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Abstract

This paper proposes that the study of Sturm sequences is invaluable in the numerical com-
putation and theoretical derivation of eigenvalue distributions of random matrix ensembles.

We first explore the use of Sturm sequences to efficiently compute histograms of eigenval-
ues for symmetric tridiagonal matrices and apply these ideas to random matrix ensembles
such as the S-Hermite ensemble. Using our techniques, we reduce the time to compute a
histogram of the eigenvalues of such a matrix from O(n? + m) to O(mn) time where n is
the dimension of the matrix and m is the number of bins (with arbitrary bin centers and
widths) desired in the histogram. Our algorithm is a significant improvement because m is
usually much smaller than n. This algorithm allows us to compute histograms that were
computationally infeasible before, such as those for n equal to 1 billion.

Second, we give a derivation of the eigenvalue distribution for the S-Hermite random
matrix ensemble (for general §). The novelty of the approach presented in this paper is
in the use of Sturm sequences to derive the distribution. We derive an analytic formula
in terms of multivariate integrals for the eigenvalue distribution and the largest eigenvalue
distribution for general 8 by analyzing the Sturm sequence of the tridiagonal matrix model.

Finally, we explore the relationship between the Sturm sequence of a random matrix and
its shooting eigenvectors. We show using Sturm sequences that, assuming the eigenvector
contains no zeros, the number of sign changes in a shooting eigenvector of parameter X is
equal to the number of eigenvalues greater than A.
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Chapter 1

Introduction

The Sturm sequence of a matrix is defined as the sequence of determinants of the matrix’s
principal submatrices (see Chapter 2 for elaboration). It is well known that the eigenvalues
of principal submatrices of a matrix interlace [1] [2], thus we can extract information about
its eigenvalues by examining the Sturm sequence. This paper proposes that the study of
Sturm sequences is invaluable in the numerical computation and theoretical derivation of
eigenvalue distributions of random matrix ensembles.

First, we explore the use of Sturm sequences to efficiently compute histograms of eigen-
values for symmetric tridiagonal matrices. Since symmetric tridiagonal matrix models exist
for certain classical random matrix ensembles [3], the techniques presented here can be used
to analyze the eigenvalues of these ensembles. Using this method, we can compute a his-
togram of the eigenvalues of such a matrix in O(mn) time where n is the dimension of the
matrix and m is the number of bins (with arbitrary bin centers and widths) desired in the
histogram. Using the naive approach of computing the eigenvalues and then histogramming
them, computing the histogram would cost O(n? + m) time. Our algorithm is a significant
improvement because m is usually much smaller than n. For example, we reduced the time
to compute a 100 bin histogram of the eigenvalues of a 2000 x 2000 matrix from 470 ms to 4.2
ms. This algorithm allows us to compute histograms that were computationally infeasible
before, such as those for n equal to 1 billion.

Second, we give a derivation of the eigenvalue distribution of S-Hermite random matrix
ensembles (for general 3) based on the use of Sturm sequences. Previous techniques used to
derive the distribution (such as in [4]) have mainly focused on integrating the joint eigenvalue
density

Franan, = C e 3TN H A = A17,
1<i<j<n
where C' is a normalizing constant. For even 3, these distributions have been expressed
in terms of multivariate Hermite polynomials and contour integrals [5]. We suspect the
techniques in [5] can extend to general 8 and perhaps be related to the results given here.

The novelty of the approach presented in this paper is in the use of Sturm sequences to

derive the distribution. We derive an analytic formula in terms of multivariate integrals for
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the eigenvalue distribution and the largest eigenvalue distribution for general 3 by analyzing
the Sturm sequence of the tridiagonal matrix model (given in [3]).

Finally, we explore the relationship between the Sturm sequence of a random matrix
and its shooting eigenvectors. Shooting eigenvectors are those that result from fixing one
value (say z;) of a vector z = (zy, 3, ..., %) and solving for the rest of its values under the
equation (A — Al)z = 0. We show using Sturm sequences that, assuming the eigenvector
contains no zeros, the number of sign changes in the shooting eigenvector is equal the number
of eigenvalues of A greater than A. This connection was inspired by work by Jose Ramirez,
Brian Rider, and Balint Virag [6], who proved an analogous result for stochastic differential
operators (the continuous version of a random matrix).

The rest of the paper is laid out as follows: In Chapter 2, we introduce the concept of the
Sturm sequence of a matrix and describe some of its properties. In Chapter 3, we describe our
new algorithm for computing the histogram of eigenvalues of a symmetric tridiagonal matrix
and give empirical performance results. In Chapter 4, we describe how to derive both the
eigenvalue distribution and the largest eigenvalue distribution in terms of the Sturm ratio
sequence elements. Chapter 5 shows how to derive the densities of the Sturm sequence
elements themselves, which, when combined with Chapter 4, yields the second result of
the paper. Finally, Chapter 6 describes the connection between the sign changes in Sturm
sequences and those in shooting eigenvectors.
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Chapter 2

Sturm Sequences

2.1 Definition

Define (Ag, Ay, Ag, . .., Ap) to be the sequence of submatrices of an n x n matrix A anchored
in the lower right corner of A. The Sturm sequence (dp, dy,ds,. . .,d,)a is defined to be the
sequence of determinants (|Ag|, |A1],] 42|, - - -,|An|)- In other words, d; is the determinant of
the 7 x i lower-right submatrix of A. We define dp, the determinant of the empty matrix, to
be 1.

ay; Q2 ... Qip
a1 Q22 ... Q2n

A = An = . . . . )
Qny Qp2 ... Qpp

On—2n-2 0n—2n-1 an—2,’n

Qn-1,n—-1 an—l,n

Al = [a'nn]; A2 = ; A3 = Gn—1n-2 Qp-1n-1 Qn-1n , ete.
an,n—l Qnn

On n-2 Qn,n—1 Qnn

2.2 Properties

2.2.1 Counting Negative Eigenvalues

The eigenvalues of principal submatrices of A interlace [1] [2], thus we have the following
lemma:

Lemma 2.2.1. The number of sign changes in the Sturm sequence (do,dy,ds,...,dn)4 is
equal to the number of negative eigenvalues of A.

Proof. Assume for the moment that no zeros occur in the Sturm sequence (dp, d1, ds, - - - , dy,) 4.
Since the eigenvalues interlace, for every negative eigenvalue of A;_;, we can pair it with the
largest eigenvalue of A; less than or equal to it. Similarly, for every positive eigenvalue of
A;_1, we can pair it with the smallest eigenvalue of A; greater than or equal to it. Each eigen-
value pair shares the same sign. A; has one additional eigenvalue greater than the largest
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negative eigenvalue and less than the smallest positive eigenvalue of A;_;. If this eigenvalue is
negative, then A; has one more negative eigenvalue than A;_;, thus sign(d;) = —sign(d;_,).
If this eigenvalue is positive, then A; has the same number of negative eigenvalues as A;_i,
thus sign(d;) = sign(d;_;). Therefore, as i increases, every time a sign change occurs in
(do,d1,ds, . . .,dn)a, the number of negative eigenvalues in A; increases by one. The number
of sign changes in the resulting Sturm sequence equals the number of negative eigenvalues
present in A.

Some extra care has to be taken if zeros are present in the Sturm sequence. In some
cases when a short sequence of zeros appears, it can be determined how to assign signs to
the zeros such that Lemma 2.2.1 still holds. However, if enough zeros occur consecutively,
the exact number of negative eigenvalues becomes impossible to determine from the Sturm
sequence alone. Fortunately, we do not have to worry about zeros in the Sturm sequence for
the purposes of this paper because, in the case of the S-Hermite ensemble as well most other
random matrix ensembles of interest, the probability of any zeros occurring in the Sturm
sequence is zero. Therefore, in the interest of simplicity we assume for the remainder of this
paper that no zeros occur in the Sturm sequence.

2.2.2 Sturm Ratio Sequence

Since we are mainly interested in the relative sign of consecutive values in the Sturm sequence,
we define the Sturm ratio sequence (1,72, - - .,75) 4 to be the sequence of ratios of consecutive
values in the original Sturm sequence. In other words,

Tizdi/di._l Vie {1,2,...,7),}. (21)

Lemma 2.2.2. The number of negative values in (r1,72,...,7,)a equals the number of neg-
ative eigenvalues of A.

Proof. From our definition of the Sturm ratio sequence, the number of negative values in the
sequence equals the number of sign changes in (dy,d;,ds, - .. ,d,) 4. From Lemma 2.2.1, this
in turn is equal to the number of negative eigenvalues of A.

2.2.3 Recurrence Relation

Suppose we are given a symmetric tridiagonal matrix, with values (an,@n-1,...,a1) on the
diagonal and (b,_1,b,_2,...,b ) on the super/sub-diagonal (the reason for indexing them
from bottom right to upper left will be explained in Section 2.3):

Ay bn—l
bn—l Ap-1 bn—-2

b2 a9 b1
by a
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Then, by expansion of minors, the terms in the Sturm sequence can be shown to satisfy the
recurrence

di = ai, ifi = 1, (22)
a,-d,-_l - b?_ldi_g, ifi e {2, 3, R ,n},
or equivalently
as, ifi=1, 03
= 2
T la-%, iie(2,3,...,n0). (23)

2.3 Example: -Hermite Ensemble

In the matrix model of the S-Hermite ensemble [3], submatrices anchored in the lower right
corner represent smaller instances of the ensemble family. In this case, a subsequence of a
larger Sturm sequence is a valid Sturm sequence of a smaller member of the same ensemble
family. The 8-Hermite matrix model is

[ \/-2-Gn X(n-1)8 ]
X(n-g V2Gn_1 X(n-2)8

Si-

x26 V262  xp
i xs V2G|
where the G; are standard normal random variables, and the x are chi-distributed random
variables (all are independent of each other), so we clearly see that the lower right submatrices

of H? are just smaller instances of the same model. For this reason, we label the diagonal
and subdiagonal elements in order from lower right to upper left.
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Chapter 3

Application to Eigenvalue
Histogramming of Symmetric
Tridiagonal Matrices

Given a n x n symmetric tridiagonal matrix A, we can efficiently construct a histogram
(given m sorted bins) of its eigenvalues in O(mn) time using Lemma 2.2.2. Because n is
usually much larger than m, this is a significant improvement over the naive approach, which
involves first computing the eigenvalues themselves (taking O(n?) time [7]) and then placing
them into bins (taking O(n + m) time since the eigenvalues are presorted). The real-world
improvement is striking in cases where n is large: for example, when n = 2000 and m = 100,
our algorithm is over 100 times faster than the naive approach in our empirical tests.

We now sketch our algorithm and its time complexity. Let the sequence (ki, ks, - . ., km—1)
be the sequence of separators between histogram bins. For convenience, define ky to be —oo
and k., to be oo. Then the output is the histogram sequence (Hy, Hs, ..., Hy,), where H; is
the number of eigenvalues between k;_; and k; for 1 <i < m.

If we let A(M) be the number of negative eigenvalues of a matrix M, then the number
of A’s eigenvalues between k; and k, (where k; < k) equals A(A — kof) — A(A — ki I). Our
histogramming algorithm first computes A(A — k;I) for each k;. Using (2.3), we can compute
the Sturm ratio sequence, counting negative values along the way, to yield A(A — k;I) in
O(n) time for each A — k;I. This step thus takes O(mn) time in total. We then compute
the histogram values:

H = MA-kI),
Hy = MA-kl)—AA- kD),
— AA = k),

Hy = AA-ksl)

Hm——l = A(A - km—-II) - A(A - km_zj),
H, n— MA = kpm_1I),

in O(m) time. The total running time of our algorithm is thus O(mn).

15



2.5

- —e—20 bins_
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e - 80 bins
1] %100 bins

0.5

0 200 400 600 800 1000

Figure 3-1: Performance of Sturm sequence-based histogramming algorithm.

In comparison, directly computing the eigenvalues takes O(n?) time using a standard
LAPACK algorithm DSTEQR ([7] for computing the eigenvalues of a symmetric tridiagonal
matrix. Histogramming those values (they are returned in sorted order) then takes O(n+m)
time, yielding a total runtime of O(m + n?). Therefore, our algorithm is asymptotically
superior for cases where n > m, which encompasses most practical situations.

Figures 3-1 and 3-2 show comparisons of the runtime of the two algorithms for the §-
Hermite ensemle for n = {100,200, ...,1000} and for m = {20,40,...,100}. Computations
were run using compiled C code (via MATLAB mex files) on a 2.4 GHz Intel Xeon Server
with 2 GB of RAM. The times were taken by running 100 trials for each data point and
averaging the results.

From Figure 3-2, it is clear that the number of bins is of little relevance to the running
time of the naive algorithm because the computation is completely dominated by the O(n?)
time to compute the eigenvalues. Although our algorithm has a linear time dependence on
the number of bins, that parameter does not usually scale with the problem size, so it is the
linear dependence on n that leads to the drastic improvement over existing methods.

The real-world advantage of our algorithm is greater than the asymptotic runtimes might
suggest because its simplicity yields a very small constant factor on current architectures.
Figure 3-3 shows a comparison of the two algorithms for n = {100,200,...,2000} and
m = 100.

16
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Figure 3-3: Comparison of performances of the Sturm sequence-based and naive histogram-
ming algorithms. The number of bins used was m = 100.
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Chapter 4

Eigenvalue Distributions in Terms of
Sturm Sequence Ratios

4.1 The Eigenvalue Distribution

Given any matrix distribution D, the eigenvalue density f(t) represents the distribution that
would result from the following two-step process:

1. Draw a random n x n matrix A from our matrix distribution D.
2. Uniformly draw an eigenvalue from all of A’s eigenvalues.

Then, if random variable A follows the density f(t), Pr[A < )] is equal to the expected
proportion of eigenvalues of A — AI that are negative.

Lemma 4.1.1. If random variable A is drawn from the eigenvalue distribution of matrices
following distribution D,

PriA <)\ = Zprm<0

t——l

where 1\ is the i element of the Sturm ratio sequence (T1A, T2 2y - -+, Tnn) Of the matriz
A — M, where A is drawn from D.

Proof. We can express f(t) as a sum of delta functions 6(t) whose locations \;(A) are dis-
tributed as the eigenvalues of matrices A drawn from D:

f(t) /AEDLZJA ()t ) dA = E[ Z&,A) }

We then have:

A 1 <&
Pr{A < ] = / f(t)dt=E [;ZIW(A) < /\l] ,

i=1
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where I is the indicator function. The quantity D , I[A\;(A) < A] is just the number of
eigenvalues of A less than A, which we showed in Lemma 2.2.2 to be equal to number of
negative values in the Sturm ratio sequence of A — AI. By linearity of expectation, we have

PrffA <) =E [% il[m < o]J ZE[I[m <0 = ZPr[n,\ <0).

i=1 1,—1

Notice we can also express this quantity in terms of the marginal densities f,,,(s) of the
Sturm ratio sequence variables:

PrjA < )] = Z / Frix(8) ds. (4.1)

r—l

4.2 The Largest Eigenvalue Distribution

As shown in Lemma 2.2.2, the number of negative values in the Sturm ratio sequence
(r1,72,--.,7) equals the number of A’s negative eigenvalues. We can therefore express
the probability that the largest eigenvalue of a matrix is negative simply as the probability
that all terms in (rq,79,...,7,) are negative.

Lemma 4.2.1. If random variable A is drawn from the largest eigenvalue distribution of
matrices following distribution D,

Pr{A < X =Pr[(r;x <0) Vi€ {1,2,...,n}],

where 7; 5 is the i element of the Sturm ratio sequence (ry,72,...,T,) of the matrizr A— M,
where A is is drawn from D.

Proof. From Lemma 2.2.2, the matrix A — AI has all negative eigenvalues exactly when its
Sturm ratio sequence has all negative elements. Therefore, the probabilities of those events
are identical.

Note we cannot break up Pr{(r;» < 0) Vi € {1,2,...,n}] into the product [T, Pr[(r;x < 0)]
since the 7; \’s are not independent of each other. We can, however, express this quantity in
terms of the joint density fi(s1,s2,...,s,) of the Sturm ratio sequence:

0
Pr[A < )] = / / / fr(s1,82,...,8,) dsidsz ... ds,. (4.2)

20



Chapter 5

The Densities of Sturm Sequence
Ratios of the S-Hermite Ensemble

5.1 The Sturm Ratio Sequence

We now derive an analytic formula in terms of an integral for the conditional density of
Sturm sequence ratios for the §-Hermite ensemble. The 3-Hermite matrix model introduced
in Section 2.3 and displayed again here has been shown [3] to have the same eigenvalue
distribution as the S-Hermite ensemble.

i \/-2—Gn X(n-1)8 |
Xtn-1)pg V2Gn-1 X(n-2)8

-

X5 V2G:  xp
xs V2G|

Using recurrence (2.3), we can derive the following generative model for the Sturm ratio
sequence of H? — \I:

G(—-\1), ifi=1; 51
. == 2 .
i G(-\1)— =0 ifie{2,3,...,n}. (5.1)

- 2r;—

Note that in this section, we drop the A subscript from the r; 5 variables used in previous
sections to make the notation clearer. The A parameter is implicit in the r; notation.

In our derivation of the density of r;, we make use of the following Lemma:

Lemma 5.1.1. Let X,Y,Z, and W be random variables (X and Y independent) such that
Z=X+Y and W = -)-,f—, where k is a constant. If fx, fy, fz, and fw are their respective
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probability densities, the following two identities hold:

fals) = / " (s — Ofy(0) dt,

and

fw(s) = |k| fx(ks).

Proof. See Rice [8].
Theorem 5.1.2. Fori > 2, the density of r; conditioned on r;_; is:

|S,-_.1|pi -1 . 2_,2
f'l’il‘l‘i—-l (5i|si—1) = "—\/—2——7;8 a2(si+2) =]D_pl.(z,~), (52)

where D is the parabolic cylinder function, p; = ﬂ’;—lz, and z; = sign(s;—1)(s; + A + si—1)-

Proof. For i > 2, if we let fg(t) be the density of G(—A, 1), f2(t) be the density of x5 ),
and frr,_,(8i|si—1) be the density of r; given r;_;, then we can combine (5.1) and Lemma
5.1.1 to yield

fritrica (8il8ic1) = /—oo fo(si = )|2si-1| frz (—28i-1t) dt. (5.3)

Substituting the densities of the Gaussian random variable

fG(si - t) = ._1— e-%(si—t.h\)z
27

and Chi-square random variable

fx2(—2si-1t)={ 0 20(p0) , if it < 0;

, otherwise,

where p; = 18(i — 1), yields

00 1 —lt—(si4A)P|ge. . [(csimat)Pizleti1t o .
f (sls ) _ fo -\7576 2[ (3 + )] |2S‘l—1| 2 12l"(p.-)e dt, lf 31_1 < 0, (5 4)
rilri IR w%e“%[”(“"'“)]zm& (il e 2 pli;e)-%‘lt dt, otherwise '
0 2 - 2T (p; ’ °
This can be simplified to
fr,-lr,-_l(silsi—l) — M ootpi—le"%[t+3i9n(3i—1)(3i+'\)]2—5i9n(55—1)31‘—1t dt (5_5)

T(pi)V2r Jo

|si_1|Prea(etN? poo
I'(pi)v 2m 0
22

Pi~le— L{t2+2sign(s;—1)(se+A+si-1)t] dt. (5_6)
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Figure 5-1: Analytic (blue line) and empirical (black histogram) conditional densities of r,
given =2, A=0,and r, = 1.

Using the following property of the parabolic cylinder function (whose properties are further
discussed in the Appendix):

e 4 o0 10,2
—— [ P le2®H2) gt for Re(p) > 0, 5.7
ol ) &1

by letting z; = sign(s;—1)(s; + A + s;_1), we can rewrite (5.6) as

D_p(z) =

|si_1[Pie 36tV T(p;)
fri[ri_l (S‘i|si—1) = ' 22 D"pi (Zi)
F(pi) V2 e“TtL

. L |Pi
51 —tpp(sien?-22 D_,.(2),

V2T

thus concluding our proof.

Figure 5-1 shows a comparison between our conditional density for r» (derived from (5.2))
and a histogram of 10 million randomly generated conditional r» values (generated using
(5.1)). The parameters used for the density function and histogram are: 8 = 2, A = 0, and
ry = 1.
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By taking the product of conditional densities, we can derive the joint and marginal
densities of Sturm sequence elements. We can then build the eigenvalue density and largest
eigenvalue density as discussed in Sections 4.1 and 4.2. Specifically,

frl,rz,...,rn (317 §2,-.. 73'n) = frl(sl) H ffilri—1(si|3i—l)’ (58)

=2

where f,, = f¢, and

o) 00 o0
fr,.(si) = / / ree / frl,,-z,_‘_’,-n(sl, 82544, Si) d81d82 - dsi_l. (59)

This can be substituted directly into (4.1) and (4.2) to yield the desired eigenvalue distri-
bution formulas. Thus, the densities of the Sturm ratio random variables are expressed as
multivariate iterated integrals, and the eigenvalue density is expressed as a sum of iterated
integrals.

5.2 The Shifted Sturm Ratio Sequence

We can also derive the eigenvalue distribution by describing the densities of a sequence of
shifted Sturm ratios. We will define this sequence, derive its density, and show how they
can also be used to derive the eigenvalue distribution. The derivations given in this and the
previous section are equally valid, though different enough to merit inclusion of both in this
paper. The structure of this section is very similar to that in the preceding section.

If we define the shifted Sturm ratio sequence (z;, z, . .., z,) such that
Ti=0a; —T; Vi€{1,2,...,n},
then, analogous to (2.3), we have the recurrence relation

0, ifz =1,
. = 2
TEY B fie{2,3,...,n),

ai—1—Ti—1

and, analogous to (5.1), we have the generative model

I; = x2 o L .
W:%;x:i_l,l)’ ifi € {2,3,...,n}.

In our derivation of the conditional density of z; given z;_;, we make use of the following
Lemma:
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X3

Lemma 5.2.1. The density of a random variable distributed as e 18

mltlp——2e—§(n2—222)
() = D_,(z),
w6 =T —D (2
where D is the parabolic cylinder function (5.7), p=2+1, and z = sign(t) (¢t —

3)-

Proof. Let X ~ x2,, and Y ~ G(n,4) independent of X. Then

Pr [é < t] = /£<t fr () - fx(z) dydz,

where fx and fy are the density functions of X and Y respectively. Making the change of
variables x = a and y = ¢

¢ (with Jacobian ), we have:
X a a
Pr [? < t] = /b R (5) - fx(a) (ﬁ dbda)
B /oo /t 1 e—!%;n!2 a%l-—le-% (
Bl 0 —00 2\/2—77-
X.

a
ez (i )

We can then take the derivative with respect to ¢t to get the probability density function of
o

00 1 a_p)2 m_q a
) = [t 2
0

—s
—e - ——— - — da. 5.11
2v/2m r(z)27 2 (5-1)
1 1

/oo m -1(2-n)'-g d (5.12)
2er T (2)25 £), ©° e '

Noting the similarity between the integral in (5.12) and the one in the parabolic cylinder
function (5.7), we make the substitution a = 2|t|y to yield:

1 1 e m _1(2ty_ )2 2ltly
Innlt) = 5y, Gl B Gl ay)
2
Itl%—l = 2 —L(4y?—4sign(t)ny+n?)—|ty d
ERZEBIC N a ’
#tes
2e s = —l(y2+2sign(t)(t——ﬁ)y)
- yze 2 2 dy
V2r-T (%) /o
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Finally, letting p = 2 4+ 1 and 2z = sign(t) (t - %), we have

2 2
2 %+E T(Z+1)
Imn(t . -D_
’ ( ) \/‘2‘; F(%) P(Z)
mlt p—-2e—-;-(n2+222)
= I I : D—P(z)’

2V 2w

thus, concluding our proof.

Theorem 5.2.2. Fori > 2, the density of x; conditioned on x;_; is:

fxilzi_l (yi ’yi—l) = Jﬁ(i—l),—-)—yi—l (yi) .

Proof. Follows directly from (5.10) and Lemma 5.2.1.

We can then write the joint density of (z;, s, ..., Zx) as

fa:l,xz,...,mn(yh Y2, .. 1y'n) = le (yl) H fl’ilxi—l (y‘ilyi—l))

1=2

and the marginal density of z; as

00 oo 0o
fa:,-(yi) = / / Tt / fa:1,z2,...,1'n (ylv Y2,... 7yi) dyldyZ e dyi—l-
—00 J —00 —00

To write the eigenvalue distribution (Section 4.1), we compute

Prfr; < 0] = Prla; < 2] = / " / " Folt) fuu(u) dbdy,

where f¢ is the probability density function for a; ~ G(—A, 1), which yields

Pt <N =23 [ [7 fol0fuw) ata

i=1
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Chapter 6

Connection to the Eigenfunction of a
Diffusion Process

6.1 Motivation

Edelman and Sutton showed in [9] that the tridiagonal model of the g-Hermite ensemble,
when taken to the continuous limit, can be expressed as a stochastic differential operator
H. Ramirez, Rider, and Virag [6] then used this connection to show that the number of
roots in an eigenfunction i of H is equal to the number of eigenvalues of H greater than
the 9’s corresponding eigenvalue A. In this section, we discretize the continuous quantities
found in [6] and show that Theorem 1.2 in [6] may be viewed as a recasting of Sturm theory.
Specifically, we show that Lemma 2.2.2 is the discrete analogue of this theorem.

As before, we ignore cases where zeros occur in the Sturm sequence or eigenvector since
the probability of such an event is zero for random matrix ensembles of interest.

6.2 Eigenvector Ratios

Consider the n x n symmetric tridiagonal matrix A, having eigenvalues A1, Ag,..., A, and
eigenvectors X1, Xz, . ..,Xn. For each k € {1,2,...,n}, define T), = A — A¢l. Since X is the
eigenvector of A corresponding to Ay, we have

(A - /\kI)X—;‘( = T,\kxl = 0. (61)

As shown by Lemma 2.2.2, the number of eigenvalues of A less than A; equals the number
of sign changes in the Sturm ratio sequence (ry,7s,... ’Tn)TA,C~ Given T),, we may solve
equation (6.1) to find the particular eigenvector Xj of A corresponding to A\;. Let Xi =
(T, Tn_1,...,71)T. (Note the use of variables z; here is different from those used in Section
5.2. In that section the z; were used as shifted Sturm ratio values.) The reason for labeling
the elements last-to-first is to align the labeling with the bottom-to-top labeling of our
tridiagonal matrix model.
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Since the scaling of the eigenvector is arbitrary, we may set z; to any value and then
solve (6.1) for the remaining values. This yields

1 . . .
z; = { —H(alxl), ifz= 2, (62)

—'ﬁ(ai—ﬂi—l +biozi—g), ifie€{3,4,...,n},

where the a; and b; denote the diagonal and super/sub-diagonal values of Ty, respectively
(as in Section 2.2.3).

In general, we can solve equation (6.2) to derive X for matrices Ty = A — I, where ) is
not necessarily an eigenvalue. If X is indeed an eigenvalue of A, then ThX = 0. If not, there
will be a residue w present in the first element of T)X:

T\& = (w,0,0,...,0).

W= ApZp + bp-1%n_1

Note that the process of setting z; to an arbitrary value and solving ThX = 0 for the rest of
vector X is similar to the shooting process used by Ramirez and Rider. We call the resulting
X a shooting eigenvector.

Define z,41 = —w and b, = 1. If we let s; = z;/z;_; for ¢ € {2,3,...,n+ 1}, we have

—%:», if 1 = 2;
S = _t (ai—l'{"bi_z)’ ifie{3,4,...,n+1}. (6:3)

8i-1

(Note the use of variables s; here is different from those used in Chapter 5. In that chapter
the s; were used as dummy variables.)

Theorem 6.2.1. The sequence of ratios of eigenvector elements S = (S2,83,...,5n41) 8
related to the Sturm ratio sequence R = (r1,7a,...,T,) by the following:
si= -2 forie{2,3,...,n+1} (6.4)
i—1
Proof. By induction. We have s, = —%11 = -§} from the definitions of s, and r;. Now
assume s; = —-%ﬁ for some j € {2,3,...,n}. Using (6.3) and (2.3) we get:

_ 1 bj—l _ 1 b?—l _ T
e CR s ] Ce B

This completes the induction.

Since each of the elements b;_; in (6.4) are positive with probability 1, sign(s;) = —sign(r;_1)
for ¢ € {2,3,...,n + 1}. Thus, the number of negative values in S equals the number
of positive values in R. This in turn equals the number of positive eigenvalues of T), or
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equivalently, the number of eigenvalues of A greater than A. Since a negative value in S
indicates a sign change in the underlying X, we have shown the number of sign changes in X
equals the number of eigenvalues of A that are greater than .
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Appendix A

Parabolic Cylinder Functions D)(z)

In this appendix, we describe some basic properties of parabolic cylinder functions for readers
unfamiliar with them. For our paper, we only need the following property:

2

e—(z—%/ #Plem3+2) gt for Re(p) > 0.
0

D_y(z) = T

They also satisfy the interesting recurrences:

Dyi1(z) — 2Dy(2) + pDp-1(2) = 0,

d z

EDP(Z) + 'Q‘Dp(z) —pDpi(z) = 0,
d z

EDP(Z) - éDp(z) + Dpii(2) = 0.

For positive integers n, we have:

Du(z) = 2% 5 H, (%) ‘

This formula looks quite promising at first; however, in our analysis we are looking at D_,
with p > 0. In the cases where p is equal to 1, 2, and 3, we have:

DL(s) = e%Vanf(~2),
D_y(2) = e T —z2eTV2xf(—2),
D__3(Z) = -




Via the first recurrence above, one can easily verify that for positive integers p, D_,(z) is
going to be of the form:

2

D_y(2) = Ty (Aple) + Byl2)e™ Vo (—),
where A;(2) =0, B; =1, Ay(2) =1, By = —z, and both A and B satisfy:
Ay(z) = _zAp—l(z) + (- Z)Ap—2(2)7
By(2) = —2zB,1(2) + (p—2)B,—2(2).

For other values of p, D_p,(z) can only be described in terms of Whittaker functions and
confluent hypergeometric functions, thus a concise description has been elusive.
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