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Abstract

This thesis revisits classic problems in computational geometry from the modern algorithmic
perspective of exploiting the bounded precision of the input. In one dimension, this viewpoint
has taken over as the standard model of computation, and has led to a powerful suite of
techniques that constitute a mature field of research. In two or more dimensions, we have
seen great success in understanding orthogonal problems, which decompose naturally into
one dimensional problems.

However, problems of a nonorthogonal nature, the core of computational geometry, have
remained uncracked for many years despite extensive effort. For example, Willard asked in
SODA'92 for a o(n lg n) algorithm for Voronoi diagrams. Despite growing interest in the
problem, it was not successfully solved until this thesis.

Formally, let w be the number of bits in a computer word, and consider n points with
O(w)-bit rational coordinates. This thesis describes:

* a data structure for 2-d point location with 0(n) space, and 0 (min { , })n
query time.

" randomized algorithms with running time n - 2 0(-'/glgn) <n lg'(1) n for 3-d convex hull,
2-d Voronoi diagram, 2-d line segment intersection, and a variety of related problems.

" a data structure for 2-d dynamic convex hull, with 0( 1"n) query time, and O(lg 2 n)
update time.

More generally, this thesis develops a suite of techniques for exploiting bounded precision in
geometric problems, hopefully laying the foundations for a rejuvenated research direction.

Thesis Supervisor: Erik D. Demaine
Title: Associate Professor

3



...-- 
.----
w

e.1 
- -,---- 
-., -.. 
--.-- 
---- .- ----- 

--,------ 
-.-=-'---"""" 

--'"--" 
'a ---* 

-
-

V
4|M

&
 

I de%



Acknowledgments

Erik Demaine has been my research adviser for 4 years and a half, throughout my undergrad-

uate and graduate work. I am profoundly grateful to him for the unconditional support that

he has provided throughout these years. My work in theoretical computer science started

with Erik's willingness to trust and guide a freshman with great dreams, but no real idea of

what this research field meant. Throughout the years, Erik's understanding and tolerance

for my unorthodox style, including in the creation of this thesis, have provided the best

possible research environment for me.

This thesis is based primarily on three publications, in FOCS'06 [Pdt06], STOC'07

[CP07], and SoCG'07 [DP07]. From my point of view, this line of work started during the

First Machu Picchu Workshop on Data Structures. Though I shall refrain from discussing

details of this event, I am profoundly grateful to John Iacono, as the main organizer, and

again to Erik for supporting such research endeavors. My interactions with John during this

workshop and beyond have been most gratifying. In particular, it was John who sparked

my interest in sublogarithmic point location. Furthermore, his support, through research

discussions and otherwise, was key to me finding a solution during the workshop.

Through a remarkable coincidence, my paper in FOCS'06 on point location was accom-

panied by an independent submission by Timothy Chan [Cha06] with similar results. This

has lead to subsequent collaboration with Timothy, and in particular, our joint STOC'07

paper. Collaborating with Timothy has been a flawless experience, and this thesis owes a lot

to his remarkable research prowess. Finally, I am once more grateful to Erik for an enjoyable

and engaging collaboration on our joint SoCG'07 paper.

Beyond research, I wish to thank my friends and colleagues, among whom Alex Andoni

stands out, for their constant support, good company, and the great time spent together.

Last but not least, I am grateful to Akamai for sponsoring the Akamai Presidential Fellowship

that supported me this year.

5



6



Contents

1 Introduction 11

1.1 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.1 Theory for Reality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.2 Theory for Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.3 The Problems in Historical Context . . . . . . . . . . . . . . . . . . . 19

1.2.4 The Model in Historical Context . . . . . . . . . . . . . . . . . . . . 20

1.2.5 Practice for Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2.6 Theory for Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Point Location in a Slab 25

2.1 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Warm-Up: A Simpler 1-d Fusion Tree . . . . . . . . . . . . . . . . . . . . . . 27

2.3 A Solution for 2-d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Alternative Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Sorting Points and Segments 35

3.1 An Initial Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 The Basic Recursive Strategy . . . . . . . . . . . . . . . . . . . . . . 36

3.1.2 An O(nr lgm +m) Algorithm . . . . . . . . . . . . . . . . . . . . . . 38

3.2 An n - 2 0(lggm) + 0(m) Algorithm . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7



3.2.2 The Improved Algorithm . . . . . . . .

3.2.3 Analysis . . . . . . . . . . . . . . . . .

3.3 Avoiding Nonstandard Operations . . . . . . .

3.3.1 The Center Slab . . . . . . . . . . . .

3.3.2 Lateral Slabs . . . . . . . . . . . . . .

3.3.3 Bounding the Dependence on m . . . .

4 General Point Location via Reductions

4.1 Technical Overview . . . . . . . . . . . . . . .

4.2 Method 1: Planar Separators . . . . . . . . .

4.3 Method 2: Random Sampling . . . . . . . . .

4.4 Method 3: Persistence and Exponential Search

4.4.1 The Segment Predecessor Problem . .

4.4.2 Geometric Exponential Trees . . . . .

4.4.3 Application to Point Location . . . . .

Trees

5 Reexamining Computational Geometry

5.1 Improved Data Structures . . . . . . . . . . . . .

5.2 Segment Intersection . . . . . . . . . . . . . . . .

5.3 Convex Hulls in 3-d and Voronoi Diagrams in 2-d

5.4 Other Consequences . . . . . . . . . . . . . . . .

6 Improving Dynamic Search

6.1 Technical Overview . . . . . . . . . . . .

6.1.1 Review of Overmars-van Leeuwen

6.2 Adaptive Point Location . . . . . . . . .

6.3 Quantifying Geometric Information . . .

6.4 The Data Structure . . . . . . . . . . . .

6.4.1 Query Invariants . . . . . . . . .

6.4.2 Querying a Hull-Fusion Node . .

8

. . . . . . . . . . . . . . . . . 4 3

. . . . . . . . . . . . . . . . . 44

. . . . . . . . . . . . . . . . . 4 5

. . . . . . . . . . . . . . . . . 46

. . . . . . . . . . . . . . . . . 48

. . . . . . . . . . . . . . . . . 49

51

. . . 53

. . . 53

. . . 56

. . . 58

59

. . . 60

64

67

67

68

70

71

73

. . . . . . . . . . . . . . . . 74

. . . . . . . . . . . . . . . . 75

. . . . . . . . . . . . . . . . 76

. . . . . . . . . . . . . . . . 78

. . . . . . . . . . . . . . . . 8 1

. . . . . . . . . . . . . . . . 82

. . . . . . . . . . . . . . . . 83



6.4.3 Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 Open Problems 87

7.1 Open Problems in Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 Open Problems in Static Data Structures . . . . . . . . . . . . . . . . . . . . 90

7.3 Open Problems in Dynamic Data Structures . . . . . . . . . . . . . . . . . . 92

A Results in Higher Dimensions 95

A.1 Online Point Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.2 Offline Point Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.3 Applications in Higher Dimensions . . . . . . . . . . . . . . . . . . . . . . . 97

B A Careful Look at Dynamic Queries 101

B.1 Query Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B.2 Fast Queries with Near-Logarithmic Update Time . . . . . . . . . . . . . . . 105

B.3 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

9

85



10



Chapter 1

Introduction

Sorting requires Q(n ig n) time for comparison-based algorithms, yet this lower bound can

be beaten if the n input elements are integers in a restricted range [0, U). For example,

if U = nO(l), radix-sort runs in linear time. In practice, radix sort is one of the most

popular and most efficient sorting algorithms. In theory, the field of integer search provides

a fascinating understanding of how information can be manipulated algorithmically, and the

consequences this has on problem complexity.

Exploiting bounded precision has also been considered frequently for geometric problems,

but up to now, results are essentially limited to problems about axis-parallel objects or met-

rics, which can be decomposed into one-dimensional problems. The bulk of computational

geometry deals with non-orthogonal things (lines of arbitrary slopes, the Euclidean metric,

etc.) and thus has largely remained a passive observer of the breakthroughs on integer sort-

ing and searching. This shortcoming was highlighted by Willard in SODA'92 [WilOO], and

repeatedly since then.

This thesis answers Willard's 15-year old challenge, and makes computational geometry

an active player in the world of bounded precision algorithms. We provide the first o(n lg n)

running times for core algorithmic problems in geometry, such as constructing Voronoi di-

agrams, 3-d convex hull, segment intersection, etc. We also provide the first o(lg n) query

times for planar point location, 2-d nearest nearest neighbor, dynamic convex hull, etc.
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More than providing an answer to an old question, our results open the door to a whole

new playing field where most geometric problems do not yet have optimal solutions. At the

heart of this research direction is the attempt to elucidate the fundamental ways in which

bounded information about geometric objects such as points and lines can be decomposed

in algorithmically useful ways. In computational geometry, this leads to many fascinating

puzzles and a deeper understanding of the relative difficulty of geometric problems. In

the world of RAM algorithms, our work had to develop significantly novel approaches for

exploiting fixed precision. By analogy with the successes in one dimension, one can hope

that an equally rich theory for multidimensional problems is waiting to be explored.

1.1 Technical Overview

Model of computation. The underlying model of computation in finite-precision results

is a Random Access Machine (RAM) that supports standard operations on w-bit words with

unit cost. The supported operations are those available in a typical language such as C:

additions, subtractions, multiplications, shifts, and bitwise operations. To make the model

realistic, one assumes w = e(lg U), i.e. the task of the algorithm is to handle numbers

represented in one (or maybe 0(1)) machine words. One can also reasonably assume that

w > lg n, so that we can have n distinct numbers, and an index or pointer can fit in a word.

The adjective "transdichotomous" is often associated with this model of computation. These

assumptions fit the reality of computing as it is understood and deployed today, including

in common programming languages such as C, and standard programming practice.

Searching in 2-d. In the one-dimensional world, predecessor search is one of the most

fundamental and well-studied problems. Given a set S of n integers in [0, 2w), the problem

is to build a data structure supporting the following query: for some q E [0, 2W), report

max{x E S I x < q}.

Point location in a slab is perhaps the simplest toy problem which extends predecessor

search to two dimensions, and captures the nonorthogonal behavior that we want to study.

12



x q

(a) (b)

Figure 1-1: (a) Point location in a slab. (b) General point location.

Refer to Figure 1-1(a). In this problem, we are given a set S of n disjoint (nonvertical) line

segments inside a vertical slab, where the endpoints all lie on the boundary of the slab and

have integer coordinates in the range [0, 2 '). The goal is to preprocess S so that given a

query point q with integer coordinates inside the slab, we can quickly find the segment that

is immediately below q.

If we simply store the sorted segments, the problem is immediately solved in 0 (lg n) query

time by binary search. In Chapter 2, we describe the first data structure which can beat this

simple bound. Specifically, we describe a data structure of O(n) space, supporting queries

in time 0 (min {1  , }). This is a theoretical improvement to a sublogarithmic query

time for any precision w, and a roughly quadratic improvement when the input comes from

a polynomial universe (w = 0(lgI n)).

Sorting in 2-d. The offline version of predecessor search is the problem of sorting n

numbers. In 2-d, the offline version of our toy problem is an equally natural incarnation of

our intuitive notion of ordering. We are given a vertical slab in the plane, m nonintersecting

segments cutting across the slab, and n points inside the slab. The goal is to identify for each

of the n points, the segments immediately below and above it. In other words, we would like

13



to sort the points "relative to" the segments.

By running n queries to the online data structure, we already have a solution beating the

standard 0(m+n g m). In Chapter 3, however, we provide a more efficient algorithm beating

the standard bound more dramatically: we obtain a running time of n - 20(1g9gm) + O(m).

Note that this bound does not depend on the universe at all, and it grows more slowly than

m + n lg' m for any constant E > 0.

Planar point location. In this problem, we are given n segments, dividing the plane into

polygons; segments are only allowed to touch at end-points. The query asks for a polygon

(face) which contains a given point. See Figure 1-1(b).

Point location is one of the most fundamental and well-studied search problems in com-

putational geometry. Every introductory book in computational geometry discusses the

problem at length, and the problem is almost surely the topic of hundreds of publications.

There are also important applications in the offline case (such as finite-element simulations

with Euler-Lagrange coupling, and overlay problems in GIS and CAD systems).

It turns out the one can reduce the problem to the slab problem discussed above, both

in the online and offline case, while maintaining the same space and running times. This is

the topic of Chapter 4. We thus obtain the first sublogarithmic bounds for point location,

an important theoretical milestone.

In fact, we describe three independent reductions: two of them are adaptations of clas-

sic techniques in computational geometry, while the third requires significant theoretical

development, and is of independent interest.

Voronoi diagrams, segment intersection etc. The "toy" problem that we study cap-

tures core aspects of nonorthogonality, and our sublogarithmic bounds have far-reaching

consequences across computational geometry. In Chapter 5, we describe reductions leading

to improved bounds for a wide array of problems, both algorithmic and data structural.

In particular, we obtain running times of n - 20("1919) for problems like constructing

Voronoi diagrams, 3-d convex hulls, segment intersection etc. These are the first results

14



improving on classic O(n 1g n) bounds for these bread-and-butter problems in computational

geometry.

It turns out that our techniques for improved point location can be extended to higher

dimensions, and they have a number of applications there, as well. Appendix A discusses

results in higher dimensions.

Dynamic convex hull. So far, we have only discussed static data structures and algo-

rithms. Dynamic problems bring an entirely different, but very interesting, set of challenges,

addressed in Chapter 6. We study the dynamic convex hull problem, as the most important

example of a dynamic nonorthogonal problem.

The problem is to maintain a set S, ISI<; n, of points in 2-d under:

INSERT(p): insert a point p into S. Points in S are not necessarily in convex position.

DELETE(s): delete a point p from S.

TANGENT(p): return the two tangents through point p to the convex hull of S. It is guar-

anteed that p is outside the convex hull.

LP(v): return an extreme point in the direction given by vector v (linear programming).

As our main result in the dynamic world, we show how to support queries in 0(g"

time, while supporting updates in O(1g 2 n). The highlight of this result is the unusual flavor

of the dynamic context.

In fact, tangent and linear programming queries are only two examples of queries we may

wish to support. In Appendix B, we discuss the various queries that are typically considered,

and prove additional upper and lower bounds. In particular, we show tangent and linear

programming queries require time Q(log, in) when the update time is polylog(n). This proves

optimality of our upper bound for precision w = polylog(n).

15



1.2 Motivation

On a global level, our results open more problems than they close. We are now in front of a

whole new playing field where most geometric problems do not yet have optimal solutions.

By analogy with one dimension, one can hope for an equally rich theory for multidimensional

problems. But before proceeding through these open gates, we need to make sure that we

are going down a meaningful and worthy path. In the following sections, we discuss several

of our motivations for considering geometric problems in the bounded-precision context:

1.2.1 Real computers and therefore their inputs have bounded precision.

1.2.2 Bounded precision is already exploited in practice.

1.2.3 The fundamental problems under consideration have been studied and optimized ex-

tensively.

1.2.4 Exploiting bounded precision for these problems has been posed and attempted exten-

sively.

1.2.5 New, faster algorithms may impact engineering practice.

1.2.6 The problems require the development of fascinating new techniques that force us to

rethink our understanding of both bounded precision, and geometry.

1.2.1 Theory for Reality

A central issue in computational geometry is the discrepancy between the idealized geometric

view of limited objects with infinite precision, and the realistic computational view that

everything is represented by (finitely many) bits.

The geometric view is inspired by Euclidean geometric constructions from circa 300 BC.

In computational geometry, this view is modeled by the real RAM and related models con-

sidered for lower bounds, e.g., linear/algebraic decision/computation trees. These models

postulate a memory of infinite-precision cells, holding real values, and specify the operations
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that can be performed on these values (typically, a subset of addition, multiplication, divi-

sion, roots, and comparisons). Inputs and, depending on the problem, outputs consist of

real values.

The computational view matches the reality of digital computers as we know them today

and as set forth by Turing in 1936 [Tur36]. This view assumes input is given with some

finite precision, and that memory cells (words) have a precision comparable to the input.

The preferred model for upper bounds is the word RAM, which allows operations commonly

available in a programming language such as C, including bitwise operations. Lower bounds

are usually shown in the cell-probe model, which allows any operation on a constant num-

ber of words. Thus, lower bounds have a deep information-theoretic meaning, and apply

regardless of the exotic operations that might be implemented on some machine.

Traditionally, computational geometry has seen the negative side of the contrast between

these two models. Algorithms are typically designed and analyzed in the real RAM, which

makes the theoretical side easier. However, practitioners must eventually deal with the finite

precision, making theoretical algorithms notoriously difficult to implement.

Given that algorithms must eventually be implemented in a bounded--precision model, it

seems only natural not to tie our theoretical hands by using the real RAM. By recognizing

that actual input data has bounded precision, and by designing algorithms for the word

RAM, one could potentially obtain significantly better bounds. This ability is demonstrated

for some key problems by our work. In addition, this approach has the advantage that it

does not hide a large implementation cost by idealizing the model, and therefore has the

potential to lead more directly to fast practical algorithms.

A question that we wish to touch on briefly is whether an integer (or rational) universe

is the right model for bounded precision. In certain cases, the input is on an integer grid

by definition (e.g. objects are on a computer screen). One might worry, however, about the

input being a floating point number. We believe that in most cases this is an artifact of

representation, and numbers should be treated as integers after appropriate scaling. One

reason is to note that the "floating-point plane" is simply a union of bounded integer grids
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(the size depending on the number of bits of the mantissa), at different scale factors around

the origin. Since the kind of problems we are considering are translation-invariant, there

is no reason the origin should be special, and having more detail around the origin is not

particularly meaningful. Another reason is that certain aspects of the problems are not well-

defined when inputs are floating point numbers. For example, the slope of a line between two

points of very different exponents is not representable by floating point numbers anywhere

close to the original precision.

1.2.2 Theory for Practice

When scrutinizing a direction of theoretical research, it is important to understand not only

whether it studies an aspect of reality, but also whether it studies an interesting aspect of

reality. After all, the greatest payoff for a real application is often achieved by considering

an appropriate abstraction of the object of study, not all the real but irrelevant details.

A common theoretical fallacy is that it is irrelevant to study algorithms in a bounded

universe because "only comparison-based algorithms are ever implemented". However, this

thesis has been attacked forcefully in one dimension; see, e.g., [HT02]. It is well known, for

instance, that the fastest solutions to sorting are based on bounded precision (radix sort).

Furthermore, when search speed matters, such as for forwarding packets in Internet routers,

implementing search by comparisons is inconceivable [DBCP97].

In nonorthogonal geometry, the object of our study, there are at least two classes of

examples showing the benefit of using bounded precision.

First, as discussed in a survey by Snoeyink [Sno04], the most efficient and popular ap-

proaches for planar point location use pruning heuristics on the grid. These heuristics are

similar in spirit to the point-location algorithms we develop in this thesis. To some extent,

our work justifies the advantage of these algorithms compared to the traditional approaches

taking logarithmic time, which have been regarded as optimal.

Second, there is extensive study and implementation of the approximate nearest neigh-

bor problem, even in two dimensions; see, e.g., [AEISO1, Cha021. This is hard to under-
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stand when viewed through the real-RAM abstraction, because the exact nearest neighbor

problem should be equally hard,. both taking logarithmic time. However, the approximate

version turns out to be equivalent to one-dimensional predecessor search. When dealing with

bounded precision, this problem admits an exponentially better solution compared to exact

search in two dimensions - 0(1g w) versus 0(fw/ g w).

Thus, some of our work so far can already be seen as a theoretical justification for practi-

cally proven approaches. Though giving a theoretical understanding of practical algorithms

is not our foremost goal, it is a normal and important outcome of theoretical research, in

line with a significant body of modern work.

We should note, however, that not all aspects of engineering practice are yet understood.

For example, practical implementations of grid-based search typically work with the original

instance of planar point location. By contrast, our theoretical analysis assumes that the

input is first reduced to the slab case, which incurs a constant but practically significant

overhead.

1.2.3 The Problems in Historical Context

The problems that we have studied are some of the most fundamental in computational

geometry. Problems like planar point location or constructing Voronoi diagrams appear in

virtually every textbook and are the topic of numerous surveys. Interest in these problems

has not waned throughout the years, and new techniques have been developed continuously.

Taking planar point location as an example, we note that there are at least five fundamen-

tally different ways to achieve 0(lg n) query time with 0(n) space: planar separators [LT80],

persistence [Col86, ST86], triangulation refinement [Kir83], separating chains plus fractional

cascading [EGS86], and randomized incremental construction of a trapezoidal decomposition

[Mul90]. Taking this bound even further, Seidel and Adamy [SAOO] obtain a running time of

exactly log 2 n + 2 log 2 n + 0( /log 2 n) point-line comparisons, with expected linear space.

In recent years, there has been a lot of interest in obtaining adaptive (but still comparison-

based) bounds for point location, which can sometimes be sublogarithmic. The setup assumes
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queries are chosen from a biased distribution of entropy H, and one tries to relate the query

time to H. Following some initial work on the subject, SODA 2001 saw no less than three

results in this direction: Arya et al. [AMM01b] and Iacono [IacO4] independently achieve

expected O(H) comparisons with 0(n) space, while Arya et al. [AMM01a] achieves H+o(H)

comparisons but with 0(n lg* n) space.

Historically, such directions have also been pursued intensively in one dimension (e.g.,

static and dynamic optimality). Some central problems in this field remain open. Despite

this, almost two decades after Fredman and Willard's fusion trees [FW93], it appears that

bounded precision safely occupies the center stage, and has grown into a much larger and

more cohesive theory.

1.2.4 The Model in Historical Context

RAM Algorithms in 1-d

Work in one dimension dates back at least to 1977, when van Emde Boas [vEBKZ77] showed

how to support predecessor queries in 0(lg lg U) time with linear space, and thus sort in

0(n Ig lg U) time. Fredman and Willard [FW93] showed that o(lg n) searching and o(n lg n)

sorting is possible even regardless of how U relates to n: their fusion tree can search in

0 (log,n) < 0(" ).

Many integer-sorting results have been published since then, and a survey is beyond the

scope of this work. Currently, the best linear-space deterministic and randomized algorithms

(independent of U and w) have running time 0(n lg lg n) and 0(n Vlg lg n) respectively, due

to Han [HanO4] and Han and Thorup [HT02]. A linear randomized time bound [AHNR98]

is known for the case when w ;> g2-+e n, for any fixed E > 0. Thorup [Tho02a] showed a

black-box transformation from sorting to priority queues, which makes the above bounds

carry over to this dynamic problem.

For predecessor search, note that taking the minimum of fusion trees and van Emde

Boas search yields a bound of 0(/igi). As opposed to sorting, only small improvements

are possible, and only for polynomial space [BF02]. Together with Thorup [PT06, PT07],
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we showed optimal upper and lower bounds for this problem, giving an exact understanding

of the time-space tradeoffs.

Most importantly, our lower bounds show that for near linear space (say, space n lg0 1) n),

the optimal query time is 6(min{log, n, lg w/ lg 19w}). The first branch is achieved by

fusion trees, while the second branch is a slight improvement to van Emde Boas when

precision is (very) large. We note that point location is harder than predecessor search, so

the lower bounds apply to our problems as well.

Other 1-d data structure problems for integer input have also been studied. The classic

problem of designing a dictionary to answer membership queries, typically addressed by

hashing, can be solved in 0(1) deterministic query time with linear space, while updates are

randomized and take 0(1) time with high probability (see e.g., [FKS84, DadH90]). Range

queries in 1-d (reporting any element inside a query interval) can be solved with 0(1) query

time by a linear-space data structure [ABROl]. Even for the dynamic problem, exponential

improvements over predecessor search are known [MPP05].

(Almost) Orthogonal Problems

As mentioned, known algorithms from the computational geometry literature that exploit the

power of the word RAM mostly deal with orthogonal-type special cases, such as orthogonal

range searching, finding intersections among axis-parallel line segments, and nearest neighbor

search under the f- or f,,-metric. Most of these works are about van-Emde-Boas-type

results, with only a few exceptions (e.g., [Wil00]). For instance, Chew and Fortune [CF97]

showed how to construct the Voronoi diagram under any fixed convex polygonal metric in

2-d in O(n lg lg n) time after sorting the points along a fixed number of directions. De Berg et

al. [dBvKS95] gave O((lg lg U)0 (1)) results for point location in an axis-parallel rectangular

subdivisions in 2- and 3-d.

There are also approximation results (not surprisingly, since arbitrary directions can be

approximated by a fixed number of directions); for example, see [BKRS92] for an O(n lg lg n)-

time 2-d approximate Euclidean minimum spanning tree algorithm.
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There is one notable non-orthogonal problem where faster exact transdichotomous algo-

rithms are known: finding the closest pair of n points in a constant-dimensional Euclidean

space. This is also not too surprising, if one realizes that the complexity of the exact clos-

est pair problem is linked to that of the approximate closest pair problem, due to packing

arguments. Rabin's classic paper on randomized algorithms [Rab76] solved the problem in

O(n) expected time, using hashing. Deterministically, Chan [Cha02] has given a reduction

from closest pair to sorting (using one nonstandard operation on the RAM). Similarly, the

dynamic closest pair problem and (static or dynamic) approximate nearest neighbor queries

reduce to predecessor search [Cha02]. Rabin's original approach itself has been generalized

to obtain an O(n + k)-time randomized algorithm for finding k closest pairs [Cha0lb], and

an O(nk)-time randomized algorithm for finding the smallest circle enclosing k points in

2-d [HPM05].

The 2-d convex hull problem is another exception, due to its simplicity: Graham's

scan [dBSvKOOO, PS85] takes linear time after sorting the x-coordinates. In particular,

computing the diameter and width of a 2-d point set can be reduced to 1-d sorting.

Chazelle [Cha99] studied the problem of deciding whether a query point lies inside a con-

vex polygon with w-bit integer or rational coordinates. This problem can be easily reduced

to 1-d predecessor search, so the study was really about lower bounds. (Un)fortunately,

he did not address upper bounds for more challenging variants like intersecting a convex

polygon with a query line (see Corollary 5.1).

For the asymptotically tightest possible grid, i.e., U = O(nl/d), the discrete Voronoi

diagram [Cha04] can be constructed in linear time and can be used to solve static nearest

neighbor problems.

Nonorthogonal Problems

The quest for faster word-RAM algorithms for the core geometric problems dates back at

least to 1992, when Willard [WilGO] asked for a o(n lg n) algorithm for Voronoi diagrams.

Interest in this question has only grown stronger in recent years. For example, Jonathan
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Shewchuk (2005) in a blog comment wondered about the possibility of computing Delaunay

triangulations in 0(n) time. Demaine and Iacono (2003) in lecture notes, as well as Baran

et al. [BDP05], asked for a o(lg n) method for 2-d point location.

Explicit attempts at the point location problem have been made by the works of Amir

et al. [AEIS01] or Iacono and Langerman [ILOO]. These papers achieve an 0(lg lg U) query

time, but unfortunately their space complexity is only bounded by measures such as the

quad-tree complexity or the fatness. This leads to prohibitive exponential space bounds for

difficult input instances.

1.2.5 Practice for Theory

Though we have not been able to test the practicality of the new ideas from this work,

we believe they may have a practical impact for two reasons. First, as noted above, algo-

rithms of the same flavor (e.g., gridding heuristics) are already used successfully in practice.

Mathematically founded ideas for grid search could lead to better practical algorithms.

Second, for the algorithmic problems we have considered (e.g., constructing Voronoi

diagrams), the theoretical improvement over classic solutions is rather significant - o(n lg' n)

versus 0 (n lg n). In the similar case of sorting, it is widely appreciated that algorithms based

on bounded precision (radix sort) outperform 0(n lg n) sorting algorithms.

1.2.6 Theory for Theory

All things considered, it is perhaps the theoretical view of this emerging field that we find

most compelling. It is a general phenomenon that tools developed in one dimension for

exploiting bounded precision seem foreign to two or more dimensions, and simply do not

help. As such, our results have had to develop interesting new techniques, rebuilding our

understanding of bounded precision from scratch. By analogy with the one-dimensional

case, a mature research field with many dozens of publications, we can hope that in the

multidimensional case lurks a similarly rich theory.

A similar account can be made from the geometric side. Our work has forced us to

23



re-analyze many "standard" ideas and techniques in geometry through a new, information-

theoretic lens. This view of geometry seems interesting in its own right, and the algorithmic

puzzles it raises are very appealing.

Stepping back for a moment, we believe that there are compelling reasons for our study

even outside the realm of bounded precision. An overwhelming number of fundamental

problems in computational geometry are far from understood even in classic models of com-

putation. For example, in the real RAM, or even in the simpler group model, we do not

know how to prove any lower bound exceeding Q(lg n) for a static data structure (and often

not even that).

We believe progress even in these models requires a firm information-theoretic under-

standing of the problems. A good strategy seems to start developing such lower bound tools

from the ground up, starting with smaller lower bounds for the problems where bounded

precision helps. Though these lower bounds are asymptotically small, they are forced to

be in the right spirit of understanding geometry through information. Starting with these

computationally easier problems provides a natural programme for gradual development of

increasing lower bounds.
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Chapter 2

Point Location in a Slab

In this chapter, we study the special case of the 2-d point location problem in which the input

consists of n disjoint, nonvertical line segments inside a vertical slab, where the endpoints all

lie on the boundary of the slab. Given a query point q inside the slab, the goal is to quickly

find the segment that is immediately above q. We will obtain the following result:

Theorem 2.1. Consider a sorted list of n disjoint line segments spanning a vertical slab in

the plane with O(w)-bit rational coordinates. For any h > 1, we can build a data structure

with space and preprocessing time 0(n -2 h), so that point location queries take time:

o (min lgn/lglgn, Vw/lgw, w/h}

2.1 Technical Overview

We begin with a few words to explain intuitively the difficulty of the problem, and the

contribution of our solution. One of the most influential ideas in one-dimensional search is

given by fusion trees [FW93]. This structure shows how to sketch B = w- words, each w bits

long, into a single word of w bits such that a predecessor query among the B numbers can

be answered in constant time after seeing the sketch. Thus, to find the predecessor among

n numbers, one simply builds a balanced B-tree with such a sketch at every node. A query
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walks down a root-to-leaf path in constant time per node.

For planar point location, we suspect that this type of sketching is

impossible for any superconstant B, so a sublogarithmic query algorithm

has to be based on a novel approach. To best understand our idea, we Y4

define an information theoretic measure for a subregion in a vertical slab. y,

Refer to Figure 2-1. The key observation is that, while we may not be able

to efficiently locate the query point among any B segments, we can do so Y3

as long as the region between segments does not have too small entropy.

Figure 2-1:
More specifically, the search starts by assuming that the query point H = lg(Y2 YI)

can lie anywhere in a slab, a region with high entropy. By appropriate
+ lg(y4 -y3 )

sketching or tabulation techniques, each step of the algorithm reduces the

entropy of the region where the query could lie, by some fixed increment

AH. The answer is certainly found when the entropy of the region becomes small enough,

so we can bound the query time in terms of the entropy progress in each step. We note

that information-progress arguments of this flavor are rather common in lower bounds, but

generally their use in designing algorithms has not been widely appreciated.

We observe that this search strategy behaves quite differently from fusion trees. For

instance, the O(log. n) bound of fusion trees means the problem actually gets easier for

very high precision. For point location, on the other hand, it is not known how to improve

the 0 (lg n/ lg lg n) bound for any high precision.

The remainder of this chapter is organized as follows. We start in Section 2.2 by describing

a new fusion tree. Though this yields worse bounds than the regular fusion tree, the effort

best describes the intuition about our search strategy. This section may be skipped by the

impatient readers. The actual data structure for point location in a slab is presented in

Section 2.3, with further time/space trade-offs described in Section 2.4.
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2.2 Warm-Up: A Simpler 1-d Fusion Tree

We first re-solve the standard 1-d problem of performing predecessor search in a static set

of n numbers, where the numbers are assumed to be integers in [0, 2w). Our main idea is

very simple and is encapsulated in the observation below-roughly speaking, in divide-and-

conquer, allow progress to be made not only by reducing the number of elements, n, but

alternatively by reducing the length of the enclosing interval, i.e., reducing the number of

required bits, f. (Beame and Fich [BF02] adopted a similar philosophy in the design of their

data structure, though in a rather different way.)

Observation 2.2. Fix b and h. Given a set S of n numbers in an interval I of length 2e,

we can divide I into 0(b) subintervals such that:

(1) each subinterval contains at most n/b elements of S or has length 2 "-; and

(2) the subinterval lengths are all multiples of 2 ~h .

Proof. Form a grid over I consisting of 2h subintervals of length 2 -&h. Let B contain the

([in/bj)-th smallest element of S for i = 1, ... , b. Consider the grid subintervals that contain

elements of B. Use these 0(b) grid subintervals to subdivide I (see Figure 2-2(b)). Note

that any "gap" between two such consecutive grid subintervals do not contain elements of

B and so can contain at most n/b elements. 0

The data structure. The observation suggests a simple tree structure for 1-d predecessor

search. Because of (ii), we can represent each endpoint of the subintervals by an integer in

[0, 2 h), with h bits. We can thus encode all 0(b) subintervals in 0(bh) bits, which can be

packed (or "fused") into a single word if we set h = Lew/bj for a sufficiently small constant

e > 0. We recursively build the tree structure for the subset of all elements inside each

subinterval. We stop the recursion when n ; 1 (in particular, when f < 0). Initially, f = w.

Because of (i), in each subproblem, n is decreased by a factor of b or f is decreased by h.

Thus, the height of the tree is at most logbn + w/h = O(logbrn + b).
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Figure 2-2: (a) The rounding idea: locating among the solid segments reduces to locating
among the dotted segments. (b) Proof of Observation 2.2: elements of B are shown as
dots. (c) Proof of Observation 2.3: segments of B are shown, together with the constructed
sequence so, si, ....

To search for a query point q, we first find the subinterval containing q by a word operation

(see the next paragraph for more details). We then recursively search inside this subinterval.

(If the answer is not there, it must be the first element to the right of the subinterval; this

element can be stored during preprocessing.) By choosing b = [ lg nj, for instance, we get

a query time of O(logb n + b) = 0(Ig n/glg n).

Implementing the word operation. We have assumed above that the subinterval con-

taining q can be found in constant time, given 0(b) subintervals satisfying (ii), all packed in

one word. We now show that this nonstandard operation can be implemented using more

familiar operations like multiplications, shifts, and bitwise-ands (&'s).

First, because of (ii), by translation and scaling (namely, dividing by 2 "), we may

assume that the endpoints of the subintervals are integers in [0, 2 h). We can thus round q to

an integer 4 in [0, 2 h), without changing the answer. The operation then reduces to computing

the rank of an h-bit number 4 among an increasing sequence of 0(b) h-bit numbers a 1, 52 ,..-,

with bh < ew.

This subproblem was considered before [FW93, AMT99], and we quickly review one

solution. Let (z1 I Z2 I - -) denote the word formed by 0(b) blocks each of exactly h + 1
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bits, where the i-th block holds the value zi. We precompute the word (al 1 ... ) during

preprocessing by repeated shifts and additions. Given Q, we first multiply it with the constant

(111 -. -) to get the word (41I 1 ... ). Now, di < iff (2h + i - q)& 2 h is zero. With

one addition, one subtraction, and one & operation, we can obtain the word ((2h + &1 -

4) & 2h (2 h + &2 - q)& 2 h I .. ). The rank of 4 can then be determined by finding the

most significant 1-bit (msb) position of this word. This msb operation is supported in most

programming languages (for example, by converting into floating point and extracting the

exponent, or by taking the floor of the binary logarithm); alternatively, it can be reduced to

standard operations as shown by Fredman and Willard [FW93].

2.3 A Solution for 2-d

We now present the data structure for point location in a slab. The idea is to allow progress

to be made either combinatorially (in reducing n) or geometrically (in reducing the length

of the enclosing interval for either the left or the right endpoints).

Observation 2.3. Fix b and h. Let S be a set of n sorted disjoint segments, where all left

endpoints lie on an interval IL of length 2hL on a vertical line, and all right endpoints lie on

an interval IR of length 2eR on another vertical line. In 0(b) time, we can find 0(b) segments

so, s1, ... E S in sorted order, which include the lowest and highest segments of S, such that:

(1) for each i, at least one of the following holds:

(la) there are at most n/b segments of S between si and si+1

(1b) the left endpoints of si and si+1 lie on a subinterval of length 2 L-L .

(1c) the right endpoints of si and sj+1 lie on a subinterval of length 2 tR-h.

(2) there exist segments 9o, s2,... cutting across the slab, satisfying all of the following:

(2a) so -< 90 -< 2 -< -

(2b) distances between the left endpoints of the 9i 's are all multiples of 21L-.
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(2c) distances between right endpoints are all multiples of 2 eR-h

Proof. Let B contain every [n/b]-th segment of S, starting with the lowest segments so.

Impose a grid over IL consisting of 2h subintervals of length 2 eL-h, and a grid over IR

consisting of 2h subintervals of length 2 .R-h. We define si+1 inductively based on si, until

the highest segment is reached. We let sj+1 be the highest segment of B such that either the

left or the right endpoints of si and si+1 are in the same grid subinterval. This will satisfy

(1b) or (1c). If no such segment above si exists, we simply let si+1 be the successor of si,

satisfying (la). (See Figure 2-2(c) for an example.)

Let 9i be obtained from si by rounding each endpoint to the grid point immediately above

(ensuring (2b) and (2c)). By construction of the si's, both the left and right endpoints of si

and si+2 are in different grid subintervals. Thus, i -< si+2, ensuring (2a). 0

The data structure. Because of (2b) and (2c), we can represent each endpoint of the

9i's as an integer in [0, 2h), with h bits. We can thus encode all 0(b) segments 9o, 92, . ..

in 0(bh) bits, which can be packed in a single word if we set h = [Ew/bj for a sufficiently

small constant E > 0. We recursively build the tree structure for the subset of all segments

strictly between si and si+1. We stop the recursion when n < 1 (in particular, when L < 0

or eR < 0). Initially, eL = fR = w. Because of (1), in each subproblem, n is decreased by a

factor of b, or fL is decreased by h, or £R is decreased by h. Thus, the height of the tree is

at most logb n + 2w/h = O(log n + b).

Given a query point q, we first locate q among the sj's by a word operation. With one

extra comparison we can then locate q among sO, S2, S4 . .. , and with one more comparison we

can locate q among all the si's and answer the query by recursively searching in one subset.

By choosing b = [ lg nJ, for instance, we get a query time of 0 (logb n + b) = 0 (lg n/ lg lg n).

The data structure clearly requires 0(n) space. Since the segments si's and 9j's can be

found in linear time for pre-sorted input, the preprocessing time after initial sorting can be

bounded naively by 0(n) times the tree height, i.e., 0(n lg n/ lg lg n) (which can easily be

improved to 0(n) as we will observe in the next subsection). Sorting naively takes 0 (n lg n)
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time, which can be improved by known results.

Implementing the word operation. We have assumed above that we can locate q among

the si's in constant time, given 0(b) segments 9o, §2 . . .,satisfying (ii), all packed in one word.

We now show that this nonstandard operation can be implemented using more familiar

operations like multiplications, divisions, shifts, and bitwise-ands.

First, by a projective transformation, we may assume that the left endpoint of §i is (0, ii)

and the right endpoint is (2h, b), where the i's and bi's are increasing sequences of integers

in [0, 2h). Specifically, the mapping below transforms two intervals IL = {0 x [B, B + 2AL)

and IR = {C} x [D, D + 2 R) to {0} x [0, 2h) and { 2 h} x [0, 2 h) respectively:

(X Y) 42 h+fR . X 2 h[C - (y - B) - (D - B) -x](21
(21L(C - x)+ 2R -x' 21L(C - x)+2'-x ) - (

The line segments §i's are mapped to line segments, and the belowness relation is pre-

served.

We round the query point q, after the transformation, to a point 4 with integer coordinates

in [0, 2 h). (Note that 4 can be computed exactly by using integer division in the above

formula.) Observe that a unit grid square can intersect at most two of the §i's, because the

vertical separation between two segments (after transformation) is at least 1 and consequently

so is the horizontal separation (as slopes are in the range [-1, 1]). This observation implies

that after locating Q, we can locate q with 0(1) additional comparisons.

To locate 4 = (i, Q) for h-bit integers z and , we proceed as follows. Let (zI I Z2

denote the word formed by 0(b) blocks each of exactly 2(h + 1) bits, where the i-th block

holds the value zi (recall that bh < 6w). We precompute (&0 2 --.- ) and (60  2 -.. )

during preprocessing by repeated shifts and additions. The y-coordinate of §i at J is given

by [di( 2h - z) + b4]/2h. With two multiplications and some additions and subtractions, we

can compute the word (60( 2h - 1) + b (2 d 2 (2 h - J) + b2 : - - -). We want to compute

the rank of 2 h among the values encoded in the blocks of this word. This subproblem was

solved before [FW93] (as reviewed in Section 2.2).
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Remarks. The above data structures can be extended to deal with O(w)-bit rational co-

ordinates, i.e., coordinates that are ratios of integers in the range [-2cw, 2cw] for some con-

stant c. (This extension will be important in subsequent applications.) The main reason is

that the coordinates have bounded "spread": namely, the difference of any two such distinct

rationals must be at least 1/ 22*. Thus, when f or m reaches below -2cw, we have n < 1.

The point-segment comparisons and projective transformations can still be done in constant

time, since O(w)-bit arithmetic can be simulated by 0(1) w-bit arithmetic operations.

The data structures can also be adapted for disjoint open segments that may share

endpoints: We just consider an additional base case, when all segments pass through one

endpoint p, say, on IL. To locate a query point q among these segments, we can compute

the intersection of the segment pq with IR (which has rational coordinates) and perform a

1-d search on IR.

Proposition 2.4. Given a sorted list of n disjoint line segments spanning a vertical slab

in the plane with 0(w)-bit rational coordinates, we can build a data structure in o(n lgn)

time and 0(n) space so that point location queries can be answered in t(n) := 0(lg n/ lg lg n)

time.

2.4 Alternative Bounds

We now describe some alternative bounds which depend on the universe size and the space.

Proposition 2.5. Consider a sorted list of n disjoint line segments spanning a vertical slab

in the plane with 0(w)-bit rational coordinates. For any h > 1, we can build a data structure

of size 0(n -4 h) in time 0(n - (w/h + 4 h)) so that point location queries can be answered in

time 0(w/h).

Proof. This is a simple variant of our previous data structure, relying on table lookup instead

of word packing. We apply Observation 2.3 recursively, this time with b = 2h. The height

of the resulting tree is now at most 0(w/h + logb n) = 0((w + lg n)/h) = 0(w/h).
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Because the segments s0, 92, .. . can no longer be packed in a word, we need to describe

how to locate a query point q among the 9i's in constant time. By the projective transfor-

mation and rounding as described in Section 2.3, it suffices to locate a point q that has h-bit

integer coordinates. Thus, we can precompute the answers for all 2 2h such points during

preprocessing. This takes time 0(2 2h) time: trace each segments horizontally in O(b - 2h)

time, and fill in the rest of the table by 2 h scans along each vertical grid line.

The total extra cost for the table precomputation is O(n - 4h). We immediately obtain

preprocessing time 0(n -(w/h+4h)) starting with sorted segments, space Q(n -4h) and query

time O(w/h), for any given parameter h. 0

Now we can obtain a linear-space data structure whose running time depends on w, by

a standard space reduction as follows:

Let R contain the [in/ri-lowest segment for i = 1,... , r, and apply the data structure

of Proposition 2.5 only for these segments of R. To locate a query point q among S, we first

locate q among R and then finish by binary search in a subset of 0(n/r) elements between

two consecutive segments in R.

The preprocessing time starting with sorted segments is O(n +r - (w/h + 4h)), the space

requirement 0(n+r -4h), and the query time is O(w/h+lg(n/r)). Setting r = [n/(w/h+4")

leads to O(n) preprocessing time and space and O(w/h + h) query time. Setting h = Lv'#J

yields O( /iH) query time.

We can reduce the query time further by replacing the binary search with a point location

query using Proposition 2.4 to store each subset of O(n/r) elements. The query time becomes

O(w/h + lg(n/r)/ lg lg(n/r)) = O(w/h + h/ lg h). Setting h = [Lw lgwJ instead yields a

query time of 0( w/lg w).

Incidentally, the preprocessing time in Proposition 2.4 can be improved to O(n) using

the same trick, for example, by choosing r = [n/ log n]. The preprocessing time in Proposi-

tion 2.5 can be reduced to O(n - 4h) as well, by choosing r = Ln/(w/h)].

We have thus obtained the bounds in Theorem 2.1.
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Chapter 3

Sorting Points and Segments

In this chapter, we deal with the offline version of point location in a slab. We are given a

vertical slab in the plane, m nonintersecting segments cutting across the slab, and n points

inside the slab. The goal is to identify for each of the n points, the segments immediately

above and below it. In other words, we would like to sort the points "relative to" the

segments.

This problem can easily be solved through n queries to our online point location data

structure, giving a running time of 0 (m+n-min {m , }). However, we will now show

a significantly better algorithm for the offline problem. The relation to the online problem

is parallel to that for 1-d integer sorting. There, 1-d location (predecessor search) is known

to require comparatively large running times (e.g. in terms of n alone, an Q( " ) lower

bound per point is known [BF02]). Yet, one can find ways of manipulating information in the

offline problem (1-d sorting), such that the bottleneck of using the online problem is avoided

(e.g. we can sort in 0(nVlg lg n) expected time [HT02]). As for sorting, the highlight of our

pursuit is not to study "bit tricks" in the word RAM model, but to study how information

about points and lines can be decomposed in algorithmically useful ways.

Theorem 3.1. Consider a sorted list of m disjoint line segments spanning a vertical slab

in the plane, and n points inside the slab. Assuming all points and segment endpoints have

O(w)-bit rational coordinates, we determine the segment immediately below each point in
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time n - 2O(v'Iggm) + 0(m).

Note that this bound does not depend on the universe (aside from assuming a coordinate

fits in a word), and is deterministic. The bound is a dramatic improvement over the online

bounds - note, for example, that the new bound grows more slowly than n lg' m + m for any

constant E > 0. In addition, the new bound represents a much more convincing improvement

over the standard 0(n lg m) bound based on binary search, demonstrating the power granted

by bounded precision.

The remainder of this chapter is organized as follows. In Section 3.1, we describe a

simple algorithm running in time 0(nV 1gm + m). This demonstrates the basic divide-and-

conquer strategy behind our solution. In Section 3.2, we implement this strategy much more

carefully to obtain an interesting recurrence that ultimately leads to the stated time bound

of Theorem 3.1. The challenges faced by this improvement are similar to issues in integer

sorting, and indeed we borrow (and build upon) some tools from that field.

Unfortunately, the implementation of Section 3.2 requires a nonstandard word operation.

In Section 3.3, we describe how to implement the algorithm on a standard word RAM,

using only addition, multiplication, bitwise-logical operations, and shifts. Interestingly, the

new implementation requires some new geometric observations that affect the design of the

recursion itself.

3.1 An Initial Algorithm

3.1.1 The Basic Recursive Strategy

We begin with a recursive strategy based on Observation 2.3, which was also the basis of

our online algorithm. (Later in Section 3.3, we will replace this with a more complicated

recursive structure.) We repeat the observation here for ease of reference:

Observation 3.2. Fix b and h. Let S be a set of n sorted disjoint segments, where all left

endpoints lie on an interval IL of length 2eL on a vertical line, and all right endpoints lie on
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SLAB(Q, S):

0. if m = 0, set all answers to NULL and return

1. let so, si,.... be the 0(b) segments from Observation 3.2
2. let (o be the projective transform mapping IL to {O} x [0, 2h] and IR to { 2 h} x [0, 2h].

Compute ROUND(p(Q)) and 090), 0(92) ....

3. SLABo(ROUND(Cp(Q)), {(p(90), cP(92), .. -)
4. for each q C Q with ANS[ROUND(Cp(q))] = W(§i) do

set ANS[q] = the segment from {Sij4, .. , si+7} immediately below q
5. for each si do

SLAB({q E Q I ANS[q] = si}, {s E S si -< s -< si+1 })

Figure 3-1: A recursive algorithm for the slab problem. Parameters b and h are fixed in the
analysis; ROUND(-) maps a point to its nearest integral point.

an interval IR of length 2eR on another vertical line. In 0(b) time, we can find 0(b) segments

so, s1,... G S in sorted order, which include the lowest and highest segments of S, such that:

(1) for each i, at least one of the following holds:

(la) there are at most n/b segments of S between si and si+1.

(1b) the left endpoints of si and si+1 lie on a subinterval of length 2 IL-h

(1c) the right endpoints of si and si+1 lie on a subinterval of length 2iR-h.

(2) there exist segments 0, 92,... cutting across the slab, satisfying all of the following:

(2a) sO -< §0 s2 < S 2 -< --

(2b) distances between the left endpoints of the 9i's are all multiples of 2 hLh.

(2c) distances between right endpoints are all multiples of 2 eR-h*

This naturally suggests a recursive algorithm. In the pseudocode in Figure 3-1, the

input is a set Q of n points and a sorted set S of m disjoint segments, where the left and

right endpoints lie on intervals IL and IR of length 2hL and 2eR respectively. At the end,

ANS[q] stores the segment from S immediately below q for each q E Q. A special NULL

value for ANS[q] signifies that q is below all segments. We assume a (less efficient) procedure
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SLABo(Q, S), with the same semantics as SLAB(Q, S), which is used as a bottom case of the

recursion. The choice of SLABo() is a crucial component of the analysis.

We first explain why the pseudocode works. In step 2, an explicit formula for the trans-

form o has already been given as (2.1) in Chapter 2; this mapping preserves the belowness

relation. According to property (2) in Observation 3.2, we know that the transformed seg-

ments WPO), W(§2),... all have h-bit integer coordinates from [2 h]. After rounding, the n

points p(Q) will lie in the same universe.

Any unit square can intersect at most two of the y(§i)'s, since these segments have vertical

separation at least one and thus horizontal separation at least one (as slopes are between -1

and 1). If W(§i) -< ROUND(o(q)) -< W(gi+2), then we must have 0(-i4) -< W(q) -< p(§i+6),

implying that Si-4 - Si-4 -< q -< si+6 -< si+8. Thus, at step 4, ANS[q] contains the segment

from so, si ... immediately below q. Once this is determined for every point q E Q, we can

recursively solve the subproblem for the subset of points and segments strictly between si

and sj+1 for each i, as is done at step 5. An answer ANS[q] = NULL from the i-th subproblem

is interpreted as ANS[q] = si.

Let f = (eL + fR)/2, where f < w. Denote by T(n, m, t) the running time of SLAB),

and To(n, b', h) the running time of the call to SLABo() in step 3. Steps 1, 2 and 4 can be

implemented naively in 0(n + m) time. We have the recurrence:

b'

T(n, m, f) = To(n, b', h) + O(n + m) + Z T(ni, mi, fi), (3.1)
i=o

where b' = 0(b), Ej ni = n, Ej mj = m - b'. Furthermore, according to property (1) in

Observation 3.2, for each i we either have mi ! or fi < f - t. This implies that the depth

of the recursion is O(logb m + ).

3.1.2 An O(n/gm + m) Algorithm

In Chapter 2, we noticed that for b'h ~ w, SLABO() can be implemented in To(n, b', h) = 0(n)

time by packing b' segments from an h-bit universe into a word. By setting b ~ loge m and
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h ~ w/ log' m, this leads to an 0((n + m) 19) algorithm.

Instead of packing multiple segments in a word, our new idea is to pack multiple points

in a word. To understand why this helps, remember that the canonical implementation for

SLABO() runs in time 0(nlgm) by choosing the middle segment and recursing on points

above and below this segment. By packing t segments in a word, we can hope to reduce this

time to 0(n logt m). However, by packing t points in a word, we can potentially reduce this

to 0(1 Ig m), a much bigger gain. (One can also think of packing both points and segments,

for a running time of 0(n logt m). Since we will ultimately obtain a much faster algorithm,

we ignore this slight improvement.)

To implement this idea, step 2 will pack ROUND(cp(Q)) with O(w/h) points per word.

Each point is allotted 0(h) bits for the coordinates, plus lg b = 0(h) bits for the answer

ANS[ROUND(p(q))] which SLABoO must output. This packing can be done in 0(n) time,

adding one point at a time.

Working on packed points, SLABO() has the potential of running faster, as evidenced by

the following lemma. For now, we do not concern ourselves with the implementation on a

word RAM, and assume nonstandard operations (an operation takes two words as input,

and outputs one word).

Lemma 3.3. If lg b < h < w, SLABO() can be implemented on a RAM with nonstandard

operations with a running time of To(n, b, h) = 0(n- lg b + b).

Proof. Given a segment and a number of points packed in a word, we can postulate two

operations which output the points above (respectively below) the segment, packed consec-

utively in a word. Choosing a segment, we can partition the points into points above and

below the segment in O([n 1) time. In the same asymptotic time, we can make both output

sets be packed with [fl points per word (merging consecutive words which are less than

full).

We now implement the canonical algorithm: partition points according to the middle

segment and recurse. As long as we are working with ;> 1 points, the cost is 0(e) per point

for each segment, and each point is considered 0(lg b) times. If we are dealing with less than
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w
T points, the cost is 0(1), and that can be charged to the segment considered. Thus, the

total time after packing is O(n-k ig b + b).

The last important issue is the representation of the output. By the above, we obtain

the sets of points which lie between two consecutive segments. We can then trivially fill in

the answer for every point in the lg b bits allotted for that. However, we want an array of

answers for the points in the original order. To do that, we trace the algorithm from above

backwards in time. We use an operation which is the inverse of splitting a word into points

above and below a segment.

Plugging the lemma into (3.1), we get T(n, m, f) = O(n- lg b + n + m) O(logb m + )

Setting lg b = i-g m and h = w/VIg m, we obtain T(n, m, w) = O((n + m) /1gm). This can

be improved to O(m + nNIgm) by the standard trick of considering only one in O(/Igm)

consecutive segments. For every point, we finish off by binary searching among O(/Ig m)

segments, for a negligible additional time of 0(n lg g m).

3.2 An n - 20(Wlglg m) + O(m) Algorithm

3.2.1 Preliminaries

To improve on the O(m + n/lg m) bound, we bootstrap: we use an improved algorithm

for SLABO as SLABO(), obtaining an even better bound for SLABO. To enable such im-

provements, we can no longer afford the O(n) term in the recurrence (3.1). Rather, a call

to SLAB() is passed Q in word-packed form, and we want to implement the steps between

recursive calls in sublinear time (close to the number of words needed to represent Q, not to

n = Q).
This task will require further ideas and more sophisticated word-packing tricks. To un-

derstand the complication, let us contrast implementing steps 2 and 5 of SLABO in sublinear

time. Computing ROUND(p(Q)) in Step 2 is solved by applying a function in parallel to a

word-packed vector of points. This is certainly possible, at least using nonstandard word
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operations. However, step 5 needs to group elements of Q into subsets (i.e. sort Q according

to ANS[q]). This is a deeper information-theoretic limitation, and it is rather unlikely that it

can always be done in time linear in the number of words needed to store Q. The problem

has connections to applying permutations in external memory, a well-studied problem which

is believed to obey similar limitations [AV88].

To implement step 5 (and also step 4), we will use a subroutine SPLIT(Q, LABEL). This

receives a set Q of f-bit elements, packed in O(n!) words. Each elements q E Q has a

(lg m)-bit label LABEL[q] with lg m < f. The labels are stored in the same O(n ) words.

We can think of each word as consisting of two portions, the first containing O(f) elements

and the second containing the corresponding O(1j) labels. The output of SPLIT(Q, LABEL)

is a collection of sublists, so that all elements of Q with the same label are put in the same

sublist (in arbitrary order).

In addition, we will need SPLITO to be reversible. Suppose the labels in the sublists have

been modified. We need a subroutine UNSPLIT(Q), which outputs Q in the original order

before SPLITO, but with the modified labels attached.

The following lemma states the time bound we will use for these two operations. The

implementation of SPLIT( is taken from a paper by Han [Han0i] and has been also used as

a subroutine in several integer sorting algorithms [HanO4, HT02]. As far as we know, the

observation that UNSPLIT( is possible in the same time bound has not been stated explicitly

before.

Lemma 3.4. Assume LABEL[q] E [m] for all q E Q, and let M be a parameter. If I lg m <

jlg M and lgm <f < w, both SPLITO and UNSPLIT( require time O(nyi Ig 2 + M).

Proof. Let g = . Each word contains g elements, with g lg m bits of labels. Put words with

the same label pattern in the same bucket. This can be done in O(n/g+ ViM) time, since the

number of different label patterns is at most 2g1' K M. For each bucket, we form groups

of g words and transpose each group to get g new words, where the i-th element of the j-th

new word is the j-th element of the i-th old word. Transposition can be implemented in

O(lg g) standard word operations [Tho02b]. Elements in each new word now have identical
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labels. We can put these words in the correct sublists, in O(n/g + m) time. There are at

most g leftover elements per bucket, for a total of O(vlYg) = o(M); we can put them in

the correct sublists in o(M) time. The total time is therefore O((n/g) lg g + M).

To support unsplitting, we remember information about the splitting process. Namely,

whenever we transpose g words, we create a record pointing to the g old words and the g

new words. To unsplit, we examine each record created and transpose its g new words again

to get back the g old words (with labels now modified). We can also update the leftover

elements by creating o(M) additional pointers. L

A particularly easy application of this machinery is to implement the algorithm of Section

3.1 with standard operations (with a minor lg lg m slowdown). This result is not interesting

by itself, but it will be used later as the base case of our bootstrapping strategy.

Corollary 3.5. If 1 lg b < 1 lg M and lg b < h < w, the algorithm for SLABo() from Lemma

3.3 can be implemented on a word RAM with standard operations in time TO(n, b, h) =

O(n- Ig b Ig E + bW).

Proof. The nonstandard operations used before were splitting and unsplitting a set of points

packed in a word, depending on sidedness with respect to a segment. It is not hard to compute

sidedness of all points from a word in parallel using standard operations: we apply the linear

map defining the support of the segment to all points (which is a parallel multiplication and

addition), and keep the sign bits of each result. The sign bits define 1-bit labels for the

points, and we can apply SPLIT( and UNSPLIT() for these. l

Since the algorithm is used with b = lg m and h = w/ lg m, we incur a slowdown of

O(lg 1) = O(lg lg m) per point compared to the implementation with nonstandard opera-

tions. By setting M = m 2 , the algorithm of the previous section would then run in time

O(n1glgm lg lg m + n3 ) if implemented with standard operations. (The dependence of the

second term on m can be lowered as well.)
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3.2.2 The Improved Algorithm

Our fastest algorithm follows the same pseudocode of Figure 3-1, but with a more careful

implementation of the individual steps. Let I be the number of bits per point and Fh the

original number of segments in the root call to SLAB(). We have lg ih _ i < w. In a

recursive call to SLAB(), the input consists of some n points and m < in segments, all with

coordinates from [2e], where e< f. Points will be packed in 0(t) bits each, so the entire

set Q occupies 0(n ) words. At the end, the output ANS[q] is encoded as a label with g m

bits, stored within each point q E Q, with the order of the points unchanged in the list Q.

Note that one could think of repacking more points per word as f and m decrease, but this

will not yield an asymptotic advantage, so we avoid the complication (on the other hand,

repacking before the call to SLAB 0 () is essential).

In step 2, we can compute ROUND(P(Q)) in time linear in the number of words 0(nl-),

by using a nonstandard word operation that applies the projective transform (and rounding)

to multiple points packed in a word. Unfortunately, it does not appear possible to imple-

ment this efficiently using standard operations. We will deal with this issue in Section 3.3,

by changing the algorithm for SLABO so that we only require affine transformations, not

projective transformations.

Before the call to SLABO0() in step 3, we need to condense the packing of the points

ROUND(p(Q)) to take up O(nA) words. Previously, we had O(1) points per word, but after

step 2, only 0(h) bits of each point were nonzero. We will stipulate that points always

occupy an number of bits which is a power of 2. This does not affect the asymptotic running

time. Given this property, we obtain a word of ROUND(p(Q)) by condensing f/h words.

This operation requires shifting each old word, and ORing it into the new word.

Note that the order of ROUND(p(Q)) is different from the order of Q, but this is irrelevant,

because we can also reverse the condensing easily. We simply mask the bits corresponding

to old word, and shift them back. Thus, we obtain the labels generated by SLABO() in the

original order of Q. Both condensing and its inverse take 0(nl) time.

For the remainder of the steps, we need to SPLIT( and UNSPLIT(. For that, we fix a
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parameter M satisfying Ilg in- < g M. In step 4, we first split the list ROUND(Cp(Q)) into

sublists with the same ANS labels. For each sublist, we can perform the constant number of

comparisons per point required in step 4, and then record the new ANS labels in the list, in

time linear in the number of words 0(n -). It is standard to implement this in the word RAM

by parallel multiplications (see the proof of Lemma 3.4). To complete step 4, we UNSPLIT)

to get back the entire list ROUND(p(Q)), and then copy the ANS labels to the original list Q

in O(n-) time. Since both lists are in the same order, this can be done by masking labels

and ORing them in.

To perform step 5, we again split Q into sublists with the same ANS labels. After the

recursive calls, we unsplit to get Q back in the original order, with the new ANS labels.

3.2.3 Analysis

For lgF < 1 Ilg M and lgin < < w, the recurrence (3.1) now becomes:

~ b'

T(n, m, f) = To(n, b', h) + O n Ig = + M + E T(ni, mi, Ii), (3.2)

where b' = 0(b), Ej ni = n, Ej mi = m - b', and for each i, we either have m 5 !1 or

fi < f - . As before, the depth of the recursion is bounded by O(logb i + T.

Assume that for '1 lg b < 1 lg M and lg b < h < w, an algorithm with running time

To(N, b, h) 5 Ck (n lgl/k b lg (lg b) + bM)

is available to begin with. This is true for k = 1 with c1 = 0(1) by Corollary 3.5.

Then the recurrence (3.2) yields:

h w W
T(m,,e) = O(Ck) ([n-- lgl/k b lg ( lg b) + nig logbin+ - + mM).

SeW h W g( a h 

Set Ig b = lgk/(k+1) in and h = TI g1/(k+1) ff. Notice that indeed E Ig b = g F < 1 I g M
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and ig b < h < w. Thus, we obtain an algorithm with running time:

T(n, n, ) Ck+1 n-o1 /(k+) g in-g +M

for some Ck+1 = 0(1) - Ck.

Iterating this process k times, we get:

T(n, F, ) < 20(k) (n Wlg1/i ig inm) + inM

for any value of k. Choosing k = /g ig ri to asymptotically minimize the expression, and

plugging in £= w and M = i 2 (so that indeed lgffi K < lg M), we get:

T(n,in,w) = 2'(V'gli9 ) (n+ in3).

We can reduce the dependence on in- to linear as follows. First, select one out of every

Fn3 /4 consecutive segments of S, and run the above algorithm on just these F1/4 segments.

This takes time 20(01gl)(n + fn3/4 ) time. Now recurse between each consecutive pair of

selected segments. The depth of the recursion is 0(lg lg in), and it is straightforward to

verify that the running time is n - 20(Vglgfi) + 0(fn).

3.3 Avoiding Nonstandard Operations

The only nonstandard operation used by the algorithm of Section 3.2 is applying a projective

transform in parallel to points packed in a word. Unfortunately, it does not seem possible to

implement this in constant time using standard word RAM operations, since, according to

the formula for projective transform (2.1), this operation requires multiple divisions where

the divisors are all different.

One idea is to simulate the special operation in slightly superconstant time. We can

use the circuit simulation results of Brodnik et al. [BMM97] to reduce the operation to
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ig w - (ig ig w)o(') standard operations. For the version of the slab problem in dimension 3

or higher (see Appendix A), this is the best approach we know.

However, in two dimensions we can get rid of the dependence on the universe, obtaining

a time bound of n - 2O(-1g gm) + 0(m) on the standard word RAM. This constitutes the

object of this section.

3.3.1 The Center Slab

By horizontal translation, we can assume the left boundary of our vertical slab is the y-

axis. Let the abscissa of the right boundary be A. For some h to be determined, let the

center slab be the region of the plane defined by A/2h < x < A - (1 - 2 -h). The lateral

slabs are defined in the intuitive way: the left slab by 0 < x < A/2h and the right slab by

A - (1 - 2 -h) < x 'A.

The key observation is that distances are somewhat well-behaved in the center slab, so

we will be able to decrease both the left and right intervals at the same time, not just one of

them. This enables us to use (easier to implement) affine maps instead of projective maps.

The following is a replacement for Observation 3.2:

Observation 3.6. Fix b and h. Let S be a set of m sorted disjoint segments, such that all

left endpoints lie on an interval IL and all right endpoints lie on an interval IR, where both

IL and IR have length 2e. In 0(b) time, we can find 0(b) segments so, si,... E S in sorted

order, which include the lowest segment of S, such that:

(1) for each i, at least one of the following holds:

(la) there are at most m/b segments of S between si and si+1.

(1b) both the left and right endpoints of si and si+1 are at distance at most 2 -h.

(2) there exist segments so -< 91 < - cutting across the slab, satisfying all of the following:

(2a) distances between the left endpoints of the 9i 's are multiples of 2 '-2h

(2b) ditto for the right endpoints.

46



4i+ 2

Si+2 Si> > 2f

2e-2h ti -eh-1

center slab
(a) A/2h A/2h (b) A/2h

Figure 3-2: (a) A center slab, as in Observation 3.6. (b) A left slab, as in Observation 3.7.

(2c) inside the center slab, 0 -< o -s S2 -< 2 -< - - - -

Proof. Let B contain every Lm/bj-th segment of S, starting with the lowest segment so. We

define si+1 inductively. If the next segment after si has either the left or right endpoints at

distance greater than 2'-', let sj+1 be this segment, which satisfies (la). Otherwise, let sj+1

be the highest segment of B which satisfies (1b).

Now impose grids over IL and IR, both consisting of 22h subintervals of length 2 -2h

We obtain 9i from si by rounding each endpoint to the grid point immediately above. This

immediately implies go -< 91 -< ... and si -< 9j. Unfortunately, 9i and si+k may intersect

for arbitrarily large k (e.g. si, ... , si+k are very close on the left, while each consecutive pair

is far on the right). However, we will show that inside the center slab, 9i - si+2. (See

Figure 3-2(a).)

By construction, si and si+2 are vertically separated by more than 2 "- either on the left

or on the right. Since lateral slabs have a fraction of 2 -h of the width of the entire slab, the

vertical separation exceeds 2 "-/ 2 h -- 2 e-2h anywhere in the center slab. Rounding si to 9i

represents a vertical shift of less than 2 --2h anywhere in the slab. Hence, Si -< si+2 in the

center slab.

We now describe how to implement SLAB(, assuming the intervals containing the left

endpoints (IL) and the right endpoints (IR) both have length 2 f. In this section, we only

deal with points in the center slab. It is easy to SPLIT() Q into subsets corresponding to the
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center and lateral slabs, and UNSPLIT() at the end.

We use Observation 3.6 instead of Observation 3.2. Since IL and IR have equal length,

the map p is affine. Thus, it can be implemented using parallel multiplication and parallel

addition. This means step 2 can be implemented in time O(n-7) using standard operations.

Because we only deal with points in the center slab, and there si -< Si - si+2 (just like in

the old Observation 3.2), steps 4 and 5 work in the same way.

3.3.2 Lateral Slabs

To deal with the left and right slabs, we use the following simple observation, which we only

state for the left slab by symmetry. Note that the guarantees of this observation (for the left

slab) are virtually identical to that of Observation 3.6 (for the center slab). Thus, we can

simply apply the algorithm of the previous section for the left and right slabs.

Observation 3.7. Fix b and h. Let S be a set of m sorted disjoint segments, such that all

left endpoints lie on an interval IL and all right endpoints lie on an interval IR, where both

IL and IR have length 2t. In 0(b) time, we can find 0(b) segments to, t1 ,... c S in sorted

order, which include the lowest segment of S, such that:

(1) for each i, at least one of the following holds:

(la) there are at most m/b segments of S between si and si+1-

(1b) anywhere in the left slab, the vertical separation between si and si+1 is less than

2 t-h+1

(2) there exist segments to -< 1  .. cutting across the left slab, satisfying all of the

following:

(2a) distances between the left endpoints of the ti 's are multiples of 2 f2h

(2b) ditto for the right endpoints.

(2c) inside the left slab, to -< to -< t 2 -< 2 ---
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Proof. Let IA be the vertical interval at the intersection of the right edge of the left slab

with the parallelogram defined by IL and IR. Note IA also has size 2e.

Let B contain every Lm/bj-th segment of S, starting with the lowest segment to. Given

ti, we define tj+1 to be the highest segment of B which has the left endpoint at distance at

most 2'-' away. If no such segment above tj exists, let tj+1 be the successor of tj in B (this

will satisfy (la)). In the first case, (1b) is satisfied because the right endpoints of t2 and tj+1

are at distance most 2e, so on 'A, the separation is at most 2t-h(l - 2 --h) + 2 t- 2 -h < 2 t-h+1*

Now impose grids over IL and IA, both consisting of 2h+1 subintervals of length 2 -- 1.

We obtain ti from tj by rounding the points on IL and IA to the grid point immediately

above. Note that the vertical distance between tj and i is less than 2 1-h- ' anywhere in the

left slab. On the other hand, the left endpoints of tj and ti+2 are at distance more than 2--.

The distance on IA (and anywhere in the left slab) is at least 2 '-h( - 2 -h) 2 -h-1 . Thus

ti -< ii -< ti+2 . (See Figure 3-2(b).) 0

3.3.3 Bounding the Dependence on m

Our analysis needs to be modified, because segments are simultaneously in the left, center

and right slabs, so they are included in 3 recursive calls. In other words, in recurrence (3.2),

we have to replace E> m = m - b' with a weaker inequality K. m ; 3m. Recall that for our

choice of b and h, the depth of the recursion is bounded by O(logb i + () = O(lg/(k+l) )

Thus, the cost per segment is increased by an extra factor of 3 0(lg(1/(k*l) = 30( lgi) for

each bootstrapping round; the cost per point does not change. With k = lglg rounds,

the overall dependence on in- is now increased slightly to 20(V1 1gii) . 3 - 30( 1g i g 1gi)) -

O(nj3+e). As before, this can be made O(i) by working with Fl'/4 segments and recursing.
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Chapter 4

General Point Location via Reductions

We now tackle the 2-d point location problem in the general setting: given a static planar

subdivision formed by a set S of n disjoint open line segments with O(w)-bit integer or

rational coordinates, preprocess S so that given a query point q with integer or rational

coordinates, we can quickly identify (a label of) the face containing q. By associating each

segment with an incident face, it suffices to find the segment that is immediately above q.

Assuming a solution for the slab problem with O(n) space and preprocessing time and t(n)

query time, we can immediately obtain a data structure with O(n 2 ) space and preprocessing

time, which supports queries in O(t(n)) time: Divide the plane into O(n) slabs through the

x-coordinates of the endpoints and build our 2-d fusion tree inside each slab. Note that the

endpoints of the segments clipped to the slab indeed are rationals with O(w)-bit numerators

and denominators. Given a query point (x, y), we can first locate the slab containing (x, y)

by a 1-d predecessor search on x, and then search in this slab. Since point location among

horizontal segments solves predecessor search, we know predecessor search takes at most t(n)

time.

Note that this reduction also relates the two offline problems. If we can sort n points

and m segments in a slab with running time O(m + n -t(m)), general offline point location

is solved in time O(m 2 + n - t(m)), as each point appears in exactly one slab.

Using more advanced techniques, we can obtain reductions from the general case to the
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slab problem without a loss in the bounds. Formally, our results are as follows:

Theorem 4.1. Let all coordinates by 0(w)-bit rationals. Suppose there is a data structure

with 0(n) preprocessing time and space that can answer point location queries in t(n) time

for n disjoint line segments spanning a vertical slab in the plane.

Then given any planar connected subdivision defined by n disjoint line segments, we can

build a data structure in 0(n) time and space so that point location queries can be answered

in time asymptotically:

t(n) -0(lglgn)

min t(n), if t(n)/ lg6 n is monotone increasing for constant 6 > 0

Vw/ lg w

Observe that the running time is unaffected if it is a not-too-small function of n, making

this a very general reduction. At present, the best bound is of course t(n) = 0(lg n/ lg lg n)

by Theorem 2.1. If the running time depends on w, we do not get such a nice guarantee.

However, we can still recover the 0( w/ g w) bound from Theorem 2.1, which is the best

known to date. This needs a somewhat more careful analysis in the reduction, crafter for

the precise bounds of Theorem 2.1.

Theorem 4.2. Suppose there is an algorithm with running time 0(m) + n T(m), which can

answer offline point location for m segments cutting across a slab, and n points inside the

slab. Then we can locate n given points in an arbitrary planar subdivision with m segments

in time 0(m + n - T(m) - lglgm).

We could obtain a result similar to the online case, including a bound of Vw/ lg w,

and without the lg lg m factor for T(m) large enough. However, we already know T(m) <;

20(vig 1g m), so these cases are irrelevant. Note that 20(Vig 1gm) - lg g m - 20(1ig 1g m), so again

we recover the best known bounds for the slab problem (in the qualitative sense of the

Oh-notation).
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4.1 Technical Overview

We describe three different reductions from general point location to point location in a slab.

The first two are careful adaptations of classic techniques in computational geometry, while

the third is a technical contribution of independent interest:

planar separators [LT80] This method has the best theoretical properties, including de-

terministic bounds, a linear-time construction for the online problem, and a linear

dependence on m for the offline problem. However, it is probably the least practical

because of large hidden constants.

random sampling [MulOO] This method is the simplest, but the construction algorithm

is randomized, and takes time O(n -r(n)). For the offline case, it gives an expected

running time of O((m + n) - T(m) - lglg m).

persistent search trees [ST86] This is the least obvious to adapt and requires an interest-

ing construction of an exponential search tree with nice geometric properties. It yields

a deterministic construction time of O(sort(n)), and an offline algorithm with running

time O(sort(m) + n - T(m) - lg lg m).

Most importantly, this result shows how our sublogarithmic results can be used in

sweep-line algorithms, which is important for some later applications.

Since the planar separator approach yields the best bounds (Theorems 4.1 and 4.2), we

describe it with all calculations necessary for the theorems. In the other cases, we only

aim to convey the technical ideas, so we only describe the online reduction, and further

assume t(n)/ lg6 n is increasing. The calculations are essentially the same as for the separator

method.

4.2 Method 1: Planar Separators

We describe our first method for reducing general 2-d point location to point location in

a slab. We assume that the given subdivision is a triangulation. Note that for any con-

53



nected subdivision, we can first triangulate it in linear deterministic time by Chazelle's

algorithm [Cha91].

Our deterministic method is based on the planar graph separator theorem by Lipton and

Tarjan [LT80] (who also noted its possible application to the point location problem).

Lemma 4.3. Given a planar graph G with n vertices and a parameter r, we can find a

subset of O( fi n) vertices in 0(n) time, such that each connected component of G \ S has

at most n/r vertices.

Proof. The combinatorial bound follows by applying the planar separator theorem recur-

sively. We can get a linear-time algorithm from the results by Aleksandrov and Djid-

jev [AD96] or Goodrich [Goo95]. E

Deterministic divide-and-conquer. Let n denote the number of triangles in the given

triangulation T. We apply the separator theorem to the dual of T to get a subset R of

O(Vr-n) triangles, such that the removal of these triangles yields subregions each comprising

at most n/r triangles. We store the subdivision induced by R (the number of edges is O(RI)),

using a point-location data structure with 0(Po(f\ii)) preprocessing time, and O(Qo(V/rii))

query time. For each subregion with ni triangles, we build a point-location data structure

with P (ni) preprocessing time and Q1 (ni) query time.

If the problem is offline, we have to solve an offline problem in the subdivision induced

by R, and the an offline problem in each subregion. We will make sure the offline running

time for m segments and n points can be expressed as P(m) + n - Q(m). This is true for

the slab problem by assumption. Then Qo, Qi represent the cost per point, and Po, P the

additive cost depending on the number of segments (in R, and each subregion).

As a result, we get a new method with the following bounds for the preprocessing time

P(n) and query time Q(n) for some ni's with Ej ni < n and ni < n/r:

P(n) = P(ni) + 0(n + Po(V/-n))

Q(n) = maxQi(ni) + 0(Qo(Vrn)).
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Calculations. To get started, we use the nafve method with Po(n) = P(n) = O(n 2 ) and

Qo(n) = Qj(n) = O(t(n)) (or r(n) for the offline problem). Setting r = [V/nj then yields

P(n) = O(n3/2) and Q(n) = O(t(n)).

To reduce preprocessing time further, we bootstrap using the new bound Po(n) = O(n 3/2 )

and Qo(n) = 0(t(n)) and apply recursion to handle each subregion. By setting r - 1/4

the recurrences

P(n) = P(ni) + 0(n + Po(Vr)) = P(ni) + 0(n)

Q(n) = maxQ(ni) + O(Qo(V'n)) = maxQ(ni) + O(t(n))
i i

have depth O(lg lg n). Thus, P(n) = 0(n lg lg n). If t(n)/ lg n is monotone increasing for

some constant S > 0, the query time is Q(n) = 0(t(n)), because the assumption implies

that t(n) ;> (4/3)6 t(n3 /4 ) and so Q(.) expands to a geometric series. If the assumption fails,

the upper bound Q(n) = 0(t(n) log log n) still holds.

Lastly, we bootstrap one more time, using Po(n) = 0(nlglgn) and Qo(n) = O(t(n)),

and by Kirkpatrick's point location method [Kir83], PI(n) = O(n) and Q1(n) = O(lgrn). We

obtain the following bounds, where E ni < n and ni < n/r:

P(n) = ZPi(ni) + 0(n + Po(V/in)) = 0(n + Vi-nlg lg n)

Q(n) = maxQ1(ni) + O(Qo(frin)) = O(lg(n/r) + t(n)).

Setting r = [n/ lg nJ then yields the final bounds of P(n) = O(n) and Q(n) = O(t(n))

(as t(n) exceeds lg lg n under the above assumption). The space used is bounded by the

preprocessing cost and is thus linear as well.

We note that it is possible to avoid the last bootstrapping step by observing that the

total cost of the recursive separator computations is linear [Goo95]. The first bootstrapping

step could also be replaced by a more naive method that divides the plane into V' slabs.
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Alternative bounds. We can also obtain bounds that depend on the precision w, although

parameters have to be set differently (to avoid increasing the query time by a ig Ig n factor).

Using the h-sensitive bounds from Theorem 2.1, we start with Po(n) = P1 (n) = O(n 2 
. 2h)

and Qo(n) = Qi(n) = O(w/h). The first bootstrapping step with r = [\/nJ yields P(n) =

0(n'/2 -2 h) and Q(n) = O(w/h).

In the next step, we use Po(n) = O(n3 /2 . 2 h) and Qo(n) = O(w/h) and apply recursion

to handle each subregion. We set r = Ln1/4I and h = [e Ig nj for a sufficiently small constant

E > 0 (so that (V/ n)3/2- 2 h = o(n)). The recurrences become

P(n) = P(ni) + O(n)

Q(n) = maxQ(ni) + O(w/lgn),

where EZ ni 5 n and ni = 0(n3/4). We stop the recursion when n < no and handle the

base case using Theorem 2.1, with O(no) preprocessing time and O(t(no)) = O(lgrno/ lg lgno)

query time. As a result, the recurrences solve to P(n) = O(n lg lg n) and Q(n) = O(w/l ig no+

lgno/lglgno), because Q(-) expands to a geometric series. Setting no = 2 L"/w-gJ yields

Q(n) = 0(Vw/lg w).

In the last bootstrapping step, we use Po(n) = O(nlglg n) and Qo(n) = O( w/ g w),

and PI(n) = O(n) and Q1 (n) = O(lgn). Setting r = [n/lgnj yields O(n) preprocessing

time and 0( w/lg w) query time.

4.3 Method 2: Random Sampling

Again, we assume a solution for the slab problem using O(n) space and construction time, and

supporting queries in t(n) time, where t(n)/ lg6 n is monotonically increasing. The method

we will describe gives a data structure of O(n) space, which can be constructed in expected

O(n - t(n)) time1 , and supports queries in O(t(n)) query time. Although construction is

'In fact, O(n - T(n)) because construction is an offline problem. We ignore this detail, since planar
separators already give us a theoretically optimal bound.
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slower and randomized, the method is simpler and the idea itself has further applications.

Randomized divide-and-conquer. Take a random sample R C S of size r. We first

compute the trapezoidal decomposition T(R): the subdivision of the plane into trapezoids

formed by the segments of R and vertical upward and downward rays from each endpoint

of R. This decomposition has 0(r) trapezoids and is known to be constructible in 0(r lg r)

time. We store T(R) in a point-location data structure, with Po(r) preprocessing time, So(r)

space, and Qo(r) query time.

For each segment s E S, we first find the trapezoid of T(R) containing the left endpoint

of s in Qo(r) time. By a walk in T(R), we can then find all trapezoids of T(R) that intersects

s in time linear in the number of such trapezoids (note that s does not intersect any segment

of R and can only cross vertical walls of T(R)). As a result, for each trapezoid A E T(R),

we obtain the subset SA of all segments of S intersecting A (the so-called conflict list of A).

The time required is 0(nQo(r) + EAET(R) ISA).

By a standard analysis of Clarkson and Shor [CS89, MulO], the probability that

Z iSAI = O(n) and max (SAM = O((n/r)lgr)
AET(R) AET(R)

is greater than a constant. As soon as we discover that these bounds are violated, we stop

the process and restart with a different sample; the expected number of trials is constant.

We then recursively build a point-location data structure inside A for each subset SA.

To locate a query point q, we first find the trapezoid A E T(R) containing q in Qo(r)

time and then recursively search inside A.

The expected preprocessing time P(n), worst-case space S(n), and worst-case query

time Q(n) satisfy the following recurrences for some ni's with E> ni = O(n) and ni =
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O((n/r) lg r):

P(n) = P(ni) + O(Po(r) + nQo(r))

S(n) = S(ni) + O(So(r))

Q(n) = maxQ(ni) + O(Qo(r)).

Calculations. To get started, we use the naIve method with Po(r) = So(r) = O(r 2 ) and

Qo(r) = 0(t(r)). By setting r = L[n], the above recurrence has depth 0(lglg n) and solves

to P(n), S(n) = O(n -200(lgn)) = 0(n go() n) and Q(n) = 0(t(n)), because Q(-) expands

to a geometric series under our assumption.

To reduce space further, we bootstrap using the new bounds Po(r), So(r) = 0(r lgc r) and

Qo(r) = O(t(r)) for some constant c. This time, we replace recursion by directly invoking

some known planar point location method [Sno04] with P(n) = 0(n lg n) preprocessing

time, Si(n) = O(n) space, and Q1 (n) = O(lgn) query time. We then obtain the following

bounds, where E> ni = 0(n) and ni = 0((n/r) lg r):

P(n) = P(ni) + 0(Po(r)+nQo(r)) = 0(nlg(n/r)+rlgc r +n - t(r))

S(n) = Si(ni) + 0(So(r)) = O(n+r lgr)

Q(n) = maxQi(ni) + O(Qo(r)) = O(lg(n/r) + t(r)).

Remember than t(n) exceeds ig lg n under our assumption. Setting r = [n/lgc n] yields

O(n -t(n)) expected preprocessing time, O(n) space, and O(t(n)) query time.

4.4 Method 3: Persistence and Exponential Search Trees

We now show how to use the classic approach of persistence: perform a sweep with a vertical

line, inserting and deleting segments into a dynamic structure for the slab problem. The

structure is the same as in the naive solution with quadratic space: what used to be separate
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slab structures are now snapshots of the dynamic structure at different moments in time.

The space can be reduced if the dynamic structure can be made persistent with a small

amortized cost in space.

In 1-d, the pervasive approach for dynamization and persistence would be bucketing.

The idea is to bucket, say, 1(k) consecutive elements, building a bottom structure inside

each bucket, and a top structure for elements separating the e(n/k) buckets. A particularly

aggressive type of bucketing is the exponential tree, a structure that we will describe below.

In two dimensions, the equivalent of bucketing seems very difficult to achieve. Indeed, this

would have important applications even for unbounded precision: it would imply logarithmic

upper bounds for dynamic point location, a famous open problem. The difficulty in bucketing

comes from the apparent impossibility to choose good separators. Say, for instance, that some

segment si is chosen to separate two buckets. In the very next step, s, could be deleted, and

another s2 which intersects s, can be inserted. Now, unless we rebuild the top structure to

replace si (a very expensive operation), we do not know in which bucket to place s2.

Though we do not know how to make bucketing work in general, we can make it work

for our application, by observing that point location only needs to construct exponential

trees in the semionline case: for every element, we are told the time in the future when

it will be deleted. This is a natural property of any sweep-line algorithm. Motivated by

this property, we construct semionline geometric exponential trees by a careful interplay of

geometric separation arguments and standard amortization arguments.

4.4.1 The Segment Predecessor Problem

We define the segment-predecessor problem as a dynamic version of the slab problem, in a

changing (implicit) slab. Formally, the task is to maintain a set S of segments, subject to:

QUERY(p): locate point p among the segments in S. It is guaranteed that p is inside the

maximal vertical slab which does not contain any endpoint from S (and that this slab

is always nonempty).
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INSERT(s, s+): insert a segment s into S, given a pointer to the segment s+ E S which is

immediately above s. (This ordering is strict in the maximal vertical slab.)

DELETE(S): delete a segment from S, given by a pointer.

If S does not change, the slab is fixed and we have, by assumption, a solution with O(n)

space and t(n) query time. However, for the dynamic problem we have a different challenge:

as segments are inserted or deleted, the vertical slab from which the queries come can change

significantly. This seems to make the problem hard and we do not know a general solution

comparable to the static case.

However, we can solve the semionline version of the problem, where INSERT is replaced

by the following operation:

INSERT(s, s+, t): insert a segment s as above. Additionally, it is guaranteed that the seg-

ment will be deleted at time t in the future.

Note that our application will be based on a sweep-line algorithm, which guarantees that

the left endpoint of every inserted segment and the right endpoint of every deleted segment

appear in order. Thus, by sorting all x-coordinates, we can predict the deletion time, even

at the time of insertion.

4.4.2 Geometric Exponential Trees

We will use exponential trees [And96, AT02], a remarkable idea coming from the world of

integer search. This is a technique for converting a black-box static predecessor structure

into a dynamic one, while maintaining (near) optimal running times. The approach is based

on the following key ideas:

9 construction: Pick B splitters, which separate the set S into subsets of size n/B.

Build a static data structure for the splitters (the top structure), and then recursively

construct a structure for each subset (bottom structures).
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" query: First search in the top structure (using the search for the static data structure),

and then recurse in the relevant bottom structure.

" update: First search among splitters to see which bottom structure is changed. As

long as the bottom structure still has between R and I elements, update it recur-B B ntudtitrc-

sively. Otherwise, split the bottom structure in two, or merge with an adjacent sibling.

Rebuild the top structure from scratch, and recursively construct the modified bottom

structure(s).

An important point is that this scheme cannot guarantee splitters are actually in S.

Indeed, an element chosen as a splitter can be deleted before we have enough credit to

amortize away the rebuilding of the top structure. However, this creates significant issues for

the segment-predecessor problem, due to the changing domain of queries. If some splitters are

deleted from S, the vertical slab defining the queries may now extend beyond the endpoints

of these splitters. Then, the support lines of the splitters may intersect in this extended slab,

which means splitters no longer separate the space of queries.

Our contribution is a variant of exponential trees which ensures splitters are always

members of the current set S given semionline knowledge. Since splitters are in the set, we

do not have to worry about the vertical slab extending beyond the domain where the splitters

actually decompose the search problem. Thus, we construct exponential trees which respect

the geometric structure of the point location problem.

Construction and queries. We maintain two invariants at each node of the exponential

tree: the number of splitters B is 0(nl/3 ); and there are e(n 2/3) elements between every

two consecutive splitters. Later, we will describe how to pick the splitters at construction

time in 0(n) time, satisfying some additional properties. Once splitters are chosen, the

top structure can be constructed in O(B) = o(n) time and we can recurse for the bottom

structures. Given this, the construction and query times satisfy the following recurrences,
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for E> ni = n and ni = O(n 2/ 3 ):

P(n) = O(n)+ZP(ni) = O(nlglgn)
i

Q(n) = O(t(B)) + max Q(ni) < O(t(n/ 3)) + Q(O(n2 / 3))
2

The query satisfies the same type of recurrence as in the other methods, so Q(n) = O(t(n))

assuming t(n)/ lgb n is increasing for some 6 > 0.

Handling updates. Let A be the number of segments, and B the number of splitters, when

the segment-predecessor structure was created. As before, n and B denote the corresponding

values at present time. We make the following twists to standard exponential trees, which

leads to splitters always being part of the set:

" choose splitters wisely: Let an ideal splitter be the splitter we would choose if we only

cared about splitters being uniformly distributed. (During construction, this means

A/B elements apart; during updates, the rule is specified below.) We will look at

TO (5/B) segments above and below an ideal splitter, and choose as the actual splitter

the segment which will be deleted farthest into the future. This is the crucial place

where we make use of semionline information. Though it is possible to replace this

with randomization, we are interested in a deterministic solution.

" rebuild often: Normally, one rebuilds a bottom structure (merging or splitting) when

the number of elements inside it changes by a constant factor. Instead, we will rebuild

after any1 (h/B) updates in that bottom structure, regardless of how the number of

segments changed.

" rebuild aggressively: When we decide to rebuild a bottom structure, we always include

in the rebuild its two adjacent siblings. We merge the three lists of segments, decide

whether to break them into 2, 3 or 4 subsets (by the balance rule below), and choose

splitters between these subsets. Ideal splitters are defined as the (1, 2 or 3) segments

which divide uniformly the list of segments participating in the rebuild.
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Lemma 4.4. No segment is ever deleted while it is a splitter.

Proof. Say a segment s is chosen as a splitter. In one of the two adjacent substructures,

there are at least L (h/b) segments which get deleted before s. This means one of the two

adjacent structures gets rebuilt before the splitter is deleted. But the splitter is included in

the rebuild. Hence, a splitter is never deleted between the time it becomes a splitter and the

next rebuild which includes it.

Lemma 4.5. There exists a balance rule ensuring all bottom structures have 8(h/B) ele-

ments at all times.

Proof. This is standard. We ensure inductively that each bottom structure has between

0.6(h/b) and 2(h/b) elements. During construction, ideal splitters generate bottom struc-

tures of exactly (5/B) elements. When merging three siblings, the number of elements is

between 1.8(i/b) and 6(i/b). If it is at most 3(i/B), we split into two ideally equal sub-

sets. If it is at most 3.6(h/b), we split into three subsets. Otherwise, we split into four.

These guarantee the ideal sizes are between 0.9(h/B) and 1.5(h/B). The ideal size may be

modified due to the fuzzy choice of splitters (by 0.1(h/b) on each side), and by 0.1(h/b)

updates that we tolerate to a substructure before rebuilding. Then, the number of elements

stays within bounds until the structure is rebuilt.

We can use this result to ensure the number of splitters is always B = O(B). For a

structure other than the root, this follows immediately: the lemma applied to the parent

shows n for the current structure can only change by constant factors before we rebuild,

i.e. n = 6(h). For the root, we enforce this through global rebuilding when the number of

elements changes by a constant factor. Thus, we have ensured that the number of splitters

and the size of each child are within constant factors of the ideal-splitter scenario.

Let us finally look at the time for an INSERT or DELETE. These operations first update

the appropriate leaf of the exponential tree; we know the appropriate leaf since we are given

a point to the segment (for delete) or its neighbor (for insert). Then, the operations walk

up the tree, triggering rebuilds where necessary.

63



For each of the O(lg lg n) levels, an operation stores O(lg ig n) units of potential, making

for a total cost of O((lg lg n)2) per update. The potential accumulates in each node of the

tree until that node causes a rebuild of itself and some siblings. At that point, the potential

of the node causing the rebuild is reset to zero. We now show that this potential is enough

to pay for the rebuilds. Rebuilding a bottom structure (including the siblings involved in

the rebuild) takes time 0(1) - P(O(n/B)) = O( lg lg j). Furthermore, there is a cost of

O(B) = 0(ni/3 ) = o(n/B) for rebuilding the top structure. However, these costs are incurred

after Q(ii/b) = Q(n/B) updates to that bottom structure, so there is enough potential to

cover the cost.

Bucketing. We now show how to reduce the update time to a constant. We use the

structure from above over 0(n/(lg lg n)2) splitters. The bottom structures have e((lg lg n)2 )

elements, and we can simply use a linked list to represent them in order. The query time is

increased by 0((lg lg n)2 ) because we have to search through such a list, but that is a lower

order term. Updating the bottom structure now takes constant time, given a pointer to the

segment or a neighbor. As shown above, an update to the top structure only occurs after

Q((lg lg n)2 ) updates to a bottom structure. So operations in the top structure cost 0(1)

amortized.

4.4.3 Application to Point Location

Sweep-line construction. We first sort the x-coordinates corresponding to the endpoints,

taking sort(2n) time. To know which of the O(n) slabs a query point lies in, we construct an

integer predecessor structure for the x-coordinates. The optimal complexity of predecessor

search cannot exceed the optimal complexity of point location, so this data structure is

negligible.

We now run the sweep-line algorithm, inserting and deleting segments in the segment-

predecessor structure, in order of the x-coordinates. For each insert, we also need to perform

a query for the left endpoint, which determines where the inserted segment goes (i.e. an
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adjacent segment in the linear order). Thus the overall construction time is O(n -t(n)).

We can reduce the construction time to O(sort(n)), if we know where each insert should

go, and can avoid the queries at construction time. To achieve this, we first convexify the

outer face, adding edges of the convex hull. The convex hull can be found in linear time by

gift wrapping, since we can walk the edges of the polygon in order. Then, we triangulate

the planar subdivision by the deterministic linear-time algorithm of [Cha9l].

Now consider any vertex at the time when the vertical sweep line hits it. Since we are

working with a triangulation, the vertex must have an incident edge to the left of the sweep

line, unless it is on the outer face. Since the outer face is convex, the vertex must have

an edge to the left unless it is the very first vertex inserted. Thus, every segment insert

immediately follows a segment delete with a shared vertex, so we know a neighbor of the

inserted segment by examining the neighbors of the deleted segment. These neighbors are

known in constant time since we can just maintain a linked list of all active segments in

order.

Persistence. It remains to make the segment predecessor structure persistent, leading

to a data structure with linear space. Making exponential trees persistent is a standard

exercise. We augment each pointer to a child node with a 1-d predecessor structure (the

dimension is time). Whenever the child is rebuilt, we store a pointer to the new version and

the time when the new version was created. To handle global rebuilding at the root, the

predecessor structure for the x-coordinates stores a pointer to the current root when each

slab is considered. The leaves of the tree are linked lists of 0((lg lg n)2 ) elements, which can

be made persistent by standard results for the pointer machine [DSST89].

Given k numbers in {1, ... , 2n} (our time universe), a van Emde Boas data structure for

integer predecessor can be constructed in O(k) time deterministically [Ruz07], supporting

queries in 0(lg lg n) time. Thus, our point location query incurs an additional 0(lg lg n) cost

on each of the 0(lg lg n) levels, which is a lower order term.

The space cost for persistence is of course bounded by the update time in the segment

predecessor structure. Since we have 2n updates with constant cost for each one, the space
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is linear. The additional space due to the van Emde Boas structures for child pointers is

also linear, as above.
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Chapter 5

Reexamining Computational Geometry

It turns out the our results for point location lead to improved bounds for many fundamental

problems in computational geometry. This highlights once again the center-stage position

that point location occupies in nonorthogonal geometry.

In the next sections, we discuss the following applications of our results:

5.1 applications to online data structures, such as 2-d nearest neighbor queries.

5.2 application to the segment intersection problem.

5.3 a reduction from computing 3-d convex hulls and 2-d Voronoi diagrams, to offline point

location.

5.4 further algorithmic consequences of the previous two results.

5.1 Improved Data Structures

Corollary 5.1. Let all coordinates be O(w)-bit rationals. If the point location problem can

be solved by a data structure of size O(n) with query time t(n, w), then:

(a) given n points in the plane, we can build a data structure of size O(n), so that near-

est/farthest neighbor queries under the Euclidean metric can be answered in O(t(n, w))

time.
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(b) given n points in the plane, we can build an 0(n Ig Ig n)-space data structure supporting

the following queries in 0(t(n, w) + k) time:

* circular range queries: report all k points inside a query circle;

" k-nearest neighbors queries: report the k nearest neighbors to a query point.

(c) given a convex polygon P with n vertices, we can build an 0(n)-space data structure

supporting the following queries in 0(t(n, w)):

" tangent queries: find the two tangents of P through an exterior point;

" line stabbing queries: find the intersections of P with a line.

Proof. (a) Nearest neighbor queries reduce to point location in the Voronoi diagram. (From

the results below, the construction time of the Voronoi diagram, and hence the data

structure, relates to offline point location.) Farthest neighbor queries also reduce to

point location.

(b) The result is obtained by adopting the range reporting data structure from [ChaOO],

using Theorem 4.1 to handle the necessary point location queries.

(c) For tangent queries, it suffices to compute the tangent from a query point q with P to

the left, say, of this directed line. Decompose the plane into regions where two points

are in the same region iff they have the same answer; the regions are wedges. The

result follows by performing a point location query.

Ray shooting queries reduce to gift wrapping queries in the dual convex polygon (whose

coordinates are still O(w)-bit rationals).

5.2 Segment Intersection

We now consider the problem of computing all k intersections among a set S of n line

segments in the plane, where all coordinates are O(w)-bit rationals. We actually solve a
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more general problem: constructing the trapezoidal decomposition T(S), defined as the

subdivision of the plane into trapezoids formed by the segments of S and vertical upward

and downward rays from each endpoint and intersection. Notice that the intersection points

have O(w)-bit rational coordinates.

This problem turns out to be related to offline point location, by the random sam-

pling approach used in Section 4.3. Unfortunately, we are unable to adapt the separator or

persistence approaches. Thus, we can only beat classic 0(n lg n) bounds with randomized

algorithms.

Theorem 5.2. Assume offline point location with n points and m segments can be solved in

time 0(m + n - T(m)), and that T(n) = Q(lg lg n). In particular, T(m) <; 2(0/gFg9m)

Then, given n line segments in the plane, we can find all k intersections, and compute

the trapezoidal decomposition, in O(n - T(n) + k) expected time.

Proof. Take a random sample R C S of size r. Compute its trapezoidal decomposition

T(R) by a known algorithm [MulOO] in 0(r lg r + IT(R)I) time. For each segment s E S, we

first find the trapezoid of T(R) containing the left endpoint of s by a point location query.

This is an offline problem with O(jT(R)I) segments and n query points, so it takes time

O(IT(R)I + n -r(IT(R)I)). Since IT(R)I < n2 and T(m) < O(1gm), this running time is

O(IT(R)I + n T(n)).

By a walk in T(R), we can then find all trapezoids of T(R) that intersects s in time

linear in the total face length of such trapezoids, where the face length fA of a trapezoid A

refers to the number of edges of T(R) on the boundary of A. As a result, for each trapezoid

A E T(R), we obtain the subset SN of all segments of S intersecting A (the so-called conflict

list of A). The time required thus far is O(n - r(n) + ZLeT(R) lSAVIN).
We then construct T(SA) inside A, by using a known algorithm in O(1SAI lgI SaI + kA)

time, where kA denotes the number of intersections within A (with E. kA = k). We finally

stitch these trapezoidal decompositions together to obtain the trapezoidal decomposition of

the entire set S.
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By a standard analysis of Clarkson and Shor [CS89, MulOO],

E[IT(R)|] = O(r+kr2 /n 2 ) and E ISAl igISAI = O((r+kr2 /n 2 )-(n/r) lg(n/r)).

LAET(R)

Clarkson and Shor had also specifically shown [CS89, Lemma 4.2] that:

E JSA|A = O((r+ kr 2 /r 2 ). (n/r)) = O(n- (1+ kr/n2 )).

LAET(R)

The total expected running time is O(r Ig r + n T(n) + n lg(n/r) + k). Setting r = [n/ lg nj

yields the desired result.

5.3 Convex Hulls in 3-d and Voronoi Diagrams in 2-d

We next tackle the well-known problem of constructing the convex hull of a set S of n

points in 3-d. It is well known that constructing a Voronoi diagram in 2-d reduces to this

problem. As before, our reduction is randomized, and we do not know how to achieve

o(n lg n) algorithms deterministically.

Theorem 5.3. Let r(n) be as in Theorem 5.2. Given n points in three dimensions with

O(w)-bit rational coordinates, we can compute their convex hull in O(n -r(n)) expected time.

Proof. We again use a random sampling approach. First it suffices to construct the upper

hull (the portion of the hull visible from above), since the lower hull can be constructed

similarly. Take a random sample R C S of size r. Compute the upper hull of R in 0(r lg r)

time by a known algorithm [dBSvKOOQ, PS85]. The xy-projection of the faces of the upper

hull is a triangulation T,.

For each point s E S, consider the dual plane s* [dBSvKOOO, Ede87, MulO]. Construct-

ing the upper hull is equivalent to constructing the lower envelope of the dual planes. Let

T(R) denote a canonical triangulation [Cla88, MulOO] of the lower envelope LE(R) of the
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dual planes of R, which can be computed in 0(r) time given LE(R). For each s E S, we

first find a vertex of the LE(R) that is above s*, say, the extreme vertex along the normal

of s*. In primal space, this is equivalent to finding the facet of the upper hull that contains

s when projected to the xy-plane, i.e. a point location query in T,. By a walk in T(R), we

can then find all cells of T(R) that intersect s* in time linear in the number of such cells.

As a result, for each cell A E T(R), we obtain the subset S1s of all planes s* intersecting A.

The time required thus far is 0(n -T(n) + ZAET(R) IS!1).

We then construct LE(SI) inside S1, by using a known O(IS1 Ilg SI)-time convex-

hull/lower-envelope algorithm. We finally stitch these lower envelopes together to obtain the

lower envelope/convex hull of the entire set.

By a standard analysis of Clarkson and Shor [CS89, MulOO],

E [ SI] =0 (n) and E [ ISMJ g ISM] = 0(r - (n/r) lg(n/r)).

-AET(R) -AET(R)

The total expected running time is 0(r lg r + n- T(n) + n lg(n/r)). Setting r = Ln/ lg nJ, the

running time is dominated by 0(n - r(n)).

5.4 Other Consequences

To demonstrate the impact of the preceding two results, we list a sample of improved algo-

rithms and data structures that can be derived from our work.

Corollary 5.4. Let T(n) be as in Theorem 5.2. Then:

(a) given n points in the plane, we can construct the Voronoi diagram, or equivalently the

Delaunay triangulation, in 0(n -r(n)) expected time;

(b) given n points in the plane, we can construct the Euclidean minimum spanning tree in

0(n - r(n)) expected time;
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(c) given n points in the plane, we can find the largest empty circle that has its center

inside the convex hull in O(n - T(n)) expected time;

(d) we can triangulate an n-vertex polygon in O(n - r(n)) deterministic time;

(e) we can compute the convex hull of n points in three dimensions with O(w)-bit rational

coordinates in O(n -T(Hl+o())) expected time, where H is the number of hull vertices.

Proof. (a) By a lifting transformation [dBSvKOOO, Ede87, O'R98], the 2-d Delaunay tri-

angulation can be obtained from the convex hull of a 3-d point set (whose coordinates

still have O(w) bits). The result follows from Theorem 5.3.

(b) The minimum spanning tree (MST) is contained in the Delaunay triangulation. We

can compute the MST of the Delaunay triangulation, a planar graph, in linear time,

for example, by Boruovka's algorithm. The result thus follows from (a).

(c) The coordinates of the optimal circle are still O(w)-bit rationals, and can be determined

from the Voronoi diagram in linear time [PS85]. Again the result follows from (a).

Curiously, the 1-d version of the problem admits an 0(n)-time RAM algorithm by

Gonzalez [PS85].

(d) It is known [FM84} that a triangulation can be constructed from the trapezoidal de-

composition of the edges in linear time. The result follows from Theorem 5.2 if ran-

domization is allowed. Deterministically, we can instead compute the trapezoidal de-

composition by running the algorithm from Section 4.4, since that algorithm explicitly

maintains a sorted list of segments that intersect the vertical sweep line at any given

time.

(e) The result is obtained by adopting the output-sensitive convex hull algorithm from

[Cha96J, using Theorem 5.3 to compute the subhull of each group. For readers familiar

with [Cha96], we note that the running time for a group size m is now O(n - r(m) +

H(n/m) lg m); we can choose m = LH lg HJ and apply the same "guessing" trick.

F1
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Chapter 6

Improving Dynamic Search

Dynamic data structures present some of the toughest challenges in our study. As opposed

to static data structures, where we are free to organize a hierarchical structure based on our

information-progress argument, dynamic data structures already need a different hierarchical

structure for the sake of dynamic maintenance. Quite expectedly, the requirements of these

two structures can clash in catastrophic ways.

In this chapter, we study tangent queries in the dynamic convex hull problem, as the

prime example of a dynamic nonorthogonal problem. Recall that the tangent query asks

for the two tangents through a given point to the convex hull of the set S of points in the

data structure. Remember that tangent queries for a static polygon are reducible to point

location; see Corollary 5.1(c). In the dynamic setting, we show:

Theorem 6.1. Assuming points have O(w)-bit rational coordinates, tangent queries can be

supported in time 0( 9 ), while updates are supported in time O(lg 2 n).

As opposed to the static case, we cannot hope for a substantially better bound for small

universes. In Appendix B, we show that for any polylog(n) update time, the query time

must be Q(lg n/ g w). Thus, our query time is optimal, at least for precision w = polylog(n).

Tangent queries are only one of the queries that are typically considered for the dynamic

convex hull problem. In Appendix B, we discuss the various queries in more detail. While

most of these can be reduced to finding tangents, it turns out that some queries (e.g. linear
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programming) are in essence one-dimensional, and enjoy better bounds. In this chapter, we

focus only on tangent queries, which have a strong nonorthogonal, two-dimensional flavor,

and use them to study techniques needed for sublogarithmic query time in a dynamic setting.

6.1 Technical Overview

All previous data structures for dynamic planar convex hull assume infinite precision and

are therefore limited to running queries in e(lg n) time. The original such data structure,

of Overmars and van Leeuwen [OvL81], introduced the idea of recursively representing the

convex hull, leading to a E(lg2 n) update time. Eighteen years later, Chan [Cha01a] had

the breakthrough idea of using techniques from decomposable search problems, reducing the

update time to O(lg1 " n). This approach was subsequently improved by Brodal and Jacob

to update times of ) (lg n lg lg n) [BJOO] and finally 8 (lg n) [BJ02].

Our upper bound starts from the classic dynamic convex hull structure of Overmars and

van Leeuwen [OvL81]. The first idea is to convert the binary tree in this structure into a

tree with branching factor E(lg n), so that its height is E( ). The many years of failed

attempts at sublogarithmic planar point location suggest, however, that it is impossible to

solve any nontrivial query by spending 0(1) time per node in such a tree. For example,

determining which child to recurse into for a tangent query boils down to planar point

location in a subdivision of complexity 0(lg n), which we do not know how to solve in

0( I ) time.

Instead, by carefully exploiting the partial information that a query learns about its

answer, we show that the time a query spends to determine which child to visit is proportional

to the knowledge it learns about the answer. By charging the time cost to the information

progress, we can use an amortization argument to show that expensive nodes are rare and

thus bound the overall query cost to 0( 9n). This type of insight does not appear in the

static problems.

In contrast, the decomposition techniques of [ChaOla, BJO2], which achieve o(lg 2 n) up-

date time, seem fundamentally incompatible with information progress arguments. The
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trade-off we can obtain between a node's query cost and the information it reveals relies

on an essentially explicit representation of the convex hull as in the Overmars-van Leeuwen

structure. Representing the convex hull as the hull of 0( "9n) overlapping convex hulls,

as in Chan's structure, means that we must make independent information progress for all

hulls, which is too slow.

Our information-theoretic lens therefore highlight an even stronger contrast between

the original Overmars-van Leeuwen structure and the more modern structures based on

decomposable search: the latter structures are not informationally efficient. It is a fascinating

open question to break the e(g 2 n) barrier (again) while achieving information efficiency.

6.1.1 Review of Overmars-van Leeuwen

Before proceeding, we quickly sketch the classic data structure of [OvL81], skipping all

implementation details which are treated as a black box by our modifications.

The data structure is a binary tree, in which every node v contains the set of points S,

in a certain vertical slab. Let left(v) and right(v) be the children of v. The node v stores a

vertical line, splitting Sv into Sv = Sleft(v) U Sright(v), with min{ I Sleft(v) I, I Sright(v) I I = ISv I)-
The children split the sets recursively, down to singleton sets in the leaves. Maintaining this

partition is equivalent to maintaining a balanced binary search tree with values stored only

in the leaves.

Although Overmars and van Leeuwen developed their structure before the invention of

persistence [DSST89], it is easier to see its workings using persistent catenable search trees.

Every node v stores a list of the nodes on the convex hull Hv of So, represented as a (partially)

persistent binary search tree. Then, a query can be answered in logarithmic time based on

the hull stored at the root. By standard tree-threading techniques, we can also support

gift-wrapping queries in 0(1) time.

To maintain this hull dynamically, note that Hv is defined by a convex subchain of Hleft(v)

and one from Hright(v), plus two new edges (bridges) that join them. It is shown in [OvL81]

that the bridges can be computed in 0 (lg ISv) time through binary search. Then, because
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the binary search trees storing the hulls are persistent and catenable, the information at

every node can be recomputed in O(lgn) time. Thus, updates cost O(lg 2 n).

6.2 Adaptive Point Location

As hinted already, we will store the hulls in the Overmars-van Leeuwen structure as (persis-

tent, catenable) B-trees, for some B = lg' n. It turns out (see below) that the subproblem

that must be solved at each node is point location among O(B) segments. Unfortunately, we

do not know how to achieve the equivalent of 1-d fusion trees, handling a superconstant B

in 0(1) time. To obtain our improvement, one must refine the fusion tree paradigm to hull

fusion: querying a node of the B-tree (a hull-fusion node) is allowed to take superconstant

time, but averaged over all O(logBn) nodes that are considered, we spend constant time per

node. This follows from an information-progress argument: if querying one node is slow,

it is because we have made a lot of progress in understanding the query, and therefore this

cannot happen too often.

Our basic tool for relating the complexity of point location to information progress is the

following lemma, which is an adaptive version of our point location result from Section 2.3:

Lemma 6.2. Consider a vertical slab {XL, - - -, XR} x [u], and a set S of B < w segments

between points (XL ,1i) and (xR,ri), where f, --_ fB and r1  rB, and fi, ri are

0(w)-bit rationals. In O(B 2) time, we can construct a data structure, such that a query for a

point between segments i and i+1 is supported in time 0 (1 + B (lgB -f ig rB-r j

Proof. For convenience, if s is the i-th segment in S, let f1(s) = fi and r(s) = ri. As before,

we start by applying Observation 2.3, with parameters n = b = B and h = 0(w/B). Then,

in time O(B) we select a subset of at most B segments so, si, ... from S, such that:

(1) for each i, at least one of the following holds:

(la) there is at most one segment in S between si and si+1

(1b) f(si+l) - f(si) (CB - l)/2
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(1c) r(si+1) - r(si) (rB - ri)/2h.

(2) there exist segments s 2 ,..... cutting across the slab, satisfying all of the following:

(2a) s0 -< §o -< s2 -< 9 2 < --- , where -< denotes the belowness relation.

(2b) distances between the left endpoints of the 9j's are all multiples of (tB - e1 )/2h.

(2c) distances between right endpoints are all multiples of (rB - r)/2h

As shown in Section 2.3, for our choice h = 9(w/B), we can pack 02, .... in a word,

and perform point location among them in constant time. If we know the query lies between

sj and §i+2, by (2a) it must lie between si and si+4. In constant time, we can compare the

point against these 5 segments. Assume that it is found to lie between sj and sj+1. If case

(la) happens, we compare the query to one more segment and point location is completed.

In cases (1b) or (1c), we recurse among the segments in S between s and sj+1. In the

preprocessing phase, we build a data structure recursively for every such interval of segments

from S. Because in every recursive step we eliminate at least two segments, each original

segment appears in O(B) nodes of the recursion tree, so the total cost is O(B 2 ).

At query time, every recursive step takes constant time, and reduces either the left (case

1(b)) or right (case (1c)) span of the remaining segments by a factor of 2h - 2 e(w/B). Now

assume the final answer is that the query lies between original segments i and i + 1. After

B( B- + rB -T
- ylg + lg
W i+2 - 4-1 Ti+2 - Ti_1

steps, the subset we are left with cannot include both segments i - 1 and i + 2, because

either the left or right span is too small. Then in at most one additional recursion, we are

done. I

We will think of lg(tB - ti) + lg(rB - ri) as the entropy of the search region. If the above

data structure takes time t for a query, the entropy decreases by at least (Q(t) - 1) bits.

Thus, we can hope that the sum of the running times for logB n applications of the lemma

is bounded by (1+ t1 ) + (1+ t2 ) + - - -+ (1+ tiBn) O(logB n +lg u/w) = O(logBn+ B),
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Figure 6-1: The Zorro Z,(pi, py) is the shaded region.

implying a running time of O(lg n/ ig ig n) for, say, B = g'ig . This intuition will indeed

prove to be correct, but we need to carefully analyze the geometry of the problem, and show

that the information progress is maintained as we query various vertical slabs at various

hull-fusion nodes.

6.3 Quantifying Geometric Information

For simplicity, we will only try to determine the right tangent, and assume it lies in the

upper convex hull. Left tangents and the lower hull can be handled symmetrically.

We denote an upper convex chain P by its list of vertices from left to right: P =

(Pi, P2,.-.- , Pm) where X(pj) < x(pi+1) for all i. Define the exterior exterior(P) of an upper

convex chain P to be the region bounded by the chain and by the two downward vertical

rays emanating from Pi and Pm that includes points above the chain. In other words, the

exterior exterior(P) of P consists of all points left, above, or right of P.

Given an upper convex chain P and indices 1 ; i < j <in, the Zorro Zp(pi, p3 ) is the

region of points exterior to F, strictly right of the ray from Pi+1 to pij, and nonstrictly left of

the ray from Pj+i to Pj. Thus the Zorro is bounded by these two rays and by the subchain

pm, Pi+1,.-.-. , Pj, as illustrated in Figure 6-1. Note that the Zorro is an object in the infinite

real plane, not on the grid.

The following fact justifies our interest in this definition:
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Fact 6.3. Let q be a point exterior to an upper convex chain P. Then q is in the Zorro

Zp(pi,pj) if and only if the answer to the right tangent query for q in P is in {pi+1,...,p l.

Proof. By definition, for each k with i + 1 < k < j, the region of points whose right tangent

query answers Pk is a cone emanating from Pk with bounding rays from Pk to Pk-1 and

from Pk+1 to Pk. This cone is precisely the Zorro ZP(pk1,Pk). Two adjacent such cones,

Zp(pk-1,pk) and Zp(pk,pk+), share a bounding ray from Pk+1 to Pk. Thus their union is

ZP(pk1, Pk+1), so by induction, the union over all k is Zp(pi, p,). Therefore this Zorro is

precisely the region of points whose right tangent query answers one of pi+1, ... , pj.

We also establish a few basic facts that will be useful later:

Fact 6.4. Given a point q guaranteed to be exterior to an upper convex chain P, we can test

whether q is in the Zorro Zp(pi, pj) in 0(1) time.

Proof. Though the Zorro's boundary is potentially complicated, if q is known to be outside

the polygon, it suffices to test the side of q relative to the lines pi+lpi, pjpj+1, and pipj (the

dashed lines in Figure 6-1). E

Fact 6.5. For any upper convex chain P and any indices 1 < i < J < k < m, we have the

decomposition: ZP(pi, p ) = ZP(pi, p) U Z(p, pk) and Zp(pi, pj) n Z(p, p) = 0.

Proof. Disjointness follows from Fact 6.3. The union property follows from taking the union

of adjacent Zorro cones as argued in the proof of Fact 6.3. l

Because Zorros describe the structure of our search problem, we want to define a quan-

titative measure that allows us to make the information progress argument outlined above.

It turns out that information progress is only need (and, actually, only true) for a region

of the Zorro. We define the left slab of Zp(pi, p3 ) as the vertical slab between x = 0 and

x = x(pi+1). The left vertical extent L(Zp(pi, p3 )) is the length of the subsegment of the

vertical line x = 0 intersected by Zp(pi, p,). The right vertical extent R(Zp(pi, pj)) is the

length of the subsegment of the vertical line x = x(pi+i) intersected by the Zorro.
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-q

Figure 6-2: The Zorro Z,(pg, pyi) is contained in Zp(pi, p,).

Definition 6.6. The entropy of a Zorro Zy(pi, p3 ) is:

H(Z(pp 3 )) = 1gL(Z(pips))+lg7Z(Zp(p,p)).

We now establish the following monotonicity property about Zorros "contained" in other

Zorros:

Fact 6.7. For an upper convex chain P and indices 1 <_ i K i' < j' j < m, we have

Zpp', p') C Zpipi, p) and H(Z(pg', p)) < H(Z(p, p)).

Proof. Refer to Figure 6-2. Fact 6.5 immediately implies that Zp(p2 ', py) G Zp(pi, p,). This

geometric containment implies L(Zp(pg', p3 )) L(Zp(p2 , pj)), because Zp(p', pj) fl {x =

O} C Zp(pi, p3 ) n {x = O}. The segments at the intersection with x = X(pji) are similarly
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contained. Furthermore, X(pi'+i) > x(pi+1). Because we are working with an upper chain,

moving to the right can only decrease vertical extents, so Z(Zp (pi,, pj)) < R(Zp (pi, p)). l

Finally, we need to analyze Zorros with respect to a subset of the original chain, because

in one step, we plan to analyze only B points out of the hull. The following fact follows from

monotonicity of slopes along a convex chain, similarly to previous facts:

Fact 6.8. For an upper convex chain S and a subsequence P C S of m vertices, and for

indices 1 < i < j < m, we have:

zp (pi, pj _1) n exterior (S) 9 ZS (pi, pj) 9 ZP (pi- 1, PA)

H (Zp(pj, pj_1)) < H (Zs(pi, pj)) < H (Zp(pj_1, pj)).

6.4 The Data Structure

We first reinterpret the results of Lemma 6.2 in the language of Zorros. The reason we insist

to relate the query time to the entropy of ZP(pk_1,pk+2), instead of Zp(pk,pk+1) is that

we will need some slack when switching between Zorros with respect to P, and Zorros with

respect to the whole convex hull (see Fact 6.8).

Lemma 6.9. Given an upper convex chain P = {P1, P2, ... ,PB), in time BGM1 ) we can build

a data structure that answers queries of the following form: given indices 1 < i < j < B - 1,

and given a point q guaranteed to be within the Zorro Zp(pi,pj) and its left slab, find an

index i < k < I such that q is in the Zorro ZP(pkpk+1). The running time of the query is:

t = (1 + B (H(Z(pi,pj)) - H(Zp(pk--1,pk+2))).

Proof. We build the structure for every choice of i and j, incurring an O(B 2 )-factor penalty

in construction time. For some fixed i and j, we need to solve a point location problem

in the left slab of Zp (pi, ps), with the segments given by the intersection of the slab with

the rays Pi+1Pi, Pi+2Pi+1, - - - , pj +ip. A Zorro Zp (Pk, Pk+1) is actually the wedge between two

consecutive rays.
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Denote by fi,..., , the y coordinate of the intersections of these rays with x = 0 (the

left boundary of the slab). Similarly denote by ri, . .. , rj the intersections with the right

boundary of the slab. Note that fi, ri are rational.

We will now use the adaptive point location data structure of Lemma 6.2. If the answer

is k, the query time will be asymptotically:

B ~I fj + fig + Ig r i
= 1 + \ ( k+2 - (k-1 -rk+2 - rk -

B
=1 + -(lg C(ZP(fi, j)) + lg R(ZP (i, l)) - lg L(ZP(Ek_1, k+2)) - 1g(rk+2 - rk-1))W

< 1 + -(H(Zp(fj 3 )) - H(Zp(Pk-1, Pk+2)))

The last inequality follows from x(pk) x(pj+1 ), using the familiar observation that moving

to the right reduces vertical extents. D

The general structure in which we will be performing queries is a B-tree representation

of an upper convex chain. For a node v of such a B-tree, let S, be the set of points in v's

subtree, and P, the set of at most B points stored in the node v. For the sake of queries,

each node is augmented with the following information:

" an atomic heap [FW94] for the x coordinates of the points in Pv.

* the structure of Lemma 6.9 for the convex chain given by P,.

6.4.1 Query Invariants

A tangent query proceeds down a root-to-leaf path of the B-tree, spending 0(1) time at each

node but also applying Lemma 6.9 at some of the nodes. Therefore the time required by a

query is O(log n) plus the total time spent in Lemma 6.9.

For readability, we will write Z,(a, b) for Zs, (a, b). At each recursive step of the query, we

have q E Z,(a, b) where v is the current node and a, b E S,. We write succ,(b) for the point

in S, which follows b to the right on the upper convex chain. We also assume succ,(b) E S,
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to make the Zorro well-defined. In addition, we maintain the invariant that a, b, and succ,(b)

are nodes of the global upper convex hull C as well. Thus Z,(a, b) = Zc(a, b).

At the next level of recursion, the Zorro will be some Z,, (a', b') where v' is a child of v and

a', b', succo'(b') E S,, n C. Furthermore, we will guarantee that x(a) 5 x(a') < x(b') < x(b).

Hence, by Fact 6.7, Zv,(a', b') = Zc(a', b') ; Zc(a, b), and H(Zc(a', b')) H(Zc(a, b)).

The query may apply Lemma 6.9 at this recursive step to a Zorro Zp,, (pi, pj), locating q

in a Zorro Zp,(Pk, Pk+1). In this case, we guarantee further that

Zv(a, b) D;) Zp,(pi, pj) n exterior(C) 2 ZP(pk-1, pk+2) n exterior(C) 2 Zv,(a', b'),

H (Zv (a, b)) ! H (Zp, (pi, pj)) H H(Zy (Pk- 1, Pk+2)) > H (Z,(a',b')).-

Now we bound the total cost incurred by Lemma 6.9. By the invariants stated above,

H(Z) never increases as we shrink our Zorro Z known to contain q. Furthermore, when we

apply Lemma 6.9, if we spend t time, we guarantee that H(Z) decreases by !(Q(t) - 1).

Hence the total cost incurred by Lemma 6.9 is at most the maximum total range of H(-),

divided by '. Because the points are on a u x u grid, any nonzero vertical extent, measured

at an x coordinate of the grid, between two lines drawn between grid points, is between

1/u and u. Thus, -21gu < H(.) 5 21gu. Because w > lgu, the total cost incurred by

Lemma 6.9 is 0(B). Therefore the total query time is O(log n + B) = O(lg n/ lg 1g n), by

choosing B = lgE n, for any constant e > 0.

6.4.2 Querying a Hull-Fusion Node

We now describe how to implement a query using 0(1) time at each node plus possibly one

application of Lemma 6.9, while satisfying all of the invariants described above. First we

apply the following lemma:

Lemma 6.10. Given a node v with Pv = (P1,P2, . . , Pm), given two points a and b on v's

hull where x(a) < x(b), and given a query point q E Zv(a, b) n exterior(C) we can find in

0(1) time one of the following outcomes:
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1. An index 1 < k < m - 1 such that q is in the Zorro Z,(pk, pk+1)-

2. Indices 1 < i < j < m -1 such that q E Zp,(pi, pj) and x(a) < x(p ) < x(pj+1 ) < x(b).

Proof. We round a to the clockwise next bridge point pi E Po, and we round b to the

counterclockwise next bridge point pj E P. The implementation of this depends on the

representation of points, so we defer a discussion of this step until later. We will be able to

support this step in constant time.

If i > j, then q E 'Z,(a, b) C Z,(pj,pj+1) (Case 1). Otherwise, 1 < i < j < m. By

Fact 6.5, Z,(a, b) = Z, (a, pi) U Z,(pi, pj_1) U Zo,(p -_1, pj) U Z,(pj, b). In 0(1) time, we can

determine which of these Zorros contains q. If it is the first Zorro, q E Z,(a, pi) C Zv (pi_1, pi)

(Case 1). If it is the second Zorro, q E Zv(pj, p_1) (Case 2). If it is the third Zorro,

q E Zv(pj_1, pj) (Case 1). If it is the fourth Zorro, q E Zv(pj, b) C Zv(py, pj+1) (Case 1). El

Now, if we are in Case 1, say q E Zv(pk, Pk+1), then we know to recurse into the recursive

subchain between Pk and Pk+1, corresponding to some child v'. In this case, we want to

recurse with a' = max{a, Pk} and b' = min{b, predv, (Pk+1)} (where max and min are with

respect to x coordinates). Thus x(a) x(a') < x(b') < x(b), satisfying the guarantee above.

Before recursing, however, we check in 0(1) time whether q E Zv, (a', b'); if not, we determine

the answer to the right-tangent query to be Pk+1-

If we are in Case 2, say q E Zpv(pi,pj) where x(a) x(pi) < x(pj+i) < x(b), then there

are two subcases. If q is not in the left slab of the Zorro Zp, (pi, pj), then we perform a

successor query x(q) among the x coordinates of the bridge points Pv to find an index i',

i < i' < j, such that x(pj_1) x(q) < x(pi'). Next we test in 0(1) time whether q is in the

Zorro Zpv (pi, p3 ). If not, we know to recurse in the recursive chain between pi_1 and pi', and

we proceed as in Case 1. Otherwise, we determine that q is in the left slab of Zp, (pi, pj), so

we replace i with i' to obtain the other subcase.

So now suppose q is in the left slab of the Zorro Zpv(pi,pj) where x(a) x(pi) <

x(pji) < x(b). We can apply Lemma 6.9 to obtain a Zorro ZP,(pk,pk+1) containing q.

By Fact 6.8, Zp,(pk,pk+1) l exterior(C) C Zv(pk,pk+2). By Fact 6.5, Zv(pk,pk+2) =
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Zv(Pk,Pk+1) U Zv(pk+1,Pk+2). In 0(1) time, we can determine which of these three Zor-

ros contains q, and recurse in the corresponding child v' as in Case 1 with Zorro Z" (a', b').

Finally we prove the guarantees about Zorro containment and entropy monotonicity. By

Fact 6.8, we have:

Zp,(pi, pj) n exterior(C) C Z(pi,pj+1),

H(Zp.(pi, pj)) H(Zv(pi, pj+1))-

Because x(a) x(pi) < x(pj+1) 5 x(b), Zv(pi, pj+1) C Zv(a, b), and by Fact 6.7, H(Zv(pi, p+1))

H(Z,(a, b)). Thus, H(Zp,(pi, pj)) H(Z,(a, b)) as desired. On the other hand, by Fact 6.8:

Z(pk,pk+2) 9 ZP,(Pk-1,Pk+2),

H(Zv(Pk,Pk+2)) H(Zp ,(Pk-1,Pk+2)).

By Fact 6.7 and because x(pk) x(a') < x(b') x(Pk+2), we have the desired result:

Zv,(a',b') 9 Zv(Pk,Pk+2) g ZP,(Pk-P1,pk+2),

H(Zv,(a',b')) 5 H(Z(Pk,pk+2)) H(Z,(Pk-1Pk+2))

6.4.3 Updates

It remains to describe how we maintain a B-tree with the upper convex hull, as used by the

query. A straightforward approach is to only modify the representation of the convex hulls

at each node of the Overmars-van Leeuwen structure, storing these as persistent catenable

B-trees. Because we do not use parent pointers, we can use standard persistence techniques

[DSST89]. Unfortunately, however, a catenable B-tree rebuilds O(logB n) nodes per update.

Rebuilding a node takes B0 (1 ) time, because we must rebuild the associated data structure

of Lemma 6.9. Finally, the Overmars-van Leeuwen structure performs O(lg n) splits and

joins, so the total update time is O(lg 2 n1 L) = O(1g 2+e n).
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To reduce updates to O(lg 2 n), we abandon persistence, and build the query B-tree in

close parallel to the Overmars-van Leeuwen tree. This has a similar flavor to the original

approach of Overmars and van Leeuwen [OvL81], which was developed before persistence

was known.

Each node of the Overmars-van Leeuwen tree discovers one bridge (because we are only

dealing with the upper hull), and two bridge points that define it. We compress the bridge

points from all nodes on lg B -2 consecutive levels of the Overmars-van Leeuwen tree into one

node of our B-tree. This means a B-tree node will store 2. (2 -2 1gB-2 -1) = B-2 < B points.

The depth will be O(lg n/ lg B). Note, however, that this "B-tree" is not necessarily balanced

with respect to the values it stores (the nodes on the hull), but is balanced with respect to

the original set of points, closely following the balance of the Overmars-van Leeuwen tree.

An update can only change bridge points on a root-to-leaf path in the Overmars-van

Leeuwen tree. This means that only O(logB n) nodes of the B-tree are changed, and we can

afford to rebuild the associated structures for all of them. This takes time logs n - B0 (1 ) -

Jrl n, which is a lower-order term.

Finally, we must augment each node to support the constant-time operation we have

assumed: given a point on the node's hull, round it to the next bridge point. Since the

upper hull is sorted by x coordinates, it suffices to store an atomic heap [FW94} for the x

coordinates of the bridge points. Maintaining the atomic heap is a lower order term compared

to reconstructing our hull fusion data structure at each node.
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Chapter 7

Open Problems

We now turn to a collection of fundamental problems in computational geometry that our re-

sults bring to light. We believe further examination of these problems from the point of view

of geometric information could reveal additional structure on the problem in particular and

geometric information in general. We divide the open problems into three major categories:

algorithms (compute an entire structure such as the Voronoi diagram, or bulk offline queries),

static data structures (preprocess the geometry to support fast queries), and dynamic data

structures (maintain geometry subject to fast updates and queries). Computational geom-

etry is ripe with relations between such categories of problems: many data structures have

been invented solely because they resulted in an optimal geometric algorithm. But under

this new vantage point, we need to reconsider whether such reductions still produce optimal

solutions, or whether additional structure and separations result.

7.1 Open Problems in Algorithms

Offline point location. Our current best solution to this problem runs in 0(m) + n-

2 0(Vg91g m) time, given m segments and n points. Intuitively, the bound does not "look"

optimal, but we have so far failed to improve it.

Open Problem 1. Can offline planar point location be solved with running time n(lg lg n)0 (1)
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Does randomization help?

A faster randomized algorithm would be particularly interesting, as it would be the

first improvement through randomization of a search strategy in geometry. There is ample

precedent for randomization offering simpler optimal solutions to geometric problems, such

as randomized incremental construction, but randomization also plays an important role in

the current state-of-the-art in integer sorting [HT02].

On the other hand, it seems unlikely that planar point location can be solved in linear

time. So far, sorting has been essentially the only search problem with complexity between

w(n) and o(n ig n). Having point location as a second example with radically different prop-

erties might shed some light into the area. One can hope for lower bounds under a natural

restriction on the model, perhaps obtained by examining the common features between sort-

ing and planar point location.

Voronoi diagrams. For computing the Voronoi diagram in the plane, or more generally

the convex hull in 3-d, we obtain a randomized reduction to offline point location. Although

frequently used in tandem with point location, Voronoi diagrams and 3-d convex hulls are

important structures in their own right, and it is natural to wonder whether they are in

fact easier problems than offline planar point location. The additional structure offered by

Voronoi diagrams may make the problem easier to solve. Alternatively, and perhaps more

likely, one may be able to find a reverse reduction, converting any offline planar point location

problem into an equivalent 2-d Voronoi or 3-d convex hull problem.

Open Problem 2. Is computing a Voronoi diagram as hard as offline planar point location?

Another direction to pursue is whether the random-sampling reduction from 2-d Voronoi

and 3-d convex hull to offline planar point location can be made deterministic via deran-

domization. Unless we find a faster solution to offline planar point location that exploits

randomization, it is unsatisfying to require randomization just for this reduction. Instead of

derandomizing the reduction directly, an alternative is to attempt to apply our point-location
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techniques directly to constructing Voronoi diagrams, and therefore obtain a deterministic

time bound.

Open Problem 3. Can Voronoi diagrams be computed in o(n ig n) time without random-

ization?

Line-segment intersection. The segment intersection problem comes in three flavors:

reporting (list all intersections), counting (count intersections) and existential (does there

exist an intersection?). It is reasonable to assume the existential and reporting problems

behave the same way, up to an additive cost in the output size. For these problems, we

may ask the same questions as for constructing Voronoi diagrams: Can we beat offline point

location? Can we obtain o(n lg n) bounds without randomization?

The general counting problem is suspected to have complexity n', for a > 1, making it

uninteresting from the point of view of our study. Consider, however, red-blue intersection

counting: given n line segments, each marked red or blue, count the number of intersections

between red and blue. It is guaranteed that red, respectively blue, segments do not intersect

among themselves. This problem can be solved in O(n lg n) time, and it is the only "natural"

problem of this complexity for which our techniques do not offer any improvement.

Note, however, that in this case we cannot hope to achieve bounds similar to offline

point location. This problem is at least as hard as counting inversions in a sequence of

integers, for which it is a long-standing open question to obtain a running time better than

O(n lg n/ Ig lg n). Unfortunately, we do not know how to mimic even this running time for

the geometric problem.

Open Problem 4. Is there a o(n lg n) -time algorithm for red-blue line-segment intersection

counting?

Note that the same problem can be easily solved in the orthogonal case, by using an

optimal partial-sums data structure [PD06].
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7.2 Open Problems in Static Data Structures

Next we turn to data structural open problems where the data is static but queries come

online. Because we need an instant answer for each query, we cannot expect the same kind

of speedup as for offline queries. Indeed, here there are many more interesting questions

about lower bounds, building on the field of 1-d data structural lower bounds.

Planar point location. Perhaps the central open problem suggested by our work is:

Open Problem 5. How fast can point-location queries be supported by a linear-space data

structure on n points?

Improving the present results would require the development of new techniques in finite-

precision geometric algorithms. On the other hand, the present bounds are fairly natural, and

may well turn out to be the correct answer. In this case, we would aim to find a matching

lower bound. Such a lower bound would be particularly interesting because it would be

fundamentally geometric, being the first lower bound for static data structures that is not

an immediate consequence of known one-dimensional lower bounds. Specifically, the point of

comparison here is the predecessor problem (the one-dimensional analog of point location).

We [PT06} recently established the optimal query bound for a linear-space predecessor data

structure to be roughly E(min{lg n/ 1g w, lg w}). This bound differs substantially from our

point-location bound in the second term, roughly a square root versus a logarithm.

A somewhat easier question in this context is whether one can prove that standard

techniques for the predecessor problem, such as the sketching approach of fusion trees, cannot

generalize to the multidimensional setting (in some model). For example, it seems that there

is no data structure supporting planar point location queries among wl segments in constant

time, thus making impossible the black box of a fusion-tree node.

Nearest neighbor. In traditional computational geometry and the algebraic computation

tree model, this problem requires Q(lg n) time in the worst case, so it is optimal to reduce

it to planar point location. But from the finite-precision perspective, we may be able to
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circumvent any lower bounds for planar point location in the special case of finding nearest

neighbors. Of course, the lower bounds of the predecessor problem still apply here, but it

is possible that the difficulty of nearest neighbor falls strictly in between predecessor and

planar point location.

Open Problem 6. How fast can nearest-neighbor queries be supported by a linear-space

data structure on n points?

Alternatively, we may establish lower bounds for nearest neighbor stronger than predeces-

sor. For example, if we can establish such strong lower bounds for planar point location, the

argument may be transferable to the special case of nearest neighbors. Such lower bounds

would give the first formal sense in which approximate nearest neighbor, which reduces to

a one-dimensional predecessor problem [Cha02], is asymptotically easier to solve than exact

nearest neighbors.

Connectivity. A subtle variation on point location is planar point connectivity: preprocess

a planar map subject to queries for whether two given points are in the same face of the map.

Obviously, this problem reduces to planar point location: determine the face containing the

two points and test for equality. But it is possible that planar point connectivity can be

solved faster than not only planar point location, but possibly even the predecessor problem.

The analogy here is to one-dimensional range reporting (is there a point in a given interval?),

for which bounds substantially better than predecessor search are known [MPP05].

Open Problem 7. Can static data structures for planar point connectivity outperform those

for planar point location?

This problem arises in a natural setting studied by Thorup (personal communication).

Specifically, an efficient data structure for connectivity is essentially what is needed to obtain

efficient approximate distance oracles. Here we would like to know the approximate number

of faces (dual vertices) along the best path between two query points in a static planar map.
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Polygons. On the simpler side, we can think of queries about just a single convex polygon

in the plane. As noted in Corollary 5.1, tangent queries, and the dual line-stabbing queries,

can be solved through point location. However, the special convex structure may make the

complexity of the problem fall strictly in between point location and predecessor search.

Open Problem 8. How fast can tangent queries be supported by a static data structure on

a convex n-gon?

7.3 Open Problems in Dynamic Data Structures

Our final collection of open problems is also the most challenging: maintain geometric data

subject to both queries and updates. The techniques for static data structures do not

generally apply, requiring the development of new techniques.

Convex hull. Our lower bound for dynamic convex hull queries (Appendix B) is Q(lg n/ lgw),

given polylog(n) update time. While we achieve this query time for some of the simpler

queries (e.g. linear programming), for the hardest queries (e.g. tangent queries) the running

time is O(lg n/lg lg n) regardless of precision. To the best of our knowledge, this running

time independent of w is rather unique. If this distinction is indeed real, it separates convex

hull queries, which would be interesting. Furthermore, this would separate dynamic geo-

metric search (tangent queries) from the related 1-d search problems, which have 0 (log,, n)

upper bounds.

Open Problem 9. What is the optimal complexity of tangent queries, given update time

polylog(n) ?

Of course, another natural question is whether the updates can be improved to logarith-

mic or even sublogarithmic while maintaining fast queries. In principle, we do not know

of any lower bounds that prevent, say, an 0(lg lg n) update time, although this seems un-

likely. Resolving this issue will likely require the development of new lower bound techniques.
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Achieving an upper bound of o(lg 2 n) may be a rather difficult question, given the subloga-

rithmic queries seem to prohibit the single known idea for breaking the O(lg2 n) barrier.

Open Problem 10. What is the optimal update time for dynamic convex hull while sup-

porting 0 (lg n/ lg lg n) queries?

Point location. Achieving O(lg n) bounds for dynamic point location is a well-known

open problem. Current bounds revolve around 0 (Ig n lg lg n). However, given our bounded-

precision perspective, it is not even clear that O(lg n) is the right goal.

Open Problem 11. Can dynamic planar point location be solved with o(lg n) time per

operation?

Plane graphs. Part of dynamic planar point location is the maintenance of a planar map

subject to insertion and deletion of points and edges. Two other natural queries on such

dynamic planar maps are (a) are two given edges on the same face? and (b) are two vertices

in the same connected component of the graph? The latter query is a natural analog of

dynamic connectivity in graphs. It is known that dynamic connectivity requires Q(lg n)

time per operation, even when the graph is planar. However, the lower bound does not

preserve the planar embedding of the graph; it can change drastically in each step. When

the user must explicitly maintain the embedding by modifying the points that define vertices,

the problem may be substantially easier.

Open Problem 12. Can dynamic connectivity in plane graphs be solved in sublogarithmic

time per operation?

If the answer to this question is positive, we would have a nice contrast where the two-

dimensional problem is actually easier than the motivating data structural problem: geom-

etry helps. Even if dynamic connectivity is not possible in sublogarithmic time, the simper

query of testing whether two edges bound the same face may be possible, cutting a finer line

through the problem space.
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Appendix A

Results in Higher Dimensions

A.1 Online Point Location

The sublogarithmic point location algorithm from Chapter 2 can be generalized to any

constant dimension d. The main observation is very similar to Observation 2.3:

Observation A.1. Let S be a set of n disjoint (d - 1)-dimensional simplices in !R, whose

vertices lie on d vertical segments 1o,..., I_1 of length 2 to,..., 2 d-l. We can find 0(b)

simplices so, si,... E S in sorted order, which include the lowest and highest simplex of S,

such that:

(1) for each i, there are at most n/b simplices of S between si and si+1, or the endpoints

of si and si+1 lie on a subinterval of Ij of length 2'j-h for some j; and

(2) there exist simplices s0, s2, with so -M so -< S2 -< s2 -< ... and vertices on I1, ... , Id,

such that distances between endpoints of the si's on Ij are all multiples of 2'j-'.

Applying this observation recursively in the same manner as in Section 2.3, we can get

an O(lg n/ lg lg n)-time query algorithm for point location among n disjoint (d - 1)-simplices

spanning a vertical prism, with 0(n) space, for any fixed constant d.

In the implementation of the special word operation, we first apply a projective trans-

formation to make 1o = {(0, . . . , 0)} x [0, 2h), I - {( 2 h 0, ... , 0)} x [0 , 2h) .... , Id_1 =
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{(,.. . , 0, 2 h)} x [0, 2 h). This can be accomplished in three steps. First, by an affine trans-

formation, we can make the first d - 1 coordinates of Io, . .. , Id-1 to be (0, ... , 0), (1, 0,. .. , 0),

... (0, 0, ... , 0, 1), while leaving the d-th coordinate unchanged. Then by a shear transfor-

mation, we can make the bottom vertices of I0, ... , Id-I lie on Xd = 0. Finally, we map

(X1,..., Xd) to:

1
(2h+11,7. . . ,2 2h+'d I-17 2 h X).20(1 - x - X-_1) + 2elxi + - + 2ed-1Xd(1

The coordinates of the si's become h-bit integers. We round the query point q to a point

4 with h-bit integer coordinates, and by the same reasoning as in Section 2.3, it suffices to

locate 4 among the 9i's (since every two (d - 1)-simplices have separation at least one along

all the axis-parallel directions). The location of 4 can be accomplished as in Section 2.3,

by performing the required arithmetic operations on 0(h)-bit integers in parallel, using a

constant number of arithmetic operations on w-bit integers.

Proposition A.2. Given a sorted list of n disjoint (d - 1)-simplices spanning a vertical

prism in !Rd with O(w)-bit rational coordinates, we can build a data structure in 0(n) time

and space, so that point location queries can be answered in t(n) := 0(lg n/ ig lg n) time.

A.2 Offline Point Location

Observation A.1 works equally well with the offline algorithm from Section 3.2. By contrast,

the variation in Section 3.3 does not seem to generalize to higher dimensions, because there

is no equivalent of a central slab. Thus, the trick that allowed us to use only standard

operation in 2-d does not help us in higher dimensions.

Remember that the offline algorithm needs to apply the projective transform in parallel

to points packed in a word. It does not seem possible to implement this in constant time

using standard word RAM operations (since, according to the formula for projective trans-

form, this operation requires multiple divisions where the divisors are all different). We will

instead simulate the special operation in slightly superconstant time. We can use the circuit
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simulation results of Brodnik et al. [BMM97] to reduce the operation to lg w - (lg lg w)O(1)

standard operations. Since precision is generally polylogarithmic (w < polylog(n)), we tend

to think of this slowdown per operation as very small. We obtain:

Proposition A.3. Given a sorted list of m disjoint (d - 1)-simplices spanning a vertical

prism in Rd, and n points in the prism, we can sort the points relative to the simplices in

time 0(m) + n - 2 0(Ngig m) lgl+o(l) W.

A.3 Applications in Higher Dimensions

As many geometric search problems can be reduced to point location in higher-dimensional

space, our result leads to many more applications. We mention the following:

Corollary A.4. Let t(n) be as in Proposition A.2, and assume d is fixed.

(a) We can solve the point location problem for any subdivision of R' into polyhedral cells,

with no()1 space and preprocessing time, and O(t(n)) query time.

(b) We can preprocess n points in Rd with O(w)-bit rational coordinates, in nG(1 ) pre-

processing time and space, so that exact nearest/farthest neighbor queries under the

Euclidean metric can be answered in O(t(n)) time.

(c) We can preprocess a fixed polyhedral robot and a polyhedral environment with n facets

in Rd with O(w)-bit rational coordinates, in no(') time and space, so that we can decide

whether two given placements of the robot are reachable by translation, in O(t(n)) time.

(d) Given an arrangement of n semialgebraic sets of the form {x E Rd P(x) > 0} where

each pi is fixed-degree polynomial with O(w)-bit rational coefficients, put two points in

the same region iff they belong to exactly the same sets. (Regions may be disconnected.)

We can build a data structure in n0 M1 ) time and space, so that (a label of) the region

containing a query point can be identified in O(t(n)) time.
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(e) (Point location in 2-d among curved segments.) Given n disjoint x-monotone curve

segments that are graphs of fixed-degree univariate polynomials with O(w)-bit rational

coefficients, we can build a data structure in noM1) time and space, so that the curve

segment immediately above a query point can be found in O(t(n)) time.

(f) Part (b) also holds under the 4, metric for any constant integer p > 2.

(g) We can preprocess a polyhedral environment with n facets in R d with O(w)-bit rational

coordinates, in nG(1 ) time and space, so that ray shooting queries (finding the first facet

hit by a ray) can be answered in O(t(n)) time.

(h) We can preprocess a convex polytope with n facets in Rd with O(w)-bit rational coordi-

nates, in n0 (') time and space, so that linear programming queries (finding the extreme

point in the polytope along a given direction) can be answered in O(t(n)) time.

Proof. (a) For a naIve solution, we project all (d - 2)-faces vertically to Rd-1, triangulate

the resulting arrangement in Rd-1, lift each cell to form a vertical prism, and build the

data structure from Proposition A.2 inside each prism. Given a point q, we first locate

the prism containing q by a (d - 1)-dimensional point location query (which can be

handled by induction on d) and then search inside this prism. The overall query time

is O(t(n)) for any fixed d.

(b) This follows by point location in the Voronoi diagram.

(c) This reduces to point location in the arrangement formed by the Minkowski difference

[dBSvKOOO, O'R981 of the environment with the robot.

(d) By linearization (i.e., by creating a new variable for each monomial), the problem is

reduced to point location in an arrangement of n hyperplanes in a sufficiently large

but constant dimension.

(e) This is just a 2-d special case of (d).
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(f) This follows by applying (d) to the 0(n2 ) semialgebraic sets {x E Rd I lix - ailI

ix - aIllp} over all pairs of points ai and a,.

(g) Parametrize the query ray {x + ty I t > 0} with 2d variables x, y E Rd. Suppose that

the facets are defined by hyperplanes {x E Rd I a -x = 1}. The "time" the ray hits such

a hyperplane (i.e., when a -(x+ty) = 1) is given by t = (1- ai -x)/(a -y). We apply (c)

to the O(n 2 ) semialgebraic sets {(x, y) E R2d 1 (1 - ai -x)/(a - y) (1 - a3 -x)/(aj - y)}

over all i, j and {(x, y) E R2d I ai -x < 1} over all i. It is not difficult to see that all rays

whose parameterizations lie in the same region in this arrangement of semialgebraic

sets have the same answer.

(h) Linear programming queries reduce to ray shooting inside the dual convex polytope,

which has no() facets, so the result follows from (g).

We remark that by proceeding exactly as in Section 2.4, we can also obtain a w-sensitive

version of all the bounds, with query time t(n, w) := 0 (min lg n/lg lg n, dw/lg w}.
The preprocessing time and space in Corollary A.4 can be reduced by applying random

sampling techniques [Cla88, CS89] like in Section 4.3. For example, for (a), we can achieve

0(t(n, w)) query time with O(n[d/21 lgO(1) n) space. For (d), we can achieve 0(t(n, w)) query

time with O(n) space.

The offline result has a few applications as well, to offline nearest neighbor search in higher

dimensions and curve-segment intersection in 2-d. The former follows from (b) above. For

the latter, we combine (d) with the same technique as for regular segment intersection, in

Section 5.2. Then, intersecting curved segments has the same bound as for straight segments,

up to the factor lg 1"1 w.
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Appendix B

A Careful Look at Dynamic Queries

In Chapter 6, we discussed the tangent query in the dynamic convex hull problem, and

obtained O( 19" ) query time, with O(lg 2 n) update time. This is just one of the many

queries that are typically considered in this problem, but it turns out that these results

extend to all queries. However, for some queries we can do better, as we describe here. In

addition, we describe (almost) tight lower bounds for the query times.

In Section B.1, we discuss and classify the commonly considered queries.

In Section B.3, we prove lower bounds of Q(lg n/lg w) for the query time of almost

all queries, assuming updates (point insertion and deletion) run in polylogarithmic time.

The sole exception is the gift-wrapping query (walking the hull), which requires only E(1)

time. Our lower bounds are based on a reduction from the classic marked ancestor problem

[AHR98]. This result holds in the all-powerful cell-probe model, which just measures the

number of memory accesses required per operation, without worrying about any computation

costs. Of course, such lower bounds apply to the word RAM, and any computer architecture

commonly used today.

This lower bound matches the results of Chapter 6, if the precision is polylogarithmic,

and if we are not optimizing the precise update time. In Section B.2, we show how to support

a certain subset of the queries in time exactly O(lg n/ lg w), while also supporting updates in

just O(lg n lg lg n) time. This result shows that in essence, some queries are one-dimensional,
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and can be implemented by a careful combination of results in 1-d search. In particular, this

result holds for linear programming (extreme-point queries), but not for tangent queries.

This upper bound starts from the decomposable-search approach introduced by Chan [ChaOla]

and refined by Brodal and Jacob [BJOO]. In this structure, it seems impossible to support the

most difficult decomposable query, tangent, in the optimal time bound E ( "g ). Essentially,IgIgn

the trade-off we could make in Chapter 6 between a node's query cost and the information it

reveals relies on an essentially explicit representation of the convex hull as in the Overmars-

van Leeuwen structure. Representing the convex hull as the hull of 0 ( g ) overlapping

convex hulls, as in the Brodal-Jacob structure, restricts us to optimal implementation of

linear-programming queries, which can be viewed as tangent queries for points at infinity.

So although the update time is better in this case, the techniques required for optimal query

bounds actually become less interesting.

Our results therefore illustrate a refined sense of the difficulty of various queries about

dynamic planar convex hulls. The challenge with tangent queries is that the input has two

geometric degrees of freedom (the coordinates of the query point); thus we call the query

two-dimensional. On the other hand, linear programming is essentially one-dimensional, the

input being defined by a single directional coordinate. This distinction is what makes both

linear-programming and tangent queries possible in sublogarithmic query time in the explicit

structure, but only linear-programming queries possible in the decomposable structure. Our

information-theoretic lens therefore highlight an even stronger contrast between the original

Overmars-van Leeuwen structure and the more modern structures based on decomposable

search: the latter structures are not informationally efficient. It thus remains open to break

the O(lg 2 n) barrier (again) while achieving informationally efficient two-dimensional queries.

B.1 Query Taxonomy

Formally, the dynamic planar convex hull problem is to maintain a dynamic set of points, S,

subject to insertion and deletion of points and a number of potential queries summarized in

Figure B-1. We assume for simplicity of exposition that all x coordinates in S are distinct,
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E(log, n)
line decision- *--- linear programming' - tangent decomposable

hull membership containment 2 n) update

-(1) gift wrapping vertical stabbing 4- line stabbing

zero-dimensional one-dimensional two-dimensional

Figure B-1: Dynamic convex hull queries. The queries in the top row are all decomposable;
the rest are not. Arrows indicate reducibility between queries: generalization -* specializa-
tion. Vertically aligned queries are also dual to each other.

as are all y coordinates in S. We classify queries by the number of (continuous) degrees of

freedom in their input:

" Zero-dimensional queries, where the input is the discrete set S:

Gift wrapping: Given a vertex of the convex hull, report the two adjacent vertices

of the hull. This is the one query that can be supported in 0(1) time, as a direct

consequence of applying standard tree-threading and persistence techniques to

the Overmars-van Leeuwen structure.

Hull membership: Test whether a point is on the convex hull.

* One-dimensional queries, which have only one degree of freedom:

Linear programming: Report the extreme point of the set S in a given direction.

Line decision: Given a line i, test whether it intersects the convex hull. Although

this query might seem two-dimensional, in fact it is a decision version of linear-

programming queries: it tests whether the extreme points in the direction per-

pendicular to f are on opposite sides of f.

Vertical line stabbing: Given a vertical line that intersects the convex hull, report

the two edges it cuts.

Containment: Report whether a point q is contained in the interior of the convex

hull. This query is a decision version of vertical line stabbing, because we only
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need to test that q is between the two edges that intersect the vertical line. This

query is more general than hull membership: applying this query to a perturbation

(away from the center of mass) determines whether the point is on the hull.

* Two-dimensional queries:

Tangent: Given a point q outside the convex hull, report the two tangents of the

hull that pass through q. This query is more general than linear programming,

because linear programming can be reduced to tangents of points at infinity. This

query is also more general than containment: we can assume that the point is

outside the hull, find its tangents, and then verify that the tangents are correct

(by running linear-programming queries perpendicular to the tangents).

Line stabbing: (a.k.a. bridge finding) Given a line that intersects the convex hull,

report the two edges that it cuts.

The original data structure by Overmars and van Leeuwen [OvL81] supported all queries

in O(lg n) time, with E(lg 2 n) update time. The later data structures with o(lg 2 n) update

time [ChaOla, BJOO, BJO2] use techniques from decomposable search problems, and thus

are limited to decomposable queries. Though containment and hull membership are not

decomposable, the trick of reducing containment to tangent means that these queries also

can be supported with o(1g 2 n) update time. Referring to Figure B-1, the horizontal dashed

line marks the class of queries for which o(lg 2 n) updates and O(lg n) queries are known.

For our lower bound, it suffices to consider the sinks of this reduction graph: hull mem-

bership and line decision. All other queries are harder than at least one of them, so we

obtain an Q(log,, n) lower bound for all queries but gift wrapping.

Our data structure from Chapter 6 supports all queries in 0( gn ) query time, and

O(lg 2 n) update time. The data structure from Section B.2 below has update time O(lg n lg lg n),

and supports one-dimensional, decomposable queries in O(log, in) - that is, it supports

linear programming, and, by reduction, line decision queries. Like all previous structures
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with o(1g 2 n) update times, ours cannot support nondecomposable queries like line stab-

bing. However, there is an additional discrepancy: because we cannot handle the two-

dimensional tangent queries in this data structure, we cannot support the nondecomposable

hull-membership or containment queries through the trick of reducing them to tangent. Thus

our information-theoretic lens highlights an even stronger contrast between decomposable

and nondecomposable queries.

Static problems. To situate these queries in context, we remind the reader about their

behavior on a static convex polygon. Zero-dimensional queries trivially take constant time.

For the other queries, we can only consider half of them, because duality makes vertically

aligned queries identical. (Note that this is different from the dynamic setting, in which

duals are expensive to maintain.)

One-dimensional queries can be solved through predecessor search. Chazelle [Cha99]

provides a matching lower bound. Two-dimensional queries are reducible to point location,

and our Corollary 5.1 provides the first sublogarithmic bound. It is conceivable that these

queries are in fact easier than point location.

B.2 Fast Queries with Near-Logarithmic Update Time

Brodal and Jacob [BJOO] prove a general reduction from a dynamic convex hull data structure

that, on O(lg 4 n) points, supports queries in Q(n) time and updates in U(n) time, into a dy-

namic convex hull data structure that, on n points, supports queries in Q(n)- , updates in

U(n) - 19n and deletes in O(lg n Ig lg n) time. The reduction works for decomposable queries.

We will show how to build the polylogarithmic structure that supports linear-programming

queries in 0(1) time and updates in O((lglgn)2) time, which results in a dynamic convex

hull data structure that supports linear-programming queries in O(lgn/lglgn) time and

updates in O(lg n Ilg lg n) time.
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The data structure. Our data structure maintains the upper convex hull of k = 0(log4 n)

points using four components:

1. A (binary) Overmars-van Leeuwen structure [OvL81], where each node represents the

upper convex hull of its descendant points, as the concatenation of a subchain from

the convex hull of each child, and two bridges.

2. One atomic heap [FW94] storing all slopes that appear in the hulls of the nodes of the

Overmars-van Leeuwen structure. There are k' = 0(k) such slopes. An atomic heap

supports insertions, deletions, and predecessor/successor queries on lg 0 () n values in

0(1) time per operation.

3. A list labeling structure [DS87, BCD+02] maintaining 0(Ig n)-bit labels for each such

slope such that label order matches slope order. Unlike standard list labeling, our labels

must be explicit, without the ability to simultaneously update pieces of several labels

via indirection. Fortunately, our label space 20(Vrg-) is much larger than our object

space k' = 0(g 4 n). When the label space is polynomially larger than the object space,

we can maintain explicit labels in 0(1) time per update, e.g., using the root-to-node

labels in a weight-balanced search tree structure (BB[a] trees [NR73] weight-balanced

B-trees [AV03]); see [BCD+02].

The lists representing the convex hull in each node have a nontrivial implementation.

First of all, they represent the edges of the hull (in particular, their slopes), rather than the

vertices. Second, they are organized as persistent, catenable B-trees with branching factor

B = O(l gn), and thus, height 0(1). Each slope is replaced by its label of O(Vlgri) bits,

which means that a node has O(lg n) bits of information. We pack each node in one word.

We refer to this representation of the convex hulls as label trees.

Observe that slopes are sorted on the hull, so a label tree is actually a search tree. Using

standard parallel comparisons, we can locate the predecessor/successor labels of a query

label in a label tree in constant time.
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Updates. When we insert or delete a point, it affects the hulls of O(lg k) nodes in the

Overmars-van Leeuwen structure. In each of these hulls, we may create 0(1) new slopes

and/or delete 0(1) old slopes. We can compute these O(lg k) changes in O(g 2 k) time using

the standard Overmars-van Leeuwen data structure. The atomic heap and the list labeling

structures can support these changes in O(lg k) total time. The labeling structure may

update O(lg k) labels in total, and each label appears in O(lg k) label trees. Because we can

search for a label in a label tree in constant time, we can update the label trees in O(g 2 k)

total time.

Finally, as we propagate the changes in the node hulls according to Overmars-van Leeuwen,

we update the corresponding label trees using persistence, splits, and concatenations. The

key property here is that a node can be split at an arbitrary point, or two nodes can be

concatenated, in constant time because a node fits in a word. The total update time is

therefore O(lg 2 k) = O((lglgn)2 ).

Linear-programming query. Given a query direction d, we take the slope normal to d.

We search for the two adjacent slopes in the global atomic heap. Then we find the label

assigned to these slopes in the list labeling structure, and average these two labels together

(which is possible if we double the label space). Finally we search for the nearest two labels

in the label tree of the root. Thus we obtain the two edges of the overall (root) convex hull

whose slopes are nearest to the query slope, so the common endpoint of these two edges is

the answer to the query.

B.3 Lower Bound

Our lower bound is based on a reduction from the marked-ancestor problem [AHR98]. In

this problem, we have a static tree, say, a perfect binary tree with n leaves. Each node can

be either marked or unmarked. Initially all nodes are unmarked. The two update operations

are marking and unmarking a node. The (leaf decision) query is to decide whether a given

leaf has a marked ancestor. We can also assume that every leaf has at most one marked
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Figure B-2: The lower bound construction for a perfect binary tree on 8 leaves. Lines are

the duals of points in the convex hull problem, and they correspond to nodes in the tree.

ancestor, and trivially that the root is unmarked. Under these conditions, the marked-

ancestor problem has the following (tight) lower bound: if updates run in t' time, queries

require Q(ig wg ) time.

For dynamic convex hull, we obtain a lower bound in the following form, implying a lower

bound for all queries as in Figure B-1:

Theorem B.1. Any data structure for maintaining a convex hull subject to insertion and

deletion of points in amortized time tu and either hull-membership or line-decision queries,

requires ( ) time per query in the cell-probe model.

Proof. While we can prove a lower bound for dynamic convex hull directly, it turns out

that it is considerably simpler to construct the lower bound in the dual space. In the dual

problem, each point becomes a line, and maintaining the (upper chain of the) convex hull

morphs into maintaining the lower envelope of the lines.

Hull membership dualizes to the question whether a given line from the set is part of the

lower envelope. Line decision dualizes to containment: given a point, we ask whether it is

below or above the lower envelope.

To reduce from marked ancestor, we consider a convex semicircle, and 2n points at

uniform angular distances. Refer to Figure B-2. To leaf number i (i E {1, ... , n}) in the

in-order traversal of the complete binary tree, we associate points number 2i - 1 and 2i on
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the semicircle.

Now consider a node whose subtree spans leaves i through j. We associate this node with

the line from point 2i - 1 to point 2j. For a leaf, this is a line between consecutive points

on the circle.

At all times, the set of lines in the dynamic convex hull problem contains all lines asso-

ciated with leaves, plus lines associated with marked nodes. Thus, marking or unmarking a

node translates into adding or removing a line.

We now argue that a marked ancestor query to leaf i is equivalent to a hull membership

query to the line associated with the leaf. Because the lower envelope is convex, and the

center of the semicircle is always inside it, it follows that the line associated with leaf i is

on the lower envelope iff the segments from the center of the semicircle to points 2i - 1 and

2i do not intersect any other line in the set. Since these segments cannot intersect lines of

other leaves, we only need to consider lines associated with marked nodes. One of the two

segments intersects a line associated with the marked node iff the left endpoint defining the

line is at point < 2i - 1 and the right endpoint is at a point > 2i on the semicircle. This

happens iff the node is an ancestor of leaf i.

To prove a lower bound for containment also, note that it can be used to test if the

line between point 2i - 1 and point 2i is on the lower envelope. Indeed, we can take the

midpoint of this segment, and perturb it slightly towards the center of the semicircle. Then,

the segment is on the envelope iff the point is inside the lower envelope.

Finally, we need to discuss issues of precision, since we are proving a lower bound for

finite precision models. Note that even though we cannot make the points be perfectly on the

circle, our proof only requires than for any triple i < j < k, point j is strictly above the line

from i to k. Since we have 2n points at uniform distances on the semicircle, the minimum

distance between such a point j and the line from i to j is Q(n). Thus, rounding points in

the dual space to a grid of [cn]2 , where c is a sufficiently large constant, will preserve the

needed property.

Once dual points are integral, the lines are described by rational parameters, so points
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in the primal space are rational, with a constant-factor increase in precision. Therefore, our

lower bound holds for precision w = Q (lg n). U
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