Web Based Client/Server Computing
by
Hoony C. Youn

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Master of Engineering in Electrical Engineering and Computer Science
and
Bachelor of Science in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
October 1995
© Hoony C. Youn, MCMXCV. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly paper
and electronic copies of this thesis document in whole or in part, and to grant others the
right to do so.

-—n

Signature of Author......

ad Computer Science
v October 3, 1995

Certified DY....o.ovvveveiiiiiiiice
Richard Y. Wang
“7oints Menfano~- ~fInformation Technology
Thesis Supervisor

Accepted e
T T s \ Vs T Frederic R. Morgenthaler
Chairman, Department Committee on Graduate Theses

WASEAGHUSETTS INSTITUTE

OF TECHNDLOGY 3
JAN 291995 Enig:

LIBRARIES

DEDICATION

I dedicate my thesis to my parents. Mom and Dad, I thank you for all of your
support and encouragement through my years at MIT.

ACKNOWLEDGMENTS

I would like to thank Jesse Jacobson for guiding me through this thesis process.
Thanks for all of your time and support. Last, but not least, I would also like to thank my
thesis advisor, Professor Rich Wang, for your time and encouragement. Thanks for
pushing me hard and always keeping me focused on the task at hand.

Web Based Client/Server Computing
by

Hoony C. Youn

Submitted to the Department of Electrical Engineering and Computer Science on
October 3, 1995, in partial fulfillment of the
requirements for the degrees of
Master of Engineering in Electrical Engineering and Computer Science
and
Bachelor of Science in Electrical Engineering and Computer Science

Abstract

The fastest growing Internet application today is the World Wide Web. A user can get
around the World Wide Web through a Web browser. With a Web browser a user has
access to a wealth of information provided either free or for a fee. Much of the
information that can be obtained from the Web can greatly help businesses as well as
individuals with their research. The Web browser, however has one disadvantage. It is
not capable of doing any processing of the data (thus failing to utilize the client side
resources). Once the data is received on the server sided, it is just displayed. If there is
any processing being done, it is done on the server side. By creating a custom application
that talks to a Web server, the information can be processed with the client side resources.

The first part of this thesis was to create a WWW application that would allow a
user to access a back-end database from their Web browser. The scenario used for this
thesis was a fictional home banking system that would allow users to check their
balances, recent account activity, and do other simple bank tasks. The second part of this
thesis was to create a customized front-end that would communicate with a Web server
and process the returned information locally (versus making another request to the server
to further process the information). The rationale behind this idea is to remove the
processing load off of the remote Web server and bring it to the client side which is in
most cases almost as powerful as the Web servers out there, thus making a more
distributed computing environment.

Thesis Supervisor: Richard Y. Wang
Title: Associate Professor of Information Technology

TABLE OF CONTENTS
1. INTRODUCGTION .cuueuveencscsssssccssssossssnsssssssssssessassssssssessssssssssssssssssssssasssssssssassssssssssssssssassanssssassssnssssssssss 6
B.1 THE GOAL....vveeiveeeiieeectireeesteesttessnaeessaeaneee s e beeeaseessabeaeabaeeaateeaamsbeeanbeesaseteeabeeaennseesneessanbessansesaases 7
1.2 OVERVIEW ...ccutiiieitereeeteesiesassnseesasseeasesaeaatees saseeeastasaseesestesssessameesesamseesseatesantessanereenaessaubaessaneeasases 8
2. BACKGROUND 9
3. DESCRIPTION OF COMPONENTS tessessseneeesssansaseasees 12
3.1 DISTRIBUTED COMPUTING ENVIRONMENTcceiiiiiiiiiiiieiierreerereeereessnnnanensaaesaeesesessssesesesssessrmssessnnsnnnsen 12
3.1.1 One-Tiered MOdelccuvueeeeeeereeeisiieeeeecieeeeescteeeseseseeesssaraaesssnnneeesasnsaneeessseaeeeaastseeesaenanne 14
3.1.2Two-Tiered MOdelcoooeeneeeeeeee ettt e e e e e e sttt e e ee e s e e st s s sntbaae s s e e s sassansraees 15
3.1.3 Three(Multi)-Tiered Model....................oueeiemmoeeeeiie et eeeetee e eevtae e e esiee e e e eseeee s s amseeeensenee 16
RIPANY 512005 21 N0 N PN 17
3.2.1 The World Wide Web Server..........uccueeeeiecceeeeeieeeeecceeeseeeieeesesesssiessesesaaessssneseesssnsseseesssmsenes 17
3.2.1.1 SIMPIE REGUESES c.veuverereieeieriieieeiteete ettt ettt ettt s b et a e b e s s 17
3.2.1.2 HyperText Transfer ProtoCOl.........cccoovvviiiiiiiiiiiiiiiiiii e 17
3.2.2 DAIADBASE SEIVEToeeeeeeeeeeeeeeeeeeeeeeeceeeeeeetae e s eeessettreeeeeeeessetasbaesaa et e aeeaeesssse sresasaetaaeesseessassnssesssens 19
3.2.2.1 Structured QUEry LanGUAagE.........cccerieiviiiiiiiiiiiiiiinie ettt s s s 20
3.2.2.2 Open Database CONNECLIVILYcoceecirieiiiriiiniiieiieieeiee s et s sr s s ae s 21
3. 2.3 WEDDBC ...t eeectt et e e s e s s s sttt e e e s s s a e e e et e e e e s e e s s e e e st ert et et ee e e se et rnaraneee 22
3.2.3.1 Querying the Database: The WebDBC URL............ccccoceiiiiiiiiiiiiiececiii e 24
3.3 CLIENT SOFTWAREcoeeiiiiiieiiiiieeieeianteetesaasssasaesstsettesasssssassnsesaesessessasssasannnnnnnnsrteesesesosssastssesssessenes 26
3.3.1 WIRSOCK QA TCOP/IP..........ueeeeeaeeeeeeeeeeeeeetiteeeeecteeeee e seeeessnseaees s ansaaasessasseassnsssseesansenssansannres 26
3.3.1.1 WWED BIOWSETS ...ccoiiiuviirieiireeeereeitrterassreeeesouseeesastaeeasessesesesesaesssssssesaesssenassssssnnesersssesessasesessenseesessansseess 27
3.3.1.2 POWETBUIIACT 4.0ttt st tre e s e s reeae s e s e eeaseesmnsereees et ee s sssennnsenrasnes 27
3.3.1.2.1 POWerSOCket LIDIATY V2........cc.coviiiuieiieeriiiieieeetee ettt sttt s sae e s rb b saaa st b sas 28
3.3.2 Connecting 10 INLETNEL.............cccoueriuieriiiiiiiiiiiiiieciec sttt aa s saa e e raee s eane 32
3.3.2.1 Ethernet Connection TO INLEIMELccieiiuirieeiiieeeceee et e e seere e e e rereesstreesesebbeeessssreeesssssssasensnsnesens 32
3.3.2.2 SLIP/PPP Connection TO INLEIMEL...........coiiiiiiiieiiiieeieiiee st e eseenteeee s ebene s s seseeseeseeeesameeeeeessnmeneesamnnne 32
4. IMPLEMENTATION 33
4.1 SYSTEM OVERVIEWoiiiiiiireeriteeniterteesteseessseesasesaeesusessseessessesssntessnessmessastesssesssesnstenneesasesssssassssssans 33
.2 DESIGNuiiieuteeiteerrreateaateeseeseteesteesseesueessseessetesetatessesastanbeesheessate s besateesaeesatesbeeaaeeeareeseaeeanneenreensies 34
4.2.]1 BACk ERA DQEADASEccooeeeernveereeeeeeeeeeeiiieeeeeeeeesseessctisssessaeeasaaesseesissansstatasaaesaaessessenesaenns 34
4.2.2 Web BrOWSEE CLIERL.............ueeeaeeiieeeeeiieeeeectaaeeseteeseeestasesesaseesssessneeessssseanaeassataseaasssnsssssrenes 35
4.2.2.1 Web Browser Client: An EXamPplecooiiiiiiiiiiiiiiiiiiiii it e 37
4.2.3 POWETBUILACT CILENEeeeeeeeneeeeeeeeeeeeeeeeeeeeeeeeee ettt e et e e e e e e e e e e e e e e s e e st ssnatasnssannaaaaaanseaes 40
4.2.3.1 PowerBuilder Client: An EXamPplecooceiiiiiiiiiiiiiiiniii it s 43
4.3 COMPARISON: WEB BROWSER VS. POWERBUILDER GUIccooiiiiiiiiininiiriiineinreeeeeeieteee e eeeeece e 45
4.3.1 WED BIOWSETeuuueeeeeeeeeeeeeeeeaeeeeiteeteeessaeessee et sstasasassaassssssaaaaessaaaasaaaasaesassssssstaneassesaaeaessaeaes 45
4.3.2 POWETBUILAET CLIEREcooeeeeeeeeeeieeiiiiiiesees s eeectrite e e e ae s s s s sestaeesae e e e e e e s s e e st abbanaaaeeaeeaaesaseens 46
5. FURTHER DIRECTIONS AND CONCLUSIONS .cccuueeeereirossossossonsasesinscsssssssssossossssssssssassssses 49
6. APPENDIXcoiiiiininenrnscesssssssessssosssssssssssrosssssassessossessssssssssssssasssesssssssssosssssssessssssssssesssssnsessessssssss 52
6.1 DATABASE TABLE SCHEMAccuuueeiitiriiiiieierretteiaeseetessineestesrtssseeesssssssinesssssssiesssssmeessssssrioreesssonionees 52
6.2 DATABASE QUERIES0eeiiiuetteraeeerieeioiitessiintresssosnttessesiest et baessesatsseesssassnsbeesaesasnsssenssnneesasnsnneseenns 55
6.3 HTX FILESovtiiiiiieeeiieeette e st reiaeeetteeeuteesbeee s saee e beeaembae e taaesabae e snsaesstbeassnsaesstbassnseeesantansssnanssennan 57

6.4 POWERBUILDER CODEccceeetttttttueetuniesiesssssssssssnssessessesssseessssssssssssssssssssssesssnnnnnnnssnsnsnsssossssssesnns 63

Web Based Client/Server Computing

1. Introduction

The Internet, a word that has been getting a lot of hype recently, has been around for over
30 years. Until recently, the users of the Internet were primarily academics and the
science community. In 1993, the World Wide Web (WWW) was introduced. This was
the beginning of a revolution.

The WWW allows users for almost all computer platforms to access information
on the Internet with a graphical user interface (GUI). Because it was built on top of
TCP/IP, it can be accessed from anywhere on the Internet. The WWW consists of
countless servers that are connected to the Internet. These servers can be accessed
through browsers (clients such as Netscape or Mosaic) which run on all of the common
platforms (PC, Macintosh, UNIX).

Before the introduction of WWW, to access the Internet, users were forced to use
terminal type emulators which were text based. This was not very user friendly for the
majority of the public. With the GUI, the door was open for the majority of computer
users/nonusers to access the Internet. With the GUI, there is little or no learning curve. If
one can learn how to point and click a mouse, then he/she is well on her way on becoming
an expert “Net Surfer.”

Now there is a very easy way of connecting to the Internet: the wonderful Web
browser (like Netscape and Mosaic). But in reality, all the Web browser does is display

formatted text and certain formatted images. The keyword is display, nothing more. The

way the information is presented is somewhat graphical, but it is very limited. Therefore,
a Web browser is nothing more than a bona-fide dumb terminal. The main drawback of a
Web browser is that it fails to take advantage of over 15 years of rapid PC application
development. When using a Web browser from a PC, the only resources that the Web
browser uses are the hard drive, RAM for caching and communications software. By
creating a customized intelligent front-end application that communicates with a Web
Server, it can be made to exploit the PC’s resources as well as the application’s

functionality.

1.1 The Goal

The first part of this thesis was to create a WWW application that would allow a
user to access a back-end database from their Web browser. The scenario used for this
thesis was a fictional home banking system that would allow users to check their
balances, recent account activity, and do other simple bank tasks. The second part of this
thesis was to create a customized front-end that would communicate with a Web server
and process the returned information locally (versus making another request to the server
to further process the information). The rationale behind this idea is to remove the
processing load off of the remote Web server and bring it to the client side which is in
most cases almost as powerful as the Web servers out there, thus making a more
distributed computing environment.

The home banking system, which was named Web Banking, has three major

components: the front-end (Web browser or PowerBuilder GUI), the Web Server, and

the RDBMS. (See Figure 1-1.) All of the components in the system will be explained in

much detail throughout this thesis.

Web Browser Client

S

| Internet Internet

Access
Database

: Web Server with
PowerBuilder Client WebDBC interface

Figure 1-1: System Overview
Here is also a brief table that gives a summary of advantages and disadvantages of

a Web browser client versus a customized PowerBuilder client.

Table 1-1: Web Browser vs. PowerBuilder Client

1.2 Overview

Chapter 2 will discuss the background of the field involving this thesis. Chapter 3
will discuss the components used in this thesis. Chapter 4 will discuss the implementation

process of the system. Chapter 5 will discuss the final conclusions and further thoughts.

2. Background

The World Wide Web uses the HyperText Transfer Protocol also known as
HTTP. This protocol is a higher level protocol that runs on top of TCP/IP. The browsers
view documents (or files) that are typically in HyperText Markup Language (HTML)
format. These HTML files are specially formatted text with references to specific image
formats. When viewing an HTML document there are highlighted text (HyperText) that
will reroute the user to another section on the same document or another document that
can either be residing on the same server or a different server. As mentioned before, the
WWW servers can be anywhere where there is a connection to the Internet. Therefore, it
is possible for a user to jump from a server in Berkeley, California, to a server in London,
England, and then to another server in Singapore. The HyperText that the user clicks on
to jump to another location triggers the browser to jump to another address which is
known as the Universal Resource Locator (URL).

When viewing an HTML document, the document physically resides on the client’s
machine. The browser, however, is not just limited to communicating to WWW servers.
It can communicate with ftp and gopher servers which greatly expands the amount of
information that can be accessed from one single GUI. It can also display graphic images
such as Graphics Interchange Format (GIF) and Joint Photograph Experts Group (JPEG)
images within HTML files or by themselves. Both of these graphic formats offer the same
picture quality, differing only in compression methods. JPEG is known to have better

compression than GIF at the cost of image loading time.

10

Because of recent rapid growth in the number of Internet users, companies already
on the Internet can reach more people with no additional effort. Other companies who are
not on the Internet realize this as well, and as a result, are in the process of getting
connected the Internet. The World Wide Web is not only a place where to acquire
information, it is also a turning into a marketplace, where companies can sell services on
the Internet.

Because of the potential that the Internet has of being a huge marketplace,
companies are always looking for ways to provide new services on the Internet. Since a
lot of these services involve providing specific information that has already been formatted
and organized in to a relational database, it would be too much work to try to replicate
this information into HTML documents. To solve this problem, tools have been
developed that allow a WWW server to communicate with back-end databases like
Oracle, Sybase, and Informix.

This thesis employs one of the tools (database access tool) which allows a user to
access a back-end database through a WWW server. With the ability to access back-end
databases through the WWW servers, the Web browsers have even more added value.
Not only can users access data from servers, but they can directly input data to the same
database servers (with specific privileges) through HTML forms, which can greatly reduce
tedious manual data entry hours. These are only two of many applications that can be
made as a result of integrating a Web browser client with a Web Server that can
communicate with a back-end database. Now, there can be more services available on the

Internet.

11

The scenario used to drive the development of the application for this thesis is a
fictional Web banking system. As mentioned before, the Web browser is basically a
dummy front-end GUI (meaning that it does not do any processing or computations on
the client side). It is only capable of displaying text and special images. Because a good
banking application involves a lot of data transfer, a good presentation method, and the
ability to manipulate data, there is a need for an alternative front-end. A front-end that
could access the same information from the Web Server that would be customized to fit
bank customers’ needs. Therefore, two system prototypes were developed for this thesis.

The first prototype was developed using a browser as the front-end to the Web
Server. This application is geared for the casual or inexperienced user. The second
prototype was developed using PowerBuilder as the front-end GUI. Because
PowerBuilder was used in the second prototype, some of the features of PowerBuilder
were implemented into the prototype which made the PowerBuilder front-end far superior
to the Web Browser front-end. One such feature of PowerBuilder that was implemented
was the graphing feature. After the user has viewed the information in the table, he/she
may wish to see the information in a chart format. With the PowerBuilder interface, this
can be done instantly because the processing (creation of the chart) is done locally.
Graphing is possible with a Web browser front-end, but the graph has to be created
remotely (on the Server) and then is converted from its native format to GIF format so
that it can be displayed by a Web browser. Although the ser\;er is a high output machine,
this is a processor-intensive task. GIF files, however, tend to be large in size and therefore

will take more time to send it back to the user requesting for a chart. The end result is the

12

performance of the overall system (Web browser application) will be much slower than the
PowerBuilder application. Although the PowerBuilder front-end is far superior to the
Web browser front-end, it does have one limitation. It is not generic, (meaning that it
cannot browse the Web and view other home pages) but customized which is precisely the
reason it is superior for this particular application. PowerBuilder could be used to make a
generic GUI like Netscape, but that was not the purpose of this second prototype.

There were two parts to this thesis. The first part of this thesis was to build an
application on the Web that utilizes tools that will allow a WWW server to communicate
with a back-end database. The second part of this thesis was to offer an alternative
approach to accessing data on the web (other than through a Web browser). This more
advanced front-end (PowerBuilder) is intelligent because it uses local (client-side)
resources to display objects and manipulate/process information as opposed to the

browser which only displays information.

3. Description of Components

3.1 Distributed Computing Environment

A distributed computing environment exists when server pieces of a particular application
run on different machines in a network. A typical network might include PC’s, MACs,
UNIX workstations, NT server, or OS/2 servers. (See Figure 3-1.) Bécause there are
many different machines with different operating systems connected to the same network,
there must be a common language that every computer speaks so that they can exchange

data back and forth. This common language is implemented through software that each

13

computer has and this software is referred to as the transport layer. Without this transport
layer, the network cannot function. A network assumes a transport layer which will allow
file transfer (from one machine to another) as well as accessing data from one machine to
another.

Because the scope of this thesis dealt with the Internet, the transport layer adopted
for this thesis was TCP/IP. Another reason why TCP/IP might be a better choice for a
transport layer is that all OS platforms have TCP/IP software, whereas other transport
layer software are only available on some of the platforms.

There are several advantages that distributed computing has over single-system
computing. Probably the most important advantage is accessing distributed data. In many
companies data exists in all kinds of formats on many different machines. This
encompasses utilizing the current computing resources to meet their information needs. In
other words, a company would not have to throw away certain computers because of

compatibility issues.

Windows Mac

TEPAr TCPIHP

Figure 3-1: A Distributed Computing Network

14

There are three types of client/server models that illustrate the benefits of a

distributed computing environment.

3.1.1 One-Tiered Model

A one-tiered model is the classic mainframe/terminal model where one single
machine satisfies the users. As can be seen from the Figure 3-2, all of the functionality,
presentation, and the DBMS’s reside on the mainframe. This provides centralized control
for the administrators as well as a secure environment. The client, however is a dumb
terminal, meaning that it does not do any presentation or processing. Everything is done

on the mainframe and the information is just fed back to the terminal.

MAINFRAME

Terminal | |pregentation Relational
and Database -
functionality Management
System

Figure 3-2: One-Tiered Model
The advantages of this system is that it is much easier to maintain from a systems
administrator point of view because it is centralized. However, there are certain
disadvantages to the system for today’s business environment. One of the most
significant drawbacks to this architecture is that the applications do not scale.
Since the host machine is limited to the number of processes it can run at one given
time, there is only a finite number of users that can access the system at one time.

Moreover, once the maximum capacity is reached, another machine must be purchased.

15

Another, perhaps more significant, disadvantage to this architecture is that one-
tiered computing leads to hardware lock-in. This means that the system is running
proprietary software usually made by the hardware vendor. Once that version is installed,

the system administrator is tied to the particular vendor for support, upgrades and help.

3.1.2 Two-Tiered Model

The main difference between the one-tiered model and the two-tiered model is that
the application runs on two separate processes. (See Figure 3-3). The client, the first
process, will make a request to the server, another process. Many times the server is
usually an RDBMS. The client would be something like a PowerBuilder GUI which
requests data from an Oracle Server and upon retrieving it, displays it in a graphical

manner (tables and charts). In this example, the processing is done at both ends.

Server

PowerBuilder ORACLE
Visual Basic SYBASE
INFORMIX

Figure 3-3: Two-Tiered Model
“Drawbacks to two-tiered computing are that applications tend to rely heavily on
hard-coded SQL in the form of proprietary stored procedures, and the applications only
scale to a point. With too many users, the applications run very slowly.” (Open

Environment Corporation, p9)

16

The main drawback, like the one-tiered model, deals with lock-in, but in this case it
is software lock-in. Once a company commits to one software package, they are locked-in

to the software for the life of it.

3.1.3 Three(Multi)-Tiered Model

A multi-tiered computing environment breaks up the applications into three (or more)
levels (see Figure 3-4). The front layer handles the presentation, the functionality part has
moved to the middle layer, and the back end is the databases and legacy systems. One of
the biggest advantages of this strategy is the increased interoperability among operating

systems, client programs, server languages, RDBMS’s, and legacy systems. Also, this

architecture is modular and scaleable.

Client Middleware Back-end Database
Figure 3-4: Three-Tiered Model

The functionality servers can be written in a variety of languages and can reside on
a variety of operating systems. Probably the most significant advantage of this
architecture is that “it solves the major drawbacks of both the one-tiered environments

(hardware lock-in) and two-tiered environments (software lock-in) by allowing any

17

machine to talk to any other machine without requiring a specific software product for this

communication. (Open Environment Corporation, p10)

3.2 Server Software
3.2.1 The World Wide Web Server

The WWW server used in this thesis was the HTTP Server Version 0.96 freeware
developed by the European Microsoft Windows NT Academic Center (EMWAC). This
software was installed on a Windows NT Server (Version 3.5) machine which runs on a
60 Megahertz Intel Pentium Processor. The WWW Server uses poﬁ 80 which is the

standard World Wide Web port number.

3.2.1.1 Simple Requests

A WWW server listens on port 80 for requests. Once a request is received then
the system analyzes it. A sample request by a Web client could be the following:
http://myserver.com/path/filename.htm
The Web browser then does a lookup on the myserver.com address to figure out where
to send it. After connecting to the machine, the HTTP in the request tells it to send the
message to port 80 of the myserver.com machine. Then the browser sends the path with
the filename (/path/filename.htm). Along with the message it has to send a method, which

in most cases is a GET. This is explained in further detail in the next section.

3.2.1.2 HyperText Transfer Protocol
HyperText Transfer Protocol is a higher level protocol that the WWW uses to

communicate between the Web browsers and the WWW Servers. Because HTTP works

18

over the Internet, it assumes a TCP/IP connection. (TCP/IP is the mainly used over the
Internet) This does not, however, mean that it cannot run over other protocols over the
Internet. Here is a definition of HTTP according to the W3 Consortium.

“The HyperText Transfer Protocol (HTTP) has been in use by the WWW global
information initiative since 1990. HTTP is an application-level protocol with the lightness
and speed necessary for distributed, collaborative, hyper media information systems. It is a
generic, stateless, object-oriented protocol which can be used for many tasks, such as
name servers and distributed object management systems, through extension of its request
methods (commands). A feature of HTTP is the typing and negotiation of data
representation, allowing systems to be built independently of the data being transferred.
HTTP is also used for communication between user agents and various gateways,
allowing hypermedia access to existing Internet protocols like Simple Mail Transfer
Protocol (SMTP), Network News Transfer Protocol (NNTP), FTP, Gopher, and WAIS .”
(World Wide Web Consortium, http://www.w3.org/pub/WWW/Protocols/Overview.html)

HTTP can be thought of as a set of methods or commands that the client will use
to communicate to the WWW server. Table 3-1 below list some of the methods according

to HTTP version 1.0.

Method Description

Table 3-1: A description of the methods in HTTP veré.lo‘n 1.0

19

Of all of the methods described in Table 3-1, the GET method is most frequently used.
When using a Web Browser like Netscape, clicking on a HyperText will trigger an GET
with the URL associated to the HyperText. In other words in most cases users are
downloading HTML documents which are obtained through the GET method. Likewise

both of the prototypes implemented only used the GET method.

3.2.2 Database Server

A relational database management system (RDBMS) consists of data organized into
structured tables (rows and columns). The columns of the table are called fields or
attributes much like Table 3-1. Table 3-1 has 2 fields or attributes. There are many
software vendors who make RDBMS’s. Some of the most common RDBMS are Oracle,
Sybase, DB2 (IBM) and Informix. These RDBMS’s are very large programs that usually
reside on powerful UNIX workstation servers NT or OS/2™ servers. The reason why
these RDBMS’s are not on the standard desktop is because of the lack of processing
power or because of the operating system. Within a large distributed computing
environment, a database server will be taking requests from many users as well as doing
other tasks or processes. Therefore, it needs to be able to perform multiple tasks at the
same time instead of queuing up the tasks which would make it unpleasant for the clients
requesting data and other services. Each of the operating systems are multi-tasking, multi-
threading operating systems and in many cases these servers even have multiple

processors.

20

All of the RDBMS’s mentioned above were designed to optimize the multi-

threading ability of the operating system.

3.2.2.1 Structured Query Language

All of the RDBMS’s mentioned above work in a language called Structured Query
Language, more commonly referred to as SQL. SQL was developed by IBM in the
1960’s and is now the industry standard on RDMBS’s. With SQL a user can create,
update, modify and delete tables. As well as administering the data, the user can query the
database with a given criteria. For example, if the user wanted to find out all of the

HTTP methods that began with the letter ‘p’ then the user would type:

Select method from Table_3-1

where method like ‘p%’

This is an elementary query for an elementary table. As the table become more and
more complex, so does the query. Although SQL is a very powerful language for
accessing and administering a database, it is not the easiest language to use, especially for
non-technical users. To help the users many software vendors like Oracle and Microsoft
have come out with their database browsers also know as Query By Example software.
This allows the user to go through a database from a PC and point and click with their
mouse to select and view tables. Although this is very powerful, in rﬁany cases, it is too
general or generic. What the end users need are very customized front-ends so that they

can access just the data that they are interested in.

21

To meet the demand for cﬁstomized front-end (like the marketing division of a
company), there is presentation software like Visual Basic, PowerBuilder, and SQL Gupta
just to name a few. These allow easy access to viewing data as well as updating data
through an easy to use graphic user interface (GUI). Each of these presentation software
(or toolkits) can communicate with the back-end RDBMS’s through their own
Dynamically Linked Libraries (DLL’s) or through a standard defined and developed by

Microsoft called Open Database Connectivity (ODBC).

3.2.2.2 Open Database Connectivity

ODBC is a standard defined by Microsoft which provides a standard mechanism
and language for applications to communicate to SQL relational databases. Although
SQL is it’s own language, there are different flavors which differs from vendor to vendor.

ODBC allows applications to talk to a variety of back-end RDBMS’s with one
single dialect. It also allows any application that is ODBC compliant to communicate with
any back-end database. One of the disadvantages in using ODBC is that the application is
limited to the SQL commands that ODBC supports. In most cases, this usually is not a
problem, but in some cases there might be special (SQL) commands that are specific to the
RDBMS (each RDBMS has its own flavor of SQL) that user might wish to execute which
would not be possible through ODBC.

The second disadvantage to using ODBC is performance. An application will run
faster if it communicates directly with the database versus talking to ODBC and have
ODBC communicating to the database (see Figure 3-5). In applications where transaction

speed is the bottleneck, connecting to a database via ODBC might not be the optimal

22

choice, but more often then not (in large companies with LANs and WANS5) the network

throughput is the bottleneck. (Belford, p12)

ODBC Oracle ODBC
DLL Driver

Oracle
RDBMS

Oracle DLL
Figure 3-5: Database Access: ODBC vs. Direct DLL

3.2.3 WebDBC

WebDBC is the first SQL database connectivity product for the World Wide Web.
It is a CGI application, but unlike other database connectivity tools, it does not require
intense programming in C or Perl. Because there was such a high demand for services that
wanted to be offered on the Internet that involved connectivity to databases like point-of-
sale systems, user-registration, keyword searches, and catalog shopping (just to name a
few), Nomad created WebDBC.

WebDBC is a command line application that helps Web Servers carry out SQL
encoded requests. It takes a request (from the Web Server) and converts it into a SQL
query, submits the query to the database, formats the results of the query, creates a Web
page dynamically and then returns the page to the Web Server so the Web server can

return the page to the client (usually a Web browser).

23

When a Web server receives a request from a client it tries to find the document (if
the request was for a document) and then return it to the client. It can also, however, run
an application on the server as opposed to retrieving a document. The application is
invoked through the URL and the rest of the URL is usually the arguments that are to be
passed to the application being invoked. Then, the application will process the request
and return a Web page to the user. For any Windows, Windows NT or UNIX machine to
be invoked by a Web server, the application must be a command line application which

WebDBC is (See Figure 3-6).

o
\\:'i,
Web Client

(WebDBC (e.9. Mosaic)

HTTP

insert... User Listener

delete.. Authent.

update... ,

select... "é’ei‘iiii’" \ Internet .

SHTTP | ' N ,l (Netscape on
Listener l P the Mac)

File System

/stuff/cool.htmi
/default.htmi

(Pipeline)

©Nomad Corporation 1995
Figure 3-6: WebDBC Architecture

As mentioned before, once WebDBC is invoked by the Web Server it examines the
request (the URL passed from the client) more closely and converts it into an SQL
statement. This statement (select or update) is then passed to the database that is
specified in the request. The connection to the database is made through ODBC, the

Open Database Connectivity API defined by Microsoft. This is good because ODBC can

communicate with the majority of RDBMS’s out there. The only problem is that
sometimes these 32 bit drivers which are required for Windows NT are sometimes scarce
and almost non-existent for UNIX. (There is only one company that makes ODBC drivers
for UNIX). With the release of Windows 95, a full 32 bit operating system, 32 bit ODBC
drivers will become more available as Windows 95 becomes the PC desktop standard
operating system. (Belford, p5)

When the results are ready (from the database) WebDBC merges the data into a
Web Page which has special formatting markers. This process is very similar to a mail
merge process in common word processor programs. This output Web page with the
special format markings can is very much like a template specifying where the data should
be placed. WebDBC does not determine which output page to use. It is already
determined from the request which comes from the client.

These output pages or files are called HTX files because they have a . HTX
extension instead of a .HTM or .HTML extension. In addition to the special format
markings, the .HTX file also has generic HTML markings. This is good because it allows

the data to be incorporated into an elaborate Web page.

3.2.3.1 Querying the Database: The WebDBC URL
As mentioned before, the request from the client is submitted via a URL. Figure

3-7 shows a sample request.

http://persimmon.mit.edu/bin/webdbc.exe/bank/q_combined_trans/select/&/demo
/access/1/welcome1.htx?&d_AccountNumber=45678
Figure 3-7

25

Note: The URL is always one continuous line. There is never a carriage return.

Most Web users do not just type in random URL'’s to get connected although they
do have to do it at least once. They usually start of at one place and start clicking their
way around. In other words URL’s are always predefined within the Web pages and that
is how the database is queried from the Web browser. (The URL is hard coded into the
Web page.) Therefore, the user is not required and should not type in the WebDBC URL
(as in Figure 3-7). However, this does not mean that the query is always hard coded and
the users cannot specify parameters. Because WebDBC supports forms, and can pass
variables, queries can be created in a more dynamic fashion.

When the URL in Figure 3-7 is submitted, it is mapped by the Web server into the

following request-specific environment variables.

Table 3-1: Web Server Environment Variables
After the server invokes WebDBC, the PATH_INFO is further broken down (by

WebDBC) into the following variables:

Table 3-2: WebDBC Variables

26

The resulting SQL statement from Figure 3-7 would be

select COLUMNS from q_combined_trans where AccountNumber=45678
COLUMNS are the fields in the table q_combined_trans that are specified in the HTX
file. In other words, the return fields are not specified in the URL request, but rather in

the return file (HTX file).

3.3 Client Software
3.3.1 Winsock and TCP/IP

Creating TCP/IP applications under Windows 3.1 was never easy, but with
Winsock it is much easier than before. In the beginning (of Windows 3.1) there were a
number of companies that developed Windows 3.1 TCP/IP networking products, each
with its own proprietary programming interface. Although these networking products
worked well within a Windows based TCP/IP network they was not universal. Software
developers had to program to several conflicting API’s for their software products to
capture the whole Windows TCP/IP market. Windows 3.1 lacked a standard interface for
Windows TCP/IP program until the introduction of Winsock.

Winsock is based on the Berkeley Sockets, a known proven standard for TCP/IP
(programming in UNIX). With this standard, developers who worked with a Winsock-
compliant TCP/IP networking package can begin developing their own Winsock
applications without buying a separate TCP/IP development library. Also, it became much
easier to port code over to Windows from UNIX TCP/IP applications.

Despite this new development, Winsock did not really become popular all of a

sudden. Because companies had invested so much of their time, energy and money into

27

development of their TCP/IP applications, they were very reluctant to scrap their whole
project and move over, their current TCP/IP applications did everything they needed to be
done.

Then came the Internet. Internet TCP/IP applications were being developed by
people around the world which made the lack of standard no longer écceptable.
Therefore, Winsock became the standard for Internet application programming for
Windows as well as Internet TCP/IP networking applications. Companies who wanted to
connect there Windows computers to the net had no choice but to switch to Winsock or

not be connected. (Coombs, Chapter 15)

3.3.1.1 Web Browsers
Any Web browser can be used to operate the Web Banking system. Web browsers
that are designed for Windows (which was the client platform in this thesis) use the

Winsock DLL to communicate with the sockets.

3.3.1.2 PowerBuilder 4.0

PowerBuilder 4.0 is a very powerful graphical PC-based client/server application
development environment. PowerBuilder is specially tuned for developing Windows
applications which access database sources of all types. PowerBuilder is an object
oriented, event-driven programming environment. This is ideal for creating Windows
applications since most Windows applications take advantage of a GUL

Although PowerBuilder’s most powerful feature is its ability to easily connect to

RDBMS’s either through their proprietary drivers or through ODBC and return the data

28

in many different formats, it can be used to create other Windows applications because of

its easy-to-use developing environment. A window with buttons can be created literally in
seconds. What once took weeks or months to develop, can now be developed in hours or
days. This is the power of PowerBuilder.

Although it seems like PowerBuilder is a very simple program it is very powerful.
Almost every object in PowerBuilder can be customized and manipulated to do whatever
the developer wishes. An example of an object is a window or a button which can be
either clicked or double clicked or dragged. Clicking, dragging, and dropping are events.
Scripts can be written for events such as those to execute functions for calculations,
displaying a graph, or doing whatever the developer wants it to do.

PowerBuilder was designed in a very modular way so that libraries and other
modules can be added on to it. This allows software vendors to develop add-ons to
PowerBuilder or additional toolkits that will enable PowerBuilder developers access into
certain gateways. One such application of this is the PowerSocket Library developed by

Jason Coombs.

3.3.1.2.1 PowerSocket Library v2

The PowerSocket library is a dynamic library called WINSOCK.PBD. It enables a
PowerBuilder developer to do any type of socket programming for any type of TCP/IP
application. Perhaps the best way of illustrating how PowerSocket programming works is

through a sample example. (Coombs, Chapter 16)

29

3.3.1.2.1.1 Example: Retrieving files from a Web Server
Retrieving files from a WWW Server is a fairly simple task. There are four basic
things that need to happen to retrieve a file:
1) Create a new socket user object
2) Connect to the WWW server on port 80 (the default port for WWW servers).
3) Send a GET with the specific file and path.
4) Retrieve the file using asynchronous messaging
Here is the command for issuing the get after connecting to a specific computer on
port 80.

/[This code was originally written by Jason Coombs, slightly modified by Hoony Youn

ulong ulAddr // the unsigned long version of the host's IP address
string sSend, sPath
int a

// the urlgetfilename() function strips the filename off of the URL
// NOTE: This is not an intelligent application. It assumes that the
// c:\temp\ directory exists and will convert the filename entered
// in the URL to DOS form: no more than 8 characters with a

// possible 3 character extension. A file with

// the extension .html is converted to .htm so that

// you can specify the URL for a UNIX-based HTML document

// without causing this program to choke. All other > 3 character
// extensions are suspect, however.

/4

// sFileName is an instance variable of the window. Sloppy, but

// simple. The custom event triggered when data arrives on the socket
// needs to know this filename, and making it an instance variable
// was an easy solution.

//sFile = "c:\temp\" + urlgetfilename(URL)

sFile = "c:\temp\file.txt"

// sSocket is an instance variable of the window because it
// needs to continue to exist after this script is executed
sSocket = create socketstream // create a new stream socket

// The URLGetAddress function accepts a URL and performs gethost
// DNS lookups to obtain the unsigned long address. No error

// checking is performed -- if the name or address resolution

// fails, you're out of luck.

30

ulAddr = URLGetAddress(URL)

// The URLGetPath function accepts a URL
sPath = URLGetPath(URL)

// perform a wsconnect() on the stream socket. Connect to port 80
// of the host specified in the URL. Port 80 is the standard http
// port.
a = sSocket.wsconnect(ulAddr,80)
if a = ws.SOCKET_ERROR then
messagebox("'Error",''No connect')
end if

// Enable asynchronous messaging for this socket.

// the ws.wsor(ws.FD_READ,ws.FD_CLOSE) function returns the OR'ed

// value, which contains the appropriate bit-mask to tell the

// wsaasyncselect() function which events to monitor on the socket.

// handle(w_main) returns the window's handle.

// 1024 is the code for PowerBuilder's custom01 event: pbm_custom01

// this is the event that is executed every time either of the

// FD_READ or FD_CLOSE events occur on this socket.
sSocket.wsaasyncselect(handle(w_main),1024,ws.wsor(ws.FD_READ,ws.FD_CLOSE))

// this is the command sent to the HTTP server to retrieve the

/ file identified in the URL. the ~r~n~r~n means carriage return (~r)
// linefeed (~n) carriage return (~r) linefeed (~n)

sSend = ""get "' + sPath + "'~r~n~r~n"

// this sends the get command to the socket (which was connected to
// port 80 (the http server) of the specified host) -- again, there

// is no error checking or other intelligence here. If the connect

// failed for some reason, this is going to blow up.
sSocket.send(blob(sSend),len(sSend),0)

// check to see if the file that we want to write to exists.
// if it does, delete it just to be on the safe side. (not safe
// for the file in question, of course.)
if fileexists(sFile) = TRUE then

filedelete(sKFile)
end if

// open the output file
iFile = fileopen(sFile,StreamMode!,write!)

return

The following script is placed in the pbm_customQ1 event of one of the windows

(it doesn’t matter which window, just as long as it is opened and the script references its

31

handle). This script does the actual reception and storage of the data which in this case, is

written into file.txt.

int iLen, iWhichEvent
blob blobtest // this is blob. Blob is your friend. Blob is a
// distant relative of Microsoft's Bob(tm).
int fp
string text

// this is the birth of Blob. The baptism comes next.

// the blob() function is a PowerBuilder function. It might help to
// read about it.

blobtest = blob(space(1024))

// the WSAGetSelectEvent() function returns the event code that

// occurred on the socket, causing the Winsock DLL to trigger this
// event. In this application, there are only two possible values

// for iWhichEvent: ws.FD_READ or ws.FD_CLOSE since the http()
// function performed a WSAAsyncSelect() on the socket requesting
// notification for these two events.

iWhichEvent = ws. WS AGetSelectEvent(message.longparm)

// Check to see if this event was triggered due to a ws.FD_READ

// condition on the socket -- indicating that there is now data ready

// to receive.

if isvalid(sSocket) = TRUE and iWhichEvent = ws.FD_READ then

// iLen will contain the number of bytes received. This is important
// because your entire blob buffer might not be filled. You're
// only interested in the data copied by the recv() function, so
// capture its return value and only use the portion of the blob
// buffer that was actually populated with data by recv()
iLen = sSocket.recv(blobtest,1024,0)

// now write the data of interest to the file.

// the blobmid() function is useful for doing this, as you can

// specify the length of the data you want returned, thus

// limiting what you write to the file to just the data

// populated by the recv() function. (see note above)

if iLen > 0 then
filewrite(ifile,blobmid(blobtest,1,iLen))

elseif iLen = ws.SOCKET_ERROR then // oops, an error occurred.
messagebox(''Socket Error" string(ws.wsagetlasterror()))

end if

end if // end of isvalid() if

// Now check to see if the ws.FD_CLOSE event triggered this script.
// If so, then the code within the previous if statement will have

32

// been skipped.

if iWhichEvent = ws.FD_CLOSE then
fileclose(iFile) // close the file since we're done writing
sSocket.closesocket() // close the socket
destroy sSocket // destroy the socket object

if status = 1 then open(w_menu)
if status = 2 then open(w_account_info)
if status = 3 then open(w_checking_trans)
if status = 4 then open(w_all_trans)
end if

3.3.2 Connecting to Internet

Connecting to the Internet can be done in a variety of ways. The MIT net is
physically connected to the Internet. For people who are not in academia, connecting to
the net could involve getting an ISDN connection from a provider, leasing a T1 line, or for

many home users, getting a dial-up SLIP/PPP account.

3.3.2.1 Ethernet Connection To Internet

Once at a location where there is a direct connection to the Internet, getting
connected is as simple as installing the Ethernet card in the computer and connecting the
card with a cable to the existing network. Of course there are certain parameters that
needs to be known to be totally ready, but that is true in any situation. These parameters
are the IP address of the machine, the addresses of the Domain Name Servers. DNS
allows one machine to connect to another machine on the Internet simply by calling its

name instead of using its IP address.

3.3.2.2 SLIP/PPP Connection To Internet
Most people are not affiliated with an academic institution or a company which has

a direct link to the Internet, so they have to get connected through other means which is

33

usually through an Internet access company. For the home users, the most common way
to connect is through a modem. This is called a SLIP/PPP connections. SLIP stands for
Serial Line Interface Protocol and PPP stands for Point to Point Protocol. Either protocol
can be used and there is no evident advantage for using one over the other. When users
connect to the Internet access service, they literally join the network of that access service.
They all will have there own IP address.

When any Winsock application is triggered, the computer dials out to the Internet
access service and connects to the Internet. If a connection has already been established,

then the computer simply executes the application.

4. Implementation

The scenario used for the prototypes developed for the thesis is a home banking
application. Two prototypes that were developed for the home banking system. Both of
them had the same type of features: the ability to check balances, recent account activity

and graph data.

4.1 System Overview
As mentioned in the introduction, the home banking system, which was named
Web Banking, has three major components: the front-end (Web browser or PowerBuilder

GUI), the Web Server, and the RDBMS (see Figure 4-1).

34

Web Browser Client

I Internet Internet

Access
Database

: Web Server with
PowerBuilder Client WebDBC interface

Figure 4-1: System Overview

4.2 Design

The goal of the Web Banking system was to offer a faster and more efficient way
for a bank customer to do remote banking. This motivated the design of the Web
banking system. The banking system has the ability to access multiple accounts from one
session. In other words the user, after logging in, can see all of his/her accounts and
continue their session from there, versus doing individual logins for each account.

After logging into the banking system the user comes to a main menu where he/she
can choose which account to access. A Web page/window then will prompt the user for
the particular information that the user wishes to access depending on whether the account

is a checking, savings or money market account.

4.2.1 Back End Database
Because the Web Banking system is a data-intensive application, the database

design is the heart of the whole Web Banking system. The RDBMS used for this system

35

is Microsoft Access Version 2.0. Access has a table-like object called queries that are
effectively virtual tables. There were a total number of 9 tables created and 5 query
objects created. All of the query objects were built off of the tables, and only these
objects were accessed during a user session with the Web Banking system. The schema

and design of the tables and the query objects can be seen in the appendix.

4.2.2 Web Browser Client

The first system that was designed was the application using the Web browser as
the front end. The whole banking application relies on successful transfer of data from the
database back to the user. Therefore, the commands that are driving the request for data
are SQL commands which are submitted from the Web browser side in the form of a
URL. As mentioned in Chapter 3, WebDBC interfaces a Web browser with SQL
databases.

Section 3.2.3.1 discussed how to query the database with the URL. It also
mentioned that the data was returned back to the user through a .HTX file. A .HTX file is
a specific file where column names can be specified so that the appropriate information
can be returned to the user through that file. The .HTX file also has HTML in it so that
the return page can create links to other pages. This is an important feature because it
allows the links on that page to be created dynamically from information received from the
database. The feature was vital to the design process of the Web banking system because
one banking operation might involve several screens which are all created dynamically

from information specific to the user.

36

A HTX file can also be thought of as a template where data just gets inserted into
a format that the user can interpret. These files resided on the Web server and they
resided on three main directories. These directories were organized according to the
account type (i.e. checking, savings, or money market). Figure 4-2 shows a picture of the

directory structure.

L
(23
- (23 docs
- Ceai
- (3 enror

(K3

Figure 4-2: Directory Structure of Web Server

The access directory contains the main welcome screen that the user sees when
first logging in. This screen then connects the user to yet another screen according to
which account the user has chosen. The links to the bank accounts on the main welcome
screen are created dynamically based on information from the database and connects the
user to the appropriate .HTX file from directory related associated with the type of

account. Table 4-1 shows the .HTX files used for the Web Banking system.

37

Table 4-1: Description of HTX files

Because the Web server was installed on a Windows NT machine with a FAT disk, it

could only support files with 8 character names.

4.2.2.1 Web Browser Client: An Example

Here is an example of getting checking account information via the Web browser.
After the user, Jesse, logs into the system, he sees the following screen which is the
WELCOME.HTX file. All of the links on that page pertaining to the accounts were
created dynamically. All of the accounts that are of the same type will use the same URL

except for the last few characters which specify the account number.

38

Edit Yiew Go Bookmarks Options Directory

Figure 4-3: Main Menu on Web Browser
Clicking on the 45678 link will cause the following URL to be submitted.

http://persimmon.mit.edu/bin/webdbc.exe/bank/q_combined_trans/select/&/demo
/access/1/welcome1.htx?&d_AccountNumber=45678

Since account, 45678 is a checking account which is also type 1 (savings is 2 and money
market is 3), the number 1 gets inserted into the URL (above). If the user had chose
account 45679 which is a savings account (type 2), then the URL submitted would have

looked like this.

http://persimmon.mit.edu/bin/webdbc.exe/bank/q_combined_trans/select/&/demo
/access/2/welcome2.htx?&d_AccountNumber=45679

39

Here is the result of clicking on 45678:

Figure 4-4: Account Information on 45678

After entering 5 in the text box, here is what the Web Server will return.

Netscape - [Banking Transactions]
Bookmarks Options Directory

o0ae00neeaieeieas
S

e R

http:/lpersim n{&id|

. T

Figure 4-5: Checking Transactions

4.2.3 PowerBuilder Client

The second part of this thesis was to create a customized front end that could
communicate with the Web server. The design and the functionality of the PowerBuilder
GUI is parallel to that of the Web browser system. The two systems are identical except
for the front end and for the fact that PowerBuilder has the ability to do local processing.
Like a Web browser, the PowerBuilder GUI submits a URL to the Web server asking it
for specific data. Like with the Web browser client, the Web server returns the

information back to the PowerBuilder GUI in a .HTX file except this file has no HTML

41

formatting. Once the file has been received it is then brought to a data window object in
PowerBuilder for display.

Like the Web browser front end, the PowerBuilder front end’s windows are
created dynamically depending on the account information. Because PowerBuilder is a
true programming environment, applications are much easier to develop. Local, instance
and global variables exist as well as the ability to reference other objec;ts within the
application.

PowerBuilder is an object oriented programming environment. Every object has
attributes that can be set visually (while developing the application) or dynamically (while
the application is running). Two of the higher level objects in PowerBuilder are the
window object and the data window object. The window object is just a plain window like
those which make up the Windows 3.1 environment. The data window object is usually
placed within a window object. The data window object’s purpose is to display the data
that has been returned to the application from a database. PowerBuilder comes with
drivers will connect directly to common RDBMS’s like Oracle, Sybase, and Informix.

Table 4-2 shows a list of the all of the window objects and table 4-3 shows a list

of the data window objects created for this system.

42

Table 4-2: Window Objects for PowerBuilder GUI

Table 4-3: Data Window Objects for PowerBuilder GUI

In the case of this system, the data window object was not associated with any RDBMS’s
but with a data file which is received from the Web Server. PowerBuilder has the ability
to import a data files (in a tab delimited format) into a data window object by using the
ImportFile() function.

There was socket programming involved which dealt with communicating with a
Web server and retrieving specific files. The PowerSocket Library which was introduced
in section 3.3.1.2.1 was used in this system. Retrieving files from a Web server was also

discussed in that section.

43

4.2.3.1 PowerBuilder Client: An Example
Here is the PowerBuilder version to the example discussed in section 4.2.2.1.

After logging into the system the user, Jesse, will see this.

‘Main Menu

Figure 4-6 Main Menu

Accessing checking account 45678 only takes a double click on the box containing
the account 45678 which will then open another window returning information specific to
that account. Like the Web browser front end, a URL is submitted to the Web server.
Like in the Web browser example, the URL will look like

http://persimmon.mit.edu/bin/webdbc.exe/bank/q_combined_trans/select/&/demo
/text/1/welcome1.htx?&d_AccountNumber=45678

The only difference between the URL’s in the two front ends is that the HTX files for

PowerBuilder reside within the TEXT subdirectory. Because PowerBuilder does not need

44

HTML in the .HTX file a duplicate set of .HTX files were created for the PowerBuilder
version and were placed under the TEXT subdirectory.

Here is what the result looks like.

Figure 4-7: Account Information on 45678

To view checks over $5.00 that were cashed recently, click on the by amount
button and enter 5 into the text box and click OK.

The results are as follows:

45

Checking T\ransac;’ioné

Figure 4-8: Information on Checking Transactions
4.3 Comparison: Web Browser vs. PowerBuilder GUI
4.3.1 Web Browser

The Web Browser is very easy to use, whether or not the user is an experienced
Web user. Everything function on the system is intuitive. It does, however, have its
limitations. All Web browsers do is display text and images. This is very much like a
dumb terminal interface. This setup follows the two-tiered model explained in chapter
three.

The processing involved in making the graph cannot be done on the Web browser
side. It is done on the server side, or it could be done on another server, but not on the
client side. Another drawback to this graphing approach is that the output graph format
must be converted to a GIF file before returning it to the client. This process can be very

long when dealing with lots of numbers. Also, returning a large GIF file to the client can

46

be very slow especially for SLIP/PPP users who are connected through an analog modem

link.

4.3.2 PowerBuilder Client

PowerBuilder is the answer to all of the problems and limitations to the Web
browser interface. Because the only requests that the PowerBuilder Interface makes to
the Web Server are text files, the remaining processing is brought to the client
(PowerBuilder) side. One advantage to this three-tiered model is that it frees up the
server resources from other tasks like graphing (as in the Web browser version) which
improves the overall performance.

Not only is the performance better with this model, but as mentioned before, it
allows the application to utilize the superior graphing functionality of PowerBuilder. (See

Figure 4-9.)

47

A MMM S A A

All Transactions

4-Apr-95 34.25 Check presented
5-Apr-95 15.00 Check presented
23-Apr-95 3.5 Check presented

All Transactions

..I.-_I,_._.

IS 21005 ZHAPIES 259pr05 TS LpraS SApros
Dak

Checkpresered Depos It h braich Il nalcepostt

Figure 4-9: PowerBuilder Graph

Since the database used in the Web browser version is the same database that is
used in the PowerBuilder version, the data that is returned to the PowerBuilder client is
the same data. The only major difference is that it is an unformatted version (non html)
since the data is not being viewed through a Web browser. It is, however, just a plain text
file (tab delimited). Therefore, the differences between the versions lie in the . HTX files

that are returned to each of the clients.

48

Here is an example of a .HTX file for Netscape:

<HTML>

<HEAD>

<TITLE>Welcome to the Web Banking System <%r_username></TITLE>
</HEAD>

<BODY>

<hl> Welcome to the Web Banking System <%r_username> </h1>

<h2> Here are the following accounts that you can access: </h2>

<pre>

 Account Number Account Type<hr></pre>

<%detail>

<pre>

<A
HREF="/bin/webdbc.exe/bank/q_combined_trans/select/&/demo/access/<%r_AccountType>/welcome<%r
_AccountType>.htx?&d_AccountNumber=<%r_AccountNumber>">

<%r_AccountNumber> <%r_AccountName><p></pre>

<%/detail>

<hr>

<h2> Other Options: </h2>

 View All
Account Balances

 Transfer
money

<h5>

<hr>

Please send questions and comments to spoon @mit.edu

© 1994-1995 The Information Technology Group at the Sloan School of Management

Cambridge, Massachusetts. All Rights Reserved.</h5>

</BODY>
</HTML>

The result can be seen in Figure 4-3.

Here is the corresponding .HTX file for the PowerBuilder client
<%r_AccountNumber> <%r_Balance> <%r_AccountName>

The results can be seen in Figure 4-6.

49

5. Further Directions and Conclusions

What used to take one hour for a PC to do 10 years ago can be done in merely
seconds now. Today, even the top of the line PC’s can keep up with workstations that are
as much as 10 times their price! Because PC’s today are so powerful, many companies
who would have otherwise bought a workstation are now buying PC’s.

This thesis implemented two applications: one that gives access to a back-end
database through a WWW server from a Web browser, and one that accesses the same

back-end database through a WWW server from a PowerBuilder GUI

Web Browsers

Powersett

Spry Mosaic NetScape PDWELBDuiIder

Router

LAN

Internet

Router

Server

Internet

LAN/WAN

Database Servers

Figure 5-1: Thesis Architecture

50

The PowerBuilder GUI allows users to exploit the features of PowerBuilder as well as
utilize the computing power of their desktop PC. This innovative concept which was
implemented in this thesis can be taken one step further by using other industry standard
applications to access information from remote sources via a public network (the

Internet). (See Figure 5-2.)

Spreadsheets DB Front-Ends ~ Other web Browsers
e APplications

N
B 1

159 Microsof Micrsoft PowerBuilder — » .
Lotus 1| 2-3 Sl e 40 M;I;Cj':;ﬁ Spry Mosaic NetScape

Router

LAN/WAN

Internet
Router

Internet Server

LAN/WAN

Database Servers

Figure 5-2: Futher Additions to Thesis Architecture

For example, Microsoft Excel or Lotus Notes could be a Web client that downloads
information from Web servers, imports them into customized worksheets ready for the
user to do online analytical processing (OLAP). These desktop applications are much

more than meets the eye. Microsoft’s Office Suite is not only a complete set of

51

applications in itself, but allows users to add on to it with its built-in programming
interface.

In summary, applications which require information to be processed and
manipulated will work best with a front-end that allows processing to be done on the
client side (i.e. PowerBuilder and Visual Basic). Today, the Web browser cannot do this.
It can only display information. Therefore, applications which only provide information to
the user which does not have to be processed (like plain text files) will work well with a
Web browser.

The Internet is the Information Superhighway for today and it is here to stay. It is
often the fastest and most efficient way to send and receive information. Although most
of the hype of the Internet has been due to the World Wide Web, there are many other
Internet applications that can be made for the marketplace that do not use the World Wide
Web. For example, PowerBuilder does not have to communicate to the WWW server to
retrieve the data from the back-end database. It can talk directly to the database or talk to
another middle layer that is not a WWW server. This in fact would be a more secure
connection than through an asynchronous connection that the Web uses and would yield
better performance. So what is the best way to offer a service through the Internet? The
usual answer: “It depends.” It depends on the customer base and what sort of information
is offered. No matter which method is chosen, several things to remember are utilize all of
your resources (hardware and software) and be innovative. Just because things are done
in one manner does not mean that doing it in a different way would be worse. It is these

type of innovations that cause this field to develop as rapidly as it does.

52

6. Appendix

6.1 Database Table Schema

Account_Definition

SR

ID Number(Long)
AccountType Number (Integer)
AccountName Text

AccdﬁntNumber Text
AccountType Number (Integer)
username Text

Accounts

CustomerID Number (Long)
AccountNumber Text
DateEstablished Date/Time
Closed Yes/No
DateClosed Date/Time

Balances

Accounther \. Text
Balance Number (Double)
Rating Number (Integer)

| .
‘Transactionl Number (Double)

'CheckNumber Number (Integer)

ID Number (Long)
CustomerID Number (Long)
SSN Text
Password Text
Prefix Text
FirstName Text
MiddleName Text
LastName Text
Suffix Text
Nickname Text

Title Text
OrganizationName Text
Address Text

City Text

State Text
Region Text
PostalCode Text
Country Text
AreaCodeHome Text
HomePhone Text
AreaCodeWork Text
WorkPhone Text
MobilePhone Text
AreaCodeFax Text
FaxNumber Text
AreaCodeAlternative Text
AlternativePhone Text
EmailAddress Text
Birthdate Date/Time
Nationality Text
DateUpdated Date/Time
DateFirstEntered Date/Time
Photograph OLE Object
Note ‘Memo

53

54

i ¢

Transaction_Definition

ID Number (Long)
TransactionType Number (Integer)
Definition Text

Symbol Text

[

TransactionID Number (Long)
AccountNumber Text
TransactionType Number (Integer)
Amount Currency

Date Date/Time

Users

Sl

username Text

password Text

active Number (Double)
why Text

curvisit Date/Time
lastvisit Date/Time
fullname Text

6.2 Database Queries
As mentioned before, a query in Microsoft Access is an object which can be
viewed as a table. Here are the SQL statements involved for making the query objects

used in this thesis.

[F ko sk ok skokokok sk ok okok ok ok q accounts kekkokkskokoksokskkokok ook sk okokskokokdkokokk ok /

SELECT DISTINCTROW Account_Num_Type.AccountNumber, Account_Num_Type.AccountType,
Account_Num_Type.username, Account_Definition.AccountName
FROM Account_Definition INNER JOIN Account_Num_Type ON Account_Definition.AccountType =

Account_Num_Type.AccountType;

[k ko Kok ok sk skok ok ok kok q balances ***kskkkksdokkokdokkokkokkokkokkokkokkkk/

SELECT DISTINCTROW Account_Num_Type.AccountNumber, Account_Num_Type.username,
Balances.Balance

FROM Account_Num_Type INNER JOIN Balances ON Account_Num_Type.AccountNumber =
Balances.AccountNumber;

/********************* q_CheCking ******************************/

SELECT DISTINCTROW q_combined_trans.TransactionType, q_combined_trans.Amount,
g_combined_trans.username, q_combined_trans.TransactionlD, Transactions.Date,
Checking.CheckNumber

FROM (Checking INNER JOIN q_combined_trans ON Checking.TransactionID =
g_combined_trans.TransactionID) INNER JOIN Transactions ON q_combined_trans.TransactionID =
Transactions.TransactionID

WHERE ((q_combined_trans.TransactionType=1))

ORDER BY q_combined_trans.username, Transactions.Date;

55

56

[k sk sk okesk ok sk ok skeoke sk okok ok ok q combined check *******************************/

SELECT DISTINCTROW Transactions. TransactionID, Transactions.AccountNumber,
Transactions.TransactionType, Transactions.Amount, Account_Num_Type.username,
Transaction_Definition_1.Definition, Account_Num_Type.AccountType,

Account_Definition. AccountName, Transactions.Date, Transaction_Definition_1.Symbol,
Balances.Balance, Balances.Rating, Checking.CheckNumber

FROM Checking INNER JOIN (((Transaction_Definition AS Transaction_Definition_1 INNER JOIN
(Transactions INNER JOIN Account_Num_Type ON Transactions.AccountNumber =
Account_Num_Type.AccountNumber) ON Transaction_Definition_1.TransactionType =

Transactions. TransactionType) INNER JOIN Account_Definition ON Account_Num_Type.AccountType
= Account_Definition.AccountType) INNER JOIN Balances ON Transactions.AccountNumber =

Balances.AccountNumber) ON Checking. TransactionID = Transactions.TransactionID;

/**************************q combined_trans ¥ k¥kskokok ok skeokodeskeokokoskskok sk sk sk ok skokok /

SELECT DISTINCTROW Transactions.TransactionID, Transactions. AccountNumber,
Transactions.TransactionType, Transactions.Amount, Account_Num_Type.username,
Transaction_Definition_1.Definition, Account_Num_Type.AccountType,

Account_Definition. AccountName, Transactions.Date, Transaction_Definition_1.Symbol,
Balances.Balance, Balances.Rating

FROM ((Transaction_Definition AS Transaction_Definition_1 INNER JOIN (Transactions INNER JOIN
Account_Num_Type ON Transactions.AccountNumber = Account_Num_Type.AccountNumber) ON
Transaction_Definition_1.TransactionType = Transactions.TransactionType) INNER JOIN
Account_Definition ON Account_Num_Type.AccountType = Account_Definition. AccountType) INNER

JOIN Balances ON Transactions.AccountNumber = Balances.AccountNumber;

57

6.3 HTX Files
These files are specific to WebDBC Version 1.1.

For the location of the files refer to Table 4-1.

[rFksdkkkkdkck Rk kR kR R WELCOME. HTX ¥k kkkkskskkskokkkkkkkskkkkkk

<HTML>
<HEAD>

<TITLE>Welcome to the Web Banking System <%r_username></TITLE>

</HEAD>
<BODY>

<hl> Welcome to the Web Banking System <%r_username> </h1>

<h2> Here are the following accounts that you can access: </h2>

<pre>

 Account Number Account Type<hr></pre>

<%detail>

<pre>

<A
HREF="/bin/webdbc.exe/bank/q_combined_trans/select/&/demo/access/<%r_AccountType>/welcome<%r
_AccountType>.htx?&d_AccountNumber=<%r_AccountNumber>">

<%r_AccountNumber> <%r_AccountName><p></pre>

<%/detail>

<hr>

<h2> Other Options: </h2>

 View All
Account Balances

 Transfer
money

<h5>

<hr>

Please send questions and comments to spoon @mit.edu

© 1994-1995 The Information Technology Group at the Sloan School of Management

Cambridge, Massachusetts. All Rights Reserved.</h5>

</BODY>

58

</HTML>

/***********************WELCOMEI.H’IX***************************/

<HTML>
<HEAD>

<TITLE> Web Banking System</TITLE>

</HEAD>
<BODY>

<hl> The Web Banking System [<%r_username>]</h1>

<h2> Viewing <i><%r_AccountName> Account </i>: <%r_AccountNumber> </h2>
<hr>

<h3> Your current account balance is: $<%r_Balance> </h3>

<hr>

<%if r_Rating="1">

You have a good Rating!!

Would you like information on mutual funds or CD's?
<hr>

<%lif>

<h2> Select one of the following services </h2>

 <A
HREF="/bin/webdbc.exe/bank/q_balances/select/&/demo/access/balances.htx?&d_AccountNumber=<%r_
AccountNumber>"> Account Balances
 View Checks

 <A
HREF="/bin/webdbc.exe/bank/q_combined_trans/select/&/demo/access/trans.htx?&d_AccountNumber=<
90r_AccountNumber>">most recent
 by date (under construction)
 by amount
 by check number

 Transfer Money...

 <A
HREF="/bin/webdbc.exe/bank/q_accounts/select/&/demo/access/1/tr_from.htx?&d_AccountNumber.ne=<
%r_AccountNumber>&x_AccountNumber=<%r_AccountNumber>">from account
[<%r_AccountNumber>] to another account
 <A
HREF="/bin/webdbc.exe/bank/q_accounts/select/&/demo/access/1/tr_to.htx?&d_AccountNumber.ne=<%r
_AccountNumber>&x_AccountNumber=<%r_AccountNumber>">from another account to account
[<%r_AccountNumber>]

View
Recent Transactions on all accounts

59

<h5>

<hr>

Please send questions and comments to spoon@mit.edu

© 1994-1995 The Information Technology Group at the Sloan School of Management

Cambridge, Massachusetts. All Rights Reserved.</h5>

</BODY>
</HTML>

<HTML>
<HEAD>

<TITLE> Web Banking System</TITLE>

</HEAD>
<BODY>

<h1> The Web Banking System [<%r_username>]</h1>
<h2> Viewing <i><%r_AccountName> Account </i>: <%r_AccountNumber> </h2>

<h2> Select one of the following services </h2>

<A
HREF="/bin/webdbc.exe/bank/q_combined_trans/selown/&/demo/access/trans.htx?&d_AccountNumber=
<%r_AccountNumber>">View Recent Transactions on <%r_AccountNumber>

<h5>

<hr>

Please send questions and comments to spoon@mit.edu

© 1994-1995 The Information Technology Group at the Sloan School of Management

Cambridge, Massachusetts. All Rights Reserved.</h5>

</BODY>
</HTML>

<HTML>
<HEAD>

<TITLE> Web Banking System</TITLE>

</HEAD>

60

<BODY>

<h1> The Web Banking System [<%r_username>]</h1>
<h2> Viewing <i><%r_AccountName> Account</i>: <%r_AccountNumber> </h2>

<h2> Select one of the following services </h2>

<A
HREF="/bin/webdbc.exe/bank/q_combined_trans/selown/&/demo/access/trans.htx?&d_AccountNumber=
<%r_AccountNumber>">View Recent Transactions on <%r_AccountNumber>

<h5>

<hr>

Please send questions and comments to spoon @mit.edu

© 1994-1995 The Information Technology Group at the Sloan School of Management

Cambridge, Massachusetts. All Rights Reserved.</h5>

</BODY>
</HTML>

[Aokscksckdckdokkdkok ok kokkkkkkkkCH D RIES . HT3C % %k ek sk skt sk sk sk sk sk okofeosk sk skeokok

<HTML>
<HEAD>

<TITLE>Banking Transactions</TITLE>

</HEAD>

<BODY>

<h1>Transactions for <%r_username></h1>
<h2></h2>

Transactions
<pre>
Date Check Number Amount<hr></pre>

<%detail>

<pre>

<%r_Date> <%r_CheckNumber> $<%r_Amount>
</pre>
<%/detail>

<h5>

<hr>

Please send questions and comments to spoon@mit.edu

© 1994-1995 The Information Technology Group at the Sloan School of Management

61

Cambridge, Massachusetts. All Rights Reserved.</h5>

</BODY>
</HTML>

<HTML>
<HEAD>

<TITLE>Banking Transactions</TITLE>

</HEAD>

<BODY>

<h1>Transactions for <%r_username></h1>
<h2></h2>

Transactions
<pre>Date Amount Description<hr></pre>
<%detail>

<pre><%r_Date> <%r_Symbol>$<%r_Amount> <%r_definition></pre>
<%/detail>

Click <A HREF="http://context.mit.edu/cgi-bin/graph.cgi?username=<%r_username>"> here for a graph
of transactions from all accounts.

<h5>

<hr>

Please send questions and comments to spoon @mit.edu

© 1994-1995 The Information Technology Group at the Sloan School of Management

Cambridge, Massachusetts. All Rights Reserved.</h5>

</BODY>
</HTML>

<HTML>
<HEAD>

<TITLE>Account Balances</TITLE>

</HEAD>

<BODY>

<h1>Account Balances for <%r_username></h1>
<h2></h2>

62

Transactions
<pre>
Account Number Balance<hr></pre>

<%detail>

<pre>

<%r1_AccountNumber> $<%r_Balance></pre>
<%/detail>

<h5>

<hr>

Please send questions and comments to spoon @mit.edu

© 1994-1995 The Information Technology Group at the Sloan School of Management

Cambridge, Massachusetts. All Rights Reserved.</h5>

</BODY>
</HTML>

6.4 PowerBuilder Code

[k s sk sk sk sk sk ko s skokskeok ok Script for customO1 in W_main window *#kksokokskokskokkokoskkokok

int iLen, iWhichEvent
blob blobtest // this is blob. Blob is your friend. Blob is a
// distant relative of Microsoft's Bob(tm).
int fp
string text

// this is the birth of Blob. The baptism comes next.

// the blob() function is a PowerBuilder function. It might help to
// read about it.

blobtest = blob(space(1024))

// the WS AGetSelectEvent() function returns the event code that

// occurred on the socket, causing the Winsock DLL to trigger this

// event. In this application, there are only two possible values

// for iWhichEvent: ws.FD_READ or ws.FD_CLOSE since the http()
/! function performed a WSA AsyncSelect() on the socket requesting
// notification for these two events.

iWhichEvent = ws. WS AGetSelectEvent(message.longparm)

// make sure the socket object is still valid. For some reason

// this event was triggered again after the socket was destroyed,

/l causing an error. The isvalid() check is here because I don't

// have time to figure out why WSAAsyncSelect() is being hyperactive
// when it comes to messaging for this socket. If you encounter the

// same thing in your program, add this isvalid() check as a work-

// around.

// Also check to see if this event was triggered due to a ws.FD_READ
// condition on the socket -- indicating that there is now data ready

/ to receive.

if isvalid(sSocket) = TRUE and iWhichEvent = ws.FD_READ then

/l iLen will contain the number of bytes received. This is important
// because your entire blob buffer might not be filled. You're
// only interested in the data copied by the recv() function, so
// capture its return value and only use the portion of the blob
// buffer that was actually populated with data by recv()
iLen = sSocket.recv(blobtest,1024,0)

// now write the data of interest to the file.

// the blobmid() function is useful for doing this, as you can

/1 specify the length of the data you want returned, thus

// limiting what you write to the file to just the data

// populated by the recv() function. (see note above)

if iLen > O then
filewrite(ifile,blobmid(blobtest,1,iLen))

elseif iLen = ws.SOCKET_ERROR then // oops, an error occurred.
messagebox("Socket Error”,string(ws.wsagetlasterror()))

end if

end if // end of isvalid() if

// Now check to see if the ws.FD_CLOSE event triggered this script.
// If so, then the code within the previous if statement will have

// been skipped.

if iWhichEvent = ws.FD_CLOSE then
fileclose(iFile) // close the file since we're done writing
sSocket.closesocket() // close the socket
destroy sSocket 1/ destroy the socket object

if status = 1 then open(w_menu)

if status = 2 then open(w_account_info)

if status = 3 then open(w_checking_trans)

if status = 4 then open(w_all_trans)

/lfp = FileOpen(sFile, StreamMode!)

/[FileRead(fp, text)

//mle_1.text = text

[fileclose(fp)

/lole_l.insertfile(sFile) // put the file in the OLE 2.0 control
end if

[R Rk ok ok ok SCI'ipt for http() window function which jgkkskckskckkckok gk ok kkkkkokkf
[HEEEREkkEkRkRk® noed in every window ObjeCt seskeok sk sk cdeskeskeoskokoskeok skokoskoskokoskokok ok skkokok

ulong ulAddr // the unsigned long version of the host's IP address
string sSend, sPath
inta

// the urlgetfilename() function strips the filename off of the URL
// NOTE: This is not an intelligent application. It assumes that the
// c:\temp\ directory exists and will convert the filename entered

// in the URL to DOS form: no more than 8 characters with a

// possible 3 character extension. A file with

// the extension .html is converted to .htm so that

// you can specify the URL for a UNIX-based HTML document

/] without causing this program to choke. All other > 3 character
/I extensions are suspect, however.

i

// sFileName is an instance variable of the window. Sloppy, but

// simple. The custom event triggered when data arrives on the socket
// needs to know this filename, and making it an instance variable
// was an easy solution.

/fsFile = "c:\temp\" + urlgetfilename(URL)

sFile = "c:\temp\file.txt"

// sSocket is an instance variable of the window because it
// needs to continue to exist after this script is executed
sSocket = create socketstream // create a new stream socket

/! The URLGetAddress function accepts a URL and performs gethost
// DNS lookups to obtain the unsigned long address. No error
/I checking is performed -- if the name or address resolution

65

// fails, you're out of luck.
ulAddr = URLGetAddress(URL)

// The URLGetPath function accepts a URL
sPath = URLGetPath(URL)

// perform a wsconnect() on the stream socket. Connect to port 80
// of the host specified in the URL. Port 80 is the standard http
// port.
a = sSocket.wsconnect(ulAddr,80)
if a= ws.SOCKET_ERROR then
messagebox("Error”,"No connect")
end if

// Enable asynchronous messaging for this socket.

// the ws.wsor(ws.FD_READ,ws.FD_CLOSE) function returns the OR'ed

// value, which contains the appropriate bit-mask to tell the

// wsaasyncselect() function which events to monitor on the socket.

// handle(w_oletest) returns the window's handle.

// 1024 is the code for PowerBuilder's custom01 event: pbm_customQ1

// this is the event that is executed every time either of the

/I FD_READ or FD_CLOSE events occur on this socket.
sSocket.wsaasyncselect(handle(w_main),1024,ws.wsor(ws.FD_READ,ws.FD_CLOSE))

// this is the command sent to the HTTP server to retrieve the

// file identified in the URL. the ~r~n~r~n means carriage return (~r)
/I linefeed (~n) carriage return (~r) linefeed (~n)

sSend = "get " + sPath + "~r~n~r~n"

// this sends the get command to the socket (which was connected to
// port 80 (the http server) of the specified host) -- again, there

/1 is no error checking or other intelligence here. If the connect

// failed for some reason, this is going to blow up.
sSocket.send(blob(sSend),len(sSend),0)

/I check to see if the file that we want to write to exists.
/1 if it does, delete it just to be on the safe side. (not safe
/I for the file in question, of course.)
if fileexists(sFile) = TRUE then

filedelete(sFile)
end if

// open the output file
iFile = fileopen(sFile,StreamMode!,write!)

return
/**************** window function urlgetaddress() *******************/

ulong ulAddr
string sAddress
integer iPos
pbhostent pbheTmp

66

iPos = pos(URL,"://")+3
sAddress = mid(URL,iPos,pos(URL,"/",iPos)-iPos)
pbheTmp = ws.gethostbyname(sAddress)
if isnull(pbheTmp) = TRUE then
ulAddr = ws.inet_addr(sAddress)

pbheTmp = ws.gethostbyaddr(ulAddr)
if isnull(pbheTmp) = TRUE then

ulAddr=0
else
ulAddr = pbheTmp.h_addr_list[1]
end if
else
ulAddr = pbheTmp.h_addr_list[1]
end if
return(ulAddr)

do while pos(URL,"/") >0
URL = mid(URL,pos(URL,"/")+1)
loop
if upper(right(URL4)) = "HTML" then
URL = mid(URL,1,len(URL)-1)
end if
if pos(URL,".") > 8 then
URL = left(URL,8) + right(URL,4)
end if

return(URL)

[ExEREkkkkkkkkkkk®k® winow function urlgetpath() kst stk sk odoskodosk skeokokokook sk ke ko ok

string sPath
int iPos

sPath = mid(URL,pos(URL,"://")+3)
iPos = pos(sPath,"/")
sPath = mid(sPath,iPos)

return(sPath)

[REsRckckkskkskokkockkkokdok window function **********************************/

string sPrefix

sPrefix = left(URL,pos(URL,"://")-1)

return(sPrefix)

67

68

BIBLIOGRAPHY

Belford, Morgan. “WebDBC™ White Paper #1.” Seattle: Nomad Development
Corporation, 1995

Coombs, Jason. PowerBuilder Power Toolkit. Unpublished, 1995

Technical Empowerment Program Lecture Guide Boston: Open Environment
Corporation, June 1995

“World Wide Web Consortium” http://www.w3.org

371 - ¥

