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Abstract

Tavarua is a platform designed to support mobile telemedicine systems over wireless
wide area networks, WWANs. It utilizes network striping and other complementary
techniques to send uni-directional near real time video and audio data streams from
a mobile node to a stationary location.

The key technical challenge is transmitting high-bandwidth, loss-sensitive data
over multiple low-bandwidth, lossy channels. We overcome these challenges using
dynamic adjustment of the encoding parameters and a novel video encoding technique
(grid encoding) that minimizes the impact of packet losses.

Using five WWAN interfaces, our system reliably and consistently transmits audio
and diagnostic quality video, with median PSNR values that range from 33.716dB to
36.670dB, with near real-time latencies.

We present a study of the characteristic behavior of WWANs, and a description of
our system architecture based in part on the lessons gleaned from that study. Through
a set of experiments where we transmit video and audio data from a moving vehicle
we evaluate the system, focusing on consistency, reliability, and the quality of the
audio and video streams. These experiments demonstrate that we can transmit high
quality video and audio in varying conditions and even in the presence of hardware
failures.
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Chapter 1

Introduction

Tavarua is a platform designed to support mobile telemedicine systems that utilize

network striping over wireless wide area networks, WWANs, to send uni-directional

near real time video and audio data streams from a mobile node, e.g. an ambulance,

to a stationary location, e.g. a hospital.

WWANs are not ideally suited for our application. However, since our application

must be mobile and cover a large geographical area, we are left with no other cur-

rent option. To deploy our own infrastructure would be economically infeasible, even

between a few cities, not to mention restrictive, as it would preclude us from taking

advantage of the rapid advances in commercial networks. The other option is to use

the 802.11 network. While this network has a low loss rate and low latency, it is also

under provisioned for the areas that we need most, the highways, bridges and tunnels

that ambulances travel to transport patients. Additionally these networks are short

range and the connection time as the ambulance travels between two different net-

works is long, on average about 1-2 seconds. This would cause frequent interruptions

in our data streams, which would at best be frustrating to the user, and in most cases

preclude its use as a diagnostic tool.

WWANs are our best option, however these networks have drawbacks that need

to be overcome in order to use them effectively. The drawbacks are that the channels

have low throughput, a high loss rate, high packet round-trip-times (RTTs), and

are highly variable. To combat the issue of low throughput we need to connect to
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many WWAN interfaces simultaneously. To accomplish this we developed Tribe, a

protocol that emulates each remote interface as a local interface, allowing us to be

simultaneously connected to multiple interfaces. In conjunction with that component

we leverage Horde, a previously developed network striping middleware that allows

us to easily and efficiently stripe data over dissimilar WWAN channels. This virtual

channel provided by Horde and Tribe can provide adequate throughput since the only

limit to the number of simultaneously transmitting channels is what the network can

sustain. If more bandwidth is required, one can simply add more interfaces until the

network is saturated.

To mitigate the effects of the high loss rate, we use a grid video encoding technique

that segments each frame into several smaller subframes. Each of these subframes

are encoded and decoded independently, so losses or corruptions in one subframe are

localized and do not effect the rest of the frame. Because of the high packet RTTs, we

are unable to mask losses with retransmissions without sacrificing latency. This makes

the use of localizing losses even more vital, without grid encoding a single packet loss

would corrupt the entire frame. In situations where near real-time interaction is

not required, we allow the user to switch to a higher latency mode that does utilize

retransmissions.

While different variations of mobile telemedicine systems have been previously

explored, we know of no other system that can provide diagnostic quality audio

and video with a near real-time latency. At the University of Maryland, they have

developed a system that wirelessly transmits segments of recorded video to help detect

ischemic stroke in-route to the receiving hospital[37]. This system not only operates

under considerable latency, first the segment is recorded, then transmitted, but the

received video is only eight frames per second.

Another project at the University of Massachusetts, Amherst also uses the idea

of sending data over a WWAN channel[34]. However, they only use one WWAN

interface and unoptimized congestion control. Because of this, they cannot send all

data streams simultaneously and the video quality is not good enough to be considered

a diagnostic tool. Additionally, as the video approaches three frames per second, the

2



average delay exceeds three seconds.

With a near real-time latency, Tavarua can transmit high quality audio and video,

even at frame rates as high as 25 frames per second. WWANs are highly variable and

can fluctuate dramatically. To absorb these fluctuations in available bandwidth we

dynamically update the quantization, or Q, parameter that controls the quality at

which the frame is encoded, thus controlling the sending rate for our data streams for

a fixed frame rate. Through matching our data transmission rate to the value of the

last available bandwidth we are able encode video at the highest Q value while not

overburdening the network, which would cause losses. It is through our novel channel

aggregation component and network striping techniques, as well as our innovative

video encoding techniques that we are able to transmit diagnostic quality audio and

video from a mobile unit to a stationary location.

1.1 Motivating Application

Over the last decade, the increasing availability of data communications has led to

a dramatically increased interest in new applications of telemedicine. We will dis-

cuss two such potential applications, trauma care and the transport of critically ill

neonates, and the requirements derived from assessing the needs of the physicians

and the emergency medical transport team.

1.1.1 Trauma Care

The leading cause of death and disability for Americans under the age of 45 is trauma.

Despite this, there are no Level 1 Trauma Centers, which are specialized hospitals

that are equipped to handle all types of traumas, in most of the counties in the United

States. As of 2002, there were only 190 Level 1 trauma centers in the entire United

States[65]. Therefore, trauma patients experience long transport times without physi-

cian supervision under the care of in-ambulance teams that have limited capabilities.

These long transport times lengthen the time to treatment which has been found to

be the critical factor in saving life, limb and brain functions.
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In the treatment of trauma victims, establishing effective communication between

the emergency medical transport team and the in-house trauma team is challenging.

The physical distance and pressure of providing emergent care often prevents a de-

tailed and effective information exchange from one team to the other. A system that

allows real-time audio and visual linkage of the two teams could lead to improved

outcomes for the patient, since therapies could begin while in transit.

This would also improve the time to treatment once the patient arrives at the

hospital. Currently, the physicians have little information about the patient prior to

their arrival at the hospital. Concomitantly, when this information exchange is to

take place, the patient has also been wheeled in front of the physician, moving the

physician's focus from the information provided by the medical transport team to the

patient directly. Thus, the information culled about the patient in the ambulance

is often been ignored and the physician begins the patient evaluation from scratch,

wasting precious minutes as work is being repeated. If the physicians could receive

patient information prior to their arrival at the hospital, they would not repeat the

initial examination and therefore shorten the time to treatment. Additionally, if the

patient were to require special facilities, e.g., an operating room, or-personnel, e.g., a

neurosurgeon, that determination and the arrangements for such facilities and people

could be made while the patient was in-transit, decreasing the amount of time a

patient would have to wait prior to surgery.

1.1.2 Neonatal Care

As medicine has become increasingly specialized, treatment centers that can handle

critically ill patients have become fewer and further between. This dichotomy between

specialized treatment centers and local hospitals is evident in the care of neonatal

patients. While many babies are still born in local hospitals, these hospitals are

often not properly qualified to care for these babies should something go seriously

awry. When these emergencies arise, the critically ill neonates must be transported

to specialized treatment centers, often located quite a distance from where these

neonates were born.
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Transporting these critically ill neonates long distances demands a transport team

trained to handle the particular needs of neonatal patients. Unfortunately, most med-

ical transport teams are not qualified to assist neonatal patients. These factors con-

tribute to the number of newborn's with developmental problems and to the number

of newborn deaths.

As conveyed to us by neonatal specialists, many of the critical procedures that

could be done while the patient is in transit are simple; all medical transport teams

are qualified to preform them. However, noticing that these procedures need to be

done takes a specialist who can read the subtle cues from the neonates, e.g., coloring,

vital signs, and activity. Tavarua would bridge such a gap, providing the transport

team with the trained eye of a specialist, remotely monitoring from the specialized

treatment center that will be receiving the patient.

1.1.3 Requirements

Building an application that meets these needs requires a mobile communications

system that simultaneously handles real-time bi-directional video, on the order of

500kbps with a minimal amount of latency, and bi-directional, reliable audio. Bi-

directional video would allow for a richer communication as the doctor could demon-

strate procedures for the medical transport team or tasks for the patient to perform.

This system must also be adaptable to sudden changes in bandwidth, moving grace-

fully between what is acceptable in high bandwidth areas, specifically video encoded

at a high quality level and a high frame rate, and what is possible in low bandwidth

areas. Additionally, it must also give the physician the ability to select a higher la-

tency video stream so that they can choose to view smooth video when the ambulance

is in a location where the network is experiencing an abundance of losses. Through

a few simple controls, like adjusting the frame rate, or selecting high or low latency

video, the physician can tailor the application to the specific medical needs, even as

those needs change over time.
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1.2 Contributions

After we determined that the only feasible network to use was the 3G WWANs pro-

vided by cellular telephony companies, we needed to know the characteristic behavior

of these channels. We could find no large scale study of these networks in the public

domain; the only available data was cellular carrier advertising that provided best

case throughput numbers and coverage maps that presented binary information re-

garding whether or not coverage existed in that particular area. While not a rigorous

study, this thesis provides the largest known study of these WWANs, spanning several

days and multiple cities.

Tavarua provides a scalable infrastructure that can be used to study the poten-

tial usability of telemedicine in real world environments. Additional components,

e.g., cameras or WWAN interfaces, can be incorporated into the system easily. The

original prototype used one camera and three PCMCIA interfaces. To perform some

recent experiments we easily added an additional camera and two Rev-A USB WWAN

interfaces. Adding the camera was a matter or plugging it in, while the upgraded

WWAN interface took an additional twenty minutes to fine tune the congestion con-

trol parameters in the middleware. However, this fine tuning of parameters only needs

to be done when a new class of card is added to the system. An identical WWAN

interface would take minutes to incorporate into the infrastructure. WWAN technol-

ogy is improving rapidly, with that in mind we designed a system that benefits from

these upgrades, e.g. from EV-DO to the current state-of-the-art Rev-A[50, 75], by

simply plugging in the latest piece of hardware and not requiring any modifications

to our existing code-base.

The main contribution of this thesis is the construction of this system and the novel

technologies incorporated to improve deficiencies in performance that were observed

through running the system. Through our study of the network we realized that

the throughput of WWANs is highly variable. To improve the video quality of our

system and to decrease the packet loss rate we utilized feedback from our networking

middleware to dynamically update the quality at which we encoded the video to
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match the available bandwidth of the network. Figure 1-1, discussed in more detail

in chapter 5, shows how effective we are in matching the encoding rate to the allowed

bandwidth of the network. Maintaining this small gap between the allowed rate and

the encoding rate allows us to absorb drops in the network throughput or spikes in the

encoded frame size, brought on by high motion scenes, without incurring losses. This

attention to minimizing the loss rate is a primary factor in our ability to consistently

attain diagnostic quality video.

. . . .En o a -- End Rat -

650 N 1 150F

600 ~6

550 550

9650 9700 9750 980 9950 9900 9950 10000 100 10100 9650 5700 9750 90 9850 0 09 95 1000 10050 10100
Frame Number Frame Number

Figure 1-1: The figure on the left compares the bitrate at which the video was encoded
to the feedback from the network of how much we were allowed to send. The goal is to
consistently keep a buffer between the encoding rate and the allowed rate, which will
probe for more bandwidth but not incur losses. Because of buffering, the encoding
rate can exceed the allowed rate, as occurs around frame 9925, if only for a short
duration. The figure on the right compares the encoded bitrate and the send rate.
Prolonged periods where the encoding rate is above the send rate is indicative of
non-transmitted, and thus not received, data.

While carefully managing the encoding rate did improve the quality of the video

and reduce the loss rate, we were still receiving an unacceptable number of partial and

corrupted frames. We noticed that if an intra-coded frame, whose size was roughly

16 packets experienced even a single packet loss, the entire frame was corrupted and

would have to be discarded, which dramatically lowers the quality of the decoded

video. This led us to develop and apply a technique of grid encoding where the

frame is segmented into smaller subframes that independently encode and decode

data. Not only does this isolate the effects of loss, but through staggering when these
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independent frames begin encoding we also smooth out the send rate. At each frame,

a smaller number of subframes are producing intra-coded frames, dividing the cost of

sending the large intra-coded frames over the entire group of pictures (GOP). Figure

1-2 shows how this technique has reduced the burstiness of this stream, reducing the

number of losses that occurred through overburdening the network with sudden data

spikes.

One Encoder
Eight Encoders -------

90

80

70

80

50

10V

10

1700 1720 1740 1760 1780 180
Frame Number

Figure 1-2: The sizes of each frame for a grid of one encoder and for a grid of eight
encoders.

These techniques as well as an architecture that emphasizes consistency and relia-

bility have resulted in a system that sends diagnostic quality audio and video streams

from a mobile unit even in the presence of drastic network declines, e.g., bridges or

tunnels, or hardware failures. As discussed further in chapter 5, while moving through

a tunnel we were able to transmit video with an average peak-signal-to-noise-ratio

(PSNR) of 32.5dB, a value above diagnostic quality, even as we experienced losses

up to 80%. A PSNR value in the range of 30dB to 40dB is considered quite good.

Through a series of experiments driving over a wide geographical area, we are able

to consistently provide diagnostic quality video, yielding median PSNR values that

range from 33.716dB to 36.670dB. Additionally, because we utilize opportunistic

retransmissions of the audio packets as well as take advantage of the priority flags

8



within Horde, even as the loss rate increases when the vehicle is no longer stationary,

the PSNR of the audio stream remains the same.

1.3 Thesis Organization

Chapter 2 provides background and the results of a study of the end-to-end perfor-

mance for multiple WWAN providers. Chapter 3 discusses related work in the fields

of WWANs, multimedia streaming, and telemedicine applications. Our system ar-

chitecture, including expositions on the networking layers and the audio, video and

telemetry subsystems is discussed in chapter 4. An evaluation of the performance of

the Tavarua system, in terms of losses, throughput, and the quality of the received

video, is presented in chapter 5. Finally, in chapter 6, we present our conclusions as

well as directions for future work.
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Chapter 2

Network Characteristics

2.1 Introduction

Wireless Wide-Area Network (WWAN) channels provide pervasive mobile internet

connectivity, but their end-to-end performance has not been well studied. In order

to intelligently design our system we needed to gain insight into the characteristic

behavior of WWAN channels. We therefore conducted a number of experiments,

measuring end-to-end performance for multiple WWAN providers. Our experiments

were conducted over three days, in two cities. Given the small sample size, we are

cautious in drawing broad conclusions, however, our data is extensive enough to

provide a high-level characterization of the WWAN links we tested. We are unaware

of any other public-domain study of these networks as extensive as the one presented

in this thesis.

Background

In most urban areas, there are a large number of public carrier wireless cellular chan-

nels providing mobile connectivity to the Internet, many of these carriers providing

overlapping coverage. Also, there is some technological diversity among the WWAN

providers (Verizon [161 and Sprint [15] have deployed CDMA2000 1xRTT/EV-DO

[50, 75] based networks, while Cingular [6] has a GPRS/EDGE [51] based network).
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Individual WWAN channels provide little in the way of quality of service guaran-

tees. Achievable average throughput can deviate significantly from advertised peak

rates. Additionally, service providers optimize for the downstream link, so the up-

stream bandwidth offered by these channels is far less than the advertised rates might

lead one to believe. These WWANs are also dogged by high and variable round trip

times, occasional outages, and considerable burstiness.

The performance at any given time depends on a multitude of factors, including,

the underlying wireless technology (e.g., CDMA or GPRS), the spatial placement

of the WWAN interface relative to the provider's base-stations, competition with

other users in the WWAN cell, and artifacts arising from physical occlusion and

electromagnetic interference.

The most advanced WWAN technology presently deployed in the US is the one

in use by both Sprint and Verizon's Code Division Multiple Access 1xRTT and

EVolution-Data Optimized (CDMA 2000 1xRTT, CDMA 2000 1xEV-DO, and CDMA

2000 Rev-A) networks [50, 75, 92]. These standards are often collectively referred to

as 3G CDMA. EV-DO is an evolution of the 1xRTT specification, and is optimized

for the efficient transfer of data. Rev-A is a further optimization that provides higher

data transfer rates. All experiments in this chapter utilize EV-DO. The advertised

rates for EV-DO data transfer are 2.4Mbps for downstream (base station to mobile

user) and 153kbps for upstream transfers (mobile user to base station). In order

to mask air channel losses, these networks make aggressive use wireless of coding

schemes, specifically turbo codes, and wireless link layer retransmissions [50, 92].

Experimental Methodology

To provide realistic estimates for cellular service performance, we conducted three sets

of experiments, two of which were conducted in Orlando, FL and one in Boston, MA.

The two Orlando experiments were conducted on consecutive days, and the Boston

experiment was conducted a couple of months later.

In these experiments, we tested for available upload throughput, packet round-

trip-times, and loss characteristics. We attempted to isolate and individually analyze
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the effects of vehicular speed and geographical location. The goal of these experiments

was to determine how well multiple WWAN interfaces would perform, if they were

transmitting simultaneously in close proximity, inside a moving vehicle.

All experiments consisted of driving through a large area constantly transmitting

data from every active WWAN interface, to a host on an wired ethernet in Boston.

The data consisted of 1024-byte UDP packets, and sending rates were limited by a

congestion control algorithm. The packets were sent from Linux laptops, using PPP

connections over the WWAN interfaces.

When we have comparable data between the Boston or the Orlando experiments,

we will present results from the Boston data set, as it is more recent and utilizes the

optimized congestion control algorithm. Some experiments were only conducted in

Orlando and as such, that data will be presented. The Orlando experiments occurred

in March, 2006 and the Boston experiments were conducted that following summer. In

April, 2007, while we were conducting our system evaluation we upgraded three of our

interfaces to Rev-A. While the per channel throughput increased, the other aspects

of the network remained consistent with what we saw from the EV-DO interfaces.

Therefore this study remains useful as a high level overview of the behavior of these

channels, even as providers race to upgrade their networks.

The remainder of this section provides an overview of the three experiments.

Orlando-1 The first set of experiments, in Orlando, used four interfaces from three

different providers: two EV-DO enabled interfaces from Verizon, one of which is

slightly older and has different hardware than the other Verizon card used, an EV-

DO interface from Sprint, and an EDGE based interface from Cingular. This set of

experiments was our first thorough investigation of how speed, location and possible

cross-channel interference would affect throughput. Cingular, the one EDGE interface

tested, provided unacceptable performance for our purposes, possibly due to spotty

coverage in the area we were testing. We abandoned the Cingular interface part-way

into the experiment. For the rest of this thesis our focus will be on CDMA networks.
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Orlando-2 It is not immediately clear how many co-located WWAN interfaces one

can operate simultaneously before experiencing cross-channel interference in either

the air channel or further down stream.

To shed some light on this question, the second set of experiments explored carrier

scalability using four EV-DO enabled interfaces from Verizon. Verizon was chosen

for this experiment because it had performed the most reliably with the highest

throughput in the earlier Orlando experiment.

Boston The final set of experiments, in Boston, used three interfaces from two dif-

ferent providers: two EV-DO enabled interfaces from Verizon, one of which is slightly

older and has different hardware than the other Verizon card, and an EV-DO inter-

face from Sprint. In this experiment we wanted to explore two things: understanding

and reducing the loss rate and analyzing the effect of vehicular speed on throughput.

A high average loss rate is unacceptable. We needed to lower the loss rate as well as

understand the nature of these losses in order to offset their effects in our application.

To reduce the loss rate we changed the congestion control algorithm that we had

used in Orlando. The new algorithm uses some ideas from TCP Vegas [27] about

interpreting elevated packet round-trip-times as indicators of congestion. This allows

the algorithm to avoid most of the systematic probing losses incurred by a TCP-like

AIMD scheme.

2.2 Throughput

The per-channel upload throughput was relatively low on average and varied signif-

icantly during our experiments. The network experiments in this section refer to

UDP throughput, using 1024-byte packets, and ignoring IP/UDP overhead. Figure

2-1 shows the upload throughput distributions from two experiments. In the Or-

lando experiment there is a striking difference between the two Verizon interfaces.

This is likely due to the differences in hardware between the older PC5520, shown as

VZW-1, and the newer KPC650, VZW-2.
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Figure 2-2: Upload throughput distributions in four experiments conducted driving
the same loop but with different speeds. In F1 and F2 the vehicle was moving fast;
and in S1 and S2 the vehicle was moving very slowly.

The throughput achieved during the Boston experiment were significantly differ-

ent from those achieved during the Orlando experiment, with both the Sprint and

older Verizon interfaces showing marked improvement. A different congestion control

algorithm was used in Boston, which may be a factor. However, since the second Ver-

izon interface showed a slight decline between the Orlando and Boston experiments,

the differing coverage maps, i.e., the way in which coverage varies based on geograph-

ical location, is likely the dominant factor giving rise to the variation. Figures 2-5

and 2-6 show approximations to the true coverage map based on our measurements.

Average data rates are often far below advertised rates. According to the CDMA2000

lx standard, the WWAN interfaces we were using are capable of delivering peak

packet data rates of 153 kilobits-per-second. At our peak, we failed to achieve even

140 kilobits-per-second. On average for each interface, the highest sustained rate was

around 120 kilobits-per-second, while the lowest in Orlando was around 60 kilobits-

per-second.

Baseline Variation

Achievable throughput varies when stationary, and can vary much more when moving

about a city. This variation is not due to vehicular motion, as demonstrated in figure
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Figure 2-3: Throughput distribution when stationary compared to the distribution
for the overall Boston experiment. The graphs show the upload throughput CDF's
for two interfaces.

2-2, but likely due to a lack of uniformity in the coverage area, caused by base-

station occlusions or entering a lower provisioned cell. Figure 2-3 compares these two

situations, using data from the Boston experiment. Each graph in figure 2-3 plots the

upload throughput CDF during a long period of time spent stationary in a parking

lot (a location with good signal); and the CDF of the entire Boston experiment.

Both interfaces had lower variation when stationary. When moving, the Verizon

interface (figure 2-3b) experienced a significant change in behavior. In contrast, the

variation on the Sprint interface did not change much. Given that the two interfaces

were co-located this seems to imply that the coverage provided by Verizon in the area

we measured is less-uniform than the coverage provided by Sprint.

Variation in Time

Figure 2-4 shows how throughput varied over time during part of the Boston ex-

periment. The vehicle was moving relatively fast, on average approximately 50mph,

during this period. This snapshot is from the middle of a long-running experiment.

The ramp-up at the start of the Sprint graph is recovery from a short-lived discon-

nection.

As indicated in the aggregate throughput graph, figure 2-4d, the use of multiple
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Figure 2-4: An example of the dynamic variation in available upload throughput
while moving in a vehicle.

interfaces provides a considerable smoothing effect.

The Vehicle's Speed

We were interested in determining if our vehicle's speed would significantly impact

WWAN channel performance as suggested by the simulated study in [25]. In order

to do this, we constrained our location and ran multiple experiments at multiple

speeds. We chose a five block loop in the Back Bay area of Boston, and drove the

loop four times: twice traveling close to the speed limit, 30 mph, and twice traveling
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very slowly, around 5 mph.

Figure 2-2 shows the upload throughput distribution for each loop. There is no

clear difference between the slow loops, during which the vehicle was barely moving,

and the faster loops.

All the WWAN channels performed their worst during the F1 experiment. F1 was

the first experiment we conducted. At this point we had just entered the geographical

area in question. It is possible that performance during F1 was handicapped due to

a start-up cost (e.g., base-station handoff etc). S1 was the second experiment we

conducted; S2 the third; and F2 was the fourth.

Geographical Variation

Figures 2-5 and 2-6 are the measured coverage maps for Boston and Orlando, re-

spectively. These maps imply that the coverage varies significantly with geographical

location.

2.3 Latency

For large packets, round-trip-times (RTTs) were high (averaging around 600ms).

They were also highly variable when the vehicle was moving to different locations,

perhaps due to base-station occlusions, handoffs, etc. Figure 2-7 shows how 1024-byte

packet round-trip-times were distributed for the WWAN interfaces we tested.

The distributions for the different CDMA interfaces, even those from different

providers, are similar, in both cities. There is more variation in the round-trip-times

from the Orlando experiments. Congestion control may have been the dominant factor

here, as an older congestion control algorithm was being used during the Orlando

experiments. The older algorithm tried to send as much data as possible, sending

at levels the exceeded the available bandwidth of the network. Because the network

itself tries to prevent these losses, link-layer retransmissions were increased, yielding

higher packet round-trip-times [50].

Figure 2-8 shows examples of how RTTs varied from packet to packet on one of the
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Figure 2-7: Measured packet round-trip-time distributions (measured CDFs).

interfaces. During 'good' periods, see figure 2-8a, RTTs are relatively stable around

570ms. However, during some periods, see figure 2-8b, RTTs become elevated, close

to 700ms, with some spikes in excess of 3s.

Packet Size

Packet size directly affects the expected round-trip-time for a packet. Larger packets

tend to have higher round-trip-times. Figure 2-9 shows packet RTT distributions for

different packet sizes in a stationary experiment conducted in Boston. As packet sizes

are increased, there is an increase in both the median RTT and the variance.
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2.4 Losses and Disconnections

Losses

The CDMA interfaces were able to mask most wireless losses, therefore packet losses

were mostly due to network congestion. With unoptimized congestion control algo-

rithms, packet losses were as high as 10%. With TCP-style AIMD this high loss-rate

is unavoidable: the congestion window was relatively small, and a loss was guaranteed

in every cycle. By optimizing the congestion control algorithm (e.g., using elevated

RTTs as indicators of congestion), we were able to reduce packet losses to 0.5% when

stationary. When moving, loss rates rose significantly, but mostly stayed below 5%.

This elevated loss is likely due to a decline in network bandwidth as we move from

one location to another. If the next location has lower available bandwidth, losses

will occur until the congestion control can throttle back the sending rate to match

the available rate at the current location.

Packet loss bursts were mostly single-packet losses. Figure 2-10 shows how fre-

quent different burst lengths were for an interface, during the Orlando experiments.
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Disconnections

A disconnection is a period during which an interface is not able to upload any data.

During our experiments, every interface was constantly attempting to upload data,

throttling itself by using a congestion control algorithm.

Even though individual disconnections could be reasonably long (e.g., 15 seconds),

no interface spent a significant fraction of the total time in a disconnected state. The

Boston experiment lasted well over two hours. The Sprint interface was disconnected

for 3.5% of the experiment. Each of the Verizon interfaces were disconnected for less

than 0.5% of the experiment. Moreover, disconnections were not correlated in time

across the different interfaces.

2.5 Carrier Scalability

In order to examine how well performance scaled, we simultaneously transmitted from

four co-located interfaces from the same provider, three of which were the same hard-

ware, one was an older model, in Orlando. Figure 2-11 shows how upload throughput

varied during this experiment. The graphs show the smoothed average throughput

over about 3 hours of continuous operation.

Throughput

In this experiment, the four interfaces were able to sustain average upload data rates

of around 75 kbits/sec each. In contrast, during our earlier experiment in Orlando

(see figure 2-1), with only two Verizon interfaces, one interface was able to achieve

an average of around 130 kbits/sec.

We were able to increase the average aggregate throughput by a factor of 1.5x

by doubling the number of Verizon interfaces. This implies diminishing returns from

adding additional interfaces from the same provider. This is likely due to contention

for shared resources among the interfaces.
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Correlation

We were interested in whether these four Verizon interfaces exhibited correlated be-

havior. Of the four, three interfaces were highly correlated with each other, in terms

of achieved upload throughput. This is shown by the matrix of correlation coeffi-

cients', figure 2-11f. Losses and packet round-trip-times were not correlated in time

across the interfaces.

The uncorrelated interface consisted of a different version of the hardware; the

others were comparable. This may explain the difference in behaviors. When we

upgraded our system to include the Verizon Rev-A USB720 and the Verizon Rev-A

PC5750 we observed that the USB interface did not correlate strongly with the Ver-

izon EV-DO KPC650, but there was a strong correlation between the USB interface

and the PC5750. This leads us to believe that the problem lies in the firmware or

the hardware, not that two interfaces have saturated the network.

Unlike figure 2-4, the graphs in figure 2-11 do not show raw throughput signals.

We used a low-pass filter to smooth out the throughput signal, so our correlation

analysis would ignore high frequency variations.

Summary of results

Our analysis shows that in practice, the upload throughput seen by an interface

varies considerably. However, contrary to our expectations, which were derived from

simulation based network studies [25], we found no correlation between the vehicle's

speed and achieved throughput. It seems that geographical location is the dominant

factor leading to variation. This geography-based variation can be attributable to any

of several factors including distance to base station, topography, occlusion by other

structures, and electro-magnetic interference.

Disappointingly, the peak upload throughput for an interface never reached the

'The correlation coefficient of the two signals x and y is defined as:

correlation,, = covariance.,,,
fcovariance., - covariancey,y
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rate promised by network providers (never exceeding 140kbps). We were also disap-

pointed that the evidence suggests that the throughput provided by interfaces from

the same provider can be strongly correlated in time.

Our scalability experiments made it clear that there is a point of diminishing

returns for co-located network interfaces for the same carrier. Doubling the number

of interfaces (from two to four) led to only a 50% increase in throughput.

The measured packet round-trip-times (RTTs) for reasonably large packets were

consistently high (around 600ms) with high variance (o- 350ms), even when the

CDMA channels were otherwise well-behaved. Periods of elevated RTTs were not

uncommon, with RTT spikes as high 3.5 seconds. Fortunately, the RTTs were not

correlated across interfaces. Taking advantage of this to ensure that long RTT's

don't adversely effect the user experience is an important issue in the design of our

interactive video system.

We experienced only a small number of disconnections during which an interface

was unable to upload any data. Furthermore, these periods were not correlated across

interfaces, suggesting that the diversity provided by multiple interfaces can be used

to enhance reliability.
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Chapter 3

Related Work

This chapter will cover previous work on aspects explored in the Tavarua system. We

will discuss prior attempts at characterizing WWANs, other projects that performed

video streaming over WWANs, and provide a background into the current state of

telemedicine applications. We will conclude by discussing Horde, the network striping

middleware on which Tavarua is built.

3.1 Wireless Wide Area Networks

Since the invention of CDMA technologies several efforts have been made to quantify

their performance. Largely these undertakings have focused on theoretical analysis,

or relied on simulators to model these channels [44, 95, 64, 62, 68, 25]. These studies

have concentrated mainly on analyzing link capacity, ignoring issues such as burst

losses or variation in packet round-trip-times. Additionally, TCP-based analysis has

been done [31] with simulators that address rate variability, but have stopped short of

conducting real-world measurements. There have been a few attempts at measuring

the actual nature of CDMA networks, notably [63], that logged measurements using

one interface from a stationary location.

Other projects have also explored the idea of exploiting the use of diversity in

WWAN channels to increase reliability. A successful example of a project of this

nature is Microsoft Research Lab, Cambridge's MAR project [83]. MAR focuses on
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interfacing with existing internet applications, using the diversity solely for reliability

and does not try to aggressively push the bounds of these independent interfaces to

maximize bandwidth.

Congestion control algorithms are an integral part of any network. However, not

all networks are created equally. The requirements of an 802.11 network using TCP

are drastically different from a 3G network using UDP. Optimizing the congestion

control algorithm for WWANs has been previously explored [86, 29]. However, these

algorithms were only tested on simulated WWAN channels, instead of a deployment

of actual WWAN interfaces.

A possible way to estimate signal strength, which is an indicator of available

bandwidth, is through querying which base station a device is connected to and

looking up its GPS coordinates. Locations of cellular base stations have been logged

extensively in many European countries [13]. In the United States, the FCC [7]

provides some information about base stations, however this information is extremely

coarse. Only SIDs are logged, which in the best case only narrows down the location

to a sizable region, and only antennae large enough to be registered by the FCC are

used, which could ignore many cell sites especially in urban areas.

3.2 Video Streaming over Wireless Networks

As WWAN technology steadily improved, it became seen as another platform to

stream multimedia data[32]. This project utilizes provider diversity to increase trans-

mission reliability, however, they achieve this by sending packets redundantly over

these independent channels. This effort and other multimedia applications that utilize

the cellular network for data transmission are largely focused on the bandwidth-rich

downlink channel, while our target applications demand solutions for accommodating

transmissions using the impoverished uplink channel.

The problems that arise in sending delay-sensitive packets over unreliable IP links

have also been studied. In [33] the idea of network striping to send multimedia data

is addressed, but only for the case of constant transmission rates. Because of the
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mobile nature of our application, we need striping protocols that flexibly adapt to

the available network.

Approaches such as multi-description video streaming [89] also address the issues

of packet and compression losses by sending layers of video each of increasing quality.

3.3 Telemedicine Applications

There exist several telemedicine applications that incorporate technology into patient

care. The tele-stroke program at Massachusetts General Hospital (MGH) [10] uses

dedicated, stationary tele-conferencing facilities to connect MGH with several distant

sites. This allows stroke specialists at MGH to evaluate patients who have been

brought to one of the remote sites. Radiologists and dermatologists often use the

802.11 network to send high quality photographic images used for remote consults

[73].

As satellite technology emerged, so did early mobile telemedicine applications[76,

52, 85, 72]. Because these applications relied on satellite technology, they were dogged

by high packet round trip times, making them non-interactive. Additionally, the high

cost of utilizing such networks precluded their widespread use.

With the advent of cellular wireless wide area networks (WWAN) there was an

economically feasible infrastructure upon which to build mobile telemedicine appli-

cations. Many applications simply transmit telemetry data, such as ECG and heart

rate[56, 58, 70, 42, 74]. Others, such as the AMBULANCE project(77, 60, 38] trans-

mitted still images as well as telemetry. These efforts operated under low bandwidth

conditions, since they only used one WWAN interface, and high loss rates because of

unoptimized congestion control.

Using custom hardware, researchers at the University of Maryland, developed a

system to aid in diagnosing ischemic stroke in-route to the hospital by sending video

clips of patients engaging in stroke skills tests[37, 49]. Even with incurring the cost of

developing specialty hardware and not restricting themselves to the real-time domain,

they still only achieve video rates of eight frames per second.
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At the University of Massachusetts, Amherst they have developed a mobile telemedicine

system with commodity hardware that transmits data over a single WWAN interface[34].

Since they use a single interface, the maximum bandwidth available for them to trans-

mit the telemetry, audio, and video streams is on average 70 - 80kbps. This yields

a frame rate ranging from 4.2fps when only video is transmitted and 1.5fps when

all three streams are being transmitted. Additionally, in order to achieve these frame

rates they reduce the resolution to 160x120. Also, when the video stream alone

reaches three frames per second, the average latency begins to exceed three seconds.

If the frame rate should increase to a rate that would provide smooth motion, it would

follow that the latency would increase drastically.

3.4 Horde: Network Striping

Tavarua is built on top of Horde[82), a network striping middleware.

Network striping takes data from a single source channel, sends it in some order

over a set of channels, and, if appropriate, reassembles the data in the correct order at

the other end. A great deal of work has been done on network striping [19, 40, 67, 83,

87]. Most of this work is aimed at providing improved scheduling algorithms under

the assumption that the underlying links are relatively stable and homogeneous.

In our environment the underlying links are neither stable nor homogeneous.

Moreover, the data streams in our telemedicine system have distinctly different ser-

vice needs. Notably, the video stream is highly sensitive packet losses and jitter while

the audio stream is less so.

In many cases, researchers have decided to make the striping layer invisible to

applications. Applications are written as if there is a single large transmission chan-

nel. However, when striping heterogeneous data streams over a multi-provider set of

WWAN channels, the manner in which the striping middleware decides to schedule

the transmission of application packets can have a large influence on observed packet

latencies, stream loss rates, and throughput. This, in turn, can have a large impact

on the utility the application layer derives from network service. This suggests that
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it is important to allow applications some control over the way in which striping is

done.

One approach to doing this involves application-specific code to perform the strip-

ing. This is often the method chosen by multi-path video streaming applications

[84, 21, 24]. However, this can lead to complicated application-level code, and typi-

cally incorporates implicit assumptions about the actual network channels.

Horde provides transparency into the multiple, heterogeneous application data

streams, providing network performance characteristics to the application as well as

using this information about the specific channels to efficiently stripe the data. We use

Horde because it allows control over how the data should be sent, for example sending

audio data as a higher priority than video data, without the burden of handling low-

level channel management issues.
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Chapter 4

System Architecture

Figure 4-1 shows the structure of the Tavarua system.

The hardware in Tavarua consists of two main components, a "sender" placed on

the ambulance, and a "receiver" residing at a stationary command center, probably

in a hospital. The component on the ambulance consists of a PC, multiple lightweight

routers, WWAN interfaces, a bluetooth microphone headset, and video cameras.

The software in Tavarua consists of a collection of applications (video stream-

ing, audio communications, telemetry transmission, etc), supported by networking

middleware.

The networking middleware provides network striping capabilities to the applica-

tions. Application data is distributed over many network interfaces. The middleware

arbitrates between different applications, and optimizes for each application's QoS

requirements. The middleware also handles low-level issues related to the network

interfaces (e.g., congestion control, disconnections and reconnections). An abstract

striping interface is exposed to applications.

4.1 Design Goals

The set of applications is derived from the needs of our mobile telemedicine project.

The video server has, by far, the highest network bandwidth requirements. The video

server is designed to exploit the availability of multiple channels, and must be able
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Figure 4-1: Overview of the Tavarua system.

to deal with network instability (both in ternis of varying bandwidth and varying

packet latencies). A separate application handles bi-directional voice communica-

tions. Although the voice channel does not need to use network striping to overcome

bandwidth limitations, it does take advantage of the multiple network channels to

increase the reliability of the audio link. Finally, a third application, yet to be built,

will handle the relatively low-bandwidth telemetry.

System reliability is an important issue. Tavarua is part of a multi-city multi-

disciplinary research project. In the coming months, we expect to deploy Tavarua as

part of a months-long medical study. During this period, the system needs to operate

with high availability, and with minimal interaction with its engineers. In order to

ensure reliability, we have taken several steps to harden the system. The system is

structured as a set of restartable components, keeping everything in user-space, and

taking advantage of process-level isolation.

In the following sections, we discuss aspects of the Tavarua system in more detail.

We begin with Tribe, a network sub-system, and then address the video, audio, and

telemetry applications.
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Figure 4-2: The Tribe protocol allows Horde to transparently connect to an arbitrary
number of PCMCIA WWAN interfaces.

4.2 Tribe: Connecting to Many Networks

Our network experiments imply that meeting our minimum bandwidth requirements

using today's networks will require operating at least five WWAN interfaces simul-

taneously, and perhaps as many as ten, depending on how many of the cards are

Rev-A or EV-DO. Some of the interfaces are PCMCIA cards, while the remainder

are the new generation of USB interfaces. We considered using PCI-to-PCMCIA

bridges to connect the necessary network interface cards to a single machine. In the

end, however, we chose a more scalable software-based approach, using conventional

off-the-shelf hardware. Figure 4-2 shows the structure of this solution.

The main computer is connected to a network of lightweight routers over a local

high-speed ethernet. Each router box handles forwarding packets to and from the

main computer. In the present implementation, each box is a net4521 embedded

computer, from Soekris Engineering [14] and can have a maximum of two WWAN

interfaces.

The Tribe protocol runs over the local ethernet. The protocol allows the main

computer to keep track of active WWAN interfaces (as they come up and go down,

in response to call disconnections and reconnections), and to remotely manage and

restart services on the routers as necessary.

On the primary computer, Tribe emulates each active remote interface as a local

interface. This emulation is accomplished using a standard TUN/TAP Linux kernel

module. TUN and TAP are virtual kernel network drivers where TUN, abbreviated from
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network tunnel, is used for routing IP packets while TAP creates a virtual ethernet

interface. Together they allow user-space applications to send and receive packets

from an associated device. Packets sent to a TUN interface managed by Tribe are

transparently tunneled over the local ethernet to the appropriate Soekris box, before

being sent out over a WWAN interface.

With Tribe in place, Horde has the ability to treat the remote WWAN interfaces

as local interfaces. Tribe masks the additional complexity associated with managing

the remote interface cards.

In addition to not requiring specialized hardware this solution also scales well. If

additional bandwidth is desired and more WWAN interfaces are needed, we simply

add more Soekris boxes or USB hubs.

Tribe is not Horde specific. It can support any Linux application that uses TCP,

UDP, or ICMP. Like Horde, Tribe runs entirely in user-space, requiring only a small

set of elevated privileges, such as raw socket capabilities.

4.3 Video Subsystem

Our telemedicine application will support multiple cameras and provide a number

of image related services including high resolution still images, real-time video, non-

real-time video (when network connectivity will not support real-time video), and

functions such as pan, tilt and zoom. The most challenging of these is providing high

quality real-time video.

We first discuss the basic approach used for video encoding/decoding. The key

problem to be solved is robustness in the face of packet losses and limited bandwidth.

Video Encoding/Decoding

Our video streaming application is built using the f fmpeg code-base [8]. f fmpeg is an

open-source project that provides a feature-rich audio/video codec library. We use

the H264 codec. Several video codecs were empirically evaluated at different frame

rates and different bit-rates. H264 was chosen because throughout our experiments
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Figure 4-3: A grid of x264 video encoders is run, with the encoders out of phase
with each other. At most three encoders produce I-frames for any given frame. The
I-frame pattern is randomly selected.

it was observed to achieve the best quality at low bit-rates. We are using the x264

encoder [18], which is an open-source implementation of H264.

Unfortunately, the standard x264 encoder is not ideally suited to support video

streaming in the face of restricted bandwidth and packet losses. The I-frames pro-

duced by the encoder are quite large and therefore span many packets, even at low

bit-rates. For a CIF 1 video encoded at 300kbits/sec, more than sixteen UDP packets

may be needed to hold a single I-frame. A single packet loss can corrupt an I-frame.

In our experience, the ffmpeg/x264 decoder does not handle partial I-frames well,

and often crashes when asked to decode these partial, or corrupted frames. We

do not want to rely on retransmissions to mask losses because of the large packet

round-trip-times in our system. Furthermore, given our limited bandwidth, adding

forward-error-correction coding is not an appealing option.

To construct a video encoding resilient to packet losses, we use the following

approach:

* Each frame is segmented into a grid of subframes. An example grid is shown

in figure 4-3. To attain the best compression, the width and height of these

subframes must be divisible by 16 because of the macroblock sizes.

" Each subframe is encoded and decoded independently of the other subframes.

1352 pixels wide, 288 pixels high.
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This requires grids of f fmpeg/x264 encoders and decoders.

* Some of the subframes of each frame are intra-coded (i.e., treated as I-frames)

and others are encoded as either P-frames or B-frames. In figure 4-3, these

P-frames and B-frames are represented by the blank subframes.

The encoded subimages are linearized as follows:

..., D (',), D (',),1..., D (',), D (O , D ' ., D '5, D ( , ...

Where D("') is the component for frame j from the encoder at (x, y) in the grid.

Each D x'Y) is an Application Data Unit (ADU). In Horde, ADUs are the smallest data

objects. We use the definition of smallest object to represent subframes. Therefore,

the video stream Horde sees consists of the above sequence.

The grid of video encoders is run so that encoders are out of phase with each other.

Each encoder begins at a different frame depending on the random seed pattern that

was generated. With a constant group of picture (GOP) size, this causes them to

operate out of phase with each other. With 8 encoders and a GOP of 10 frames, at

most one subframes of the original frame are intra-coded.

By creating more but smaller independently decodable I-frames, this encoding

dramatically reduces the number of packets needed to transfer an I-frame component.

Most I-frame components fit in a single packet. Consequently, the amount of received

data that needs to be discarded because of a packet loss is also dramatically reduced.

Furthermore, a packet loss causes a localized corruption in part of the video, rather

than corrupting the entire frame, and any other subsequent frames whose decoding

depends on the missing data.

The grid approach also eliminates bitrate spikes usually associated with each I-

frame. Without grid encoding, during the course of each GOP the network would be

overburdened at every I-frame and under utilized at P-frames and B-Frames. This

pattern contributes to burst losses on the very packets we value most, those that

contain I-Frames. With grid encoding, for every frame, the network has to transfer

some I-frame components, some P-frame components, and some B-frame components.
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This amortizes the cost of sending an I-frame, smoothing out the transmission rate,

improving packetization and decreasing the amount of burst losses.

In order to avoid the correlated losses of I-frame components, we use Horde to

tag these components with the same correlation group GI. Additionally, a Horde loss

threshold objective can be used for every ADU in the video stream, in order to avoid

high-loss channels.

Network Bandwidth Variation

Because this is a mobile system, the video application must deal with the frequent

changes in available bandwidth, as discussed in chapter 2, and still provide near

real-time video. Variation is inevitable for a variety of reasons including congestion

control, network interface disconnections, vehicular location, and competition with

other users for base-station resources.

In an effort to mitigate the impact of variations in bandwidth, we dynamically

adapt the encoder's Q parameter [88], which controls the bit-rate at which the video

is encoded. This value ranges from 1-51, and the higher the value for Q the higher

the compression. So, for a constant frame size, as Q increases, the size of the encoded

frame decreases. Each increment of Q corresponds to 12.5% more compression of the

frame.

Horde provides feedback to the application telling it the maximum available data

transmission rate for the last sending period. Given this information and the encoded

size of the previous frame, the video server can attempt to calculate the appropriate

Q parameter value at which to encode the video.

Unfortunately, the values of the two main factors that control the success of data

transmission are unknown. We only know the bandwidth that was available from the

last sending period and the encoded size of the previous frame. We do not know the

available bandwidth of the current sending period or the encoded size of the current

frame. This presents us with a control loop problem. We want to ensure that the

encoded frame size closely matches but does not exceed the available bitrate, but we

experience some delay in learning if we achieved our objective.
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Therefore we have an additive-increase additive-decrease, AIAD, approach to ad-

justing the Q parameter that is both responsive to sudden spikes in the encoding rate

and drops in the available bandwidth. The algorithm uses two values. The first is

the total encoded frame size of the current GOP, which is a running summation of

the previous encoded frame sizes of the current GOP. The second is the total target

frame size of the current GOP, which is a summation of the previous target frame

sizes. We calculate this by dividing the previous allowed bitrate by the current frame

rate. This approach is based on the following five rules, the first two apply per frame,

the remaining three apply per GOP.

" To be responsive to spikes in the encoding rate or drops in the network's avail-

able bandwidth, for each frame we calculate the difference between the total

encoded frame size and the total target frame size. If the difference is greater

than 2 KB, then we increase Q to lower the encoded bitrate.

* We also want to be responsive to spikes in the network's available bandwidth.

Therefore for each frame, if the total encoded frame size is 4 KB smaller than

the total target frame size, we decrease Q to raise the encoded bitrate.

At the end of each GOP the ratio between the total encoded frame size and

the total target frame size is calculated. Through empirical observation, we have

determined ranges of values where the ratio should be updated.

" If the is less than 0.7, we decrease Q by 2.

" If the is greater than 0.7 and less than 0.9, we decrease Q by 1.

" If the ratio is greater than 1.25 we increase Q by 1.

Adjusting Q appears to be more of an art rather than a science. Many variables,

such as the changing bandwidth or the amount of motion in the scene, effect the

encoded frame size. In turn, this encoded frame size effects what the congestion

control algorithm returns as the allowed bitrate of the network. Ask for too little

and the system will go into a negative feedback cycle where it believes that there is
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very little bandwidth in the network, decreasing the quality of the video. Ask for too

much and the network will supply it, at the expense of the loss rate. These values

were found through numerous trials. If the ranges are wider, the Q value oscillates

wildly lowering the quality of the video. If the ranges are smaller, Q converges to its

maximum value.

Multiple Cameras

At the beginning of a session, the /dev directory is probed for video devices. For each

device discovered, that device is initialized and added to a vector of cameras. We

allow the user to switch between the multiple cameras at any time and as often as

they like. Along with the video stream from the selected camera, we send thumbnail

images as a preview of the information that the other cameras contain.

Dynamic Resynchronization

In periods of high loss or high latency, the receiver will consume more frames than

it receives from the sender. If this pattern continues the playback buffer at the

receiver will completely drain, leaving the user with poor quality video containing

motion artifacts and partial frames. At this point we have two options, rebuffering or

resynchronization. If we were to rebuffer, we would wait a specified period receiving

new data as well as receiving old data that was waylaid due to elevated packet RTTs.

This old data could complete frames that were previously only partial filled, marking

them as valid frames to be displayed. For example, if the frame rate was 20fps, and

the rebuffering period was until 20 valid frames were received, the user would still

expect the same amount of latency, one second, after this rebuffering operation took

place. However, if any of the old partial frames were filled in, they would be played

back as well once the streaming continued, thus increasing the latency.

Instead of rebuffering, we resynchronize by clearing the queues of the sender and

the receiver. Thus discarding old partial frames, whose inclusion would cause the

latency to grow unbounded with each rebuffering event. Because this is an inter-

43



active system, we have an obligation to the user to not adjust the latency without

their consent. Through resynchronization we can ensure that we maintain a constant

latency between the sender and the receiver.

If the receiver has experienced a series of empty or partially filled frames it will

send a resynchronization request to the sender. When the sender receives a resyn-

chronization request it advances the frame number to a much larger number, so the

playback at the receiver will not be affected if there are late arriving or out of or-

der packets with frame numbers larger than the frame that triggered the request.

Then the sender clears out its internal video stream queue by draining all of the data

from the encoders, selecting a new random seed pattern for the grid and re-starting

each encoder on an intra-coded frame. Finally, it sends an acknowledgment to the

receiver containing the new frame number. Once the receiver gets the resynchro-

nization acknowledgment from the sender, it updates the frame number and refills

the video playback buffer. To the user, the screen remains fixed on the last frame it

had displayed and displays a message in the status bar of the player stating that a

resynchronization event is taking place.

Buffering

When Tavarua starts, its playback buffer is filled. The amount that it is filled depends

on the amount of latency the user can withstand, which is represented in the requested

size of the buffer and the maximum buffering time. It stops when the buffer contains

enough valid frames or if it has buffered for the maximum time. The buffer is also

refilled at every resynchronization request.

We have three modes for the buffer, and we allow the user to switch between these

modes. The first is a real-time mode with subsecond latency. This mode has only

been evaluated in a stationary setting. The second is a near real-time mode, where

the requested buffer size is 2.5 times the current frame rate and the buffering time is

2.5 seconds. The third mode has a much larger buffer, 5.5 times the current frame

rate, and a longer buffer time of 5.5 seconds. When latency can be tolerated and

the channel is lossy, we allow the user to enable retransmissions in order to mask
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losses. With retransmissions and a larger buffer, the user can attain near perfect

video quality, without experiencing artifacts of motion or viewing partial frames.

4.4 Audio Subsystem

Our telemedicine application must provide a reliable audio communication stream be-

tween the mobile ambulance and the stationary hospital site. Compared to the video

stream, the audio stream uses significantly less bandwidth, approximately 11kbps.

We first discuss the basic approach used for audio encoding/decoding. The key

problem to be solved is synchronization between the audio and video streams as well

as ensuring a reliable audio link between the clients.

Audio Encoding/Decoding

The audio streaming application is built using the alsa, Advanced Linux Sound

Architecture, library [1]. alsa is a user space library that allows us to capture au-

dio streams directly from the hardware devices. For encoding/decoding we use the

speex code-base, an open-source library that encodes and decodes audio data and is

specialized for voice communication.

It is imperative that the audio stream and the video stream be well synchronized,

even in the face of packet loss. To ensure that they are always synchronized we have

two streams within our Horde session, one for the transfer of video data, one for the

transfer of audio data. These streams will capture data at each clock cycle, encode

them at send them to the receiver. By teasing apart the streams and capturing data

at regular, known intervals we can tag this data so that when it is decoded it can be

played back appropriately.

Because we are striping this data across multiple channels, we increase the reli-

ability of the data being sent with respect to disconnections. Even when there are

multiple disconnections, if at least one interface is transmitting data the packets will

be sent, freed of the dependence on one provider or one interface. To ensure that the

audio stream is always transmitted, we use Horde's priority option to give the audio
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packets a higher priority than all other packets. This guarantees that as long as the

available bandwidth is greater than the encoded audio stream, around 11kbps, all of

the audio packets will be sent.

4.5 Telemetry Subsystem

The current devices used by medical transport teams, with whom we are collaborat-

ing, to monitor the physiological signals of a patient is a proprietary, file-based system.

Therefore, the data stream from the device is not capable of real-time streaming; the

patients vital signs are written to a file, which then must be opened, read and sent

to the receiver. We chose not to provide an interface to a proprietary system. In

this implementation we focus a camera on the screen of this device and transmit the

physiological signals as a video stream. While it is an adequate first approximation,

admittedly, this is not an acceptable long-term solution.
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Chapter 5

Performance Evaluation

The key question addressed in this chapter is, are we capable of streaming diagnostic

quality audio and video from a moving vehicle in the face of a variable, lossy network?

In addressing this question, we also address a number of subsidiary questions. Will

have the same success consistently, absorbing day-to-day fluctuations in the available

networks, dynamically adapting to provide high quality audio and video? Is the

system is resilient in the presence of hardware failures and service provider failures?

How does performance vary with respect to loss rate? Etc.

In section 5.1, we describe a baseline evaluation conducted from a stationary

location to evaluate the effects of varying the frame rate and the resolution on the

quality of the received video. In section 5.2 we assess the quality of the audio stream,

and show that we were able to. mask the additional losses that occur when the sender

is no longer stationary. In the next two sections we shift our focus to the video stream,

examining how well we overcome two factors, packet loss and variable bandwidth, that

hinder video quality. We then examine the reliability of the system by running an

experiment where we simulate hardware failures and areas of zero network coverage

by manually removing interfaces, then re-inserting them while the system is running

with no outside intervention save manipulating the physical hardware of the interfaces.

Consistency is demonstrated though a set of experiments conducted from a moving

vehicle over a period of five days. Seven such trials took place, one a ninety minute

drive through a large section of suburban Massachusetts, the other six were loops
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through Cambridge and downtown Boston. The average duration of these trials was

roughly forty minutes.

5.1 Baseline Evaluation

Streaming video on a channel that is lossy and highly variable requires some compro-

mises in the sender side quality to achieve the best results on the receiving end. To

better understand this we conducted a series of experiments to select the appropriate

resolution and frame rate. These experiments were done in a stationary environment.

The resolution experiment was roughly three minutes of video of a moving digital

clock and a photograph. The frame rate experiment was also three minutes of video,

the first half was lateral motion, swiveling in a chair, and the second half was a

simulated stroke scales test, featuring broad movement of the arms in all directions.

Given the low bitrate constraints of our network, a high resolution image passed

to the encoder does not translate into a higher quality image at the receiving end.

This is due to the encoder being forced to choose which of the bits to keep and which

to discard and approximate later. When the capture resolution increased, the peak-

signal-to-noise ratio (PSNR) fell. PSNR is a metric of audio and image quality that

denotes the difference between two signals, the original uncompressed signal and the

one that arrives and is decoded at the receiver. The higher the PSNR value, the more

the two signals are alike, implying a higher quality video or audio stream. For a video

stream that has been compressed a good range is between 30dB and 40dB. Table 5.1

shows the median, mean and standard deviation for three different resolutions. All

resolutions exceeded 40dB, and there was not a definitive choice as to which was the

best. Therefore we capture at 320x224, for our experiments because it performs as

well as the slightly higher resolution while allowing us to transport fewer bits.

Table 5.2 shows a striking demarcation between rates up to 18fps and rates 20fps

and above. This demonstrates that not only is 20fps perceptually better than lower

frame rates because it provides smoother motion, but its PSNR value is also much

higher. The smoothness likely helps, as there are smaller changes between frames at
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20fps and 18fps, and therefore dropped subframes will negatively affect the quality

18fps video more than the 20fps. There is not such an improvement when moving

from 20fps to 25fps, despite the bandwidth cost of sending an additional five frames

every second. This implies diminishing returns on increasing the smoothness of the

video. Therefore we stream our video data at 20fps

Resolution Median Meanj StDev
320 x 224 45.016 44.432 2.621
352 x 288 45.226 44.923 1.112
480 x 360 42.149 42.152 1.035

Table 5.1: Median, mean, and standard deviation in PSNR values for the different
capture resolutions

Frame Rate Median Mean]
12fps 41.043 41.483
18fps 40.260 41.402
20fps 45.016 44.432
25fps 45.783 45.370

Table 5.2: Median and mean PSNR values for the different frame rates. The standard
deviation is not shown as the distribution is not Gaussian.

5.2 Audio Evaluation

Akin to the video stream, the audio stream is also very sensitive to packet loss. Figure

5-1 is a segment of the PSNR for the audio stream during a stationary experiment.

The sharp dip in the graph illustrates the effect of a short burst loss on the quality

of the received audio stream, as noted by the drastic decline in the PSNR.

Table 5.3 summarizes the results of our audio subsystem. These results show that

the measures we took to mitigate the effects of loss in chapter 4 were very effective

as the median PSNR for the stationary and for the motion experiments are nearly

identical. The two trials having a similar PSNR distribution indicates that we do
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quite well in handling additional losses, and only fail when there is a burst loss where

no packets make it to the receiver.

Due to the bi-modal pattern of speech, silence or vocalization, the distribution of

the PSNR values is not Gaussian. Also, because the standard deviation was extremely

high with respect to the mean, we are further convinced that PSNR is not an adequate

measurement. A different metric, that values word clarity over simple signal clarity

should be used instead.

Because we used a low quality microphone headset and we sample at 8000Hz,

our PSNR values are much lower than the quality of a compact disc or the radio.

Simply put, every word spoken on the sender can be deciphered by the listener at

the receiver. Some words are clipped, some are convoluted with noise, but all are

intelligible. Currently it is consistently of the quality of a cell phone conversation

where both parties are located in a good coverage area. However, because the PSNR

values were similar in both trials it indicates that the quality of the equipment and

the low sampling rate, not the loss rate, are the main reasons that we experience a

low PSNR value for our audio stream.
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Figure 5-1: The impact of a packet burst loss on audio PSNR.
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Trial Median Mean StDev

Stationary 25.296 25.571 7.633
In Motion 24.759 25.205 7.346

Table 5.3: Median, mean, and standard deviation in PSNR values for the two audio
trials.
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5.3 Packet Loss Resilience

When transmitting encoded video over a network, packet losses can cause corruptions

in the decoded video. We argued in chapter 4 that our grid-encoder would be resilient

to packet losses. In this section we provide evidence for this claim by evaluating the

impact of simulated packet losses.

We started by selecting five grid sizes: a single encoder; four encoders; eight

encoders; sixteen encoders; and thirty encoders. This was done to gauge the perfor-

mance of different grid sizes. For each grid size, we ran multiple experiments with

simulated random packet losses. silent, a video segment chosen from the standard

video repository, was encoded at a constant bitrate of around 500kbps and we sim-

ulated losses at 1%, 5% and 10% of total packets. Figure 5-2 shows the results of

our experiments, showing the PSNR for the decoded video in each experiment. This

experiment was conducted at an early point in our development. Our current PSNR's

are considerably better than these but the relationships depicted in figure 5-2 still

hold.

When there are no packet losses, the 4-encoder and 8-encoder grids performed

about the same as the single encoder. The 16-encoder and 30-encoder grids performed
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slightly worse. The problem is that working with smaller subframes adversely impacts

compression. Therefore, when moving from the 8-encoder grid to the 16-encoder grid,

we had to reduce the encoders' Q, in order to keep the bitrate roughly constant,

leading to the signal degradation.

When a single encoder was used, increasing packet losses caused a sharp decrease

in PSNR. In this case, when part of an I-frame was lost, all the packets for that

I-frame (as many as 18) had to be discarded. This also caused subsequent frames

dependent on that I-frame to become corrupted.

The 4-encoder case demonstrates that even a grid composed of relatively large

sub-images yields a dramatic improvement. In this case, 1% packet losses did not

significantly impact video quality.

Moving from four encoders to eight yields a less dramatic improvement. Adding

even more encoders results in diminishing returns.

The quality improvement provided by the grid-encoder is due to several factors.

First, smaller ADU's span fewer packets, so a single packet loss does not cause a large

number of already received bytes to be discarded. Second, losing packets causes lo-

calized image corruptions, rather than corrupting entire frames. For instance, losing

a packet from a 8-encoder grid's video stream would at most corrupt one of the sub-

frames, leaving the rest intact. Losing a packet from a single encoder's video stream

would corrupt the entire frame. Finally, because the grids are encoding frames out of

phase, not all encoders in the grid are transmitting I-frames simultaneously. Figure

5-3 shows how increasing the number of encoders can spread the cost of sending an

I-frame across an entire GOP by decreasing the size of each frame and thus smoothing

out the send rate.

Figure 5-4 shows the distribution of ADU sizes for each type of grid. Recall that in

our video stream ADU's are encoded frames. Note the dramatic difference between

the single encoder and 4-encoder cases. In contrast, all multi-encoder grids have

relatively similar distributions.
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5.4 Dynamic Network Adaptation

WWAN bandwidth is highly variable. If one were always to encode the video at

the same rate, the video stream would experience a large amount of losses in periods

where the network was behaving poorly. Conversely, if the network was behaving well

the system would not be optimally utilizing the bandwidth from the network, thus

settling for lower quality video. Moreover, frames that contain more motion cause an

increase in the encoding rate. Since the exact behavior of the network and the size of

each frame are unknown, it is not possible to pick an optimal encoding rate a priori.

E R at -- Encodig Rate
Aowed Rate ----- d Rate

700 700

850 0

00 6 00

550 5.50

500 500

585 9700 9750 9500 9850 900 9950 10000 10050 10100 9850 9700 9750 990 998 9900 9950 1000 10050 10100
Frame* Number Frame Number

Figure 5-5: The figure on the left compares the bitrate at which the video was encoded
to the feedback from the network of how much we were allowed to send. The goal is to
consistently keep a buffer between the encoding rate and the allowed rate, which will
probe for more bandwidth but not incur losses. Because of buffering, the encoding
rate can exceed the allowed rate, as occurs around frame 9925, if only for a short
duration. The figure on the right compares the encoded bitrate and the send rate.
Prolonged periods where the encoding rate is above the send rate is indicative of
non-transmitted, and thus not received, data.

Therefore we select our encoding rate dynamically, and leave a buffer between

the encoding rate and the current allowed rate of the network in order to absorb

sudden spikes in the size of the frames or drops in the available bandwidth of the

network. Figure 5-5 illustrates this idea of a maintaining a gap to absorb spikes while

consistently keeping the encoding rate below the allowed bitrate.

Figure 5-6 serves as a demonstration of how Tavarua reacts to normal bandwidth

fluctuations. As described in chapter 4, the encoding rate is adjusted by applying a set
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of rules based on comparisons between the actual frame sizes and a calculated target

frame size. We note that even though the throughput dropped close to 400kbps over

the span of 100 frames, during that period the PSNR was above 32dB and the loss

rate never exceeded 1%. This demonstrates that even with highly variable bandwidth,

we still provide diagnostic quality video.

55



10600 10800 11000 11200

Frame Number

(a) Encoding and Sending Rates

10600 10800 11000 11200

Frame Number

(b) Quantization Parameter

I I I I I I

I I I I I A
10400

10400

10600

10600

10800 11000 11200
Frame Number

(c) Loss Rate

10800 11000
Frame Number

11200

11400 11600

11400 11600

(d) PSNR

Figure 5-6: An example of Tavarua's adaptations to typical network fluctuations.
Due to buffering, compare the frame numbers in the network graphs to the PSNR

value approximately 100 frames to the right.
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Because ambulances travel through tunnels and on bridges, we examine the quality

of the video in a period of drastic bandwidth fluctuation. Figure 5-7 is a segment prior

to, during, and exiting a tunnel. Despite elevated loss rates, one with a short peak

at just below 80%, the video quality remained high even during the period inside the

tunnel, remaining above 32.5dB. Therefore even in periods of high sustained loss and

where the bandwidth drops quickly and without warning our video is still diagnostic

quality.
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Figure 5-7: An example of Tavarua's adaptations to drastic network fluctuations,
e.g. entering a tunnel. Due to buffering, compare the frame numbers in the network
graphs to the PSNR value approximately 100 frames to the right.
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5.5 Reliability and Consistency

Over an extended period of time hardware will fail or the sender will enter network

areas beyond where a particular cellular provider guarantees coverage. Therefore

Tavarua must be able to cope with interfaces disconnecting, as well as the possibility of

them attempting to reconnect at a later time. To simulate these events we conducted

an experiment from a stationary location where we systematically removed all locally

connected interfaces one at a time. Once they were removed each was added back

one at a time. Currently, Tribe does not support this feature for the TUN interfaces,

so the two PCMCIA interfaces remained active throughout the experiment. Figure

5-8 shows the effects of such an experiment on the loss rate and the PSNR as well

as how well the encoding rate is updated to account for sudden drops in bandwidth.

Throughout the experiment the PSNR value is consistently above 40dB. This is due

to timely updating of the Q parameter, witnessed by the slight spike in Q at around

frame 8000 when the second interface is disconnected.
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Tavarua must consistently provide diagnostic quality audio and video streams.

The other experiments have shown specific cases where the system copes with high

loss, hardware failures, and a highly variable network, as well as overcomes drastic

variations, e.g. entering a tunnel. To prove that this system can achieve these results

on a consistent basis, without crashes and without any engineering oversight beyond

starting up the sender and the receiver applications, we ran seven trials over the

course of five days. The results of those trials are summarized in table 5.4 showing

the median, mean, and standard deviation of the PSNR for each of the trials as well

as the median loss rates. Throughput distributions over the seven trials are shown in

figure 5-9. From table 5.4 and figure 5-9, it appears that the most dominant factor

in achieving high PSNR values is to minimize the loss rate rather than maximize the

throughput. The throughput in Boston-3 far exceeded the other trials, however so

did its median loss rate, resulting in the lowest PSNR value.

The longest trial, referred to as Suburbs, was 90 minutes in length covering

a geographic area from Massachusetts General Hospital through areas of suburban

Massachusetts. We chose this route because many of the suburban areas we drove

through, such as Lynn, transport their trauma patients to Massachusetts General

Hospital, a Level 1 trauma center. Additionally this route was selected because it

included both bridges and tunnels as well as a stretch of highway. The highway

portion was able to satisfy our curiosity that Tavarua does indeed perform well at

high speeds. No abnormal drops in throughput or increases in loss rate occurred when

the vehicle traveled at speeds of 70mph for an extended period of time.

The remaining six trials were loops from Cambridge though an urban location,

Boston's Back Bay neighborhood. The average speed was much lower, but these

experiments were conducted through a wide variation in weather patterns, from clear

to cloudy to raining, none of which had an impact on the throughput or the loss

rates. All of these trials exceeded the 30dB PSNR expectation for diagnostic quality,

proving that we can perform consistently well and reliably no matter the conditions.

61



Trial Median PSNR Mean PSNR StDev PSNR J Median Loss Rate
Suburbs 35.046 35.258 2.469 2.934
Boston 1 35.558 35.727 2.105 2.005
Boston 2 36.170 36.230 2.634 2.001
Boston 3 33.716 34.271 2.290 4.056
Boston 4 35.552 35.975 2.635 < 1
Boston 5 36.670 37.814 4.509 < 1
Boston 6 36.650 36.550 2.895 < 1

Table 5.4: Median, mean, and standard deviation in
percent loss rate for all of the trials.
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5.6 Subsecond Latency
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Figure 5-10: PSNR values for a stationary, subsecond experiment.

Ideally, the system would be real-time, with latencies less than one second, and

to a first approximation in a stationary setting, we have achieved this with a median

PSNR of 41.271dB. We integrated this into our system by decreasing the buffer size

and throttling the congestion control back aggressively, capping it at 200kbps. Figure

5-10 shows the PSNR for a stationary experiment with a latency consistently less than

one second. Dips in the PSNR correspond to bursts of artifacts, which are subframes

that have not received the current frame either due to a packet loss or because the

packet iRTTs was longer than the latency we were able to tolerate.

When the rate was capped much lower, 100kbps, artifacts still appeared. This

leads us to believe that the loss rate is not the cause of these artifacts, and that it

is likely due to elevated packet RTTs. When the vehicle is in motion, the packet

RTTs are longer than when the vehicle is stationary. For subsecond latency to work

effectively while the vehicle is in motion, packet level analysis needs to be done to

determine the nature of these elevated rates.
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Chapter 6

Conclusion

We first summarize the contributions presented in this thesis, and then present some

directions for future work.

6.1 Summary

We have presented Tavarua, a mobile telemedicine system that utilizes WWAN strip-

ing and complimentary techniques to reliably and consistently transmit diagnostic

quality video, with median PSNR values that range from 33.716dB to 36.670dB, and

serviceable audio.

WWAN Study In order to design our system properly we conducted a battery of

experiments to characterize the behavior of 3G cellular WWANs. These experiments

spanned several days and multiple cities. While not rigorous enough to draw broad

conclusions, these data sets are extensive enough to formulate a high-level character-

ization of these networks, and contain information not previously available through

public sources.

Infrastructure We have built an infrastructure upon which the potential usability

of mobile data streaming applications can be studied in real-world environments. Our

design is flexible and modular, additional hardware, e.g., cameras, microphones, or

65



WWAN interfaces, can be integrated easily.

Dynamic Adjustment of Encoding Rate WWAN bandwidth is highly variable

and the size of encoded frames can vary, e.g., moving from a high motion scene to a low

motion scene. For these reasons we dynamically adjust the rate at which we encode

the video in order to maximize our use of the available bandwidth, without incurring

losses by overburdening the channel. Even when the bandwidth drops drastically, e.g.

entering a tunnel, and the loss rates spike up to 80%, our PSNR never drops below

32.5dB

Grid Encoding Video streams are incredibly bursty, with large I-frames that span

up to 18 packets followed by much smaller P-frames. Moreover, if one of the I-frame

packets were lost then the frame would be corrupted and the entire group of pictures

(GOP), roughly half a second of video, would be discarded. By segmenting the frame

into smaller, independent subframes and initializing these encoders out of phase, we

can smooth out the sending rate by amortizing the cost of sending an I-frame over an

entire GOP. Also, because these subframes are independent, corruptions are localized

to the subframe where the loss was experienced, ensuring that single or small burst

losses do not cause us to discard an entire GOP. Because of that we are able to sustain

loss rates of around 1% without a significant decline in quality, and as shown in the

evaluation chapter, last three trials had median loss rates below one percent once the

congestion control was fully refined for the Rev-A interfaces.

6.2 Future Work

While Tavarua provides the infrastructure for a mobile telemedicine system, there are

areas that need to be explored before it is deployable.

Audio Quality As noted in the system evaluation, the audio quality was not up

to our expectations. This was not because of packet losses or bandwidth issues, but

rather because of choices of equipment and sampling rate. Experimentation with
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various microphones as well as sampling rates to determine the optimal configuration

should result in a large boost in audio quality.

Telemetry Subsystem To extract raw, real-time physiological signals from the

devices on the ambulance would be of great benefit to the physicians. Currently

the device does not lend itself to this application, though one could imagine that if

Tavarua were to be adopted an additional device that does provide real-time streaming

could be included as well.

Bi-Directional Video Recently, our colleagues at Massachusetts General Hospital,

impressed upon us the need for bi-directional video. Giving the physician the ability

to gesture and demonstrate would make for a richer communication. Often, nuances

in how a task should be performed are easily shown, yet are difficult to communicate

through voice alone. This video stream will be able to take advantage of the fully

provisioned downlink channel, which provides much higher throughput.

User Interface Currently, the user interface consists of a video player window that

in addition to the video and audio streams displays system statistics. Key bindings

to switch frame rates, select cameras, and choose the buffer size are the only external

controls. As it is, this is not acceptable for use by physicians. There needs to be

collaboration with physicians to assess their needs and develop a design that allows

this system to be an intuitive extension of their abilities.

Subsecond Latency The most technically challenging as well as the most useful

element of future work is to reduce the latency of the system to the subsecond level

when the sender is not stationary. We determined that the key difficulty is likely

high packet RTTs rather than an effect of the loss rate. Statistical analysis on the

characteristic behavior of these elevated packet RTT needs to be conducted to develop

techniques to circumvent those issues.
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6.3 Conclusions

We have shown that it is possible to stream high quality audio and video from a

mobile unit under a variety of network conditions, and at different levels of latency.

Because of Tavarua's modular, extensible design, we know that improvements in the

cell phone networks will result in direct improvements of our streaming capabilities

as evidenced by our own recent upgrade of two interfaces from EV-DO to Rev-A.

A system that is this reliable and that consistently provides high quality data

streams can be utilized in many different domains outside of the realm of telemedicine.

Moreover, even with cobbled together hardware, all the components of the Tavarua

sender could fit into a briefcase or a backpack. The ability to portably stream data

from any location covered by a cellular network opens the door to many applications.

For example, mobile news reporting, mobile tele-conferencing, or disaster response

teams could also utilize this technology to stream live visual information back to the

central command center.
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