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ABSTRACT

STABILITY ANALYSIS OF MULTICOMPONENT SYSTEMS

by
Bruce I.. Beegle

Submitted to the Department of Chemical Engineering
on August 13, 1973, in partial fulfillment of the
requirements for the degree of Master of Science.

The criterion of intrinsic stability for a general
m—conponent system is developed in terms of derivatives of
U, the total internal energy. This criterion is converted
To equivalent forms in terms of any Legendre Transform of
U The corresponding equations whlch define the critical
point are derived.

Stability and critical point conditions are applied to
Trure and nmulticomponent systems. Superheat 1limits and
critical points are calculated using the Redlich-Kwong
equaion-of-state and the Soave modification. The original
hedlich-Kwong equation predicts that the limit of superheat
for pure materials is at a reduced temperature of about .9,
which agrees well with data. All other predictions show
nuch less agreement.

Thesis Supervisor: Robert C. Reid
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SUMMARY

The purrose of this thesis is to derive rigorously the
criteria of intrinsic stebility and of critical points, to
examine what these criteria mean in physical terms, and to
examine the accuracy of using the criteria with common
equations—-of-state in the prediction of limits of superheat
and critical points.

In a stable equilibrium state at constant total
internal energy (U), total volume (V), and mole numbers
(N;), the total entropy (S) is maximized. An equivalent
statement is that at constant S, V and N;, U is minimized.
Consider a homogeneous system being held at constant S, V
and N; which splits into two phases, each differing only
slightly from the original. For a system to be at stable
equilibrium, the energy must increase during this change.

The change in energy (éU) is expanded in a Taylor
Series &about the original conditions. The first
derivatives of U (temperature, pressure and chemical
potentials) are shown to be constant throughout a stable
equilibrium system. Except at critical points, the second
derivatives control the sign of §U. Rewriting the
expansion in a sum-of-squares form reveals that certain
determinants of the second derivatives of U must be
rositive for the system to be intrinsically stable. One of

these determinants is shown to become zero before or at the
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same time as the others, and is thus the first criterion to
bte violated. This criterion of intrinsic stability is
listed in Section I as Eq. (52).

The criterion of intrinsic stability is written in
terms of the Helmholtz Free Energy (A) or any other
Legendre Transform of U using the second derivatives of
legendre Transforms derived in Appendix C. One form of
this criterion 1is that a single second derivative be
positive (Eq. (50)). At critical points, this derivative
and the third derivative are zero. Using third derivatives
of Legendre Transforms, these conditions are revritten in
terms of U or any of its transforms, including A (Egs. (62)
and (89)).

Several stability criteria may be written in common
thermodynamic terms. All stable substances satisfy the
condition of thermal stability, "the heat capacity at
constant volume 1is positive." The stability criterion
which 1s violated when a pure material becomes unstable is
the conditior of mechanical stability. Equivalent forms of
the mechanical stability criterion are: "the derivative of
the pressure withh respect to specific volume at constant
temperature is negative" and "the heat capacity et constant
pressure remains finite." Binary systems are stable only
when the condition of diffusional stability, "the

derivative of a chemical potential with respect to its mole



8

fraction at constant temperature and pressure is positive,"
is satisfied. Other equivalent forms of the conditions of
thermal, mechanical and diffusional stability, and
conditions of stability for ternary systems are given in
Tables I through 1IV.

All second and higher derivatives of A with respect to
volume or mole numbers may te evaluated using a pressure
explicit equation-of-state. Superheat limits of pure and
multicomponent systems and critical points of mixtures were
calculated using the original Redlich—-Kwong
equation—-of-state and the Soave modification. The original
FE-K equation predicts a reduced superheat temperature of
eabout 9/10 for 211 pure materials. This is in remarkable
agreement with virtually all measured compounds. The Soave
equation produces much less accurate results in this
instance . Both equations predict that the superheat
temperature of a mixture is very close to the mole fraction
eaverege of the pure component values, which is partially
reflected in the data. Calculations of mixture critical
points are about equally poor using either equation.
Trends ere predicted correctly but actual values are
significantly in error.

The apparent fault in the equations—-of-state used is
their poor handling of mixtures. Significantly improved

rixing rules are needed to yield increased accuracy.



INTRODUCTION

Under certain conditions a liquid may be heated well
above its boiling point and yet remain in the liquid state.
When vaporization finally occurs, it produces a "superheat
explosion" due to the sudden phase change. The explosion
increases in violence as the liquid is heated further above
its boiling point. All liquids at a given pressure have a
temperature above which they may not be heated without
spontaneously vaporizing. The degree of superheat may
strongly influence the violence and/or the possibility of a
superheat explosion. Thus the study of such limits of
superheat is necessary in predicting the behavior of a
rapidly heated liquid.

The 1imit of superheat is one aspect of the study of
intrinsic stebility, that is, the stability of a system
with regard to spontaneous small changes. Systems which
may undergo such changes 1include superheated 1liquids,
subcoocled vapors and supersaturated solutions. The central
rroblem of this thesis is the derivation of criteria of
intrinsic stability for a general m-component system.
Since the study of critical points is closely related to
stability phenomena, the conditions which define critical
points are also developed.

The criteria of intrinsic stability are derived

starting with the entropy maximization principle. A system
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is assumed to split into two infinitesimally different
subsystems, and equations are developed to determine
whether this change proceeds spontaneously. The
derivatives of Legendre Transforms are found and are used
to simplify the equations obtained.

The stability and critical point conditions are
examined as to their predictions about pure and
nulticomponent systems. They are then tested using two
equations—of-state in a comparison with experimental
values. Finally, this treatment is contrasted with that

of several other authors.
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1. DERTVATION OF STABILITY CRITERIA

The concept of intrinsic stability is not wusually
encountered 1in chemical engineering applications. For
example, consider the reversible, isothermal compression of
water vapor st 100°C. Normally, when the pressure reaches
1 atm, liquid water appears. Condensation begins on the
vessel surfaces or on impurity notes. As the system is
compressed further, more liquid phase forms. When the
water is entirely liquid, the pressure rises above 1 atm.

If the vessel surfaces are not "wet" by liquid water
and no other condensation surfaces are availeble, the water
will remain entirely in the gas phase even though the
rressure is raised considerably in excess of 1 atnosphere.
This 1is because microscopic drops of liquid have a higher
specific aveilability function than the bulk rphase. (A
detailed analysis of the avsilability is not required here
—the importent fact is that a potential barrier prevents
nucleation). The system is then stable with regard to
ricroscopic perturbations (intrinsic stability) even though
it mey bLe unstable with regard to a large perturbation
(phase instability) i.e., the formation of two unlike
thases with the transfer of mass from certain parts of the
system to others. This system is termed metsstatle.

If the metastatle vapor is compressed further it will

eventually become intrinsicelly unstable. Trat is, it will
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become unstable with respect even to microscopic
perturbations and will spontaneously separate into two
rhases. The point at which a system first Lecomes
intrinsically unstable is termed the "limit of intrinsic
stability."” ZFormulas are derived below to predict where
such 1limits will occur. Expansions in terms of the Gibbs
or the Helmholtz Iree Energy are readily evaluated using
volume or pressure explicit equations of state.

The criterion of  intrinsic stability fer an
equilibrium state, first derived by Gibbs[1], is that for a
stable, isolated system, the total entropy is maximized.
In other words, for any possible microscopic variation at
constant mole numbers, total volume and totel internal
energy (N, V and U),

§s<o (1)
Lqg. (1) is easily changed into alternate forms.

Consider a two-step reversible process starting at a
stable equilibrium state holding V and N; constant during
btoth steps. The first step is any small, reversible
variation at constant U. By Eq. (1), S decreases. Heat
may then be added reversibly until S increases to its
original value. This two-step process is equivalent to a
ret varietion at constant S. In the first step U was held
constant while in the second step heat was added and thus U

increased. The total internal energy then increases during
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211 smell variations around this stable state =t constant
Sy V and I

A similer vprocess mnay be followed starting at an
unsteble equilibrium state. The first step is 2 small
variation at constant Uj; S increases. Such a variation
must exist for the state to be unstable. Heat may then be
removed reversibly until S returns to its original value.
U therefore decreases in this two step process. By
eppropriete choices, this mey be shown to be equivalent to
rolding £ constant. Thus there exists a small variation
around this unstable state at constant S, V and N; where U
gecreases.

An alternate criterion of intrinsic stability is that
for ell wvariaticns around &a stable equilibrium state at
constant S, V and N,

SU>0 (2)
Iq. (2) is equivalent to Eq. (1) since it is applicable
when Eq. (1) is true and is violated when Fq. (1) is
violated .

The V form of the criterion of intrinsic stability is
obtained by using similar reasoning. The two-step,
reversible processes are all carried out at constant S and
Ii. After the first small variation at constant V, enough
wvork energy is either reversibly added to or subtracted

from the system (by contraction or expansion) to return U
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to its original value. Assuming that the pressure is
positive, the sign of &y for the two step process is always
the same as the sign of U for the first step. Thus
another criterion of intrinsic stability is that for all
small variations around an equilibrium state at constant U,
S and N, if P>0

§V>0 (3)

In some metastable systems P<KO. The zbove argument
holds except that the sign of &y is changed. Therefore a
general form of Eq. (3) is that for all smell variations
around an equilibrium state at constant U, S and N;

P&V0 (4)

Using & procedure similar to the above, the criterion
of intrinsic stability for small variations around an
equilibrium state at constant U, S, V, and Njia is

M, N, <0 (5)
Eq. (5) is not particularly useful since it requires that S
be held constant while N, is varied.

Eq. (2) is the form of the criterion of intrinsic
stability used in this thesis. It is chosen since most of
the transforms and derivatives of U are common
thermodynamic properties. Any other form could be used,
end would yield equivalent results.

Since N;, N,, N; ... N,, V and S completely specify U

in a single phase, the test for stability must involve the
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creation of two phases, « and B, each differing only
microscopically from the original. Differential quantities
of heat, volume and nass may flow between the phases, but

Sy, V and all N; are held constant for the entire system.

Therefore,
as’=as™ (6)
dvl=dv" (7)
dNf =—aN; (8)

To simplify notation, V, S and N, through I, are
relabelled x, through x, (n=m+2). Since V, S and N; are
mathematically equivalent they may be relabelled in any
order. For instance, the x; ‘s could be defined (for j>2):

x, =8 (9)
x,=V (10)
XJ'=NJ'_2 (11)

although any other ordering would be satisfactory. With
any labelling, Egqs. (6), (7) and (8) summarize to

dxf:—dx? (12)
Also for convenience, partial derivatives of U or any of

its transforms (A, G, etc.) are indicated by subscripts:

U(_: _b_l_l__) H sz{b )
(bxt Xjzi 3% T,N;

Since each subsystem is assumed to undergo only small
changes, the total internal energy may be expanded in a
Taylor Series about the original conditions. Expanding

through second order terms (using a superscript ° to
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indicate that a variable is evaluated at the original

conditions)
§u —-} U dx +V‘ “u Uijaxiax] (13)
3='
nAa ‘h n
SUB=LUfﬂdxf+ ) Zuf’-g dax’ax? (14)
- i=g i=l j::| J .

The change in the entire system”s total internal energy is
the sum of the changes for the two subsystems, or
§U=6U"+du”? (15)
Combining Egs. (12) through (15)
8U-> (U =u* )axT+ f(U°J+U flaxiax (16)
(=i =
Since all constraints on the system have been
incorporated into Eq. (16), each dx, 1is independent.
g. (16) must therefore be true for all possible sets of
dx, through dx,, including the one where dx; is the only
non-zero dx; . Thus, since dx; may be either positive or
negative, U; must be equal to Ufﬁ to prevent §U from being
negative.
U =Utt (17)
Each UZ is an intensive variable, being either T, P or a
Hje The subsystem « may be defined to be any part of the
original system. Therefore Eq. (17) shows that there are

no temperature, pressure or chemical potential gradients in

o stzable equilibrium state. Since m+1 (i.e. n-1) intensive
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varizbles are sufficient to define the state (but not the
extent) of 2 single phase system, 211 intensive variables
are constant everywhere throughout the original system.
Uij » being the derivative of an intensive veriable
with respect to an extensive variable, is  inversely
proportional to the number of mcles in the subsystem under
consideration. The product of Uﬁ and the number of moles
is therefore the same for any subsystem.
NUL =NtUSS (18)
Substituting Egs. (17) and (18) into Eq. (16) and
eliminating Uff ’

é_g:%? XZH:UJ“ dx?dx] (19)

(=1 )=
The system which is Dbeing tested for stebility 1is the

original system. The subsystem « may be chosen to be any
prert of the original system. Therefore 211 superscripts
are dropped when substituting Egq. (19) into Eq. (2) to
yield as an alternate criterion of intrinsic stability

iZn:U;_j dX‘LdXJ'>O (20)

i=) 5:\

A system is intrinsically stable if Eq. (20) is
satisfied for all microscopic perturbations. If the left
rand side (LHS) of Eq. (20) were negative for  some
perturbation, the system would be unstable. If the 1LHS of
Eq. (20) were zero, then Egs. (13) and (14) would have to
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be expanded to include third (and possibly higher) order
terms. Following the above developement, Eq. (20) would
then include third order terms. If the signs of 211 the
dx; s were reversed, then then the sign of the seconé order
terms would be unchanged while the sign of the third order
terms would be reversed. Thqs vhen the LHS of Eq. (20) is
zero, the change in U mey be either positive or negative,
unless the third order terms are also zero. Usually,
therefore, when the IHS -of Eq. (20) becomes zero, the
system becomes unstable. At critical points, however, the
third order terms are also zero. This speciel cese of
Eq. (20) when the IHS is =zero is discussed further in
Section II.

The limit of intrinsic stability is reached when the
IHS of Eq. (20) is zero. Since each dx; may be either
positive or rnegative, it is desirable to express the LHS of
Eq. (20) in a sum-of-squares form. Then the sign of the
expression will be controlled by an appropriate combination
of U¢;’s. The sum—of-squares form is derived in
Appendix B. Eg. (20) may then be written as

n

D¢ dZ; >0 (21)
k-1

=
where n
de= E Cix j dXJ' (22)
j=k Tk

D, and Ckkj are defined as in Appendix B, with Z, of
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Appendix E written as dZ,.

U, Uu\ "‘lhk
Ul\ Uza L Uak

Dk= . . .

. L] .

Ukl IJk)~ coee U‘(k

Un UI:L s U/k-r U/J'

U2| Ul) e o o Ulk-l U2J
Ckkj= . . - .

k- Ukj

Uk[ Uk2 eee Uk

Eq. (21) is the basic equation from which all other
criteria of intrinsic stability will be derived. It may be
simplified using the ILegendre Transforms discussed in
Appendix C. Following the notation of Appendix C, vy 1is a
function of x, through x, and Y is a pertiel Legendre
Transforn from x, space to £, space. Subscripts on y or Y
indicate partial derivatives with respect tc  the

corresponding variable.

y=y(x., Xy eee Xr\)

&’-P.LJ
€'=(.3.L =y‘
bX, XJ_#.’

Y=Y(€, » X, «o. X,)=y-€ x,
e
08, X541
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First let y be the total internsl energy, U. Rewriting D
-.V“ Yia o Jig oo Ipg
byzn Yoz Yaz =0 Jag
Dk= 31 T3z Y3z oo Y3k . (23)

L] . L d L ]

L L J
vvk( ykz yka e ykk

Iactoring ¥, from column 1,

1 Yia yl’s s ynk
Jar ¥, y2.3 cee Yok

yll

De=y, | Tar ¥3p Va3 oo0 Vak (24)

gff.k.l. Ya Yz <+ Ykk
1)

The first column of the determinant in Eq. (24) is then

multiplied by y,, and subtracted from the second column;
the first column is multiplied by y,; and subtracted from
the third column; ard so on. That is, for 211 i>1, the
first column is multiplied by y,; and subtracted from the

it" column. The end result is:



1 0 C o)
Jar Yax"daYa Yaz~Xa Vi oeee Vak~HaVik
E\l 1 3)'” y||
Dkzyu Lo Vsa"de Yo Yz~ diaVia eee Yo~z Nk (25)
3 1 y)y yll yl{
NI ykl"‘;!!g Jia ykg";Y:ls NIE LR ykk—;y.g;y:g
,yu i i y,,
Simplifying,
Vaa e Yo Yas~a Yz eee Yap~Yiz Jik
I T I
Ve, — Yz Yia Vao ~diz Yz eee Y3 =Yz Vik
Dk:yll . yln > yu yu (26)
Voo Yk Yoz Vi, Yk Yo e Yo~k Vik
yn J [ yl(

Each term ir the determinant of Eq. (26) is of the
form y;; -y, ¥,, ¥, » vhere i>2 and j>2. By Eq. (C=25) (from
Appendix C), each term is equal to VY:;, a second partial
derivative of the Legendre Transform, Y. Using this
substitution, Eq. (26) becomes
Voo You oo Yoo

Y \}/ 00-\*/
Dy=y,, S ’ (27)

* L ]

LOPRR PPRRTT %
Applying Eq. (27) to the ratio of terms found in Eq. (21)
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‘Piﬁ Y:.s '“\Ylk
v ¥,

L ] . L 4
L J L] *

Dy = \Vka kylf\3 e \ykk (28)
" vﬂi kyza e W-’Z k-

\Psz st s Ysk-l

. - .

L L] *

Yk-l 2 \qu - \Vk—n k-1
Thus each of the determinants (except L,) in Eq. (21)

may be reduced by one order. The second partial
derivatives of y have, however, been replaced with second
partial derivatives of Y. Y is the Legendre Transform of y
from x, space to €, space. The first row and first column
of the old form of the determinant, which have been
eliminated in the reduced form, are the row and column
which contain derivatives with respect to x,, the
transformed variable.

All of the determinants (except D, and D,) may be
reduced by another order by repeating the process used to
generate Eq. (27) on each of the determinants in Eq. (28).
That is, defining ¥ '* as the Legendre Transform of ¥ from
x, space intc ¢, space (also termed the second Legendre
Transform of U from x, and x, space into £, and £, space)

YR (e, 8,y Xy eee Xp)
=Y(€,5 Xy oo Xp)=E6,X,=U(X, «oo X )= €x-€,x, (29)
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€, may be defined as a pertial derivative of either U or Y,

ice.’

—

€,=Y (30)

o '
0X,

X,

&'xi¢zﬂ X(i#2
The two derivatives in Eq. (30) may be shown to be equal
either by differentiating the definition of ¥, or by using
Eq. (C-22) (from Appendix C).

Reducing each of the determinants in Eq. (28) and
cancelling the term that was factored out, Y,,, yields
2R TR}
%4(;) %542) s ﬁ)

“(2) “(2) *(a)
wka \ykq b \ykk

DDk = (31)
k=1 (2) (2) (2)
"\'jza Lyaq oo Ya k-1
(2) (2) {(2)
‘{/q 3 %u °e % k-

*(2) () *(2)
Yk-—l 3 Wk—i y °*°° Yk-\ -t

Thus each of the determinants (except D, and D,) in

Ig. (21) has been reduced by two orders, and the second
partial derivatives of y are now replaced by second partial
derivatives of Y'?).

This stepwise procedure is continued until the ratio
of Dy to Dy., 1is reduced to a single second partial
derivative. In genersl, Y‘P' is defined as the pth

Legendre Trensform of U from x, through x, space to €
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through €, space, that is,

YO (8, € ver Ly Kprrs Xprz oee Xn)=
p
U(X,y X5 «ee xn)-zz:éixL (32)
(=1

vhere

€=U (33)

bXL)Xj¢L
Using the notation of Eq. (32), y (or U) is written as ¥ '
end ¥ is written as Y¢) . Repeating the procedure used to

generate Eq. (28) on each of the determinants in Eq. (28)

w k)
[wkkll (k=)
Dk = =‘Pkk
Dk—; 1

k-2 times

(34)

Eq. (34) is the finel reduction of the determinents in
Eq. (21). Following the identical procedure, the

determinants in Eq. (22) are reduced to
‘ \IJ (kat)

Cho ki =¥ (35)
K ~1)

qﬂv.
,‘Vﬁk{q [ kk
The RHS of Eq. (35) is \}’k(;"” /q}ikk-') . By Eq. (32), \P(k) is

the lLegendre Transform of y & from X, space to £¢ space.

Since x, is the transformed variable, Eq. (C-29) (from
- - ) k
Appendix C) shows that Yﬁz ) /Yéi" is equal to Wﬁss.

Rewriting Eq. (35) (for j>k)
L (k)
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From the definitions of Ckkj and D, if j=k
Crii =1 , j=k (37)
pul
Eq. (34) is substituted into Eq. (21) and Egs. (36)

and (37) are substituted into Eq. (22) to yield the reduced

form of the criterion of intrinsic stability

jz:v(kl) dz, 230 (38)
where - (k)
Az =dx,+ Y ¥, dx; (39)
J=k+1
wékﬂ) is shown equal to €y, either by differentiating the

definition of Y k™" (Eq. (32)) or by using Eq. (C-22)
(from Appendix C). Therefore ¥'*') simplifies to

(k 1) (40)

(BXK)E".€k~|’Xk+I ..Xn
Similarly, Yﬁk) is shown equal to -x, either by
differentiating the definition of ‘V(k’ or by using

Eq. (C-21) (from Appendix C). Wé?’ simplifies to

\Pkk) 41
3 _f-ﬁ(-g) g,l"Elz’XkH ceXjor 9 Xy oo Xp e

For example, the system under test may contain a pure
material. Then, if x,, X, and x; are defined as in
kgs. (9), (10) and (11), the criterion of stability given
by Egs. (21) and (22) is:
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Uss Usy Ugy
Uss Usy Uys Uyy U
U Uy U Uys Uy, U
Flaz2+l 7 Mlazad M Maz i (42)
1 ]Uss[ Uss Us,
UVS UVV
where
}Usv' Usw
dz,=dS+ av+ an (43)
o o]
USS USN
Uys U
az,=dv+ ° "l (44)
Uss Usy
U\/S UVV
dZ ;=dN (45)

The determinants in Eqs. (42) through (45) may be reduced
to single terms using the Legendre Transform methods above.
This alternate form of the <criterion of intrinsic
stability, given by Egs. (38) and (39), is
Vi (as+y ) avt ) an) Y0 (av+yyy) an) 4y S5 (an) >0 (46)
Since x,, x, and x, were ordered to represent S, V and
II respectively, the Legendre Transforms of U as used here
ere
v =A(T, v, N)=U-TS
¥ *) =6(T, -P, N)=U-TS-(-P)¥
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The second derivatives in Eq. (46) are

(o)
=U..=NT
Y, ss %ﬁ)v,w
W T,N
13 TN %ﬁ)l‘,y_
)
ViU <A, =[(=P
w= &‘éyfl)T,N
(2)
Y?& =G, = Z?YJT P
H

¥a3 0= (g

Substituting the above formulas into Eq. (46) yields
Ugq (AS+A L, AV+AL, AN )  +A,, (AV+G_, , AN) +G, (aN)*>0  (47)

T,P

or equivalently,

¥T) (ds-{»8| dv- as) an)®
O |V, )V)T 2N T,V

(‘LEEI)T N(dv- SN)T PdN)2+(%ﬁ}T,P(dN)Q>O (48)

kg. (48) may also te obtained from Eg. (46) by using
Egs. (40) and (41).

The leading coefficient of the last term in Eq. (48)
is the derivative of an intensive variable (the chemical
potential), evaluated while holding two other intensive
varisbles (temperature and pressure) constant. Since two
intensive variables completely specify the state of a
single comporent system, this derivative is equal to zero.

The result is generalized below to any system.
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Eq. (38) is the reduced form of the criterion of
.intrinsic stability. The final term has ‘Yﬁ:”v as a
leading coefficient.  Using Eq. (40), Y, o is a
derivative of &,, holding all other n-1 §£;’s constant.
Since each €; is either T, -P or i, all g;s are intensive
variables. Since n-1 (i.e. m+1) intensive variables
completeiy specify the state of a system, W;Q”) is equal
to zero.

The IHS of Eq. (38) must be greater than zero for all
pernutations around a stable equilibrium state (except at
critical points, where it may be equal to zero). There is
an apparent contradiction between this fact and the
preceding paragraph, since the dx;’s in a variation may be
selected so that all the dZ,"s except dZ, are equal to
zero. Since the ccefficient of dZ, (Y;:'o ) was shown to
be equal to zero, the IHS of Eq. (38) is equal to zero for
this variation. The contradiction is resolved by noting
the nature of this particular variation. It is a change in
mole numbers, total volume and total entropy by the same
proportions, or simply a shift in the boundary between the
two subsystems. There is no change in any intensive
property, or in any extensive property of the entire
system, Therefore this variation 1is actually not a
variation in any measurable, physical sense.

n-1 independent intensive variables can always be
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found for a stable single phase system. For example, the
temperature, pressure and mole fractions of 211 but cne of
the components could be the independent intensive
variebles. Therefore the subsystem « has r-1 independent
veristions which do rot change N*. If &, V and N;cf the
entire system (¢ plus B) are held constant, then all of
these n-1 variations cause an increase in U, since the
system 1is stable. dZ, through dZ,.., correspond to linear
combinations of these variations. Tbus the coefficients of
dZ, through 47,_, (W(M through ¢, h, ) must be positive
in &a steble phese. The "limit of intrinsic stzbility" is

. (k-
reached when any Wkk')

(except ¥, (n-1) ) becomes zero.

The ratio of Dy to Dk, , 1f reduced k-1 times using
the Legendre Transform methods discussed earlier, is shown
by Eq. (34) to be equal to ¥ X' . It the ratio of Dy to
Dy_, 1is reduced only k-2 times, it is shown equal to a form

involving only derivatives of p te-2)

(k-2) (k-2)
kl/k—r k-1 Wk-l k

(k-2) (k-2)
Wkku Wkk (ka\ﬂ

-

(k=1) (k—;z\
=Dy = . 4
Yk kk =Y, “k-f (49)
-1 - \P(k—l\ k-1 k-1
l k-1 k-1 l
Since both W’w " and 4th*fq are positive in a stable
phase, W/U‘ﬂ must be positive as well. thﬁj would be
the coefficient of dz, , if the ordering of x,, and x, was

(-2) 3¢ pssumed to not incresse

approaches zero. If Wk%'? is

reversed. Therefore Yk

without limit as %’<lk
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also assumed not to be zero, then Eq. (52) shows that

Vé:-” becomes zero at the same time or before th:il‘,
Both of these assumptions are used throughout the rest of
this thesis.

Since Wﬁz”) becomes zero at the same time or before

Y;ﬁ”l“‘, Wﬁ:’f{, becomes zero at the same time or before
any other W/éi“) (except V;ﬁf) ). Therefore the final
criterion of intrinsic stability is
y "2 50 (50)
Rewriting Eq. (50) in terms of x;°s and €."s
P&"') >0 (51)
2Xno1 | By CaeeeCra 9Xn
Using Eq. (34), Eq. (50) is equivalent to
D,., >0 (52)
Using Eqs. (34) and (28), Eq. (50) is equivalent to
\ljli \VZ‘S e qjﬂ- n-1
T%z 4%3 cen 1g2_, 50 (53)

L)

an—n 2 \V,\_, 3 *°° vn—l n-i
Y™ " (the ratio of Dn-i to Dn.n) may be expressed as the

ratio of two determinants whose terms are derivatives of
y (8, Using Eq. (50)
L0 (54)

where L; is defined for any given n and i
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(o) gl ()
CHl LH L+t L+z *** T+ n-

QA () ()
Wl'—‘*l (:'l'l q) - e e 0 q’l

Li,= L+il Lt2 Lﬂf n-j (55)
wd «f ()
Wn-l Chl \Vh-—l (v Vn—l n-1

Egs. (52) and (53) are Eq. (54) with i=0 and i=1,
respectively.

If (X,5 X3 oo X,)=(Sy N,y N, «uo N, V) and if i=0,
then ¥'“'=U and Egs. (54) and (55) become

Ugs  Usy, Usy, ++= Usn,

Uvis Unw, Unwy oo Unw,
Un,s UN;.’V: U’V:.Na. e U”sz >0 (56)

L L] * *

- L] L] L]

UNms UNMN' UNM Na D UNN‘N"w

Derivatives are defined as before:

Unew; = _N-Tb’u

Eq. (56) 1is a criterion of intrinsic stability stated by
Gibbs[2].

The example of a system containing a pure material is
again emrloyed. Values of x; are again defined as in
Egs. (9), (1C) and (11). Egs. (52), (50) and (51) then
become
Ugs Usy
UVS UVV

A,,>0 (58)

(57)
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Egs. (57), (58) and (59) are equivalent forms of the
criterion of intrinsic stability for a system containing a
pure material. Forms which arise from different orderings
of x,, X, and x;, as well as multicomponent systems are

considered in Section III.



33

II. DERIVATION OF CRITICAL POINT CRITERIA

The *"limit of intrinsic stability" is reached when

Eg. (50) is first violated,

-2)
\Pviyjcy;-r =0 (60)
or equivelently, when Eq. (51) is first violated
D€ n-1 =0 (61)
bXI\-l é‘, g‘looo Eh_x,Xh

or when Eq. (54) is first violated (for any i)

Li=0 (62)
The locus of the points which satisfy Eq. (60), (61) or
(62) 1is called the "spinoidal curve." In general, when a
system  reaches the spinoidal curve, it becomes
intrinsically unstable and spontaneously separates into two
(or more) phases. This is demonstrated below.

Consider a system which is being held at constant ¢,
through €,-, and x,. In &a stable phase, Eq. (51) (or
equivalently, Eq. (50)) is true. In other words, U
increases for all small variations at constant S, V and N¢.
Tor certain values of €, through €, ,, the locus of points
formed by varying x,., will intersect the spinoidal curve,
where Eq. (60) becomes true.

Eq. (50) was based on the assumption that second order
terms would be sufficient to determine whether U would be

negative for some variation or positive for 211 variations.

This assumption is not valid on the spinoidal curve, since
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Eq. (50) predicts U is non-negative for all variations and
is zero for at least one variation. Therefore an equation
analogous to Eq. (50), but including third (and possibly
fourth) order terms is necessary to examine the stability
of a system on the spinoidal curve. Such an equation is
derived by examining again the two subsystems, « and 8.

A varistion possible to the system described atove is
holding €, through €,; and x, constant in each of the two
subsystems and varying the fractiomn of the total x,.,

allocated to each. Assume that the subsystem « increases
(n-2)
n-t n-| n-|

then wﬁfﬁli will become positive and Wﬁffﬂf

in x,. end that g decreases. If VY is positive
will become
negative. « will now be in a stable region, but g will be
unstable. At this point, an additional transfer of x,_,
from g to « will take place. In effect, the subsystem g is
splitting into two smaller subsystems, one of which is
becoming part of «. Since g is in an unstable region, this
will result in a decrease in U, the total internal energy,
as well as driving g further 1into the unstable region.
Thus this process 1is spontaneous and will continue until
equilibrium is reached, with at least two distinct phases
formed .

If Wkﬁ:?_,n_, is negative then the above argument

still applies, with the roles of « and g reversed. ITor a

system to be stable and to 1lie on the spinoidal curve,
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W:rfl|nﬂ must be zero
(h-2)
LlJnr\l n-i n-i =0 (63)
Rewriting Eq. (63) in terms of x;°s and ¢&;’s
¢
¥En- =0 (64)
axh—l’.) e:’ g;z“‘ En-zaxn

For a system on the spinoidal curve tc be stable, in
addition to Eq. (63) (or (64)), $¢ffﬂ_.nq noy must be
positive

Y00 e 20 (65)
If Eq. (65) is not satisfied, then the lowest even order

") yith respect to x,.,

non vanishing derivative of V¥
nust be positive, and all lower order derivatives must be
zero. This condition is necessery to insure that after a

small veariation inside the entire system, a8ll subsystems
are still stable.

Varying x,., will allow a system to touch the
spinoidal curve and remain stable only when particular
values of €, through €, , are held constant. If slightly
different values are chosen then the system will either
rass through the unstable region or else miss the spinoidal
curve entirely. Thus the stable points on the spinoidal
curve lie on the boundary between the unstable region
(where two phases are formed) and a region where 2ll
changes are continuous. These points are called "critical

points."

For example, a pure material may have x,, x, and x,
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defined as in Egs. (9), (10) and (11). Then the conditions

of the critical point (Egs. (60) and (63)) are

Ayy=0 (66)
Ay, =0 (67)
or equivalently, Eqs. (61) and (64)
FV}T . =0 (68)
=0 (69)

%,
Cther forms of the conditions of the critical point for
pure materials, as well as examples using multicomponent
systems are presented in Section IV.

(64),

M; is defined as

The section below derives a general form of Eq.
(57) .
(Eq. (58)) with the 1last row

znalogous to Eq. The determinant

the determinent L changed.
The jth term in the last row becomes the derivative of I;

with respect to xg,;.

) ) () ()

Yi-h (+l \Vu-( (42 W(ﬂ {+3 *°° W£+‘ n-i
) (W ) (i)

\PL-M. et q}i,m +2 ?;4—; (+3 e LVi+;z n-i

I"}t_—. ° . * (70)

| Q) QC\ «
n-2 L+ n-2 (+2 Ynua 43 e \V -2 h—-t

AL 3¢ WL eee L

BX Lt X L+ bX;‘ys IX n-1

The first determinant considered will be M,




M

I}

yH ) y!;L yxz
Y Yoo Yas
7m—l | yn—l 2 yh—l 3
}LO bLO BIJ(;;
X, dX, 23X

The same sequence cof operations

epplied to M,.

bty y, while

the entire determinant

same quentity.

column is multiplied Dby Yoy and subtracted from the

Then, for all j from

column.
1
\73 yz;_ — a2 X7
Y yu
I"iozlru N
=P -2 2~z
-yu yll
1 oo  ¥Lo=y,2 Lo
Y, X, X, ¥y, X
%jLO

Fach element of

2

LRI y’ n—i
LI IS yll)—{
.

.

LI B y’l*l h-

2L,

e 0

L> P

[p]

!

e e e yn‘l h_l—y‘{ n-2 yl n-1

Y

oLio =y, hoi

Lo

0X -

ML

X,

is defined (for j between 2 and n-1) as the j

term in the last row of the determinant in Eg. (72)
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(71)

used to produce Eq. (25) is
the first column is divided
is multiplied bty the

2 to n-1, the first

th

(72)

th

¥ Lo=2Lo=y,j Lo (73)

}XJ Y. bX|
Defining [#] as the derivative operator in brackets, below
[#1=[2 -Yi; 3] (74)

BXJ' yu X,

Eq. (73) is rewritten
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+; Lo=[#]1L, (75)
Multiplying and dividing L, by y,,
+;L,=[#](y,, _Lo) (76)
MY
Expanding Eq. (76)
L=y, [#1(_Le)+(_Lo)[#1y,, (77)

yll y“
If Eq. (77) is considered only on the spinoidal curve, L,

is equal to zero

#;L,=y,, [#1(_Lo) (78)
Y
Repeating the procedure used above to generate
Eq. (72) on L, over y,,
1 0 e se 0
.g.;.é.l. Yaa -Xxyalu_ cee Yoon~La¥in-
Lo - l.i . It . ¥ (79)
y" L] L [ ]
In=t b Vo2 " XaVin-l e Ynoron-r =Fia-t Jin-
yl\ y“ y“
A ' derivative operator applied to &  determinent

evaluates as the sum over all k of the determinant with the

kth

derivative operator applied to each element of the Trov.

Simplifying Eq. (79) and substituting it into Eq. (78)
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Yoo~z Jia see Yon- da¥in-t
1 R}
yk—‘ Q.-MLJS;.L.. see yk—l A=l “Yik-t Vi n-y¢
yll yIl
[ked]
$iLam) | (100 Laetia) wor DO, oL ) | (20)
oo k=2 1" 0 ,

yk-(-« 1—Ly-LL—E—+-'—— e yk-H n—l_LJSLLl‘_'.‘;'_

)t it
o .

Ip-v a~LaaYint o eee Yooy ney ~dan-t Jona
yN y”
th

Evaluating the m element of the k*h row in the

determinant in Eq. (€0)

[#1(y M‘M)z_b_(y m"XLLILm_)"' ;2 (y m—MUﬂ.)
) Y bXJ' ‘ yu %:J- bx! ¢ 1

= . - e R .
=Vm Xﬂ;ﬁug_ XA§E;QF Xus§%alu4_
h I i

Yy Yikm*Y 5 Yok Yom FY Yim Yok =Y Vik YymYo (81)

Y. y2 ¥} Y,z

Rewriting Eq. (81)
(#1(y, =Y Yom ¥y )
=i Vi Vi) Hom Yikj +91j Vikm )Y S

e Vim Vg Wk Vi Yym ¥ Yin Vi )y,
Y Y VYo Y (82)
Using Eq. (C-29) (from Appendix C), the RHS of Eq. (82) is
equal to ‘ykmj’ a third derivative of ¥, the Iegendre

Transform of y from x, space to £, space.

[#](ykm.m)z\ykmj =.§_q.'l_lsm. (83)
Y, X
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The row involving the [#] operator in each of the
determinants in Eq. (80) is simplified using Eq. (83). All
of the other terms in the determinants are shown equal to
second derivatives of Y, using Egq. (C-25) (from Appendix
C). The simplified form of Eq. (80) is
Yar oo Y

[ ] L ]

L] [

I U
*;‘LQ:‘ ?Njgg oo qug n-| (84)
Y, ; 0X ¢ X

Wkﬂ a *°° \Vkﬂ n-i

LVn-\ 2 *°*° \Vn-l n-|
The RHS of Eq. (84) is the formula for the derivative

of the determinant L, with respect to x;
$jLo=2Lo (85)
Y, 0X;
The last row of the determinant in Eq. (72) is simplified
using Eq. (85), and the rest of the terms are again
simplified using Eq. (C-25). Egq. (72) becomes
YRR A

. . (86)
\Pn-z r ce \Vn—z n-1

E_I_}ﬁ o e e BLO
X oXn

=
°
i

|

&~
= v

A1l the terms in the determinant in Eq. (86), except for
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the last row, are identical to the terms in L¢. For all J,
the j*" term in the last row is a derivative of I, with
respect to xy4+j. Therefore, by Eq. (70), the RHS of

Lq. (86) is equal to M,. Multiplying by y’
 Me=y/| M, (87)
The procedure used to derive Eq. (87), starting with

Mo,y could start with M{. The result is

MF"Q(f? :u Miv, | (e8)

Repeatedly applying Eq. (88) demonstrates that if M; is
equal to zero, then M; is equal to zero, for all i<j. By

y -2) .
Eq. (70), ﬁﬁﬂ:i_‘nﬁ is My, Eq. (62) shows that
W:Zﬁl,n_, is zero at critical points. Therefore an

alternate form of the second equation for critical points
is (for i<n-1)

M{=0 (89)
Egs. (62) and (8S) (or (60) and (63), or (61) and (64))
define the critical points of any substance.

If the x(’s are defined as in Egs. (9), (10) and (11),
and 1 is chosen to be 2, then the Legendre Transform in
Egs. (55) and (70) is G. The conditions of the critical
point given by Egs. (62) and (89) then become

L,=0 (90)
M,=0 (91)

where
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GNl N, GN». Ny eee GNle_|
GN N, GN N eos GN Nm-
Ly=| = i o (92)

N
(JNm—a Ny GNm—lNl bl GNm-« Ni-(

Gy, », GN,Na ees Gy .,
Gnov, Gy, eoe GNg Npoy
M= . . . (93)
Grpres N, GN,;-: Np == GNW:-; Nen=
L. ALia eee dln
N W Nt

Fgs. (90) through (93) are conditions of the critical point
stated by Gibtbs[3].
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IIT. ONF, TWO AND THREE COMPONENT SYSTEMS

In Sections I and II formulas were derived to predict
limits of intrinsic stability and critical points for a
general m—component system. This section will consider the
special cases of pure materials and of binary end ternary
systems in more detail.

Eq. (46) gives a criterion of intrinsic stability for
e pure material. The leading coefficient of the last term,
%g?), was shown to be equal to zero. Therefore a pure
raterial is stable if the leading coefficients of the first
two terms are positive:

v >0 (94)

ve >0 (¢5)
Since the leading coefficient of the second term was shown
to become zero before or at the same time as that of the
first, Eq. (95) 1is the only criterion that needs to be
examined to determine the limit of stability. However,
Egqs. (94) and (95) eech contain useful information.

The specific form that Eq. (94) takes is dependent on
the ordering of x,, x, and x,. If x, is defined as S, then
Eq. (94) btecomes

Ugs >0 (96)

Since Ug=T, Eq. (96) is equivalent to

%)!,NXJ (97)
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Defining C,, the heat capacity at constant volume

Cy=T gg) =T gg) (98)
3TV N IDT/ V,N
Substituting Eq. (98) into Eq. (S7)
T >0 (99)
rT,
Cince T and § are always positive, Eq. (99) reduces to
c,>0 | (100)

Eq. (94), from which Eq. (100) was derived, is valid
for nulticomponent systems as well as pure materials.
Therefore Eq. (100) states that for en intrinsically stable
substance, the heat capacity at constant vclume is always
positive. Eq. (100) is termed the "condition of thermal
stability."

Other forms of Eq. (94) may be obtained if x,, X, and
x; are ordered differently. Table 1 1lists all of the
possible orderings of S, V and N, each with the
corresponding form of Eq. (94). All forms of Eq. (94) must
e satisfied in any stable equilibrium state. Since the
limit of intrinsic stability is reached when Eq. (S5) is
violated, and sll1 forms of Eq. (94) are automatically
satisfied up to that point, the label "condition of thermal
stability" is herein applied to all of the forms in Table
1, not just the first.

Eq. (95) is that condition of intrinsic stability (for

o pure material) which is violated first. If (x,, X,, X3)
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TABLE I — CCNDITIONE OF THERMAL STAEILITY

CRDEEING OF (X, X, X;)

S
or éE:
;
or v,
§N,
or Iy
TAELE

CRDERING OF

<
- -

=l
- -

- -

|<ftn

= <=

fent<

)
3
)

Y >0 FORM

LERIVATIVE FORM

Ugs 20
Uyy >0

Uy 20

>0
pPS|Y,N

2P <0
8, N

[0

II — CONDITIONS OF MECHANICAL STABILITY

(X,’ Xas X3)

Y.\ >0 FORM

LERIVATIVE FORM

(N,

v,

-

=

(bP <0

SV)T,N

(lﬁ >0
d )T,!
T >0
33| P, N

3#)e.5™

3T >0
58y
(bp <0
2V [M,S
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ere ordered (S, V, K), then Eq. (95) becomes Eg. (58) (or
equivalently, (59)). Multiplying each side of Eq. (59) by

I, the total moles, yields an expression involving only

intensive properties:

bP) <0 (101)
([T
Eg. (101) is termed the T"condition of mechanical

stability."

Other forms of Eq. (95) are possible, and are listed
in Table 2. Since any of the forms in Teble 2 is both
necessary and sufficient to establish the intrinsic
stability of a pure material, they must 21l be equivalent.
Therefore the term "condition of mechanical stability" is
Lerein used as a label for any of the forms of Eq. (S5).

If (x,, x;, Xx;) are ordered as (V, S, N) then

Y ) =H=U~(~P)V and Eq. (95) becomes

H, >0 (102)
Since H¢=T, Eq. (102) is equivalent to
Y| >0 (103)
35/ P,N
Defining C,, the heat capacity at constant pressure
cP=T(g§) ;g‘3§) (104)
»T/P N AT/ PyN
Substituting Eq. (104) into Eq. (103)
T >0 (105)
()

Since T and N are always positive, Eq. (105) reduces to
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Cp>0 (106)

Eq. (106) shows that the heat capacity at ccnstant
pressure is always positive for a steble equilibrium state.
Eq. (105) also shows that as a pure material approaclkes its
limit of intrinsic stability (spinoidal curve), C,
increases without limit. Egs. (101) and (105) are
equivalent forms of the criterion of mechanical stebility
even though one involves a heat capacity and the other uses
cnly P-V-T properties.

Iqs. (6C) and (63), which determine critical points,
are easily evaluvated for a pure material. Rewriting the
critical point conditions for n=3

y =0 (107)
yY =0 (108)
If  (x,, x,, x,) are again defined as (S, V, N) then
Egs. (107) and (108) become Egs. (66) and (67), or, in the
derivative form, Egs. (68) and (69). Fach side of

Igs. (68) and (69) is multiplied by N, the total moles

%%);O (109)
@§£)T=o (110)

Eq. (10S) defines the spinoidal curve, the locus of
points which are on the limit of stability. Eq. (109) is
simply Eg. (101) with the inequality (<) changed to an

equality (=). Other equations which define the spinoidal
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curve are obtained from the last column of Table 2, by
changing an inequality to an equality. For example, using
the second entry in the last column of Table 2, the

spinoidal curve is defined by

4 (%ﬁ}w,yfo (111)

Critical points are defined as points on the spinoidal
curve which are stable with regard to all possible small
varietions. Eq. (110) is an equation which must be
satisfied to insure intrinsic stability for any point on
the spinoidal curve. It is obtained from Eq. (109) by
changing the first derivative to a second derivative. This
procedure may be used on any equation which defines the
spinoidal curve and is of the form of Eq. (61). For
example, the first derivative in Eq. (111) is changed to a

second derivative

(%)T,fo (112)

Fgs. (111) and (112) define the critical points in a pure
material, and may be used in place of Egs. (109) and (110).

The significance of Egqs. (101), (109) and (110) is
apperent when examining isotherms plotted on a graph of
pressure versus specific volume. Such a plot, for a
hypothetical material with a critical pressure (P.) of 26
atm, a critical temperature (T.) of 500°K and a critical

volume (V,) of .4 liters/g-mole, is presented in Figure 1.
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FIGURE I — P-V PLOT OF A HYPOTHETICAL PURE MATERIAL
P
(atn)
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The materieal is assumed to follow the Redlich-Kwong
equation-of-state, which is discussed in Section IV. The
isotherms drawn inside the metastable region are valid only
if no nucleation surfaces are available. If such surfaces
exist, or if the substance is brought to the spinoidal
curve, the material will separate into two phases, each on
2 boundary between the metastable and stable regions. The
area below the critical temperature (500°K) and to the left
of the criticel point is the 1liquid region; the
corresponding area to the right of the critical point is
the vapor region.

Three isotherms are drawn on Figure 1. The isothern
at 600°K always has a negative slope. Eg. (101) is
therefore always satisfied and the material remains 1in a
stable, single phase region at all times. The 400°K
isotherm reaches zero slope (the spinoidal curve) st two
points. Even though the equation~of-state predicts an
isotherm running through the unstable region, the slope is
positive and the material cannot exist as a single phase.
If the temperature is low enough, e.g. 400°K, ‘the
metastable liquid may exist under a negative pressure. The
pressure of a gas is always positive. The critical
isotherm (500°K) touches the spinoidal curve at one point.
Since both the slope and the curvature are zero, Egqs. (109)

end (110) are satisfied.
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Figure 1 shows only the liquid-gas transition. Other
transitions, for instance solid-liquid, will show identical
effects except for not having a critical point. This
thesis 1is mairly concerned with superheated 1liquids
(liquids in the metastable region) and with liquid-gas
critical points. These topics will be considered further

in Secticn IV.

EINARY SYSTEMS

In 2 Dbinary system Igs. (94) and (S5) are still
satisfied by all stable equilibrium states. However,
Eq. (50) is rewritten with n=4 to obtain the condition of
intrinsic stability which is violated first:

Y250 (113)
If (X, X,9 X545 X,) are again ordered (S, V, N, li,) then
y ) =G and Eq. (113) becomes
Gy o 20 (114)

aa

or equivelently,

(gﬁg) >0 (115)
°N../ T,P,N,

Rewriting Eq. (115) in terms of x,, the mole fraction of

component 2,

{bﬂﬂ) >0 (116)
3Xal TyP

Eq. (116) is termed "the condition of diffusional
stability." Other orderings of (x,, X,, X,, X,) will yield

cther forms of Eg. (11%). These forms are listed in
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TABLE III — CONDITIONS OF DIFFUSIONAL STABILITY

V2 >0 FORM

DERIVATIVE FORM

{Q 5‘2) >0
b a T,P,Nb
b >0
(S’ﬁf)T,P,Na

oP <0
3V | Ty Myl

8

(SV)T ﬁ%,N

>0
L)T Ma gV

%%

o/

)T,ﬁ%3v>o

3
(ab‘l‘ >0

_)P’//MNI:

B2, ™

(b‘l’ >0
S_S P’ /“A’Na

PN'A)P MpsS 70

(b T >0
S Moy Hp 9N

&bP <0
OV [ May My S
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Table 3. Since any form is both necessary and sufficient
to determine the stability of & binary mixture, a2ll forms
are given the label "“condition of diffusional stsbility."

Eq. (116) is often not the most convierient form for
applications to real materials. Usually one desires to use
P-V-T data. This data may be in the form of a pressure
explicit equation-of-state. In this case, the Helmholtz
Free Energy is particularly useful, as it is a function of
temperature, totel volume, and mole numbers.

Eq. (53) is of the required form. Using the same
ordering as above (Egs. (¢), (10) and (11)), Eg. (53)
becomes for n=4
A,, A,
Aoy Aga

>0 (117)

or, in the expanded form,
Ay Aga=As, >0 (118)
Ig. (118) may be evaluated using only a pressure explicit
equation-of-state. A,=—P, and thus A,, and A,, are
directly computable. Appendix D derives a formula for
evaluating A,,, Eq. (D-9).
The conditions of the critical point for a binary
nixture are Egqs. (60) and (63), with n=4.
v¥ =0 (119)
2 =0 (120)
Egs. (11S) and (120) mey ©Dbe evaluated directly.
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Alternately, conditions of stability may bve derived from
stability criteria, as was done with a pure material.

Eq. (116) is a condition of stability for a tinary.
Therefore the spinoidal curve is defined as the locus of

roints where FEq. (116) is first violated.

(%)T,on (121)

For 2 binary on the spinoidal curve to be stable, the
second derivative of with respect to x, must be zero, as
well as the first.

=0 (122)

g =
( T,P

VX,

OCther forms of the conditions of the criticel point may be
obtained in the same fashion from the conditions of
stability in Teble 3, or directly from Egs. (119) and
(120).

The critical point conditions may also be expressed in
Helmholtz Free Energy forms. Eqs. (62) and (8S) Ubecone,

for n=4 and i=1,

L,=0 | (123)
M,=0 (124)
vhere

Ay Aya

L,= (125)
Aav Aaa_
A, A

M= " (126)
YL, L,
W WL
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Expanding Eqs. (123) and (124)
Ayy Aaa—Aj, =0 (127)
By Byabea=3hyy oA vat3B oo A hya—A o achiv =0 (128)
Egs. (127) and (128) may be evaluated using any pressure
explicit equation-of-state.

The P-V-T diagram of a hypothetical binery mixture is
presented in Figure 2. The binary is assumed to follow the
Redlich-Kwong equation-of-state discussed in Section 1IV.
The mixture composition is: 80% the hypothetical material
in Figure 1, with T,=500°K, P.=26 atm =and V.=.4
liters/g-mole; and 20% a substance with T.=700 K, P.=20
atm end V.=.7 liters/g-mole. The binary has T =560°K,
P.=3C atm and V.=.45 liters/g-mole. The mixture values of
T. and V. are approximately mole fraction averages of the
pure componet values. P, of the mixture, however, is
considerably larger than either of the pure component P. “s.

A binary system becomes unstable more readily than a
pure materiel. This is because for a mixture, Eq. (118) is
violated before Eq. (58). The unstable region which would
te calculated using Eq. (58) is contained within the
unstable region indicated in Figure 2. This is verified by
noting that the isotherms in Figure 2 always have a
negative slope.

Different mixture compositions would produce P-V-T

rlots differing slightly from Figure 2. Therefore, for a
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FIGURE II — P-V PIOT OF A HYPOTHETICAL BINARY MIXTURE
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complete description of a mixture, a P-V-T-x, plot is
needed. P-V-T plots of mixtures with x,°s approaching O
and 1 will approach the P-V-T plots of pure component b and

pure component a, res@ectively.

TERNARY SYSTEMS

Ternary systems are analyzed by the same methods as
pure and binary systems. The intrinsic stability criterion
for a system with n=5 is, using Eq. (50),

Y,.2 >0 (129)
Table 4 presents the fundamentally different derivative
forms of Eq. (12%). Each form involves taking a derivative
while holding at least one «; constant. Therefore, these
forms are difficult to evaluate and are not useful in
calculations with real materials.

Again the x;°s are defined as in Egs. (9), (10) and
(11). Then Y=A and Eq. (54), an alternate form of the

criterion of intrinsic stability becomes (for i=1)

L,>0 (130)
vhere
A, Ava Avp
L,=|Aay Aaa Aab (131)
by Apa App

A,,9 A, and A, , are evaluated directly from a pressure
explicit equation-of-state. A,,, A,;, and A,, are evaluated

using Eqs. (D-9) and (D-10), from Appendix D.
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TABLE IV — CONLITIONS CF STABILITY FOR A TERNARY SYSTEM

ORDERING OF (X, 5 X5 X35 Xys Xs) DERIVATIVE FORM

(Sy Vy Ny Ny, N.) (_gﬁk)'l‘ B, el >0
bllaL'y Uaglie

(Ss Noy Ny5 ¥, Ne) (%g)T s s <0
V[ Ly Mas Mpslie

(Ss Nas Npy Ney V) (ﬁﬁg& >0
- - d c) Ty thog sV

(Vs Ny Nyy Sy Ne) {%%)P s >0
L[y M Mpaliy

(_‘_]_’ Ngy Npy Neo _S_) (_g}ﬁg)P ool S>O
WIS WV Poad 3 12

(Nas Nyy Ney S, V) (bT) >0
- S [Mas Mps phoa N

(Na_’ Nb, Nc, V, S) {bP <O
- XE)/’[A’ hy MasS

NOTES:

1. Any orderings of x,, Xx,, X3, X, and X; which differ
only in the arrangement of N,, N, and N, and/or in the
order of the first three variables are not considered
different and are not listed separately above.

2. Since no third Legendre Transforms of U have common
names or symbols, no condition of intrinsic stability in

the %Qf)>o form is listed above.
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Critical points are handled in the same way. Using
the same ordering of (X,, X,, X3, Xy, Xs) &end the same i
(1), the critical point conditions of FEqs. (62) and (89)

then become

L,=0 (122)

M,=0 (133)
vhere L, is defined in Eq. (131) and
Ay Ava Ay

M,=lAs, Aca Aab (124)

BL, bL,
‘vL

A ternary P-V-T plot at a given x, and x, will appear
approximately the same as Figure 2. The unstable region of
2 ternary is larger than that predicted by Eq. (113) (which
is used in Figure 2), but is of a similar shepe.

Systems with four or more components ere analyzed by
the same procedures used above. If the equations are
a2lways chosen to be in the Helmholtz Free Energy forrm, then
they may be evaluated using only a pressure explicit
equation-of-state. Although the number of terms in the
second condition o¢f the <critical point increases
considerably with an increase in the number of components,
this is not a significant difficulty if a computer is used.

The equations derived above may be used to locate the
spinoidal curve and critical points of any substance, given

2 suitable equation—-of-state. Section IV demonstrates this
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using the equation of Redlich and Kwong (and also the Soave
nodification) with several pure materials and

nulticomponert systems.
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IV. PEEDICTING SUPERHEAT LIMITS AND CRITICAL POINTS

The equations derived in Sections I, II and I1II may be
aprplied to real materiels if the appropriate data is
available. Ior example, equations involving the Gibbs Free
Inergy, such as Eq. (90), are readily evaluated using a
volure explicit equation-of-state. Pressure explicit
equations—of-state, as already noted, enable the evaluation
of equations which use the Helmholtz Free Energy.

Perhaps the most used two parameter equation-of-state
is that of Redlich and Kwong[4]:

P=RT - s’ (135)
V=b T V(V+b)

R is the Gas Constant and 2a° and b are constants selected
for each substance. Defining a as the ratio of a° to T*’

a= a“’ (13%6)

Combining Eqs. (135) and (136)

P=RT - a (137)
V=F V{V+b)

Lg. (137) is the form of the Redlich-Kwong equation used in
this thesis. The term "a" 1is & function of temperature.
This permits modifying the equation-of-state by simply
changing the temperature dependence of "a" (Eq. (136))
vithout changing Eq. (137).

The reduced temperature, T,, is defined as the ratio

cf the temperature to the critical temperature
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To=T_ (138)
Lo
The constant a’’ is defined as the ratio of a” to Ty
all= al (139)
T
Combining Egs. (136), (138) and (139)
a=a’”’ (140)
'T.'f"

R

Substituting Eq. (140) into Eq. (137)

P=RT - a’~ (141)
V=b T V(V+b)

The constants a2’ and b in Eq. (137) are evaluated
using the critical point conditions for a pure material,
Egs. (10S) and (110). At the critical point T=T., T.=1 and
V=V, . Solving Egs. (109), (110) and (137) simultaneously
for 2°°, b and V, yields

a’‘=@,R*T2 (142)

IC
b=€,RT, (143)

‘P
V. =RT. (144)

where -

Ga=.427480 (145)
€,=.086640 (146)

Thus the constants in the Redlich-Kwong equation may be
evaluated for any pure material, given the critical
temperature and pressure. The value of V. predicted by
Eq. (144) yields of value of 1/3 for the critical

compressibility. This is somewhat higher than the actual
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value for all known compounds.
The reduced pressure, P,, is defined as the ratio of
the pressure to the critical pressure

P, =P (147)
A

V., &a type of reduced volume, is defined as one-third the
ratio of the volume to the critical volume predicted in
Eg. (144)

Vi=VP, (148)

c

Combining Egs. (141), (142), (143) and (147)

PR= T - @a.
gk-éb T,{ Ua ( A :i@b)

Eq. (142) is the completely reduced form of Eq. (135).

(149)

It gives Py as a function of T, and V.. A form that is
easier to use in calculations is created by expanding the

last term Ly partial fractions, and using the identity

AV-'.-"'PQ
—PR=AV=— Tr +@¢— Qe (150)
Pc— RTY¥D R R b
where
@cz @Q_ (151 )

G, is a function of temperature.
Using Eq. (148), the definition of V;, and taking all

derivatives 2t constant T and N

Avv=(%%1);%(%93)=N§%:(%%f> (152)
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Combining Egs. (150) and (152)

NETe A, = I, - @+ @ (153)
R? VR— DER'FE (VR;@b)a
Eg. (153) dis used with Eq. (58) to determinine the

stability of any pure material, given T, and V;.

SUPERHEAT LIMITS

A liquid at 1 atm pressure will vaporize when the
temperature is raised above its normal boiling point,
essuning that nucleation surfaces exist. If the liquid is
not 1in contact with any nucleation surfaces, the
temperature may be raised to the 1limit of intrinsic
stability (spinoidal curve) before it vaporizes. Iiquids
heated above the normal ©boiling point are termed
"superheated" liquids, and the temperature at which the
liquid reaches the spinoidal curve is termed the "limit of
superheat.” Eq. (66) gives a defining equation of the
spinoidal curve for a pure material.

Combining Eqs. (66) and (153) yields a criterion of

the spinoidal curve in terms of T, and Vg

T - @+ @ =0 (154)
(Uk—éb) V:T (Uk+@b)2
A liquid at the limit of superheat will satisfy Eq. (154).

In addition, if the pressure is 1 atm,

P,=1 atn (155)

(A
Solving Egs. (154) and (155) simultaneously for V; and T,

yields the limit of superheat for any materisl, in terms of
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FIGURE III — LIMIT OF SUPERHEAT OF A PURE MATERIAL
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the reduced temperature. Figure 3 is a graph of the limit
of superheat (as T,) as a function of Py (or P.). For
materials with critical pressures above 10 atm, the reduced
temperature at the limit of superheat predicted by the
original Redlich-Kwong equation is between .894 and .904.

Limits of superheat for ten hydrocarbons, as
calculated using Egs. (154) and (155), are 1listed in
Table 5 under the columns labelled R-K. Also listed in
Teble 5 are experimental values obtained from Eberhart,
Kremsner and Blander[5]. The calculated values are in good
agreement with the experimental data, the average absolute
devietion being 2°K. Since the Redlich-Kwong equation
always predicts 2 reduced limit of superheat of zbout .9, a
good rule-of-thumb for pure materials is that the limit of
superheat is nine-tenths of the critical temperature.

A modification of the Redlich-Kwong equation is used
in this thesis. Soave proposed[6] retaining Eq. (137), but
changing the definition of "a". Instead of Eq. (140), "a"
is defined by

a=a [ 1+( .480+1 .5Tw=.176w*) (1=T,* ) 1* (156)

L4

where w 1is the acentric factor and a°° and b are still
defined by Egs. (142) and (143). If the definition of @
is changed to

@c;—%&[n( 48041 .5Tw=.176w?) (1-T;°) 17 (157)
b



67

TABLE V — LIMITS OF SUPERHEAT OF PURE HYDROCARBONS

SUPERHEAT LIMIT REDUCED

(DEGREES K) SUPERHEAT LIMIT
HYDROCARBON R-K SRK  EXP R-K SRK  EXP
n—butane 281 38 378 L97 911 .80
n—-pentane 421 430 420 L£97 .915  .89%%6
r—hexane 455 466 455 898 .916 .899
n-heptane 485 498 486 £98  .921  .902
r—octane 511 525 513 L£98  .924  .902
n—nonane 524 551 538 £98 .926 .906
<4 3-dimethylpropane 389 395 386 L97  .911 .89
Zy244—trimethylpentane 488 500 488 898  .91¢ .898
cyclohexeane 496 505 493 897 912 .E91
1-pentene 417 426 477 L97 917 .898
AVERAGE ABSOLUTE ERRCR 2 N 004 .020

R=K=Calculated using the Redlich-Kwong equation-of-state
SRK=Calculated using the Soave modification to the R-K
EXP=Experimental values[5]
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then Egs. (152), (153) and (154) are usable with the Soave
modification.

Figure 3 and Table 5 also heve calculations using the
Soave-Redlich-Kwong equation. In Figure 3, the Soave
equation predicts that the limit of superheat is a function
of critical pressure and acentric factor. The predicted
values span a much larger range (T, from .89 to .94) than
do those of the original Redlich-Kwong. The experimental
limits of superheat in Table 5 are much closer to the
original Redlich-Kwong prediction of Tg,=.9. Therefore, the
Soave modification is not recommended for superheat 1limit
calculations.

EINARY SYSTEMS

The .original Redlich-Kwong equation-of-state and the
Soave modification are used for multicomponent systems, by
naking a“ and b functions of composition. The definitions
of the mnmixture constants, in terms of pure component
constants, &are termed "“mixing rules.” In the original
mixing rules, still widely used, the mixture values of b
and the square root of a“° are each computed as a mole
fraction average of the pure component values. kriting
these rules for a binary systemn,

af‘5=xaa;j5+xba;'§ (158)
b=x,b,+x,b, (159)

vhere a;, a,, b, and b, are the pure component values and
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X, and x, are mole fractions. Rewriting Egs. (158) and
(159) 1in terms of mole nurbers, using Eq. (136) to note
that the mixing rules for "a" are the same as those for 27,

.5 .
a:&T(Naa¢ +Nbabs)2 (160)
b;}(N¢b¢+Nbbb) (161)

Eq. (137), in either the originel or the Soave form, is
applicable to binary mixtures using Eqs. (160) and (161).
The most convenient equations which define the
spinoidal curve and critical points of a binery rixture are
expressed 1in terms of A, the Helmholtz Free Energy. To
reke Eq. (137) compatable with A, it is rewritten in terms

cf the total volume, V

—A,=P=NRT -@4+ @4 (162)
where s 5.2
@4=Na=§N“aé +i,a; ) (163)
b aDa N, Dy
@;:Nb=N¢B¢+Nbbb (164)

&4 eand @4 are functions of composition, and @, is a
function of temperature.

Eq. (127) defines the spinoidal curve of a binary
nixture. The terms A,,, Ay, and A,, are evaluated (for
the Redlich-Kwong equation) using Egqs. (E-1), (E-2) and
(E-6) (from Appendix E). Solving Egs. (127) and (155)
simultaneously yields the limit of superheat for & binsry

material . The required date are the criticel temperature,
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rressure and mole fraction of each component (plus the
ezcentric factor, for the Soave equation). Figures 4 and 5
give the calculated and experimental[5] limits of superheat
for the systems n-octane in n-pentene and cyclohexane in
r-pentane, as a function of composition.

The calculated 1limits of superheat, for both the
criginal Redlich-Kwong equation and the Soave modification,
are alnmost exactly nole fraction averages of the surerheat
limits of the pure compounds. This does not agree well
vith the data, as the experimental values in Figures 4 and
5 deviate somewhat from a straight-line plot. The original
kedlich-Kwong matches the date much better than the Sozsve
modification. This 1is to be expected, since the original
equation is a2lso better with pure materials.

The reason that the theoretical treatment produces
disappointing results may 1lie in the term A, ,. Aqq is
calculated using Eq. (D-9) (from Appendix D), which
involves an integration across the unstable region of the
second derivative of pressure with respect to a mole
number . Since substances cannot exist in the unstable
region, any equation-of-state in that region must be based
cn extrapolations. Taking the second derivative of the
rressure with respect to a mole number is a severe test of
the mixing 7rules (Egs. (158) and (159)). Most

thernodynamic celculations take at most the first
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FIGURE IV — LIMIT CF SUPERHEAT OF N—OCTANE IN N—PENTANE
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FIGURE V — LIMIT OF SUPERHEAT OF CYCLOHEXANE IN N-PENTANE
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derivative. Much more refined mixing rules are required to
produce accurate predictions of the limit of superhezt.

CRITICAL POINTS

Eq. (128), the second condition of the critical point
for a binary material, is also evaluated using Egs. (E-1)
through (E=7) (from Appendix E). Even though the term Agaa
involves a third derivative of P with respect to N,, the
integration does not exiend across the unstable region.
Therefore the critical point celculations may be expected
to produce more accurate results than those of the limit of
superheat .

The critical point conditicns, Eqs. (127) and (128),
are solved simultaneously for the critical temperature and
volume, and the equation-of-state is used to obtain the
critical pressure. Figures 6 and 7 give the calculated
critical temperatures for the systems n-heptane in ethane
and n-butane in carbon dioxide, as a functicn of
composition. Figures 8 and 9 do the same for the critical
rressures. The resﬁlts of both the original Redlich-Kwong
equation and the Soave modification are plotted, together
with experimental data collected by Spear, Robinson and
Chao[7].

Both equations—-of-state yield values in fair agreement
with the experimental data. As in the limit of superheat

calculations, the mixing rules are suspected of causing
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FIGURE VI —— N-HEPTANF-ETHANE CRITICAL TEMPERATURES
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FIGURE VII — N-BUTANE-CARBON DIOXIDE CRITICAL TEMPERATURES
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FIGURE VIII — N-HEPTANE-ETHANE CRITICAL PRESSURES
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FIGURE IX — N—BUTANE-CARBON DIOXIDE CRITICAL PRESSURES

CRITICAL
PRESSURE (ATM)

100 =+ -

60

40

20 ! | 1 [} | 1 1 ! !
T T L T T T T T T

0 2 4 6 .8 1.0
MOLE FRACTION N-BUTANE

~— ——CALCULATED USING THE REDLICH-KWONG EQUATION
———CALCULATED USING THE SOAVE MODIFICATION
A EXPERIMENTAL DATA[T7]



78

most of the inaccuracy. The use of interaction parameters
in the mixing rules would undoubtably improve the
predictions. These parameters are usuelly empirical,
being determined from data already available. Therefore,
the use of interaction parameters is more a correlative
than a predictive technique.

The results obtained using the original Redlich-Kwong
equation and the Soave modification to predict superheat
limits and critical points are somewhat disappointing.
Their moderate success, however, 1leads to hope  that
improved equations-of-state or more likely, improved mixing

rules will yield significantly higher accuracy.
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V. DISCUSSION

The study of intrinsic stability, as well as virtually
every other branch of thermodynamics, got its start and
first major developements from J. Willard Gibbs. In his
article "On the Equilibrium of Heterogeneous
Substances"[ 8 ], Gibbs introduces the entropy meximization
principle and shows its equivalence to the  energy
ninimization principle. Then the fundamental ecuation
U=U(S, V, N, ... N,) is developed, as well as the forms in
terms of A, G and i.

Working with only the fundamental equations, the
uniformity of temperature, pressure and chemical potential
in o system at equilibrium 1is deduced. The stability
equations D,>0 for =211 k<n, in the form where
(%, eee %,)=(8, N, «e. lmy V) are then found. The equation
vhich is violated first is listed as Eq. (56). These
criteria are transformed into a single equation in the form
of Eg. (51), with the same ordering of x, through x,.

The corresronding conditions of the critical point,
Igs. (60) and (63), are developed by considering the
intensive properties of coexistent phases near a critical
point. A consideration of the stability of the coexistent
vhases yields the alternate criteria of Egs. (62) and (8¢9),
vith i=0 and the same ordering of x, through x, as above.

The forms with i=Z are also stated, and are listed as



Egs. (90) through (23).

The above peragraphs demonstrate that Gibbs developed
every significant area of stability. The mejor protlem in
his work is its extreme lack of readability. Often the
step-by-step logic is not apparent. Much of later authors”’
work can bve considered a clarification rather than an
extension of Gibbs.

The seperation of one phase into two separate phases
is used by Prigogine and Defay[ 9] as a basis for the
calculation of the stability of a system. This treatment
is much more intuitive, as it models the actusl physical
rrocess which occurs when a system becomes unstzble. The
stability of a pure component is determined &bty directly
studying the entropy increase in the formation of a
ricroscopic new phase differing only slightly from the
original. Multicomponent systems are considered only at
constant temperature and pressure.

Prigogine and Defay derive the conditions of thermal,
riechenical end diffusional stability. The question of
which conditions are violated first is not discussed,
except that the condition of diffusiona2l statility is shown
to be the violated before mechanical for a binary mixture.
The critical point conditions ere stated without proof;
however, a fairly extensive treatment of criticel behavior

in sclutions is presented.
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In deriving the conditions of stability, Gibbs uses
Y™ the nt" Iegendre Transform of U (transformed with
respect to all of its variables), as well as the transforms
Ay G and H. Although he discusses the relationships
between these functions, the general nature of Legendre
Transforms is not developed.

Callen presents the use of Legendre Transforms in
thermodynamics[J0]. A, G, H and ¥'P , the p*" transform of
U, are defined and analyzed in terms of a general theory of
Legendre TIrensfcrms. Yor instance, the various first
derivatives of transforms are derived.

The sum—of-squares form of the expansion of the change
in U is obtained directly in the reduced notation of
Igs. (38) and (39). In an appendix, the alternative
formulation in terms of determinants is developed. The
significance of the <criteria of stabilitly is not
explained, however. Callen’s treatment, although general
and highly mathematical, is easy to follow. This is due to
his use of ILegendre Transforms, a2 very important
developenent .

Munster covers Legendre Transforms and fundamental
equations in somewhat more detail[]{]. The derivation of
the stability criteria is also extensive and presented in

several different ways. Otherwise, the treatment is

similar to Cellen’s.
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The idea of a subsystem which is enclosed by a
¢iathermal, non-rigid and totally permiable membrane is
introduced by Modell and Reid[|2]. This permits all
possible variations between the subsystem and the main
system, and insures complete generality.

Second derivatives of Legendre Transforms sre obtained
using a Taylor Expansion. This permits the conversion of
the U form of the stability criteria to the A form, the A
form to the G form, and so ocn until one derives the Yﬂﬁ;?q
form. Thus the stability criteria of Fgs. (54) and (55)
ere deduced, with x, through x, defined as in Egs. (9),
(10) and (11).

Other authors present derivations of stability or
critical point éonditions which are either similar to
previous works[|3 ] or are unclear[|4]. The last reference
suffers from not having defined the change which occurs
when a system becomes unstable.

This thesis considers the formation of two phases of
any size, not necessarily one large and one smell, from an
original homogeneous phase. Thus this model of intrinsic
instability corresponds more closely to the actusl physical
processes.

The third derivatives of Legendre Transforms were
found in order to show the equivalence of the various forms

of the second condition of the critical point. This, plus
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the general representation of variables used, enables the
expressicn of the criteria of stability and cf the critical
roint in terms of any Legendre Transform of U.

Redlich and Kister derive critical point criteria for
a binary system, usable with an equation-of-state[{5].
Some of their derivatives are 1in terms of volume, some in
terms of pressure. Although formulas are given to convert
to the form most suitable for any equation-of-state, this
treatment is awkward and unnecessary.

Given a pressure explicit equation—-of-state, the forms
of the stability and critical point criteria in terms of A
are the most convenient, A being a function of T, V and N¢.
They @are derived in this thesis for an arbitrary
m~component system.

The results obtained by using the condition of
stability @end the Redlich-Kwong equation-of-state to
rredict superheat limits are good for pure materials and
fairly poor for mixtures. For this and other reasons
discussed in Section IV, the mixing rules are thought to be
causing most of the error. The Soave modification produces
quite poor superheat limit predictioms.

Critical points of binary mixtures are not predicted
vell using either equation-of-state. Again mixing rules
are suspect. The calculation of superhest limits and

critical points involves taking second or third derivatives
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of the pressure with respect to a mole number. This is an
extreme test of mixing rules, and it is not surprising that
the results are poor.

The accurate prediction of superheat limits and
critical points may only be obtained if equations—-of-state
and associated mixing rules are greatly improved. In fact,
obtaining this accuracy may be regarded as an advanced test
of an equation-of-state, probably not satisfied by any now

in common use.
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APPENDIX A
DETERMINANT REDUCTION FORMULA

This appendix proves a formula which relates any
determinant to determinants of one order and two orders
smaller. The relation is used in Appendix B in deriving
the sum—of-squares form for a general quadratic expression.
The formula is presented here as a separate appendix since
it mey have other uses. For example, it could have been
used to prove which of the conditions of stability were
violated first, except that other methods were ezsier.

The desired formula is: if i<k and j<m then

B B jkm=BijByp=BimB; (A1)

B is defined as an n by n determinant, B;; as E with
the i*" row and jth column removed (the minor of Ui ),
Bijkm as B with the it" and k*' rows and the j* and n*
columns removed, etc.

U, Uz ... U,

Uﬂvl Ugi s e 0 UQY\
B=k 3 . .

L] . [

U/\l Un’; CACI Unn.

U, Uy Upy ees Ugy

U?)\ UZB qu e o o U3h
B = . . - -

L L3 .

Uni Uns Uny eee Unp
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U33 U3“l ®o 0 Ugn

Uys Uuy ees Uyp
Buna =B, 04 =B1um=B;w.1\ =1 e . .
- * L ]

U’IB U[,L/ * e UA/\

In the first step of the proof Eq. (A-1) is assumed
true for a perticular n with (i, j, k, m)=(1, 1, 2, 2) and
is then shown true for any set of i, j, k, and m. B is
defined identical to B but with the second and m™» columns
interchanged (m>2).

U, Um U eee Uimr Uy Uipey oo Upn
Ugr Usm Uy eee Usmer Usa Usmer oo Uzn

L] L L] L d L] L] L]

UI\) Uhﬂl Uh’5 eeo e Unm-‘ Unz_ Uhmk( e oo Unn

Relabling 2 as m° and m as 2° in.the second end m columns
U|| U|g’ Ul'} sece UlM“' U;m/ UIM-H e e U”\

U}| UJQI U13 ee e Uﬂm'—l UQM' Uj_ Mm+] ® ee UQI\

Unt Upp/ Ups eee Upm-1 Upw Upmer o ae Upp

¥Fq. (A-1), if true for (i, j, k, m)=(1, 1, 2, 2), applied
to B (which appears identical to B except that certain
subscripts are primed) yields
B“B7120’ =B, By, =B, B}, (A-2)
From determinant column exchange rules,
B’=-B (A-3)
B? =B, ; B} =B, (A-4)
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Fa m+1 4
B lg/=(-1) Bim s B22’=(—1 )mHBzm (A-5)

E‘luz:’:("’l)m”B (A-6)

t1am
Combining Eqs. (A-2) through (A-6) and factoring yields
B Byjam=B( Bam=B,nBy, (A-T7)

Equation (A-7) is Eq. (A-1) with (i, j, k)=(1, 1, 2),
but with m arbitrary. The same proof applies if i, J, or k
instead of m were changed to a different value. Therefore,
if Eq. (A-1) were true for (i, j, k, m)=(1, 1, 2, 2) it
must be true for any (i, j, k, m).

The second step of the proof involves  showing
Eq. (A-1) to be true for n=2. Since B,,,, asa O by 0
determinant, is defined equal to 1,

B=U,, U,,=U,, U,,=U,Un =U,, U}, (A-8)
transforms to
B Byi22=ByB22-B,2 By, (A-9)
Thus Eq. (A-1) holds for n=2.

In the third step of the proof Eq. (A-1) is assumed
true for an n-1 by n-1 determinant, B, , and is then shown
true for B, the n by n determinant.

By the above assumption, if k>2 and i>2 then
B

B, Biiaaki =E (228t -B (A-10)

ftat Pk

Lach term is multiplied by (—1)*Uk,, sunmed from k=3 to n

end rearranged, giving



as
k ,
By E (=1) U Eicazkr =
k=3

n

n
B ua:zz("'”kulentkt -B 1ac Z(“1)kUkl Elzk; (A"ﬂ)
k=3

k=3

Lxpanding B 2, B, and DB,(22 by minors along the first

column

n

E2=U,, B oy “'Z("'1 )kUk,Byzk/ (A-12)
k=12
n

Bii=Up Biea +) (=1*UL Brik, (A-13)
k=3

Biiaa ‘-:-2('1 )kUkl Byiaaky (A-14)

%=3

Combining egs. (A-11) through (A-14) and simplifying
=B Briaa=B 20 Bi¢-Buia By (A-15)

Fech term is then multiplied by (-1)‘U,;, summed from i=3

to n, anc rearranged, giving

—L“Z ("1)L[]1£B121i=
(=3

« h ’
Eugz2("1)lUIZBli"BMZ(“1)‘UliBzui (A"‘16)
=3 (=2

Expanding B, B, and EB,;, by minors along the first row

n
B=U,, B, =U,,Bis=) (=1 U, B (A-17)
2
n ’
E;u=U12}32/12+Z(“1)LU:£B2,,[ (A-18)

t=3



&89

n .
B’)Q:UH B221|+Z(-1)‘UI(’.B22“’. (A"‘19)

(=3
Combining Ege. (A=16) through (A-19) and simplifying
B B, 22=B, Bsa=B,2B2, (A-20)
Ey the first part of this appendix, Eq. (A-20) implies
Eq. (A-1). Thus, if Eq. (A-1) is true for determinants of
order n-1, it is true for determinants of order n. Since

Iq. (A=1) is true for determinants of order 2, we have

shown by inducticn that Eqg. (A-1) is true for all n>Z.
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APPEKDIX B
SUNM-OF-SQUARES FORM

This appendix derives the sum-of-squares form for a
¢eneral quadratic expression. The form is used to show
wvhen the differentisl 1in energy goes negetive and the
system in questicn therefore becomes unstable.

Assuming that Uk3=Ujk and that ell denominatcrs are
non-zero, the desired result is

n__n n
;;Uijkszzl:%zf (B-1)
where n

zk=§ :c%k;' X; (B-2)

j=k

Dy is the k by k principle sub-determinant cf the

’matrix of the coefficients of the quadratic. Ckij is Dy

wvith a1l Uy, in the kth row replaced with U;, and all Uk
in the k¥ column replaced with Ujm.

Uy Ug eee Ui

D, Ug., U:12 ces U;ik

L d L] -

Ukl Uk2 o e e Ukk

FU“ U|2 e e o U| k_, U’j

Uzl UQ_Q e s o UQ k-1 U:LJ’
Ckkj_ . L L] L]

Uk, Uk"? e e Ukk_‘ U‘(S
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U” Ulﬁ oo Ulk—l ’J.
UQ( U21 es e Uzk_l U:{j
Ck(..‘)’: - . . L]

,Uk-: | Uk—1 a *e Uk-l k-1 Uk-;)'
b Uc .y Uga eoe U ko Uéj
The derivation comes from working with the expression

E, defined

—ZZD____L kX3 (B-3)

k=m y=m T M-
Since C pyw=Dn

_..Dm (x+cme mm J)4-2: Zﬁm_k_(_xkxj (B-4)

J=m+y kemei j=m+i

Adding and subtracting terms to "complete-the-square®

-- DM [X "“ZXMZ CMM xj+( Z Cmm XJ) ]

j=m# jeme)

- Dm Z (:,.,,,,kxIc Z i X5+ Z Z pki % %;  (B=5)

m+| §=med k=met J=mes m =

Simplifying

" Dm (X -+ 2 Cmm XJ

JEmet
+ Z Z ka\Cmmm-—CMkanmm& (B-6)
kamti Y=me: DnDn-)

If B (of Appendix A) is defined as Cper jk» then the

determinant reduction formula shows that

CMHJI(DM" =Cm[<"> CMMM-CMkMCMMj (B—?)



Substituting Eq. (B-7) into Eq. (B-~6)

m—- Dm (ZCMM\X ) + Z Z mwk;'

k=mel jome

Substituting Eqs. (B-2) and (B-3) into Eq. (B-8)

Ep=_Dum Z,i+E m+|

m-—|

Applying Eq. (B-9) to E, n-1 times
[l
E,=§ Dy Zy+E»
k=g M1
Zchk XXy

=nj

From Eq. (B-3)
Using Eq. (B-2)

Substituting Eq. (B~12) into Eq. (B-10)

h
E=) . Dy Z{
k=i Tkt
since Uy;=C,kj and D »=1, Eq. (B-3) shows that

E, ZZUM kx

=] J =9
Combining Egs. (B-13) and (B-14), one

Eq. (B~1), the desired result.
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(B-8)

(B-9)

(B-10)

(B-11)

(B-12)

(B-13)

(B-14)

obtains
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APPENDIX C
LEGENDRE TRANSFORMS

In this appendix the first, second and third partial
derivatives of Y, the Legendre Transform of y, are
expressed in terms of derivatives of y. These formulas
enable the rapid interconversion of U and any of its
transforms (4, G, etc.). In particular, the determinants
erising from the stability and critical point conditions
are easily simplified.

Throughout this derivation, all terms that will appear
only in fourth or higher order derivatives are dropped.
Subscripts on y and Y indicate corresponding partial
derivatives.

y is the given

v=y(X,s X35 X3 «ee X,)

Y, the Legendre Transform of y, is defined

8 ==y (C-1)
¥y, 7!
Y=Y(¢ 5 xa5 X5 .o X, )=y-8, X, (C-2)
Defining §¢, and §x;
S¢=¢6,-¢€° (C-3)
SXi=X(=x;’ (C-4)
Using Egs. (C-3) and (C~4) in Eq. (C-2)
Y=y- &/x°—~ £ 5x,=x, $€,— § & fx, (C-5)

Expanding y around y° using a Taylor Series
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n n n
v, 0 o sad o ) ,
y=y +Zyi éxL-FEZZyCS 0x; SXJ
(=1

(=1 j=t

‘*"LG:zh:iyfjk bx¢ 8%, Sxk. (C-6)

Lot 5= k=

DO, D1 and Dz are defined independent of x,

DO=Z ' Sxiﬁiiyg’j gxéngj.,..giiz":ygjk §x; §x; 6x, (C=T)

=2 t=2 j=2 t=2 y22 k=3
n [a) n
=2 =2 =2
n
D2=Zy;:LSXC (C"g)
(=2

Combining Eqs. (C-6) through (C-9)
y=y “+D0+(y{+D1)8x +4(y 2 +D2) x4y, §x°  (C-10)

From Eq. (C-4) d(§x,)=dx, (C-11)

Using Eq. (C-11) to differentiate Eq. (C-10) with respect
to x,
y, =y, +D1+(y°, +D2)6x 43y, §x (C-12)
Substituting Egs. (C-1) and (C-3) into Eq. (C-12)
§€=D1+(y, +D2)6x,+4y;, §x} (C-13)
Solving for Sx, and choosing the positive root of the
quadratic
§x,={-y° -D2+[(y{ +D2)*-2y? (D1-§€)172}y° "' (C-14)
Using the binomial expansion
Sx,==(y? +D2)" (D1=§€,)-Lye (y° +D2)° (M-§¢)" (C-15)

Using the geometric series



95

y2 §x,=(1-y} ' D2)(D1- §€, )y, vy 2(D1-§€,)"  (C-16)
Substituting Eq. (C-10) into Eq. (C-5) and Eq. (C-16)
into both yields
Yoy £x;=x; €, +D0+y,” T (D2-y; )(D1- 8¢,)"
—ye, ¥t (m-s€)  (C-17)
Substituting Eqs. (C-2), (C-7), (C-8) and (C-9) into
Fq. (C-17)

Y"" ¥ —x 8€|+Zy[_ SX 2yu ég +y“-'§€ Zylc SX

JZZ(-VL; I yu, yu )gx S 6Iyn ylll gg’

=2 =2

|. o=2
+_2_y'c: S Z(yllb u vu yf’c)gx‘:

“ Se Zi(ly“j "’H lL yHJ ;Lyll ylol/ yloL' ylj )SXL' ng

=2 §>2
) -2 ,0 o '
%ZZE( Bycjk y;o, ylai ytjk +y/o/ V¢ le‘ y//ok
=2 =2 k=2 -3
d ;yﬁ yu/ yu yU Yik )Sx Sx Sxk (C-18)
Rearranging Eq. (C-18) so the terms which are summed are

symmetrical with respect to the summation indices



n n
. -1 g3 o
Y= °_x'§é'+ yf’éxl—-%y"" ‘,Sé’l+§ :y“ ’yloéggISXC
=2

(=2

‘ n n _ . o -3 3
DD =y v v Vxadxpeye Ty, 86,
2 =2

[

%Z(yf"ly’oﬁ _y;:-s Y,T, v ) 55,25'}([
i=a

n
| - o~2 o
ﬁzz(yl‘: ‘ y’O‘:J’ —yl/ [y‘°£ yﬁj +y'J' y;)“" ]
=2 j=2 I -
¥ ’ y,j, Yie ¥ ) gg,sX( EXJ'

tA R N
%ZEZ(y;k -yf,—l [yloi y/j’k +y13’ yflk +y1°k ylc:'J' ]

(=2 j=2 k=2
+ylol-1 [yloé yl;' y:o'k Vi Y ik yﬁj +Y ik y/:' y;:i ]
6°3 o0 0 o o 5
IR ITRIAROR A ) 5x: X gxk
Expanding Y around ¥ ° using a Taylor Series

FoYO A SE, 43 WSty SETED W 5E,5x;

t»2

%ZZ\P‘:OJ' 5}(( ‘fXJ' *-é‘;\ljlc:/ Sg/g "";'z'z:vic;é 58‘2 SXL-
[E¥}

(=2 j=2
4] n n n
o i ]
'*‘_;'E E Ylij Sg,gxggXJ-'i‘g'E E S'/,;J-k SXL« SXJ' Xxk
=a jaz =2 =3 k=

Comparing Egs. (C-19) and (C-20) term-by-term
(for i>2, 3>2 and k>2)

~1
\Y'Lj =YY y:j Y

86

(C-19)

(C-20)

yields

(c=21)
(C-22)
(C-23)
(C-24)
(C-25)
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-3
Y =% 9, (C-26)

WHL =Yt yf-az—yci MY y‘-‘g (C-27)

Yig =i V0 =y 0 v WYY, v (C-28)
Voo =ik =N Yok #90 Yok 9,0 Y06 )y,
+(y”; Vi Yokt y,ky,,j “'Y,J' Yik Y )YJ

=Y, Y YV, v (C=29)

Egs. (C-21) through (C-29) are the desired first,

2

second and third derivatives of the legendre Transform.
For example, let
y(x,5 Xa» %3)=U(S8, V, N)

Y(& s X5 X3)=A(T, ¥V, N)=U-TS
dy=dU=TdS—-PdV+udN
d¥=dA=—SAaT-PaV+udN

Derivatives are defined as before:

Av:' bA_
T, N

In this example all derivatives are taken holding N

constant .
Y =A=—8 =-x=8

w:_ =AV =P =y2,=UV=—P

3 - i
wlll =ATTT=—{%T;)V AR =Usss Uss'—'(;n%)v %g)\/
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]

— ~I_2r 7 -2+ 2 -3
"yaaz i Yia 3:&2 Y y/a y,,, yu

T ~—l [ ‘2 2 ‘-3
=Usyy Uss =<Ugy Us gy Uss +Ugy UsssUss

“ls Bl 0Ele Rk (Bl Bl Rl BBl

liote:

In this appendix only the first Legendre Transform
of y from x, space to €, space was considered. FEq. (32)
defines ¥ "), the p*h Legendre Transform of y from x,
through x, space to €, through €,  space.
‘V(P)(S, cee py Xy ees X,) Day be defined recursively
as the Legendre Transform of
p -1 (&, e &5 Xp +0. X,) from x, space to & space,
since ¥ '°) is defined as y.

Egqs. (C-21) through (C-2S) give first, second and
third derivatives of ¥ in terms of derivatives of y.
They mey =lso be used to give the derivatives of Y(P) in
terms of derivatives of W®-'), if y is changed to
W) | Yis changed to ¥ and all subscript 1°s are
changed to subscript p’s. In other words, Egs. (C-21)
through (C-29) are usable with any Legendre Transfcrm, as
long as the subscript "1" means a derivative with respect

to the transformed variable.



APPEKDIX D
CHEMICAL POTENTIAL DERIVATIVES

In this appendix a formula for A,,, a second
derivative of the Helmholtz Free Energy with respect to
mole numbers, is derived. A,p is the derivative of a
chemical potential with respect to a mole number at
~ constant temperature, total volume and other mole numbers.
The formula requires pressure to be given as a function of
temperature, total volume and mole numbers, and is
therefore usable with any pressure explicit
equation-of-state. These derivatives are used in finding
the limits of intrinsic stability, given such an equation
of state.

The derivation begins with the Maxwell Relation

B o
?V | T,N —BN:TQ_Y:NL#a.

Taking the derivative of each side with respect to N,
holding T, V and other N; constant

(D-2)

2 u - 2P

lb_v BT‘;)T’NL#b DIQG«SNB)T,!,N\'¢O-IB
Fultiplying each side by dV and integrating from V=00 to V
(with superscript *‘s indicating that the varisble is

evaluated in the limit of infinite total volume)

i
aﬂo\) -
kmb T, VyN o)

%&)* . =-f yE v (D-3)
bITsV sNizp oo V0N ONp Ty Vsliia, b
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All materials (ot a given temperature) ltehave as ideal
gases if the specific volume is sufficiently large. That
is, if N and 1T are held constant, then a substance will
approach idesl gas behavior in the limit of infinite total
volune. Since the fugacity of an ideal gas is equal to
the partial pressure, the chemical potential of an ideal
cas (using the definition of fugacity with A(T) being a
function of temperature only) is

Ma=RTIn(ENg )+ Ao T)=RTLn(NaRT )+ Ma(T) (D-4)
T vV

Teking the derivative of each side with respect to Ny
(holding T, V and all other N; constant) and eveluating at

the 1imit of infinite total volume

(b/xa)* «  =RT (D-5)
SNZ T’__Y ’NC#»L NZ

hepeating the last step but taking the derivatives with

respect to Ny instead of N, (valid only for 2#b)

B (7-6)
b{TsV $N b
Substituting Eq. (D~5) into Eq. (D-3)
Qe /V (D-7)
= [ T7y2p AV+RT D-7
(bNa)T’y_,NL#a ooT-Bsz)T’y_’NL¢a Ta
Substituting Eq. (D-6) into Eq. (D-3) (valid for a#b)
y
(bs;) =T]f ( Y2P ) dv (D-8)
NP [Ty VsN vy Joo NN, Ty VoM %a,b

To simplify the notation of Eqs. (D-7) and (D-8),

subscripts on A are again defined as partial derivatives
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A,=[dA 3 A={02A
.3! T,N -SN: T’_YJNL#a
Eq. (D-7) simplifies to
Al
Am=fw AraadU4ET (D-9)
Eq. (D-8) becomes (for a#b)
v
Aab=f AyardV (D-10)
(o]

Eqs. (D-7) and (D-8) (or (D-9) and (D-10)) may bte used
to find the second derivative of the Helmholtz ¥ree Energy
with respect to mole numbers, given pressure as a function

cf temperature, total volume and mole numbers.
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APPENDIX E
REDLICH-KWONG DERIVATIVES

This eappendix derives the derivatives of the
Redlich-Kwong equation—-of-state used in evaluating the
stability and critical point conditions of a  binary
mixture. The required derivatives in terms of A, the
Helmholtz Free Energy, are Ay, Avas Agos Apvs Apvasr  Avea
eand Agoa.

Eq. (162) gives A, in terms of V, T, N, and N, . The
derivatives A,,, Ayps Avyvsy Ayya and Ayaa are thus

evaluated directly:
Ay,= NRT -@d+ & (E=1)
(V-2¢)? _V.'%“ (V+a,)7 -

e 8 o 3 B B e

Ayy =_2NRT +2@4+_-2@4 - (E-3)
v gl

Ayya=__RT +2(‘N£ NRT -Hri)%"f
Bt ety

Avaq = ( )NRT*Z(_N:L)RT] (-mi)z ﬁR'i +( 32@0‘)11
el (-awf} b vt

-2 ‘%gi_)’ @f (E-5)
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Eq. (D-9) (from Appendix D) gives a formula for A,, in
terms of Ayaa- A,o and A,,. are calculated using

Egs. (D-S) and (1-5)

AM=¢ 51\%‘1) 1n(¥¥_@ ;H (%ﬁ%‘-} NRT+2 (%%) RT] \g@g + (%%)Q ’Eﬂirf' _

—

" ) () o ) e R )

Apaa= ( %ﬁ%} 1n(y¥@-})+[ (;};fgﬁ)NRT+3 ( %;%_) RTJE_J@;
{3 (37) TR () Ly (3 o

U3 () o ) 8 et
-2 (Tigf)g v @; 3_1}% (B-7)

€4 and €4 are expressed in terms of mole numbers in
Fqs. (16%) and (164). Using Eqs. (163) and (164) to
evaluate the derivatives of €4 and @¢

2@d

<8

)~ el S+l +205(Haa ey’ )* (B-9)
Bird e i o 25 R
gw@d = —6§§§a +122;° biN.a,; +N,2,° —6b, (N.as’ +N,2,° ) (E-10)
2 oC’)( Do N, D} )2 (ﬁaga'qlbgb)a (Naba+Nj, by )7
(a@f =D, (B-11)
oNg,

=22 N,a; +N,a; -b.(N.a; +N,a,”)” (E-8)
i b=W.b, (N, b6,3N,b,7=
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(_;,1%%}.—.0 (E-12)
(—31:3%) =0 (E-13)

G
Egs. (E-1)  through (E-7), which use Egs. (E-8)

through (E-13), are the desired formulas.
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APPENDIX F
NOMENCLATURE

ILETTERS
A —Helmholtz Free Energy=U-TS
a —a’ /T’
2 ——constant in the Redlich-Kwong equation-of-state
2’ ——a'/ng
B —n by n determinant
B¢ —B with the i®" row and j* column removed
Ejkm —Bij with the k*» row and m* column removed
E° —B with the second and m*" columns interchanged
L —constant in the Redlich-Kwong equation-of-state
Ckij —Dj with 211 Uy, in the kth row changed to U., and

all U, in the k* column changed t0 U
Cp =—heat capacity at constant pressure=T(3§)

2011 P
C, —heat capacity at constant volume=T(BS}V
D, —k by k determinant with Uy the i*" by j*" tern
n

Em -—k:m;%%é xkxj
G —Gibbs Free Energy=U-TS+PV
b —total enthalpy=U+PV
L; —the determinant |¥&' . ...y

) )
‘{/L("_H e o0 W('

h-1 h-)
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—1L; with the jth term in the last row replaced with

the derivative of L; with respect to x.,;
—the number of components in the system
—the total number of moles
—the number of independent variables=m+2
—pressure
——critical pressure
—reduced pressure=P/P.

—Gas constant

—total entropy
—temperature

—critical temperature
—reduced temperature=T/T,
—total internal energy
—total volume

—specific volume
—critical volume

-""VPc /R'lic

—(letter subscript) mole fraction of component a

— (number subscript) i*" fundamental variable

S, Vor N;)

—function of x, through x,=U

n
"—‘E Ck/(l'XJ'
=k Tk

(either
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OTHER SYMBOLS

M —chenical potential

MT) —purely temperzture dependent part of the fugacity

w —acentric factor

¥ —Legendre Transform of y from x, to €, space=y-¢ x,

¢ ¥) —pth Legendre Transform of y from x, through x, to €
ﬂmm%hQPsgm&WbE:axL

i=)

€. —conjugate variable of XL=(BX )
X

*jLo —‘[#]LO
[##] —the derivative operator [ 3 -y,; 3 ]

Xy ¥, X,
€, — 427480
¢y, —.086640
e —@a/(€,T.)
¢4 —Ne/b
¢ —ND

OTHER SUBSCRIPTS

Subscripts on U, A, G and H, and numerical subscripts
ony, ¥ and W“P) indicate partial derivatives with respect
to the corresponding variable. Otherwise, subscripts
indicate that the value is of the corresponding component.
Ug ~—derivative of U with respect to S

Kgq =—number of noles of component =
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SUPEKESCRIPTS
*

—evaluated at the limit of infinite total volumre

° —value around which an expansion is being made
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