
Web Based Client/Server Computing

by

Hoony C. Youn

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Master of Engineering in Electrical Engineering and Computer Science

and

Bachelor of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

October 1995

© Hoony C. Youn, MCMXCV. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly paper
and electronic copies of this thesis document in whole or in part, and to grant others the

right to do so.

Signature of A uthor......................................
ad Computer Science

October 3, 1995

Certified by...................................
Richard Y. Wang

.. . .. Information Technology
Thesis Supervisor

Accepted

·"i Frederic R. Morgenthaler
Chairman, Department m'hmittee on Graduate Theses

IASAC••S~•T i" .STi...
OF TECHNOLOGY

JAN 2 9 1996

LIBRARIES

&Zg

DEDICATION

I dedicate my thesis to my parents. Mom and Dad, I thank you for all of your
support and encouragement through my years at MIT.

ACKNOWLEDGMENTS

I would like to thank Jesse Jacobson for guiding me through this thesis process.
Thanks for all of your time and support. Last, but not least, I would also like to thank my
thesis advisor, Professor Rich Wang, for your time and encouragement. Thanks for
pushing me hard and always keeping me focused on the task at hand.

Web Based Client/Server Computing

by

Hoony C. Youn

Submitted to the Department of Electrical Engineering and Computer Science on
October 3, 1995, in partial fulfillment of the

requirements for the degrees of
Master of Engineering in Electrical Engineering and Computer Science

and
Bachelor of Science in Electrical Engineering and Computer Science

Abstract

The fastest growing Internet application today is the World Wide Web. A user can get
around the World Wide Web through a Web browser. With a Web browser a user has
access to a wealth of information provided either free or for a fee. Much of the
information that can be obtained from the Web can greatly help businesses as well as
individuals with their research. The Web browser, however has one disadvantage. It is
not capable of doing any processing of the data (thus failing to utilize the client side
resources). Once the data is received on the server sided, it is just displayed. If there is
any processing being done, it is done on the server side. By creating a custom application
that talks to a Web server, the information can be processed with the client side resources.

The first part of this thesis was to create a WWW application that would allow a
user to access a back-end database from their Web browser. The scenario used for this
thesis was a fictional home banking system that would allow users to check their
balances, recent account activity, and do other simple bank tasks. The second part of this
thesis was to create a customized front-end that would communicate with a Web server
and process the returned information locally (versus making another request to the server
to further process the information). The rationale behind this idea is to remove the
processing load off of the remote Web server and bring it to the client side which is in
most cases almost as powerful as the Web servers out there, thus making a more
distributed computing environment.

Thesis Supervisor: Richard Y. Wang
Title: Associate Professor of Information Technology

TABLE OF CONTENTS

1. INTROD UCTION 6

1.1 THE G OAL.. 7
1.2 O VERVIEW ... 8

2. BACKGROUND..9

3. DESCRIPTION OF COMPONENTS .. 12

3.1 DISTRIBUTED COMPUTING ENVIRONMENT............................. 12
3.1.1 O ne-Tiered M odel ... 14
3.1.2 Two-Tiered M odel ... 15
3.1.3 Three(M ulti)-Tiered M odel.. 16

3.2 SERVER SOFTW A RE 17
3.2.1 The World Wide Web Server...17

3 .2 .1.1 S im p le R equests .. 17
3.2.1.2 H yperText Transfer Protocol ... 17

3.2.2 D atabase Server..... 19
3.2.2.1 Structured Q uery Language... 20
3.2.2.2 O pen D atabase C onnectivity 21

3.2.3 WebDBC 22
3.2.3.1 Querying the Database: The WebDBC URL 24

3.3 CLIENT SOFTW ARE 26
3.3.1 Winsock and TCP/IP..26

3.3.1.1 W eb B row sers 27
3.3.1.2 Pow erBuilder 4.0................ .. 27

3.3.1.2.1 Pow erSocket Library v2..28
3.3.2 C onnecting to Internet..32

3.3.2.1 Ethernet Connection To Internet 32
3.3.2.2 SLIP/PPP Connection To Internet... 32

4. IM PLEM ENTATION ... 33

4.1 SYSTEM O VERVIEW 33
4.2 D ESIGN .. 34

4.2.1 Back End D atabase .. 34
4.2.2 W eb B row ser C lient..35

4.2.2.1 W eb Browser Client: An Example 37
4.2.3 PowerBuilder Client.. 40

4.2.3.1 PowerBuilder Client: An Example ...43
4.3 COMPARISON: WEB BROWSER VS. POWERBUILDER GUI 45

4.3.1 W eb Browser .. 45
4.3.2 Pow erB uilder Client...46

5. FURTHER DIRECTIONS AND CONCLUSIONS ... 49

6. APPEND IX 52

6.1 DATABASE TABLE SCHEMA................................. 52
6.2 D ATABASE Q UERIES 55
6.3 H TX FILES .. 57
6.4 POWERBUILDER CODE................................ 63

Web Based Client/Server Computing

1. Introduction

The Internet, a word that has been getting a lot of hype recently, has been around for over

30 years. Until recently, the users of the Internet were primarily academics and the

science community. In 1993, the World Wide Web (WWW) was introduced. This was

the beginning of a revolution.

The WWW allows users for almost all computer platforms to access information

on the Internet with a graphical user interface (GUI). Because it was built on top of

TCP/IP, it can be accessed from anywhere on the Internet. The WWW consists of

countless servers that are connected to the Internet. These servers can be accessed

through browsers (clients such as Netscape or Mosaic) which run on all of the common

platforms (PC, Macintosh, UNIX).

Before the introduction of WWW, to access the Internet, users were forced to use

terminal type emulators which were text based. This was not very user friendly for the

majority of the public. With the GUI, the door was open for the majority of computer

users/nonusers to access the Internet. With the GUI, there is little or no learning curve. If

one can learn how to point and click a mouse, then he/she is well on her way on becoming

an expert "Net Surfer."

Now there is a very easy way of connecting to the Internet: the wonderful Web

browser (like Netscape and Mosaic). But in reality, all the Web browser does is display

formatted text and certain formatted images. The keyword is display, nothing more. The

way the information is presented is somewhat graphical, but it is very limited. Therefore,

a Web browser is nothing more than a bona-fide dumb terminal. The main drawback of a

Web browser is that it fails to take advantage of over 15 years of rapid PC application

development. When using a Web browser from a PC, the only resources that the Web

browser uses are the hard drive, RAM for caching and communications software. By

creating a customized intelligent front-end application that communicates with a Web

Server, it can be made to exploit the PC's resources as well as the application's

functionality.

1.1 The Goal

The first part of this thesis was to create a WWW application that would allow a

user to access a back-end database from their Web browser. The scenario used for this

thesis was a fictional home banking system that would allow users to check their

balances, recent account activity, and do other simple bank tasks. The second part of this

thesis was to create a customized front-end that would communicate with a Web server

and process the returned information locally (versus making another request to the server

to further process the information). The rationale behind this idea is to remove the

processing load off of the remote Web server and bring it to the client side which is in

most cases almost as powerful as the Web servers out there, thus making a more

distributed computing environment.

The home banking system, which was named Web Banking, has three major

components: the front-end (Web browser or PowerBuilder GUI), the Web Server, and

the RDBMS. (See Figure 1-1.) All of the components in the system will be explained in

much detail throughout this thesis.

Web Browser Client

Internet

P
., uL ...U L3

PowerBuilder Client
Web Server with
WebDBC interface

Figure 1-1: System Overview

Here is also a brief table that gives a summary of advantages and disadvantages of

a Web browser client versus a customized PowerBuilder client.

Table 1-1: Web Browser vs. PowerBuilder Client

1.2 Overview

Chapter 2 will discuss the background of the field involving this thesis. Chapter 3

will discuss the components used in this thesis. Chapter 4 will discuss the implementation

process of the system. Chapter 5 will discuss the final conclusions and further thoughts.

4

.q.,

2. Background

The World Wide Web uses the HyperText Transfer Protocol also known as

HTTP. This protocol is a higher level protocol that runs on top of TCP/IP. The browsers

view documents (or files) that are typically in HyperText Markup Language (HTML)

format. These HTML files are specially formatted text with references to specific image

formats. When viewing an HTML document there are highlighted text (HyperText) that

will reroute the user to another section on the same document or another document that

can either be residing on the same server or a different server. As mentioned before, the

WWW servers can be anywhere where there is a connection to the Internet. Therefore, it

is possible for a user to jump from a server in Berkeley, California, to a server in London,

England, and then to another server in Singapore. The HyperText that the user clicks on

to jump to another location triggers the browser to jump to another address which is

known as the Universal Resource Locator (URL).

When viewing an HTML document, the document physically resides on the client's

machine. The browser, however, is not just limited to communicating to WWW servers.

It can communicate with ftp and gopher servers which greatly expands the amount of

information that can be accessed from one single GUI. It can also display graphic images

such as Graphics Interchange Format (GIF) and Joint Photograph Experts Group (JPEG)

images within HTML files or by themselves. Both of these graphic formats offer the same

picture quality, differing only in compression methods. JPEG is known to have better

compression than GIF at the cost of image loading time.

Because of recent rapid growth in the number of Internet users, companies already

on the Internet can reach more people with no additional effort. Other companies who are

not on the Internet realize this as well, and as a result, are in the process of getting

connected the Internet. The World Wide Web is not only a place where to acquire

information, it is also a turning into a marketplace, where companies can sell services on

the Internet.

Because of the potential that the Internet has of being a huge marketplace,

companies are always looking for ways to provide new services on the Internet. Since a

lot of these services involve providing specific information that has already been formatted

and organized in to a relational database, it would be too much work to try to replicate

this information into HTML documents. To solve this problem, tools have been

developed that allow a WWW server to communicate with back-end databases like

Oracle, Sybase, and Informix.

This thesis employs one of the tools (database access tool) which allows a user to

access a back-end database through a WWW server. With the ability to access back-end

databases through the WWW servers, the Web browsers have even more added value.

Not only can users access data from servers, but they can directly input data to the same

database servers (with specific privileges) through HTML forms, which can greatly reduce

tedious manual data entry hours. These are only two of many applications that can be

made as a result of integrating a Web browser client with a Web Server that can

communicate with a back-end database. Now, there can be more services available on the

Internet.

The scenario used to drive the development of the application for this thesis is a

fictional Web banking system. As mentioned before, the Web browser is basically a

dummy front-end GUI (meaning that it does not do any processing or computations on

the client side). It is only capable of displaying text and special images. Because a good

banking application involves a lot of data transfer, a good presentation method, and the

ability to manipulate data, there is a need for an alternative front-end. A front-end that

could access the same information from the Web Server that would be customized to fit

bank customers' needs. Therefore, two system prototypes were developed for this thesis.

The first prototype was developed using a browser as the front-end to the Web

Server. This application is geared for the casual or inexperienced user. The second

prototype was developed using PowerBuilder as the front-end GUI. Because

PowerBuilder was used in the second prototype, some of the features of PowerBuilder

were implemented into the prototype which made the PowerBuilder front-end far superior

to the Web Browser front-end. One such feature of PowerBuilder that was implemented

was the graphing feature. After the user has viewed the information in the table, he/she

may wish to see the information in a chart format. With the PowerBuilder interface, this

can be done instantly because the processing (creation of the chart) is done locally.

Graphing is possible with a Web browser front-end, but the graph has to be created

remotely (on the Server) and then is converted from its native format to GIF format so

that it can be displayed by a Web browser. Although the server is a high output machine,

this is a processor-intensive task. GIF files, however, tend to be large in size and therefore

will take more time to send it back to the user requesting for a chart. The end result is the

performance of the overall system (Web browser application) will be much slower than the

PowerBuilder application. Although the PowerBuilder front-end is far superior to the

Web browser front-end, it does have one limitation. It is not generic, (meaning that it

cannot browse the Web and view other home pages) but customized which is precisely the

reason it is superior for this particular application. PowerBuilder could be used to make a

generic GUI like Netscape, but that was not the purpose of this second prototype.

There were two parts to this thesis. The first part of this thesis was to build an

application on the Web that utilizes tools that will allow a WWW server to communicate

with a back-end database. The second part of this thesis was to offer an alternative

approach to accessing data on the web (other than through a Web browser). This more

advanced front-end (PowerBuilder) is intelligent because it uses local (client-side)

resources to display objects and manipulate/process information as opposed to the

browser which only displays information.

3. Description of Components

3.1 Distributed Computing Environment

A distributed computing environment exists when server pieces of a particular application

run on different machines in a network. A typical network might include PC's, MACs,

UNIX workstations, NT server, or OS/2 servers. (See Figure 3-1.) Because there are

many different machines with different operating systems connected to the same network,

there must be a common language that every computer speaks so that they can exchange

data back and forth. This common language is implemented through software that each

computer has and this software is referred to as the transport layer. Without this transport

layer, the network cannot function. A network assumes a transport layer which will allow

file transfer (from one machine to another) as well as accessing data from one machine to

another.

Because the scope of this thesis dealt with the Internet, the transport layer adopted

for this thesis was TCP/IP. Another reason why TCP/IP might be a better choice for a

transport layer is that all OS platforms have TCP/IP software, whereas other transport

layer software are only available on some of the platforms.

There are several advantages that distributed computing has over single-system

computing. Probably the most important advantage is accessing distributed data. In many

companies data exists in all kinds of formats on many different machines. This

encompasses utilizing the current computing resources to meet their information needs. In

other words, a company would not have to throw away certain computers because of

compatibility issues.

Windows Mac

Figure 3-1: A Distributed Computing Network

I ,

m

There are three types of client/server models that illustrate the benefits of a

distributed computing environment.

3.1.1 One-Tiered Model

A one-tiered model is the classic mainframe/terminal model where one single

machine satisfies the users. As can be seen from the Figure 3-2, all of the functionality,

presentation, and the DBMS's reside on the mainframe. This provides centralized control

for the administrators as well as a secure environment. The client, however is a dumb

terminal, meaning that it does not do any presentation or processing. Everything is done

on the mainframe and the information is just fed back to the terminal.

MAINFRAME

Terminal presentation Relational
and Database Lbdatabase

functionality Management
v_ tes m

Figure 3-2: One-Tiered Model

The advantages of this system is that it is much easier to maintain from a systems

administrator point of view because it is centralized. However, there are certain

disadvantages to the system for today's business environment. One of the most

significant drawbacks to this architecture is that the applications do not scale.

Since the host machine is limited to the number of processes it can run at one given

time, there is only a finite number of users that can access the system at one time.

Moreover, once the maximum capacity is reached, another machine must be purchased.

4

Another, perhaps more significant, disadvantage to this architecture is that one-

tiered computing leads to hardware lock-in. This means that the system is running

proprietary software usually made by the hardware vendor. Once that version is installed,

the system administrator is tied to the particular vendor for support, upgrades and help.

3.1.2 Two-Tiered Model

The main difference between the one-tiered model and the two-tiered model is that

the application runs on two separate processes. (See Figure 3-3). The client, the first

process, will make a request to the server, another process. Many times the server is

usually an RDBMS. The client would be something like a PowerBuilder GUI which

requests data from an Oracle Server and upon retrieving it, displays it in a graphical

manner (tables and charts). In this example, the processing is done at both ends.

Figure 3-3: Two-Tiered Model

"Drawbacks to two-tiered computing are that applications tend to rely heavily on

hard-coded SQL in the form of proprietary stored procedures, and the applications only

scale to a point. With too many users, the applications run very slowly." (Open

Environment Corporation, p9)

The main drawback, like the one-tiered model, deals with lock-in, but in this case it

is software lock-in. Once a company commits to one software package, they are locked-in

to the software for the life of it.

3.1.3 Three(Multi)-Tiered Model

A multi-tiered computing environment breaks up the applications into three (or more)

levels (see Figure 3-4). The front layer handles the presentation, the functionality part has

moved to the middle layer, and the back end is the databases and legacy systems. One of

the biggest advantages of this strategy is the increased interoperability among operating

systems, client programs, server languages, RDBMS's, and legacy systems. Also, this

architecture is modular and scaleable.

Figure 3-4: Three-Tiered Model

The functionality servers can be written in a variety of languages and can reside on

a variety of operating systems. Probably the most significant advantage of this

architecture is that "it solves the major drawbacks of both the one-tiered environments

(hardware lock-in) and two-tiered environments (software lock-in) by allowing any

machine to talk to any other machine without requiring a specific software product for this

communication. (Open Environment Corporation, pl0)

3.2 Server Software

3.2.1 The World Wide Web Server

The WWW server used in this thesis was the HTTP Server Version 0.96 freeware

developed by the European Microsoft Windows NT Academic Center (EMWAC). This

software was installed on a Windows NT Server (Version 3.5) machine which runs on a

60 Megahertz Intel Pentium Processor. The WWW Server uses port 80 which is the

standard World Wide Web port number.

3.2.1.1 Simple Requests

A WWW server listens on port 80 for requests. Once a request is received then

the system analyzes it. A sample request by a Web client could be the following:

http://myserver.com/path/filename.htm

The Web browser then does a lookup on the myserver.com address to figure out where

to send it. After connecting to the machine, the HTTP in the request tells it to send the

message to port 80 of the myserver.com machine. Then the browser sends the path with

the filename (/path/filename.htm). Along with the message it has to send a method, which

in most cases is a GET. This is explained in further detail in the next section.

3.2.1.2 HyperText Transfer Protocol

HyperText Transfer Protocol is a higher level protocol that the WWW uses to

communicate between the Web browsers and the WWW Servers. Because HTTP works

over the Internet, it assumes a TCP/IP connection. (TCP/IP is the mainly used over the

Internet) This does not, however, mean that it cannot run over other protocols over the

Internet. Here is a definition of HTTP according to the W3 Consortium.

"The HyperText Transfer Protocol (HTTP) has been in use by the WWW global

information initiative since 1990. HTTP is an application-level protocol with the lightness

and speed necessary for distributed, collaborative, hyper media information systems. It is a

generic, stateless, object-oriented protocol which can be used for many tasks, such as

name servers and distributed object management systems, through extension of its request

methods (commands). A feature of HTTP is the typing and negotiation of data

representation, allowing systems to be built independently of the data being transferred.

HTTP is also used for communication between user agents and various gateways,

allowing hypermedia access to existing Internet protocols like Simple Mail Transfer

Protocol (SMTP), Network News Transfer Protocol (NNTP), FTP, Gopher, and WAIS ."

(World Wide Web Consortium, http://www.w3.org/pub/WWW/Protocols/Overview.html)

HTTP can be thought of as a set of methods or commands that the client will use

to communicate to the WWW server. Table 3-1 below list some of the methods according

to HTTP version 1.0.

Table 3-1: A description of the methods in HTTP version 1.0

Of all of the methods described in Table 3-1, the GET method is most frequently used.

When using a Web Browser like Netscape, clicking on a HyperText will trigger an GET

with the URL associated to the HyperText. In other words in most cases users are

downloading HTML documents which are obtained through the GET method. Likewise

both of the prototypes implemented only used the GET method.

3.2.2 Database Server

A relational database management system (RDBMS) consists of data organized into

structured tables (rows and columns). The columns of the table are calledfields or

attributes much like Table 3-1. Table 3-1 has 2 fields or attributes. There are many

software vendors who make RDBMS's. Some of the most common RDBMS are Oracle,

Sybase, DB2 (IBM) and Informix. These RDBMS's are very large programs that usually

reside on powerful UNIX workstation servers NT or OS/2TM servers. The reason why

these RDBMS's are not on the standard desktop is because of the lack of processing

power or because of the operating system. Within a large distributed computing

environment, a database server will be taking requests from many users as well as doing

other tasks or processes. Therefore, it needs to be able to perform multiple tasks at the

same time instead of queuing up the tasks which would make it unpleasant for the clients

requesting data and other services. Each of the operating systems are multi-tasking, multi-

threading operating systems and in many cases these servers even have multiple

processors.

All of the RDBMS's mentioned above were designed to optimize the multi-

threading ability of the operating system.

3.2.2.1 Structured Query Language

All of the RDBMS's mentioned above work in a language called Structured Query

Language, more commonly referred to as SQL. SQL was developed by IBM in the

1960's and is now the industry standard on RDMBS's. With SQL a user can create,

update, modify and delete tables. As well as administering the data, the user can query the

database with a given criteria. For example, if the user wanted to find out all of the

HTTP methods that began with the letter 'p' then the user would type:

Select method from Table_3-1

where method like 'p%'

This is an elementary query for an elementary table. As the table become more and

more complex, so does the query. Although SQL is a very powerful language for

accessing and administering a database, it is not the easiest language to use, especially for

non-technical users. To help the users many software vendors like Oracle and Microsoft

have come out with their database browsers also know as Query By Example software.

This allows the user to go through a database from a PC and point and click with their

mouse to select and view tables. Although this is very powerful, in many cases, it is too

general or generic. What the end users need are very customized front-ends so that they

can access just the data that they are interested in.

To meet the demand for customized front-end (like the marketing division of a

company), there is presentation software like Visual Basic, PowerBuilder, and SQL Gupta

just to name a few. These allow easy access to viewing data as well as updating data

through an easy to use graphic user interface (GUI). Each of these presentation software

(or toolkits) can communicate with the back-end RDBMS's through their own

Dynamically Linked Libraries (DLL's) or through a standard defined and developed by

Microsoft called Open Database Connectivity (ODBC).

3.2.2.2 Open Database Connectivity

ODBC is a standard defined by Microsoft which provides a standard mechanism

and language for applications to communicate to SQL relational databases. Although

SQL is it's own language, there are different flavors which differs from vendor to vendor.

ODBC allows applications to talk to a variety of back-end RDBMS's with one

single dialect. It also allows any application that is ODBC compliant to communicate with

any back-end database. One of the disadvantages in using ODBC is that the application is

limited to the SQL commands that ODBC supports. In most cases, this usually is not a

problem, but in some cases there might be special (SQL) commands that are specific to the

RDBMS (each RDBMS has its own flavor of SQL) that user might wish to execute which

would not be possible through ODBC.

The second disadvantage to using ODBC is performance. An application will run

faster if it communicates directly with the database versus talking to ODBC and have

ODBC communicating to the database (see Figure 3-5). In applications where transaction

speed is the bottleneck, connecting to a database via ODBC might not be the optimal

choice, but more often then not (in large companies with LANs and WANs) the network

throughput is the bottleneck. (Belford, p12)

/IS

Oracle DLL

Figure 3-5: Database Access: ODBC vs. Direct DLL

3.2.3 WebDBC

WebDBC is the first SQL database connectivity product for the World Wide Web.

It is a CGI application, but unlike other database connectivity tools, it does not require

intense programming in C or Perl. Because there was such a high demand for services that

wanted to be offered on the Internet that involved connectivity to databases like point-of-

sale systems, user-registration, keyword searches, and catalog shopping (just to name a

few), Nomad created WebDBC.

WebDBC is a command line application that helps Web Servers carry out SQL

encoded requests. It takes a request (from the Web Server) and converts it into a SQL

query, submits the query to the database, formats the results of the query, creates a Web

page dynamically and then returns the page to the Web Server so the Web server can

return the page to the client (usually a Web browser).

When a Web server receives a request from a client it tries to find the document (if

the request was for a document) and then return it to the client. It can also, however, run

an application on the server as opposed to retrieving a document. The application is

invoked through the URL and the rest of the URL is usually the arguments that are to be

passed to the application being invoked. Then, the application will process the request

and return a Web page to the user. For any Windows, Windows NT or UNIX machine to

be invoked by a Web server, the application must be a command line application which

WebDBC is (See Figure 3-6).

©Nomad Corporation 1995

@Nomad Corporation 1995

Figure 3-6: WebDBC Architecture

As mentioned before, once WebDBC is invoked by the Web Server it examines the

request (the URL passed from the client) more closely and converts it into an SQL

statement. This statement (select or update) is then passed to the database that is

specified in the request. The connection to the database is made through ODBC, the

Open Database Connectivity API defined by Microsoft. This is good because ODBC can

Internet
Web Client

(Netscape on
tht Madc

Web Client
(Pipeline)

)

the Mac)--I

communicate with the majority of RDBMS's out there. The only problem is that

sometimes these 32 bit drivers which are required for Windows NT are sometimes scarce

and almost non-existent for UNIX. (There is only one company that makes ODBC drivers

for UNIX). With the release of Windows 95, a full 32 bit operating system, 32 bit ODBC

drivers will become more available as Windows 95 becomes the PC desktop standard

operating system. (Belford, p5)

When the results are ready (from the database) WebDBC merges the data into a

Web Page which has special formatting markers. This process is very similar to a mail

merge process in common word processor programs. This output Web page with the

special format markings can is very much like a template specifying where the data should

be placed. WebDBC does not determine which output page to use. It is already

determined from the request which comes from the client.

These output pages or files are called HTX files because they have a .HTX

extension instead of a .HTM or .HTML extension. In addition to the special format

markings, the .HTX file also has generic HTML markings. This is good because it allows

the data to be incorporated into an elaborate Web page.

3.2.3.1 Querying the Database: The WebDBC URL

As mentioned before, the request from the client is submitted via a URL. Figure

3-7 shows a sample request.

http://persimmon.mit.edu/bin/webdbc.exe/bank/q_combined_trans/select/&/demo
/access/1 /welcome1 .htx?&d_AccountNumber=45678

Figure 3-7

Note: The URL is always one continuous line. There is never a carriage return.

Most Web users do not just type in random URL' s to get connected although they

do have to do it at least once. They usually start of at one place and start clicking their

way around. In other words URL's are always predefined within the Web pages and that

is how the database is queried from the Web browser. (The URL is hard coded into the

Web page.) Therefore, the user is not required and should not type in the WebDBC URL

(as in Figure 3-7). However, this does not mean that the query is always hard coded and

the users cannot specify parameters. Because WebDBC supports forms, and can pass

variables, queries can be created in a more dynamic fashion.

When the URL in Figure 3-7 is submitted, it is mapped by the Web server into the

following request-specific environment variables.

Table 3-1: Web Server Environment Variables

After the server invokes WebDBC, the PATH_INFO is further broken down (by

WebDBC) into the following variables:

Table 3-2: WebDBC Variables

The resulting SQL statement from Figure 3-7 would be

select COLUMNS from q_combined_trans where AccountNumber=45678

COLUMNS are the fields in the table q_combined_trans that are specified in the .HTX

file. In other words, the return fields are not specified in the URL request, but rather in

the return file (.HTX file).

3.3 Client Software

3.3.1 Winsock and TCP/IP

Creating TCP/IP applications under Windows 3.1 was never easy, but with

Winsock it is much easier than before. In the beginning (of Windows 3.1) there were a

number of companies that developed Windows 3.1 TCP/IP networking products, each

with its own proprietary programming interface. Although these networking products

worked well within a Windows based TCP/IP network they was not universal. Software

developers had to program to several conflicting API's for their software products to

capture the whole Windows TCP/IP market. Windows 3.1 lacked a standard interface for

Windows TCP/IP program until the introduction of Winsock.

Winsock is based on the Berkeley Sockets, a known proven standard for TCP/IP

(programming in UNIX). With this standard, developers who worked with a Winsock-

compliant TCP/IP networking package can begin developing their own Winsock

applications without buying a separate TCP/IP development library. Also, it became much

easier to port code over to Windows from UNIX TCP/IP applications.

Despite this new development, Winsock did not really become popular all of a

sudden. Because companies had invested so much of their time, energy and money into

development of their TCP/IP applications, they were very reluctant to scrap their whole

project and move over, their current TCP/IP applications did everything they needed to be

done.

Then came the Internet. Internet TCP/IP applications were being developed by

people around the world which made the lack of standard no longer acceptable.

Therefore, Winsock became the standard for Internet application programming for

Windows as well as Internet TCP/IP networking applications. Companies who wanted to

connect there Windows computers to the net had no choice but to switch to Winsock or

not be connected. (Coombs, Chapter 15)

3.3.1.1 Web Browsers

Any Web browser can be used to operate the Web Banking system. Web browsers

that are designed for Windows (which was the client platform in this thesis) use the

Winsock DLL to communicate with the sockets.

3.3.1.2 PowerBuilder 4.0

PowerBuilder 4.0 is a very powerful graphical PC-based client/server application

development environment. PowerBuilder is specially tuned for developing Windows

applications which access database sources of all types. PowerBuilder is an object

oriented, event-driven programming environment. This is ideal for creating Windows

applications since most Windows applications take advantage of a GUI.

Although PowerBuilder's most powerful feature is its ability to easily connect to

RDBMS's either through their proprietary drivers or through ODBC and return the data

in many different formats, it can be used to create other Windows applications because of

its easy-to-use developing environment. A window with buttons can be created literally in

seconds. What once took weeks or months to develop, can now be developed in hours or

days. This is the power of PowerBuilder.

Although it seems like PowerBuilder is a very simple program it is very powerful.

Almost every object in PowerBuilder can be customized and manipulated to do whatever

the developer wishes. An example of an object is a window or a button which can be

either clicked or double clicked or dragged. Clicking, dragging, and dropping are events.

Scripts can be written for events such as those to execute functions for calculations,

displaying a graph, or doing whatever the developer wants it to do.

PowerBuilder was designed in a very modular way so that libraries and other

modules can be added on to it. This allows software vendors to develop add-ons to

PowerBuilder or additional toolkits that will enable PowerBuilder developers access into

certain gateways. One such application of this is the PowerSocket Library developed by

Jason Coombs.

3.3.1.2.1 PowerSocket Library v2

The PowerSocket library is a dynamic library called WINSOCK.PBD. It enables a

PowerBuilder developer to do any type of socket programming for any type of TCP/IP

application. Perhaps the best way of illustrating how PowerSocket programming works is

through a sample example. (Coombs, Chapter 16)

3.3.1.2. 1.1 Example: Retrieving files from a Web Server

Retrieving files from a WWW Server is a fairly simple task. There are four basic

things that need to happen to retrieve a file:

1) Create a new socket user object

2) Connect to the WWW server on port 80 (the default port for WWW servers).

3) Send a GET with the specific file and path.

4) Retrieve the file using asynchronous messaging

Here is the command for issuing the get after connecting to a specific computer on

port 80.

//This code was originally written by Jason Coombs, slightly modified by Hoony Youn

ulong ulAddr // the unsigned long version of the host's IP address
string sSend, sPath
int a

//the urlgetfilenameO function strips thefilename off of the URL
I/NOTE: This is not an intelligent application. It assumes that the
// c:\temp\ directory exists and will convert the filename entered
//in the URL to DOS form: no more than 8 characters with a
//possible 3 character extension. A file with
// the extension .html is converted to .htm so that
/ you can specify the URLfor a UNIX-based HTML document
//without causing this program to choke. All other > 3 character
/ extensions are suspect, however.

//sFileName is an instance variable of the window. Sloppy, but
//simple. The custom event triggered when data arrives on the socket
//needs to know this filename, and making it an instance variable
//was an easy solution.
//sFile = "c:1temp\" + urlgetfilename(URL)

sFile = "c:\temp\file.txt"

// sSocket is an instance variable of the window because it
//needs to continue to exist after this script is executed
sSocket = create socketstream // create a new stream socket

// The URLGetAddress function accepts a URL and performs gethost
// DNS lookups to obtain the unsigned long address. No error
// checking is performed -- if the name or address resolution
I/fails, you're out of luck.

ulAddr = URLGetAddress(URL)

//The URLGetPath function accepts a URL
sPath = URLGetPath(URL)

I/perform a wsconnect() on the stream socket. Connect to port 80
// of the host specified in the URL. Port 80 is the standard http
//port.
a = sSocket.wsconnect(ulAddr,80)
if a = ws.SOCKET_ERROR then

messagebox("Error","No connect")
end if

//Enable asynchronous messaging for this socket.
I the ws.wsor(ws.FDREAD,ws.FD_CLOSE) function returns the OR'ed
//value, which contains the appropriate bit-mask to tell the
I wsaasyncselect() function which events to monitor on the socket.
//handle(wmain) returns the window's handle.
/ 1024 is the code for PowerBuilder's custom01 event: pbmcustom01l
I this is the event that is executed every time either of the
I FD_READ or FD_CLOSE events occur on this socket.
sSocket.wsaasyncselect(handle(w_main),1024,ws.wsor(ws.FDREAD,ws.FD_CLOSE))

// this is the command sent to the HTTP server to retrieve the
I/file identified in the URL. the -r-n-r-n means carriage return (~r)
// linefeed (~n) carriage return (-r) linefeed (~n)
sSend = "get " + sPath + "-r-n-r-n"

// this sends the get command to the socket (which was connected to
I/port 80 (the http server) of the specified host) -- again, there
// is no error checking or other intelligence here. If the connect
//failed for some reason, this is going to blow up.
sSocketsend(blob(sSend),len(sSend),0)

//check to see if the file that we want to write to exists.
// if it does, delete it just to be on the safe side. (not safe
I/for the file in question, of course.)
if fileexists(sFile) = TRUE then

filedelete(sFile)
end if

I/open the output file
iFile = fileopen(sFile,StreamMode!,write!)

return

The following script is placed in the pbm_custom01 event of one of the windows

(it doesn't matter which window, just as long as it is opened and the script references its

handle). This script does the actual reception and storage of the data which in this case, is

written into file. txt.

int iLen, iWhichEvent
blob blobtest // this is blob. Blob is your friend. Blob is a

// distant relative of Microsoft's Bob(tm).
int fp
string text

// this is the birth of Blob. The baptism comes next.
//the blob() function is a PowerBuilder function. It might help to
// read about it.
blobtest = blob(space(1024))

/ the WSAGetSelectEvent() function returns the event code that
//occurred on the socket, causing the Winsock DLL to trigger this
// event. In this application, there are only two possible values
I/for iWhichEvent: ws.FD_READ or ws.FD_CLOSE since the http()
I/function performed a WSAAsyncSelect() on the socket requesting
//notification for these two events.
iWhichEvent = ws.WSAGetSelectEvent(message.longparm)

I Check to see if this event was triggered due to a ws.FD_READ
I condition on the socket -- indicating that there is now data ready
S/to receive.
if isvalid(sSocket) = TRUE and iWhichEvent = ws.FD_READ then

M iLen will contain the number of bytes received. This is important
I because your entire blob buffer might not be filled. You're
/ only interested in the data copied by the recv() function, so

I capture its return value and only use the portion of the blob
I buffer that was actually populated with data by recv()

iLen = sSocket.recv(blobtest,1024,0)

/ now write the data of interest to the file.
/ the blobmidO function is usefulfor doing this, as you can

//specify the length of the data you want returned, thus
// limiting what you write to the file to just the data
/ populated by the recvO() function. (see note above)
if iLen > 0 then

filewrite(ifile,blobmid(blobtest,1l,iLen))
elseif iLen = ws.SOCKET_ERROR then // oops, an error occurred.

messagebox("Socket Error",string(ws.wsagetlasterroro))
end if

end if // end of isvalido if

/ Now check to see if the ws.FDCLOSE event triggered this script.
//If so, then the code within the previous if statement will have

// been skipped.

if iWhichEvent = ws.FD_CLOSE then
fieclose(iFile) // close the file since we're done writing
sSocket.closesocketo // close the socket
destroy sSocket // destroy the socket object
if status = 1 then open(w_menu)
if status = 2 then open(w_accountinfo)
if status = 3 then open(w_checkingtrans)
if status = 4 then open(walltrans)

end if

3.3.2 Connecting to Internet

Connecting to the Internet can be done in a variety of ways. The MIT net is

physically connected to the Internet. For people who are not in academia, connecting to

the net could involve getting an ISDN connection from a provider, leasing a T1 line, or for

many home users, getting a dial-up SLIP/PPP account.

3.3.2.1 Ethernet Connection To Internet

Once at a location where there is a direct connection to the Internet, getting

connected is as simple as installing the Ethernet card in the computer and connecting the

card with a cable to the existing network. Of course there are certain parameters that

needs to be known to be totally ready, but that is true in any situation. These parameters

are the IP address of the machine, the addresses of the Domain Name Servers. DNS

allows one machine to connect to another machine on the Internet simply by calling its

name instead of using its IP address.

3.3.2.2 SLIP/PPP Connection To Internet

Most people are not affiliated with an academic institution or a company which has

a direct link to the Internet, so they have to get connected through other means which is

usually through an Internet access company. For the home users, the most common way

to connect is through a modem. This is called a SLIP/PPP connections. SLIP stands for

Serial Line Interface Protocol and PPP stands for Point to Point Protocol. Either protocol

can be used and there is no evident advantage for using one over the other. When users

connect to the Internet access service, they literally join the network of that access service.

They all will have there own IP address.

When any Winsock application is triggered, the computer dials out to the Internet

access service and connects to the Internet. If a connection has already been established,

then the computer simply executes the application.

4. Implementation

The scenario used for the prototypes developed for the thesis is a home banking

application. Two prototypes that were developed for the home banking system. Both of

them had the same type of features: the ability to check balances, recent account activity

and graph data.

4.1 System Overview

As mentioned in the introduction, the home banking system, which was named

Web Banking, has three major components: the front-end (Web browser or PowerBuilder

GUI), the Web Server, and the RDBMS (see Figure 4-1).

Web Browser Client

Internet

PowerBuilder Client
Web Server with
WebDBC interface

Lia' taUlba

Figure 4-1: System Overview

4.2 Design

The goal of the Web Banking system was to offer a faster and more efficient way

for a bank customer to do remote banking. This motivated the design of the Web

banking system. The banking system has the ability to access multiple accounts from one

session. In other words the user, after logging in, can see all of his/her accounts and

continue their session from there, versus doing individual logins for each account.

After logging into the banking system the user comes to a main menu where he/she

can choose which account to access. A Web page/window then will prompt the user for

the particular information that the user wishes to access depending on whether the account

is a checking, savings or money market account.

4.2.1 Back End Database

Because the Web Banking system is a data-intensive application, the database

design is the heart of the whole Web Banking system. The RDBMS used for this system

_I____ _ _ _ ___~I __ _ _ _ _1___1__ _~ __ ______~X_~______ _

I~

4

I

is Microsoft Access Version 2.0. Access has a table-like object called queries that are

effectively virtual tables. There were a total number of 9 tables created and 5 query

objects created. All of the query objects were built off of the tables, and only these

objects were accessed during a user session with the Web Banking system. The schema

and design of the tables and the query objects can be seen in the appendix.

4.2.2 Web Browser Client

The first system that was designed was the application using the Web browser as

the front end. The whole banking application relies on successful transfer of data from the

database back to the user. Therefore, the commands that are driving the request for data

are SQL commands which are submitted from the Web browser side in the form of a

URL. As mentioned in Chapter 3, WebDBC interfaces a Web browser with SQL

databases.

Section 3.2.3.1 discussed how to query the database with the URL. It also

mentioned that the data was returned back to the user through a .HTX file. A .HTX file is

a specific file where column names can be specified so that the appropriate information

can be returned to the user through that file. The .HTX file also has HTML in it so that

the return page can create links to other pages. This is an important feature because it

allows the links on that page to be created dynamically from information received from the

database. The feature was vital to the design process of the Web banking system because

one banking operation might involve several screens which are all created dynamically

from information specific to the user.

A .HTX file can also be thought of as a template where data just gets inserted into

a format that the user can interpret. These files resided on the Web server and they

resided on three main directories. These directories were organized according to the

account type (i.e. checking, savings, or money market). Figure 4-2 shows a picture of the

directory structure.

Figure 4-2: Directory Structure of Web Server

The access directory contains the main welcome screen that the user sees when

first logging in. This screen then connects the user to yet another screen according to

which account the user has chosen. The links to the bank accounts on the main welcome

screen are created dynamically based on information from the database and connects the

user to the appropriate .HTX file from directory related associated with the type of

account. Table 4-1 shows the .HTX files used for the Web Banking system.

L 2
C33

- C docs
- C egi
- r error

I- demo

I

Table 4-1: Description of HTX files

Because the Web server was installed on a Windows NT machine with a FAT disk, it

could only support files with 8 character names.

4.2.2.1 Web Browser Client: An Example

Here is an example of getting checking account information via the Web browser.

After the user, Jesse, logs into the system, he sees the following screen which is the

WELCOME.HTX file. All of the links on that page pertaining to the accounts were

created dynamically. All of the accounts that are of the same type will use the same URL

except for the last few characters which specify the account number.

- I III~ I

Nesap- [Wlcm to th We Banin Syte jese if

Figure 4-3: Main Menu on Web Browser

Clicking on the 45678 link will cause the following URL to be submitted.

http://persimmon.mit.edu/bin/webdbc.exe/bank/q_combined_trans/select/&/demo
/access/1/welcomel .htx?&d_AccountN umber=45678

Since account, 45678 is a checking account which is also type 1 (savings is 2 and money

market is 3), the number 1 gets inserted into the URL (above). If the user had chose

account 45679 which is a savings account (type 2), then the URL submitted would have

looked like this.

http://persimmon.mit.edu/bin/webdbc.exe/bank/q_combined_trans/select/&/demo
/access/2/welcome2.htx?&d_AccountN umber=45679

Here is the result of clicking on 45678:

Figure 4-4: Account Information on 45678

After entering 5 in the text box, here is what the Web Server will return.

I I

Nescp -I [Bnkn Trasacions

Figure 4-5: Checking Transactions

4.2.3 PowerBuilder Client

The second part of this thesis was to create a customized front end that could

communicate with the Web server. The design and the functionality of the PowerBuilder

GUI is parallel to that of the Web browser system. The two systems are identical except

for the front end and for the fact that PowerBuilder has the ability to do local processing.

Like a Web browser, the PowerBuilder GUI submits a URL to the Web server asking it

for specific data. Like with the Web browser client, the Web server returns the

information back to the PowerBuilder GUI in a .HTX file except this file has no HTML

formatting. Once the file has been received it is then brought to a data window object in

PowerBuilder for display.

Like the Web browser front end, the PowerBuilder front end's windows are

created dynamically depending on the account information. Because PowerBuilder is a

true programming environment, applications are much easier to develop. Local, instance

and global variables exist as well as the ability to reference other objects within the

application.

PowerBuilder is an object oriented programming environment. Every object has

attributes that can be set visually (while developing the application) or dynamically (while

the application is running). Two of the higher level objects in PowerBuilder are the

window object and the data window object. The window object is just a plain window like

those which make up the Windows 3.1 environment. The data window object is usually

placed within a window object. The data window object's purpose is to display the data

that has been returned to the application from a database. PowerBuilder comes with

drivers will connect directly to common RDBMS's like Oracle, Sybase, and Informix.

Table 4-2 shows a list of the all of the window objects and table 4-3 shows a list

of the data window objects created for this system.

Table 4-2: Window Objects for PowerBuilder GUI

Table 4-3: Data Window Objects for PowerBuilder GUI

In the case of this system, the data window object was not associated with any RDBMS's

but with a data file which is received from the Web Server. PowerBuilder has the ability

to import a data files (in a tab delimited format) into a data window object by using the

ImportFile() function.

There was socket programming involved which dealt with communicating with a

Web server and retrieving specific files. The PowerSocket Library which was introduced

in section 3.3.1.2.1 was used in this system. Retrieving files from a Web server was also

discussed in that section.

4.2.3.1 PowerBuilder Client: An Example

Here is the PowerBuilder version to the example discussed in section 4.2.2.1.

After logging into the system the user, Jesse, will see this.

Pigure 4-0 Main Menu

Accessing checking account 45678 only takes a double click on the box containing

the account 45678 which will then open another window returning information specific to

that account. Like the Web browser front end, a URL is submitted to the Web server.

Like in the Web browser example, the URL will look like

http://persimmon.mit.edu/bin/webdbc.exe/bank/q_combined_trans/select/&/demo
/text/1/welcomel .htx?&d_AccountN umber=45678

The only difference between the URL's in the two front ends is that the .HTX files for

PowerBuilder reside within the TEXT subdirectory. Because PowerBuilder does not need

__

HTML in the .HTX file a duplicate set of .HTX files were created for the PowerBuilder

version and were placed under the TEXT subdirectory.

Here is what the result looks like.

Figure 4-7: Account Information on 45678

To view checks over $5.00 that were cashed recently, click on the by amount

button and enter 5 into the text box and click OK.

The results are as follows:

_ ___ _____ ___._

Figure 4-8: Information on Checking Transactions

4.3 Comparison: Web Browser vs. PowerBuilder GUI

4.3.1 Web Browser

The Web Browser is very easy to use, whether or not the user is an experienced

Web user. Everything function on the system is intuitive. It does, however, have its

limitations. All Web browsers do is display text and images. This is very much like a

dumb terminal interface. This setup follows the two-tiered model explained in chapter

three.

The processing involved in making the graph cannot be done on the Web browser

side. It is done on the server side, or it could be done on another server, but not on the

client side. Another drawback to this graphing approach is that the output graph format

must be converted to a GIF file before returning it to the client. This process can be very

long when dealing with lots of numbers. Also, returning a large GIF file to the client can

be very slow especially for SLIP/PPP users who are connected through an analog modem

link.

4.3.2 PowerBuilder Client

PowerBuilder is the answer to all of the problems and limitations to the Web

browser interface. Because the only requests that the PowerBuilder Interface makes to

the Web Server are text files, the remaining processing is brought to the client

(PowerBuilder) side. One advantage to this three-tiered model is that it frees up the

server resources from other tasks like graphing (as in the Web browser version) which

improves the overall performance.

Not only is the performance better with this model, but as mentioned before, it

allows the application to utilize the superior graphing functionality of PowerBuilder. (See

Figure 4-9.)

Figure 4-9: PowerBuilder Graph

Since the database used in the Web browser version is the same database that is

used in the PowerBuilder version, the data that is returned to the PowerBuilder client is

the same data. The only major difference is that it is an unformatted version (non html)

since the data is not being viewed through a Web browser. It is, however, just a plain text

file (tab delimited). Therefore, the differences between the versions lie in the .HTX files

that are returned to each of the clients.

I

Here is an example of a .HTX file for Netscape:

<HTML>
<HEAD>
<TITLE>Welcome to the Web Banking System <%r_username></TITLE>
</HEAD>
<BODY>

<hl> Welcome to the Web Banking System <%r_username> </hl>

<h2> Here are the following accounts that you can access: </h2>

<pre>
 Account Number Account Type<hr></pre>

<%detail>
<pre>
<A
HREF= "Ibin/webdbc.exe/bank/lqcombined trans/select/&/demo/access/<%r_AccountType>/welcome<%r
_AccountType>.htx?&d_AccountNumber=-<%r_AccountNumber>">
<%r_AccountNumber> <%r_AccountName><p></pre>
<%/detail>

<hr>
<h2> Other Options: </h2>

 View All
Account Balances
 Transfer
money
d
<h5>
<hr>

Please send questions and comments to spoon@mit.edu

© 1994-1995 The Information Technology Group at the Sloan School of Management

Cambridge, Massachusetts. All Rights Reserved.</h5>

</BODY>
</HTML>

The result can be seen in Figure 4-3.

Here is the corresponding .HTX file for the PowerBuilder client

<%r_AccountNumber> <%r_Balance> <%r_AccountName>

The results can be seen in Figure 4-6.

5. Further Directions and Conclusions

What used to take one hour for a PC to do 10 years ago can be done in merely

seconds now. Today, even the top of the line PC's can keep up with workstations that are

as much as 10 times their price! Because PC's today are so powerful, many companies

who would have otherwise bought a workstation are now buying PC's.

This thesis implemented two applications: one that gives access to a back-end

database through a WWW server from a Web browser, and one that accesses the same

back-end database through a WWW server from a PowerBuilder GUI.

Web Browsers

Spry Mosaic NetScape PowerBuilder

LAN

Router

Internet

Router

Server
Router

SLAN/WAN

Database Servers

@lW3
Figure 5-1: Thesis Architecture

-- I ---

I T, c,,,,e

i LAN/WAN

©IW3

The PowerBuilder GUI allows users to exploit the features of PowerBuilder as well as

utilize the computing power of their desktop PC. This innovative concept which was

implemented in this thesis can be taken one step further by using other industry standard

applications to access information from remote sources via a public network (the

Internet). (See Figure 5-2.)

@IW3
Figure 5-2: Futher Additions to Thesis Architecture

For example, Microsoft Excel or Lotus Notes could be a Web client that downloads

information from Web servers, imports them into customized worksheets ready for the

user to do online analytical processing (OLAP). These desktop applications are much

more than meets the eye. Microsoft's Office Suite is not only a complete set of

L I

applications in itself, but allows users to add on to it with its built-in programming

interface.

In summary, applications which require information to be processed and

manipulated will work best with a front-end that allows processing to be done on the

client side (i.e. PowerBuilder and Visual Basic). Today, the Web browser cannot do this.

It can only display information. Therefore, applications which only provide information to

the user which does not have to be processed (like plain text files) will work well with a

Web browser.

The Internet is the Information Superhighway for today and it is here to stay. It is

often the fastest and most efficient way to send and receive information. Although most

of the hype of the Internet has been due to the World Wide Web, there are many other

Internet applications that can be made for the marketplace that do not use the World Wide

Web. For example, PowerBuilder does not have to communicate to the WWW server to

retrieve the data from the back-end database. It can talk directly to the database or talk to

another middle layer that is not a WWW server. This in fact would be a more secure

connection than through an asynchronous connection that the Web uses and would yield

better performance. So what is the best way to offer a service through the Internet? The

usual answer: "It depends." It depends on the customer base and what sort of information

is offered. No matter which method is chosen, several things to remember are utilize all of

your resources (hardware and software) and be innovative. Just because things are done

in one manner does not mean that doing it in a different way would be worse. It is these

type of innovations that cause this field to develop as rapidly as it does.

6. Appendix

6.1 Database Table Schema

Arrniint fePfinitinn

iAccountType . Number .(Integer)
iAccountName Text

Account_NumType

AccountNumber Text
AccountType Number (Integer)
username Text

.. ..

Accounts

ID Number (Long)
iCustomerlD Number (Long)
lAccountNumber Text
DateEstablished Date/Time
IClosed Yes/No
DateClosed Date/Time

Balances

1AccountNumber Text
Balance Number (Double)
Rating Number (Integer)

'TransactionID Number (Double)
iCheckNumber I. Number (Integer)

I I I I I

!

53

Customers

ID Number (Long)
CustomerDD Number (Long)
SSN Text

. ..: ..

Password Text
Prefix Text
FirstName Text
MiddleName Text
LastName Text
Suffix Text
Nickname Text
Title Text
OrganizationName Text
Address Text.i T e xt...

State Text

!
1PostalCode Text

AreaCodeHome Text
..

HomePhone IText
'AreaCodeWork Text
iWorkPhone IText
MobilePhone Text
AreaCodeFax Text

S..............

FaxNumber TextF . m b e r... x
AreaCodeAlternative Text
AlternativePhone Text
EmailAddress Text
Birthdate Date/Time
I Nationality IText
DateUpdated Date/Time
DateFirstEntered Date/Time
Photograp.h OLE bject
Note Memo

..I ...-

III I I

Trnnmcntinn npfinitinn

ID Number (Long)
TransactionType Number (Integer)
TDefinition Text
Symbol Text

Transactions

TransactionlD ;Number (Long)
AccountNumber Text
TransactionType Number (Integer)
AmountCurrency
Date Date/Time

Users

ýusername Text

p..a ssw o rd ex t
active Number (Double)
why :Text

curvisit Date/Time
lastvisit ;Date/Time
fulname Text.................. I

I

6.2 Database Queries

As mentioned before, a query in Microsoft Access is an object which can be

viewed as a table. Here are the SQL statements involved for making the query objects

used in this thesis.

/********************** q_accounts ****************************/

SELECT DISTINCTROW Account_Num_Type.AccountNumber, AccountNum_Type.AccountType,

Account_Num_Type.username, Account_Definition.AccountName

FROM Account_Definition INNER JOIN Account_NumType ON Account_Definition.AccountType =

Account_Num_Type.AccountType;

/********************** q_balances ******************************/

SELECT DISTINCTROW Account_NumType.AccountNumber, Account_Num_Type.username,

Balances.Balance

FROM Account_Num_Type INNER JOIN Balances ON AccountNum_Type.AccountNumber =

Balances.AccountNumber;

/********************* q_checking ******************************/

SELECT DISTINCTROW q_combined_trans.TransactionType, q_combined_trans.Amount,

q_combined_trans.username, q_combined_trans.TransactionlD, Transactions.Date,

Checking.CheckNumber

FROM (Checking INNER JOIN q_combined_trans ON Checking.TransactionlD =

q_combined_trans.TransactionlD) INNER JOIN Transactions ON q_combined_trans.TransactionlD =

Transactions.TransactionlD

WHERE ((q_combined_trans.TransactionType= 1))

ORDER BY q_combined_trans.username, Transactions.Date;

/******************** qcombined_check *******************************/

SELECT DISTINCTROW Transactions.TransactionID, Transactions.AccountNumber,

Transactions.TransactionType, Transactions.Amount, Account_Num_Type.username,

Transaction_Definition_1.Definition, Account_Num_Type.AccountType,

Account_Definition.AccountName, Transactions.Date, Transaction_Definition_1.Symbol,

Balances.Balance, Balances.Rating, Checking.CheckNumber

FROM Checking INNER JOIN (((Transaction_Definition AS Transaction_Definition_1 INNER JOIN

(Transactions INNER JOIN Account_NumType ON Transactions.AccountNumber =

Account_Num_Type.AccountNumber) ON Transaction_Definition_1.TransactionType =

Transactions.TransactionType) INNER JOIN Account_Definition ON Account_NumType.AccountType

= Account_Definition.AccountType) INNER JOIN Balances ON Transactions.AccountNumber =

Balances.AccountNumber) ON Checking.TransactionID = Transactions.TransactionID;

/******************** ***qc**** ombined_trans ****************************/

SELECT DISTINCTROW Transactions.TransactionID, Transactions.AccountNumber,

Transactions.TransactionType, Transactions.Amount, Account_NumType.usemame,

Transaction_Definition_1.Definition, Account_Num_Type.AccountType,

Account_Definition.AccountName, Transactions.Date, Transaction_Definition_1.Symbol,

Balances.Balance, Balances.Rating

FROM ((Transaction_Definition AS Transaction_Definition_1 INNER JOIN (Transactions INNER JOIN

Account_Num_Type ON Transactions.AccountNumber = Account_NumType.AccountNumber) ON

Transaction_Definition_l.TransactionType = Transactions.TransactionType) INNER JOIN

Account_Definition ON Account_Num_Type.AccountType = Account_Definition.AccountType) INNER

JOIN Balances ON Transactions.AccountNumber = Balances.AccountNumber;

6.3 HTX Files

These files are specific to WebDBC Version 1.1.

For the location of the files refer to Table 4-1.

/************************WELCOME.HTX***********************/

<HTML>
<HEAD>

<TITLE>Welcome to the Web Banking System <%r_username></TITLE>

</HEAD>
<BODY>

<hl> Welcome to the Web Banking System <%r_username> </hl>

<h2> Here are the following accounts that you can access: </h2>

<pre>
 Account Number Account Type<hr></pre>

<%detail>

<pre>
<A
HREF="Ibin/webdbc.exe/bank/q-combined-trans/select/&/demo/access/<%r-AccountType>/welcome<%r

AccountType>.htx?&d_AccountNumber=<%r_AccountNumber>">
<%r_AccountNumber> <%r_AccountName><p></pre>

<%/detail>
<hr>
<h2> Other Options: </h2>

 View All
Account Balances
 Transfer
money

<h5>
<hr>

Please send questions and comments to spoon@mit.edu

© 1994-1995 The Information Technology Group at the Sloan School of Management

Cambridge, Massachusetts. All Rights Reserved.</h5>

</BODY>

</HTML>

/***********************WELCOME1.HTX****************************

<HTML>
<HEAD>

<TITLE> Web Banking System<TITLE>

</HEAD>
<BODY>

<hl> The Web Banking System [<%rusername>]</hl>

<h2> Viewing <i><%r_AccountName> Account </i>: <%r_AccountNumber> </h2>
<hr>
<h3> Your current account balance is: $<%r_Balance> </h3>
<hr>

<%if r_Rating=" 1">
You have a good Rating!!

Would you like information on mutual funds or CD's?
<hr>
<%/if>

<h2> Select one of the following services </h2>

 <A
HREF="/bin/webdbc.exe/bank/qbalances/select/&/demo/access/balances.htx?&dAccountNumber=<%r-
AccountNumber"> Account Balances
 View Checks

 <A

HREF="/bin/webdbc.exe/bank/q-combined-trans/select/&/demo/access/trans.htx?&d_AccountNumber=<
%r_AccountNumber">most recent

 by date (under construction)
 by amount
 by check number

 Transfer Money...

 <A

HREF="I/bin/webdbc.exelbanklq_accounts/selectl&/demolaccess/1/tr_from.htx?&d_AccountNumber.ne=<
%r_AccountNumber>&x_AccountNumber-<%r_AccountNumber>">from account
[<%rAccountNumber>] to another account

 <A
HREF="/bin/webdbc.exe/bank/qaccounts/select/&/demo/access/ 1/tr_to.htx?&d_AccountNumber.ne=<%r
_AccountNumber>&x_AccountNumber=<%r_AccountNumber>">from another account to account
[<%rAccountNumber>]<db>

View
Recent Transactions on all accounts

<h5>
<hr>

Please send questions and comments to spoon@mit.edu

© 1994-1995 The Information Technology Group at the Sloan School of Management

Cambridge, Massachusetts. All Rights Reserved.</h5>

</BODY>
</HTML>

/**************************WELCOME2.HTX*************************/

<HTML>
<HEAD>

<TITLE> Web Banking System</TITLE>

</HEAD>
<BODY>

<hl> The Web Banking System [<%rusername>]</hl>
<h2> Viewing <i><%r_AccountName> Account </i>: <%r_AccountNumber> </h2>

<h2> Select one of the following services </h2>

<A
HREF= "/bin/webdbc.exe/bank/q-combined_trans/selown/&/demo/access/trans.htx?&d-AccountNumber=
<%rAccountNumber>">View Recent Transactions on <%r_AccountNumber>

<h5>
<hr>

Please send questions and comments to spoon@mit.edu

© 1994-1995 The Information Technology Group at the Sloan School of Management

Cambridge, Massachusetts. All Rights Reserved.</h5>

</BODY>
</HTML>

/*************************WELCOME3.HTX***********************/

<HTML>
<HEAD>

<TITLE> Web Banking System</TITLE>

</HEAD>

<BODY>

<hl> The Web Banking System [<%rusername>]</hl>
<h2> Viewing <i><%r_AccountName> Account</i>: <%r_AccountNumber> </h2>

<h2> Select one of the following services </h2>

<A
HREF="/bin/webdbc.exelbank/qcombined-trans/selown/&/demo/access/trans.htx?&d_AccountNumber=-
<%r_AccountNumber>">View Recent Transactions on <%r_AccountNumber>

<h5>
<hr>

Please send questions and comments to spoon@mit.edu

© 1994-1995 The Information Technology Group at the Sloan School of Management

Cambridge, Massachusetts. All Rights Reserved.<h5>

</BODY>
</HTML>

/************************CH_ D _RES.HTX**************************I

<HTML>
<HEAD>

<TITLE>Banking Transactions<TITLE>

</HEAD>
<BODY>
<hl>Transactions for <%r_username></hl>
<h2></h2>

Transactions
<pre>
Date Check Number

<%detail>
<pre>
<%r_Date>
<%/detail>

Amount<hr></pre>

<%r_CheckNumber> $<%r_Amount>
</pre>

<h5>
<hr>

Please send questions and comments to spoon@mit.edu

© 1994-1995 The Information Technology Group at the Sloan School of Management

Cambridge, Massachusetts. All Rights Reserved.</h5>

</BODY>
</HTML>

<HTML>
<HEAD>

<TITLE>Banking Transactions</TITLE>

</HEAD>
<BODY>
<h 1 >Transactions for <%r_username></hl>
<h2></h2>

Transactions

<pre>Date

<%detail>

Amount Description<hr></pre>

<pre><%r_Date>
<%/detail>

<%rSymbol>$<%r_Amount> <%r_definition></pre>

Click <A HREF="http://context.mit.edu/cgi-bin/graph.cgi?username=<%r_username>"> here for a graph
of transactions from all accounts.
<h5>
<hr>

Please send questions and comments to spoon@mit.edu

© 1994-1995 The Information Technology Group at the Sloan School of Management

Cambridge, Massachusetts. All Rights Reserved.</h5>

</BODY>
</HTML>

<HTML>
<HEAD>

<TITLE>Account Balances<TITLE>

</HEAD>
<BODY>
<h1 >Account Balances for <%r_username></hl>
<h2></h2>

Transactions
<pre>
Account Number

<%detail>
<pre>
<%r_AccountNumber>
<%/detail>

Balance<hr></pre>

$<%r_Balance></pre>

<h5>
<hr>

Please send questions and comments to spoon@mit.edu

© 1994-1995 The Information Technology Group at the Sloan School of Management

Cambridge, Massachusetts. All Rights Reserved.</h5>

</BODY>
</HTML>

6.4 PowerBuilder Code

/****************** script for custom01 in w_main window *****************/

int iLen, iWhichEvent
blob blobtest // this is blob. Blob is your friend. Blob is a

// distant relative of Microsoft's Bob(tm).
int fp
string text

// this is the birth of Blob. The baptism comes next.
// the blobo function is a PowerBuilder function. It might help to
// read about it.
blobtest = blob(space(1024))

// the WSAGetSelectEvento function returns the event code that
// occurred on the socket, causing the Winsock DLL to trigger this
// event. In this application, there are only two possible values
// for iWhichEvent: ws.FD_READ or ws.FD_CLOSE since the httpo
// function performed a WSAAsyncSelecto on the socket requesting
// notification for these two events.
iWhichEvent = ws.WSAGetSelectEvent(message.longparm)

// make sure the socket object is still valid. For some reason
// this event was triggered again after the socket was destroyed,
// causing an error. The isvalido check is here because I don't
// have time to figure out why WSAAsyncSelect() is being hyperactive
// when it comes to messaging for this socket. If you encounter the
// same thing in your program, add this isvalido check as a work-
// around.
// Also check to see if this event was triggered due to a ws.FD_READ
// condition on the socket -- indicating that there is now data ready
// to receive.
if isvalid(sSocket) = TRUE and iWhichEvent = ws.FD_READ then

// iLen will contain the number of bytes received. This is important
// because your entire blob buffer might not be filled. You're
// only interested in the data copied by the recv() function, so
// capture its return value and only use the portion of the blob
// buffer that was actually populated with data by recv()

iLen = sSocket.recv(blobtest,1024,0)

// now write the data of interest to the file.
// the blobmido function is useful for doing this, as you can
// specify the length of the data you want returned, thus
// limiting what you write to the file to just the data
// populated by the recv() function. (see note above)
if iLen > 0 then

filewrite(ifile,blobmid(blobtest, 1,iLen))
elseif iLen = ws.SOCKET_ERROR then // oops, an error occurred.

messagebox("Socket Error",string(ws.wsagetlasterroro))
end if

end if II end of isvalido if

II Now check to see if the ws.FD_CLOSE event triggered this script.
II If so, then the code within the previous if statement will have
II been skipped.

if iWhichEvent = ws.FD_CLOSE then
fileclose(iFile) II close the file since we're done writing
sSocket.closesocket() I close the socket
destroy sSocket // destroy the socket object
if status = 1 then open(wmenu)
if status = 2 then open(w_account_info)
if status = 3 then open(w_checking_trans)
if status = 4 then open(walltrans)
//fp = FileOpen(sFile, StreamMode!)
//FileRead(fp, text)
//mle_1l.text = text
//fileclose(fp)
//ole_l.insertfile(sFile) II put the file in the OLE 2.0 control

end if

/************* script for http() window function which is*********************/
/************* used in every window object ***************************/

ulong ulAddr II the unsigned long version of the host's IP address
string sSend, sPath
int a

II the urlgetfilenameo function strips the filename off of the URL
// NOTE: This is not an intelligent application. It assumes that the
II c:\temp\ directory exists and will convert the filename entered
HI in the URL to DOS form: no more than 8 characters with a
II possible 3 character extension. A file with
II the extension .html is converted to .htm so that
HI you can specify the URL for a UNIX-based HTML document
HI without causing this program to choke. All other > 3 character
II extensions are suspect, however.
/I-

II sFileName is an instance variable of the window. Sloppy, but
II simple. The custom event triggered when data arrives on the socket
II needs to know this filename, and making it an instance variable
// was an easy solution.
//sFile = "c:\temp\" + urlgetfilename(URL)

sFile = "c:\temp\file.txt"

// sSocket is an instance variable of the window because it
// needs to continue to exist after this script is executed
sSocket = create socketstream // create a new stream socket

// The URLGetAddress function accepts a URL and performs gethost
// DNS lookups to obtain the unsigned long address. No error
// checking is performed -- if the name or address resolution

H/ fails, you're out of luck.
ulAddr = URLGetAddress(URL)

// The URLGetPath function accepts a URL
sPath = URLGetPath(URL)

// perform a wsconnecto on the stream socket. Connect to port 80
// of the host specified in the URL. Port 80 is the standard http
// port.
a = sSocket.wsconnect(ulAddr,80)
if a = ws.SOCKET_ERROR then

messagebox("Error","No connect")
end if

// Enable asynchronous messaging for this socket.
// the ws.wsor(ws.FD_READ,ws.FD_CLOSE) function returns the OR'ed
// value, which contains the appropriate bit-mask to tell the
// wsaasyncselect() function which events to monitor on the socket.
// handle(w_oletest) returns the window's handle.
// 1024 is the code for PowerBuilder's custom01l event: pbm_custom01l
// this is the event that is executed every time either of the
// FD_READ or FD_CLOSE events occur on this socket.
sSocket.wsaasyncselect(handle(w_main),1024,ws.wsor(ws.FD_READ,ws.FD_CLOSE))

// this is the command sent to the HTIP server to retrieve the
// file identified in the URL. the -r-n-r-n means carriage return (~r)
II linefeed (-n) carriage return (-r) linefeed (-n)
sSend = "get " + sPath + "-r-n-r-n"

// this sends the get command to the socket (which was connected to
// port 80 (the http server) of the specified host) -- again, there
// is no error checking or other intelligence here. If the connect
// failed for some reason, this is going to blow up.
sSocket.send(blob(sSend),len(sSend),0)

II check to see if the file that we want to write to exists.
// if it does, delete it just to be on the safe side. (not safe
II for the file in question, of course.)
if fileexists(sFile) = TRUE then

filedelete(sFile)
end if

// open the output file
iFile = fileopen(sFile,StreamMode!,write!)

return

/**************** window function urlgetaddress() *******************/

ulong ulAddr
string sAddress
integer iPos
pbhostent pbheTmp

iPos = pos(URL,"://")+3

sAddress = mid(URL,iPos,pos(URL,"/",iPos)-iPos)

pbheTmp = ws.gethostbyname(sAddress)

if isnull(pbheTmp) = TRUE then
ulAddr = ws.inet_addr(sAddress)
pbheTmp = ws.gethostbyaddr(ulAddr)
if isnull(pbheTmp) = TRUE then

ulAddr = 0
else

ulAddr = pbheTmp.h_addr_list[1
end if

else
ulAddr = pbheTmp.haddrlist[1]

end if

retum(ulAddr)
/****************** window function urlgetfilename() ********************

do while pos(URL,"/") > 0
URL = mid(URL,pos(URL,"/")+1)

loop

if upper(right(URL,4)) = "HTML" then
URL = mid(URL,,len(URL)-1)

end if

if pos(URL,".") > 8 then
URL = left(URL,8) + right(URL,4)

end if

return(URL)

/***************** winow function urlgetpatho **************************I

string sPath
int iPos

sPath = mid(URL,pos(URL,"://")+3)

iPos = pos(sPath,"/")

sPath = mid(sPath,iPos)

return(sPath)

/****************** window function **********************************/

string sPrefix

]

67

sPrefix = left(URL,pos(URL,"://")-1)

return(sPrefix)

68

BIBLIOGRAPHY

Belford, Morgan. "WebDBCTM White Paper #1." Seattle: Nomad Development
Corporation, 1995

Coombs, Jason. PowerBuilder Power Toolkit. Unpublished, 1995

Technical Empowerment Program Lecture Guide Boston: Open Environment
Corporation, June 1995

"World Wide Web Consortium" http://www.w3.org

