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Abstract

The physical layer of future wireless networks will be based on novel radio technologies
such as Ultra-Wideband (UWB) and Multiple-Input Multiple-Output (MIMO). One of the
important capabilities of such technologies is the ability to capture a few packets simulta-
neously. This capability has the potential to improve the performance of the MAC layer.
However, we show that in networks with spatially distributed nodes, reusing MAC pro-
tocols originally designed for narrow-band systems (e.g., CSMA/CA) is inefficient. It is
well known that when networks with spatially distributed nodes operate with such MAC
protocols, the channel may be captured by nodes that are near the destination. We show
that when the physical layer enables multi-packet reception, the negative implications of
reusing the legacy protocols include not only such unfairness but also a significant through-
put reduction. We present a number of simple alternative backoff mechanisms that attempt
to overcome the throughput reduction phenomenon. We evaluate the performance of these
mechanisms via exact analysis, approximations, and simulation, thereby demonstrating
that they usually outperform the legacy backoff mechanisms. We then discuss the implica-
tions of the results on developing realistic MAC protocols for networks with a multi-packet
reception capability and in particular for UWB networks.
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Chapter 1

Introduction

Future communication technologies such as UWB, MIMO or existing spread spectrum sys-

tems such as code division multiple access (CDMA) have fundamental differences from the

corresponding narrowband or single antenna systems. Although some medium-access con-

trol (MAC) protocols for UWB have been proposed [3,10,14,20,26,39], they do not take

into account the special characteristics of the system such as multipacket reception capa-

bility. In this thesis we focus on fundamental aspects of MAC layer design for multipacket

reception networks with spatially distributed nodes.

In wideband communications the information is spread over a very wide bandwidth

using time hopping or spreading codes at the transmitter [57]. In a packet based network,

this spreading enables the receiver to demodulate multiple packets at a time. The same

result is observed in MIMO systems by the use of multiple antennas at the receiver. This

capability of multipacket reception introduces new challenges in designing MAC protocols

[18,59].

The basic underlying assumption in legacy MAC protocols (e.g., slotted aloha) is that

any concurrent transmission of two or more users causes all transmitted packets to be

lost [5]. However, this model does not reflect the actual situation in many practical wireless

networks where some information can be received correctly from a simultaneous transmis-

sion of several packets. Therefore, this assumption has been subjected to some improve-

ments in literature. The first improvement is called the capture effect: The packet with

the strongest power level can be received successfully (captured) in the presence of con-



Figure 1-1: An example scenario where 1 nearby node captures the channel (since its signal is greater)
and blocks 4 faraway nodes. The transmitting nodes are indicated with arrows. This is a very inefficient use
of the network resources if the maximum number of simultaneously received transmissions in the network is
greater than 1, i.e., if the receiver is capable of receiving multiple packets at a time.

tending transmissions if its power level is sufficiently high. It occurs in networks with

single packet reception capability where packets arrive at the common receiver with dif-

ferent power levels due to near-far effect, shadowing or fading. The effect of capture on

Aloha [1, 2, 27, 28, 30, 51, 52, 62] and on IEEE 802.11 protocol (Carrier Sense Multiple

Access-Collision Avoidance (CSMA/CA)) [23,24,36, 43] has been studied extensively in

the literature and new MAC protocols for channels with capture have been proposed [11].

Hajek et al. [25] provided asymptotic results on the capture probability in the limit of in-

finite number of users. The other major improvement to the original model, known as

multipacket reception capability, assumes that a subset of the collided packets can be re-

ceived successfully. The impact of the multipacket reception capability on MAC protocols

has received limited attention to date. Ghez et al. [18, 19) proposed a channel model for

networks with multipcaket reception capability and studied stability properties of slotted

aloha in such a setting. Peh et al. [44] revisited the model of [18] and proposed improve-

ments in retransmission control schemes by utilizing additional feedback. Tong et al. have

proposed MAC protocols based on multipacket reception capability [37, 38, 59, 60] using

the channel model suggested in [18]. The protocols developed in [59, 60] maximize the

per-slot throughput by controlling the set of users who are allowed to transmit in each

slot. However, these protocols require a centralized controller and hence are impractical

for large distributed networks. Nguyen et al. [42] considered the SNR model for capture

and derived expressions for capture probability for both narrowband (single capture) and

wideband (multiple packet reception) communication systems. Furthermore, new MAC

algorithms for multipacket reception channels were proposed in [7,31,47,48].



Note that there are other solutions rather than designing a MAC protocol specific to this

setting, yet each of them has its own disadvantages. First, using power control schemes

where nodes are allowed to choose the power level with which to send their packets has

been proposed in [29,33,40,52] for the single capture case and in [34] for the multipacket

reception case. However, power control mechanisms require sophisticated feedback and

complex transmitters that can adjust the transmit power level dynamically. Hence expen-

sive transmitters are needed which might be a problem for networks with large number

of nodes. Moreover, for more realistic network settings such as multi-hop networks with

many receivers, every node can send to a subset of the receivers and adjusting the power

level according to different feedback from different receivers makes the design more com-

plicated. A second alternative is to use Time Division Multiple Access (TDMA) technique.

Applying TDMA schemes directly to multipacket reception channel not only causes exces-

sive delays but also results in very inefficient usage of channel resources since the receiver

can capture multiple packets at a time, hence allowing some contention is in fact preferred.

Optimal scheduling algorithms for TDMA networks with multipacket reception capability

have been studied in [9,53], however, they require a centralized controller together with an

advanced feedback mechanism making it difficult to utilize them in large network settings

such as multihop networks.

Multipacket reception capability in networks with spatially distributed nodes calls for

new MAC protocols as well. However, previous work in this field mostly do not take into

account the spatial distribution of the nodes, which, as we explain shortly, results in very

inefficient utilization of the channel and unfairness when existing MAC protocols are used

in this network setting. It is well-known that existing MAC protocols (e.g., IEEE 802.11)

are unfair and may starve some of the nodes [4, 6, 16,55]. The reason for this is that if a

node has a successful transmission, IEEE 802.11 gives a higher transmission probability to

that node and a lower probability to the failed node. Consequently, successful users con-

tinue to capture the channel and the failed users continue to transmit with low probability,

resulting in starvation of some of the nodes in the network. This fairness phenomenon is

even more pronounced in networks with spatially distributed nodes since the distant users

have weaker signals than nearby users due to the severe attenuation of the signal power with



distance. Consequently, packets belonging to distant users are lost with higher probabil-

ity. Futhermore, when there is multipacket reception capability in a network with spatially

distributed nodes, unfairness amounts to very inefficient usage of the channel resources.

For example consider that an IEEE 802.11 type protocol is applied to such a network and

consider the collision of a nearby user and 4 distant users as shown in Fig. 1-1. In a typi-

cal scenario, the packet of the nearby node is received successfully and the others are lost

since the power level of the nearby user is much greater than that of the distant users. Once

the faraway node senses the collision, it increases its contention window (i.e., decreases its

transmission probability) and the successful nearby node decreases its contention window

(increases its transmission probability) continuing to capture the channel. Thus even the

less frequent transmissions of the remote users will be unsuccessful leading to their com-

plete starvation. This means that, one user might dominate the network and starve several

distant users. Hence unfairness in multipacket reception channels with spatially distributed

nodes may lead to very low overall network throughput. The above example suggests that

a fair protocol in such a network should give a greater chance to distant users in order to

prevent their starvation in the network. Moreover, under most spatial distributions the num-

ber of remote nodes is considerably greater than that of nearby nodes and hence allowing a

higher transmission probability to distant users can increase the network throughput. This

is the main idea of this work where we design and analyze a distributed MAC protocol for

networks with multipacket reception capability and spatially distributed nodes. Our pro-

tocol is simple to operate and easy to extend to more complicated network structures. We

start with a single receiver, single hop system in this thesis, however, ultimately we aim at

extending this protocol to multi-hop settings.

A simple alternative scheme to what has been done in CSMA/CA type traditional algo-

rithms would have the node use a high transmission probability following a collision and

a low transmission probability following a success. This simple scheme will be referred

to as the backward model. We propose the Backward Protocol inspired by this idea and

show by some motivating examples in Chapter 4, that the Backward Protocol gives greater

chances to distant nodes and achieves better performance than the traditional mechanisms

which employ the forward model (i.e., having large transmission probability after a success



and a low transmission probability after a failure).

We develop comprehensive analysis of the protocol in various settings. We start with

an analysis of the case where the nodes are randomly distributed on a plane without fading

in the channel. Next, we analyze the protocol when the node locations are deterministic

and there is no fading in the channel. We give exact analysis together with approximations

that enable us to extend the results to more sophisticated networks (i.e., more allowed

distances from the receiver and more users) with high accuracy. We utilize approximation

techniques to analyze the cases where there is multipath fading in the channel both when

the node locations are deterministic and when they are random. We show by numerical

analysis that the Backward Protocol gives more fair results in all of the cases and better

throughput results in most of the cases described above.

In addition to the exact and the approximate analysis of the protocol under different

scenarios, we provide simulation results for the network settings where the approximate

models no longer hold and we compare the effect of different parameters in the model.

Finally, based on the results obtained from these simple mechanisms, we attempt at de-

veloping more realistic MAC protocols for networks with multipacket reception capability

and spatially distributed nodes.

The main contributions of our work are the following. We propose the Backward Pro-

tocol that is a dynamic MAC protocol designed for networks with multipacket reception

capability and spatially distributed nodes. We show by analysis and simulations that the

Backward Protocol deals with the severe fairness problem due to the near-far effect and

it achieves higher throughput values than traditional back-off mechanisms in most cases

considered. Finally, we provide various approximations that are accurate and useful in

analyzing the performance of the network for more complicated settings.

The organization of the thesis is as follows. We begin with the previous work in this

field and describe what has been done in literature in a similar context in Chapter 2. In

Chapter 3, we give the system description and assumptions used for the channel, the feed-

back, and the users. We also describe the Backward Protocol in a detailed manner in this

chapter. In Chapter 4, we give some motivating examples which suggest that the proposed

scheme functions better than existing MAC protocols in terms of throughput and fairness.



In Chapter 5, we analyze the proposed protocol in various different settings. In Chapter

6 two new protocols which are improved versions of the original protocol are considered.

Finally, extensive simulation results are presented in Chapter 7.



Chapter 2

Related Work

The related work regarding the effect of capture on MAC protocols starts with the work

of Roberts [49] who introduced the so called perfect capture model as the packet of the

user with the largest received power is correctly demodulated out of a collision of many

packets. He also suggested the vulnerability circle model for capture which assumes that

a packet transmitted from distance r is successfully received if no other packet is gen-

erated within a circle of radius ar. Metzner [40] studied the perfect capture model for

Aloha protocol with power control and computed the optimal probabilities (optimal in the

sense that it maximizes the throughput) with which transmitters should use the available

power levels. Abramson analyzed the Aloha protocol under vulnerability circle model

in [1] and Shacham [52] studied perfect capture model in Aloha protocol with multiple

transmit power levels. Kuperus and Arnbak [28] considered the SNR model for capture

and termed it capture ratio, which assumes that a packet is correctly received if its received

power exceeds the total interference power by more than a threshold factor z (hence the

name SNR model), and derived probability of capture in a channel with Rayleigh fading.

Arnbak and Van Blitterswijk [2] extended the results in [28] for a channel with combined

near-far effect and Rayleigh fading. Cidon, Kodesh and Sidi [11] introduced and analyzed

different MAC protocols to exploit the capture effect and discussed the power control idea

in such a setting. Lau and Leung [30] considered various spatial distributions and provided

a comparison of the vulnerability circle and the SNR models. A more detailed review of the

work in this field until 1993 can be found in Linnartz's book [32], where he also analyzed



many cases for the SNR model.

Then the subsequent works of Zorzi and Rao [62], and Krishna and Lamaire [27] ex-

tended the results in [32] about MAC protocols with capture and derived expressions for the

capture probability when there are n contending transmissions, C,, using the SNR model.

Moreover, Zorzi and Rao [62] provided stability results for ALOHA protocol with capture,

which states that the protocol is stable if the arrival rate to the system, A is less than C,

where C, is the capture probability in the limit of infinitely many transmissions. They also

proposed a retransmission control scheme to stabilize unstable systems. Some corrections

to this work was suggested in [41], followed by the reply [63]. As mentioned in the previ-

ous section, Lamaire, Krishna, and Zorzi in [29] and Luo and Ephremides in [33] proposed

a power control scheme for networks with capture, where the nodes have discrete trans-

mit power levels. LaMaire et al. [29] determined the optimal transmit probabilities for the

power levels together with the optimal values of the power levels themselves for maximiz-

ing the capture probabilities. Luo and Ephremides [33] showed that the single power level

system achieves optimal throughput when some decodability threshold value (i.e., SNR of

each packet is above a certain level) for received packets is satisfied. Zorzi [61] extended

the throughput analysis in [62] to the case where there is diversity, Rayleigh fading and

shadowing in the system. Finally, Sant and Sharma [51] analyzed stability properties of

slotted aloha from queuing theory perspective when there is capture effect and fading in

the system.

Bianchi [17] analyzed IEEE 802.11 (CSMA/CA) protocol with finite number of users

assumption. Hadzi-Velkov and Spasenovski [22-24] extended [17] to the case where there

is capture in the channel under various settings (with and without Rayleigh fading and

diversity in the channel). Manshaei et al. [36] extended the previous results on IEEE 802.11

with capture to the case where the nodes have different distances in the network. Nyandoro

et al. [43] analyzed IEEE 802.11 protocol with capture and showed that the probability

of successful reception increases when nodes use one of the two different power levels

according to their service class. As pointed out in the introduction, there are many work on

fairness and throughput starvation in IEEE 802.11 (CSMA/CA) type protocols [4,6,16,55],

however, they are not aimed at multipacket reception channels and the fairness issue due to



the near-far effect is not addressed in most of them.

Ghez et al. studied the effect of multi-packet reception on Aloha protocol in [18] where

they generalized the collision channel model by modeling the number of successfully re-

ceived packets in each slot as a random variable which depends only on the number of

transmissions on that slot. They derived the maximum stable throughput of Aloha channel

under these assumptions. They extended the analysis, provided stability results also for the

case in which the retransmission probabilities can be varied as a function of the channel

history and presented a protocol that stabilizes the general system in [19]. Peh et al. [44]

revisited the model of [18] and proposed improvements in retransmission control schemes

by utilizing additional feedback. Tong et al. [37, 38, 56, 59, 60] used the model of [18] and

extended the analysis in various directions. In particular, Zhao and Tong [59, 60] designed

new MAC protocols based on multipacket reception capability that maximizes the expected

number of successfully received packets per slot by controlling the set of users who are al-

lowed to transmit in each slot depending on the channel history and the QoS constraints of

the users. Hajek et al. [25] provided asymptotic results on the capture probability in the

limit of infinite number of users. Chan and Berger [8] analyzed an extension of CSMA

protocol (assuming nodes can sense the power level in the channel and hence the number

of packets currently being transmitted) in multipacket reception networks using the chan-

nel model suggested in [18]. Likhanov et al. [31] presented and analyzed new algorithms

for multipacket reception networks based on collision resolution technique. Yu et al. [58]

provided conditions on spatial distribution function of nodes for stability of Aloha protocol

in multipacket reception channel. Nguyen et al. [42] considered the SNR model for capture

and derived expressions for capture probability for both narrowband (single capture) and

wideband (multiple packet reception) communication systems.

Different approaches to the multi-access control in multipacket reception networks in-

clude a cross layer design protocol in [47] by exchanging parameters between physical

and MAC layer. A similar approach was studied in [48] for the MIMO multiple access

channel both from physical layer and MAC layer perspectives giving formulations for a

cross layer optimization to maximize throughput. A MAC protocol for a spread spectrum

multihop network which dynamically adjusts its behavior according to channel feedback



was described in [7]. Luo and Ephremides extended [33] to multipacket reception net-

works [34] and showed that the single-power-level-system achieves optimal throughput if

SNR levels of packets are above some threshold. Extensions of TDMA type schemes to

multipacket reception channels have been proposed, e.g., in [9] optimal scheduling (for

maximum throughput) of transmissions on multiple independent channels is studied. A

dynamic slot allocation scheme in multipacket reception channel using antenna arrays is

proposed in [53]. Coupechoux et al. [13] analyzed the performance of slotted aloha on

multihop multipacket reception network setting as well as discussing new issues on the de-

sign of MAC layer in such a setting [12]. Finally, Mackenzie and Wicker [35] presented a

game theoretic analysis of the model of Ghez et al.

Moreover, recently there has been some interest [15] in UWB MAC layer which aims to

address specific properties of the UWB physical layer suggested in [57]. Optimal schedul-

ing and routing problems in UWB physical layer are studied in [46, 54]. Radunovic and

Boudec [45] showed that due to the distinct characteristics of UWB-Impuls Radio (UWB-

IR), reusing medium access control (MAC) protocols originally designed for narrow-band

systems may be inefficient. A few aspects of the UWB MAC layer have been been studied

in for example [3,39]. In [10, 14,20,26] optimization problems that attempt to address the

particular properties of the physical layer are formulated and the results of these optimiza-

tions are used as a basis for a MAC protocol design.

These previous work specific to UWB is different from what is in this thesis in that they

are explicitly based on UWB physical layer whereas we propose a more general MAC pro-

tocol that can work on all multipacket reception channels with spatially distributed nodes

(e.g., CDMA, UWB etc.). Furthermore, we study the problem from a more fundamen-

tal point of view and obtain analytical results while the above mentioned works mostly

evaluate the performance of some heuristic idea using simulations.

Furthermore, most of the above previous work on MAC layer design for general multi-

packet reception channels did not assume a spatial distribution of the nodes on the network.

In the cases where a spatial distribution was considered, the throughput reduction due to

near far effect and the starvation of distant nodes were not taken into account. Furthermore,

in most cases the effect of capture or the multipacket reception capability on the existing



MAC protocols (Aloha mostly) were studied. The new protocols suggested for multipacket

reception channel required a centralized controller and sophisticated feedback mechanisms

making the protocol computationally complex and impractical for distributed networks.

However a new MAC protocol design that will exploit the multipacket reception capability

and remedy the fairness problem when the nodes are spatially distributed is necessary and

this is the topic of this thesis.





Chapter 3

System Description and Assumptions

Consider a system where users are communicating to a receiver with possibly different dis-

tances from it. The receiver can be a base station as in cellular networks or an access point

as in multi-hop wireless networks. We assume single destination, single-hop system in

this thesis, however, our ultimate objective is to extend the protocol to multi-hop networks.

Therefore, we assume the receiver does not control the transmissions of the users and we

design a distributed protocol which will be explained in details shortly. We assume a signal

transmitted from a user at distance r is attenuated according to Kr- O where 3 is called

the power loss law exponent which is a constant typically taking values between 2 and 6

depending on the characteristics of the environment and K is the attenuation constant. Un-

der these assumptions, the received power PR(i) of node i which is at distance r from the

receiver is of the form

PR(i) = R2Kr- PT(i) + N (3.1)

where R, is a Rayleigh distributed random variable with unit power, independent and iden-

tically distributed (i.i.d.) for every user (Ri is an exponentially distributed random variable

of unit mean). We carry out the analysis both with and without Rayleigh fading and hence

Ri is assumed to be 1 when there is no fading in the system. PT(i) is the transmit power

of user i which is assumed to be constant PT in this work and N represents the effect of

additive noise.

We utilize the well-known SNR model for capture (also known as the power capture



model) used in [21, 25, 30, 32, 42, 58, 62] (termed as the physical model in [21]) whereby

given n simultaneous transmissions, the packet of user i is captured if

SNR(i) = > z (3.2)

which can be rewritten as

PR(i) > z { PR (j)} + zN (3.3)

The additive noise power level is much smaller than the received power level and for practi-

cal purposes it will be neglected in the analysis. z is the power ratio threshold and depends

on the physical layer and the receiver parameters. For single packet reception narrow-band

systems z is in the range 1 < z < 10, whereas for wide-band multi-packet reception sys-

tems (e.g., direct-sequence spread-spectrum systems like CDMA, UWB) z is in the range

z < 1 allowing multiple packets to be received simultaneously [25,41]. Except an example

in Section 4.3 where we analyze a single packet capture system, we assume that z is less

than 1 in this work, consistent with the multipacket reception capability.

We also utilize the classical vulnerability circle model suggested in [49] and [1], which

was also used by Gupta and Kumar [21] under the name "the protocol model". This model

assumes a transmission from distance r is successful as long as there is no simultaneous

transmission within the disk of radius a r. Note that, a is assumed to be greater than 1 and

hence this model, in its original form, is useful for single packet reception networks. We

utilize the vulnerability circle model only in a motivating example and also we demonstrate

in Section 5.1 that this model can be derived from the power capture model for the case of

two nodes as mentioned in [27].

We define the throughput, S, of the system as the average number of successfully re-

ceived packets per unit time. Using (3.3), we define the parameter c as the maximum num-

ber of simultaneously successful transmissions. The event where the maximum number of



packets is captured will occur if there are c equal received-power packets at the receiver'.

It is easy to see from (3.3) that c is equal2 to [1/z].

We analyze our protocol under different network scenarios, for example when the node

locations are deterministic or randomly distributed. When random node locations are con-

sidered, the distance r of a node from the receiver is assumed to be uniformly distributed

on a disk of radius 1 at the center of which the receiver is located, namely, the pdf of a

node's distance from the receiver is given by,

f,(r) = 2r Vr 0 < r < 1 (3.4)

There are a few issues with utilizing this density as we discuss next. First, as pointed

out in [42], when node distances from the receiver are less than 1, (3.1) implies a power

gain which is not realistic. However, as far as the capture equation (3.3) is concerned,

the ratio of the powers and hence the ratio of the distances of nodes from the receiver is

important in the model. Furthermore, suppose a genie tells us the distance of the closest

user to the receiver. Then, dividing every node's distance by this minimum distance gives

received powers without positive gain and the results, of course, do not change. Therefore,

using the distribution in (3.4) would not affect the capture probabilities. A second issue

with this model is that when the number of nodes in the network becomes very large (i.e.,

in the limit as n tends to oo) at least one of the users gets very close to the receiver having

infinite power at the receiver. However, we are interested in finite number of users in this

thesis which does not have the outlined problem.

We utilize the classical assumptions that can be found in [5], some of which can be

relaxed under certain conditions. We assume the transmission is at packet level where all

packets have the same length so that packet transmission time is fixed. Time is divided

into slots during which at most one packet can be transmitted. A simple immediate 0,1,e

(idle, successful, error) feedback mechanism is assumed whereby the receiver sends an

acknowledgment/error (i.e, 1 or e) to the user if its attempt in the previous slot was suc-

1'If there are different power levels at the receiver, the weak users will have less chance of being captured
and they might also prevent strong users from having successful transmissions.

2In [25], the capture equation 3.3 is defined with an equality, therefore c is given as 1 + Ll/zj.
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Figure 3-1: The Single User State Diagram, S: Success, I: Idle, F: Failure, AS: After Success, AF: After
Failure.

cessful/failed. We assume saturated nodes, i.e., there is always a packet to send at each

node and new arrivals join the unsuccessful packets.

3.1 Backward Protocol

In this section we introduce the basic protocol by describing the single user state diagram

shown in Fig. 3-1. We define two probabilities pt and pt, the probability of transmission in

the current slot after a successful transmission in the previous attempt (AS: After Success)

and after a failed transmission in the previous attempt (AF: After Failure) respectively. As a

result, every user chooses one of these probabilities to transmit at the beginning of each slot

according to their success history in the previous slot. In the event of an idle in the previous

slot, nodes keep their state for the next transmission. This state diagram is markovian3 and

is used to keep track of the transmission history of each node. Consequently, nodes react

differently if they succeeded or failed in the previous attempt and this captures, in a very

simplistic sense, the dynamic protocol idea applied in IEEE 802.11 protocols. Decreasing

the contention window after a successful attempt in IEEE 802.11 corresponds to a high pt

value in our protocol and increasing the contention window after a failed attempt in IEEE

802.11 corresponds to a low ptf value in our protocol. As mentioned before, we refer to

these protocols as the forward models and whenever we have an operating point for which

ptf > pt we refer to the resulting scheme as the backward model and the resulting protocol

as the Backward Protocol.

3It is markovian since given the probability assignment in the current slot, the future of the system is
independent of what happened in the past.



Chapter 4

Examples

In this section, we give motivating examples which help develop some intuition as to why

the Backward Protocol is preferable in the multipacket reception channel with spatially

distributed nodes. In the examples we assume that there is no fading in the system, there-

fore the random variable R, in (3.3) is equal to 1. We start with two Aloha type examples

where nodes can be located at one of the two possible distances from the receiver and have

transmission probabilities that depend only on their distance. In the next example, we an-

alyze the Backward Protocol using an approximate method together with the vulnerability

circle model in a general network setting where nodes can be at a random distance from

the receiver which is at the center of a disk.

4.1 Aloha with Two Distances: Example 1

Consider a simple arrangement of users on a disk as shown in Fig. 4-1. The number of

users at distances r, = 1 and r 2 = 2 are nl and n2 respectively. The nodes at distance

1 transmit with probability (w.p.) pi and those at distance-2 w.p. P2. It is easy to show

using (3.3) that for a node at distance 2 to be successful when there is a transmission

from distance 1, we need (1)I) > z. Therefore, for the values of z = 0.2 and 3/ = 4

assumed throughout this section, nodes at distance 2 cannot be successful' if there is a

'Note that this conclusion is not valid for small enough values of z for given ri and r2. However, for a
given z value we can always choose some practical rl and r2 values so that ( )3 > z is not satisfied. Also



Figure 4-1: Simple spatial distribution.

transmission from distance 1. Furthermore, transmissions from distance 2 have no effect

on the capture of nodes at distance 1 unless there are total c transmissions from distance 1

and 20 from distance 2. When there are c transmitted packets from distance 1 and 2, from

distance 2, the total interference observed by the packet of a user at distance 1 becomes

(c - 1)KPT + 20KPT2- 3 = cKPT. Multiplying this by z = 1/c results in an equality in

(3.3) and hence the packet from distance-i fails. Now assume nl < c and n2 < c < 20 for

this example2 . Since nl < c and n 2 < 23, nodes at distance 1 are always successful and

nodes at distance 2 fail only if there is a transmission from distance 1.

Observation 1 As long as n2 >1 ni, throughput (S) is maximum at (pl, p2) = (0, 1) and is

equal to n2. Furthermore, the maximum S value is produced by a unique (P1, P2) combi-

nation if n 2 > n l .

note that, z = 0.2 is a practical assumption [25].
2In fact, a nearby node may fail if there are c - 1 transmissions from distance 1 and 20+1 transmissions

from distance 2, but with our assumption that n 2 < 20, we do not need to worry about these cases.



Proof: S = nlp + (1 - pl)nn 2P2-. = n( - p1 )nl > 0, therefore, S is an increasing

function of P2, and hence, the maximum S is at p2 = 1. As a result;

S < nlpl + (1 -p l )nln 2

< n2(P + (1 - pl)nl) (4.1)

< n2

where in (4.1) we used the fact that nl < n2.

We get this maximum throughput of S = n2 at (P1,P2) = (0, 1). Note that this

maximum point is not unique if nl = n2, i.e., pl = 1 (independent of P2) also gives

S = n2.However, if n2 > nl, there is only one maximum value for S and its at the point

(P1, P2) = (0, 1). O

The resulting throughput plot for nl = 1 and n2 = 3 for all values of pl and p2 is

in Fig. 4-2. In this example we use z = 0.2 which corresponds to c = 5, satisfying

nl < c and n2 < c. We see from the figure that the throughput of the system takes its

maximum at the end point (p1, P2) = (0, 1) giving throughput of 1 for each faraway nodes

and 0 for the nearby node. This suggest that giving a higher probability of transmission to

distant users might yield a higher throughput.

Moreover, we can find the fair point in the plot, i.e., the point which gives the same

throughput to all the nodes for n1 = 1 and n2 = 3. The throughput equation is given by

S = pl + (1 - P1) 3p2, where nearby throughput is equal to pi and faraway throughput per

node is (1- Pl)P2. Equating the two we get, pi = (1- Pl)p2, yielding S = 4pl. Notice that

P2 = Pl/(1 - pi) which means that the fair point requires P2 > pl. Furthermore, P2 • 1

requires pl/(l - pl) < 1 and hence pi < 0.5 yielding S = 4pl < 2 with equality for the

point (pl, P2) = (0.5, 1). As a result, the point producing the highest throughput value that

is divided evenly between the users is (Pl, P2) = (0.5, 1). Therefore, in this example we

see that not only the highest throughput but also the fair point with highest throughput is

obtained by giving more chances to faraway nodes.
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Figure 4-2: Throughput plot for the system in Example-1 for ni = 1, n2 = 3 and z = 0.2.

4.2 Aloha with Two Distances: Example 2

Now consider the same settings as in the previous example but this time with nl = 2

and n2 = 6 in Fig. 4-1. When we choose z = 0.2 and hence c = 5 as in the previous

example, nodes at distance 1 are still successful all the time, however nodes at distance 2

can fail if there is a transmission from distance 1 or if all 6 of the distance-2 nodes transmit

simultaneously.

Observation 2 Throughput S is maximum at pl = 0 and the maximum value is given by

max i (1 - p(1 )6-i (4.2)
i=O

Proof:

S = 2pi + (1 - p) 2  6 p6-i
i= )

f2 (P2)

Define

C - max f2 ( 2 )
P2

Then, S = 2pl + (1 - pl)2C = C + p1( 2 - C(2 - pi)), which takes its maximum value

of C at Pl = 0 as long as C > 2 Now it is enough to show that for at least one value of

p2, f2(p2) is greater than 2. For P2 = 0.5, f2(P2) = 2.9 > 2. O

I
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Figure 4-3: Throughput plot for the system in Example-2 for nl = 2 ,n 2 = 6 and z = 0.2.

The resulting throughput plot for all values of pi and p2 is in Fig. 4-3. These examples

show that giving higher probability of transmission to the faraway users can potentially

result in higher throughput values in the multipacket reception channel. The crucial point

of the analysis in the examples is assuming n2 > nl, which is reasonable for many spatial

distribution of nodes, for example for a uniform distribution of users on a disk, the number

of users increase linearly with the distance from the center of the disk where the receiver is

located.

4.3 Backward Protocol with Random Distances and Sin-

gle Capture: Example 3

We utilize the Backward Protocol in this section where there are n nodes randomly dis-

tributed on a plane and there is single capture capability at the receiver. We assume the

classical vulnerability circle model suggested in [49], [1] and [21], i.e., a transmission

from distance r is successful as long as there is no simultaneous transmission within the

disk of radius a r. Note that, a is assumed to be greater than 1 in this example and hence

there is only single capture in the system. In Section 5.1, we will also demonstrate that the

vulnerability circle model can be derived from the power capture model for the case of two

nodes as mentioned in [27].

Now we introduce an approximate model which will be revisited in Section 5.2.2 in a

more detailed fashion under the name basic approximate model. We assume that at each



transmission attempt, regardless of the number of retransmissions suffered, a packet trans-

mitted by a node at distance r is lost with constant and independent probability3 pd(r).

Note that pd(r) is the probability that a node at distance r fails given that it has transmitted.

In general, the probability that a packet is lost depends on other transmissions, however,

if the number of nodes is large, we expect the approximate results to be close to the exact

values. In fact, in Section 5.1, we develop an exact analysis for two nodes and show that

the results obtained by the approximate model are very close to those of the exact model

even for a small number of nodes.

It can be seen that, regarding the single user state machine in Fig. 3-1, a node changes

its state from After Success to After Failure if it attempts and fails in the current slot, i.e.,

with probability ptPd. Similarly, a node changes its state from After Failure to After Success

if it attempts and succeeds in the current slot, i.e., with probability ptf(1 - Pd). The steady

state probabilities of the corresponding Markov Chain for a node at distance r can easily

be found to be;

PAS Pf(l-Pd(T))
PAS tsPd(T)+ptf(1-Pd(r))

ptspd(r)
= PtsPd(r)+Ptf(1-Pd(r))

Next, we can obtain the overall transmission probability, given by

7(r) = PtsPAS + PtfPAF = Ps (4.3)
1 - pd(r) + •pd(r)

The probability that a transmission from a node at distance r fails is the probability that

there is at least 1 node transmitting from within the circle of radius or among n - 1 other

nodes in the network. This probability is given by

pa(r) = 1- (1 - T(x) fr (x)dx (4.4)

Where fr(x) is defined by (3.4). Now for any n and any fr(r), (4.3) and (4.4) can be solved

3This is usually done in the analysis of IEEE 802.11 without the dependence on r (e.g., [17]) and with the
dependence on r in [36].
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Figure 4-4: The transmission probability and the throughput as a function of distance under the forward
(pt, = 0.2 and Ptf = 0.05) and the backward (pts = 0.05 and ptf = 0.2.) backoff mechanisms for a = 2
and uniform distribution of 12 nodes on a disk.

numerically as a system of non-linear equations4 . Once T(r) and pd(r) are obtained, S(r)

can be easily found by

S(r) = T(r)(1 - pd(r)) (4.5)

Averaging S(r) over all r, we obtain the average throughput of the network;

S = jS(r)fr(r)dr (4.6)
r

Now for N = 12, a = 2 and fr(r) = 2r Vr E (0, 1), Fig. 4-4 presents the values

of T(r) and S(r) for the forward model (for pts = 0.2 and Ptf = 0.05) and the backward

model (for pts = 0.05 and pt = 0.2). It can be seen that under the backward model,

the transmission probabilities T(r) of the distant nodes are higher than the transmission

probabilities of the nearby nodes. Furthermore, comparing the two models, we see that

the transmission probabilities of the distant nodes in the backward model are higher than

those of the forward model. This leads to a system that is more fair than the forward model

and that provides similar capture probabilities to the nodes regardless of their location.

The throughput as a function of distance does not decay much in the backward model,

whereas in the forward model, the throughput of faraway nodes is significantly less than

that of nearby nodes and since the number of distant nodes is significantly larger than the

number of nearby nodes, we expect the overall throughput of both systems to be similar;

4Note that (4.3) and (4.4) can be solved analytically in the case of two nodes. It is done to verify the
numerical analysis and the solution is given in Appendix A for fr(r) = 1 r E [0, 1] and a = 1.
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for instance, for the example of Fig. 4-4, the throughput of the forward model is 0.4617

and that of the backward model is 0.4343.

In the light of these examples, even in a single capture channel, the backward model

achieves more fair results for distant users and can potentially provide better throughput

characteristics than the forward model. We naturally expect this to hold even more strongly

with multipacket reception capability.



Chapter 5

Protocol Analysis

In this section we analyze the backward protocol for various different settings. We first de-

velop an exact analysis of the Backward Protocol when nodes are randomly distributed on

a disk and there is no multipath fading in the channel. The analysis enables us to verify the

approximation we used in Section 3.1. Then we move on to a case where the node locations

are known in advance. We introduce a more powerful approximation that can be utilized

only in deterministic node locations case and use it to extend our analysis to networks with

more users and more possible distances from the receiver than the exact analysis. Next we

consider the above cases when there is multipath fading in the system. We utilize previous

approximate models to both the deterministic node locations with fading and random node

locations with fading cases and get analytical results. We show by numerical analysis that

the backward model yields more fair results in all the cases and greater throughput in most

of the cases compared to the forward model.

5.1 Random Locations Without Fading

In this section we develop an exact analysis using Markov Chains for the case where the

node locations are random and there is no fading in the system. Our objective is to show

that the approximate results used in the third motivating example in Sec. 3.1 are very close

to the exact results even for a small number of nodes in the network. The approximation

we used was that regardless of the success history, a packet from a user at distance r is



lost with constant and independent probability Pd(r). Then using the state diagram of Fig.

3-1, we derived the average probability of transmission r(r) as a function of pd(r) and

formulated the throughput equation of our protocol. The exact analysis, however, requires

using Markov Chains whose states denote whether each user is in After Failure or After

Success state. An example of such a Markov Chain for n = 2 is shown in Fig. 5-1. If

there are n nodes in the system, the number of states is at most 2n. Since the analysis be-

comes extremely cumbersome for n > 2, we analyze the protocol for the case of 2 nodes.

Namely, consider two nodes at distances rl and r2 which are i.i.d. random variables dis-

tributed according to some density function fr(r) on a disk. Denote a node at distance ri

as node-i and that at r2 as node-2. For this simple case of two transmitters, we can convert

(3.3), and hence the capture model, into a simpler form as follows'. The capture equation

PR,1 > zPR,2 simplifies to r1-0 > zrT2. Then we obtain r2 > /rzrl. Defining a as

aA ý-•, we get user-1 is successful if r 2 > a r1 . As a result, a transmission from dis-

tance rl is successful as long as there is no other transmission up to distance a r2 , i.e., the

vulnerability circle model of [1] used in Section 4.3 is another form of the power capture

equation (3.3) for the case of 2 nodes. Note that here again we assume a > 1 and hence

z > 1, which in return means that there is only single capture in the channel, as in Section

4.3.

Case-a: ar, < r2:

In this case, node-1 is successful whenever it transmits since node-2 cannot interfere with

node-i, therefore, node-1 uses the probability pt for transmission, whereas node-2 chooses

p, or ptf in each slot depending on its success history in its last transmission attempt. In

order for node-2 to succeed, node-1 has to be silent. Now, based on the single user state

diagram of Fig. 3-1, we can develop a system Markov Chain, shown in Fig. 5-1, that keeps

track of the success history of both users in their last attempt.

It is easy to see that the Markov Chain of Fig. 5-1 is time-homogenous, irreducible and

aperiodic, therefore the steady state probabilities exist and can be found easily by solving

'This result also appears in [27].
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Figure 5-1: System Markov Chain in Example-2, Case-a. ss: both nodes are successful, sf: node-i is
successful and node-2 is failed in its last attempt.
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Figure 5-2: System Markov Chain in Example-2, Case-b.

the global balance equations.

= (1-pts)Ptf

PSS (1-pts)Ptf+p 2

sf (1--pts )Ptf+p2

As mentioned above, the probability of transmission for node-i (i.e., the nearby node) is

always pts and for node-2 (the distant node) it is given by (psspts + p fptf). Finally the

throughput of node-i is pts and that of node-2 is given by

Sa = PssPts(1 - Pts) + PafPtf(1 - Pts)

Case-b: ri < r2 < ar l :

(5.1)



Now both node-i and node-2 can fail, resulting in the system Markov Chain shown in Fig.

5-2. By solving the global balance equations, we can find the steady state probabilities:

= 1 + 2 (1-ptf)ptf(1-pts) + 2(1 - p•f)

Pfbs = pb = pfb(l - ptf)

b = b 2(1-pf)ptf(1-pts)
PssPff p2

The average probability of transmission of each node is:

b b b b
PssPts + PsfPts + PfsPtf + pbffptf

The average throughput obtained by each of the nodes is

Sb = ppt(1 - pts) + Psfpts(1 - pf) + ppf(1 - P ) + pffbptf(1 - Ptf)

In order to obtain the probability of transmission, r(r), and the throughput, S(r), as a

function of r, we average over case-a and case-b. We denote node-i, node-2 as nl, n2

respectively and work on specific locations of nl. We divide the averaging into two cases

0 < rl < I and~ < r, < 1 since in the first case n2 can be in the area corresponding to

[ar1, 1] whereas in the second case the probability of r2 being in this interval is zero.

For 0 < rl < 1

In this case r(r 1) and S(rl) take three different expressions depending on the interval to

which n 2 belongs. If r 2 is in the interval [arl, 11, n2 is outside the vulnerability circle of

nl, hence case-a applies. If r2 is inside the interval [I, arl], both are in each other's vul-

nerability circle, therefore case-b applies. Finally if r2 is in the interval [0, n], ni is outside

the vulnerability circle of n 2, hence case-a applies again but this time roles of nl and n2



are interchanged. In a more compact form, the T(rl) and S(rl) are given by;

T(T 1) = P(n 2 C [ar1, ])p + P(n 2  , ar1])p + (5.2)

P(n2 E [O, -])(ssPts+ PafPtf)= (1- a 2r)pts (a 2r - b
a T

r2_ (ps pts + pspfptf)

a2

S(rI) = (1 - 2 r (a 2r - •)Sb 2  S (5.3)

For I < r < 1:

Similar reasoning to previous case yields;

Tri = P])n, [0r1 (Pa t + P
() = P(n2 T+ P(n 2 E [0,])(pasPts + ptf) = (5.4)

a a
2 2

2 2
- )PT + -- i(PssOts + PsfPtf)

S(rl) = (1 - ••)Sb_ _L Sa (5.5)
a2  a2

Thus, averaging over the distribution of node locations in (3.4), we get the average through-

put as

S =j (12S 2rdr 2 2)p- + [(1 - )Sb + 2rdr

From Fig. 5-3, we see that for 2 nodes, the approximate results of Section 4.3 are very

close to the exact results. Intuitively, as the number of nodes in the system increases, the

dependencies between the nodes should decrease and hence the approximate results should

get closer to the exact results. Therefore we expect the plots in Fig. 4-4, which show the

better performance of the backward model over the forward model, to be very close to exact

values.
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Figure 5-3: The comparison of the transmission probability and the throughput of the exact and the ap-
proximate analysis for a = 2, Pt, = 0.2 and Ptf = 0.05 (i.e., for the forward model case) and uniform
distribution of 2 nodes on a disk.

5.2 Deterministic Locations - Without Fading

In this section, we first develop the exact analysis of the case where nodes are allowed

to be at one of the two distances from the receiver. Then, we extend the results to more

complicated network settings using approximate analysis. The underlying protocol is as

described in Section 3.1, i.e., a node successful in its previous attempt uses the probability

ps, and a node that failed in its last attempt uses the probability ptf for transmission in the

current slot. If a node was idle in the previous slot, it continues to use the same probability

it used during the previous slot.

5.2.1 Exact Model With Nodes at One of Two Different Locations

We assume the network setting of Fig. 4-1, i.e., there are two possible distances from the

receiver denoted by rl and r2 with nl and n2 nodes at those distances respectively. Consider

the Backward Protocol as described in Section 3.1 applied to this setting. We analyze this

model using a two dimensional2 Markov Chain whose states (i, j) are the number of failed

users at distance rl = 1 and that at distance r2 = 2. An example of such a Markov Chain

is shown in Fig. 5-4 for nl = 6 and n2 = 10. Note that only some of the transition

probabilities of the state (4, 6) are shown in the figure and they are referenced throughout
2Note that together with the assumption that n2 < 20, this Markov Chain is 1 dimensional if nx _ c.

This is because we see from (3.3) that in order for a user at distance 1 to fail, we need either more than
c transmissions from distance 1 or c transmissions from distance 1 and more than 20 transmissions from
distance 2. As a result, for nl < c, the 2-dimensional Markov Chain collapses to a 1-dimensional Markov
Chain and this 1-dimensional Markov Chain is given in Appendix B.



this section. The number of states in the Markov Chain is (nl + 1)(n 2 + 1). Similar to

the case in Section 4.1, the analysis is carried out for all nl values and for n2 < 20. The

restriction on n2 simplifies the analysis substantially since considering (3.3), the nodes at

distance 2 can make a node at distance 1 fail only if the number of transmissions from

distance 1 is c and there are more than 20 transmissions from distance 2, which is excluded

from the analysis by the restriction on n2. As a result, a transmission from distance 1

fails only if there are more than c transmissions from distance 1. Furthermore, we assume

(Q)1 > z is not satisfied which is the condition for a distance-2 user to be successful in the
r2

presence of a distance-1 transmission as discussed in Section 4.1. Hence, a transmission

from distance 2 is successful as long as there is no transmission from distance 1 and the

number of transmissions from distance 2 is not more than c. Next, we give the transition

probabilities of this Markov Chain. In order to be able to describe this Markov Chain better,

we group the transition probabilities according to the amount of increase or decrease from

the current state to the next state. There are three cases in each dimension, i.e., whether

the state increases, decreases or doesn't change, making a total of nine different cases to

consider.

Denoting the probability of going from the current state (i, j) to the next state (1, m) by

P(i,j)*(1,m) we have;

Case 1: 1 < i and m < j

s= - landk Aj - m

In this case we have s successful transmissions from the i users at distance 1 that are in

the failed state and k successful transmissions from the j users at distance 2 that are in the

failed state. Therefore,

P(ij)*(l,m) = 0

This is due to the fact that a transmission from distance 1 would cause any transmissions

from distance 2 to fail.



(

Figure 5-4: The Markov Chain for the analysis in Section 5.2.1 for nl = 6, n2 = 10 and z = 0.2. Note
that only some of the transition probabilities of the state (nl, n2) = (4, 6) are shown.

000



Case 2: 1 > i and m < j

s 1 - i and k -j - m

In this case there are s failed transmissions from the nl - i users at distance 1 that are not

in the failed state and k successful transmissions from the j users at distance 2 that are in

the failed state.

P(i1,j)-(l,m) = 0

The reasoning in this case is exactly the same as Case 1.

Case 3: 1 > i and m > j

S1 - i and k i m - j

In this case, the number of failed users at distance 1 increases by s (s failed transmissions

from the nl - i users at distance 1 that are not in the failed state) and that at distance 2 by

k (k failed transmissions from the n2 - j users at distance 2 that are not in the failed state).

If 1 < c, then the transition probability is 0 because any number of transmissions less than

or equal to c from distance 1 is successful. If 1 > c + 1 and the increase amount in the first

dimension s is less than or equal to c, then there has to be s transmissions from the n1 - i

users at distance 1 that are not in the failed state and at least c + 1 - s transmissions from

the failed users at distance 1. This is required since we need more than c transmissions

from distance 1 in order to have failure (this is not necessary if s > c + 1 since all c + 1

transmissions will be failed anyway. We see this in the last part of the formula where there

is no term for failed users at distance 1). Since 1 > i, we know that at least 1 transmission

from distance 1 has occurred and hence any number of transmissions from distance 2 will

fail. We need k transmissions from the successful users at distance 2 in order to increase



the second dimension of the state by k. Hence,

Inl l - ts)nl--i--s n2 ks(l Pts)
n 2 - j - k "

v= pc+-s (1 - ptf)i-v

(ni p (1 - pt)nl-i-s n2 -k 1 - pts)n2-j-ks k J

if 1 <c

if s < c and 1 > c + 1

if s > C + 1

An example of this case with 1 < c in Fig. 5-4 is the zero transition probability from the

state (4, 6) to the state (5, 7). Another example of this case with s < c and 1 > c + 1 is the

nonzero transition probability a5 from the state (4, 6) to the state (6, 8).

Case 4: 1 < i and m > j

s i - 1 and k A- m - j

In this case, there are s successful transmissions from the i users at distance 1 in the failed

state and k failed transmissions from the n2 - j users at distance 2 that are not in the

failed state. If s > c + 1 the transition probability is zero, because the maximum amount

of simultaneously successful transmissions in the channel is c. If s < c, then we need s

transmissions from the failed users at distance 1 (i.e., users transmitting with the probability

ptf) and we allow up to c - s transmissions from the successful users at distance 1. This

second contribution sums up to 1 if nl - i is less than or equal to c - s. Finally, similar to

Case 3, since there is some transmission from distance 1, all the transmissions from distance

P(i'j)*(l'm) = ,



2 will fail and therefore, we need k transmissions from successful users at distance 2.

if s > c + 1

P(i'j)-(1,M) =

pg(1 - ptf)i-s k21- p k n2-j-k.
s k

C-8 n(1 -s%
v=O v

( p(1 - p e)i- n2 - k n2-j-k

tsf kt)A

if s < c and nl - i > c - s

if s < c and nl - i < c - s

In Fig. 5-4, all is an example of this case for s < c and ni - i < c - s.

Case 5: 1 = i and m < j

In this case, the state stays constant in the first dimension and decreases by k in the second

dimension. This means that there are k successful transmissions from the j users at distance

2 that are in the failed state. We apply the same logic that we used for the distance-1 users

in Case 4 to the distance-2 users here and note that in order to have success from distance

2, we need to have no transmission from distance 1.

if k > c+ 1

(1 - pt)nl-i(1 - ptf)i pik(1 - pf)j-k.k
P(i'j)-(1,m) = c Ec=k n2 - n2-p--

v

(1 -pt,)ni-i(1 -ptf)i p (1-
\kJ

For instance, in Fig. 5-4, alo is an example of the case for k

a2 for k < c and n2 - j < c - k.

if k < c and n2 - j c - k

if k < c and n2 - j < c - k

< c and n2 - j Ž c - k and

)tf)j-k

. . _



Case 6: 1 < i and m = j

In this case the state does not change in the second dimension and decreases by s in the

first. Consequently, we need s successful transmissions from the i failed users at distance

1 and no transmissions from the n2 - j users at distance 2 that are not in the failed state.

Cases 6 and 7 can be understood in a similar fashion to what we did in the previous cases.

if s > c + 1

p(1l - pt)i-(1 - pts) 2- j .

S(v=- Pt((1 - - )ts -

pgf(1 - pt)i-s(1 - pts)n2-
(S)

if s < c and nl - i > c - s

if s < c and nj - i < c - s

In Fig. 5-4, al2 and a7 are examples for this case for s < c and nl - i < c - s.

Case 7: 1 > i and m = j

sal-i

In this case, there are s failed transmissions from the i users at distance 1 that are at the

failed state and we need no transmissions from the n2 - j users at distance 2 in order not

to change the second dimension of the state.

P(ij)>(11,m) =

if 1 < c

(1 -i) p(1l - pts)n-i-8(1 - pts)n 2- j.

( p (1 - ptSs)-i-)(1 - pt)f 2- j if 8> C+ 1
AS AS

P(i,j)-(1,m) =



An example for this case for 1 < c is the zero transmission probability from the state (3, 6)

to the state (4, 6) in Fig. 5-4. For the case s < c and 1 > c+ 1, a6 is an example in the figure.

Case 8: 1 = i and m > j

kAM-j

In this case the state stays constant in the first dimension and increases by k in the second,

i.e., we need k unsuccessful transmissions from distance 2. We divide the event into three

disjoint events in order to understand the formula better.

P(i,j)-(l,m) = P1 + P2 + P3

where P1 is the probability of the event denoting the case where there is no transmission

from distance 1. Similar to what we did for users at distance 1 in Case 3 or Case 7, if

m < c, then the transition probability is 0 because there is no transmission from distance 1

and hence any number of transmissions less than or equal to c from distance 2 is successful.

If m > c + 1 and the increase amount in the second dimension k is less than or equal to

c, then there has to be k transmissions from the n2 - j users at distance 2 that are not in

the failed state and at least c + 1 - k transmissions from the failed users at distance 2.

This is required since we need more than c transmissions from distance 2 in order to have

failure. Note that these transmissions from the failed users at distance 2 are not necessary

if k > c + 1, since all c + 1 transmissions will be failed anyway. We see this in the last part

of the formula where there is no term for failed users at distance 2.

P2 stands for the event where there is no transmission from the failed users at distance

1 and from 1 up to c transmissions from the successful users at distance 1 so that all the

transmissions from distance 1 will be successful and the first dimension of the state will not

change. Since there is at least 1 transmission from close-by users, any transmission from

faraway nodes will be unsuccessful and hence we need k transmissions from the successful

users at distance 2 as shown below in the formula for P2.

P3 is the probability of the event denoting the case where there is no transmission from

the successful users at distance 1 and greater than c transmissions from the failed users so



that all the transmissions from distance 1 will be failed and the state in the first dimension

will not change. Similar to P2, since there are some transmissions from nearby nodes, the

k transmissions from the n2 - j users at distance 2 that are not in the failed state will be

failed and the second dimension of the state will increase by k.

if m < c

n2 I p-(1 - ptj)n2-ik.

SEv=c+1-k p (1 - p7))-
.

n2 (_ n2-j-k

if k < c andm > c + 1

if k > c+ 1

i ( 1 - Pt)nl-'i-

pZ (1 - Pts)ni -'-

(1 -ps)n-i n2 n2-j-k
k v=c+1

if n - i < c

if ni - i > c + 1

Pti ( -p)-
\VJ

if i < C

if i > C

In Fig. 5-4, as is an example for this case. In a3 , P1 and P2 are nonzero but P3 is zero.

Case 9: 1 = i and m = j

This is the most complicated case where the state does not change in either dimension.

Therefore the associated event is divided into 4 disjoint events.

P(i,j)-,(m) = PI + P2 + P3 + P4

where PI is the probability associated with the event where there is no transmission from

either distance 1 users or the failed users at distance 2. Therefore, in order for the state to

P1 =

(1 -

(1-

P2

P3 =

(1 - pts)n-i(1 - ptf) i

(1 - pts)n-i(1 - ptf)i

p (1 -



stay constant, we need c or fewer transmissions from the n2 - j users at distance 2 that are

not in the failed state so that all of them will be successful.

P2 is the probability of the event in which we do not have any transmissions from

distance 1 and this time also no transmissions from the n2 - j users at distance 2 that are

not in the failed state. As a result, we need all transmissions from distant users in the failed

state to be unsuccessful and hence we need more than c transmissions from them.

P3 is the probability of the event denoting the case where there is no transmission from

failed users at distance 1 and less than c transmissions from the distance-1 users that are not

in the failed state so that they will be successful and the first dimension of the state stays

constant. In order for the second dimension not to change, we need no transmissions from

the n2 - j users at distance 2 that are not in failed state because otherwise, they will fail

and increase the second dimension of the state.

Finally P4 is the probability of the event where there is no transmission from the

distance-1 users that are not in the failed state and more than c transmissions from the

failed users at distance 1 so that all of them will be unsuccessful and the first dimension of

the state will stay constant. Similar to P3 , we need no transmissions from the n 2 - j users

at distance 2 that are not in the failed state.

(1 - pts)n-i(1 - pt)i(1 - pt)i if n2 - j < c

(1 - pts)n-i(1 - ptf)i(1pt)j - p) p(1 - Pt) 2-j- if n2 - j C + 1

0 ifj >< C

v=c+1



ni-i

( -pf)(l p)2v= 1  -
V=1 (V

(1 pf~~l- pts)l2-i E

P3 =

P4 =

pt(l -v PtSL n1 -i-v

pf(l - ptf)i - v

if nl - i < c

if nl - i > c+ 1

ifi <

ifi > C

In Fig. 5-4 a4 is an example of this case and in a4, P1, P2 and P3 are nonzero but P4 is

zero.

Note that as explained at the beginning of this section, for nl < c this Markov Chain

collapses to a 1-dimensional Markov Chain whose states denote the number of failed users

at distance 2 only. The transition probabilities3 of the 1-dimensional Markov Chain are

given in Appendix B.

Furthermore, even for the simpler case of 1 allowed distance of the nodes from the

receiver, i.e., the case where every user has the same distance from the receiver (for instance

nl = 0), the 1-dimensional Markov Chain reduces to another Markov Chain whose states

denote the number of failed users in the system, which was analyzed in [50] in slotted aloha

section with finite number of users.

Once the steady state probabilities, denoted by p(i, j), are obtained, we calculate the

3The formulation of this 1-dimensional Markov Chain can be obtained from the original (two dimen-
sional) Markov Chain by letting i = 0 and I = 0. Only the cases 5 (1 = i and m < j), 8 (1 = i and m > j)
and 9 (1 = i and m = j) are relevant since i = 1 = 0 has to be satisfied.

(1 - pt5)n-i(1 - pt) nf-li
v=c+l



throughput of the system as;

ni n2 min(c,i) . min(c-v,nl-i)

p(i, j) p(1 - p)i-1(d +v )  pt( - ps)n-i-d +

i=0 j=0 v=0 ( d= o d
min(cj) . min(c-v,n2-j)

+(1 -pts)m-i(1-pt)'[ E pv(1 - ptf)j-~ (d + v) P (1-Pts)\2- -]
V=0 v d=O d

(5.6)

Note that the first two summations goes through all the states of the Markov Chain. Given

that the state of the system is (i, j), the following two summations denote the throughput

coming from the nearby nodes and the last two summations denote the aggregate through-

put of the faraway nodes. Since users at distance-2 can not be successful simultaneously

with users at distance-i, the total throughput equation can be considered separately for

nearby and faraway users as described above. Given any state (i, j), i.e., i failed users at

distance 1 and j at distance 2, we consider the cases that result in success and multiply the

probabilities of these events with the number of successful users in those events to get the

total throughput of the system for given pm and ptf values. In particular, we first explain the

throughput expression of the nearby nodes given that the state is (i, j). The probability of v

transmissions from the i distance-1 users at failed state and d transmissions from the nj - i

distance-1 users at successful state is given by

pi;V(1 - p)' pd (1 - pts)nI -i-d (5.7)

This quantity is multiplied by the number of transmissions d + v to get the throughput. The

two summations associated with v and d are such that v + d is always less than or equal to c.

The reason for this condition is the fact that the receiver cannot capture more than c packets

at a time. The same reasoning is applied to the throughput equation of the distance-2 nodes

together with the fact that in order to have successful transmissions from faraway nodes,

we need to have no transmissions from the nearby nodes.

As we see from the 3-dimensional throughput plot for nl = 1 and n2 = 5 in Fig.



Figure 5-5: Throughput plot for deterministic locations case with rl = 1, r2 = 2, ni = 1, n2 = 5 and
z = 0.2.
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Figure 5-6: Throughput of the faraway nodes for deterministic locations case with ri = 1, r2 = 2, ni = 1,
n2 = 5 and z = 0.2.

5-5, the maximum throughput of 2.195 is obtained for (pts, ptf) = (0.55, 1.00). We see

that at the point where the throughput is maximum, ptf is larger than pts, suggesting that

the backward model is better than the forward model for this case. Fig. 5-6 shows the

total throughput obtained in this case by the nodes at distance r2 = 2. We see that distant

nodes have very low throughput in the forward model, i.e., when pt is larger than ptf,

and they get significant throughput in the backward model, i.e., when ptf is larger than

pts. Furthermore, the maximum overall throughput case, i.e.,(pts, ptf) = (0.55, 1.00), yields

a total throughput of 1.645 for faraway nodes and 0.55 for the nearby node, suggesting

that the Backward Protocol gives enough chances for distant nodes and hence prevents the

throughput starvation of them in this case.

Fig. 5-7 shows the 3-dimensional throughput plot for nl = 2 and n2 = 10. The maxi-

mum throughput value of 2.051 is obtained for (ps, ptf) = (0.25, 0.50), which is also in fa-

vor of the backward model. The throughput of the faraway users at (pts, ptf) = (0.25, 0.50)

0 0 P,

I
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Figure 5-7: Throughput plot for deterministic locations case with rl = 1, rz = 2, nl = 2, n2 = 10 and
z = 0.2.
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Figure 5-8: Throughput of the faraway nodes for nl = 2, n2 = 10 and z = 0.2.

is 1.551 suggesting a similar conclusion to the nl = 1 and n2 = 5 case. The 3-dimensional

throughput plot of the faraway users is shown in Fig. 5-8 from which we can clearly see

that the backward model gives higher throughput to distant users and hence is better than

the forward model in terms of fairness.

Finally, in Fig. 5-9, the plot for nl = 6, n 2 = 10 is shown. Contrary to the previous

cases, the maximum throughput is obtained for large values of p, and small values of ptf.

This is due to the fact that c, the maximum number of successful transmissions at a time

is; c = [1/0.2] = 5. Since nl = 6, there are enough users at distance 1 to successfully

capture the channel most of the time. This gives a large throughput value for large values

of pt as expected, however, as we see in Fig. 5-10, the throughput of the faraway users

is almost zero for large pt values and hence operating the protocol with a large pts value

causes throughput starvation of the distant nodes. Instead, we see that in order to let distant

nodes have some throughput, we need to have a small pt value and a moderate ptf value.

However, doing this will not utilize the available capacity effectively, as the throughput
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Figure 5-9: Throughput plot for deterministic locations case with r, = 1, r2 = 2, nl = 6, n2 = 10 and
z = 0.2.

Figure 5-10: Throughput of the faraway nodes for deterministic locations case with rl = 1, r2 = 2,
ni = 6, n2 = 10 and z = 0.2.

obtained out of the system will be low. As a result another solution to the problem might

be needed if the number of nearby nodes becomes comparable to c. In Chapter 6 we will

consider alternative protocols that will attempt to deal with this issue.

As is clear from the complexity of the above analysis involving just two locations, the

analysis of the case with deterministic locations and without fading is quite complicated

and cumbersome. Therefore, we develop approximate models that allow us to consider

greater number of locations for the nodes. We verify the approximations by comparing

the approximate results with the exact results presented in this section for the cases of two

allowed distances from the receiver. However, for the verification of the case for three

or more possible distances from the receiver, we develop a simulation model which is ex-

plained in details in Chapter 7. Note that, we also verify the simulation model by comparing

the simulation results with the exact results of this section, i.e., for the case of two allowed

distances from the receiver. These comparisons can be found in Fig.s 7-1, 7-2, 7-3, 7-4,



and 7-5. We see from these figures that the simulation model follows the exact results very

closely.

5.2.2 Basic Approximate Model

This approximate model was introduced in Section 4.3; where we assumed that a packet

transmitted by a user at distance r fails with constant and independent probability pa(r),

regardless of its or any other user's success history. We expect this model to be reasonably

accurate when the number of nodes in the network increases. This is because with a small

number of nodes, the dependence among users is large and we showed already in Section

5.1 that even with just two nodes, the approximate results are very close to the exact results.

Now we apply this approximation for the current case with users at one of two possible dis-

tances from the receiver and no fading. We use the notation T1, r2, Pdl and Pd2 for T(1),

r(2), pd(l) and pd(2). In addition, we still keep the assumption that n2 < 20, which en-

sures us that the distance-1 users operate totally independently from nodes at distance 2.

Case 1: nl _ c and n2 < C

Similar to the Aloha with Two Distances example in Section 4.1, nodes at distance 1 do

not fail in this case (hence they transmit with probability pt always) and those at distance

2 fail only if there is a simultaneous transmission from distance 1. As a result, for nodes at

distance rl = 1;

pdl = 0 and T1 = pt (5.8)

The faraway nodes fail if there is at least one transmission from nearby nodes. Therefore,

Pd2 = 1- (1 - (5.9)

and from (4.3) -= 72 =----d2P--- - (5.10)1-Pd2 + PtPd2 1_(1_(1_ps)n1) M (1_(1_p,)n1)

Note that Pd2 is the probability that a packet from a node at distance 2 is lost given that the

node has transmitted. Looking at the equations of Pd2 and 72, we see that they are functions

of pt and ptf only and hence given pt and ptf they are constants independent of one another.



Figure 5-11: Throughput plot for nl = 1, n2 = 5 and z = 0.2 using the Basic Approximate Model.

The throughput is also a function of p8 and ptf only and is given by;

S = nll + (1-T1r)nln2T2 = npt+n2(1-Pts)n 1- (5.11)
(1 -ps)n + ( ps)n)

In (5.11), the n171 term denotes the throughput of the nearby nodes and (1 - rl)nln272

denotes that of the faraway nodes.

Fig. 5-11 shows the throughput plot for the case of nl = 1 and n 2 = 5. We see that

the throughput values are exactly the same as those obtained from the exact model in the

previous section. This is expected since when nl and n2 are both less than or equal to

c, the variables in two locations are constants independent of each other given Pts and pf.

Therefore, the approximation that a packet transmitted by a node at distance r is lost with

constant and independent probability pd(r) is exact in this case. Namely for nl = 1 and

n2 = 5 , Pdl = 0 and d2 = 1 - (1 - ps)" = Pts.

Regarding the Markov Chain analysis of this case in the previous section, when nl < c,

the nearby users are always successful, hence the Markov Chain is 1-dimensional in this

case. Since nodes at distance 2 fail only if there is a transmission from distance 1, Pd2 =

1 - (1 - pt)nl is a constant, independent of the state of the Markov Chain. As a result, the

case of nj < c and n2 < c can be formulated exactly without a Markov Chain analysis.

Case 2: nl < c and n2 > C

As explained in Aloha with Two Distances example in Section 4.2, the nodes at distance 1

are still always successful and those at distance 2 fail if there is at least one transmission

0 0 p,
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Figure 5-12: Throughput plot for deterministic locations case with rl = 1, r2 = 2, nl = 2, n2 = 10 and
z = 0.2 using the Basic Approximate Model.

from distance 1 or if there are more than c transmissions from distance 2. As a result, we

obtain;

Pdl = 0 and 71 = Pts (5.12)

(5.13)pd2 = P1 + P2 - PIP2 , where

P1 = (1 - (1 -T7) n l )

n2

P2 = E
k=c+1 k

7Tk(1 - .2) 2- k

Where in (5.13), we used the fact that nodes at distance 2 can fail as a result of two inde-

pendent events with probabilities P1 and P2. Using equation (4.3), 72 is given by;

Pts
72=

1 - pd2 + tP-Pd2ptf

(5.14)

Finally, the throughput equation is given by;

(5.15)

The reasoning in this equation is similar to what we had for (5.6) and (5.11).

S = nipts + (1 - AS)n E 2k=1 (k
7kl - 72)n 2- kn



We show the resulting plot of throughput in Fig. 5-12 for nl = 2, n2 = 10 and z = 0.2.

Comparing this figure with Fig. 5-7, the plots are different in the area where pts is small

and Ptf is large. The reason for this difference is that there are multiple roots to the solution

of (5.13) and (5.14) and hence in this region, the numerical equation solver (MATLAB in

our case) converges to different solutions for 72 for different initial values. We observed

that MATLAB converges to the correct root for some initial values of 72 . Other than this

region, the values in the plot are very close to the exact values in Fig. 5-7.

Case 3: nl > c and n2 > C

In this case, failure events of faraway nodes are the same but nearby nodes also fail if there

are more than c simultaneous transmissions from distance 1. This difference yields the

following result in formulation:

Pd = T 71)n (5.16)
k=c+l

71 ptPS (5.17)

Pd2 = P1 + P2 - P1P 2 ,where (5.18)

P~2 S _F 2(1 - T2) 2nkk=c+1 k
Pts

T2 = (5.19)
1 - Pd2 + ptd2

In this case, we can solve for 71 and T2, and hence for Pdl and Pd2 numerically using (5.16),

(5.17), (5.18) and (5.19). The throughput equation is given by:

S = rlk (1 - 1)nl- k +71( - 72)n 2- k (5.20)
k=1 ( =1 (
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Figure 5-13: Throughput plot for deterministic locations case with rl = 1, r2 = 2, ni = 6, n2 = 10 and
z = 0.2 using the Basic Approximate Model.

This throughput equation is again similar to (5.6) and (5.11) and can be understood in the

same way.

The resulting 3-dimensional throughput plot is shown in Fig. 5-13 for ni = 6, n2 = 10.

Similar to what we had in case-2, when we compare this figure with Fig. 5-9, we observe

that the approximation deviates from the exact results for pts 1 or Ptf 1. However,

operating the protocol with such large pts or ptf values is not practical and other than these

two impractical regions, the values in the plot are very close to the exact values in Fig. 5-7.

We see that the basic approximate model of this section works well for most pN and

ptf values. Note that this approximate model is simple and general in the sense that it also

applies to networks with random node locations as demonstrated in Section 4.3. However,

if the locations of the nodes are deterministic, we can provide better approximations as

shown in the next section.

5.2.3 Enhanced Approximate Model

In this section we provide a better approximation in order to be able to make general claims

for all sets of probabilities. One observation from sections 5.2.1 and 5.2.2 is that under the

limitation n2 < 2 , nodes at distance 1 are totally independent from the nodes at distance 2,

however, they are not independent of each other. Furthermore, the dependence of faraway

users on the nearby nodes for successful transmission is limited to the single event that "no

transmission should occur from the nearby nodes". As a result, approximating the nodes

at different distances to be independent of each other and nodes at the same distance to be

1

v V ,P,¢
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Figure 5-14: Network Structure, Enhanced Approximate Model.

dependent on each other is a reasonable idea in our setting. We apply this idea by having

a separate Markov Chain for nodes at different distances in the network. The state of each

Markov Chain is the number of failed nodes at the corresponding distance and the depen-

dence4 between different Markov Chains is through the average transmission probabilities

7 (i) denoted by Ti of nodes at distance ri from the base station for i = 1, 2, 3, 4.... In order

to have this idea of independence among different distances be a good approximation, we

need to put some limitations on ni, the number of users at distance ri, i.e., we need to have

users at distance ri depend only on users whose distance is less than ri and independent

of the rest of the nodes. In sections 4.1, 5.2.1 and 5.2.2, we explained that when there are

only two distances in the system, i.e., some nodes at distance 1 and some at distance 2, the

condition that n2 < 2' ensures that faraway nodes have no affect on nearby nodes, in other

words, nearby nodes are independent of the faraway nodes. Now in order to generalize

these results to more distances, we consider a network with nodes at one of three different

distances from the receiver.

Consider the network setting shown in Fig. (5-14). We have nl users at distance rl, n2

at r 2 and n3 at r3. Next, consider the capture equation (3.3) and note that R = 1 here since

there is no fading assumed in this section. In order to have nodes at r 2 independent of the
4 The users at different distances are of course not totally independent since for example if there is at least

one transmission from distance-i, the distance-2 nodes cannot be successful. This limited dependence is
captured through the average probability of transmission from distance ri, r(i), in the model.



nodes at r3 , using the capture equation (3.3) we have5;

Kr PT > z((- - 1 )Kr2jPT + n3Kr PT)

simplifying we get

r2  > r2 - zr 2 + zn 3r3

and hence

n3 < (r3) (5.21)
T2

In order to have nodes at rl to be independent of nodes at r2 and r3, and noting that in

the most limiting case n3 is equal to [(r3)] - 1, we have;

KrT' 3PT > z((1 1)KrPiT + n2Kr or + n3Kr PT)

canceling the constants we obtain,

r 1 3 > z(( - 1)rT1  + n2r2  +n3 3

this gives,

ri > r, - zr0 + zn2r 2 + zn3r3

further simplifications yield,

n 2 < ,B 1- n3r;13)

and hence,

n2 < ( )3 - (p) (r[() 1 - 1) (5.22)
T1 Tr T2

Now consider rl = 1, r2 = 2, r3 = 3 and 3 = 4. We have n3 < (1)4 = 5.063 and

n2 < ( )4 -_ P ()41] - 1) = 15.012, i.e., for the practical value of 3 = 4 assumed in

our work, we need n3 to be less than or equal to 5 while the condition on n2 is that it should

5Similar to the explanation in Section 4.1 for the distance-1 users, the limiting case for the effect of
distance-3 nodes on the success criteria of distance-2 nodes occurs when there are total c transmissions from
distance 2 and hence c - 1 = 1/z - 1 interferers from distance 2.



be less than or equal to 15 if want to use this approximation model with a good reliability6 .

However, in a uniform spatial distribution of nodes on a disk, the number of nodes from the

receiver increases proportionally to the distance from the receiver. Therefore this limitation

on n3 prevents us from obtaining practical results. As a result, we consider r3 = 4 in our

setting and get n2 < 15.063 and n3 < 16 from (5.21) and (5.22) respectively, allowing us

to obtain results very close to the exact values. With a similar analysis for rl = 1, r 2 = 2,

r3 = 4 and r4 = 8 one obtains n2 < 14.066, n3 < 15.063 and n4 < 16.

When compared to the cumbersome exact analysis of Section 5.2.1 for two distances

case, the Enhanced Approximation is much easier to formulate and it is easy to extend to

more distances from the receiver as long as some constraints on ni, the number of users

at distance ri are satisfied. In particular, note that we have three Markov Chains for three

different distances representing the number of failed users at each distance and the formu-

lation of these Markov Chains are very similar to each other. Furthermore, the dependence

between the Markov Chain of each distance is through the average probabilities of transmis-

sion from those distances, which substantially simplifies the analysis. Namely, considering

the nodes at distance-2, in Section 5.2.1 we had 3 different cases in analysis for each of

the 3 different changes in the first dimension of the state (i.e., increase, decrease or the no

change of the number of failed nodes at distance-i) yielding total of 9 cases. However, all

the effects of distance-1 transmissions on distance-2 transmissions are through the single

event that there is at least one transmission from distance-1 which is covered well by the

Enhanced Approximation.

Under the constraints for n2 and n3 for the 3 distances case (rl = 1, r2 = 2 and r3 = 4),

we formulate the transition probabilities of the Markov Chains as follows.

Markov Chain for nodes at distance r1 = 1:

We will denote the state transitions as going from state i to state 1 and note that the expla-

nations of the equations are very similar to what we have in Section 5.2.1.

6Note that in Section 4.1 we showed that a single distance-1 transmission is enough to destruct a distance-
2 transmission for z = 0.2. Here a similar calculation shows that this is also the case for distances 2 and 3.
Namely, a single distance-2 transmission destructs a distance-3 transmission for z = 0.2.



Case 1: 1 > i

s 1-i

0

n,

Pi'l S
ni i )

ps(1 - pt)ni- -- s

pts(1 -_ pts)nl-z-s

v=C-

pV(1 - ptf)i - v
-l-s

Case 2: 1 < i

sAi-1

0
Pi-t = Ptf(1 - ptfl viOc-s -• 1

Sp~(1 - ptf) i -s

Pi-+1 i=0
ptf1 Ptf)'

p(l - pAs)nl-i-v

if s > c + 1

if s < c and ni - i > c - s

if s < c and nl - i < c - s

Case 3: 1 = i

Pi-,, = P1 + P2 , where

if I <c

if s < c and l > c+ 1

if s c + 1



(1 -ptf)i if nl -i < c

S- (1 _- pt) ni- -v if ni - i > c +1
v=O V

0 ifi <C

P2  (1 -ps)nl-i p(,(1 -pf)l -  if i > c
v=c+1

Calculating the steady state probabilities pl(i) of this Markov Chain numerically, we can

obtain the average probability of transmission, rl, for a node at distance 1 as

S= P ( iptf + (nl - i)pt (5.23)
nl

Markov Chain at Distance r 2 = 2:

The state transitions will be denoted as going from state j to state m and note that the

explanations of the equations are still very similar to what we have in Case-1 and Section

5.2.1. There are two minor differences from Case-1 equations; first, in order to success-

fully receive a packet from the distance-2 users we need to have no transmissions from

the distance-1 users ((1 - -rl)n ) and second, distance-2 nodes can fail if there is at least

one transmission from the distance-1 users ((1 - (1 - T1)nl)) or if there are more than c

transmissions from the distance-2 users.

Case 1: m > j

k m-j



-3

k

-3
k

if m < c

+(1 - TI)nln2

L
( 2 if k > c + 1

Case 2: m < j

k j-m

0

(1 -

Pj -m

(1-

if k > c + 1

c-k -
1 - p)j-k v

v=o v

- pts)n2--3- v

1 - ptf)j - k

if k < c and n2 - j > c - k

if k < c and n 2 - j < c - k

Case 3: m = j

Pj-.m = P + P + P3 , where

Pa = (1 - (1 - Tx)" )(1 - pts) n2-

PS)n2- pf(l - ptf)j - v

v=c+l- _•

Pj-- = -

if k < c and m > c + 1

(5.24)

(1 - pt)n2-j-k
ts(1 prts -j-

ts9 k- pt, )n2-i-k+

\

pkt(1 - ts)n2-j-k



(1- T1)" (1 - ptf) if n2 - j < c

P2 T C /,-, v ,
(1 - 1)(1 - ptf)j ( (1 - ps)n2-3- ifn2 -j > c+

v=0O

P3 
ifj < c

S (1 -)n, (1 ptS)n2-j Z (J) p(1 ptf)j-V ifj> c
v=c+1 l

After calculating the steady state probabilities P2(j) of this Markov Chain numerically, we

obtain the average probability of transmission, 72, for a node at distance 2 to be

jpf + (n2 - j)Pts (5.25)
72 p 2 (j) (5.25)

n2

Markov Chain at Distance r3 = 4:

We denote the state transitions as going from state h to state u. Throughout this case, let

Pa Pb and Pc denote;

Pa = (1 - Tr)"1 (5.26)

Pb = (1 - 2)n2 (5.27)

Pc = (1 - Pa) + (1 - Pb) - (1 - Pa)(1 - Pb) (5.28)

Note that, Pc denotes the event that there is at least one transmission either from distance 1

or distance 2. The equations in this case are very similar to those in Case-2. In particular, in

order to have a successful transmission from the distance-4 users, we need no transmissions

from the distance-1 and distance-2 users (PaPb) and nodes at distance 4 fail only if there is

at least one transmission from the distance-1 or distance-2 users (Pc) or if there are more

than c transmissions from the distance-4 users.

Case 1: u > h



Au-h

P n 3- (1 - pts)n3-h-g
9

Pcn3 -h A (1 -p)n3-h-g+
9

-h h

+PaPb ps( )n3--g E  p ( - ptf) h- v

n v=c+)-g V

n3- p( - pts)n3-h-9

9

Case 2: u < h

gAh-u

0

h e-g n 3 -
PaPb Ptf(1 Ptf)h-g

g v=o v

h
PaPb (1 _ pg)h-g

g

)•p~sl - pts)n3-h--v

ifg > c+ 1

if g < c and n3 - h > c - g

if g < c and n3 - h < c - g

Case 3: u = h

Ph-u = P1 + P2 + P3 , where

Pi = Pc(1 - pts)n 3
- h

13 -1

if u < c

if g < candu > c+ 1

ifg > c+ 1

Ph--U =

S-'-'+U

(5.29)



P1P2(1 - ptf) h  if n - h < c

P2 = PaPb(l- tf)h 3 P(l - )n3-h-v ifn3 - h C +1
v=O V

P3 = I PaPb(1 - pts) na -h p(1 h- v if h > c

v=c+l

We calculate the steady state probabilities pa(h) of this Markov Chain numerically and

obtain the average probability of transmission, T3 , for a node at distance rs = 4 to be

3= jptf + (n3 - j)Pts
T3= P3 (h) (5.30)

n3

We finally obtain the throughput equation as

ni n2 3 in(C,i min(c-v,n-i) -

S =P1(i)P2 P3(h) P(1 - ptf)'-I (d + v) ps(1 - pts)n-i-d +
i=o j=o h=O v=O v d=O d

min(c,j) min(c-v,n2-j)

+(E-p)ni-(1-pa) P (1 - p,)j-E (d + v) 2 1_- t2-j-dI
v=o0 \ d=O d

min(c,h)h min(c-v,n3-h) 3 - h

~~+(1ps~.)n 2i"= 
1  (1 - pl )h-Z (d + v) dp _ - ps)n-h-d

v=o \V d=0 d

(5.31)

This equation is very similar to (5.6) with the difference that we have 3 sources of through-

put, namely throughput of distance-1, 2 and 4 users. In order to have a successful transmis-

sion from distance-2 we need to have no transmissions from distance-1 ((1 - pt)nj-i(l -

pt)i). Similarly, for a successful transmission from distance-4, we need no transmissions

from both distance 1 and 2 ((1 - pts)nl+n2-i-(1 - ptf)i+j). Finally, the steady state prob-

abilities of the Markov Chains pl(i), P2(j) and p3(h) are multiplicative. This naturally

results from the independence approximation that we make in this section between differ-

ent distances7.
7As explained at the beginning of this section, the nodes at different distances are not totally independent



Figure 5-15: Throughput plot for deterministic locations case with rl = 1, r 2 = 2, ni = 1, n2 = 5 and
z = 0.2 using the Enhanced Approximate Model.

Figure 5-16: Throughput plot for deterministic locations case with r1 = 1, r 2 = 2, n• = 2, n2 = 10 and
z = 0.2 using the Enhanced Approximate Model.

Note that in order to generate results for two locations case using this approximate

model, all we have to do is to discard the Markov Chain of distance 4; this is because both

users at distance 1 and distance 2 are independent of the users at distance 4. The resulting

throughput equation would then be given by;

Sn2 mn(i min(c-v,ni-i)

S = pi(i)P2(j) n( p - ptf V(d + v) ts)n(-i- d +
i=0 j=o v=0 / d=od

min(cj)/ min(c-v,n2-j)

+(1 - pts)nl-i(1 - ptf) p(1 - p)j- (d + v) n2 -( (1 - pt) " 2- -]

v=O V/ d=O

(5.32)

The throughput plot for nl = 1, n2 = 5 is shown in Fig. 5-15. The results are the same

but they have a very limited dependence. Namely, in order to have a successful transmission from a given
user, we require no transmissions from users closer to the receiver than the given user.

I_

1



Figure 5-17: Throughput plot for deterministic locations case with rl = 1, r 2 = 2, nl = 6, n 2 = 10 and
z = 0.2 using the Enhanced Approximate Model.

as the exact values in Fig. 5-5. This is expected since this approximation is better than the

first one which already achieves the same exact values for the case of nl < c and n2 < c.

Fig. 5-16 shows the throughput plot for nl = 2 and n2 = 10. We observe that this case also

yields the same values as the exact case in Fig. 5-7, and this is also expected since when

nl < c, the nearby nodes are always successful, i.e., there is no Markov Chain for distance

1 and hence 71 = pts always. As a result, the input from the first Markov Chain to the

second, i.e., 71 = pts is exact and therefore the Markov Chain of distance 2 describes the

system completely. A similar observation was pointed out at the end of the Section 5.2.1,

i.e., when nl < c, we observed that the two-dimensional Markov Chain collapsed to the

1-dimensional Markov Chain whose states denoted the number of failed users at distance

2 only. In Fig. 5-17 we show the throughput plot for the case of nl = 6 and n2 = 10.

The values are the same as the exact values in Fig. 5-9 except in the area pt > 0.75 and

ptf < 0.35 where the values are correct to two decimal places. As a result, we see that this

approximation is very accurate and can provide results that are very close to exact, as long

as some conditions on ni, i = 2, 3, 4, ... are satisfied.

Figures 5-18, 5-19 and 5-20 show the overall throughput of the network, total through-

put of the n2 nodes at distance-2 and that of the n3 nodes at distance-4 respectively for

z = 0.2. In order to show the validity of these results, we plot the ratio of the through-

put values obtained from simulations to those obtained from the Enhanced Approximate

Model. These figures can be found in Chapter 7 (Figures 7-6, 7-7 and 7-8) demonstrating

the accuracy of the Enhanced Approximate Model.



Figure 5-18: Throughput plot for deterministic locations case with
n2 = 2, n3 = 4 and z = 0.2 using the Enhanced Approximate Model.
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ri = 1, r2 = 2, r3 = 4, ni = ,,
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Figure 5-19: Throughput plot of the users at distance 2 for deterministic locations case with ri = 1,
r2 = 2, r 3 = 4, nl = 1, n2 = 2, n3 = 4 and z = 0.2 using the Enhanced Approximate Model.

p. 0 Pt

Figure 5-20: Throughput plot of the users at distance 4 for deterministic locations case with rl = 1,
r2 = 2, r3 = 4, nl = 1, n2 = 2, n3 = 4 and z = 0.2 using the Enhanced Approximate Model.



The maximum throughput of 1.555 is obtained for (pts, ptf) = (0.35, 1) showing that

the backward model is more favorable in this case. Furthermore, for this maximum point,

the nodes at different distances are not starved for throughput since the throughput from

distance 1 is 0.350, that from distance 2 is 0.589 and from distance 3 is 0.616 at the max-

imum overall throughput point. One other observation is that the aggregate throughput of

nodes at distance Tr3 is greater than that of nodes at distance r2 which is greater than that

of nodes at distance rl. This is in favor of fairness since the number of nodes is increasing

with distance. We observe from Figures 5-19 and 5-20 that as the distance increases, the

throughput increases with decreasing values of pt which supports the intuition that when

pts is small, the nearby node, which uses the probability pt always since ni < c, has less

chances of capturing the channel and the network can achieve more throughput by giving

greater chances to the faraway nodes which outnumber the nearby nodes.

As a result of the different analysis and the various results considered in this section, i.e,

when the locations of the users are known and no fading effect in the channel, we see that

the backward model achieves better throughput and fairness results than the forward model

in most cases considered. Note that when the number of nodes at distance 1 is comparable

to c, the maximum throughput point is in favor of the forward model and this is because

the distance-1 nodes use the probability pt most of the time (they use pt all the time if

n1 <• c) and having a large value of pt lets them capture the channel all the time yielding

a high throughput. The faraway nodes, however, get almost zero throughput in this case

and therefore having a large pt value, especially when the number of nearby nodes is large,

is catastrophic from a fairness perspective. In Chapter 6 we explain why having nearly

c nearby nodes is not realistic in UWB systems and nevertheless provide an alternative

protocol to alleviate this problem.

In the following two sections we continue analyzing the performance of the backward

model in the case where there is fading effect in the channel.



5.3 Deterministic Locations-With Fading

In this subsection we assume the locations of the users are known and there is Rayleigh

Fading in the channel, i.e., the Rayleigh fading term R, in (3.1) is not a constant anymore

but a Rayleigh distributed random variable and as explained in Chapter 3, the R2 terms

are exponentially distributed random variables of unit mean. The analysis in this section

follows from the related work of Zorzi and Rao [62] which studies the power capture model

given by (3.1) and (3.3) under a spatial distribution of nodes on a disk. The differences of

the work in this section from previous work is that we assume multi-packet reception, i.e.,

z in (3.3) is less than 1, our received power model given by (3.1) does not include the

shadowing term and most importantly we carry out the analysis for the Backward Protocol

explained in previous sections thoroughly. First we obtain a general expression for the

probability that a node at distance r captures the channel in the presence of k interferers

by treating the distances of nodes as variables. Then we adopt the result into our setting

by substituting the given values of the node distances. Note that the general expression for

probability of capture will also be used in the next section where we have random node

locations.

We define pc,k (r0 ) to be the probability that the packet of a user at distance ro is received

successfully in the presence of k other transmissions where k can at most be one less than

the total number of nodes in the network, i.e., k E [0, n - 1] and there are n nodes in

the system. From (3.1) and (3.3) we see that a transmission from a node at distance r2 is

captured if its received power level is greater than the total interference factor times the

threshold z. Therefore;

k

pc,k(ro) Prt PR,O> ZZPRJ
j=1

k

= Pr{R> zZR(
j=1

Now conditioning on the interferer distances ri, r 2,..., rk and the interferer Rayleigh fad-

ing terms R1, R2 ,..., Rk and denoting R2 terms as aj which are exponentially distributed



random variables of unit mean we obtain

pc,k(rolr{i:1<i<k}, a{i:1<i<k}) = exp - z a ( (5.33)
S kj=1

This expression follows from the fact that for an exponentially distributed random vari-

able R02 of unit mean, Pr(R2 > x) is given as exp(-x). Removing the conditioning on

{al, a2, ... , ak} by averaging (5.33) over {al, a2 ,... , ak} we obtain

Pc,k(roTr{i:1<i<k}) = j dale ... duke-a k exp - z aj (

k exp + z '1 a d11= J•1 exp -( + z())ajdaj
k=1

=1 (5.34)
j=1 l + z r

Now we apply this result to our setting by assuming that there are ni, n2, ... , nL nodes8 at

distances r1, r2, ... , rL from the receiver respectively. We define pci(kl, k2, ... , ki, ... , kn)

to be the probability that a packet from a node at distance ri is captured by the receiver

given that there are kl, k2,... , ki,..., kL interferers9 from distances rl, r 2,... , r, i... rL

respectively. Define the total number of interferers k as

L

k = kj (5.35)
j=1

Therefore;

k L kg

Pci(kl, k2, ..., ki, ..., kL) = 1 j (5.36)
j=1 1 + z _ j=1 + z r

where the last equality follows from the fact that we can combine the terms with the same

8Note that nl + n2 +... + nL = n.
9Note that pi(kl, k2, . .•, k, ... , kL) is the successful reception probability given the transmission of the

user at distance ri and kl, k2 ,..., ki,..., kL interferers. Hence kj E [0, nj] for all j except j = i for which
ki E [0, ni - 1].



distance rj from the receiver. Now, in order to formulate the throughput of the network, we

apply the approximate model which was first introduced in Section 4.3 and then analyzed

in sections 5.1 and 5.2.2, whereby a transmission from distance ri is lost with constant and

independent probability Pd(ri) regardless of its success history in the previous slots. We

showed in sections 5.1 and 5.2.2 by numerical analysis that the approximation works well in

most settings considered. The system can be analyzed as a system of non-linear equations.

This is because the average transmission probability from distance ri, r(ri), depends on

pd(ri) through the nonlinear equation (5.37) and the pd(ri) on T(rTi) for i E (1,..., L}

through the nonlinear equation (5.38):

pts
r(r1) -= d 1 i E ... , L} (5.37)1 - Pd ri) + Pd(Ti)

i* n2 - - 1 )kj _1)nl-ki n2 2k2( _ 2 2-k2..
pd(ri) = E 1.... ... ( 1) T(r ( -(r 2

kl=0 k2-=0 ki=O kL=O kj k2

S-1r)(ri)k -ti)n-ki-l L7(L)kL(1 - TL)n L - kL(1 - pci (kl, k 2 ,..., ki , ... , kL))

(5.38)

Where pd(kl, k2 , ... , ki,...., kL) is as given in (5.36). Thus the aggregate throughput of

nodes at distance r2 is given as

S(ri) = ni7(ri)(1 - pd(ri)) (5.39)
L

S = S(ri) (5.40)
i=1

Fig. 5-21 shows the overall throughput of the network when we have 1 node at distance

1, 3 nodes at distance 2 and 9 nodes at distance 3. We observe that the largest throughput

results are obtained for large values of ptf and small values of pt. This result shows the

better performance of the backward model compared to the forward model when we add

multipath fading into the system.



Ptf

Figure 5-21: Throughput plot for the case of deterministic locations with fading in the channel. The
number of nodes at distances rl = 1, r 2 = 2 and r 3 = 3 are nl = 1, n2 = 3, n3 = 9 respectively, and
z = 0.2.

5.4 Random Locations With Fading

In this section we consider the most general network setting so far, i.e., the analysis is for

random locations of the nodes when there is multipath fading in the network. Similar to

Section 5.3, the analysis follows from related work of Zorzi and Rao in [62]. Consider

n nodes distributed randomly on a disk at the center of which there is a receiver. Simi-

lar to the previous section, define pc,k(ro) to be the probability that a packet transmitted

from a node at distance ro is successfully received by the receiver given that there are k

other transmissions where k < n - 1. Using (5.34), we obtain pc,k(ro) after removing the

conditioning (i.e., averaging over rl,..., rk) to be

Pc,k (ro) d(5.41)

For 3 = 4 and uniform spatial distribution as in (3.4), the integral in (5.41) can be evaluated

analytically, yielding

Pc,k(ro) 1- Vr2tan- 1 (4))k (5.42)

Now similar to what we did for the deterministic locations with fading case, we apply

the approximate analysis of the Section 4.3. We need to obtain the average probability of

destruction, pd(r) from distance r (given that there is a transmission from distance r) and

1



using this quantity we find 7(r), the average probability of transmission from distance r as

T(r) = (5.43)
1 - Pd(r) + s(1 - Pd(r))

where pd(r) is given as

Pd(r) = 1 - pc(r) (5.44)

and Pc(r) is the average of pc,k(r) over all possible number of interferers k. The exact

expression of pc(r) is given by

n-1

pc(r) = pc,k(r) = > Pr{There are k interferers}PC,k(r)
k=O

Since the probability that there are k interferers depends on the dynamics of the Backward

Protocol, there is no exact expression for pc(r). Therefore, we provide two approximations

to pc(r) = Pc,k(r).

5.4.1 Approximating pc(r) Using T(r)

Since we utilize r(r) in the numerical analysis, we can approximate pc,k(r) by calculating

the average probability of transmission, T, using T(r);

S= jr(r) fr(r)dr (5.46)

Using 7 we can calculate pc,k(r) (for /3 = 4 and uniform spatial distribution (3.4) as ex-

plained above) as

n-1 P
p(r) = Pc,k~ Ek=o (

rTk(1 n-l-kPcD,k(r)

Tk(1 - T)n- l- k
Sv-r2 tanl (vZr2))

n-1

=O (
(5.47)

(5.48)

(5.45)



Figure 5-22: Throughput plot for random node locations case with fading in the channel for n = 10 and
z = 0.2 using the Jensen's Inequality approximation to the average of Pc,k(r).

Now (5.43) and (5.44) can be solved numerically to obtain the throughput of the network

given as

S(r) = J Pc(r)fr(r)dr = 0 Pc(r)2rdr (5.49)

where 5i is equal to nT.

The overall throughput of the system is presented in Fig. 5-22 for z = 0.2 and n = 10.

We see that the resulting throughput plot is very close to the throughput plot generated

by simulation shown in Fig. 7-12 except for high pt values. The exact results in Fig. 7-

12 suggest that in the most general network setting considered so far, i.e., random node

locations and fading in the channel, the high throughput area results from utilizing high

ptf and low pt values suggesting ones more the better performance of the backward model

over the forward model.

We observe that the approximate results for n = 6 are closer to simulation then n = 10

case, however, as we increase the number of nodes in the network, the approximate re-

sults start to diverge from the simulation results. The reason for this is that the numerical

analysis gets more and more complicated to solve as we increase n. The number of pos-

sible solutions to 7-(r) increases linearly with n and hence the numerical equation solver

converges to a wrong root with higher probability as n is increased.



5.4.2 Approximating Pc(r) Using Jensen's Inequality

A second way of approximating pc(r) is to assume that the average (over k) probability of

capture of a packet transmitted from distance r is approximately the probability of capture

of the packet when there are average number of interferers in the channel. Namely,

Pc(T) = Pc,k(r) Pc,-(r) (5.50)

where k, the average number of interferers, is given by

k = (n - 1) r(r)fr(r)dr (5.51)

Note from (5.41) that pc,k(r) is a convex function of the random variable k and from

Jensen's Inequality we obtain

pc,k( > Pc,,(r). (5.52)

Hence the approximation that Pc,k(r) Pc,(r) corresponds to using the lower bound

obtained from Jensen's Inequality to the convex function pc,k(r). Moreover, the random

variable k is defined in the range [0, n - 1], therefore, Edmundson-Madansky Inequality

gives us an upper bound to Pc,k(r). We give the Edmundson-Madansky Inequality with a

simple proof in Appendix C. We apply Edmundson-Madansky Inequality to our setting

(g(k) = Pc,k(r), a = 0, b = n - 1) and denote pc,k(r) = -y(r, z)k where y(r, z) for / = 4

and uniform spatial distribution as in (3.4) is given as

y,(r, z) = 1 - vr 2 tan- 1  . (5.53)

y(r, z) is a monotonically decreasing function of r for r E [0, 1]. Applying the Edmundson-

Madansky Inequality with the specified values we obtain

Pc,k(r) < 1 - (1- •(r, z) n - l ) (5.54)
n-1
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Figure 5-23: The upper and lower bounds to Pc,k(r) as a function of distance, r for n = 10 nodes in the
system and z = 0.2. The figure corresponds to k = 5.

Combining (5.52) and (5.54) we finally get

Sck(,r) 1 k (1 - y(r, Z)n-1) (5.55)
n-1

We observe from (5.55) that when y(r, z) is close to 1, the two bounds become tight, while

for y(r, z) tending to 0 they are loose. However for z = 0.2 and r = 0, 7(O, 0.2) = 1

and for z = 0.2 and r = 1, -y(l, 0.2) = 0.4856, hence for practical values of z, we do

not have to worry about very small values of 7(r, z). When n = 10, k = 5 and z = 0.2,

Fig. 5-23 shows the values of the upper and the lower bounds as we vary r from 0 to 1.

We obtain similar figures for different values of k, and observe that the bounds get tighter

as k increases. We see that the two bounds are very close for r < 0.5. This means that

approximating Pc,k(r) as p-l,(r) works reasonably well for r < 0.5. For r > 0.5 the actual

value of Pc,k(r) lies between these two curves. Applying the approximation, we obtain

Pc(r) = Pc,k(r) = pc,j(r) 1 j r2 1tanr- ( zr2)) (5.56)

Now we formulate the approximate model as given by equations (5.43) and (5.44). These

equations are solved numerically to obtain the throughput of the network given in (5.49).

We plot the overall network throughput as a function of pt and pt in Fig. 5-24 for z = 0.2

and n = 10. We see that the resulting throughput plot is very similar to the throughput plot

generated by simulation shown in Fig. 7-12. Similar observations to the Fig. 5-22 are seen

for this figure.
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Figure 5-24: Throughput plot for random node locations case with fading in the channel for n = 10 and
z = 0.2 using the Jensen's Inequality approximation to the average of Pc,k (r).

We observed that as n increases, the results diverges from the simulation results for this

approximate model also. The reason in this case is that for large values of n (e.g., n > 20 in

our setting), we find more nodes faraway from the receiver and hence -y(r, z) takes values

that are not close to 1 more often, making the approximation pc(r) = pc,k(r) - pc,(r) lose

its validity.

Note that, in Section 7.3, we give various simulation results for this case and explain

how the backward and forward models compare as we keep z constant and vary n and vice

versa.

_r





Chapter 6

New Protocols

In this section, we first provide a solution to the problem associated with the backward

model when the number of nodes that are close to the receiver is comparable to c, the

maximum number of successful receptions (see the discussion at the end of Section 5.2.1).

Note that having the number of nearby nodes close to c may not be a realistic situation

for some network configurations. First, we know that for spread spectrum systems, the

receiver capture threshold z can be very small (in fact close to 0) with enough processing

gain [41] making c a very large number. Moreover, for most practical spatial distributions

of nodes, the number of users increases with the distance. Consequently, when there is

a finite number of nodes in the network, the possibility of having nearly c nearby users

is very low unless the total number of nodes is very large. Nevertheless, we modify the

Backward Protocol and develop the Backward Model with Forced Idle Periods to remedy

this problem.

Next we propose the Backward Model with Dynamic Contention Windows, which is

potentially easier to implement compared to the original Backward Protocol, enabling

nodes to adjust their transmission probability dynamically and still carrying the essence

of the backward model. From Chapter 5, it is clear that the analysis regarding the simpler

Backward Protocol is complex and it becomes considerably more difficult to analyze the

Backward Model with Dynamic Contention Windows. Consequently, we will present the

performance analysis of this protocol through simulations.



6.1 Backward Model with Forced Idle Periods

Now consider the problem outlined at the end of Section 5.2.1 where we assumed that the

node locations were known and there was no fading in the system. As it was pointed out

there, if the number of nodes that are close to the receiver is comparable to c, then having

a large value of pt and a small value of pt yields the highest throughput as it gives more

chances to the nearby nodes who are almost always successful'. However as mentioned

before, this approach amounts to the complete starvation of the faraway nodes and hence it

is not fair. As a result, in this section, we are interested in modifying the backward protocol

to be able to provide more fair results as well as high throughput values in cases where the

number of nearby nodes is comparable to c.

The idea behind this new protocol comes from the following observation of the orig-

inal protocol when the number of nearby nodes is comparable to c. Assume the settings

of Section 5.2.1, i.e., there are two possible locations and the number of nodes at those

distances are nl and n2. When nl is comparable to c in such a setting, even for a very

small pt value, the channel is occupied most of the time by the nearby nodes. To see this,

assume that the number of nodes at distance 1 is nj = c = 5 and those at distance 2 is

n2 = 15. As we know from Section 5.2.1, the nearby nodes are always successful in this

case. Suppose pt = 0.25, a low value that seems to give enough chances for faraway users.

However, as it was pointed out in Section 5.2.1, in order for a node at distance 2 to be suc-

cessful, we need to have no transmissions from distance 1. Considering the complimentary

event, we find that probability of having "at least 1 nearby node transmitting" is given by

1 - (1 - pts) = 1 - (1 - 0.25)5 = 0.763. This means that more than 75 percent of the

time there is a transmission from nearby users even when their probability of transmission

is very low. The throughput plots of the original Backward Protocol in this network setting

(i.e., nl = 5, n2 = 15 and z = 0.2) are shown in Figures 6-1, 6-2 and 6-3. We see that the

network is clearly dominated by the nearby users.

Considering the above example and the observation of the results in Figures 6-1, 6-2

and 6-3, the new protocol should give more chances to faraway nodes, and we want to

1Nearby nodes are always successful if nl < c and n 2 < 23 for ri = 1 and r2 = 2.
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Figure 6-3: Throughput plot of the users at distance 2 for deterministic locations case (no fading) with
rl = 1, r2 = 2, n1 = 5, n2 = 15 and z = 0.2 using the original model.



S
Figure 6-4: The single user state diagram for the Backward Model with Forced Idle Periods. This figure
corresponds to having nodes stay idle for 1 slot after a successful transmission. S: Success, I: Idle, F: Failure,
WAS: Wait After Success, AF: After Failure, TAW: Transmit After Waiting. The transition labeled by "a"
occurs with probability 1.

achieve this without additional feedback from the receiver. We perform this by having the

nodes that were successful in the previous slot stay idle for some slots (or for some random

number of slots) and then letting them transmit again with the same probability pt in the

next slot. The number of slots for which nodes wait silent after a successful transmission is

a design parameter to be determined in the analysis. The state diagram associated with the

new protocol when successful nodes wait for one slot before a transmission attempt with

probability pt is shown in Fig. 6-4. After a successful transmission nodes stay in the Wait

After Success (WAS) state for 1 slot and then move to the Transmit After Waiting (TAW)

state where they attempt transmission with probability pts. Comparing this state diagram

with that of the original Backward Protocol we see that nodes behave the same way when

they are in the failed state in both protocols. Hence, the state diagram of the Backward

Model with Forced Idle Periods is obtained from that of the Backward Protocol by dividing

the After Success (AS) state of the Backward Protocol into WAS and TAW states.

We know that in the original Backward Protocol, when nl is close to c, the average

number of successes from the nearby users is much greater than that of the faraway users.

Hence, this idea of going idle after a successful transmission gives more chances to the

distant users. Note that the distant nodes will also be silent after they complete a successful

transmission. However, since the number of faraway nodes is larger than that of the nearby

nodes (and hence larger than c), the probability that there are some distant nodes ready to



transmit in the next slot will be larger than the corresponding quantity for nearby nodes.

Therefore, the aggregate throughput from nodes at distance 2 is expected to increase com-

pared to the original Backward Protocol. We present the overall network throughput, the

aggregate throughput of the nodes at distance 1 and that at distance 2 for the Backward

Model with Forced Idle Periods in Figures 7-20, 7-21 and 7-22 in Section 7.4 for ni = 5,

n2 = 15 and z = 0.2 and hence c = 5. These figures are for the case where nodes stay idle

for 2 slots after a successful transmission. Comparing figures 6-3 and 7-22 we see that the

throughput of the distant nodes is greater in the Backward Model with Forced Idle Periods

for almost all operating points as expected. Note that the spikes in Figures 7-20 and 7-22

are due to the synchronization issues that arise when pt is equal to 1. This is because the

network operation becomes totally dependent on the number of successful nearby users in

the first few slots2 . As an example, if all the nearby nodes transmit in the first slot, then

every third slot will be occupied by the nearby nodes and the channel will be left free 66

percent of the time for distant users leaving a very high throughput for them. However,

we will have a totally different situation if for example 2 nearby users transmit in the first

slot, 2 in the second slot and 1 in the third slot. This configuration leaves zero throughput

for the distant users. As a result, the pt = 1 case depends on the transient behavior of the

simulation hence it should not be considered in the comparisons between protocols.

Figures 7-23, 7-24 and 7-22 show the throughput plots for the same network (i.e., for

nl = 5, n2 = 15 and z = 0.2) when the successful users stay idle for 8 slots. We see

the advantage of the Backward Model with Forced Idle Periods clearly in these figures

in the sense that for many operating points, faraway nodes have almost 12 percent more

throughput than the maximum aggregate throughput obtained by distant nodes in the orig-

inal protocol. Furthermore, distant users get even more aggregate throughput than nearby

users for most of the operating points.

As a result, although the underlying network structure is not much probable in practice,

we can still find easy ways to prevent throughput starvation of distant nodes in the network

by a simple modification of the Backward Protocol.

2We start the simulation with every node in the failed state.



6.2 Backward Model with Dynamic Contention Windows

In this Section we propose a more practical protocol, Backward Model with Dynamic Con-

tention Windows, compared to the original Backward Protocol. This protocol assigns dif-

ferent backoff windows to users according to their success history in the previous attempt

as is done in IEEE. 802.11 (e.g., [17]) and it adopts the backward model idea into this set-

ting. More clearly, the backoff window size of each node is a uniformly distributed random

variable depending on the success history of the last transmission attempt of each node. If a

node was successful in its last transmission, it chooses a number in the interval [0, n,] with

probability 1/(n, + 1) and starts to decrement its counter3 from the random number to 0.

The node transmits with probability 1 when its counter decreases down to 0. Similarly, if a

node's transmission was failed in the last attempt, it chooses a random number uniformly

distributed over the integers in the interval [0, nf] and starts to decrement its counter down

to 0. The node transmits with probability 1 when its counter reaches 0. Note that nf and n,

are design parameters and the case where n1 is less than n, corresponds to the case where

pt is greater than pt in the Backward Protocol. Consequently, the Backward Model with

Dynamic Contention Windows carries the essence of the backward model.

Note that the protocol we propose here is far from being a complete protocol such as

IEEE 802.11 in the sense that many practical problems are not addressed here. It is rather

aimed towards demonstrating a way of implementing the backward model under simplistic

assumptions.

We refer to the results of the simulations of this protocol presented in Chapter 7. Fig.

7-26 shows the total network throughput as a function of n, and nf for nl = 1 and n2 = 5

nodes at distances rl = 1 and r2 = 2 for z = 0.2. We see from this figure that the maximum

throughput value of 2.331 is obtained when nf < n8 (n, = 1 and nf = 0) suggesting that

the backward model is preferable with the new implementation as well. Since we have

small number of nodes, throughput values are larger when nf and n, takes small values.

Fig. 7-28 shows the total throughput of the distant nodes for the same settings and we see

that the distant nodes get more chances when nf < ns, in particular, the throughput of the

3The decrements are 1 in every slot.



distant nodes is maximized when nf = 0 and n, = 2. We present throughput plots for

the same settings for ni = 2 and n2 = 10 in Figures 7-29 and 7-31 where 7-29 shows the

the total network throughput and 7-31 the throughput of the distant nodes. We see that the

maximum throughput value in Fig. 7-29 is obtained for nf = 2 and n, = 6 suggesting that

the backward model achieves better results than the forward model as expected. Moreover,

a similar behavior to ni = 1 and n2 = 5 case is observed for the throughput of the distant

nodes.

We then simulate the network where nodes can be at one of three possible distances

rl = 1, r 2 = 2 and r 3 = 3. Figures 7-32, 7-34 and 7-35 show the total network throughput,

total throughput of nodes at distance 2 and that of nodes at distance 3 for nl = 1, n2 = 3,

n3 = 9 and z = 0.2. We observe from these plots that nf < n, case yields high overall

network throughput and prevents the throughput starvation of the distant nodes suggesting

the better performance of the backward model than the forward model.





Chapter 7

Performance Evaluation and

Simulations

We simulated various network scenarios in order to see the performance of the Backward

Protocol for the network settings where the exact or the approximate analyses cannot be

used to get accurate results. We start with the verification of the simulation model for de-

terministic locations and without fading case by comparing the results obtained from the

theoretical analysis with those from simulation. Next we simulate networks with more

nodes and various distances from the receiver. Then we simulate networks with randomly

distributed nodes with and without fading in the system. We finally move onto the simula-

tions of the new protocols proposed in Chapter 6.

The model utilized in the simulations is as characterized by (3.1) and (3.3). The effect

of additive noise is neglected due to the reasons explained before, hence N is set to 0 in

(3.1). PT, K, and 0 are assumed to be constants throughout this section such that PT = 1,

K = 1, and 3 = 4. We will denote the number of trials for each experiment by t. As

expected, increasing t results in better convergence of simulation results to the theoretical

estimates'. We start with the deterministic node locations case without fading and show

that the simulation results are the same as the exact results presented before. Then we use

the simulation model to produce results for larger network scenarios where the exact model

no longer applies. We then make the model more general in that we first make the nodes

1t will be chosen as 100K unless otherwise stated.
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Figure 7-1: Comparison of the total network throughput in the simulation model and in the exact model for
deterministic node locations and without fading in the channel where TP-Sim stands for throughput obtained
by simulation and TP-Exact that from the exact analysis. We utilized nl = 1, n2 = 5, rl = 1, r 2 = 2,
z = 0.2 and t = 100K.

randomly distributed and then add multipath fading into the system and show that in all

the cases, the backward model achieves higher throughput and more fair results as is clear

from the previous analysis. Finally, we provide simulation results for two new protocols,

the first aimed for as a solution to a specific network structure and the other being a more

practical implementation of the backward model.

7.1 Deterministic Locations Without Fading

There is no fading in the channel, therefore the R term in (3.1) is set to 1. The choice of the

start state is arbitrary, however, as the experiment proceeds the transient behavior vanishes

and the system converges to some steady state operation.

We first consider the case ni = 1, n2 = 5, ri = 1 and r 2 = 2 in Fig. 4-1 of Section

5.2.1. The results obtained were compared with those shown in Figures 5-5 and 5-6. The

first comparisons for total network throughput are shown in Figures 7-1 and 7-3 for t equal

to 100K and 1000K respectively. Figures 7-2 and 7-4 represents the comparison of the

throughput of the faraway nodes under the same settings as above.

It can be observed that as t is increased, the simulation results gets closer to the ones

predicted by the theoretical model, thus confirming its correctness. For t = 100K, the

largest deviation is within 1.5% and as t is increased to 1000k, the largest deviation gets

bounded to within 0.4%.
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Figure 7-2: Comparison of the aggregate throughput of the distance-2 users in the simulation model and in
the exact model for deterministic node locations and without fading in the channel where TP-Sim stands for
throughput obtained by simulation and TP-Exact that from the exact analysis. We utilized nl = 1, n2 = 5,
rl = 1, r2 = 2, z = 0.2 and t = 100K.
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Figure 7-3: Comparison of the total network throughput in the simulation model and in the exact model for
deterministic node locations and without fading in the channel where TP-Sim stands for throughput obtained
by simulation and TP-Exact that from the exact analysis. We utilized nl = 1, n2 = 5, rl = 1, r 2 = 2,
z = 0.2 and t = 1000k.
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Figure 7-4: Comparison of the aggregate throughput of the distance-2 users in the simulation model and in
the exact model for deterministic node locations and without fading in the channel where TP-Sim stands for
throughput obtained by simulation and TP-Exact that from the exact analysis. We utilized nl = 1, n 2 = 5,
ri = 1, r 2 = 2, z = 0.2 and t = 1000k.
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Figure 7-5: Comparison of the total network throughput in the simulation model and in the exact model for
deterministic node locations and without fading in the channel where TP-Sim stands for throughput obtained
by simulation and TP-Exact that from the exact analysis. We utilized nl = 2, n2 = 10, rl = 1, r2 = 2,
z = 0.2 and t = 100K.

The comparison of the simulation and exact results for total network throughput for the

case of nl = 2 and n 2 = 10 is in Fig. 7-5. We see that the simulation results are very

close to the exact results for ni = 2 and n2 = 10. This continues to hold for larger values

of ni and n2 conforming the accuracy of the simulations. The largest deviations from

the theoretical results were found at the boundary values of p, and ptf. These deviations

were individually probed to explain possible causes. When pm is very low and pt is very

high, we observed that the simulation takes longer to converge for some combinations of

pts and ptf values, e.g. (pts, ptf) = (0.05, 0.95). The peculiarity of these cases was due

to the slow convergence of the system to some absorbing state (i.e., a state for which the

system never gets out once this state happens). However, experimentation suggested that

these problems could be solved by increasing t arbitrarily. As can be seen in Fig. 7-5, the

other large deviations occurs when pt and ptf are both very close to 1. This deviation is due

to the synchronization issues associated with the simulation and it totally depends on the

initial state with which the simulation is started. Overall, we see that the simulation model

performs very close to the exact analysis and hence it will be used in network scenarios

where the exact analysis is not sufficient.

Moreover, we compared the Enhanced Approximate Model results created in Section

5.2.3 with corresponding simulation results. Figures 7-6, 7-7, and 7-8 show the compar-

isons for the total network throughput, the throughput of the nodes at distance 2 and of

those at distance 4. We see that the Enhanced Approximate Model works well in that the
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Figure 7-6: Comparison of the total network throughput in the simulation model and in Enhanced Ap-
proximate Model for deterministic node locations and without fading in the channel where TP-Sim stands
for throughput obtained by simulation and TP-App. that from the approximate model. We utilized nl = 1,
n2 = 2, n3 = 4, ri = 1, r2 = 2, ra = 4, z = 0.2 and t = 100K.
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Figure 7-7: Comparison of the aggregate throughput of the distance-2 users in the simulation model and
in Enhanced Approximate Model for deterministic node locations and without fading in the channel where
TP-Sim stands for throughput obtained by simulation and TP-App. that from the approximate model. We
utilized nl = 1, n2 = 2, n3 = 4, rl = 1, r2 = 2, r3 = 4, z = 0.2 and t = 100K.
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Figure 7-8: Comparison of the aggregate throughput of the distance 4 users in the simulation model and
in Enhanced Approximate Model for deterministic node locations and without fading in the channel where
TP-Sim stands for throughput obtained by simulation and TP-App. that from the approximate model. We
utilized nl = 1, n2 = 2, n3 = 4, rl = 1, r2 = 2, r3 = 4, z = 0.2 and t = 100K.
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Figure 7-9: Total network throughput when there are 10 uniformly distributed nodes on a plane (no fading)
with z = 0.2, t = 100K and 40 iterations.
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Figure 7-10: Total network throughput when there are 20 uniformly distributed nodes on a plane (no
fading) with z = 0.2, t = 100K and 40 iterations.

results produced from the model closely match the simulation results except for pt = 1

and pt = 1 for which some synchronization issues occur with the simulations as explained

above.

7.2 Random Locations Without Fading

The transmitters are placed uniformly on a disk of radius 1 according to (3.4). With the

introduction of randomness in node locations, it is essential to repeat each experiment of

1OOK slots 40 times with different random placement of nodes to get a good average over

the distance.

Under these settings, Figures 7-9, 7-10 and 7-11 show the total network throughput

when there are 10, 20 and 40 nodes in the network. We see that there are two areas of the

plots that have the highest throughput; the first is for high p, and low pt area and the second
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Figure 7-11: Total network throughput when there are 40 uniformly distributed nodes on a plane (no
fading) with z = 0.2, t = 100K and 40 iterations.

is the low p, and high (or moderate for n = 40) ptf area. As we know from the previous

analysis in Chapter 5, the former maximum area results in throughput starvation of the dis-

tant nodes whereas the latter gives much more chances for faraway users and prevents their

throughput starvation. As a result, we see that the Backward Protocol achieves the same

throughput as the traditional forward models while preventing the throughput starvation of

the distant nodes. Comparing Figures 7-9 and 7-11 we observe that the maximum through-

put area corresponding to low pt value tends to occur for lower ptf values as the number

of nodes increases. This is due to the fact that as n increases, the probability of failure in-

creases for each node and hence transmitting with very high ptf value causes considerable

number of collisions.

7.3 Random Locations With Fading Simulation

We consider the same settings as the previous section except the Rayleigh fading term R2

in the received power equation (3.1) is now an exponential random variable of unit mean.

This random variable is generated from a uniform random variable that is independent of

the random number generators of transmission probability and node locations. The results

obtained by keeping z constant at 0.2 are given in Figures 7-12, 7-13, 7-14 and 7-15 for

n = 10, 20, 50 and 100 respectively.

We see that there is only one maximum area in the throughput plots which is the low p,

area. The reason for not having as high throughput as no fading case when pt is large is that
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Figure 7-12: Total network throughput when there are 10 uniformly distributed nodes on a disk with
fading in the system for z = 0.2, t = 100K and 40 iterations.
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Figure 7-13: Total network throughput when there are
fading in the system for z = 0.2, t = 100K and 40 iterations

20 uniformly distributed nodes on a disk with
S.
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Figure 7-14: Total network throughput when there are 50 uniformly distributed nodes on a disk with
fading in the system for z = 0.2, t = 100K and 40 iterations.
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Figure 7-15: Total network throughput when there are 100 uniformly distributed nodes on a disk with
fading in the system for z = 0.2, t = 100K and 40 iterations.

when there is fading in the system, the nearby node signals also become weak (according

to an exponentially distributed random variable in the signal amplitude). Hence the nearby

nodes are not always successful anymore and the high throughput in the no fading case

obtained by letting nearby nodes transmit with high probability does not happen here. As a

result we see that in the most general settings, namely randomly distributed nodes together

with multipath fading affect in the system, only low pt and high/moderate pt values pro-

duce the highest throughput value. Consequently we conclude that the Backward Protocol

achieves higher throughput than the forward protocols in the most general network settings

considered. Furthermore, we already know from Chapter 5 that the Backward Protocol is

more fair than the forward model. This suggests that the backward model gives both high

throughput and more fair results in the most realistic conditions considered in this thesis

satisfying our initial claim.

Here we see a similar trend to what we observed in random locations without fading

case as well. Namely, as we increase the number of nodes in the system, the maximum

throughput point occurs for smaller ptf values. The reason for this is the same as the no fad-

ing case. However, the maximum throughput point always occurs for pts < pt suggesting

that the Backward Protocol is preferable for the values of n considered.

Next we present the variation of throughput when we keep the number of nodes constant

at n = 10 and vary the receiver power ratio threshold z. Figures 7-16, 7-17, 7-18 and 7-19

show the total network throughput for z = 0.1, 0.3, 0.5 and 0.7 respectively. We observe

that as z gets close to 1, the total throughput of the system begins to have two maximum
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Figure 7-16: Total network throughput when there are 10 uniformly distributed nodes on a disk with
fading in the system for z = 0.1, t = 100K and 40 iterations.

Figure 7-17: Total network throughput when there are 10 uniformly distributed nodes on a disk with
fading in the system for z = 0.3, t = 100K and 40 iterations.

p. 0 Ptf

Figure 7-18: Total network throughput when there are 10 uniformly distributed nodes on a disk with
fading in the system for z = 0.5, t = 100K and 40 iterations.
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Figure 7-19: Total network throughput when there are 10 uniformly distributed nodes on a disk with
fading in the system for z = 0.7, t = 100K and 40 iterations.

areas as in the random locations without fading case. The reason for this is that as z gets

close to 1, the receiver becomes capable of receiving only a single packet at a time. Hence

giving more chances to the user with the strongest power level produces high throughput

and this corresponds to having a high pts value in our system. Nevertheless, we see that low

pt, area also produces similar throughput values suggesting that the Backward Protocol has

comparable throughput to forward models even when the receiver tends to a single packet

reception capability.

7.4 Backward Model with Forced Idle Periods

As highlighted in Section 6.1, there is a limitation to the Backward Protocol when the

number of nearby nodes is close to c. In such a scenario, there is a high probability that

at least one of the nearby nodes will transmit, even for low values of pt and hence the

throughput starvation of the faraway nodes occur with high probability. We suggested a

new protocol Backward Model with Forced Idle Periods to remedy this issue. The state

diagram according to which each node operates (for the case where nodes stay idle for one

slot after each successful transmission) is shown in Fig. 6-4. In particular, this protocol is

a modification of the Backward Protocol whereby after a successful transmission, a node

becomes silent for some slots before becoming active again. The number of slots for which

nodes wait idle after a successful transmission is a design parameter to be determined in

the analysis. The assumptions in Section 6.1 apply here as well. Namely, there is no fading
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Figure 7-20: Total network throughput of the Backward Model with Forced Idle Periods for rl = 1,
r2 = 2, n1 = 5, n72 = 15, z = 0.2 and t = 100K in the case where nodes stay idle for 2 slots after each
successful transmission.

0

Figure 7-21: Throughput of the nodes at distance 1 for Backward Model with Forced Idle Periods for
rl = 1, r 2 = 2, nl = 5, n2 = 15, z = 0.2 and t = 100K in the case where nodes stay idle for 2 slots after
each successful transmission.

in the channel and there are n1 f c nodes at distance rl = 1 and n2 nodes at distance

T2 = 2. Figures 7-20, 7-21 and 7-22 show the total network throughput, the throughput

of the nearby nodes and that of the distant nodes respectively, for nl = 5, n2 = 15 and

z = 0.2 (c = 5). The nodes stay idle for 2 slots after each successful transmission in these

simulations.

The throughput plots for the same network settings but this time with nodes staying idle

for 8 slots after a successful transmission are presented in Figures 7-23, 7-24 and 7-25.

7.5 Backward Model with Dynamic Contention Windows

As described in Section 6.2, Backward Model with Dynamic Contention Windows is a more

practical protocol for implementing the backward model idea. Each node chooses a random
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Figure 7-22: Throughput of the nodes at distance 2 for Backward Model with Forced Idle Periods for
rl = 1, r 2 = 2, nl = 5, n2 = 15, z = 0.2 and t = 100K in the case where nodes stay idle for 2 slots after
each successful transmission.
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Figure 7-23: Total network throughput of the Backward Model with Forced Idle Periods for rl = 1,
r2 = 2, ni = 5, n2 = 15, z = 0.2 and t = 100K in the case where nodes stay idle for 8 slots after each
successful transmission.
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Figure 7-24: Throughput of the nodes at distance 1 for Backward Model with Forced Idle Periods for
rl = 1, r2 = 2, nl = 5, n2 = 15, z = 0.2 and t = 100K in the case where nodes stay idle for 8 slots after
each successful transmission.
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Figure 7-25: Throughput of the nodes at distance 2 for Backward Model with Forced Idle Periods for
r, = 1, T2 = 2, n1 = 5, n 2 = 15, z = 0.2 and t = 100K in the case where nodes stay idle for 8 slots after
each successful transmission.
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Figure 7-26: Total network throughput for Backward Model with Dynamic Contention Windows for
rl = 1, r2 = 2, nl = 1, n 2 = 5, z = 0.2 and t = 100K.

number uniformly distributed in the interval [0, n,] or [0, nf] if the last attempt of the node

was a success or a failure respectively. Each node than decrements its counter by 1 in

every slot and transmits with probability 1 when its counter reaches 0. We first evaluate

the performance of this protocol when the node locations are deterministic and there is

no fading in the system. The trials are repeated 100K times to have a good average over

the randomness in the contention window sizes. We assume the settings of Section 5.2.1,

namely, there are two possible distances from the receiver, rl = 1 and r2 = 2 with nl and

n2 users at those distances respectively. The total network throughput, the total throughput

of the nearby nodes and that of distant nodes as a function of several different n, and

nf values for n1 = 1, n 2 = 5 and z = 0.2 are displayed in Fig. 7-26, 7-27 and 7-28

respectively.

Figures 7-29, 7-30 and 7-31 respectively show the total network throughput, the total

throughput of the nodes at distance 1 and that of the nodes at distance 2 for nl = 2, n2 = 10
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Figure 7-27: Total throughput of the nodes at distance 1 for Backward Model with Dynamic Contention
Windows for rl = 1, r 2 = 2, nl = 1, n2 = 5, z = 0.2 and t = 100K.
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Figure 7-28: Total throughput of the nodes at distance 2 for Backward Model with Dynamic Contention
Windows for rl = 1, r2 = 2, ni = 1, n 2 = 5, z = 0.2 and t = 100K.
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Figure 7-29: Total network throughput of the Backward Model with Dynamic Contention Windows for
ri = 1, r2 = 2, nl = 2, n2 = 10, z = 0.2 and t = 100K.
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Figure 7-30: Total throughput of the nodes at distance 1 for Backward Model with Dynamic Contention
Windows for rl = 1, r2 = 2, nl = 2, n2 = 10, z = 0.2 and t = 100K.

and z = 0.2.

Finally, we plot the total network throughput when there are 3 allowed distances from

the receiver. Figures 7-32, 7-33, 7-34 and 7-35 show the total network throughput, the

throughput of the node at distance 1, aggregate throughput of the nodes at distance 2 and

that of the nodes at distance 3 respectively, for nl = 1, n2 = 3, n3 = 9 at distances rl = 1,

r2 = 2 and r3 = 9.
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Figure 7-31: Total throughput of the nodes at distance 2 for Backward Model with Dynamic Contention
Windows for ri = 1, r 2 = 2, nl = 2, n 2 = 10, z = 0.2 and t = 100K.
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Figure 7-32: Total network throughput of the Backward Model with Dynamic Contention Windows for
r, = 1, r 2 = 2, r3 = 3, n 1, = , = 3, 3 = 9, z = 0.2 and t = 100K.
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Figure 7-33: Throughput of the node at distance 1 for Backward Model with Dynamic Contention Windows
for rl = 1, r 2 = 2, r3 = 3, ni = 1, n2 = 3, n3 = 9, z = 0.2 and t = 100K.
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Figure 7-34: The aggregate throughput of the nodes at distance 2 for Backward Model with Dynamic
Contention Windows for r, = 1, r2 = 2, r 3 = 3, n 1 = 1, n 2 = 3, n3 = 9, z = 0.2 and t = 100K.

20

Figure 7-35: The aggregate throughput of the nodes at distance 3 for Backward Model with Dynamic
Contention Windows for ri = 1, r2 = 2, r 3 = 3, ni = 1, n2 = 3, n3 = 9, z = 0.2 and t = 100K.
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Chapter 8

Conclusion and Future Work

Various different examples and analysis in this work illustrate the better performance of

the so called Backward Protocol over the traditional MAC protocols for multipacket recep-

tion networks with spatially distributed nodes. We provide various analyses, approximate

models and simulation results to show the validity of the idea that the backward model is

preferable to the forward model in such networks. In particular we have given an exact

analysis of the Backward Protocol when the node locations are known and no fading in

the system. We proposed two different approximate models for this case and showed their

validity through various results. We provided results using the approximate models for

the cases where the exact analysis was cumbersome to formulate. Moreover, we provided

simulation results for network settings where both the exact and the approximate analyses

did not apply. We showed that the Backward Protocol achieves more fair results in all the

cases and better throughput values in most of the cases considered. When there is multi-

path fading in the system and the node locations are known in advance, we have proposed

an approximate analysis and have shown the better performance of the Backward Protocol

over the traditional forward models.

We formulated an approximate analysis when the nodes are randomly distributed on a

plane without fading in the system and proved the validity of the approximation by compar-

ing them with analytical results for specific cases. We were able to show that the backward

protocol gives more chances to distant nodes and achieves similar throughput values even

in the single packet capture case. We have given a different approximate model for the case
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where the node locations are random and there is multipath fading in the system. We have

demonstrated through simulations that in this general case the backward model achieves

greater throughput than the forward model. We proposed a new protocol to remedy the

throughput starvation of distant nodes when the node locations are deterministic and the

number of nearby nodes is comparable to the maximum number of simultaneously suc-

cessful transmissions. Finally, we proposed a more practical protocol than the Backward

Protocol which carries the essence of the backward model. We showed through simula-

tions that this protocol also achieves better throughput characteristics together with more

fair results for most of the cases considered.

Our approach in this thesis is from a theoretical point of view, namely, the protocols we

propose here are to show the validity of the idea behind them and more work is needed to

come up with a full practical protocol. As a next step, we intend to develop and analyze

more elaborate backoff mechanisms that will have several states and will utilize feedback

from the receiver more efficiently. Furthermore, we intend to explore the option of using

splitting (collision resolution) algorithms for the studied setting.

Finally, in most realistic scenarios a transmission can be received by more than one des-

tination (multiple receivers). This provides diversity and flexibility that can be exploited by

the MAC protocol. On the other hand, a transmission can interfere with other transmissions

sent to a few different receivers. Thus, designing an efficient MAC protocol for such a set-

ting is a challenging open problem. We would like to propose a protocol that will provide

good performance (including fairness) in a situation in which there are multiple receivers

with multi-packet reception capability.
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Appendix A

Analytical solution of (4.3) and (4.4) in

the case of two nodes

For n = 2 and f,(r) = 1 we have;

3(r) =

T(r)

(A.1)

= 1+ (P•
Ptf

1) T(x)dx

Pts dT(r)
7(r)2 dr P - 1)r(ar)a

ptf

d7(r) (_ - 1)T(r)3
Ptf (A.2)

1 + 2pts( - 1)r

If a > 1 a similar function can be obtained iteratively. Fig. A-1 shows that the results of

numerical analysis are same as the analytical results.
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Figure A-i: The transmission probability obtained analytically and numerically as a function of distance
for pt = 0.2, ptf = 0.05, a = 1 and uniform distribution of 2 nodes on a line.
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Appendix B

The Transition Probabilities of The

1-Dimensional Markov Chain of Section

5.2.1

Denoting the probability of going from state (j) to (m) by Pj,,m we have;

Case 1: m > j

k A-m-j

pk(1 - p)2-j-k

p(1 - pt)n2-j-k

-k tf- (I
v=c+1-k (V

if k < c and m > c + 1

if k > c + 1

Case 2: m < j
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D

j)j)
if m<c((1 -P(1

(1- (1-

+(1 - pe)

(2
/1 A

J) p(1 - Pts)n2-j
- k

/

r-.
-3--'m --

(1 - pts)n2-j

\



k -- m

0

(1-
Pj-m --

(1 -

Case 3: m = j

if k > c + 1
c-k )n2 v

1 - ptf) j - k
V= ( v

- ts)n2-
-v

1 - ptf) j - k

if k < c and n2 - j 2 c - k

if k < c and n2 - j < c - k

Pj-m = Pi + P2 + P3 , where

P1 = (1 - (1 - p)"'n)(1 - pts) 2- 3

(1 - Pts)" (1 - ptf)J

(1 - pts)n, (1 - Ptf) j

v=0 (

if n 2 - j > C + 1

ifj < c

ifj > cPtfvc ( Ptf)p-vv=c+l v)
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P3=
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Appendix C

Edmundson-Madansky Inequality

Theorem 3 (Edmundson-Madansky Inequality) Let g be a convex function on [a, b] and k

a random variable that takes values in the interval [a, b]. Let k be the expected value of k.

Then

E[g(k)] b- kg(a) + ag(b) .bb-a b-a
Proof: We have a < k < b and we can write k as

b-k k-a
k = - a + b

b-a b-a

(C.1)

(C.2)

Since g is convex, we have

g(k)_ b- kg(a) + k a g(b)bTaking the expected values of both sides wea btain (C.1).

Taking the expected values of both sides we obtain (C.1).

(C.3)

LI
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