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Abstract

Optical communication systems require optoelectronic devices and components that op-
erate at a wavelength of 1.5 plm, where standard optical fibers have a minimum transmis-
sion loss. Investigating the performance of these devices and understanding the underlying
physics requires good sources at this wavelength. In particular, the investigation of their
ultrafast nonlinear response, which will ultimately limit the switching speed and modulation
characteristics, requires good femtosecond sources at 1.5 plm.

A broadband femtosecond source is ideal for variable wavelength pump-probe experi-
ments, which are the standard tool for time-resolved spectroscopy. To this end, a stretched-
pulse additive pulse modelocked erbium-doped fiber ring laser was used as a seeding laser
for a solid-state color center amplifier, which was pumped by a 1 kHz Q-switched
Nd:YAG laser. The seeding pulse train was matched in repetition rate and synchronized to
the pump laser. The seeding pulse was passed twice through the gain medium to be ampli-
fied by a factor of ~ 10000. The resulting 10 pJ pulses were recompressed to 250 fs dura-
tion and focused onto a nonlinear material, yielding an extremely broadband femtosecond
continuum. This femtosecond continuum was then passed through a spectral slicer to dem-
onstrate variable-bandwidth tunable femtosecond pulses.

In a separate experiment, an additive pulse modelocked color center laser was used to
investigate the nonlinear femtosecond dynamics of a polarization insensitive semiconductor
optical amplifier. By mixing quantum wells with compressive and tensile strain, both TE-
and TM-polarized light are equally amplified. This useful device has been introduced as an
integrated optics device to act as an amplifier independent of the polarization state of its in-
put. Although this device has isotropic gain by design, it showed a nonlinear dynamic ani-
sotropy. A heterodyne pump-probe technique was used to resolve the polarization depend-
ence of the dynamic nonlinear response of the gain as well as the index. The cooling time
of the carriers following optical excitation showed a dependence on the pump polarization.
When the pump and probe are both TE-polarized the cooling time is - 900 fs, but for all
other TE and TM combinations for pump and probe the cooling time is only ~ 700 fs. Cal-
culations showed that in this experiment the measurement is sensitive mainly to hole dy-
namics. Further band structure calculations show that the states of interest are heavy hole
states with light effective mass in the compressive strain well, and light hole states with a
heavy effective mass in the tensile strain well. The different cooling time is attributed to this
mass difference. The anisotropy is attributed to the polarization dependence of the heating
mechanism, dominated by intervalence band absorption. To further investigate the dynamic
anisotropy, a technique was devised to measure the induced anisotropy directly. This



measurement contains both the induced birefringence and induced dichroism. The meas-
urement results showed a new - 7 ps time constant, not apparent in the previous
measurements. This longer time constant is attributed to interwell coupling or transport. A
residual long-time anisotropy in the measurement, indicates a polarization dependence of
the CW saturation of the device.
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Title: Elihu Thomson Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 The importance of 1.5 gim radiation

Glass fiber has become the enabling technology for optical communication. Standard

fiber has minimum loss at a wavelength of 1.55 gm [1]. Standard glass fiber also has a

minimum of dispersion at a wavelength 1.3 jim, however by optimizing the index profile,

the material dispersion may be balanced by the waveguide dispersion to achieve zero dis-

persion at 1.55 gm [1]. For these reasons the wavelength region of 1.55 gm is of great

importance and interest.

Since most of optical communication will be based in the 1.55 gm spectral region, the

building blocks of this optical network must be well understood. Components such as

semiconductor lasers, amplifiers and detectors as well as integrated optics devices (e.g.,

switches, filters, routers, etc.) must be investigated. In fact the fiber itself, being the

transmission medium, has to be studied. To study and understand the physics of all of

these devices and components and design new ones, necessitates 1.55 jim sources and

various spectroscopic tools.

1.2 Why do we need femtosecond sources?

1.2.1 Spectroscopic tool

One of the main requirements of communication networks is speed, the transmission of

information in as little time as possible. The response of the network components to high-

speed modulation must be characterized. Modelocked laser sources with picosecond and

sub-picosecond duration pulses are therefore ideally suited for probing these characteris-

tics.

Femtosecond sources may be used as spectroscopic tools to resolve the ultrafast re-

sponse of different materials and devices. Techniques such as pump-probe experiments,

let us excite a material with a strong pump pulse and probe its response with a weak probe



pulse, which is delayed with respect to the pump pulse. From this we can learn about the

high-speed dynamics and the underlying physics of these materials. These in turn, will tell
us the fundamental limits to high-speed modulation and maybe suggest new ways to over-
come these limits.

1.2.2 Nonlinear optics

Another use of femtosecond pulses is in applications that require high peak powers. In
particular all nonlinear optical techniques rely on high peak powers [2]. The nonlinear in-
teraction scales as some power of the intensity (depending on the particular nonlinearity),
so that higher peak intensities make the observation of these effects easier. By going from
a given continuous wave (CW) average power to a pulsed laser with the same average
power, the peak power increase is approximately the inverse of the product of the pul-
sewidth and the repetition rate. Shorter pulses and lower repetition rates result in higher
peak powers.

An inherent feature of nonlinear optical interactions is the generation of new frequen-
cies [2]. Since the generated new fields are proportional to products of the input fields,
they will contain sums and differences of the input frequencies. This is of interest to opti-
cal communication employing wavelength division multiplexing (WDM), where frequency
shifters are needed [3]. This is also of interest to time-resolved spectroscopy in techniques
such as continuum generation (extreme spectral broadening through self phase modulation
(SPM)), which may result in a femtosecond white light source [4].

1.3 The aim of this thesis

1.3.1 Development of new 1.5 plm femtosecond sources

Because of the importance of femtosecond studies at 1.55 plm, as outlined above, good
reliable femtosecond sources operating at this wavelength have to be available. Until very
recently the only available sources were additive pulse modelocked (APM) color center la-
sers, in particular the KCl:T1+ and the NaCl:OH- [5] [6]. More recently a few alternative
sources were developed - the erbium fiber laser [7], the Cr4:YAG [8] and the femtosecond

optical parametric oscillators (OPO's) [9].

In order to use these sources effectively in experiments, their characteristics and per-

formance have to be evaluated. Characteristics such as pulse duration, optical spectrum,
stability, starting conditions, amplitude and phase noise (timing jitter), must be investi-



gated. In this thesis one specific laser systems will be studied: A diode-pumped mode-

locked erbium fiber laser.

Since erbium-doped fibers were shown to be an excellent gain medium at the 1.55 gm

spectral region [10] [ 11], there has been great interest in using them as lasers, and more

importantly for optical communication purposes, as amplifiers. More recently modelocking

these fiber lasers became of interest, and several configurations were investigated [7] [12]

[13]. One of the best performers in terms of output power and pulse duration is the

stretched pulse APM (SP-APM) erbium-doped fiber ring laser [14]. This laser was limited

in terms of output power and amplitude noise mainly by the pump source - an argon ion

pumped Ti:Sapphire laser. The commercial availability of master oscillator power amplifier

(MOPA) diodes operating at 980 nm (one of the main absorption bands of erbium) [15]

[16], made it possible to replace the complex pumping system with a much simpler one.

The high power, single longitudinal mode operation and low noise of these MOPA's made

them an ideal pump source for the fiber laser.

In section 2.1 the performance of these laser systems in terms of their pulse duration

and chirp, output power, and amplitude noise, will be described. Their excellent perform-

ance makes them an ideal source for seeding a solid-state amplifier. Their low-noise char-

acteristics should also enhance the signal-to-noise ratio in experiments such as pump-

probe, resulting in higher sensitivity (relative to the color center lasers, for example).

1.3.2 Amplification 1.5 gm femtosecond pulses and continuum generation

As mentioned earlier (section 1.2.2) nonlinear optics applications require high peak

power, in particular continuum generation requires high peak intensities to spectrally

broaden the input pulse. Thus, a very broad band femtosecond source can be produced,

and subsequent spectral filtering applied to yield a tunable femtosecond source. This is

important for pump-probe experiments where the pump and probe need to be at the differ-

ent wavelengths, or for probing very broad distributions with the broad spectrum.

To create such a source at 1.55 gm requires an amplifier and hence a gain medium,

which has its peak around this wavelength. One of the obvious choices for a gain medium

would be a color center crystal. In section 2.2 an amplifier system based on the KCl:T1

color center crystal will be investigated. The seeding laser is the modelocked erbium doped

fiber laser discussed earlier (section 1.3.1). The output pulse train from this laser is passed

through a pulse selector to match the 1 kHz repetition rate of the Q-switched Nd:YAG,

which pumps the color center amplifier crystal. The selected pulses are synchronized with



the pump pulses and experience a single pass gain of -1000. After 2 passes through the
amplifier the pulse energy is -10 gLJ for a net energy gain of -10000. Compression of
these pulses to -250 fs results in peak powers of - 10 W, and by focusing to spot sizes of
a few tens of microns we can get peak intensities on the order of 1011-1012 W/cm 2. With
these peak intensities continuum may be generated, and in sections 2.3.6-2.3.9 a few dif-
ferent materials will be investigated in terms of their ability to generate wide spectrum.
Spectral slicing of this broad continuum will also be demonstrated, to make this an excel-
lent spectroscopic tool.

1.3.3 Investigation of the ultrafast response of semiconductor devices
operating at 1.5 glm

As was discussed earlier (section 1.1), optoelectronic devices operating at 1.55 gLm are
of great interest for optical communication, and therefore their characteristics, physics and
performance have to be investigated and quantified. In particular, for applications such as

high speed modulation and all optical switching, the ultrafast response of these devices has

to be investigated. This thesis will concentrate on the investigation of one specific device,
namely the polarization insensitive semiconductor optical amplifier (PI-SOA).

PI-SOA's have been recently introduced as amplifiers of optical signals coming from

optical fibers, where typically the state of polarization is arbitrary. By alternating compres-
sive and tensile strained quantum wells in the active region of the device, the gain for TE

polarized light and TM polarized light may be tailored to be approximately equal. This is a

result of different selection rules for conduction band to heavy hole transitions (in the com-

pressive well) and conduction band to light hole transitions (in the tensile well, where the

light hole band is above the heavy hole band because of the tensile strain). These devices

have been demonstrated at different wavelengths, and show equal gain for the TE and TM
polarized light to within 1-2 dB. They will be described in more detail in chapter 3.

Although the linear gain response has been tailored to be isotropic, the nonlinear re-
sponse may show anisotropy. Chapter 3 will deal with the investigation of this nonlinear
anisotropy in the gain as well as in the index response. The experimental technique used

for this investigation is called heterodyne pump-probe and allows polarization-resolved as

well as time-resolved measurement of the induced gain and phase change in these devices.

A novel variation in this technique allows the direct measurement of the induced anisot-

ropy, by projecting the induced polarization changes on the heterodyne reference beam.

Theoretical modeling of these devices shows that the measurement is sensitive primarily to

hole dynamics in the valence bands. The anisotropy in the response is explained mainly by



the very different hole masses in the different wells (a consequence of strain induced band
warping). The effect of interwell coupling or transport is also investigated.

1.3.4 Possible designs of semiconductor microstructures to achieve
intersubband transitions at 1.5 p.m

The appendix to this thesis (chapter 5) will discuss several possible microstructures that
will make 1.55 pLm intersubband transitions possible. This means a large potential discon-
tinuity in the conduction or the valence band, on the order of 1 eV. Intersubband transi-
tions are desirable because of their large oscillator strength (especially on the 1--2 transi-
tion) and fast relaxation time (on the order of 1 ps). This means a large, fast nonlinearity,
which is ideal for all optical switching. Three different structures will be examined and
compared.



Chapter 2

Development of new 1.5 gm

femtosecond sources

This chapter will describe a new high-power femtosecond source operating at 1.5 gLm,

based on a diode-pumped fiber laser oscillator followed by a color center amplifier. The

seeding laser is a modelocked fiber laser pumped by a high-power diode and is shown to

be an excellent source for amplification. Section 2.1 will describe the characteristics of this

source. The pulses from the fiber laser are amplified in a KCI:TI1 color center pumped by

a 1 kHz Q-switched Nd:YAG laser. The pulse energy is amplified by a factor of - 104 in

only 2 passes through the amplifier. The resulting - 10 gJ pulses are then compressed to -

250 fs. This peak power, the excellent beam profile of the amplified pulse train and the

high stability of the seeding laser, are ideal for continuum generation. Sections 0 through

2.2.9 describe the investigation of a variety of materials for continuum generation. Finally,
section 2.2.10 describes spectral slicing of the generated continuum to demonstrate that this

is a tunable femtosecond source, making it an extremely useful spectroscopic tool for the

1.5 gm wavelength range.

2.1 Erbium doped fiber lasers

Doping fibers with rare earth atoms (such as erbium, thulium, etc.) allows amplification

of optical signals, when pumped with the appropriate wavelength. The recent maturity of

this technology, in particular the erbium-doped fiber, has given rise to a new type of ampli-

fier and laser at 1.5 gm. When pumped at 980 nm or 1480 nm, the erbium-doped fiber

will supply gain in a 40 nm band centered at 1530 nm. These fibers may be diode-pumped

to yield very compact amplifier and laser systems, which is particularly attractive for re-

peaters in optical communication systems. Erbium-doped fiber lasers have been demon-

strated in linear cavity as well as ring cavity configurations. Recent efforts in modelocking



these fiber lasers have resulted in a variety of techniques, and have yielded sub-picosecond
pulses.

2.1.1 The MOPA-pumped stretched pulse APM erbium doped fiber laser

Typically, passively modelocked fiber lasers operate in the soliton regime and are there-
fore inherently limited to low output energies. The stretched-pulse APM technique was in-
troduced in order to avoid some of the difficulties associated with the soliton systems. In
this technique the fiber laser has erbium-doped sections and undoped sections. The doped
sections have positive GVD and the undoped sections have negative GVD, such that the net
GVD is approximately zero. In this system solitons are not supported and the associated
difficulties are avoided. High-energy ultrashort pulses were demonstrated by using the so-
called APM rejection port for output.

To date, the higher pumping powers required for such stretched-pulse operation has neces-

sitated use of an Argon-laser-pumped Ti:Sapphire-laser pump, tuned to 980 nm.
However, recent advances in high-power diode technology have resulted in a commercial

Master Oscillator Power Amplifier (MOPA) diode operating at 980 nm with a CW output of
~ 1 W, making this a lower cost and more compact pump source for the fiber laser.

The MOPA diode is a small, commercially-available laser made by Spectra Diode Labs

(SDL). It contains an oscillator section operating single longitudinal mode at 982 nm and a

power amplifier section. It also contains bulk optics to correct the spatial mode and to pro-

duce a diffraction limited beam. The laser chip is mounted on a thermo-electric cooler, and

may be temperature-tuned to some extent (0.07 nm/"C). In our experiments the tempera-

ture was kept fixed at 25 "C. The driver applied 200 mA to the oscillator section and 2500

mA to the amplifier section for a total output power - 900 mW of CW power. Typically

-70% of this power is coupled into a fiber and then coupled to the fiber laser by means of a
WDM coupler. The fiber-coupled power is monitored with a 2% fiber coupler and a silicon
photodiode.

2.1.2 High output power single-pulse operation

The design of the fiber laser was described in detail in [14] and the experimental setup is

shown in Figure 2.1. When pumped with maximum power from the MOPA, it produces,
from the high-power port, a modelocked train of pulses at 39.6 Mhz with up to 90 mW of
average power, and an energy of 2.25 nJ per pulse. The threshold for modelocked

operation is -~ 160 mW of pump power and the output average power at this pumping level

is 20 mW. At an output power level of 90 mW the pulsewidth of the chirped output pulses
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Experimental setup of MOPA-pumped SP-APM erbium-doped fiber laser

with silicon prism pulse compressor

is typically 1-1.5 ps but the optical spectrum is 50-60 nm wide. At these pumping powers
the fiber laser self-starts easily and produces a



very stable output pulse train. The pulsewidth, spectrum and the average power are very
reproducible.

Since this laser has operating regimes where multiple-pulsing is possible (trailing
pulses separated by 20-40 ps from the main pulse are typical), single pulse operation had to
be verified very carefully. This was accomplished using a 30 ps risetime detector with a
sampling scope of 25 ps risetime, for long separations, and autocorrelation scans of up to
80 ps from the main pulse to cover the short temporal separations. The pulsing regime is
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Figure 2.2: Intensity autocorrelations of the output of

high-energy port and after compression.
pulse in more detail.

the SP-APM fiber laser from the
The inset shows the compressed

highly dependent on the polarization state of the different waveplates in the laser cavity

(which together with the polarizing beamsplitter are responsible for the modelocking ac-

tion). An easy way of moving to single pulse operation is to observe the real-time autocor-

relation of the compressed output pulses (to be discussed in the next section), since the

peak power changes noticeably when all the available energy is put into one pulse. By ad-
justing the various waveplates and looking for an increase in the autocorrelation signal,



single pulse operation is easily achieved. Adjustment of the waveplates will sometimes lead
to a modification in pulse chirp which in turn will lead to a change in compressed pul-
sewidth. This will affect the peak power and also show up as a change in the autocorrela-
tion signal. This effect was typically less dramatic than the transition from multiple pulse to
single pulse operation.

2.1.3 Dispersion compensation of the chirped output pulses

To compensate the large chirp on the pulses at the output we use a double pass silicon
prism pair arrangement. Pulse durations as short as 81 fs have been observed, albeit with

about 20-30% of the total energy remaining uncompressed in the wings. We use an adjust-

able slit between the first and second pass of the prism pair to perform spectral filtering

[17]. The Brewster cut prisms are highly dispersive in the 1.5 gm spectral range (-1000

Figure 2.3: Spectrum of SP-APM fiber laser output.

fs2/mm) [18] and therefore a separation (apex to apex distance) of only about 18 cm is re-

quired, making the compressor stage very compact as well. The transmission losses

through our prism compensator are -30% and are due to losses in the prisms. Since the
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beam is incident on the prisms at Brewster's angle, the residual reflection losses are negli-
gible. High optical grade silicon should lead to a decrease of the transmission losses.

Figure 2.2 shows the highly chirped output pulse from the high-energy port of the laser
and the pulse after compression. The inset in Figure 2.2 shows the compressed pulse in
more detail. The 89 fs pulse shown represents some compromise between minimum pul-
sewidth and minimum wing energy. For this case about 10% of the pulse energy was fil-
tered out spectrally. Figure 2.3 shows the corresponding optical spectrum with a width of
almost 60 nm yielding a time-bandwidth product of 0.72 for 90 fs pulses assuming a sech
profile. This indicates that some residual higher order chirp is present on the laser output
and is not compensated by the prisms. In this context, we note that, with the ~ 1000
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fs3l/mm third order dispersion of silicon (about 10 times more than standard fiber) and an

18 cm separation the prisms add --3x10' fs3 of third order dispersion [19]. This amount
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of third order dispersion added to a transform-limited pulse would not account for the
wings on the compressed pulse or the measured deviation from the transform limit.
Another compression stage to balance the third order dispersion might result in even shorter
pulses closer to the transform limit (approximately 40 fs for the measured spectrum).

To characterize the pulses further, keeping in mind that the pulses we are using come
from the APM rejection port, a high dynamic range autocorrelation of the compressed
pulses was measured. This is necessary since even a very low and broad pedestal will lead
to a major portion of the energy residing in this pedestal. For example, in our system, a
unity height square pulse of 100 fs duration sitting on top of a 25 ns pedestal of height 10'5

will contain only 40% of the energy calculated from the average power and the repetition
rate. Figure 2.4 shows the measured high dynamic range autocorrelation on a log scale,
and goes down to approximately 5x10 5 of the peak of the pulse at 4 ps away from the
peak. This leads to an estimated 5% of the energy in the pedestal.

2.1.4 Amplitude noise characterization

An important issue for pump-probe experiments is the stability or amplitude fluctua-
tions of the source, since they will ultimately limit the signal-to-noise ratio in these experi-
ments. To measure the amplitude noise the well known technique [20] [21] of measuring
the power spectrum of the laser output on a photodiode with an electronic spectrum
analyzer was used. The measured average photocurrent is approximately 2 mA, which

corresponds to a shot noise power of -164 dBm/Hz. At this low power the measurement is
limited by the spectrum analyzer's noise floor (at -156 dBm/Hz). Figure 2.5 shows the RF
spectrum near the first (k = 1) harmonic which is centered at the laser repetition rate. The
resolution bandwidth for this measurement is 1 KHz. As the figure illustrates, the
amplitude noise sidebands are about 90 dB down from the carrier. As pointed out in ref.
20 the ratio of the area of the main spike to the area of the noise sidebands, is directly
related to r.m.s. pulse energy deviations (This is true only in the absence of negligible
phase noise, which becomes evident in the higher harmonics). A good approximation of
this ratio is given by (PAf,)/(PcAfes), where PN and Pc are the powers at the peak of the

noise sidebands and the peak of the carrier respectively, and Af, and Afres are the spectral

width of the noise sidebands and the resolution bandwidth respectively. The relative
energy fluctuations AE/E are given by the square root of the above ratio.



From the data the estimated energy fluctuations are AEIE = 8 x 10-4 , i.e., less than
0.1% fluctuation over the noise sideband region extending out to 200 KHz. Beyond 300
KHz the amplitude noise is less than -144 dBm/Hz (20 dB above shot noise), decreasing
slowly up to 4 Mhz where it is instrument-limited. The above number should be com-
pared, for example, to the noise of color center lasers, which show noise on the order of
1% even for much narrower frequency ranges [22]. Figure 2.6 is a high-resolution zoom-
in on the central spike in Figure 2.5 using a much narrower resolution bandwidth (30 Hz)
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Figure 2.5: RF spectrum of the SP-APM fiber laser near the first harmonic at 39.6 Mhz.

on the RF spectrum analyzer. This spectrum shows the lower frequency noise and in par-
ticular noise sidebands at ~ 2 kHz, which are probably due to relaxation oscillations. It
should also be noted that in the above measurement the MOPA was operated at constant

current. The MOPA can also be operated in constant power mode when a feedback signal

(such as the silicon photodiode output) is used, for even stabler operation at low frequen-
cies.
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Figure 2.6: High resolution RF spectrum of the SP-APM fiber laser.

2.1.5 Frequency doubling

Recently it has become of interest to find alternatives for a seed laser in a Ti:Sapphire

regenerative amplifier system. One proposed alternative would be a frequency-doubled
stretched-pulse APM fiber laser, pumped by a MOPA. This would eliminate the need for

an argon ion laser and a modelocked Ti:Sapphire, replacing them with a much cheaper and

more compact source for the amplifier. To make this viable the doubling efficiency has to

be high without drastic degradation of the second harmonic pulsewidth. High conversion

efficiency implies a longer nonlinear crystal, but because of walkoff between the funda-
mental and frequency-doubled pulse, a longer crystal would lead to pulse broadening of the

frequency-doubled pulse. Since this is not simple broadening due to GVD, these pulses
would not be compressible using standard grating or prism compressors.

Two different SHG crystals were investigated: KNbO 3 and BBO. KNbO a has a higher
second order nonlinearity, but is also more dispersive than BBO. In both cases the crystal

length was 1.5 mm. To characterize the effective bandwidth for frequency doubling, the

spectrum of the frequency-doubled pulse was compared to the spectrum of the fundamental

convolved with itself [23]. The ratio of these gives the effective filter due to phase

matching bandwidth and will be narrower for longer crystals. Figure 2.7 shows the

autoconvolution of the fundamental pulse spectrum and the spectra of the frequency-



Figure 2.7: Spectrum of the fundamental pulse convolved with itself (dashed line) com-

pared with the SHG spectrum for two types of doubling crystal: BBO (solid

line) and KNbO3 (dotted line).

doubled pulses from the KNbO3 and the BBO (the carrier frequency has been removed to

allow direct comparison of the different bandwidths). Because the spectrum from the fiber

laser is extremely broad, a large fraction of that spectrum is lost because of the filtering in

the SHG crystal. Also, the spectrum of the frequency-doubled pulse from BBO is broader

than the one from the KNbO 3 as expected (because BBO is less dispersive its phase

matching bandwidth is broader). From the full width at half maximum of the frequency

doubled spectrum produced by the BBO crystal, a - 70 fs pulse width can be inferred

(assuming a transform-limited pulse).

The average power of the frequency-doubled pulse train was measured for both crys-

tals. For a given input power of the fundamental pulse, the power from the KNbO 3 was

typically 4 times higher than that from the BBO. For an average power of 45 mW and 125

fs pulses at the input up to 320 gW of frequency-doubled power was achieved with the

right focusing (f = 30 mm). Because the doubling system was not optimized for the 1.5

tpm wavelength, only an estimated 40 mW entered the crystal. Since the repetition rate is -
40 Mhz, 1 nJ fundamental pulses were converted to 8 pJ of frequency-doubled pulses, to
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- convolved
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yield 0.8% conversion efficiency. Further tweaking (e.g., the pulsewidth) would result in
a - 1% conversion efficiency. This low conversion efficiency may be due to the effective
filtering of the SHG crystal mentioned earlier, so that effectively only half of the input
power is being converted. Since the conversion efficiency scales linearly with input
power, an increase in input power would yield higher conversion efficiencies. If the prism
system were to be made lossless (with higher grade silicon) and the crystal and optics op-
timized for 1.5 Jim, then at 80 mW input a conversion efficiency of at least 2% may be ex-
pected, resulting in 1.6 mW of frequency-doubled average power or an energy 40 pJ per
pulse.

2.2 Color center amplifiers

In order to get high energy femtosecond pulses at 1.5 pm a broadband gain medium
centered at this wavelength is required. A natural choice would be a color center crystal,
since these crystals have proven to be good gain media for solid-state lasers in this spectral
region. Another choice would be the Cr":YAG crystal, however these crystals are still in
early stages of development and require some further study. Yet another choice would be
an optical parametric amplifier (OPA).

Color center crystals have been used as gain media for lasers at 1.5 jLm for many years
and are fairly well understood, and therefore were chosen as the amplifier gain medium for
this project. In particular, a solid-state 1.5 jlm amplifier based on the NaCl:OH color cen-
ter crystal was recently demonstrated [24] [25]. Since this amplifier worked well it was the
first choice in this project, and a multiple-pass NaCl:OH color center amplifier seeded by
an APM NaCl:OH color center laser. For reasons to be explained below, this system was
ultimately replaced by a KCl:T1÷ color center amplifier seeded by a stretched-pulse APM
fiber laser, which proved to be a superior system in many respects.

2.2.1 The NaCI color center amplifier and its disadvantages

The NaCl:OH color center crystal, when pumped by a Nd:YAG laser, has broadband
gain centered at 1.58 jim. However, because of orientational bleaching [26] it requires an
auxiliary pump; otherwise the gain "fades". The auxiliary pump laser excitation in
NaCl:OH- is needed to excite a higher energy (~2 eV) transition of the active color center,
and thus to counteract center reorientation effect. This is one of the main disadvantages of
this crystal, since the requirement of overlapping three beams in the gain crystal adds to the
complexity of the system. In addition, this 2 eV transition is masked by the absorption
band of F centers. The latter are formed in much higher concentrations than the active color



centers, are very difficult to remove, and render the crystals virtually opaque in the 2 eV
range. As a consequence, losses are high, excitation of the active color centers is rather
ineffective and the single-pass gain of NaCl:OH- amplifier crystals therefore is low. This
in turn necessitates several passes (typically 4-5 passes were required to reach microjoule
energy levels) and the beam's spatial profile was distorted and filamented, due to imperfect
polishing of the crystal faces and internal inhomogeneities.

This NaCl:OH- amplifier was used in conjunction with an APM NaC1:OH- laser as a

seed. Since this seed laser needed active stabilization and had relatively high amplitude

noise [22], it made a rather imperfect source for amplification, although its gain spectrum

was automatically matched to that of the amplifier crystals (as opposed to the fiber laser dis-

cussed below).

2.2.2 The KCI color center amplifier

The shortcomings of the all NaCl:OH system led to the consideration of an alternative

amplifier crystal and alternative seeding laser. KCl:T1÷ is the second popular color center

crystal with gain spectrum centered in the 1.5 gpm region, and has been used extensively as

a laser crystal in this spectral region. Since this crystal does not suffer from orientational

bleaching effects it requires only a single pump laser - the Nd:YAG. The homogeneity of

the crystals is much better and therefore the internal losses are lower. Even though the

emission cross-section is about 6.5 times lower than the NaCl:OH (1.3x10 7- cmn2 as op-

posed to 8.5x10 7 cm72), the doping densities that can be achieved are much higher, so that

the small-signal single-pass gain through a 2 cm long crystal G = exp(rNL) can be on the

order of 103 (a emission cross-section; N active center density; L crystal length). This in

turn leads to the possibility of attaining microjoule level energies in 2 passes and a very

high quality spatial beam profile.

As mentioned in section 1.3.1 the SP-APM fiber laser is well-suited for seeding the

amplifier, since it does not require active stabilization and it has very low amplitude noise

[27] and leads to very stable amplified pulses. It produces pulse energies comparable to the

APM color center lasers, but in the from of highly chirped 1-2 ps pulses. This , however,

is not a drawback since the amplified pulses need to be recompressed (because of disper-

sive elements in the amplifier system, notably the electro-optic pulse selector to be de-

scribed later). The main drawback of using this laser as the seed is the mismatch between

its pulse optical spectrum and the gain spectrum of the amplifier crystal. This means that

the amplifier is also an effective filter and chops off a significant part of the original pulse

spectrum, setting limits on the shortest pulse attainable after recompression.



2.2.3 Amplifier design

The amplifier is a multiple-pass system such that the seeding pulse makes a few passes
through the gain medium, which is pumped by a Q-switched Nd:YAG laser. Typically
systems like this one use noncollinear geometries (e.g., "bow-tie" geometry) to achieve
several passes through the gain region of the crystal. For a long and narrow crystal this
may become a serious alignment problem. Also, as mentioned before, if the crystal faces
are not of high optical quality (flatness as well as smoothness) or the crystal has defects,
cracks, etc., more passes will lead to a quick degradation of the spatial profile of the output
beam. This was one of the main weaknesses of the NaCI:OH amplifier system [24]. If the
gain medium has high enough small-signal single-pass gain, then reducing the number of
passes is desirable. In the present system it was found that 2 passes were sufficient for
output pulse energies of 10 pJ - more than enough for continuum generation with femto-
second pulses.

Since only 2 passes were needed, a collinear geometry is possible and the alignment is
simple. The input beam is horizontally polarized and passes through a polarizing
beamsplitter (PBS) without any loss. After the first pass the beam is passed through a 1/4
waveplate, is then reflected off a mirror back on itself to pass through the waveplate again
and then through the gain medium for the second pass but now with the orthogonal polari-
zation. At the PBS the beam is now reflected out of the system (see Figure 2.8). It should
be noted that as will be discussed in section 2.2.4 , the gain is anisotropic and the highest
single-pass gain is achieved with the pump linearly polarized at 45". Since the double-pass

collinear configuration requires orthogonal polarizations in the two passes (to allow cou-
pling out after the second pass), it may be that the total gain is not optimized for signal po-
larization, and avoiding polarization flipping would result in even better performance.

The pump beam is focused into the crystal with a 300 mm focal length lens through a
dichroic curved mirror (with radius of curvature R = 250 mm or focal length of 125 mm)
that transmits the pump at 1.06 pm and reflects and focuses the seeding pulse at 1.5 gm. It
should be noted that the pump must be focused tighter than in the NaCI:OH- amplifier sys-
tem, to make up for the smaller emission cross-section in the present system. This can be
understood as follows: In the case where 1) the absorbed pump photon density is less than
or equal to the active color center density, 2) the confocal parameter of the pump beam is
larger than the crystal length, and 3) every pump photon is absorbed and utilized for gain,
the small-signal single-pass gain may be written:
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G=exp(NaL)= exp[(P ,/rom2L)aL] = exp(a /i rw)2 (2.1)

where Ep = E /hto is the pump pulse energy divided by the photon energy (i.e., the num-
ber of pump photons per pulse), coo is the pump spot radius, anda, N, L were defined
earlier. For given pump energy a reduction of the emission cross-section requires a corre-
sponding reduction in the pump spot area to achieve the same gain. Obviously reduction of
the pump spot is desirable as long as it does not lead to the confocal parameter being
smaller than the crystal length or absorbed photon densities greater than the active color
center density. These conditions may be written, respectively, as follows:

2nn

(2.2)

where A is the center wavelength, n is the refractive index and No is the density of the ac-
tive color centers.

The reflecting mirror after the first pass was a curved high reflector for 1.5 Pm light
with the same radius of curvature. Placing it approximately a distance of 2 focal lengths
away from the gain medium, re-images the waist back into the crystal. The output beam
after the 2 passes was found to have excellent spatial quality with no obvious filamentation
or distortion.

Since the seeding pulse must arrive at the gain medium together with the pump pulse,
synchronization is required. Furthermore, the repetition rate of the seeding fiber laser is
approximately 40 Mhz, whereas the repetition rate of the Q-switched Nd:YAG pump laser
is 1 kHz. This means that pulse selection is necessary to match the pump laser rate. Pulse
selection was performed by means of an electro-optic (E-O) cell, which can "open" for 10
ns and let only one pulse through. The E-O crystal is made of LiTaO3 and is 8 cm long and
its dispersion is such that it will broaden a 100 fs pulse at 1.5 ipm to about 750 fs. When
the input beam to the E-O cell is well polarized the rejection ratio is typically 150:1. The
E-O cell can operate at up to 50 kHz, but in this system was operated at 1 kHz to match the
pump laser, so by letting one pulse through every 1 ms, the fiber laser repetition rate was
divided down. Since the fiber laser is a passively modelocked laser, there is no timing ref-



erence (such as a modelocker driver signal in an actively modelocked system) and therefore
the output pulse train itself was used as a trigger for the countdown circuit. Additionally,
the Q-switched laser served as the master "clock", and the signal pulses were timed relative
to and dependent on the pump pulse. Any timing jitter in the pump pulse "dragged" the
signal pulse along, rather than causing it to miss the pump pulse altogether.

The synchronization worked as follows: the Q-switched pump laser put out an electri-
cal signal whenever a pulse was shot. This signal (after being converted to a standard TTL
signal) was then used as a gate to the countdown circuit. Simultaneously, a small fraction
of the fiber laser output was leaked onto a fast photodiode (1 ns risetime), which was fed
into the countdown circuit. Any signal over some adjustable threshold is counted by the
circuit. The countdown circuit was programmed such that following the gate pulse from
the pump laser, the countdown circuit would start counting a preset number of pulses and
then "open" the E-O cell for one pulse. By changing this preset number the relative delay
between the pump pulse and the seeding pulse may be adjusted. In this scheme, the seed-
ing pulse train will automatically be slaved to the 1 kHz pump repetition rate and the se-
lected pulse may be timed to arrive at the gain medium with the pump pulse.

2.2.4 Single pass performance

The amplifier crystal was a 2 cm long KCI:Tl+ color center crystal, placed in an evacu-
ated dewar and cooled down to 77* K. The gain region was created by bombarding the

crystal with high-energy electrons. This region was very dark and extended only to the
penetration depth of the high-energy electrons, beyond which the crystal was transparent.
The border between these regions in the crystal, has a graded color center density and it

was in this transition region where highest gain was achieved. The dewar windows were
slightly tilted and one of the faces of the crystal was beveled at an angle, all to avoid lasing
between parallel surfaces.

The Q-switched Nd:YAG laser put out 80 ns, 1.4 mJ pulses at a repetition rate of
1 kHz, which were focused to a ~ 100 gtm spot in the crystal. Since the gain in these
crystals is anisotropic a waveplate was used in the pump beam and it was found that the
best results were achieved with a X12 waveplate, rotating the pump to 45* linear polariza-

tion. The highly-chirped 1.5 ps pulses from the fiber laser were not compressed before
amplification, because of the high dispersion of the E-O cell. The fiber laser output train

was passed through an isolator (which also served to polarize the beam), through the E-O
cell, an additional V2 waveplate to rotate the polarization to horizontal and then through the
PBS. The beam was reflected and focused (collinear with the pump) to -~ 60 plm spot in the



Figure 2.9: Amplified pulse train (no pulse selection)

crystal and a fast photodiode was used just after the crystal (after passing through a silicon

filter to filter out the pump). The selected pulse was observed with the pump on and the

pump off and the ratio was measured. In this way the gain of the crystal is measured di-

rectly, the linear losses (e.g., reflections at the crystal surfaces) are normalized out. As

mentioned earlier the dependence on signal polarization was not checked, since the system

geometry dictated the polarization of the signal.

Figure 2.10: Selected pulse before amplification (pump is off). Note that the vertical

scale here is 10 mV/div.

Typically, the small-signal single-pass gain measured in this way was - 1000, and

could be "tuned" to some extent by moving the beams across the graded region in the crys-



tal mentioned above. Figure 2.9 shows the amplified pulse train with the pump on, but

with no pulse selection. Figure 2.10 and Figure 2.11 compare the transmitted seeding

pulse with pump on and the pump off. As can be seen in these figures the gain is close to

1000.

Figure 2.11: Selected pulse after single-pass amplification (pump in on). Note that the

vertical scale here is 2 V/div.

2.2.5 Double pass performance

After maximizing the signal after the first pass, the beam was reflected back for the sec-

ond pass collinear with the first pass. The resulting average output power was measured

after the PBS and an additional V/2 waveplate (to rotate the polarization back to horizontal).

After dividing by the 1 kHz repetition rate to get the energy per pulse, it was compared to

the energy of the pulses just before the crystal (usually accomplished by turning pulse se-

lection off, measuring the average power and dividing by the 40 MHz repetition rate of the

seeding fiber laser). The ratio of these measured pulse energies is the total energy gain of

the amplifier system and was found to be up to 13000, yielding pulse energies of - 10 pJ.

The amplified pulse train was passed through a double pass silicon prism pair arrange-

ment to recompress the amplified pulses (similar to the one described in section 2.1.3). As

mentioned in section 2.1.3, because the prisms are somewhat lossy, there are about 30%

transmission losses through the compressor. The compressed amplified pulses were as

short as 220 fs and the spectrum was about 21 nm wide as shown in Figure 2.12. This im-

plies a time-bandwidth product of approximately 0.6 (assuming sech shaped pulses).
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Figure 2.12: (a) Intensity autocorrelation of amplified pulse.
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The reason for not achieving shorter pulses is apparent in Figure 2.13, which compares
the original spectrum of the output of the fiber laser and the spectrum of the amplified
pulses. Because of the mismatch between the fiber laser center wavelength (at 1.56 pm)

and the amplifier gain bandwidth (centered at 1.52 pm), the amplifier acts as an effective
filter and chops off most of the long wavelength content of the original pulses, reducing the
bandwidth by a factor of 3. The remaining spectrum must contain higher order chirp,
which is not compensated and hence the non-transform-limited result. This gain narrowing

Figure 2.13: Comparison of pulse spectrum before amplification (dashed line) and after
amplification (solid line). This demonstrates the gain narrowing in the ampli-
fier.

effect means a loss of energy, so by finding a similar crystal but centered closer to the fiber

laser center wavelength, the improvement in peak power may be dramatic. One possible

color center crystal that would fit this description is KBr. Alternatively the seeding laser

may be replaced with an APM KCI:TI' color center laser. However, as pointed out earlier

this source requires active stabilization and is much noisier. Under typical operation condi-

tions, after compression the amplified pulses have a 250 fs duration with 5 gJ energy per

pulse for a peak power of ~ 20 MW.
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2.2.6 Continuum generation and spectral slicing

As explained in the introduction, the goal for the amplifier is to produce high intensity
ultrashort pulses to facilitate time-resolved nonlinear optics experiments. In particular we
are interested in femtosecond continuum generation - the extreme spectral broadening of
femtosecond pulses. To this end the compressed output pulses from the amplifier were
focused into various materials to investigate which would give the best spectral broadening.

The materials investigated included 2 types of bulk glass, ZnSe and standard optical fiber.
The focused spot in the case of bulk materials was ~ 50 glm for a peak intensity of 2.5x10"
W/cm 2. In the case of fiber the beam was focused to the effective fiber core radius (- 4
gim) and the peak intensity (taking into account coupling losses) reached ~ 2x10 3 W/cm2.

The spectral broadening is due to self-phase modulation (SPM) and is enhanced

through self-focusing effects, such that the effective length where SPM takes place is much

longer than the confocal parameter. The critical power for self-focusing is defined as [28]:

Pc = (2.3)
2nnon2

where A is the free space wavelength, no is the linear refractive index and n2 is the nonlinear
refractive index. In the present experiment for continuum generation in ZnSe, for example,

the critical power is ~ 25 kW, which means that the peak power mentioned in the last sec-

tion is approximately 800 times the critical power. The distance to self-focusing is [28]:

LS = (2.4)

where the factor before the radical is simply the confocal parameter for the beam at the input
of the material and P its peak power. In order for self-focusing effects to take place the
material has to be at least this thick, otherwise only SPM will occur. The accumulated
nonlinear phase over a distance L can be written as:

L/2

2 r P 2 ,ra0n0 P tan i L _
=NL n 2  (z dz= n2 2WO 2 tan

O A 2 fsm 2 (z) A 2A 00 2zo-L/2 (2.5)

=2Ptan-' (_L
Pc 2z o)



From the previous 2 expressions the following can be concluded: 1) if the P is on the order
of Pc, the distance to self-focusing is one confocal parameter and therefore if L is not much
thicker than that no appreciable self-focusing will occur and SPM will give only 7r radians
nonlinear phase shift and hence almost no spectral broadening. 2) if P is much larger than

Pc, the distance to self-focusing is much smaller than the confocal parameter. If we set L,
the thickness of the material, to that distance we get for the nonlinear phase due to SPM
alone (from the last expression):

NL P L P zo _ P (2.6)
-2- = - Z = (2.6)
Pc 2zo Pc zo Pc

So, for example, in the present experiment for continuum generation in ZnSe, P/Pc = 800
and the corresponding nonlinear phase shift is only about 9r radians. This gives relatively

small spectral broadening, certainly not a supercontinuum. This discussion demonstrates

how essential self-focusing is to the continuum generation process.

The extent of the continuum is not symmetric around the center wavelength (which

would be expected if only SPM were present), and this is due to any asymmetry in the

pulse. This asymmetry can be present in the initial pulse or could be due to propagation

effects, such as self-steepening, time dependence of the nonlinear index, etc. [29]. For the

case of no self-focusing and self-steepening included only in the equation for the phase of

the pulse (assumed to be a sech), the continuum bandwidth is given by [29]:

At± - (Q2 +4 ±I-QI)- 1
S l_ (2.7)

cIr CoOT

where wo is the center frequency of the original spectrum, Ao_ is the maximum extent of

the continuum on the low frequency side (Stokes side), Awo is the maximum extent of the

continuum on the high frequency side (anti-Stokes side), n2 is the nonlinear index, I is the

peak intensity, L is the total length, c is the speed of light, NL is the peak nonlinear phase

and r is the pulsewidth. When Q >>1 (referred to as a supercontinuum) A,/o/ • = I|Q and

ACo_/ 0 = 1/1Q -1 (which can be no larger than coo, as would be expected). As can be

seen, the extent of the spectral broadening depends on Q and therefore depends on the



magnitude of the nonlinear index n2. The bulk materials that were used to generate contin-

uum were high n2 materials, but such that the nonlinearity was far from any resonance to
avoid any significant absorption.

Some of the materials that were tried and did not conform to the above specifications

were the following: 1) GaAs - two-photon absorption is too high and everything is ab-

sorbed; 2) Sapphire - even though this is a very popular continuum generator in the visible,

around 1.5 gtm n2 is too small and the corresponding spectral broadening was negligible. 3)

BaF2 - only very small spectral broadening due to low n2.

Figure 2.14: Continuum spectrum produced from BK7 glass

2.2.7 Continuum generation in glasses

The first materials that we used successfully for the continuum generation were 2 types

of glass: BK7 and SF56. BK7 is a standard glass from which many optical components

are made, with an n2 of 6.4x10-16 cm 2/W, whereas SF56 is not as common, but has a very

high n2 of 4.3x10 "15 cm 2/W (which is - 15 times larger than that of standard glass fiber).

In the case of BK7, a small 1-2 mm bluish streak that looked like a tiny filament appeared

in the material and could be moved by changing the distance of the focusing lens from the

glass. This is probably the region of strong self-focusing, where the intensities are high

enough to cause multiphoton absorption and subsequent blue fluorescence. This streak

may be associated with the dynamically moving focus [30] [31]. No such streak was ob-
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served in the SF56 even though it has a higher nonlinearity (maybe because of a lower

multiphoton absorption cross-section or the fluorescence occurring in the UV).

The continuum spectrum was recorded with an optical multichannel analyzer (OMA)

with a linear InGaAs photodiode array and a 150 lines/mm grating. The spectrum was not

a single shot spectrum, since the minimum time to read out the photodiode array is 15 ms,

but the pulses are spaced by 1 ms. The resulting spectra recorded here are therefore aver-

Figure 2.15: Continuum spectrum produced from SF56 glass

ages of approximately 15 successive spectra. The range of the spectrum that was recorded

was from 1400 nm to 1700 nm. On the long wavelength side it is limited by the efficiency

of the detector array, which drops off sharply around 1700 nm. Extending the range on the

short wavelength side requires moving the grating and recalibrating the OMA. The spectra

shown here are on a log scale, and it should be remembered that the area under the spec-

trum contains a few microjoules of energy. So that even regions in the spectrum which are

3 orders of magnitude down from the peak may contain significant energy. Figure 2.14

shows the continuum spectrum produced from the BK7 glass and Figure 2.15 the spectrum

from the SF56 glass. The drop at the low wavelength edge of the spectrum is not real and

is due to a "dead" diode in the OMA.
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2.2.8 Continuum generation in ZnSe

Another candidate for continuum generation would be a semiconductor, where

n2 oc 1/E4, E, being the bandgap of the semiconductor [32] (This theory also applies to in-

sulators such as KCl and NaC1, the only difference being their much larger bandgap). This

implies that by going to lower bandgap the nonlinearity increases very quickly. However

absorption processes need to be taken into account, and in the intensity regimes discussed

here multiphoton absorption processes become important. In fact the cross-sections for

Figure 2.16: Spectrum of continuum produced from ZnSe

these processes also scale with powers of E - 4 [33]. ZnSe has a bandgap of - 2.7 eV

which requires at least four 1.5 gm photons to bridge the bandgap. For this wavelength

region n2 is almost dispersionless and is given in the literature n2 = 5.5x10 -14 cm 2/W [32].

For the continuum generation a commercial 3 mm polycrystalline plate of ZnSe was used.

Once the focusing was adjusted correctly, blue luminescence was observed indicating some

multiphoton absorption. The continuum was very broad and extended into the visible,

where some red light was observed. Figure 2.16 shows the portion of the ZnSe continuum

spectrum centered around 1550 nm.
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2.2.9 Continuum generation in fiber

To try and get the most spectacular results as far as continuum extent, the amplified

compressed pulses were coupled into a 12 cm long standard glass fiber. The small effec-

tive area and the long interaction length lead to huge nonlinear phase shifts and therefore to

extremely broad spectra. Under these conditions the fiber glowed orange, presumably

Figure 2.17: Spectrum of continuum produced from a 12 cm long standard glass fiber

from higher transitions luminescing. The output of the fiber contained a yellow center sur-

rounded by a deep red ring followed by a yellow ring and finally a green-blue ring. These

effects may possibly be explained by some of the visible light being in a higher transverse

mode, or simply having a different diffraction pattern. This output was then spread by

means of a 600 lines/mm grating showing a continuous spectrum from blue to red. Figure

2.17 shows IR part of the fiber continuum spectrum. It should be pointed out this spec-

trum is unusable as a femtosecond continuum, because in this extreme case the temporal

shape of the pulse is not preserved across the continuum. It is not even clear what proc-

esses take place under these high intensities and long interaction lengths, much less what

happens to the initial femtosecond pulse and its spectrum. However, it may be a very good

CW tunable coherent white light source.
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The above results suggest some more materials that would be suitable for continuum
generation. There are 3 more glasses that have an n2 even larger than SF56, namely SF57,
SF58 and SF59. Unfortunately, SF59 and SF58, which have the highest n2, are very dif-
ficult glasses to process. They stain easily and are very susceptible to environmental
conditions. On the other hand SF57 is a very popular glass, which is cheap and easy to
handle and has the third highest n2 (5.5x10 5 cm2/W) in the Schott glass catalog (it was not
available during this experiment).

In semiconductors the next choice would be ZnS, which has a bandgap of 3.5 eV and
requires 5 photon absorption to cross the bandgap, leading to a significant reduction in
multiphoton absorption. The corresponding reduction in n2 due to the bandgap scaling
rule mentioned earlier, would only be a factor of - 2.8 relative to ZnSe.

Finally, a shorter piece of fiber on the order of 1 cm will still give enormous spectrum
but more usable as a tunable femtosecond source. In fact, using it as a part of a fiber grat-
ing compressor, with the fiber having optimal length [34] may lead to some of the shortest
pulses around 1.5 pm.

Continuum
Generation

f f f f

Figure 2.18: Experimental setup for spectral slicing of the continuum, using a zero disper-

sion grating compressor. The dispersion may be adjusted by moving the
gratings horizontally.

2.2.10 Spectral slicing

The final step in setting up this source requires the ability to slice the continuum and select a

tunable variable bandwidth slice. Figure 2.18 shows the setup for such a slicer and is
known as a zero dispersion compressor [35]. In the absence of the slit in the center, it im



ages one grating on top of the other with zero separation (hence zero dispersion). In the

center a Fourier plane is created, where the spectral components are separated spatially.

By placing an adjustable slit on a translation stage at this point, a variable bandwidth filter

with tunable center wavelength is implemented. Small adjustments to the grating distances

gives limited dispersion control that may lead to some further pulse shortening.
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Figure 2.19: Comparison of intensity autocorrelation of continuum pulse before (a) and

after (b) spectral slicing. The continuum was produced from SF56 glass.
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Figure 2.20:

(b)

Spectral slicing of BK7 continuum. With this narrower bandwidth (24 nm)
the pulses were longer (compare with Figure 2.21)
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It was found that with all the materials that were tried for continuum generation, the
spectral slicer could be adjusted to give some further pulse shortening, resulting in pulses
as short as ~ 150 fs. This means that there are spectral regions in the continuum where the
chirp is linear over the corresponding bandwidth. Figure 2.19 shows the effect of spectral

(a)
.4"€'
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Time delay (fs)

(b)

Figure 2.21: When the adjustable slit is opened further to increase the bandwidth of the
spectral slice (a), the intensity autocorrelation width of that slice is reduced

slicing on the on the intensity autocorrelation. Here the continuum produced from SF56
glass is autocorrelated before and after spectral slicing. After spectral slicing the pulse is
shorter and cleaner and indicates that some dispersion compensation was performed by the
spectral slicer. Figure 2.20 and Figure 2.21 show the effect of different slit widths in the
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slicer (i.e., spectral slices of different bandwidth) on the intensity autocorrelation, where
the continuum was produced from BK7 glass. The larger bandwidth slice yields a cleaner
shorter pulse.
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Figure 2.22: Intensity autocorrelations of spectral slices from continuum produced from
(a) standard glass fiber and (b) ZnSe.
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Figure 2.22 shows intensity autocorrelations of spectral slices from continuum gener-

ated from ZnSe and standard glass fiber. These too show that some dispersion compensa-

tion is possible in the slicer to yield spectrally filtered pulses with pulsewidths of - 150 fs.

This also indicates that dispersion is present and important in the material generating the

continuum and is producing linear chirp in excess of the linear chirp present before contin-

uum generation. Spectral slices were easily taken from the region of 1470 nm to 1650 nm,

where most of the energy is concentrated. In the case of broader continuum (e.g., contin-

uum generated from ZnSe) spectral slices could also be taken from regions in the spectrum

further away from 1500 nm.



Chapter 3

Nonlinear dynamic anisotropy

in 1.5 ýtm semiconductor

optical amplifiers

This chapter will describe the investigation of the nonlinear femtosecond response of a

polarization-independent semiconductor optical amplifier. Although this device is designed

for isotropic gain, it shows an induced dynamic anisotropy. Section 3.1 describes the

heterodyne pump-probe technique, which allows polarization-resolved and time-resolved

measurements of the nonlinear gain and nonlinear index, needed to characterize the induced

anisotropy. Section 3.2 details the experimental setup. Section 3.3 discusses the device:

its principle of operation, structure and polarization selection rules. Section 3.4 presents

theoretical calculations to better understand and interpret the experimental results. In

particular, it is found that the measurement is sensitive primarily to the hole dynamics, and,

based on a kop band structure calculation, that the holes in the two different well types have

very different masses. The dynamics of the hole distributions in the different wells are

therefore expected to be different. Section 3.5 presents some related experimental and

theoretical results pertaining to these devices. Section 3.6 describes the experimental

results, including the observation of the dynamic anisotropy in the gain and index re-

sponse. Finally, section 3.7 describes a new experimental technique for measuring the

induced anisotropy directly, and the results of this measurement.

3.1 The pump-probe technique

3.1.1 Pump-probe experiments on semiconductor devices

Pump-probe experiments provide one of the best ways to study optical nonlinearities in

materials and devices. Essentially, the optical pump beam sets up a nonlinear polarization



(typically a second or third order polarization) and the optical probe beam interacts with this

polarization. By examining the change in the probe induced by the pump, information may

be extracted regarding the nonlinearity in the material or device. Although this type of

experiment may be performed with CW radiation, it is then inherently limited to low peak

powers and therefore will set up relatively small nonlinear polarizations for the probe to

interact with. This will lead to low signal to noise ratio and reduced sensitivity of the

measurement. By going to ultrafast pump-probe experiments the peak power is increased

by the inverse of the duty cycle (i.e., period of the pulse train over pulsewidth) relative to

CW. In the present case of a 100 MHz pulse train of 100 fs pulses this translates to a fac-

tor of 105 (for an instantaneous nonlinearity like the Kerr effect). An added advantage is

the ability to time-resolve the nonlinear response of the material or device under test.

Pump-probe experiments may be performed in a reflection or transmission geometry,

but since the present experiment deals with semiconductor devices, the transmission

geometry is chosen to enhance the measured signal through interaction length. In particu-

lar, the devices are active waveguides where the whole length of the device contributes to

the nonlinear signal. This is not the case when pump-probing a bulk sample. If, for ex-

ample the nonlinear refractive index (n2, a third order nonlinearity) is measured, the

quantity of interest is the nonlinear phase accumulated by the probe and may be written:

L/2 L/2

ONL = •n2- lI(z)dz = -2 n ,2 c ( dz =
-L/2 L/2 / 0 Z (3.1)

L/2zo2,r z L P 2r L-n Zo dx = 2 Pnon2 tan- L

CA t2 f (l+x 2) 2  2zo
-L/2zo

where A is the free space wavelength, I is the peak intensity, L is the sample thickness, P is

the peak power, coo is the beam waist, zo is the confocal parameter in the material and no is

the linear refractive index. From the above expression two important points become

obvious: 1) The signal is independent of spot size or how tight the focusing is. 2) By going

from L = 2z0 to L = o only a factor of 2 is gained in signal, therefore the effective interac-

tion length is 2z0. In the case of waveguiding in one dimension (i.e., a planar waveguide

the results are slightly different:



L/2 L/2zo21P 2x z dx
NL = n2F dz = _ __n2F z0 p
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here d is the waveguide thickness, F is the fill factor or the effective area of the beam that

contributes to the nonlinear signal, and the rest of the symbols have their previous mean-

ing. In the last step the approximation F = d/2o o was used. Here again the signal does

not depend on the spot size. For L = 2z0, sinh-' = 0.88, but for lengths much longer

than this sinh-' x-x-.,> ln(2x) and, for example, when L = 20z0 , sinh-' 10 = 3. This

means an improvement in signal by a factor of 3.4, but the diffraction of the beam in one of

the dimensions will lead to an elliptical beam at the output with an ellipticity of approxi-

mately 10. So in this case, too, nothing is gained by making the interaction length much

longer than the confocal parameter.

When waveguiding is present in two dimensions, the interaction length is the length of

the waveguide. The ratio of the waveguide length to the confocal parameter corresponding

to a waist with dimensions of the waveguide cross-section, can easily be 2 orders of mag-

nitude or more. It is for this reason that waveguide configurations are well-suited for

nonlinear optics experiments. The best results are achieved if the beam can be focused to

the cross-sectional dimensions of the waveguide (i.e., F = 1). In the present experiment

that is not the case; and, in fact, the fill factor is polarization dependent.

The main advantages of waveguides in general is the gain in effective interaction length

and the spatial averaging over a single mode, but an added advantage of active waveguides

is the possibility of establishing carrier populations in the conduction and valence band by

means of electrical pumping (i.e., by supplying a current to the semiconductor diode).

These carrier distributions can now be probed. In contrast, a passive device would require

doping (establishing only one type of carrier population) or a three pulse experiment, where

the first pulse establishes the carrier populations.

In order to perform pump-probe experiments, there has to be a means of distinguishing

between the pump and the probe beams. In a non-collinear configuration this is trivial.

However, pump-probing a relatively long waveguide implies a collinear configuration and

distinguishing between the beams by spatial separation is not feasible. The simplest way to

accomplish this in a waveguide configuration is by using two orthogonal polarizations for

the pump and probe, and passing the beams at the output through a polarizer oriented to
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Figure 3.1: Standard pump-probe configuration with cross-polarized pump and probe

reject the pump beam but pass the probe beam (see Figure 3.1). The main drawback of this

method is that experiments that require copolarized pump and probe beams are not possi-

ble.

3.1.2 The heterodyne technique for nonlinear gain and index measurements

A way around this problem was devised recently [36] and is based on a scheme of

"labeling" the pump and probe beams before they go through the device and is called

heterodyne pump-probe for reasons which will become obvious. The basic idea is shown

schematically in Figure 3.2. The "labeling" of the beams is accomplished by frequency

upshifting the probe by a small amount relative to the carrier frequency (usually a RF

frequency). In addition a third beam is generated from the original beam and is also up-

shifted by a slightly different frequency and is called the heterodyne reference beam and it

serves as a local oscillator. By beating the pump and probe beams with the heterodyne

reference beam after the device, and detecting at the beat frequency of the probe and

reference, the probe is distinguished from the pump. The pump and reference have a

different beat frequency, to which the detector is not sensitive. For maximum signal the

probe and heterodyne reference should be copolarized, but there is no restriction on the

polarization of the pump relative to the probe.

It is important to realize that the pump and probe are pulse trains and therefore the opti-

cal spectrum of the pulses is the sampled spectral envelope of a single pulse (where the

samples are separated by the repetition rate of the pulse train). When one of the beams is

upshifted in frequency relative to another beam, the beat signal will be a sum of all the pairs

of spectral components of the pulses. If this were a single-shot experiment it would not

work, since two optical spectra separated by an RF frequency would be indistinguishable
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Figure 3.2: Schematic view of heterodyne pump-probe technique

for all practical purposes. In other words, averaging is essential for this experiment. It

should also be noted that the required interference between probe and reference happens

only when the two corresponding pulses overlap in time, i.e., within - 100 fs or equiva-

lently within 30 gtm. Finally, since this experiment is inherently phase sensitive, it offers

the possibility of nonlinear phase measurements in addition to the nonlinear gain measure-

ments. It also means that interferometric stability has to be maintained, which is easily

accomplished in the electronics domain, by tracking the beat frequency in the RF receiver.

In previous experiments with this system the heterodyne reference was also sent

through the device. This required sending the reference ahead in time, before the pump and

the probe, so that any changes the reference pulse induced in the device would have de-

cayed by the time the pump and probe reached the device. As a result an imbalanced

interferometer had to be constructed after the device to make up for the time delay between

probe and reference, making the temporal overlap of probe and reference possible. The

reason for sending the reference through the device was that all pulses needed to see the

same "environment", before being interferometrically recombined. In the present experi-

ment it was found that sending the reference around the device (bypassing it) worked just

as well. In fact, in many respects it is superior to the previous design. It does not require

the imbalanced interferometer after the device and since the reference does not suffer



coupling losses into and out of the device, it is a much stronger local oscillator leading to a

larger detected signal.

3.2 Experimental setup

3.2.1 The source

Figure 3.3 shows the experimental setup of the modified heterodyne pump-probe

setup. The source for this experiment is a coupled-cavity APM KCl:T1+ color center la-

ser [37] [38] [39]. The laser is synchronously pumped by an actively modelocked

Nd:YAG laser with a repetition rate of 100 MHz and typical pulsewidths of 100-200 ps.

The synch-pumped pulses from the main cavity of the color center laser are typically 20-30

ps long. Because of the spectrally broad gain curve, the output may be tuned from about

1.45 gm to 1.57 gm by means of a birefringent tuning plate. Since the cavity lengths of the

pump laser and the color center are matched their repetition rates are similar.

The coupled APM cavity is matched in length to the main cavity and contains a 40 cm

piece of dispersion-shifted fiber as the nonlinear element [38]. In dispersion-shifted fiber

the effective core area is smaller that in standard fiber (- 35 jtm 2 vs. 50-80 jtm2 [1]) which

leads to an enhanced nonlinearity through higher intensity in the fiber. Using n2 =

2.6x10 -16 [40], the free-space wavelength X = 1.51 gtm, the effective area Af = 35 jtm2,

and the fiber length L = 40 cm, we get a nonlinear coefficient of - 2.5 kW-1 for one

roundtrip through the fiber. So for about 1.3 kW peak power in the fiber a nonlinear nt

phase can be accumulated in one roundtrip. Typical pulsewidths from the APM laser are

120-150 fs long, so that typical pulse energies required for a nonlinear n phase shift are

0.15-0.2 nJ per pulse in the fiber. With coupling losses of about 35% this leads to about

0.3 nJ or 30 mW (assuming the 100 MHz repetition rate) in the coupled APM cavity. This

is easily achieved with the KCI:Tl+ color center laser which typically puts out 150-300 mW

average power.

Active stabilization by means of a piezoelectric transducer (PZT) glued to the fiber, is

used for keeping the cavity lengths matched to within a fraction of a wavelength. The PZT

is controlled by an electronic feedback circuit [41], which tries to follow the average power

coming back from the fiber. Wavelength tuning is more limited when the laser is operating

in APM mode, typically from about 1.49 to 1.52 jim. A recent novel birefringent tuning

plate [42] allows some more degrees of freedom in the tuning characteristics. This plate is

designed to suffer no degradation in rejection ratio when going to higher orders, which are

associated with narrower bandwidth. This results in a practical variable bandwidth tuning
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Figure 3.3: Experimental setup of the heterodyne pump-probe system. AOM = Acousto-

optic modulator, BS = Beamsplitter.



filter. The lower orders can support shorter pulses but are not quite as tunable (the pulse

width tends to broaden quickly when tuning away from the central wavelength of about

1.51 gm). The higher orders yield longer but more tunable pulses. The ability to control

(a)

(b)

Figure 3.4: Typical intensity autocorrelation (a) and corresponding optical spectrum (b)

of pulses used in the pump-probe experiment.
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the pulsewidth to some extent can be very useful for some experiments. A typical intensity
autocorrelation and corresponding optical spectrum are shown in Figure 3.4. The time-
bandwidth product is typically 1.1-1.3 times the transform limit assuming sech pulses,
indicating low chirp.

3.2.2 The pump, probe and reference beams setup

The probe and reference beams are generated from the diffracted (diffraction efficiency
- 20 %) and upshifted pulse train at the output of traveling wave acousto-optic modulators
(AOM's). The probe beam is generated by a 39 MHz AOM and the reference beam from a
40 MHz AOM. It should be noted that dispersion in the reference generating AOM is not
an issue, since the reference pulse does not limit the time resolution of the experiment, it
only plays the role of the local oscillator. However, dispersion in the probe generating
AOM will broaden the probe pulse and degrade the temporal resolution of the experiment.
In the present experiment, when using pulses of no less than 120 fs, this broadening is

negligible. If the pump is assumed to have spectral components at multiples of 100 MHz

(the repetition rate of the laser), the different possible beat frequencies will be at 1, 39, 40,
60, 61 and 99 MHz (and at any of these frequencies plus an integral multiple of 100 MHz).

As can be seen in Figure 3.3 the reference bypasses the device and gets recombined
with the transmitted pump and probe after the device using a beamsplitter. Once the
reference and probe are combined after the beamsplitter they are coupled into a fiber before

the detector, which insures collinearity and the absence of spatial fringes on the detector.

An adjustable time delay in the reference arm is used to temporally overlap the reference
and the probe. Effectively, the reference and probe beams are two arms of a rather large
Mach-Zehnder interferometer. It should be noted that changing the pump current to the
device will change the linear refractive index and therefore the optical length of the probe
arm. By small adjustments to the reference arm path length, this mismatch is compensated.

3.2.3 The detection system

To select out the beat frequency of interest at 1 MHz and discriminate against the rest, a
tuned detector was built. The detector is a resonant circuit with an adjustable inductor (to

allow fine tuning to 1 MHz) and gives a narrowband (-50 kHz) filter around 1 MHz. The

rolloff is at 40 dB/decade, so that at 39 and 40 MHz the transmission of the filter is down

by more than 3 orders of magnitude. The transimpedance gain is about 2 k2, so that 1 mA

of current would show up as a 2 V signal at the output. The detected signal is fed into the

antenna input of a HAM radio which is tuned to 1 MHz. When either the probe or the ref-



erence are chopped at audio frequencies, the audio output and a speaker can be used to
"listen to the data".

The pump induces amplitude (or gain) changes as well as phase (or index) changes, so
that the probe carries on it amplitude modulation as well as phase changes. As mentioned
earlier, since this is a phase sensitive measurement the phase modulation can be recovered
with no further changes to the setup. By using AM reception in the radio the amplitude
changes are directly measured and by using FM reception the instantaneous frequency is
directly measured. Since mechanical chopping in conjunction with lock-in detection is
always employed for improving the signal to noise ratio, the output of the radio is fed into a
lock-in amplifier. The input is mixed down with the chopper reference frequency and low
pass filtered (i.e. time integrated). The integration of the measured FM signal is exactly the

phase modulated signal. As mentioned earlier, interferometric stability is maintained by the
receiver, which can easily track slow drifts.

3.2.4 Calibration (measuring absolute numbers)

When measuring gain changes, the probe may be chopped to calibrate the absolute
transmission change. By measuring the signal before the pump arrives, the linear trans-

mission is measured. Subsequent measurements (typically, with chopped pump which is a

background-free measurement) are referred to this transmission level. When measuring
phase changes, the calibration is less trivial since a phase reference is needed [43]. To this

end, the mirror at one of the corners of the Mach-Zehnder interferometer was mounted on a

PZT (see Figure 3.3). Prior to using it in the experiment it was mounted in a balanced
Michelson interferometer and calibrated. By ramping the PZT (with a triangle wave) with a
variable voltage and observing the interference signal on an oscilloscope, it was found what
voltage corresponded to a ir phase shift (at that point the interference signal switches polar-
ity). Once this calibration is complete, the PZT is placed in the heterodyne system and the
pump is blocked. The PZT is driven with the nr voltage and the signal is detected (using the
PZT driver as a lock-in reference), so that at this point the lock-in voltage reading corre-
sponds to a phase shift it. Subsequent measurements and the corresponding lock-in volt-
age will be referenced to this level.

3.2.5 Polarization control

Polarization control in the experimental setup is achieved by using a ?/2 waveplates in

all 3 beams, making possible all linear polarizations for all the beams. The polarization

control section in Figure 3.3 is used for making the generally elliptic polarization at the
output of the diode, a linear polarization. This is important for the direct anisotropy meas-



urement to be discussed later. A X/4 waveplate properly oriented can transform an arbitrary

elliptically polarized beam to a linearly polarized beam. An additional X/2 waveplate can

transform an arbitrary linearly polarized beam into any specific linear polarization.

3.2.6 Coupling into the device

Finally, the device itself is electrically pumped by a current source which can be incre-

mented by 1 mA steps. The light is coupled into the device by means of a fiber lens at the

end of a short piece of dispersion-shifted fiber, which automatically ensures collinear pump

and probe and the absence of any spatial interference effects at the input facet of the device.

Because the device was active, it was easy to align the fiber at the input, by back-coupling

the ASE out of the device. The device which was investigated had optical windows on

both facets (see next section), so that the gain region was recessed relative to the input

facet. The standard fiber lenses did not have the appropriate working distance, and there-

fore a specially designed fiber lens micro-lathed with a laser was employed [44].

3.3 The polarization insensitive semiconductor optical amplifier
(PI-SOA)

3.3.1 General characteristics

In general it is very difficult to control the state of polarization at the output of a fiber

and so it is typically arbitrary. On the other hand standard SOA's supply gain predomi-

nantly to one linear polarization - either parallel to the layers of the device (TE) or perpen-

dicular to them (TM). In fact the majority of double heterostructure bulk and multiple

quantum well (MQW) devices supply gain to TE polarized light. Only in tensile-strained

MQW is there a possibility of making a device with TM gain. This means that the light at

the fiber output needs to have its polarization transformed to TE (or TM), otherwise the

amplification will not be efficient (in the worst case there will be no amplification). This in

turn means that in order to be able to integrate these SOA's into optical communication

systems, either a polarization controller has to be integrated just before the SOA or the SOA

must be made isotropic supplying equal gain to all polarization states. This is the motiva-

tion behind the PI-SOA's.

3.3.2 Polarization selection rules - introduction

In bulk and unstrained MQW devices as well as compressive strained MQW devices,

the main radiative transitions are between the conduction band and the heavy hole band,

near the Brillouin zone center. These transitions are TM forbidden (strictly speaking this

true only in the zone center, but is still approximately true close to the zone center). With
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Figure 3.5: ASE spectrum of a tensile strain MQW SOA (from ref. 47)

proper tensile strain the light hole band may be moved higher in energy relative to the heavy
hole band such that the main radiative transitions are between the conduction band and the

light hole band. In this case both polarizations are allowed, but TM is 4 times more likely

than TE; or, in other words, the matrix element for a transition involving TM polarized light

is 4 times larger than one involving TE polarized light. A device containing such tensile-

strained QW's in the active region would supply gain mainly to TM polarized light, as

mentioned before. The predominantly TM amplified spontaneous emission (ASE) spec-

trum of such a 4 QW tensile strained device is shown in Figure 3.5.

3.3.3 Mixed-strain quantum wells

By mixing compressive and tensile strained wells in the active region and tailoring the

structure parameters, the gain for TE and TM polarized light may be made almost equal and

therefore making the device isotropic. It should be remembered that making the gain

isotropic involves more than just the quantum mechanical selection rules. The effective

small signal gain coefficient is g = Tg'(N)N where g' = dg/dN is the differential gain, F is

the confinement factor of the waveguide and N is the carrier density. The differential gain

is the semiconductor equivalent of the cross-section of the transition and contains the

quantum mechanical matrix element or transition strength. It also is a function of the carrier
density N. The carrier density at a given energy depends on the density of states. Finally,

since the device is a waveguide only the waveguiding region will contribute gain, so only

the fraction of the optical mode overlapping with the active part of the waveguide, F, will

experience gain. This confinement factor is different for TE and TM polarized light. So to
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Figure 3.6: ASE spectrum from a mixed strain SOA. The TE and TM spectra are almost

identical (from ref. 47)

make g equal for TE and TM, all these factor must be taken into account and the product

Fg'N must be made equal for both polarizations.

Recently, such a PI-SOA device was demonstrated operating first at 1.3 tm [45] [46]

and later at 1.5 gtm [47]. The TE and TM ASE spectrum of the device described in ref. 47

is shown in Figure 3.6 and are equal to within 1-2 dB. A more recent variation of the

device also operating at 1.5 gm demonstrated superior gain isotropy ( < 1 dB gain differ-

ence over the bandwidth of operation) [48]. All of these experiments were performed in

the regime where the amplifier was linear well away from saturation. In the experiments

described here, the gain and index were investigated in the large signal, or nonlinear,

regime, on a femtosecond timescale.

3.3.4 Structure

The device used in the present experiment was identical to the one described in ref. 47.

The device contained 3 pairs of alternating compressive and tensile strained quantum wells.

The wells were InGaAs wells with -1% strain in the compressive wells and + 1% strain in

the tensile wells (relative to InP). The barriers between the wells were nominally un-

strained InGaAsP lattice matched to InP. The compressive well thickness was 35 A and

the tensile well was 160 A with barrier thickness of 100 A. The reason for the different

thickness of the wells is the following: tensile strain causes an increase in bandgap as does

quantum confinement, but compressive strain causes a decrease in the bandgap. To tailor
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Figure 3.7:
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Schematic drawing of the device structure and the relative transition strengths

for TE and TM polarized light in the two different QW's.

the transition energy to be the same in both wells, the compressive strained well was made

very narrow to increase quantum confinement effects and offset the bandgap decrease due

to the strain. This also allows another degree of freedom for balancing the gain for TE and

TM polarized light. Further details of the growth and characteristics of the device are given

in ref. 47. Figure 3.7 shows a schematic drawing of the device structure with the relative

transition strengths for TE and TM in the compressive and tensile wells. It should be noted

that the well depths are different too, because of the different strain-induced bandgap shifts.

3.3.5 polarization selection rules revisited

To understand the origin of the polarization selection rules, the wavefunctions of the

conduction and valence band carriers have to be examined. In the kep theory (including

spin-orbit interaction), it can be shown that the Brillouin zone center wavefunctions of the 2

conduction states (including spin) and the 6 valence states are orthogonal. Furthermore,

mm



the conduction states are similar to atomic s orbitals (spherically symmetric) and the valence

states are linear combinations of states similar to atomic p orbitals ("dumbbells") [49]. The

usual notation for these states are ISa), I Xa), I Ya), I Za) where a =1" or 1 for the two

different spins. The heavy hole zone center states are a linear combinations of

I Xa) and I Ya) only, whereas the light hole zone center states are linear combinations of all

three p-like functions.

The matrix element governing radiative transitions is proportional to the dot product of

the light polarization and the momentum matrix element:

S* (ml|1 n) (3.3)

where E is the polarization unit vector, m and n are one of the above 4 functions and P is

the momentum. The only non-zero momentum matrix elements are of the form (SlpI I)

where i = x, y, z. So in the case of the zone center heavy hole state the only non-zero

momentum matrix elements are (S px IX) and (Slpy Y). In both cases the dot product with

a unit vector in the z direction (corresponding to TM polarization) is identically zero. This

why TM transitions between conduction band and heavy hole band are forbidden. Away

from zone enter the valence bands couple to each other and mix, i.e., they are no longer

orthogonal. The heavy hole band may then acquire some light hole character and in par-

ticular acquire some fraction of the I Z) function. In this case the TM transition is no longer

strictly forbidden. The transition strength depends on the fraction or amplitude of the

different p-like components in the valence band state [50]. The relative transition strengths

shown in Figure 3.7 were derived in this way (they are proportional to the square of the

above matrix element). These results hold for both bulk and QW's at the Brillouin zone

center. Recently, a universal curve for the transition strength in QW's (in the infinite well

limit) away from the zone center was derived theoretically [51] and gives some analytical

results for the strongly bound states in QW's. However, close to the zone center where

most of the carriers reside there are no large changes in the transition strengths.

These selection rules offer a unique opportunity to study the femtosecond dynamics of

interwell coupling in the mixed strain devices. If the pump pulse is linearly polarized (TE

or TM), it will excite predominantly one set of wells. By probing with the orthogonal

polarization the measurement is predominantly sensitive to the other set of wells. Any

coupling (via tunneling) or transfer (via thermionic emission, diffusion across the barrier

and recapture) between the two different sets of wells, should show up in this pump-probe



measurement. The departure from the ideal experiment is due to the fact that the tensile
well is sensitive to some extent to TE light, and also because the carriers away from the
zone center are not in a purely heavy hole or light hole state.

3.4 Theoretical investigation of the device

3.4.1 Fermi level calculations

It has been pointed out recently that typical MQW SOA's under normal electrical
pumping, have a quasi-Fermi level significantly higher than the quantum barriers [52].
This implies that the QW's in the conduction band are "full". In the valence band the
density of states is much higher and therefore it is not as easy to fill the QW's. The calcu-
lation of this quasi-Fermi level is based on integrating the 2D density of states (times the
Fermi factor) from the bound level energy up to the barrier energy and adding the integral
of the 3D density of states (times the Fermi factor) from the bottom of the barrier. The sum
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Figure 3.8: Electron quasi-Fermi level as a function of injection current (bottom axis) or

carrier density (top axis), for the compressive well (solid line) and the tensile

well (dashed line).
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has to equal the carrier density in the well region. The total carrier density can be derived

from the injection current and the recombination time, which is also carrier density depend-

ent.

For the device used in our experiments it was found that the recombination time is

mainly governed by Auger processes [53]. In this case the carrier density is given by:

N = (3.4)

where I is the injection current, q is the electron charge, V is the active volume and C is the

Auger coefficient (on the order of 10-29 cm6/s). For a given current the corresponding elec-

tron density was calculated using the above expression. The integration described above

was then performed by varying the quasi-Fermi level until the result was equal to the

electron density. Figure 3.8 shows the result of the calculation for our device. The quasi-

Fermi level is shown (relative to the barrier) as a function of injection current, for the

compressive and tensile wells. The experiments were performed at a central wavelength of

1.51 gm. At this wavelength 33-34 mA corresponds to transparency and 28 mA is deep

into the absorption regime. It is therefore obvious from the figure that for any injection

current in this experiment, the quasi-Fermi level for electrons will indeed be high in the

barrier and the QW conduction band will be full. Most of the changes in the distribution,

for example due to carrier heating, are most distinct near the Fermi energy. However, the

probe is close to the bound levels in the QW and therefore is not sensitive to changes near

the Fermi level. This implies that our experiments are not sensitive to electron dynamics,

and most of the dynamics that will be measured will be due to holes.

3.4.2 Band structure kep calculations

Since the holes govern most of the dynamics of these devices, it is necessary to exam-

ine the valence band more closely, in particular, the dispersion of the heavy and light hole

bands and the corresponding effective masses in the two types of QW's. The kop theory is

well suited for this sort of calculation, since it is a good approximation near high-symmetry

points such as the Brillouin zone center. Following the Kane model [49] the subset of the

two conduction bands and six valence bands are treated exactly, with the effect of higher

lying bands lumped into empirical constants such as the Luttinger parameters [54]. These

higher lying bands are essential and cannot be neglected since without taking them into

account the heavy hole band is dispersionless. A further simplification is achieved by



assuming the conduction band and the split-off band are far enough in energy from the
heavy and light hole band, such that they are effectively decoupled from these bands and
have parabolic shapes. The original 8x8 Hamiltonian is now block diagonal and only the
4x4 block corresponding to the two heavy hole bands and the two light hole bands (they
are actually only 2 bands, each twice degenerate because of spin) is used in the calcula-
tions. This kep formalism is now taken together with the envelope function approximation
for QW's [55]. The wavefunctions are constructed in the well layers and barrier layers and
are required to be continuous across the interfaces. Probability current conservation also
requires that m(z)-' dp/dz be continuous across the interfaces (here m is the effective
mass, V is the wavefunction and z is the direction perpendicular to the QW layer. When
these boundary conditions are imposed, a huge determinantal equation is constructed and
solved for the eigenenergy. This procedure must be repeated for each point of interest in k-
space. In these calculations we neglect the anisotropy of the masses in the plane of the
QW, which is justified since the Luttinger parameters y2 and y3 are approximately equal in
each region and may be replaced by their average (also known as the axial approximation)
[56]. This means that only one direction in k-space must be examined. Finally, we neglect
the coupling between the wells and treat each well with finite barrier height, but infinite
spatial extent. This is justified since the heavy holes extend very little into the barriers
(much less than the 100 A barrier thickness). Also the levels closest in energy in the two
wells are approximately orthogonal states (light hole levels in one well are approximately
lined up with heavy holes in the neighboring wells) and the coupling is therefore negligible.
This argument will have important consequences for the possibility of hole tunneling. The
calculations that were performed follow closely ref. 57, but may be implemented in many
other ways [58] [59] [60].

At this point a few words should be said on the effects of strain on band structure.
Strain, even in bulk, breaks spatial symmetries because the direction in which the strain is
applied makes one direction in space special. This symmetry breaking is accompanied by
the lifting of degeneracies, as is well known from group theory [61]. In particular the
heavy and light hole degeneracy at the zone center is lifted. The strain contains two com-
ponents known as the hydrostatic component and the shear component. The hydrostatic
component with its accompanying deformation potential results from the physical change of
the primitive cell volume and is responsible for a static shift in the bandgap. The shear

component (with its corresponding deformation potential) is responsible for the splitting

between heavy and light hole states [62]. It should also be noted that to support coherent

strain in a layer (i.e., without causing dislocations), the layer thickness has to be under



some critical thickness, which can be derived in a number of ways [63]. This is an impor-
tant consideration for strained-layer QW devices, since dislocations lead to rapid degrada-
tion in the operation of these devices.

3.4.3 Limitations of the kep calculation

Before presenting the results of this calculation some of its limitations should be dis-
cussed. There are a few parameters which are not known very well even experimentally.
Two of the most important ones are: 1) the valence band offset (VBO) - how is the bandgap
difference between two materials split between the conduction and valence band. 2)
similarly, how does the hydrostatic bandgap shift (due to the strain) split between the
conduction band and the valence band. This split is usually taken to be: all the shift in the
conduction band, or 2/3 of the shift in the conduction band. The major approximation in
the calculation leads to neglecting the influence of the conduction and split-off bands on the
heavy and light hole bands. The modification in band structure due to the inclusion of the
split-off band (i.e., going to a 6x6 Hamiltonian) was recently shown [64]. The dispersion
of the bands is somewhat modified and the masses at the zone center may change by up to
30% (the split-off energy in the material of interest: A = 300 meV). Obviously, higher
lying levels in the QW will interact more strongly with the split-off band, since they will be
closer in energy. Neglecting the coupling to the conduction band is usually justified, since
the bandgap is close to 1 eV. However, it has been shown that strain contributes to such
coupling [65]; and, as will be discussed later, intervalence band absorption (IVBA) is zero
because of this approximation. Finally, these calculations (like most band structure calcu-
lations) are all in the one electron approximation and neglect many-body effects such as
bandgap renormalization.

3.4.4 The results of the kep calculation

The parameters used for the calculation are given in Table 3.1 and were mostly taken
from ref. 66. The values for alloys were linearly interpolated between the constituent
binary values. The VBO was taken to be 35% of the bandgap difference between the bar-
rier and well material (before accounting for energy shifts due to strain). This number was
derived from the transitivity condition [67]. This gave good results for the tensile well in
terms of the transition energies, but was less satisfactory for the compressive well. This

may be because the same VBO was used for both wells. Recently, a theoretical investiga-

tion of the VBO problem in strained-layer devices was undertaken, and showed that the

final VBO (after accounting for strain-induced energy shifts) was about 40% [68]. More
rigorous theoretical calculations for the VBO in general exist in the literature (see e.g., ref.



Compressive strained Tensile strained
quantum well quantum well

Material Ino.68Gao.32As Ino.39Gao.6 As

Bandgap (eV) 0.59 0.90

Barrier bandgap (eV) 0.95 0.95

VBO (%) 0.35 0.35

Lattice constant (A) 5.9276 5.8101

Strain (%) -1 +1

Stiffness constant C,, (dyn/cm2) 9.48x10" 10.51x10"

Stiffness constant C,2 (dyn/cm 2) 4.80x10" 5.05x10"

Hydrostatic deformation potential (eV) -7.2 -8.3

Shear deformation potential (eV) -1.8 -1.7

Hydrostatic shift (meV) -71 86

Shear splitting (meV) -36 34

width (A) 35 160

Electron effective mass (well) 0.036 0.049

Electron effective mass (barrier) 0.058 0.058

Luttinger parameter y, (well) 16.0 12.1

Luttinger parameter y,2 (well) 6.3 4.5

Luttinger parameter y3 (well) 7.1 5.3

Luttinger parameter y, (barrier) 11.7 11.7

Luttinger parameter y2 (barrier) 4.4 4.4

Luttinger parameter y, (barrier) 5.2 5.2

Table 3.1: Material parameters used for the kep calculation

69), but were not used here. The splitting ratio of the hydrostatic shift was taken as 2/3 of

the total shift in the conduction band.



Figure 3.9 and Figure 3.10 show band diagrams of the compressive and tensile wells.
Note that the bottom of the heavy and light hole well are different, due to the shear compo-
nent of the strain. The fundamental energy transition in the compressive well corresponds
to 1.59 gm and in the tensile well to 1.53 gm. However, once carriers are injected these
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Figure 3.9: Band diagram of compressive well. The thick lines are the bound levels.

The bottom of the light hole well is lower than the bottom of the heavy hole

well, because of the strain.

may change, not necessarily in the same way, since the density of states in the two wells

1L



are different. The uncertainty in the VBO mentioned earlier, may be another source for the
discrepancy.

Figure 3.11 and Figure 3.12 show the calculated band structure for the compressive

and tensile wells. The energy relative to the unstrained valence band edge is plotted as a

42 meV 16 meV

57 meV 16 meV

HH1

160 A

Figure 3.10: Band diagram of tensile well. The thick lines signify the bound levels. As

in Figure 3.9, the bottom of the heavy and light hole wells are different due

to the strain.

function of k. Three features are apparent in these results: 1) the light hole band is highest

954 meV
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in energy in the tensile well, but the heavy hole band is highest in the compressive well (as

required for this device). 2) the valence bands undergo considerable warping (even to the

extent that negative masses appear). 3) the curvature of the heavy hole band in the com-

pressive well is much smaller that the curvature of the light hole band in the tensile well.

Since the effective mass is proportional to the curvature of the bands through:

1 1 d2E

m* hf2 dk2

/

(3.5)

U.VO k (fraction of Bri.ouin zone)
k_± (fraction of Brillouin zone)

Figure 3.11: Calculated band structure for the compressive well. The transition energy

and the bulk bandgap (627 meV) are not to scale.
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where h is Planck's constant over 2ni and d2E/dk2 is the band curvature. Since the band are

not parabolic, the effective mass is a function of k. From the calculation it is found that the

effective mass of the heavy hole in the compressive well (in the zone center) is - 0.08 mo
(where m0 is the electron mass) and the effective mass of the light hole in the tensile well is

~ 0.21 mo. This means that the heavy hole state is actually light and light hole is actually

heavy (known as mass reversal). In fact the light hole is almost 3 times heavier which will

lead to different dynamics in the different wells, as will be discussed later.

AE = 813 meV
A% = 1.525 lm

I I I I I
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k± (fraction of Brillouin zone)
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Figure 3.12: Calculated band structure of tensile well. The transition energy and the bulk

bandgap (781 meV) are not to scale

3.4.5 Electron tunneling time calculation

To better understand the interwell coupling, the electron tunneling time was calculated.

Although, the experiment is not very sensitive to electron dynamics, the results of this
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calculation should give some indication of the timescales involved in the problem. The

model for the calculation consisted of one pair of wells extending infinitely in the ±z direc-

tions. The parameters for the calculation were taken from the k-p results. The eigenfunc-

tions of the complete structure were calculated and are shown in Figure 3.13. The tunnel-

ing time was then calculated using:

(3.6)Ttunneling = 2(E 2 - E1)

where the denominator is the energy difference between the fundamental symmetric and
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Figure 3.13: The wavefunctions of the coupled compressive and tensile
conduction band. E2-E, = 1.7 meV and E3-E2 = 41.6 meV.
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antisymmetric wavefunctions. The tunneling time was found to be - 1.2 ps, meaning that

if a wavepacket is launched in one of the wells, the maximal transfer to the other well
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occurs after 1.2 ps. Note that the transfer from one well to the other is never complete,
because the wells are not identical.

The probability of hole tunneling is low, because of the larger masses that are involved,
but more importantly because the states in the two wells are orthogonal in the Brillouin
zone center, as explained earlier. Tunneling as an interwell transfer mechanism is therefore
negligible.

3.4.6 Estimates for interwell transfer times

After tunneling has been discounted as a means for interwell transfer, the only remain-

ing mechanism is diffusion across the barrier (which follows the optical excitation), fol-

lowed by recapture of the carriers into the QW's. The diffusion process is well understood

and the diffusion time scales as L2/D where L is the barrier thickness and D is the diffu-

sion constant. It has been found that the diffusion is ambipolar, so that the total diffusion

constant is closer the hole diffusion constant. However, recent experimental investigations

have shown that transfer times do not scale with the square of L, but follow an almost lin-

ear scaling law [70]. It was found that by considering a rate equation based on liquid flow

dynamics, which weights the electron and hole quantum capture times by appropriate

probability densities and includes carrier cooling, leads to good agreement with their

experimental observations. Their results for high excitations in a passive unstrained

InGaAs sample indicate total transfer times for 100 A, of about 2-3 ps [70]. Adding strain

in their experiments did not alter the results significantly.

The problem of quantum mechanical capture time in QW's is a difficult one and has

been extensively covered in the literature in recent years. Such phenomena as capture time

oscillation as a function of well width, have been reported [71]. However, in the limit of

high carrier densities (our operation regime), these effects are smeared out because the

carrier energies are broadened by carrier-carrier scattering. The well width does play a role

in the capture process in the following way: when the well gets narrower the bound level

rises in the well and approaches the barrier and the 3D density of states region. As the

density of states changes from a 2D density of states to a smaller 3D density of states, the

capture rate decreases and the capture time increases. Based on the conclusions of ref. 70 it

seems hard to treat diffusion and the recapture process separately, and therefore a total

transfer time is a more reasonable quantity. In our device, which is active (rather than

passive) and has InGaAsP (rather than InP) barriers, that the total transfer time is on the

order of a few picoseconds, similarly to the results of ref. 70.



3.5 Related results for these devices

3.5.1 Four wave mixing experiments

Recently, CW four wave mixing (FWM) experiments were performed on identical de-

vices [72]. In these experiments the FWM sideband power is measured as a function of the

frequency detuning between the CW pump and probe beams. Each time the inverse

detuning is comparable to a time constant in the material response, there is a pole and

corresponding rolloff in the FWM signal. The dispersion of the device causes phase mis-

match and shows up as a sinc function modulating the response. Ideally, the sinc function

should be broader than any inverse frequency of interest. The experiment is performed for

both the Stokes and anti-Stokes sidebands, and the results are than fitted with a sum of

complex Lorentzians. Unfortunately, there are a lot of fitting parameters and to get a good

interpretation of the results, they have to be supplemented by independent measurements

such as time-resolved pump-probe measurements.

The experiments described in ref. 72 were carried out with the four different TE and

TM polarization combinations for the pump and probe beams. The maximum detuning was

- 1 THz corresponding to 160 fs. The conclusions from this experiment were indicated

that the main contribution to interwell transport was from carrier number transport (as

opposed to carrier temperature transport), i.e., escape, diffusion and recapture of carriers.

No indication was given as to the timescales involved in this process.

3.5.2 CW saturation theory

The CW nonlinear characteristics of these devices were recently investigated theoreti-

cally [73]. A rate equation model for the two bound levels in the QW's and one continuum

level was used, and the self-saturation (e.g., TE saturation due to TE pumping) and cross-

saturation (e.g., TE saturation due to TM pumping) of the devices was investigated. This

model took into account the fact that TE transitions are allowed in both wells , but TM

transitions were forbidden in the compressive well. This "asymmetry" leads to polarization

dependent cross-saturation (i.e., the cross-saturation characteristics are different for TE-TM

and TM-TE). The parameter of importance in these calculations is the ratio, R, of carrier

escape rate from the wells to the carrier capture rate by the wells.

Finally, the induced anisotropy was investigated by simulating the effects of the device

on a probe beam linearly polarized at 450 at the device input, while being pumped by

another beam. Induced birefringence leads to an ellipticity of the probe polarization at the

output, and induced dichroism leads to a rotation or tilting of the probe polarization at the



output of the device. The amount of anisotropy depends critically on the parameter R.

Induced anisotropy suggests an optical switching element based on polarization control in a
SOA which has been verified experimentally [74]. These theoretical results will have a
bearing on some of the results discussed later.

3.6 Anisotropy in the nonlinear response of PI-SOA's

Although the linear response of the PI-SOA's is polarization insensitive or isotropic by
design, this does not imply isotropy of the nonlinear response. In fact, as discussed ear-
lier, theoretical results on the CW saturation characteristics of these device predict polariza-
tion-dependent or anisotropic behavior. The results of the present experiment show further

dynamic anisotropy on a femtosecond time scale.

3.6.1 Polarization resolved pump-probe results

In the experiment, the pump and probe wavelengths are held constant (1.51 pm in this

case). In order to explore the different regimes of operation (gain, transparency and ab-

sorption), the injection current is tuned. In this way the quasi-Fermi level is moved relative

to the probing wavelength or energy. The measurement results consist of gain and index

data taken in each one of these operation regimes. The injection currents corresponding to

gain, transparency and absorption were 80, 33 and 28 mA, respectively. As explained

earlier, switching from a gain measurement to an index measurement means switching the
radio receiver from AM detection to FM detection. For each of these 6 sets of data all 4

combinations of TE and TM polarizations for the pump and probe, were measured.

The pulsewidth for these measurements was - 130 fs at a center wavelength of 1.51

pm. Care was taken to control the pump power such that the induced transmission changes

were no more than - 10%. In this regime of operation the pump-probe signal scales line-

arly with pump power as it should. Too much pump power causes the trace to distort and
indicates higher order nonlinearities. Typical pump powers were estimated to be a few
hundred femtojoules at the input of the devices. The phase change associated with a 10%

transmission change was found to be - ni/10 and by increasing the pump to a point where

the transmission change was - 90%, a phase change of 0.75n was observed (similar

changes have been previously reported in standard SOA's [75]).

As is well known, the pump-probe signal is proportional to the intensity autocorrelation

convolved with the nonlinear response function [76]. This ignores coherent coupling,
which is important in semiconductors primarily when pump and probe are copolarized

[77], and will be addressed later. The nonlinear response was modeled as a sum of a Dirac



delta function, a step function and two single-sided exponentials with different time con-
stants:

ao0 (t) + [a, exp(-t/T,) + a2 exp(-t/ tr2)+ a3]u(t)

u(t) = 1 t > 0 
(3.7)

The delta function accounts for processes, which are much faster than the pulse width

(or more accurately, the width of the intensity autocorrelation function). The step function

accounts for processes which are much slower than the total time measurement window,

and therefore seem like a step change. The delta function and step function may be thought

of as single-sided exponentials with very short and very long time constants, respectively.

The remaining two exponentials account for processes with intermediate timescales, and in

some sense are the processes of real interest in the experiment. The process with the longer

time constant is usually attributed to carrier cooling times. After energy has been injected

into the carrier bath by the pump pulse, the heated non-equilibrium carrier distribution

interacts with the lattice (mainly by emitting LO phonons) and cools down with this time

constant. The shorter time constant has been attributed to a delay in the carrier heating [78]

and also includes the effect of an artifact due to index-gain coupling [79].

The total response is now convolved with the measured intensity autocorrelation. The

amplitudes and time constants in the response function are adjusted until a best fit is

achieved. The convolution computation time goes in general as the number of points

squared. This can be made more efficient when the following is realized:

S(t) = g(t) * exp(-t/r)u(t) = g(t)exp[-(t' - t)/]u(t' - t)dt

(3.8)
= exp(-t'/T) J g(t) exp(t/v)dt

which in discrete form looks as follows:



S(n) = exp(-n(At)/T)(At) 1g(i(At))exp(i(At)/,) (3.9)

If a running sum is kept, the whole convolution can be computed by looping over the array

of points only once (instead of twice). The convolution of the intensity autocorrelation

function with the step function gives the partial area under the autocorrelation function and

can be computed similarly with a running sum, and the convolution with the delta function

is trivial (the autocorrelation function itself).

Figure 3.14 and Figure 3.15 show the pump-induced transmission and phase changes,

when the device is operating in the gain regime (I = 80 mA). The long-lived step change in

the transmission data confirms this to be the gain regime: the pump causes stimulated

transitions, depleting the upper level (or conduction band) and reducing the long-lived gain

(which eventually recovers on the recombination time scale). Also shown in the figures is

are theoretical fits to the data. In this regime of operation it was possible to fit the data with

a very small or zero fast component. The data also show that the cooling time of all polari-

zation combinations except the TE-TE combination was - 700 fs, but that the TE-TE

combination had a - 900 fs time constant, both in the transmission and index measure-

ments. The fitting error on the time constants was smaller than 50 fs. This data suggests

that there is an anisotropy in the device, since the response is pump-polarization dependent.

Figure 3.16 and Figure 3.17 show the pump-induced transmission and phase changes,

when the device is operating near the transparency point (I - 33 mA). The absence of

long-lived steps in the data confirms that the measurement is near transparency, since

beyond the first few picoseconds the net gain is zero and the transmission has recovered to

the level of transmission before zero time delay (i.e., before the arrival of the pump pulse).

These data show the same behavior for the cooling time constants as the gain regime set.

However, here a spike near zero time delay becomes obvious; and, in the fit, the exponen-

tial with the short time constant is necessary to achieve a good fit. In fact, The short time

constant is shorter than the intensity autocorrelation width. This feature is due to index-

gain coupling and will be discussed later.

Finally, Figure 3.18 and Figure 3.19 show the pump-induced transmission and phase

changes, when the device is operating in the absorption regime (I = 28 mA). Again, the

fact that the long-lived changes in the transmission data step up, confirms this to be the



Figure 3.14: Pump-probe data for transmission changes in the gain regime (I = 80 mA).
The solid lines are the data and the dashed lines are the fits.

7-

cO

00*%
C.0 CO

E
01=

0 (O C\ Co
0 0) 0) Co
U d d d
uo!ss!ursueJ] "LUJON

Cl)
0
0OO

en Co

0*1 a
a,

E
C)ý

S0C o 0V 0
0 0)0)0)0)0

d-6666
UO!SS!WusuieJ WJrON

Co

a

'aU)

CM a)
E

01=

UO!SS!WSUeBJ "UJON

to CO



Figure 3.15: Pump-probe data for index changes in the gain regime (I = 80 mA). The

solid lines are the data and the dashed lines are the fits.
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Figure 3.16:

i

Pump-probe data for transmission changes near the transparency point (I =

33 mA). The solid lines are the data and the dashed lines are the fits.
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Figure 3.17: Pump-probe data for index changes near the transparency point (I = 33

mA). The solid lines are the data and the dashed lines are the fits.
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Figure 3.18: Pump-probe data for transmission changes in the absorption regime (I = 28

mA). The solid lines are the data and the dashed lines are the fits.
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Figure 3.19: Pump-probe data for index changes in the absorption regime (I = 28 mA).
The solid lines are the data and the dashed lines are the fits.
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absorption regime: the pump gets absorbed and the probe sees an increase in gain for a time

on the order of the radiative recombination time. Here also the cooling time exhibits the

same behavior as the previous sets of data, and the spike near zero time delay becomes

even more pronounced.

3.6.2 Interpretation of the results

A few features of the results are not specific to this device, and have been observed be-

fore in SOA's [75] [80]. The instantaneous part of the response in the transmission data is

attributed mainly to two photon absorption (TPA) and any other process faster than the

pulsewidth in the experiment. The instantaneous part of the response in the index data is

attributed to the AC or optical Stark effect. This process involves virtual transitions that

dynamically renormalize the bandgap, or "push" levels apart. Another contribution to the

instantaneous index change is the index change associated with the TPA (through the

Kramers-Kronig relation [81]). The net instantaneous part of the response in both trans-

mission and index, shows a decrease of the signal. In contrast, the step function and ex-

ponential part of the response show opposite behavior in transmission and index response:

a decrease in transmission leads to an increase in index.

Another important feature common to pump-probe experiments is the coherent coupling

term [76] [77]. It arises from the coherent interaction between the pump and probe fields,

when the pulses overlap in time. When pump and probe are copolarized the coherent

coupling leads to a doubling of the total response at zero time delay (because both the

coherent and the incoherent part of the signal arise from the same tensor element of the

nonlinearity, x•). When the pulses are cross-polarized the coherent coupling adds only

an instantaneous component at zero time delay to the response (because polarization

memory in semiconductors is much shorter than our time resolution). In this case the

coherent and incoherent parts of the signal arise from different tensor elements of the

nonlinearity (x = X and ,3, respectively), and their relative magnitudes depend on

the details of the material. Therefore, the apparent size of the response at zero time delay in

the copolarized case is larger than in the cross-polarized case. It should also be noted that

the part of the coherent coupling term due to the instantaneous part of the response follows

the intensity autocorrelation, whereas the part due to the step part of the response follows

the field autocorrelation squared. Finally, it should be noted that the group velocity of TE

and TM polarized pulses traveling in a waveguide, is different [82]. This means that when

the pump and probe are cross-polarized, they walk off each other (in time) as they travel

through the waveguide. Effectively this is equivalent to pulse broadening and loss of time



resolution. However, in similar SOA's the walkoff was measured to be - 100 fs and led to
an effective pulse broadening of less than 10 % [43].

The main and unique feature observed in this device is the longer cooling time, apparent
only in the TE-TE configuration. As explained earlier, probing with TE-polarized light
means probing mainly the compressive well. However, when probing with TE-polarized
light, the cooling time constant depends further on the pump polarization, revealing a
dynamic anisotropy in the device. When probing with TM-polarized light (i.e., mainly the
tensile well), no such anisotropy is observed.

The longer 900 fs cooling time has been observed in a device consisting only of 4 com-
pressive strained wells with very similar parameters to the device in the present experiment
[78]. Keeping in mind that the experiment is mainly sensitive to hole dynamics and that the

holes involved have very different effective masses in the two types of wells, the observed

longer cooling time can be explained. The carrier cooling time is mostly mediated by the

emission of LO phonons, and the carrier-LO phonon scattering time depends inversely on
the effective mass of the carrier [83]. Therefore a longer cooling time in the compressive
well, where the holes are lighter, is to be expected. This effect has recently been demon-
strated theoretically [84]. Carriers can also be cooled by stimulated emission by removing
hot carriers from the distribution. However, if this were the case here, the cooling time
would change near the transparency point, where the net stimulated emission is zero. The

data indicates that this is not the case since the cooling time does not change in the different

operating regimes, and the contribution to the cooling through stimulated emission, is neg-
ligible.

The instantaneous part of the index response is seen to grow relative to the other parts
of the response as the operating regime is changed from gain through transparency to ab-
sorption. This has been previously observed and explained [85]. This large instantaneous
phase change leads to dynamic frequency shifts (w(t) = do(t)/dt). The frequency of the
probe therefore shifts on the transmission curve, and shows up as a derivative artifact near
zero time delay in the transmission measurements. Obviously, the larger the index change
the larger the transmission artifact. This sort of index-gain coupled artifact was recently
investigated theoretically [79].

The final point of interest is the mechanism behind the anisotropy: what would make
the excitation pump dependent? To the extent that the heating is due to free carrier absorp-
tion, it is clear that the heating will be different in the different wells. This is because the
free carrier absorption cross-section is dependent on the effective mass [83]. However,



both wells will be excited for both polarizations and to explain the anisotropy would mean

assuming the free hole absorption is anisotropic. On the other hand it is well known [86]

that in the InP-based materials free hole absorption is dominated by intervalence band ab-

sorption (IVBA). This process can occur away from the center of the Brillouin zone and

involves resonant transitions from the heavy and light hole bands to the split-off band.

As was explained earlier, such a transition is only possible when the momentum matrix

element is of the form (SIp, I I) where i = x, y, z (see section 3.3.5). This means that the

coupling of the conduction band to the valence bands can no longer be ignored. Terms lin-

ear in k , whether from the kep theory [49] [87] or strain-induced [65], contribute to this

coupling. Now it is reasonable to assume that these transitions, which in some sense re-

semble conduction to valence band transitions, will be polarization dependent for the same

reasons. Specifically, heavy hole, light hole and split-off band states will consist of dif-

ferent linear combinations of the IS), IX), I Y), I Z) . If, for example, the heavy hole band

has a negligible I Z) function component, then TM induced excitation to the split-off band

will be correspondingly negligible. This would explain the observed polarization depend-

ent excitation, since the two different wells contain two different initial states for these tran-

sitions. This assumes that there is no interwell equilibration, while the carriers are in a

high-energy, non-equilibrium state, from which they could easily scatter between wells (in

this high-energy state they would be extended states and not subject to slower diffusive

transport). To confirm the polarization dependence of IVBA, at least theoretically, would

require a full 8x8 kep calculation including all three valence bands and the conduction band,

which was not undertaken here.

3.7 Direct measurement of the anisotropy

The anisotropy is basically the difference between 2 traces (e.g., between the results of

the TE-TE data and the TM-TE data). However it is not clear how to weight the different

traces correctly, and also small differences may be lost when subtracting 2 large quantities.

It is therefore desirable to have a direct measurement of the anisotropy, which would also

confirm its existence unambiguously. Such a technique was demonstrated for the meas-

urement of anisotropic absorption saturation [88]. A conceptually similar technique based

on the existing heterodyne pump-probe setup was used to measure the induced dichroism

and induced birefringence in the present device.



3.7.1 Basic concept

Figure 3.20 introduces the basic idea behind the measurement. The probe beam is set

at a linear 45* polarization state and the reference beam is set to the orthogonal polarization.

A polarization controller after the device compensates for any linear birefringence or resid-

INPUT OUTPUT

Y Y

Pump Reference

/ý

a Pump

/ProbeIF-0 -

Figure 3.20: Basic idea of direct anisotropy measurement. In the absence of the pump,

the probe and reference do not beat. The pump induces anisotropy, chang-

ing the probe polarization to have a component along the reference.

ual dichroism (which should be absent by design). This polarization controller (indicated

as a dashed box in Figure 3.3) consists of a h/4 waveplate followed by a ?/2 waveplate,

which together can take an arbitrary elliptical polarization state and transform it to any

specific linear polarization state, in this case 450 linear. When the pump is absent, probe

and reference are orthogonal and do not beat, resulting in an absence of a heterodyne

signal. When the pump is unblocked, it induces birefringence (which will turn the probe

elliptical) and dichroism (which will tilt the state of polarization of the probe). This in turn

gives the probe some component along the reference, which will result in a beat signal.

This signal is a direct measure of the induced anisotropy.

3.7.2 Analytical expression for the measured signal

To make this more quantitative, we present a derivation for the measured signal (by the

radio receiver). It is assumed that the probe is in some linear state of polarization, before

and after the device (i.e., linear anisotropy is compensated). This will be a more general

case since the probe can be in any linear state (not necessarily 45'). Since the detection

Refe
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system is only sensitive to the beat signal of the probe and reference, it is only this term that
will be examined. This beat signal arises from the sum of the two fields being squared by
the detector, so that the beat signal may be written:

S oc Re ref * E exp(iwbt)} (3.10)

where cob is the beat frequency (1 MHz in the present experiment). The probe and refer-
ence fields may be written in Jones vector notation:

pr 2 b2 (a)a +(3.11)
/ref a2+b2

where a and b are real numbers. If the pump induces anisotropy, the x and y components
of the probe polarization will pick up different changes in amplitude and in phase. The

probe can now be written as:

Ep, = a2  b +s,)exp(ipo)j (3.12)

where the Si and 0, are the amplitude and phase changes in the ith component of the polari-
zation of the probe. The signal S can now be written as follows:

S c Re{[-b(a + Sx) exp(iqx) + a(b + S,)exp(ioy)]exp(ibt)} =

[-b(a + 63)cosOx +a(b+Sy)cos4y]cos(wbt)- (3.13)

[-b(a + x) sin #x + a(b + 6,)sin Y ]sin(obt)

When the radio is set to AM reception the radio takes the magnitude of the above signal,
which means squaring each of the bracketed expressions above, adding the result, and then

taking the square root. After some simplifications and using the trigonometric identities:



cos2 X + sin2 x = 1

cosx cosy + sin x sin y = cos(x - y)

S'/ ob2 b (a + S~x) + a2(b + ,)2 - 2ab(a + Sx)(b + ,y) cos(o, - y)

Writing the induced birefringence Ox-Oy as AO and assuming it is small, so that the cosine
term can be written as the two leading terms of a Taylor series expansion:

cos(AO) = 1 ( A )2
\ ,, (3.16)

and making some further simplifications yields:

s' mJ(bSi -ay )2 + a2b2(A&)2 = ab(x/a - /b) 2 + (A) (3.17)

For the case of 450 linear polarization a=b= 1, with the induced dichroism 8x-6, written as

AS, the last expression simplifies to:

s' (AS) 2+ (3.18)

An interesting feature of the general

polarization, satisfying the relation:
expression is the fact that there is a unique linear

a _
bS (3.19)

where the measured signal is proportional to only the induced birefringence (how this

polarization is determined experimentally, is described below). In any other case the signal

contains a mix of the induced dichroism and the induced birefringence, with no way to

we get:

(3.14)

(3.15)



separate the contributions. It should be remembered that we are dealing with a dynamic

anisotropy that changes in time and the above relation will only yield the induced birefrin-
gence at one particular instant. In the present experiment, the signal, as expected, measures

the amount of total induced anisotropy containing contributions from both the induced

dichroism and the induced birefringence.

The above derivation assumed AM reception on the radio. One might wonder what

would be detected in the FM case. FM detection will give the phase of S and therefore the
tangent of the phase angle is given by the ratio of the bracketed expressions in (3.13).

Simplifying the expression and Taylor expanding to first order yields for the phase angle:

) = tan-1 / a - lb (3.20)

and again for the case of 45* linear polarization this reduces to:

( = tan- - (3.21)

The argument of the arctangent is reminiscent of the definition of the a parameter for semi-
conductor lasers, and so may be thought of as an anisotropy a parameter. The general ex-
pression (3.20) also gives an experimental way for determining the "magic" polarization
orientation that nulls the induced dichroism part. This can be achieved by changing the
probe's polarization until the FM signal vanishes. Again, this would be only at one fixed
time delay between the pump and probe.

3.7.3 Measurement results

Figure 3.21 shows the results of this direct anisotropy measurement. The probe was
oriented at 45* linear and the reference was made orthogonal to it by blocking the pump and
minimizing the beat signal. The two traces shown are for TE polarized pump and TM po-
larized pump. Where, for example, in the case of TE polarized pump, the differences in
transmission and index of the TE-TM and TE-TE configurations, are measured. The fact
that the measurement shows a non-zero result, confirms the existence of pump-induced
anisotropy. The data also show a longer time constant which was not apparent in the nor-
mal pump-probe measurements. Since Figure 3.21 does not show if the transmission levels



out, it is not clear if the response contains a step function or the anisotropy decays on a

much shorter time scale than radiative recombination. Figure 3.22 shows the data similar

(a)

(b)

Figure 3.21: Results of direct anisotropy measurement. Probe is polarized at -45* linear,
reference is polarized at +45* linear and pump is TE (a) or TM (b).
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to Figure 3.21, but the scan extends to longer time delays between pump and probe. In
this case the data shows that there is a step function component and the long time constant

is fit with ~ 7 ps.
At this point it should be remembered that the initial motivation for this experiment was

to extract interwell coupling dynamics. The expectation was to see such coupling in the
normal pump-probe experiment, when the pump and the probe are cross-polarized: the

pump exciting mainly one type of well and the probe probing mainly the other type. The
signature of such a process would be something like a delayed step response. After excita-

Figure 3.22: Direct anisotropy measurement with the pump TE polarized. The scan ex-
tends to 30 ps time delay between pump and probe to show the response
flattening out. The solid line is the data and the dashed line is the fit.

tion interwell transfer would occur with some time constant and the recaptured carriers

would stay in the new well until radiative recombination occurred. This behavior was not

observed in the normal pump-probe measurement, but the direct anisotropy measurement is

a much more sensitive differential measurement. It subtracts from the cross-polarized data

the response due to "self-coupling" and so can bring out only the pure cross-coupling re-

sponse.
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In the above measurement, when the pump is TE polarized a new time constant may be

observed, because of the difference between the two exponential responses. However,
when the pump is TM polarized, the exponentials (of TM-TE and TM-TM) have the same

time constant and therefore such a new time constant would not be expected. The fact that

the data shows a long time constant even in the TM case in Figure 3.21, indicates that this
new long time constant must, at least in part, be due to another mechanism. The difference
of two exponentials may be written as a delayed exponential decay characterized by an
effective risetime. This effective time constant which arises from the different time

constants in the TE case is T'eff = (1/', - 1/'2)-1 = 3 ps where ;, = 700 fs and ,2 = 900 fs,

in contrast to the 7 ps time constant observed in the measurements. Also, as explained
above, the 3 ps effective time constant is expected in the risetime and not the decaying part
where the 7 ps time constant is observed. This is strong support for the possibility of inter-
well transport.

A recent study [70] has shown that in QW's based on this material system, the interwell
transfer time for barriers of 100 A width (the barrier width in the present device) is 2-3 ps.
Furthermore, it was shown that the interwell transfer time could not be easily separated into
diffusion and capture processes. If that were the case, the transfer time would be much

shorter. The diffusion time constant of a carrier across a barrier Lb is given by
"df = ~ /D, where D is the ambipolar diffusion constant, which for InP is 7 cm2/s. For a
100 A barrier this would give a diffusion time constant of - 140 fs. It was also shown in
ref. [70] that their measurements showed a linear scaling with barrier width rather than a
quadratic dependence. They concluded that a model similar to that for the dynamics of a
classical fluid containing diffusion, a weighted capture process and distribution cooling,
explained their data well. It should be noted that the above study dealt with InGaAs/InP
rather than InGaAs/InGaAsP as in the present device. In the present device the strain is
high and the typical carrier densities are high, both of which may modify the capture
dynamics and explain the observation of a longer transfer time in the present experiment.

The final point to be addressed is the presence of a step function component in the ani-
sotropy data which indicates a residual long-lived anisotropy. A recent theoretical investi-

gation mentioned earlier [73] supports this experimental observation. In that study the CW

saturation is investigated, this is exactly the step function part of the pump-probe response:

the long-term gain reduction that the probe experiences, due to a strong CW pump. They

simulated a similar experiment, where the probe polarization at the output of the device was

calculated for an input probe polarization of 45* linear, in the presence of a strong CW

pump. The change in the polarization would indicate the magnitude of the induced anisot-



ropy. They found that the parameter governing the size of that change depended critically

on the ratio, R, of the carrier escape rate to the carrier capture rate. For R = 1 there was

almost no change in the probe polarization, but for small R significant changes are pre-

dicted indicating a large induced anisotropy.

To confirm the long time constant as one due to interwell transfer would require a

similar device, identical in all ways except having thicker barriers. In ref. 70 it is shown
that the interwell transfer time increases by a factor of 2 when going from a 100 A barrier to

a 300 A barrier, which is planned for a future experiment.



Chapter 4

Conclusions and future work

4.1 The fiber laser-seeded color center amplifier

The MOPA-pumped SP-APM was found to be an excellent source for high-energy
femtosecond pulses at 1.5 pm. The pulse energy was up to 3 times higher than with previ-
ous Ti:Sapphire pumping, and the amplitude jitter was remarkably low. This source has
recently been used as a source for a WDM system, where the wide spectrum is sliced into
many WDM channels of picosecond pulses [89]. Another application where the ultrashort
character of the pulses is not important, involved having a tunable filter outside the cavity
with a bandwidth of 6 nm tunable over almost 60 nm, with pulse widths of 0.5-1 ps [90].
Since there is plenty of power, the energy loss due to the filtering was tolerable. Finally,
this source can provide bright enough SHG in the red spectral region to make it a viable
alternative for seeding a Ti:Sapphire regenerative amplifier (rather than using an Argon-

pumped Ti:Sapphire).

The amplifier system proved to have some great advantages over previous amplifier
systems at 1.5 gm, but suffered from some disadvantages. The two main points in favor
of using this system are: 1) The stability of the source and 2) the high small-signal single-
pass gain of the amplifier. It is easy to get to the microjoule level within 2 passes, making
the collinear arrangement possible, and the generated continuum is very stable. On the
down side, the gain spectrum of the amplifier is not well-matched to the center wavelength
of the fiber laser, leading to gain narrowing and to 200-250 fs long pulses (although some
improvement is achieved by tweaking the dispersion in the spectral slicer).

A stable continuum may be generated in a variety of materials, but for really large con-
tinuum ZnSe was the best from all the investigated materials. Although fiber gave an even
larger spectral extent, it was not a femtosecond continuum since the temporal profile across
the spectrum was all scrambled. Finally, the zero-dispersion compressor made a very good
spectral slicer and to some extent compensated some further dispersion.



Future work with the fiber laser should include using it as an alternative source for
pump-probe experiments. There is certainly enough power and short enough pulses. In
addition, the noise characteristics of this laser show that even a few kHz away from the
harmonics of the repetition rate (i.e., by chopping at a few kHz), signals on the order of

10
-4 may be measured with no averaging. This performance is significantly better than the

color center laser. Another point worth investigating is whether compensation of the next

order of dispersion (i.e., third order dispersion) would yield pulses closer to the transform-

limit (which for sech pulses of 60 nm bandwidth is 43 fs). This would involve setting up

an additional grating compressor, which together with the prisms would be able to com-

pensate for the second and third order dispersion. However, it was shown recently, by
exact ray tracing methods that second and third order dispersion may be balanced with one

set of prisms, by choosing the right material [91].

In the amplifier system, future work should include trying to optimize the gain medium,
possibly by trying a color center with high gain and gain spectrum matching the center

wavelength of the fiber laser more closely. Such a color center crystal may be KBr, which

is very similar to the KC1, but has its gain peak at a longer wavelength. Of course there is

always the possibility of seeding the amplifier with an APM KC1 laser, automatically

matching it to the amplifier. However, the need for active stabilization and the large

amplitude jitter are compelling reason to avoid this solution. If Kerr-lens modelocking

were successful with color center lasers (and it should be since the nonlinear index is at

least as large as the one for Ti:Sapphire), this may become a worthwhile solution.

The number of passes in the amplifier could easily be scaled up to 4 passes as follows:

After the second pass the beam (now TM polarized) is reflected off a corner cube and is

sent back through the system parallel to the original beam. Just before the fourth pass the

polarization has been flipped back to TE and is going back in the direction of the laser
(passing through the polarizing beamsplitter). However, this beam is spatially separated

from the original beam, and may be picked off. It is not clear that a substantial improve-

ment is to be expected. First, the gain narrowing may offset any gain in energy and sec-

ond, the beam quality may degrade such that not all of it is usable. In addition, since after

2 passes the amplifier is already saturated, it may be necessary to blow up the beam for

energy extraction. Any gain in average power is important, because the beam is brighter

(although the pulses are at a microjoule level, the repetition rate is 1 kHz). To that end,
improving on the losses in the prism compressor could give up to 30 % more energy. An

increase of average power can be had by going to a 3 kHz repetition rate at the expense of



cutting down the pulse energy by a factor of 3, so if the output of the amplifier can be in-

creased to about 20 pJ (by using a third pass), a good continuum could still be produced.

The continuum itself may still be optimized by investigating a few more materials.

Namely, ZnS, which should have a much lower multiphoton absorption cross-section (but

still a an n2 on the order of 1014 cm 2/W). SF57 glass is a widely available glass with a

nonlinear of index second only to SF58 and SF59 (which are very difficult glasses to han-
dle, are environmentally unstable and stain easily). Finally, a short enough fiber (on the

order of 1 cm) may give broad, controllable continuum. By judiciously choosing the fiber

length, the continuum generation in conjunction with the spectral slicer constitute an

optimal fiber-grating compressor. In this way some very short pulses (possibly < 50 fs)

may be generated. For this to work, dispersion in the continuum generating material is
essential, since it contributes to linearizing the chirp over the generated spectrum.

The end goal of this project is to have a source for continuum pump-probe experiments.
The standard configuration for such an experiment is shown in Figure 4.1. It consists of

two spectral slicers (one for the pump and one for the probe), with a variable time delay in

A
Ti

Sai

Stage Continuum

Adj. slit

f f f f

A continuum pump-probe setup with tunable

well as bandwidth control for both.
pump and tunable probe, as

one of the arms. In this way the most versatile system is realized, with tunable pump and

tunable probe, and also variable bandwidth for pump and probe. This is ideal for two color

pump-probe experiments. An alternative to this scheme would involve only one spectral
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slicer for the probe, and the pump would be split off before the continuum generation.
This would limit the pump pulse to 250 fs pulses centered at 1.52 pm. The main challenge

in setting up this experiment, is the low average power available after spectral slicing.

Since after continuum generation the total average power is 1-3 mW, after slicing it may

well be under 100 gW, which would make lining up this experiment a non-trivial matter.

However, good CCD IR viewers are available for the 1.5 pm spectral region, which will

greatly reduce the difficulty of setting up this system.

A further improvement to the system would be changing it to a regenerative amplifier

configuration, either a low repetition rate (~ 1 kHz) or a high repetition rate (- 50 kHz)

system. In this configuration, the amplifier crystal is inside a cavity. The seeding pulse is

then switched in to go through the gain medium a controllable number of passes, after

which it is switched out. This would involve replacing the pulse selection system with a

switch-in switch-out system. The main advantage is the controllable number of passes

such that a thin crystal may be used. A thin crystal, like a laser crystal, is much easier to

make and to process. In the low repetition rate version, everything else would stay the

same. However, in the high repetition rate version, recently introduced for Ti:Sapphire

systems [92], The long lifetime of the gain is used in conjunction with CW pumping. At

10 W CW pumping with a Nd:YAG and a ~ 2 ps upper state lifetime of the KC1 crystal, 20

pIJ of energy may be stored in the gain medium for extraction. Even if only 10% of the

energy is extracted, the amplified pulse would have 2 gJ of energy, certainly enough for

continuum generation. Since the upper state lifetime is the only limitation on the repetition

rate (f < 1/27rr = 80 kHz), a repetition rate of 20-50 kHz could easily be achieved. At 2

pJ and 50 kHz the average power would be 100 mW, much more practical for pump-probe

experiments and signal averaging.

4.2 The dynamic anisotropy measurement on the PI-SOA

It should perhaps not be surprising that the isotropy in the small-signal characteristics

of a device, is not preserved in the large-signal regime. This is exactly what was observed
in the experiment: a device that by design has polarization independent gain, acquires a

polarization dependence, when the optical excitation is large. Even in the CW regime this

anisotropy is present. This behavior would probably be less surprising in a standard SOA,
which is highly polarization dependent in the linear or small-signal regime.

Since the electrons fill up the QW's in the conduction band, all the observed femtosec-

ond dynamics are due to the holes. The holes are very different in character in the two

different QW's in the device: they are heavy hole states with a light in-plane mass in the

101



compressive well, and light hole states with a heavy in-plane mass in the tensile well. The
anisotropic response can be traced back to this distinction. Different polarization selection
rules govern the interband transitions (long-time dynamics), and mass dependent scattering

processes govern the intraband transitions (ultrafast dynamics). In particular, the LO

phonon-hole scattering cross-section is mass dependent and leads to longer cooling times in

the compressive well. The free-hole absorption cross-section is also mass dependent and

lead to different heating in the 2 types of wells. Finally, since the initial states for the holes

in the different wells are different, hole tunneling is negligible and IVBA may be different
depending on the exciting polarization. This last effect may be the reason for the observed
anisotropy.

The direct anisotropy measurement brings out the interwell coupling more clearly, and
indicates an intermediate time constant that may be attributed to interwell hole transfer. The
measured time constant is within a factor of 2 from previous measurements on structures

based on the same materials. Finally, there is a residual long-time anisotropy, which did

not decay in the experiment even when scanned out to 30 ps time delays. This agrees with

theoretical predictions regarding the anisotropy in the CW saturation of PI-SOA's.

To confirm the long time constant would require a device similar to the present one, but

with barriers at least 2 to 3 times wider. In this case previous measurements have shown a
corresponding increase in interwell transfer time. Changing other parameters is difficult,
since some of them are "coupled". For example, changing the strain alone would modify

the interband transition energy, so to keep it fixed would lead to changing the well widths.

In this case the energy change due to quantum size effects would compensate for the strain-

modified bandgap.

Another check on the results presented here, would be checking the dynamic anisotropy
in a device which does not have mixed wells. Although the longer cooling time has been

observed in a device where all the wells were compressively strained with very similar

parameters, the direct anisotropy measurement was not performed on that device. An
interesting comparison would be the TM-TM results measured here, with a device contain-

ing all tensile wells with the same parameters. When pump and probe are both TM polar-

ized the interband transitions are confined to the tensile wells only. A comparison to a

device containing only tensile wells would therefore indicate the extent to which the

compressive wells contribute to the TM-TM response in the PI-SOA.

The theory indicates that for every fixed time delay there is a linear polarization for the

probe, such that the gain anisotropy is nulled out in the direct anisotropy measurement.
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For this polarization only the induced birefringence is measured. It would be interesting to

perform this experiment, however, it may require very fine control on the probe and refer-

ence beam polarizations.

As far as constructing a fast optical polarization switch (as has been demonstrated with

standard SOA's), it may be limited. The reason for this is the residual anisotropy which

was observed in the direct anisotropy measurement. This would limit the rejection ratio,

since at long time delays there would be leakage of the wrong polarization. This is similar

to the requirement that an all-optical switch should operate near the transparency point, so

that there is no long time residual index change.
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Chapter 5

Appendix

The appendix will describe a few approaches to realizing a 1.5 gm intersubband transi-

tion in a QW. The potentially large and fast nonlinearity could lead to a practical all-optical

switching component. Some of the issues and constraints associated with all-optical

switching are discussed. Three specific structures and their limitations are then described
for attaining such an intersubband transition

5.1 Design of microstructures for 1.5 gm intersubband non-
linearities

All-optical switching is desirable in optical communication systems just as all-optical
amplification was desirable: it eliminated the need for converting the optical signal into an
electrical one and then back to an optical one. Additionally, all-optical switches could be

potentially much faster than any electrical switch. Two basic schemes for optical switches
can be envisioned: 1) an absorptive ("resistive") switch - a pump pulse would induce

transmission changes (in fact close to 100% transmission changes), letting the signal
through or absorbing it. 2) a dispersive ("reactive") switch - a pump pulse would induce
index changes in one arm of a Mach-Zehnder interferometer, not affecting the signal or
changing its phase by n radians. Since the carrier frequency should not be changed in the
switching process, this implies a degenerate e3) process: either nonlinear absorption (e.g.,
two-photon absorption) or nonlinear index (e.g., Kerr effect).

The constraints on these switches would be as follows: 1) The nonlinearity should be
large enough, such that the switching energy required is not too large or alternatively the
interaction length is not too large. Given ej3) at the frequency of interest will impose a
lower limit on the product of pump peak power and interaction length (which in the case of

a waveguiding device will be the device length). 2) The switching speed should be high
enough, i.e., a fast recovering nonlinearity. The induced change in absorption or index
should not persist longer than - 1 ps. This rules out any interband absorptive nonlinearity,
which creates carriers that stay around for a time on the order of a radiative recombination
time. It also implies a short pump pulse - shorter than the nonlinearity recovery time. 3)
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The linear loss should be minimal so that in the case of no pump pulse the signal does not

degrade. In fact, this imposes a constraint on the device length, namely it should not be

much longer than one linear absorption length.

Finally, it should be noted that below-band dispersive switches have an advantage over

the absorptive switches: they do not absorb the pump, and the constraints imposed by heat

dissipation are much more relaxed. Potentially, dispersive switches operating below band

could therefore go to higher repetition rates. It should be remembered that going away

from resonances does reduce losses and absorption, however it also reduces the nonlinear-

ity, which is enhanced closer to resonances of the material (such as the bandgap in semi-

conductors). Based on the above, a convenient figure of merit for such an optical switch

could be defined as , where a is the linear absorption and r is the speed of the switch or

the recovery time of the nonlinearity.

To quantify some of these statements we note that, for example, in an index switch we

are looking for a nonlinear phase shift of at least nt radians:

NL = 2- n2L ~ 7

2 E (5.1)
2n2 L-1

where A is the free-space wavelength, n2 is the nonlinear index, I is the peak intensity, L is

the interaction length, E is the pump pulse energy, r is the pump pulsewidth and Aff is the

effective cross-sectional area of interaction. We now assume a waveguide structure so that

L is the device length and we fix it at one linear absorption depth (if it is any longer the

signal is seriously degraded or completely lost), i.e., L = 1/a:

2n 2 E
2 1 (5.2)

A at" Aeff

Since n2 is proportional to Rez (3) } and the pump pulsewidth is on the order of the speed

of the nonlinearity (or faster), n2 /ar may be identified as the figure of merit defined

earlier. EIAeff is the energy fluence in the device, which should be at least on the order of

the saturation fluence to utilize the nonlinearity effectively and we replace the energy

fluence with the saturation fluence to get a lower limit:
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2 n2 hto 2hc n2= 1 (5.3)
Aa'r a A•2 aT

Here h is Planck's constant (and h is Planck's constant divided by 27r), c is the speed of

light and ais the transition cross-section (note that hA/lA can be viewed as a lower limit

on the required energy density). Obviously, if higher pump energy will relax the con-

straints on the figure of merit. However, it should be remembered that increasing the

energy will constrain the repetition rate of the system. This analysis applies to absorptive

switches with the nonlinear absorption coefficient replacing (2x/A)n2 or equivalently

Im{XZ3)} replacing Re(X•3)}.

5.1.1 Intersubband nonlinearities - advantages

It has been known for some time that quantum size effects tend to increase the nonlinear

response in semiconductors [93] [94] and devices based on these enhanced nonlinearities

have been demonstrated [95]. By going to lower dimensional microstructures (quantum

wells, quantum wires and quantum dots), the wavefunctions of the bound carriers become

localized in space. The increased overlap of the wavefunctions and 2D density of states

leads to large dipole moments or oscillator strengths The oscillator strength is defined as

[96]:

2m * wo(kl .E 1i)12 21(klE 0 pi)l2

f = h (5.4)
A m* hwt

where m* is the effective mass, o is the transition frequency, h is Planck's constant di-

vided by 27r, (k J * F i) is the position matrix element between levels i and k and (k ( * 0h i)
is the corresponding momentum matrix element with ^ the unit vector in the direction of

the polarization. The position matrix element is proportional to the dipole moment (through

the electric charge e).

In QW's under the envelope approximation, the allowed transitions are either interband

or intraband transitions. In the first case (to lowest order) the allowed transitions are be-

tween states with the same quantum number in different bands (e.g., between the first

heavy hole level and the first conduction level). Intraband transitions, better known as

intersubband transitions, are between states with different parity within the same band

(e.g., first conduction level to second conduction level).
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The first observation of intersubband transitions was in GaAs QW's at 152 meV and

121 meV for a 65 A and 82 A well, respectively [97]. Since then a wealth of experiments

have been reported on intersubband transitions for detectors [98] and nonlinearities such as

SHG [99], four wave mixing [100], phase conjugation [101] and the optical Kerr effect

[102]. Most of these experiments were performed around 10 gim and only recently has the

wavelength range been extended first to around 4 pm [103] and then to around 2 glm [104].

The most spectacular result of recent years, involving intersubband transitions, is the

quantum cascade laser [105]: a semiconductor laser based on intersubband transitions (the

lasing transition takes place between subbands).

To get a better understanding of intersubband transitions some of their characteristics

are now examined. It is desirable to use the 1->2 transition, since it results in the largest

oscillator strength. This can be seen by comparing the oscillator strength of a 1->2 and a
1->m (m even ). Transitions originating from higher subbands are usually not of practical

interest. To get a simple analytic expression for the oscillator strength we follow ref. 97
and use the infinite well approximation. For an infinite well of width L the normalized

wavefunctions are given by:

) (5.5)

Im) = - sin(

To compute the momentum matrix element we use p -* (h/i)a/ax (here i = ---4). The

result of the integration yields for the momentum matrix element:

2h 2m(mpi=l) = 2 (5.6)
iL m2 -1

this result can now be used to compute the oscillator strength to give:

2 ( )2( 2m 2 = 2 (2h 2m )2 2m*L 2

Sm *h L m2 -1 m* L M.m2- h2 2(m2 -1)
(5.7)

64 m2

2 (m2 3
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where we used the fact that hA is exactly the energy separation Em-E,. The oscillator
strengths for the 1--2 transition and the 1-4 transition are:

64 4
f2 7r2 27

(5.8)64 16
f14 

= X2 3375

the ratio of these two oscillator strengths is -31 (in general, for m 2 4 the oscillator

strength scales as m4). Since the nonlinearity scales with the oscillator strength squared,
going from a 1--2 transition to a 1--4 transition means a decrease of almost 3 orders of
magnitude in nonlinearity. It should also be pointed outfim obeys a sum rule:

fl(2i-1) = 1 (5.9)
i=1

It can now be appreciated why 1->2 intersubband transitions are important: since f12  0.96

it contains 96% of the total oscillator strength available to transitions originating in the first

subband (by comparison f4 contains only 3%).

Additionally, since the curvature of the subbands is similar (at least for small energy

separations), the resonant transition is a sharp one (compared to interband transitions): all

participating carriers have approximately the same transition energy. This is why an

intersubband system is very similar to an atomic two-level system. Both the large oscillator

strength per carrier (discussed above) and the fact that all transitions are the same, leads to a
"concentration" of the oscillator strength and very large optical effects.

A final note on intersubband transitions, is that to lowest order in the envelope ap-

proximation they are strictly forbidden for TE polarized light (polarization in the layer of the

QW), as can be seen from the matrix element. This is an advantage for 1.5 plm light, since

waveguiding TE as well as TM at this wavelength is not a problem. This is in contrast to

10.6 pm light, which required complicated zigzag geometries to achieve reasonable

interaction length (see e.g., ref. 101).
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5.1.2 Deep well requirement for 1.5 gm transitions

As mentioned earlier, the first intersubband demonstrations were shown for relatively
small energy transitions, that can be probed with CO 2 lasers at 10.6 gm (corresponding to
-120 meV). QW's with energy separations of this magnitude are easily fabricated. How-
ever, 1.5 gm corresponds to an energy separation of -830 meV and finding material com-
binations that will yield QW's which are about 1 eV "deep", is a challenging problem.
Since the well is so deep it will tend to support many bound states and the basic transition
might occur between the first and fourth or sixth level, instead of a first to second level
transition. This leads to the requirement of very narrow wells, that support only 2 or 3
bound states.

Another aspect that needs to be considered in these widely separated subbands, is the
departure from parabolic bands for the high-lying subbands. In other words strong nonpa-
rabolicity modifies the effective mass of the conduction band carriers. For intersubband
transitions in the valence band the situation is even worse because of serious band mixing
effects between the different valence bands, leading also to strong modifications of the
band dispersion. In both cases the attractive feature of having the equivalent of an atomic
two-level system is lost, because the subbands are no longer "parallel" and the intersub-
band transition is no longer a sharp one.

5.1.3 1 -2 intersubband transitions

Recently a few approaches have been explored toward achieving the goal of an inter-
subband transition at 1.5 gim, one of these was verified experimentally [106] (after
successfully demonstrating a 1.798 gim intersubband transition in a similar structure [107].
All of these structures would be designed as absorptive switches based on saturation: the
pump pulse excites carriers from the doped lower level to the upper level, bleaching the

absorption until the excited carriers relaxed back through various scattering mechanisms.

The only 1.5 gm intersubband transition to be verified experimentally (by linear absorption
measurements), is based on a structure containing several materials, engineered such that a
well is formed between two very "high" and thin barriers. To get a 1--2 transition, the

well was only 3 monolayers thick. The second subband strictly speaking is no longer a

bound state and has a finite probability to tunnel through the thin barriers. The relaxation

rate of the excited carriers has to be higher than the escape rate due to tunneling, to make

this a useful high-speed switching device (because otherwise the excited carriers will be

lost, and may take a long time to replenish the well). Another point of interest was the fact

that TE polarized light was also absorbed in the intersubband transition, slightly shifted in
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energy from the TM absorption. The reason for this is that the envelope approximation is

not a good one in this case: the total wavefunctions of the first and second subbands belong
to different symmetry groups [108]. The first subband has an S-like wavefunction (as in

bulk), but the second subband is P-like (similar to the bulk valence bands). In this case

both TE and TM transitions are allowed. Local crystal deformations and strain split the

second subband, accounting for the energy separation between the 2 transitions.

5.1.4 1-4 intersubband transitions

Two other approaches to a 1.5 gtm intersubband transitions are based on 1- 4 transi-

tions. Although the nonlinearity is reduced significantly (as discussed above), it may still

be substantial enough to be useful. The first approach is based on a GaAs QW with ZnSe

barriers and relies on recent advances in crystal growth that allow the growth of HI-V mate-

rials on II-VI materials. The heavy hole well depth in this system is ~ 0.96 eV. The sec-

ond approach is based on a GaSb well with AlSb barriers. This system is attractive since it

is well understood and there is a lot of experience in growing it. The conduction band well

depth is - 1.2 eV.

5.1.5 ZnSe/GaAs hole transitions

There is a large difference in bandgap energies between GaAs and ZnSe (~ 1.25 eV)

and most of it is in the valence band. However, it is not quite enough to support a 1- 2

transition. As the well is made narrower the first subband moves up in energy, and before

the separation between it and the second subband is - 0.8 eV, the second subband is no

longer a bound state. This is the case for both heavy and light holes. However, a 1-4

transition is possible. It should be noted that there is also a large difference in dielectric

constants between the two materials, which leads to charge sheets at the interfaces and
modifies the optical properties of the system. These are also called dielectric QW's and

have been investigated theoretically [109].
A kep calculation was performed to investigate the dispersion of these subbands, for a

1-4 heavy hole transition of - 1.49 gpm in a 33 A GaAs QW with ZnSe barriers. Al-
though this calculation ignores the effects of the split-off band (treating it as parabolic and

decoupled from the other two valence band), which is a bad approximation at least for the

higher subbands, it still gives a qualitative picture of the band structure. The parameters

used for the calculation are given in Table 5.1 and the results of the calculation are given in

Figure 5.1. The calculation does not take into account strain and dielectric effects.

110



Well Barrier

Material GaAs ZnSe

Bandgap (eV) 1.424 2.67

VBO (%) 0.77 0.77

width (A) 33

Luttinger parameter y, 6.85 2.45

Luttinger parameter y2  2.1 0.61

Luttinger parameter y3  2.9 1

Table 5.1: Parameters used for the kop calculation of the GaAs/ZnSe valence band
structure

The results show significant band mixing and warping, so that intersubband transitions

would definitely have a large frequency spread (in contrast to small-energy separated

subbands in the conduction band) and the oscillator strength is no longer strongly concen-

trated in a single transition. In fact, from these results it is doubtful that 1 -4 will be fa-

vored, because of the inverted curvature (negative mass) of the fourth subband at k=O. To

confirm these results a more rigorous band structure calculation must be performed, to
include the split-off band (and maybe not using the envelope function approximation).

5.1.6 GaSb/AlSb electron transitions

The last approach towards a 1.5 gim intersubband transition involves a GaSb QW with

AlSb barriers (this system has been used for intersubband transitions at 15 plm [110]). At
the F point (Brillouin zone center) the discontinuity in the conduction band is - 1.2 eV. At

first sight this might seem perfect to achieve a 1->2 transition. However, the serious
problem with GaSb is that becomes indirect for well widths less than ~ 40 A [111]: under

quantum confinement, with decreasing well width, the first subband in the F valley moves

up "faster" than the corresponding one in the L valley (because of the smaller effective

mass in the F valley), and around a well width of 40 A the first subbands in both valleys

are at the same energy. Beyond that point there is a much shallower L valley QW, since the

A1Sb L valley gap is much smaller than the F valley gap. This means that the QW has to be

wider than 40 A, especially considering the fact that it needs to be doped, and we want to
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Figure 5.1: Valence band structure of the GaAs QW with ZnSe barriers. The transition

energy between the first and fourth heavy hole subbands corresponds to

1.49 gim.

avoid spill-over from the F valley to the L valley (with the higher density of states).

However, 40 A is still too wide to achieve a 1.5 gim transition. The problem is even more

severe when the effects of nonparabolicity are included. Since the upper subband will be ~

1 eV above the bottom of the conduction band, the energy dependence of the effective mass

cannot be ignored.
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This again leaves the 1-4 transition. To calculate the subband energies and curvatures
at k=O, the finite potential well problem was solved, including the well depth modification
due to strain and the energy dependence of the effective mass. This nonparabolicity is
based on an empirical relationship between well width and effective mass [112]. Based on

ref. 112 the unstrained well depth was taken as 1.17 eV. The strain in the barrier was ig-
nored and the strain in the well was 0.65%, leading to a hydrostatic shift of the bandgap of

108 meV. If it is assumed that all of this shift is in the conduction band, the total well

depth becomes 1.28 eV (the other standard ratio is 2/3 of the shift in the conduction band

for a total well depth of 1.24 eV). The AlSb effective mass was taken as 0.1 lmo and the

GaSb bulk effective mass was 0.047mo. Based on the data in ref. 112, a curve of effective

mass vs. energy above the bottom of the well was calculated and is shown in Figure 5.2.
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Figure 5.2: Energy dependence of effective mass in the GaSb conduction band

Using all of these parameters shows that a 1.52 gm 1-4 transition can be achieved in a

50 A QW. It should be pointed out that it is not clear if the empirical relation for the

effective mass is accurate at very high energies, so the mass may not be as high as implied

by the above figure. However, the mass in the fourth subband may be about 3 times

higher than in the first subband. So in this case too the sharp resonance and concentrated

oscillator strength typical of small-energy intersubband transitions, may be absent.

On the other hand, another nonlinearity may be used: the nonparabolicity nonlinearity.

This nonlinearity is a well-known free-carrier nonlinearity [113] and is based on the fact
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that after excitation the mass changes leading to a change in the plasma frequency, which in
turn leads to a change in the dielectric constant or refractive index. This modified dielectric
constant will last as long as the carriers are in the upper subband. It should be noted that
exploiting the subband structure as an optical nonlinearity has been demonstrated in
AlInSb/InSb [114]. Another enhancement in the nonlinearity is due to the photon energy
being close to the bandgap energy. The enhancement factor scales like [113]:

E2 - (h) (5.10)

which means that for light detuned about 75 nm (or 40 meV) from the band edge, an en-
hancement factor of 100 is possible. As always this enhancement cannot be pushed too far
or else interband transitions will start to generate carriers in the conduction band. Finally, it
should be noted that there is no problem in growing a large number of such wells and get
an increase in signal, this is a big advantage over the first two approaches.

Based on some of the potential advantages of this system, it seems to be a promising

candidate for a 1.5 p.m intersubband transition, eventhough it would probably be a 1-+4

transition. There may be a possibility of tailoring a 1->2 transition by making a relatively

wide well surrounded by GaSb/AlSb superlattices engineered, such that only two bound
states of the total system would exist. This approach needs to be investigated further.
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