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Abstract

This thesis considers the application of network coding and opportunistic routing to im-
prove the performance of multicast flows in wireless networks. Network coding allows
routers to randomly mix packets before forwarding them. This randomness ensures that
routers that hear the same transmission are unlikely to forward the same packets, which
permits routers to exploit wireless opportunism with minimal coordination. By mixing
packets, network coding is able to reduce the number of transmissions necessary to convey
packets to multiple receivers, which can lead to a large increase in throughput for multicast
traffic.

We discuss the design of a multicast enabled variant of MORE, a network coding based
protocol for file transfer in wireless mesh networks, and evaluate this extension, which we
call MORE-M, in a 20-node indoor wireless testbed. We compare MORE-M to a wire-
less multicast protocol that takes an approach similar to that of wired multicast by using
the ETX metric to build unicast routing trees. We also compare MORE-M to a multicast
enabled variant of the ExOR routing protocol. Experiments show that MORE-M's gains
increase with the number of destinations, and are 35-200% greater than that of ExOR.

We then consider the problem of video streaming in a wireless local area network for
applications such as video conferencing. A network coding based protocol that uses op-
portunistic receptions at clients is proposed. We evaluate the design in our testbed and
demonstrate that the use of network coding and, in particular, the use of wireless oppor-
tunism increase the quality of the video stream.

Thesis Supervisor: Dina Katabi
Title: Assistant Professor
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Chapter 1

Introduction

Wireless multicast is an important problem with applications to file distribution, delay tol-

erant networks, home entertainment, and video conferencing. As more wireless networks

are deployed on city-wide scales, and as mobile wireless devices continue to replace their

immobile wired counterparts, this importance will increase.

This thesis explores the use of network coding and opportunistic routing to improve the

throughput of wireless multicast. We focus on two types of applications for wireless net-

works. We first consider file sharing, for which we propose MORE-M. MORE-M extends

the recent opportunistic routing protocol, MORE [9], for multicast traffic. In MORE-M,

forwarders randomly mix packets before forwarding them. This randomness limits spuri-

ous transmissions among forwarders without the use of coordination. Like MORE, MORE-

M is able to exploit wireless opportunism without the cross-layer scheduling of the ExOR

protocol [7], which is of key importance, as such scheduling becomes even less feasible in

a multicast setting. MORE-M's use of network coding leads to additional throughput gains

in that, unlike other multicast routing protocols that use wireless opportunism, MORE-M

does not have to perform a retransmission for every distinct packet loss experienced by a

destination in the multicast group. We elaborate on these two points with detailed examples

below.

The second application we consider is video streaming in wireless local area networks,

as, for example, in wireless video conferencing. Video streaming differs from file sharing

in that it does not require complete reliability, it is more sensitive to delay, and packets are



not homogeneous, but rather are of varying importance and exhibit dependencies according

to the video compression scheme used and the type of compressed frame the packets belong

to. We design a protocol to address the needs of wireless video applications. In particular,

we consider packet inter-dependencies within the network coding based scheme we present,

we use application-layer feedback to deal with losses, and we exploit the broadcast nature

of the wireless medium to improve throughput.

We discuss the implementation of both designs and evaluate them in a wireless testbed.

Our experiments reveal the following findings.

" For file transfer, MORE-M's throughput gains increase with the number of destina-

tions. For 2-4 destinations, MORE-M's throughput is 35-200% higher than ExOR's. In

comparison to multicast using traditional routing, the gain can be as high as 3x.

" For video streaming, our protocol's use of opportunistic receptions at the clients in-

creases throughput roughly by a factor equal to the number of clients. Its use of network

coding increases throughput by as much as 10% among 2 clients experiencing packet

losses with relatively modest correlation in bandwidth-limited scenarios. With 6 clients

and more correlated losses, the gains are slight. We believe this small improvement is

due to the fact that our protocol does not use coding to achieve reliability, but further

analysis is needed.

In the next section we discuss the benefits of network coding most relevant to this work.

Chapter 2 presents a survey of related work. In Chapter 3 we give an overview of MORE.

Chapter 4 describes the design of MORE-M, the performance of which is evaluated in

Chapter 5. We discuss a network coding based solution for streaming video in wireless

local area networks in Chapter 6. An analysis of this protocol's performance is given in

Chapter 7. Chapter 8 concludes the thesis with a brief summary.

1.1 The Benefits of Network Coding

Network coding refers to the method of allowing routers inside the network to combine

packets before transmitting them and has two important benefits relevant to multicast rout-

ing. First, it decreases the number of transmissions necessary to route packets to multiple
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Figure 1-1-Network Coding Reduces Routing Overhead. Instead of retransmitting all four pack-

ets, the source can transmit two linear combinations, e.g., P1 +P2 +P3 +P4 and p1+ 2 p2 + 3 p3 + 4 p4.

These two coded packets allow all three destinations to retrieve the four original packets, saving the

source 2 transmissions.

receivers for both multi-hop and single-hop routing. Second, it reduces the need for coor-

dination among routers in multi-hop routing. More generally, network coding allows for

a natural and efficient means of loss recovery in the face of low-quality wireless links and

provides for economical path diversity, which is particularly important for multicast traffic

in the unstable and lossy environments characteristic of wireless networks.

1.1.1 Network Coding Reduces Routing Overhead

How can network coding increase the throughput of multicast flows in particular? Put in-

formally, statically packetizing the information to be conveyed to multiple receivers using a

lossy broadcast medium increases routing overhead. Nodes receive different sets of packets

and routers are forced to perform many transmissions in order to fill the distinct holes at the

receivers. Network coding reduces this overhead by allowing routers to combine packets

so that a single transmission can fill different holes at multiple receivers. We refer to this

decrease in routing overhead as coding gain and illustrate how it can increase throughput

in the following example.

In Fig. 1-1, the source multicasts 4 packets to three destinations. Wireless receptions at

different nodes have been observed to be independent in prior work [39, 36]. Assume that

each destination receives the packets indicated in the figure-i.e., the first destination re-



ceives pi and P2, the second destination receives P2 and p3, and the last destination receives

p3 and p4 . Note that each of the four packets is lost by some destination.

Without coding, the sender has to retransmit the union of all lost packets, i.e., the sender

needs to retransmit all four packets. In contrast, with network coding, it is sufficient to

transmit 2 randomly coded packets. For example, the sender may send p1 = PI +P2 +P3 +P4

and p' = Pi + 2 P2 + 3P3 + 4p 4 . Despite the fact that they lost different packets, all

three destinations can retrieve the four original packets using these two coded packets.

For example, the first destination, which has received '1, p' and pi, P2, retrieves all four

original packets by inverting the matrix of coefficients, and multiplying it with the packets

it received, as follows:

Pi 1 11 P/

P2 1 2 3 4 P2

P3 1 0 0 0 Pi

P4 0 1 0 0 P2

Thus, in this simple example, network coding has reduced the needed retransmissions

from 4 packets to 2, improving the overall throughput.

1.1.2 Network Coding does not Require Coordination

Consider the scenario in Fig. 1-2. Traditional routing predetermines the path before trans-

mission. It sends traffic along the path "src-+R--*dest", which has the highest delivery

probability. However, wireless is a broadcast medium. When a node transmits, there is

always a chance that a node closer than the chosen nexthop to the destination overhears

the packet. For example, assume the source sends 2 packets, pi and P2. The nexthop, R,

receives both, and the destination happens to overhear pl. It would be a waste to have node

R forward pi again to the destination. This observation has been noted in [7] and used to

develop ExOR, an opportunistic routing protocol for wireless mesh networks.

ExOR, however, requires node coordination, which is hard to achieve in a large net-

work. Consider again the example in the previous paragraph. R should forward only
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Figure 1-2-Network Coding does not Require Coordination. The source sends 2 packets. The

destination overhears pi, while R receives both. R needs to forward just one packet but, without

node coordination, it may forward pi, which is already known to the destination. With network

coding, however, R does not need to know which packet the destination misses. R just sends the

sum of the 2 packets p, + P2. This coded packet allows the destination to retrieve the packet it

misses independently of its identity. Once the destination receives the whole transfer (p1 and p2), it
acks the transfer causing R to stop transmitting.

packet P2 because the first packet has already been received by the destination; but, with-

out consulting with the destination, R has no way of knowing which packet to transmit.

The problem becomes harder in larger networks, where many nodes hear a transmitted

packet. Opportunistic routing allows these nodes to participate in forwarding the heard

packets. Without coordination, however, multiple nodes may unnecessarily forward the

same packets, creating spurious transmissions. To deal with this issue, ExOR imposes a

special scheduler on top of 802.11. The scheduler goes in rounds and reserves the medium

for a single forwarder at any one time. The rest of the nodes listen to learn the packets over-

heard by each node. Due to this strict schedule, nodes farther away from the destination

(which could potentially have transmitted at the same time as nodes close to the destination

due to spatial reuse), cannot, since they have to wait for the nodes close to the destination

to finish transmitting. Hence the scheduler has the side effect of preventing a flow from

exploiting spatial reuse.

Network coding offers an elegant solution to the above problem. In our example, the

destination has overheard one of the transmitted packets, pi, but node R is unaware of this

fortunate reception. With network coding, node R naturally forwards linear combinations

of the received packets. For example, R can send the sum P1 +P2. The destination retrieves

the packet P2 it misses by subtracting from the sum and acks the whole transfer. Thus, R



need not know which packet the destination has overheard.

Indeed, the above works if R sends any random linear combination of the two packets

instead of the sum. Thus, one can generalize the above approach. The source broadcasts its

packets. Routers create random linear combinations of the packets they hear (i.e., c1p1 +

. . .+ cp, where ci is a random coefficient). The destination sends an ack along the reverse

path once it receives the whole transfer. This approach does not require node coordination

and preserves spatial reuse.



Chapter 2

Related Work

This chapter provides a brief survey of work in wireless multicast, considers practical net-

work coding in the context of wireless networking, and concludes with a discussion of

video streaming.

2.1 Wireless Multicast

Considerable effort has been put into designing routing protocols for wireless multicast

in MANETs [41, 37, 29], the On Demand Multicast Routing Protocol (ODMRP) being

perhaps the most notable example. This work was motivated by the emergence of ad hoc

networks for applications relevant to the military and first responders in disaster settings.

Such protocols are most concerned with maintaining path availability in the face of random

node movement and focus on reducing the resources required for routing packets. They

use minimum-hop-count as the routing metric in an effort to take advantage of the wireless

multicast advantage (WMA) [50]. WMA refers to the fact that in a wireless network where

nodes use omnidirectional antennas, the wireless medium is shared and a single transmis-

sion can reach more than one party. The design of a sophisticated routing metric able to

quantify potential WMA usage along a specific route remains open. WMA is strongly re-

lated to the notion of opportunistic routing [7], which refers to the objective of employing

fortuitous receptions at routers that overhear local transmissions to improve routing effi-

ciency, rather than depending on a static predetermined route. A substantial amount of



recent work in wireless networking is built around these two fundamental concepts.

Research in multicast for wireless mesh networks is more recent, as the technology fu-

eling it is younger. This research is concerned with designing routing protocols to decrease

delay, decrease the total number of transmissions, and/or increase throughput. WMNs are

static and node failure is not a concern, so performance is of great importance. For ex-

ample, some recent work has considered the important practical question of how to define

high throughput routing metrics for protocols that use link layer broadcast instead of 802.11

DCF with ARQ in order to leverage WMA more effectively [40], but has limited itself to

adapting MANET multicast routing protocols to the WMN setting. On the other hand,

much work in designing these protocols is theoretical, for example [42] is concerned with

constructing multicast trees that require very low bandwidth consumption. Other work in

the field has been driven by more application-specific goals in mind (e.g. resiliency [51]).

In Chapter 4 we present a multicast enabled variant of MORE [9], called MORE-M.

MORE-M is designed to be a practical, general-purpose multicast routing protocol for

WMNs that naturally utilizes WMA and opportunistic routing without incurring some of

the negative side effects that previously proposed protocols have. MORE-M preserves the

architectural abstraction between the routing and MAC layers and is able to exploit spatial

reuse, unlike the ExOR protocol [7], for example.

2.2 Network Coding

Work on network coding began with the pioneering paper by Ahlswede et al. that estab-

lishes the value of coding in the routers and provides theoretical bounds on the capacity of

such networks [3]. The combination of [32, 27, 19] shows that, for multicast traffic, lin-

ear codes achieve the maximum capacity bounds, and coding and decoding can be done in

polynomial time. Additionally, Ho et al. show that the above is true even when the routers

pick random coefficients [18]. Researchers have extended the above results to a variety of

areas including content distribution [16], secrecy [8, 20], and distributed storage [21].

Of particular relevance to this work is recent research on wireless network coding [34,

24, 25, 9]. This work can be divided into three classes. The first is theoretical; it extends



known information theory bounds from wired to wireless networks [34, 20]. The second is

simulation-based; it designs and evaluates network coding protocols using simulations [38,

49]. The third is implementation-based; it uses implementation and testbed experiments to

demonstrate achievable throughput gains for sensors and mesh networks [25, 22, 9].

In this thesis we design, implement, and evaluate network coding based wireless mul-

ticast routing protocols in order to understand how network coding can improve multicast

throughput in practice. Our work and [9], upon which it is based, is distinct from prior

research in network coding in that it is the first implementation-based work to consider

wireless multicast.

2.3 Video Streaming

Multicasting video in a WLAN has become important to applications such as video con-

ferencing and streaming multimedia. Here we provide some background material in video

streaming that is relevant to the thesis and discuss related work.

2.3.1 Background

Video Compression

Compression is very important to video transport. An HDTV video signal, for example,

would require 1.3 gbps of bandwidth in uncompressed form, but typical HDTV channel

bandwidth is only 20 mbps [4]. Thus the signal must be compressed considerably without

sacrificing perceived quality.

Under the MPEG-4 standard, video compression is accomplished via intraframe and

interframe compression. Intraframe compression uses I frames, which compress the im-

age of the original frame independent of preceding or succeeding frames in the stream by

exploiting spatial redundancy within the pixels of the original frame. Interframe compres-

sion, on the other hand, exploits temporal redundancy in the video stream by using P and B

frames. A P frame uses intraframe compression and also references previous I or P frames

in the encoded video frame sequence. A B frame references both preceding and succeeding



I or P frames and does not use intraframe compression. B frames are never referenced by

other frames. Complete decoding of a P or B frame requires that the frames on which they

depend be available. Since I frames are coded independently of other frames, they tend to

be much larger than P frames, though this depends on the nature of the video encoded - it is

true for the types of videos seen in the applications we would like to support, such as video

conferencing. Compressed video is grouped into a series of group of pictures (GOPs). Each

GOP begins with an I frame, followed by successive P frames and optionally B frames. The

size of the GOP of a video encoding is a fixed parameter, as is the number of B frames used

in each GOP. Thus the number of I, P and B frames of all GOPs is fixed and determined by

the encoding parameters.

Video Streaming

In this work, we use an MPEG-4 part 2 standard-compliant [1] codec to encode YUV

formatted video files. The MPEG-4 standard uses object-based compression. Individual

objects within a scene are tracked separately and compressed together to create an MPEG4

file. Separate objects in a scene are separately encoded and decoded. This allows iden-

tification and selective decoding of particular objects of interest and hence provides for

interactivity and manipulation of content by allowing developers to control objects inde-

pendently in a scene and makes MPEG-4 a good fit for multimedia compression and low

bitrate transmission. An MPEG4 encoded file is converted into an MP4 container file with

a hint track, resulting in an ISO compliant MPEG-4 stream. Hint tracks describe how the

encoded frames should be packetized to support a streaming server or RTP and the con-

verter takes parameters, such as the network MTU, to perform this conversion according

to the network constraints (relying on IP fragmentation, for example, would lead to poor

streaming performance). See [12] for a more complete discussion of this process.

The Challenges of Video Streaming

In this section, following the discussion in [4], we consider three main challenges that a

transport protocol for video streaming faces. These challenges are not specific to wireless,

but do become more difficult to address in a wireless environment. We also discuss the



means used for responding to these challenges.

" Bandwidth Constraints:

Bandwidth is limited and variable in a wireless network, making some form of rate

control necessary. The sender can provide for rate control by estimating the available

bandwidth via probes or modeling and adapting the send rate accordingly. For example,

[10] uses multiple TCP friendly rate control connections between the client and server

in order to more fully utilize the wireless bandwidth while providing end-to-end rate

control. Exploiting the broadcast nature of the medium increases the informational

capacity of the network, and is also important in addressing this challenge.

" Delay Jitter:

Since the links in a wireless network generally experience a high rate of loss, the end-

to-end packet delay is variable. However, packets in a video stream have a fixed play-

back time indicating when they must be decoded for the corresponding frame to be

displayed. A late packet is therefore useless, and, because of the nature of the encod-

ing, can propagate errors to other frames, even if those frames are received by their

deadline. Additionally, although frames must be received at a constant rate, they are

generally not all the same size, for example, I frames tend to be much large than P

frames. This burstiness introduces an additional variability to end-to-end packet delay.

Clients use a playback buffer to address this problem. Frames are collected until the

buffer is full, at which point playback begins. The buffer effectively adds an offset to

the playback time of each frame. The trade off in designing a buffering scheme is to

balance the desire to limit the consequences of packet lateness with the desire to avoid

an overly long initial buffering delay, and is explored in [45]. One technique used to re-

duce initial buffering delay is adaptive media playout [47], which involves decreasing

the playback rate if the playback buffer has less frames than expected. The reduction in

playback rate is generally small enough so as to be unnoticeable.

" Packet Loss:

Besides creating variable delay, poor quality wireless links result in considerable packet

loss. To deal with this, one can use FEC, link layer retransmissions, or source coding.

FEC has the advantage of a low delay if matched well to the channel, but will re-



quire high overhead for a highly variable channel with bursty losses. Retransmission

schemes can be designed to optimize a particular metric or application-specific goal.

For example, a RaDiO [11] streaming system selects the next packet to retransmit based

on expected distortion reduction (assuming reception), the packet's deadline, channel

statistics, and feedback information. The advantage of using a retransmission-based

scheme is that it is adaptable and tunable, but the disadvantage is the necessary RTT

latency. Lastly, source coding can be used to conceal errors in the decoding process or

in the use of error resilient video coding. See [4] for a discussion of those methods.

2.3.2 Related Work on Wireless Video Streaming

Delivering content in a wireless network with strict timing constraints is a difficult prob-

lem. Very low and variable bandwidth, high loss rates, contention among senders, packet

collisions, background interference, and multipath fading make it very difficult to provide

any performance guarantees and aggravate the problems discussed above. In this section

we analyze the current techniques used for wireless video streaming.

[35] was the first to address the particular case of streaming over WLANs. They pro-

posed a simple hybrid ARQ algorithm that combined FEC and ARQ by having the client

send an acknowledgment after decoding a batch of k packets to which FEC had been ap-

plied. Other work has looked closely into particular aspects of video streaming in wireless.

For example, [12] shows that the choice of encoding parameters is very important in a

wireless setting. In particular, they show that halving the hint track MTU values increases

the medium access requirements by 20% on account of the increase in header overhead and

the increase in the number of packets to transmit. They also show that there is little benefit

to decreasing I frame frequency, as this leads to a marginal bandwidth gain at the cost of

an encoding that is much more sensitive to packet loss.

The general transport mechanisms for wireless video streaming that have been devel-

oped fall into two categories: application layer based and cross layer based. On the ap-

plication layer side, packet scheduling is considered in [23]. They show that an earliest

deadline first scheduling policy performs worse than a policy that takes into account the



relative importance of a frame within its GOP. Their frame-based scheduling approach as-

signs a delay threshold to each frame which gives priority to frames that occur earlier in

a GOP, since later frames in a GOP have a coding dependency on those frames. [11],

mentioned above, describes a rate-distortion (R-D) optimized streaming system where a

Lagrangian cost function is minimized by dividing time and bandwidth resources among

packets. [46] proposes a simple frame dropping policy of discarding B frames when the

network conditions become challenged, since B frames are the least important in a GOP, as

no frame ever depends on them for its own decoding. [30] shows that adaptive sizing of

the MAC layer frame in the presence of varying channel noise has a considerable effect on

throughput and can be used to improve energy efficiency for the application's desired level

of throughput. Path diversity is discussed in [48], where the focus is on the use of multiple

description coding (MDC) and layered coding (LC). MDC is shown to be more effective

when the application has specific delay constraints and long RTTs, while LC works well

when a retransmission policy can be used along one of the paths.

Other solutions propose cross layer design (CLD) architectures. A timestamp-based

content-aware adaptive retry (CAR) mechanism is proposed in [33]. A CAR-aided MAC

judges whether to transmit a packet based on its retransmission deadline. This deadline

is dependent on the packets temporal relationship and encoding dependencies with respect

to other video packets in its GOP. CAR improves upon the design from [31] in that the

retransmission decision is made after the completion of the most recent transmission, and

thus in consideration of the playback schedule of the actual retransmission, which avoids

late arrivals. A general CLD framework is outlined in [44]. They propose a layered

CLD architecture and identify the parameters to be passed to the different network layers.

Adaptive link layer techniques that adjust packet size, symbol rate, and constellation size

according to channel conditions are used to improve throughput. At the MAC and net-

work layers, the joint allocation of capacity optimizes throughput, while scheduling at the

transport layer protects the video stream from packet losses while avoiding congestion.

The solution proposed in this thesis is at the application layer and is similar to many

other application layer strategies in that it takes into account a frames relative impor-

tance within its GOP. The contribution of our solution is that it is the first network coding



implementation-based approach to the problem. Additionally, we evaluate the design, and

analyze the performance seen in our implementation.



Chapter 3

An Overview of the MORE Architecture

This chapter gives and overview of MORE, an opportunistic routing protocol that exploits

network coding. In Chapter 4, we extend MORE to support multicast.

MORE is a routing protocol for stationary wireless meshes, such as Roofnet [2] and

community wireless networks [43, 5]. Nodes in these networks are PCs with ample CPU

and memory.

MORE sits below IP and above the 802.11 MAC. It provides reliable file transfer. It is

particularly suitable for delivering files of medium to large size (i.e., 8 or more packets).

For shorter files or control packets, standard best path routing (e.g., Srcr [6]) can be used.

Table 3.1 defines the terms we use throughout this thesis.

Term Definition
Native Packet Uncoded packet
Coded Packet Random linear combination of native or coded packets
Code Vector of a Coded Packet The vector of coefficients that describes how to derive the

coded packet from the native packets. For a coded packet
p' = E cipi, where pi's are the native packets, the code
vector is d= (ci, c2, .. ., CK).

Innovative Packet A packet is innovative to a node if it is linearly independent
from its previously received packets.

Closer to destination Node X is closer than node Y to the destination, if the best
path from X to the destination has a lower ETX metric than
that from Y.

Table 3.1-Definitions



3.1 Source

The source breaks up the file into batches of K packets, where K may vary from one batch

to another. These K uncoded packets are called native packets. When the 802.11 MAC

is ready to send, the source creates a random linear combination of the K native packets

in the current batch and broadcasts the coded packet. In MORE, data packets are always

coded. A coded packet is p' = E cipi, where the ci's are random coefficients picked by the

node, and the pi's are native packets from the same batch. We call C= (ci, ... , ci, ... , cK)

the packet's code vector. Thus, the code vector describes how to generate the coded packet

from the native packets.

The sender attaches a MORE header to each data packet. The header reports the

packet's code vector (which will be used in decoding), the batch ID, the source and desti-

nation IP addresses, and the list of nodes that could participate in forwarding the packet.

ETX [13] is used to compute the forwarder list. Specifically, nodes periodically ping each

other and estimate the delivery probability on each link. They use these probabilities to

compute the ETX distance to the destination, which is the expected number of transmis-

sions to deliver a packet from each node to the destination. The sender includes in the

forwarder list nodes that are closer (in ETX metric) to the destination than itself, ordered

according to their proximity to the destination.

The sender keeps transmitting coded packets from the current batch until the batch is

acked by the destination, at which time, the sender proceeds to the next batch.

3.2 Forwarders

Nodes listen to all transmissions. When a node hears a packet, it checks whether it is

in the packet's forwarder list. If so, the node checks whether the packet contains new

information, in which case it is called an innovative packet. Technically speaking, a packet

is innovative if it is linearly independent from the packets the node has previously received

from this batch. Checking for independence can be done using Gaussian elimination. The

node ignores non-innovative packets, and stores the innovative packets it receives from the



current batch.

If the node is in the forwarder list, the arrival of this new packet triggers the node

to broadcast a coded packet. To do so the node creates a random linear combination of

the coded packets it has heard from the same batch and broadcasts it. Note that a linear

combination of coded packets is also a linear combination of the corresponding native

packets. In particular, assume that the forwarder has heard coded packets of the form

p = _' cjipi, where pi is a native packet. It linearly combines these coded packets to

create more coded packets as follows: p" = E rjp', where rj's are random numbers.

The resulting coded packet p" can be expressed in terms of the native packets as follows

p" = Ej (rj E> cjipi) = E> (E rjcji)pi; thus, it is a linear combination of the native packets

themselves.

3.3 Destination

For each packet it receives, the destination checks whether the packet is innovative, i.e.,

it is linearly independent from previously received packets. The destination discards non-

innovative packets because they do not contain new information. Once the destination

receives K innovative packets, it decodes the whole batch (i.e., it obtains the native packets)

using simple matrix inversion:

P1 c11 ... cK P J

PK CKI ... CKK PK

where, pi is a native packet, and p' is a coded packet whose code vector is - = c21 , ... , CiK.

As soon as the destination decodes the batch, it sends an acknowledgment to the source to

allow it to move to the next batch. Acks are sent using best path routing, which is possible

because MORE uses standard 802.11 and co-exists with shortest path routing. Acks are

also given priority over data packets at every node.



Chapter 4

MORE-M: MORE for Multicast Traffic

4.1 The Design of MORE-M

The basic design of MORE-M is very similar to that of MORE. The source transmits ran-

dom linear combinations from a batch of K native packets and the forwarders transmit

random linear combinations of the innovative packets they receive. Traffic is source-driven

and forwarder transmissions are triggered by the reception of packets from upstream. A

batch is completed when all destinations in the multicast group have delivered acks to the

source.

4.1.1 Selecting the Forwarders for a Multicast Session

Opportunistic routing does not use a fixed path to route packets. A set of forwarders and

an ordering among the forwarders is all that is required; the actual path of the flow varies

dynamically with the underlying conditions of the network. In MORE, the source con-

siders any node in the network that has a lower ETX to the destination than itself as a

potential forwarder for unicast traffic. ETX gives a natural ordering among the forwarders

that MORE inherits in order to determine which forwarder is upstream of another. MORE

uses a heuristic to determine the expected number of transmissions that forwarders will

need to make for every source transmission and then prunes forwarders from the forwarder

set if they make less than 10% of the total expected number of transmissions required to



route a batch of K packets to the destination. This pruning is done in order to limit the

inefficiencies that would result from excessive contention.

MORE-M builds upon MORE's approach to determine the forwarder set. For each

destination in the multicast group, MORE-M uses MORE's technique to obtain a forwarder

set for the unicast flow from the source to that destination. The set of forwarders used by

MORE-M for multicast traffic is the union of all forwarders obtained via this process.

Forwarders are totally ordered using the ETX from the source to each forwarder. If the

source has a lower ETX to forwarder i than to forwarder j, then forwarder i is considered

upstream of forwarder j.

4.1.2 MORE-M's Transmission Strategy

Any routing protocol has to address two fundamental questions after determining a group

of forwarders: When should forwarders transmit packets, and how many packets should

be transmitted? The hop-by-hop retransmission method used by traditional routing cannot

be applied in the context of MORE. This is because in opportunistic routing a next hop

is not chosen until after transmission, and thus can vary across transmissions. MORE ad-

dresses these questions in two steps. First, MORE estimates the number of transmissions

a forwarder must make for each source transmission in order to guarantee that a forwarder

closer to the destination than the transmitting forwarder will receive the packet being for-

warded. Second MORE legislates that forwarders transmit packets in proportion to this

number according to a reception-driven transmission policy.

Let N be the number of nodes in the network. For any two nodes, i and j, let i < 3

denote that i has a smaller ETX than j. Let pij denote the loss probability in sending a

packet from i to j. Let zi be the expected number of transmissions that forwarder i must

make to route one packet from the source, s, to the destination, d. We assume that wireless

receptions at different nodes are independent, an assumption that is supported by prior

measurements [39, 36].

Let us calculate the number of packets that a forwarder j must forward to deliver one

packet from source, s to destination, d, or, in other words, the load, Lj, on forwarder j. The



expected number of packets that j receives from nodes with higher ETX is EZ2>3 zi(1-pij).

For each packet j receives, j should forward it only if no node with lower ETX metric hears

the packet. This happens with probability F1k,< Pik. Thus, in expectation, the number of

packets that j must forward, denoted by Lj, is:

Lj = Z(zi(1 - pij) 11pik). (4.1)
i>j k<j

Note that L, = 1 because the source generates the packet.

Now, consider the expected number of transmissions a node j must make. j should

transmit each packet until a node with lower ETX has received it. Thus, the number of

transmissions that j makes for each packet it forwards is a geometric random variable with

success probability (1 - Hk<j Pik). This is the probability that some node with ETX lower

than j receives the packet. Knowing the number of packets that j has to forward from

Eq. 4.1, the expected number of transmissions that j must make is:

z-= ( H 3  (4.2)

From this we know the number of transmissions, zi, that forwarder i should make for

every packet sent by the source. Intuitively, we think of zi as the amount of credit

forwarder i is given for each source transmission. MORE legislates a reception-driven

transmission policy for the forwarders, as most forwarders will not be able to detect when

a packet was transmitted by the source. Define the TX-credi t of a node to be the number

of transmissions that a node should make for every packet it receives from upstream. For

each packet sent from source to destination, node i receives EZ~i(1 - pji)zj, where zj is

the number of transmissions made by node j and (1 - pji) is the delivery probability from

j to i. Thus, the TX-credit of node i is:

z-
TXcrediti = . (4.3)

EZ>i z3 (1 - pji)

In MORE-M forwarder i is assigned the maximum zi credit that it would receive in any

of the unicast flows to a destination in the multicast group. TX-crediti is then computed



by considering all upstream nodes in the multicast forwarder set using Eq. 4.3. Assigning

the maximum credit helps to ensure that the forwarder will have enough credit to forward

the load it receives from upstream to each destination that it is a forwarder for. Forwarder i

keeps a credit counter that is incremented by TX-crediti when a packet is received

from upstream. When forwarder i has the opportunity to transmit a packet, it checks the

credit counter. If it is positive, the forwarder transmits the packet and decrements the credit

counter by 1. If it is not positive, the forwarder does nothing.

4.1.3 Batch Completion

Once a destination in the multicast group is able to decode the current batch, an ack is sent

to the source. An ack is given priority over data and local retransmissions are used at each

hop to reliably deliver an ack along the minimum ETX path from the destination to the

source. The source does not move onto the next batch until all destinations in the multicast

group have acked the current batch.

As destinations ack the batch, the forwarders that were included in the forwarder set

become superfluous and will generate spurious transmissions as they receive packets for

destinations in the multicast group for which they are not forwarders. These spurious

transmissions will generate even more spurious transmissions. In order to address this

problem, whenever a destination acknowledges the current batch, the source recomputes

the credit, zi, for each forwarder i, as the maximum credit taken over only those hypothet-

ical unicast flows to the destinations that have not yet acked the batch. For each forwarder

i, TX-credit is then computed over the active upstream forwarders in the multicast group

forwarder set. The source places this updated TX-crediti assignment in the header of

packets transmitted thereafter. The forwarders that receive these packets update their state

accordingly.
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4.2 Implementation Details

4.2.1 Packet Header

MORE-M inserts a variable length header in each packet, as shown in Fig. 4-1. The type

field distinguishes data packets from acks. The source IP address, the IP address of each

destination, flow ID, batch ID, and batch size follow. For ack packets, an ack bitmap is

included in the header which indicates which of the destinations has acked the batch. Ack

headers also contain the list of forwarders to use ordered according to the minimum ETX

path to the source. For data packets, the code vector follows and identifies the coefficients

that generate the coded packet from the native packets in the batch. Data headers also

contain the list of forwarder IP addresses ordered according to their proximity to the source.

For each forwarder i, the data header contains TX-creditj as well.

Packet Type

Source IP

Number of Destinations

Destination IP

Flow ID

Batch ID Batch Size
MAC Header

MORE-M Header

Encoded Data



4.2.2 Flow State

Each MORE-M node maintains per-flow state created on reception of the first packet from

a flow that has the node's ID in the list of forwarders. This soft state is timed out after 5

minutes of no activity. The state includes:

" The batch buf f er stores the received innovative packets. Note that the number of

innovative packets in a batch is bounded by the batch size K.

" The current batch variable identifies the most recent batch from the flow.

" The forwarder list contains the list of forwarders and their corresponding TX-credits,

ordered according to their proximity to the source.

" The credit counter tracks the transmission credit. For each packet arrival from

a node with a higher ETX, the forwarder increments the counter by its corresponding

TX-credit, and decrements it by 1 for each transmission. A forwarder transmits only

when the counter is positive.

4.2.3 MORE-M Operation in Detail

Figure 4-2 shows the MORE-M operation in detail. A forwarder prepares a pre-coded

packet for flows that have positive credit counters in order to avoid adding unnecessary

delay to transmissions. The forwarder chooses among flows in round-robin order. A new

packet is pre-coded for the currently selected flow and stored for future use immediately

after transmission and the flow's credit counter is decremented by 1.

The handling of receptions depends on whether the node is the source, a forwarder,

or a destination. The node first determines the type of the packet. The handling of acks

is described below. The source discards data packet receptions. A forwarder checks the

batch ID of the data packet. If it is higher than the forwarder's current batch, the forwarder

updates its current batch and flushes packets from older batches from the batch buffer. If

the packet was transmitted from upstream, the forwarder checks first whether its TX-credit

must be updated and then increments the flows credit counter by its updated TX-credit.

Innovative packets are added to the batch buffer while non-innovative packets are discarded.

The forwarder's pre-coded packet for this flow is updated by adding the recent packet
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multiplied by a random coefficient. A destination checks if the reception completes the

batch, and queues an ack if so.

As noted above, ack packets are routed to the source along the shortest ETX path.

Acks are prioritized over data packets and transferred reliably using link layer retransmis-

sions. Source routing is used by the destination and the list of ack forwarders is placed in

the MORE-M header so that the multicast forwarders know whether to forwarder the ack

onward. All forwarders in the multicast forwarder set that overhear an ack update their

current batch variable and flush packets from the acked batch from their batch buffer. Once

the source receives an ack, it checks to see if all destinations have acked the batch. If so, a

new batch is pulled. Otherwise, the source recomputes the TX-credits to take into account

only the active destinations, as describe above, and uses the updated TX-credits in future

transmissions.
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Chapter 5

Evaluation

In this chapter we conduct a performance evaluation of MORE-M.

5.1 Testbed

(a) Characteristics: We have a 20-node wireless testbed that spans three floors in our

building connected via open lounges. The nodes of the testbed are distributed in several

offices, passages, and lounges. Fig. 5-1 shows the locations of the nodes on one of the

floors. Paths between nodes are 1-5 hops in length, and the loss rates of links on these

paths vary between 0 and 60%, and averages to 27%.

(b) Hardware: Each node in the testbed is a PC equipped with a NETGEAR WAG311

wireless card attached to an omni-directional antenna. They transmit at a power level of 18

dBm, and operate in the 802.11 ad hoc mode, with RTS/CTS disabled.

(c) Software: Nodes in the testbed run Linux, the Click toolkit [28] and the Roofnet soft-

ware package [2]. Our implementation runs as a user space daemon on Linux. It sends and

receives raw 802.11 frames from the wireless device using a libpcap-like interface.

5.2 Performance of MORE-M

We use measurements from a 20-node wireless testbed to evaluate MORE-M and compare

it with a variant of ExOR extended for multicast traffic. We also compare MORE-M to



Figure 5-1-One Floor of our Testbed. Nodes' location on one floor of our 3-floor testbed.

a traditional best path routing protocol that adopts the same approach as wired multicast

to form an MST among nodes in the multicast group using the ETX metric. We note the

following results:

" MORE-M's throughput gain increases with the number of destinations. For 2-4 des-

tinations, MORE-M's throughput is 35-200% larger than ExOR's. In comparison to

traditional multicast routing, the gain can be as high as 3x.

" In terms of overhead, MORE-M stores the current batch from each flow. Our imple-

mentation supports up to 44 mbps on low-end machines with Celeron 800MHz CPU

and 128 kilobytes of cache. Thus, the overhead is reasonable for the environment it is

designed for, namely stationary wireless meshes, such as Roofnet [2] and community

wireless networks [43, 5]. See [9] for a discussion of this result.

5.2.1 Compared Protocols

We compare the following three protocols:

* MORE-M as described in Chapter 4.

" ExOR [7], the current opportunistic routing protocol. ExOR does not have multicast

extensions. Thus, we must define how it deals with multicast. The extension must

exploit WMA and opportunistic receptions. The protocol works by determining the

ExOR forwarders for each destination. The per-destination forwarders use the ExOR

protocol to access the medium and coordinate their transmissions. In contrast to unicast

_-: - .1 _ "Zl



ExOR, if the forwarders toward destination X opportunistically hears a packet by a

forwarder in the forwarder list of destination Y, it exploits that opportunistic reception.

Said differently, we allow opportunistic receptions across the forwarders of various

destinations.

* Srcr [6] which is a state-of-the-art best path routing protocol for wireless mesh net-

works. It uses Dijkstra's shortest path algorithm where link weights are assigned based

on the ETX metric [13] and uses the wired multicast approach to form an MST among

nodes in the multicast group.

5.2.2 Setup

In each experiment, we run Srcr, MORE-M, and ExOR in sequence between the same

source destination pairs. Each run transfers a 5 megabyte file. We leverage the ETX im-

plementation provided with the Roofnet Software to measure link delivery probabilities.

Before running an experiment, we run the ETX measurement module for 10 minutes to

compute pair-wise delivery probabilities and the corresponding ETX metric. These mea-

surements are then fed to all three protocols, Srcr, MORE-M, and ExOR, and used for route

selection.

Unless stated otherwise, the batch size for both MORE-M and ExOR is set to K = 32

packets. The packet size for all three protocols is 1500 bytes. The queue size at Srcr

routers is 50 packets. In contrast, MORE-M and ExOR do not use queues; they buffer

active batches. The experiments are performed over 802.1 lb with a bit-rate of 5.5 mbps.

5.2.3 Results

Our results show that MORE-M's throughput is significantly higher than both ExOR and

Srcr. In particular, we experiment with the simple topology in Fig. 5-2, where the source

multicasts a file to a varying number of destinations. Fig. 5-3 shows the average through-

put as a function of the number of destinations. The average is computed over 40 dif-

ferent instantiations of the topology in Fig 5-2, using nodes in our testbed. As expected,

the per-destination average throughput decreases with increased number of destinations.
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Interestingly however, the figure shows that MORE-M's throughput gain increases with in-

creased number of destinations. MORE-M has 35-200% throughput gain over ExOR and

100-300% gain over Srcr.

Next, we run multicast over random topologies and multihop paths. We pick a source

and 3 destinations randomly from the nodes in the testbed. We make the source multicast a

file to the three destinations, using MORE-M, ExOR, and Srcr. We repeat the experiment

for 40 different instantiations of the nodes, and plot the CDFs of the throughput. Fig. 5-4

confirms our prior results showing significant gain for MORE-M over both ExOR and Srcr.

In this figure however the difference between MORE-M and ExOR is less pronounced than

in Fig. 5-3. This is because the CDF uses random topologies with all nodes in the testbed
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potentially acting as forwarders. This increases the potential for opportunistic receptions

and thus makes the relative gain from network coding look less apparent.
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Chapter 6

Streaming Video in a WLAN

In this chapter we design an opportunistic routing protocol that is suitable for video stream-

ing over a WLAN. Video streaming differs from file transfer in that it does not require

complete reliability, it is more sensitive to delay, and packets are not homogeneous. Our

protocol addresses these differences as well as the particular challenges described in Chap-

ter 2.

6.1 Design Overview

The server broadcasts packets in the stream to the clients. The clients play the stream in

synch one playback buffering interval behind the stream at the server. The playback buffer

itself is equal to the time required to play nx GOPs, where n > 2 and x > 1, and a

GOP consists of one I frame followed by 4 or more P frames. The clients send periodic

nacks reliably using link layer retransmissions every x GOPs (see fig. 6-1). These nacks

indicate which packets in the (n - 1)x GOPs that have most recently been streamed by the

server must be retransmitted. The server performs retransmissions when spare bandwidth

is available.

The server retransmits packets in order of earliest deadline. Within a GOP, the server

uses random linear codes to retransmit the lost I frame packets. Rather than nacking par-

ticular I frame losses, the clients simply nack the first k packets of an I frame, where k is

the number of innovative packets necessary to achieve full rank for decoding. In order to



retransmit the lost I frame packets, the server determines the maximum number of innova-

tive packets needed by a client for decoding and broadcasts that number of random linear

combinations of I frame packets. Random linear codes are used for I frame packet retrans-

missions in order to reduce the number of transmissions required to fill the holes at the

clients. Recall from Chapter 1 that we called this decrease in overhead coding gain. Since

losses are experimentally observed to be independent [39, 36], clients will lose different I

frame packets. The size of the union of losses among clients will be larger than the number

of innovative packets required by any particular client. Since I frames span many packets,

the use of random linear codes leads to a more efficient use of bandwidth.

After broadcasting coded I frame packets, the server retransmits lost P frame packets

in order of earliest deadline. Packets coded with random linear codes generally cannot be

decoded until full rank is attained among the code vectors of the packets. For the encoded

videos of the applications we'd like to support there are not enough packets in a P frame to

consider applying linear codes to just the packets of the frame, while coding over multiple

P frames is not ideal because, if full rank is not achieved, one would be unable to decode

multiple P frames. For these reasons, random linear codes are not used for retransmitting

packets belonging to P frames. However, to improve efficiency, the server uses a greedy

coding algorithm to decrease the total number of retransmissions of P frame packets. The

server considers the next P frame packet pi to retransmit and determines which clients have

not nacked pi, and then searches for the packet pj of a P frame with earliest deadline that

was nacked by at least one of those clients, but not by the clients that nacked pi. If such

a packet is found, it is XORed with pi. Note that pj can be taken from among (n - 1)x

GOPs if the server has streamed all packets in the buffering interval. The server repeats this

coding process until no such packet can be found or until the coded packet pi consists of

packets such that every client has nacked exactly one of them and every client can decode

the transmission based on its current state. See Algorithm 1 for a more formal presentation

of the server's retransmission algorithm.



Algorithm 1 The server's GOP retransmission algorithm
MAXT = 0

for each client C do

Determine number of innovative packets, T, requested by C.

if MAXT < T then

MAXT <- T

Broadcast random linear combinations of the I frame packets MAXT times.

for each nacked P frame packet pi, in order of earliest deadline do

Add clients that nacked pi to the set of covered clients (covered clients are clients for whom

the transmission will be innovative)

while there are clients not covered do

Search for the P frame packet with earliest deadline that covers any of those clients but not

the clients covered by the currently coded packet pi

if such a packet exists then

XOR that packet with pi and add those clients to the set of covered clients

else

break

Broadcast the coded packet and remove the nack associated with each coded packet for those

clients that can decode the transmission based on their current state.

6.2 Solutions to the Three Challenges

Our protocol exploits both the broadcast nature of the medium and uses network coding

to achieve better performance. It addresses the three challenges that a streaming protocol

must face as described below.

* Bandwidth Constraints:

To improve bandwidth utilization, the server broadcasts a single stream to the clients,

while the clients play the video in synch with the stream. This use of wireless oppor-

tunism reduces the overhead at the server and allows the server to use a network coding

based retransmission scheme, which is second source of more efficient utilization.
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Figure 6-1-WLAN Video Streaming Protocol Playback Buffer and Nacking Scheme. This
figure shows the playback buffer used in the protocol. The client playback is nx GOPs behind the
stream at the server. Every x GOPs, the client sends a nack reliably to the server for the (n-i)x
GOPs the server has most recently streamed.

" Delay Jitter:

As noted above, each client uses a playback buffer equivalent to the time required to

play all frames in nx GOPs, where n > 2 and x > 1, and a GOP consists of one I

frame followed by 4 or more P frames. This buffer is used to deal with delay jitter.

Playback at a client starts once the the first frame in the (nx + 1)th GOP is delivered

by the application to the server for streaming. We assume that the clients have memory

to buffer packets that may arrive for the next playback buffering interval so that such

packets are not dropped. The total memory capacity required is equal to the amount

of buffering for (n + 1)x GOPs. Since the clients remain synchronized in playback

with the server's input stream, the server will not transmit packets from more than nx

distinct GOPs, while the clients consider at most x GOPs distinct from those the server

is streaming.

" Packet Loss:

The packets transmitted by the server are unlikely to reach all clients most of the time.

Therefore, the clients periodically send nacks reliably every x GOPs. These nacks are



for packets in the (n - 1)x GOPs that have most recently been sent by the server.

Fig. 6-1 provides an illustration of the clients' playback buffer and nacking scheme.

Each packet can be nacked up to (n - 1) times by a client. Nacks are sent reliably using

link layer retransmissions, and jitter is added to each nack transmission to reduce the

potential for collisions at the server.

6.3 Design Considerations

6.3.1 Client Feedback

In order to avoid the overhead of m separate streams for m separate clients, a broadcast-

based scheme with application layer retransmissions is used. The clients need to get feed-

back to the server for losses to be detected. It is not obvious what event should trigger

feedback. This observation led to the use of periodic feedback. Note that a larger x means

less nack overhead at the expense of less feedback. Using a larger x may also introduce

more P frame packet coding opportunities. A larger n increases feedback, at the expense

of an increase in the initial buffering delay at the clients. Generally n should be adjusted

according to the link qualities seen in the network relative to the burstiness of the stream. A

larger nx product also leads to a larger space of packets that can be nacked, yielding larger

nack packets.

6.3.2 Coding

The streams we consider have GOPs consisting of a large I frame, spanning many MTU-

sized packets, followed by small P frames, often spanning only one packet. We use random

linear codes to retransmit lost I frame packets. The number of transmissions required to

deliver the I frame to the clients is thereby reduced from the size of the union of lost I frame

packets to maximum number of I frame losses at a particular client because of coding gain,

as discussed in Chapter 1. If receptions at the clients are independent and the clients' links

to the server are roughly equivalent, then the union of lost I frame packets will be larger

than the number of losses at any particular client. As mentioned previously, based on the
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Figure 6-2-WLAN Video Streaming Protocol Header.

experimental results of [39, 36], we expect receptions among clients to be independent.

Thus the use of random linear codes can reduce the overhead of retransmitting the lost I

frame packets, meaning more bandwidth will be made available to the protocol, which will

lead to performance gains. The greedy strategy of coding P frame packets is used with the

same goal in mind - to reduce the number of retransmissions necessary to stream the media

to clients and increase throughput.

6.4 Implementation Details

In this section we consider the details behind our implementation.

6.4.1 Packet Format

The protocol header sits above the RTP header in the networking stack. The clients can

determine the frame that a packet belongs to by using the packet's RTP header. Our im-

plementation uses two packet types: transport packets and nack packets. The first byte in

the header is used to distinguish the packet type. Fig. 6-2 provides an illustration of the

protocol header and its place in the networking stack.

MAC Header

IP Header

UDP Header

Protocol Header

RTP Header

Data



Transport Header

The next byte in the header of a transport packet indicates whether the packet(s) are from P

frames or I frames. For I frames, the next 16 bits in the header give the sequence number of

the first packet in the I frame. The sequence number of the last packet in the I frame is given

by the succeeding 16 bits. This is followed by a code vector of bytes giving the coefficient

applied to each I frame packet. For P frames, the next 16 bits in the header give the sequence

number of the first packet coded. The next 16 bits give the sequence number of the last

packet coded. A bitmap follows which indicates which packets in the sequence number

space given by the first and last sequence numbers, excluding those sequence numbers,

have been XORed.

Nack Header

The next byte of the nack header is unused. The next 16 bits indicate the RTP sequence

number of the first packet nacked. The next 16 bits indicate the RTP sequence number of

the last packet nacked. A bitmap for each packet in the sequence number space, excluding

the first and last sequence numbers, follows. A marked bit in the bitmap indicates a nack

for the packet with the corresponding sequence number. Nacks for I frame packets are

slightly different. Rather than nacking particular packets, the client determines the number,

k, of innovative packets required to decode the I frame, and nacks the first k packets in the

I frame in order to convey this information to the server. Thus, nacks for I frame packets

merely convey the rank of the buffered coded packets at the client. Note that the RTP

header is not actually included in a nack packet, as it is unnecessary.

6.4.2 Server Retransmission

The server keeps a bitmap for each packet in the current buffering interval indicating which

client has nacked the packet. Additionally, each packet has a retransmission time associ-

ated with it. In order to avoid redundant retransmissions, the server ignores a nack for a

packet if the nack is received within the expected amount of time it would take to broadcast

the packet and then receive a reliable nack since the server last retransmitted the packet.



The retransmission time of a packet is set to the current time whenever the packet is re-

transmitted.

The basic retransmission algorithm is implemented as follows. We define the retrans-

mission interval to be the (n - 1)x GOPs the server can retransmit packets from. We define

the starting GOP to be the first GOP of the retransmission interval. The server keeps track

of the next packet it must stream in the current buffering interval. If spare bandwidth is

available, the server retransmits nacked packets.

Every I frame has a retransmission counter that indicates the number of coded trans-

missions the server needs to perform. This counter is updated when the server receives a

nack for the I frame and when a coded retransmission from among the I frames packets is

performed. If a nack is received, the server determines the number, T, of innovative packets

the client needs. The I frame's transmission counter is then set to T if T is greater than the

current transmission counter value. If the nack is received within the expected amount of

time it would take to broadcast a coded packet and then receive a reliable nack since the

server last transmitted a linear combination from the I frame packets, 1 is subtracted from

T before the server attempts to update the I frame's transmission counter.

To perform a retransmission, the server begins at the starting GOP within the retrans-

mission interval and determines the first packet nacked by at least one client. If the packet

belongs to an I frame, the server decrements the I frame's retransmission counter. If the

retransmission counter is zero after the decrement, all nacks on the I frame packets bitmaps

are cleared. The server then transmits a random linear combination of the I frame packets.

If the packet is a P frame, the nack bitmap of the P frame packet is cleared and the greedy

coding algorithm described above is used. The relevant bits on each coded P frame packet

are cleared for those clients who nacked those packets and who can decode the transmis-

sion. The coded P frame packet is then transmitted.

6.4.3 Client Decoding

The clients buffer innovative coded I frame packets they receive if their playback time has

not passed. When a new I frame packet arrives, the client attempts to decode the I frame



and updates the number of innovative packets required to decode it if it cannot decode

it at that point. If it can decode the I frame, the client pushes the frame to the video

application. I frame packets that are not innovative are discarded. Clients separately buffer

P frame packets in the playback buffer in order to use them to decode coded P frame packet

retransmissions. Coded P frame packets that cannot be decoded immediately are discarded.



Chapter 7

Evaluation

In this chapter we evaluate the WLAN video streaming protocol. We focus on determining

the performance gained through the use or wireless opportunism and network coding.

7.1 Testbed

The nodes and software from the WMN experiments are used in our experiments, but we

use a different topology. Fig. 7-1 shows the locations of the nodes used in our experiments

involving 6 clients. We designate one of the testbed nodes as the server AP. The server

has bidirectional links to each client. The loss rates of the links vary between 0-50% in

both directions, depending on the current network conditions, with an average of about

30%. Unless noted otherwise, in our experiments we use 802.1 lb with a bitrate of 2 mbps

and channel 3, which does experience some background interference with other traffic.

Generally the nodes have the same quality links in both directions to the server and were

positioned with that goal.

7.2 Performance of the WLAN Video Streaming Protocol

We evaluate our design by examining how using opportunistic receptions and network cod-

ing affect performance as we limit the bandwidth available to the server. From our experi-

ments we are able to draw the following conclusions.



'A~

Figure 7-1-The WLAN Topology.

" Exploiting opportunistic receptions at the clients increases throughput roughly by a

factor equal to the number of clients.

" The use of network coding increases throughput by as much as 10% among 2 clients

experiencing packet losses with relatively modest correlation. This increase in through-

put translates to higher quality video playback according to the objective metric we use.

We see a slight increase in performance with network coding when we stream video to

6 clients. We believe this modest improvement is due to the fact that our protocol does

not use coding to achieve reliability, but further analysis is needed.

7.2.1 PSNR: An Objective Video Quality Metric

Peak signal-to-noise ratio (PSNR) is used throughout the literature to measure the perfor-

mance of video streaming protocols and we use it in evaluating our design. The PSNR

between the luminance component of a source frame S and a destination frame D is de-

fined as [26]:

20 logl0 ( E Vpeak (7.1)
W2 , o ben t nu7mb (YS(er j) - YD (i )

Where V'peak = - 1, k being the number of bits used to represent the luminance



component of a pixel, and Y(i, j) is the luminance component of the particular pixel in

column i and row j of the frame.

Performance of a video transport protocol can be measured by considering the average,

over all frames, of the PSNR of the decoded transported video relative to the original unen-

coded video to the PSNR of of the decoded video relative to the original unencoded video.

This gives an objective measurement of how much quality has been lost in the network.

This objective measurement can be roughly translated to a subjective human quality im-

pression on a scale of 1 to 5, where 5 is the score for the highest quality impression. This

scale is called the Mean Opinion Score (MOS). [26] gives a conversion table and provides

some additional discussion.

7.2.2 Compared Protocols

We compare the following three approaches in order to determine the performance gain

from coding and wireless opportunism:

" The design described in Chapter 6, which we refer to as OPCODE.

" The Chapter 6 design, but where the server performs retransmissions without the use

of coding. Nacked packets are retransmitted in order of earliest achievable deadline. In

particular, the server retransmits all nacked I frame packets. We refer to this protocol

as OP.

" A scheme where the server uses a separate unicast stream for each client. Clients ig-

nore packets that are not specifically destined for them. We refer to this scheme as

BASELINE.

7.2.3 Setup

We use the Akiyo-cif.yuv video from the Evalvid web site [14]. This is a video of a news-

cast, and is a good fit for the video conferencing application we would like to support. The

video is looped 5 times for a total of 1500 frames. We use ffmpeg [15] to encode and decode

into MPEG-4 compressed video, and use MP4Box from the GPAC project [17] to import

the encoded video into a *.mp4 container and to generate hint tracks for the RTP protocol
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Figure 7-2-Streaming Bitrate of Akiyo-cif.yuv Encoded Video as a Function of GOP

for streaming. The Evalvid [26] toolkit is used to measure PSNR. In our experiments we

encode the video at 30 fps with a bit rate of 500 kbps, using a GOP of 10, and do not use

B frames. The reference PSNR for this encoding is 43.13. Fig. 7-2 shows the streaming

bitrate in kbps as a function of GOP. This plot shows that ffmpeg does not encode the video

at 500 kbps for the initial GOPs. One of the beginning GOPs has an output bitrate of 962

kbps, for example.

In order to evaluate the protocols we artificially limit the bandwidth available to the

server. The server is given an initial credit equal to the number of bytes that can be trans-

mitted at the chosen bandwidth in a given time interval. The credit is updated with this

initial credit at the conclusion of every time interval. We used a time interval of 50 mil-

liseconds in our experiments. The server cannot transmit a packet until the credit exceeds

the packet's byte length, and the credit is decremented by the byte length of the packet

when a transmission is made.

7.2.4 Results

Loss Independence

To attain coding gain on retransmissions of the packets of a particular I frame, the clients

should lose different packets belonging to the I frame. That is, the size of the union among



Client 1 ] Client 2 Mean STD

A B 0.6871 0.2742
A C 0.3570 0.3056
A D 0.3674 0.2959
A E 0.3315 0.2556
A F 0.3064 0.2421
B C 0.3751 0.3061
B D 0.3845 0.3050
B E 0.3190 0.2518
B F 0.3020 0.2329
C D 0.5410 0.4041
C E 0.4932 0.3719
C F 0.3939 0.3447
D E 0.5727 0.3731
D F 0.4648 0.3592
E F 0.6121 0.3442

Table 7.1-I Frame Loss Correlation. The table shows the mean and standard deviation over all I
frames of the normalized difference 7.2. We used 802.1 lb at 2 mbps and streamed the Akiyo-cif.yuv
video with the encoding parameters given above using broadcast. It provides some insight into the
correlation among losses of an I frame.

all clients of lost packets of the I frame should be larger than the size of the set of the par-

ticular losses of the I frame's packets at any client. In this experiment, the server broadcasts

packets in the stream. We look at the pairwise independence of I frame packet losses. For

each I frame and each pair of clients C1, C2 we consider three loss rates: L 1, the I frame

packet loss rate at C1, L 2 , the I frame packet loss rate at C2, and Lin2 , the loss rate of I

frame packets lost by both C1 and C2. For each I frame we consider the the normalized

difference:

Lin2 - L1 L2  (7.2)
\ L1 L2 - L 1 L 2

This difference is defined to be 0 if either L, or L 2 are 0 or if both L1 and L 2 are 1. We

report the mean and standard deviation over all I frames for each client pair in table 7.1.

A number closer to 0 indicates less correlated losses, while a number closer to 1 indicates

more correlated losses. This table shows that I frame packet losses are correlated to some

extent, and the variance is high. If we consider the topology in fig. 7-1, we see that nodes

that are physically closer to one another are likely to have more correlated losses.



Streaming Performance

Given accurate link estimates, appropriate choice of parameters, and loss independence,

we expect OPCODE to outperform OP in bandwidth-limited scenarios due to coding gain,

which, as described in Chapter 1, will reduce the number of transmissions required to

stream the video to multiple clients, leading to an increase in throughput when all band-

width must be utilized. In order to verify this hypothesis, we consider two scenarios. In the

first, the server streams video to 2 clients that have very lossy links which appear to experi-

ence losses with low correlation, and one in which the server streams video to the 6 clients

used in the previous experiment. In the first case we expect to see a distinct performance

difference. We expect that trend to continue when we increase the number of clients.

Two Clients with Less Correlated Loss In this experiment we position two nodes farther

apart from the server in order to increase the average bidirectional loss rates from 30% to

55%, partly with the goal of finding a setting where losses appear less correlated than seen

in the previous experiment. The mean normalized difference 7.2 for this was setup was

0.2621 with standard deviation 0.1772. We set x = 1 and n = 6, which corresponds to an

initial delay of 2 seconds. We justify choosing n = 6 by noting that this choice provides

up to 5 retransmission opportunities for lost packets, which should be enough for most

packets to be successfully received. We choose x = 1 because nacks from 2 clients every

333 milliseconds should not create too much overhead. Recall from Chapter 6 that the RTP

header is not included in a nack packet. The header overhead for a nack packet consists of

72 bytes for the link-layer, network, and transport headers, and 6 bytes plus the number of

bytes in the nack bitmap for our protocol-specific header. The largest number of packets in

five consecutive GOPs in our encoding is 158. This puts an upper bound of 100 bytes on

the nack packets.

As discussed above, we impose an artificial bandwidth limitation on the server. We

vary the bandwidth from 0.60 mbps to 2.0 mbps in increments of 0.1 mbps. We focus on

the experiment among 5 trials that saw median PSNR performance increase. We consider

the averages over the 2 clients of the percentage of packets received in fig. 7-3, the number

and types of packets retransmitted in fig. 7-6, and the bandwidth utilization in fig. 7-7.



From fig. 7-3 we conclude that BASELINE delivers a little over half the packets of

OP when bandwidth is limited. BASELINE does not utilize wireless opportunism, and

hence performs up to twice as many transmissions as necessary. The server in BASELINE

discards many I frame packets without transmitting them because these packets are large,

have the same frame timestamp, and occur in bursts. Thus, BASELINE delivers few I frame

packets to the clients and uses most of its bandwidth on P frame packets. BASELINE is

thus impractical in low bandwidth scenarios, especially when there are a large number of

clients.

OPCODE is able to deliver more packets to the clients than OP. In particular, at 0.70

mbps, OPCODE delivers about 10% more packets to the clients than OP. Note that fig. 7-6

shows that OP performs more retransmissions of I frame packets than OPCODE. This is

expected, since the size of the union of lost I frame packets at the 2 clients is larger than

the number of losses at either client when losses are not strongly correlated. As a result,

OPCODE is able to perform more P frame retransmissions and deliver more packets to the

clients, since both protocols utilize most of the available bandwidth, as indicated in fig. 7-7.

Fig. 7-6 also shows the number of coded P frame retransmissions that OPCODE performs.

The figure demonstrates that this is a nontrivial number of total P frame retransmissions

when bandwidth is limited. Since OPCODE generally performs at least as many P frame

retransmissions as OP, this is a source of coding gain that allows OPCODE to deliver more

packets to the clients on average than OP. From this discussion we conclude that, when

bandwidth is limited, coding allows OPCODE to perform more P frame retransmissions,

and that the coding gain from coding I frame packets and P frame packets increases the

number of I and P frame receptions at the clients. This is illustrated in fig. 7-4 and fig. 7-5,

which show the percentage of packet receptions according to frame type.

We now consider the average PSNR for each bitrate in fig. 7-8. We see that the increase

in receptions using OPCODE does translate to higher PSNR values.

Six Clients with Correlated Loss In this experiment, the server streams video to the

6 clients in the testbed with the topology of fig. 7-1 and mean normalized differences of

table 7.1. We set x = 2 and n = 6, which yields a nack header overhead of at most 120
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bytes and corresponds to an initial delay of 4 seconds. Here we have increased x in order

to reduce number of nack packets transmitted.

As before, we focus on the experiment among 5 trials that saw median PSNR perfor-

mance increase and look at the average PSNR for each bitrate fig. 7-9. We conclude that

the use of coding modestly increases the PSNR values. The 6 client case is less pronounced

for bandwidth limited scenarios because loss rates are lower and losses themselves appear

more correlated. In this experiment, BASELINE did not perform well enough to extract
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In the evaluation of MORE-M, the use of coding and wireless opportunism resulted

in up to a 200% throughput gain over a protocol that used only wireless opportunism.

Here we see a minor increase in throughput due to coding. Most of the performance gain

is due to the use of wireless opportunism. To partially explain this, recall that MORE-

M is a reliable file sharing protocol and that all transmissions driven by the source are

coded. The use of random linear codes thus leads to more potential for coding gain than

in OPCODE. In OPCODE, for example, all transmissions of I frame packets are wasted if

the client does not obtain code vectors that achieve full rank, because OPCODE does not
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guarantee reliability. Additionally, the uncoded P frame retransmissions in OPCODE are

less likely to be innovative to multiple destinations than the coded packets of MORE-M, so

the coding gain will naturally be smaller. Regarding reliability, in our experiments we set

n to high values to allow for many retransmissions, however the variable streaming bitrate

in the initial GOPs reduces the number of retransmissions that can be performed when the

bandwidth is limited.
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Chapter 8

Conclusion

This thesis explored the application of network coding and opportunistic routing to im-

prove the throughput of wireless multicast. We first considered a multicast enabled ver-

sion of MORE [9], which we called MORE-M, designed for file sharing. We evaluated

MORE-M's performance for multicast flows in comparison to other routing protocols in

a 20-node indoor wireless testbed. In these experiments, MORE-M attained significantly

higher throughput than the other multicast protocols that we considered, particularly as we

increased the number of nodes in the multicast group.

We then considered problem of streaming video in a wireless local area network with

the goal of supporting video conferencing applications. A network coding based design

that utilized opportunistic receptions was presented and evaluated. We showed that the

use of coding modestly improved the quality of the video stream, particularly when links

experienced higher loss rates and less correlation among losses, and that most of the per-

formance increase seen was due to the use of wireless opportunism. The most likely cause

of the slight gain seen with coding is the fact that our protocol did not use coding to achieve

reliability.
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