Content Routing: A Scalable Architecture for
Network-Based Information Discovery
by
Mark A. Sheldon

B.S., Duke University (1984)
S.M., Massachusetts Institute of Technology (1990)

Submitted to the Department of Electrical Engineering and
Computer Science
in partial fulfiliment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
December 1995
(© Mark A. Sheldon, 1995

The author hereby grants to MIT permission to reproduce and
to distribute copies of this thesis document in whole or in part.

4
Signature of Author i
/ Department of Electrical Engineering and

ﬂ Computer Science
~ N _ 11 October 1995
Certified by _ ... NI e e
David K. Gifford

Professor of Computer Science

N\ n]“_“ T{lesif Supervisor

Accepted by ...

CASLAGHUSETTS INSTIUTE
oF TecnoloGY Chairman, Departmental C

APR 111996

LIBRARIES

L) ?re;isgﬁ R. Mo\l:genthalér
mmittee on Graduate Students

Content Routing: A Scalable Architecture for Network-Based

Information Discovery
by
Mark A. Sheldon

Submitted to the Department of Electrical Engineering and
Computer Science
on 11 October 1995, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

This thesis presents a new architecture for information discovery based on a hierarchy
of content routers that provide both browsing and search services to end users. Content
routers catalog information servers, which may in turn be other content routers. The
resulting hierarchy of content routers and leaf servers provides a rich set of services to
end users for locating information, including query refinement and query routing. Query
refinement helps a user improve a query fragment to describe the user’s interests more
precisely. Once a query has been refined and describes a manageable result set, query
routing automatically forwards the query to relevant servers. These services make use
of succinct descriptions of server contents called content labels. A unique contribution
of this research is the demonstration of a scalable discovery architecture based on a
hierarchical approach to routing.

Results from four prototype content routing systems, based on both file system (NFS)
and information system (HTTP) protocols, illustrate the practicality and utility of the
content routing architecture. The experimental systems built using these prototypes pro-
vide access to local databases and file systems as well as over 500 Internet WAIS servers.
Experimental work shows that system supported query refinement services provide users
with an essential tool to manage the large number of matches that naive queries routinely
generate in a large information system. Experience with the prototype systems suggests
that the content routing architecture may scale to very large networks.

Thesis Supervisor: David K. Gifford

Title: Professor of Computer Science

Acknowledgments

During my graduate career, I have been blessed with many friends and colleagues who
have contributed greatly to my work and well-being.

My advisor, David Gifford, has been very patient and was instrumental in helping me
get started on this project. He pushed me and made many suggestions when I thought
I was completely stuck. My thesis committee members, Jerome Saltzer and Barbara
Liskov, also provided useful feedback.

I am indebted to Programming Systems Research Group members past and present
for their assistance and friendship. Franklyn Turbak, Andrzej Duda, Pierre Jouvelot, and
Melba Jezierski read thesis drafts and gave valuable comments. Andrzej Duda, Brian
Reistad, and Jim O’Toole contributed ideas and code to the project. Pierre Jouvelot
contributed various collaborations and many airplane rides. My officemate, Ron “Wind
Beneath my Wings” Weiss, has added considerably to this work and to ongoing research.
Useful discussions and comments were numerous, but I would like to mention Jonathan
Rees, Mark S. Day, Bien Vélez, Chanathip Namprempre, Pete Szilagyi, and Michael Blair.
Ken Moody and Jean Bacon of Cambridge University made many useful suggestions,
some of which are being pursued in ongoing research. Becky Bisbee and Jeanne Darling
have been invaluable resources for getting things done.

For helping me find a place to be a hermit, I thank Vernon and Beth Ingram and the
people of Ashdown House.

I thank my family for years of support. My parents, Frank C. Sheldon and Beverly
J. Sheldon, have always been a part of my education and have encouraged me all along.
I acknowledge the support of my brother and sister, Eric and Pam, as well as of my
Grandmother Evelyn Kist. My wife Ishrat Chaudhuri, deserves more than I can ever
repay for her patience, good humor, and loving support.

Finally, I owe a great debt to the ballroom dance community for its support and
for all the joy I have gotten from dancing. Special thanks are due my dance partner,
Juliet McMains, for helping me during the most trying times. I thank my many coaches,
especially Suzanne Hamby and Dan Radler. My previous dance partners have been

absolutely essential to my mental health and happiness: Mercedes von Deck, Yanina
Kisler, Yi Chen, and Elizabeth Earhart.

THIS THESIS IS DEDICATED TO MY PARENTS.

This thesis describes research done at the Laboratory for Computer Science at the
Massachusetts Institute of Technology, supported by the Defense Advanced Research
Projects Agency of the Department of Defense contract number DABT63-95-C-0005.

3

Contents

1 Introduction 7
1.1 TheProblem e 12
1.1.1 The User’s Perspective 12

1.1.2 The System’s Perspective 18

1.2 Content Routing System Overview 19
13 Related Work 24
1.3.1 Global Indices e e e e e e e e e 25

1.3.2 Subject-Based Directories 26

1.3.3 Network-Based Information Retrieval Systems 27

1.3.4 Network-Based Resource Discovery Systems 28

1.3.5 Distributed Naming Systems 30

1.4 Contributions of the Thesis 30
1.5 Structure of the Thesis 32

2 Design of a Content Routing System 33
2.1 Example Session e 34
2.2 Content Routing System Semantics 40
2.2.1 Abstractions L e 40

222 Querieso e e e e e e e 47

223 Operations. oo it e e e 50

2.3 Content Routing System Architecture. 55

23.1 QueryRouting 57

232 QueryRefinement. 59
2.3.3 Constructing Content Labels 65
2.3.4 Hierarchies Organize the Information Space 72
24 SUMINATY . . . o v e i e 7
Implementation and Practical Experience 79
3.1 Building Content Labels 82
3.1.1 Content Labels for SFS Servers 82
3.1.2 Content Labels for WAIS Servers 85
3.2 Evaluating Content Labels 90
3.3 Implementing Query Refinement 91
3.4 SFS-based implementation 95
3.4.1 Structure of the SFS-based prototypes 95
342 The SFS-WAISGateway 98
3.4.3 Performance of the SFS-based prototypes 99
3.5 HTTP-based implementations 106
3.5.1 Structure of an HTTP Content Router for WAIS 107
3.5.2 Experience and Performance 110
3.6 Summary e e e e e e e e e e e e e 111
Conclusion and Future Work 113
4.1 Directions for Future Research 113
4.1.1 Legal and EconomicIssues 113
4.1.2 Visualization e, 114
4.1.3 Larger Environments 114
4.1.4 Building Hierarchies 115
4.1.5 Performance 118
416 Content Labels 120

42 SUmMMAary o i i e e e e e e e e e e e e e e e e

A SFS-based Implementations
Al UserInterface i e

Chapter 1

Introduction

The Internet contains tens of thousands of information servers specializing in topics such
as news, technical reports, biology, geography, and politics. The Internet’s vast collection
of servers can be viewed as a distributed database containing a wealth of information.
Unfortunately, this information is relatively inaccessible because there are no satisfactory
mechanisms for organizing the data or browsing and searching it effectively.

This thesis presents a new approach to the problem of information discovery and
retrieval in very large networked environments. A hierarchical content routing system
provides the user with the ability to do interleaved browsing and searching of a large,
distributed information space at various levels of granularity. The goal of the design and

implementation of the content routing system is to answer the following six questions:

1. Can a system help a user cope with the vast amount of information available by pro-
viding some organization of the data and automatically suggesting improvements

to users’ queries?

2. Isit possible to route queries to a meaningful subset of a large number of information

servers?

3. Is it possible to define some metadata structures that can be used to organize the

information space and provide other assistance to users?

Browse Submit Query

Retrieve Retrieve

Figure 1-1 Browsing Figure 1-2 Searching

4. Can the design successfully interoperate with pre-existing systems?

5. Is there a practical way to extract useful metadata descriptions of server contents

from large numbers of disparate, incompatible servers?
6. Is it possible to build a system that scales to millions of servers?

The results of this thesis demonstrate that questions 1-5 may be answered affirma-
tively. The work thus far suggests that the content routing system may scale well, but a
conclusive answer to question 6 will require more ambitious experiments.

A user’s interactions with an information system span a broad spectrum between
searching and browsing. At one end of the spectrum, the user knows exactly what
document is desired and would like to search for it, perhaps by name. At the other end
of the spectrum, the user has no concrete information need and merely wishes to browse
to become familiar with the contents of the information system. In practice, a user starts
with a vague or poorly specified information need that becomes more precise as she learns
about the contents and organization of the collection. (This description of the spectrum
between searching and browsing is a paraphrasing of an argument in [11].)

Thus there are three broad categories of operations of concern to a user of an infor-
mation discovery system: document retrieval, browsing, and searching. The low-level
operation of document retrieval in computer networks has been provided in many ways,
notably by the file transfer protocol ftp [37] and the hypertext transport protocol http
[4].

More recently, systems focusing on browsing have become available. Network file

Fon¥ulate —>E Refine

Retrieve

Figure 1-3 More complete model of user interaction

systems [66] allow users to browse file systems distributed across many machines on a
network. Larger scale, indeed global, browsing systems such as gopher [1] and the World-
Wide Web [5] are quite recent. A typical system for browsing provides the functionality
of Figure 1-1. A user of such a system examines the contents of a document or a collection
of documents given in a directory or a hyperdocument and gradually becomes familiar
with the contents and structure of the available data. Truly global browsing systems
can become tedious to explore, and it can be difficult to recall a path to an interesting
documents even after it has been found. Existing browsers try to ameliorate this problem
by allowing a user to save references to interesting places in the system.

Systems for searching the Internet are very new indeed, and nearly all of these systems
have focused on the construction of centralized, global indices (e.g., Archie [17] and the
Web Crawler [47]). A typical system for searching provides the functionality of Figure
1-2. A user formulates a query that describes her information need. The query must be
written in some query language, though plain text keywords are the norm. The system
finds all documents on the network that match the query and presents the results, usually
using some relevance ranking system. Search systems are difficult to use in the absence
of a concrete information need or when naive queries lead to either too many or too few
results.

Although some systems (e.g., Gopher [1]) allow the user to browse until she finds a
searchable index, systems have artificially partitioned themselves according to whether
they provide a searching or browsing facility. However, because a user’s information needs

can change while using an information discovery system, it is important that a system

9

provide browsing and searching functions together. Figure 1-3 illustrates the complex
interplay of browsing and search activities necessary for effective navigation of a large
information space. This flexible model of user interaction is a principle contribution of
this research. A user should always have the option to browse or search (using queries)
as well as retrieve documents. These operations should be repeated at different levels
of detail until the user’s information need is satisfied. The query process itself should
be interactive with the system suggesting refinements to user queries that will better
match the user’s interests and the system’s performance capabilities. Suitably refined
queries can be routed to appropriate remote information providers and the user may
peruse the results using all the available tools. In the figure, a user may switch from any
query operation back to browsing and retrieving (though for clarity the arrows have been
omitted).

Progressive discovery is a model of interaction where the system provides a more
detailed view of the information space as the user provides a more precise account of her
information need. The system tries to provide enough detail to allow the user to proceed
without overwhelming the user with a flood of information. Progressive discovery thus
helps the user strike a better information bargain by providing more detailed information
as the user supplies more information. The information supplied to the user is given at
an appropriate level of granularity so that the user is not overwhelmed by a huge number
of overly detailed responses.

Progressive discovery controls the complexity of a large information space, and for
this reason it underlies much of the design presented in this thesis. No previous system
provides an architecture that allows iterative, integrated use of browsing and search tools
at various levels of granularity.

The content routing system employs a user-centered design that provides users both
with the ability to browse multiple, coexisting information hierarchies and with associa-
tive access to the information. In particular, a content routing system combines inter-

leaved browsing and search with two key services in support of associative access: query

10

refinement and query routing. Query refinement helps a user describe her interests more
precisely by recommending related query terms. For example, if a user is interested in
buddhism, the system might recommend query terms such as zen, tibetan, or ther-
avada, which are all types of buddhism. Once a query has been refined and describes a
manageable result set, query routing forwards the query to remote information servers
and merges the results for presentation to the user. Query refinement and routing use
information from compact descriptions of remote server contents called content labels.
Experience with several implementations suggests that query refinement in conjunction
with query routing us an effective tool for resource discovery in a very large document
space. Moreover, we are convinced that query refinement is an essential component of
any very large scale, rapidly changing information retrieval system.

This chapter will set the stage for the principled design of a very large scale, dis-
tributed information discovery and retrieval system. Previous work has focused on par-
ticular subproblems or has been driven by particular implementation technology. The
approach here is user-centered. We first examine the problem from the user’s point of
view to determine what qualities are necessary for a usable system. Only then will we
examine the requirements from the system’s point of view. The content routing system
design will be based on the principles that emerge from this analysis.

The remainder of this chapter

o details the problem of information discovery in large distributed systems and de-

duces necessary features of any system that is to solve the problem (Section 1.1)

e provides an overview of the content routing system design showing how it solves

the listed problems (Section 1.2)

e describes related work explaining how previous systems have failed to meet impor-

tant goals (Section 1.3)

e and summarizes the contributions of the thesis (Section 1.4).

11

1.1 The Problem

The difficulty of providing access to a large number of distributed information servers
lies primarily in problems of scale, both for the user and for the system. Section 1.1.1
analyzes the user’s needs first, and Section 1.1.2 examines the system’s requirements.
Each section will contain a set of necessary principles or features together with a brief
argument for their necessity. These lists may not be exhaustive and the features are not
orthogonal. However, I am unaware of any other comprehensive list in the literature,

and there is no existing system that takes all of these principles into account.

1.1.1 The User’s Perspective

The user’s view of the information on the present day Internet is that of a vast space
of documents clustered into groups in a large, flat, disorganized set of servers. Thus the
user must cope with a vast, featureless expanse of information. To help the user negotiate
this space, an information discovery and retrieval system should provide features to the
landscape, allow the user to deal with a controlled amount of material at a time, and
provide more detail as the user looks more closely. (This physical metaphor suggests
a possible connection between data visualization and geographical information systems.
Exploring this synergism remains for future work.) In fact, the system must be an active
participant in the negotiation of an information bargain in which the user receives greater
returns on greater investments.

The meta-principle of progressive discovery therefore underlies many of the principles
in this section, and many of the principles are interrelated. The system helps the user
learn more about the information space, which helps the user learn more about her
information need, which helps her focus attention on particular parts of the information
space, which allows the system to provide more detailed feedback. A critical corollary of
progressive discovery is that the user must not be overwhelmed with more information

than she can handle effectively.

12

The remainder of this section enumerates various features required by a user of an
information discovery system for a large, distributed collection of information servers.

Single point of contact: The user needs a single point, or a few select points, of
contact to begin. Even an expert user who has already found relevant sources needs a
single point to return to in order to keep up with the additions and changes to the set of
resources. In addition, a user requires mechanisms for exploring the information space
even if she has only an imprecise idea of what information is sought. In fact, the user
may not have any definable information need, just a desire to learn what is “out there.”

Consistent interface: There must be a single, consistent user interface to the infor-
mation discovery system. It is too difficult for the user to understand a wide variety of
idiosyncratic interfaces. The Conit system [34, 35] has addressed this particular issue di-
rectly by providing a uniform, sophisticated, interface to a variety of existing information
systems.

Content-based naming: In order to locate documents, a user requires a way to
name documents according to their contents. Today, retrieving a document on the In-
ternet requires that one know its precise location and its name at that location. The
World-Wide Web has made document retrieval easier, but a document’s URL (Universal
Resource Locator) is still a location based name. These arbitrary names are impossible
to guess and difficult or impossible to remember. Content-based names are names of
documents that are derived from their contents. They are not necessarily query-based.
For example, one could choose the Library of Congress subject catalog as a basis for
naming documents. Every time a document is added to the collection it is assigned a
path name based on its position in the subject classification and its title. Such a name is
not based on the object’s physical location. Given enough knowledge about the contents
of an item and the classification scheme, one may deduce the item’s name. (There are
other reasons for separating naming from location. In fact, [63] argues for low-level names
(Uniform Resource Names) that have no user-friendly semantics whatsoever. This thesis

is concerned with higher-level names that users may guess or at least remember.)

13

query: government and genetics

R

§ 8 '
i 1s g § } 357
LIBRARY of ST LEBRARY - GENOME
SONGRESS

Figure 1-4 Seek off-line assistance

System-provided structure and feedback: The user must be able to rely on the
information discovery system itself to provide the organization and tools necessary to find
items of interest. First, users simply cannot use a large amount of information without
some organization. Furthermore, because so many information servers and so many
documents already exist or are being created, no one person can know what is available on
the Internet on an arbitrary topic. The rapid change in the Internet’s contents also implies
that any guidebook is out of date before it reaches the bookstores. Figure 1-4 shows a
user contacting a particular information server after consulting published references and
colleagues. Thus, while off-line resources such as human experts and reference books will
always have some utility, the system itself is the only authoritative source of information
about the system’s contents, and it must be able to provide the necessary help to the
user.

Browsing: Again, a user without a readily specifiable information need requires a
mechanism for discovering the system’s contents. It must be possible for the user to
browse the system’s contents as one would a library. However, the system must not
overwhelm the user with a barrage of information. Providing a service that lists all
documents and/or all hosts on the Internet, for example, is simply not useful. In order

to support progressive discovery while browsing, there must be some organization of the

14

information space, perhaps based on a subject classification system.

Multiple, over-lapping hierarchies: A large scale information system ought to
provide browsing of multiple coexisting, even overlapping hierarchies, each of which
presents a different view of the information system’s contents. Hierarchical structures
organize an information space so that a user can browse it effectively using progressive
discovery. Libraries have used hierarchical classifications since antiquity and continue to
do so today. Subject-based hierarchies like the Library of Congress cataloging system
are clearly useful tools for organizing information. Different types of subject hierarchies
exist and have proven useful, even rather ad hoc schemes such as the WWW Virtual
Library.! In addition, users may find other types of organization useful. For example, a
geographically-based hierarchy may help one who knows that relevant work was done at
some particular university. Similarly, institutional hierarchies can be useful. (Organiza-
tions of hierarchies are discussed in more detail in Section 2.3.4.) Since users may have
different information needs or different ways of describing their information needs, there
should be multiple hierarchies providing different views of the data.

Associative access: Users require associative access to both documents and internal
clusters in a hierarchy. Any hierarchical structure, however well organized, can become
tedious and inefficient to search, especially as a user’s needs become more concrete.
Thus, users with more specific information needs require a more direct path to items of
interest. However, the principle of progressive discovery warns against simply providing
direct associative (or query-based) access to all documents in a large system. Using the
hierarchical organization of the information to group documents into clusters can allow
one to gauge the size and relevance of the result set of a preliminary query (see below).

Query refinement: Users require some automatic means to focus queries more
precisely. Because the information space is so large and rapidly changing, initial user
queries will have huge result sets that will overwhelm the user. It is not in the user’s

interest (or in the interests of the discovery system) to process such queries. The system

lhttp://info.cern. ch/hypertext/DataSources/bySubject/Overview. html

15

must reveal high processing costs to the user before they are incurred, but it is not
enough just to inform the user that a query is too expensive. The system must actively
help the user formulate better specifications of her interests. One way to do this is to
allow a query-based form of progressive discovery in which the user finds out about large
segments of the hierarchy that are relevant rather than individual documents. But even
this may yield unmanageable results on large servers. It is therefore incumbent on the
system to help the user narrow the search space by suggesting query modifications that
will be more precise and efficient. The system must do this because it is the only source
of expertise available to the user. Suggestions for improving a query must be related to
the user’s interest and also to some on-line knowledge of the network’s contents. Query
refinement is a facility that, given a user’s query, automatically suggests query terms that
will help the user formulate a better query, one that more accurately reflects the user’s
interest and can be answered within practical performance constraints. Figure 1-5 shows
one of the prototype content routing systems refining the query buddhism. This query
has identified a variety of document collections too numerous to browse (the list goes off
the bottom of the window). The system’s suggested terms are in the pop-up window,
and the user may click on any term to add it to the query. The algorithm that computes
the list is very simple and is described in Section 2.3.2. Many of the suggested terms
have a strong semantic relationship. For example tibetan, theravada, and zen are all
types of Buddhism. Other terms are more related to service type, for example ftp.
Query Expansion: Often however, queries produce few or no matches, perhaps
because the query terms are not indexed at all. In such cases, it is useful to find related
terms to add to a query to increase the result set size. There are a variety of standard
techniques for query expansion. Thesauri and term collocation statistics have been used
to increase the size of result sets to improve recall. See [51, pp. 75-84] as well as
[64, 48, 15]. This is the opposite of the purpose of query refinement. Section 2.3.2
discusses how to parameterize the query refinement techniques used in the prototype

content routers to serve for both query refinement and query expansion.

16

NOSA Maosain: DBansnent Visws 707 7.7\ 7\

fi]e Options y_aw'gé}‘e Annotate . ;I_Ielp

Document Title: lContent Router ;
buddhist
Document URL: [_http:{/gariS.ICS.mit.edu electronic

coombspapers
Query: lbuddhism i .
archives
'submitl fip
- zen
Operations: :
papers
select tern for completion @ ne?
' % search collections - doc
poetry
a {7 file-archive-uunet tibetan
o {7 ANU-Buddhist- -Rsrce wist!
o I ANU-Shamanisn-Studi . wuarchive
N R e L
mirrors
o [T ANU-ZenBuddhisn-| rv
- edu
° 7 warchive | theravada
o 7 ANU-Asian-Religions ritual
o {7 Jantric-Neus asia
o [T ANU-Cheng-Tao-Ko-VYerses western
o 7 ANU-Thai-Yunnan students
research
o [T ANU-Dhannapada-VYerses .
journal
o [T ANU-SocSci-Netlore
o {7 Onni- - ic-Reso
o 7 bit-listserv-novell
o 7 mailing-lists

Back| ¥ o1 ward| Homel:Fleload'f:Opve”r'i..”."[iséve As.. | Clone[New Window

Figure 1-5 Example of query refinement.

17

In summary, any very large information discovery system must provide a way to deal
with the complexity of the search space both for browsing and for querying. The system
must provide feedback and suggestions on partial or poorly specified queries if it is to
be successful in a large, heterogeneous, dynamically changing environment such as the

Internet.

1.1.2 The System’s Perspective

This section reviews the technical challenges a general, large scale, distributed informa-
tion system faces in modern networks. Since the system’s perspective has been the focus
of prior work, this review is brief. Note that the system requirements are not necessarily
the same as the user’s requirements. It may be that user requirements are impossible to
meet with present technology (or at all). Happily, this is not the case.

Scale: Any large, distributed information system must be concerned with scale. From
the system’s point of view, scalability has to do with the management of resources. A
scalable system is one that can grow without resource requirements anywhere in the
system exceeding the resources available. In general, as the number of documents gets
larger, there must be no point in the discovery system where resources grow too quickly.

Performance: Any system must provide acceptable performance to be useful. Per-
formance, however, is not a monolithic measure. Response time is, of course, important,
as are space requirements. Equally important is the quality of the results. The system
must do an acceptable job of helping users find the information they seek. Traditional
measures of recall (finding as many relevant items as possible) and precision (not re-
turning irrelevant items) are critical. Ultimately, in a large, distributed environment, an
implementation will trade off these various measures of performance.

Network usage: This item is related to both scale and performance. The informa-
tion system must not flood the network with traffic that reduces the bandwidth available

for other work.

18

Heterogeneity: The Internet today has a very heterogeneous collection of infor-
mation servers that is changing rapidly. Servers can be personal computers, large file
servers, or even powerful multiprocessors. This, together with the distributed nature
of the information system, suggests that it is important to for the implementation to
tolerate varying latencies and capabilities in its operations.

Interoperability: A corollary of heterogeneity is interoperability. If a wide variety of
system types are to be included in a large distributed system, then they must interoperate.
There is a large investment in different types of information systems on the Internet,
and it is essential to interoperate with these systems to leverage their large information
resources.

Autonomy: Again, wide participation suggests that many systems will be unwilling
or unable to comply with onerous restrictions on data organization and even semantics.
While it may be possible to organize cooperating sets of information providers that abide
by a fixed set of rules (for example, naming systems do this), it is important that a
general information system design allow for more flexibility.

Ease of participation: The interactions with various servers need to be very simple
to support a wide variety of systems. Also, the information system needs to have a very
dynamic structure. For example, it must be relatively simple for a new server to join the
information hierarchy (or to have data enter the system). A new server must be able
to request registration with the system, and the system must be able to request that
a server register. A simple interface and simple registration procedures are essential to

encourage participation.

1.2 Content Routing System Overview

The content routing system design described in this thesis incorporates the features of
Section 1.1. The detailed design of the system will appear in Chapter 2, which includes a

detailed example session in Section 2.1; however, this section provides a quick overview.

19

The content routing system supplies a single logical point of contact, which is the root
of a browsable and searchable information hierarchy. The interface is a simple extension
of both a distributed file system and a conventional information retrieval system. We
have previously explored the combination of file and information retrieval systems [21],
though this design is not limited to that particular file system model. Interaction with the
system allows browsing, as in a distributed file or hypertext system. A content routing
system extends the combined file and information retrieval systems with the notion of
a collection document, which is a cluster of related documents. Browsing and searching
involve the use of collection documents. As the user’s attention focuses on a manageable
number of collections, the collections may be expanded or searched to expose more detail
about their contents and to allow more precise queries. This allows the user to see a
controlled amount of information, and, as the information need becomes more precisely
specified, the view of the information space becomes more detailed. Thus, the clustering
of documents into collections supports the exploration of the information space at varying
granularities.

Collections are supported by the idea of a content label, which is a compact description
of the contents of a collection (i.e., the contents of an information server). Users may
look at content labels to help in the formulation of queries as well as to understand the
contents of a collection. Content labels are used for routing queries to relevant servers and
for providing query refinement suggestions. Content labels are chosen by the systems that
administer the collection, that is, they are determined at the site where the information
is. This thesis explores some techniques for automatic construction of content labels.

Names of items within a content routing system depend on the hierarchy, not on the
item’s physical location. In particular, content routing systems support subject-based
hierarchies for content-based naming, and they support search tools for associative access.
The information hierarchies structure the information space, and the query refinement
feature provides feedback tailored to the user’s needs and to the user’s interests and

current position in the information hierarchy.

20

The hierarchical structure provides a classic solution to one aspect of the problems
of scale. A content routing system consists of a directed graph of information providers,
each representing a collection. The internal nodes are content routers, which are servers
that implement the design of this thesis. These content routers will have information
specialties according to the hierarchy they are in. Whenever the number of elements at a
node gets too large, some elements are gathered together into a new node. An information
discovery system may exploit the semantic hierarchy demanded by the users’ needs as
outlined above. The physical hierarchy need not, of course, reflect the semantic hierarchy
exactly.

A second feature that supports scaling is the use of content labels. While a hierarchical
structure controls fan out, content labels provide a way of locally controlling the required
indexing resources. For example, a content router that has ample resources and indexes
small collections may allow arbitrarily large content labels. However, a content router
may also require content labels to be of a particular size, or may charge for extra content
label space.

Naive strategies of query processing also raise the issue of scale. Figure 1-6 shows a
system that simply forwards a user’s query to every server in the system. Though such
a system provides a single point of contact for the user, it wastes enormous amounts
of network resources and suffers poor performance as the numbers of users and servers
grow. While various strategies of replication and caching may ameliorate these problems
in the near term, a global broadcast scheme will not scale because it is too costly and
inefficient, enormously complicated, or both. Moreover, it avoids the central issue of how
to help the user understand the information space.

Figure 1-7 shows another naive approach to the problem. Here, the system builds a
global index of all documents and makes it available to the user. This is the approach
taken by systems like Veronica [26], Lycos [36], and the RBSE Spider [16]. The scale of
the Internet, which is today only a fraction of its eventual size, is so great as to render

infeasible any comprehensive indexing plan based on a single global index. Even though

21

Www: government and genetics

Giobal Index

\ query: government and genetics

TN

LIBRARY of MIT LIBRARY LIBRARY of T LIBRARY) QENUME
CONGRESS CONGRESE

PSP S

Figure 1-6 Broadcast query everywhere Figure 1-7 Use a global index

some sites on the Internet distance themselves from the rest of the network via firewalls
and other techniques, the trend is toward greater and greater connectivity [56]. A global,
centralized index will grow with the size of the document space and will be very difficult
to keep up to date. Though its performance for the user is much better than that of the
broadcast approach, it ultimately will not scale. It already takes Lycos months to scan
the Web from the documents it stores as starting points for a search. The Canadian
company Open Text is preparing to offer full text indexing of the entire Web, and even
at its current modest size, they expect a database of 40-50 gigabytes managed by three
dedicated DEC Alphas [41]. Transmitting all documents on the net to the index server for
indexing (or even the index data which is still large) will represent an enormous amount
of network traffic. This traffic, if the global index is to be kept up to date, will reduce
available network bandwidth considerably and create local bottlenecks. Organized use of
a wide distribution of indexers and managed communications procedures ameliorate these
problems, and in fact, this is one way to view the content routing approach. Furthermore,
a global indexing strategy does nothing to organize the information space for the user.
The architecture proposed in this thesis is a compromise between broadcast and
global indexing. Figure 1-8 shows a content routing system accepting a user query and
forwarding it only to relevant servers. To do this, the system must have some idea of

server contents. A content routing system uses a compact description of server contents

22

Query Suggested query terms

l

Content Routing
System

LIBRARY of ST LERARY
CONGRESS

Figure 1-8 Route only to relevant servers

called a content label to perform query routing and refinement. A content label may be
small compared to the size of an entire collection, unlike the information required for a full
global text index. Furthermore, as Chapter 2 will show, content labels can be designed
so that they change more slowly than the collection itself. A hierarchical arrangement
of content routers can also be thought of as containing a distributed global index with
index data becoming more complete as one approaches the leaves of the network. The
architecture supports a flexible registration protocol and allows a great deal of server
autonomy.

Thus, this thesis explores the design of a content routing system that:
e Supports browsing and associative access.

e Supports a uniform query interface that allows progressive discovery of network

contents and guides users in formulating queries of adequate discriminatory power.

e Propagates descriptions of server contents through a hierarchy of information ser-

Vvers.

e Routes individual queries to available servers based on the expected relevance of

the server to the query.

23

This thesis will not concern itself with certain issues that are clearly important for
a full scale system. Namely, I will not address replication, network protocols or naming
(accept for the specific navigation and query tools in the design). I will also not address
the important issue of deduplication, that is how to remove duplicate documents from
the system. Duplicates can arise from the same document’s presence in more than one
server, different versions of the document being available, or by different access paths to
the same document. The last possibility can easily be overcome if there is a system for
normalizing names [28]. See Section 4.1 for a brief discussion of these and other issues

for future research.

1.3 Related Work

The content routing system design is unique in its use of query refinement. Perhaps this
service has been neglected, while query expansion has long been available, because of
the pervasive use of the vector space query model. (See [51] for information on vector
models). Since vector models do not support boolean conjunction, there is no way to
reduce a result set by adding query terms. New query terms always increase recall. Our
use of a boolean query model makes query refinement a practical feature rather than just
an ideal. The inclusion of the query refinement feature draws on our past experience with
the Community Information System [22, 20]. In the Community Information System, a
simple theorem prover assisted the user in choosing query terms that guaranteed the
query could be satisfied at available news wire databases.

Related work can be broken down into the following categories: Global indices, sub-
ject directories, network-based information retrieval systems, and network-based resource

discovery systems.

24

1.3.1 Global Indices

Web robots like the Web Crawler [47], ALIWEB [30], Lycos [36], the RBSE Spider
[16], and Yahoo? gather information about resources on the Web for query-based access.
Veronica [26], a discovery system that maintains an index of document titles from Gopher
[1] menus, uses the same strategies. The Archie system [17] polls a fixed set of FTP
sites on the Internet and indexes the file names on those sites. A query yields a set of
host /filename pairs which is then used to retrieve the relevant files manually.

All these systems use a global indexing strategy, i.e., they attempt to build one
database that indexes everything. Even so, they limit the information they index: for
example, Lycos indexes only the title, headings and subheadings, 100 words with highest
weights (according to a weighting function), and the first 20 lines. They further restrict
the size of the indexed data in bytes and in number of words. If there must be restrictions
on indexed terms, it would be preferable to leave the decisions to entities that have domain
specific knowledge (as well as knowledge about the users of the data). Global indexing
systems do not provide any organization of the search space, and they do not give the
user any guidance in query formulation. These systems overburden network resources
by transmitting all documents in their entirety to a central site (or a cluster of indexing
sites in the case of Lycos). The futility of this sort of architecture is already apparent: it
takes on the order of weeks (or more) for Lycos to update its indices. A content routing
system allows distributed processing of information at more local intermediate servers,
thus distributing the work load and avoiding network bottlenecks. Furthermore, a content
routing system allows greater autonomy to each information provider and content router
to tailor its indexing mechanisms and facilities using local knowledge.

One interesting feature of Lycos is its use of pruning the graph of Web documents
it has indexed (in order to preserve a finite representation). When the graph is pruned,
a place holder containing the 100 most important words in the documents that were

pruned is left behind. This list is built from the 100 most important words in each of the

2http://www.yahoo.com/docs/info/faq.html

25

pruned documents. This can be viewed as a very ad hoc and rudimentary type of content
label. Another interesting feature of Lycos is its association of link information (the text
describing a link) with the document the link refers to: some information from the parent
is indexed to refer to the child. This information is useful because it is essentially a name
or description of the document referred to thought up by someone else. This information
is not necessarily available at the site where the document resides, and thus may be
difficult to integrate into a content routing system.

Yahoo also is different from the other systems in this category because, like the content
routing system and the Semantic File System [21], it provides a hierarchical organization
of the data for browsing. In fact, Yahoo can be viewed as a Semantic File System
implemented in the World-Wide Web. The hierarchical organization is ad hoc, but quite
useful. Queries are processed against the entire document space as if the hierarchy were
flattened. One very useful feature (also true of the Semantic File System) is that query
results are enumerated with their entire path name in the hierarchy. This allows the user
to submit queries and use the results to learn about the hierarchy, possibly following up

previously unknown clusters of data.

1.3.2 Subject-Based Directories

Subject-based directories of information, e.g., Planet Earth® and the NCSA Meta-Index*,
provide a useful browsable organization of information. These systems focus only on
browsing. These hierarchies would be useful paradigms for organizing particular hier-
archies in a Content Routing System. However, as the information content grows, a
browsing-only system becomes cumbersome to use for discovering relevant information.
Associative access is necessary for quickly generating customized views of the informa-
tion space in accordance with a user’s interests, and this associative access must work at

varying levels of granularity. None of these systems provide this integration, nor do they

Shttp://white.nosc.mil/info.html
“http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/MetaIndex.html

26

provide query routing and refinement.

In contrast to most of these systems which use static, externally-imposed hierarchies,
the Scatter/Gather work of [11] uses data-driven, automatic construction of information
hierarchies based on fast clustering algorithms. I expect that many useful content rout-
ing hierarchies could be developed using their off-line clustering algorithms, and it may
even be feasible to blend the Scatter/Gather dynamic clustering techniques with con-
tent routing (though this remains an open question). Another approach to data-driven
hierarchy construction may lie in clustering by automatic theme extraction [53]. If the
past is any guide, automatic clustering may ultimately prove more useful than manual
clustering just as automatic indexing has proven to be preferable to manual indexing
[52]. Nonetheless, content routing supports hierarchies based on data-driven clustering
as well as on other organizing principles.

The Scatter/ Gather work does take a similar point of view to that of content rout-
ing, namely that the user model should allow for progressive discovery with interleaving
of browsing and searching at varying levels of granularity. In [49], the authors use the
term ‘iterative query refinement’ to mean what I call ‘progressive discovery.” The Scat-
ter/Gather architecture does not seem to support distributed processing where clusters
are implemented as servers, and there is no notion of query routing or refinement. Users

must explicitly select clusters for further interrogation.

1.3.3 Network-Based Information Retrieval Systems

Network-based information retrieval systems provide associative access to information on
remote servers. WAIS [29] combines full text indexing of documents with network-based
access. However, there is no facility for routing queries to relevant databases and merging
results, nor is there any mechanism for suggesting query terms to users.

The Conit system [34, 35] provides a uniform user interface to a large number of
databases accessible from several retrieval systems. User queries are translated into

commands on the different systems. However, there is no support for the automatic

27

selection of relevant databases for a user’s query.

1.3.4 Network-Based Resource Discovery Systems

Network-based resource discovery systems like Harvest and GlOSS gather information
about other servers and provide some form of query-based mechanism for users to find out
about servers relevant to a request. Harvest [8] builds on our work on content routing by
providing a modular system for gathering information from servers and providing query-
based browsing of descriptions of those servers. A broker is a kind of content router,
and a SOIF (Structured Object Interchange Format) object is a kind of simple content
label. However, Harvest has no architecture for composing brokers. The Harvest Server
Registry is like the WAIS directory of servers: It does not appear to support interaction
with multiple servers by query routing and merging of result sets; rather it supports the
ability to click on a broker and query it. There is no query refinement capability or even
enumeration of field names or values. The user must browse through the SOIF objects
to get hints on how to construct queries.

The GIOSS system [25] also provides a mechanism for finding servers relevant to a
query, but it uses a probabilistic scheme. GIOSS characterizes the contents of an in-
formation server by extracting a histogram of its words occurrences. The histograms
are used for estimating the result size of each query and are used to choose appropriate
information servers for searching. GlOSS compares several different algorithms using the
histogram data. The content routing system prototypes do not fit into any of G1OSS’s
categories, because they do not use document frequency as a measure of server relevance
for routing (though they do use document frequency data for suggesting query refine-
ments). Moreover, GIOSS’s estimates of query result set sizes are not at all accurate.
These estimates, which are used for a kind of routing function, are inaccurate because
GIOSS assumes query terms appear in documents independently of each other and with
a uniform distribution. This assumption is obviously false, and all data-driven clustering

algorithms as well the query refinement feature in a content router are based on the

28

certainty that term occurrences are dependent. It would not be such a problem for other
aspects of cost estimation (or even parts of a query refinement algorithm) to be based on
this false heuristic if it were to prove useful, because these other features do not affect
the semantics of query routing and identification of relevant sources. GlOSS also does
not search remote databases, it only suggests them to the user who must search them
and retrieve documents manually. More recently, the GIOSS work has taken up the idea
of hierarchical networks of servers, though this effort is preliminary and has been used
only for two-level hierarchies [24].

Simpson and Alonso [61] look at the problem of searching networks of autonomous,
heterogeneous servers. The focus of this work is on determining the properties of a pro-
tocol that preserves server autonomy while providing useful services. In particular, they
decompose the problem into various independent modules and describe the operations
each module implements. Their system does not provide any analog of query refinement,
or even automatic query routing: the user has to select servers to search manually. It
is also not clear whether any form of browsing is allowed. However, they did have an
analog of content labels to describe server contents. Their approach has a probabilistic
query semantics and does not support browsing with query refinement. Also see [2] for a
survey of approaches to integrating autonomous systems into common discovery systems.

The Distributed Indexing mechanism [13, 12] is based on precomputed indices of
databases that summarize the holdings on particular topics of other databases. The
architecture has a fixed three layer structure.

The Information Brokers of the MITL Gold project 3] help users find relevant infor-
mation servers, but they do not provide access to objects directly. Rather, they return
descriptions of an object’s location and the method that may be used to retrieve the

object.

29

1.3.5 Distributed Naming Systems

Distributed naming systems such as X.500 [9], Profile [46], the Networked Resource
Discovery Project [55], and Nomenclator [42] provide attribute-based access to a wide
variety of objects. The content routing architecture, as will be described in Section
2.3.3, allows the use of Nomenclator style hierarchies as a special case. However, naming
systems traditionally operate in highly constrained environments where objects have few
attributes. In Nomenclator, object metadata consists of templates. A simple subset
relation (together with the use of wildcards for some attributes) allow a server to identify
relevant information servers and forward queries. Nomenclator restricts the semantics of
the system so that a server must be authoritative for any query that matches its template.
This represents a strong restriction on the structure of the information system. Moreover,
it is clearly assumed that templates are relatively small and that a relatively small set of
attributes can be found that split the search space and will be known to the user. Section
3.1 discusses the search for such terms in a particular set of servers. Also, [42] suggests
that an advise operation, similar to a content router’s query refinement operation, can
help users specialize queries by listing all attributes in revised templates generated by
remote executions of the query. In any general information retrieval application on the
scale envisioned in this thesis, this would be impractical. However, the architecture does

not allow structures that will support term rankings in the advise operation.

1.4 Contributions of the Thesis

The content routing system design represents a new approach to information discovery

and retrieval in large distributed systems that:
e examines the interplay of offline data organization and online interleaving of brows-

ing and searching at various levels of granularity.

e supports distributed processing and query routing for better performance and ease

of integration.

30

o exploits heterogeneity of data sources to aid navigation.

e provides a query refinement feature in which the system automatically recommends
query terms chosen based on the users query and knowledge of the system’s con-

tents.

e directly addresses the metadata issue by experimenting with automatically gener-

ated content labels that describe the information exported by a server.

Furthermore, this thesis work has examined some of the pragmatic questions raised
by such a design through a series of prototype implementations. The implementations
have demonstrated the feasibility of the content routing architecture by demonstrating

the following research results:

e It is possible to give meaningful and useful suggestions to help a user formulate

better queries.

e It is possible to do automatic query routing to a meaningful subset of a large number

of information servers.

o It is possible to define metadata structures that can be used to organize the infor-

mation space and provide assistance in formulating queries.

e The content routing architecture can successfully interoperate with pre-existing

systems.

e It can be practical to extract useful content labels from hundreds of disparate,

incompatible servers.

e A hierarchical content routing system scales well to hundreds or thousands of
servers. | am guardedly optimistic that a well-organized system could cover millions

of servers.

31

1.5 Structure of the Thesis

The remainder of this thesis is organized as follows:
o Chapter 2 gives the design of the content routing system architecture.

e Chapter 3 describes implementation efforts and experience with the resulting pro-

totypes.

e Chapter 4 summarizes the results of the design and implementation efforts and

describes directions for current and future research.

32

Chapter 2

Design of a Content Routing
System

The goal of the content routing system’s design is meet the user’s needs as outlined in
Section 1.1.1. Any system is constrained by the system requirements outlined in Section
1.1.2. The design of the content routing system exploits the substantial commonalities
and compatibilities between the user’s needs and the system’s requirements. For example,
a hierarchical organization of data supports browsing by structuring the information
space. A hierarchical organization of data also provides the system with a strategy
for decomposing the information space onto distributed servers. Similarly, the user’s
requirement for more detail as her information needs become more specific suggests that
the system need not store or process detailed information when dealing with non-specific
information requests. Requests for detailed information may be processed at specialized
information servers that cover a narrower range of material more thoroughly.

A content routing system, therefore, consists of a hierarchical network of informa-
tion servers that supports browsing and searching. To support associative access to its
contents, a content routing system directs user requests to appropriate servers (query
routing) and helps a user formulate meaningful queries (query refinement). Both of these

tasks require a content routing system to employ detailed knowledge about what in-

33

formation is available and where it is located. This knowledge is encoded in metadata
descriptions of the contents of remote servers called content labels.

This chapter presents the semantics and architecture of content routing systems:
e Section 2.1 contains an example session with a prototype content routing system.

e Section 2.2 gives the semantics of a content routing system by describing the ab-
stractions and operations provided to the user. The section also details the structure

of queries.
e Section 2.3 gives the architecture of a content routing system. It

— describes how architectural components of the system match up with the se-

mantic constructs.
— outlines detailed strategies for query routing and refinement.

— explores alternatives for constructing content labels and content routing hier-

archies.

2.1 Example Session

Even though a content routing system uses many familiar concepts, it is best to illustrate
the design with a running example. This will make the subsequent discussion of the
abstractions and operations provided by the system more concrete.

A content router is an information server that supports the content routing system
interface to provide access to other information resources. A content router registers
a number of information providers and organizes them into a local directory structure,
which may be browsed like a tree-structured file system or searched like an information
retrieval system.

Figure 2-1 shows the initial contact with a prototype content router running on a

particular information hierarchy. The prototype uses the notion of a current result set.

34

Figure 2-1 Top-level view.

35

ark s Funbouse

Figure 2-2 Expanding a directory.

36

Hetscape: Acroiyms.ont (Untitled)

¥
P |

Figure 2-3 A sample content label.

37

The documents in the current result set form the roots of a hierarchical information
space that the user may browse and search. This information space forms a universe for
the various operations described below. The user may selectively remove items from the
current result set by un-checking the boxes next to those items. The current result set
is displayed at the bottom of the window.

The top-level of this content router contains nine documents in the initial result set.
These documents fall into three types: base documents, directories, and collections.

Base documents can be any ordinary document that one might encounter in an infor-
mation retrieval system: ASCII text files, PostScript documents, graphics, sound, and
video are typical examples. In Figure 2-1, Read-Me is a plain text file. Base documents
are retrieved by clicking on their names.

Most of the documents in the result set are directories, which in turn contain other
documents. To support browsing, a content router uses directories to provide local struc-
ture to the information space, just as one uses directories in an ordinary file system or
gopher. A user retrieves the contents of a directory by clicking on its name. Figure 2-2
shows the result of retrieving the Religion directory of Figure 2-1. It’s components are
all subdirectories devoted to particular religions. Browsing may continue in this manner
just as in any file system browser.

The content routing system introduces the idea of a collection document. In Figure
2-1, Acronyms and Weather are collections. Collections, like directories, contain other
documents. However, a collection also consists of a description of the set of documents
it contains. This description is called a content label. Users may click on the name
of the collection to connect directly to an information server for that collection, which
may be another content router or a server that supports only base documents (and
perhaps directories). Users click on (content label) to retrieve the content label for
the collection. There are many choices for content labels. The design issues will be
outlined below in Section 2.3.3, and Chapter 3 will discuss the decisions made for the

prototype content routing systems. Figure 2-3 shows the content label on this prototype

38

for the Acronyms collection. Human readable content labels are useful for learning more
about the contents of collections and also about available query terms.

The search operations appear under the heading Operations. These operations are
used to build queries. The system displays the current query at the top of the window.
This query is empty at initial contact and is unaffected by browsing, as can be seen in
Figure 2-2.

Query-based search operations in the present content routing system design distin-
guish three cases that differ in the treatment of collections, and therefore, in the gran-
ularity of the search. Only two cases will be shown here. The complete set of search
operations will be described in Section 2.2.3.

The select operation is finds all documents in the universe that match the query
augmented by the new terms typed in by the user. For a select, and for all the search
operations of the content routing system, the query is applied to base documents, directo-
ries, and collections in the result set, as well as to the contents of directories (recursively).
The search is confined, however, to the local server without looking inside collections.
Collections are treated as single documents that match a query if their content labels
match the query. Figure 2-4 shows the result after the user types in the query term
tibetan and submits the form in Figure 2-2 with the select operation. There are 13
documents, all collections, within the Religion directory that match this query. No-
tice that the local directory structure disappears as a result of a select operation, i.e.,
the directories beneath the current result set are flattened for the selection of relevant
documents.

If a search of all 13 remote servers seems too expensive, the user may wish to fur-
ther restrict the size of the universe. If the user cannot think of any appropriate query
modifications to accomplish this task, she may use the query refinement feature. The
system responds to a query refinement request with a list of suggested terms that might
be added to the query to narrow the search space. Figure 2-5 shows the terms suggested

by the system for the query tibetan. (This figure comes from an earlier implementation

39

of the content router because, as of this writing, query refinement is still being reim-
plemented for the new prototype.) Many of the terms are very relevant to the query:
asian, tibet, buddhist, buddhism, meditation relate to Tibet and its Buddhist tradi-
tions; coombspapers is the name of a collection of bibliographic materials on Buddhism;
a lama is a Tibetan Buddhist priest, oracles are an unusual feature of Tibetan Bud-
dhism; sino relates to sino-tibetan, the language family to which Tibetan belongs as
well as a set of political relations; yoga is widely practiced in Buddhism; thangkas are
religious paintings on scrolls; tantra relates to the Tibetan practice of tantrism (in Bud-
dhism); and saky[a] is a school of Tibetan Buddhism. The presence of ftp derives from
the existence of several ftp archives on the subject.

Figure 2-6 shows that the addition of the text term meditation has reduced the
number of relevant servers to three. An exhaustive search of these servers is done when
the user chooses the search operation. A part of the list of documents from all three

collections is visible in Figure 2-7.

2.2 Content Routing System Semantics

2.2.1 Abstractions

An important challenge in the design of a system for information discovery in very large
environments is to find a small and simple set of abstractions and operations that users
can understand and use effectively. These abstractions and operations must allow a
user to explore and search the expanding information space without becoming mired in
details of the implementation. When it becomes necessary to expose some aspect of
the implementation to the user, it must be done in a simple way that is semantically
integrated with the user’s view of the system. Most of the concepts used in the content
routing system design are familiar to users of computer systems, as the example of Section
2.1 shows. However, some new ideas are necessary for negotiating a very large information

space.

40

Figure 2-4 Submitting a Query

41

p3vd Router

Figure 2-5 Query refinement

42

Figure 2-6 Restricted search

43

dptscape: Mark's Fuphouse

Figure 2-7 Documents

44

This section describes the abstractions that content routing systems use to organize
the information space for the user. Section 2.3 will explore in more detail how these simple
concepts can be implemented architecturally, and Chapter 3 will discuss the particular
implementations built as part of this thesis work.

Familiar abstractions include base documents and directories. Base documents are
the individual data objects ultimately of interest to the user, including conventional text
documents, reports, electronic mail messages, PostScript documents as well as sound
and video footage. The set of base document types is extensible and may vary among
collections. The content routing system design assumes, however, that queries and,
therefore, indexed terms, are textual. Directories are sets of documents, including other
directories, which behave like directories in a file system, gopher, or the World-Wide
Web.

The key new abstraction of the content routing system design is the collection docu-
ment, or collection. A collection consists of a set of documents (possibly including other
collection documents) together with a description of the set called a content label. Col-
lections help to organize the search space by grouping related documents together into
aggregates. Because a collection contains other documents including collections, it can
be viewed as a hierarchical arrangement of documents in a directed graph. Figure 2-8
shows a nested structure of collections each with its content label attached.

A content label is a compact representation of the set of member documents in a
collection. It is intended that different applications will use different sorts of content
labels. Section 2.3.3 discusses the form of content labels in more detail.

As the example of Section 2.1 illustrates, the content routing system uses the notion of
a result set. A result set is a set of documents that represents the roots of future browsing
and searching operations (as Section 2.2.3 will describe). A result set is distinguished
from a directory by the fact that it cannot be named, at least with the current interface.
Also, it is worth emphasizing the inherent dynamic nature of result sets, which represent

the state of a user’s session with the system. (However, content routers are free to have

45

Collection

Document Document

Document

Document

Document Document Document Document

Figure 2-8 A content routing system provides access to a hierarchy of collections.

directories that are dynamically created. This was done in the semantic file system,

and initial content routing system implementations used dynamically computed virtual

directories for result sets.)

More precisely, a content routing system has the following semantic domains:

DOCUMENT = (BASE-DOCUMENT + DIRECTORY + COLLECTION) x NAME
NAME = STRING

BASE-DOCUMENT = text + IATRX + video + ...

DIRECTORY = DOCUMENT*
COLLECTION = DOCUMENT* x CONTENT-LABEL
RESULT-SET = DOCUMENT"

46

where the base documents are an extensible set of document types like ASCII text, video,
etc. whose representation will be left unspecified; and content labels are as described
below. (+ is discriminated, or tagged, union; * is Kleene star; x is cartesian product.)
Notice that result sets are not themselves documents and that they do not have names.
Designs with nameable result sets will be explored in future work.

Though directories and collections appear similar semantically, they are distinguished
by some operations, described below. The motivation is that directories are intended
to be light-weight, local constructs. Collections are typically implemented by remote
servers and many interactions will involve communications overhead. This is exposed to
the user so that the user can choose operations to balance information services against

performance.

2.2.2 Queries

To conduct an automatic search, the user must specify her information needs to the
system in the form of a query. The system uses the query to identify components of the
search space that are relevant to the user’s needs. This section describes the query model
used by the content routing system, which is the same simple predicate data model of
[22, 21].

For associative access, the content routing system assumes that documents are rep-
resented by attributes. An attribute consists of a field name and a value. Two examples
of attributes are text:database and author:ullman.

Typically a server will automatically extract these attributes from documents. For
example, a plain text document may be represented by an attribute for each unique word
in the document as well as attributes indicating the location and owner of the document;
video footage may have associated text annotations or close captioned text.

Directories are represented with attributes based on their names, position in the hi-
erarchy, and owner. Collections are represented by their content labels which contain

attributes, though Section 2.3.3 will have more to say about how they are treated. The

47

semantic file system showed how to build a system based on an extensible set of trans-
ducers for automatically extracting attributes in a file type specific way [21].

The content routing system leaves the precise semantics of fields to the administrators
of information hierarchies and treats field names as strings. We have experimented
with some information hierarchies in which certain field names have a fixed, predefined
semantics, e.g., the author field represented the author of the document. It is also
possible for fields to make use of a controlled vocabulary, for example, the Library of
Congress catalog system has a fixed set of names for different areas of knowledge. Other
fields may have semantics that vary from domain to domain. For example, category is
a controlled vocabulary field defined by the New York Times wire service (57, Sections
3.1 and 3.2}, but may be used differently by a particular library cataloging system. In
our experiments with user file systems, individual documents may export their own field
names, thus the set of fields is extensible.

Values can assume a variety of types, including integers and dates. Thus far however,
the prototype content routing systems have implemented all values as strings.

From the point of view of associative access, then, base documents and directories are
represented by sets of attributes (that are extracted from them in an implementation-
dependent way), and collections are represented by their content labels. Field names are

strings, and values can come from an extensible set of data types:

BASE-DOCUMENT o« ATTRIBUTE"
DIRECTORY o« ATTRIBUTE*

COLLECTION « CONTENT-LABEL

ATTRIBUTE = FIELD X VALUE
FIELD = STRING
VALUE = STRING +...

48

where should be read “is represented by,” and the treatment of content labels is deferred
for the moment.
A query is a boolean combination of terms. The content router prototypes have used

attributes as terms. An example query is:
text:database and (author:date or author:ullman)

A formal syntax of queries is:

QUERY = TERM | TERM OP QUERY | not QUERY
Op = or|and
TERM = ATTRIBUTE | (QUERY)

where not, or, and and are the usual logical operations.

It is simple to determine whether a document satisfies or matches a query, or equiv-
alently whether a query is true of a document. This definition proceeds inductively on
the structure of queries. A single term query matches a document if the term appears in
the attribute set for that document. If a document is considered to be its attribute set,
then the document matches a term if the term appears in the document. A single term
query is false with respect to a document if the term does not appear in the document.
Then the truth or falsity of a query with respect to a document is the boolean combina-
tion of the single term truth values. Section 2.3.3 will discuss how to determine when a
collection matches a query.

In many systems today, including WAIS, terms are plain text keywords and queries

are sets of terms:

TERM = KEYWORD
KEYWORD = STRING
QUERY = TERM"

Keyword-based queries can be mapped into an attribute-based scheme very easily.
The content router prototypes use text attributes for plain text terms that occur in
a document. Thus, a keyword k corresponds to the attribute text:k. (This is the
strategy the content router prototypes have used when interoperating with keyword-
based information servers such as WAIS.)

Keyword-based systems normally use a vector-space model in which a document
matches a query if it contains any term in the query. Documents are ranked based
on how many query terms they contain and on computed term weights. It would be
quite reasonable to build a content routing system on a vector model, though, as was
mentioned in Section 1.3, it is not clear how to do query refinement in such a system.

For more on vector-space models, see [51].

2.2.3 Operations

The content routing system defines a set of eight operations based on the above abstrac-
tions that allow a user to browse and search an information space, retrieve documents
or content labels, and discover information useful in the formulation of queries. Most
of these operations were illustrated by the example of Section 2.1, however, this section
contains a complete list of the operations and detailed descriptions of what they do.

A summary of the basic operations of the content routing system appears in Table
2.1. There are three categories of operations: those for browsing, those for query-based
associative access, and those for helping in query formulation. The query processing
operations select, expand, and search have two entries each because each can be applied
to a single document or a set of documents in a result set. Notice that result sets are
data objects that can be passed to and returned from operations. Result sets therefore
provide a handle for the manipulation of sets of documents and encode the state of a

user’s interaction with the system. (Some users may find it helpful to think of result

20

set objects as remote pointers, others may consider them to be like NFS file handles for

directories.)

Browsing Operations

The two operations that support browsing allow one to open a collection or retrieve the
contents of a document.

Open The open operation is used to connect to an initial collection or to browse
the contents of a collection encountered during use of the system. In the interface shown
in Section 2.1, a user may open a collection by clicking on its name. The open operation
returns the initial, or top-level, result set for the opened collection.

Retrieve The retrieve operation is the most familiar of the operations. If the given
document is a base document, retrieving it returns the document’s contents. Retrieving
a collection returns a human-readable version of the collection’s content label. Retrieving

a directory returns a result set consisting of the documents in the directory.

Query Processing Operations

The three query processing operations provide associative access to the contents of a
content routing system. They differ only in their treatment of collections, i.e., they differ
in how far down an information hierarchy a search is carried out. All these operations
collapse the directory structure of collections, treating a collection’s contents as a flat set
of documents, though they will only return documents available via the given result set.

Some implementations may estimate the cost of queries and refuse to process those
it deems too expensive. The user may be required to narrow the query, manually remove
items from the result set before the search, or perform a more limited query processing
operation.

All the query processing operations may be applied to an individual document or to
a set of documents. The result of applying any of these operation to a set of documents

is the union of the results of applying the operation to each member of the set.

91

open open collection-name

initializes a connection to collection-name and returns the initial result
set for that collection.

retrieve retrieve document

returns the contents of document. In the case of a collection, returns a
human readable description of the collection’s contents (content label).
In the case of a directory, returns the contents of the directory.

select select document query

if document is a base document, returns document if it matches the
query. If document is a collection, returns document if its content label
matches the query. If document is a directory, applies select recursively
to each member of the directory and adds document to the combined
results if it matches the query.

select select result-set query

returns the union of the result sets obtained by applying select to every
document in result set.

expand expand document query

if document is a collection, then returns the result of a select at the
top-level of that collection. If document is a directory, then returns the
union of the result sets obtained by applying expand to every document
in document. Otherwise, returns a result set containing just document.
expand expand result-set query

returns the union of the result sets obtained by applying expand to every
document in result-set.

search search document query

if document is a base document, returns document if it matches the
query. If document is a collection and its content label matches the
query, then returns the result of a search of that collection. If document
is a directory, applies search recursively to each member of the directory
and adds document to the combined results if it matches the query.
search search result-set query

returns the union of the result sets obtained by applying search to every
document in result-set.

show-fields | show-fields result-set

returns a list of available attribute field names.

show-values | show-values result-set field-name

returns a list of potential values for field-name attributes.

refine refine result-set query additional-args

returns a list of recommended query terms that may be used to reduce
size of the search space.

Table 2.1 Router operations for browsing, query processing, and query formulation

32

Select The select operation is the most restricted search provided, and, therefore,
the coarsest in granularity. A select returns the documents in the universe implied by the
given the result set that match the query. Select considers the contents of directories
recursively, however, it does not look inside collections that may appear in the universe.
Thus, a select at a node in Figure 2-8 returns only the children of that node that match
the query.

Operationally, a select applied to a particular document and query proceeds thus: If
document is a base document, then select returns a result set containing document if
document matches the query, an empty result set otherwise. If document is a collection,
then likewise returns document if its content label matches the query. If document is a
directory, then return document if it matches the query plus the union of the results of
applying select to each document in the directory. In other words, select returns matching
documents while flattening directories.

Expand The expand operation is like the select operation except that it expands
one layer of the collection hierarchy, providing somewhat more detail but without the
expense of an exhaustive search. Thus, an expand at a node in Figure 2-8 results in all
the matching non-collection children of that node plus all the matching grandchildren of
the node (available via matching collections). An alternative operational description is
this: Perform a select operation with the same arguments. All non-collection documents
in that result will be in the expand’s result. For each collection in the intermediate result,
perform a select at the top-level of the collection. Combine all the results.

Search The search operation treats the entire search space reachable from the
present result set as if it were a single, flat, information system. Thus, referring again to
Figure 2-8, a search operation will return all the non-collection documents that match
the query in the graph rooted at the node from which the search commenced, proceeding
through collections that match the query. Operationally, again, perform a select at the
present collection with the same result set and query. Each non-collection document will

be returned as part of the result. For each collection returned from the select, perform

53

a search at the top-level of that collection. Combine all the results.

Query Formulation Operations

The query formulation operations help the user learn how to formulate queries and help
manage the complexity of the search space. A new user may know nothing about how a
collection indexes its documents. Thus, the user needs a way to find out what terms are
available for queries. Retrieving sample documents is one way to do this (and the only
way on previous systems), but it is valuable if the system provides special help. Once
the user gets started, a typical session proceeds with the user alternately broadening and
narrowing queries. Typically users start with broad queries. The set of documents to
peruse becomes smaller as a query is refined. The user refines queries either by using
system recommended completions or by using attributes discovered in interesting content
labels or by other system-supplied resources. When a query is sufficiently narrowed, its
collection documents may be expanded. This process continues in a pattern of contracting
selections alternating with expansions with a final search in a reduced space of documents.
In addition to these operations, the content routing system allows users to browse the
system and look inside documents and content labels to learn about available terms.

Show-fields The show fields operation displays the set of attribute field names
known to the currently open collection(s). Ideally, the set of fields displayed should be
limited to those found in the documents of the current result set. Note that show-fields
does not require an outstanding query, and can thus be used when connecting to a new
collection to learn about its contents and how they are indexed.

Show-values The show values operation lists possible values for a given field. Ide-
ally, the values displayed should be selected from those found in the documents reachable
from the current result set. Implementations may want to recommend values that re-
duce the search space (as in refine below). Note that show-values does not require an
outstanding query, and thus be used when connecting to a new collection to learn about

its contents and how they are indexed.

54

Refine The refine operation takes a given query and returns suggested query terms
(attributes) that will reduce the search space if they are added to the query. Section

2.3.2 will provide more detail on how this may be done.

2.3 Content Routing System Architecture

The content routing system design presented above must be realized by a concrete systems
architecture. The goal of the architecture presented here is to realize the functionality
above as simply and transparently as possible. This section is a high-level description
of the content routing system architecture. It will not be concerned with the details of
underlying network protocols, etc. Chapter 3 will describe prototype systems that use
the Semantic File System/Network File System (which is RPC-based) and the Hypertext
Transport Protocol (which is TCP-based).

Architecturally, then, a content routing system is a network of information servers.
Leaf nodes in the network are end-point information servers that store conventional
documents. The hierarchical network of internal nodes is composed of content routers,
which are information servers that support collections and the set of operations listed
above. Figure 2-9 shows a content routing hierarchy. In such a system, expand and search
operations cause queries to be routed to relevant information servers for processing (the
downward-pointing arrows in the figure). If an operation is forwarded to multiple servers
then the results are merged. A content router may elect to forward operations to servers
or to refuse to do so depending on the cost effectiveness or expense of that operation.
Content label information flows upward from the leaf servers as each server registers with
its parent.

The structure of a content routing network is isomorphic to the collection hierarchy
seen by the user of that hierarchy. For example, Figure 2-10 implements Figure 2-8.
Each collection is implemented by an information service for the collection’s component

documents plus a content label that describes the collection. Each content router (an

99

Content Router

content label
% \
/ Content Router Content Router

Information Information Information
Server Server Server

43{\ {\

Figure 2-9 A content routing system is a hierarchy of information servers.

information service that provides access to collections) stores any base documents and
directories it exports plus the content labels for any collections registered with it. Servers
are programs that may or may not reside on the same physical host computer. Collec-
tion containment (shown by the graph connectivity in Figure 2-8) corresponds to server
registration (shown by the server connectivity in Figure 2-10.

Some of the operations described in Section 2.2.3 are very simple to implement. For
example, in an HTTP-based implementation, registration consists in a subsidiary server
sending URLs for its top-level and for its content label. An open operation would consist
in retrieving the top-level document, and other operations would consist in sending and
receiving form documents of the appropriate form. See Chapter 3 for more details.

However, there are two key services that are needed to implement the semantics given
above: query routing and query refinement. Query routing is the process of identifying
relevant servers for a user’s query, forwarding the query to those servers, and merging the

results. Query refinement has been defined above. These two services are described below

36

Content
Router

Content
Document Document Router Document
Information
Document Server
Document Document Document Document

Figure 2-10 The server topology is isomorphic to the collection topology.

in Sections 2.3.1 and 2.3.2, respectively. Their precise implementations are described in
Chapter 3.

In addition, the content routing system architecture is parameterized by the choices of
the contents and semantics of content labels as well as the structure of information hier-
archies. Section 2.3.3 discusses the choices for content labels, and Section 2.3.4 discusses
how to build information hierarchies. The detailed choices used in the experimental work

of this thesis are given in Chapter 3.

2.3.1 Query Routing

One of the goals of this research is to establish whether it is possible to route queries
to a meaningful subset of a large collection of information servers. This section gives
the approach to this problem taken by the content routing system. Experience with an

actual implementation appears in Chapter 3.

57

To conduct a search for items matching a given query, a content router identifies
relevant documents in its collection, identifies which of those documents are collections,
forwards the query to the corresponding servers, and merges the results for presentation to
the user. Some formalization will help to describe exactly how a content router performs
this task.

Recall that a user’s query @ is a boolean combination of terms. Terms may be either
attributes (field name, value pairs) or keywords. @ can be considered as a predicate
that is either true or false of a document, i.e., Q(d) is true if and only if document
d matches (). A collection document matches a query if its content label matches the
query. Section 2.3.3 will give two alternative ways to define when a content label matches
a query. Section 2.2.2 defined what it means for a base document of directory to match
a query.

The document space for a query @ represents all the documents in end-point infor-

mation servers that matches the query. Ultimately, this is the set that interests the user.

It is defined by:
D(Q) ={d e U] Q(d)}

where U contains every (conventional) document reachable by traversing the network
from the current content router.

Identifying relevant documents in the collection is a standard information retrieval
operation. Determining which collections are relevant to a query is described in Section
2.3.3. This information is exactly what is necessary for a select operation. This will also
automatically identify the set of servers to which a query should be routed, the route set
for the query.

More formally, the route set for a query @Q is

R(Q) = {d € C| Q(d)}

where C is the set of collection documents available on the current server.

58

The expand operation then simply returns the set of documents at these remote

servers that match the query:
ExpPAND(Q) = {d' € d| (d € R(Q)) A (d € d)}

The search operation simply applies the rule for the expand operation recursively and
returns only base documents. That is, search is equivalent to the transitive closure of

expand.

SEARCH(Q) = EXPAND*(Q)

The content routing system uses this as its approximation of the document space of @
defined above. How close this approximation is depends on how good the content labels
are. For example, if content labels contained all indexed terms, then the content router
would have an effectively complete index, and the approximation would be perfect. Of
course, this will not scale, and the system must trade off the quality of the approximation
for scalability.

Note that this description assumes that the hierarchy is cycle free. If there are cycles,
then there are simple ways to break them so that query routing does not loop indefinitely.
A simple strategy is to encode all the collections a query has been routed through in the
arguments to the search operations. If a collection finds itself in the list, it simply

terminates without performing the operation.

2.3.2 Query Refinement

An important goal of this research is to establish whether a system can automatically
suggest improvements to user queries in order to help the user cope with the vast infor-
mation space. This is important because, in a very large distributed set of information
providers, naive queries can be prohibitively expensive to process and will overwhelm the
user with irrelevant material. This section explains the principles behind the approach

taken by the content routing system. Query refinement is a unique feature of this work.

59

This project has produced the first large-scale system that automatically guides the user
in the formulation of better queries. Experience using the techniques of this section in
working systems suggests that query refinement is an invaluable tool in a large distributed
information system and that it can be efficiently implemented (see Section 3.3 for details
of a particular implementation).

The approach taken to query refinement here is different from the prior efforts in the
Community Information System [22]. In the Community Information System, databases
were described by content labels consisting of small queries which were true of every
document in the database. A simple theorem prover required the user to choose query
terms that guaranteed the query could be completely satisfied at available news wire
databases. The approach described here is statistical in nature, using conditional proba-
bilities of term collocation (see below). I feel that the approach described here is better
suited to the larger-scale, more heterogeneous environments of modern global networks
where it may be difficult or impossible to organize information servers so they are au-
thoritative for precisely specified generator queries.

The task of query refinement is to generate a list of terms related to a query that
can be used for formulating new queries that reduce the search problem. The search
problem may be reduced either by reducing the set of documents that match the query
(the document space) or by reducing the number of servers that are relevant to the query
(the route set). The route set approximates the set of servers that contain any documents
that match the query (see Section 2.3.1).

Implementations may use a thesaurus for term recommendations, though the imple-
mentations described in this thesis have not done this because there is already substantial
work in this area. The traditional use of a thesaurus is for query expansion, i.e., to in-
crease recall. The technique is to replace a term with a disjunction of terms from its
thesaurus entry (or adding terms to the query in a vector model) [51]. This is antagonis-
tic to the goal of reducing the result set size. However, it is valuable to use a thesaurus

in conjunction with other means of producing suggestions for query modifications, es-

60

pecially in a system where the user may select the degree of association between the
query and the suggested terms (see below). One can use the techniques of conditional
probabilities of term collocation together with clustering techniques to build a kind of
thesaurus automatically. For that matter, using different ranking functions, one could
construct off line associations of words ranging from synonym lists (like a thesaurus) to
antonym lists. For related work on query expansion (increasing the result set size) and

use of thesauri, see [51, pp. 75-84] as well as [64, 48, 15].

Conditional Probabilities of Term Collocation

To determine what terms are related to a query, the query refinement algorithm uses
the conditional probability that one term is collocated with another. In other words, the
system poses the question: given the documents that match a particular term, what is
the probability that some other particular term occurs in one of those documents? Terms
whose occurrences are highly correlated are assumed to be related.

The system, therefore, uses the conditional probability of term collocation to recom-
mend terms that are related to a given query and that efficiently partition the document
space. The conditional probability p; that term ¢; occurs in a document that satisfies
@ is the size of the document space for ¢} conjoined with ¢; divided by the size of the

document space for Q:
o Ip@nu)
D@

If a term has a high conditional probability p;, then it is statistically related to
the query, and therefore likely to be semantically related as well. A term with a low
conditional probability will more dramatically reduce the size of the document space
when it is conjoined with Q).

The system’s term recommendations for the refine operation are an ordered set, or

tuple, of terms. The list is ordered by some ranking function, € (see Section 2.3.2 below).

REFINE(Q) = (to,t1,...,1s)

(=2}

1

where £9(t;) > £9(i41)-

A content label must contain, therefore, not only the terms exported by a server,
but also information about term collocation. We are experimenting with various ways
of representing this information in content labels. However, since content labels do
not contain all terms available in a database, the content router does not have perfect
knowledge about term collocation.

The prototypes described in Chapter 3 simply offers the user the 40 terms with
the highest (approximated) conditional probabilities. See Section 3.3 for details of the
algorithm for computing these terms as well as a description of how well it performs.

Note that this technique may be applied to reducing the route set, R, as well as the
document space by computing the conditional probability thus:

= IR@A)]
= IR@I

So far, our experience is that query refinement based on the document space produces
semantically meaningful suggestions and also effectively reduces the size of the route
set. Query refinement based on reducing the route set, using term collocation in whole
collections, has not proven helpful. In our prototypes, documents are not sufficiently
tightly clustered on servers. Finer grained information is necessary. We are investigating

a compromise strategy that uses clustering within collections.

Ranking Functions

In general, a user may want to learn about terms closely correlated with the query
(synonyms), terms inversely correlated with the query (antonyms), or terms moderately
correlated with the query. Synonyms and antonyms provide feedback on what sorts of
terms are indexed and help the user formulate better queries. Moderately correlated
terms are especially useful in reducing the document space by a reasonable amount while
not eliminating documents so quickly that highly relevant items are lost. The system uses

a ranking function to order terms and suggests to the user a manageable set consisting of

62

Entropy and Identity Ranking Functions

A Parameterized Ranking Function
identity v v T
entropy/~-—-
o8t]
0.6 r ,
04
7 0.2 l
o2f /
f O 1 r— —
0 0.2 0.4 0.6 0.8 i
0 — s N N
0 0.2 04 0.6 0.8 1

Figure 2-11 Entropy and Identity Functions Figure 2-12 Mg Function

the highest ranked terms. For a more detailed discussion of ranking functions in general
information retrieval applications, see [51, pp. 59-71] or [27, pp. 363-376].

Entropy functions can be used to give favorable ranks to terms that are moderately
correlated with the query terms; that is entropy-based ranking functions prefer terms
that reduce the result set by a moderate amount. These function represent a measure
of the information content of the terms. A generalized entropy ranking function has the

form

E(t:) = piF(p:)

There are a variety of choices for F'. One standard information theoretic entropy function,
Es, is

Es(t;) = —p; log p;

Figure 2-11 illustrates the behavior of £ and the identity function, which assigns each
terms conditional probability as its rank. As the figure shows, £s favors terms with
probabilities closer to 0.5.

It is useful to have a ranking function that is parameterized by the most favored
probability (or result set size reduction). This would allow the user or the system to
rank terms differently depending on the context. For example, the ranking could suggest

synonyms or antonyms. A simple ranking function Mz that is parameterized by the

63

buddhism —— muhimedia ——
distributed - poland -
] e ivbeo =
g os ki 4 g os b
! g
£ 1 E o6 |
% 1
g 3 04 :L\'"‘""‘ 4
£ |
o
02 L‘i 4
i \
i
s = s e P T o]
20 E 40 50] 50 60
Recommended Term

Figure 2-13 Refinement Probabilities Figure 2-14 More Probabilities

favored conditional probability, 7 is

Mz(t:) =1 — |p; — B

Figure 2-12 illustrates the behavior of My for p = 0.6.

The system also should consider the expected time it will take to evaluate a query.
This in turn depends on the number of remote servers involved in servicing the query,
i.e., the size of the route set. We are currently investigating techniques for producing
cost estimates.

We have found the use of the identity ranking function to be acceptable in the pro-
totypes because, in the experimental data, the terms most frequently collocated with a
query typically have very small probabilities. Figures 2-13 and 2-14 show some anecdotal
evidence of this. The figures show the conditional probability of each of the top 60 can-
didate terms for suggestion. The highest conditional probabilities are often under 0.5,
and the conditional probability is always under 0.3 by the tenth best term. Thus, there
are few high probability terms to eliminate with a ranking function. Since we take the 40
highest probability terms, we eliminate the very low probability terms. A good ranking
function may change the ordering of the top 40 terms, but is unlikely to have a significant

impact on the terms in the set. This situation may change as the implementation gains

64

more detailed knowledge of query term collocation.

2.3.3 Constructing Content Labels

This research seeks to define metadata structures that can be used to organize the in-
formation space and provide other assistance to users. It is also important to be able to
extract these metadata descriptions of server contents from large numbers of disparate,
incompatible servers. These metadata structures, content labels, are used to describe
collection contents to users, to route queries to relevant servers, and to provide query
refinement suggestions. Content labels, are therefore at the very heart of the content
routing system, and their structure and semantics profoundly affect the utility of the
system. In addition, content labels provide a focal point for system administration: size
restrictions affects scaling, content restrictions determine the look and feel of the system.

Content labels represent a compromise for a scalable architecture. The ability to
control content labels is what enables a content router to avoid unlimited demands on
its resources. Limiting content label size not only helps manage local resources, but also
encourages administrators of remote information servers to make effective use of their
content label advertising budget. A budget scheme will give priority to specialized servers
when users submit more specific queries.

The remainder of this section describes two approaches to content label semantics,
discusses considerations for including terms in content labels, explains an approach to
extracting content label data from a particular type of incompatible information server,
and surveys issues in supporting query refinement. See Section 3.1 for a detailed look at

the use of two techniques for the automatically constructing content labels.

Content label semantics

The content routing system design does not limit the form of content labels. There
are at least two strategies for building content labels: generator queries and surrogate

documents.

65

Generator Queries In this approach, which was used in the Community Informa-
tion System [22], a content label is a query that is true of all documents in the collection.
In principle, such a content label could consist of the disjunction of all of the terms that
appear in a collection. Alternatively, a content label could simply be the name of the host
that contains a set of files. In practice, content labels will lie between these two extremes,

containing terms including host names, domains, authors, libraries, and subjects.

CONTENT-LABEL = QUERY

If content labels are generator queries, then a collection ¢ matches a query Q if
@ — CONTENTLABEL(c). Logical implication is an elegant mechanism, and simple
theorem provers can be used to identify relevant collections and to extract terms that
can be used for query refinement (see [22]).

Generator queries are a good choice for small-scale or highly constrained systems,
such as name services, where a collection’s contents is completely described by a query.
That is, the generator query is true of all documents in the collection, and all documents
implied by the query are in that collection. This represents a kind of closed world
assumption [50]. Unfortunately, in a large network of more general information servers,
it is very hard to guarantee this closed world assumption.

For example the following very small generator query content label im-
plies that every document of the collection has attribute subject:database and

collection-type:software and is either in the cmu.edu or the stanford.edu domains.

[(subject:database) and ((domain:cmu.edu) or (domain:stanford.edu)) and

(collection-type:software)]

Surrogate documents In this approach, a content label is a surrogate document
for a collection containing terms culled from that collection’s contents. Such a content

label may be viewed as an advertisement for the collection. The administrator of the

66

collection may use various tools to select terms for the content label, computing a centroid
document [51] for example. A surrogate document content label is just a set of terms
(which is what an abstract document is to the query processing part of the system), and
thus it may be indexed, like any base document, under the terms appearing in it. On
may think of a surrogate document as being like a generator query that consists of a
disjunction of the terms in the surrogate. A collection ¢ matches a query @ if it matches

the query as an ordinary document.

CONTENT-LABEL = ATTRIBUTE"

The surrogate document approach is easy to implement. Content labels are indexed
like any other documents. The content labels that match a query are computed just as
are the other documents that match the query. In fact, the content label information
may be stored in the same index structures, as it is in the prototypes built as part of
this thesis. It is still necessary to identify which documents are content labels so that
the system can determine where to route queries, etc. One can use a simple mechanism
like storing content labels in files with unique suffixes. Then, the content labels are
the members of a query result that have the unique suffix. Content labels may also be
indexed with a special attribute that identifies them as content labels.

The surrogate document approach, though it has the advantages of simplicity and
uniformity, does not have the strong semantics of the generator query approach. In
particular, if a generator query is not implied by a query, then there are no documents
under the corresponding collection that match the query. This is a result of the closed
world assumption. In a surrogate document, some terms indexed in documents within
the collection may not be in the content label, and thus will not be found via the route
set approach used for query routing. However, if a user does look within that collection,

more terms will become available. (See below for some thoughts on propagation of terms

67

in content labels.)

A surrogate document content label for a server that exports the work of certain

authors might begin as follows:

author:gifford author:sheldon author:otoole author:jouvelot author:duda

author:weiss author:reistad text:content text:routing text:system ..

Selecting terms for content labels

A good content label will contain two kinds of attributes:

e Administratively determined synthetic attributes that describe a collection but may
or may not appear in the documents themselves. For example, an administrator

may want to advertise that a server has the attribute collection-type:software.

e Attributes automatically derived from the collection contents, possibly using vari-
ous statistical tools. For example, frequently occurring descriptive terms are good
candidates for content labels. These attributes are called natural attributes because

they arise naturally from the data.

A particular hierarchy may impose constraints on the propagation of attributes in
order to get back some of the benefits of the closed world assumption. For example, a
hierarchy may want to guarantee that, if a field is available for queries, then the server
is authoritative for that field. Essentially, one must propagate all values of a field or
none at all, along with information about which fields have been dropped. Then a server
could determine when there is no possibility of any document matching a query beneath
a particular node in the hierarchy. Such schemes are left for future work. (I am grateful
to Ken Moody and Jean Bacon of Cambridge University for input on this subject.) On
the other hand, for regular documents, this is not a practical approach because it is
not feasible to propagate all text attributes, since these represent the vast majority of

attributes, and the system is not useful without any text attributes. It is also very hard

63

to guarantee that a server is authoritative for some attribute if autonomous servers are
constantly being added to the hierarchy.

A particular content routing hierarchy may restrict certain attributes, fixing their
semantics, limiting the choice of values, or even using a controlled vocabulary. These
are same issues discussed with respect to queries above in Section 2.2.2. In addition, a
hierarchy may predefine and /or require certain attributes be present in content labels. For
example, it may be necessary to include hostname, hostaddress, and administrator
fields.

Information providers must choose what terms to include in their content labels bear-
ing in mind that the data will be used by a content router to determine whether their
databases are relevant to queries. Content labels must therefore reconcile two conflicting
objectives. On one hand, they must contain terms that characterize the collection as
a whole (typically high frequency terms), and on the other hand, they must be able to
distinguish servers with respect to each other. That is, they must be concerned with
advertising and with discriminatory power. It is possible to divide this task between
an information provider and a content router with which it registers: The information
provider may supply a broad content label with many high frequency (or highly sig-
nificant) terms, and the content router may decide to keep only terms with adequate
discriminatory power. There are standard metrics for computing the discriminatory
power of terms based on their frequencies of occurrence [51]. For experimental data on
some sample information servers, see Section 3.1.

Terms may be chosen based on their statistical significance or based on some other
analysis of their importance, e.g., terms that appear in titles or abstracts may take

precedence over others.

Extracting data from incompatible servers

There are two approaches to extracting data for content labels. In the first, an in-

formation provider computes its own content label using whatever statistical tools and

69

information it chooses. This approach has the advantage that it provides an abstraction
barrier: the information provider can control exactly what information it releases about
itself. It also supports scaling because the work for the collection is done locally at each
server. A second approach involves a content router extracting the raw data from the
information provider and computing a content label on its behalf. This approach has
the advantage that the