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ABSTRACT

STABILITY ANALYSIS OF MULTICOMPONENT SYSTEMS

by

Bruce L. Beegle

Submitted to the Department of Chemical Engineering
on August 13, 1973, in partial fulfillment of the
requirements for the degree of Master of Science.

The criterion of intrinsic stability for a general
m-component system is developed in terms of derivatives of
U, the total internal energy. This criterion is converted
to equivalent forms in terms of any Legendre Transform of
U. The corresponding equations which define the critical
point are derived.

Stability and critical point conditions are applied to
pure and multicomponent systems. Superheat limits and
critical points are calculated using the Redlich-Kwong
equaion-of-state and the Soave modification. The original
Redlich-Kwong equation predicts that the limit of superheat
for pure materials is at a reduced temperature of about .9,
which agrees well with data. All other predictions show
much less agreement.

Thesis Supervisor: Robert C. Reid

Professor of Chemical EngineeringTitle:
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SUMMARY

The purpose of this thesis is to derive rigorously the

criteria of intrinsic stability and of critical points, to

examine what these criteria mean in physical terms, and to

examine the accuracy of using the criteria with common

equations-of-state in the prediction of limits of superheat

and critical points.

In a stable equilibrium state at constant total

internal energy (U), total volume (V), and mole numbers

(NK), the total entropy (S) is maximized. An equivalent

statement is that at constant S, V and Nj, U is minimized.

Consider a homogeneous system being held at constant S, V

and Nl which splits into two phases, each differing only

slightly from the original. For a system to be at stable

equilibrium, the energy must increase during this change.

The change in energy (SU) is expanded in a Taylor

Series about the original conditions. The first

derivatives of U (temperature, pressure and chemical

rotentials) are shown to be constant throughout a stable

equilibrium system. Except at critical points, the second

derivatives control the sign of SU. Rewriting the

expansion in a sum-of-squares form reveals that certain

determinants of the second derivatives of U must be

positive for the system to be intrinsically stable. One of

these determinants is shown to become zero before or at the



same time as the others, and is thus the first criterion to

be violated. This criterion of intrinsic stability is

listed in Section I as Eq. (52).

The criterion of intrinsic stability is written in

terms of the Helmholtz Free Energy (A) or any other

Legendre Transform of U using the second derivatives of

Legendre Transforms derived in Appendix C. One form of

this criterion is that a single second derivative be

positive (Eq. (50)). At critical points, this derivative

and the third derivative are zero. Using third derivatives

of Legendre Transforms, these conditions are rewritten in

terms of U or any of its transforms, including A (Eqs. (62)

and (89)).

Several stability criteria may be written in common

thermodynamic terms. All stable substances satisfy the

condition of thermal stability, "the heat capacity at

constant volume is positive." The stability criterion

which is violated when a pure material becomes unstable is

the condition of mechanical stability. Equivalent forms of

the mechanical stability criterion are: "the derivative of

the pressure with respect to specific volume at constant

temperature is negative" and "the heat capacity at constant

pressure remains finite." Binary systems are stable only

when the condition of diffusional stability, "the

derivative of a chemical potential with respect to its mole



fraction at constant temperature and pressure is positive,"

is satisfied. Other equivalent forms of the conditions of

thermal, mechanical and diffusional stability, and

conditions of stability for ternary systems are given in

Tables I through IV.

All second and higher derivatives of A with respect to

volume or mole numbers may le evaluated using a pressure

explicit equation-of-state. Superheat limits of pure and

multicomponent systems and critical points of mixtures were

calculated using the original Redlich-Kwong

equation-of-state and the Soave modification. The original

l-K equation predicts a reduced superheat temperature of

about 9/10 for all pure materials. This is in remarkable

agreement with virtually all measured compounds. The Soave

equation produces much less accurate results in this

instance. Both equations predict that the superheat

temperature of a mixture is very close to the mole fraction

average of the pure component values, which is partially

reflected in the data. Calculations of mixture critical

points are about equally poor using either equation.

Trends are predicted correctly but actual values are

significantly in error.

The apparent fault in the equations-of-state used is

their poor handling of mixtures. Significantly improved

mixing rules are needed to yield increased accuracy.



INTRODUCTION

Under certain conditions a liquid may be heated well

above its boiling point and yet remain in the liquid state.

lWhen vaporization finally occurs, it produces a "superheat

explosion" due to the sudden phase change. The explosion

increases in violence as the liquid is heated further above

its boiling point. All liquids at a given pressure have a

temperature above which they may not be heated without

spontaneously vaporizing. The degree of superheat may

strongly influence the violence and/or the possibility of a

superheat explosion. Thus the study of such limits of

superheat is necessary in predicting the behavior of a

rapidly heated liquid.

The limit of superheat is one aspect of the study of

intrinsic stability, that is, the stability of a system

with regard to spontaneous small changes. Systems which

may undergo such changes include superheated liquids,

subcooled vapors and supersaturated solutions. The central

problem of this thesis is the derivation of criteria of

intrinsic stability for a general m-component system.

Since the study of critical points is closely related to

stability phenomena, the conditions which define critical

points are also developed.

The criteria of intrinsic stability are derived

starting with the entropy maximization principle. A system
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is assumed to split into two infinitesimally different

subsystems, and equations are developed to determine

whether this change proceeds spontaneously. The

derivatives of Legendre Transforms are found and are used

to simplify the equations obtained.

The stability and critical point conditions are

examined as to their predictions about pure and

multicomponent systems. They are then tested using two

equations-of-state in a comparison with experimental

values. Finally, this treatment is contrasted with that

of several other authors.



I. DERIVATION OF STABILITY CRITERIA

The concept of intrinsic stability is not usually

encountered in chemical engineering applications. For

example, consider the reversible, isothermal compression of

water vapor at 1000 C. Normally, when the pressure reaches

1 atm, liquid water appears. Condensation begins on the

vessel surfaces or on impurity motes. As the system is

compressed further, more liquid phase forms. When the

water is entirely liquid, the pressure rises above 1 atm.

If the vessel surfaces are not "wet" by liquid water

and no other condensation surfaces are available, the water

will remain entirely in the gas phase even though the

pressure is raised considerably in excess of 1 atmosphere.

This is because microscopic drops of liquid have a higher

specific availability function than the bulk phase. (A

detailed analysis of the availability is not required here

--the important fact is that a potential barrier prevents

nucleation). The system is then stable with regard to

microscopic perturbations (intrinsic stability) even though

it may be unstable with regard to a large perturbation

(phase instability) i.e., the formation of two unlike

phases with the transfer of mass from certain parts of the

system to others. This system is termed metastable.

If the metastable vapor is compressed further it will

eventually become intrinsically unstable. That is, it will
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become unstable with respect even to microscopic

perturbations and will spontaneously separate into two

phases. The point at which a system first becomes

intrinsically unstable is termed the "limit of intrinsic

stability." Formulas are derived below to predict where

such limits will occur. Expansions in terms of the Gibbs

or the Helmholtz Free Energy are readily evaluated using

volume or pressure explicit equations of state.

The criterion of intrinsic stability for an

equilibrium state, first derived by Gibbs[I], is that for a

stable, isolated system, the total entropy is maximized.

In other words, for any possible microscopic variation at

constant mole numbers, total volume and total internal

energy (NI, V and U),

J£<0 (1)
Lq. (1) is easily changed into alternate forms.

Consider a two-step reversible process starting at a

stable equilibrium state holding V and NL constant during

both steps. The first step is any small, reversible

variation at constant U. Ey Eq. (1), S decreases. Heat

may then be added reversibly until S increases to its

original value. This two-step process is equivalent to a

net variation at constant S. In the first step U was held

constant while in the second step heat was added and thus U

increased. The total internal energy then increases during
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all small variations around this stable state at constant

S, V and N(.

A similar process may be followed starting at an

unstable equilibrium state. The first step is a small

variation at constant U; S increases. Such a variation

must exist for the state to be unstable. Heat may then be

removed reversibly until S returns to its original value.

U therefore decreases in this two step process. By

appropriate choices, this may be shown to be equivalent to

Lolding S constant. Thus there exists a small variation

around this unstable state at constant S, V and NZ where U

decreases.

An alternate criterion of intrinsic stability is that

for all variations around a stable equilibrium state at

constant S, V and Nj,

u>0o (2)
Eq. (2) is equivalent to Eq. (1) since it is applicable

when Eq. (1) is true and is violated when Eq. (1) is

violated.

The V form of the criterion of intrinsic stability is

obtained by using similar reasoning. The two-step,

reversible processes are all carried out at constant S and

Li,. After the first small variation at constant V, enough

work energy is either reversibly added to or subtracted

from the system (by contraction or expansion) to return U



to its original value. Assuming that the pressure is

positive, the sign of 8V for the two step process is always

the same as the sign of U for the first step. Thus

another criterion of intrinsic stability is that for all

small variations around an equilibrium state at constant U,

S and N1, if P>O

Sv>o (3)
In some metastable systems P<O. The above argument

holds except that the sign of SV is changed. Therefore a

general form of Eq. (3) is that for all small variations

around an equilibrium state at constant U, S and NZ

P V>O (4)

Using a procedure similar to the above, the criterion

of intrinsic stability for small variations around an

equilibrium state at constant U, S, V, and N ja is

a,, %<0 (5)
Eq. (5) is not particularly useful since it requires that S

be held constant while N, is varied.

Eq. (2) is the form of the criterion of intrinsic

stability used in this thesis. It is chosen since most of

the transforms and derivatives of U are common

thermodynamic properties. Any other form could be used,

and would yield equivalent results.

Since N,, N,, Ns ... Nm, V and S completely specify U

in a single phase, the test for stability must involve the
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creation of two phases, or and B, each differing only

microscopically from the original. Differential quantities

of heat, volume and mass may flow between the phases, but

S, V and all NZ are held constant for the entire system.

Therefore,

dS =-dS' (6)

dVP=-dV" (7)
dN =-dNJ (8)

To simplify notation, V, S and N, through N• are

relabelled x, through x, (n=m+2). Since V, S and NZ are

mathematically equivalent they may be relabelled in any

order. For instance, the xi's could be defined (for j>2):

x,=S (9)
xz=V (10)

xj =Nj, (11 )

although any other ordering would be satisfactory. With

any labelling, Eqs. (6), (7) and (8) summarize to

dx =-dxZ (12)

Also for convenience, partial derivatives of U or any of

its transforms (A, G, etc.) are indicated by subscripts:

U t= I ; A v= -Vx•.I bx / X 3t 4  V 1 T,Ni

Since each subsystem is assumed to undergo only small

changes, the total internal energy may be expanded in a

Taylor Series about the original conditions. Expanding

through second order terms (using a superscript O to
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indicate that a variable is evaluated at the original

conditions)

U'= . 4 L dxL+4ý U. dx'dx (13)

U .= U dx +2 dx dx (14)

The change in the entire system's total internal energy is

the sum of the changes for the two subsystems, or

U= USU+ SU  (15)
Combining Eqs. (12) through (15)

(U. °U )dxL+ (Uo++Uo. )dxLdxJ (16)

Since all constraints on the system have been

incorporated into Eq. (16), each dxL is independent.

Eq. (16) must therefore be true for all possible sets of

dx, through dx,, including the one where dxc is the only

non-zero dxj. Thus, since dx- may be either positive or

negative, UO must be equal to UQ to prevent SU fror being

negative.

U=UTI (17)

Each UO is an intensive variable, being either T, P or a

•jA. The subsystem g may be defined to be any part of the

original system. Therefore Eq. (17) shows that there are

no temperature, pressure or chemical potential gradients in

a stable equilibrium state. Since m+1 (i.e. n-1) intensive



variables are sufficient to define the state (but not the

extent) of a single phase system, all intensive variables

are constant everywhere throughout the original system.

U? , being the derivative of an intensive variable

with respect to an extensive variable, is inversely

proportional to the number of moles in the subsystem under

consideration. The product of Uij and the number of moles

is therefore the same for any subsystem.

N'U "=N U (18)

Substituting Eqs. (17) and (18) into Eq. (16) and

eliminating U LJ

nU=N U: dx dx (19)
E L jL(

The system which is being tested for stability is the

original system. The subsystem o may be chosen to be any

part of the original system. Therefore all superscripts

are dropped when substituting Eq. (19) into Eq. (2) to

yield as an alternate criterion of intrinsic stability

n n

ZEULsdx dx>O (20)

A system is intrinsically stable if Eq. (20) is

satisfied for all microscopic perturbations. If the left

hand side (LHS) of Eq. (20) were negative for some

perturbation, the system would be unstable. If the LHS of

Eq. (20) were zero, then Eqs. (13) and (14) would have to
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be expanded to include third (and possibly higher) order

terms. Following the above developement, Eq. (20) would

then include third order terms. If the signs of all the

dx4's were reversed, then then the sign of the second order

terms would be unchanged while the sign of the third order

terms would be reversed. Thus when the LHS of Eq. (20) is

zero, the change in U may be either positive or negative,

unless the third order terms are also zero. Usually,

therefore, when the LHS of Eq. (20) becomes zero, the

system becomes unstable. At critical points, however, the

third order terms are also zero. This special case of

Eq. (20) when the LHS is zero is discussed further in

Section II.

The limit of intrinsic stability is reached when the

LHS of Eq. (20) is zero. Since each dxL may be either

positive or negative, it is desirable to express the LHS of

Eq. (20) in a sum-of-squares form. Then the sign of the

expression will be controlled by an appropriate combination

of U L s. The sum-of-squares form is derived in

Appendix B. Eq. (20) may then be written as

Dk dZ2 >0 (21)

where
dZk=)C, k Jdxj- (22)

Dk and Ckkj are defined as in Appendix B, with Zk of
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Appendix E written as dZk.

U,, Ua ..- Uk

U.1L U 2. .0- U0 k

U Uk -. * k
Uk, Uki --- Ukki

Ckkj =

U,1  U,~. 000 Ulk-, Uj

U2 1  U12  ... U ,k- U2j

Uk, Uk2 *.. Ukk-1 Ukj

Eq. (21) is the basic equation from which all other

criteria of intrinsic stability will be derived. It may be

simplified using the Legendre Transforms discussed in

Appendix C. Following the notation of Appendix C, y is a

function of x, through xn and T is a partiel Legendre

Transform from x, space to E, space. Subscripts on y or Y

indicate partial derivatives with respect to the

corresponding variable.

y=y(x,, x ... xY

I
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first let y be the

yII

YTz I
Dk= Y31

V l

lactoring y,, from colum

total internal energy, U. Rewriting Dk

12,, 3,, *

Y32 Y3 3  ' * Y3 k (23)

Yk2 Yk3 "' Ykk

n 1,

1 y2. y3 Y, Yk

Y - Y2 Y; .3  Yzk
YIl

Dk=Yl Y31 Y32 Y~33 y" k (24)
y,,

LL... Yk2 Yk; 3· Yk

The first column of the determinant in Eq. (24) is then

multiplied by y,, and subtracted from the second column;

the first column is multiplied by y,3 and subtracted from

the third column; and so on. That is, for all i>1, the

first column is multiplied by y,L and subtracted from the

ith column. The end result is:



IY1

0

yI

Yk I•,I k YeI
Y,, Y,,

Yk3 k
y. '

"'" Ykk--Y'•IY k

Y1"

Simplifying,

Y32

Dk=y, I

Yk I

Y,,

y • -y 1 k Yi2
Y,,3 ALJYLS."Y11l

•.Y Y• k--Y fY k

• "Y3k-Y YLk

yl

Y1

Each term in the determinant of Eq. (26) is of the

form y -y , ', -Iform Yy~jy,• y, Yl '

Appendix

where i>2 and j>2.

C), each term is equal to

By Eq. (C-25) (from

Y] , a second partial

derivative of the Legendre Transform, I . UsinL this

Eq. (26) becomes

I'32 V33

Skk

(27) to the ratio of terms found

(27)

in Eq. (21)

y3, Y,

y,3

0

Z "" Yk--Y,• Y, k
yII

**" Yk-Y~ y,
yl,

(25)

yl

Y,"

3 y

(26)

substitution,

D k=y I

Applying Eq.
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Dk =

4Jr12 T ' 33 ''' V

S 'Fk3 "' 0 kk

(28)
Dkj I

T3 13 ' k-j

Tk-I 1 Tk-, "S -k- k-
Thus each of the determinants (except LD) in Eq. (21)

may be reduced by one order. The second partial

derivatives of y have, however, been replaced with second

partial derivatives of 1. T is the Legendre Transform of y

from x, space to 6, space. The first row and first column

of the old form of the determinant, which have been

eliminated in the reduced form, are the row and column

which contain derivatives with respect to x,, the

transformed variable.

All of the determinants (except Do and D,) may be

reduced by another order by repeating the process used to

generate Eq. (27) on each of the determinants in Eq. (28).

That is, defining VT (ý as the Legendre Transform of T from

x. space into F, space (also termed the second Legendre

Transform of U from x, and x. space into E, and g, space)

='f)(&,, E , x, ... xn)

=yl(@, x. .-- xn)-e,•=U(x, ... xj)-8,x,-gx,2 (29)
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a may be defined as a partial derivative of either U or ?,

i .e.,

(30)

The two derivatives in Eq. (30) may be shown to be equal

either by differentiating the definition of T, or by using

Eq. (C-22) (from Appendix C).

Reducing each of the determinants in Eq. (28) and

cancelling the term that was factored out, Y,,, yields

(a) (a) (2)
S-k- k-I

Eq. (21) has been reduced by two orders, and the second(2.) (a)Tk-i 3 Y'k-I L **. 'k-i k-1Thus each of the determinants (except Do and ID) inEq. (21) has been reduced by two orders, and the second

partial derivatives of y are now replaced by second partial

derivatives of T ( ) .

This stepwise procedure is continued until the ratio

of Dk to Dk ,  is reduced to a single second partial

derivative. In general, T (p is defined as the pth

Legendre Transform of U from x, through xp space to E1



through Ep space, that is,
(P) (E,, g ... 9p, Xp+,, Xp+ *.x)=

p
u(x,, x1 ... xn)- ELxL (32)

where

Using the notation of Eq. (32), y (or U) is written as ~ (0

and Y is written as ' . Repeating the procedure used to

generate Eq. (28) on each of the determinants in Eq. (28)

k-2 times

4 k (k
D k k (34)

Eq. (34) is the final reduction of the determinants in

Eq. (21). Following the identical procedure, the

determinants in Eq. (22) are reduced to

=.= % (35)

j (k-i) k B3k•)

The RHS of Eq. (35) is - /(k- . By Eq. (32), is

the Legendre Transform of Y~(•) from x k space to gk space.

Since xk is the transformed variable, Eq. (C-29) (from

Appendix C) shows that / -' is equal to V,,

IRewriting Eq. (35) (for j>k)

C -=T (k) (36)
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rtom the definitions of Ckkj and Dk, if j=k

C ,k' ,j=k (37)

Eq. (34) is substituted into Eq. (21) and Eqs. (36)

and (37) are substituted into Eq. (22) to yield the reduced

form of the criterion of intrinsic stability

- dZ >0 (38)
k=j

where d
dZk =dk dxj (39)

j=k+,
(k-i) is shown equal to ýk either by differentiating the

definition of ( k - '  (Eq. (32)) or by using Eq. (C-22)

(from Appendix C). Therefore k-,) simplifies to

k-) = (40)
xkk Xk E,.- k-I, k+i , , xn

Similarly, t) is shown equal to -xk either by

differentiating the definition of (k) or by using

Eq. (C-21) (from Appendix C). T(k simplifies to

F -X .M I xk (41)

For example, the system under test may contain a pure

material. Then, if x,, xa and x3 are defined as in

Eqs. (9), (10) and (11), the criterion of stability given

by Eqs. (21) and (22) is:
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where

Uss Usv UsN

Us USV Uvs Uvv Uvp

UIss UVs Uvv UWs UNV UAw 1
dZ, + dZa + dZ3 >0

1UssI Uss Usv

Uvs UVV

UVS UsNdZ =dS+s dV+ dNUss Uss

Uvs Us~

UuV Uvv

(42)

(43)

(44)

dZ3=dN (45)

The determinants in Eqs. (42) through (45) may be reduced

to single terms using the Legendre Transform methods above.

This alternate form of the criterion of intrinsic

stability, given by Eqs. (38) and (39), is

(0o) (dS+ (1) dV+LI_ 1 dN)• V ' (dV+Y' a d2) (dN) >0 (46)II - 13 1 - A 3 33
Since x,, x. and x3 were ordered to represent S, V and

N respectively, the Legendre Transforms of U as used here

are

° =A(T, V, N)=U-TS
)---G =_(T, -P, N)=U-TS-(-P)V
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The second derivatives in Eq. (46) are

=1) =Uss =  
T

STNN
() =A 1v= I= -

SS N T,P

'; = =v=()T,P

Substituting the above formulas into Eq. (46) yields

' Uss (dS-+ATvdV+AT)dN) +A(+G(dV+GpCdN)+GNN(dN) >0 (47)

or equivalently,

bT (dS- dV- d bS dNi);

+-Plb' l(dV- dN)'+ (dl') '>C (48)
+67I TN - TP T

Eq. (48) may also be obtained from Eq. (4.6) by using

Eqs. (40) and (41).

The leading coefficient of the last term in Eq. (48)

is the derivative of an intensive variable (the chemical

potential), evaluated. while holding two other intensive

variables (temperature and. pressure) constant. Since two

, intensive variables completely specify the state of a

single component system, this derivative is equal to zero.

The result is generalized below to any system.
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Eq. (38) is the reduced form of the criterion of

intrinsic stability. The final term has Y as a

leading coefficient. Using Eq. (40), -n) is a

derivative of En, holding all other n-1 8g's constant.

Since each ýL is either T, -P or yJ, all 8's are intensive

variables. Since n-1 (i.e. m+1) intensive variables

completely specify the state of a system, ,, is equal

to zero.

The LHS of Eq. (38) must be greater than zero for all

permutations around a stable equilibrium state (except at

critical points, where it may be equal to zero). There is

an apparent contradiction between this fact and the

* preceding paragraph, since the dxt's in a variation may be

selected so that all the dZk's except dZn are equal to

zero. Since the coefficient of dZ, (-in ) was shown to

be equal to zero, the LHS of Eq. (38) is equal to zero for

this variation. The contradiction is resolved by noting

the nature of this particular variation. It is a chance in

mole numbers, total volume and total entropy by the same

proportions, or simply a shift in the boundary between the

two subsystems. There is no change in any intensive

property, or in any extensive property of the entire

system. Therefore this variation is actually not a

variation in any measurable, physical sense.

n-1 independent intensive variables can always be
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found for a stable single phase system. For example, the

temperature, pressure and mole fractions of all but one of

the components could be the independent intensive

variables. Therefore the subsyster c has r-1 independent

variations which do not change N . If S, V and N of the

entire system (c plus P) are held constant, then all of

these n-1 variations cause an increase in U, since the

system is stable. dZf through dZn, correspond to linear

combinations of these variations. Thus the coefficients of

dZI through dZ_, (-1< through ) must be positive

in a stable phase. The "limit of intrinsic stability" is

reached when any T' k- (except ('-' ) becomes zero.

The ratio of Dý to Dk- , if reduced k-1 times using

the Legendre Transform methods discussed earlier, is shown

by Eq. (34) to be equal to )(k . If the ratio of Dk to

D k- is reduced only k-2 times, it is shown equal to a form

involving only derivatives of \Y -

k-i k- i

Since both Vk and are positive in a stablekk k-i k-i

phase, -• must be positive as well. k[ ) would bekk kk

the coefficient of dZý_, if the ordering of xk- and Xk was

reversed. Therefore (k is assumed to not increase

without limit as k approaches zero. If k is
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also
4) (k-1)
kk

Both

this

V (k-1)k-

any c

crite

Rewri

assumed not to be zero, then Eq. (52) shows that

becomes zero at the same time or before W -2-

of these assumptions are used throughout the rest of

thesis.

Since --k becomes zero at the same time or beforekk
k -2 becomes zero at the same time or before

k-I I -- 6-I

ther -) (except ,-') ). Therefore the final

rion of intrinsic stability is

-, >0 (50)

ting Eq. (50) in terms of xj's and 9ý's

)811,- >0 (51)

Using Eq. (34), Eq. (50) is equivalent to

D., >0 (52)

Using Eqs. (34) and (28), Eq. (50) is equivalent to

S i23  ... •_,

. . . >0 (53)

_, • 3_, .. A. , ,-I

_, ,_, (the ratio of Dy-, to Dn-z) may be expressed as the

ratio of two determinants whose terms are derivatives of

VY). Using Eq. (50)

L•>O (54)
where LL is defined for any given n and i



LfZ n-I

ii-i 'i-1

Eqs. (52) and (53) are Eq. (54) with i=O and i=1,

respectively.

If (x,, X, N;L ... Nw, V) and if i=O,

then Y " ) =U and Eqs.

Uss

(54) and

USN, Usv,

U•s UIV, UN

UNm

55) become

... Usum

0rjM

.. • UNJ

Derivatives are defined as before:

UN N.(7 ) FT PN,ý(j

Eq. (56) is a criterion of intrinsic stability stated

Gibbs[2] .

The example of a system containing a pure material is

again employed.

Eqs. (9), (10) and

become

Values of x are again defined

(11). Eqs. (52), (50)

Uvs

and (51)

Usv
>0

Uvv

AV,>0O

T(L)C.#I L#/

'LF

ý42

(55)

>0 (56)

as in

then

(57)

(58)

If.
L+ 2

... xn)=(S, Ni,

UN N4 Uh a N
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b ( - P ) TN>0 (59)

Eqs. (57), (58) and (59) are equivalent forms of the

criterion of intrinsic stability for a system containing a

pure material. Forms which arise from different orderings

of x,, x. and x,, as well as multicomponent systems are

considered in Section III.
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II. DERIVATION OF CRITICAL POINT CRITERIA

The "limit of intrinsic stability" is reached when

Eq. (50) is first violated,

,_, _,. i =0 (60)

or equivalently, when Eq. (51) is first violated

b e n-=0 (61)

or when Eq. (54) is first violated (for any i)

LL=O (62)

The locus of the points which satisfy Eq. (60), (61) or

(62) is called the "spinoidal curve." In general, when a

system reaches the spinoidal curve, it becomes

intrinsically unstable and spontaneously separates into two

(or more) phases. This is demonstrated below.

Consider a system which is being held at constant t,

through Kn-z and x,. In a stable phase, Eq. (51) (or

equivalently, Eq. (50)) is true. In other words, U

increases for all small variations at constant S, V and Ný.

for certain values of E, through -,_2, the locus of points

formed by varying x,_, will intersect the spinoidal curve,

where Eq. (60) becomes true.

Eq. (50) was based on the assumption that second order

terms would be sufficient to determine whether U would be

negative for some variation or positive for all variations.

This assumption is not valid on the spinoidal curve, since
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Eq. (50) predicts U is non-negative for all variations and

is zero for at least one variation. Therefore an equation

analogous to Eq. (50), but including third (and possibly

fourth) order terms is necessary to examine the stability

of a system on the spinoidal curve. Such an equation is

derived by examining again the two subsystems, o and g.

A variation possible to the system described above is

holding ý, through 8,-, and x, constant in each of the two

subsystems and varying the fraction of the total x,.,

allocated to each. Assume that the subsystem o increases

in x,-, and that p decreases. If n-s positive

then V-~z will become positive and - will become
Y )-I ,-I n- I n-

negative. o will now be in a stable region, but p will be

unstable. At this point, an additional transfer of xn-,

from p to a will take place. In effect, the subsystem , is

splitting into two smaller subsystems, one of which is

becoming part of oc. Since p is in an unstable region, this

will result in a decrease in U, the total internal energy,

as well as driving 9 further into the unstable region.

Thus this process is spontaneous and will continue until

equilibrium is reached, with at least two distinct phases

formed.

If -- is negative then the above argument

still applies, with the roles of a and f reversed. For a

system to be stable and to lie on the spinoidal curve,
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S_•_ must be zero

n-i n-i r-i (63)

Rewriting Eq. (63) in terms of xL's and E•'s

, =0 (64)

For a system on the spinoidal curve to be stable, in
(h-a)

addition to Eq. (63) (or (64)), n-t n-( n- must be

positive

i I 1 >0 (65)
If Eq. (65) is not satisfied, then the lowest even order

non vanishing derivative of y(n-.) with respect to xn,-

must be positive, and all lower order derivatives must be

i zero. This condition is necessary to insure that after a

small variation inside the entire system, all subsystems

are still stable.

Varying x,,- will allow a system to touch the

spinoidal curve and remain stable only when particular

values of g, through Fn-, are held constant. If slightly

different values are chosen then the system will either

rass through the unstable region or else miss the spinoidal

curve entirely. Thus the stable points on the spinoidal

curve lie on the boundary between the unstable region

(where two phases are formed) and a region where all

changes are continuous. These points are called "critical

points ."

For example, a pure material may have x,, x, and x,
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defined as in Eqs. (9), (10) and (11). Then the conditions

of the critical point (Eqs. (60) and (63)) are

Av,=O (66)

AV V=0 (67)

or equivalently, Eqs. (61) and (64)

P ITN=O (68)

S- ) T,N

Other forms of the conditions of the critical point for

pure materials, as well as examples using multicomponent

systems are presented in Section IV.

The section below derives a general form of Eq. (64),

analogous to Eq. (57). The determinant ML is defined as

the determinant LL (Eq. (58)) with the last row changed.

The jth term in the last row becomes the derivative of LL

with respect to x;,j.

L t=

(C1- c+2 IA- L3 L l IA -i

÷÷. L+1 n-i4)L4 ; Li- Lý+a C4- -1 0-ý n-

• (70)
(;1 u LCL1 J(L

rl -,2 L+I Trn-' a L At n- L+3  n- 1

_L LL L+LL ... __L_•X L, •X-~ • X L÷- X -t

The first determinant considered will be Mo
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H7 7 h f 3 Y2

i.o= .... (71)

>ýx I T x, Vx, Y

The same sequence of operations used to produce Eq. (25) is

applied to Mo. Each element of the first column is divided

by y,, while the entire determinant is multiplied by the

same quantity. Then, for all j from 2 to n-1, the first

column is multiplied by y,y and subtracted from the jth

column.

M• =,i

1 0 ... O

. . .Y j, Y, 1 Y, ,

Y, a Y1 ý y1 t

I 3Lo 3Lo-~ L .. . aL, -y,- , Lo
y', ex (, ZYI ax,- y,x, ax, y x

(72)

f#Lo is defined (for j between 2 and n-1) as the jL•

term in the last row of the determinant in Eq. (72)

ftLo= Lo-y _Ž Lo (73)
)x3 y1, bx,

Defining [#] as the derivative operator in brackets, below

[W]=[ X -y1  _] (74)
)xj y1 bx,

Eq. (73) is rewritten



ý TLo=[#]L,

Multiplying and dividing Lo by y,,

j Lo=[#](y,, L,)

Expanding Eq. (76)

(77)jLo=y,, [1#]( Lo)+( Lo)[#y]y,YI! Y11

If Eq. (77) is considered only on the spinoidal curve, Lo

is equal to zero

(78).L =y, [ L#o]( Lo)
1I,

Repeating the procedure used above to generate

Eq. (72) on L. over y,,

1

YY, y IY

y, y y•,L
Y•, Yi

Y1I

.. . -* , -, -,jI f , n- Y
Y1I

A 'derivative operator applied to a, determinant

evaluates as the sum over all k of the determinant with the

derivative operator applied to each element of the kth row.

Simplifying Eq. (79) and substituting it into Eq. (78)

38

(75)

(76)

Lo-
Y1,

0 0

(79)



YI

ye'[t]Yk-,-L-yLk-1-r~~
yII

ye'Y~cI ;;LLLt+

Y7e

·' X "- n- -X Jz-ye' L
y,,

*** [k-]Y n-1--Yl kYI yr

YI,

• -- Y-, .- -Y n-#, Yl A-,
Y1I

Evaluating the mth element of the kth

determinant in Eq.

S xjj Yl, Yo b• (Yk m-Y )bx, YII

YI, Y3r If

ik+Y , + , Yik
Ie I ;L y3

Rewriting Eq. (81)

SYM (YkM-Y, k Y, Yek )

=Ykm)-(Yi k Y nj +Yim Ym tj

+(Y k Ylm Ytij

+Yj Y, k )Y,-I
+YJ Ya kmn

+Yj Yim Yj k )Y.,

(82)

Using Eq. (C-29) (from Appendix C), the RHS of Eq.

to Tkm, 9
a third derivative of I, the Legendre

Transform of y from x, space to £, sp

39

17-f

yll k=a
(80)

(80)

row in the

(81)

equal

(82) is

)ace.

.xj
(83)

r

+yk Y, Y,,1

-Y7k Y, Yl, Y, • ,,, Y,1



The row involving

determinants in Eq.

the [#] operator in each of

(80) is simplified using Eq. (83).

of the other terms in the determinants are shown equal to

second derivatives of 'f,using

The simplified form of Eq.

n-0

Y1 k=aZ

ýxsbI'2j20r

3Ik.

0kk

Eq. (C-25) (from Appendix

(80) is

0

0

*** flk-I n-I

** "• n-I

o,. Y/-I n-I

(84)

The RHLS of Eq. (84) is the formula for the derivative

of the determinant LO with respect to xj

, L.=~Lx

The last row of the determinant in Eq. (72) is

using Eq. (85), and the rest of the terms

simplified using Eq.

Mo =

,I

(C-25).

V ,.l
0x

Eq. (72) becomes

**o y'2n-I

'x n-i
0XA-

simplified

are again

All the terms in the determinant in Eq.

40

C).

the

All

(85)

(86)

(86), except for

•*0**

'' '

I



the last row, are identical to the terms in L,. For all j,

the jth term in the last row is a derivative of L with

respect to xl+j. Therefore, by Eq. (70), the RHS of

Eq. (86) is equal to M,. Multiplying by y,2

Mo=ya M, (87)
The procedure used to derive Eq. (87), starting with

Mo , could start with ML. The result is

+I1L-+1i+, (88)
Repeatedly applying Eq. (88) demonstrates that if Mj is

equal to zero, then ML is equal to zero, for all i<j. By

Eq. (70), Tn-j is Mn_,. Eq. (63) shows that

is zero at critical points. Therefore an

alternate form of the second equation for critical points

is (for i<n-1)

ML--=O (89)

Eqs. (62) and (89) (or (60) and (63), or (61) and (64))

define the critical points of any substance.

If the xL's are defined as in Eqs. (9), (10) and (11),

and i is chosen to be 2, then the Legendre Transform in

Eqs. (55) and (70) is G. The conditions of the critical

point given by Eqs. (62) and (89) then become

L2=0 (90)
M=--O (91)

where



N I N2

G

G 0ntW

GNI , , N

GN;. N,

GNm-a N,

G N
0zW
0Nn7 ~

G N, IN

GN; N,

Nm-r a,

Eqs. (90) through (93) are conditions of the critical point

stated by Gibbs[3].

42

S GNm-. Nm-;

... • L•2bTT

(92)

(93)
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III. ONE, TWO AND THREE COMPONENT SYSTEMS

In Sections I and II formulas were derived to predict

limits of intrinsic stability and critical points for a

general m-component system. This section will consider the

special cases of pure materials and of binary and ternary

systems in more detail.

Eq. (46) gives a criterion of intrinsic stability for

a pure material. The leading coefficient of the last term,

F3 ,2), was shown to be equal to zero. Therefore a pure

miaterial is stable if the leading coefficients of the first

two terms are positive:

< >0 (94)
S>0 (95)

Since the leading coefficient of the second term was shown

to become zero before or at the same time as that of the

first, Eq. (95) is the only criterion that needs to be

examined to determine the limit of stability. However,

iqs. (94) and (95) each contain useful information.

The specific form that Eq. (94) takes is dependent on

the ordering of x,, x, and x3. If x, is defined as S, then

Eq. (94) becomes

Uss >o (96)

Since Us=T, Eq. (96) is equivalent to

•_bT >0 (97)



Lefining Cv, the heat capacity at constant volume

C(=T bS =TIb\ (98)
bTV 757TIV,N

Substituting Eq. (98) into Eq. (97)

T >0 (99)

Since T and K are always positive, Eq. (99) reduces to

CV>O (100)

Eq. (94), from which Eq. (100) was derived, is valid

for rulticomponent systems as well as pure materials.

Therefore Eq. (100) states that for an intrinsically stable

substance, the heat capacity at constant volume is always

positive. Eq. (100) is termed the "condition of thermal

stability."

Other forms of Eq. (94) may be obtained if x,, x, and

x3 are ordered differently. Table 1 lists all of the

possible orderirgs of S, V and N, each with the

correspondinr form of Eq. (94). All forms of Eq. (94) must

be satisfied in any stable equilibrium state. Since the

limit of intrinsic stability is reached when Eq. (95) is

violated, and all forms of Eq. (94) are automatically

satisfied up to that point, the label "condition of thermal

stability" is herein applied to all of the forms in Table

1, not just the first.

Eq. (95) is that condition of intrinsic stability (for

a pure material) which is violated first. If (x,, xZ, x3 )
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TABLE I - CCONDITIONS OF THERMAL STALILITY

ORDERING OF (x, x,, X3 ) To >0 FORM LERIVATIVE FORM

Sor , V,
or T, 9

o, S,
or N, V,

hT

N)

v)
V

SS>0

UvV >0

U, ,>O

~T >0SVIN,
bP <0
TV) S,N

>O
i-,ý*) s 7 v

TAELE: II -- CONDITIONS OF MECHANICAL STABILITY

ORDERING OF (x,, x;, x 3 )

(S, v,

>O FORM

A,V>O

LERIVATIVE FORM

bP <0
bTV T,N

(S, L1, v)

(V, s, N)

(V, h, S)

(N, S, V)

(N, V, _S)

ANM >0

HA >O

H,>O

>0

>0

>0

>0

<0

( ) T,V

(P I4

\V Ip, SIx,_
ý7 1,_.s

___
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are ordered (S, V, N), then Eq. (95) becomes Eq. (58) (or

equivalently, (59)). Multiplying each side of Eq. (59) by

C, the total moles, yields an expression involving only

intensive properties:

V)T<0 
(101)

Eq. (101) is termed the "condition of mechanical

stability."

Other forms of Eq. (95) are possible, and are listed

in Table 2. Since any of the forms in Table 2 is both

necessary and sufficient to establish the intrinsic

stability of a pure material, they must all be equivalent.

Therefore the term "condition of mechanical stability" is

herein used as a label for any of the forms of Eq. (95).

If (x,, xZ, x3 ) are ordered as (V, S, N) then

Y' =H=_U-(-P)V and Eq. (95) becomes

H55>O (102)

Since Hs=T, Eq. (102) is equivalent to

bT >O (103)

Defining Cp, the heat capacity at constant pressure

C-=T P=( ! I))T )PN (104)

Substituting Eq. (104) into Eq. (103)

T >0 (105)

Since T and N are always positive, Eq. (105) reduces to
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Cp>0 (106)

Eq. (106) shows that the heat capacity at ccnstant

pressure is always positive for a stable equilibrium state.

Eq. (105) also shows that as a pure material approaches its

limit of intrinsic stability (spinoidal curve), Cp

increases without limit. Eqs. (101) and (105) are

equivalent forms of the criterion of mechanical stability

even though one involves a heat capacity and the other uses

cnly P-V-T properties.

Eqs. (60) and (63), which determine critical points,

are easily evaluated for a pure material. Rewriting the

critical point conditions for n=3

(1) =0 (107)
(t)=0 (108)

If (x1, x , x3) are again defined as (S , N) then

Eqs. (107) and (108) become Eqs. (66) and (67), or, in the

derivative form, Eqs. (68) and (69). Each side of

Eqs. (68) and (69) is multiplied by N, the total moles

k T=0 (109)

2Pi =0 (110)
7)JT

Eq. (109) defines the spinoidal curve, the locus of

points which are on the limit of stability. Eq. (109) is

simply Eq. (101) with the inequality (<) changed to an

equality (=). Other equations which define the spinoidal
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curve are obtained from the last column of Table 2, by

chanting an inequality to an equality. For example, using

the second entry in the last column of Table 2, the

spinoidal curve is defined by

=0 (111)
TV

Critical points are defined as points on the spinoidal

curve which are stable with regard to all possible small

variations. Eq. (110) is an equation which must be

satisfied to insure intrinsic stability for any point on

the spinoidal curve. It is obtained from Eq. (109) by

changing the first derivative to a second derivative. This

procedure may be used on any equation which defines the

spinoidal curve and is of the form of Eq. (61). For

example, the first derivative in Eq. (111) is changed to a

second derivative

TV0 (112)

Eqs. (111) and (112) define the critical points in a pure

material, and may be used in place of Eqs. (109) and (110).

The significance of Eqs. (101), (109) and (110) is

apparent when examining isotherms plotted on a graph of

pressure versus specific volume. Such a plot, for a

hypothetical material with a critical pressure (Pc) of 26

atm, a critical temperature (Ta) of 5000K and a critical

volume (V ) of .4 liters/g-mole, is presented in Figure 1.
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FIGURE I - P-V PLOT OF A HYPOTHETICAL PURE MATERIAL
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The material is assumed to follow the Redlich-Kwong

equation-of-state, which is discussed in Section IV. The

isotherms drawn inside the metastable region are valid only

if no nucleation surfaces are available. If such surfaces

exist, or if the substance is brought to the spinoidal

curve, the material will separate into two phases, each on

a boundary between the metastable and stable regions. The

area below the critical temperature (5000K) and to the left

of the critical point is the liquid region; the

corresponding area to the right of the critical point is

the vapor region.

Three isotherms are drawn on Figure 1. The isotherm

at 6000K always has a negative slope. Eq. (101) is

therefore always satisfied and the material remains in a

stable, single phase region at all times. The 4000K

isotherm reaches zero slope (the spinoidal curve) at two

points. Even though the equation-of-state predicts an

isotherm running through the unstable region, the slope is

positive and the material cannot exist as a single phase.

If the temperature is low enough, e.g. 4000K, the

metastable liquid may exist under a negative pressure. The

pressure of a gas is always positive. The critical

isotherm (5000K) touches the spinoidal curve at one point.

Since both the slope and the curvature are zero, Eqs. (109)

and (110) are satisfied.



51

Figure 1 shows only the liquid-gas transition. Other

transitions, for instance solid-liquid, will show identical

effects except for not having a critical point. This

thesis is mairnly concerned with superheated liquids

(liquids in the metastable region) and with liquid-gas

critical points. These topics will be considered further

in Section IV.

EINARY SYSTEMS

In a binary system Eqs. (94) and (95) are still

satisfied by all stable equilibrium states. However,

Eq. (50) is rewritten with n=4 to obtain the condition of

intrinsic stability which is violated first:

33; >O (113)

If (XI, xP, X,, x,) are again ordered (S, V, N_, Nb) then

- 0=G and Eq. (115) becomes

G >O (114)

or equivalently,

) P >0 (115)
S T,P,Nb

LRewritinL Eq. (115) in terms of x , the mole fraction of

component a,

( 7X >0 (116)
ixx T,P

Eq. (116) is termed "the condition of diffusional

stability." Other orderings of (x,, x., x,, x,) will yield

other forms of Eq. (113). These forms are listed in
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TABLE III -- CONDITIONS OF DIFFUSIONAL STABILITY

ORDERING (x,, XI , X3 , x, ) S(a>0 FORM DERIVATIVE FORM

or , V Nao,
or 7V, -9, Nc,

5, V,
or _, ,

or 'N _I, s,
S, Na,

or (TS, s,

G a- >0NbNb)
Nb, Na i
Nb, 1 No-

V,

NbTNT

S, Nbs , V No_
or (NS, 5, V, N, )

or , S, N, N _-, V

V, Na,
or g, V,

or NgV ,N

or l,Nb V,

or ,, NV,

Nr, N
or Nb , N

or N b,

S,

Nb
Nb

Na,

Nb

[N) T,P,Nb

)) T,P,Na

( PT,4 ,N1

V)bi T, ,V

(P I\7 T, jlbNo

(bT

() P,aIN

P, 6,SbP,1 ,Na y-
PI la ySN

5)D

>0

>0

<0

>0

<0

>0

>0

>0

>0

>0

bT >0

bP <0
ý ,, s

Nb , V, S
Na., q ) "

I E, i)
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Table 3. Since any form is both necessary and sufficient

to determine the stability of a binary mixture, all forms

are given the label "condition of diffusional stability."

Eq. (116) is often not the most convierient form for

applications to real materials. Usually one desires to use

P-V-T data. This data may be in the form of a pressure

explicit equation-of-state. In this case, the Helmholtz

Free Energy is particularly useful, as it is a function of

temperature, total volume, and mole numbers.

Eq. (53) is of the required form. Using the same

ordering as above (Eqs. (9), (10) and (11)), Eq. (53)

becomes for n=4

Avv >0 (117)
Amv Aa

or, in the expanded form,

A vv A,-A >0 (118)

Eq. (118) may be evaluated using only a pressure explicit

equation-of-state. AV=-P, and thus Avv and A, are

directly computable. Appendix D derives a formula for

evaluating AO, Eq. (D-9).

The conditions of the critical point for a binary

mixture are Eqs. (60) and (63), with n=4.

-) =0 (119)

333-0 (120)

Eqs. (119) and (120) may be evaluated directly.
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Alternately, conditions of stability may be derived from

stability criteria, as was done with a pure material.

Eq. (116) is a condition of stability for a. linary.

Therefore the spinoidal curve is defined as the locus of

points where Eq. (116) is first violated.

( 0,P =0 (121)

For a binary on the spinoidal curve to be stable, the

second derivative of with respect to x, must be zero, as

well as the first.

\bx T,P =0 (122)

Other forms of the conditions of the critical point may be

obtained in the same fashion from the conditions of

stability in Table 3, or directly from Eqs. (119) and

(120).

The critical point conditions may also be expressed in

Helmholtz Free Energy forms. Eqs. (62) and (89) become,

for n=4 and i=1,

L,=O (123)

M,=O (124)

where
A A

L,= (125)
SAoV Ao-0

M,= (126)
UL, bL,

ýV jT- W;



Expanding Eqs. (123) and (124)

Avv Aao-A--O (127)
S A A +3A (128)

Eqs. (127) and (128) may be evaluated using any pressure

explicit equation-of-state.

The P-V-T diagram of a hypothetical binary mixture is

presented in Figure 2. The binary is assumed to follow the

Redlich-Kwong equation-of-state discussed in Section IV.

The mixture composition is: 80% the hypothetical material

in Figure 1, with Tc=5000K, P==26 atm and VC=.4

liters/g-mole; and 20% a substance with T,=700 K, Pc=20

atm and V,=.7 liters/g-mole. The binary has T,=5600 K,

Pc=30 atm and Vc=.45 liters/g-mole. The mixture values of

Tc and Vc are approximately mole fraction averages of the

pure componet values. Pc of the mixture, however, is

considerably larger than either of the pure component Pc s.

A binary system becomes unstable more readily than a

pure material. This is because for a mixture, Eq. (118) is

violated before Eq. (58). The unstable region which would

be calculated using Eq. (58) is contained within the

unstable region indicated in Figure 2. This is verified by

noting that the isotherms in Figure 2 always have a

negative slope.

Different mixture compositions would produce P-V-T

plots differing slightly from Figure 2. Therefore, for a



56

FIGURE II -- P-V PLOT OF A HYPOTHETICAL BINARY MIXTURE
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complete description of a mixture, a P-V-T-xo plot is

needed. P-V-T plots of mixtures with xCL's approaching 0

and 1 will approach the P-V-T plots of pure component b and

pure component a, respectively.

TERNARY SYSTEMS

Ternary systems are analyzed by the same methods as

pure and binary systems. The intrinsic stability criterion

for a system with n=5 is, using Eq. (50),

4 >0 (129)

Table 4 presents the fundamentally different derivative

forms of Eq. (129). Each form involves taking a derivative

while holding at least one ul constant. Therefore, these

forms are difficult to evaluate and are not useful in

calculations with real materials.

Again the xZ's are defined as in Eqs. (9), (10) and

(11). Then -_=A and Eq. (54), an alternate form of the

criterion of intrinsic stability becomes (for i=1)

L,>O (130)

where
Av, AvO Avb

L,= Aav Aaa Aab (131)

,A Ab Abi

AV,, A w, and A,b are evaluated directly from a pressure

explicit equation-of-state. Aaa, Abb and Aab are evaluated

using Eqs. (D-9) and (D-10), from Appendix D.
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TABLE IV - CONDITIONS CF STABILITY FOR A TERNARY SYSTEM

ORDERING OF (xl, xI, xS, x0, x X)

(S, v, N, N, Nc )

(v, NO, Nb, V, Ne)

(S, No, Nb, No, V)

(V, No, Nb , S, Nj)

(V, NO, Nb , Nc , S)

(N, 9Nb , NC , V)

(N , N, N , V, S)

DERIVATIVE FORM

T,P,ýU,Ne>O

1bT\ >0

(&\ >0>0

bp <o_ ,TV ,

NOTES:

1. Any orderings of x,, x,, x 3, x. and x s which differ

only in the arrangement of N., Nb and Ne and/or in the

order of the first three variables are not considered

different and are not listed separately above.

2. Since no third Legendre Transforms of U have common

names or symbols, no condition of intrinsic stability in

the Vý3 >0 form is listed above.L4 4I·I
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Critical points are handled in the same way. Using

the same ordering of (x,, x2 , x 3, x4, x5 ) and the same i

(1), the critical point conditions of Eqs. (62) and (89)

then become

L,=O (132)

M,=O (133)

where L, is defined in Eq. (131) and

Avv Aw, Avb

M,= Aav Ao As ( 14)

bL ŽL, )L,

A ternary P-V-T plot at a given x, and xb will appear

approximately the same as Figure 2. The unstable region of

a ternary is larger than that predicted by Eq. (113) (which

is used in Figure 2), but is of a similar shape.

Systems with four or more components are analyzed by

the same procedures used above. If the equations are

always chosen to be in the Helmholtz Free Energy form, then

they may be evaluated using only a pressure explicit

equation-of-state. Although the number of terms in the

second condition of the critical point increases

considerably with an increase in the number of components,

this is not a significant difficulty if a computer is used.

The equations derived above may be used to locate the

spinoidal curve and critical points of any substance, given

a suitable equation-of-state. Section IV demonstrates this
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using the equation of Redlich and Kwong (and also the Soave

modification) with several pure materials and

nulticomponent systems.



IV. PREDICTING SUPERHEAT LIMITS AND CRITICAL POINTS

The equations derived in Sections I, II and III may be

applied to real materials if the appropriate data is

available. Yor example, equations involving the Gibbs Free

Energ.y, such as Eq. (90), are readily evaluated using a

volume explicit equation-of-state. Pressure explicit

equations-of-state, as already noted, enable the evaluation

of equations which use the Helmholtz Free Energy.

Perhaps the most used two parameter equation-of-state

is that of Redlich and Kwong[4]:

P=RT - aI (135)
7'-U T'3 V(V+b)

K is the Gas Constant and a' and b are constants selected

for each substance. Defining a as the ratio of a' to T 5'

a= a' (136)
T77-

Combining Eqs. (135) and (136)

P=RT - a (137)
P-E V(V+bJ

Lq. (137) is the form of the Redlich-Kwong equation used in

this thesis. The term "a" is a function of temperature.

This permits modifying the equation-of-state by simply

changing the temperature dependence of "a" (Eq. (136))

without changing Eq. (137).

The reduced temperature, T., is defined as the ratio

of the temperature to the critical temperature
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T,=T (138)

The constant a" is defined as the ratio of a' to T5

a"= a' (139)

Combining Eqs. (136), (138) and (139)

a-:a " 0(140)

Substituting Eq. (140) into Eq. (137)

P=RT - a" (141)

The constants a" and b in Eq. (137) are evaluated

using the critical point conditions for a pure material,

Eqs. (109) and (110). At the critical point T=Tc, T,=1 and

V=V, . Solving Eqs. (109), (110) and (137) simultaneously

for a", b and V. yields

a"=@R "TR (142)

b=6 bRTc (143)

VC=RTe (144)
3r7

where
@a= .427480 (145)

@b=.086640 (146)

Thus the constants in the Redlich-Kwong equation may be

evaluated for any pure material, given the critical

temperature and pressure. The value of Vc predicted by

Lq. (144) yields of value of 1/3 for the critical

compressibility. This is somewhat higher than the actual
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value for all known compounds.

The reduced pressure, P., is defined as the ratio of

the pressure to the critical pressure

P4=P (147)

V', a type of reduced volume, is defined as one-third the

ratio of the volume to the critical volume predicted in

Eq. (144)

V'=VPc (148)

Combining Eqs. (141), (142), (143) and (147)

vP-•, T a(V-'

Eq. (149) is the completely reduced form of Eq. (135).

It gives PR as a function of TR and V%. A form that is

easier to use in calculations is created by expanding the

last term by partial fractions, and using the identity

Av=-P.

-P,=Av=- Ts +T@- @C (150)
where VW

where
@C= @Q (151)

Ce is a function of temperature.

Using Eq. (148), the definition of VO, and taking all

derivatives at constant T and N

AVV= Wi = FAv) c I My\(1

(149)

(152)



Combining Eqs. (150) and (152)

NRTr A,= T @c+ _@c (153)
P 2 77JT0V- (V 7+-3j

Eq. (153) is used with Eq. (58) to determinine the

stability of any pure material, given T, and V(.

SUPERHEAT LIMITS

A liquid at 1 atm pressure will vaporize when the

temperature is raised above its normal boiling point,

assuming that nucleation surfaces exist. If the liquid is

not in contact with any nucleation surfaces, the

temperature may be raised to the limit of intrinsic

stability (spinoidal curve) before it vaporizes. Liquids

heated above the normal boiling point are termed

"superheated" liquids, and the temperature at which the

liquid, reaches the spinoidal curve is termed the "limit of

superheat." Eq. (66) gives a defining equation of the

spinoidal curve for a pure material.

Combining Eqs. (66) and (153) yields a criterion of

the spinoidal curve in terms of T, and VT

T - @e+ @C =0 (154)

A liquid at the limit of superheat will satisfy Eq. (154).

In addition, if the pressure is 1 atm,

P,=1 atm (155)
p.

Solving Eqs. (154) and (155) simultaneously for VO and TR

yields the limit of superheat for any material, in terms of



65

[FIGURE III - LIMIT OF SUPERHEAT OF A PURE MATERIAL
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the reduced temperature. Figure 3 is a graph of the limit

of superheat (as T,) as a function of PR (or P,). For

materials with critical pressures above 10 atm, the reduced

temperature at the limit of superheat predicted by the

original Redlich-Kwong equation is between .894 and .904.

Limits of superheat for ten hydrocarbons, as

calculated using Eqs. (154) and (155), are listed in

Table 5 under the columns labelled R-K. Also listed in

Table 5 are experimental values obtained from Eberhart,

Kremsner and Blander[5]. The calculated values are in good

agreement with the experimental data, the average absolute

deviation being 20K. Since the Redlich-Kwong equation

always predicts a reduced limit of superheat of about .9, a

Lood rule-of-thumb for pure materials is that the limit of

superheat is nine-tenths of the critical temperature.

A modification of the Redlich-Kwong equation is used

in this thesis. Soave proposed[6] retaining Eq. (137), but

changing the definition of "a". Instead of Eq. (140), "a"

is defined by

a=a"[1+( .480+1 .57w-.176 ) (1-T;' (156)

where w is the acentric factor and a" and b are still

defined by Eqs. (142) and (143). If the definition of @c

is changed to

@c=@a[1+( .480+1 .57w-.176w2) (1-T 5)] (157)
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TABLE V -- LIMITS OF' SUPERHEAT O~F PURE HYDROCARBONS

HYDROCARBON

SUPERHEAT LIMIT
(DEGREES K)

R-K SRK EXP

REDUCED
SUPERHEAT LIMIT

R-K SRK EXP

n-butane

n-pentane

n-hexane

n-heptane

r-octane

n-nonane

2,- 3-dimethylpropane

2,2,4-trimethylpentane

cyclohexane

1-pentene

AVERAGE ABSOLUTE ERROR

381 388 378

421 430 420

455 466 455

485 498 486

511 525 513

534- 551 538

389 395 386

488 500 488

496 505 493

417 426 417

2 11

.897 .911 .890

.897 .915 .896

.898 .918 .899

.898 .921 .902

.898 .924 .902

.898 .926 .906

.897 .911 .891

.898 .919 .898

.897 .912 .891

.897 .917 .898

.004 .020

Notes:

R-K=Calculated using the Redlich-Kwong equation-of-state

SRK=Calculated using the Soave modification to the R-K

EXP=Experimental values[5]

- -- - -- --
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then Eqs. (152), (153) and (154) are usable with the Soave

modification.

Figure 3 and Table 5 also have calculations using the

Soave-Redlich-Kwong equation. In Figure 3, the Soave

equation predicts that the limit of superheat is a function

of critical pressure and acentric factor. The predicted

values span a much larger range (TR from .89 to .94) than

do those of the original Redlich-Kwong. The experimental

limits of superheat in Table 5 are much closer to the

original Redlich-Kwong prediction of T,=. 9 . Therefore, the

Soave modification is not recommended for superheat limit

calculations.

EINAEY SYSTEMS

The original Redlich-Kwong equation-of-state and the

Soave modification are used for multicomponent systems, by

mi-aking a' and b functions of composition. The definitions

of the mixture constants, in terms of pure component

constants, are termed "mixing rules." In the original

mixing rules, still widely used, the mixture values of b

and the square root of a' are each computed as a mole

fraction average of the pure component values. Writing

these rules for a binary system,

a =xa. +bab (158)

b=x b-+xbbb (159)

where af, a", b, and bb are the pure component values and
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x, and xb are mole fractions. Rewriting Eqs. (158) and

(159) in terms of mole numbers, using Eq. (136) to note

that the mixing rules for "a" are the same as those for a',

a=1 (Na' 5 +Nba •5)2  (160)

b=1 (Nb,+N b, ) (161)

Eq. (137), in either the original or the Soave form, is

applicable to binary mixtures using Eqs. (160) and (161).

The most convenient equations which define the

spinoidal curve and critical points of a binary mixture are

expressed in terms of A, the Hielmholtz Free Energ:y. To

make Eq. (137) compatable with A, it is rewritten in terms

of the total volume, V

-Av=P=NRT -@G+ @d (162)

where @where C=Na=(Naa +Ia ) 2  (163)
U- Nbb+Nbb6

@ =Nb=NO+Nbb6 (164)

Cd and 4 are functions of composition, and @d is a

function of temperature.

Eq. (127) defines the spinoidal curve of a binary

mixture. The terms Avv,, A, and AL are evaluated (for

the Redlich-Kwong equation) using Eqs. (E-1), (E-2) and

(E-6) (from Appendix E). Solving Eqs. (127) and (155)

simultaneously yields the limit of superheat for a binary

material. The required data are the criticel temperature,
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pressure and mole fraction of each component (plus the

&centric factor, for the Soave equation). Figures 4 and 5

gLive the calculated and experimental[5] limits of superheat

for the systems n-octane in n-pentane and cyclohexane in

r-pentane, as a function of composition.

The calculated limits of superheat, for both the

original Redlich-Kwong equation and the Soave modification,

are almost exactly nole fraction averages of the superheat

limits of' the pure compounds. This does not agree well

xwith the data, as the experimental values in Figures 4 and

5 deviate somewhat from a straight-line plot. The original

Redlich-hwong matches the data much better than the Soave

modification. This is to be expected, since the original

equation is also better with pure materials.

The reason that the theoretical treatment produces

disappointing results may lie in the term A_. A, is

calculated using Eq. (D-9) (from Appendix D), which

involves an integration across the unstable region of the

second derivative of pressure with respect to a mole

number. Since substances cannot exist in the unstable

region, any equation-of-state in that region must be based

on extrapolations. Taking the second derivative of the

pressure with respect to a mole number is a severe test of

the mixing rules (Eqs. (158) and (159)). Most

thernodynamic calculations take at most the first
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FIGURE V - LIMIT OF SUPERHEAT OF CYCLOHEXANE IN N-PENTANE
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derivative. Much more refined mixing rules are required to

produce accurate predictions of the limit of superheat.

CRITICAL POINTS

Eq. (128), the second condition of the critical point

for a binary material, is also evaluated using Eqs. (E-1)

through (E-7) (from Appendix E). Even though the term A 0aa

involves a third derivative of P with respect to VN, the

integration does not extend across the unstable region.

Therefore the critical point calculations may be expected

to produce more accurate results than those of the limit of

superheat.

The critical point conditions, Eqs. (127) and (128),

are solved simultaneously for the critical temperature and

volume, and the equation-of-state is used to obtain the

critical pressure. Figures 6 and 7 give the calculated

critical temperatures for the systems n-heptane in ethane

and n-butane in carbon dioxide, as a function of

composition. Figures 8 and 9 do the same for the critical

pressures. The results of both the original Redlich-Kwong

equation and the Soave modification are plotted, together

with experimental data collected by Spear, Robinson and

Chao[7].

Both equations-of-state yield values in fair agreement

with the experimental data. As in the limit of superheat

calculations, the mixing rules are suspected of causing
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FIGUFE VI - N-HEPTANE-ETHANE CRITICAL TEMPERATURES
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FIGURE VII - N-BUTANE-CARBO-7 DIOXIDE CRITICAL TEMPERATURES

CRITICAL
TEMPERATURE (O K)

q1s

qoo

395

300

MOLE FRACTION N-BUTANE

-- - CALCULATED USING THE REDLICH-KWONG EQUATION

CALCULATED USING THE SOAVE MODIFICATION

A EXPERIMENTAL DATA[7]



76

FIGURE VIII - N-HEPTANE-ETHANE CRITICAL PRESSURES
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FIGURE IX - N-BUTANE-CARBON DIOXIDE CRITICAL PRESSURES
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most of the inaccuracy. The use of interaction parameters

in the mixing rules would undoubtably improve the

predictions. These parameters are usually empirical,

being determined from data already available. Therefore,

the use of interaction parameters is more a correlative

than a predictive technique.

The results obtained using the original Redlich-Kwong

equation and the Soave modification to predict superheat

limits and critical points are somewhat disappointing.

Their moderate success, however, leads to hope that

improved equations-of-state or more likely, improved mixing

rules will yield significantly higher accuracy.
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V. DISCUSSION

The study of intrinsic stability, as well as virtually

every other branch of thermodynamics, got its start and

first major developenents from J. Willard Gibbs. In his

article "On the Equilibrium of Heterogeneous

Substances"[83], Gibbs introduces the entropy maximization

principle and shows its equivalence to the energy

minimization principle. Then the fundamental ecuation

u=U(s, V, N, ... Nm) is developed, as well as the forms in

terms of A, G and H.

Working with only the fundamental equations, the

uniformity of temperature, pressure and chemical potential

in a system at equilibrium is deduced. The stability

equations Dk>O for all k<n, in the form where

(x, ... ,)=(S, N, ... Nm, V) are then found. The equation

which is violated first is listed as Eq. (56). These

criteria are transformed into a single equation in the form

of Eq. (51), with the same ordering of x, through x,.

The corresponding conditions of the critical point,

Eqs. (60) and (63), are developed by considering the

intensive properties of coexistent phases near a critical

point. A consideration of the stability of the coexistent

* phases yields the alternate criteria of Eqs. (62) and (89),

Swith i=O and the same ordering of x, through x, as above.

The forms with i=2 are also stated, and are listed as
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Eqs. (90) through (93).

The above paragraphs demonstrate that Gibbs developed

every significant area of stability. The major problem in

his work is its extreme lack of readability. Often the

step-by-step logic is not apparent. Much of later authors'

work can be considered a clarification rather than an

extension of Gibbs.

The separation of one phase into two separate phases

is used by Prigogine and Defay[ 9] as a basis for the

calculation of the stability of a system. This treatment

is much more intuitive, as it models the actual physical

process which occurs when a system becomes unstable. The

stability of a pure component is determined by directly

studying the entropy increase in the formation of a

micrcscopic new phase differing only slightly from the

original. Multicomponent systems are considered only at

constant temperature and pressure.

Prigogine and Defay derive the conditions of thermal,

mechanical and diffusional stability. The question of

which conditions are violated first is not discussed,

except that the condition of diffusional stability is shown

to be the violated before mechanical for a binary mixture.

The critical point conditions are stated without proof;

however, a fairly extensive treatment of critical behavior

in solutions is presented.



In deriving the conditions of stability, Gibbs uses

S(n , the nth Legendre Transform of U (transformed with

respect to all of its variables), as well as the transforms

A, G and H. Although he discusses the relationships

between these functions, the general nature of Legendre

Transforms is not developed.

Callen presents the use of Legendre Transforms in

thermodynamics[IO]. A, 0, H and 4/'P) , the pth transform of

U, are defined and analyzed in terms of a general theory of

Legendre Transforms. For instance, the various first

derivatives of transforms are derived.

The sum-of-squares form of the expansion of the change

in U is obtained directly in the reduced notation of

,Eqs. (38) and (39). In an appendix, the alternative

formulation in terms of determinants is developed. The

significance of the criteria of stabilitly is not

explained, however. Callen's treatment, although Eeneral

and highly mathematical, is easy to follow. This is due to

his use of Legendre Transforms, a very important

developement.

Munster covers Legendre Transforms and fundamental

equations in somewhat more detail[C1]. The derivation of

the stability criteria is also extensive and presented in

several different ways. Otherwise, the treatment is

similar to Callen's.
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The idea of a subsystem which is enclosed by a

diathermal, non-rigid and totally permiable membrane is

introduced by Modell and Reid[L2]. This permits all

possible variations between the subsystem and the main

system, and insures complete generality.

Second derivatives of Legendre Transforms are obtained

using a Taylor Expansion. This permits the conversion of

the U form of the stability criteria to the A form, the A

form to the G form, and so on until one derives the A_,,•,

form. Thus the stability criteria of Eqs. (54) and (55)

are deduced, with x, through x, defined as in Eqs. (9),

(10) and (11).

Other authors present derivations of stability or

critical point conditions which are either similar to

previous works[Lg] or are unclear[si]. The last reference

suffers from not having defined the change which occurs

when a system becomes unstable.

This thesis considers the formation of two phases of

any size, not necessarily one large and one small, from an

original homogeneous phase. Thus this model of intrinsic

instability corresponds more closely to the actual physical

processes.

The third derivatives of Legendre Transforms were

found in order to show the equivalence of the various forms

of the second condition of the critical point. This, plus
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the general representation of variables used, enables the

expression of the criteria of stability and of the critical

point in terms of any Legendre Transform of U.

Redlich and Kister derive critical point criteria for

a binary system, usable with an equation-of-state[15].

Some of their derivatives are in terms of volume, some in

terms of pressure. Although formulas are given to convert

to the form most suitable for any equation-of-state, this

treatment is awkward and unnecessary.

Given a pressure explicit equation-of-state, the forms

of the stability and critical point criteria in terms of A

are the most convenient, A being a function of T, V and NZ.

They are derived in this thesis for an arbitrary

m-component system.

The results obtained by using the condition of

stability and the Redlich-Kwong equation-of-state to

predict superheat limits are good for pure materials and

fairly poor for mixtures. For this and other reasons

discussed in Section IV, the mixing rules are thought to be

causing most of the error. The Soave modification produces

quite poor superheat limit predictions.

Critical points of binary mixtures are not predicted

well using either equation-of-state. Again mixing rules

are suspect. The calculation of superheat limits and

critical points involves taking second or third derivatives
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of the pressure with respect to a mole number. This is an

extreme test of mixing rules, and it is not surprising that

the results are poor.

The accurate prediction of superheat limits and

critical points may only be obtained if equations-of-state

and associated mixing rules are greatly improved. In fact,

obtaining this accuracy may be regarded as an advanced test

of an equation-of-state, probably not satisfied by any now

in common use.
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APPENDIX A

DETERMINANT REDUCTION FORMULA

This appendix proves a formula which relates any

determinant to determinants of one order and two orders

smaller. The relation is used in Appendix B in deriving

the sum-of-squares form for a general quadratic expression.

The formula is presented here as a separate appendix since

it may have other uses. For example, it could have been

used to prove which of the conditions of stability were

violated first, except that other methods were easier.

The desired formula is: if i<k and j<m then

B BLjk,,=BL Bk,-B4,B •j (A-1)

B is defined as an n by n determinant, EiL as E with

the it" row and jtý column removed (the minor of U;j ),

EBSkm as B with the i ' h and kth rows and the je and mth

columns removed, etc.

U1, U12  ... Uln

U UA ... Uan

U* * ...

U , U,2 U2 I .. Ua

U31 U33 Us ... U
B .

UI U n Un n . Unr



In

true for

is then

defined i

U33 U3• U3n

Uqs Uq' ... U
B I 9 =B120 =BII ,1• =B~1 ,I = -

Unz Us ... Us

the first step of the proof Eq. (A-i) is

a particular n with (i, j, k, m)=(1, 1, 2,

shown true for any set of i, j, k, and m.

dentical to B but with the second and mrh

interchanged (m>2).

U,, Ulm U,

Uni UnM UB '= . *3

Relabling 2 as m' and m

Un, Ui, UiZ3

U*' Uns

Uh;' Unt

.. UIM-, UMP U, 11, ... Uln

.. UnfM-I U UU ...M U*1

as 2' inthe second and m

.** U I M- UjM' Ulr... U*0

00.. U• I 1  U.1-' U-r.l.- U2n
* 0 4 •

Uni Unm 0+.. Un*00 U4 K-1

Eq. (A-1), if true for (i, j, k, m)=(1, 1, 2, 2),

to B' (which appears identical to B except that

subscripts are primed) yields

B'B'Pj I' =B', B'P, -Bf' , B ,

Irom determinant column exchange rules,

B '= -B

B F=-B ; B' =-BEit '2 1 21
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assumed

2) and
B' is

columns

columns

applied

certain

(A-2)

(A-3)

(A-4)
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B,2,=(-)m+, ; B,=(-l)A+Bam (A-5)

E',,, ,=(-1)"' Bleam (A-6)
Combining Eqs. (A-2) through (A-6) and factoring yields

B BEI,m=Bi, Bm-B•mBl (A-7)

Equation (A-7) is Eq. (A-i) with (i, j, k)=(1, 1, 2),
but with m arbitrary. The same proof applies if i, j, or k

instead of m were changed to a different value. Therefore,

if Eq. (A-i) were true for (i, j, k, m)=(1, 1, 2, 2) it

must be true for any (i, j, k, m).

The second step of the proof involves showing

Eq. (A-i) to be true for n=2. Since EB,1, as a 0 by 0

determinant, is defined equal to 1,

B=U,, U2-U, U., =U,~Ul, -U., Uja (A-8)

transforms to

B B11, =B1,B1 B-B1 ,B,, (A-9)

Thus Eq. (A-1) holds for n=2.

In the third step of the proof Eq. (A-i) is assumed

true for an n-1 by n-1 determinant, B11 , and is then shown

true for B, the n by n determinant.

By the above assumption, if k>2 and i>2 then

B,, hB12 k =E, zBkt-B, 1  B ,ka (A-10)

Lach term is multiplied by (-1)kUk,, summed from k=3 to n

and rearranged, giving
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kz3

U k Baitk I -EIa 2 Z(-1 )k Uk1jl
k -3

Expanding B',, E,i and B3j42a by minors along the first

column

E2 =U;, B 2

1I; =U2 -Bl(21

Elza =:
lk.=

n

+ (-1ka3
+ -

· C 3

)k Uki B12k/

)kU i l3ik,

-1) Ukj BE ie22

Combining eqs. (A-11) through (A-14) and simplifying

Each term is then multiplied by (-1)'u,, summed from

to n, and rearranged,

-L ~i
L= 3

giving

(-1) U,; B22c, =

S1122 (-1 )
0= 3

Expanding B,

U1I i -b Ia ~(-l )L ~ (A-16)

B2, and B9, by minors along the first row

B=UE 1 ,, -U, (A-17)

E 1 =UB 1I UIBL , I

B (-1)
k=3

(A-11)

(A-12)

(A-13)

(A-14)

(A-15)

i=3

-E, B , -22= -E--B ,a, B,,if IC22 - Ila L /

rl -~ 'r7

SB,_- (-1 )ý UI, ý FCc'?

iL23

(A-18)
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B,~=U 13 +(A-19)

Combining Eqs. (A-16) through (A-19) and simplifying

B B,,,=B, Bý2-B,19B I  (A-20)

By the first part of this appendix, Eq. (A-20).implies

Eq. (A-i). Thus, if Eq. (A-i) is true for determinants of

order n-1, it is true for determinants of order n. Since

ixq. (A-i) is true for determinants of order 2, we have

showr by induction that Eq. (A-i) is true for all n_2.
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APPEIiDIX B

SUM-OF-SQUARES FORM

This appendix derives the sum-of-squares form for a

general quadratic expression. The form is used to show

when the differential in energy goes negative and the

system in question therefore becomes unstable.

Assuming that Uký= Uj k and that all denominators are

non-zero, the desired result is

(B-1)U ks x k=j Z Dk
k-• j k: k-[

where

Dk is

matrix of'

with all U

in the k'h

Zk C "_xj (B-2)
j=k <

the k by k principle sub-determinant of the

the coefficients of the quadratic. Ckij is Dk

k, in the kth row replaced with U., and all Uk

column replaced with U]J.

U, U,2 ... Ulk

U2 1 U
Dk=

Uki U1 ... Ukkk

Ckkj

U11

UýI

U ,

... U1a sk-I

k-i0

U 2

Ulj

U Z

Uký-. Ukk~



U,,

U2 '

Ckj = .

UL

U22 ..0. Uak-

Uk-t_• *** Uk-, k-,
U a ** UL k-i

...· · ; -

U.

k-, J

ULj

The derivation comes from working with the expression

E. defined

Since (B-3)

Since C,,,=3Mz,

J1M+

C xn X IX,
Lxy R

*/h~

(B-4)

Adding and subtracting terms to "complete-the-square"

n
E = D. [x'+2xZ

I = M+1

SSimplifyikx

Simplifying.

EM- DM (x,,+
T,, 3fl\tI

j-M I

ts\+ C kI xkxj
Tim -I

(B-5)

C 'x'

/1: C ,kCmI-C Mk CcAjD•D•_ 1
(B-6)

If B (of Appendix A) is defined

determinant reduction formula shows that

C,,.jk Dr-, =C•kc C rAmrA-C kmCi,~j

as C -, jk v then the

• .. UIk-.j

I)mM 1)+-my+ I

E,= D (x +2xrXm+•Xl

CM Ixje) ]DM-
C MIxj+(.D,-•

S' Xj +

(B-7)



Substituting Eq. (B1-7) into Eq.

(B-8)E,= Dm (• C +
J=ni D/ 2 kmn Dm

Substituting Eqs. (B-2) and (B-3) into Eq.

(B-9)E,= Dm Z +E
•-Ie

Applying Eq.

From Eq.

Using Eq.

(B-3)

(B-9) to E, n-1 times

n-IEl=yT D Z Eh

E kx

(B-2)
Eh= Dn Z

D,-r

Substituting Eq. (B-12) into Eq.

E- D ZEl Dk_

Since UkS=CI kj and Do=1, Eq. (B-3) shows that

(B-14)
k=, S--,

Combining Eqs. (B-13) and (B-14), one obtains

(B-I), the desired result.

(B-6)
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(B-8)

(B-10)

(B-11)

(B-12)

(B-10)

(B-13)

CM,, kt
3t;--yv

Eq.
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APPENDIX C

LEGENDRE TRANSFORMS

In this appendix the first, second and third partial

derivatives of T, the Legendre Transform of y, are

expressed in terms of derivatives of y. These formulas

enable the rapid interconversion of U and any of its

transforms (A, G, etc.). In particular, the determinants

arising from the stability and critical point conditions

are easily simplified.

Throughout this derivation, all terms that will appear

only in fourth or higher order derivatives are dropped.

Subscripts on y and W indicate corresponding partial

derivatives.

y is the given

y=y(x1, x2, x 3 ... x,)

', the Legendre Transform of y, is defined

,- Y-=y (C-1)

='=Yf((,, x, , x ... x)=y-I,x, (C-2)

Defining S9, and eSx

K ,=9,- 1, (c-3)

gx Z=xý -x L° (C-4)

Using Eqs. (C-3) and (C-4) in Eq. (C-2)

xp=y- doxy- •ou x,-xy su,- S • T x, (C-5)

Expanding y around yO using a Taylor Series



b n n

nCZ-I jki

yIoLxLL .xcx
+L 1 Yj

SXx Sxix I

D1 and D2 are defined independent of x,

V%

DO=E

Dl= y
i z

Combining Eqs.

Sx. ; 9j xk

L=• j=2

n

D2=y % nx
2=2

(0-6) through (C-9)

y=y +DO+(y'+D1)Sx,+7-(y - +D2)Sx>+-y ,1 1 1 • "il

From Eq. (c-4)
d(x, )=dx,

Using Eq. (C-11) to differentiate Eq. (C-10) with

to x,

y =y°+D1+(yo +D2)gx ,+.yY, =Y Dl+( , ay I

Substituting Eqs. (C-1) and

Sx x

(C-3) into Eq. (C-12)

c,=D1l+(yo,, +D2)gx,+,-.y,, Ex,"
Solving for 9x, and choosing the positive root of the

quadratic

(C-14)x,= {-y -D2+ [ (y, +D2) -2y, (D- ,) y 0 -

Using the binomial expansion

U x, =-(y, +D2) (D1- • ,)y, (y +D2) (D1-

Using the geometric series

(C-15)
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DO,

(C-6)

(C-7)

(C-8)

(0-9)

X, 13 (C-10)

(C-11)

respect

(C-12)

(C-13)
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y,0 x,=-(1-y, , D2)(D1- ,)-'y,,, yo-(Dl - ,)

Substituting Eq. (C-10) into Eq. (C-5) and

(C-16)

Eq. (C-16)
into both yields

T=y-O Ex , - x Or , DO -2 (D2-y , )(D1- ,,)2

Substituting

Eq. (C-17)

Eqs. (C-2),

(-), -8) an(D- (-9)
(C-7), (C-8) and (G-9)

+t

z JE(Y k kY, 2 L

Rearranging

'di , IL IYj" •.Yi YIit

-I yo o + -1,2 Y o

I yiI/ YC Y/] ,
I/k

ýxj sxk (C-18)

Eq. (C-18) so the terms which are summed are

symmetrical with respect to the summation indices

(C-17)
into

+ y (y

O~ -x 0s, i Y"gxy ox, 7 o -
Y g• •-•Y • , 0 2+Y10

1, , . ) x, L x;
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-- o- 0 o ,

0-I y y. x + 1 0 y3 0-y '7ý YO )ýX~dxx: -Ii Yr Y r

- o
3=

0-3 o
,: -YYl Y1O ) 5•,x.

(Y 01 y,.j -Y [YO2 Y y,. +Y " Y,0
0 1

7got7j o 7 7A Fi' 70
-y,, y,, y,; y•. y-3 ) yx 0x3 ,xk

Expanding T around ~to using a Taylor Series

0 n0

Comp ja Eqs.

Comparing Eqs.

(for i>2,

,6 111 S E7Lt= se x3+1E 10 Ix

Sxi x + jk Sx , x1i gX L(1X

(C-19) and (C-20) term-by-term

j22 and k>2)

If L =Y, L Y,

Y =Y ! -Y, L Y,

LZ ya.

(C-19)

(C-20)

yields

(C-21)

(C-22)

(C-23)
(C-24)
(C-25)

Y=V -xS ySx yo-I

(-2

VL

+,-3 y, ) °, x x
+y 0 y i, I Y, Y jj)Esx x

I=2 jA t kh -Y1 0-C, o +Y jo

-Y,, [Y,• Yrgk J YO Tl I

o •. L oIT I I Sel I z



,"L -y ,17 Y,7-YI! Y1,, Yj I

TjKk =Yz; Y1, -(Y,1 Y,,I +Y'I Y, I )Y ; +Y,' Y, Y11,

TY~jk =Yljk -(YiI yi S k +Yifr Y, z k +Yj, Yj ýj )Y-1
+(YY J +

Eqs. (C-21) through (C-29) are the desired first,

second and third derivatives of the Legendre Transform.

For example, let

y(x,, x2, x3 )=U(S, V, N)

Y( I,, x2, x3)=A(T, V, N)=U-TS
dy=dU=TdS-PdV+ dN

dt'=daA=-SdT-PdV+AdN

Derivatives are defined as before:

A,=b~)TN

In this example all derivatives are taken holding N

constant.

4/1 =AT=-S

S,=A- TV=-T•T
i -- TTT--- V

=1I = T (Ž)T -
;YI- =USVU=S I2T '

-3-3= = /)2T 3
I'" Y" =U555 S _-PT i v j _
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Y-Yj I

(C-26)

(C-27)

(C-28)

(C-29)

+Y,j , Y Y,, )y,72

+ I y f I k Y, Y -3

=-x I =-S



98

, - -TVV- ) T

-I 2- 2 -I

-I -,2 a -3

=Usv Uss-2USvUs5vUs +UsvUsssUss

S NT -2 ýbT S T (T + T 2 T (-bT
sVS _ S "9Ž V iS V

So te:
In this appendix only the first Legendre Transform

of y from x, space to 6, space was considered. Eq. (32)

defines (P), the p-h Legendre Transform of y from x,

through xp space to 8, through ,p space.

v P)(8, ... 4p, xp., ... x,) may be defined recursively

as the Legendre Transform of

T • (-i) (, ... p-,, xp ... xn) from x, space to Cp space,

since (t (o) is defined as y.

Eqs. (C-21) through (C-29) give first, second and

third derivatives of 'V in terms of derivatives of y.

They may also be used to give the derivatives of 4(P) in

terms of derivatives of W(P-' ) , if y is changed to

F (P ' , 2V is changed to P) and all subscript 1's are

changed to subscript p's. In other words, Eqs. (C-21)

through (C-29) are usable with any Legendre Transfcrm, as

long as the subscript "1" means a derivative with respect

to the transformed variable.
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APPENDIX D

CHEMICAL POTENTIAL DERIVATIVES

In this appendix a formula for A,b, a second

derivative of the Helmholtz Free Energy with respect to

mole numbers, is derived. Aab is the derivative of a

chemical potential with respect to a mole number at

constant temperature, total volume and other mole numbers.

The formula requires pressure to be given as a function of

temperature, total volume and mole numbers, and is

therefore usable with any pressure explicit

equation-of-state. These derivatives are used in finding

the limits of intrinsic stability, given such an equation

of state.

The derivation begins with the Maxwell Relation

=- IP (D-1)
V T,N 7 T, V, NI

Taking the derivative of each side with respect to Nb,

holding T, V and other NL constant

____D I)!2p1 (D-2)

Multiplying each side by dV and integrating from V=co to V

(with superscript *'s indicating that the variable is

evaluated in the limit of infinite total volume)

T,,N dV (D-3),NTV,
Tv.Y2N;ýb-Pb T9V * I N I-* b =-f,, T VI I'l L, a b
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All materials (at a given temperature) behave as ideal

gases if the specific volume is sufficiently large. That

is, if L' and T are held constant, then a substance will

approach ideal gas behavior in the limit of infinite total

volume. Since the fugacity of an ideal gas is equal to

the partial pressure, the chemical potential of an ideal

gas (using the definition of fugacity with N,(T) being a

function of temperature only) is

,~,=RTln(PNa)+ (T)=RTln(NaRT)+ ,(T) (D-4)

Taking the derivative of each side with respect to Nj

(holding T, V and all other Ný constant) and evaluating at

the limit of infinite total volume

=RT (D-5)

Repeating the last step but taking the derivatives with

respect to Nb instead of N, (valid only for afb)

S=0 (D-6)
T,V ,Ngb

Substituting Eq. (D-5) into Eq. (D-3)

rV
.ikz - AP dV+E T (D-7)

Substituting Eq. (D-6) into Eq. (D-3) (valid for a-b)

V
=- )P dV (D-8)

T,V_,Nl' b  6C0 -W -)V T,_VNý-ý

To simplify the notation of Eqs. (D-7) and (D-8),

subscripts on A are again defined as partial derivatives
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AV=(b) ; ATN= }
\TV_ IT,N \ /b T, V,N ¢

Eq. (D-7) simplifies to

V
A= a=jAv_ dV+RT (D-9)

Eq. (D-8) becomes (for a4b)

A•= AfA bdV (D-10)

Eqs. (D-7) and (D-8) (or (D-9) and (D-10)) may le used

to find the second derivative of the Helmholtz Free Energy

with respect to mole numbers, given pressure as a function

of temperature, total volume and mole numbers.
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APPENDIX E

REDLICH-KWONG DERIVATIVES

This appendix derives the derivatives of the

Redlich-Kwong equation-of-state used in evaluating the

stability and critical point conditions of a binary

mixture. The required derivatives in terms of A, the

Helmholtz Free Energy, are Avv, Av,, A , Avv Avv, Av

and A,,,.

Eq. (162) gives Av in terms of V, T, N_ and Nb. The

derivatives Avv, Av, Avv, Avv and Avaa are thus

evaluated directly:

,= NRT -Qd+ G (F-1)

A - RT -@ NRT +fb@4 1-(@j 1 +0@4 @4 (E-2),.1Tj AV,,7 _ J-e• V ~X ) v+( +1W)I

Avvv =- 2NRT +2Q@+ -2@t_ (E-3)

Avva= RT +2 @41 NRT - (i)1

+ Q_/_ (E-4)

Av,,a-[ W" NRT+2 RT] 1 -2 2 N RT +2@d) 1

-2 \) @d (E-5)
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Eq. (D-9) (from Appendix D) gives a formula for A,_ in

terms of A v. A, and A,,, are calculated using

Eqs. (D-9) and (L-5)

Ao= I2 ln( V )+[ i NRT+2 -- RT] 1 + 1 +NRT

-a[ ( @)+2 (@ )@ ] +W@ 2 @d +RT (E-6)

A 9')+ In(( )+[ (. \NRT+3 (2@ IRT] 1

+3[ 2 f NR•2T+ @I+ ET 1 +2 I] NRT

-2 d_ •  -RT (E-7)

d( and Cf are expressed in terms of mole numbers in

Eqs. (165) and (164). Using Eqs. (163) and. (164) to

evaluate the derivatives of @d and @r

t@) =2a. N a• +N,  a -b (N.a +Na)')  (E-8)

, 4 2ab 1a~.b Na +Na. +2b2 (N,,a +Na' ) (E-9)
ýN•I'T) NY b,~+Nb ko(N bb+Nbbb) (Nb,+Nkb

@= -6q® +12a• •  ,a  +N'a - 6 a(N af +N (E-0)
a~ (N•b) (7 bE bbr) (,b,+N•bý

f=b (E•l)j h ]ý
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Eqs. (E-1)

throu

through (E-7),

(E-12)

(E-13)

which use Eqs. (E-8)

through (E-13), are the desired formulas.
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APPENDIX F

NOMENCLATURE

LETTERS

A --Helmholtz Free Energy=U-TS

a --a'/T "

a' --constant in the Redlich-Kwong equation-of-state

a" --a /Tc

B --n by n determinant

EBiJ --B with the i"4 row and j PA column removed

Pjkm -- Bj with the k h row and m -4 column removed

E' -B with the second and m"1 columns interchanged

b --constant in the Redlich-Kwong equation-of-state

CkLj --Dk with all Ukm in the kt row changed to U , and

all U,~ in the ktA column changed to UMj

Cp --heat capacity at constant pressure=TIS)
\ ýTT P

CV --heat capacity at constant volume=T ()

Dk -k by k determinant with UL; the ith by j th term

h --, C kt xkx3

G -- Gibbs Free Energy=_U-TS+PV

-- -total enthalpy=U_+PV

LL -- the determinant -0 , +. "-
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Mt -LL with the jth term in the last row replaced with

the derivative of Lt with respect to xej

m --the. number of components in the system

S.1 --the total number of moles

n --the number of independent variables=m+2

P --pressure

Pc --critical pressure

PR --reduced pressure=P/Pc

I.E -Gas constant

--total entropy

T -temperature

Tc --critical temperature

TR --reduced temperature=T/Tc

U --total internal energy

V --total volume

V --specific volume

Vc --critical volume

V --VPc /RTc,

xa --(letter subscript) mole fraction of component a

xz --(number subscript) ith fundamental variable (either

S, V or Nj)

y --function of x, through x,=U

_ -Z Ckk 1X
jz
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OTHER SYMBOLS

. -- chemical potential

X(T) --purely temperature dependent part of the fugacity

W -acentric factor

7 --Legendre Transform of y from x, to £6 space=y-g,x,

( F) --pth Legendre Transform of y from x, through x, to CI

P
through 2p space=y-"C XL

L=i

8 --conjugate variable of xL= LyL

~ L0o -- [ ]Lo
[1] --the derivative operator [ -y~ •  •]

CE -- .427480

-b --. 086640

,_ -- @a./( C ,• )

J, -- Nal/b

f --Nb

OTHER SUBSCRIPTS

Subscripts on U, A, G and H, and numerical subscripts

on y, If and T(P) indicate partial derivatives with respect

to the corresponding variable. Otherwise, subscripts

indicate that the value is of the corresponding component.

US -derivative of U with respect to S

i, --number of moles of component a
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SUPEESCRIPTS

w -evaluated at the limit of infinite total volume

o -value around which an expansion is being made
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