation.

A novel electromechanical tuning method is presented which is used place the
poles of the mechanical system near DC. By varying the voltages applied to the fixed
electrodes during the C-V sense, the location of the mechanical poles can be adjusted.
This can be used to minimize the input referred circuit (thermal) noise from the acceler-
ometer controller. An incremental dynamics analysis is introduced which predicts the new
locations of the poles of the mechanical system.

The test system for the accelerometer is documented. Results are presented for
functionality of the accelerometer controller as well as the hybrid closed loop system.
Ideas for future work are discussed in the conclusion.

Thesis Supervisor: Charles Sodini
Title: Professor of Electrical Engineering
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CHAPTER 1

Introduction

The full integration of physical sensors was previously limited only by the inabil-

ity to place mechanical parts on chip. Since the advent of micromachining, there is now a

mechanism available on chip which can convert changes in physical parameters such as

pressure, acceleration, direction (gyro), gas concentrations, or flow rates into variances in

electrical parameters. Once a relationship is established between the physical inputs to a

sensor and the sensors's electrical properties, a fully integrated transducer can be realized.

The focus of this research is a fully integrated accelerometer. The mechanical

transducer for this accelerometer is a small silicon (proof) mass on springs located

between two fixed electrodes. As the proof mass moves up or down, there is a variation in

capacitance between the mass and silicon plates. By measuring the change in capacitance,

the position of the mass can be determined and in turn, the acceleration force placed on the

proof mass can be resolved. Taking this design a step further, the position of the proof

mass can be converted to a voltage which is then applied to the top and bottom electrodes.

The applied voltages place an electrostatic restoring force on the mass. This closed loop

architecture comprises the basic design of the forced-rebalanced accelerometer system

used in this research.



Table 1.1 Target Specifications for Accelerometer

The overall objective of this research was to design, fabricate, and characterize a

fully integrated force-rebalanced accelerometer which includes analog signal processing

circuits and an analog-to-digital conversion. The major target specifications for the sys-

tem are given in Table 1.1. Though no specifications were given for power dissipation and

die area, both were kept at a minimum without sacrificing the major target specifications

given. The accelerometer was designed from the system level in order to pinpoint critical

circuits and fundamental limitations on resolution. From there, circuits were designed and

fabricated in order to characterize the accelerometer system. The subcircuits of the system

include a precision capacitance-to-voltage converter, low noise amplifier, delta-sigma

modulator (ADC), and two compensation networks, all designed specifically for this

closed loop system. Charles Hsu fabricated the micromechanical system used in the

accelerometer in companion research which focused on optimizing the physical sensor

and developing the process.

1.1 Motivation

In recent years, research efforts have been growing steadily in the field of inte-

grated microelectromechanical systems (MEMS). The large demand for integrated sen-

sors has been fueled by the strong economic incentive to replace bulky transducers with a

more compact integrated version at a lower cost. Earlier work in microelectromechanical

sensors focused mainly on the development of silicon diaphragm pressure transducers [1].

One application for the integrated pressure sensor which emerged from early research is

Parameter Target Value

Bandwidth 1.0kHz

Input Range ±2g

Resolution 2.0Otg



the monitoring of absolute manifold pressure (MAP) in cars. Today, about 20 million low

cost integrated pressure transducers are produced annually for this reason alone [2]. This

attests to the success of early research efforts as well as the viability of micromechanical

sensors in industrial applications.

Today, with airbags in a large portion of the cars currently manufactured, there is a

growing demand for low cost accelerometers for use as collision detectors. By placing

several acceleration sensors in different locations throughout a vehicle, a microprocessor

can determine when a collision has occurred and whether or not airbags should be

deployed. Threshold deceleration for airbag deployment ranges from 20g to 50g, depend-

ing on the vehicle [3,4]. In addition to collision detection, automotive applications include

antilock breaking systems (ABS), four-wheel steering (4WS), and active suspension sys-

tems (AS) [3,4]. ABS uses lateral and longitudinal acceleration combined with wheel

speed to determine when a tire is skidding. 4WS uses lateral acceleration along with sev-

eral other variables (speed, yaw rate, steering wheel angle, etc.) to determine steering

angles for front and rear wheels. AS uses longitudinal and vertical hub acceleration along

with other variables (speed, yaw rate, etc.) to determine active suspension adjustments.

Excluding collision detection, most acceleration sensor applications in cars require an

input range of ±2g and a bandwidth of 50Hz [4]. Accelerometer applications outside the

automotive industry include railway, industrial, medical, and inertial guidance (spacecraft)

applications [4-12].

Two examples of industrial uses for accelerometers are platform stabilization and

vibration sensing [5]. In railway systems, accelerometers are used to measure the forces

placed on passengers during travel as a means of quantifying passenger comfort [7].

Another railway application which has recently emerged for accelerometers has resulted

from the development of magnetically levitated ("MagLev") trains [8]. To maintain the

levitated train's position safely above the track, an active suspension system is necessary

(and not a luxury as with autos). The suspension system of the train is designed as a low-

pass filter in order to reject the high frequency track irregularities yet still follow the (low

frequency) changes in the track. The active suspension system has several inputs which



include lateral and vertical position, and lateral velocity (recall that position and velocity

can be obtained from an accelerometer through double and single integration, respec-

tively).

Because of the miniaturization of accelerometers, they are well suited for medical

applications [9]. Reference 9 cited the specific example of measuring voluntary move-

ments of the hand. Another interesting medical application cited in the literature [10] is

the placement of matching accelerometers on opposite sides of the heart to measure heart

wall velocities, and relative dimensional changes of the heart (it is not clear to the author

that this is the optimal sensing method for this application).

Along with the gyro, the accelerometer forms the sensory basis for inertial guid-

ance systems [11]. In an inertial guidance system, a gyro is used to determine the direc-

tions while accelerometers are used to detect applied forces. Using single and double

integration as with the MagLev trains, velocity and position are determined. In another

aerospace application, an acceleration-feedback control system is used in high perfor-

mance fighter planes [12]. Spurred by these and numerous other applications, research

efforts have generated several different integrated accelerometers. No prior research,

however, has been able to combine gLg-resolution with a bandwidth greater than a few

Hertz using micromachining combined with integrated circuit technology.

1.2 Basic Theory

The structure of the micromechanical accelerometer can be characterized by an

inertial mass, a spring, and viscous damping as shown in figure 1.1. This simplified model

assumes single-degree-of-freedom operation. The spring models the restoring force pro-

vided by the four silicon tethers attached to the proof mass while the dashpot models vis-

cous damping from gas (air) surrounding the proof mass. Summing the forces acting on

the inertial mass, a relation between input force and displacement can be derived.

Facc = MX + B(x)i + K,,p(x)x [1.1



ain

Ksp
Spring

Facc

I

xT

B
Viscous
Damping

Mass (M)

Fixed Sense Electrode

Figure 1.1 Basic mechanical system model

where Facc = Main1. B(x) and Ksp(x) represent the viscous damping and spring coeffi-

cients, respectively, both of which are nonlinear functions of proof mass deflection. The

damping coefficient is approximated by [13]:

B(x) = Bo[1 + 6( )+ 15( d)4.. 1 [1.2]

where d is the spacing between the proof mass and sense electrodes. The presence of only

even terms reflects the symmetry of the damping about the zero deflection point (x = 0).

The spring coefficient Ksp(x) varies only slightly as a function of x (less than 50ppm non-

linearity [2]) and for now will be modelled as a constant, Ksp2 .

The displacement of the proof mass is sensed via the variable capacitance formed

between the inertial mass and fixed electrodes. The capacitance sensor can be imple-

mented by either sensing differentially between the upper and lower variable capacitors

1. ain actually refers to the upward acceleration of the inertial reference frame (the chip) to which the silicon tethers
are attached. Accelerating the inertial reference frame upward with respect to the proof mass is equivalent to plac-
ing a downward force Main on the proof mass and holding the inertial reference frame constant (see figure 1.1).
When "acceleration force" is used to describe an input to mechanical system, this is the force that is being
described.

2. The effects of nonlinearities in damping and spring force as well as secondary resonant modes of the mechanical
structure will be addressed later and are omitted here to simplify explanation of the basic system.



or by sensing differentially between the variable sense capacitors and fixed reference

capacitors. The reference capacitors are formed by fabricating a structure identical to that

of the mechanical system except using very short silicon anchors instead of flexible sili-

con tethers like the mechanical system. The short silicon anchors hold a reference mass

immobile producing a fixed capacitance. Because the structures are fabricated nearly

identically, the capacitance values should match well even with process variation.

Acceleration - -f -4 Digital
Output

Figure 1.2 Open loop system

As a first pass at implementing the accelerometer, the open loop system shown in

figure 1.2 was considered. The position of the mass is determined via a capacitance sensor

which is then followed by processing circuitry which outputs the measured acceleration as

a digital word. This approach has the benefit of low system complexity but has several

drawbacks including limited dynamic range and accuracy.

First, in an open loop system, a fundamental tradeoff exists between sensitivity

and dynamic range. Reducing the spring stiffness of the mechanical system will increase

the deflection of the proof mass for a given input and thus increase the overall accuracy of

the acceleration measurement. However, because a smaller input acceleration causes the

proof mass to deflect the full gap distance, the dynamic range will be lowered. In an open

loop system, this tradeoff cannot be avoided. Secondly, the accuracy of the open loop sys-

tem is limited by nonlinearities. Since there is no mechanism to stabilize the proof mass

near its equilibrium position, variations in damping and spring force over a large range of

proof mass deflections prevent a high resolution measurement. Lastly, there is no simple

conversion between deflection of the proof mass and applied acceleration force. Along

with the current deflection of the proof mass, the current velocity and acceleration of the

proof mass with respect to IC's internal reference frame must also be known to determine



the acceleration force placed on the mechanical system (equation 1.1). Thus, even though

the system complexity is low, design of the processing circuitry is quite a task.

Figure 1.3 Closed loop system

An improved topology for the accelerometer is the closed loop, force-balanced

system shown in figure 1.3. The deflection of the proof mass is now given by

Facc- FFB = MY + B(x). + Kspx [1.3]

In a perfect closed loop system, FFB exactly cancels Facc forcing the proof mass to remain

in its equilibrium position and thereby eliminates all nonlinearities from the system. The

actual deflection of the proof mass is reduced by the gain of the loop. Because the proof

mass deflection is now decoupled from the input acceleration, the open loop tradeoff

between sensitivity and dynamic range is removed.

As with the open loop system, deflection of the proof mass is sensed capacitively.

A differential sense is employed between either the two variable capacitors located above

and below the proof mass or between the variable capacitors and fixed reference capaci-

tors. Note the LNA in figure 1.3 is not a separate amplifier in series with the capacitance-

to-voltage converter, rather it represents the effective gain of the C-V sensor which is used

as a mechanism for adjusting the loop gain and thus setting the dynamics of the closed

loop system3

Lag (pole-zero) compensation is placed in the loop to ensure a high loop gain and

minimal movement of the proof mass from its equilibrium position. A large negative

3. The system dynamics are discussed in section 3.2. The implementation of the C-V sensor is detailed in section 4.3.

_ __ ___._



phase shift from the mechanical system coupled with negative phase shift from other ele-

ments in the loop make lead (zero-pole) compensation necessary to maintain a stable

closed loop system.

A delta-sigma (A-1) modulator is used to convert the analog signals coming from

the output of the compensation network into a high frequency bit stream. The A-I modu-

lator is well suited for this system for two reasons: its noise "shaping" characteristic and

its binary output. The A-1 modulator places most of the quantization noise (which results

from the analog-to-digital conversion) at high frequencies well above the bandwidth of

interest while suppressing low frequency noise which would show up in baseband. The

high frequency bit stream is then passed through a decimation filter (not shown in figure

1.3) which removes out of band noise. Because the output of the modulator takes on only

one of two values, high linearity is ensured in the third order modulator while greatly sim-

plifying the feedback circuitry.

The feedback force necessary to close the loop is generated by the fixed electrodes

placed above and below the proof mass as shown in figure 1.4. The twin electrodes are

used together to place an electrostatic restoring force on the proof mass as follows: The

electrostatic force between two parallel plates of area A and with a differential voltage Vis

given by

FES = EA ()2 = CV2 [1.4]2 d 2d
where d is the separation of the two plates.

Though electrostatic force is a nonlinear function of voltage, the feedback can be approxi-

mately linearized by charging the electrodes with a DC bias, VDC, plus a differential volt-

age, VDIFF [ 1 ]:

EoA VDc + VDIFF 2  oA (VDC - VDIFF [1.5]2
FFB 2 d+x 2 d-x [1.5]

where x gives the deflection of the proof mass from its equilibrium position. The output

bit stream from the A-I modulator determines the sign of VDIFF while the magnitude is

held constant.



Voc + VFB

VDc- VFB

Figure 1.4 Electrostatic force feedback

Taking the Taylor expansion of equation 1.5,

FFB 2A VDC VDIFF V1 VC DIFF 3 2] [1.6]

For small deflections from equilibrium (x = 0), equation 1.6 can be approximated by

2EoA
FFB = VDC VDIFF [1.7]d2

Another possible method of charging the feedback electrodes which was consid-

ered was through the use of a "charge dump" [14]. Re-examining equation 1.4:

oA V 2 f E 2 Q2
FES= _) V = 2 [1.8]

Thus, by placing a "fixed packet" of charge on the feedback electrodes instead of a fixed

voltage, the positional dependance of the feedback force is removed. The accuracy of this

charge-based feedback scheme is, however, limited by the presence of parasitic capaci-

tance in parallel with the top and bottom electrodes as shown in figure 1.5. The parasitic

capacitors split the applied charge, Q, with the nominal feedback capacitance which

results in an error in the applied force. Moreover, because the sense capacitance varies

with deflection of the proof mass, the feedback error is signal dependant. As with any sig-



nal dependant error, harmonic distortion will be seen at the output of the accelerometer.

For these reasons, the charge based feedback method was not used.

Q

Top Electrode (Au) e
ense Carasitic

Proof Mass T
Bottom Electrode (N+) .-- virtual

ground

Figure 1.5 Charge-based force feedback

Since the upper and lower electrodes serve the dual purpose of sensing the deflec-

tion of the proof mass as well as applying a feedback force to center the mass, the two

functions must be time-multiplexed. A two-phase nonoverlapping clock is used to regu-

late the charging of the fixed electrodes. Since the feedback force is only applied for a

fraction of a clock cycle, equation 1.7 must be changed to reflect the average force applied

over one clock cycle.

2EoA
FFB =  (()- Voc VDIFF [1.9]d2

where 17(01) is the ratio of time the feedback force is applied (-0.5).

In addition to the feedback loop described above, there is a secondary feedback

loop which is necessary to center the proof mass at startup and after out of range input

excursions. Upon startup, the proof mass will likely be a relatively large distance from its

equilibrium position. When this happens, the linearized model used to design the closed

loop system is no longer valid. As a result, nonlinearities4 in the loop can cause instabil-

ity. A secondary feedback loop is thus necessary to bring the proof mass close enough to

its equilibrium position such that the primary feedback loop can be switched in and

assume stable operation 5.

4. A A-1 modulator uses a comparator to generate its output bit stream. A linearized model for this comparator was
used to design the A-I modulator as well as the full closed loop system. This linearized model, however, relies on
having only small excursions of the proof mass from its equilibrium position. This is detailed extensively in sec-
tions 3.4 and 3.5.



1.3 Previous Work

In response to the large demand for low cost, high precision accelerometers, sev-

eral integrated sensors have been designed, built, and tested [1,3,5,6,14-16]. Reference 15

implemented a bulk micromachined accelerometer using a flexible bar supporting an iner-

tial (proof) mass between two fixed electrodes. The two electrodes and inertial mass form

a capacitive divider which was used for position sensing and the application of electro-

static rebalance force. The accelerometer was configured as an electromechanical delta-

sigma modulator, exploiting the high linearity of delta-sigma modulation and the simplic-

ity of digital feedback. Correlated double sampling and an analog calibration algorithm

were used to reduce noise and offset. The paper reported a resolution of 15.3 bits (ig, full

scale). The system was bandlimited to 5Hz to remove the effects of Brownian noise and

thus achieve its high resolution. Reference 5, also utilizing a cantilever beam with capac-

itive position sense, reported a resolution of better than 1Lg but was also highly bandlim-

ited (1Hz). Reference 3, which describes the ADXL50 surface micromachined

accelerometer, used an analog servo loop to center its proof mass. Because of its rela-

tively high bandwidth (1kHz) and small inertial mass, this accelerometer proved to be par-

ticularly susceptible to the effects of Brownian noise. This was evidenced by the

relatively low resolution (0.12g, 50g full scale) of the accelerometer. The mechanical

noise could be greatly reduced by bandlimiting the signal to a few Hz as was done in ref-

erences 5 and 15.

Reference 14 sealed a proof mass in a vacuum to obtain a high-Q resonant

mechanical system and eliminate nonlinearities due to viscous damping. The mechanical

structure was formed by bonding three 500gm wafers together; The center wafer formed

the proof mass and the top and bottom wafers contained sense and feedback electrodes.

Though promising results were given for the functionality of the mechanical structure

alone, no results were given for the closed loop system

5. See section 3.5.



Along with reference 15, references 1 and 14 also implemented the accelerometer

as a second order delta-sigma modulator. The implementation in reference 15 differs from

that of references 1 and 14 in that it uses only one mechanical integrator as opposed to the

two mechanical integrators used in references 1 and 14. Reference 15 effectively removed

one mechanical integrator by heavily overdamping the mechanical system. Thus, one

pole of the mechanical system was placed well above the system bandwidth. An electrical

integrator was added to the system to replace the mechanical integrator which was effec-

tively removed. The benefit of having only one mechanical integrator is the elimination of

the need for compensation to stabilize the closed loop system. The significant disadvan-

tage of this scheme is the Brownian noise associated with the large increase in viscous

damping.

Integrated accelerometer systems are not limited to the sensing and feedback

schemes described above, reference 6 used a pulse width modulated (PWM) electrostatic

feedback to stabilize an inertial mass. Reference 16 (along with many other integrated

accelerometers) used no feedback at all.

Along with capacitive transducers, piezoelectric sensors have been frequently used

in vibration measurement which requires low sensitivity and high bandwidth [5]. A

capacitive sensor, however, is better suited for high accuracy, low bandwidth applications

due to its high precision, low drift, and better temperature performance [5,17].



CHAPTER 2

The Sensor

There are three main approaches to fabricating a microaccelerometer, bulk micro-

machining, surface micromachining, and wafer bonding. Each approach has its advan-

tages and disadvantages. This chapter briefly describes surface micromachining and bulk

micromachining, giving the pros and cons of each, then goes on to detail the wafer bonded

structure which is used in this research. The process for the accelerometer is given along

with its incorporation into a standard IC process flow. This is followed by a discussion of

the mechanical properties of the accelerometer. Nominal values are given for the mechan-

ical and electrical characteristics of the sensor along with tolerances and other limitations

important to the overall system design.

2.1 Bulk Micromachining

Bulk micromachining uses a backside etch to free a mechanical structure (proof

mass and tethers) from the substrate. The inertial mass thickness typically ranges from

10m to 25gm. An example bulk micromachined accelerometer is shown in figure 2.1.
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Figure 2.1 Bulk micromachined accelerometer

Here, the acceleration sense in achieved using diffused piezoelectric sensors. The main
benefit of a bulk micromachined accelerometer is the use of single crystal silicon, desir-
able in mechanical structures due to its lack of residual stress. Drawbacks to bulk micro-
machining include: incompatibility with standard IC process flow, necessary IR alignment
and backside etch, processing dependance on wafer thickness, and the large area of silicon
required by the sensor (6-16mm 2,typical) [3,18].

2.2 Surface Micromachining

In contrast to bulk micromachining, surface micromachining uses materials depos-
ited on the top surface of the wafer, usually with a low pressure chemical vapor deposition
(LPCVD), to form a mechanical structure [1]. To fabricate a surface micromachined
accelerometer, the proof mass is first dry etched from a thin film deposition of polysilicon.
A sacrificial oxide (or phosphosilicate glass (PSG) [1]), is then wet etched from under the
polysilicon to free the inertial mass [3]. The typical thickness of a surface micromachined

proof mass ranges from 2gm to 5pm. The side view of a surface micromachined acceler-
ometer is shown in figure 2.2.
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Figure 2.2 Surface micromachined accelerometer

The proof mass and springs (not apparent in the side view) are etched from the polysilicon

layer above the air gap. Electrical contact is made with the proof mass at the anchor point

to the substrate. The inclusion of a dielectric layer separating the air gap and substrate is

optional and varies between accelerometers.

Surface micromachining has many advantages over bulk micromachining. No

longer necessary are the IR alignment, backside etch, and large die area needed for bulk

micromachining and surface micromachining is fully compatible with a standard IC pro-

cess flow6 [18]. However, there are some disadvantages to surface micromachining. Dur-

ing the wet oxide etch used to free the proof mass, the mass can stick to the underlying

dielectric (or substrate). The residual stress associated with the polysilicon make it diffi-

cult to predict the mechanical properties of the film [18].

2.3 The Wafer Bonded Sensor

Wafer bonding combines the advantages of both surface micromachining and bulk

micromachining to form a mechanical structure well suited for the accelerometer. The

processing for the mechanical sensor is given next followed by the accelerometer's final

structure and mechanical and electrical properties7 .

6. Some modification of the CMOS flow must occur.
7. For more information on the process flow and mechanical structure, see references 19, 20, and 21.
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2.3.1 Process Flow [18-21]

The processing steps for fabricating the accelerometer are shown in figure 2.3.

Processing begins with two wafers, a p-Si handle wafer and a p/n device wafer. The

device wafer was formed by growing n-Si epi layer on a p-type substrate to a thickness of

10-11 lm. The handle wafer receives a Boron blanket inplant to heavily dope its backside.

This ensures good electrical contact necessary for later processing steps. A plasma etch is

used to form a 1-2pm trench on the topside of the handle wafer. A diffused junction-iso-

lated electrode is created in the trench using a phosphorous implant with drive-in.

Next, the p-Si handle wafer and p/n wafer are bonded together in a controlled Oxy-

gen ambient forming a p-n-p wafer "sandwich" (figure 2.3d). The upper p-Si (formerly of

the p/n wafer) is then removed using a two step process. The wafer is first ground back

about 400grm and polished. Afterwards, an electrochemical etchback (KOH) is used to

remove the remaining p-Si above the n-Si epi layer.

At this point, the n-epi and p-Si substrate form a sealed cavity wafer. The wafer is

now compatible with standard IC processing. Any circuits necessary to implement the

sensor could be added at this processing stage 8. Only low temperature processing steps

remain to free mechanical structures from the n-epi layer.

Once the standard IC processing has been completed, the mechanical structures

(proof mass and springs) are freed using a deep plasma etch into the n-type silicon. A

"capping" wafer, formed from either glass or Si, is attached above the n-Si using a ther-

mocompression bond between Au electroplated on the upper wafer and Au deposited over

Cr/SiO2 on the n-type silicon. The upper wafer is used to position the top electrode above

the proof mass.

Wafer bonding has all the benefits of surface micromachining (no backside etch,

IC process flow capability, no IR alignment) while it avoids the problem of stiction by

using a dry etch to free the inertial mass. Because the mechanical structure is formed with

single crystal silicon, the problem of residual stress is also alleviated.

8. In this research, the processing circuits and mechanical sensor were stitch-bonded together side by side in order to
test the mechanical structure, electronic processing circuitry, and overall system design. The next goal of continu-
ing this research would be to incorporate mechanical structures and processing circuitry monolithically.
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Figure 2.3 Accelerometer process flow
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Figure 2.3 (cont'd) Accelerometer process flow

II I~d~sPIYS~I I .1 _ __ _ I II I

i $-



2.3.2 The Mechanical Structure

I
F

Silicon
Tethers

Figure 2.4 Top view of accelerometer

A sideview of the final mechanical structure is shown in figure 2.3i. The sideview

shows the proof mass and springs, formed from the n-Si epi layer, and the top and bottom

fixed electrodes, formed from metal and diffused n÷ regions, respectively. A top view of

the structure, shown in figure 2.4, shows the n+ region of the mechanical structure com-

prising the proof mass and springs (silicon tethers). The "pinwheel folded tether" configu-

ration 9 of the silicon tethers (springs) is used for its high linearity (three orders of

magnitude better than a simple straight tether design) and reduced device dimensions [2].

The pinwheel configuration also relieves in-plane residual stress [2]. This, however, is not

a consideration as single crystal silicon is used to fabricate the proof mass and springs.

9. Though the accelerometer was initially designed as a "folded pinwheel" structure, it was later changed to a "simple
pinwheel" structure to optimize the placement of secondary resonance modes of the mechanical system. This is
discussed in Chapter 5.
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2.3.3 Mechanical and Electrical Properties of the Sensor

Two different mechanical sensors were fabricated for use in the accelerometer,

one having a 750gmx750gmx10.8gm proof mass, the other proof mass having dimen-

sions of 500pmx500gpmxlO0.8gm. Other than having different lateral dimensions, the two

mechanical structures are virtually identical 10. The device characteristics which set the

mechanical and electrical parameters of both sensors, as well as the tolerances for each,

are the same. Thus, they will be discussed concurrently. The target dimensions, mechani-

cal response, and electrical characteristics for each structure are given in table 2.1.

As discussed in section 1.2, reference capacitors were fabricated side-by-side with

the mechanical sensor. Fabrication of the reference structure is identical to that of the

micromechanical structure except for the use of very short silicon anchors to support the

proof mass. The fixed reference capacitors can be thought of as a mechanical structure

with an infinite spring constant preventing the proof mass from moving in response to

applied acceleration force. The side-by-side fabrication of the structures is done to ensure

close matching between the device parameters of the mechanical sensor and reference

structure (including parasitics 11). The "matching" tolerances given in table 2.1 refer to

matching between the mechanical sensor and the fixed reference structure.

The tolerances given in table 2.1 can be a major limitation on the accuracy of the

accelerometer. Taking each tolerance into account is an important part of the design pro-

cess both at the system level and at the circuit level. Next, a brief discussion is given of

the physical mechanisms which set the tolerances of the sensor along with a more detailed

discussion of what mechanical parameters were variables during the system level design.

Structural dimensions

As will be discussed in section 3.3, a large proof mass is always desirable from the

system design standpoint. The p/n (epi) device wafers used to fabricate the proof mass

were obtained from Motorola and were delivered with an n-epi thickness specified at

10. The mechanical resonant frequencies of the two structures are placed at different frequencies to facilitate electrical
resonance tuning which will be described in section 3.3.

11. Matching parasitics are necessary to help cancel substrate noise. See section 4.3.2.
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Parameter Structure 1 Structure 2 Tolerance

STRUCTURAL DIMENSIONS

Proof mass dimensions 750gmx750gm 500gmx500m ±7.5gm (length)
x10.8gm x10.8gm ±0.2tm (10.8gm)

:0. 1jm (absolute)
Gap spacing 1.Oim 1.Om A (matching)10oo0 (matching)

12.Om (absolute)
Electrode dimensions 730gmx730gm 480gmx480m (

_0.5gm (matching)

DYNAMICS

Resonant Frequency 3.23kHz 6.78kHz ±20%

ELECTRICAL CHARACTERISTICS

Sense/Feedback
Capacitance

Parallel Stray Capaci-
tance

Resistance to

Electrodes

Resistance to

Proof Mass

4.716pF

<<10fF

<100

~50002

2.039pF

±0.54pF (Struct.1)
+0.1 lpF (matching)
+0.24pF (Struct.2)

+0.05pF (matching)

<<10fF

<100

~5000

Table 2.1 Design specifications for the mechanical sensor

10.8gm_+0.2pm. Thus, the thickness of the proof mass was not a design parameter. The

area of the proof mass was restricted due to concern about warpage of the proof mass as

well as the desire to limit the die area of the sensor. During the system level design, it was

not known whether a 750pmx750gm proof mass would have significant warpage, how-

ever, it was known that a 500gmx500gm proof mass displayed no measurable warpage2.

For this reason, both sized mechanical structures were fabricated for the accelerometer.

12. Also, less than 300A surface roughness was measured for the 500gmx500m proof mass [18].



The ±7.5gm tolerance for the sides of the proof mass are a result of the isotropic etch used

to free the mechanical structure.

The lower gap spacing (between the proof mass and diffused n+ electrode) is set by

a plasma trench etch into the handle wafer. Because of the possibility of over or under-

etching the trench, the absolute tolerance for the gap was conservatively set at ±0.1gm.

The matching tolerance between the mechanical structure and reference is an order of

magnitude better (±100A). The upper gap spacing is controlled by three processing steps:

a low temperature oxide (LTO) deposition followed by an electron beam (e-beam) deposi-

tion of Cr, then Au. The nominal thickness of the LTO is 5000A (±200A with process

variations). The thickness of the Cr-Au (combined) layer is also set at 5000A (±200A)

resulting in a overall tolerance of +0.04gm for the upper gap spacing. From the system

design viewpoint, the gap separation should be minimized to maximize the gain of the C-

V sensor 13. However, because of the tolerances of the gap spacing, a practical limit is set

on the minimal gap size. The 1.0gm gap spacing was selected to keep any matching error

between the sense capacitors and reference capacitors below 2.5% of the nominal capaci-

tance value.

The accuracy in sizing the lower diffused (n+) electrode is limited by lateral diffu-

sion during the drive-in step. The upper (Au) electrode is patterned with a single lx Cr-

mask alignment step and will probably exhibit much better control over the electrode

dimensions than the ±2.0lm tolerance of the lower diffused electrode. Note that the upper

and lower electrodes are sized 20gm smaller on a side than the proof mass. This is done

for three reasons. First, by making the electrodes smaller than the proof mass, the capaci-

tance is desensitized to changes in the lateral position of the proof mass. Thus, any undes-

ired lateral resonances or movement in the proof mass will not result in a sense

capacitance change. Secondly, because the proof mass area is larger than that of the upper

and lower electrodes, it prevents capacitive feedthrough between the two electrodes.

Lastly, because the sizing of the upper and lower electrodes can be controlled more pre-

cisely than the area of the proof mass, the electrodes should be used to set the values of

13. See section 3.2.3.



the parallel plate capacitances. Thus, the ±2.0gm (per side) tolerance of the electrodes

sets the limitations of the capacitance accuracy and not the larger ±7.5gm tolerance of the

proof mass.

Dynamics

In section 1.2, the response of the mechanical system to an input force was given

as

Fnet = Mj + B(x)xý + Kspx [2.1]

where Fnet is the acceleration force less any feedback forces applied, and B(x) and Ksp

are the nonlinear damping and spring force terms, respectively. From a design standpoint,

the mechanical system can best be thought of as a low pass filterl 4 . Modelling equation

2.1 in the frequency domain, approximating B(x) as a constant:

X(s) 1 [2.2]1
[2.2]F(s) Ms2+ Bs + Ksp S2 • + o 2

where = s/M

Examining equation 2.2, the response of the mechanical system has two poles which "roll

off' the mechanical response above o0 (the mechanical resonant frequency) at a rate of

40dB/decade. The placement of o0, critical in the design of the accelerometerl 5 , is set by

the spring constant, Ksp, and mass, M, of the spring-damped-mass system.

The mass, M, can be calculated from the volume of the proof mass and density of

silicon (2.33 g/cm 3) with some error resulting from the nonzero mass of the springs. The

spring constant, Ksp, is set by the length and shape of the silicon tethers. Qualitatively, the

predominant mechanism for controlling the spring constant is by varying the dimensions

of the two long thin sections of silicon in each tether (figure 2.5, sections 1 & 2). Tether

sections 3, 4, and 5 also contribute to the effective spring constant, however, they are all

14. See mechanical sensor dynamics, section 3.2.1.

15. See electrical resonance tuning, section 3.3.1.
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Figure 2.5 Single silicon tether

relatively "stiff' with respect to the long sections of tether. The spring constant for a sin-

gle straight section of tether is given by [2]:

4Ebt3
Keff = 4 3  [2.3]

where E is the modulus of elasticity, b is tether width, t is tether thickness, and 1 is tether

length. Though it is a huge oversimplification to calculate the folded pinwheel tether

spring constant as just two straight tethers in seriesl 6, equation 2.3 lends qualitative infor-

mation which justifies the shape of the silicon tethers. To decrease the spring constant,

Ksp, both the tether width (b) and thickness (t) should be increased while the tether length

(1) should be increased. Likewise, to increase the spring constant, increase both b and t

and decrease 1.

There is a practical limitation on how low the spring constant, and thus, resonant

frequency of the mechanical system can be placed which must be taken into account dur-

ing design of the mechanical sensor. The tether thickness, t, is already set by the n-epi

layer (10.8pm) in the device waferl 7 . Decreasing the width of the silicon tethers below a

certain point has two practical limitations: First, the proof mass has to be "stiff' to lateral

accelerations and second, the electrical connection resistance to the proof mass must be

kept below a reasonable value. Both the lateral deflection of the mechanical sensor and

the electrical resistance of the tethers are inversely related to the tether width. Increasing

16. See reference 2 for a detailed analysis of the spring constant calculation.

17. Etching the tethers to reduce the width would be impractical because the etch could not be controlled precisely
enough to regulate the spring stiffness to within an acceptable tolerance.
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the length of the silicon tethers has a practical limitation because of the electrical resis-

tance of the tether. It was decided, due to circuit implementation issues, the electrical

resistance of each tether should be limited to 2k.Q providing a 5000 connection to the

proof mass with four tethers in parallel. As a result, resonant frequencies below 2.0kHz

were not an option from the system design standpoint.

In the actual design of the mechanical sensor, FEM analysis was used to predict

the resonant frequency of the mechanical structure. The measured resonant frequencies of

the mechanical sensor displayed matching to within 5% of the FEM calculated values

[19]. Thus, the ±20% tolerance used for the system design (table 2.1) was quite conserva-

tive.

In equation 2.2, both the spring coefficients, K(x), and damping term, B(x), were

approximated by constant terms. As was previously discussed, both the damping and

spring force have higher order terms. The spring force is highly linearized by the pin-

wheel folded tether design shown in figure 2.4. However, there is still a second order non-

linearity on the order of 10ppm for the spring "constant" [2]. This nonlinearity would be

much larger (on the order of 50-100ppm) if it were not for the force feedback which

greatly limits the deflection of the proof mass. The damping nonlinearity (equation 1.2),

like the spring nonlinearity, is kept quite small because of the force feedback stabilization

of the proof mass. The effects of the damping and spring nonlinearity on the accelerome-

ter performance are investigated in section 3.4.3.

To this point, the discussion of dynamics has been limited to the fundamental reso-

nance of the mechanical system. Equation 2.2, used to model the second order response

of the sensor, models only single degree of freedom movement (up and down in figure 2.3,

in and out of the page in figure 2.4). In actuality, the proof mass has several secondary res-

onances which include responses to torque and lateral acceleration [18,22]. The lateral

resonance modes are at very high frequencies and can be ignored for all practical purposes

in the system design. The torsion mode resonances 18 are at lower frequencies which can

18. As low as 2.5x the fundamental frequency [18].



affect the performance of the accelerometer. The possible effects of these resonances on

system performance are discussed in section 3.6.

The first order gas damping term, B, between two square plates can be calculated

analytically using [2]

Bo = 0.4217 y4 [2.4]

where u is the viscosity of the gas (air) surrounding the plates, L is the plate length, and d

is the gap separation. Evaluating equation 2.4 using the viscosity of air at 1 atmosphere

pressure, the mechanical system is highly overdamped. From a system design standpoint,

it is preferable to have the damping term as small as possible19 to reduce Brownian noise,

as discussed next.

Brownian Noise

Brownian noise, the mechanical equivalent to Johnson (thermal) noise, can be the

limiting factor in determining the resolution of a small device geometry sensor. Brownian

noise is the direct result of molecular collisions with a gas or liquid surrounding the proof

mass [23]. The large discrete accelerometers which preceded the current integrated

micromechanical sensors were not limited in resolution by Brownian noise due to their

sizable mass. However, as device dimensions have moved to smaller scales, the forces

from molecular collisions can no longer be ignored. Using the Equipartition Theorem and

Nyquist Relation, input referred Brownian noise force is given by [23]:

Fbrwn = J4k/ TB N/J-Hz [2.5]

where ks is boltzmann's constant, T is absolute temperature, and B is the damping coeffi-

cient. Solving for the input referred acceleration noise:

abrwn = 14-k-,TB/M (m/s2) /  z [2.6]

19. It is, however, more difficult to stabilize the closed loop system with a highly underdamped mechanical system.
See section 3.3.1. Also, it is more likely that undesired secondary resonance modes will be excited as damping is
decreased.
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where M is the mass of the proof mass.

From equation 2.6, the input referred acceleration noise can be decreased either by

increasing the size of the proof mass or decreasing the damping. Increasing the size of the

proof mass is not a viable option for the aforementioned reasons, thus decreasing the

mechanical damping must be investigated.

One possible method for decreasing the damping of the mechanical structure is to

perforate the proof mass [2]. Using this approach, the damping coefficient can be lowered

to approximately 5gNs/m which corresponds to a slightly underdamped mechanical sys-

tem. Further perforations necessary to reduce the damping would compromise the integ-

rity of the mechanical structure [18]. Using the proof mass dimensions from table 2.1 and

a bandwidth of 1.0kHz, equation 2.6 predicts an input referred acceleration noise on the

order of 1.0mg (1x10-3g), about three orders of magnitude above the 2.0tg target resolu-

tion of the accelerometer.

To lower the mechanical damping further and keep the same device geometry, it is

necessary to vacuum seal the mechanical structure. In a vacuum sealed accelerometer

structure, a quality factor, Q, on the order of 50,000 can be attained [13]. In a vacuum, the

damping is no longer controlled by the viscosity of the gas (or fluid) surrounding the proof

mass. Instead, the damping is controlled by internal damping of the springs and supports.

The damping term in equation 2.6 is meant to apply to only viscous damping. If

only the viscous damping term were used to calculate the brownian noise of the proof

mass placed in a vacuum, the noise floor would be well below 2.0gg. However, because

the mechanisms which control the internal damping of the springs and supports are similar

to that of viscous damping, the total damping constant (including the internal damping) is

used in equation 2.6 as a conservative estimate. This resulting noise floor is 2.214 g.

Electrical characteristics

In order to facilitate sensing the deflection of the proof mass, the sense capacitance

should be as large as possible (see equations 4.28-4.30). Fortunately this coincides with

the desire to have the proof mass as large as possible to reduce input referred noise. As

previously discussed, the gap spacing was set at 1.0gm to maximize the sense capacitance



without incurring a capacitance matching error greater than ±2.5%. Also recall that the

500gpmx500gm and 750pmx750pm proof masses were limited in size to prevent possible

warpage of the device wafer. The gap spacing and area constraints combine to define the

nominal sense capacitance. Combining the accuracy limitations on the area of the fixed

electrodes with the gap matching tolerance, the tolerance of the sense/feedback capaci-

tance was calculated.

Other electrical parameters of interest are the series resistance to the upper and

lower electrodes and the previously discussed series resistance to the proof mass (5000).

Unlike the electrical connection to the proof mass, the connections to the upper and lower

electrodes are Au and diffused n÷, respectively, resulting in low contact resistance (<100).

Along with the resistance of the tethers, the mechanical sensor has other undesir-

able electrical characteristics which must be taken into account. As with any integrated

electronics, parasitic capacitances exist at each node, either to ground, to the substrate, or

to another node in the circuit. These parasitics are summarized in figure 2.6. Switched

capacitor techniques can be used to cancel the effects of the parasitics to ground (Cpl, Cp2,

& Cp3) [24]. Similarly, the effects of Cp6 and Cps can be removed by charging the top and

bottom electrodes to ground or virtual ground. In section 4.3, a technique is given to

remove the effects of Cp7, a parasitic capacitance from the substrate to the proof mass.

There is no circuit technique to cancel the effects of capacitors Cp4 and Cps which are in

parallel with the sense/feedback capacitors. Cp4 and Cp5 are the result of metal and poly

lines crossing which connect to the proof mass, bottom and top electrodes. With careful

layout, however, the parasitics can be minimized 20 .

One last electrical characteristic which should be mentioned is the reverse leakage

current of the diffused lower electrode. Because the n÷ diffused electrode is junction iso-

lated, there is a small reverse bias leakage current associated with the junction (- 12.5pA).

Though this is a fairly small current, it must be taken into account when designing the

20. Extracting from the layout, both Cp4 and Cp 5 are estimated to be less than 10fF [18]. Along with the minimal size
of the two parasitics, matching between the sensor parasitics and the reference structure parasitics will help cancel
the undesired effects.



capacitance sensor. Because reverse bias junction isolation is not used for the upper elec-

trode, there is no associated leakage current.

Figure 2.6 Electrical parameters of the sensor





CHAPTER 3

The Closed Loop System

Designing a stable closed loop system using integrated electronics is a fairly

straight forward task. Using switched-capacitor circuitry with better than 8-bit matching,

the dynamics of an integrated circuit can be predicted with a high degree of accuracy.

However, when a control loop is placed around an integrated mechanical sensor with

design tolerances as great as 20%, closed loop stability becomes a much larger design

issue. In addition, attempting to minimize the effects of noise, cancel parasitics, remove

nonlinearities, attain jgg resolution, and stabilize a proof mass can present a formidable

task. This chapter outlines the design procedure and final system design used to accom-

plish this goal.

3.1 Design Procedure

The design of the closed loop accelerometer was approached first from the system

level. However, as the design proceeded, it became evident that an iterative approach

would be necessary to optimize the performance of the closed loop system. All design



decisions were made in an iterative fashion, first exploring ideas from the system level

then examining possible limitations of critical circuitry or the mechanical sensor. If circuit

or sensor limitations prevented realization of a design, different ideas or adjustments were

again explored from the system level. This approach ensured that the capabilities of the

electrical and mechanical systems were compatible with the final accelerometer design.

To model the operation of the accelerometer, a custom simulation program,

CLASP (Closed Loop Accelerometer Simulation Program), was written. As the acceler-

ometer design proceeded and implementation choices were made, CLASP was simulta-

neously updated to accurately model each circuit or mechanical element, including

nonlinearities21. After extensive design and simulation, the circuit implementation was

finalized along with the required mechanical and electrical properties of the sensor (table

2.1). The remainder of this chapter details the final system design and the modelling of its

performance.

3.2 Stability and System Dynamics: The Main Loop

Mechanical C-V Lead-Lag A-1
Fa System Sensor Network Modulator

Y(z)

1 Bit DAC

Figure 3.1 The "Gain Block" System Model

With several sources of negative phase shift in the closed loop system including

the mechanical system, lag network, and A-X modulator, stability is a major concern. To

accurately predict the dynamics of the closed loop system, each "block" in the system is

21. The final version of CLASP models nonlinearities in damping, spring force, and electrostatic forces placed on the
proof mass.



modelled having a gain with associated poles and zeros as shown in figure 3.1. Taylor

expansions are used to establish linear gain models for the nonlinear elements within the

loop over an incremental operating range.

This section predicts the closed loop dynamics of the accelerometer and examines

its stability criterion using the linear analysis described above. Nonlinear behavior of the

closed loop system which is not predicted using this simplified linear analysis is detailed

in section 3.4.

3.2.1 Stability

The need for compensation can be illustrated by examining the dynamics of the

mechanical system and delta-sigma modulator. Both are significant sources of negative

phase shift within the loop. As was shown in section 2.3, the inertial mass, spring, and

viscous damping of the mechanical system can be accurately modelled as a high-Q low

pass mechanical filter with a transfer function given by

X(s) 1 [3.11
F(s) Ms2 + Bs + K 2+ ~S + 02

Q
The forward transfer function of the A-1 converter has a third order lowpass characteristic

given by [25]:

K 1K 2K 3z -3

Hx(z) = 1 2 3 [3.2]
1 + a 1z- + act2 + a 3

where the Ki and ai terms are set in the design of the modulator. Discrete-time (z-domain)

representation is used to model the transfer characteristic of the modulator due to its

switched-capacitor circuit implementation. The three poles of the modulator are located at

approximately 45 kHz.

Figure 3.2 shows the gain/phase plot of a loop comprised of just the mechanical

system and third order A-1 modulator 22 . Under the assumption that the C-V sensor pro-

vides negligible phase shift, figure 3.2 can be used to approximate the uncompensated

22. In this example, the mechanical resonant frequency is placed at 2kHz.
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Figure 3.2 Gain/phase plot of mechanical system and A-E modulator

loop dynamics of the accelerometer. Because of the highly underdamped nature of the

sensor (Q=50,000), the mechanical system alone provides nearly 180" of negative phase

shift above its resonant frequency. With no compensation added to the loop, the system

crossover frequency must be placed below 2kHz to achieve positive phase margin and

thus ensure closed loop stability23.

As it turns out, placing crossover below the mechanical resonant frequency is

undesirable for several reasons. First, because the mechanical resonant frequency has a

loose tolerance, 20%, placement of the loop crossover anywhere in the vicinity of reso-

nance will not guarantee a robust system. Secondly, if the system is marginally stable,

"ringing" (damped oscillations) will be present near the crossover frequency of the accel-

erometer. Because this "ringing" is located at a frequency just above baseband, damped

23. Note the system shown in figure 3.2 is unstable. The 8kHz crossover is used here purely as an example. The final
system dynamics are detailed in section 3.2.5.
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oscillations may be seen at the post-filtered output of the accelerometer unless an

extremely sharp "brick wall" decimation filter is used. Lastly, if the bandwidth of the

closed loop system is near the decimation bandwidth, a large degree of rolloff will be seen

in the baseband signal. Thus, for the aforementioned reasons, it is desirable to place the

crossover frequency of the system well above baseband. With crossover placed at or

above the resonant frequency of the mechanical system, compensation is necessary to

achieve closed loop stability.
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Figure 3.3 Gain/phase of lead compensated system

Figure 3.3 shows the gain-phase plot of the previous loop but with "lead" (zero-

pole) compensation added. By placing a zero below crossover and a pole above, positive

phase is added to the loop. The uncompensated phase is repeated here to illustrate the

added positive phase contributed by the lead network. With the lead compensation as

shown, a crossover frequency located between 3kHz and 17kHz results in a stable system
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and ensures that the accelerometer's post-decimated output will be free of damped oscilla-

tions due to the system's natural response.
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Figure 3.4 Gain/phase of lead-lag compensated loop

Note that in figure 3.3 the low frequency loop gain flattens out below the mechani-

cal resonant frequency. With such a small gain in the low frequency range, the closed loop

transfer function of the accelerometer is sensitize to small variations in loop gain. Figure

3.4 shows the gain-phase plot of the system used for figure 3.3 with "lag" (pole-zero)

compensation added. To maximize loop gain, the pole from the lag network is placed at

DC. The zero from the lead compensation is placed below the system crossover frequency

to partially cancel the negative phase shift from the DC pole at crossover. Note the

increase in low frequency gain which results from the added lag compensation. Along

with desensitizing the closed loop gain of the accelerometer to fluctuations in loop gain,

the lag compensation has the added benefit of reducing the input referred noise from the

A-I modulator.
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As further example of the added benefits of lead-lag compensation, see figures 3.5

and 3.6. Figure 3.5 shows proof mass deflection of an uncompensated accelerometer in

response to a 1.0g step acceleration input. To maintain stability, loop crossover is placed

just under 2kHz. In contrast, figure 3.6 shows the proof mass deflection of a lead-lag com-

pensated accelerometer in response to the same 1.0g step input. The uncompensated sys-

tem exhibits marginal stability illustrated by the extended oscillations in the step response.

Also note the relatively large steady state deflection of the proof mass. The compensated

system of figure 3.6 exhibits no damped oscillations and settles to a much smaller steady

state deflection.

3.2.2 Lead-Lag Compensation

While the need for compensation was explained by applying basic closed loop the-

ory to the transfer functions of only the mechanical system and A-L modulator, the effec-

tive gain and dynamics of all system elements are necessary to accurately predict the

closed loop dynamics of the sensor. To model the system as having a forward gain and

feedback as shown in figure 3.1, transfer functions must be established for the C-V sensor,

lead-lag network, and force feedback. This section examines the lead-lag compensation

and its associated transfer function. Linearized models are derived for the C-V sensor and

force feedback mechanism in the following two sections. The A-I modulator is covered

in section 3.4.

The lead-lag compensation network was designed first as a continuous time filter,

then converted to a discrete-time filter (z-domain) using the bilinear transform. The one-

to-one mapping of the bilinear transform between the continuous-time domain and dis-

crete-time domain guarantees stability mapping [26].

The lag network which is used to provide increased gain at low frequencies, places

a pole at DC and a zero at 1.5kHz (figure 3.7)24. The DC pole placement of the filter pro-

vides infinite DC gain to the loop. The zero placed at 1.5kHz is used to partially cancel

24. The pole-zero plots in figure 3.7 illustrate the placements of the poles and zeros for the continuous time filter from
which the discrete-time lead-lag network was derived.
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Figure 3.7 Pole-zero plots for the lead and lag compensation

the negative phase shift from the DC pole. The magnitude and phase plots for the lag filter

are shown in figure 3.825. Note the residual negative phase shift from the lag compensa-

tion extends more than a decade above the zero placement.

The lead network, used to provide positive phase at crossover, is composed of a

zero placed at 2.4kHz and a pole placed at 37.3kHz (figure 3.7). The low frequency zero

contributes positive phase shift to the loop at crossover. The pole is necessary to rolloff

the magnitude of the filter, enabling a realizable circuit implementation. The zero-pole

placement of the lead compensation is set such that the maximum positive phase shift of

the filter is located at 10kHz. A lower frequency placement of this maximum positive

phase shift was prevented by the necessary capacitor ratios in the circuit implementation

of the lead lag compensation network. The magnitude and phase plots for the lead filter

are shown in figure 3.926.

The continuous-time transfer function from which the discrete-time lead-lag com-

pensation was derived is given by:

HLL(s) = f(s + 1.5k(27r)) (s + 2.4k(2z))
s (s + 37.3k(2r))

where f is a scaler multiplier. Using the bilinear transform, the discrete time filter was

generated:

25. The magnitude plot is accurate to within a scaler multiplier of the final lag compensation. The importance of the
magnitude plot here is to demonstrate the infinite gain at DC and rolloff characteristic of the filter.

26. Again, the magnitude is accurate to within a scaler multiplier.

-1.5kHz



U

U

-50

-100

102 103  104  10
Frequency (Hz)

Figure 3.8 Magnitude and phase for the lag compensation

7.039 - 13.7z - 1 + 6.68 -2

HLL(z) = - [3.4]
1 - 1.614z-'+ 0.614z -2

The value of the scaler multiplier was chosen to minimize capacitance ratios in the

switched-capacitor circuit implementation of the filter 7.

3.2.3 The Linearized C-V Model

The input to the C-V sensor "block" of figure 3.1 is the deflection of the proof

mass, x, and the output is a voltage. In actuality, the C-V sensor measures the sense capac-

itance, Cx, and the reference capacitance, CR, and outputs a voltage proportional to the dif-

ference between the two capacitors, AC2 8 . To accurately model the transfer function of

27. The switched-capacitor circuit realization of the discrete time filter requires large capacitor ratios to implement the
desired pole and zero locations. The gain of the compensation was selected such that the capacitance ratios were
minimized once the pole and zero locations had been set.

28. See section 4.3 for the circuit implementation of the C-V sensor.
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Figure 3.9 Magnitude and phase for lead compensation

the C-V sensor in the form of figure 3.1, a relation must be established between the change

in capacitance, AC, and deflection of the proof mass, x.

The sensor capacitance, Cx, and reference capacitance, CR, are given by:

CX= E
d+x CR = dd [3.5]

where d is the nominal gap spacing between the proof mass and fixed electrodes and A is

the area of the fixed electrodes. Expanding Cx:

( + (5?-1
Combining equations 3.5 and 3.6:

1-(s + Cs;- (sY

[3.6]

v

Cx = (1 -

AC = Cx - CR = - [3.7]



For small proof mass deflections (x=0), equation 3.7 can be approximated by:

AC = - CR [3.8]

The effective output of the C-V sensor can now be given by:

Vcvo,, = P3AC = -P( x [3.9]

where the gain factor p (Volts/Farad) is determined in the circuit implementation of the

capacitance sensor.

3.2.4 The Linear Force-Feedback Model

The last component to be modelled from the closed loop diagram of figure 3.1 is

the force feedback element. The input to the feedback "block" is the output bit stream

from the A-I modulator, the output is the restoring force applied to the proof mass. The

electrostatic restoring force applied to the proof mass was previously established as:

FF = t1(o) VocDVo,,, [3.10]

where VDC and VDIFF are the DC bias and differential voltages, respectively, placed on the

feedback electrodes, A is the area of the fixed electrodes, d is the nominal gap spacing,

and 17(0)1) is the duty cycle over which the feedback force is applied(-0.5).

0,1 -Vref .FB
Bit Stream / / / Feedback

from DAC G F Force
A-I Modulator

Figure 3.10 Digital-to-analog, voltage-to-force conversion

At first glance, it might seem that the transfer characteristic would be accurately

modelled by taking the change in applied force for the change in differential voltage,

dFFBdVDIFF from equation 3.10. This, however, would be incorrect as it does not take into

account the analog voltage represented by each bit from the modulator. To simplify mod-



elling the transfer characteristic of the feedback mechanism, the digital-to-analog conver-

sion can be separated from the voltage-to-force conversion as shown in figure 3.10.

A "1" at the output of the modulator represents a +Vref input to the feedback ele-

ment which results in an output force +FFB fed back to the proof mass. Similarly, if a "0"

is output from the modulator, -Vref is encoded and -FFB is the output from the feedback

block. Solving for the effective gain of the block:

2E,,
r7(0 1) d 2 VDC VDIFF

Gd = [3.11]
Vref

where ±Vref are the feedback levels from the DAC within the A-1 modulator.

3.2.5 Closing the Loop

The linearized transfer functions for the C-V sensor and feedback force can now

be combined with the forward transfer functions of the A-1 modulator, lead-lag network,

and mechanical system to predict the closed loop dynamics of the accelerometer. In order

for all the loop transfer characteristics to be modelled in the discrete time domain, the

response of the second order mechanical system is converted from the continuous-time

format of equation 3.1 to a discrete-time (z-domain) representation using the bilinear

transform 29 . Figure 3.11 updates the accelerometer's system diagram showing the trans-

fer characteristic for each system block 30. Figure 3.12 shows the corresponding magni-

tude and phase response of the system.

Several factors were considered in the selection of the crossover frequency of the

accelerometer. As previously discussed, the crossover frequency must be located well

above the 1.0kHz baseband to avoid rolloff in baseband or "ringing" due to the system's

natural response. Probably the most important criterion used for determining the system

crossover frequency is loop stability. The crossover frequency must be placed at a high

enough frequency to avoid large residual phase shift from the lag network without going

29. As with the leadlag network, the bilinear transform is used for its guaranteed stability mapping between the contin-
uous and discrete time domains.

30. The mechanical system modelled here uses the 750tmx750 m proof mass with a 3.2kHz resonance.
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Figure 3.12 Gain phase plot for complete system

to frequencies high enough to incur significant negative phase shift from the A-1 modula-

tor.

In addition to classical linear analysis, stability concerns also arise from circuit

noise in the accelerometer. Circuit noise, dominated by the C-V sensor, can be referred to

the output of the mechanical system as a positional noise, xn , as shown in figure 3.14.

Because this noise represents an error in the measured position of the proof mass, the

noise causes an incorrect restoring force to be applied to the proof mass. As expected, the

effects of this noise are seen at the output of the accelerometer and can limit the resolution

of the sensor 31 . In addition, the circuit noise has the potential to cause the loop to go

unstable. This occurs when the circuit noise causes the accelerometer to operate outside

its linear region of operation. Once outside the linear region, the prior stability analysis no

longer holds and the system can become unstable.

31. A full system noise analysis is carried out in section 4.7



The noise tolerance of the loop is inversely related to the bandwidth of the closed

loop system. As the system bandwidth is decreased, the response of the loop becomes

slower which prevents the system from having time to react to higher frequency noise32 .

The lower system crossover, in effect, increases the stability of the accelerometer by filter-

ing more noise from the closed loop system 33. Thus, there is additional motivation for a

lower system crossover placement. Table 3.1 shows the relationship between the cross-

over placement in the accelerometer and noise levels which cause the loop to go unstable.

Table 3.1 Noise Tolerance vs. Bandwidth

All data points in table 3.1 were generated with a Og input acceleration. The accel-

erometer becomes less stable as its input nears the limits of the sensor's dynamic range.

Because of this, a smaller amount of circuit noise will cause instability as the input magni-

tude increases. Thus, circuit noise which does not cause instability still has the undesired

effect of reducing the stable input range to the accelerometer.

The simulated output spectrum of the full system is shown in figure 3.13. The out-

put response shown is for a 1.0g sinusoidal input at 750Hz. Note the notch in the output

spectrum at 3.2kHz. This is due to the resonator formed by the highly underdamped

mechanical system.

32. This is the case for white noise only. The effects of low frequency noise such as l/f noise would not be significantly
reduced by lowering the bandwidth of the system. Circuit techniques are used, however, which remove the effects
of l/f noise. See sections 4.2 and 4.3.

33. Note, though the stability of the loop is increased by lowering the system bandwidth, the resolution of the acceler-
ometer is not affected. The baseband (decimation) frequency, still set at lkHz, would have to be lowered to reduce
the total noise present at the output and thus, increase the resolution of the sensor.

System Crossover Noise level, xn, which
Frequency causes instability

4.5kHz 11.6A

13.75kHz 6.6A

28.7kHz 0.67A

57.5kHz 0.3A
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Figure 3.13 Output spectrum for 1.0g sinusoid input @ 750Hz

While the prior linear analysis is an adequate tool for stabilizing the accelerometer

and setting the loop bandwidth of the system, two assumptions are made which would

lead to a nonoptimal system design if not otherwise taken into account. The first assump-

tion is that the capacitive position sense is noninvasive - that the circuit implementation of

the C-V sensor in no way alters the dynamics of the mechanical system. The capacitive

sense circuit does in fact affect the dynamics of the mechanical system and can actually be

used to greatly reduce the resolution limiting effects of circuit noise. This is examined in

the following section. The second assumption is that the system always behaves as a lin-

ear system. While this is true under a certain set of limited conditions, the accelerometer

design must take into account the fact that the system must sometimes operate outside the

incremental region over which the linear analysis is valid. Otherwise, the system may

never work at all. A nonlinear analysis of the system is detailed in section 3.4.



3.3 Incremental Dynamics and Resonance Tuning

In section 1.2, a relation was derived between the applied feedback force, the

deflection of the proof mass, and the voltages applied to the fixed electrodes above and

below the proof mass. This force was approximated as constant and the positional-depen-

dance of the applied force was considered a likely limitation to the overall resolution of

the accelerometer. As it turns out, the positional dependance of the electrostatic force

which was initially thought to limit the accelerometer's resolution can actually be used to

markedly increase the resolution of the sensor. This section examines the interaction

between the voltages applied to the fixed electrodes and the dynamics of the mechanical

sensor.

3.3.1 The Electric Spring

As was previously established, circuit noise in the accelerometer could be mod-

xn
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Figure 3.14 Input referred noise

elled as an error in the measured deflection of the proof mass. Figure 3.14 models this

error as a positional noise, xn. From a circuit design standpoint, noise can be minimized

through careful design and layout34. From the system design standpoint, the effective

gain of the C-V sensor should be maximized to reduce the input-referred noise from the

lead-lag circuitry. Once these steps have been taken, all that remains between the posi-

34. Section 4.7 details the circuit noise calculations.



tional noise, xn, and the input referred acceleration noise, an, is the effective gain of the

mechanical system. From figure 3.14, the input referred circuit noise is given by:

Xn
a,= [3.12]

MX(s)
F(s)

Recall the size of the proof mass, M, is constrained to limit device area and prevent warp-

ing in the proof mass. Thus, the last available mechanism with which to reduce the input

referred circuit noise is the effective gain of the mechanical system, X(s)/F(s). From equa-

tion 2.2, the gain of the mechanical system can be approximated by:

X(s) 1
(s) _ 1 [3.13]

F(s) K

at low frequencies. Combining equations 3.12 and 3.13, the input referred circuit noise is

approximated by 35:

n Mn -=o2o [3.14]

where co is the mechanical resonant frequency. Thus to reduce the input referred circuit

noise, the resonant frequency of the mechanical system should be lowered. Because the

mechanical resonance frequency is limited to being greater than 2.0kHz due to the

mechanical and electrical limitations of the sensor, an apparent lower bound was initially

thought to exist for the input referred circuit noise. This was thought to limit the overall

resolution of the accelerometer.

Returning to the feedback force equation which was derived in section 1.2, the

electrostatic restoring force is given by:

2eoA V,2C + VD2IFF x)2
FFB = 1  VDCVDIFF 1 -- + 3 ... [3.15]

d2 VDCVDIFF d d

35. This approximation begins to break down when the bandwidth of the mechanical system falls below that of the dec-
imation (baseband) frequencies. However, until the mechanical resonance approaches DC, the total input referred
circuit noise is still reduced by lowering the mechanical bandwidth.



Originally, this force was approximated by its constant term and the position dependant

terms were thought to represent an error in the applied feedback force. Upon closer

inspection, the positionally-dependant feedback terms can be used as a means of tuning

the mechanical resonance structure. Equation 3.16 gives the first three position-dependant

terms of equation 3.15.

2 2 2 V 2 VxF(x) = -x( V +V),, 3( V) VDC VDIFF + 2(Vc+ V2FF) ...] [3.16]

Note that each term is an increasing power of (x/d). For small deflections, only the first

order term is significant. The positional dependance of the feedback force can thus be

approximated by:

F(x) = -q(•)2S (V2c + V2IFF)x = -KELI [3.17]

Inspection of equation 3.17 reveals that the positional dependance of the electro-

static force can be accurately modelled as a negative spring force. A term similar to KEL1

results from voltages applied to the fixed electrodes during the capacitive position sense36:

KEL2 = [31402 Vt2une + I( 3)V2 + () V2 ] [3.18

where Vtune, V1, and V2 are voltages applied during the C-V sense and 17(02), 17(0 3), and

17(a4) are the duty ratios of the three voltages, respectively. Equations 3.17 and 3.18 are

combined to obtain the total effective electric spring constant:

KEL - d[1(P 1)2(V c+ V2IFF) + 1(' 2)Vt2une + r(0) V2 + r7( 4)V22]  [3.19]

Summing the forces acting on the proof mass now including the positional dependence of

the feedback force, the net force acting on the proof mass is given by:

FNET = Facc - FFB = MX + Bt + (Ksp- KEL)x [3.20]

36. The full analysis of the electric spring constant is carried out in section 4.3.



The mechanical system is now modelled as having two springs: a mechanical spring, Ksp,

and an electrical spring, -KEL. Figure 3.15 models the mechanical system with the addi-

tional spring force.

Figure 3.15 The ElectroMechanical System

The adjusted transfer function of the mechanical system is given by:

X(s) 1X(s) 1 [3.21]
F(s) Ms 2 + Bs + (Ksp- KEL)

By carefully controlling the voltages placed on the fixed electrodes during both the C-V

sense and feedback cycles, the electric spring constant, KEL can be used to reduce or cancel

the mechanical spring constant, Ksp. By altering the effective spring force, the pole loca-

tions of the mechanical system can be adjusted. Because the adjusted response of the

mechanical system is only valid for a small range of proof mass deflections, it is referred

to as the incremental dynamics of the structure.

As KEL is increased, the net spring force acting on the proof mass is lowered. This,

in effect, reduces the resonant frequency of the mechanical system. The effect of lowering

the effective spring constant can be seen in figure 3.16. As the effective spring constant of

the mechanical system is reduced, the two poles of the mechanical system are brought in

towards the real axis. As KEL is increased further, the two poles meet on the negative real

axis then split, one heading in the direction of the negative real axis and the other towards

the right half plane. When the electric spring constant, KEL, exactly cancels the mechani-



L

jw

Figure 3.16 Pole-zero plot for the electromechanical system

cal spring constant, Ksp, one pole of the mechanical system is placed at DC and the other

slightly into the left half plane on the negative real axis. As a practical method of adjust-

ing the mechanical system poles, the C-V sensor is designed such that KEL can be varied

by changing the voltages which are applied to the fixed electrodes placed above and below

the proof mass 37. This "resonance tuning" method is used to locate the poles of the

mechanical system such that the input referred circuit noise is minimized.

3.3.2 The Updated System

Figure 3.17 shows the output spectrum of the accelerometer with the positional

dependance of the electrostatic forces acting on the proof mass fully modelled. The input

to the accelerometer is a 1.0g sinusoid at 750Hz, identical to that of figure 3.13. The

"tuned" mechanical resonance is placed at approximately 200Hz to minimize input

referred circuit noise38. Note the "notch" in the output spectrum has been relocated from

3.23kHz to a near DC placement.

Exact adjustment of the low frequency mechanical poles is not always possible. If

the electric spring constant, KEL, is set at a value slightly too large, one pole of the mechan-

37. See section 4.3.
38. A DC pole placement of one of the poles of the mechanical system would minimize the input referred circuit noise

if the mechanical system were critically damped or overdamped. However, because of the sharp "peaking" in the
mechanical system's response due to its highly underdamped nature, the input referred noise is minimized using a
pole placement slightly above DC.
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Figure 3.17 Output spectrum with resonance tuning

ical system will slide into the right half plane (RHP). Note that this results in an open loop

RHP pole which does not indicate instability as would be the case for a closed loop RHP

pole. The phase shift of the mechanical system with and without a pole placed in the right

half plane is shown in figure 3.18. If, as designed, both poles of the mechanical system are

located in the left half plane, the phase shift from the mechanical system begins at 00 and

falls rapidly to -180' just above the mechanical resonant frequency. If, however, one of

the poles of the mechanical system is located in the right half plane, the phase of the

mechanical system begins at -180 ° at DC, rises slightly 39, then returns to -180o. In both

cases, the phase of the mechanical system is very close to -180 ° at 4.5kHz, the crossover

frequency of the closed loop system. Thus, as 1800 of negative phase shift is expected

from the mechanical system and was taken into account in the system design, the stability

of the closed loop system is not in question if one of the mechanical poles drifts slightly

into the right half plane.

39. This slight rise in phase is not apparent in figure 3.18 due to the scale of the figure.
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Figure 3.18 Phase shift in the mechanical filter

3.4 Nonlinear Behavior

In section 3.2, the accelerometer was modelled as a linear system in order to pre-

dict the dynamics and the linear stability constraints of the loop. While linear analysis is

well suited for modelling the dynamics of the accelerometer, much of the system's behav-

ior cannot be predicted using the linear model. As it turns out, the accelerometer is accu-

rately modelled as a 5th order electromechanical A-I modulator formed from two

mechanical integrators and three electrical integrators. Using this fifth order model for

the accelerometer, the nonlinear behavior can be predicted using existing A-I theory and

accounted for in the final design. The analysis of the third order A-I modulator has been

saved for this section as an introduction to the fifth order system model.

3.4.1 The Delta-Sigma Modulator

Understanding the function of the A-I modulator is important not only in the

understanding of a single element in the accelerometer and its associated transfer function,

(2 LHP poles)

(1 RIHP pole 1:LHP lole):

r-20"1"



but also in understanding the overall function of the closed loop system. Much of the

design methodology used to design the A-1 modulator and predict its behavior can be

applied on a larger scale to predict the function of the complete system as well as its limi-

tations. This section describes the design and function of the A-1 modulator and the deri-

vation of its forward and quantization noise transfer functions. The A-E theory developed

to explain the third order modulator is then used to predict nonlinear behaviors which can-

not be modelled using the linear analysis of section 3.2.

Theory

Analog Digital
Anti-alias filter Decimation filter

Analog Input Output

Figure 3.19 Analog-to-digital conversion using a A-1 modulator

As previously discussed, a A-X modulator converts an analog input into a high fre-

quency bit stream. Along with encoding the input to the modulator, the output bit stream

contains errors resulting from circuit noise and quantization noise resulting from the ana-

log-to-digital conversion process. The inherent operation of the modulator places most of

the quantization error at higher frequencies well above the signal frequencies of interest.

A "sharp" lowpass digital (decimation) filter, placed at the output of the modulator

removes most of the quantization noise as well as a large portion of the circuit noise by

blocking all frequency components of the output bit stream above baseband 40 . An analog

lowpass filter is placed at the input to the modulator to prevent aliasing of frequencies

40. 1/f noise is not greatly attenuated by the decimation filtering. A large portion of the 1/f noise is placed within the
baseband frequency range and is therefore "passed" by the decimation filter. Circuit techniques are used, however,
which remove most of the effects of l/f noise as well as offsets. See sections 4.1 and 4.2.



above half the sampling rate of the modulator, fs. The full conversion scheme is shown in

figure 3.19.

As discussed in section 1.2, the A-E modulator is well suited for implementing the

analog-to-digital conversion in the closed loop accelerometer. It is inherently very linear

due to its binary feedback [27] and its single bit output greatly simplifies the force feed-

back implementation. To facilitate explanation of the third-order modulator used in the

accelerometer, the operation of first order A-1 modulator will initially be discussed. The

first-order A-I modulator is shown below in figure 3.20.

Y(z)

Figure 3.20 First order A-I modulator

z- 1

The discrete-time function, 1 - models the discrete-time integrator shown in fig 3.21.
1 - z - '

Figure 3.21 Discrete-time integrator

The output of the summing node of the modulator goes in the input of the discrete-

time integrator. The comparator, placed at the output of the integrator, performs the ana-

log-to-digital conversion of the modulator outputting a "1" for positive integrator values

and "0" for negative values. The DAC, placed in the feedback path of the modulator, out-

puts + Vrf for a "1" input and -Vref for a "0" input.

The input range for a first order modulator extends from -Vrefto +Vref. For an input

voltage outside this range, the DAC reference voltage, Vref, will be too small to offset the

input voltage. When this occurs, the output of the modulator is no longer valid. Once the



input voltage returns to the valid input range, the first order modulator gracefully returns

to normal operation 4 1

During normal operation, the output voltage of the DAC acts to offset the input

voltage to the modulator. For DC and low frequency inputs, the average output voltage

from the DAC is equal to the input voltage42. As an example, if the input voltage to the

modulator were OV, the DAC would output + Vref half the time and -Vref half the time. This

corresponds to an output bit stream of half Os and half 1s from the comparator. Thus, the

output bit stream of the modulator is an accurate digital encoding for low frequency

inputs. Unlike low frequency inputs, high frequency inputs are greatly attenuated at the

output of the modulator. To help see why this occurs, examine the basic first-order contin-

uous time system shown in figure 3.22.

N(s)

X(s) Y(s)

Figure 3.22 First-order continuous time system

Due to the integrator in the forward path, the continuous-time system functions as a low

pass filter. The forward transfer function is given as:

1 1
H(s) - - [3.22]

s+H s+ oco

At low frequencies, the large gain of the integrator provides enough loop gain to keep the

closed loop transfer function approximately constant. At higher frequencies, when the

gain of the integrator has declined significantly, the closed loop system reaches its only

pole, co,, and the closed loop transfer function begins first order rolloff. Input signals at

41. This is not the case for third order and higher order modulators as will be discussed later.

42. This is analogous to the use of circuit averaging to model the dynamics of a DC-DC converter [28]. The only dif-
ference between the two analyses is that DC-DC converters use pulse width modulation as compared to the pulse
density modulation used in A-1 modulator.



frequencies well above wco are effectively removed from the output due to the decline in

gain of the integrator.

Qualitatively this is exactly what happens with the first order A-I modulator. The

discrete-time integrator used in the first order modulator, like its continuous-time counter-

part, provides a large gain at low frequencies. Using the previous argument, low fre-

quency signals are passed through the modulator with relatively little attenuation due to

the large gain of the discrete time integrator. Similarly, high frequency inputs to the mod-

ulator are effectively filtered by the modulator as the gain of the integrator declines signif-

icantly.

Q(z)
'Ylz)

Figure 3.23 Linearized model for the A-I modulator

Taking this a step further, the modulator's comparator can be modelled as having

an effective gain, Gcomp, as shown in figure 3.23. This effective gain can be obtained

numerically [29], however, simulations are more frequently used43. The linearized model

is used to calculate the forward transfer function of the modulator, Hx(z), given by:

Hx(z) = KiGcompZ 1  [3.23]
1 + (AiKGcomp - 1)z - 1

As expected, the forward transfer function of the modulator, Hx(z), has a lowpass charac-

teristic.

In addition to the input signal components seen at the output of the modulator, the

output is also comprised of an error signal resulting from the quantization process. This

43. The effective gain of the comparator changes for different inputs to the modulator and likewise, the dynamics of the
modulator will change as well. As the input to the modulator increases, the effective gain of the comparator
decreases eventually leading to instability when the peak input value is reached. The linearized model is used here
to demonstrate the modulator's closed loop characteristics. When using the linearized model as a design tool, care
should be taken to simulate function of the modulator over the full input range.



quantization noise results from the discrepancies between the DAC feedback voltages,

±Vref, and the input to the modulator. Returning to the previous example which used a OV

input to the modulator, the DAC oscillates back and forth between + Vref and -Vref to gener-

ate the low frequency feedback value of OV. While the low frequency components from

the DAC form a very close approximation to the OV input, large discrepancies exist

between the instantaneous feedback values from the DAC and the input to the modulator.

Note in this example, the DAC output is never closer than a voltage Vref to the input volt-

age. Thus, the instantaneous quantization error is either +Vref or -Vref. Because the low

frequency gain of the discrete-time integrator ensures close matching between the output

of the DAC and the input voltage at low frequencies, the quantization noise must be

placed mostly at higher frequencies where the gain of the discrete-time integrator has

declined significantly.

To better understand the frequency components of the quantization noise, return to

the continuous time system of figure 3.22. The noise signal, N(s), injected at the output of

the integrator has the transfer function given by:

HN(s) [3.24]
s+H

The highpass characteristic of the noise transfer function is as a result of the large low fre-

quency gain of the integrator in the forward path of the system. The same integrator gain

which acts to "pass" low frequency inputs to the continuous time system acts to reject low

frequency noise inserted at the output of the filter. The output of the continuous time sys-

tem is thus desensitized to low frequency noise inserted at the output of the integrator.

In the same fashion that the continuous time system rejects low frequency noise

injected at its output, the discrete-time integrator of the A-1 modulator furnishes similar

low frequency rejection of the quantization noise inserted at the output of the modulator.

Returning to the linearized model of figure 3.23, a relation can be established between the

injected quantization noise, Q(z), and its effect at the output of the modulator:

1 -z-
HQ(z) = -  

- 1  [3.25]
1 + (AiKiGcomp- 1)z



As expected, the transfer function has a high pass characteristic.

0

Frequency Hz

Figure 3.24 Output spectrum of first order modulator

Because the quantization noise is placed mostly at frequencies well above base-

band, the decimation filter at the output of the modulator removes all but a small portion

of the quantization noise from the digital output. The decimation filter is implemented

using a "brick wall" filter which rolls off sharply above baseband in order to minimize

noise at the output44 . Figure 3.24 shows a sample output spectrum from the first order

modulator with a low frequency sinusoidal input45. The input signal is seen as the "spike"

at 1kHz. Quantization noise and tones form the remaining signal components which dom-

inate the spectrum at higher frequencies. A sample decimation characteristic is also

shown. The sharp rolloff of the decimation filter at 2kHz rejects all but a small fraction of

the quantization noise of the modulator.

44. Typically the decimation filter lowers the data rate from the sampling frequency of the modulator to the Nyquist
frequency for the baseband while simultaneously increasing the data stream from 1-bit to the n-bit resolution of the
modulator.

45. Here, the modulator is clocked at 1MHz.
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The quantization noise present in baseband sets a lower bound on the attainable

resolution of the modulator. To determine the quantization noise floor, the total quantiza-

tion noise power in the baseband, PB, is calculated [25]:

PB = IH,()o(f) 12df [3.26]

where fB is the cutoff filter of the decimation filter and Q(f) is quantization noise. The

quantization noise is modelled as an additive white noise source with a magnitude [25]:

IQ(f)I = -s [3.27]
~6f4

where fs is the sampling frequency of the modulator and ar is the quantizer step size4 6 .

Once the total quantization noise power in baseband has been obtained, the quantization

noise floor is calculated by solving for the rms equivalent noise:

rB[ 11/2- I IHQ(f)121Q(f)12df [3.28]

q nI 
I

I

aecimationcharacteristic

noise in "white"
baseband noise

fB

Figure 3.25 Reduction of noise using oversampling

As stated before, quantization noise is not the only noise reduced by the decima-

tion filter. Circuit noise shows up at the output as well47. Like quantization noise, a large

portion of the circuit noise is removed by the decimation filter. Figure 3.25 illustrates how

46. In the prior example,fs was 1MHz and o-was 2 Vref
47. Circuit noise includes thermal noise from the amplifiers and switches as well as deterministic noise which includes

feedthrough from the clock, power supply, and substrate.

I



oversampling reduces the effects of circuit noise. "White" noise such as thermal noise

from the amplifiers or kT/C noise is spread across the frequency range from DC to half the

sampling frequency of the modulator (ff2). When the decimation filter rejects all frequen-

cies outside of baseband, only a small fraction of the circuit noise remains in the post-fil-

tered output. For "white" noise, the total noise power is reduced by half the oversampling

ratio [27].

It might seem there is no reason for any modulator other than a first order modula-

tor. One can simply increase the oversampling ratio of the modulator until the total noise

power in baseband is reduced enough to attain the desired resolution. However, this

approach has practical limitations. For any given technology, there will eventually be a

speed limitation such that the modulator's sampling frequency cannot be further

increased. In addition, a more subtle problem which occurs in first order modulators is the

presence of "tones" in the output spectrum. Tones are periodic bit sequences which result

from limit cycles in response to certain inputs. If the period of one of these bit sequences

is fairly long, a tone can show up at frequencies low enough to be passed by the decima-

tion filter and be erroneously interpreted as part of the input signal to the modulator.

As an example, if OV were input into the first order modulator, the output would

oscillate back and forth between "0" and "1" producing a tone with a period of two cycles.

In this case, the tone would show up at half the sampling frequency and be well above

baseband. If, on the other hand, the input were +(1/119) Vrf (for example), a limit cycle

would result with a period of 119 bits (60 "ls", 59 "Os"). The resulting oscillations would

show up at 1/119th of the sampling frequency and be passed through the decimation fil-

ter48.

A second integrator in the forward path of the modulator reduces both the quanti-

zation noise present in baseband and the likelihood of tones in the output spectrum. By

increasing the low frequency loop gain of the modulator, the second integrator reduces the

quantization noise transfer function at low frequencies. Accordingly, the quantization

48. The process of "dithering" is sometimes used to remove undesired tones [30]. By adding a small pseudo-random
noise to the modulator, the likelyhood of tones can be reduced.



noise present in baseband is reduced from that of the first order modulator operating at the

same sampling rate. Thus, a small increase in circuit complexity is traded for reduced

quantization noise and a reduced probability of tones in the output spectrum. Tones, how-

ever, can still be a significant problem in second order modulators.

ADC

Y(z)

Figure 3.26 Second order modulator

A second order A-I modulator is shown in figure 3.26. This modulator is said to

have a "distributed feedback" topology. The advantage of this topology over most other

topologies is the singular feedback to the "critical node". The critical node denotes to the

first summing node which is connected to the input. Any noise present at this node is

referred directly to the input. The input referred noise from any other node in the modula-

tor is desensitized by the gain of at least one integrator. Other topologies [31,32] may

have several feedback paths to the critical node, all of which are possible noise sources.

Like the first order modulator, the output of the second order modulator is valid for

all inputs between + Vref and -Vrf. Likewise, if the input range is violated, the output from

the modulator is temporarily invalid until the input voltage returns to within the valid

input range.

The second order modulator can be linearized by approximating an effective gain

for the comparator in the same fashion as the single order modulator. The quantization

and forward transfer characteristics derived from the linear model are given by:

KiK 2Gcomp -2
Hx (z) =  KK2GcmpZ-2 [3.29]

1 + (A 2K2Gcomp- 2)z-1 + (1 + K2Gcomp(AiKI - A2))Z - 2

(1 -z - ) 2
HQ(z) = [3.30]

1 + (A2K2Gcomp- 2)z-1+ (1 + K2Gcomp(AK, - A2))Z - 2



where the integrator coefficients, Ki, and feedback coefficients, Ai, are determined by cir-

cuit parameters. A sample second order output spectrum is shown in figure 3.27.

'0
*0
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Figure 3.27 Output Spectrum of the second order A-I modulator

Modulator Sampling rate, Oversampling Quantization
order fs Ratio (OSR) noise, nrms

First 1MHz 200 1.7mV

Second 1MHz 200 167ptV

Second 500kHz 100 9331V

Table 3.2 Quantization noise vs. modulator order

As a way of comparing the first and second order modulators, the baseband quanti-

zation noise can be calculated for each. As before, the sampling frequency for the modu-

lators is 1MHz and baseband signal, 5kHz. Let a, the difference in quantizer levels49 , be

10V. Using equations 3.26 - 3.28, the quantization noise in baseband, qn, was calculated

49. The following coefficient values were used for the baseband quantization noise calculation:
A1 = 0.0834, A2 = 0.350, K1 = 0.893, K2 = 0.300, Gcompl = 13.0, Gcomp2 = 10.8.

The effective comparator gains were determined through simulations.



to be 1.7mV for the first order modulator and only 167gV for the second order modulator.

If the sampling rate of the second order modulator is decreased to 500kHz, the quantiza-

tion noise of the modulator rises to 933gV, still below the quantization noise floor of its

first order counterpart. These results are summarized in table 3.2.

optional
S-- feedback
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Figure 3.28 Third order A-1 modulator

The third order A-1 modulator selected for use in the accelerometer is shown in

figure 3.28 [25]. The third order topology ensures low quantization noise and greatly

reduces the likelihood of tones in the output spectrum.

Q(z)
Y(z)

Figure 3.29 Linearized third order model

The linearized model for the third order modulator is shown in figure 3.29. Solving the

linearized model as before, the output of the modulator can be expressed as a combination

of response to the input, X(z), and the quantization noise injected at the output of the mod-

ulator, Q(z) [25].

Y(z) = Hx(z)X(z) + HQ(z)Q(z) [3.31]

where



Hx(z) = KIK 2K3Gcomp [3.32]
1 + a z- 1 + a 2

z -2 + a3 z - 3

HQ(z) = 1 - [3.33]
1 + a•z - 1 + a2z-2 + a 3z-3

a, = A 3KGcomp - 3 [3.34]

a 2 = (A 2K2 - 2A 3)K 3Gcomp + 3 [3.35]

a 3 = ((AIKI - A 2)K 2 + A3)K 3Gcomp - 1 [3.36]

The integrator coefficients, Ki, and feedback coefficients, Ai, are set by capacitor ratios in

the circuit implementation of the modulator.

The forward transfer function of the modulator, Hx(z), has a third order lowpass

characteristic and the quantization noise transfer function, HQ(z), a third order highpass

characteristic. The pole locations of Hx(z) and HQ(z) are determined by the feedback coef-

ficients of the modulator and are selected to optimize performance of the converter.

The three zeros of the noise transfer characteristic are all located at DC. An

optional feedback path around the second and third integrators (figure 3.28) can be used to

form a resonator in the forward path of the modulator. The optional resonator moves two

of the zeros in the noise transfer function away from DC to form a low frequency complex

conjugate zero pair. Figure 3.30 illustrates the effect of a complex zero pair placed at

5kHz. Note the notch in the output spectrum resulting from the low frequency resonator.

With careful placement of the zero pair, the quantization noise can be further reduced and

the rolloff requirements for the decimation filter can be relaxed.

In the final design of the modulator, it turned out to be impractical to implement

the low frequency zero pair due to circuit limitations. With a baseband of 1.0kHz and a

sampling rate of 500kHz, very large capacitance ratios would have been necessary

(>>200) to place the low frequency zero pair at or below 1.0kHz. A complex zero pair

placement at frequencies higher than 1.0kHz would result in more baseband quantization

noise than with all three zeros placed at DC. For this reason, the DC zero placement was

selected.
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Figure 3.30 Output spectrum with low frequency resonator

Unlike the first and second order A-X modulators, the output of the third order

modulator is not valid over the full -Vref to +Vref input range. Outside of a given input

range which usually ranges from 40% to 60% of the DAC output value, the third order

modulator goes unstable due to comparator overload. Once this occurs, the modulator

cannot return to stable operation on its own even after the input voltage returns to its valid

input range. For this reason, the integrators are reset after out of range input excursions

and at startup. Thus, the third order modulator trades increased design complexity and

reduced input range for lower quantization noise and increased immunity to tones in the

output spectrum.

Design of the Modulator

The first step in the design of the modulator is choosing its pole locations. Two

types of filters were considered for implementing the transfer function of the modulator, a

Butterworth filter and an elliptic (or Cauer) filter. A Butterworth filter is maximally flat in

both the passband and stopband. The tradeoff for this maximally flat transfer characteris-

tic is a relatively slow rolloff in the transition band as compared to the elliptical filter. The



elliptical filter sacrifices monotonicity in the passband and stopband to produce a very

sharp rolloff in the transition band.

In designing a A-1 modulator for an application such as the open loop data conver-

sion system diagrammed in figure 3.19, issues such as passband ripple could play a signif-

icant role in choosing the pole locations, and thus filter type for the modulator. If a

maximally flat transfer characteristic were required, the Butterworth filter would be used

for the pole placements of the filter. However, because here the modulator is used within a

closed loop system, the design issues are somewhat different. The modulator should not

be designed as a separate entity with the single function of digital-to-analog conversion,

but rather as a minor loop in a larger closed loop system.

Because the poles of the modulator are placed well above the crossover frequency

of the accelerometer50 , any passband ripple from the modulator will be placed predomi-

nantly at frequencies well above the bandwidth of the closed loop system. Even if the

modulator's poles were located near the system crossover frequency, the closed loop

effects of a small variance in gain would be negligible due to the large gain of the lag com-

pensation. Thus, passband ripple is not a valid design criterion for choosing between the

elliptical or Butterworth filter designs.

In an attempt to minimize the negative phase shift of the A-1 modulator at system

crossover, an elliptic filter was chosen to place the poles of the modulator. By placing the

poles close to the unit circle, the elliptic filter has a very slow rolloff in phase until the pole

frequencies are reached. At this point, the phase drops off sharply. Because the acceler-

ometer's crossover is well below the pole frequencies of the A-1 modulator, the negative

phase shift associated with the elliptic modulator is less than that of the Butterworth

implementation in the region of system crossover.

While the robustness of the close loop accelerometer may be increased using the

elliptic pole placement for the modulator, the stability of the modulator itself is reduced.

A modulator designed with Butterworth pole placements is much less sensitive to coeffi-

50. The poles of the modulator are placed near 45kHz. Recall the crossover frequency of the accelerometer is placed at
4.5kHz.



cient mismatches than a modulator designed with elliptic pole placements [25]. With a

relatively close placement of its poles to the unit circle, a modulator designed with elliptic

pole placements requires a much smaller coefficient error to cause instability. However,

since the coefficients of the modulator are set by capacitor ratios with better than 8-bit

matching, the stability of the modulator should not be an issue51.

Q(z)

Y(z)

Figure 3.31 Simplified linear third order model

In order to facilitate design of the modulator, the system diagram of figure 3.29 is

simplified such that all integrator coefficients, Ki, and the effective comparator gain,

Gcomp, are set to unity. The simplified system diagram is shown in figure 3.31 and is gov-

erned by the set of equations:

[3.37]

[3.38]

1 + a z - 1 + a2z - 2 + o3z - 3

(1 - Z-) 3

1 + alz- 1 + a 2Z-2 + aZ - 3

a, = a 3 -3

a 2 = a2 - 2a 3 + 3

a3 = a - a 2 +a 3 -1

[3.39]

[3.40]

[3.41]

51. Since the modulator is part of a larger loop, the third order modulator does not actually need to be stable for the
closed loop accelerometer to be stable. However, to simplify design and testing, the use of an unstable modulator
was not investigated in this research,.

Hx (z)

H,(z)

where

-3
Z



These equations can be obtained directly from equations 3.32-3.36 by setting all the Ki

terms to unity and assuming a comparator gain of 1.0.

MATLAB ® was used to generate third order elliptic filter pole locations. Equa-

tions 3.37-3.41 were then used to evaluate the feedback coefficients necessary to imple-

ment the desired pole locations. CLASP was used to simulate functionality of modulator

with each given set of coefficients. The design process was repeated iteratively until an

optimal design was achieved. The pole placements for the final modulator design are

given by:

P, = 0.6924 + j 0.4111

P2 = 0.6924 - j0.4111 [3.42]

p3 = 0.5752

From this set of pole locations, values for a1, a2, and a3 were calculated:

a, = -1.96

a2 = 1.445 [3.43]

a3 = -0.373

Using equations 3.39-3.41, an initial set of values is calculated for the ai coefficients:

al = 0.112

a2 = 0.525 [3.44]

a3 = 1.04

At this stage in the design, the pole placements of the modulator were selected and

the operation verified with simulation. The forward transfer characteristic of the modula-

tor, Hx(z), is given by

-3

Hx (z) = [3.45]
1 - 1.96z - 1 + 1.445z - 2 - 0.373z - 3

The next step in the design of the modulator is scaling the integrator and feedback

coefficients. The loop dynamics of the modulator are not changed with proper scaling of

80



the integrator and feedback coefficients, only the closed loop gain of the modulator is

altered. Scaling is done as a means of reducing the required output swing from the inte-

grators and adjusting the DC gain of the modulator.

The DC gain of the modulator is calculated from equation 3.37 to be:

1 ( 1 = 8.93 [3.46]Hx(z) Iz = a -0.112

Thus, the DC gain of the modulator is set by the a, (A,) feedback coefficient alone. In a

typical analog-to-digital conversion application, the modulator is usually designed to have

unity gain. However, because this modulator is to be used in a closed loop application, it

turns out to be advantageous to increase the low frequency gain as a means of raising the

total loop gain. This, in turn, relaxes the gain requirements for other circuits within the

accelerometer. Once the DC gain of the modulator has been selected, the value of feed-

back coefficient A, is constrained.

When the feedback coefficients of the modulator were initially selected and corre-

sponding simulations were performed, no consideration was given to the output swing of

the discrete-time integrators. To simplify the design process, it was assumed initially that

the output range of the integrators was infinite. As a result, the required output swing from

the modulator's integrators would be quite large for the unscaled modulator. The simu-

lated output swing for the three integrators is shown in figure 3.32 for an 80mV DC input

to the modulator. Due to the finite output swing capabilities of the amplifiers used to

implement the modulator, clipping would occur in the discrete-time integrators. The loss

of state information which occurs as a result of clipping can lead to instability [25]. For

this reason, the integrator coefficients are scaled to reduce the required output swing from

the amplifiers. The output swing of the integrators in the scaled modulator is shown in

figure 3.33. Note the marked decrease in output voltage swing of the integrators.

When an integrator coefficient, Ki, is decreased or A, is adjusted, other coefficients

within the modulator must be scaled accordingly to preserve the loop dynamics. One way

of scaling coefficients is to make sure that the three loops of the modulator5 2 maintain a

constant gain. For example, if K, were decreased by a factor of two, K2 should be
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Figure 3.32 Integrator output swing for the unscaled modulator

increased by a factor of two to preserve the gain of the outer (3 integrator) loop. Because

K2 is also in the second (2 integrator) loop, A2 should be decreased by a factor of two to

maintain constant gain in the second loop. An alternate way to scale the coefficients is to

match the denominators of equations 3.32 and 3.37:

52. The modulator has three loops, the first goes only around the third integrator, the second goes around the second
and third integrators, and the last loop includes all three integrators. It is important to note that Gcomp varies
inversely with K3 . If K3 is increased by a factor of two, Gcomp will decline by 50%. Similarly, scaling A3 and K2
affect the value of Gcom in the same way. If both A3 and m 2 are increased by a factor of two, its identical to
increasing the value of K3 from the standpoint of the comparator. For this reason, A3 and K2 should be scaled
together.

I

.~~~ ~ . .

I i
I !

i I



-0.5

0.5
0

-0.5 : :

-1

I---> 0.5

3 -0.5

-1

r I I I I I I

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time (ms)

Figure 3.33 Integrator output swing in the scaled modulator

a 3 = A 3K 3Gcomp

a 2 = A 2K 2K 3Gcomp

a1 = AIKIK 2K 3Gcomp

[3.47]

[3.48]

[3.49]

where the lower case literals, ai, represent the unscaled modulator coefficients. The two

scaling methods produce identical results, however, the first method is more intuitive.

After scaling, the forward transfer characteristic of the modulator is given by:

1.343z - 3
Hx (z) =

1 - 1.96z - 1 + 1.445z - 2 - 0.373z - 3 [3.50]

I I I I I i I I - - -
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Note equations 3.50 and 3.45 only differ by a scale factor in the numerator. The final

modulator design has a DC gain 53 of 12 which constrains the A, coefficient to a value of

0.08. The coefficient values of the modulator are given in table 3.3.

A sample output spectrum from the scaled modulator is shown in figure 3.34. The

input to the modulator is a 0.03 Vref sinusoid at 1kHz.

Table 3.3 Final coefficient values

3.4.2 The Fifth Order Model

The fifth order accelerometer is shown in figure 3.3554. Inspecting the electrome-

chanical modulator, it is almost identical in topology to the 3rd order distributed feedback

system shown in figure 3.28. The only differences are the added loop compensation and

the lack of feedback to the output of the first mechanical integrator. Intuitively, this makes

sense. Feedback is not possible to the output of the first mechanical integrator which

makes compensation necessary to stabilize the loop. Because the accelerometer system

can be accurately modelled as a fifth order A-1 modulator, analysis of its nonlinear behav-

ior can be greatly simplified by using well established A-1 theory.

53. The stable input range to the modulator scales inversely with DC gain. If the modulator gain is increased by a fac-
tor of 5, the input range decreases by a factor of 5. Similarly, a larger stable input range can be attained by reducing
the DC gain below unity.

54. This model is no different from the model shown in figure 1.3 except now all the feedback paths are drawn explic-
itly.

Feedback coefficients Integrator coefficients

A1  0.0834 K1  0.893

A2  0.350 K2  0.300

A3 0.208 K3 0.500
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Figure 3.34 Modulator output spectrum for 0.03 Vrf sinusoidal input

3.4.3 Choosing the Feedback Force

The feedback force used for accelerometer was not chosen arbitrarily, but rather it

was selected to provide the maximum resolution possible over the desired input range of

the modulator. The stable input range of a A-I modulator usually ranges from 40% to

60% of the DAC output value. Because the quantization noise power of the modulator is

proportional to the DAC feedback voltages (equation 3.27), the DAC outputs should be

set to approximately twice the desired input range in order to attain the highest resolution

possible without compromising the stable input range of the modulator.

Using the input range of the accelerometer, +2g, the feedback force was selected to

be ±4g. Because the feedback force is only applied when the C-V sense is inactive, a ±8g

force is actually applied during feedback to generate the desired net restoring force.

Using CLASP simulations, the stable input range of the modulator was verified to be

exactly ±2g.
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3.4.4 Spring and Damping Nonlinearity

Harmonic distortion can show up at the output of a A-1 modulator as a result of

nonlinear capacitors. If the input capacitance of the first stage has a voltage dependance,

the output spectrum of the modulator will have distortion at multiples of the input fre-

quency. Other nonlinear capacitors in the modulator result in errors as well, however their

effects are reduced by the gain of the first modulator.

Similar to the nonlinear capacitors in the circuit implementation of a A-7 modula-

tor, nonlinearities can result in harmonic distortion at the output of the accelerometer.

Since of the high linearity of the mechanical structure, the nonlinearity of the mechanical

spring is below 10ppm over the closed-loop deflection range of the proof mass [2].

Because this nonlinearity is located within a closed loop, it is reduced by the open loop

gain of the system. Simulations produced harmonic distortion more than 100dB below the

input signal level with mechanical spring nonlinearities as high as 10% (10,000ppm!).

Like the mechanical system, the nonlinear terms derived for the AC-to-Ax conversion

which takes place in the C-V sensor (equation 3.7) can also result in harmonic distortion.

Since the C-V sensor is also located within the loop, the effect of this nonlinearity is also

decreased by the open loop gain of the system.

In addition to the nonlinearity of the mechanical spring, there is a nonlinearity

associated with the electric spring, KEL, which must also be taken into account. As dis-

cussed in section 3.3, the electric spring force, KEL, is comprised of two components, one

which is related to the applied feedback voltages and one component which results from

the voltages applied during the capacitance sense. Previously, equation 3.19 gave the rela-

tion between the feedback and sense voltages and the electric spring constant, KEL.

Including two higher order terms, the electric spring constant is more accurately modelled

by:

KEL l(01) 2 A(Vc + V _,FF - 3 VDCVDIFF + 2(V2c + V,F))2) [3.51]

+ Ad3 [ (2) Vt2 + t(7 3) V1
2 7+ r( 4)V2] 1 + 2



The top part of equation 3.51 results from the feedback voltages and the bottom part of the

equation results from the capacitance sense voltages. The two components of the electric

spring constant have a very different effect at the output. The nonlinearity which results

from the feedback voltages is identical to having an error in the feedback force. Thus, the

feedback nonlinearity which is dominated by its first order term shows up as harmonic dis-

tortion directly at the output of the accelerometer. Since it is not within the loop, no rejec-

tion is provided by the loop gain. In contrast, the nonlinearity associated with the C-V

sense is not part of the feedback loop, but rather it is grouped with the mechanical system

in he forward gain part of the system. Thus, the portion of the electric spring nonlinearity

which results from the sense voltages is reduced by the gain of the loop.

To illustrate the effect of the feedback nonlinearity, the output spectrum of the

accelerometer is shown in figure 3.36 for a 2.0g sinusoidal input at 300Hz. Distortion can

be seen at the third harmonic located 96dB down from the input signal. If the positional

dependance of the feedback force is removed from the simulator, the third order harmonic

becomes obscured by the quantization noise floor.
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Figure 3.36 Output spectrum w/ odd harmonic distortion



Since the motion of the proof mass is restricted, the effect of the nonlinearity in

damping force was found to be negligible. The nonlinearity in damping is largest when

the proof mass is at its farthest point from equilibrium. However, at this same point the

velocity is approaching zero and thus the damping force is at its lowest point. Simulations

produced no noticeable harmonic distortion or error resulting from damping nonlinearity.

Also note that there is a very low level of damping due to the vacuum packaging of the

mechanical system.

3.4.5 The Startup Problem

Since the A-1 modulator is a nonlinear system, the stability analysis which gener-

ated its design is only valid over a limited range of operation. This is the reason for the

limited stable input range of the third order A-I modulator. When the input to the modula-

tor grows to large, the incremental assumptions which were used to design the modulator

no longer hold and the modulator becomes unstable. Similarly, instability can occur if the

output values of the electrical or mechanical integrators of the accelerometer are outside

of a limited range. This could be as a result of an out of range input excursion or initial

startup conditions. For this reason, the electrical integrators of a A-I modulator are reset

at startup and after any out of range excursions. Similarly the mechanical integrators of

must be reset as well. Unfortunately, there is no simple way to reset the two integrators of

the mechanical system. The next section presents the solution which was used to solve

this problem.

3.5 The Reset Loop

Because the mechanical integrators cannot be reset by merely closing a switch (as

with the electrical integrators), a more elaborate method must be used. The mechanical

system, diagrammed in figure 3.37, shows the state variables associated with the two

mechanical integrators. The output of the first integrator is the velocity of the proof mass,

and the second integrator, its position. The velocity and position of the proof mass do not



Figure 3.37 The mechanical integrators

need to be set exactly to zero to assume stable operation, however the proof mass must be

within a few angstroms of its zero deflection point and the velocity should be no more than

about 30gm/second.

Figure 3.38 shows the deflection of the proof mass with Og input to the accelerom-

eter, zero initial velocity, and 70 A initial deflection. It is clear from the movement of the

proof mass, the accelerometer never assumes stable operation.
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Figure 3.38 Proof mass deflection with 70A initial deflection

In contrast, figure 3.39 shows proof mass deflection for a Og input, zero initial

velocity, and 50A initial deflection. This time, the accelerometer readjusts and brings the

proof mass to its equilibrium position. Through simulations, it was found that there is a



small range of initial deflections and initial velocities for which the fifth order system can

reset the proof mass without going unstable. As with the noise immunity of the loop, a

lower system bandwidth provides a greater tolerance for initial offsets in the position and

velocity of the proof mass. This is another reason why a low system crossover is desired.
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Figure 3.39 Proof mass deflection with 50 A initial deflection

As a means of bringing the proof mass within the stable startup range of the accel-

erometer, a second order reset loop is used. The second order loop uses the same C-V sen-

sor used in the fifth order (main) loop. The output of the C-V sensor is passed to a simple

proportional-plus-derivative (P+D) compensation which is then input to the same compar-

ator as used by the fifth order loop. This second order implementation is diagrammed in

figure 3.40. Note the minimal extra circuitry necessary to add the second order loop to the

accelerometer. The switching between the main loop and second order "reset" loop is per-

formed simply by switching the input to the comparator between the output of the third

integrator of the A-1 modulator to the output of the P+D compensation.

The second order system has three modes of operation. The first mode of opera-

tion is that of a second order electromechanical A-1 modulator. Mode II is a linear decay

mode which slowly removes kinetic energy from the proof mass as it oscillates about its
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zero deflection point. In the third mode of operation, the proof mass is placed too close to

the fixed electrodes to "escape" the electrostatic force from the applied voltages and elec-

trostatic "pull-in" occurs.

.,.n ~nmn ADC

Figure 3.41 Second order electromechanical A-1 modulator

Mode I operation, that of a second order electromechanical modulator (figure

3.41), is nearly identical to the second order A-1 (electrical) modulator shown in figure

3.26. As with the fifth order system, feedback is not possible to the output of the first

mechanical integrator (velocity feedback), thus an exact distributed feedback topology is

not possible. The P+D compensation approximates velocity feedback by feeding back a

derivative term to the input of the first integrator.

Note a stable second order system could also have been implemented by placing

the P+D compensation in the feedback path instead of the forward path of the loop. This

approach, however, has two drawbacks. First, separate feedback circuitry would be neces-

sary to implement the feedback to the proof mass. By placing the P+D compensation in

the forward path of the loop, the second order system utilizes the same feedback circuitry

as the main (fifth order) system. The second drawback to using compensation in the feed-

back path is the complicated closed loop transfer characteristic of the system. Because of

the derivative term in the feedback path, the relationship between the input and output of

the system is no longer a simple scalar function. By implementing the compensation in

the forward path of the system, the second order system has an identical low frequency

transfer characteristic to the fifth order loop. Thus, the output of the accelerometer is still

valid during operation of the reset loop, the only difference being the increased quantiza-

tion noise present during second order operation. The incremental dynamics of the main

Facc



loop still hold for the reset loop, thus the input referred circuit noise for the second order

loop is identical to that of the fifth order loop.

Mechanical
System

C-V
Sensor P-1n iCnmn

Digital
Output

Figure 3.42 Linearized reset loop

The dynamics of the reset loop can be linearized in the same manner as the fifth

order loop. The linearized model for the reset loop is shown in figure 3.42. The effective

gain of the comparator, Gcomp, was established through simulation.

magnitude of the system is plotted in figure 3.43.
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Figure 3.43 Second order loop dynamics
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As with the main system loop, the second order modulator is stable only when the

proof mass is within a certain vicinity of its equilibrium position. For the reset loop, this

turns out to be within approximately ±20A of zero deflection with zero velocity55.

When the proof mass is outside of the stable operating range for the modulator but

not so close to one of the fixed electrodes that electrostatic pull-in occurs, mode II opera-

tion is in effect. In mode II operation, the output of the modulator is no longer a rapidly

fluctuating bit stream with an average value representing the input acceleration (as with

mode I operation), but rather an output composed of long streams of consecutive Is or Os

with relatively infrequent transitions. The proof mass oscillates at a fixed frequency about

the zero deflection point, slowly decaying in magnitude until the system returns to mode I

operation. Figure 3.44 diagrams mode II operation of the reset loop. The proof mass

deflection is plotted below the output bit stream from the second order system. Note the

decaying oscillations of the proof mass as the system slowly settles back into mode I oper-

ation. The transition from mode II to mode I operation can clearly be seen by inspecting

the output of the modulator. The single bit output clearly changes from long streams of ls

and Os to the rapidly changing bit stream associated with A-1 modulation. It is using this

clear transition that the mode of operation is determined.

When the accelerometer is operating in the fifth order mode, a string of consecu-

tive is or Os over a certain threshold length indicates instability. Once this occurs, the

accelerometer is switched into the reset mode. Once in the reset mode, if over a certain

specified period of time there is not a string of consecutive is or Os over another specified

threshold length, the proof mass is assumed to have settled to within a given range of the

zero deflection point such that stable fifth order operation can resume. Upon startup, the

accelerometer is placed in reset mode to initialize the proof mass to its zero deflection

point.

Figure 3.45 illustrates how the second order loop brings the proof mass close

enough to the equilibrium point to switch into fifth order operation. In contrast, figure

55. As the velocity of the proof mass increases, the proof mass must be closer to its zero deflection point to assume sta-
ble second order operation.
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Figure 3.44 Mode I and II operation of the second order system

3.46 shows the operation of the same system with 12.8A (thermal) circuit noise which pre-

vents stable fifth order operation. Note the accelerometer tries continually to switch into

fifth order mode.

3.6 Alternate Resonance Modes

In addition to the desired fundamental resonance mode of the mechanical struc-

ture, secondary resonance modes also exist. Figure 3.47 diagrams the main resonance

mode (normal to the surface) followed by the next two resonances of the mechanical

structure. In the main resonance mode, all four silicon tethers move simultaneously up

and down in the direction normal to the surface of the wafer. The second and third reso-

nant modes are rotational modes. In mode 2, two tethers move up and two move down cre-

ating an axis of rotation down the horizontal center of the proof mass. In the third
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Figure 3.45 Mode control for the accelerometer

resonance mode, two of the tethers remain stationary and serve as the pivot point for rota-

tion. Each of the two remaining tethers move in opposite directions setting up an axis of

rotation along the diagonal of the proof mass. Other higher frequency resonances exist as

well which are not mentioned here. The problem with these secondary resonances is that

they can represent unstable modes of operation. Ideally, when a torque is applied to the

proof mass, a small rotation occurs and decaying oscillations ensue until there is no further

rotation. However, if the proof mass and feedback electrodes are slightly misaligned as

shown in figure 3.48, there will be a small torque applied to the proof mass each time a

voltage is applied to the fixed electrodes. Similarly, if the spring tethers do not all have the

same bending constant, a torque will be applied every time the fixed electrodes are

charged. Since the mechanical system is highly underdamped, if the gain of the loop

around one of the secondary modes is greater than one above its mechanical resonant fre-

quency, instability resulting in electrostatic pull-in will occur. With this in mind, extensive

efforts were placed into separating the higher order resonance modes of the accelerometer



5

0 4.5

4
0 3.5
-o

3
o
C 2.5

2

S0.05C.)

) 0

-0.05
0
0

0 1 2 3 4 5 6
time (ms)

Figure 3.46 Unstable Fifth Order Operation

from a fabrication standpoint. Unfortunately, the secondary resonance mode was only

separated from the fundamental resonance by a factor of 2.55 [18]. For this reason, it is

possible that the proof mass will be drawn into the fixed electrodes due to an unstable

higher order resonance. If this is the case, the accelerometer must be operated with partial

viscous damping to stabilize the higher order resonance modes. Thus, the brownian noise

floor will be raised.

Section 6.2.1 diagrams two schemes to stabilize the proof mass in light of higher

order resonance modes. One method taken from reference 22 uses multiple feedback

loops to sense torque and acceleration while the other method uses electrical tuning with

an alternate electrode placement to split the main resonance from the secondary resonance

modes. The electrical resonance tuning described in section 3.3 lowers the resonant fre-

quencies of the higher order modes as well as the fundamental.
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a) Resonance Mode 1

b) Resonance Mode 2

c) Resonance Mode 3

Figure 3.47 Accelerometer Resonance Modes

Upper Electrode
T. A

Lower Electrode

Figure 3.48 Mechanical Misalignment

3.7 The Third Order Accelerometer

By the time the full fifth order system had been designed, it became apparent that

quantization noise and tones were not the limiting factor in determining the resolution of



the accelerometer. Since Brownian noise sets the noise floor of the accelerometer and not

quantization noise, a lower order system could be used to achieve the same resolution.

The fifth order system was still designed and built as a proof of concept. Along with the

fifth order system, a third order loop was also implemented with only minimal extra cir-

cuitry. By feeding forward the output of the first integrator in the third order A-I modula-

tor, a first order modulator can be implemented with identical gain to that of its third order

counterpart. By placing this first order modulator in the loop instead of the third order A-

I converter, a third order accelerometer was implemented. This is diagrammed in figure

3.49.
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CHAPTER 4

Circuit Implementation

Chapter three alluded to the circuit implementation to overall system performance

showing how the dynamics of the mechanical system and the interaction of the C-V Sense

method can be used to enhance the resolution of the accelerometer. This chapter details

the switched capacitor implementations used for the C-V sensor, compensation networks,

A-1 modulator and feedback control. Noise reduction techniques are used which mini-

mize the effects of thermal and low frequency noise as well as provide some immunity to

the effects of capacitance mismatch. The electrical resonance tuning of the mechanical

system is explored from the circuit domain.

4.1 Switched-Capacitor Design

Continuous time filters rely on absolute control of R and C values to set their

dynamics. Because absolute tolerances for integrated resistors and capacitors range as

high as 20%, precision control of a filter's dynamics is not possible. As an example, see

the low pass filter in figure 4.1.
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R,

Vin 0, Vout

Figure 4.1 Continuous time low pass filter

The simple first order filter is composed of a single resistor and capacitor 56 . The

RC time constant places the cutoff frequency of the filter. The transfer function given by:

H(s) = cc0 [4.1]
s + Rcoc

where wco is the cutoff frequency:

1
Oc0 1 [4.2]

If the absolute values of R, and C1 could be controlled to within 10% of their nom-

inal values, the pole placement of the first order LPF would only be guaranteed within

20% of its desired location. For most filter applications, a 20% tolerance on cutoff fre-

quency placement is unacceptable.

Switched-capacitor (S-C) circuits are used as a solution to the problem of control-

ling the dynamics of a continuous time integrated filters. By replacing resistors with

"switched capacitors" the absolute tolerance for the placement of a time constant or cutoff

frequency is controlled by the capacitance ratios instead of the absolute tolerance of resis-

tors and capacitors. The basic circuit element for S-C filters is shown in figure 4.2.

A charge packet, AQ, is transferred between V1 and V2 each clock cycle given by:

AQ = Csc(V 1- V2) [4.3]

This transfer of charge generates an average current flow, Iavg, given by:

56. This example is taken from reference 33.
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V2

Figure 4.2 The "Switched-Capacitor"

AQ _ Csc(VI - V2)
avg At T

where T is the period of the sampling frequency, f.

To approximate the operation of the switched capacitor as a resistor, divide the voltage

across the effective resistance by the average current, avg:

V (VI - V2) 1
e avg Csc(V1 - V2) fSCCS

T

Thus, a capacitor and two switches can be used to "synthesize" a resistor. Returning to

the first order lowpass filter example of figure 4.1, the resistor RI can now be replaced with

a switched-capacitor "resistor" as shown in figure 4.3.

'17 f. T
n 0--*

YE

Vout

Figure 4.3 Switched Capacitor Filter

Using equations 4.5 and 4.2, the cutoff frequency for the SC filter is given by:

1 1 Cs [4.6]
co RC [4.6]

Thus, the cutoff frequency of the filter is set by the ratio of two capacitors and the

sampling frequency. Assuming precision control over the switching rate, fs, the accuracy
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of the cutoff frequency is set by the matching tolerance between capacitors, C1 and Csc.

This tolerance is typically in excess of 8-bits providing a better than 1% tolerance for the

placement of coco.

4.1.1 The Switched-Capacitor Integrator

Vout

U11

I
Vout

Figure 4.4 The Switched-Capacitor Integrator

The basic S-C building block is the S-C integrator. It is derived from its continu-

ous time counterpart, shown on top in figure 4.4, by replacing R, with the switched-capac-

itor Cs in the same fashion as Csc replaced R1 in the prior example. The integrator operates

with a two phase nonoverlapping clock. On clock phase 01, the first switch is closed

dumping a total charge CsVin onto capacitor Cs. On 02, the second switch is closed and all

the charge from capacitor Cs is displaced onto C, producing a change in voltage at the out-

put given by:

AV = Vin  [4.7]
C1
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Note the negative sign for AV resulting from the integration. As with the continuous-time

integrator, a positive current flow into the inverting terminal of the amplifier reduces the

voltage across CI. The operation of the integrator is given by [24]:

V(n)- V(n - 1) = AV = Vin(n - 1) [4.8]
CI

Solving equation 4.8, a z-domain transfer function can be established for the function of

the discrete-time integrator5 7:

H(z) = 1-z [4.9]

Note the transfer function of the discrete time integrator is identical to within a sign of the

transfer function for the integrators used for the A-1 modulator (see figure 3.28).

4.1.2 Parasitic Insensitive Integration

Vin
C vout

Figure 4.5 Integrator with parasitics modelled

While the S-C integrator shown in figure 4.4 performs the basic function of inte-

gration, it suffers from the drawback of being sensitive to parasitic capacitances. The

basic S-C integrator is redrawn in figure 4.5 with stray parasitics now included. Parasitics

arise in the circuit due to drain and source capacitances to substrate in the "switches" and

57. Here, it is assumed that the integrator output is sampled on phase J1. If however, the output of the stage were
clocked to the following stage on 02, the integrator would be delayless and the transfer function would be given by

H(z) Cs 1
C, 1 - Z- 1

All remaining examples will assume that the output of the integrator is sampled on 01.
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capacitances to bulk from the top and bottom plates of Cs and C1. Since capacitor Cp, is

located in parallel with capacitor Cs, it represents an error in its effective value. Charge

placed on Cpl during phase one of the integration is discharged onto C, during phase two

which results in an error at the output. Because all other nodes of the circuit are connected

to ground or driven voltages (Vi,,Vout), the operation of the integrator is insensitive to par-

asitics at other nodes in the circuit. Any charge which accumulates on any of the other

parasitics is discharged through low impedance nodes and therefore does not affect the

final charge on C1 58.

Vout

Figure 4.6 Stray Insensitive Integrator

Figure 4.6 shows an integrator which is insensitive to stray parasitic capacitance.

Unlike before, any charge that accumulates on the stray capacitance at node "a" during the

first clock phase is discharged to ground on phase two. None of the charge is displaced

through Cs onto C1. Similarly, because node "b" is held at ground or virtual ground on

both clock phases, no parasitic charge is placed on C1 59 . This integrator, as shown, has a

noninverting transfer characteristic, identical in magnitude to equation 4.9. However, if

node "a" is grounded during clock phase one then connected to Vin on phase two, inverting

integration is performed. The alternate clocking scheme is shown in figure 4.7.

58. This holds for an ideal amplifier. Due to the finite gain and bandwidth of a real amplifier, parasitics are still an
important design consideration. In the circuit layout, as a rule, the top plates of capacitors are connected to the
inverting input of the amplifier to minimize the parasitics at the inverting node.

59. This in not true if the amplifier has an offset, Vos. With an offset, Vos, an integration error results given by:

Cp
AVou t = + + Vos

CS

where Cp is the parasitic capacitance at node "b". Circuit techniques are used to mitigate the effects of this offset
error. See section 4.2.
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Vin O-
Vout

Figure 4.7 Inverting stray insensitive integrator

Vin 0-
Vout

Figure 4.8 S-C gain stage

In addition to the discrete-time integrator, it is sometimes necessary to implement

a pure gain stage in S-C circuitry. Figure 4.8 diagrams one such stage. On phase one, in

addition to charging the sampling capacitor, Cs, the integrating capacitor, C1, is discharged

from its previous value. On clock phase two when Cs is discharged onto C1, the output

voltage will only be a function of the current input voltage. The transfer function for the

amplifier is given by:

H(z) = Cz- 1/2
C, [4.10]

Like the S-C integrator of figure 4.7, an inverting gain stage can be implemented by

switching the clock phases at the input.
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4.1.3 S-C Noise Calculation

In a high resolution application such as this closed loop accelerometer, an accurate

analysis of circuit noise is necessary to predict the overall resolution of the sensor. Exam-

ining figure 4.8, there are two dominate sources of noise in a switched capacitor gain

stage, the input referred noise from the amplifier and the thermal noise of the switches. To

calculate the total output noise from the stage, a transfer characteristic must be established

between each noise source and the output.

The total noise power sampled onto a capacitor has been established as [24]:

vn2 = [4.11]

where kB is boltzmann's constant and C is the total capacitance connected to each switch.

Because the thermal noise from the switches is "white", the total noise power can be

referred to the output of the stage by multiplying by the square of the transfer function

between the noise source and the output. This results in an output noise power of [34]:

kBT(Cs2 kBTCsV2 [4.121ut cs C ) C2

for each pair of switches60 which control the charging of Cs. The "reset" switch placed

around CI, has a unity transfer characteristic since it is directly connected to the output.

The total output noise from the switch is thus, kBT/CI. The total output noise due to all the

switches is given by:

S- kTCs (22 + [4.13]

The input referred amplifier noise is comprised mainly of thermal noise and 1/f

noise. The input referred thermal noise of the amplifiers is given by:

60. Note that equation 4.12 was derived for the total on resistance connected to a capacitor C during a clock phase and
is fully independent of the number of switches through which the capacitor is charged. For this reason, equation
4.12 represents the effective output noise from each pair of switches connected to Cs .
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a - 2 8kT" [4.14]
Af K 3gm

where gm is the transconductance of the amplifier's first stage input devices. The noise

described by equation 4.14 is referred to one input terminal of the amplifier. At low fre-

quencies, the amplifier noise is related to the output by

( Cs + C,)
Hn(s) = [4.15]

CI

By integrating over the bandwidth of the amplifier, the total output noise power from the

amplifier can be obtained [34]:

= 4 kBT(Cs + C,)2vout 3 Cc C2  [4.16]

where Cc is the compensation capacitor of the amplifier61 . Circuit techniques, described

in section 4.2, are used to mitigate the effects of l/fnoise. An analysis of l/fnoise is there-

fore not pertinent in determining the resolution of the accelerometer and will be omitted

here.

Note the prior noise analysis calculated the total output noise before decimation.

Because thermal noise is "white", the noise from the amplifier and switches will be spread

evenly over half the sampling frequency,fs. Similar to the reduction of quantization noise

in the A-I modulator, thermal noise from the amplifier and switches which is placed out-

side baseband will be eliminated by the decimation filter. Thus, the effective total noise

power of the S-C gain stage is given by

Vtotal kBT 4(Cs + C1 )2  sVneff2 S Co [a + 2Cs + C, f [4.17]neff OSR/2 C12 3 Cc 2fB

wherefB andfs are the baseband and sampling frequencies, respectively.

61. A single stage topology is used to implement the amplifiers for the S-C accelerometer circuitry. Thus, Cc is set by
the load capacitance, CL, and not set internally by a fixed capacitance as with a two stage topology. See section 4.6.
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4.2 Noise Reduction Techniques

To maximize the resolution of the accelerometer, circuit techniques were

employed which reduce the effects of low frequency noise, offsets, common mode noise,

and even capacitance mismatch. Before detailing the actual application of each method in

the accelerometer's critical circuits, the different procedures will be outlined in this sec-

tion.

4.2.1 The Fully Differential Integrator

V - Vout

Figure 4.9 Fully Differential Integrator

Figure 4.9 shows the fully differential integrator that is used in the A-1 modulator

and Lead-Lag compensation network. Fully differential gain stages (not shown) are used

in the C-V sensor and proportional-plus-derivative (P+D) compensation. Operation of the

fully differential integrator is almost identical to its single ended counterpart described in

section 4.1. Its transfer characteristic is given by

V~(z) = Vi(z) Cs2 2(z)-
- ýC, C) -Z
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On clock phase one, the left side of capacitor Csl is charged to V1 while its right

side is grounded. On clock phase two, the left side of Cs1 is grounded and all the charge is

dumped onto C1. Concurrently on phase two, the voltage V2 is coupled through CS2 onto

CI. Note the two phase integration of V, is noninverting while the single phase integration

of V2 is inverting. As with its single ended counterpart, each node of the differential inte-

grator is kept at ground or virtual ground at all times yielding a stray insensitive design.

The fully differential integrator is designed to reduce or eliminate the effects of

feedthrough from the power supply, substrate, or clock. Through the use of a highly sym-

metrical layout, many of these deterministic noise sources appear as common mode sig-

nals. By designing the fully differential amplifiers with high common mode rejection, the

deterministic noise sources have little to no effect on the differential voltage seen at the

output. Thus, these sources of error are effectively removed. In addition to reducing the

effects of deterministic noise, the fully differential topology also facilitates chopping

which is described next.

4.2.2 Chopping

Vin Vout

Figure 4.10 "Chopped" amplifier circuit

The low frequency noise reduction technique which is used most frequently in the

accelerometer is chopping. The basic idea behind chopping is illustrated in figures 4.10

and 4.1162. Before a signal is passed through an amplifier it is multiplied by a square

wave at a frequency fchop. This modulates the signal spectrum to be centered aboutfchop.

The multiplied signal is then passed to the amplifier which combines the modulated signal

with its own input noise spectrum. The amplifier noise spectrum is comprised of wide-

62. This explanation of chopping is based on a similar explanation from reference 24.
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a) Input spectrum

low frequency
noise

<
wideband thermal noise

4
2b) Noise spectrum, ,b) Noise spectrum, Vn

low frequency dulated inputmodulated inputamplifier noise ctrum•I / s p e c t ru m

_," I )

Jchop
c) Input spectrum to amplifier

amplified input modulated low
spectrum / frequency amplifier

noise

fchop
d) Output spectrum from second chopper

Figure 4.11 The "Chopped" Spectra

band thermal noise and low frequency flicker noise as shown in figure 4.1 1b. The output

signal from the amplifier is multiplied by the same square wave as used before amplifica-

tion which returns the signal to its original low frequency location. Likewise, the low fre-

quency flicker noise from the amplifier is modulated to frequencies about fc. Thus, the

flicker noise from the amplifier is effectively removed from the baseband signal.

Because all low frequency noise peaks will be relocated to odd multiples of the

chopping frequency, fchop, the chopping frequency should be selected at half the sampling

rate. This prevents aliasing of the shifted noise peaks back into the pass band during any

subsequent sampling at the clock rate [24].
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a) Chopper circuit realization

b) Circuit symbol for chopped amplifier

Figure 4.12 Chopper Circuit Implementation

Figure 4.12 shows the differential chopper circuit implementation. Since a differ-

ential signal is used, the signal coming into the amplifier can be inverted by simply

exchanging the two inputs. In this manner, the four switches coming into the amplifier

effectively modulate the input signal at the chopping frequency, Ochop. The same switch-

ing scheme is repeated at the output of the amplifier to return the signal information to the

baseband frequencies. To simplify representation of the chopper-stabilized amplifier, the

crosshatch symbol shown on the bottom of figure 4.12 is used to denote the four-switch

chopping scheme.

4.2.3 Correlated Double Sampling

An alternate scheme for reducing the effects of low frequency noise and offsets is

correlated double sampling (CDS). The idea behind correlated double sampling is fairly

straightforward. Sample the noise from a circuit then a short time later, sample the noise

plus signal. If the two samples are taken very close together, the low frequency noise will

not appreciably change between samples. Thus, by subtracting the first sample from the
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second, low frequency noise is removed. Note, as offsets do not change between samples,

they are completely removed as well.

S.

y"no---c

Vout

Clocking

closed

Si
openn

closed

S2

1

Figure 4.13 A circuit implementation for CDS

One possible circuit realization of correlated double sampling is shown in figure

4.1363. Initially, both switches S1 and S2 are closed while Vin is sampled onto Csl. Next,

switch S, is opened which injects a charge Qerr onto C,1 . It is at this time that the output

noise from the first gain stage, n(tn-T/2), is sampled onto C2. At some time later, S2 is

opened. Subsequently, the input capacitor C1 is connected to ground which causes the out-

put of the first stage to swing to its new value, s(tn) + n(tn). Concurrently, the output of the

second stage assumes its new value given by:

63. This circuit implementation performs correlated double sampling on the output of the first gain stage. Noise from
the second stage amplifier which would show up at the output of the second gain stage is ignored here to facilitate
explanation of CDS.
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CS2  CS 2
Vout2(tn) = -- (t) - n(tn) - n(tn - T/2)] [4.19]C12C2

Since the low frequency output noise from the first gain stage will not appreciably change

between time (tn-T/2) and time tn, it is effectively removed by the correlated double sam-

pling. Note, because switch S1 is opened before S2, the effect of Qe,, is presampled onto

C2 as well and therefore removed from the final output.

While correlated double sampling removes low frequency (1/f) noise and DC off-

sets, it can actually make the effects of broadband noise worse. As an example, look at the

total noise from a resistor, R, in the bandwidth, DC to 4ow. From equation 4.19, the z-

transfer function for correlated double sampling is given by

Hcos(z) = 1 -z- 1/2  [4.20]

and in the frequency domain,

HCDS (eiT) = 1 -(jT)/2 - e-(jT)/4 2jsin( [4.21]

Thus, the total integrated noise power from the resistor is

m1 4 2( T) 4kBTR 16kBTR
n\Ds = 4sn . 2 d = • = 32kBTRfl [4.22]o 4 2FI 17

For comparison, the total noise power from the resistor without CDS is given by

R = 16kTRfl [4.23]

Thus the use of CDS increased the total noise power of the resistor by a factor of two.

While correlated double sampling acts to reduce the effects of low frequency noise, care

should be taken when deciding whether to use this method if wideband noise is present.

4.3 The C-V Sensor

The C-V sensor is the most critical circuit in the accelerometer. Circuit noise from

the C-V sensor and front end to the lead-lag network can be a major limitation on the over-
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all resolution of the accelerometer. As discussed in chapter three, the positional sense of

the proof mass which was originally thought to be noninvasive, actually alters the dynam-

ics of the mechanical system. Not only must the C-V sensor measure the deflection of the

proof mass with a high degree of accuracy, but the application of voltages to the fixed

electrodes above and below the proof mass must be carefully adjusted to position the poles

of the mechanical system. In addition, the capacitance sense must have the ability to com-

pletely shut off during the half cycle in which feedback is applied to the proof mass.

+ Vdr

-Vdr (a)

Vout

(c)

Figure 4.14 Possible C-V sense schemes

Extensive research has been devoted to developing different capacitive sense

schemes [1,3,14-16,35-41]. Three of the many C-V sense implementations are shown in

figure 4.14. Note, Cx represents the variable sense capacitor formed between the proof

mass and a fixed sense electrode and CR represents a fixed reference capacitor nominally

equivalent to Cx with zero proof mass deflection. In the first sense scheme (figure 4.14a),

Cx forms a half bridge with CR which is driven by the differential voltage Vdr, which can
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be either a DC [14-16] or time varying voltage [3]. If a time varying voltage is used, a

demodulator and low pass filter are placed after the buffer. The obvious benefit of this

implementation is its low circuit complexity while the main drawback is its high sensitiv-

ity to parasitic capacitances. The second C-V sense scheme (figure 4.14b) places the sen-

sor into a full capacitor bridge [1]. The circuit operation is identical to that of figure 4.14a

with a sinusoidal drive voltage used for Vd, A demodulator and low pass filter (not

shown) follow the amplifier. This circuit has the added benefit of insensitivity to common

mode noise, however, it suffers from the same sensitivity to parasitics as in the prior cir-

cuit. In addition, the second sense scheme is highly sensitive to capacitance mismatch.

Figure 4.14c shows a variable oscillator formed from an integrator and schmitt trigger [35-

37]. As the proof mass moves causing a change in Cx, the integration "constant" changes

which causes the output frequency to vary accordingly. The major disadvantage of this

sense scheme is the additional circuitry required to convert the frequency output of the

sensor into a voltage level necessary to implement the closed loop accelerometer. Other

related capacitance sensors include capacitance-to-phase converters [38-40] and capaci-

tance-to-frequency ratio converters [41], both of which require extra circuitry similar to

that of figure 4.14c to obtain a simple voltage output. In addition to the aforementioned

problems with each of these circuits, only the first sense scheme can be easily shut down

for half a clock cycle as is required to apply a feedback force to the proof mass.

Vref
Vout

Figure 4.15 S-C capacitance sense
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Figure 4.15 shows a switched capacitor implementation of a capacitance-to-volt-

age converter [42,43]. On clock phase a, the variable capacitance, Cx, is charged to Vref

and the integrating capacitor, C1, is discharged. On phase b, the left side of Cx is grounded

which discharges Cx onto CI. Concurrently on phase b, Vris coupled through CR onto C1.

The output voltage is given by

(Cx - CR) AC
C, Vr C, r

[4.24]

Because the capacitance sense scheme must be disabled periodically while a feedback

force is applied to the proof mass, a switched-capacitor implementation is a very practical

choice for the sensor.

4.3.1 The Basic Switched-Capacitor Scheme

Vout

Vref

Figure 4.16 Basic C-V sensor

Figure 4.16 shows the basic capacitance sense scheme selected for the accelerome-

ter64. Correlated double sampling is achieved in the same fashion as was described in sec-

tion 4.2.365. After Cx is charged to Vref and S, has been opened, the output of the first gain

64. Qa and Qb are used to avoid confusion with Q(I and (2, two of the actual clocks used in the accelerometer imple-
mentation.
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stage is sampled onto Cs2. After S2 is opened, Cx is grounded and CR is connected to Vref-

The nominal output for the sensor is given by

Cs2 (Cx - CR) Cs2 [CVout =  - s(C CR) Vref - Cs Vref [4.25]

Measurement and successive cancellation of the output noise from the first gain stage

effectively removes the effects of offset in the first amplifier as well as charge injection

and thermal noise from S1 [42]. The effects of l/f noise in the first stage amplifier are also

greatly reduced.

4.3.2 The Full C-V Sensor Design

The full C-V sensor design is shown in figure 4.17 and the corresponding clocking

diagram is shown in figure 4.18. The functionality of this circuit is identical to the basic

sensor described in the prior section. The choppers, placed at the input to the single ended

amplifiers and the output of the fully differential amplifier, are switched at half the sam-

pling rate. The additional feedback circuitry (shaded in gray) controls the feedback during

clock phase 01. The output from the modulator (X) is used to select one of two voltages to

be applied to each fixed electrode during feedback. The capacitance sense is performed

solely during clock phase 02. Note that 03, 04, and sl, which control the capacitance

sense are all subphases of 2.*

To analyze this circuit, first assume the switches in the choppers are controlled to

pass voltages "straight" as drawn. Thus, the top electrodes of the proof mass and refer-

ence mass are connected to the -V1 and +V2 switches and the bottom electrodes are con-

nected to the Vtune switches. By switching -V1 and +V2 across Cx~ and CRI, a differential

voltage, vx, is developed across the output of the two single ended amplifiers:

65. Unlike the previous scheme, the two samples which are taken to implement the CDS are much closer than one half
of a cycle. Here, the transfer function of the correlated double sampling is given by

HcDs(z) = 1 - -0.2

It turns out that because the samples are taken so close together, the total wideband (thermal) noise is decreased by
the correlated double sampling.
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Clocking

+2.5V
S/

-2.5V

+2.5V

2 -2.5V

+2.5V

-2.5V

+2.5V

S-2.5V

IO I I t
0 1ps 2gs

Figure 4.18 Clocking diagram

(cx - C,) AC
vx (VI + V2) = (V + V2) [4.26]

CnI C11

The second stage implements the correlated double sampling in the manner as the second

gain stage of figure 4.13.

Recalling the basic analysis of section 3.2.3, Cxl and CRI are given by

C A C A [4.27]
Sd+x d

and the differential capacitance, AC1, is

AC= -CR [4.28]

Substituting equation 4.28 into equation 4.26, a relation is established between deflection

of the proof mass, x, and the differential voltage, vx.
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CR (Vl + V2) [4.29
VxI = x [4.29]

CGld

A similar analysis for when the choppers are alternated to charge through capaci-

tors CX2 and CR2 yields

CR (V1 + V2)
vX2 = - x [4.30]

GCd

Thus, the effective gain to the differential input of the second stage is alternating in sign

each clock cycle. This is equivalent to chopping the signal at half the sampling rate.

Chopping switches are placed at the output of the second gain stage to demodulate the sig-

nal. Thus, the second stage amplifier is effectively "chopped". Careful inspection of the

circuit reveals that the entire C-V sense circuit benefits from the effects of chopping. By

alternately charging the top and bottom electrodes of the sense and reference capacitors,

the position of the proof mass is effectively modulated from the standpoint of the C-V cir-

cuit. Along with removing low frequency noise from the amplifiers, the chopping shifts

the effects other nonidealities such as capacitor mismatch to half the sampling rate. Note,

even though the first stage amplifiers are effectively chopped by the switches at the input

of the sensor, correlated double sampling is still necessary to prevent the second gain stage

from saturating due to any voltage offset in the first stage. The correlated double sampling

also removes kT/C noise and charge injection from SI.

Continuing the analysis, the output of the second stage is given by

CS2CR( Vl + V2)Vou t = -V 2) x [4.31]
C12CI1,d

Note this equation is in the same form as used in the dynamics analysis of section 3.2.3.

The single ended amplifiers at the front end of the C-V sensor are necessary to

place the proof mass at virtual ground. A fully differential amplifier scheme would place

the proof mass at a signal dependant voltage level which would result in harmonic distor-

tion at the output of the accelerometer. Note that even though the first stage amplifiers are

single ended, any common mode noise present is effectively reduced by the common
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mode rejection of the second stage fully differential amplifier. This includes noise cou-

pled through parasitics in the proof mass and reference mass structures.

In addition to the differential output from the first stage amplifiers, there is a large

common mode voltage present as well. The common mode voltage is approximated by

CR
VCM =  (V1 + V2) [4.32]C11

The second stage differential amplifier must have high common mode rejection to prevent

the large common mode signal from showing up at its differential output. The integrating

capacitor C1, was selected to allow a first stage gain as large as possible without exceeding

the common mode range of the fully differential amplifier.

To this point in the analysis of the C-V sensor, the voltage Vtune has been ignored.

Since Vtune is constant for the duration of the position sense, it has no effect on the voltage

which shows up at the output of the C-V sensor. However, because it places a positionally

dependant (electrostatic) force on the proof mass, it does affect the incremental dynamics

of the mechanical system. Assuming the proof mass is kept at OV by the single ended

amplifier66 , the force placed on the proof mass by the voltage Vtune is given by

Ftune = A (Vtune 2  [4.33]une 2 x +d

Since Vtune is first applied to the lower then the upper fixed electrodes, there is no average

force applied when the proof mass is centered. Averaging the force placed on the proof

mass over two cycles of operation gives

1(02) A Vune _ 0A (Vtune 21
avg 2 2 x+d 2 \x-dJ

= (,2) A x 0 [V2dne+ 2Viune 2+ ... [4.34]

where r(0Q2) is the duty cycle for 02. As expected, with zero deflection, there is no aver-

age force applied to the proof mass as a result of Vtune. There is, however, a positionally

66. Any force which is placed on the proof mass as a result of a first stage offset voltage is effectively removed by the
chopping in the C-V sensor and is therefore not seen at the output from the accelerometer.
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dependant term which contributes to the overall electrical spring constant, KEL, and is

given by

Ktune tune

Using a similar analysis for the -V1 and +V2 voltages which are applied to the proof mass

determines another component of the electric spring constant:

= d3 [ (3) V[ 2 + 7 (04)V22] [4.36]

where 03 and ) 4 are the duty cycles for the application of -V1 and +V2, respectively. Com-

bining equations 4.35 and 4.36 with the KELI term derived in chapter 3 (equation 3.17)

results in a total electric spring constant given by

KEL d- [ 7l(0j) 2(Vc + VDIFF) + 1((P2) Vtune+ 13 )V2 4)V2
2 ] [4.37]

Thus, by adjusting the voltage Vtune, the dynamics of the mechanical system can be altered

without changing the effective gain of the C-V sensor.

Analog Mux

v,
V

2

vn

2

03

Figure 4.19 Basic circuit implementation for charging the fixed electrodes

As a practical circuit implementation, an analog multiplexer with some basic con-

trol logic is used to charge the fixed electrodes above and below the proof mass. Figure

4.19 shows the basic scheme for accomplishing this. By controlling the voltages placed

on the fixed electrodes in this fashion, only one switch is placed between each electrode

and a voltage. This topology minimizes parasitics and clock feedthrough. Another benefit
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of this multiplexing scheme is the ability to implement additional sense schemes with very

little extra circuitry. By adding minimal extra control logic to the multiplexers, a second

differential capacitance sense scheme can be implemented as well. The additional sense

scheme is explained in the next section.

4.3.3 The Fully Differential C-V Sense: Method H

Figure 4.20 shows the fully differential C-V sense method. Here, the C-V sensor

measures the top and bottom capacitances of the proof mass and outputs a voltage propor-

tional to the difference. The reference capacitors are grounded. Note, however, that any

common mode noise from the two structures is still passed to the input of the second stage

and reduced by the common mode rejection of the fully differential amplifier

Resonance tuning is achieved in a similar manner to before. With this scheme,

however, there is no separate voltage to "tune" the mechanical resonance. Orthogonal

control over the mechanical resonance is attained by varying the DC voltage placed across

the fixed electrodes without changing the applied differential bias. As an example, sup-

pose the fixed electrodes are charged with 0.1V then 1.1V during the C-V sense. By

charging the electrodes with 0.4V and 1.4V instead, the electrical spring constant can be

increased without changing the effective gain of the C-V sensor.

Comparing this sense scheme with the prior sense method, this sense scheme has

several advantages. Since a differential sense is used, the output from the first stage single

ended amplifiers is purely differential. The large common mode voltage necessary in the

first sense scheme is no longer present. For this reason, the gain of the C-V sensor can be

increased substantially without violating the common mode input range of the second

stage amplifier. Also, because this scheme senses the upper and lower capacitances of the

proof mass simultaneously, the effective signal is doubled as compared to the prior sense

method.

The last advantage of this sense method is more subtle. The first sense scheme

measures the sense capacitors of the proof mass and the reference mass. The output is a

voltage proportional to the difference. Closing a loop around this sensor balances the

proof mass to the same deflection as the reference mass. As an example, if the reference
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mass has a 10% offset in deflection, the proof mass will be "balanced" to a 10% deflection

by the action of the closed loop. Thus, in steady state, the upper and lower capacitors of

the proof mass will have different values. This can severely degrade the incremental

dynamics of the mechanical sensor. Alternatively, the second sense scheme balances the

proof mass such that the upper and lower sense capacitors are identical. Thus, the incre-

mental dynamics of the sensor will not be compromised even with large mechanical toler-

ances. Unfortunately, the second sense method is also highly susceptible to instability

caused by these same large mechanical tolerances.

The mechanical system and electrical system each have a "center". The mechani-

cal "center" refers to the position of the proof mass where no force is applied by the

mechanical spring. The electrical "center" refers to the proof mass position where there is

zero output from the C-V sensor. Nominally, the electrical and mechanical center are

identical, however due to fabrication variances, discrepancies usually exist between the

two locations. When differences do exist, the loop balances the proof mass to the electri-

cal center and any force exerted by the mechanical spring is seen at the accelerometer's

output as a DC offset.

As discussed above, the first sense method balances the proof mass such that it has

a nearly identical deflection to the reference mass. Because the reference and proof mass

are guaranteed to match within 50A, the worst case acceleration offset which can occur is

+0.21g. Alternatively, the bottom and top gap spacings of the proof mass can vary by as

much as ±0.1p m. Thus, using the second sense method, an offset as high as ±4.2g can

occur. Since the stable input range of the accelerometer is only ±2g, the accelerometer

will never assume stable operation under worst case conditions. For this reason, the sec-

ond C-V sense scheme is included only as an alternate sense scheme which may be viable

for other structures with more exact fabrication tolerances.
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4.4 Compensation

Like the C-V sensor, the compensation networks are implemented with switched-

capacitor circuitry and exploit the benefits of a fully-differential design.

4.4.1 Lead-Lag Circuitry

in

Vout

Figure 4.21 Basic lead lag circuit

The basic lead lag S-C circuit is shown in figure 4.2167. Once again, (a and Ob

are used to avoid confusion with the actual system clocks. The transfer function of the fil-

ter is given by

C C + • 2Csz-1 + C6C7 - 2

1+C3C4 C3 C4 C3C4

1 +( C6C9 _ 2)z-1+1 + C6C9 )Z-2
C3C C3C

[4.38]

Note the DC gain (z = 1) of the network is infinite. The infinite gain of the circuit

results from a DC pole placement due to the C9 feedback around the two integrators. The

coefficients for equation 4.38 were selected by transforming the desired continuous time

pole locations into the z-domain using the bilinear transform.

67. This circuit topology was developed directly from reference [24].
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The fully differential circuit implementation of the lead lag circuit is shown in fig-

ure 4.22. The differential amplifiers in the circuit are chopped to reduce the effects of low

frequency noise and offsets. The corresponding transfer characteristic is given by

7.039 - 13.7z - 1 + 6.68z - 2

Hu(z) = - [4.39]
1 - 1.614z - 1 + 0.614z - 2

The gain of the circuit was selected by choosing the pole locations (denominator

coefficients) of the filter and then determining the gain which would minimize the neces-

sary capacitance ratios. Even using minimized capacitance ratios, 66fF capacitors were

still necessary. To minimize the effects of mismatches in these capacitors, the 66fF capac-

itors are chopped along with the differential amplifiers.

4.4.2 P+D Circuitry

Figure 4.23 Basic P+D Circuit

The basic proportional plus derivative compensation circuit is shown in figure

HP+D(z) = [ C 5 + C(1 - z-1 ) [4.40]

Note this transfer function could have been implemented with a single stage. However,

due to the gain requirements of the circuit, a two stage implementation was used. Also

note this transfer function is opposite in polarity to the prior lead lag compensation. To

account for this, the connection from the differential output of the C-V sensor to the input

of this stage was reversed in polarity to preserve negative feedback in the loop. The fully
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differential circuit realization of the P+D compensation is shown in figure 4.24. The cor-

responding transfer function is given by

Hp+D(Z) = 3(1 + 8(1 - z-l)) [4.41]

4.5 The Delta-Sigma Modulator

The basic A-1 modulator implementation used in the accelerometer is adapted

from references 25 and 44. One of the variations used in this modulator is the multiplex-

ing of different inputs to the comparator which include the output of the modulator's first

integrator, the modulator's third integrator, and the output from the P+D compensation. In

standard operation, the output from the third integrator is passed to the comparator to

implement a third order A-1 modulator. When a first order modulator is necessary (to

implement the third order accelerometer), the output of the first integrator is input to the

comparator. When the accelerometer is operating in its second order reset mode, the com-

parator receives its input from the P+D compensation, fully bypassing all of the modula-

tor's integrators.

4.5.1 The Third Order Modulator

The basic architecture for the third order modulator is illustrated in figure 4.25.

The discrete time integrators are implemented with switched capacitor integrators. The

output value from the comparator is subtracted from each integrator to achieve binary

feedback. Relating the circuit parameters in figure 4.25 to the transfer characteristic previ-

ously established for the A-E modulator (equations 3.16 - 3.36), the relation between

capacitor values and the integrator and feedback coefficients is given by

Csl I
K1  C [4.42]

CJ

CS2
K2 CI2 [4.43]

CI 2
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Cs3

KA2 =

CA2

CS 2

A3 = C
CS 3

[4.44]

[4.45]

[4.46]

[4.47]

Input from
previous

stage

Figure 4.26 Bipolar Feedback using a single reference voltage

From a design standpoint, it is desirable to separate the precision DAC feedback

voltages from the comparator output values. A technique for doing this is given in refer-

ence 44 and was adapted for use here. The basic idea is shown in figure 4.26. Using a

single voltage reference, and separate clocking schemes, a positive or negative integration

can be achieved as described in section 4.1.2. Recall, positive or negative integration can
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be achieved by simply varying to clocking of an integrator. By applying these different

schemes to a single voltage reference, bipolar feedback can be implemented. The output

from the comparator is used as a control bit to select positive or negative integration. A

separate "clean" voltage is used for Vref to avoid noise corruption from the circuit.

Vdd
M5• •-- IDp

Vin ((D1)
vo u (02)

,in (02)70u (4•2)

Figure 4.27 Differential comparator circuit

The differential comparator used in the modulator is shown in figure 4.27 [25]. On

clock phase 01, the differential input is sampled onto the drain capacitance of transistors

M1-M4. On clock phase 02, the latch is enabled by switching on transistors M5 and M6.

Positive feedback causes the output of the comparator to go to the voltage rails as deter-

mined by the sign of the input. The input/output nodes of the comparator are buffered

with clocked NAND gates (not shown). Note, large gate lengths are used for the M1-M4

input devices to reduce length and threshold mismatch. This, in turn, minimizes offset in

the comparator.

The circuit realization of the third order modulator is shown in figure 4.28. Note

how the single voltage reference scheme has been adapted for the fully differential topol-

ogy. The fully differential architecture is used again here for its aforementioned benefits.
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Reset switches are located across the integrating capacitors to initialize their values at star-

tup or after period of unstable operation.

4.5.2 Incorporating the First Order Modulator and Second
Order Reset Loop

With minimal extra circuit complexity, the first order modulator can be imple-

mented from the existing third order architecture. Recall the first order A-1 modulator is

necessary to implement the third order accelerometer system. Similarly, the comparator

necessary for the second order reset mode of the accelerometer is implemented with the

same comparator used in the third order A-1 modulator. This is illustrated in figure 4.29.

Note the extra comparator placed at the output of the modulator. In the third and

fifth order accelerometer modes, this comparator acts as a digital latch for storing the out-

put value from the first comparator. Because feedback within the modulator occurs during

02 and the force feedback to the proof mass occurs during 01, the output value from the

modulator must be stored an extra half clock cycle. When the accelerometer is operating

in its second order reset mode, the second comparator samples the output from the P+D

compensation and determines its polarity. Unlike the output of the A-1 modulator, the

output from the P+D compensation is available on clock phase 0 2 and therefore can be

clocked directly into the second comparator. Clocking the P+D compensation directly

into the second comparator avoids extra loop delay and therefore minimizes negative

phase in the loop.

Note that the second comparator is chopped. By chopping the second comparator,

any offset in the comparator is effectively removed. Without chopping, any offset in the

comparator would place the steady state deflection of the proof mass (during reset mode)

away from the true electrical center 68. After stabilizing the proof mass, an offset greater

than a few A would inhibit stable operation in the fifth order mode. As an example, figure

4.30 shows the steady state deflection of the proof mass during reset mode when the sec-

68. Small offsets in the first comparator are insignificant. The output of the third integrator will assume the same DC
offset as the comparator thus removing any offset error which would be present at the output. The offset only
becomes a problem if it compromises the dynamic range of the differential amplifier used to implement the third
integrator.
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Figure 4.30 Proof mass deflection with a 100mV comparator offset - with chopping

ond comparator is given a 100mV offset and chopping is not used. Note the proof mass

settles to a steady state deflection near 50A, an offset which would barely allow stable

operation in the fifth order mode. In contrast, figure 4.31 shows the accelerometer

response with the same comparator offset, only now the second comparator is chopped.

The steady state deflection now remains within ±30A of the zero deflection point, close

enough to resume stable operation in the fifth order mode.

4.6 Amplifier Design

The operation of the C-V sensor, compensation, and A-1 modulator, set the perfor-

mance requirements for the operational amplifiers used in each circuit. The C-V sensor in

combination with the lead lag network settles four amplifiers in series. As a result, the

speed requirement for the front end amplifiers is quite demanding. In addition to settling

several amplifiers in series, the speed requirement is increased further by the clocking
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Figure 4.31 Proof mass deflection with a 100mV comparator offset - with chopping

scheme used for the first two stages. Recall the capacitive position sense occurs only dur-

ing clock phase 02. During this time, the amplifiers must settle twice.

The bandwidth requirement for the amplifiers was approximated as follows. The

total settling time was assumed to be 400ns (half of 02 plus a 20% margin of error).

Because of the 20-bit target resolution for the accelerometer, 20-bit settling was desired

from each amplifier for each sampling period. This results in a time constant, r, of

13.86" = 400ns ; r = 28.8ns [4.48]

which would require a unity gain bandwidth of 5.5MHz. This first estimate ignores the

effects of settling four amplifiers in series and assumes unity feedback in all cases.

Approximating the total time constant of the four amplifiers as the sum of the individual

time constants69 increases the required bandwidth estimate to 22MHz. Now, accounting

for a nonunity feedback around the opamps, an average feedback factor or 0.25 is assumed

resulting in a total bandwidth estimate of 88MHz.

69. This is analogous to the use of open circuit time constants to evaluate a circuit's bandwidth.
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The opamps used in the A-I modulator have considerably more time to settle than

those of the first stage opamps. The amplifiers used in the A-1 modulator are identical to

those used in the C-V sensor and compensation networks however they are biased with

less current which reduces both the power dissipation and bandwidth.

4.6.1 The Single Ended Amplifier

The single ended amplifier used in the C-V sensor is diagrammed in figure 4.32.

This single stage (folded cascode) topology was selected for its (near) single pole settling

characteristic. The bandwidth of the amplifier is determined by a single dominate pole set

by the output impedance of the amplifier and the load capacitance. Because only the dom-

inate pole affects the rolloff in magnitude of the amplifier at crossover, a very high phase

margin can be achieved. The second pole from this topology results from the gate capaci-

tances of devices M19 and M20 combined with the 1/g, diode-connected impedance of

M20. This second pole prevents the amplifier from having a full 900 of phase margin.

Note the auxiliary common source amplifiers located around each cascoded device

in the amplifier. These act as gain enhancement amplifiers and boost the DC gain of the

device by increasing the output impedance of the amplifier [45,46]. Figure 4.33 illustrates

this basic idea.

Without the gain enhancement amplifier, the simple common source cascode has

an output impedance of

Rou t = rol + ro2(1 + rolgm2) = gm2ro2rol [4.49]

and a gain given by

G = gml(rol + ro2(1 + rolgm2)) = -gmlgm2rol ro2 [4.50]

Repeating the analysis now including the auxiliary amplifier, the output impedance of the

stage rises to

Rou t = rol + ro2(1 + olgm + + 1)) = gm2r2 zrol A  [4.51]

and the gain increase to

G' = gml(rol + ro2(l + rolgm2(A + 1))) - -gmlgm2rolro2A [4.52]
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Figure 4.33 Gain enhancement amplifier

A similar analysis shows that the input impedance at the source of M2 is decreased by the

gain of the auxiliary amplifier. The identical effect greatly reduces the input impedance of

devices Mll and M12 in the single ended amplifier. This almost entirely removes system-

atic offset from the amplifier. Table 4.1 summarizes the simulated performance of the

amplifier.

Parameter Value

DC Gain 100.4dB

Unity Gain Bandwidth (12pF Load) 83.4MHz

Phase Margin (12pF Load) 60.60

CMRR (2.5% mismatch) 67.5dB

PSRR+ (2.5% mismatch) 81.2dB

PSRR- (2.5% mismatch) 64.2dB

Output Swing -1.5V to 1.3V

Power Dissipation 22.6mW

Input Referred Noise 1.9nV/4ýz

Table 4.1 Simulated Single Ended Opamp Performance
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4.6.2 The Fully Differential Design

The fully differential amplifier circuit used for the accelerometer's circuits is

shown in figure 4.3470. The basic function of the fully differential amplifier is identical to

that of its single ended counterpart. A common mode feedback loop has been added to

stabilize the common mode level at the output of the amplifier at OV. Transistors M27 and

M28 form a differential pair which amplifies the common mode voltage. The current from

the differential pair is mirrored through M29, M3, and M4 to the outputs of the amplifier.

The common mode voltage is obtained using the switched capacitor circuit shown in fig-

ure 4.35. The common mode voltage, sampled across capacitors Cla and Clb, is periodi-

cally sampled onto capacitors C2a and C2b which are then discharged. The capacitors C2a

and C2b form two switched- capacitor "resistors" which prevent charge from building up at

the center (CM) node due to leakage current or initial conditions. The simulated perfor-

mance of the fully differential amplifier is given in table 4.2.

4.7 System Noise Analysis

Now that the complete circuit diagrams have been given along with the operation

of the amplifier, a full noise analysis can be performed. For the sake of brevity, the equa-

tions will not be given here, however, the results from each stage (i.e. C-V sensor, Lead-

Lag, etc.) will be given in tabular form. The circuit noise analysis will only be continued

to the input of the lead-lag network. Beyond this point, the input referred noise is insignif-

icant due to the large gain of the Lag compensation. Table 4.3 summarizes the noise from

the C-V sensor and table 4.4 summarizes the noise from the lead-lag network. In each

table, the total noise is given followed by the portion of the noise which resides in base-

band. Recall that only the noise present in baseband determines the final resolution of the

sensor.

70. A 200g1A bias is used for the amplifiers in the A-7 modulator.
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Figure 4.35 Switched capacitor common mode voltage circuit

Parameter Value

DC Gain 97.9dB

Unity Gain Bandwidth (12pF load) 80.5MHz

Phase Margin (12pF load) 840

CMRR (2.5% mismatch) 74.0dB

PSRR+ (2.5% mismatch) 93.5dB

PSRR- (2.5% mismatch) 96.7dB

Output Swing -1.15V to 1.2V

Power Dissipation 34.3mW

Input Referred Noise 1.9nV/4 z

Common Mode Feedback

Unity Gain Bandwidth (12pF load) 44MHz

Phase Margin (12pF load) 70.1"

Table 4.2 Simulated Differential Opamp Performance
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Table 4.3 Noise from the C-V sensor

Note the circuit analysis assumes:

* Correlated doubling sampling removes the thermal noise injected across Cl.

* Charge injection from all the switches is cancelled to first order.

* The l/f noise from the amplifiers is removed by chopping and/or correlated double sam-

pling.

* The voltage sources are ideal (noiseless).

Combining the results from tables 4.3 and 4.4, the total baseband noise which results from

thermal noise in the circuits is 0.072A. Note, this is comparable to sensing the differential

capacitance to within an accuracy of 34aF. To refer this positional noise to the input of the

accelerometer it is divided by the transfer function of the mechanical system and the Mass

(of the proof mass) as shown in equation 3.12 which is repeated here:
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Total Noise BasebandNoise Source
Xnns Noise Xrns

Switch (thermal) noise from
Cx connection to -VI and + V2  0.2087A 0.0132

Switch (thermal) noise from
CR connection to -V1 and +V2 0.2087A 0.0132A

Switch (thermal) noise from 0.1476A 0.0093A
Cx connection to Vtune

Switch (thermal) noise from 0.1476A 0.0093A
CR connection to Vtune 0.1476A 0.0093A

Thermal noise from both sin- 0.4317A 0.0273Agle ended amplifiers

Thermal noise sampled onto 0.3941A 0.0249ACS2

Switch (thermal) noise sam- 0.1352k 0.0086k
pled onto Ci2

Thermal noise from the fully 0.2062A 0.0130Adifferential amplifier

TOTALS 0.7302A 0.0462A



Table 4.4 Front end noise from the lead-lag circuit

xna - X( [4.53]
MX(s)

F(s)

Applying equation 4.53, the total input referred acceleration noise integrated over the

lkHz baseband (due to thermal noise) can be calculated71:

a= [n l o MHmech ()12 df 973.4 = 99.3ng [4.54]

where

IkHz
x= xdf,

X(f)Hmech(f) = X(f)
F(f)

Along with the acceleration noise from the positional measurement error, accelera-

tion noise is also present as a result of electrostatic forces placed on the proof mass by

noise present in the reference voltages 72, the input referred voltage noise from the single

ended amplifier (which places the proof mass at virtual ground), and the thermal noise

71. Note, a 250Hz pole placement is used for the mechanical system in this calculation. If 3.23kHz were used for the
mechanical resonance, the resultant noise would be 293pg using the same calculation.

72. Including the feedback voltages. The voltage references are output from an OP-227 low noise amplifier. The wide-
band noise of the amplifiers are given as 3.9nV/XIf . See chapter 5.
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Total Noise Baseband
Noise Source

Xrms Noise xr

Switch (thermal) noise sam- 0.8294A 0.0525Apled onto C5

Switch (thermal) noise sam- 0.0465A 0.0041Apled onto C7

Thermal noise from the fully 0.2568A 0.0162Adifferential amplifier

TOTALS 0.8706A 0.0551A



from the connection resistance to the proof mass. Note, all of these noise sources are

effectively chopped by the C-V sensor implementation. Thus, as with the C-V sensor and

lead-lag circuitry, only wideband noise is significant. The acceleration noise can be

obtained by inserting the voltage noise into equation 1.4 and integrating over baseband.

The results are given in table 4.5.

Baseband
Noise Source Noise arms

Noise from the voltage refer- 2.58e-13g
ences

thermal noise from the con- 2.1Oe-16g
nection to the proof mass

Amplifier noise 1.95e-15g

TOTAL 2.58e-13g

Table 4.5 Noise from electrostatic forces placed on the proof mass

To estimate to the total quantization noise, the noise transfer function of the third

order A-I modulator can be used to generate an approximation to the noise shaping char-

acteristic of the entire modulator. This approximation is conservative because the two

mechanical integrators provide increased low frequency gain to the loop, further lowering

the quantization noise floor in baseband. Using equations 3.26-3.28 with a set to 8g, the

quantization noise is calculated as 0.34gg, well below the desired noise floor.

Combining the results from tables 4.3-4.5, the acceleration noise is 0.354pg, well

below the target resolution for the accelerometer. However, recall the Brownian noise cal-

culated in section 2.3.3 produced a noise floor of 2.21 1jg. Combining the Brownian noise

with the other sources of error results in a total noise of 2.24gJg 73

73. This is not a conservative estimate. This analysis ignores mismatches and other process variations as well as deter-
ministic noise, all of which could have a significant impact on the overall resolution.

151



4.8 Layout

The circuitry for the accelerometer was fabricated at the MOSISTM foundry using

the 1.2gm HP analog process. This process was selected in order to meet the speed

requirements of the front end amplifiers of the C-V sensor and compensation networks.

Unfortunately, the HP 1.2gm process does not support double-poly capacitors which

would require significantly less die area than the metal-poly capacitors which were used.

Linear poly-n+ capacitors were available which had similar capacitance per unit area when

compared to poly-poly capacitors, however, due to the large voltage coefficients of the lin-

ear capacitors (>1000ppm), the linear capacitors were only used for bypass and filter

applications.

4.8.1 The Final Layout

A die photo of the circuit layout is shown in figure 4.36. The layout is

5.8mmx4.0mm. The total die area could have easily been reduced by a factor of two if

poly-poly capacitors had been available. As shown, 34 pad connections to the chip are

placed around the left, lower, and right sides of the die. Sixteen connections on the upper

side of the die are used for bonding to the mechanical sensor. Every other connection to

the mechanical sensor is grounded to minimize coupling between signal lines.

4.8.2 Layout Considerations

A few general precautions which were taken during the layout of the circuit include:

* A basic common centroid layout was used to achieve improved matching between

capacitors.

* The top (metal) plates of capacitors were connected to critical nodes whenever possible

to minimize parasitics.
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* The input connection from the proof mass to the virtual ground of the single ended

amplifier is shielded from crossing lines by placing a grounded metal line between the

critical node (Metal 2) and any crossing lines (Poly).

* Separate supplies were used for the output buffer from the chip to limit possible feed-

back through the substrate.

4.9 System Summary

The important results from chapters three and four are summarized in table 4.6.

SimulatedParameter Value

Resolution 2.24gg

Baseband 1kHz

Power Consumption 285.3mW

System Crossover 4.5kHz

Die Area 5.8mmx4.0mm

Table 4.6 Chapter 3 and 4 summary
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CHAPTER 5

Testing and Results

After the design and fabrication of the accelerometer, the next step was to design a

test system to verify its functionality. A full test system was designed which included the

data acquisition circuitry, "glue" logic for the mode control, and biasing for the acceler-

ometer circuitry. The test system is comprised of two boards. A larger test board contains

most of the circuitry for the test system while a more compact secondary board houses the

ZIF socket for the accelerometer and minimal biasing circuitry. The secondary board

includes high precision references for charging the fixed electrodes of the proof mass and

reference structures and biasing circuitry for the control chip. The minimal design of the

secondary board is done to facilitate application of different acceleration inputs without

stressing the entire test circuitry.

This chapter documents the design and functionality of the test system. The struc-

ture of the hybrid accelerometer is detailed followed by a discussion of any problems

which arose during the bonding process. The functionality results from the integrated

accelerometer control chip followed by the full hybrid system are then presented.
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5.1 The Test System

As previously stated, the test system is formed from two circuit boards, the first

board containing most of the functionality of the test setup while the second board houses

only minimal biasing circuitry and the hybrid accelerometer. The basic layout for the

main test board is shown in figure 5.1. Note the three ribbon cable connections to the

main circuit board, two which connect to the secondary board and one to a PC. The PC

interface is used to download data from the accelerometer for analysis. One of the con-

nections to the secondary board is used to send and receive data. The last cable carries

several ("clean") analog voltages which are used to generate precision references for the

accelerometer and power the chip. The main test board will be detailed in the following

section and is followed by a description of the secondary board (Board II).

5.1.1 The Clock Generators

Two programmable logic arrays (GAL22V10B) are used to generate the clocks

necessary for operation (and control) of the accelerometer. The first PAL 74 subdivides a

20MHz clock to generate an 80-state FSM (finite state machine). The 80-state output of

the first PAL is used by the second programmable logic array (PAL2) to generate the non-

overlapping system clocks for the accelerometer. Other outputs from PAL1 are used to

subdivide the main clocks. The slower clocks control the switched-capacitors used in the

common mode feedback circuitry of the fully differential opamps. The main system

clocks along with some of the control clocks are shown in figure 5.2. Recall from chapter

4, 01 through 0s, are used to control the switched capacitor circuitry of the C-V sensor,

compensation networks, and Delta-Sigma modulators. 05 and Q6 which run at half the

sampling frequency of the accelerometer (250kHz) are used to control the differential

chopping circuitry. 07 and 0 8 (shown at the bottom of figure 5.2) are the slower clocks

which control the switched-capacitor circuitry used for generating the common mode sig-

74. Figure 5.5 shows the connections for the clock generators, PAL1 and PAL2. They are omitted here to avoid redun-
dancy later when the full schematic is given.
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Figure 5.2 Clock Waveforms

nals in the fully differential amplifiers. The remaining waveforms are used for internal

control on the main board.

5.1.2 Data Acquisition Circuit

The functionality of the data acquisition circuitry75 is illustrated in figure 5.3.

PAL3 is used to control the data acquisition circuitry. The data acquisition has two modes

of operation, an "acquire" mode where data is stored in SRAM (KM681001) during oper-

75. The data acquisition circuitry was derived from similar work in reference [47].
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Figure 5.3 Data Acquisition Control

ation of the accelerometer and a "read" mode when the data is clocked into the PC. The

mode of operation is selected via the ACQ IREAD line from the PC. In the acquire mode,

the 18-bit counter is reset when either the MANUAL_START or PC_START has a low-to-

high transition. Just after the transition, data acquisition begins. Internal flags (not

shown) in PAL3 are used to properly sequence the start of the data acquisition.

Two pieces of information are stored during a data acquisition, the output from the

accelerometer and the mode bit. The mode bit sets the mode of operation of the acceler-

ometer, a "0" (-2.5V) indicates reset mode and a "1" (+2.5V) indicates higher order opera-

tion. Third order or fifth order operation is selected for the "higher order operation" using
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a separate manual control line implemented with a SPDT switch and debounce circuitry

(not shown).

Before the data is stored in the SRAM, it is first clocked into 8-bit serial-to-parallel

converters (74LS 164s). Once the buffers are full, each byte of information is clocked into

8-bit latches (74LS374s) where it is stored until the information is loaded in SRAM. The

SRAM holds 128 kBytes, thus the acquisition system is capable of storing just over one

million samples of data. Each time a byte of information is loaded in the SRAM, the 18-

bit counter is incremented to point to a new address within the SRAM. Note that only 17

bits are necessary to address 128k of SRAM. The MSB of the counter is used to indicate

when an acquisition has been completed. When the counter reaches 217 and the MSB of

the counter changes from "0" to "1", PAL3 knows to stop clocking data and waits for the

PC to begin read mode. Once the PC receives the ACQDONE signal from the counter, the

ACQ/READ line is toggled and the read mode begins. In the read mode, control of the

counter is passed from on board clocking to the clock from the PC (PC_CLOCK). The PC

then increments the counter and stores the bytes of data as they become available.

1

ACQ

*
I * I

Figure 5.4 Acquisition Timing
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The simplified clocking scheme for the data acquisition is shown in figure 5.4.

Recall from chapter four that the output from the accelerometer is valid only during 01.

Thus the data must be sampled at this time. At time "1" in figure 5.4, the data becomes

valid. The data should not be sampled right at this point to avoid possible race conditions.

The address counter is incremented at this point every eight cycles (except on the first

cycle so that the address "000...0" will not be skipped). At time "2", the ACQ signal goes

high and the data is clocked into the serial-to-parallel converters. This is the optimal point

to sample the data as this is the farthest point from a transition. At time "3" the 8-bit latch

is loaded (every eight cycles). Finally, at time "4" the SRAM is loaded from the output of

the 8-bit latch (again, every eight cycles).

Figures 5.5 and 5.6 document the schematics of the data acquisition circuitry.

Figure 5.5 Data Acquisition Circuitry - Schematic 1

5.1.3 The Mode Control for the Accelerometer

Though the mode control circuitry of the test system requires about the same board

space as the data acquisition circuitry and the same number of ICs, it is much simpler in

concept. Recall from chapter three, unstable operation of the accelerometer is indicated

by an abnormally long string of Is or Os. Thus by counting the number of consecutive Is
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and Os which are output from the accelerometer, the stability of the system can be

assessed. If the accelerometer is operating in its fifth order mode and a string of Is is out-

put over a certain threshold length, then the mode control circuitry switches to reset mode

to restore stable operation. Similarly, if the accelerometer is operating in its reset mode

and over a long period of time there are no long strings of consecutive Is or Os then the

mode control circuitry knows its time to switch back to higher mode operation (third order

or fifth order, depending on which mode has been manually selected). This is the basic

function of the mode control circuitry.

Figure 5.7 illustrates the basic operation of the mode control circuitry. PAAL4

stores the last bit from the accelerometer in an internal flag (not shown). If the current

output of the accelerometer is identical to the previous output, the 8-bit counter is incre-

mented, otherwise, it is reset. The output from the 8-bit counter is input to two compara-

tors. The other inputs to the comparators are connected to DIP (SPST) switches which are

connected to pull-up resistors (not shown). The DIP switches are manually programmed

to generate the value to which the output of the counter is compared. In the high order

mode (third or fifth order), the output from comparator one controls the mode of opera-

tion. As long as the counter is continually reset before comparator one triggers, the mode

will remain in higher order. If comparator one does generate a trigger ("A=B" or "A>B")

then a bit stream of too many consecutive Is or Os has occurred and the accelerometer is

switched into its reset mode.

Once the accelerometer is switched into its reset mode, the output of the first com-

parator is no longer used by the mode control circuitry. Instead, the outputs from compar-

ators two and three are used.

When the output from comparator two indicates a long string of 1s or Os, the 10-bit

counter is reset and the accelerometer remains in its reset mode. If, however, no long

strings of Os or 1s are encountered over a long period of time, and thus, the 10-bit counter

is not reset, comparator three will eventually trigger and the accelerometer will be

switched (back) into its higher order mode. The schematic for the mode control circuitry

is shown in figure 5.8.
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CLASP simulations were used to determine the optimal points for switching

between higher order modes and the reset mode of the accelerometer. It was determined

that after 22 consecutive is or Os the accelerometer should be switched from its fifth order

mode to its second order reset mode. Similarly, once in the reset mode, if the accelerome-

ter goes 50 clock cycles without a consecutive string of Is or Os longer than 10 bits, the

accelerometer should be switched back to fifth (or third) order mode. Typically, a string of

is or Os longer than 5 to 10 samples indicates instability in a high order A-E modulator

[48]. The longer string of consecutive Is and Os which triggers instability in the fifth order

accelerometer is probably due to the low bandwidth (crossover) of the system (4.5kHz).

Note that only 10 consecutive bits are used to indicate instability for the reset loop which

has a much higher bandwidth than the fifth order loop (-150kHz, see chapter 3).

5.1.4 Board I Voltage Supply

Separate voltage supplies are used for the main board to avoid corruption of the

analog voltages which supply the secondary board. A separate ground plane is used for

the supply voltages to the secondary board to further minimize the possibility of corrup-

tion from digital switching noise.

5.1.5 The PC Interface

The interface between the board and PC was accomplished using a Strawberry

TreeTM data acquisition board. Using the data I/O board, information was passed between

the test board and PC. NEWTON76, a control program for the accelerometer test board,

was written to handle the interface between the test board and PC. Because the Straw-

berry Tree I/O board has the capability to read two bytes at once, both the mode data and

accelerometer output data are read simultaneously. This greatly simplified design of the

data acquisition circuitry. Once the data is retrieved using the I/O board, a second pro-

gram, CREATE, is used to strip the bit information from the stored bytes for processing

using MATLAB®.

76. NEWTON was written courtesy of Michael Lee.
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While the test board voltage levels are between -2.5V and +2.5V, the voltage levels

from the PC are between 0 and 5V. To solve this interface problem, (HCPL 2631) opto-

couplers were used. Along with implementing a level shift, the optocouplers ensure that

no problems will arise from ground loops between the PC and test board.

5.1.6 Supply Voltages and Buffers to Board II

To avoid the problem of having several bulky connectors attached to the secondary

test board, the supply voltages for Board II are connected to the main test board. From

there, the analog voltages are passed to the secondary board via a 15 connector shielded

ribbon cable. The shielding is used to prevent corruption from the digital signals. The

digital data which is passed to and from the secondary board is done through a separate 34

connector ribbon cable. Before the digital signals are passed to the secondary board they

are buffered using 74HCT245s. These buffers convert the clock signals from TTL levels

to a full -2.5 to +2.5V swing.

5.1.7 Board II

Board II is shown in figure 5.8. As previously mentioned, the circuitry for this sec-

ondary board was kept to a minimum to facilitate placing the sensor in different accelera-

tion environments. The voltage references and supplies were placed on this board to avoid

corruption which would occur over the ribbon cable. Other circuitry on this board

includes buffers for the incoming clocks, current biasing for the amplifiers in the acceler-

ometer, and a buffer to drive the output of the accelerometer onto the ribbon cable.

5.1.8 Clock and Signal Buffers

As with the signals which are passed from the main test board to the secondary test

board, the output from the accelerometer which is returned to the main test board must

also be buffered. A 74HCT245 is used to buffer the output from the accelerometer before

it is input to the cable returning to Board I.
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Figure 5.9 Board II

The clocks which arrive from Board I are buffered using 74F07s. This ensures that

ringing and crosstalk is removed from the waveforms before they are passed to the accel-

erometer.

5.1.9 Voltage References

Figure 5.10 shows the circuit which generates the positive reference voltages nec-

essary for the accelerometer (figure 4.17; + V2, V,,,, VFB) 7 7. A +2.5V reference is first gen-

erated from an AD780 reference. The desired reference voltage is selected using a

potentiometer placed at the output of the voltage reference. The potentiometer in combi-

nation with a 4.7pF capacitor also serves as a low pass filter. The output from the low pass

filter is buffered using an OP-227 which in turn supplies a low noise, low impedance volt-

age over a wide frequency range [49]. Note, all supplies and references are bypassed with

77. This circuit is adapted from reference [49].
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large tantalum capacitors (82pF) and ceramic bypass capacitors in close proximity to the

hybrid accelerometer.

Figure 5.11 Negative Voltage Reference

The circuit shown in figure 5.11 was used to generate the negative reference (-VI)

needed by the C-V sensor. The AD780 is used in shunt mode to generate -2.5V which is

then passed through a low pass filter and buffered as with the positive reference. Table 5.1

gives the voltages which are generated using the positive and negative reference of figures

5.10 and 5.11.

The absolute accuracy of the voltages given in table 5.1 is not nearly as important

Table 5.1 Reference Voltages

as the amount of thermal noise present. The wideband noise of the OP-227 is specified at

3.9nV/JI.-z. Integrating over the lkHz baseband, the total baseband noise for each voltage
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Positive Reference Voltages

+V2 1.OV

Vtune 1.1V

VFB 684.24mV

Negative Reference Voltage

-VI -1.OV
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reference is 0. 12gV. Note that low frequency noise in the voltage references is modulated

to half the sampling rate by the choppers in the C-V sensor and therefore can be ignored in

the baseband noise analysis.

5.1.10 Power Supplies

Figure 5.12 Power Supply Circuits

The power supply circuitry for the accelerometer is shown in figure 5.12. For the

positive supply (VDD), an OP-227 is used in a feedback loop with a 2N3904 npn transistor

to generate the +2.5V supply. The +2.5V reference input to the OP-227 is generated from

an additional AD780 (not shown). The negative power supply is generated from an

AD780 driven in shunt mode with a feedback loop containing an OP-227 and a 2N3906

pnp transistor. The power supplies, like the voltage references, are bypassed in close

proximity to the hybrid accelerometer circuit.
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5.1.11 Bias Current

Figure 5.13 Bias Current Circuit

The 300gA bias current is generated using the bias circuit shown in figure 5.13.

The feedback loop containing the OP-227 and 2N3906 sets the lower voltage on the 3.9ku

resistor to 1.33V which sets the bias current at 300gA.

5.2 The Hybrid Sensor

This section details the incorporation of the accelerometer controller IC with the

micromechanical structure on the same pin grid array (PGA) package. Some processing

problems with the mechanical structure which had not been resolved at the time of testing

will be discussed as well.

5.2.1 The Micromechanical Structure

A die photo of the unbonded micromechanical structure which was used for testing

is shown in figure 5.14. Note the structure has been changed from the folded pinwheel

design which was elaborated on in chapter 2, to a straight tether design. This was done to

help separate the secondary resonance modes from the desired fundamental resonance

mode. Simulations predicted just less than a factor of two separation of the fundamental

resonant frequency from the secondary resonance mode using the folded pinwheel struc-

ture. The straight tether design yielded a 2.55x separation of fundamental and secondary
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Figure 5.14 Die Photo of Micromechanical Structure
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resonances during simulation [18]. Though not a large improvement, it could mean the

difference between a high resolution accelerometer and a useless piece of silicon.

The analysis of the straight pinwheel structure is virtually identical to that of the

folded pinwheel structure discussed in chapter two. Long silicon tethers are used to pro-

vide high linearity for the mechanical spring force78. The side-by-side fabrication of the

proof mass and reference structure ensure good matching even with process variation.

Note the short silicon beams which hold the reference mass rigidly in place. The bonding

pads spread evenly along the lower bound of the die photo are used to stitch-bond the

mechanical structure and accelerometer controller.

Problems

Some problems were encountered during the fabrication of the mechanical struc-

ture which severely degraded its yield and viability. The biggest problem was non-unifor-

mity in the plasma etch which is used to release the proof mass and silicon tethers. A 25%

non-uniformity was measured across the 4" wafer. Due to the gross non-uniformity of the

etch, the yield was only about 10%.

In the future, a high density plasma etch will be used to free the mechanical struc-

ture. The high density plasma etcher will reduce non-uniformity to less than 3% across

the wafer. Also, the etcher has more than a 100:1 selectivity of Si:Oxide. A passivation

layer can thus be used to prevent the plasma etch from compromising the lower electrode.

5.2.2 Stitch-Bonding

A die photo of the stitch-bonded hybrid sensor is shown in figure 5.15. To mini-

mize parasitics at the sensitive nodes, no ESD protection or guard rings were placed on the

sixteen bondpads which connect to the mechanical structure. As a result, ESD problems

were encountered several times during the hybridization of the sensor.

Due to time restrictions and the low yield of the mechanical sensor, only six hybrid

sensors were bonded for testing. Of these, the first five hybrid sensors had problems with

78. Recall the linearity if the mechanical spring is reduced by the open loop gain of the system. Therefore no effort
should be expended to obtain a highly linear spring force.
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Figure 5.15 The Hybrid Accelerometer

electrostatic discharge blowing out gate dielectrics of MOS transistors. These devices

multiplex voltages to the fixed electrodes above and below the proof mass and reference

structures. It was not until the very last hybrid sensor was bonded that a viable accelerom-

eter was available for testing.
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5.3 Results

The operation of the accelerometer controller was first tested open loop (without

the micromechanical structure), then together with the micromechanical structure as a

hybrid closed loop system. 10 bonded test chips were packaged at the MOSIS foundry for

open-loop testing. 65-pin PGA packages were used to house the test ICs. 82 unbonded

die were received and available for stitch-bonding with the micromechanical structure. A

68-pin PGA package was used to hold the hybrid accelerometers. The results of the open

loop testing of the accelerometer controller are given in the next section. The results from

the closed loop testing are presented in the subsequent section.

5.3.1 Open Loop Testing

Since the accelerometer controller was designed for use in a closed loop system,

only basic functionality could be tested with the chip operating open loop. The amplifier

bias voltages for each of the amplifiers were first tested. Basic testing was then performed

to assess the functionality of each system block.

The inputs to the first and third order A-1 modulators were grounded to observe

the quantization noise spectrum and offset in their output spectra. Because the Lead-Lag

compensation has a pole placed at DC, open loop testing consisted of making sure the out-

puts "railed" when the chip operated in its higher order mode (when the Lead-Lag com-

pensation is used). To assess the functionality of the P+D compensation, the output

waveform from the P+D compensation was observed. Since the input to the P+D com-

pensation is just the "chopped" offset from the C-V sensor, the output of the P+D compen-

sation should alternately settle to plus and minus the amplified offset of the C-V sensor.

Open loop testing of the C-V sensor consisted of verifying that the proper voltages

were applied to the fixed electrodes about the proof mass and reference structure including

-Vi, +V 2, Vtune, and VFB, as detailed in section 4.3.2. Because the feedback mechanism

(VFB) was examined at this point, the functionality of the force feedback was tested simul-

taneously. Due to a layout error, the outputs from the differential amplifier in the C-V sen-
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sor were not connected to probe pads and thus, measurement of the output voltage from

the C-V sensor was not possible.

Of the 10 chips which were tested, only one amplifier failed to bias correctly

(Chip#9-the first amplifier in the P+D comp.). Every chip passed the basic functionality

test for the C-V sensor and force feedback. The offsets of several of the single ended

amplifiers were tested and in each case the offset was too small to measure using the oscil-

loscope (< 2mV). For all but the one defective chip, the P+D compensation and Lead-Lag

compensation passed the basic functionality tests aforementioned. The output spectra

from the first order A-I modulators were all very close to the simulated spectra using

CLASP. Recall, the first order modulator is used when the accelerometer is selected to run

in its third order mode.

-20

-40

-60

-80

-100

1 IA

100 10' 102 101 10 10' 106
Frequency Hz

Figure 5.16 Output spectrum from first order modulator with inputs grounded

A sample output spectrum from one of the first order modulators (chip#6) is shown

in figure 5.16. This modulator has a DC offset of only -135dB (not shown in figure 5.16).

Several of the modulators had very low DC offsets as well. This is as a direct result of

only using a single polarity reference voltage as described in section 4.5. Because a single
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reference voltage is used to generate both the positive and negative feedback of the modu-

lator, the DC offset is only a result of capacitance matching error. With 8-bit capacitance

matching, the DC offset is guaranteed to be no worse than -48dB.

While excellent results were observed for the first order modulator, the third order
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Figure 5.17 Third order modulator with inputs grounded

modulator spectrum was not quite as promising. Figure 5.17 shows a typical spectra taken

from one of the third order modulators. Recall the third order modulator is used when the

accelerometer is operating in its fifth order mode. The poor open loop performance of the

third order A-I modulator is probably as a result of the placement of the complex pole pair

of the modulator in close proximity to the unit circle. Recall from chapter three, the com-

plex conjugate pole pair of the third order modulator was placed very close to the unit cir-

cle to reduce the low frequency negative phase shift in the forward transfer characteristic

of the modulator. This was done in order that the main loop of the accelerometer would

have maximum phase margin. Like the mechanical system, unstable open loop poles in

the third order modulator does not indicate instability for the closed loop system.
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a) Lead-Lag Output (before chop) b) P+D Output (before chop)

Figure 5.18 Waveforms from the amplifiers in the lead-lag and P+C compensation stages
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Figure 5.18 shows the output waveforms from the second amplifiers in the lead-lag com-

pensation and P+D compensation circuits. Note these waveforms were measured coming

out of the differential amplifiers but before the signal has been passed through the chop-

pers placed at the output of the stage. Thus, the output from the lead-lag compensation is

really "railed" and the output of the P+D compensation represents the chopped (and

amplified) offset from the C-V stage.

Figure 5.19 shows the voltages applied to the upper electrode of the proof mass

structure. Initially (going from left to right), 12 is high and the electrode is differentially

charged between -V1 and +V2 (see figure 4.17). Recall that during 01, feedback is applied

to the proof mass. During c0 the first time, the electrode is grounded. The second time Fl

goes high, the feedback voltage, VFB (-634mV) is applied. Vtune is applied to the upper

electrode the second time 02 is active. During this time, the lower electrode is used for the

differential sense.

5.3.2 Closed Loop Testing

As previously discussed, an ESD problem was encountered when the hybrid accel-

erometer circuit was stitch-bonded together which destroyed all but one of the hybrid sen-

sors. More mechanical structures were not available for bonding due to the low yield

(10%) of the micromechanical structure which was caused by the nonuniform etch prob-

lem.

The accelerometer was first tested in second order reset mode. The hybrid struc-

ture assumed stable operation in an open air environment with a 1.0g DC input accelera-

tion (gravity). The output spectrum from the second order operation is shown in figure

5.20. Note the large amount of "white" noise which is present in the output spectrum.

This is as a result of the Brownian noise from the heavily overdamped system. Also note

the small signal "spike" at 120Hz. This is as a result of a microscope light which should

have been powered off.

While the spectrum of figure 5.20 verifies the function of the second order reset

loop, operation of the higher order modes was never tested. Unfortunately, while the data

was being analyzed for the output spectrum shown in figure 5.20, the proof mass was
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Figure 5.19 Voltage waveform applied to the fixed electrode above the proof mass
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Figure 5.20 Output spectrum of second order accelerometer with 1.0g DC input

pulled-in to the upper fixed electrode where it fused. Because this was the only viable

hybrid accelerometer, the testing of higher order operation as well as testing in a vacuum

will have to be the focus of later research. Ongoing research is currently investigating the

possibility of placing mechanical stops on the upper electrode to prevent fusion of the

proof mass as occurred here.
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CHAPTER 6

Conclusions

Throughout the course of any research, certain realizations come to light that can

significantly affect the documented results. Ideally, all of this knowledge is obtained early

enough in the chronology of the research such that the optimal theory may be developed

and fully verified when the study has ended. More often than not, however, important

ideas come to light continually and are built upon other ideas which have previously sur-

faced. There is no clear cutoff when these ideas should stop forming and only testing and

documentation should take place. Thus, when a period of research has ended, some real-

izations are fully solidified while others are just beginning to form. Any or all of this

information may be applicable to future research. It is for this reason that the thoughts and

conclusions which are summarized from a piece of research form the most important part

of its content.

In this chapter, the thoughts and conclusions which were taken from this research

are presented. Ideas are presented for future research which were not investigated during

the course of this research.
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6.1 Conclusions

The conclusions are presented as they pertain to each component of the accelerom-

eter including both the accelerometer controller IC and the micromechanical structure.

Each significant noise source is re-examined and methods for reducing the associated

errors are given.

6.1.1 Brownian Noise

Brownian noise was determined to be the source of error which set a fundamental

limit on the resolution of the accelerometer. To increase the overall resolution of the

accelerometer , the Brownian noise floor of the accelerometer must first be lowered. From

equation 3.12, the input referred Brownian noise is inversely proportional to the size of the

proof mass. Under the assumption that the total damping of the mechanical system cannot

be reduced further once it has been placed in a vacuum79, the size of the proof mass must

be increased to lower the input referred Brownian noise and thereby increase the predicted

resolution of the accelerometer.

6.1.2 Quantization Noise

After Brownian noise, quantization noise was estimated to be the next largest

source of error in the accelerometer. In actuality, the quantization noise will be signifi-

cantly lower than the value estimated in section 4.7 (0.34gg). Recall the gain of the two

mechanical integrators was not incorporated into the quantization error calculation, only

the noise rejection provided by the third order A-Y modulator. Thus, the noise prediction

is quite conservative.

If the additional quantization noise rejection provided by the mechanical system

does not result in the desired quantization noise floor, then the quantization error can be

79. Recall the Brownian noise floor calculated in chapter 2 was only an estimate. The damping was calculated using a
Q of 50,000 and the mechanical damping was estimated to have the same limiting effect on resolution as viscous
damping. It is entirely possible that the Brownian noise estimate is off by an order of magnitude, either lower or
higher than the predicted value (2.21.tg). In either case, to reduce the noise floor further, the size of the proof mass
must be increased.
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reduced further by either increasing the order of the accelerometer (adding another electri-

cal integrator) or increasing the sampling rate. Increasing the order of the modulator will

make the closed loop system very difficult to stabilize and is therefore not a very attractive

solution. However, using the current 1.2gm technology, the clock speed can be increased

by a factor of two or three using an alternate clocking scheme80. After the clock rate has

been maximized, the resolution of the accelerometer is technology limited.

6.1.3 The Capacitance Sensor

Two different capacitance sense schemes were presented. The first sense method

employed fixed reference capacitors to generate a differential capacitance when compared

with the variable capacitors above and below the proof mass. The second sense scheme

used no reference capacitors at all, but instead implemented a fully differential capaci-

tance sense between the upper and lower sense capacitors of the mechanical structure.

The second (fully differential) capacitive sense scheme is optimal for maximizing

the resolution of the closed loop accelerometer. The capacitive sense scheme incorporat-

ing the reference capacitors was only used because of the large fabrication tolerances of

the micromechanical structure. Under worst case conditions, these fabrication tolerances

would cause instability if the fully differential capacitive sense scheme were used. Since

the reference capacitor scheme balances the proof mass to the same (proportional) deflec-

tion as the reference structure, the upper and lower capacitors are not equal in value when

mechanical offsets are present. Due to this, the incremental dynamics of the mechanical

structure will be skewed which results in a much larger input referred thermal noise from

the C-V sensor as well as increased harmonic distortion. Alternatively, if the second sense

scheme could be used, the top and bottom capacitors would stabilize to the same value and

thereby preserve the incremental dynamics of the mechanical system.

In order to use the second capacitance sense scheme with the current mechanical

structure, one of two things must be done. Either the tolerances of the mechanical struc-

80. An improved clocking scheme for the accelerometer is presented in section 6.2.1 which would enable a faster
clocking rate without increasing the speed requirements placed on the circuitry.
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ture must be tightened or a calibration method must be developed which cancels the accel-

eration offset resulting from processing variations in the mechanical structure. To lower

the effective offset acceleration resulting from errors in the mechanical structure, a larger

proof mass should be used. This would, in effect, reduce the input referred offset acceler-

ation. Developing an offset calibration method is a possible focus for future research.

6.1.4 The Mechanical Structure

The mechanical structure should be optimized to minimize offset in the proof mass

deflection and separate the secondary resonances of the structure from its fundamental res-

onance. As previously stated, the offset in the position of the proof mass greatly limits the

usability of the optimal capacitance sense scheme. A larger proof mass would be very

effective in overcoming the fabrication tolerances of the mechanical structure. For this

particular accelerometer, if the thickness of the proof mass were increased by a factor of 4,

the overall resolution of the sensor would be increased to 0.55gpg, the second capacitance

sense method could be used, and the dynamic range of the accelerometer would be guar-

anteed to be at least _+0.95g under worst case conditions. Because of Brownian noise and

the usability of the second capacitive sense scheme, there is a limitation on how small the

proof mass can be sized and still attain a specified resolution.

Mechanical stops should be investigated for the proof mass to prevent electrical

contact and fusion between the proof mass and the upper and lower fixed electrodes.

Since the nonlinearity of the mechanical spring constant is reduced by the open loop gain

of the complete system, the design focus of the mechanical structure should be moved

away from using long silicon tethers for high linearity. The focus should concentrate on

further separating the fundamental resonance mode from the secondary modes of the

structure. A mechanical structure is presented in section 6.2.3 which could possibly be

used to electrically separate the fundamental resonance frequency from secondary reso-

nance modes.
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6.1.5 System Topology

The basic closed loop architecture used for this accelerometer is optimal. As pre-

viously stated, the fully differential capacitance sense scheme should be used if at all pos-

sible. One possible improvement in the front end architecture would be to partially

incorporate the C-V sensor directly into the lead-lag compensation81

When using this basic topology, the number of electrical integrators should be cho-

sen by assessing the desired resolution of the accelerometer and the speed capabilities of

the technology selected to implement the switched capacitor control circuitry. If the quan-

tization noise is too large with only one electrical integrator and the sampling rate is as

high as possible, another electrical integrator should be added to the loop. This increases

the order of the system and thereby reduces the low frequency quantization noise. This

should be repeated until the desired resolution is achieved.

6.1.6 Nonlinearities

Assessing the effect of different nonlinearities in the accelerometer, it is important

to determine the location of the nonlinearities within the closed loop system. If a nonlin-

earity is present in the forward path of the loop, the effect of the nonlinearity at the output

is decreased by the open loop gain of the system. If, however, the nonlinearity is located

in the feedback path, its effect is seen directly at the output and there is no rejection from

the loop gain.

The mechanical system has two associated nonlinearities, the nonlinearity of the

mechanical spring and the nonlinearity in viscous damping. Since the mechanical system

is part of the forward gain of the accelerometer, both the spring nonlinearity and damping

nonlinearity are reduced by the loop gain.

A nonlinearity exists in the position-to-capacitance (Ax-to-AC) conversion which

takes place in the C-V sensor. Like the nonlinearities of the mechanical system, the posi-

81. This would further reduce the input referred circuit (thermal) noise as well as the total power dissipation of the
accelerometer. The C-V sensor should also be incorporated into the Proportional-plus-Derivative compensation to
implement the second order reset loop.
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tion sense nonlinearity is located within the forward path of the closed loop system and is

therefore reduced by the large open loop gain.

The last two major nonlinearities are due to the positional dependence of the elec-

trostatic forces placed on the proof mass. One such nonlinearity occurs due to the applica-

tion of the electrostatic restoring force which rebalances the proof mass at its equilibrium

position. The other results from the voltages applied during the capacitive position sense.

Though the same mechanism causes both of these nonlinearities, their effect at the output

of the accelerometer is entirely different. The nonlinearity in the applied feedback force is

clearly in the feedback path of the accelerometer and thus shows up directly at the output

of the system as harmonic distortion. In contrast, the nonlinearity caused by the capaci-

tance sense is not part of the feedback path and can be grouped with the other nonlineari-

ties of the mechanical system.

A quick and easy test to determine whether a nonlinearity is in the forward path of

the loop is to remove the feedback path from the system. The nonlinearities which remain

are part of the forward loop. In other words, if the nonlinearity is independent of the out-

put from the accelerometer, then it is located in the forward path of the system. Using this

approach, the nonlinearity which results from the capacitance sense is still present when

the loop is "opened". In contrast, the nonlinearity from the applied feedback force has

been removed by "opening" the loop.

6.2 Suggestions for Future Research

The obvious first goal for future research is the full monolithic integration of the

micromechanical sensor and control circuitry for the accelerometer. Along with full inte-

gration, there are several other possible steps which could be taken which may improve

the performance of the accelerometer. This section discusses the (not aforementioned)

possible improvements.
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6.2.1 Clocking

In the clocking scheme of the accelerometer 82, 01 and (I)2 are nonoverlapping

clocks. On 01, the electrostatic feedback force is applied via the fixed electrodes placed

above and below the proof mass. During this time, there is no amplifier in the entire cir-

cuit which is settling83. In contrast, during 02, not only must the amplifiers of the C-V

sensor and compensation networks settle twice, but when the amplifiers settle the second

time (during 04), they must settle in series.

Currently, 01 and (2 split a full clock cycle evenly, each being high just under half

the time. If on the other hand, the duty cycle of (1, were shortened to a third or a quarter of

the cycle time, then more time could be allocated for settling during 02. Using this asym-

metric clocking scheme84, the sampling rate of the accelerometer could be easily

increased by a factor of two in order to increase the oversampling rate of the system. Note

that the feedback voltage would have to be increased to account for the shorter duty cycle

of 01.

6.2.2 Op Amp Design

A couple of steps can be taken which would greatly reduce the power dissipation

of the accelerometer control circuitry. First, recall that the differential amplifiers of the A-

I modulator are identical to the differential amplifiers used elsewhere in the circuit except

the A-1 amplifiers are biased with two-thirds the current. Thus, the unity gain bandwidth

of the amplifiers in the modulator is approximately 20% less than the unity gain band-

width of the amplifiers in the C-V sensor and compensation networks. Since the amplifi-

ers in the A-1 modulator have approximately twice the settling time as the other amplifiers

and none of the amplifiers in the A-1 modulator ever have to settle in series, the bandwidth

requirements for the amplifiers in the A-1 modulator is only about an eighth of that

required by the remaining amplifiers. Thus, the amplifiers of the A-1 modulator should

82. See figure 5.2.

83. The differential amplifiers in the A-1 modulator are charging capacitors at their outputs however no settling is tak-
ing place.

84. 02 was however split with an asymmetric clock to form 03 and 04. 04 is high longer than 03 to allow more time
for the amplifiers to settle in series.
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only require about 2% of the power required by the faster amplifiers. This alone would

reduce the total power dissipation of the accelerometer controller chip by over 20%.

Because the resolution of the accelerometer is not limited by thermal noise from

the C-V sensor, the noise floor from the amplifiers can be increased significantly without

changing the overall resolution of the accelerometer. Recall the input referred noise floor

from the C-V sensor and lead-lag circuitry was calculated to be only 99.3ng. The thermal

noise from the first two stages can be increased by an order of magnitude without increas-

ing the 2.2gpg noise floor of the accelerometer by more than 20%. To maintain the same

speed for the amplifiers while the power dissipation is reduced, the load capacitance of the

amplifiers must be decreased. Thus, as the power dissipation is reduced to lower and

lower values, a practical limit is reached due to capacitance matching issues. It is safe to

assume that the total power dissipation of the controller chip could easily be decreased

from just under 300mW to less than 75mW.

6.2.3 Second Order Resonances

The problem with second order resonances never came into play in the hybrid

accelerometer that was built and tested because a vacuum test was not preformed. The

mechanical structure was heavily overdamped which prevented excitation of the second-

ary resonance modes. If the structure had been placed in a vacuum however, problems

due to underdamped secondary modes could have easily surfaced.

VDC ±.---------------

(a) (b)

Figure 6.1 Electrical Resonance Tuning Revisited
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The basic idea behind the electromechanical resonance tuning which was used to

place the poles of the mechanical is revisited in figure 6.1 a. If both the upper and lower

electrodes are charged to the same voltage and the proof mass is perfectly centered, no net

force is applied to the proof mass. However, once the proof mass moves away from its

center position, a net force is applied in the direction of the deflection. It is this position-

ally dependent force which is modelled as a negative spring constant, to first order. Ide-

ally, when this resonance tuning is used to bring the poles of the fundamental resonance

mode to low frequencies, the poles of the secondary resonance mode would be unaffected

and thus the resonant frequencies of the fundamental and secondary modes would be fur-

ther separated by electrical resonance tuning. This, unfortunately, is not the case. Figure

6. lb illustrates how the same effect which lowers the fundamental resonance mode acts to

lower the secondary resonance modes as well.

When there is no rotation of the proof mass, there is no net torque applied by the

DC voltages. If, however, the proof mass is rotated slightly, one end of the proof mass is

closer to the upper electrode and one is closer to the lower electrode. As a result, a net

torque is applied. This rotationally dependent torque acts to lower the resonant frequency

of the secondary resonant mode in the same fashion as the fundamental resonance was

reduced. A possible solution to this problem is shown in figure 6.2.

rB6fM~ass Proof Ma--
VD' L----------------- --

(a) (b)

Figure 6.2 Separating the Fundamental and Secondary Resonances

If, instead of using the previous mechanical structure, much smaller fixed elec-

trodes are centered above the proof mass, its possible that the fundamental frequency

could be electrically separated from the secondary resonances. The fundamental fre-
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quency is reduced in the same fashion as before (Figure 6.2a). Larger voltages are of

course necessary to achieve the same applied electrostatic force. In contrast, the position-

ally dependent torque which is applied to the proof mass is greatly reduced with this struc-

ture because the effective "lever arm" has been greatly reduced. Thus, although the

secondary resonance is still lowered by the electrical tuning, the secondary resonances

should be less affected by this alternate mechanical structure. In effect, the fundamental

and secondary resonance modes would be electrically split. Note this analysis ignores

fringing effects in the electric field lines which would reduce the benefits of this structure.

This would need to be taken into account in a detailed analysis before this method is used.

MultipleElectrodesI

Proof Mass

Figure 6.3 Four Quadrant Sensing

A method of avoiding the problem of secondary resonances was presented in refer-

ence 22. Four separate sense capacitors are formed by splitting the fixed electrodes placed

above and below the proof mass as diagrammed in figure 6.3. Using the four sense capac-

itors, four separate A-1 loops are implemented. This stabilizes the proof mass for both

normal and angular acceleration modes.
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