
Content Routing: A Scalable Architecture for

Network-Based Information Discovery

by

Mark A. Sheldon

B.S., Duke University (1984)
S.M., Massachusetts Institute of Technology (1990)

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

December 1995

@ Mark A. Sheldon, 1995

The author hereby grants to MIT permission to reproduce and
to distribute copies of this thesis document in whole or in part.

Signature of Author
Department of Electrica...l Engineering and

Department of Electrical Engineering and

/2 Computer Science
11 October 1995

Certified by

David K. Gifford
Professor of Computer Science

Thesis Supervisor
ft A

Accepted by..........

.:,:c;HUSE'TS {iNSTITUTE
OF TECHNOLOGY Chairman,

Fred R. Morgenthaler
Departmental C mmittee o Graduate Students

APR 1 1 1996

LIBRARIES

Content Routing: A Scalable Architecture for Network-Based

Information Discovery

by
Mark A. Sheldon

Submitted to the Department of Electrical Engineering and
Computer Science

on 11 October 1995, in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Abstract

This thesis presents a new architecture for information discovery based on a hierarchy
of content routers that provide both browsing and search services to end users. Content
routers catalog information servers, which may in turn be other content routers. The
resulting hierarchy of content routers and leaf servers provides a rich set of services to
end users for locating information, including query refinement and query routing. Query
refinement helps a user improve a query fragment to describe the user's interests more
precisely. Once a query has been refined and describes a manageable result set, query
routing automatically forwards the query to relevant servers. These services make use
of succinct descriptions of server contents called content labels. A unique contribution
of this research is the demonstration of a scalable discovery architecture based on a
hierarchical approach to routing.

Results from four prototype content routing systems, based on both file system (NFS)
and information system (HTTP) protocols, illustrate the practicality and utility of the
content routing architecture. The experimental systems built using these prototypes pro-
vide access to local databases and file systems as well as over 500 Internet WAIS servers.
Experimental work shows that system supported query refinement services provide users
with an essential tool to manage the large number of matches that naive queries routinely
generate in a large information system. Experience with the prototype systems suggests
that the content routing architecture may scale to very large networks.

Thesis Supervisor: David K. Gifford
Title: Professor of Computer Science

Acknowledgments
During my graduate career, I have been blessed with many friends and colleagues who
have contributed greatly to my work and well-being.

My advisor, David Gifford, has been very patient and was instrumental in helping me
get started on this project. He pushed me and made many suggestions when I thought
I was completely stuck. My thesis committee members, Jerome Saltzer and Barbara
Liskov, also provided useful feedback.

I am indebted to Programming Systems Research Group members past and present
for their assistance and friendship. Franklyn Turbak, Andrzej Duda, Pierre Jouvelot, and
Melba Jezierski read thesis drafts and gave valuable comments. Andrzej Duda, Brian
Reistad, and Jim O'Toole contributed ideas and code to the project. Pierre Jouvelot
contributed various collaborations and many airplane rides. My officemate, Ron "Wind
Beneath my Wings" Weiss, has added considerably to this work and to ongoing research.
Useful discussions and comments were numerous, but I would like to mention Jonathan
Rees, Mark S. Day, Bien V1lez, Chanathip Namprempre, Pete Szilagyi, and Michael Blair.
Ken Moody and Jean Bacon of Cambridge University made many useful suggestions,
some of which are being pursued in ongoing research. Becky Bisbee and Jeanne Darling
have been invaluable resources for getting things done.

For helping me find a place to be a hermit, I thank Vernon and Beth Ingram and the
people of Ashdown House.

I thank my family for years of support. My parents, Frank C. Sheldon and Beverly
J. Sheldon, have always been a part of my education and have encouraged me all along.
I acknowledge the support of my brother and sister, Eric and Pam, as well as of my
Grandmother Evelyn Kist. My wife Ishrat Chaudhuri, deserves more than I can ever
repay for her patience, good humor, and loving support.

Finally, I owe a great debt to the ballroom dance community for its support and
for all the joy I have gotten from dancing. Special thanks are due my dance partner,
Juliet McMains, for helping me during the most trying times. I thank my many coaches,
especially Suzanne Hamby and Dan Radler. My previous dance partners have been
absolutely essential to my mental health and happiness: Mercedes von Deck, Yanina
Kisler, Yi Chen, and Elizabeth Earhart.

THIS THESIS IS DEDICATED TO MY PARENTS.

This thesis describes research done at the Laboratory for Computer Science at the
Massachusetts Institute of Technology, supported by the Defense Advanced Research
Projects Agency of the Department of Defense contract number DABT63-95-C-0005.

Contents

1 Introduction 7

1.1 The Problem 12

1.1.1 The User's Perspective 12

1.1.2 The System's Perspective 18

1.2 Content Routing System Overview 19

1.3 Related W ork 24

1.3.1 Global Indices 25

1.3.2 Subject-Based Directories 26

1.3.3 Network-Based Information Retrieval Systems 27

1.3.4 Network-Based Resource Discovery Systems 28

1.3.5 Distributed Naming Systems 30

1.4 Contributions of the Thesis 30

1.5 Structure of the Thesis 32

2 Design of a Content Routing System 33

2.1 Example Session 34

2.2 Content Routing System Semantics 40

2.2.1 Abstractions 40

2.2.2 Queries 47

2.2.3 Operations 50

2.3 Content Routing System Architecture 55

2.3.1 Query Routing 57

2.3.2 Query Refinement 59

2.3.3 Constructing Content Labels 65

2.3.4 Hierarchies Organize the Information Space 72

2.4 Sum m ary 77

3 Implementation and Practical Experience 79

3.1 Building Content Labels 82

3.1.1 Content Labels for SFS Servers 82

3.1.2 Content Labels for WAIS Servers 85

3.2 Evaluating Content Labels 90

3.3 Implementing Query Refinement 91

3.4 SFS-based implementation 95

3.4.1 Structure of the SFS-based prototypes 95

3.4.2 The SFS-WAIS Gateway 98

3.4.3 Performance of the SFS-based prototypes 99

3.5 HTTP-based implementations 106

3.5.1 Structure of an HTTP Content Router for WAIS 107

3.5.2 Experience and Performance 110

3.6 Sum m ary 111

4 Conclusion and Future Work 113

4.1 Directions for Future Research 113

4.1.1 Legal and Economic Issues 113

4.1.2 Visualization 114

4.1.3 Larger Environments 114

4.1.4 Building Hierarchies 115

4.1.5 Performance 118

4.1.6 Content Labels 120

4.2 Summary 121

A SFS-based Implementations 123

A.1 User Interface 123

A.2 Implementations 129

Chapter 1

Introduction

The Internet contains tens of thousands of information servers specializing in topics such

as news, technical reports, biology, geography, and politics. The Internet's vast collection

of servers can be viewed as a distributed database containing a wealth of information.

Unfortunately, this information is relatively inaccessible because there are no satisfactory

mechanisms for organizing the data or browsing and searching it effectively.

This thesis presents a new approach to the problem of information discovery and

retrieval in very large networked environments. A hierarchical content routing system

provides the user with the ability to do interleaved browsing and searching of a large,

distributed information space at various levels of granularity. The goal of the design and

implementation of the content routing system is to answer the following six questions:

1. Can a system help a user cope with the vast amount of information available by pro-

viding some organization of the data and automatically suggesting improvements

to users' queries?

2. Is it possible to route queries to a meaningful subset of a large number of information

servers?

3. Is it possible to define some metadata structures that can be used to organize the

information space and provide other assistance to users?

Browse Submit Query

Retrieve Retrieve

Figure 1-1 Browsing Figure 1-2 Searching

4. Can the design successfully interoperate with pre-existing systems?

5. Is there a practical way to extract useful metadata descriptions of server contents

from large numbers of disparate, incompatible servers?

6. Is it possible to build a system that scales to millions of servers?

The results of this thesis demonstrate that questions 1-5 may be answered affirma-

tively. The work thus far suggests that the content routing system may scale well, but a

conclusive answer to question 6 will require more ambitious experiments.

A user's interactions with an information system span a broad spectrum between

searching and browsing. At one end of the spectrum, the user knows exactly what

document is desired and would like to search for it, perhaps by name. At the other end

of the spectrum, the user has no concrete information need and merely wishes to browse

to become familiar with the contents of the information system. In practice, a user starts

with a vague or poorly specified information need that becomes more precise as she learns

about the contents and organization of the collection. (This description of the spectrum

between searching and browsing is a paraphrasing of an argument in [11].)

Thus there are three broad categories of operations of concern to a user of an infor-

mation discovery system: document retrieval, browsing, and searching. The low-level

operation of document retrieval in computer networks has been provided in many ways,

notably by the file transfer protocol ftp [37] and the hypertext transport protocol http

[4].

More recently, systems focusing on browsing have become available. Network file

Browse Query Formulate --) Refine

Route

Retrieve

Figure 1-3 More complete model of user interaction

systems [66] allow users to browse file systems distributed across many machines on a

network. Larger scale, indeed global, browsing systems such as gopher [1] and the World-

Wide Web [5] are quite recent. A typical system for browsing provides the functionality

of Figure 1-1. A user of such a system examines the contents of a document or a collection

of documents given in a directory or a hyperdocument and gradually becomes familiar

with the contents and structure of the available data. Truly global browsing systems

can become tedious to explore, and it can be difficult to recall a path to an interesting

documents even after it has been found. Existing browsers try to ameliorate this problem

by allowing a user to save references to interesting places in the system.

Systems for searching the Internet are very new indeed, and nearly all of these systems

have focused on the construction of centralized, global indices (e.g., Archie [17] and the

Web Crawler [47]). A typical system for searching provides the functionality of Figure

1-2. A user formulates a query that describes her information need. The query must be

written in some query language, though plain text keywords are the norm. The system

finds all documents on the network that match the query and presents the results, usually

using some relevance ranking system. Search systems are difficult to use in the absence

of a concrete information need or when naive queries lead to either too many or too few

results.

Although some systems (e.g., Gopher [1]) allow the user to browse until she finds a

searchable index, systems have artificially partitioned themselves according to whether

they provide a searching or browsing facility. However, because a user's information needs

can change while using an information discovery system, it is important that a system

provide browsing and searching functions together. Figure 1-3 illustrates the complex

interplay of browsing and search activities necessary for effective navigation of a large

information space. This flexible model of user interaction is a principle contribution of

this research. A user should always have the option to browse or search (using queries)

as well as retrieve documents. These operations should be repeated at different levels

of detail until the user's information need is satisfied. The query process itself should

be interactive with the system suggesting refinements to user queries that will better

match the user's interests and the system's performance capabilities. Suitably refined

queries can be routed to appropriate remote information providers and the user may

peruse the results using all the available tools. In the figure, a user may switch from any

query operation back to browsing and retrieving (though for clarity the arrows have been

omitted).

Progressive discovery is a model of interaction where the system provides a more

detailed view of the information space as the user provides a more precise account of her

information need. The system tries to provide enough detail to allow the user to proceed

without overwhelming the user with a flood of information. Progressive discovery thus

helps the user strike a better information bargain by providing more detailed information

as the user supplies more information. The information supplied to the user is given at

an appropriate level of granularity so that the user is not overwhelmed by a huge number

of overly detailed responses.

Progressive discovery controls the complexity of a large information space, and for

this reason it underlies much of the design presented in this thesis. No previous system

provides an architecture that allows iterative, integrated use of browsing and search tools

at various levels of granularity.

The content routing system employs a user-centered design that provides users both

with the ability to browse multiple, coexisting information hierarchies and with associa-

tive access to the information. In particular, a content routing system combines inter-

leaved browsing and search with two key services in support of associative access: query

refinement and query routing. Query refinement helps a user describe her interests more

precisely by recommending related query terms. For example, if a user is interested in

buddhism, the system might recommend query terms such as zen, tibetan, or ther-

avada, which are all types of buddhism. Once a query has been refined and describes a

manageable result set, query routing forwards the query to remote information servers

and merges the results for presentation to the user. Query refinement and routing use

information from compact descriptions of remote server contents called content labels.

Experience with several implementations suggests that query refinement in conjunction

with query routing us an effective tool for resource discovery in a very large document

space. Moreover, we are convinced that query refinement is an essential component of

any very large scale, rapidly changing information retrieval system.

This chapter will set the stage for the principled design of a very large scale, dis-

tributed information discovery and retrieval system. Previous work has focused on par-

ticular subproblems or has been driven by particular implementation technology. The

approach here is user-centered. We first examine the problem from the user's point of

view to determine what qualities are necessary for a usable system. Only then will we

examine the requirements from the system's point of view. The content routing system

design will be based on the principles that emerge from this analysis.

The remainder of this chapter

* details the problem of information discovery in large distributed systems and de-

duces necessary features of any system that is to solve the problem (Section 1.1)

* provides an overview of the content routing system design showing how it solves

the listed problems (Section 1.2)

* describes related work explaining how previous systems have failed to meet impor-

tant goals (Section 1.3)

* and summarizes the contributions of the thesis (Section 1.4).

1.1 The Problem

The difficulty of providing access to a large number of distributed information servers

lies primarily in problems of scale, both for the user and for the system. Section 1.1.1

analyzes the user's needs first, and Section 1.1.2 examines the system's requirements.

Each section will contain a set of necessary principles or features together with a brief

argument for their necessity. These lists may not be exhaustive and the features are not

orthogonal. However, I am unaware of any other comprehensive list in the literature,

and there is no existing system that takes all of these principles into account.

1.1.1 The User's Perspective

The user's view of the information on the present day Internet is that of a vast space

of documents clustered into groups in a large, flat, disorganized set of servers. Thus the

user must cope with a vast, featureless expanse of information. To help the user negotiate

this space, an information discovery and retrieval system should provide features to the

landscape, allow the user to deal with a controlled amount of material at a time, and

provide more detail as the user looks more closely. (This physical metaphor suggests

a possible connection between data visualization and geographical information systems.

Exploring this synergism remains for future work.) In fact, the system must be an active

participant in the negotiation of an information bargain in which the user receives greater

returns on greater investments.

The meta-principle of progressive discovery therefore underlies many of the principles

in this section, and many of the principles are interrelated. The system helps the user

learn more about the information space, which helps the user learn more about her

information need, which helps her focus attention on particular parts of the information

space, which allows the system to provide more detailed feedback. A critical corollary of

progressive discovery is that the user must not be overwhelmed with more information

than she can handle effectively.

The remainder of this section enumerates various features required by a user of an

information discovery system for a large, distributed collection of information servers.

Single point of contact: The user needs a single point, or a few select points, of

contact to begin. Even an expert user who has already found relevant sources needs a

single point to return to in order to keep up with the additions and changes to the set of

resources. In addition, a user requires mechanisms for exploring the information space

even if she has only an imprecise idea of what information is sought. In fact, the user

may not have any definable information need, just a desire to learn what is "out there."

Consistent interface: There must be a single, consistent user interface to the infor-

mation discovery system. It is too difficult for the user to understand a wide variety of

idiosyncratic interfaces. The Conit system [34, 35] has addressed this particular issue di-

rectly by providing a uniform, sophisticated, interface to a variety of existing information

systems.

Content-based naming: In order to locate documents, a user requires a way to

name documents according to their contents. Today, retrieving a document on the In-

ternet requires that one know its precise location and its name at that location. The

World-Wide Web has made document retrieval easier, but a document's URL (Universal

Resource Locator) is still a location based name. These arbitrary names are impossible

to guess and difficult or impossible to remember. Content-based names are names of

documents that are derived from their contents. They are not necessarily query-based.

For example, one could choose the Library of Congress subject catalog as a basis for

naming documents. Every time a document is added to the collection it is assigned a

path name based on its position in the subject classification and its title. Such a name is

not based on the object's physical location. Given enough knowledge about the contents

of an item and the classification scheme, one may deduce the item's name. (There are

other reasons for separating naming from location. In fact, [63] argues for low-level names

(Uniform Resource Names) that have no user-friendly semantics whatsoever. This thesis

is concerned with higher-level names that users may guess or at least remember.)

query: government and genetics

LUBAWRY of MIT LINRARY GENOME

Figure 1-4 Seek off-line assistance

System-provided structure and feedback: The user must be able to rely on the

information discovery system itself to provide the organization and tools necessary to find

items of interest. First, users simply cannot use a large amount of information without

some organization. Furthermore, because so many information servers and so many

documents already exist or are being created, no one person can know what is available on

the Internet on an arbitrary topic. The rapid change in the Internet's contents also implies

that any guidebook is out of date before it reaches the bookstores. Figure 1-4 shows a

user contacting a particular information server after consulting published references and

colleagues. Thus, while off-line resources such as human experts and reference books will

always have some utility, the system itself is the only authoritative source of information

about the system's contents, and it must be able to provide the necessary help to the

user.

Browsing: Again, a user without a readily specifiable information need requires a

mechanism for discovering the system's contents. It must be possible for the user to

browse the system's contents as one would a library. However, the system must not

overwhelm the user with a barrage of information. Providing a service that lists all

documents and/or all hosts on the Internet, for example, is simply not useful. In order

to support progressive discovery while browsing, there must be some organization of the

information space, perhaps based on a subject classification system.

Multiple, over-lapping hierarchies: A large scale information system ought to

provide browsing of multiple coexisting, even overlapping hierarchies, each of which

presents a different view of the information system's contents. Hierarchical structures

organize an information space so that a user can browse it effectively using progressive

discovery. Libraries have used hierarchical classifications since antiquity and continue to

do so today. Subject-based hierarchies like the Library of Congress cataloging system

are clearly useful tools for organizing information. Different types of subject hierarchies

exist and have proven useful, even rather ad hoc schemes such as the WWW Virtual

Library.' In addition, users may find other types of organization useful. For example, a

geographically-based hierarchy may help one who knows that relevant work was done at

some particular university. Similarly, institutional hierarchies can be useful. (Organiza-

tions of hierarchies are discussed in more detail in Section 2.3.4.) Since users may have

different information needs or different ways of describing their information needs, there

should be multiple hierarchies providing different views of the data.

Associative access: Users require associative access to both documents and internal

clusters in a hierarchy. Any hierarchical structure, however well organized, can become

tedious and inefficient to search, especially as a user's needs become more concrete.

Thus, users with more specific information needs require a more direct path to items of

interest. However, the principle of progressive discovery warns against simply providing

direct associative (or query-based) access to all documents in a large system. Using the

hierarchical organization of the information to group documents into clusters can allow

one to gauge the size and relevance of the result set of a preliminary query (see below).

Query refinement: Users require some automatic means to focus queries more

precisely. Because the information space is so large and rapidly changing, initial user

queries will have huge result sets that will overwhelm the user. It is not in the user's

interest (or in the interests of the discovery system) to process such queries. The system

lhttp: //info. cern. ch/hypertext/DataSources/bySubj ect/Overview.html

must reveal high processing costs to the user before they are incurred, but it is not

enough just to inform the user that a query is too expensive. The system must actively

help the user formulate better specifications of her interests. One way to do this is to

allow a query-based form of progressive discovery in which the user finds out about large

segments of the hierarchy that are relevant rather than individual documents. But even

this may yield unmanageable results on large servers. It is therefore incumbent on the

system to help the user narrow the search space by suggesting query modifications that

will be more precise and efficient. The system must do this because it is the only source

of expertise available to the user. Suggestions for improving a query must be related to

the user's interest and also to some on-line knowledge of the network's contents. Query

refinement is a facility that, given a user's query, automatically suggests query terms that

will help the user formulate a better query, one that more accurately reflects the user's

interest and can be answered within practical performance constraints. Figure 1-5 shows

one of the prototype content routing systems refining the query buddhism. This query

has identified a variety of document collections too numerous to browse (the list goes off

the bottom of the window). The system's suggested terms are in the pop-up window,

and the user may click on any term to add it to the query. The algorithm that computes

the list is very simple and is described in Section 2.3.2. Many of the suggested terms

have a strong semantic relationship. For example tibetan, theravada, and zen are all

types of Buddhism. Other terms are more related to service type, for example ftp.

Query Expansion: Often however, queries produce few or no matches, perhaps

because the query terms are not indexed at all. In such cases, it is useful to find related

terms to add to a query to increase the result set size. There are a variety of standard

techniques for query expansion. Thesauri and term collocation statistics have been used

to increase the size of result sets to improve recall. See [51, pp. 75-84] as well as

[64, 48, 15]. This is the opposite of the purpose of query refinement. Section 2.3.2

discusses how to parameterize the query refinement techniques used in the prototype

content routers to serve for both query refinement and query expansion.

File pptions Navigate Annotate trip

Document Title: Content Router

Document URL: http://paris

query: isuddh

Operations:

select tern for con

-V' search collections

file-archive-uun

ANU-Buddhist-Ele

ANU-Shananisn-St

RNU-ZenBuddhisn-(

RNU-ZenBuddhisn-l

uuarchive
ANU-Rsian-Relieig

Tantric-Neus

RNU-Cheng-Tao-Ko-

RNU-Thai-Yunnan

NU-Dhannapada-Ve

buddhist
cs.mitedu/ electronic

coombspapers
archives

ftp
zen
papers

pletion net

doc

poetry
et tibetan

ctrn-Rsrce wust

udwes wuarchive
otherwork

Calendar
mirrors

Listserv
edu
theravada

one ritual

asia

-Verses western
students
research

rxses
journal

Cr-

CrCrAr=r

oF

Backi I Home R open Save As... Cione New Windowi

Figure 1-5 Example of query refinement.

nnu-auccxr'necLrp

bit-listserv-novell

nailine-lists...........

I_
File Options Navigate Annotate Help

·Ir~i~n~msanaJRan~wrmrwa~-~~ ; ~l~ssl

~······1
·-

j
r

:i

'~3

·i

r
1

In summary, any very large information discovery system must provide a way to deal

with the complexity of the search space both for browsing and for querying. The system

must provide feedback and suggestions on partial or poorly specified queries if it is to

be successful in a large, heterogeneous, dynamically changing environment such as the

Internet.

1.1.2 The System's Perspective

This section reviews the technical challenges a general, large scale, distributed informa-

tion system faces in modern networks. Since the system's perspective has been the focus

of prior work, this review is brief. Note that the system requirements are not necessarily

the same as the user's requirements. It may be that user requirements are impossible to

meet with present technology (or at all). Happily, this is not the case.

Scale: Any large, distributed information system must be concerned with scale. From

the system's point of view, scalability has to do with the management of resources. A

scalable system is one that can grow without resource requirements anywhere in the

system exceeding the resources available. In general, as the number of documents gets

larger, there must be no point in the discovery system where resources grow too quickly.

Performance: Any system must provide acceptable performance to be useful. Per-

formance, however, is not a monolithic measure. Response time is, of course, important,

as are space requirements. Equally important is the quality of the results. The system

must do an acceptable job of helping users find the information they seek. Traditional

measures of recall (finding as many relevant items as possible) and precision (not re-

turning irrelevant items) are critical. Ultimately, in a large, distributed environment, an

implementation will trade off these various measures of performance.

Network usage: This item is related to both scale and performance. The informa-

tion system must not flood the network with traffic that reduces the bandwidth available

for other work.

Heterogeneity: The Internet today has a very heterogeneous collection of infor-

mation servers that is changing rapidly. Servers can be personal computers, large file

servers, or even powerful multiprocessors. This, together with the distributed nature

of the information system, suggests that it is important to for the implementation to

tolerate varying latencies and capabilities in its operations.

Interoperability: A corollary of heterogeneity is interoperability. If a wide variety of

system types are to be included in a large distributed system, then they must interoperate.

There is a large investment in different types of information systems on the Internet,

and it is essential to interoperate with these systems to leverage their large information

resources.

Autonomy: Again, wide participation suggests that many systems will be unwilling

or unable to comply with onerous restrictions on data organization and even semantics.

While it may be possible to organize cooperating sets of information providers that abide

by a fixed set of rules (for example, naming systems do this), it is important that a

general information system design allow for more flexibility.

Ease of participation: The interactions with various servers need to be very simple

to support a wide variety of systems. Also, the information system needs to have a very

dynamic structure. For example, it must be relatively simple for a new server to join the

information hierarchy (or to have data enter the system). A new server must be able

to request registration with the system, and the system must be able to request that

a server register. A simple interface and simple registration procedures are essential to

encourage participation.

1.2 Content Routing System Overview

The content routing system design described in this thesis incorporates the features of

Section 1.1. The detailed design of the system will appear in Chapter 2, which includes a

detailed example session in Section 2.1; however, this section provides a quick overview.

The content routing system supplies a single logical point of contact, which is the root

of a browsable and searchable information hierarchy. The interface is a simple extension

of both a distributed file system and a conventional information retrieval system. We

have previously explored the combination of file and information retrieval systems [21],

though this design is not limited to that particular file system model. Interaction with the

system allows browsing, as in a distributed file or hypertext system. A content routing

system extends the combined file and information retrieval systems with the notion of

a collection document, which is a cluster of related documents. Browsing and searching

involve the use of collection documents. As the user's attention focuses on a manageable

number of collections, the collections may be expanded or searched to expose more detail

about their contents and to allow more precise queries. This allows the user to see a

controlled amount of information, and, as the information need becomes more precisely

specified, the view of the information space becomes more detailed. Thus, the clustering

of documents into collections supports the exploration of the information space at varying

granularities.

Collections are supported by the idea of a content label, which is a compact description

of the contents of a collection (i.e., the contents of an information server). Users may

look at content labels to help in the formulation of queries as well as to understand the

contents of a collection. Content labels are used for routing queries to relevant servers and

for providing query refinement suggestions. Content labels are chosen by the systems that

administer the collection, that is, they are determined at the site where the information

is. This thesis explores some techniques for automatic construction of content labels.

Names of items within a content routing system depend on the hierarchy, not on the

item's physical location. In particular, content routing systems support subject-based

hierarchies for content-based naming, and they support search tools for associative access.

The information hierarchies structure the information space, and the query refinement

feature provides feedback tailored to the user's needs and to the user's interests and

current position in the information hierarchy.

The hierarchical structure provides a classic solution to one aspect of the problems

of scale. A content routing system consists of a directed graph of information providers,

each representing a collection. The internal nodes are content routers, which are servers

that implement the design of this thesis. These content routers will have information

specialties according to the hierarchy they are in. Whenever the number of elements at a

node gets too large, some elements are gathered together into a new node. An information

discovery system may exploit the semantic hierarchy demanded by the users' needs as

outlined above. The physical hierarchy need not, of course, reflect the semantic hierarchy

exactly.

A second feature that supports scaling is the use of content labels. While a hierarchical

structure controls fan out, content labels provide a way of locally controlling the required

indexing resources. For example, a content router that has ample resources and indexes

small collections may allow arbitrarily large content labels. However, a content router

may also require content labels to be of a particular size, or may charge for extra content

label space.

Naive strategies of query processing also raise the issue of scale. Figure 1-6 shows a

system that simply forwards a user's query to every server in the system. Though such

a system provides a single point of contact for the user, it wastes enormous amounts

of network resources and suffers poor performance as the numbers of users and servers

grow. While various strategies of replication and caching may ameliorate these problems

in the near term, a global broadcast scheme will not scale because it is too costly and

inefficient, enormously complicated, or both. Moreover, it avoids the central issue of how

to help the user understand the information space.

Figure 1-7 shows another naive approach to the problem. Here, the system builds a

global index of all documents and makes it available to the user. This is the approach

taken by systems like Veronica [26], Lycos [36], and the RBSE Spider [16]. The scale of

the Internet, which is today only a fraction of its eventual size, is so great as to render

infeasible any comprehensive indexing plan based on a single global index. Even though

ient and genetics

Ind ex

A ,// \
LIBRARY of MIT LIBRARY GENOME LIB•ARY o MIT LIBRARY GENORE
CONGRESS CON•RESS

Figure 1-6 Broadcast query everywhere Figure 1-7 Use a global index

some sites on the Internet distance themselves from the rest of the network via firewalls

and other techniques, the trend is toward greater and greater connectivity [56]. A global,

centralized index will grow with the size of the document space and will be very difficult

to keep up to date. Though its performance for the user is much better than that of the

broadcast approach, it ultimately will not scale. It already takes Lycos months to scan

the Web from the documents it stores as starting points for a search. The Canadian

company Open Text is preparing to offer full text indexing of the entire Web, and even

at its current modest size, they expect a database of 40-50 gigabytes managed by three

dedicated DEC Alphas [41]. Transmitting all documents on the net to the index server for

indexing (or even the index data which is still large) will represent an enormous amount

of network traffic. This traffic, if the global index is to be kept up to date, will reduce

available network bandwidth considerably and create local bottlenecks. Organized use of

a wide distribution of indexers and managed communications procedures ameliorate these

problems, and in fact, this is one way to view the content routing approach. Furthermore,

a global indexing strategy does nothing to organize the information space for the user.

The architecture proposed in this thesis is a compromise between broadcast and

global indexing. Figure 1-8 shows a content routing system accepting a user query and

forwarding it only to relevant servers. To do this, the system must have some idea of

server contents. A content routing system uses a compact description of server contents

Query Suggested query terms

Content Rting
System

LIBRARY of MIT ..UIRARY GENOME
CONGRESS

Figure 1-8 Route only to relevant servers

called a content label to perform query routing and refinement. A content label may be

small compared to the size of an entire collection, unlike the information required for a full

global text index. Furthermore, as Chapter 2 will show, content labels can be designed

so that they change more slowly than the collection itself. A hierarchical arrangement

of content routers can also be thought of as containing a distributed global index with

index data becoming more complete as one approaches the leaves of the network. The

architecture supports a flexible registration protocol and allows a great deal of server

autonomy.

Thus, this thesis explores the design of a content routing system that:

* Supports browsing and associative access.

* Supports a uniform query interface that allows progressive discovery of network

contents and guides users in formulating queries of adequate discriminatory power.

* Propagates descriptions of server contents through a hierarchy of information ser-

vers.

* Routes individual queries to available servers based on the expected relevance of

the server to the query.

j

This thesis will not concern itself with certain issues that are clearly important for

a full scale system. Namely, I will not address replication, network protocols or naming

(accept for the specific navigation and query tools in the design). I will also not address

the important issue of deduplication, that is how to remove duplicate documents from

the system. Duplicates can arise from the same document's presence in more than one

server, different versions of the document being available, or by different access paths to

the same document. The last possibility can easily be overcome if there is a system for

normalizing names [28]. See Section 4.1 for a brief discussion of these and other issues

for future research.

1.3 Related Work

The content routing system design is unique in its use of query refinement. Perhaps this

service has been neglected, while query expansion has long been available, because of

the pervasive use of the vector space query model. (See [51] for information on vector

models). Since vector models do not support boolean conjunction, there is no way to

reduce a result set by adding query terms. New query terms always increase recall. Our

use of a boolean query model makes query refinement a practical feature rather than just

an ideal. The inclusion of the query refinement feature draws on our past experience with

the Community Information System [22, 20]. In the Community Information System, a

simple theorem prover assisted the user in choosing query terms that guaranteed the

query could be satisfied at available news wire databases.

Related work can be broken down into the following categories: Global indices, sub-

ject directories, network-based information retrieval systems, and network-based resource

discovery systems.

1.3.1 Global Indices

Web robots like the Web Crawler [47], ALIWEB [30], Lycos [36], the RBSE Spider

[16], and Yahoo2 gather information about resources on the Web for query-based access.

Veronica [26], a discovery system that maintains an index of document titles from Gopher

[1] menus, uses the same strategies. The Archie system [17] polls a fixed set of FTP

sites on the Internet and indexes the file names on those sites. A query yields a set of

host/filename pairs which is then used to retrieve the relevant files manually.

All these systems use a global indexing strategy, i.e., they attempt to build one

database that indexes everything. Even so, they limit the information they index: for

example, Lycos indexes only the title, headings and subheadings, 100 words with highest

weights (according to a weighting function), and the first 20 lines. They further restrict

the size of the indexed data in bytes and in number of words. If there must be restrictions

on indexed terms, it would be preferable to leave the decisions to entities that have domain

specific knowledge (as well as knowledge about the users of the data). Global indexing

systems do not provide any organization of the search space, and they do not give the

user any guidance in query formulation. These systems overburden network resources

by transmitting all documents in their entirety to a central site (or a cluster of indexing

sites in the case of Lycos). The futility of this sort of architecture is already apparent: it

takes on the order of weeks (or more) for Lycos to update its indices. A content routing

system allows distributed processing of information at more local intermediate servers,

thus distributing the work load and avoiding network bottlenecks. Furthermore, a content

routing system allows greater autonomy to each information provider and content router

to tailor its indexing mechanisms and facilities using local knowledge.

One interesting feature of Lycos is its use of pruning the graph of Web documents

it has indexed (in order to preserve a finite representation). When the graph is pruned,

a place holder containing the 100 most important words in the documents that were

pruned is left behind. This list is built from the 100 most important words in each of the

2http://www.yahoo.com/docs/info/faq.html

pruned documents. This can be viewed as a very ad hoc and rudimentary type of content

label. Another interesting feature of Lycos is its association of link information (the text

describing a link) with the document the link refers to: some information from the parent

is indexed to refer to the child. This information is useful because it is essentially a name

or description of the document referred to thought up by someone else. This information

is not necessarily available at the site where the document resides, and thus may be

difficult to integrate into a content routing system.

Yahoo also is different from the other systems in this category because, like the content

routing system and the Semantic File System [21], it provides a hierarchical organization

of the data for browsing. In fact, Yahoo can be viewed as a Semantic File System

implemented in the World-Wide Web. The hierarchical organization is ad hoc, but quite

useful. Queries are processed against the entire document space as if the hierarchy were

flattened. One very useful feature (also true of the Semantic File System) is that query

results are enumerated with their entire path name in the hierarchy. This allows the user

to submit queries and use the results to learn about the hierarchy, possibly following up

previously unknown clusters of data.

1.3.2 Subject-Based Directories

Subject-based directories of information, e.g., Planet Earth3 and the NCSA Meta-Index4 ,

provide a useful browsable organization of information. These systems focus only on

browsing. These hierarchies would be useful paradigms for organizing particular hier-

archies in a Content Routing System. However, as the information content grows, a

browsing-only system becomes cumbersome to use for discovering relevant information.

Associative access is necessary for quickly generating customized views of the informa-

tion space in accordance with a user's interests, and this associative access must work at

varying levels of granularity. None of these systems provide this integration, nor do they

3http://white.nosc.mil/info.html
4http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/MetaIndex.html

provide query routing and refinement.

In contrast to most of these systems which use static, externally-imposed hierarchies,

the Scatter/Gather work of [11] uses data-driven, automatic construction of information

hierarchies based on fast clustering algorithms. I expect that many useful content rout-

ing hierarchies could be developed using their off-line clustering algorithms, and it may

even be feasible to blend the Scatter/Gather dynamic clustering techniques with con-

tent routing (though this remains an open question). Another approach to data-driven

hierarchy construction may lie in clustering by automatic theme extraction [53]. If the

past is any guide, automatic clustering may ultimately prove more useful than manual

clustering just as automatic indexing has proven to be preferable to manual indexing

[52]. Nonetheless, content routing supports hierarchies based on data-driven clustering

as well as on other organizing principles.

The Scatter/Gather work does take a similar point of view to that of content rout-

ing, namely that the user model should allow for progressive discovery with interleaving

of browsing and searching at varying levels of granularity. In [49], the authors use the

term 'iterative query refinement' to mean what I call 'progressive discovery.' The Scat-

ter/Gather architecture does not seem to support distributed processing where clusters

are implemented as servers, and there is no notion of query routing or refinement. Users

must explicitly select clusters for further interrogation.

1.3.3 Network-Based Information Retrieval Systems

Network-based information retrieval systems provide associative access to information on

remote servers. WAIS [29] combines full text indexing of documents with network-based

access. However, there is no facility for routing queries to relevant databases and merging

results, nor is there any mechanism for suggesting query terms to users.

The Conit system [34, 35] provides a uniform user interface to a large number of

databases accessible from several retrieval systems. User queries are translated into

commands on the different systems. However, there is no support for the automatic

selection of relevant databases for a user's query.

1.3.4 Network-Based Resource Discovery Systems

Network-based resource discovery systems like H'arvest and GlOSS gather information

about other servers and provide some form of query-based mechanism for users to find out

about servers relevant to a request. Harvest [8] builds on our work on content routing by

providing a modular system for gathering information from servers and providing query-

based browsing of descriptions of those servers. A broker is a kind of content router,

and a SOIF (Structured Object Interchange Format) object is a kind of simple content

label. However, Harvest has no architecture for composing brokers. The Harvest Server

Registry is like the WAIS directory of servers: It does not appear to support interaction

with multiple servers by query routing and merging of result sets; rather it supports the

ability to click on a broker and query it. There is no query refinement capability or even

enumeration of field names or values. The user must browse through the SOIF objects

to get hints on how to construct queries.

The GlOSS system [25] also provides a mechanism for finding servers relevant to a

query, but it uses a probabilistic scheme. GlOSS characterizes the contents of an in-

formation server by extracting a histogram of its words occurrences. The histograms

are used for estimating the result size of each query and are used to choose appropriate

information servers for searching. GlOSS compares several different algorithms using the

histogram data. The content routing system prototypes do not fit into any of GIOSS's

categories, because they do not use document frequency as a measure of server relevance

for routing (though they do use document frequency data for suggesting query refine-

ments). Moreover, G1OSS's estimates of query result set sizes are not at all accurate.

These estimates, which are used for a kind of routing function, are inaccurate because

GlOSS assumes query terms appear in documents independently of each other and with

a uniform distribution. This assumption is obviously false, and all data-driven clustering

algorithms as well the query refinement feature in a content router are based on the

certainty that term occurrences are dependent. It would not be such a problem for other

aspects of cost estimation (or even parts of a query refinement algorithm) to be based on

this false heuristic if it were to prove useful, because these other features do not affect

the semantics of query routing and identification of relevant sources. GlOSS also does

not search remote databases, it only suggests them to the user who must search them

and retrieve documents manually. More recently, the GlOSS work has taken up the idea

of hierarchical networks of servers, though this effort is preliminary and has been used

only for two-level hierarchies [24].

Simpson and Alonso [61] look at the problem of searching networks of autonomous,

heterogeneous servers. The focus of this work is on determining the properties of a pro-

tocol that preserves server autonomy while providing useful services. In particular, they

decompose the problem into various independent modules and describe the operations

each module implements. Their system does not provide any analog of query refinement,

or even automatic query routing: the user has to select servers to search manually. It

is also not clear whether any form of browsing is allowed. However, they did have an

analog of content labels to describe server contents. Their approach has a probabilistic

query semantics and does not support browsing with query refinement. Also see [2] for a

survey of approaches to integrating autonomous systems into common discovery systems.

The Distributed Indexing mechanism [13, 12] is based on precomputed indices of

databases that summarize the holdings on particular topics of other databases. The

architecture has a fixed three layer structure.

The Information Brokers of the MITL Gold project [3] help users find relevant infor-

mation servers, but they do not provide access to objects directly. Rather, they return

descriptions of an object's location and the method that may be used to retrieve the

object.

1.3.5 Distributed Naming Systems

Distributed naming systems such as X.500 [9], Profile [46], the Networked Resource

Discovery Project [55], and Nomenclator [42] provide attribute-based access to a wide

variety of objects. The content routing architecture, as will be described in Section

2.3.3, allows the use of Nomenclator style hierarchies as a special case. However, naming

systems traditionally operate in highly constrained environments where objects have few

attributes. In Nomenclator, object metadata consists of templates. A simple subset

relation (together with the use of wildcards for some attributes) allow a server to identify

relevant information servers and forward queries. Nomenclator restricts the semantics of

the system so that a server must be authoritative for any query that matches its template.

This represents a strong restriction on the structure of the information system. Moreover,

it is clearly assumed that templates are relatively small and that a relatively small set of

attributes can be found that split the search space and will be known to the user. Section

3.1 discusses the search for such terms in a particular set of servers. Also, [42] suggests

that an advise operation, similar to a content router's query refinement operation, can

help users specialize queries by listing all attributes in revised templates generated by

remote executions of the query. In any general information retrieval application on the

scale envisioned in this thesis, this would be impractical. However, the architecture does

not allow structures that will support term rankings in the advise operation.

1.4 Contributions of the Thesis

The content routing system design represents a new approach to information discovery

and retrieval in large distributed systems that:

* examines the interplay of offline data organization and online interleaving of brows-

ing and searching at various levels of granularity.

* supports distributed processing and query routing for better performance and ease

of integration.

* exploits heterogeneity of data sources to aid navigation.

* provides a query refinement feature in which the system automatically recommends

query terms chosen based on the users query and knowledge of the system's con-

tents.

* directly addresses the metadata issue by experimenting with automatically gener-

ated content labels that describe the information exported by a server.

Furthermore, this thesis work has examined some of the pragmatic questions raised

by such a design through a series of prototype implementations. The implementations

have demonstrated the feasibility of the content routing architecture by demonstrating

the following research results:

* It is possible to give meaningful and useful suggestions to help a user formulate

better queries.

* It is possible to do automatic query routing to a meaningful subset of a large number

of information servers.

* It is possible to define metadata structures that can be used to organize the infor-

mation space and provide assistance in formulating queries.

* The content routing architecture can successfully interoperate with pre-existing

systems.

* It can be practical to extract useful content labels from hundreds of disparate,

incompatible servers.

* A hierarchical content routing system scales well to hundreds or thousands of

servers. I am guardedly optimistic that a well-organized system could cover millions

of servers.

1.5 Structure of the Thesis

The remainder of this thesis is organized as follows:

* Chapter 2 gives the design of the content routing system architecture.

* Chapter 3 describes implementation efforts and experience with the resulting pro-

totypes.

* Chapter 4 summarizes the results of the design and implementation efforts and

describes directions for current and future research.

Chapter 2

Design of a Content Routing

System

The goal of the content routing system's design is meet the user's needs as outlined in

Section 1.1.1. Any system is constrained by the system requirements outlined in Section

1.1.2. The design of the content routing system exploits the substantial commonalities

and compatibilities between the user's needs and the system's requirements. For example,

a hierarchical organization of data supports browsing by structuring the information

space. A hierarchical organization of data also provides the system with a strategy

for decomposing the information space onto distributed servers. Similarly, the user's

requirement for more detail as her information needs become more specific suggests that

the system need not store or process detailed information when dealing with non-specific

information requests. Requests for detailed information may be processed at specialized

information servers that cover a narrower range of material more thoroughly.

A content routing system, therefore, consists of a hierarchical network of informa-

tion servers that supports browsing and searching. To support associative access to its

contents, a content routing system directs user requests to appropriate servers (query

routing) and helps a user formulate meaningful queries (query refinement). Both of these

tasks require a content routing system to employ detailed knowledge about what in-

formation is available and where it is located. This knowledge is encoded in metadata

descriptions of the contents of remote servers called content labels.

This chapter presents the semantics and architecture of content routing systems:

* Section 2.1 contains an example session with a prototype content routing system.

* Section 2.2 gives the semantics of a content routing system by describing the ab-

stractions and operations provided to the user. The section also details the structure

of queries.

* Section 2.3 gives the architecture of a content routing system. It

- describes how architectural components of the system match up with the se-

mantic constructs.

- outlines detailed strategies for query routing and refinement.

- explores alternatives for constructing content labels and content routing hier-

archies.

2.1 Example Session

Even though a content routing system uses many familiar concepts, it is best to illustrate

the design with a running example. This will make the subsequent discussion of the

abstractions and operations provided by the system more concrete.

A content router is an information server that supports the content routing system

interface to provide access to other information resources. A content router registers

a number of information providers and organizes them into a local directory structure,

which may be browsed like a tree-structured file system or searched like an information

retrieval system.

Figure 2-1 shows the initial contact with a prototype content router running on a

particular information hierarchy. The prototype uses the notion of a current result set.

Figure 2-1 Top-level view.

35

Figure 2-2 Expanding a directory.

36

Figure 2-3 A sample content label.

37

The documents in the current result set form the roots of a hierarchical information

space that the user may browse and search. This information space forms a universe for

the various operations described below. The user may selectively remove items from the

current result set by un-checking the boxes next to those items. The current result set

is displayed at the bottom of the window.

The top-level of this content router contains nine documents in the initial result set.

These documents fall into three types: base documents, directories, and collections.

Base documents can be any ordinary document that one might encounter in an infor-

mation retrieval system: ASCII text files, PostScript documents, graphics, sound, and

video are typical examples. In Figure 2-1, Read-Me is a plain text file. Base documents

are retrieved by clicking on their names.

Most of the documents in the result set are directories, which in turn contain other

documents. To support browsing, a content router uses directories to provide local struc-

ture to the information space, just as one uses directories in an ordinary file system or

gopher. A user retrieves the contents of a directory by clicking on its name. Figure 2-2

shows the result of retrieving the Religion directory of Figure 2-1. It's components are

all subdirectories devoted to particular religions. Browsing may continue in this manner

just as in any file system browser.

The content routing system introduces the idea of a collection document. In Figure

2-1, Acronyms and Weather are collections. Collections, like directories, contain other

documents. However, a collection also consists of a description of the set of documents

it contains. This description is called a content label. Users may click on the name

of the collection to connect directly to an information server for that collection, which

may be another content router or a server that supports only base documents (and

perhaps directories). Users click on (content label) to retrieve the content label for

the collection. There are many choices for content labels. The design issues will be

outlined below in Section 2.3.3, and Chapter 3 will discuss the decisions made for the

prototype content routing systems. Figure 2-3 shows the content label on this prototype

for the Acronyms collection. Human readable content labels are useful for learning more

about the contents of collections and also about available query terms.

The search operations appear under the heading Operations. These operations are

used to build queries. The system displays the current query at the top of the window.

This query is empty at initial contact and is unaffected by browsing, as can be seen in

Figure 2-2.

Query-based search operations in the present content routing system design distin-

guish three cases that differ in the treatment of collections, and therefore, in the gran-

ularity of the search. Only two cases will be shown here. The complete set of search

operations will be described in Section 2.2.3.

The select operation is finds all documents in the universe that match the query

augmented by the new terms typed in by the user. For a select, and for all the search

operations of the content routing system, the query is applied to base documents, directo-

ries, and collections in the result set, as well as to the contents of directories (recursively).

The search is confined, however, to the local server without looking inside collections.

Collections are treated as single documents that match a query if their content labels

match the query. Figure 2-4 shows the result after the user types in the query term

tibetan and submits the form in Figure 2-2 with the select operation. There are 13

documents, all collections, within the Religion directory that match this query. No-

tice that the local directory structure disappears as a result of a select operation, i.e.,

the directories beneath the current result set are flattened for the selection of relevant

documents.

If a search of all 13 remote servers seems too expensive, the user may wish to fur-

ther restrict the size of the universe. If the user cannot think of any appropriate query

modifications to accomplish this task, she may use the query refinement feature. The

system responds to a query refinement request with a list of suggested terms that might

be added to the query to narrow the search space. Figure 2-5 shows the terms suggested

by the system for the query tibetan. (This figure comes from an earlier implementation

of the content router because, as of this writing, query refinement is still being reim-

plemented for the new prototype.) Many of the terms are very relevant to the query:

asian, tibet, buddhist, buddhism, meditation relate to Tibet and its Buddhist tradi-

tions; coombspapers is the name of a collection of bibliographic materials on Buddhism;

a lama is a Tibetan Buddhist priest, oracles are an unusual feature of Tibetan Bud-

dhism; sino relates to sino-tibetan, the language family to which Tibetan belongs as

well as a set of political relations; yoga is widely practiced in Buddhism; thangkas are

religious paintings on scrolls; tantra relates to the Tibetan practice of tantrism (in Bud-

dhism); and saky[a] is a school of Tibetan Buddhism. The presence of ftp derives from

the existence of several ftp archives on the subject.

Figure 2-6 shows that the addition of the text term meditation has reduced the

number of relevant servers to three. An exhaustive search of these servers is done when

the user chooses the search operation. A part of the list of documents from all three

collections is visible in Figure 2-7.

2.2 Content Routing System Semantics

2.2.1 Abstractions

An important challenge in the design of a system for information discovery in very large

environments is to find a small and simple set of abstractions and operations that users

can understand and use effectively. These abstractions and operations must allow a

user to explore and search the expanding information space without becoming mired in

details of the implementation. When it becomes necessary to expose some aspect of

the implementation to the user, it must be done in a simple way that is semantically

integrated with the user's view of the system. Most of the concepts used in the content

routing system design are familiar to users of computer systems, as the example of Section

2.1 shows. However, some new ideas are necessary for negotiating a very large information

space.

Figure 2-4 Submitting a Query

41

Figure 2-5 Query refinement

Hetscýqw' GwRemt Router
........... ýjl
....

......

Figure 2-6 Restricted search

..
..No.....el...

Figure 2-7 Documents

tietscapeý mwiý"' funhouSpý
..........-

.....

..... i.,
......

..........
.............

..

This section describes the abstractions that content routing systems use to organize

the information space for the user. Section 2.3 will explore in more detail how these simple

concepts can be implemented architecturally, and Chapter 3 will discuss the particular

implementations built as part of this thesis work.

Familiar abstractions include base documents and directories. Base documents are

the individual data objects ultimately of interest to the user, including conventional text

documents, reports, electronic mail messages, PostScript documents as well as sound

and video footage. The set of base document types is extensible and may vary among

collections. The content routing system design assumes, however, that queries and,

therefore, indexed terms, are textual. Directories are sets of documents, including other

directories, which behave like directories in a file system, gopher, or the World-Wide

Web.

The key new abstraction of the content routing system design is the collection docu-

ment, or collection. A collection consists of a set of documents (possibly including other

collection documents) together with a description of the set called a content label. Col-

lections help to organize the search space by grouping related documents together into

aggregates. Because a collection contains other documents including collections, it can

be viewed as a hierarchical arrangement of documents in a directed graph. Figure 2-8

shows a nested structure of collections each with its content label attached.

A content label is a compact representation of the set of member documents in a

collection. It is intended that different applications will use different sorts of content

labels. Section 2.3.3 discusses the form of content labels in more detail.

As the example of Section 2.1 illustrates, the content routing system uses the notion of

a result set. A result set is a set of documents that represents the roots of future browsing

and searching operations (as Section 2.2.3 will describe). A result set is distinguished

from a directory by the fact that it cannot be named, at least with the current interface.

Also, it is worth emphasizing the inherent dynamic nature of result sets, which represent

the state of a user's session with the system. (However, content routers are free to have

Figure 2-8 A content routing system provides access to a hierarchy of collections.

directories that are dynamically created. This was done in the semantic file system,

and initial content routing system implementations used dynamically computed virtual

directories for result sets.)

More precisely, a content routing system has the following semantic domains:

DOCUMENT

NAME

BASE-DOCUMENT

DIRECTORY

COLLECTION

RESULT-SET

- (BASE-DOCUMENT + DIRECTORY + COLLECTION) X NAME

- STRING

- text + LATEX + video + ...

- DOCUMENT*

- DOCUMENT* X CONTENT-LABEL

- DOCUMENT*

where the base documents are an extensible set of document types like ASCII text, video,

etc. whose representation will be left unspecified; and content labels are as described

below. (+ is discriminated, or tagged, union; * is Kleene star; x is cartesian product.)

Notice that result sets are not themselves documents and that they do not have names.

Designs with nameable result sets will be explored in future work.

Though directories and collections appear similar semantically, they are distinguished

by some operations, described below. The motivation is that directories are intended

to be light-weight, local constructs. Collections are typically implemented by remote

servers and many interactions will involve communications overhead. This is exposed to

the user so that the user can choose operations to balance information services against

performance.

2.2.2 Queries

To conduct an automatic search, the user must specify her information needs to the

system in the form of a query. The system uses the query to identify components of the

search space that are relevant to the user's needs. This section describes the query model

used by the content routing system, which is the same simple predicate data model of

[22, 21].

For associative access, the content routing system assumes that documents are rep-

resented by attributes. An attribute consists of a field name and a value. Two examples

of attributes are text: database and author: ullman.

Typically a server will automatically extract these attributes from documents. For

example, a plain text document may be represented by an attribute for each unique word

in the document as well as attributes indicating the location and owner of the document;

video footage may have associated text annotations or close captioned text.

Directories are represented with attributes based on their names, position in the hi-

erarchy, and owner. Collections are represented by their content labels which contain

attributes, though Section 2.3.3 will have more to say about how they are treated. The

semantic file system showed how to build a system based on an extensible set of trans-

ducers for automatically extracting attributes in a file type specific way [21].

The content routing system leaves the precise semantics of fields to the administrators

of information hierarchies and treats field names as strings. We have experimented

with some information hierarchies in which certain field names have a fixed, predefined

semantics, e.g., the author field represented the author of the document. It is also

possible for fields to make use of a controlled vocabulary, for example, the Library of

Congress catalog system has a fixed set of names for different areas of knowledge. Other

fields may have semantics that vary from domain to domain. For example, category is

a controlled vocabulary field defined by the New York Times wire service [57, Sections

3.1 and 3.2], but may be used differently by a particular library cataloging system. In

our experiments with user file systems, individual documents may export their own field

names, thus the set of fields is extensible.

Values can assume a variety of types, including integers and dates. Thus far however,

the prototype content routing systems have implemented all values as strings.

From the point of view of associative access, then, base documents and directories are

represented by sets of attributes (that are extracted from them in an implementation-

dependent way), and collections are represented by their content labels. Field names are

strings, and values can come from an extensible set of data types:

BASE-DOCUMENT oc ATTRIBUTE*

DIRECTORY oc ATTRIBUTE*

COLLECTION oc CONTENT-LABEL

ATTRIBUTE = FIELD X VALUE

FIELD = STRING

VALUE = STRING+...

where oc should be read "is represented by," and the treatment of content labels is deferred

for the moment.

A query is a boolean combination of terms. The content router prototypes have used

attributes as terms. An example query is:

text:database and (author:date or author:ullman)

A formal syntax of queries is:

QUERY = TERM I TERM OP QUERY not QUERY

OP = or land

TERM = ATTRIBUTE I (QUERY)

where not, or, and and are the usual logical operations.

It is simple to determine whether a document satisfies or matches a query, or equiv-

alently whether a query is true of a document. This definition proceeds inductively on

the structure of queries. A single term query matches a document if the term appears in

the attribute set for that document. If a document is considered to be its attribute set,

then the document matches a term if the term appears in the document. A single term

query is false with respect to a document if the term does not appear in the document.

Then the truth or falsity of a query with respect to a document is the boolean combina-

tion of the single term truth values. Section 2.3.3 will discuss how to determine when a

collection matches a query.

In many systems today, including WAIS, terms are plain text keywords and queries

are sets of terms:

TERM = KEYWORD

KEYWORD = STRING

QUERY = TERM*

Keyword-based queries can be mapped into an attribute-based scheme very easily.

The content router prototypes use text attributes for plain text terms that occur in

a document. Thus, a keyword k corresponds to the attribute text :k. (This is the

strategy the content router prototypes have used when interoperating with keyword-

based information servers such as WAIS.)

Keyword-based systems normally use a vector-space model in which a document

matches a query if it contains any term in the query. Documents are ranked based

on how many query terms they contain and on computed term weights. It would be

quite reasonable to build a content routing system on a vector model, though, as was

mentioned in Section 1.3, it is not clear how to do query refinement in such a system.

For more on vector-space models, see [51].

2.2.3 Operations

The content routing system defines a set of eight operations based on the above abstrac-

tions that allow a user to browse and search an information space, retrieve documents

or content labels, and discover information useful in the formulation of queries. Most

of these operations were illustrated by the example of Section 2.1, however, this section

contains a complete list of the operations and detailed descriptions of what they do.

A summary of the basic operations of the content routing system appears in Table

2.1. There are three categories of operations: those for browsing, those for query-based

associative access, and those for helping in query formulation. The query processing

operations select, expand, and search have two entries each because each can be applied

to a single document or a set of documents in a result set. Notice that result sets are

data objects that can be passed to and returned from operations. Result sets therefore

provide a handle for the manipulation of sets of documents and encode the state of a

user's interaction with the system. (Some users may find it helpful to think of result

set objects as remote pointers, others may consider them to be like NFS file handles for

directories.)

Browsing Operations

The two operations that support browsing allow one to open a collection or retrieve the

contents of a document.

Open The open operation is used to connect to an initial collection or to browse

the contents of a collection encountered during use of the system. In the interface shown

in Section 2.1, a user may open a collection by clicking on its name. The open operation

returns the initial, or top-level, result set for the opened collection.

Retrieve The retrieve operation is the most familiar of the operations. If the given

document is a base document, retrieving it returns the document's contents. Retrieving

a collection returns a human-readable version of the collection's content label. Retrieving

a directory returns a result set consisting of the documents in the directory.

Query Processing Operations

The three query processing operations provide associative access to the contents of a

content routing system. They differ only in their treatment of collections, i.e., they differ

in how far down an information hierarchy a search is carried out. All these operations

collapse the directory structure of collections, treating a collection's contents as a flat set

of documents, though they will only return documents available via the given result set.

Some implementations may estimate the cost of queries and refuse to process those

it deems too expensive. The user may be required to narrow the query, manually remove

items from the result set before the search, or perform a more limited query processing

operation.

All the query processing operations may be applied to an individual document or to

a set of documents. The result of applying any of these operation to a set of documents

is the union of the results of applying the operation to each member of the set.

open open collection-name
initializes a connection to collection-name and returns the initial result
set for that collection.

retrieve retrieve document
returns the contents of document. In the case of a collection, returns a
human readable description of the collection's contents (content label).
In the case of a directory, returns the contents of the directory.

select select document query
if document is a base document, returns document if it matches the
query. If document is a collection, returns document if its content label
matches the query. If document is a directory, applies select recursively
to each member of the directory and adds document to the combined
results if it matches the query.

select select result-set query
returns the union of the result sets obtained by applying select to every
document in result set.

expand expand document query
if document is a collection, then returns the result of a select at the
top-level of that collection. If document is a directory, then returns the
union of the result sets obtained by applying expand to every document
in document. Otherwise, returns a result set containing just document.

expand expand result-set query
returns the union of the result sets obtained by applying expand to every
document in result-set.

search search document query
if document is a base document, returns document if it matches the
query. If document is a collection and its content label matches the
query, then returns the result of a search of that collection. If document
is a directory, applies search recursively to each member of the directory
and adds document to the combined results if it matches the query.

search search result-set query
returns the union of the result sets obtained by applying search to every
document in result-set.

show-fields show-fields result-set
returns a list of available attribute field names.

show-values show-values result-set field-name
returns a list of potential values for field-name attributes.

refine refine result-set query additional-args
returns a list of recommended query terms that may be used to reduce
size of the search space.

Table 2.1 Router operations for browsing, query processing, and query formulation

Select The select operation is the most restricted search provided, and, therefore,

the coarsest in granularity. A select returns the documents in the universe implied by the

given the result set that match the query. Select considers the contents of directories

recursively, however, it does not look inside collections that may appear in the universe.

Thus, a select at a node in Figure 2-8 returns only the children of that node that match

the query.

Operationally, a select applied to a particular document and query proceeds thus: If

document is a base document, then select returns a result set containing document if

document matches the query, an empty result set otherwise. If document is a collection,

then likewise returns document if its content label matches the query. If document is a

directory, then return document if it matches the query plus the union of the results of

applying select to each document in the directory. In other words, select returns matching

documents while flattening directories.

Expand The expand operation is like the select operation except that it expands

one layer of the collection hierarchy, providing somewhat more detail but without the

expense of an exhaustive search. Thus, an expand at a node in Figure 2-8 results in all

the matching non-collection children of that node plus all the matching grandchildren of

the node (available via matching collections). An alternative operational description is

this: Perform a select operation with the same arguments. All non-collection documents

in that result will be in the expand's result. For each collection in the intermediate result,

perform a select at the top-level of the collection. Combine all the results.

Search The search operation treats the entire search space reachable from the

present result set as if it were a single, flat, information system. Thus, referring again to

Figure 2-8, a search operation will return all the non-collection documents that match

the query in the graph rooted at the node from which the search commenced, proceeding

through collections that match the query. Operationally, again, perform a select at the

present collection with the same result set and query. Each non-collection document will

be returned as part of the result. For each collection returned from the select, perform

a search at the top-level of that collection. Combine all the results.

Query Formulation Operations

The query formulation operations help the user learn how to formulate queries and help

manage the complexity of the search space. A new user may know nothing about how a

collection indexes its documents. Thus, the user needs a way to find out what terms are

available for queries. Retrieving sample documents is one way to do this (and the only

way on previous systems), but it is valuable if the system provides special help. Once

the user gets started, a typical session proceeds with the user alternately broadening and

narrowing queries. Typically users start with broad queries. The set of documents to

peruse becomes smaller as a query is refined. The user refines queries either by using

system recommended completions or by using attributes discovered in interesting content

labels or by other system-supplied resources. When a query is sufficiently narrowed, its

collection documents may be expanded. This process continues in a pattern of contracting

selections alternating with expansions with a final search in a reduced space of documents.

In addition to these operations, the content routing system allows users to browse the

system and look inside documents and content labels to learn about available terms.

Show-fields The show fields operation displays the set of attribute field names

known to the currently open collection(s). Ideally, the set of fields displayed should be

limited to those found in the documents of the current result set. Note that show-fields

does not require an outstanding query, and can thus be used when connecting to a new

collection to learn about its contents and how they are indexed.

Show-values The show values operation lists possible values for a given field. Ide-

ally, the values displayed should be selected from those found in the documents reachable

from the current result set. Implementations may want to recommend values that re-

duce the search space (as in refine below). Note that show-values does not require an

outstanding query, and thus be used when connecting to a new collection to learn about

its contents and how they are indexed.

Refine The refine operation takes a given query and returns suggested query terms

(attributes) that will reduce the search space if they are added to the query. Section

2.3.2 will provide more detail on how this may be done.

2.3 Content Routing System Architecture

The content routing system design presented above must be realized by a concrete systems

architecture. The goal of the architecture presented here is to realize the functionality

above as simply and transparently as possible. This section is a high-level description

of the content routing system architecture. It will not be concerned with the details of

underlying network protocols, etc. Chapter 3 will describe prototype systems that use

the Semantic File System/Network File System (which is RPC-based) and the Hypertext

Transport Protocol (which is TCP-based).

Architecturally, then, a content routing system is a network of information servers.

Leaf nodes in the network are end-point information servers that store conventional

documents. The hierarchical network of internal nodes is composed of content routers,

which are information servers that support collections and the set of operations listed

above. Figure 2-9 shows a content routing hierarchy. In such a system, expand and search

operations cause queries to be routed to relevant information servers for processing (the

downward-pointing arrows in the figure). If an operation is forwarded to multiple servers

then the results are merged. A content router may elect to forward operations to servers

or to refuse to do so depending on the cost effectiveness or expense of that operation.

Content label information flows upward from the leaf servers as each server registers with

its parent.

The structure of a content routing network is isomorphic to the collection hierarchy

seen by the user of that hierarchy. For example, Figure 2-10 implements Figure 2-8.

Each collection is implemented by an information service for the collection's component

documents plus a content label that describes the collection. Each content router (an

Content Router

qur content label

Figure 2-9 A content routing system is a hierarchy of information servers.

information service that provides access to collections) stores any base documents and

directories it exports plus the content labels for any collections registered with it. Servers

are programs that may or may not reside on the same physical host computer. Collec-

tion containment (shown by the graph connectivity in Figure 2-8) corresponds to server

registration (shown by the server connectivity in Figure 2-10.

Some of the operations described in Section 2.2.3 are very simple to implement. For

example, in an HTTP-based implementation, registration consists in a subsidiary server

sending URLs for its top-level and for its content label. An open operation would consist

in retrieving the top-level document, and other operations would consist in sending and

receiving form documents of the appropriate form. See Chapter 3 for more details.

However, there are two key services that are needed to implement the semantics given

above: query routing and query refinement. Query routing is the process of identifying

relevant servers for a user's query, forwarding the query to those servers, and merging the

results. Query refinement has been defined above. These two services are described below

Figure 2-10 The server topology is isomorphic to the collection topology.

in Sections 2.3.1 and 2.3.2, respectively. Their precise implementations are described in

Chapter 3.

In addition, the content routing system architecture is parameterized by the choices of

the contents and semantics of content labels as well as the structure of information hier-

archies. Section 2.3.3 discusses the choices for content labels, and Section 2.3.4 discusses

how to build information hierarchies. The detailed choices used in the experimental work

of this thesis are given in Chapter 3.

2.3.1 Query Routing

One of the goals of this research is to establish whether it is possible to route queries

to a meaningful subset of a large collection of information servers. This section gives

the approach to this problem taken by the content routing system. Experience with an

actual implementation appears in Chapter 3.

To conduct a search for items matching a given query, a content router identifies

relevant documents in its collection, identifies which of those documents are collections,

forwards the query to the corresponding servers, and merges the results for presentation to

the user. Some formalization will help to describe exactly how a content router performs

this task.

Recall that a user's query Q is a boolean combination of terms. Terms may be either

attributes (field name, value pairs) or keywords. Q can be considered as a predicate

that is either true or false of a document, i.e., Q(d) is true if and only if document

d matches Q. A collection document matches a query if its content label matches the

query. Section 2.3.3 will give two alternative ways to define when a content label matches

a query. Section 2.2.2 defined what it means for a base document of directory to match

a query.

The document space for a query Q represents all the documents in end-point infor-

mation servers that matches the query. Ultimately, this is the set that interests the user.

It is defined by:

V(Q) - {d E Uj Q(d)}

where U contains every (conventional) document reachable by traversing the network

from the current content router.

Identifying relevant documents in the collection is a standard information retrieval

operation. Determining which collections are relevant to a query is described in Section

2.3.3. This information is exactly what is necessary for a select operation. This will also

automatically identify the set of servers to which a query should be routed, the route set

for the query.

More formally, the route set for a query Q is

R(Q) - {d E Cl Q(d)}

where C is the set of collection documents available on the current server.

The expand operation then simply returns the set of documents at these remote

servers that match the query:

EXPAND(Q) = {d E di (d E R(Q)) A (d' E d)}

The search operation simply applies the rule for the expand operation recursively and

returns only base documents. That is, search is equivalent to the transitive closure of

expand.

SEARCH(Q) - EXPAND*(Q)

The content routing system uses this as its approximation of the document space of Q

defined above. How close this approximation is depends on how good the content labels

are. For example, if content labels contained all indexed terms, then the content router

would have an effectively complete index, and the approximation would be perfect. Of

course, this will not scale, and the system must trade off the quality of the approximation

for scalability.

Note that this description assumes that the hierarchy is cycle free. If there are cycles,

then there are simple ways to break them so that query routing does not loop indefinitely.

A simple strategy is to encode all the collections a query has been routed through in the

arguments to the search operations. If a collection finds itself in the list, it simply

terminates without performing the operation.

2.3.2 Query Refinement

An important goal of this research is to establish whether a system can automatically

suggest improvements to user queries in order to help the user cope with the vast infor-

mation space. This is important because, in a very large distributed set of information

providers, naive queries can be prohibitively expensive to process and will overwhelm the

user with irrelevant material. This section explains the principles behind the approach

taken by the content routing system. Query refinement is a unique feature of this work.

This project has produced the first large-scale system that automatically guides the user

in the formulation of better queries. Experience using the techniques of this section in

working systems suggests that query refinement is an invaluable tool in a large distributed

information system and that it can be efficiently implemented (see Section 3.3 for details

of a particular implementation).

The approach taken to query refinement here is different from the prior efforts in the

Community Information System [22]. In the Community Information System, databases

were described by content labels consisting of small queries which were true of every

document in the database. A simple theorem prover required the user to choose query

terms that guaranteed the query could be completely satisfied at available news wire

databases. The approach described here is statistical in nature, using conditional proba-

bilities of term collocation (see below). I feel that the approach described here is better

suited to the larger-scale, more heterogeneous environments of modern global networks

where it may be difficult or impossible to organize information servers so they are au-

thoritative for precisely specified generator queries.

The task of query refinement is to generate a list of terms related to a query that

can be used for formulating new queries that reduce the search problem. The search

problem may be reduced either by reducing the set of documents that match the query

(the document space) or by reducing the number of servers that are relevant to the query

(the route set). The route set approximates the set of servers that contain any documents

that match the query (see Section 2.3.1).

Implementations may use a thesaurus for term recommendations, though the imple-

mentations described in this thesis have not done this because there is already substantial

work in this area. The traditional use of a thesaurus is for query expansion, i.e., to in-

crease recall. The technique is to replace a term with a disjunction of terms from its

thesaurus entry (or adding terms to the query in a vector model) [51]. This is antagonis-

tic to the goal of reducing the result set size. However, it is valuable to use a thesaurus

in conjunction with other means of producing suggestions for query modifications, es-

pecially in a system where the user may select the degree of association between the

query and the suggested terms (see below). One can use the techniques of conditional

probabilities of term collocation together with clustering techniques to build a kind of

thesaurus automatically. For that matter, using different ranking functions, one could

construct off line associations of words ranging from synonym lists (like a thesaurus) to

antonym lists. For related work on query expansion (increasing the result set size) and

use of thesauri, see [51, pp. 75-84] as well as [64, 48, 15].

Conditional Probabilities of Term Collocation

To determine what terms are related to a query, the query refinement algorithm uses

the conditional probability that one term is collocated with another. In other words, the

system poses the question: given the documents that match a particular term, what is

the probability that some other particular term occurs in one of those documents? Terms

whose occurrences are highly correlated are assumed to be related.

The system, therefore, uses the conditional probability of term collocation to recom-

mend terms that are related to a given query and that efficiently partition the document

space. The conditional probability Pi that term ti occurs in a document that satisfies

Q is the size of the document space for Q conjoined with ti divided by the size of the

document space for Q:
II (Q A ti)ll

II (Q)ll

If a term has a high conditional probability pi, then it is statistically related to

the query, and therefore likely to be semantically related as well. A term with a low

conditional probability will more dramatically reduce the size of the document space

when it is conjoined with Q.

The system's term recommendations for the refine operation are an ordered set, or

tuple, of terms. The list is ordered by some ranking function, E (see Section 2.3.2 below).

REFINE(Q) -= (to, tl, .. . ,n)

where EQ(ti) > EQ(ti+l).

A content label must contain, therefore, not only the terms exported by a server,

but also information about term collocation. We are experimenting with various ways

of representing this information in content labels. However, since content labels do

not contain all terms available in a database, the content router does not have perfect

knowledge about term collocation.

The prototypes described in Chapter 3 simply offers the user the 40 terms with

the highest (approximated) conditional probabilities. See Section 3.3 for details of the

algorithm for computing these terms as well as a description of how well it performs.

Note that this technique may be applied to reducing the route set, R, as well as the

document space by computing the conditional probability thus:

IIn(Q A t)llI
II1Z(Q)II

So far, our experience is that query refinement based on the document space produces

semantically meaningful suggestions and also effectively reduces the size of the route

set. Query refinement based on reducing the route set, using term collocation in whole

collections, has not proven helpful. In our prototypes, documents are not sufficiently

tightly clustered on servers. Finer grained information is necessary. We are investigating

a compromise strategy that uses clustering within collections.

Ranking Functions

In general, a user may want to learn about terms closely correlated with the query

(synonyms), terms inversely correlated with the query (antonyms), or terms moderately

correlated with the query. Synonyms and antonyms provide feedback on what sorts of

terms are indexed and help the user formulate better queries. Moderately correlated

terms are especially useful in reducing the document space by a reasonable amount while

not eliminating documents so quickly that highly relevant items are lost. The system uses

a ranking function to order terms and suggests to the user a manageable set consisting of

0.8

0.6

0.4

0.2

0

Entropy and Identity Ranking Functions
A Parameterized Ranking Function

0.8

0.6

0.4

0.2

A

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

Figure 2-11 Entropy and Identity Functions Figure 2-12 MO.6 Function

the highest ranked terms. For a more detailed discussion of ranking functions in general

information retrieval applications, see [51, pp. 59-71] or [27, pp. 363-376].

Entropy functions can be used to give favorable ranks to terms that are moderately

correlated with the query terms; that is entropy-based ranking functions prefer terms

that reduce the result set by a moderate amount. These function represent a measure

of the information content of the terms. A generalized entropy ranking function has the

form

E(ti) = piF(pi)

There are a variety of choices for F. One standard information theoretic entropy function,

Es, is

Es(t4) = -Pi logpi

Figure 2-11 illustrates the behavior of Es and the identity function, which assigns each

terms conditional probability as its rank. As the figure shows, Es favors terms with

probabilities closer to 0.5.

It is useful to have a ranking function that is parameterized by the most favored

probability (or result set size reduction). This would allow the user or the system to

rank terms differently depending on the context. For example, the ranking could suggest

synonyms or antonyms. A simple ranking function M•y that is parameterized by the

0.8

0.6

0.4

0.2

0

ohi -
m da- ----

vido
wiok -.-

0.8

0.6

0.4

0.2

1 10 20 30 40 50 60Rrowmmndcd Tam

Figure 2-13 Refinement Probabilities Figure 2-14 More Probabilities

favored conditional probability, j is

MT(t2) = 1 - pi - A

Figure 2-12 illustrates the behavior of Mj for p = 0.6.

The system also should consider the expected time it will take to evaluate a query.

This in turn depends on the number of remote servers involved in servicing the query,

i.e., the size of the route set. We are currently investigating techniques for producing

cost estimates.

We have found the use of the identity ranking function to be acceptable in the pro-

totypes because, in the experimental data, the terms most frequently collocated with a

query typically have very small probabilities. Figures 2-13 and 2-14 show some anecdotal

evidence of this. The figures show the conditional probability of each of the top 60 can-

didate terms for suggestion. The highest conditional probabilities are often under 0.5,

and the conditional probability is always under 0.3 by the tenth best term. Thus, there

are few high probability terms to eliminate with a ranking function. Since we take the 40

highest probability terms, we eliminate the very low probability terms. A good ranking

function may change the ordering of the top 40 terms, but is unlikely to have a significant

impact on the terms in the set. This situation may change as the implementation gains

more detailed knowledge of query term collocation.

2.3.3 Constructing Content Labels

This research seeks to define metadata structures that can be used to organize the in-

formation space and provide other assistance to users. It is also important to be able to

extract these metadata descriptions of server contents from large numbers of disparate,

incompatible servers. These metadata structures, content labels, are used to describe

collection contents to users, to route queries to relevant servers, and to provide query

refinement suggestions. Content labels, are therefore at the very heart of the content

routing system, and their structure and semantics profoundly affect the utility of the

system. In addition, content labels provide a focal point for system administration: size

restrictions affects scaling, content restrictions determine the look and feel of the system.

Content labels represent a compromise for a scalable architecture. The ability to

control content labels is what enables a content router to avoid unlimited demands on

its resources. Limiting content label size not only helps manage local resources, but also

encourages administrators of remote information servers to make effective use of their

content label advertising budget. A budget scheme will give priority to specialized servers

when users submit more specific queries.

The remainder of this section describes two approaches to content label semantics,

discusses considerations for including terms in content labels, explains an approach to

extracting content label data from a particular type of incompatible information server,

and surveys issues in supporting query refinement. See Section 3.1 for a detailed look at

the use of two techniques for the automatically constructing content labels.

Content label semantics

The content routing system design does not limit the form of content labels. There

are at least two strategies for building content labels: generator queries and surrogate

documents.

Generator Queries In this approach, which was used in the Community Informa-

tion System [22], a content label is a query that is true of all documents in the collection.

In principle, such a content label could consist of the disjunction of all of the terms that

appear in a collection. Alternatively, a content label could simply be the name of the host

that contains a set of files. In practice, content labels will lie between these two extremes,

containing terms including host names, domains, authors, libraries, and subjects.

CONTENT-LABEL = QUERY

If content labels are generator queries, then a collection c matches a query Q if

Q -+ CONTENTLABEL(c). Logical implication is an elegant mechanism, and simple

theorem provers can be used to identify relevant collections and to extract terms that

can be used for query refinement (see [22]).

Generator queries are a good choice for small-scale or highly constrained systems,

such as name services, where a collection's contents is completely described by a query.

That is, the generator query is true of all documents in the collection, and all documents

implied by the query are in that collection. This represents a kind of closed world

assumption [50]. Unfortunately, in a large network of more general information servers,

it is very hard to guarantee this closed world assumption.

For example the following very small generator query content label im-

plies that every document of the collection has attribute subject : database and

collection-type: software and is either in the cmu. edu or the stanford. edu domains.

[(subject:database) and ((domain:cmu.edu) or (domain:stanford.edu)) and

(collection-type:software)]

Surrogate documents In this approach, a content label is a surrogate document

for a collection containing terms culled from that collection's contents. Such a content

label may be viewed as an advertisement for the collection. The administrator of the

collection may use various tools to select terms for the content label, computing a centroid

document [51] for example. A surrogate document content label is just a set of terms

(which is what an abstract document is to the query processing part of the system), and

thus it may be indexed, like any base document, under the terms appearing in it. On

may think of a surrogate document as being like a generator query that consists of a

disjunction of the terms in the surrogate. A collection c matches a query Q if it matches

the query as an ordinary document.

CONTENT-LABEL = ATTRIBUTE*

The surrogate document approach is easy to implement. Content labels are indexed

like any other documents. The content labels that match a query are computed just as

are the other documents that match the query. In fact, the content label information

may be stored in the same index structures, as it is in the prototypes built as part of

this thesis. It is still necessary to identify which documents are content labels so that

the system can determine where to route queries, etc. One can use a simple mechanism

like storing content labels in files with unique suffixes. Then, the content labels are

the members of a query result that have the unique suffix. Content labels may also be

indexed with a special attribute that identifies them as content labels.

The surrogate document approach, though it has the advantages of simplicity and

uniformity, does not have the strong semantics of the generator query approach. In

particular, if a generator query is not implied by a query, then there are no documents

under the corresponding collection that match the query. This is a result of the closed

world assumption. In a surrogate document, some terms indexed in documents within

the collection may not be in the content label, and thus will not be found via the route

set approach used for query routing. However, if a user does look within that collection,

more terms will become available. (See below for some thoughts on propagation of terms

in content labels.)

A surrogate document content label for a server that exports the work of certain

authors might begin as follows:

author:gifford author:sheldon author:otoole author:jouvelot author:duda

author:weiss author:reistad text:content text:routing text:system ...

Selecting terms for content labels

A good content label will contain two kinds of attributes:

* Administratively determined synthetic attributes that describe a collection but may

or may not appear in the documents themselves. For example, an administrator

may want to advertise that a server has the attribute collection-type: software.

* Attributes automatically derived from the collection contents, possibly using vari-

ous statistical tools. For example, frequently occurring descriptive terms are good

candidates for content labels. These attributes are called natural attributes because

they arise naturally from the data.

A particular hierarchy may impose constraints on the propagation of attributes in

order to get back some of the benefits of the closed world assumption. For example, a

hierarchy may want to guarantee that, if a field is available for queries, then the server

is authoritative for that field. Essentially, one must propagate all values of a field or

none at all, along with information about which fields have been dropped. Then a server

could determine when there is no possibility of any document matching a query beneath

a particular node in the hierarchy. Such schemes are left for future work. (I am grateful

to Ken Moody and Jean Bacon of Cambridge University for input on this subject.) On

the other hand, for regular documents, this is not a practical approach because it is

not feasible to propagate all text attributes, since these represent the vast majority of

attributes, and the system is not useful without any text attributes. It is also very hard

to guarantee that a server is authoritative for some attribute if autonomous servers are

constantly being added to the hierarchy.

A particular content routing hierarchy may restrict certain attributes, fixing their

semantics, limiting the choice of values, or even using a controlled vocabulary. These

are same issues discussed with respect to queries above in Section 2.2.2. In addition, a

hierarchy may predefine and/or require certain attributes be present in content labels. For

example, it may be necessary to include hostname, hostaddress, and administrator

fields.

Information providers must choose what terms to include in their content labels bear-

ing in mind that the data will be used by a content router to determine whether their

databases are relevant to queries. Content labels must therefore reconcile two conflicting

objectives. On one hand, they must contain terms that characterize the collection as

a whole (typically high frequency terms), and on the other hand, they must be able to

distinguish servers with respect to each other. That is, they must be concerned with

advertising and with discriminatory power. It is possible to divide this task between

an information provider and a content router with which it registers: The information

provider may supply a broad content label with many high frequency (or highly sig-

nificant) terms, and the content router may decide to keep only terms with adequate

discriminatory power. There are standard metrics for computing the discriminatory

power of terms based on their frequencies of occurrence [51]. For experimental data on

some sample information servers, see Section 3.1.

Terms may be chosen based on their statistical significance or based on some other

analysis of their importance, e.g., terms that appear in titles or abstracts may take

precedence over others.

Extracting data from incompatible servers

There are two approaches to extracting data for content labels. In the first, an in-

formation provider computes its own content label using whatever statistical tools and

information it chooses. This approach has the advantage that it provides an abstraction

barrier: the information provider can control exactly what information it releases about

itself. It also supports scaling because the work for the collection is done locally at each

server. A second approach involves a content router extracting the raw data from the

information provider and computing a content label on its behalf. This approach has

the advantage that the content router can optimize the information in the content label

based on knowledge of the other servers registered with it. The disadvantage is that it

must gain access to raw data at the information providers and provide the computation

and space necessary to build the content labels. It may be that much useful information

is not exported from the information providers, in which case, the quality of the content

labels will be severely compromised.

Analyzing term frequencies requires access to the raw index data of an information

server. That is why the content routing architecture assumes the first strategy above,

that is, it leaves the construction of content labels to the servers with the relevant data.

However, to to interoperate with existing servers, our experimental systems have used

both approaches. Having the content routers compute content labels has allowed the pro-

totypes to integrate Wide Area Information Servers (WAIS) [29] into the content routing

system. This has allowed the research to experiment with far more data, more servers,

and with a much wider distribution than would have been possible otherwise. However,

there is no direct access to the remote WAIS indices. We were therefore confronted with

the need to automatically construct content labels without detailed analyses. Neverthe-

less, the automatically produced content labels for WAIS servers have proven surprisingly

useful.

The information that can be extracted depends on the type of system. WAIS systems

make two sorts of content information available to clients: source and catalog files. These

can be programmatically extracted from most WAIS databases by sending a null query.

The source file is a brief description of the server, including how to connect to it, and

often contains a list of keywords. The catalog file contains a list of all the document

headlines (usually titles or subjects) for the database. The headline data has proven very

useful because titles are usually chosen to contain words that users will know about and

that are very significant in the documents.

A simpler problem to solve concerned WAIS's use of keyword-based indexing. The

content routing system simply interposed a gateway between each WAIS server and

the rest of the system. Keywords were translated into corresponding text attributes.

Chapter 3 provides a detailed description of our construction and use of content labels

for WAIS.

Supporting query refinement

Content labels must also contain information for query refinement. For the query re-

finement approach of Section 2.3.2, the system needs an approximation to the document

space for a query. This necessitates some representation of term collocation.

The prototypes used a very simple strategy placing collocated terms on the same

line of the content label, as if each line represented a single document. Terms could be

dropped by filtering them out of the content label, and lines could be dropped. Only terms

appearing in document titles were used. This strategy allowed the use of compressed

WAIS catalog files, which gave the headline of each document in the collection. Query

refinement based on this data has been effective, as the examples in this thesis show.

(See Figure 1-5 and 2-5 and Tables 3.3 and 3.4.)

Ongoing research is focusing on document clustering, essentially grouping documents

into larger virtual documents for purposes of doing query refinement. If the documents

can be clustered so that they are closely related, then terms in the cluster are likely to be

related (in the same way that terms in individual documents are related). This produces

substantial space savings, but there is not yet enough experience to report on.

2.3.4 Hierarchies Organize the Information Space

Hierarchies are important because they help organize the information space for the user

by allowing the manipulation of portions of the information space at varying levels of

granularity. In addition, hierarchical data organizations address the scaling issue. No one

server must contain global information that will strain its resources and quickly become

out of date.

The construction of information hierarchies is not only of technical importance in the

design of a content routing system: it is at the very heart of a revolution in publishing

and library services. The structure of an information hierarchy represents new methods

of publishing (placing a document on a server), dissemination and advertising (register-

ing a server within the hierarchy). See the market-based paradigm for construction of

hierarchies described below for one interpretation. Many authors have pondered what

digital publishing and digital libraries mean for the interests that participate in paper

publishing, advertising, etc. See for example [54, 18, 69, 33, 31, 68].

In a content routing system, the roles of editor and publisher are reinvented by the

negotiations among authors, information providers, and content router managers (as

well as any higher authority that may establish an entire hierarchy under its control).

These negotiations will create the rules that keep content consistent, ensure quality, and

establish paths to the information consumer. The content routing architecture does not

set limits on the rules that may be adopted. Rather, it provides an architecture that is

flexible enough to support a broad spectrum of possibilities from tight control to chaos.

Thus, there are two sets of issues in the construction of information hierarchies. First,

there are the administrative issues surrounding the choice of the organizing principles of

a hierarchy. Second, there are the issues involved in the mechanics of server registration.

Techniques for Information Organization

As stated in Chapter 1, no single hierarchical organization of information can satisfy

every information need. Thus, a variety of hierarchical organizations ought to be made

Biology

Top

science Physics
Computer Science

Social Science -- Anthropology

Buddhism Tibetan
Religion

Judeo-Christian

rPoliticsr

Figure 2-15 A sample subject-based hierarchy.

available. In general, the information available via a network will be organized in multiple,

overlapping hierarchies, producing a mesh of trees. Examples of useful paradigms for

organizing information hierarchies follow.

A hierarchy may be organized by administrative domain. For example, the servers

at the MIT Laboratory for computer science may be clustered together into a collection

which is itself one of many collections available via a general MIT server. These sorts

of hierarchies are essential for businesses concerned with keeping track of their own re-

sources. They can also help users who know the organizational affiliation of the producer

of a document.

A hierarchy may also be organized by geographical location. This is the approach

taken by the X.500 naming system [10]. In addition to name services, geographical

hierarchies can be useful for finding copies of a document that are physically nearby or

for finding documents whose location is known (e.g., the user knows the author is from

Britain).

Subject hierarchies have a long history in library science. The Library of Congress

catalog scheme is a good example. These are especially useful for browsing, especially if

one knows the subject classification scheme well. An ad hoc subject hierarchy is shown

in Figure 2-15.

Market-based hierarchies are likely to be very important in the information market-

place of the future. It might be useful to think of a content router as a kind of magazine

that targets a particular information market. For example, an entrepreneur might decide

to exploit an unfilled need for information on do-it-yourself home renovations. After

doing market research to assess the potential for subscribers, the entrepreneur would

then gather information and try to get other information servers to advertise in (register

with) his content router. There might be a limit on content label size (limited advertising

space), or there might be a charge for additional space. Market-based schemes require

adequate payment and authentication schemes which are just now beginning to become

available. See [62, 38] for descriptions of two Internet-based payment and authentication

services being developed at public institutions. A private company is already positioning

itself to sell payment and authentication infrastructure in the form of payment switches

[23].
Such information services are a certainty in the near future. The proliferation of

commercial services on the net has already been noted in [40, pp. 31-33]. In 1992, the

commercial (com) domain was by far the fastest growing Internet domain [56]. In fact,

Open Text is already launching a commercial global index of the World Wide Web [41].

Data-driven hierarchies are an interesting alternative to all the above schemes. Docu-

ments are grouped into clusters based on an automatic analysis of their contents. These

clusters may in turn be clustered, and so on until a there is a manageable number of

document clusters. First level clusters are end-point information providers, and clusters

of clusters are content routers. There is a vast literature on document clustering, but the

Scatter/Gather [11] project has focused on the automatic techniques for clustering very

large corpora of documents both statically and dynamically. I am currently investigating

the feasibility of experimenting with this strategy.

Registration Request

U-

I
I I

CneRoeReetInformation

Content Router Request Information

I I

Registration Information

Figure 2-16 The Registration Process

Registration

To allow easy integration of other servers into a network of content routers, the system

must support a simple and flexible procedure for information servers to register with

content routers. It is very important that the registration procedure allow for human

intervention and negotiation of terms, because registration is the point where quality

control and resource requirements meet. Content routers may refuse to register servers

that do not abide by semantic restrictions or that require too much space or that have

overly general content labels. Servers may refuse to register with a content router unless

at least a certain portion of its content label is allowed or if it is already unable to support

the demand for its resources.

An information server registers with a content router by providing a content label

and an interface for the content router operations. The precise mechanisms and syn-

tax involved depends on the implementation technology. For example, a Semantic File

System-based implementation would use file system operations, special virtual directo-

ries, and queries to conduct the protocol. A World-Wide Web-based implementation

could use special forms. However, there are some general features that ought to be

present in any registration protocol. This section outlines a simple, abstract registration

protocol.

Any registration protocol ought to allow either the content router or the registering

information server (which may itself be a content router) to initiate the process. This way,

a content router that becomes aware of a relevant information server through automated

or human efforts may ask that server to register; and an information server that would

like its information to be reachable from a particular content router can request to be

registered. Using the information marketplace idea described above, the magazine may

seek advertisers or the advertisers may contact a magazine that servers a population they

want to reach.

It is also important that a registration protocol tolerate very large latencies between

phases of the protocol. Though it is possible to perform the registration process com-

pletely automatically, in a commercial setting (or in any situation where content is going

to be controlled), it may be necessary to queue up requests for a human to decide on.

Therefore, it is critical that the registration operations be permitted to take place one at

a time: single session registrations must not be required.

A register-me request from an information server to a content router must contain

sufficient information for the content router to contact the server for additional informa-

tion. For example, a Web-based content router may export a form with a registration

operation that requires the remote system to supply a URL for future contacts. An

Semantic File System-based content router might respond to a special query, say with

the attribute register-me: server-name. This query would be required to contain

attributes for host name, host address, and port number that would allow the content

router to contact the registering semantic file system. The content router should return

a simple acknowledgment specifying whether the operation was successful. The content

router will request further information at a later time. The registering server should not

send a content label because the content router may restrict the size of content labels

or may not want to devote too much space registration requests. However, this opera-

tion may support an optional parameter that specifies the size of the content label the

information server would like to export.

A content router may submit a send-registration-information request to an informa-

tion server either unsolicited (to poll for updates or request a new registration) or in

response to a register-me request. This operation may contain an identifier that the in-

formation server should return with the other information to identify the request to the

content router. In addition, this operation must specify any restrictions on the informa-

tion expected, e.g., limits on the size of content labels. The information server should

respond with a simple acknowledgment of the operation's success or failure.

Finally, an information server may post its registration-information to a content

router. This operation should specify any identifier sent as part of the send-registration-

information request to which it is a response. The information server should also provide

contact information for the forwarding of queries (or user connection referrals) as well as

its content label.

2.4 Summary

This chapter presented a content routing system design satisfying the goals of Chapter

1. The design:

* Supports interleaved browsing and associative access.

* Supports a uniform query interface that allows progressive discovery of network

contents.

* Supports distributed processing.

* Exploits heterogeneity of data sources to organize the search space.

* Propagates descriptions of server contents through a hierarchy of information ser-

vers.

* Routes individual queries to servers based on the expected relevance of the server

to the query.

* Provides useful suggestions to help users formulate better queries (query refine-

ment).

* addresses the metadata issue by outlining how to build descriptions of server con-

tents.

The architecture scales because the hierarchical structure controls fan out and control

over content labels control the resource requirements at content routers. Thus, resource

requirements do not grow without bound at any point in the network.

The information loss at each level of the network may inhibit the utility of hierarchies

of great height. Exploring this problem in detail is left for future work. However, as

Chapter 3 will show, it is possible with current technology to cover all hosts on the

present day Internet with a three-level hierarchy. We have tested the performance of our

system in small, artificial hierarchies of this height, and performance has been adequate.

This suggests that the data loss may not be a debilitating.

Chapter 3

Implementation and Practical

Experience

The principle purpose of the implementation effort was to verify the content routing

architecture by determining whether such a system would be practical to build, provide

acceptable performance, and scale well in a realistic setting. We wanted to understand

how to construct content labels, and we hoped to provide a useful service to the Internet

community. We constructed four prototype systems using two different underlying pro-

tocols to gain practical experience. In particular, the implementations were to answer

the following pragmatic questions:

* Can a system help a user cope with the vast amount of information available by pro-

viding some organization of the data and automatically suggesting improvements

to users' queries?

Answer: Yes. We have found that content routing systems can be organized in

ways that are easy to browse and search and that make sense from a user's point

of view. Moreover, we have found query refinement suggestions to be meaningful

and useful in day-to-day use. Section 3.3 discusses our implementation of query

refinement. The general design was outlined in Section 2.3.2.

* Is it possible to route queries to a meaningful subset of a large number of information

servers?

Answer: Yes. All our implementations have been successful in environments of

over 500 servers. See Section 3.2 for some evaluation of the quality of content labels

constructed using only simple techniques and limited data.

* Is it possible to define some metadata structures that can be used to organize the

information space and provide other assistance to users?

Answer: Yes. The definition of content labels in Section 2.3.3 together with the

practical construction techniques of Section 3.1 shows how this can be done.

* Can the content routing architecture successfully interoperate with pre-existing

systems?

Answer: Yes. The prototypes have successfully interoperated with Wide Area

Information Servers (WAIS) [29] and Semantic File Systems (SFS) [21]. Section 3.4

describes a content router implementation built on top of SFS and incorporating

WAIS servers. Section 3.5 describes an implementation based on the hypertext

transport protocol (HTTP) [4].

* Is there a practical way to extract useful content labels from large numbers of

disparate, incompatible servers?

Answer: Yes. The prototypes successfully build useful content labels from 500

remote servers that operate using completely independent indexing technology and

do nothing special to cooperate with their efforts. Section 3.1 describes how our

prototypes construct their content labels.

* Will a hierarchical content routing system scale to millions of servers?

Answer: Perhaps. The performance of the prototypes show clearly that a single

content router running on a relatively modest workstation can support 500 remote

servers. In fact, it is clear to us that a single content router can support thousands

of servers. We have built two and three-level hierarchies, which, given this scale,

would easily cover millions of servers. However, we have not had millions of servers

with which to build test hierarchies, and we have no real experience in building

content labels for higher level servers. Ongoing research is exploring these issues,

but the results so far are encouraging. See Sections 3.8 and 3.5.2 for performance

data from the content routing system prototypes.

In order to test a system in a realistic setting, our prototypes exploit the large and

growing set of Wide Area Information Servers (WAIS) [29]. The data presented in this

chapter come from prototype systems that registered between 492 and 504 WAIS servers

during the time of our experiments.

To learn what factors most affected performance and ease of integration into existing

environments, we sought to compare two implementation paths using different underlying

network protocols. The first implementation strategy was to use the Sun Network File

System protocol [66]. This strategy was inspired by our earlier work with the Semantic

File System [21]. The second strategy was a prototype based on the HTTP protocol used

by the World-Wide Web [4].

Experience with the prototypes has shown content routing to be a promising and

practical approach to information discovery in networks of information providers. The

prototypes have been very useful in exploring the contents of small networks (consisting

of a half dozen servers) and of networks consisting of over 500 servers. Perhaps the most

surprising result is that even without detailed data analyses, very simple content labels

and query refinement algorithms can form the basis of a useful system. Performance has

been largely acceptable (query refinement is often too slow) and the prototypes appear

to scale well.

This chapter describes our prototype efforts by detailing how we constructed content

labels (Section 3.1), evaluating the content labels (Section 3.2), and describing how we

implemented query refinement (Section 3.3). It then gives an overview of implementations

built on the Semantic File System protocol (Section 3.4) and on the HTTP protocol

(Section 3.5). The chapter concludes with a list of lessons learned from the comparison

of implementation strategies and the current state of our knowledge about content routing

(Section 3.6).

3.1 Building Content Labels

It is possible to build meaningful descriptions of servers. Moreover, the prototypes built

for this thesis have automatically constructed content labels in two environments: one

in which the databases cooperated with statistical analyses of index data (because they

were under our control), and another in which information was extracted from hundreds

of remote, incompatible servers.

The prototype implementations used two strategies for producing content labels. One

approach minimizes content label size and provides semantics like that of a name server.

That is, we analyzed index data and chose attributes with small value sets that char-

acterized a server's contents well while providing discriminatory power among servers.

These attributes were used in content labels. These content labels indicate which fields

a server indexes and provide either a complete set of values for a field, or no values. This

arrangement provides a strong semantics: if an attribute does not appear in a content

label which lists its field, then it does not appear in any server below that node in the

hierarchy, representing a kind of closed world assumption [50]. However, this approach

limits what queries can be made while interacting with higher-level content routers. The

content labels built in this way were very small, averaging approximately 940 bytes in

size.

3.1.1 Content Labels for SFS Servers

Analysis of Index Data

Recall that information providers must balance to competing objectives in the construc-

tion of content labels: content labels must represent the data in the collection and export

easy to guess to terms, but it is important to chose terms that provide high discrimina-

Server # of attributes Server size (MB) Index size (MB)
comp 564493 65 50.5
rec 309473 43 29.5
users1 247914 184 29.5
nyt 165678 174 29.3
users2 99451 28 15.6

ap 36620 29 3.9
total 1423629 403 158.3
unique 1077522

Table 3.1 Information servers statistics

tory power. Terms with high discriminatory power distinguish one server from others. It

is possible for a content router to filter content labels of the servers it registers retaining

only the terms that have some discriminatory power.

Thorough analysis of this information requires access to all the relevant index data. In

order to explore how content labels can be generated automatically for large collections

of objects, we have gathered attribute statistics on six information servers under our

control. (The statistics presented here have appeared in [59, 60, 14]). Table 3.1 gives the

following characteristics of the six servers: the number of distinct attributes, the server

size (total size of documents in the database in megabytes), and the index size (size of the

index data structures). Comp is a database we built from the USENET comp newsgroup

hierarchy, rec is the rec newsgroup hierarchy, usersl and users2 are two indexed user file

systems, nyt is a database of New York Times articles, and ap is a database of Associated

Press articles.

To evaluate the discriminatory power of attributes, we gathered data on the distri-

bution of attributes over servers. Figure 3-1 plots the total number of unique attributes

versus the number of servers. It shows that text comprises a majority of the attributes

and that the number of distinct attributes is large. A content label containing all at-

tributes (or even all text attributes) might be infeasible. Therefore, one should se-

lect only high frequency terms (excluding those on a stop list) or very important text

terms. See [51, 19] for statistical measures of term significance. On the other hand,

le+07

le+06

100000

10000

1000

100

Number of servers

Figure 3-1 Cumulative number of attributes

le+06

100000

10000

1000

100

10

1

Number of occurrences

Figure 3-2 Attribute histogram

all
author
text.........................
text
title

S ,.•---------

i________-------------c-·----------..........

•••••••

-

subject
r 'text

category
owner

type

-
....

some information-rich attributes such as author, title and subject have a small set of

information-rich values and are thus good candidates to be included in content labels in

their entirety.

Figure 3-2 shows a more direct measure of discriminatory power. It shows for a

given number of servers how many attributes appear exactly on that many servers. For

example, there were 10 category attributes that appeared on three servers. If a given

attribute has a narrow distribution, that is, it identifies a small number of servers, then

it is very useful for routing. Wide distribution terms are useful for describing collections

for browsing. As shown in the figure, low frequency attributes such as owner, category,

and type have discriminatory power over servers and can be used for content routing.

Higher frequency attribute fields like text and subject are more common so that the

most frequent terms can be used for categorizing the collection as a whole and propagated

to upper routing layers.

3.1.2 Content Labels for WAIS Servers

Our implementation efforts eventually focused on a second strategy for constructing

content labels. We chose to experiment with very simple content labels that consisted of

sets of keywords obtained from individual WAIS source and catalog files. This approach

was driven by the desire to provide content routing in a network of 500 Wide Area

Information Servers (WAIS). We chose WAIS servers because WAIS was being used

more and more for database servers on the Internet. Because our experimental systems

involved using 500 WAIS servers over which we have no control, it was not possible to

enlist the aid of WAIS administrators to produce value-added attributes. Nor was it

possible to do the detailed statistical analyses shown above to choose the content label

attributes because we did not have access to the WAIS index structures (and browsing all

the documents was not feasible). Therefore, we had to construct all the content labels,

even though the content routing system design delegates the responsibility for content

label construction to the individual servers.

A WAIS source file contains a short description of a server, including contact infor-

mation (e.g., host name, host address, database name, administrator) as well as a short

list of keywords and a natural language summary of the server's contents. In our sample,

the median size of the source files was under 800 bytes. While they may enable one to

categorize a server into a general domain such as biology, source files are not adequate

by themselves for query routing or refinement. Here is the entire WAIS source file for

the National Science Foundation awards server:

(:source
:version 3
:ip-address "128.150.195.40"
:ip-name "stis.nsf.gov"
:tcp-port 210
:database-name "nsf-awards"
:cost 0.00
:cost-unit :free
:maintainer "stisopostis.nsf.gov"
:description "Server created with WAIS release 8 b4 on

Apr 21 09:01:03 1992 by stisopestis.nsf.gov

This WAIS database contains award abstracts for awards made by
the National Science Foundation. The database covers from the
beginning of 1990 to the present (no abstracts are available before
1990).

If you use WAIS to retrieve these documents, We'd like to hear about
your experience. Please write to stisDnsf.gov.

You might also be interested in the nsf-pubs database which contains
NSF publications. It is also on host stis.nsf.gov."

On the other hand, WAIS catalog files contain considerably more information. A

catalog file contains one headline for each document in the WAIS database. A headline

is typically the subject of a message or the title of an article, though some servers choose

less useful headlines such as local file names. Thus, though a catalog file is much smaller

than the WAIS index, it often contains information-rich terms that characterize the

database fairly well. Here is the beginning of the catalog file from the National Science

Foundation awards WAIS server:

Catalog for database: ./nsf-awards
Date: Sep 23 07:21:33 1994
63920 total documents

Document # 1
Headline: Title: Summer Undergraduate Research Experience Fellowships in the
DocID: 0 2049 /home/pub.gopher/.index/ftp/awards93/awd9322/a9322138

Document # 2
Headline: Title: NYI: Dedicated VLSI Digital Signal and Image Processors
DocID: 0 2682 /home/pubgopher/.index/ftp/awards92/awd9258/a9258670

Document # 3
Headline: Title: Prediction of Soil Liquefaction in Centrifuge Model Tests
DocID: 0 2681 /home/pubgopher/.index/ftp/awards91/awd9120/a9120215

Document * 4
Headline: Title: Igneous-related Metallogenesis of the Great Basin
DocID: 0 707 /home/pubgopher/.index/ftp/awards90/awd9096/a9096294

Recall that a retrieve operation on a collection document is defined to return a hu-

man readable form of the collection's content label. Figure 2-3 showed how one of our

prototypes simply displayed the concatenation of a WAIS source and catalog file as the

content label when a user retrieved the collection. In response to a retrieval request on

a collection, our latest prototypes return a list of the indexed terms from the collection's

content label. The terms are sorted by document frequency. This gives the user a good

characterization of the contents of a collection. Here is the start of a sample response

to a retrieve on the nsf-awards collection which lists proposals and awards for research

by the National Science foundation. Each term in the content label is preceded by its

document frequency:

text:
4916 mathematical
4778 sciences
2520 studies
2453 science
2381 award
2081 presidential

1795 cooperative
1699 development
1619 laboratory
1565 collaborative
1399 study
1355 engineering
1280 physics
1277 molecular
1242 program
1209 systems
1193 dissertation
1170 structure
1136 dynamics
1076 conference
1072 chemistry
1008 computer

We started with the list of source files available from the WAIS directory of servers.

These 504 source files occupy approximately 750KB. As stated above, the median size of

the source files was just 800 bytes.

Most WAIS servers return a catalog file automatically in response to an empty query.

We therefore submitted an empty query to all of the WAIS servers described in the

504 source files. The 386 catalog files retrieved in this way occupy 191.1MB. Some

of the catalog files, such as those with article titles, are very useful. Others, such as

those in which headlines are file path names, are not useful. The largest catalog file

occupies 16.7MB and contains 113,223 headlines; the smallest one is 79 bytes without

any headlines.

Logically, a content label for a WAIS server is the concatenation of the server's source

and catalog files. For query routing, we only need to store the set of terms in the

document headlines (with duplicates removed). As a result, the total size of the query

routing database is only 15.4MB. This information is kept in a local WAIS database.

(See Section 3.3 for information on query refinement.)

Catalog amd content label size distribution

0 50 100 150 200 250 300 350 400 450 500
Number of sever

Figure 3-3 Catalog and content label size distribution

term source content exhaustive
files labels search

carcinoma 0 5 34
discovery 6 23 223
multimedia 9 45 189

video 6 62 273

Table 3.2 Number of relevant servers

3.2 Evaluating Content Labels

It is possible to route queries to meaningful subsets of a large number of servers. To

evaluate how well the prototype routed queries based on the automatically generated

content labels from WAIS servers, we collected some statistics on the results of search

using independent information about the contents of WAIS servers. Table 3.2 shows

how many servers were found using source files, our prototype's content labels, and a

brute force search of all servers looking for documents containing the specified term.

The server recall capability of content routing depends on the definition of a relevant

server. If a relevant server is defined by terms in document headlines or in WAIS source

files, then our prototype server has 100% recall by definition. If server recall is defined

by terms in document text, then in Table 3.2, server recall varies between 10% and

22%. While this recall rate is modest, it is clear that it could be substantially improved

with enhanced WAIS server support for content label generation. Nonetheless, these

results are comparable to similar results for GlOSS [25], and they were obtained with

no cooperation from remote servers or sophisticated processing of index data. Thus,

while the prototypes find a 'meaningful' set of relevant servers, there is much room for

improvement. I feel that a more complete system would do at least as well as existing

systems - certainly if the prototypes had all the same data, they could do as well. On

going research is focusing on the use of Web robots to gather data, and this should allow

a more direct comparison of content routing to existing global indexing strategies.

One could argue that the prototype finds servers that are more relevant than others

because the terms obtained from headlines are more important than terms found in

a document body. In a subsequent experimental trial using the term carcinoma, our

system found 19% of the relevant servers using content labels. However, these servers

provided 40% of all relevant documents. It is certainly the case that a better statistical

analysis of a collection would yield better content labels and better recall, and current

work is focusing on addressing this issue.

3.3 Implementing Query Refinement

It is possible to provide the user with meaningful suggestions for the formulation of better

queries. This is the purpose of query refinement.

Query refinement has proven to be a crucial component of a large distributed infor-

mation system. The system must share its knowledge with the user to help formulate

queries that reflect the user's interests and can be satisfied within reasonable performance

constraints.

As seen in Chapter 2, a user of a content routing system may list the fields avail-

able for querying as well as the values indexed for any given field. These operations

are implemented as straightforward traversals of the index data structures and are no

different than their counterparts in the Semantic File System implementation. Of course,

since WAIS systems do not support attribute-based queries, these operations are of less

significance in our later prototypes.

The query refinement feature of the current prototypes uses the conditional prob-

abilities of term collocation to recommend terms to the user. (Section 2.3.2 describes

how conditional probabilities are used.) Tables 3.3 and 3.4 show the terms recommended

by one of our prototypes for certain single term queries. Notice that many suggested

terms have a strong semantic relationship with the query term. Notice also that terms

sometimes include misspelled terms, which points out the need for a query semantics

that does not include exact matching. Extending the query semantics remains for future

work.

buddhism
electronic
buddhist
coombspapers
archives
ftp
papers
net
doc
zen
poetry
tibetan
ritual
theravada
wustl
wuarchive
otherwork
mirrors
edu
asia
zenrmat
western
research
discussion
buddha
vietnamese
students
journal
asian
yasutani
univ
ulkyvm
thes
theology
thai
teaching
taoism

--i
distributed
systems
computing
system
algorithms
parallel
control
processing
proceedings
simulation
memory
algorithm
data
operating
database
computer
comp
networks
research
libtr
based
programming
parameter
design
analysis
podc
performance
detection
applications
network
fault
time
termination
optimal
model
communication
programs
efficient

infosystems
comp
gopher
www
available
gis
ncsa
mosaic
server
wais
systems
release
version
msen
marca
emv
client
john
user
uigis
math
info
geographic
ftp
boo
beta
announcing
announcement
list
jonzy
information
unix
ubvm
rfd
released
lindner
interfaces

Query refinement examples from 6 April 1995

multicast
routing
switch
communication
txt
ietf
switching
protocol
packet
internet
iinren
atm
systems
ethernet
enabling
drafts
draft
connections
vax
unrecognized
novell
networks
network
mahmood
distributed
architecture
algorithms
udp
trdln
todd
sun
sgi
mckinley
icpp
bgp
atomic
support
sparc

I

Table 3.3

multimedia
multi
media
sun
mail
comp
discussion
computer
bitnet
interactive
mmedia
environment
package
list
instruction
demo
sgi
sciences
video
rom
information
zoology
windows
system
platforms
mmm
biological
teaching
laboratory
education
data
based
vmtecmex
technologies
rare

video
research
fund
list
joint
data
mailing
polish
ussr
privacy
cooperative
climatic
western
monthly
edu
discussion
physics
ubvm
msc
devoted
culture
cam
bitnet
warsaw
setting
reports
observations
nfs
jmr
international
help
held
factboot
development
cpsr
country
cia
nodak
news

Table 3.4 More query refinement examples from 6 April 1995

IpolandI Iwireless
r-rlindigo

systems
games
edu
wustl
wuarchive
sun
rec
sgi
board
sparc
ftp
spencer
live
indy
digital
help
framer
usenet
output
ntsc
interactive
system
reverse
mac
info
graphics
bit
conferencing
frame
card
software
options
network
cable
boards
recording

psi
service
data
support
psilink
enhances
adds
networks
originally
electricity
martin
termin
marc
internet
horow
communication
wpi
systems
src
mouse
mike
mail
lord
local
list
laboratory
jipping
information
dcom
cross
comp
commercial
brown
available
alan
worl
weekly
weber

term number of headlines processing time
buddhism 82 7.2s
distributed 324 10.4s
infosystems 87 6.2s
multicast 126 7.is
multimedia 320 12.8s
poland 123 11.ls
video 349 11.0s
wireless 48 4.9s

Table 3.5 Query refinement performance

Query refinement is a more complicated operation that requires some auxiliary data

structures of its own. Our prototype condenses the information in the WAIS catalog files

by removing file names and document identifiers and other extraneous information. This

reduces the 191.1MB of catalog file data to 62MB for 504 WAIS servers. The prototype

maintains a local WAIS database, separate from the routing database, of all headlines

indexed as one-line entries. The resulting indices are 196MB.

Given a refinement request for a query, the refinement database is used to identify

the headlines from servers in the current result set that satisfy the query. Then the terms

from the headlines that do not appear in the query are sorted by frequency, and the 40

most frequent terms are presented to the user. Thus, the prototype implements a ranking

based on conditional probability of term collocation. This corresponds to the identify

ranking or M 1 in Section 2.3.2. As shown in Section 2.3.2, our experience has been that

our rankings are similar to that of an entropy function because conditional probabilities

from our headline data quickly become very small.

We have also tested the performance of the query refinement feature. Table 3.5 gives

performance data for refinement of single term queries. The table gives the number of

document headlines containing the term in the query and the wall clock elapsed time for

the operation. The figures show that, even with our first naive implementation of query

refinement, performance is adequate for interactive use.

It is clear that production systems will require a much more efficient implementation

of query refinement, both in time and space. Thus far, our implementations have been

very naive because we focused on how quickly we could do the implementation. Our

implementations use off-the-shelf indexing software to build databases that map keywords

(as strings) to document names. There is a lot of string processing in the implementation.

It is clear that we could reap considerable performance gains by hashing terms and using

the hash values in the index. Hash values could be locations in the B-tree, or some other

perfect hash function. (See [67, Section 13.5] for a discussion of perfect hash functions

and how to compute them.) A perfect hash function is easy to compute because the

system has all the terms in advance, and much processing can be done off line. The

headlines could then be stored as lists of hash values corresponding to the terms in the

headline. An inverted index of this file (a B-tree, for example) would map the integer

hash value of a term to the set of byte-offsets in the headline file that correspond to

headlines containing that term. Set union and intersection operations on the resulting

lists of integers would be used for determining what headlines match the query, and

for manipulating the lists of collocated terms. I would expect an order of magnitude

performance improvement with these techniques.

3.4 SFS-based implementation

This section describes the general structure of the SFS-based content router prototypes,

the SFS to WAIS gateway that that enabled the incorporation of WAIS servers into the

information hierarchy, and the performance of the prototype. These prototypes showed

successful interoperation with both SFS-based information servers and WAIS.

3.4.1 Structure of the SFS-based prototypes

Our initial prototype implementations of the content routing system provided query

routing to an extensible number of servers via the Semantic File System interface. This

interface was used for both information servers and content routers. Experimenting

Client AMD
Client Host 4

Figure 3-4 A prototype content router based on SFS.

with the Semantic File System interface had the advantage of building on previous work

within the group. It was a simple matter to construct a prototype with several databases

(including New York Times and Associated Press news wire services as well as user file

systems). These prototypes supported only conjunctive queries. An SFS-WAIS gateway

enabled the construction of a system that routed queries to hundreds of servers. Because

it is implemented as an SFS server, our content router is a user level NFS server that

may be mounted by any NFS client. Figure 3-4 shows the architecture of our prototype

content router implementation.

Path names that pass through the NFS interface to the server are interpreted as

queries and results are returned in dynamically created virtual directories. The server

computes the contents of virtual directories only on demand, i.e., only when the user

performs a readdir NFS operation. Queries at the content router apply to the content

labels for the collections registered there.

The server performs an expand operation by forwarding the query (and subsequent

refined queries) to the set of servers whose content labels match the query. The merged

results are presented to the user. Our SFS-based implementation of the search operation

used syntactic hints embedded in queries. These hints indicate to the router which terms

should apply to content labels and which should be forwarded to information servers.

The content router interposes itself between a client and an information server during

query processing when results from more than one server must be combined. This ap-

proach is called mediated processing because the content router mediates the responses

from multiple information servers to present a collective result.

When only a single server is sent a query or once a document of interest is identified, a

client is instructed to bypass the content router and contact the end-point server directly.

This approach is called direct processing. Direct processing allows a client to obtain

maximum performance from the end-point server and also minimizes content router load.

In the SFS-based prototypes, client to server forwarding is implemented by having the

content router return a symbolic link to a client in response to a request for a virtual

directory or file. The symbolic link refers to the end-point server and is dynamically

resolved by the client with the help of an automount daemon [45].

This approach required the clients to run a version of the automount daemon modified

to perform mounts on arbitrary ports. The clients also required two mount maps. The

mount maps were general purpose and did not require any information about servers.

Thus the client requirements were very small and did not require updating. The prototype

used a special directory name to indicate that the server should mediate all requests

and not return links to be interpreted by the automount daemon. In this case, the

clients required no special code whatsoever, they merely mounted the content router and

performed directory operations. (See Appendix A for these mount maps and other details

about the SFS-based implementations.)

Query Results

----------------- NFS Interface

Routing Content Refinement
DB Router DB

----------------------- ------ NFSlnterface

SFS-WAIS 0 SFS-WAIS

Query Results Query Results

- -.--------- -WAIS/ Z39.50

WAIS WAISWAIS AI -S
DB oB

Figure 3-5 Structure of the content router with SFS-WAIS gateways.

3.4.2 The SFS-WAIS Gateway

To provide access to WAIS servers, which do not support the SFS interface, we imple-

mented an SFS-WAIS gateway [14]. The SFS-WAIS gateway translates SFS queries into

WAIS questions and uses the public domain client WAIS code for querying WAIS servers.

The gateway can be used directly like any semantic file system. WAIS uses a version

of the Z39.50 protocol for network-based information querying and retrieval [39]. Figure

3-5 shows the prototype content routing system together with the SFS-WAIS gateways.

The content router and SFS-WAIS gateways are implemented as separate processes

(all NFS user-level servers) that can be run on the same or different machines. The client

mounts the content router as a standard NFS volume. The SFS-WAIS gateways are

mounted on the client and on the machine where the content router executes (possibly

via the automount daemon). As before, the content router consults its routing database

to determine relevant servers. Then, path name queries containing the identification of

relevant servers are forwarded to SFS-WAIS processes. When all results are obtained,

they are merged and returned to the client.

The result documents appear to the client as symbolic links to files. When a document

file is accessed, the readlink NFS call is intercepted and the document is retrieved from

the WAIS server. The document's file name is constructed from the headline of the

document obtained as a result of the query. Here is an example of querying the zipcodes

WAIS server via the gateway:

=> Select source:zipcodes and text:warsaw
=> List-results
14569_Warsaw __NY_.1 22572_Warsaw _VA_.2
28398_Warsaw__NC_.3 41095_Warsaw__KY_.4
43844_Warsaw__OH_..5 46580_WarsawIN. .6
55087_Warsaw__MN_.7 62379_Warsaw__IL .8
65355_Warsaw__MO_.9

The content routing system operations, like select are translated into ordinary file

system commands, like cd with the arguments reformatted into SFS path names.

Conjunctive queries are of special importance because they narrow the search space.

However, since many WAIS servers do not implement conjunction, our gateway imple-

ments the boolean AND operator by running a WAIS query for each query term and

calculating the intersection of the result sets. Although it is computationally expensive

(the server must find several, possibly large, result sets), it was the only way to use all

existing WAIS servers.

3.4.3 Performance of the SFS-based prototypes

We have used a variety of configurations of our content routing system. We measured

the performance of query routing in a small system of four semantic file systems, and

we measured the performance of a single query router providing access to 492 WAIS

servers located around the world. We also verified that direct processing achieves better

performance than mediated processing in a multiple-layered system.

Table 3.6 shows representative performance of a content router. We expect that we

will be able to further lower query processing times on our system because our prototype

implementation is not tuned. The information servers run on an SGI 4D/320S and a

Example query Number of Number of Search time
servers docs (sequential)

library:users and owner: 1 88 1.2s
library:users and text:semantic 1 22 0.6s
and owner:sheldon
library:users and text:semantic 1 9 1.2s
and text:library and owner:sheldon
location:mit and extension:video 2 60 2.6s
location:mit and owner:gifford 2 31 1.4s
text:toys and text:williams 4 27 9.9s

'able 3.6 Routed query performance on four local SFS servers

Example query Servers Docs Down Parallel Seq.
servers search search

buddhism and tibetan 5 71 0 396.0s 752.2s
distributed and synchronization 6 23 3 674.6s 1442.1s
infosystems 9 317 0 63.2s 117.0s
infosystems and gopher 9 132 1 680.5s 743.7s
multicast and broadcast 15 32 8 79.3s 379.3s
multimedia and authoring 12 47 1 108.8s 196.9s
poland and culture 11 11 0 47.6s 494.7s
video and quicktime 12 75 4 106.0s 849.1s
wireless and mobile 6 6 0 48.6s 110.9s

Table 3.7 Example query performance routing to 492 WAIS servers

heavily loaded DEC Microvax 3500. The content routers and clients were run on Sparc

Station IPX's. All these machines were interconnected with a 10Mbit/s Ethernet. These

tests did not process queries on multiple servers in parallel.

We also used our prototype to locate and access documents on a collection of 492

WAIS servers, and we gathered statistics on some example queries. The content router in

this case ran on an SGI 4D/320S, the SFS-WAIS gateways ran on a Sun SparcStation 10,

and the WAIS servers were distributed throughout the Internet and ran on unknown types

of machines. Recall that since WAIS servers do not in general support conjunction, our

SFS-WAIS gateway is forced to run a separate remote query for each term and compute

result set intersections locally. This greatly increases processing times and encourages

100

'IT

users to restrict themselves to highly specialized query terms. The statistics are presented

in Table 3.7 for simple conjunctions of terms. We report the number of relevant servers as

determined by content labels at the content router, the number of documents found, the

number of unreachable servers and the search latency for each query. The table compares

our content router conducting searches in parallel with a sequential search using waisq,

a program in the WAIS distribution. In general, parallel searching performs better than

sequential. However, the speedup is well below linear: the latencies on different servers

vary so much that the parallel searching time is strongly limited by the slowest server.

Some servers contain large databases, are accessed by many users, and have limited

processing power. These servers limit the performance of any search. For example, the

long search time for infosystems and gopher was due almost entirely to the processing

time at one server (biosci) that continued to run long after other servers had finished.

Moreover, one can experience 100% changes in search latency depending on whether the

search is performed during the day or at night. Even if we take into account the delays

at overloaded servers, the reported search times are long. However, we should bear in

mind that the principle alternative to using our content router is an exhaustive search of

all servers, an operation which takes several hours to complete.

While a hierarchical system facilitates locating objects, it introduces communication

delays and performance restrictions that become intolerable for larger sets of applications

as the layering gets deeper. In particular, server load is proportional to the resources

consumed by clients accessing the server. It is important for the performance of the

system, and thus of client applications, to minimize the resources consumed by clients.

Therefore, once a client identifies an object, or once the content router has discovered

that there is only one information server appropriate to a client's request, the system

must provide direct access to the end-point server. The client then does not incur the

latency of a multi-layered communications path, and the system does not have to provide

resources that are not necessary to serving the client's request.

We performed a suite of experiments with content routers and four SFS servers to

101

test the performance implications of mediated versus direct access to objects. Figure

3-6 illustrates the performance penalty incurred when content routers mediate file read

requests in our prototype. The figure plots throughput achieved at the client in Kbytes

per second versus load at the content router. For our experiment, the load was generated

by running 0, 1, or 2 processes that continuously generated lookup and read requests

through the content router. Queries always go through the intermediate content routers.

In one set of trials, all client requests were mediated by the content router, including file

reads. For this set, the throughput for the case where the content router is not used is

presented for comparison (above the label "direct"). In the other set of trials, the content

routers provided the client direct access to the server via symbolic links interpreted by

the client's automount daemon. As expected, clients with direct access to end-point

information servers achieved better performance, especially as the load at the content

router increased.

The content routers provide unmediated access to data by returning symbolic links.

These links are interpreted by a version of the Berkeley automount daemon [45]. Mediated

accesses naturally go through the content router. In Figure 3-6, each data point represents

the average of four trials each of which reads a 35 MByte digital video data file. The

information server was running on an SGI 4D/320S. The content routers and clients were

run on Sparc Station IPX's. All these machines were interconnected with a 10Mbit/s

Ethernet. These figures compare with an average throughput of 830 KByte/s for our

standard NFS file access.

Figure 3-8 shows system throughput from a standard NFS client (on a Sun SparcSta-

tion IPX) in the following configurations:

* NFS - direct NFS service to our group file server.

* SFS - via the SFS server on our file server.

* CRS-1 - via a non-mediating content router on the client machine.

* CRS-2 - via a mediating content router on the client machine

102

I

Figure 3-6 Throughput at a single node versus load

Numsofi1l6ndint CR.

Figure 3-7 Throughput versus mediating content routers

103

S(

74

6(

51

31

24

I

Figure 3-8 System throughput to files for different CRS configurations

* CRS-3 - via a non-mediating content router that is running through a mediating
content router both on the client machine.

* CRS-4 - via two mediating content routers running on the client machine.

* CRS-5 - via two mediating content routers, one running on the client machine,
and the other running on another machine on the local net.

Mediated access has such a dramatic impact even for low loads because our implemen-

tation is not multi-threaded and does not do read-ahead. That is, it is not an optimized

file server. Nonetheless, the impact of content router load is inherent in any implementa-

tion that forces clients to use mediated data access because resources at each server are

finite. The more layers there are in the network, the more resources are consumed by

104

Access Performance to Files

KB/Sec

1200

1000

800

600

400

200

NFS SPS CRS-1 CRS-2 CRS-3 CRS-4 CRS-5

each client, and the greater the likelihood that a client will suffer query router induced

performance degradation.

The appearance of efficient network searching servers like the WAIS content router

may aggravate the load problems of some popular WAIS servers. As the number of users

grows, the load on the servers will also increase. It thus will become more important to

investigate solutions to this problem such as caching and replication.

Availability of servers is also a problem. As can be seen from the table, at least

one server was unreachable for half of the sample queries. In fact, any large net-

work of servers will nearly always have some servers down or unavailable. Of course,

servers will ultimately want to be highly available, and will use replication techniques

to achieve this aim. However, the prototype content router required some mecha-

nism for dealing with unavailable servers. Our initial solution has been to create vir-

tual documents whose names signal the user that some server(s) did not respond (e.g.

comp.sys. sgi.misc. src:unreachable). A better policy would be to keep track of un-

available servers, check periodically if they are up and eventually rerun a query.

Content routing based on WAIS catalog files has resulted in some unexpected be-

havior. For example, the query from text :buddhism and text :tibetan was run on 5

servers and documents were found only on 4 servers (all servers were operational). A

closer look at the catalog file of the missing server explained the problem. There is a

headline with a path name containing terms buddhism and tibetan, however the search

on the WAIS server produced no result, because the file itself does not contain the terms:

ftp.uu. net:doc/papers/coombspapers/otherarchives/electronic-buddhist-archives/

buddhism-tibetan/

Our experience with using the content router for locating and accessing WAIS servers

shows that supporting boolean operations on servers is crucial to efficient searching. Only

specialized terms can be efficiently used in our prototype, because general terms involve

long searches with many result documents, even if a conjunction of two general terms

returns a small result set.

105

Our use of an NFS-based protocol has advantages and disadvantages. Because NFS

is widely understood, and because our servers use NFS at both ends, we are able to

reconfigure our system and use new machines easily. NFS also makes it very easy for

clients to participate, and allows us to leverage existing code. One can run editors,

compilers, and standard file system tools, all without modification.

Unfortunately, we still found NFS to be a poor protocol on which to build a content

router. In retrospect, it is clear that content routing, especially to large numbers of

widely distributed servers of varying performance, will entail large and varying latencies.

NFS systems do not tolerate large latencies or failures well as a rule, and error reporting

and recovery are awkward in the protocol. We frequently had difficulties with client

code on both our hardware platforms (both in the operating system and the automount

daemon) blocking. NFS operations are also difficult or impossible to abort from clients.

Ultimately, a more latency tolerant protocol, based on TCP for example, is required. The

content routing architecture, however, is independent of the underlying communication

protocol. We chose to use HTTP for subsequent prototypes (see below), but we could

also use Gopher [1], Z39.50 [39], or any other mechanism that provides distributed access

to servers.

3.5 HTTP-based implementations

This section presents the HTTP content routers for WAIS servers [58]. Again, the goal

was to exploit the large information space contained in available WAIS servers and to

see whether HTTP would provide a better underlying protocol for a content router. We

also hoped to provide a useful service to the WWW community.

Once again, the prototypes successfully interoperate with WAIS servers. The most

recent prototype also supports annotated links to HTML documents, and will readily

support the integration of World Wide Web servers. Support of other server types is left

for future work.

106

Query Results

---------- --------------- HT

httpd

.-..- ..-- .--..- CGI
Query Results

Routing Content Router Refinement
DB Driver DB

Search/Expand 0 00 Search/Expand

Query Results Query Results

------------------------- WAISZ39.50

WAIS WAIS WAIS WSDB
DBIS I

Figure 3-9 Structure of the HTTP-based content router.

The remainder of this section describes the structure of the World-Wide Web content

router for WAIS, and reports on our experience with the system and its performance.

3.5.1 Structure of an HTTP Content Router for WAIS

The implementation is based on the framework provided by the HTTP World Wide

Web protocol. Since HTML documents and HTML Forms provide the most widely used

multimedia display format in use today [6], we chose to use HTML Forms for the system's

input and output. Figure 3-9 illustrates the structure of or implementation.

The prototype interacts with the user by supplying HTML forms that can be retrieved

and filled in using browsers such as Mosaic' and Netscape2 . These documents can also be

'http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/Docs/help-about.html
2http://home. mcom. com/home/faq. html

107

retrieved by an automatic process, which is how query forwarding is done in a hierarchy

of servers. When the client has filled out and submitted a form, the HTTP daemon

(httpd) running on our server invokes the prototype's driver, which is implemented as a

CGI POST script.- The prototype interprets the operation and parameters entered by the

client, computes a response, and constructs another HTML document with the results.

Typically, the resulting document is itself a form that allows the client to choose new

parameters and operations and also provides links to remote servers and documents.

For example, Figure 3-10 shows a form that resulted from a user's expand request

for the query text: chromosome. The content router found three relevant servers. The

name of each server is a link that will connect the client directly to the named WAIS

server. (The URL for the last WAIS server is visible at the bottom of the figure because

the mouse is positioned over fly-amero. After each server name, the phrase content

label appears in parentheses. Each of these is a text anchor that, when selected, will

display a human readable version of the appropriate content label. The user may chose to

perform additional operations, including an exhaustive search, by clicking on the appro-

priate diamonds at the top of the form, typing in additional query terms (if necessary),

and clicking on the submit button.

Links to remote servers by-pass the content router to allow direct processing. In

order to make use of links to WAIS servers and documents, the client browser must use

a version of the World-Wide Web library routines compiled with the freeWAIS library.

Our newer HTTP-based prototype accepts a parameter that requests that the content

router return links back through the content router rather than directly to WAIS servers.

This form of mediated processing supports clients that cannot interpret the WAIS links.

The prototype implements query routing and refinement using local WAIS databases

accessed via WAIS library routines. The content router spawns parallel processes to

search remote WAIS servers concurrently. The router and the parallel search processes

use the WWW library to search remote databases. The WWW library routines are

compiled with the freeWAIS library, and are thus able to contact the remote WAIS

108

Figure 3-10 A sample HTML form

109

Operation Query Time (min:sec)
expand communication 0:05.07
refine communication 5:35.51
refine communication and networks 1:06.51
search communication and networks and routing 1:29.67
retrieve "This Week's TechLink" 0:09.27

Table 3.8 Performance on sample queries

servers.

The current prototypes implement all the operations in table 2.1 except for show-fields

and show-values, which are of limited utility given that WAIS indices are keyword based.

The first HTTP-based prototypes (from which the data of this section were collected)

implements only a two-level content routing system. The newer prototype supports

arbitrary hierarchies of content routers that communicate via HTML forms, but is only

now implementing query refinement.

3.5.2 Experience and Performance

Experience thus far suggests that content routing is a promising tool for content-based

access to documents in a large collection of information servers. The HTTP protocol is

much more robust under varying latencies and handles failures and aborts smoothly. In

fact, the early HTTP prototypes have been made available on the World-Wide Web. We

are continuing to improve the time and space requirements of the system, but even now

the system offers satisfactory performance. Table 3.8 shows the time to execute some

sample operations with the prototype running on a SparcStation IPX.

The expand operation was applied to a collection consisting of all the remote WAIS

collections. This operation consulted the local routing database but did not entail any

remote operations. The refine operations consulted the local refinement database. The

second refine operation was much faster than the first because the document space had

been effectively reduced by the previous refine and select operations. The refine op-

eration is usable, but slow. As stated in Section 3.3, we are still improving the query

110

refinement process, and there are many obvious ways to tune the current, rather naive

implementation. Also, based on experience with a prior prototype, we expect a factor

of 3-5 speedup when we move the implementation to a SparcStation 10. The search

operation involved searching 13 remote WAIS servers scattered around the world and

merging the results. During the retrieve operation, the client contacts the remote WAIS

server directly rather than going through the content router. Thus, retrieving this 132K

byte document did not involve our server at all.

We have found the power of boolean queries to be very useful. However, as in our

previous prototypes, the content router must implement conjunction for WAIS servers

by invoking a separate query for each conjunct and performing a local set intersection

operation. This entails a large performance penalty for queries that use general terms

that occur in many documents, even if the result set for the query as a whole is small.

3.6 Summary

The four prototypes built as part of this thesis have shown that it is possible to implement

the architecture of Chapter 2. They also provide answers to the pragmatic questions set

out on pages 7 and 79: It is possible to do automatic query routing to a meaningful

subset of a large number of servers. It is possible to give useful suggestions to help a user

formulate better queries. There are practical ways to extract useful content labels from

hundreds of disparate, incompatible servers. Content routing systems can interoperate

with pre-existing systems. Finally, it appears that the system may scale.

We are optimistic about the scaling properties of the system for several reasons.

The rudimentary prototypes described here have adequate performance, even without

extensive tuning. Supporting 500 servers is not a serious drain on our resources, and it

is clear that a single content router can support thousands of servers. Only two content

routing layers are required then to cover millions of servers, and we have demonstrated

adequate performance in hierarchies of this height, though it remains for future work

111

to actually incorporate millions of servers into a single hierarchy. The principle issue in

scaling is the information loss as the hierarchy grows in height, but at two or three levels,

the problem should not be too large. The main problem as the networks become deeper

is in representing query refinement information. We are working on clustering techniques

that will enable more compact collocation data in content labels that provide a similar

quality of query refinement service.

Demanding applications like digital video can achieve adequate throughput because

content routers do not mediate object accesses. Experience using a content router for

locating and accessing WAIS servers shows that supporting boolean operations on servers

is crucial to efficient searching. We were pleasantly surprised at the efficacy of content

routing based on such simple content labels. With virtually no tuning based on high-

level knowledge or sophisticated statistics, it was not difficult to explore a large set of

information servers. We would like better recall performance, but we are optimistic that

greater information about a collection's contents will enable us to produce content labels

with better behavior. We found query refinement to be essential. We found that content

routing requires an underlying protocol that tolerates widely varying latencies and that

allows efficient aborts of operations after they have started. Performance of the system

is acceptable, though there is considerable latitude for improvements in response time

and in the space requirements of query refinement. These improvements are the subject

of ongoing research.

112

Chapter 4

Conclusion and Future Work

4.1 Directions for Future Research

Much work remains to be done in the area of information discovery and retrieval in very

large scale systems. There are many legal and economic issues that will be very important

as network-based publishing becomes pervasive. Non-textual approaches to information

discovery should also be explored. Furthermore, the content routing architecture needs

to be tested in larger environments, realistic information hierarchies should be built,

performance could be improved, and there is more to learn about constructing content

labels. This section outlines future work in each of these categories.

4.1.1 Legal and Economic Issues

This thesis has concentrated on the technical issues of bringing together people and data.

However, this raises many legal and economic questions. Retrieving and copying data

becomes trivial in the environments constructed here, raising the problem of intellectual

property rights. The delicate balance of authors (and their incentives to produce intel-

lectual property in the first place), publishers, and libraries will need to be drastically

restructured. See [54] for a summary of the legal and economic principles at issue. Fur-

thermore, there must be some way for people to make money producing and supplying

113

the information, so there must be a way to levy and collect charges. If users are be-

ing charged, then there must be some authentication and protection mechanisms. See

[62, 23, 38] for some recent approaches to these problems.

4.1.2 Visualization

In addition to the tools provided by a content routing system, a user will want other

techniques to become familiar with a very large information space. Techniques for helping

the user visualize the information space, especially using graphical representations based

on spatial and physical metaphors, can be extremely valuable [49]. This involves more

sophisticated user interfaces as well as careful analysis of what information will help

users the most. For example, a representation of documents as points in a space where

distance reflects some similarity metric might be useful, and would require that the system

be able to compute a similarity measure over user-selectable subsets of the document

space. Given the landscape metaphor of page 12 in Section 1.1.1, it would seem useful

to investigate a possible synergism between information visualization and geographic

information systems.

4.1.3 Larger Environments

Content routing system tests with many users, much more data, and larger sets of servers

are necessary. While 500 servers represents more than a toy collection, it is still quite

small compared with the current and future resources of the Internet. Experience with

larger populations of users will ultimately determine the value of the architecture. Such

large scale tests will require more useful data, and this will require supporting other

sorts of end-point information providers. The ability to assemble HTML documents into

collections would be very valuable, and tools like the World Wide Web Worm may be

helpful in building experimental platforms. Using automated techniques for building

hierarchies, e.g., the ideas of Scatter/Gather, would also be very helpful (see below).

Information providers ought to construct their own content labels. This will facilitate

114

the exploitation of larger sets of data sources. It would be valuable to have information

providers run automatic content label extractors, this would allow consistent content

labels to be built and would minimize the work required of managers of information

providers. However, it is valuable to be able to update the algorithms used for con-

tent label construction. Rather than require the installation of new code periodically,

information providers could, for example, be asked to run a program every day that

downloads the actual content label generating code via the World Wide Web. The code

would be available via a URL that the content router could change. This URL could even

map to a program that distributes different content label generating code depending on

the site making the request. Of course, some information source managers may want to

affect the content labels produced for their systems. Balancing these interests without

placing undue burdens on any node (or its manager) will present interesting engineering

trade-offs.

4.1.4 Building Hierarchies

Organizational Techniques

The work of this thesis has used only ad hoc hierarchies of information servers. Other

arrangements should clearly be tested. Realistic hierarchies without overly restricted

branching factors will require additional data sources. Hierarchies constructed on the

basis of principled subject classifications, market principles, and data-driven clustering

(Scatter/Gather) are all very important. To build a data-driven hierarchy, one could

take a listing of all the documents in the available WAIS servers (using the catalog files)

and available HTML documents (using the Web Crawler or some other tool) and then

use the Scatter/Gather software to build a static hierarchy. Then one could experiment

with content labels derived from the centroid documents of each cluster produced by

Scatter/Gather as well as other techniques. An interesting idea here is that once a global

hierarchy is constructed, it may not require frequent changing. Perhaps it could be

updated every year or so. New documents are fed in at the top of the hierarchy, and an

115

analog of query routing (document routing) will deliver the document to its appropriate

cluster. The new document will be indexed, and it may alter the cluster's content label

which may in turn produce changes that ripple back to the top of the hierarchy. I am

currently investigating the construction of such a system.

Topologies

In large networks that are not strictly controlled, there will be items that appear more

than once in the network. These items may be independent copies on end-point informa-

tion servers, they may be the same copy available via different routes in the hierarchy,

or they may be different versions of the same item. Figure 4-1 shows a content routing

system where some documents may be reached via different paths through the network.

(Note that a data-driven hierarchy would presumably place copies of an item in the same

cluster.) There are a whole range of issues to be dealt with here. Users may not want

to know about multiple copies, and so they should not appear in result sets. On the

other hand, some copies may be more authoritative than others, so particular copies may

be preferred. It may actually be useful to know about different versions of software or

software upgrades. If one is looking up a document referenced in a paper, it may be

important to find that particular version, not the latest. Jeremy Hylton [28] is already

looking at this problem, which librarians have termed deduplication.

The content routing architecture needs to be tested in environments with more com-

plicated meshes, i.e., in hierarchies that are not mere trees. This will raise all the issues

of deduplication mentioned above. Multiple copies of data will also affects the system's

suggestions for a query refinement operation. Term collocations in the same document

ought not be counted more than once.

The content routing system implementations have not had to deal with hierarchies

with cycles. As mentioned in Section 2.3.1, it is a simple matter to handle cycles.

116

Figure 4-1 A sample hierarchy with non-unique paths to documents.

Scaling Issues

It appears that the query routing feature can scale well. However, it remains to be seen

how progressive information loss will affect the utility of the system as hierarchies grow

in height. The policy has been to allow each information provider (including content

routers) to decide what information to include and omit in content labels. This deci-

sion may be affected by the demands of the content routers with which the information

provider is registered. An information provider that participates in multiple information

hierarchies may have a different content label for each hierarchy.

Will a content routing system be useful as data is lost? This problem is ameliorated

to some extent by building bushier hierarchies, but eventually it must be addressed. It

would be very interesting to explore a more rigid set of rules for information loss, such as

the name server model discussed in Section 2.3.3. This provides a distributed global index

semantics with a form of progressive discovery of query terms. My intuition about this

is that once the free text attribute is eliminated, there is really only a need for one layer

117

of content routing. Also, the system may force users to submit queries over attributes

for which they do not know the relevant data, i.e., users are generally better at guessing

the text terms in documents they want than they are at guessing other attributes (like

file owner, author, or location).

As terms are trimmed from content labels as information is propagated up the hierar-

chy, will the user receive adequate guidance from query refinement? Keeping a mapping

from all terms to all documents is the same as maintaining a global index. However,

query refinement is really concerned with term co-occurrence, so a more compact repre-

sentation of this would be very useful. Collapsing several documents into a single virtual

document (document clustering) will reduce the size of the mappings used in the current

implementations at the expense of creating false term collocations. It would be useful

to see how one can trade off data set size against utility. We have experimented with

treating all documents at a server as a single document, but this made query refinement

nearly useless at reducing result set size (though it does reduce route set size, see Section

2.3.2). Perhaps a system that allows estimation of term collocation similar to the scheme

used for routing in GlOSS would be useful. Using somewhat inaccurate estimators for

query refinement would not affect query routing, and assuming enough terms are recom-

mended to the user, the suggestions might still prove useful. This is an area of on-going

research.

4.1.5 Performance

Replication

Replication is an important idea that should be included in future content routing sys-

tems. Replication has three important applications: it provides a mechanism for reducing

the load on network hot spots, it reduces operation latencies, and it makes resources more

highly available. As network-based information discovery systems become more popular,

the demand for certain resources will increase. Replication allows several systems to sup-

port this demand. Because systems are widely distributed, a client will see much better

118

performance if there is a nearby (or more lightly loaded) replica. Finally in any large

distributed system, there will always be systems that are unavailable. This is a great

annoyance to the user and raises many problems in the design of the interface (e.g., client

code may have to save queries and poll previously unavailable servers). Replication can

help to mask the vagueries of host downtime and network problems from the user and

the client code.

Caching

If users run queries over and over, or if new queries can incorporate the results of past

queries (even if submitted by different users), it may be useful to provide some form of

caching. Clients may cache results, but also nodes all along the network may find it

useful to cache certain query results. To support this, servers and clients might keep a

history of queries and use this information to choose which data to cache. This naturally

raises all the issues of cache replacement strategies and invalidation.

New Algorithms and Data Structures

The prototypes presented in this thesis made use of very simple algorithms and data

structures that were chosen based on the ease of implementation given the set of tools

at hand. It is very clear that performance both in space and time could be improved

immensely by better algorithms and specially designed data structures. For example,

query refinement is very slow in the prototype systems because it does many string

operations that result from the simplistic use of WAIS indices. Hashing or interning

query terms and using integer document identifiers would allow for a more compact

and faster database. These techniques would be simple to implement given that WAIS

catalog files provide document identifiers, which could have tags added to indicate the

server that has the documents. I am currently working in this area as well as in the area

of a compact representation of query refinement information for content labels.

It may also be possible to use different mechanisms for smaller content routers. A

119

smaller content router may not require the full generality of the indexing technology

chosen for our prototypes. An example of a technology for smaller information systems

such as personal workstation files with considerably less space overhead, though at some

penalty in response time, is explored in [32].

Yet another direction for future work involves expanding query semantics to include

inexact matches. This would help to find documents in the presence of spelling errors.

Spelling errors in queries is important, but can be helped with local spelling correction

software. The harder problem involves occurrences of misspellings in documents. Many

misspellings are visible in the WAIS documents available from our prototype. See for

example the query refinement suggestions that contain misspelled terms. This quality

control problem is becoming more acute as informal and personal publication via the

Internet becomes more common. Inexact matches have been handled to some extent in

[32, 7, 8].

4.1.6 Content Labels

More research is needed to determine what data should appear in content labels. This

will require more data from the information providers, as described above. It is also

important to determine how to propagate terms up a hierarchy. My intuition is that

the use of high frequency terms will be useful, but it is worthwhile exploring the use of

centroid documents as well. It is important to decide how to treat synthetic attributes

in content labels, i.e., whether they are apparent in the content label or simply added in

to the refinement data as if they occur in every document. Connection information (like

hostname, etc.) may or may not be separated from other synthetic attributes. Finally,

a compact representation of query refinement data is essential.

120

4.2 Summary

This thesis has presented a new, hierarchical architecture for information discovery and

retrieval in large networks of information servers. The content routing system design in

this thesis:

* combines offline data organization with interleaved use of browsing and searching

at various levels of granularity.

* supports distributed processing.

* exploits heterogeneity of data sources.

* addresses the metadata issue by showing how to automatically generate content

labels that describe the information exported by a server.

* provides key abstractions (collection documents) and operations (query refinement,

incremental and global search) for effective information discovery and retrieval in

large, distributed networks.

Four prototype implementations have explored and verified the design of this the-

sis. These prototype implementations have answered pragmatic questions about content

routing systems and produced the following conclusions:

* A system can help a user cope with vast amounts of information by providing

some organization of the data and automatically suggesting improvements to users'

queries.

* It is possible to route queries to a meaningful subset of a large number of information

servers.

* It is possible to define metadata structures, content labels, to organize the infor-

mation space and provide other assistance to users.

121

* The content routing architecture can successfully interoperate with pre-existing

systems.

* It can be practical to extract useful content labels from hundreds of disparate,

incompatible servers.

* A hierarchical content routing system appears to scale well.

The potential branching factor of a content routing hierarchy is higher than I had

thought in the design phase: it now appears that the present implementation technology

can easily support thousands of remote information providers (an order of magnitude

more than I expected). I now understand better what a content routing system requires

of underlying communication protocols, namely, a high tolerance of varying latencies.

Experience using the system has shown that browsing and query refinement are essential

elements in exploring an information space. The most surprising result is that extremely

simple content labels are effective for query routing and refinement. Furthermore, even

naive query refinement algorithms are quite useful.

122

Appendix A

SFS-based Implementations

This appendix provides more details about the design and construction of the NFS/SFS-

based content routing system implementations. There were two implementations each

built as modifications to the Semantic File System implementation. This chapter de-

scribes the very simple user interface, then describes the implementation strategies of

the two implementations.

A.1 User Interface

The principle idea of the SFS-based prototypes was that the content routing system would

appear as an SFS server (with some semantic extensions) and would behave as an SFS

client when communicating with remote information servers. Thus, the user interface was

based on path name queries. While path name queries may be syntactically awkward,

even unmodified directory editors, such as DIRED in EMACS [65, pp. 92-101], can work

quite nicely. A custom graphical browser written in TCL by Ron Weiss was very helpful.

The content router implementations incorporated many simplifications in the design.

They supported only conjunctive queries. The first SFS-based content router only pro-

vided automatic recursive search. That is, every query was routed to relevant information

providers, and the results from the leaves were merged and presented to the user. It was

123

suggested that users might gain some advantage by being able to browse the content

labels.' This started my thinking about the model of progressive discovery.

The second SFS-based content router did not provide recursive search, only the ex-

pand operation of Chapter 2. The idea was to explore the notion of progressive discovery.

This more complicated interface is described here.

The user performed an expand by inserting a special attribute into the query (as

will be described below). Thus, the user's query was seen as a universe specification

(that defined the route set), and a query. The query, of course, could contain further

universe specifications and queries. The prototypes did not forward the terms from the

universe specifications to the remote servers. This meant that information providers did

not have to filter out synthetic attributes that were in their content labels but not in their

databases. However, it often meant that the user had to repeat terms. The graphical

browser helped make this task a little easier.

The SFS-based content routing systems used the same path name query syntax as

the semantic file system [21]), to wit,

<CRS-full-path> ::= /<pn> I <pn>
<pn> ::= <attribute> I <field-name>

<attribute>/<pn>
<attribute> ::= field: I immutable-field: I <field-name>/<value>
<field-name> ::= <string>:
<value> : := <string>

A content router is mounted like any remote file system. A content router accepts

queries in the form of path names and helps users locate items of interest in the network.

Queries are made of attributes that consist of a field name (which must end in a colon)

and a value. Some attributes help users identify information providers that interest them,

and other attributes help users identify particular items at information providers.

Thus, if a content router were mounted at /cr, then the users' interactions with the

content router would be via path names that begin /cr. At that point, the directory

'This suggestion was made by Barbara Liskov while I was writing the thesis proposal.

124

structure of the remote information provider is visible, and the user may browse these

directories just as in any distributed file system.

A user could query the subtree rooted at a particular path by inserting attributes into

the paths. The server dynamically creates virtual directories that contain the results of

queries. Recall that an attribute is a pair of a field name and a value. The SFS syntax

reserves the character : as the terminator of field names. Attribute fields and values are

separate elements of the path name. For example, the following query would be used to

list all documents that are indexed by the attribute text : clinton, assuming the content

router was mounted at /cr:

cd /cr
is text:/clinton

Attributes are not required to appear in their entirety. A path that ends in a field

name corresponds to a virtual directory that contains a subdirectory for every value of

that field. This provides the user a show values operation. The SFS-based implementa-

tions simply listed all possible values and did not provide any query refinement.

The special directory field: is always implicitly available, and it contains a subdi-

rectory for each of the indexed fields. This helps a user explore a new information system

that may have locally-defined fields. The immutable-field: attribute allowed informa-

tion providers to assert that the value set for those fields did not change frequently (like

the owners of the files on a file server).

All content labels were required to have have a single term with the field library

whose value was the unique name of the information server. At any point, the user

could look in the library: virtual directory to see all available information providers.

Naturally, this feature is impractical on a large scale, or even on the scale of our WAIS

content router.

125

.cd /cr
, is library:
nyt
nyt.desc
ap
ap. desc

In the above example, a user in a UNIX system has entered the content router by

changing to the directory where the server is mounted. The contents of the library:

virtual directory reveals that this content router indexes only two information servers.

The names ending in .desc are files that contain content labels for the respective

servers. The content labels are visible so the user can retrieve them and browse for useful

attributes or learn about a server's contents.

% more library:/nyt.desc
library: nyt
library-type: news articles
hostname: brokaw. cs.mit.edu
hostaddress: 18.30.0.33
location: MIT
location: Massachusetts Institute of Technology
location: Cambridge Massachusetts
location: USA
location: New England
port: 375
administrator: Mark A. Sheldon
administrator: death@lcs.mit.edu
administrator: 617-253-6264
cost: 0
field: author category date dir exports ext imports keywords name
field: newsgroups organization owner priority subject text title
field: type
immutable-field: category owner priority type
label: New York Times wire service articles for the last 90 days (3

months).

The other entries in the library: virtual directory are themselves directories. Users

may enter these directories to interact directly with the corresponding information

providers. That is, these directories allow manual routing of queries when users already

know what databases they want to search.

126

Of course, a user may not decide where to send queries based just on the database

name. A user may thus construct a query and let the file system suggest where such a

query may be productively routed.

% cd label:/times/author:/safire/subject:/language
% is
nyt
nyt.desc

In the above example, the system has used its content labels to identify a single

relevant database. In this case, the query results in a virtual directory that contains

only the content label and routing directory for the nyt database. The routing directory

contains the items at the nyt database that match the query:

% cd nyt
is

N203306234 N204275730 N205196132
N204206066 N205045724 N205265952

X head N203306234
type: NYT (Copyright 1992 The New York Times)
priority: Weekend Advance
date: 03-30-92 1719EST
category: Commentary
subject: BC ON LANGUAGE
title: ON LANGUAGE
author: WILLIAM SAFIRE
text:

ME: 'DON'T FINISH MY -- -- ' YOU: 'SENTENCE.'

The same result set could have been obtained with the following query:

ls /cr/library:/nyt/author:/safire/subject:/language

In the first example, the system determined where to route the query based on the

value of the label: field and on the knowledge that the NYT database supported the

127

text: field. In the last example, the user has manually determined the database at

which the query is to be run.

The universe specification was separated from the rest of the query by the special

attribute break:here. Thus, to route find all articles that mention Bosnia in databases

that know about Clinton, a user might try:

% cd /cr/text:/clinton/break:/here/text:/bosnia
X is

128

Client AMI

Figure A-1 A prototype content router.

A.2 Implementations

Figure A-1 shows a block diagram of a SFS-based content router. This is a copy of Figure

3-4 reproduced here for convenience.

The content router ran as a daemon that appeared as a (user-level) NFS server on

a non-standard port. Clients could mount the server specifying the port number, and

then the client kernel would make normal NFS remote procedure calls to the content

router. For normal directory and file operations, the content router simply forwarded the

requests to the underlying file system.

For virtual directories, query result sets, and remote information servers, the daemon

maintained an in memory cache that mapped NFS file handles to nodes in the cache.

Virtual directory nodes contained a flag to determine whether they had been filled in.

129

r-

If an NFS request came in, say a lookup or a readdir in a non-filled virtual directory,

then the system recognized either a lookup fault or a readdir fault.

A lookup fault for a field or value virtual directory would simply cause the necessary

virtual directory node to be built, installed in the cache with an assigned NFS handle, and

the handle to be returned. A lookup fault for a file within a value virtual directory (which

would be the result of a query) would in turn cause a readdir fault on the virtual directory

and then retry the lookup. A lookup in a field: or immutable-field: directory also

caused the directory to be filled.

A readdir fault for an unfilled directory required the following case analysis:

1. The current node is a stand-in for an object on a remote system. Attempt a remote
readdir.

2. The current directory is an unrouted query.

(a) The current directory is a request for the fields we know about. Just fill it in.
(Should be a special case of (2) (b) below.)

(b) The current directory is for an enumerated value set. Call the index system's
enumeration routine.

(c) The current directory is a complete query.

i. Compute the set of information providers to which the query might plau-
sibly be routed.

ii. For each such information provider, make a link to its content label and
make a link to the query on that information provider.

3. The

(a)
(b)

current directory is an automatically routed query.

As in 2 (c) (i) above.

For each information provider, run the query remotely and make links for the
results.

The first SFS-based implementation provided only mediated service, that is, the con-

tent router mediated all traffic between the client and the remote information providers.

Since the remote information providers were also SFS-compatible, these servers could

130

be mounted and appropriate remote procedure calls could be made to them. The reg-

istered servers were given integer identifiers representing their position in a registration

table. The indexer was given a copy of the content label whose name was this integer

so that queries applied to the local routing database would return this identifier. This

implementation read the known servers from the table when the daemon was started,

mounted them all, then built an internal array of representations of the NFS file systems

and made normal procedure calls (which the file system abstraction would forward to the

remote systems). Relevant servers were identified by the integer identifier received from

the database system, this was used as an index into the table, and remote operations

could easily be carried out.

The second SFS-based implementation was considerably more flexible, and it was to

this implementation that the SFS-WAIS gateways were made available. In this imple-

mentation, content labels were indexed differently. The transducer that produced the

index table from content labels would output a string that could be parsed into the file

name, the server's host name, and the service port. The implementation would then

parse this string when it received query results from the local database.

The server could be configured either to mediate all traffic between the client and

remote systems, or it could allow for the client to contact the remote system directly,

bypassing the content router. The contact information was stored in the cached node

representing the server and, as above, appropriate RPCs were made to the remote server.

The more typical, and better performing, mode of operation was non-mediated (or

direct) processing. Directories for direct connections to remote servers and final query

results were made into links that were to be interpreted by the client to allow a direct

connection. Clients were assumed to have a directory called /crsmounts which was

served by a modified and specially configured version of the amd automount daemon

[43, 44, 45]. The links were of the form /crs-.mounts/hostname/port/... remote-path.

How this was handled by the automount daemon is described below.

131

Modifications and Configuration of the Automount Daemon

There was only one, simple modification to the Berkeley automount daemon, and that

was to support the ability to mount NFS file systems that used non-standard ports.

Apparently, this code had been put into the automount daemon some time before, and

then was taken out because it was incompatible with a newer feature (called keepalive).

Since then, the code had evolved so that there was a bit of programming to make the

general port code work. 2 Changes involved approximately a dozen lines of code.

Using the modified automount daemon did not require that clients know about what

servers they would need to contact. Two general-purpose mount maps would suffice to

configure the automount daemon appropriately. The first mount map would create the

directory for the host name (the first component of the path name after the directory that

invoked amd), then it would set up the second mount map to be invoked on subdirectories

of the host name directory. The second mount map would collect the next path name

component, which was the port number, and then do the mount on the port. Figure

A-2 shows the first mount map that extracts the host name from the key and installs

the second mount map (amd. crs. port). Figure A-3 shows the second mount map which

performs the actual mount. Note the long timeout. The mount specifies ping=-1 because

of the above mentioned conflict with the keepalive code. The remote file system is

specified as / for reasons that are explained below.

One peculiarity of mount map programming is that it is very difficult to build a three

level system because of limited argument passing and parsing techniques. This created

something of a dilemma. To get the correct root handle of a remote semantic file system,

one must mount the correct remote file system. However, there was no way to get host

name, port number, and file system through the clumsy mount map code. I made an

interim choice rather than try to extend the mount map code. The remote file system

that was mounted was always /. This meant of course that servers had to export /, which

2Special thanks to Jan-Simon Pendry for responding to several of my information requests and point-
ing at the right places to do the modifications.

132

You may think that we could go ahead and assign rhost:= the current
key, and then build the map args at each stage of the path, but no.
* type:=auto;is:=/usr/local/etc/amd.crs.port;pref:=$4key}/

Figure A-2 amd.crs

/defaults type:=nfs; rfs:=/
* rhost:=$key/} ;fs : =$autodir}/$key};opts: =port=${/key},soft,intr,timeo=200,ping=-1

Figure A-3 amd.crs.port

in a real system seemed unlikely to happen. However, I still needed a way to get to the

correct root of the indexed remote file system. The hack was to take advantage of two

features of a semantic file system: field: is always an available directory, and in any

virtual directory ... returns to the file system's root. Thus, links to remote systems had

the amd-controlled crsmounts directory, then the host name, then the port number,

then field:/... then the path or query or whatever was being referenced.

With this infrastructure in place, the automount daemon could be invoked as in the

shell script in Figure A-4.

#! /bin/sh

#amd -D trace,test ... for debugging.

/usr/local/etc/amd -a /tmpcrs-mnt -d
/crs_mounts /usr/local/etc/amd.crs

+--- Also can change the log.

LCS.NIT.EDU -1 syslog \

Figure A-4 The command to get amd going properly

133

Bibliography

[1] B. Alberti, F. Anklesaria, P. Linkner, M. McCahill, and D. Torrey. The Internet

Gopher protocol: A distributed document search and retrieval protocol. University

of Minesota Microcomputer and Workstation Networks Center, Spring 1991. Revised

Spring 1992.

[2] D. Barbara. Extending the scope of database services. Technical Report MITL-TR-

44-93, Matsushita Information Technology Laboratory, Princeton, NJ, Jan. 1992.

[3] D. Barbara and C. Clifton. Information Brokers: Sharing knowledge in a heteroge-

neous distributed system. Technical Report MITL-TR-31-92, Matsushita Informa-

tion Technology Laboratory, Princeton, NJ, Oct. 1992.

[4] T. Berners-Lee. Hypertext transfer protocol. Internet Draft, Nov. 1993.

[5] T. Berners-Lee, R. Cailliau, J.-F. Groff, and B. Pollermann. World-Wide Web: The

information universe. Electronic Networking, 2(1):52-58, 1992.

[6] T. Berners-Lee and D. Connolly. Hypertext markup language. Internet Draft, July

1993.

[7] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz. Harvest:

A scalable, customizable discovery and access system. Technical Report CU-CS-732-

94, University of Colorado Department of Computer Science, Boulder, Colorado,

July 1994.

134

[8] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz. The

harvest information discovery and access system. In Proceedings of the Second

International World Wide Web Conference, pages 763-771, Chicago, Illinois, Oct.

1994.

[9] CCITT. The Directory - Overview of Concepts, Models and Services. Recommen-

dation X.500, 1988.

[10] CCITT. The Directory - Overview of Concepts, Models and Services. Recommen-

dation X.500, 1988.

[11] D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tukey. Scatter/gather:

A cluster-based approach to browsing large document collections. In 15th Annual

International SIGIR, pages 318-329, Denmark, June 1992.

[12] P. B. Danzig, S.-H. Li, and K. Obraczka. Distributed indexing of autonomous

internet services. Computing Systems, 5(4):433-459, 1992.

[13] P. B. Danzig et al. Distributed indexing: A scalable mechanism for distributed

information retrieval. Technical Report USC-TR 91-06, University of Southern Cal-

ifornia, Computer Science Department, 1991.

[14] A. Duda and M. A. Sheldon. Content routing in networks of WAIS servers. In Pro-

ceedings of the 14th International Conference on Distributed Computing Systems,

pages 124-132, Poznan, Poland, June 1994. IEEE.

[15] E. N. Efthimiadis. A user-centered evaluation of ranking algorithms for interactive

query expansion. In Proceedings of the 16th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, pages 146-159,

Pittsburgh, PA USA, June 1993.

135

[16] D. Eichmann. The RBSE spider - balancing effective search against web load. In

Proceedings of the First International Conference on the World Wide Web, Geneva,

Switzerland, May 1994.

[17] A. Emtage and P. Deutsch. Archie - an electronic directory service for the Inter-

net. In USENIX Association Winter Conference Proceedings, pages 93-110, San

Francisco, Jan. 1992.

[18] E. A. Fox, R. M. Akscyn, R. K. Furuta, and J. J. Leggett. Introduction to special

section on digital libraries. Comm. ACM, 38(4):23-28, Apr. 1995.

[19] W. B. Frakes and R. Baeza-Yates, editors. Information Retrieval: Data Structures

& Algorithms. Prentice Hall, Englwood Cliffs, New Jersey, 1992.

[20] D. K. Gifford. Polychannel systems for mass digital communication. Comm. ACM,

33(2), Feb. 1990.

[21] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O'Toole. Semantic file sys-

tems. In Thirteenth ACM Symposium on Operating Systems Principles, pages 16-

25. ACM, Oct. 1991. Available as Operating Systems Review Volume 25, Number

5.

[22] D. K. Gifford, J. M. Lucassen, and S. T. Berlin. An architecture for large scale

information systems. In 10th Symposium on Operating System Principles, pages

161-170. ACM, Dec. 1985.

[23] D. K. Gifford, L. C. Stewart, A. C. Payne, and G. W. Treese. Payment switches for

open networks. In COMPCON '95: Technologies for the Information Superhighway,

San Francisco, California, Mar. 1995. IEEE.

[24] L. Gravano and H. Garcia-Molina. Generalizing GlOSS to vector-space databases

and broker hierarchies. Technical Report STAN-CS-TN-95-21, Stanford University

Department of Computer Science, 1995. To appear in VLDB95.

136

[25] L. Gravano, A. Tomasic, and H. Garcia-Molina. The efficacy of GlOSS for the

text database discovery problem. Technical Report STAN-CS-TR-93-2, Stanford

University Department of Computer Science, Oct. 1993.

[26] H. Hahn and R. Stout. The Internet Complete Reference. Osborne McGraw-Hill,

Berkeley, California, 1994.

[27] D. Harman. Chapter 14: Ranking algorithms. In W. B. Frakes and R. Baeza-

Yates, editors, Information Retrieval: Data Structures & Algorithms, pages 363-392.

Prentice Hall, Englwood Cliffs, New Jersey, 1992.

[28] J. Hylton. Deduplication and the use of meta-information in the digital library. Mas-

ter's Thesis Proposal, Department of Electrical Engineering and Computer Science,

MIT, Dec. 1994.

[29] B. Kahle and A. Medlar. An information system for corporate users: Wide Area

Information Servers. Technical Report TMC-199, Thinking Machines, Inc., Apr.

1991. Version 3.

[30] M. Koster. ALIWEB - archie-like indexing in the web. In Proceedings of the First

International Conference on the World Wide Web, Geneva, Switzerland, May 1994.

[31] D. M. Levy and C. C. Marshall. Going digital: A look at assumptions underlying

digital libraries. Comm. ACM, 38(4):77-84, Apr. 1995.

[32] U. Manber and S. Wu. A two-level approach to information retrieval. Technical

Report 93-06, Department of Computer Science, University of Arizona, Tucson,

Arizona, Mar. 1993.

[33] G. Marchionini and H. Maurer. The roles of digital libraries in teaching and learning.

Comm. ACM, 38(4):67-75, Apr. 1995.

137

[34] R. S. Marcus. An experimental comparison of the effectiveness of computers and

humans as search intermediaries. Journal of the American Society for Information

Science, 34(6):381-404, Nov. 1983.

[35] R. S. Marcus. Advanced retrieval assistance for the DGIS gateway. Technical Report

LIDS R-1958, MIT Laboratory for Information and Decision Systems, Mar. 1990.

[36] M. L. Mauldin and J. R. R. Leavitt. Web agent related research at the center

for machine translation. In Proceedings of the ACM Special Interest Group on

Networked Information Discovery and Retrieval (SIGNIDR-94), Aug. 1994.

[37] N. J. Neigus. File transfer protocol for the ARPA network. Bolt Beranek and

Newman, Inc. RFC 542 NIC 17759, Aug. 1973.

[38] B. C. Neuman and G. Medvinsky. Requirements for network payment: The

NetCheque perspective. In COMPCON '95: Technologies for the Information Su-

perhighway, San Francisco, California, Mar. 1995. IEEE.

[39] ANSI Z39.50 Version 2. National Information Standards Organization, Bethesda,

Maryland, Jan. 1991. Second Draft.

[40] N. R. C. NRENAISSANCE Committee, Computer Science and Telecommunica-

tions Board. Realizing the Information Future: The Internet and Beyond. National

Academy Press, Wasington, DC, 1994.

[41] Open text to offer free full-text index of web. Press release on Newsbytes Clarinet

bulletin board, Mar. 1995.

[42] J. Ordille and B. Miller. Distributed active catalogs and meta-data caching in

descriptive name services. In Proceedings of the 13th Internatinoal Conference on

Distributed Computing Systems, pages 120-129. IEEE, 1993.

[43] J.-S. Pendry. Amd - an automounter. Department of Computing, Imperial College,

London, May 1990.

138

[44] J.-S. Pendry and N. Williams. Amd: The 4.4 BSD automounter reference manual,

Dec. 1990. Documentation for software revision 5.3 Alpha.

[45] J.-S. Pendry and N. Williams. Amd: The 4.4 BSD automounter reference manual,

Mar. 1991. Documentation for software revision 5.3 Alpha.

[46] L. Peterson. The Profile Naming Service. ACM Transactions on Computer Systems,

6(4):341-364, Nov. 1988.

[47] B. Pinkerton. Finding what people want: Experiences with the WebCrawler. In

Proceedings of the First International Conference on the World Wide Web, Geneva,

Switzerland, May 1994.

[48] Y. Qiu and H. P. Frei. Concept based query expansion. In Proceedings of the

16th Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval, pages 160-169, Pittsburgh, PA USA, June 1993.

[49] R. Rao, J. O. Pedersen, M. A. Hearst, J. D. Mackinlay, S. K. Card, L. Masinter, P.-

K. Halvorsen, and G. G. Robertson. Rich interaction in the digital library. Comm.

ACM, 38(4):29-39, Apr. 1995.

[50] R. Reiter. On closed world data bases. In H. Gallaire and J. Minker, editors, Logic

and Data Bases. Plenum Press, New York, 1978. Based on the Proceedings of teh

Symposium on Logic and Data Bases, Toulouse, France, November 1977.

[51] G. Salton. Introduction to Modern Information Retrieval. McGraw-Hill, New York,

1983.

[52] G. Salton. Another look at automatic text-retrieval systems. Comm. ACM,

29(7):648-656, July 1986.

[53] G. Salton, J. Allan, C. Buckley, and A. Singhal. Automatic analysis, theme gener-

ation, and summarization of machine-readable texts. Science, 264:1421-1426, June

1994.

139

[54] P. Samuelson. Legally speaking: Copyright and digital libraries. Comm. ACM,

38(4):15-21, 110, Apr. 1995.

[55] M. F. Schwartz. The Networked Resource Discovery Project. In Proceedings of the

IFIP XI World Congress, pages 827-832. IFIP, Aug. 1989.

[56] M. F. Schwartz and J. S. Quarterman. A measurement study of changes in service-

level reachability in the global internet. Technical Report CU-CS-649-93, University

of Colorado, Boulder, May 1993.

[57] D. A. Segal, D. K. Gifford, J. M. Lucassen, J. B. Henderson, S. T. Berlin, and D. E.

Burmaster. Boston community information system user's manual. Technical Report

MIT/LCS/TR-373, M.I.T. Laboratory for Computer Science, Sept. 1986.

[58] M. A. Sheldon, A. Duda, R. Weiss, and D. K. Gifford. Discover: A resource discovery

system based on content routing. In Proceedings of The Third International World

Wide Web Conference. Elsevier, North Holland, Apr. 1995. To appear in a special

issue of Computer Networks and ISDN Systems.

[59] M. A. Sheldon, A. Duda, R. Weiss, J. W. O'Toole, Jr., and D. K. Gifford. A content

routing system for distributed information servers. Technical Report MIT/LCS/TR-

578, M.I.T. Laboratory for Computer Science, June 1993.

[60] M. A. Sheldon, A. Duda, R. Weiss, J. W. O'Toole, Jr., and D. K. Gifford. Content

routing for distributed information servers. In Fourth International Conference on

Extending Database Technology, pages 109-122, Cambridge, England, Mar. 1994.

Available as Springer-Verlag LNCS Number 779.

[61] P. Simpson and R. Alonso. Querying a network of autonomous databases. Technical

Report CS-TR-202-89, Princeton University, Princeton, NJ, Jan. 1989.

140

[62] M. Sirbu and J. D. Tygar. NetBill: An internet commerce system optimized for

network delivered services. In COMPCON '95: Technologies for the Information

Superhighway, San Francisco, California, Mar. 1995. IEEE.

[63] K. Sollins and L. Masinter. Functional requirements for uniform resource names.

Network Working Group, RFC 1737, Dec. 1994.

[64] P. Srinivasan. Chapter 9: Thesaurus construction. In W. B. Frakes and R. Baeza-

Yates, editors, Information Retrieval: Data Structures & Algorithms, pages 161-218.

Prentice Hall, Englwood Cliffs, New Jersey, 1992.

[65] R. Stallman. GNU Emacs Manual. Free Software Foundation, Cambridge, MA,

Mar. 1987. Sixth Edition, Version 18.

[66] NFS: Network file system protocol specification. Sun Microsystems, Network Work-

ing Group, Request for Comments (RFC 1094), Mar. 1989. Version 2.

[67] S. Wartik, E. Fox, L. Heath, and Q.-F. Chen. Chapter 13: Hashing algorithms. In

W. B. Frakes and R. Baeza-Yates, editors, Information Retrieval: Data Structures

& Algorithms, pages 293-362. Prentice Hall, Englwood Cliffs, New Jersey, 1992.

[68] G. Wiederhold. Digital libraries, value, and productivity. Comm. ACM, 38(4):85-96,

Apr. 1995.

[69] R. Wilensky. UC Berkeley's digital library project. Comm. ACM, 38(4):60, Apr.

1995.

141

