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ABSTRACT: The ability to integrate materials with disparate electrical, thermal, and
optical properties into a single fiber structure enabled the realization of fiber devices with
diverse and complex functionalities. Amongst those, demonstrated first in our work, are
the surface-emitting fiber laser, the hollow-core fiber amplifier, the thermally self-
monitored high-power transmission fiber device, and the photo-detecting fiber-web based
imaging system. This work presents the design, analysis, and characterization of those
devices. It opens with a study of the transmission properties of the multimode hollow-

:corel-hetonic bandgap fiber constructed of a periodic multilayer cladding. A defect is
then introduced into one of the cladding layers and the interaction between core and
defect modes is investigated. The second chapter addresses the experimental problem
encountered in many multimode waveguide applications: how to extract, and to some
extent to control, the modal content of the field at the output of a waveguide. We
developed a non-interferometric approach to achieve mode decomposition based on a
modified phase retrieval algorithm that can yield the complete vectorial eigenmode
content of any general waveguiding structure and demonstrated its validity
experimentally. In the third chapter an active material is introduced into the hollow-core
to form a surface-emitting fiber laser. A unique azimuthally anisotropic optical wave
front results from the interplay between the cylindrical resonator, the anisotropic gain
medium, and the linearly polarized axial pump. We show that the direction and
polarization of the wave front are directly controlled by the pump polarization. In the last
two chapters, a new type of fiber is presented, constructed of semiconducting, insulating,
and conducting materials, which enables the integration of semiconductor devices into
the fiber structure. In the first we demonstrate a fiber comprised of an optical
transmission element designed for the transport of high power radiation and multiple
thermal-detecting elements encompassing the hollow core for distributed temperature
monitoring and real-time failure detection. In the second, we demonstrate optical imaging
using large-area, three-dimensional optical-detector arrays, built from one-dimensional
photodetecting optoelectronic fibers. Lensless imaging of an object is achieved using a
phase retrieval algorithm.

Thesis Supervisor: Yoel Fink
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1. Transmission properties of Cylindrical Photonic Bandgap Fiber

1.1 Introduction

The transmission of electromagnetic waves in hollow waveguides dates back to the early

seventies with Bell-labs WT4 long-haul communication system [1] designed to transmit

millimeter waves in a hollow metallic tube. Although the advent of high-purity silica

fibers set the basis for modern optical communication, the approach of confining light in

a hollow core using highly reflective walls had been continuously explored [2-5] in a

broad range of wavelength and intensities, where solid-core fibers fails. Conventional

optical fibers rely on light propagation through total internal reflection in solid materials

that has a fundamental limitations stemming from nonlinear effects, light absorption by

electrons and phonons, material dispersion and Rayleigh scattering. These limitations

have motivated the study of light propagation through air in hollow fibers with many

applications in high-power laser guidance for medical procedures [6], atom guiding [7],

higher-harmonic generation [8], supercontinuum generation [9], and others. At first,

hollow metallic or metallo-dielectric waveguides have been studied extensively and

found useful in practical applications, however in the visible and NIR the metal finite

conductivity results in high transmission loss as well as limited fabrication length and

mechanical flexibility. In order to surmount this problem, an all-dielectric reflector based

on photonic bandgap structures was introduced, initially with structures that are based on

doped-silica technology that have a low index contrast between the layers [2,10-14]. A

more recent work by Fink et al [5] demonstrated a Photonic Bandgap (PBG) fiber

constructed of a multilayer cylindrical cladding of high refractive-index contrast, leading

to large photonic bandgap and omnidirectional reflectivity. The multilayer structure

contains alternating layers of chalcogenide glass and a high transition temperature

thermoplastic polymer with refractive indices of -2.8 and -1.6 ranging from the visible to

the MIR, respectively. Hollow core guidance versions of these fibers have recently been

successfully fabricated with fundamental photonic bandgaps at 10.6 plm. These fibers

have losses that are 4-5 orders of magnitude lower then the cladding material [5] and

were used to deliver a high-power CO 2 laser beam for medical applications [15]. A PBG



fiber having the same structure was later fabricated and transmission was demonstrated in

the NIR [16].

1.2 Planar Infinite Multilayer
The pertinent theoretical background for the PBG fiber is due to Yeh et al [2]

demonstrating theoretically transmission of non-index-guided mode through a multilayer

cylindrical structure by Bragg reflection from the cladding. A more recent analysis [17]

showed that the ability to reflect light of arbitrary angle of incidence and polarization

from an all-dielectric planar multilayer structure can be associated with the existence of a

complete photonic-bandgap. Such structure, when reshaped into a fiber form may act as

an ultra low loss waveguide, high-quality factor cavity, high dispersive medium, and

have other unique transmission properties [18-19]. General features of the transport

properties of the multilayer cylindrical fiber can be understood from the properties of a

planar infinite structure. In a structure with an infinite number of layers, translational

symmetry along the direction perpendicular to the layers, r, leads to Bloch wave solution

uK (r, z) = EK(r) exp(iKr) exp(ikez) where EK(r) is periodic with a period of length a, and

K is the Bloch wave number. These waves represent solution to an eigenvalue problem

and are completely and uniquely defined by the specification of K, k,, and the frequency

o=clkI. The solution can be of propagating or evanescent waves, corresponding to real or

imaginary Bloch wave numbers, respectively. Figure 1.1 depicts the projected band

diagram for a. planar multilayer structure having the same parameters of the fiber layers,

where both the TE (blue) and TM (light blue) polarizations are overlapped. Regions

shown in white correspond to a band gap region in which an incoming plane wave with

(kz,,c) values cannot be transmitted and have an imaginary Bloch wave number (the

electric field decays exponentially in the mirror). The gray area shows the range of

frequency where a complete photonic band gap exist. For these frequencies light reflects

back for every angle of incident and polarization. The blue and light blue regions

correspond to plane waves that can couple to propagating modes in the layers with an

imaginary Bloch wave number.
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Figure 1.1: Projected band diagram associated with infinite planar multilayer structure. Blue (light blue)

regions correspond to TE (TM) polarized light that can propagate through the mirror. White regions

correspond to the band gap frequency range in which light reflects back from the mirror. The diagonal

black line represents the light line (co=ckz). In a fiber with cylindrical geometry, having a multilayer

cladding structure with identical layers (thickness and refractive index) to the planar structure, we would

expect to find the core propagating modes inside the bandgap and above the light-line, the cladding modes

below the light-line and out side of the band gap, and surface modes inside the bandgap but below the light-

line.
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1.3 Multilayer Cylindrical Photonic Bandgap Fiber

1.3.1 The Electromagnetic Field and Power Flow in a PBG Fiber

In a finite cylindrical structure (Fig. 1.2), the translation symmetry in the direction

parallel to the layers, z, is preserved, hence kz remains a conserved quantity and can be

used to label solutions. The cylindrical symmetry results in additional conserved quantity,

the "angular momentum" integer m with a wavevector in the azimuthal direction ko = m/r.

The relevance of the band diagram to cylindrical structures is that in the limit of r>>m

the azimuthal wavevector goes to zero and we expects the modes to be confined in the

core in a frequency range that corresponds to the band gap of a planar structure having

the same structural parameters (i.e., same refractive indices and layers thickness).

Figure 1.2: Hollow-Core Photonic Bandgap Fiber (PBG) constructed from two alternating materials with

large refractive index contrast forming an omni-directional reflecting cladding that confined light with

frequency inside the bandgap to the core region.

The electric and magnetic fields of waveguides possessing continues translational

symmetry along their main axis of propagation can be expressed in the following sep

arable form

E(r, 0, z) = E(r, 0) exp(ikzz)

H(r, 0, z) = H(r, )exp(ikez)

It is convenient to decompose the fields into their transverse and longitudinal

components:



E = (E, + Ezi)exp(ikzz)

H = (H, + Hzi)exp(ik.z )

The transverse field components can then be expressed in terms of the axial field

components

E, = (kVE -2( zfx VHz)
(1.2)

H, = (kVH +H oo n2x VtEz)

where k,2 = n2 2 / c2 - k2 and the axial wave components can be obtained from

V2 +o2e)-k]Ez =0
(1.3) [V+co2-z]Ez =0

V 2 2e-k 2 H, =+

which in cylindrical coordinates takes the form

82 2 2 2 2 2 Ez
(1.4) + - - + + k=0

Wr r r2 a2 2 z Hz

The general solution of the wave equation in a region of uniform refractive index is given

by

(1.5) ~ H=HC(' (kr)+ DBH, (kr)

Hz) CH (kr)+DHmg)(kr)

where the constants A, B, C, and D are determined by the boundary conditions of the

layer. The transverse field components can then be obtained using equation 1.3

(1.6)

Er = 2i Akzktm(1)'(k tr) + BkktH(2)'(ktr) +HC imTr Hr)(ktr)+ D ma H) (ktr)

Eo  A imk H, (ktr) + B imk~ (kt, r) - CcopkHm'' (ktr) - DcoukHm2 ' (kr)
k2 r r

Hr = i -K A im m ea°n H ~(kir ) - B immcnn HE (ktr) + Ckzk*H )' (kr) + DkzktH(2)'(kr)
kr 2(- rtr m zm

H i Aco6on2HktH1)'(ktr) + Bwe0 n2kH(2)'(kr) + C m H m)(kr) + D imk )(ktr)J
kr r



where exp [i(kz - ct + mO)] was omitted from each component of the field. For the

purpose of matching boundary conditions, it is convenient to express the tangential field

components in the following matrix form

(1.7) = M I"
C D")

where the 4x4 matrix is given by

(1.8) M =

H. I(k~r)

kzk, t k
0

im H (1) (kr) i
rk, rk

(2)

H (k,r)

k- H,(2)' (kr)k,

0

H (2) (ktr)2

0

im Hm(1)(ktr)

rk,

H. (kr)

kHm.),(ktr )k,k,

0
im H( 2) (kr)
rkt2

Hm (k,r)
±!P H,(2)'(kr)
kk.

Boundary conditions require that the tangential fields are continues along the interfaces

what yields the 4x4 transfer matrix that relates the field coefficient of two adjacent layers

(1.9) Cn+l = [M'+)(r)]- M(")(r.) - M'+C (

(n+l )  B i (n)

Explicitly, the elements of the matrix kL+' are given by

I- /

(I .8) M •" ) =



rl S(m2),(' il)~l k~r  kt ,+lci L(2) .,~()mi = ,' H (kt,.,+,r)H *m (k,.,r)
(2)' H (12) k,,,(2) (2) T(2)'

m,2 = H. (kt,i+lr)H (kt, r)  Hm (kt,,i+lr)H (ktr)k,,, +l,

imkzkti+l 1 1m rc- +1 t kt,+

m imkZk,l,+l 1 1 H(2) (k, r)L2) (k,ir)

((1)' r H O ) ( k
(1 

, r
)  kti+'i ()(1

m21 =-Hm (k r)H(kir) + k H (k,.+r)H )'(ktr)
t,21i+,

,1(2) r + H (1) ..a•(2)'
m 22 = -H(l)(k, ,+,r)Hm (k,, r) + Hm (k,, +.r)HIm (k,,r)imk l 1 ,.
m23 imk k,,+ 1 1 HE(k, r)Hl )(k,,r)23 rcg,+1 k,+1

2 k,2 m t,i+l m t

m imkzk,.,+l I

2m rwcci+ k+ 2

rp k ti+l

32 imkzk,i_+l
m32 rco kti+l

2 Hm1) (k,,i+. )H 2F ( k , ,ir )
k 2 Hm (k,+Ir)Hm (ktr)

S H(2) (k, +ir) H2 (kr)

- H(2 (kt,i+lr)H~( (ktr)
t,i k

m33 = ~ '(k, ,+r)Hml) (k, ,r) - k * (k .r)H()' k,,r)
,33 , H kti * m (1"ti+,rH,",) it

(2)' , r _ (2) k t i+l (2) (2)'

m34 = H m (kti+r) m (kt ,r)- . H m (k, r)Hm (kt,r)
kt,i

41 imkzkt,i+,
rco/ y

42 imkzkt,i+lm4 2 = r
rw~iu

1

kt,i+l 
2 - 1 H l(k ,iirH (2)(k ,,,r)

kti2 m " +l m

(3=-H1.0(k)1r ) H '(k r) + kt+l H (k1 1,•+lr) H ( )'(k,,r)

m44 = -HI)'(kt,i+r)H' (kt,i r ) + kt, H (k,+,r)H (k,r)

4 tin , ,1

1 - 1 H( )(kt, +,r)H(1) ( k , r)
kti+ kti

(1.10)

I I m(kt,,+,r)Hm (k,,)r)
kti 2 1+



The relation between the field coefficients at the center of the fiber (r = 0) and the

outermost layer can then be expressed by multiplication of transfer matrices

A(N) ( A(o) A(o)

B(N) +... B() T B ()

(1.11) C(N = MN+MN ,o - MC(N) C(0)  ]C(0)

D(N) D(0) )D (°)

The problem of identifying the modes of this fiber reduces to setting boundary conditions

at the center of the core and at the outermost layer and finding pairs of (w, kz) that solve

the above equation. We expect to find the solutions for the core propagating modes

within the bandgap of the one-dimensional structure and above the light-line. Such modes

must have exponentially decaying solutions in the cladding. The modes in such dielectric

structure resemble those of a metallic waveguide in which light is strongly confined in

the core by the reflection from the metallic walls (for optical frequencies however metal

absorption results in higher propagation losses). In the band-gap region of the dielectric

structure we expect the mode properties of the two types of waveguides to be similar

because in both cases the mirror is a very good reflector for all angles of incident and

polarization.

The PBG fiber also supports other categories of modes. One category includes modes that

are index guided in the dielectric mirrors. These modes are located below the light line

outside of the: bandgap (Fig. 1.1) and their field decays exponentially in the air region but

extends throughout the dielectric region. Another category includes modes that decay

both in the air regions and in the dielectric layers and they are located under the light line

but inside the band-gap. These can exist as a surface state between the core and the

multilayer cladding or as a defect state inside the multilayer structure incase a defect is

introduce to one (or more) layers.

For the remain of this section, we chose to demonstrate the transmission properties of a

PBG fiber that has a core diameter of 10X (Fig 1.3a), 10 bilayers of alternating As 2Se 3

and PES having a refractive indices of 2.8 and 1.6, respectively, and material losses of

35dB/m and 3500dB/m, respectively. The layers thicknesses are determined by the



quarter wave condition along the light line [21] dhil/do: = / -- in to be

dAs2Se3=0.33a and dpES=0.67a, where a is a bilayer thickness. In this structure the first

glass layer surrounding the air-core has thickness of dh1/2 in order to suppress coupling to

surface states - we discuss this possibility further below.

0.
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0
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Figure 1.3: (a) A PBG fiber with core diameter of 10 X and 10 bilayers of alternating As 2Se 3 and PES

having refractive indices of 2.8 and 1.6, respectively. (b) Outgoing radial flux of modes with m=0 for (kz,(w)

pairs in the center of the band-gap near the light-line. The inset shows a cross section where the core-

guided modes can be identified by the minima in the flux.

The guided modes can then be found by simply finding the values of (k2,o) that minimize

the total outgoing flux in the radial direction, Sr,outward, at the outermost layer

(1.12) 2 Sroutwardd e 2  C 2)
0 k2r

This is by noting that in the limit of kTr->oo the first and second Hankel functions get the

form of outgoing and incoming plane waves, respectively. Figure 1.3b depicts a

calculation of the outgoing flux in a small range of frequencies in the center of the band

gap close to the light-line for modes with angular momentum of zero. The minima in

flux, as discerned from the inset of Fig. 1.3b, corresponds to the first four lowest energy

core-propagating modes with m=O. Unlike truly guided modes of infinite structure, these



modes are leaky resonances and are characterized by a continuum of kz values centered

on kz,, having a width of Akz,n proportional to the radiative loss.

1.3.2 The Leaky Mode Technique

A somewhat more powerful technique for the calculation of guided modes is the leaky

mode method [20] in which an eigenvalue kz is expanded to the complex plane, allowing

to satisfy the boundary condition of no electromagnetic sources outside the waveguide.

For a PBG fiber this method is employed by setting the boundary condition of zero

incoming radial flux at the outermost layer

A (N+I) ao

(1.13) 0 M+ a o
C(N+) M (0.5-a2)05

0 0.5 - a02)-5

where the choice of A 0)=B0°) and C()=D 0) is necessary to obtain finite field amplitudes at

the center of' the core, a is a constant that can be written as a function of the matrix

elements MT such that the outgoing flux is minimized, and the coefficient vector in the

core is normalized. The choice of zero incoming flux, B(N+')=D (N+)=O, is satisfied for

those pairs of w and complex k, that solves [18]

MT +MT MT +MT(1.14) det 2,1 2,2 2,3  2,4 =4

M 4T +M T  MT +M T 
44,1 4,2 4,3 4,4

The solution obtained is of leaky modes with complex wave vectors. These modes are

resonant modes that have most of their energy traveling within the hollow core, and a

field that decays exponentially in the radial direction in the dielectric layers. Their k, and

o situate them inside the band-gap of the planar structure and above the light line. The

axial wavevector, kz, has an imaginary part that is proportional to the radiative loss of the

mode, a,=2Im({kz,n}. We calculate the modes properties for the azimuthally polarized

TEol, radially polarized TMo0 , and linearly polarized HE,1 for the suggested structure.

Figure 1.4 depicts the dispersion curves of the three modes overlapped with the band

diagram while the inset shows an enlarged section near the light line. Since the core is



much larger then the wavelength the modes become TEM-like in the sense that their field

components are mostly in the transverse plane (small Ez and Hz components) and their

dispersion curve is nearly parallel to the light line. To provide a better understanding of

the field pattern in such fiber we plotted the time average energy density in Fig. 1.4b at a

frequency of co = 0.284 (2nc/a). The three modes are very well confined within the core

as evident from the unnoticeable energy density in the cladding. Unlike the other modes,

the TEol has a node near the core cladding-interface what contribute significantly to the

lower losses of these modes comparing to the TM or mixed polarized modes [ 18].

(a)

0.35

U0
8 0.3

0.2 0.25 0.3 0.35

(b) Axial Wavevector k7 (2dIa)

Figure 1.4: (a) Dispersion curves of the TEo0 , TMol, and HE11 overlapped with the band-gap diagram of

the planar infinite structure. The inset shows an enlarged portion near the light-line where these three

modes can be resolved. (b) Intensity mode profiles of the three modes.

HE,,
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1.3.3 Modal Losses
In Fig. 1.5a, we display the computed losses due to radiation and material losses for the

three discussed modes. The narrower TM band gap results in higher losses for the pure

TM modes, with the TM01 having losses almost two orders of magnitude higher then the

TE01, the lowest loss mode. The wider TE band gap results in wider bandwidth for the

pure TE modes, while the pure TM modes are confined to the narrower TM band gap.

Modes with m>O, as the HE,1 , have mixed polarization (called hybrid modes) and

therefore their losses, as well as their bandwidth, are eventually dominant by their less

confined TM component. These differential losses create a mode-filtering effect that

allows the TEo0 to operate as in a single mode regime, despite the core diameter of many

wavelengths. However, as the core size increase, fiber perturbations results in stronger

mode coupling and therefore higher effective modal losses [18].

(a) (b)
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Figure 1.5: (a) Losses for the three lowest energy modes of a PBG fiber (including material losses). The

TE01 is the lowest loss modes, while the TMo0 has losses almost two order of magnitude higher due to the

narrower TM band gap. The HEI, being a hybrid mode, has losses that are dominated by the TM

component. (b) Losses as function of bilayer number. The TEo0 radiation loss decreases by a factor of 5 per

bilayer while the TMo0 and HE,, by a factor of 2. The TEO, as smaller number of effective layers.

For all modes, radiation losses decrease exponentially with increasing numbers of layers

thank to the reflection from the band gap, until the point where material losses become

more dominant. For our structure, the radiation losses for the pure TE modes decrease by

a factor of 5 per bilayer (Fig. 1.5b) while for the pure TM and hybrid modes by a factor
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of 2. The material losses for each mode are proportional to the field amplitude in the

cladding and determine the number of effective bilayers. It turns out that for the TEol this

number of layers is smaller then for the other modes.

The possibility of having a single mode regime in a PBG fiber that is much larger then

the wavelength suggests that it would be advantages to use larger core fibers in order to

reduce the modal losses. S.G. Johnson et al [18] studied the scaling trends of modes with

respect to the core radius and showed that the losses of a pure TE-polarized mode reduces

faster for increasing core radii then of any other mode due to a node in the electric field

near the core-cladding interface. A calculation of the modes losses as a function of the

core radii (Fig. 1.6) suggests that for small core radii the losses of the TEol indeed

decreases faster then any other mode. However, for larger core radii, the scaling of the

losses for the different modes becomes comparable.
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Figure 1.6: The losses of the PBG fiber modes decreases with an increase of the core size due to better

confinement of the modes in the core (higher portion of the mode travels in the core). The lower losses of

the TEo0 mode suggests that this fiber, although having core size much larger then the transmitted
wavelength, can operate in a single mode regime.

Ultra low loss propagation can be obtained for the TEo, mode for larger core radii with

structure parameters that are practical in terms of fabrications. For example, a 110
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wavelength core diameter can be easily fabricated and has losses smaller then IdB/km for

the TEo0 . However, for larger core radii the mode spacing in phase space decreases

(scales with the core area) and structural perturbations, such as fiber bends, induce mode

coupling that results in higher effective losses.

1.3.4 Group Velocity Dispersion in PBG Fiber

For a large core fiber the core-guided modes become TEM-like in the sense that the

electric field is predominantly in the transverse direction, with only a small component in

the axial direction. Accordingly, the dispersion curves, as plotted in Fig. 1.4, are parallel

to the light line with a group velocity approaching the speed of light inside the band gap.

At the edges of the band gap the group velocity decreases as a result of the gradual loss of

confinement within the core (larger portion of the field travels in the cladding), as

depicted in Fig. 1.7a. The group velocity dispersion is positive near the lower edge of the

band gap, positive in the upper edge and transitions through zero. Inside the band gap, the

dispersion slope increases for smaller core radii, however the bandwidth of the

(relatively) flat region decreases.
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Figure 1.7: (a) the group velocity within the band-gap approaches the speed of light, while at the edges it

becomes smaller due to the gradual increase in the portion of the field that travels in the cladding. (b) The

group velocity dispersion is positive near the lower edge of the band gap, positive in the upper edge and

transitions through zero.
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1.3.5 Defect and Surface States

The periodic Bragg structure that lines the hollow core of the PBG fiber and is

responsible for the omnidirectional reflectivity offers flexibility in integrating defect

layers or microcavities that in turn can be used to precisely control the loss, dispersion

and non-linearities of resonant transmitted modes [21]. We have previously demonstrated

that the resonance frequency of microcavities embedded in fibers designed for external

reflection can be reversibly tuned through mechanical and all-optical tuning schemes

[22]. By intentionally introducing such microcavities in PBG fibers, one can achieve very

large dispersion as a result of interactions between core-guided modes and cavity-

resonant modes, independently of the materials intrinsic dispersion. In addition, because

the dispersion is controlled primarily by geometric parameters, mechanical tuning can be

employed to fine-tune the value of the dispersion coefficient at a given wavelength and

even switch its sign. While these fibers can be used for dynamic dispersion

compensation, they can also be used for zero-dispersion transmission or all-fiber chirped

pulse amplification.

Depending on the application pursued, dispersion can be a limitation or a benefit. In

telecommunication applications, dispersion leads to a degradation of the optical signal at

high bit rates or over long distances. For a given distance, the dispersion tolerance is

proportional to the inverse square route of the bite rate. While it is possible to fabricate

silica fibers with zero dispersion, some dispersion is nevertheless beneficial to suppress

non-linear effects such as four-wave mixing. Therefore it must be compensated for,

typically every 100 km or less, using dispersion compensating fibers with a large

dispersion parameter of opposite sign. On the other hand, chirped pulse amplification

used to amplify optical pulses above the nonlinearity threshold of silica fibers requires

high dispersion parameters and low non-linearities, which is achieved using diffraction

gratings, fiber Bragg gratings and more recently hollow core photonic band-gap fibers

[23,24]. High dispersion parameters have been reported in photonic band-gap optical

fibers (e.g. 1150 ps/nm/km at 1560 nm) [23] but to this date only at the edge of their

photonic band-gaps where propagation losses are high and little control over the

dispersion of individual propagating modes can be achieved. Here we demonstrate that

by intentionally introducing micro-cavities in such fibers, one can achieve much higher



normal and anomalous dispersion parameters within their photonic band-gaps as a result

of interactions between core-guided modes and resonant cavity modes, thus combining

controlled dispersion with the advantages of fiber waveguiding. We show that there

exists a strong correlation between the dispersion's amplitude and bandwidth and the

different fiber design parameters. In addition, because the dispersion is controlled

primarily by geometric parameters, mechanical tuning can be employed to dynamically

fine-tune the value of the dispersion coefficient and even switch its sign. While these

fibers could be used for precise dispersion compensation in telecommunication

applications and enable dynamic allocation of bit rates, they could also be used for all-

fiber chirped pulse amplification and enable peak powers thought unreachable, beyond

the damage threshold of most materials, for virtually any desired wavelength of

operation.

Theoretically, by varying the thickness or refractive index of a single layer in the

multilayer structure a defect is introduced in the periodic structure that may permit

localized modes to exist with frequencies inside the photonic bandgap. The multilayer

film surrounding the defect behave like frequency-specific mirrors in which light bounces

back and forth between the two sides with exponentially decaying electromagnetic fields

in the multilayer structure. The core of a PBG fiber can also be regarded as a "defect" to

the multilayer cladding. The previous section provided a detailed description of the states

that are confined in the core region. In both cases the surface between the periodic

structure and the defect can support surface states that are confined to the interface and

decays exponentially in both the defect region and in the periodic structure.



Figure 1.8: PBG fiber with a double thickness layer of the high-refractive index glass forming a X/2 defect

state.

The characteristics of a defect state within the multilayer cladding can be studied

conveniently when it is decoupled from the core modes. Consider a PBG fiber with a

defect introduced to the cladding in the form of thickness variation of one of the high-

index layers as shown in figure 1.8. Since the field of the defect state decay exponentially

within the multilayer structure, it is sufficient to locate the defect only few bilayers away

from the core such that the mode profile is only weekly altered due to the break of

periodicity of the core. Of most interest are defect structures that can support only one or

not more then few defects states. It is therefore sufficient to consider defects sizes that are

less then twice the original layer size. Figure 1.9 depicts the "band diagram" of the

cylindrical structure having a defect layer thickness twice its original size overlapped

with the bandgap diagram of the infinite periodic planer structure. Few salient features of

the mode structure can already be pointed. First, the dispersion curves of the different

fiber modes appear in the corresponding areas of the infinite planar structure. The core

modes appears in the bandgap above the light line, while the index guided modes in the

high-index layers appears between the light lines of the two cladding materials. The

defect state appears in the center of the band gap extending from normal incident angle

all the way to the high-index material light line. Lastly, a surface state emerges from the

lower edge of the bandgap near the light line. We note that both the defect and the surface

states exist within the bandgap. Second, the dispersion curve of the defect state indicate

slower group velocity then core propagating modes due to the higher refractive index as

well as smaller cavity volume that results in slower axial propagation. This difference in

group velocity is the origin of the high dispersion values obtained in the frequency

vicinity of the crossing of the core and defect modes. The defect state itself is nearly-

degenerate above the air light line but the TE and TM component of it splits when

approaching the Brewster angle.
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Figure 1.9: Upper panel: Band-diagram of an infinite planar multilayer structure projected on the

calculated eigenmodes of a cylindrical fiber with a X/2 defect in the high-index glass. The core propagating

modes are located above the light-line and within the bandgap, the defect-state and the surface state are

located in the bandgap, cladding modes are below the light line and outside of the bandgap. The intensity

distribution of each mode is showed in the lower panel.

1.3.6 The interaction between core and defect states

The dispersion relation of a core mode can be significantly altered by the introduction of

a defect state. At points in the band diagram where the defect mode intersects with a core

mode of the same angular momentum and (for m = 0 modes) polarization, the two modes

can interact. Thus, instead of the core mode and the defect mode crossing one another,

the core mode will be transformed into a defect mode, and vice-versa, over a certain

frequency range. Figure 1.10 depicts such anti-crossing behavior of two such modes. The

much smaller group velocity of the defect mode makes many of the core modes likely to

intersect, and implies a strong dispersion (rapid slope change) in the resulting

anticrossing. In the transition region, the core mode radically changes its group velocity

which is synonymous with that mode having a large dispersion parameter in that

frequency range. The lower panel of Fig. 1.10 illustrates the transition of an HE,, from

core-confined to a resonant cavity mode (transforming from A to C). Around the

transition frequency the next lowest (m = 1) mode, the EH11 mode, changes its character,

and it starts to resemble he HE,, mode (transforming from B to D). For higher

frequencies, the mode which at lower frequencies was almost identical to the EH11 mode

is now almost completely identical to the HE,, mode of the defect-free fiber. We thus see

that the defect mode can induce transition from one core-confined mode to its

neighboring core-confined mode. This change continues for all higher modes, and we

therefore see that the presence of the defect makes all the core-confined modes take a

step down around the frequencies where the defect mode crosses the dispersion curve of

the core-confined modes. Transitions between core-confined modes can give large

dispersion values with frequency region of large negative dispersion followed by a region

of large positive dispersion.
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Figure 1.10: (upper panel) Magnified section of the band-diagram showing the interaction of defect state

with core modes (modes appear in brighter colors). The TE-defect mode is better confined to the defect

layer and therefore the coupling coefficient with the core mode is smaller then of the TM-defect. (lower



panel) Mode profiles of four points on the band-diagram depicting the step-down transition of the HE11

mode after the interaction with the defect state and the transition of the EHl, to the HEI.

The field penetration depth of the defect mode into the surrounding Bragg mirror is

determined by the location of the defect within the bandgap. As the mode gets closer to

the edges of the bandgap the penetration depth is longer and the coupling with the core

mode is stronger. Obviously the radiation losses would increase as well; nevertheless, the

ability to tune the resonance frequency of the defect allows one to control the interaction

frequency, strength and bandwidth. The fabrication process of the PBG fiber allows the

simple introduction of defects with varying thickness in the high-index glass at any

location of the multilayer cladding. Figure 1.11 depicts the behavior of the defect

resonance frequency as a function of its thickness in the vicinity of the light line. Since

the dispersion curve of the lowest energy core modes for such large core fiber is, to good

approximation, parallel to the light line. The upper panel shows that a defect state is

pushed into the bandgap from the high-dielectric band when the thickness of the defect

layer (dhigh < 1) is reduced. On the other hand, when increasing the thickness of the defect

layer a defect state leaves the low-index band and pushed into the bandgap. This behavior

is due to the fact that for increasing defect size the field fraction in the high-index region

is larger and therefore the energy of the mode is lower. That can also explained by using

the electromagnetic variational theorem that shows that the lowest frequency mode is the

field pattern that minimizes the electromagnetic energy functional. It can be showed [25]

that the minimum value is obtained when the displacement field D is concentrated in the

high dielectric. That explains why the lowest energy modes are concentrated in the high

dielectric region and the higher energy modes are concentrated in the low dielectric

region. The bottom panel of figure 1.11 shows the D field distribution in the radial

direction of the different defect modes for o = 0.28. For a given thickness of defect state

there are two modes, one TE-like with a dominant field in the azimuthally direction and a

TM-like with a dominant field in the radial direction. The narrower bandgap of the TM

modes results in a less confined field of the TM-like mode as evident from the right

panels of figure 1.11. For values of dhigh much smaller then 1 (quarter wavelength) the

field is mostly concentrated in the low-dielectric polymer and practically can be regarded



as a low-dielectric defect, the boundary conditions in such case force nodes in the field on

the interface between the "defect" and the higher-index mirrors. On the other hand, for

defect size greater then unity the boundary conditions require anti-nodes on the surface as

evident from the insets of the figure 1.11.
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spectrum when compared to the TE-defect. Also, it is evident that the TM (TE) defect modes exist only

within the TM (TE) gap. Lower panel shown the D-field intensity distribution for o0=0.28.

1.3.7 The interaction picture via mode-coupling theory

Analytically the interaction between the core and defect modes can be explained in terms

of coupled-mode theory [26]. While such theory in principle can accurately describe the

interactions of our system, it is in practice hard to make accurate predictions about

dispersion values, because in our system it is unclear precisely what constitutes the

uncoupled systems. Nevertheless, coupled-mode theory may be of great benefit for

predicting changes in dispersion values due to modifications to the fiber structure.

Explicitly in the limit of weak interaction the coupled mode equations between a core and

a defect mode

da, -ia +l2a 2

dz
(1.15)-ia2 + 2a

dz

The new eigenvalues of the coupled system are

A + A+ A + A 2(1.16) f± f + / + 1 2 2
2 2

By assuming linear dispersion curve for both the core and defect modes we can obtain the

following expression for the coupled system dispersion

SAn 2K

(1.17) D = 2 2 8;rc
2,rca 2 [( ) An2  ](0) -o)2 -4-- -c2 + K

4c2

where wo is the frequency in which the uncoupled modes (fl and ,P) intersects, An=nelff-

and K=K12K2 1. The maximum dispersion is obtained for caro) and it value is

02 An2 1
(1.18) IDmax =~O

The interaction bandwidth (the frequency range in which the dispersion drop to half the

maximum value) is



Ar/2 ~ 1.53 c K
An

Figure 1.12 shows a comparison between an exact calculation using the leaky mode

technique and coupled-mode theory of a fiber with a defect in the 9th layer. The

dispersion curve of both the core and defect modes of the uncoupled system was assumed

to be linear. The waveguide dispersion was then calculated using Eq. 1.17
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Figure 1.12: Comparison between coupled-mode theory and exact calculation using the leaky-mode

technique. The upper panel shows the dispersion curve of a defect and a core mode in the vicinity of the

interaction, while the lower panel shows their dispersion.
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The magnitude of the frequency range over which the transformation takes place depends

on the strength of the interaction between the fiber mode and the defect mode, or in other

words the degree of overlap between the fields of the two modes. If the interaction is

weak, which is the case for defect located far from the core and well within the bandgap,

the frequency range over which the transition occurs will be narrow, resulting in sharp

kinks in the dispersion relation for the given mode (Fig. 1.13). On the other hand, if the

interaction is strong, the transition will take place over a broader frequency range and the

kinks will be smoothed.
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Figure 1.13: Dispersion calculations for defects located in the high-dielectric layer from the 3 rd to the 9 h

layer. The coupling coefficient between the defect and the core modes for defect layer located away from

the core is smaller and therefore the interaction takes place in a narrower frequency range and result in

higher peak dispersion.



Independent of the interaction strength, the product of maximum dispersion and

interaction bandwidth is only a function of the difference between the effective refractive

indices of the defect and the core

(1.20) [Dm, I A 11/2 0.06mawAn

which is equivalent to the difference in the inverse group velocity. This result can be

obtained by directly integrating over the dispersion curve [32] around the antocrossing

, 1 L g,2(1.21) A=jA J9) VgJ+ Vg,2

This equation allows one to make simple predictions about the attainable dispersion

characteristics by estimating the group velocities of the uncoupled system modes.

Mode coupling theory can also provide an insight into the losses of the coupled system

by expanding the axial wavevector into the complex plain. The imaginary part of the

wavevector is then proportional to the propagation loss of the mode along the axial

direction

(AnAL.A' (Co - oo)/ c
(1.22) fl• = /' +

-2(o- o)2 An2 Ic 2 -Afi 2 + 4K

where ' = (f+ f )/2 and Af/ '= -fl . At the interaction frequency, oo, where the

dispersion is maximum, the losses of the coupled system are just the. average of the

uncoupled system.

In conclusion, we find that the degree of freedom in controlling the size and location of

the defect can be used to tailor the dispersion properties of the fiber in intuitively

predictable ways. Through the use of more complex defects, we can further modify the

properties of the fiber. This could be accomplished by using multiple defects or by using

a single defect that supports multiple defect modes. Using a rather large defect would

enable the interaction with core-confined modes at multiple wavelengths.

The model for modal interactions presented here is only exact in the limit of weak

interactions. For systems with stronger interactions between the modes it is imprecise to



consider the fiber and the defect as two separate systems whose resulting band diagram is

the sum of the band diagram of the fiber and the defect separately. Furthermore, the

simultaneous interaction between the defect and multiple bands may also alter the entire

band diagram. In those cases, the real band diagram for the fiber with a defect must be

calculated using the exact method described in the previous section. Nevertheless, the

qualitative features of the anticrossing model remain.



2 Mode Decomposition for optical Waveguide

2.1 Introduction
Eigenmode decomposition of the field at the output of waveguides can provide

fundamental insights into the nature of electromagnetic-wave propagation. The

comparison of the modes present at the input to those exiting the structure enables the

elucidation of loss mechanisms on the one hand and quantitative analysis of modal

coupling on the other. The prospect of performing modal decomposition is of importance

to several recent experimental efforts in atom guiding [7], high-harmonic generation in

atomic gases [8], supercontinuum generation [9], and others. Nevertheless, a practical

route to comprehensive modal decomposition, one that yields the full complex expansion

coefficients of the vectorial field in the eigenmode basis, has not yet been achieved. Here

we introduce a novel, rapidly converging, method based on the phase-retrieval algorithm

together with intensity measurements at two planes, that yields a unique modal

decomposition. An experimental validation is performed by decomposing the guided

field in a photonic bandgap fiber. Both the amplitudes and phases of the 16 lowest-energy

vectorial modes are obtained. The efficient convergence enables, for the first time, the

quantitative analysis of bend-induced interactions in a many-mode system.

The objective of a non-interferometeric modal decomposition is to use intensity

measurements and a priori knowledge of the waveguide eigenfunctions in order to

deduce the weight of each mode at the output of the waveguide. Figure 2.1 depicts an

example in which the modal content of an intensity pattern at the output of a PBG fiber is

decomposed into three eigenmodes. While the eigenfunctions, en, can be calculated using

the leaky-mode technique described in the previous chapter, to obtain the complex

expansion coefficients, c, information on the (complex) field distribution of the

measured intensity is necessary. With complete information of the field, E, = icne in

hand, c, can be obtained by simply projecting the total field Et onto the known

eigenmodes en of the waveguide.
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Figure 2.1: The objective of mode decomposition is to extract the expansion coefficients of the

eigenfunctions from measured intensity distributions. The eigenfunctions can be calculated by solving the

eigenvalue problem of the given waveguide structure.

Indeed, research on the transmission properties of waveguides supporting a multiplicity

of modes spans many decades, from millimeter waves in the seminal work of G. C.

Southworth in the 1930s [27] through ultraviolet transmission [28] in recent experiments.

Modal decomposition approaches based on single-intensity measurements in the Fourier

plane have been known (Refs. [29,30], for example). It is important to note that without

any other a priori known constraints of the complex field distribution, the solution of

such an inverse problem is not unique [31-34]. An example for such ambiguity is

demonstrated in Fig. 2.2 where we plot the measured intensity at the output of a PBG

fiber. Two possible amplitude decompositions (amongst many other) are provided, both

of which yield a reconstruction that fits the measured intensity distribution.

Fiber Eigenmodes

Figure 2.2: amplitude decompositions, in the waveguide eigenmode basis, for a far-field intensity

measured at the waveguide output. Both yield a reconstruction that fits the measured intensity.
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2.2 On the Uniqueness of Phase Retrieval Reconstructions
The above exemplify a general problem that arises in many phase retrieval problems: is

the a priori knowledge given on the object (e.g. its support) together with intensity

measurements sufficient to obtain a unique solution? The aim of this section is to find the

necessary conditions for a unique reconstruction of an object given partial information on

its Fourier transform (the far-field of the object). Although there is a one-to-one

correspondence between a signal and its Fourier transform, there are many applications in

which some of the Fourier domain information is either degraded or missing (usually

phase information). In order to restore the signal, therefore, it is desirable to either restore

or recover the missing spectral information. The primary problem of concern in this

chapter is recovery of the phase of the Fourier transform given the magnitude. Clearly, in

the absence of any underlying signal model or constraints, the loss of phase information

of a complex: function is irreversible. Surprisingly however, under some fairly general

conditions it is possible to recover a signal from its magnitude [35]. In fact, for a useful

class of signals it is almost always possible to recover one from the other; i.e., the phase

and the magnitude constitute redundant pieces of information. The recovery of spectral

phase information from only spectral magnitude information, generally referred to as the

phase retrieval problem, arises in a variety of different contexts and applications. In x-ray

crystallography, for example, the molecular structure of a crystal is to be inferred from

the observed diffraction pattern of x-rays [36]. Although the diffraction pattern is related

to the scattering density of the crystal by a Fourier transform, only the intensity of the

diffraction pattern may be measured. Since knowledge of the phase of the diffracted wave

is indispensable for determination of the crystal structure, the phase retrieval is

particularly important. A similar problem arises in optical and electron microscopy when,

for example, the index of refraction of a thin object or the height distribution of a surface

is to be determined from the intensity of the wave distribution in the image plane or some

other plane in the microscope [37]. Again, in order to determine the object structure,

phase information of the wave is required.



2.2.1 The fundamental theorem of algebra and irreducible polynomials
In each of the applications above as well as in the discussions which follow, there are two

distinct sets of problems. These are the problems of synthesis and reconstruction. The

synthesis problem is concerned with the determination of a signal, such as an image,

which is consistent with the known constraints. The reconstruction problem, on the other

hand, is concerned with the unique recovery of a signal given a partial Fourier domain

description along with a signal model or asset of signal constraints. Here there are

separate issues related to the conditions under which exact reconstruction is theoretically

possible and the development of practical algorithms for performing the reconstruction.

We consider here signals with finite support, therefore, for convenience it will be

assumed without any loss in generality that the discrete signal x(m,n) is zero outside the

rectangle O<m<M and O_•n<N. In such case x(m,n) will be said to have support R(M,N). It

is important to note that a one-dimensional (1-D) sequence with finite support R(N) has a

z-transform which is polynomial in z-1 of degree N-1. Since the fundamental theorem of

algebra states that any polynomial in a single variable may always be uniquely factored

into a product of first-order polynomials, it follows that any 1-D sequence with support

R(N) has a z-transform which may be written in the form
N-1 p p

(2.1) X(z) = x(n)z-" = az-no H Ak (z) = az' l (1- akz)
k=1 k=1

n=0

The polynomials Ak(z)=(-akz-1) are the irreducible factors of X(z) and the constants ak

are the zeros of X(z). As a result, any 1-D signal with finite support is uniquely

characterized (to within a scale factor) by the distribution of the zeros of its z-transform.

In other words, a 1-D sequence is uniquely defined to within a scale factor by the

coefficients ak and the value of no.

The z-transform of a 2-D sequence x(m,n) with support R(MN) is a polynomial in the

two complex variables zl and z2. Therefore, X(z1,z 2) may always be written uniquely (to

within factors of zero degree) as a product of polynomials which are irreducible over the

field of complex numbers
M-1 N-1 P

(2.2) Z(z , z2) = E x(m, n)zl-mZ2-n = az,' z 2 -"2 H Ak (z1, 2)
m=O n=O k=1



where a is a real number and nl and n2 are nonnegative integers. The polynomials

Ak(z1,z2) are the irreducible factors of Z(zi,z 2). Therefore, for both 1-D and 2-D signals,

the z-transform may always be written as a product of irreducible factors. Important

difference follows from the fact that the fundamental theorem of algebra is not valid for

polynomials in two or more variables. In particular, whereas this theorem guarantees that

the irreducible factors of 1-D polynomials will always be of first order, the irreducible

factors of 2-D polynomials may be of arbitrary large degree.

Since polynomials in two variables of arbitrary large degree may be irreducible, it is of

interest to determine the likelihood that an arbitrary 2-D signal with support R(MN) will

have an irreducible z-transform. More specially, given an arbitrary signal x(m,n) with

support R(M,N), is it more likely that X(zI,z 2) is reducible (factorable) or irreducible? In

order to address this question, note that it is possible to make a correspondence between

the polynomials which are z-transforms of sequences having support R(M,N) and an

ordered sequence (vector) of length L=MxN real numbers. This correspondence consists

of arranging the coefficients x(m,n) of the polynomial X(zl,z 2) into a vector in some fixed

order. Since the set of reducible polynomials may be identified in a one-to-one manner

with a subset. S of the L-dimensional Euclidean RL, then it is possible to determine the

Lebesque measure of the set S. It has been shown that this set has a measure zero [38].

Therefore, it follow that "almost all" polynomials in two or more variables are

irreducible.

Since the set of reducible polynomials is a set of measure zero, it is of interest to

determine whether geometrically it is sparse or dense. In particular, if it is dense in the set

of all polynomials then it would be possible to find, for any given irreducible

polynomials, a reducible polynomial which is arbitrary close to it. Practically speaking,

this would imply that the irreducibility property of a given polynomial is extremely

sensitive to noise since arbitrary small perturbations of the coefficients may lead to

reducible polynomial. Fortunately this is not the case and it was found that the set of

reducible polynomials is sparse [39]. In the reminder of this section we make use of the

irreducibility of the z-transform in 2D to prove the uniqueness of the solution to the

phase-retrieval problem.



2.2.2 Uniqueness of a signal with respect to its Fourier transform intensity
In most applications a shift, inversion, or reflection of the signal are of no concern since it

is the relative amplitudes of the various samples within the signal that are of primary

importance. Therefore, two signals will be said to be equivalent if they are related to one

another by the combination of the previous relations. Excluding these trivial ambiguities,

it is still not positive to uniquely define a signal in terms of its spectral magnitude

because it is always possible to convolve a signal with an arbitrary all-pass signal (one

which has a Fourier transform with unit modulus) to obtain another signal with the same

spectral magnitude.

Let x(n) be a 1-D sequence with X(e'• ) it Fourier transform having a support R(N). Note

that for any sequence x(n) it is always possible to find another sequence which has a

Fourier transform with the same magnitude by simply convolving x(n) with all-pass

sequence g(n) where

(2.3) y(n) = x(n)* g(n) ; G(e") =1

it is important in the phase retrieval problem to examine the z-transform of an all-pass

sequence. Note that if g(n) is an all-pass sequence, then by definition =G(el")12 =1 and

since g(n) is real G(e"')G* (e-' ) = 1 and therefore G(z)G*(1/ z*)= 1. It follows that the

singularities of G(z) must occur in conjugate reciprocal pole/zero pairs, so that if G(z) has

a zero (pole) at z=a the G(z) must also have a pole (zero) at z=1/a*. Therefore, if g(n) is

an all-pass sequence then its z-transform must be of the form

(2.4) G(z) = z-(+P) I 1 --akZ
k=1 Z ak

Conversely, any rational all-pass signal has a z-transform which may be written in the

form given in Eq, (2.4). Therefore, it follows that the effect of convolving a sequence

x(n) with an all-pass sequence g(n) is to with add or delete conjugate reciprocal pole/zero

pairs (all-pass factors), or to replace a zero (pole) at z=a with a zero (pole) at z=1/a*.

With x(n) a 1-D finite-length sequence with support R(N), its z-transform is a product of

(N-I) linear factors of the form (1-akz-1). If any of these factors are replaced with a factor

of the form (z-J-ak*), then the corresponding sequence will still have a support R(N) and

the magnitude of its Fourier transform will be unchanged. Clearly, the same result applies



to the poles. Therefore, in order to guarantee a unique solution, it is necessary to place

constraints on x(n) in order to resolve the ambiguity about the side of the unit circle on

which each pole and each zero lies.

Note that if x(n) has a z-transform with all of its singularities (poles and zeros) inside the

unit circle (minimum phase), then convolution with an all-pass sequence will always

produce a sequence which has at least one singularity outside the unit circle. Similarly, if

all of the singularities are outside the unit circle (maximum phase) then the convolution

with an all-pass sequence will produce a sequence with at least one singularity inside the

unit circle. Therefore any minimum or maximum phase sequence is uniquely defined (to

within a sign and delay) by the magnitude of its Fourier transform.

For the case of 2-D sequences by following the same development it follows that two 2-D

sequences have Fourier transforms with the same magnitude if and only if one is related

to the other by convolution with an all-pass sequence. As in the case of 1-D sequences,

any 2-D all-pass sequence g(m,n) has a z-transform satisfying

(2.5) G(z, z 2)G*(1/z,1/z)=z2

Therefore, it follows that any all-pass sequence which has a rational z-transform must

have a z-transform of the following form

P Hk (Zl , Z2)(2.6) G(zz,2) = 1 •(z
k=1 Hk (l/Z,1/Z;)

Just as in the 1-D case, multiple solutions to the 2-D phase retrieval problem generally

exist due to the possibility of zero contour flipping. Specifically, with x(m,n) a 2-D

sequence with support R(MN), its z-transform may be written as a product of p

irreducible polynomials Ak(Zl,z2). If any of these irreducible factors are replaced with the

factor Ak*(1/2l1 ,1/Z2*), then the resulting 2-D sequence will also have a finite support and

the magnitude of its Fourier transform will be proportional to that of x(m,n). Note,

however, that ifX(zi,z 2) is irreducible, then the only other sequences which have the same

Fourier transform magnitude as x(m,n) are those which are related to x(m,n) by a linear

shift, multiplication by -1, or by reflecting the sequence about the origin. We can than

conclude that a 2-D sequence with finite support which has an irreducible z-transform is

uniquely defined by the magnitude of the Fourier transform. Since most polynomials in

two or more variables are irreducible it follows that almost all 2-D sequences with finite



support are uniquely defined by the magnitude of the Fourier transform. Moreover, it can

be showed that uniqueness still holds if only the magnitude of the discrete Fourier

transform of x(m,n) is known [40]

2.2.3 Considerations for complex object
Heretofore we assumed that the support of the object is known and finite and that the

object is real (zero phases). However in many problems the objects may be complex and

the reconstruction of both the amplitude and the phase of the object are of interest. If the

image is an arbitrary complex function, the phase problem has a multitude of solutions

since one can associate any phase function with the measured intensity to generate a

different image. Walther [41] appear to have been the first to recognize that the problem

posed in this way does not correspond to any real physical situation. In any practical case,

there are constraints on the form of the image. For example, in an optical system the

image has finite support and is square integrable. In general, applying any phase function

to the amplitude will produce an image that violates these conditions. The important

uniqueness question is therefore: is there more then one phase function that gives an

image that satisfies the given conditions? Walther [41] showed that in the 1-D case there

are multiple, but countable, phase functions that lead to images with the correct support.

He pointed out that nonnegativity could be expected to restrict the number of solutions

further. The quite different situation in two dimensions appears to have been noted first

for the general complex image by Barakat and Newsam [42] in the sense that a

multiplicity of solutions is pathologically rare using the theory of complex variables.

Uniqueness was demonstrated in a more practical sense using the concept of zero sheets

[43,44]. In 2-D, the Fourier transform of the image can be analytically continued into a

space with complex dimensions, denoted by F(zl,z2). Considering zl, say, fixed, then

F(zl,z2) has point zeros in the z2 plane. As zl is varied, these zeros migrate along smooth

2-D surfaces (zero-sheets) since F is analytic. Since in 2-D the z-transform of the image

is almost always an irreducible polynomial, these sheets actually form a single sheet and

the point zeros cannot be treated (and flipped) independently as in the l-D case. Only in

special cases, that occur with probability zero) do the zeros form more then one sheet.

Since IF(zlz 2)12 has two factors, it contains two zero sheets, one corresponding to F(zl,z2)



and one for F*(z,*,z2*). Although 2-D surfaces in a 4-D space almost never intersect, these

two surfaces, being interdependent, intersect whenever (z,,z2)=(z1 *,2*), i.e., wherever one

of them crosses the real axis. Since the Fourier transform is an entire function, continuity

of the first derivative can be applied to distinguish between the two zero sheets.

Algorithms have been developed and implemented to separate the zero sheets and

reconstruct the image. However, these algorithms have been applied only to simulated

data with small images, since they are sensitive to noise and computationally intensive

[43,44].

Based on this underlying theory, several other attempts have been made to devise a

complex image reconstruction algorithm that is both noise tolerance and computationally

efficient [45-48] each of which requires either oversampling or additional constraints on

the object.

2.3 The Mode Decomposition Algorithm
The previous chapter showed that while theoretically it is possible to obtain a unique

reconstruction of a complex object from only the 2-D Fourier intensity, in practice phase

retrieval algorithms are required to impose additional constraints in order to reconstruct

the correct complex object with reasonable noise tolerance. Unlike x-ray microscopy and

reconstruction problems in astronomy, mode decomposition for optical waveguides

allows one to measure both the intensity at the output of the waveguide as well as in the

diffracted Fourier plane. The problem of phase retrieval, given both the object intensity

and the Fourier intensity, was treated first using the Gerchberg-Saxton (GS) algorithm

[31]. This algorithm is known to be a particularly successful method for phase retrieval

that results in a unique as well as noise tolerant solution [33] by iterating back and forth

between the two-dimensional (2D) field distributions of the object and the Fourier planes.

This algorithm requires however the calculations of both the Fourier transform and its

inverse in any iteration and thus might be quite computationally intensive. The

decomposition of a field in a waveguide, on the other hand, requires the reconstruction of

only the mode expansion coefficients since the field distribution is constrained to be a

linear superposition of the waveguide eigenfunctions that can be determined from the

waveguide structure. The only unknowns are thus the expansion coefficients in this



superposition, rather then the set of pixels in the image [49]. By mapping the problem

from the 2D image space into this abstract space of waveguide eigenmodes we reduce

significantly the number of independent variables, and also completely remove the

dependency on the number of pixels in the iterative process. Furthermore, since higher-

order modes in multimode waveguides tend to have higher losses, one can set a modal

cutoff, depending on the specifics of the waveguide, and deal with only a small number

of modes. It is noteworthy that this approach applies to any waveguide, whether or not it

possesses any symmetry.

In Ref. [34], Fienup established that iterative methods, such as the GS algorithm, are

related to gradient search methods. Following suit, we construct our algorithm to

minimize an error function with respect to a set of independent variables representing the

expansion coefficients of a basis set constructed of the waveguide eigenmodes. Since the

vectorial aspect of the waveguide modes is essential we define four squared-error

functions for two orthogonally polarized components in both the near- and far-fields

(2.7) A,b = f [I, (r)- Ia" (r)]2 dA
core

where a = 1, 2 defines the plane of measurement (near- or far-field), b = 1, 2 defines one

of two perpendicular polarizations, Ime is the measured intensity, while Ir is the intensity

of a reconstructed estimate of this field. We then define an overall error function

A = Ea,b Aa,b. We used an unconstrained optimization routine that employs the subspace

trust region method from MATLABC to perform the minimization of this error function

over the space of expansion coefficients.

If the electric and magnetic field vectors of the nth waveguide mode are (E) and OH),

respectively, and their scalar projections in a fixed direction are e, and hn, then the total

field vectors are E(r)= ,c(E) (r), H(r) = c-H)(r), where c,= c e'" are the

expansion coefficients. Using this notation, the reconstructed intensity is

Ir (r) = I Re ,, c,c e, (r)hj (r), where N is a normalization factor, and we note that eiN



and hj may be chosen to be real functions in two dimensional structures. By rearranging,

we may write any of the four error functions, Aa,b, as follows

1 2 cFu+(2.8) 1 -p qA 2 E Cji +P
ijpq N u

where P is the integral over space of Ime squared, A, = y e,(r)ej(r(r)(r)hq(r)dA, and

IF, = f•,,,(r)e,(r)hj(r)dA . The tensors A and F may be contracted significantly by

exploiting the symmetry of the waveguide modes. Furthermore, the tensor elements are

computed once prior to the optimization of A, leading to a pixel-invariant iterative

process.

For the sake of demonstrating a concrete application of our algorithm, we restrict

ourselves for the remainder of the paper to circularly symmetric waveguides. The

cylindrical structure results in three conserved quantities that characterize the vectorial

eigenmodes: the frequency wo, the axial wave vector (eigenvalue) k, and the angular

momentum mn. For a large core fiber (with respect to the transmitted wavelength) the

components of an eigenfunction with eigenvalue k can be expressed

as Rmt(r)cos(mO+ ) exp[i(kz - ot)]. The phase , which we henceforth call the

degeneracy phase, is required by the degeneracy of the sinmO and cosmO solutions of the

wave equation. Modes with m = 0 are non-degenerate TE and TM, while modes with

non-zero m are doubly degenerate hybrid modes. The radial factor, Rm,(r), can be

obtained using the transfer-matrix method [18].

2.4 Experimental Mode Decomposition for a PBG Fiber
We confirmed the validity of this algorithm by applying it to the problem of mode

decomposition in a multimode cylindrical photonic bandgap fiber [5]. The fiber (Fig. 2.3)

has a 533 an-diameter hollow core surrounded by a multilayer structure that results in a

fundamental bandgap ranging from 9.5 to 11.2 man. Since the core diameter is

approximately 50 wavelengths, the fiber is highly multimoded and can in theory support

thousands of modes. In practice, however, the strong mode-filtering mechanism



characteristic of this fiber [18], as well as the input coupling, result in only a few low-

loss, low-energy modes remaining with considerable power after one meter of fiber. We

used a linearly polarized CO2 laser at 10.6 ,um to excite the fiber, and carried out three

sets of measurements that we refer to as the long-fiber, bent-fiber, and short-fiber cases

(Fig. 2.3e). In the long-fiber case, we carried out measurements for a 1.5-m long straight

fiber; in the bent-fiber case, the first 1.1 m of the same fiber was kept straight while the

rest is bent (radius of curvature Rb = 0.3 m, length d = 0.4 in); and in the short-fiber case,

the bent part was cut off, leaving a 1.1-m-long straight fiber. In each case we captured the

near-and far-field intensity images (using 4-fand 2-flens configurations, respectively) of

two orthogonal polarizations with a Spiricon pyroelectric camera preceded with a linear

polarizer.

(e) Coupling Imaging Far-Field
lens lens Flip lens Flip -

I Long Fiber Ntirror Mirier CCD
V * V V0 Camera

Source Pinhole Pinhole PolarizerPolarizerpolarization
SBent Fiber Imagin

In-Plane lens
Bend s m uM irm e ................................. irror

Short Fiber Mirror /Mirror

Figure 2.3: a, SEM image of the PBG fiber cross section. Calculated intensities and vector field

distributions for the b, TE01, c, HE11 and d, HE21. All plotted with the degeneracy phases set to 0. e,

experimental setup for mode decomposition.



We performed the decompositions using a basis consisting of the 16 lowest-energy

modes with angular momentum m<4. We checked convergence by increasing the number

of eigenfunctions in the chosen basis to incorporate higher order modes and found no

measurable improvement. The fidelity of the decomposition results to the measured

intensity distributions is demonstrated in Fig. 2.4, for the short-fiber case. To further

confirm the validity of this decomposition, all measurements were repeated for five

distinct pairs of orthogonal polarization directions, and the correlation coefficients

between the decomposition results exceeded 0.98. To verify convergence of the error-

function to its global minimum, we repeated the process for 50 different random initial

conditions, and the correlation between the results was greater then 0.999.
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Figure 2.4: Measured and reconstructed intensity distributions for the short-fiber case. The circle in the

near-field images represents the location of the fiber core-cladding interface. The two circles in the far-field

images represent the location of the first and second zeros of a far-field image of a uniformly distributed

field having the shape and extent of the fiber core.

2.4.1 Results for the uncoupled case

Numerous salient features of wave propagation in the fiber may be discerned from the

decomposition results of the three cases by virtue of unveiling the values for the



amplitudes Icl, relative phases iq,, and degeneracy phases 4 of the guided modes. We

note that phase values are not reliable for modes with negligible amplitudes. We start by

examining the short-fiber case (Fig. 2.5), in which HE11 is the dominant mode (due to the

strong overlap between the laser Gaussian-beam profile and the HE, profile as shown in

Fig. 2.3c), with contributions from other modes, most significantly TEo0 and HE21. The

polarization of the output field was found to conserve the horizontal (x) polarization of

the input field, as expected by the circular symmetric structure. Inspection of the values

of IcnI, V,, and 4 for the 3 above mentioned dominant modes confirms this experimental

observation. This can be shown by first noting that in a large-core fiber the degeneracy

phase 4 of any mode manifests itself as a rotation of the mode field lines by an angle 4.

In the case of HEII, •HE]I x 7/2 [upper panel of Fig. 4(a)], corresponding to a rotation of the

field lines (Fig. 2.3c) to the horizontal. The TEol and HE21 modes (Fig. 2.3b and 2.3d), on

the other hand, have y-polarized components, but it is straightforward to show that the

relative amplitude, phase, and degeneracy phase revealed by the decomposition ensure

their cancellation.
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Figure 2.5: Complete modal decomposition of the 16 lowest-energy modes, with angular momentum m < 4

for the short-fiber case. The lower, middle, and upper panels depict the expansion coefficients modulus

squared Ic,12 (normalized such that lc,,12 = 1), the relative phases Vy,, and the degeneracy phases ,,,

respectively.

In a straight fiber, the orthogonal modes propagate with no mutual interaction, thus, any

changes in the modal distribution along its length are due to losses and dispersion. The

amplitude of a mode in the output of the long fiber is related to that of the same mode in

the short fiber by a factor of exp(ik, - ac,)d. Moreover, in the absence of structural

perturbations we expect the degeneracy phases 4 to retain their values. We theoretically
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calculated the axial-wavevectors k, and loss coefficients a, for our structure using the

leaky-mode technique [16]. Figure 2.6a depicts a comparison between two modal

decompositions for the long fiber for modes with Ic12>0.05. The first is obtained directly

from measurements performed on the long fiber, while the second uses the

experimentally determined decomposition of the short fiber as initial condition for

numerically evaluating the decomposition of the long fiber. The good agreement between

the two cases is easily observed, and the correlation for both the amplitudes and

degeneracy phases was found to be greater then 0.95. We attribute the small variations in

the results to deviation of the fiber structure from the ideal cylindrical structure assumed

by our theoretical model. While the amplitudes and degeneracy phases are quite

insensitive to such structural deviations, accurate theoretical determination of the rapidly

varying phases Vq, require precise knowledge of both the wavevectors k, and the absolute

fiber length. A detailed experimental study on relative-phase reconstruction will be

presented elsewhere.

Figure 2.6 a, The decomposition results of the long fiber (red bars) and a theoretical estimation (black

bars). b, The decomposition results of the bent fiber (red bars) and the calculated results based on a mode-

coupling model (black bars). Both theoretical estimates shown in (b) and (c) use the results in (a) as initial

conditions.
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2.4.2 Results for the perturbed system
The rapid convergence of our scheme and complete phase and amplitude information

allows for the study of systems with a large number of interacting modes as is the case in

a waveguide bend. Here we compare the modal content in a bent fiber obtained by direct

experimental observation and subsequent modal decomposition at the fiber output to the

predicted output based on coupled mode theory assuming identical initial conditions

established by the modal decomposition of a short fiber. Theoretically, bends with

unchanged cross section and radius Rb much larger then the core radius, are treated as a

perturbation to the fiber axis [18]. The field at the output of the bent fiber can then be

represented by a linear superposition of the unperturbed fiber eigenmodes, with the

coefficients satisfying:

dz(2.9) dc = ikc, + iE Yy,,,c,.dz n'+*
where the matrix elements y,i, representing the coupling between the n and n' modes and

couples directly only those pairs of modes with Am = ±1 [18], due to the nature of the

perturbation. The degeneracy of modes with m>O is lifted under this perturbation, giving

rise to a change in the degeneracy phases. Furthermore, the first non-zero correction to

the coefficients in perturbation theory is inversely proportional to Ak,, n= k,- kn,, thus we

expect only those modes that are close in k space to be strongly coupled. Evaluation of k,

for the various modes identifies TMo0 , TEo1, and HE21 as the closest neighbors of HE11.

However, since the fiber bend was in the x - z plane, reflection symmetry around the y

axis must be conserved. Consequently, the x-polarized HE11 will not couple to TEo0 due

to their different symmetry under reflection in the y axis (Fig. 2.3). We solve Eq. (2.9)

numerically fbr the modes shown in Fig. 2.5, taking the decomposition results for the

short-fiber case as initial conditions. Figure 2.6b depicts the solution of the coupled-mode

equations thus obtained alongside the decomposition results for the bent-fiber case and

good agreement is observed with correlation coefficients for both amplitudes and

degeneracy phases greater then 0.96. The expected coupling to TMo1 is clear, while the

ostensibly weaker coupling to HE21 can be understood from examining the dependence of

the solution of Eq. (2.9) on the length of the bend. The modes exchange power back and

forth along the bend due to interference of the scattered waves, and the length of the bend



in our experiment fortuitously corresponds to a point at which the HE21 coefficient

returns to its initial value. Lastly we note that if the polarization of the field lies in the

plane of the fiber bend, the mode coupling results in a field that conserves the original

polarization, otherwise energy is transferred to the orthogonal polarization. For that

reason the HE11 mode retains its polarization along x, as indicated by 0El (upper panel

of Fig. 2.6b). On the other hand, the degeneracy phase for the HE21 mode, which has both

x-polarization and y-polarization components (see Fig. 2.3d) changes in order to maintain

the overall x-polarization while accommodating changes in the amplitudes of the other

modes. The modal content as obtained by the two independent approaches is in close

agreement as evident in Fig. 2.6b.



2.5 Mode synthesis

2.5.1 Objective
In the first chapter we studied the transmission properties of the few lowest energy modes

in a large core PBG fiber. In particular, it has been predicted that the zero-angular-

momentum mode TEo0 will have the lowest transmission losses. The reliable and

controllable transmission of TEo1 mode in an optical fiber in the near infrared has not, to

the best of our knowledge been previously reported. The TEo0 mode has several unique

advantages and features, most notably that it is completely circular symmetric, and hence

truly non-degenerate (in contrast to the linearly polarized HE11 mode), thus alleviating

polarization mode dispersion. Moreover, the transmission bandwidth of the TEo0 mode is

predicted to be wider than that of the HE,, mode. Furthermore, the ability to excite

different core modes is expected to enhance our understanding of the propagation

characteristics of the different modes of a PBG fiber. The ability to generate and excite

the propagation of any mode will enable us to identify the mode with the lowest loss and

further study its characteristics and related scaling laws. The challenge is to excite only

the desired mode (or a superposition of modes). This can be done in two ways. The first

is to generate the field of a given mode using spatial modulator and then couple it into the

fiber. The second is to use perturbation to the fiber, such as fiber bands, that would

couple energy to the desired modes. Here we focus on the first technique.

2.5.2 Mode Synthesis using Programmable Phase Modulator
This technique involves the use of a Programmable Phase Modulator (PPM). The PPM is

an electrically-addressed phase modulator the employs an optical image transmitting

element to couple an optically-addressed PAL-SLM (Parallel Aligned Nematic Liquid

Crystal Spatial Light Modulator) with an electrically addressed intensity modulator. The

PPM uses an LCD to allow computer control and also employs an optical system to

eliminate diffraction noise originating from the LCD pixel structure. This unique

configuration allows easy computer-controlled pixel manipulation.



We note however, that with a single PPM it is impossible to generate an arbitrary field

distribution since only the amplitude or phase can be modulated at the same time, but not

both. Additionally, in general, the PBG modes have more then one polarization

component (vector field), while the PPM operates only one polarization component. In

spite of these two restrictions, most of the interesting properties of the fiber modes can be

studied from the linearly polarized HEll mode, the azimuthally polarized TEol mode and

the radially polarized TMol. Yet, we need to demonstrate that effective coupling for these

three modes can be obtained by only phase modulation of a single polarization. Figure

2.7 depicts the coupling coefficients of two scalar beams with identical Gaussian

amplitude distribution but opposite symmetry in phase. Fig. 13a shows that for uniform

phase distribution the beam would couple mostly to the HE11 mode. By changing the

phase symmetry of that beam, by introducing a s phase shift between two halves of the

beam, the coupling is now mostly to the TEo1 and HE21. While this might not be an ideal

coupling, in practice since the radiation losses of the HE21 are much higher then of the

TEol, after a short segment of fiber only the lower loss TEol would survive.
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Figure 2.7: The coupling coefficients between the fiber modes and a Gaussian beam having a uniform

phase (a) and nc phase shift between two halves of the beam (parallel to the beam polarization). The

coefficients are plotted as a function of the ratio between the Gaussian beam size and the core radius.

Figure 2.8 depicts the phase distribution on the PPM required in order to obtain

significant coupling to the different modes. A constant phase would result in coupling

mostly to the HEl mode. Phase shift of 71 between two halves of the array in the direction

parallel to the polarization would result in coupling to the TE01. A phase shift of 71 in the

plane perpendicular to the polarization would result in coupling to the TMol (here

however the losses of the TMol are no longer smaller then the HE21 ).

HE11 TEol TMoi

Horizontal
projection

Figure 2.8: Phase distribution of the PPM array for the generation of the linearly polarized HEI mode, the
azimuthally polarized TEo0 mode and the radially polarized TMo0 mode.

Figure 2.9 shows the setup for generating and coupling the spatially modulated beam. A

laser beam from a Ti:Sa is converted to higher wavelength using an optical parametric

oscillator (OPO) to generate a 1500 nm beam that in turn expanded and collimated to

match the size of the PPM array. The horizontally polarized laser beam is then incident

on the PPM that is rotated in 450. The phase modulated beam reflected from the PPM

then passes through a polarizer that is oriented in the vertical and then minifies to match
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the fiber core diameter. The input and output beam are imaged using a Vidicon and

InGaAs CCD cameras.
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Figure 2.9: Optical setup for the generation of eigenmodes using a spatial light modulator and their

coupling to the fiber.

2.5.3 Experimental results

We have experimentally demonstrated the excitation and transmission of the HEll

and TEo0 modes. Figure 2.10a-b shows images of the optical field at the output of the

fiber for the two modes at 1540 nm. Figure 2.10z shows the total intensity distribution of

the output field, while Fig. 2.10b shows the field after passing through a polarization

analyzer rotated to a set of different angular settings to confirm that we are observing the

intended modes. We have produced these modes in two different ways: (1) by displacing

the fiber input with respect to the input optical beam; and (2) by modulating the optical

wave front at the input to the fiber using a spatial light modulator (SLM). While we have

reported previously our work on analysis of the modal structure of the fiber output field

[49], we here report on the tailored synthesis of the transmitted field.
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Figure 2.10 (a) Total power and (b) polarization projections along three directions for the HE,1 mode (top

row) and TEo, mode (bottom row) at 1540 nm.

In Fig. 2.11 a we show the total power at the output of the fiber as a function of the

polarization analyzer setting for the two modes at 1540 nm. We have measured the

transmission spectra of these two modes and we plot the data in Fig. 2.11 b-c. The losses

were estimated by scanning the fiber with an integrating sphere and recording the decay

in radiated power along the length of the fiber (the optical source was a tunable OPO:

Mira, Coherent). Figure 2.11b shows the decay in power radiated from the fiber as a

function of propagation distance from the end of the fiber at a fixed wavelength (1505

nm), and the different slopes (corresponding to decay lengths along the fiber) indicate the

relative losses of the two modes. We note that the HEI1 mode has a shorter decay length

(higher losses) than the TEo0 mode. Furthermore, we were not able to excite the HE1I

mode outside the spectral range depicted in Fig. 2.11, while we observed the TEol mode

(albeit with high losses) over a very wide range of wavelengths. We also observe that the

transmission bandwidth of the TEo0 mode is indeed wider than that of the HE 1 mode.
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We have also observed the transmission of the TE02 mode. Furthermore, using the

SLM we have been able to produce linear superpositions of the TE01 and HEI1 modes

with controllable relative complex weights. This new observations have many

implications for using these modes as information carriers in optical communications and

are also possibly useful for particle guidance in the hollow fiber core under optical

radiation pressure.

(a)
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Figure 2.11 (a) Power as a function of polarization angle for the HEl1 and TEo0 modes. (b) The decay of

radiated power from the fiber when HE11 and TE01 modes propagate at 1505 nm. (b) Propagation distance

for the HEll and TE01 modes as a function of wavelength.



3 Active Photonic Bandgap Fibers: Surface Emitting Fiber Lasers

3.1 Introduction
Although laser technology is seen by some as a mature field, innovative structures with

exciting new applications do occasionally emerge. A phone conversation with a friend

across the Atlantic, storage of memorable pictures to a CD-ROM, or the removal of

damaged retinal tissue to restore a patient's vision - at the heart of all this lies a man-

made manipulator of light, the laser. The laser is made of three components - gain

medium, optical cavity, and pumping process. Since the development of the first laser in

1960 these three elements have come in great variety to address the wide range of needs

in science and technology. Fiber lasers [50] and the vertical-cavity surface-emitting lasers

(VCSELs) [51 ] are two types of lasers that have emerged in the past two decades which

have found use in many fields, including telecommunication, spectroscopy, medicine,

and data storage. Here we present a new type of laser that combines some of the key

advantages of both fiber lasers and VCSELs, which we believe could provide enhanced

capabilities for diverse technologies, including medical imaging [52-53], explosive vapor

and chemical detection [54], photodynamic therapy [55], and fabric displays [56].

Furthermore, this structure enables the study of the fascinating regime of strong coupling

in which high quality cavity and matter exchange energy repeatedly [57].

The laser is comprised of a hollow core fiber structure, with the gain medium

introduced into the hollow core. The walls of the fiber contain a dielectric

omnidirectional reflector, consisting of a multilayer structure running along the entire

fiber length. In addition to facilitating guidance of the pump light along the fiber core,
this multilayer structure provides the optical resonant cavity required for the build up of

laser modes in the radial direction resulting in radiation emission from an extended

surface of the fiber (Fig. 3.1a). We coin this laser, the Surface-Emitting Fiber Laser

(SEFL).



3.1.1 Surface Emitting Fiber Laser

Heretofore emission from fiber lasers originated solely from the fiber ends in the axial

direction with a spot size dictated by the core radius. This is typically achieved by doping

glass fibers with rare earth ions such as erbium that serves as a gain medium. The fibers

are pumped optically by a co-propagating laser (Fig. 3.1b) and the resonant cavity is

provided by Bragg gratings along the axis of the fiber. These lasers are renowned for

their high powers, low loss, small size, flexibility, and simple thermal drawing fabrication

process. The emission wavelength range of these fiber lasers is limited due to the few

elements which can produce gain in these structures. SEFLs on the other hand, while

sharing all the listed advantages of ordinary fiber lasers, have no intrinsic limitation to the

range of laser emission. The fabrication process allows for easy control of the dielectric

layer thicknesses, which in turn permits tuning the bandgap wavelength of the mirror

structure to any desired reflection wavelength. Since the hollow core can host practically

any gain medium, laser emission can be obtained by simply overlapping the reflection

bandgap of the fiber to the emission spectrum of the gain material. Indeed, we have

already demonstrated surface-emitting fiber lasers that lase at nine distinct wavelengths

in the visible and near infra-red.

The evolution of fiber laser technology from the conventional on-axis emission to

surface- emission resembles the evolution of semiconductor wafer based laser technology

from edge-emitting lasers to the VCSELs. The latter are made by sandwiching a light

emitting layer between highly reflective mirrors (Fig. 3.1c), usually made from dielectric

multilayered or epitaxially grown mirrors of distributed Bragg reflectors. Light is emitted

perpendicularly from the surface of the mirrors. The SEFL geometry is the cylindrical

counterpart of the planar VCSEL with a cylindrical cavity that is encapsulated by

multilayered dielectric ring that also results in emission through the surface.

New means to control the light-matter interaction in solids have resulted from the

advances in fabrication of semiconductor microcavities and the related VCSELs. In the

same manner SEFLs would enable the study of interaction between matter and cavity

modes that exhibit fascinating behavior when the rate at which they exchange energy (the

Rabi frequency) is greater then the combined decay rate of the matter polarization and the

light in the cavity [58]. When this condition is satisfied the system is said to operate in



the strong coupling regime. The ability to fabricate high quality cavities and to introduce

a wide variety of matter into the cavities makes SEFL especially good candidate for the

study of cavity quantum electro dynamics (QED).
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Figure 3.1: Photonic bandgap fiber laser. The fiber laser emits light in the transverse direction (propagation

and polarisation vectors shown as solid arrows and dashed lines, respectively) having a dipole-like
wavefront from an extended length of the fiber.
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3.2 General Properties of Organic Dyes
Organic compounds are defined as hydrocarbons and their derivatives. They can be

subdivided into saturated and unsaturated compounds. The latter are characterized by the

fact that they contain at least one double or triple bond. These multiple bonds not only

have a profound effect on chemical reactivity, they also influence spectroscopic

properties. Organic compounds without double bonds usually absorb at wavelengths

below 160 nm. This energy is higher than the dissociation energy of most chemical

bonds, therefore photochemical decomposition is likely to occur, so such compounds are

not very suitable for active materials on lasers. If two double bonds are separated by a

single bond, the two double bonds are called conjugated. Compounds with conjugated

double bonds absorb light at wavelengths above 200 nm. All dyes in the proper sense of

the word, meaning compounds having a high absorption in the visible part of the

spectrum, possess several conjugated double bonds. The basic mechanism responsible for

light absorption by compounds containing conjugated double bonds is the same, in

whatever part of the spectrum these compounds have their longest wavelength absorption

band, whether near-infrared, visible, or near-ultraviolet.

The light absorption of dyes can be understood on a semi-quantitative basis if we take a

highly simplified quantum-mechanical model, such as the free-electron gas model [59].

This model is based on the fact that dye molecules are essentially planar, with all atoms

of the conjugated chain lying in a common plane and linked by a bonds. By comparison,

the nt electrons have a node in the plane of the molecule and form a charge cloud above

and below this plane along the conjugated chain. The centers of the upper and lower

lobes of the n-electron cloud are about one half bond length distant from the molecular

plane. hence, the electrostatic potential for any single 7t electron moving in the field of

the rest of the molecule may be considered constant, provided all bond lengths and atoms

are the same (Fig. 3.2). Assume that the conjugated chain which extends approximately

one bond length to the left and right beyond the terminal atoms has length L. Then the

energy En of the nth eigenstates of this electron is given by En=h2 n2/8mL 2, where is the

mass of the electron and n is the quantum number giving the number of antinodes of the

eigenfunction along the chain. Thus, if we have N electrons, the lower N/2 states are



filled with two electrons each, while all higher states are empty. The absorption of one

photon of energy AE=hc/2 raises one electron from an occupied to an empty state. The

longest wavelength absorption band then corresponds to a transition from the highest

occupied to the lowest empty state with ,,=8mcL2/h(N+1). This indicates that to the

first approximation the position if the absorption band is determined only by the chain

length and by the number of n-electron N.
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Figure 3.2: a. simple cyanine dye as seen from above the molecular plane; b. the same as seen from the

side; e. potential energy of a ac-electron moving along the carbon atoms; d. simplified potential energy.

A peculiarity of the spectra of organic dyes as opposed to atomic or ionic spectra is the

width of the absorption bands, which usually covers several tens of nanometers. This is

immediately comprehensible when one recalls that a typical dye molecule may possess

fifty or more atoms, giving rise to about 150 normal vibrations of the molecular skeleton.
Many of these vibrations are closely coupled to the electronic transitions by the change in

electron densities over the bonds constituting the conjugated chain. Furthermore,
collisional and electrostatic perturbations, caused by the surrounding solvent molecules,
broaden the individual lines of such vibrational series. As a further complication, every

r



vibronic sublevel of every electronic state, including the ground state, has superimposed

on it a ladder of rotationally excited sublevels. There are extremely broadened because of

the frequent collisions with the solvent molecules which hinder the rotational movement

so that there is a quasicontinuum if states superimposed on every electronic level.

The free-electron modal can also provide a simple explanation for another important

property of the energy levels of organic dyes, namely the position of the triplet levels

relatively to the singlet levels. It can be shown [59] that for every excited singlet state

there exists a triplet state of somewhat lower energy. Direct observation of absorptive

transitions from the singlet ground state into triplet states is very difficult since the

transitions are spin-forbidden. Fig 3.3 depicts the eigenstates of the dye molecule in

which a ladder of singlet states Si containing also the ground state G. Somewhat displaced

towards lower energies there is the ladder of triplet states Ti. The longest wavelength

absorption is from G to S, the next absorption band from G to S2, etc. By contrast the

absorption from G to Ti is spin-forbidden.
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Figure 3.3: energy levels of typical dye molecule with radiative (solid lines) and nonradiative (broken

lines) transitions with the intersystem crossing between the singlet and triplet and phosphorescence

transition between the lowest energy triplet state to the ground state of the singlet.

There are many processes by which an excited molecule can return directly or indirectly

to the ground state. Some of these are schematically depicted in Fig. 3.3. It is the relative

importance of these which mainly determines how useful a dye will prove in dye lasers.

The one process that is directly used in dye lasers is the radiative transition from the first

excited singlet state S1 to the ground state G. There also exist the possibility that the

energy hypersurface of the excited state will approach closely enough to the ground state

for the molecule to tunnel through the barrier between them. It is then found in a very

highly excited vibronic level of the ground state. This process is generally termed

"internal conversion". The internal conversion between S2 and S1 is usually extremely

fast, taking place in less than 10- 1 s. This is the reason why fluorescence spectra of dyes

generally do not depend on the excitation wavelength. The radiationless transition from

an excited singlet state to a triplet state can be induced by internal perturbations (spin-

orbit coupling, substituents containing nuclei with high atomic number) as well as by

external perturbations (paramagnetic collision partners, like 02 molecules in the solutions

or solvent molecules containing nuclei of high atomic number). These radiationless

transitions are usually termed "intersystem crossing".

The radiative transition from T, o G is termed "phosphorescence". As expected for spin-

forbidden transitions, it is extremely long, ranging from milliseconds to many seconds for

molecules with small spin-orbit coupling. The lowest singlet and triplet states can also be

deactivated by a long-range radiationless energy transfer to some other dye molecule. For

this to happen, the absorption band of the latter "acceptor" molecule must overlap the

fluorescence or phosphorescence band of the "donor" molecule.

3.2.1 Dye Lasers

In principle, there are two possible ways of using an organic solution as the active

medium in a laser: One might utilize either the fluorescence or the phosphorescence

emission. At first sight the long lifetime of the triplet state makes phosphorescence look



more attractive. On the other hand, due to the strongly forbidden transition, a very high

concentration of the active species is required to obtain an amplification factor large

enough to overcome the inevitable cavity losses. In fact, for many dyes this concentration

would be higher than the solubility of the dyes in any solvent. A further unfavorable

property of these systems is that there will almost certainly be losses due to triplet-triplet

absorption. It must be remembered that triplet-triplet absorption bands are generally very

broad and diffuse and the probability they will overlap the phosphorescence band is high.

If the fluorescence band of a dye solution is utilized in a dye laser, the allowed transition

from the lowest vibronic level of the first excited singlet state to some other higher

vibronic level of the ground state will give a high amplification factor even at low dye

concentrations. The main complication in these systems is the existence of the lower-

lying triplet states. The intersystem crossing rate to the lowest triplet state is high enough

in most molecules to reduce the quantum yield of fluorescence to values substantially

below unity. This has a two-fold consequence: Firstly, it reduces the population of the

excited singlet state and hence the amplification factor; and secondly, it enhances the

triplet-triplet absorption losses by increasing the population of the lowest triplet state.

The problem of intersystem crossing can be solved if the pumping light flux density rises

fast enough such that the population of the triplet level is held small, i.e. if the pump flux

reaches threshold in a time which is small compared to the reciprocal of the intersystem

crossing rate. For a typical value of 107 s-1 the rise time should be less than 100 ns which

is much longer then sub-nanosecond rise time of the Nd:YAG and therefore we can

restrict our analysis to the singlet state.

Molecules that take part in the dye laser operation have to fulfill the following cycle:

Absorption of pump radiation at v, and with cross-section o, lifts the molecule from the

ground state with population no into a higher vibronic level of the first (or second) excited

singlet state S1 (or S2) with a population nl (or n2). Since the radiationsless deactivation to

the lowest level of S1 is so fast, the steady state population nl is negligibly small,

provided the temperature is not so high that this vibronic level is already thermally

populated by the Bolzmann distribution of the molecules in S1. Stimulated emission then

occurs from the lowest vibronic level of Sj to higher vibronic levels of G. Again the



population no of this vibronic level is negligible since the molecules quickly relax to the

lowest vibronic levels of G.

It is then possible to write the oscillation condition for a dye laser. In its simplest form a

dye laser consist of a cavity of length L with dye concentration of n and of two mirrors of

reflectivity R for the laser resonator. With nl molecules excited to the first singlet state,

the dye laser start oscillating at frequency v, if the overall gain is equal to or greater than

one:

(3.1) exp[-ac(v)noL]Rexp[+, (v)nlL] 1

Here o,( v) and o( v) are the cross-sections for the absorption and stimulated fluorescence,

respectively, and nO is the population if the ground state. The first exponential term gives

the attenuation due to reabsorption of the fluorescence by the long-wavelength tail of the

absorption band. The attenuation becomes the more important, the greater the overlap

between the absorption and fluorescence bands.

Since the fluorescence band usually is mirror image of the absorption band, the maximum

values of the cross-sections in absorption and emission are found to be equal, i.e.,

O,max,=Cp,,max. Taking the logarithm of (3.1) and rearranging leads to a form of the

oscillation condition which makes it easier to discuss the influence of the various

parameters

(3.2) S/n + cra(v) <n<(v)
a (v)+ ca (V) n

where S = (1/L)ln(1/R). The constant S only contains parameters of the resonator. Other

types of losses, like scattering, diffraction, etc., may be accounted for by an effective

reflectivety, Rff. The value of nl/n is the minimum fraction of the molecules that must be

raised to the: first singlet state to reach threshold. The absorbed power density W

necessary to maintain a fraction nl/n of the molecular concentration n in the exited state

is W=n1hvp/r where rf is the radiative lifetime of S1. The power flux, assuming the

incident radiation is completely absorbed in the dye sample, P= W/no where oais the total

molecular absorption cross-section.

The polarization of the dye laser beam is determined mainly by the polarization of the

exciting laser beam, the relative orientation of the transition moments in the dye molecule



for the pumping and laser transitions, and the rotational diffusion-relaxation time. The

latter is determined by solvent viscosity, temperature and molecular size. The direction of

the transition moments of the fluorescence and the long wavelength absorption is

identical, since the same electronic transition is involve in both processes.

Most often the pump pulse is of approximately Gaussian shape and its FWHM power is

less then the reciprocal of the intersystem-crossing transition rate. Thus, we can expect

the following time behavior, neglecting finer detail for the moment. Shortly after the

pump pulse reaches threshold level, dye-laser emission starts. The dye laser output power

closely follows the pump power till it drops below threshold, when dye-laser emission

stops. The dye-laser pulse shape should thus closely resemble that of the part of the pump

pulse above the threshold level. A detailed treatment is due to Sorokin [60] who solved

the rate equations for the excited state population in the dye and the photons in the cavity

dNl W(t) N, Q N1

dt N, tc  rf
(3.3)

dt tc Nt

where N1 is the excited state population, Nt is the threshold inversion, Q is the number of

photons in the cavity, tc is the cavity lifetime, rif is the fluorescence lifetime, and W(t) is

the pump pulse envelope normalized to the total number of pumping photons, i.e.,

f W(t)dt = NPmp

3.3 Photonic Bandgap Fiber Laser Structure
Here we report on the conceptual framework and development of a radially surface-

emitting fiber laser that is capable of dynamic tuning of both the gain medium position

along the fiber axis and the direction of emission. The design, fabrication and

characterization of polymeric, photonic bandgap [16], surface-emitting fiber lasers which

combine some of the key advantages of both vertical cavity [51] and fiber lasers [50] are

reported. First, a cylindrical multilayer hollow-fiber structure with a fundamental

photonic bandgap in the visible and near infrared is fabricated. A gain medium

comprising an organic dye dispersed in a monomer solution is then introduced into a



desired location along the fiber axis and subsequently polymerized to form a line source

of prescribed length. The photonic bandgap in this fiber plays a dual role. It both guides

the optical pump along the fiber axis and acts as a laser resonator in the transverse

direction. Consequently, radially directed lasing occurs from the fiber circumference, and

light is emitted along an extended length of the fiber. Both the directionality and

polarization of the emitted wavefront is controlled via the pump polarization. Lasing at

nine different wavelengths spanning the visible spectrum is demonstrated. At the 652-nm

line we obtained 37% efficiency, 1-nm linewidth, and 86-nJ lasing threshold.

The surface-emitting fiber laser structure and pumping arrangement are shown

schematically in Fig. 3.1 a. The structure comprises a gain medium in the core surrounded

by a photonic bandgap (PBG) structure [16,18] made of 58 layers of a wide mobility gap

amorphous semiconductor, As2S3, alternating with a high-glass-transition temperature

polymer, poly(etherimide) (PEI). A scanning electron microscope micrograph of the

multilayer structure (Fig. 3.4a) verifies the uniformity of the layer thicknesses throughout

the fiber. The individual layer thicknesses are 59 nm (As 2S3) and 89 nm (PEI), and the

structure is terminated by a 29.5-nm thick layer to eliminate surface modes. The gain

medium is pumped axially while the resonant cavity provided by the PBG ensures laser

emission in the radial direction. The PBG structure performs a dual role enabled by the

characteristic shift of the band edges to higher frequencies with increase in wave vector

as depicted in Fig. 3.4b. The normal-incidence bandgap, defined for axial wave vector k =

0 (region A), provides the optical feedback necessary for achieving lasing action in the

radial direction. Concurrently, the blue-shifted bandgap having axial wave vectors near

the light line (region B) is responsible for guiding the pump frequency.
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Figure 3.4: Structure of the fiber laser cavity. a, Cross-sectional SEM micrographs of the PBG multilayer

structure at various magnifications. The PEI in the cladding and the layers appears black, and the As 2S3

layers white. The PEI and As2S3 layers are 164 nm and 76 nm thick (except for the first and last As 2S3

layers which are 38 nm thick; the first layer is not visible). The top left inset shows a cross-sectional

fluorescence micrograph of the full cross-section of a PBG fiber with an R590 organic dye in the core and

enveloped by a thick PEI protective cladding. b, Projected band structure of a one dimensional photonic

crystal consisting of alternating layers of As 2S3 and PEI. Transverse-electric (TE) and transverse-magnetic

(TM) propagating modes are in dark and light blue, respectively; evanescent modes are in white. Light

incident normally to the structure (k=0) and axially propagating modes through the hollow core are shown

as regions A and B, respectively. c, Measured reflection band gap centred around 620nm (see 'Optical

characterization' in methods) in black; fluorescence spectrum of LDS698 (500 ppm concentration) in red;

and calculated dye-in-cavity emission obtained by multiplying the last two, dashed line.
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While different types of gain media may be used in conjunction with the fiber, for

simplicity we chose an organic laser dye [59] incorporated into a copolymer matrix. The

upper inset in Fig. 3.4a is a fluorescence micrograph of the fiber cross section. An

organic dye, LDS698, having a fluorescence peak at 645 nm was dispersed in a

copolymer and inserted into the otherwise hollow core of a PBG fiber. Since the normal-

incidence PBG is 26% of its centre-frequency, it encompasses the entire fluorescence

spectrum as shown in Fig. 3.4c. This same fiber supports the propagation of a pulsed

optical pump at 532 nm traveling through the fiber core.

3.4 Laser Emission Characteristics
We observe broad fluorescence emission from the above described fiber laser at pump-

pulse energies lower than the 86 nJ threshold, while radially directed lasing occurs with

sharp peaks at 652 nm above threshold (Fig. 3.5a). To confirm that the emitted radiation

is indeed laser light and not amplified spontaneous emission, we show in Fig. 3.5a the

emission spectra of the fiber for three different pump energies: below (A), near (B) and

above (C) threshold. The lasing threshold occurs at pump energies of 86 nJ and 110 nJ

for dye concentration of 500 ppm and 50ppm, respectively. The dependence of the

emission bandwidth (Fig. 3.5a inset) and energy (Fig. 3.5b) on the pump energy for both

500 ppm and 50 ppm dye concentrations are shown. Both clearly demonstrate laser

thresholds. The slope efficiencies are 37.5% and 16.5% for the 500 ppm and 50 ppm

concentrations, respectively.
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Figure 3.5: Lasing characteristics of an LDS698-doped PBG fiber. a, Emission spectra of the fiber laser for

a dye concentration of 500 ppm and pump energy below threshold (A), 1.2Eth (B) and 1.8Ed, (C), where Eth

is the lasing threshold energy. Inset shows the spectral full-width at half-maximum as a function of input

energy for 500 ppm (red line) and 50 ppm (dashed blue). b, Dependence of the laser energy on the pump

energy showing threshold values of Et = 86 nJ and Eth = 100 nJ for the 500 ppm and 50 ppm, respectively.

c, High resolution spectral measurement reveals mode spacing of 2 nm and quality factor of 640.

The PBG fiber (core diameter d, = 70 itm) supports many longitudinal cavity modes in

the transverse plane having a free spectral range AA• A~ / 2nd, where n is the core

refractive index and Ao is the lasing centre wavelength. The lasing spectrum was resolved

into its modes, as shown in Fig. 3.5c, using an optical spectrum analyzer (ANDO

I



AQ6317), and the 2-nm mode spacing (corresponding to a 68-rtm core diameter) is in

good agreement with the expected value. The measured 32, the spectral width of one

mode, is lower than theoretically expected. Possible reasons for this discrepancy are the

losses arising from an imperfect cavity structure and the limited spectral resolution of the

measurement setup.

The optical wavefront emanating from the fiber laser has several unusual characteristics

that stem from the combination of the emission properties of the dye and the resonant

cavity design. First, the emitted laser wavefront has a surprising dipole-like radiation

pattern, shown in Fig. 3.6b. This measurement was done in two different ways. First the

orientation of the pump polarization at the input to the fiber was rotated while a probe

recorded the emitted intensity in the x-polarization at a fixed location along the y-axis

(Fig. 3.6a). This measurement was then corroborated by physically rotating the probe

around the surface of the fiber laser while keeping the pump polarization fixed in the x-

direction. Upon comparing the radiation pattern to that of a bulk dye-doped copolymer

sample excited with the same pump, we find the dipole-like radiation pattern is not as

pronounced as in the fiber laser (Fig. 3.6b). In a previous section dealing with the

properties of dye lasers we showed that dye molecules that are aligned with the pump

polarization contribute the most to the fluorescence. This may be confirmed by

measuring the degree-of-polarization of the dye fluorescence for pump polarization fixed

in the x-direction, shown in Fig. 3.6c (dotted line). This measurement was done by

placing a polarizer along the y-axis, the direction of maximum emission, and recording

the emitted intensity as a function of the polarizer orientation in the xz-plane (Fig. 3.6c).

The dipole radiation patterns of the dye molecules combine to result in the radiation

pattern shown in Fig. 3.6b where the strongest radiation is in the direction orthogonal to

the pump polarization and the fiber axis. Since fluorescence polarized parallel to the

pump is stronger, cavity modes with this polarization have lower thresholds.

Consequently, the fiber laser has an enhanced degree-of-polarization compared to that of

the bulk dye emission (Fig. 3.6c, solid line) and a more prominent dipole-like radiation

pattern. This interesting result suggests that the direction of the laser beam can be

controlled remotely just by rotating the pump polarization.
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light emitted from bulk dye (dashed blue) and dye in a fiber cavity (red line) having a degree-of-

I--- 80

- 7

1---

~c~""T~~; ~--;"4-·lL~4n
I,, ,,,,,,,,,,,,,,,

120 : --.,0

=3

td

u,

9

111



polarisation of 0.22 and 0.6, respectively, measured by fixing the pump polarisation in the x-direction and

recording the intensity as a function of polariser rotation about the direction of maximum emission (y-axis).

A second unique feature of this laser is that emission occurs over a spatially extended

region by virtue of the extended surface area of the fiber resonator walls. This is in

contrast to semiconductor [61,62] and polymer [63] planar annular resonators in which

the resonator thickness is on the order of the emission wavelength. Figure 3.7 shows the

emission spectrum as a function of position along a large-core (dc = 200 ýtm) PBG fiber.

By moving a probe along its axis we observed laser radiation extending along - 5 mm of

the fiber (measured at full-width-half-maximum). The upper panel of Fig. 3.7 shows a

photograph of this operating laser. One may further increase the fiber length from which

laser light is emitted by optimizing dye concentration, core size, and PBG structure.
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Figure 3.7 Emission spectra from large core (200-gm) PBG fiber laser measured along the fiber axis at 10-

pLJ pump energy measured by scanning a probe fiber along the fiber side. The upper panel shows a

photograph of the fiber showing laser light emitted from a spatially extended region along the fiber (- 5

mm).



The dual action of the PBG structure as both a transverse laser cavity and a transmission

waveguide is highlighted in Fig. 3.8a. In this specific fiber, a short segment of

Rhodamine 590 doped copolymer was introduced into a PBG fiber, leaving the rest of the

core hollow. The photograph of the bent fiber displays both features: the hollow-core

portion of the fiber transmits the pump light (green, X = 532 nm, top of the photograph),

and the dye-doped portion emits orange-coloured laser light (X = 576 nm).

Furthermore, the placement of dye-doped segments along a fiber can be carefully

controlled. A demonstration that highlights the ability to finely tune segment size,

location, and composition is shown in Fig. 3.8b. A lasing display projects the letters

"MIT" in two colours. All the lasing fibers contain copolymer segments doped with DCM

(orange). Additionally, the "i"-fiber contains both DCM and LDS698 (red) demonstrating

that more than one gain medium can be precisely placed in the same fiber. This specific

display contains 12 dye-filled fibers that are pumped from both ends. The large segments

contain less than 0.5 gl of dye-doped polymer.

Finally, the use of dyes with fluorescence spectra that extend over the visible and near-IR

wavelengths is made possible by simply scaling the PBG structure and hence shifting the

bandgap. Nine different dyes were inserted into separate fibers having bandgaps matched

to their emission peaks. The lasing spectra of these fibers are displayed in Fig. 3.8c, and

photographs of three lasers are shown depicting bright blue, green and red laser light.
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Figure 3.8: a, A photograph of an R590-doped PBG fiber showing the pump (532 nm, green) guided in the

hollow-core PBG fiber. Lasing at 576 nm (orange) occurs in the R590-doped region. b, Lasing "MIT"'

made out of 12 PBG fibers doped with DCM (orange) and LDS698 (red) that are simultaneously pumped in

both directions. This display design illustrates the ability to finely tune dye location, size, and

concentration. c, Laser emission spectra from fibers doped with nine different dyes. The lasers producing

emission spectra 1-3 are constructed using the same hollow-core PBG fibers having a fundamental

reflection bandgap at 500 nm, and were pumped at 355 nm. The fibers used to produce emission spectrum

4 have a fundamental reflection bandgap at 600 nm, while those used for spectra 5-9 have a fundamental

reflection bandgap at 690nm, and all were pumped at 532 nm. Photographs of the organic dye-doped PBG

fiber lasers showing the individual laser colours (blue, green and red) emitting from the fiber surface.
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3.5 Hollow Core Fiber Amplifier

3.5.1 Introduction

The development of optical amplifiers revolutionized the field of optical communications

and has contributed enormously to the unprecedented expansion in optical

communication networks. Furthermore, optical amplifiers are often used for short-pulse

amplification and in general for the generation of high-power sources. There are

predominantly four methods of generating optical amplification. Erbium-doped fiber

amplifiers (EDFA) [64] are widely used in communication systems due to the overlap of

the amplification spectrum window with the entire C-band of optical networks.

Semiconductors Optical Amplifier (SOA) [65] are typically made from group III-V

compound semiconductors. Their performance is still not comparable with the EDFA due

to the short nanosecond or less upper state lifetime that results in higher noise and high

nonlinearity with fast transient time. In Raman optical amplifier (ROA) [66] the signal is

intensified by Raman amplification. Unlike the EDFA and SOA the amplification effect

is achieved by a nonlinear interaction between the signal and a pump laser within an

optical fiber. Optical parametric amplifiers (OPA) [67] use crystal materials lacking

inversion symmetry that can exhibit X(2) nonlinearity. Parametric amplification occurs

when a signal beam propagates through the crystal together with a stronger pump beam

of shorter wavelength. The pump is converted into lower-energy signal photons and the

same number of so-called idler photons; the photon energy of the idler wave is the

difference between the photon energies of the pump and signal waves.

3.5.2 Amplifier Structure and design considerations

Here we propose a new type of optical fiber amplifier that is constructed of a multilayer

cylindrical photonic bandgap hollow fiber coated from the inside by a sub-wavelength

layer of active material (Fig. 3.9). Several key advantages over the standard solid core

EDFA and ROA can already be noticed. First, the signal propagates predominantly in the

hollow core part of the fiber and therefore higher energy signals can be supported without

reaching the limit of mechanical breakdown. Second, application dependent, strong

suppression of non-linear processes compared to solid core fiber amplifiers. Third, the



recent use of hollow-core in applications such as atom-guidance, high harmonic

generation, super continuum generation, and more allows one to study systems in which

light can be amplified.
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Figure 3.9: Hollow core photonic bandgap fiber amplifier constructed of hollow core cylindrical multilayer

fiber with a sub-wavelength active material layer on the core-cladding surface that. The amplification of

light that propagates along the fiber axis is due to the high gain experienced by the tails of the mode on the

core-cladding interface.

The optical amplification experienced by a core propagating mode is due to the

interaction of the mode tail on the core-cladding surface with the inverted population of

the active material. The sub-wavelength thickness of this layer necessitates that the active

material small signal gain would be large enough such that the core propagating mode

would experience overall amplification. The finite thickness of the active material

introduces a perturbation to the multilayer cladding and causes the lowest energy core-

mode to cross the light line and to become a surface state. Figure 3.10 shows that

frequency range of the projected band diagram in which this interaction occurs for active

layer of 25 nm. The slow transmission between the two modes is due to the sub-

wavelength thickness of the layer, the two insets in Figure 3.10a are showing the intensity

pattern of the mode before and after the transition. When the field overlaps strongly with

the active material we expect to obtain strong amplification as shown in Figure 3.10b.

Here we calculated the gain as a function of frequency in the vicinity of the transition for

several absorption coefficients of the active material. Below that frequency the mode



overlap with the active material is not sufficient to generate amplification, however for

absorption coefficients of -105 m-1 strong gain can be obtained for modes that are even

below the transition frequency having their field concentrated predominantly in the center

of the core. We should note that in practice the emission spectrum of the active material

should overlap with that transition frequency in order to obtain this high gain.
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Figure 3.10: a. section of the band diagram showing a core propagating mode crossing the light-line to

become a surface state. b. in the vicinity of the interaction the field distribution of the mode is still

concentrated mostly in the hollow-core but with small portion in the active medium, if the absorption

coefficient of the active material is large enough the small signal gain becomes positive.

3.5.3 Experimental results
We fabricated a cylindrical multilayer fiber and spin coated the core-cladding surface

with a 25 nm thick layer of organic amplifying fluorescence polymer (AFP) [54,68]. This

polymer has a peak absorption coefficient of 8-106 m-', an order of magnitude larger then

the required calculated value, and an emission spectrum ranging from 500-550 nm. The

fiber was designed to have a bandgap centered at 530 nm. In order to measure the small

signal gain of such a system we used a Nd:YAG laser with the 532 nm second harmonic

as signal and the 355 nm third harmonic as pump. Figure 3.1 la depicts a schematic of the

setup. The laser generates the two harmonics with a perpendicular polarization and

therefore in order to make them interact in the fiber we needed to rotated the polarization

of one of them. Furthermore it is necessary to control the intensity of each harmonic



separately. The beams were split using two dichroics and then were filtered in order to

eliminate any residue of the other harmonic. The polarization of the 532 nm harmonic

was rotated to the direction of the 355 nm pump and an attenuator was placed in its path.

The beam were then combined and coupled into the fiber using a lens. The pump signal

was filtered out at the output of the fiber using a high-pass filter and the transmitted

signal along with the spontaneous emission from the fiber was collected using a lens and

coupled into a spectrometer. Figure 3.11 b shows a picture of the fiber when the pump

beam propagates in it; the green emission from the sides is of the AFP. The emission

spectrum measured with the spectrometer at the end of the fiber (Figure 3.11 c) shows that

the 532 nm signal is -5dB stronger than when the pump is off.
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Figure 3.11: a. schematic of the amplifier system showing the beam path of the second (signal) and third

(pump) harmonics of the Nd:YAG laser coupling into the hollow-core amplifying fiber and collected at the

output by a spectrometer. b. An image of the fiber while it pumped with the 355 nm third harmonic. c. The

spectrum as measured at the output of the fiber in three situation, when only the pump is on - showing the

spontaneous emission coming out of the fiber, when only the signal is on, and when both signal and pump

are on - showing amplification of -S5dB of the signal.



4 Device Fibers

4.1 Introduction
Heretofore, while novel in their design, the functionalities of our fibers were limited to

the classical applications of fiber optics. In the reminder of this work, a new type of fibers

is presented, that due to a recent development of fabrication techniques [69] enabled the

integration of semiconductor devices into the fiber structure. The combination of

conductors, semiconductors, and insulators in well-defined geometries and prescribed

sizes, while forming intimate interfaces, is essential to the realization of practically all

functional electronic and optoelectronic devices. These devices are typically produced

using a variety of elaborate wafer-based processes, which afford small features, but are

restricted to planar geometries and limited coverage area. The use of this fabrication

approach has been the cornerstone of the electronic revolution, but has had no impact on

the optical fiber industry, which relies on a very different fabrication approach. Our goal

here is to produce fibers that deliver electronic and optoelectronic functionalities

maintained over extended lengths of a fiber. Our strategy in achieving this goal is to use

the preform-based fiber-drawing technique that has proven to be simple and yet to yield

extended lengths of highly uniform fiber with well controlled geometries and excellent

optical and thermal properties [69-72].

The fabrication approach that we adopt thus relies on first preparing a large-scale

macroscopic version of the required device in the form of a 'preform' and then reducing

it to the desired size through the process of thermal drawing (Fig. 4.1). This process

obviously places constraints on the materials that may be utilized. Nevertheless, a set of

materials with widely disparate electrical, optical, and thermal properties have been

identified and successfully incorporated into fiber-based devices [69]. The fabrication of

a preform essentially consists of a semiconductor glass (from the chalcogenide family),

metallic electrodes (tin), insulting Poly(ether imide) (PEI) or Poly(ether sulfone) (PES)

and multiple alternating thin films of PEI/glass (omnidirectional PBG structure) that are

uniform and in intimate contact with each other. Even though the fabrication procedure

varies for different structures, the general idea is schematically depicted in Fig. 4.1. A

polymer tube obtained from a thin film by rolling on a Teflon rod is consolidated in a



vacuum oven. Four slits are opened to host the metallic electrodes (Fig. 4.1 b) and several

layers of polymer film are rolled in order to confine the metallic electrodes (Fig. 4.1c).

The thin-film deposition technique that we settled on was a thermal evaporation of the

chalcogenide glass onto free-standing, commercially-obtained polymer films, allowing us

to deposit layers of the chalcogenide glass at high deposition rates (Fig. 4.1 d). At the end

of that process the preform is consolidated in a zone-defined horizontal vacuum oven

while rotating. The preform is then thermally drawn into hundreds of meters of fibers in a

three-zone vertical tube furnace (Fig 4.2f).

(a) (b) (C)

THERMAL EVAPORATION

Macroscopic Kilometer-long
Preform Nanostructured Fiber

Fig. 4.1. (color) Fabrication steps for nanostructured fibers and fiber devices. (a) An amorphous glass is

synthesized from elements in evacuated quartz tube. (b) The glass rod is assembled with an insulating

polymer shell and four metal electrodes. (c) A polymer sheet is rolled around the structure to confine the

metal conduits inside polymer. (d) A high-refractive-index glass is thermally evaporated on both sides of



meters-long thin polymer film uniformly. (e) The evaporated film is rolled around the structure obtained in

part (c). The final structure is then thermally consolidated in a vacuum oven in order to get a solid preform

rod. (f) The preform is thermally drawn to kilometer-long mesoscopic-scale fibers containing micro- and

nano-structures.

It is important to note that, the device does not demonstrate any functionality at the length

scale of the preform. After thermal drawing, a mesoscopic-scale fiber is obtained with the

geometry of the preform preserved faithfully after size reduction. At the length scale of

the fiber the device becomes functional, and the result is kilometer-long functional fiber

devices. In fact, it is conceivable that all the basic components of modern electric and

optoelectronic devices (such as junctions, transistors, etc) could potentially be

incorporated into fiber-based devices, produced with this simple and yet low-cost

technique, on a length scale out of the reach of traditional electronics. An intriguing

application of these fibers is the construction of large-area flexible optoelectronic screens,

smart fabrics, and artificial skin.

4.2 Integrated Fibers for Self Monitored Optical Transport
The ability to integrate distinct devices into a single circuit enables the realization of

systems with higher-level functionality. Here we introduce a new approach to integrating

optical, electrical and thermal devices within a single fiber structure. Four solid materials

including a polymer insulator, a binary semiconductor, a quaternary semiconductor, and

metallic elements are combined into a single fiber perform [69] which is then drawn at

high speeds to produce extended lengths of optically and thermally functional fibers. The

fibers comprise an optical transmission element which is a hollow-core multilayer

cylindrical photonic bandgap (PBG) structure [2,73] designed for the transport of high

power radiation at 10.6 microns [5]. Multiple thermal-detection elements are located in

the vicinity of the hollow core for the purpose of distributed temperature monitoring.

Metal electrodes extend along the length of the fiber in contact with the thermal-detecting

elements to deliver an electrical response to the fiber ends. The exponential dependence

on temperature of the electrical conductivity of the semiconducting material allows for

the discrimination - in real time - between normal transmission conditions and those



which are typical of localized defect formation, thus enabling for the first time a self

monitoring high power optical transmission line for failure prediction and prevention.

Index-guided and hollow-core PBG silica fibers have been used for the delivery of high

power laser radiation in the near infrared (NIR) wavelengths for industrial and medical

applications [74,75]. High power laser light delivery at mid-infrared (MIR) wavelengths

for industrial, medical and military applications has been achieved using hollow-core

fibers, where light confined using metallic [76], metallo-dielectric [77], or PBG structures

[5] has been demonstrated [75,78]. More recently, a polymeric cylindrical PBG fiber was

utilized in minimally invasive surgery (MIS) [79]. Regardless of the guiding mechanism

or materials used, the containment of such significant power densities within a fiber

presents reliability and safety challenges [80,81]. Even a small defect nucleating within

such a high power optical transmission line can result in unintentional energy release

with potentially catastrophic consequences.

4.2.1 Fiber Structure
We report here on the design, fabrication and characterization of a novel integrated self-

monitoring optical transport fiber for MIR transmission. By combining four different

materials, namely two amorphous chalcogenide semiconductors (As2Se3 and

Ge1sAs 25Se15Te45 (GAST)), a metal (Sn) and a polymer (polyethersulfone, PES), we

prepared a macroscopic preform rod which shares the final fiber geometry. The preform

was subsequently heated and drawn into functional fibers. Scanning electron microscopy

(SEM) micrographs of a representative fiber are shown in Fig. 4.2a-d. This hybrid fiber

has two functional components: (1) a hollow-core photonic band gap waveguide for CO 2

laser transmission (Fig. 4.2a), and (2) three metal-semiconductor-metal (MSM) thermal

detectors for temperature sensing (Fig. 4.2b). Each element is an MSM device, with the

two electrodes in Fig. 4.2b representing the metal contacts, and the 0.4-ptm thin GAST

film extending between them is the semiconductor. Figure 4.2c and 4.2d reveal that the

drawn fiber preserves the preform geometry during thermal cycling and elongation, a

very challenging issue for composite material processing. Because the large distance

between each two devices, the operation is rendered independent. Note that the thermal-



sensing devices are not operational at the preform level (because of the large distance

between the electrodes) and only become functional after drawing the fiber down to small

dimensions. In contrast to our earlier work [69] where we demonstrated a photodetecting

fiber and optical transmitting fibers separately, the structure presented here achieves

thermal sensing and optical transmission simultaneously.
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Figure 4.2: SEM micrographs of the hybrid fiber. a, The entire cross section of the composite fiber with

560 gtm hollow-core, one-dimensional photonic band gap structure, heat sensitive layer, metallic conduits

and protective polymer cladding. The outer diameter of the fiber is 1270 glm. b, The metal-semiconductor-

metal (MSM) heat sensor which consists of a thin amorphous semiconductor (GelsAs 25SelsTe45) layer and

two metal (Sn) electrodes. c, 13 pairs of alternating As2Se 3/PES layers forms a cylindrical mirror exhibiting

a photonic band gap centered at 10.6 gtm for delivering a CO 2 laser beam. d, A magnified micrograph of

the box in b demonstrating the excellent quality of the insulator-semiconductor-metal interface.
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The thermal detection layer described above is a tellurium-containing GAST thin film

whose electrical conductivity is highly sensitive to temperature by virtue of the very

small thermal activation energy. It is known that very stable glasses can be obtained with

around 50% Te content [82,83]. We synthesized a quaternary glass in the Te-rich part of

the glass formation diagram. The chosen glass composition GelsAs 25Se15Te45 was arrived

at by optimizing the composition formula GexAs 4oxSeyTe 6o.0-y (10 < x < 20 and 10 <y <

15) under constraints of compatibility of glass transition temperature and viscosity with

the co-drawn polymer PES. This optimized glass further exhibits enhanced stability

against crystallization during fiber drawing and high electrical responsivity to changes in

temperature.

4.2.2 Fiber Characterization

We start by characterizing the thermal-sensing elements of a 1270-Itm thick, 10-cm long

fiber by determining its resistance as a function of temperature. One of the thermal-

sensing devices on the fiber was connected to an external circuit through its two metallic

electrodes. The fiber was placed inside a hollow quartz tube, with the fiber's electrical

connections still intact, and its temperature was raised by a resistive heater. The

temperature inside the tube was measured by a thermocouple and the electrical current

was simultaneously measured using a pico-ampere meter (Keithly 6487 picoammeter)

with 50-V DC voltage applied. Figure 4.3a-b depicts both the temperature dependence of

the fiber resistance and the current-voltage (I-V) characteristics of this MSM heat-sensing

device. For amorphous semiconductors [84], the resistivity can be expressed

as p(T) oc exp(AE/ kT) where AE is the thermal activation energy, kB is the Boltzmann

constant and T is the absolute temperature. As shown in Fig. 4.3a, the measured

resistivity of the GAST thin film as a function of temperature ranging from room

temperature to 120 oC fits the above expression with AE=0.495 eV. The I-V curves in

Fig. 4.3b indicate that the MSM junction has an ohmic behavior at both low and high

temperatures.
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Figure 4.3: Thermal, electrical and optical properties of the hybrid fiber. a, The measured resistivity of the

GAST thin film in one of the devices on the fiber as a function of inverse temperature. The resistivity

decreases more than 2 orders of magnitude when the temperature increases from room temperature to 120

OC. b, The current-voltage characteristics of the heat sensor at low and high temperatures. The measured

current at 22 OC was multiplied by a factor of 10 in order to enhance visibility. c, Calculated band diagram

of cylindrical multilayer photonic band gap (PBG) structure. Blue areas correspond to bandgap for the

guided modes. Red areas correspond to regions where light couples to radiating modes that are not

localized within the fiber core. The inset shows a magnified segment of the guided modes near the light line

(0-900). d, Measured broad-band transmission spectrum of the hollow core PBG fiber. The primary and

third order gaps are centered at 10.6 and 3.0 pm, respectively.

Next, we discuss the optical transport properties of the hybrid fiber. The fiber has a 560-

jLm-diameter hollow core surrounded by a multilayer structure consisting of 13 bilayers

of alternating As2Se 3 and PES having thicknesses of 1 jim and 1.9 jpm, respectively (Fig.
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4.2c). The refractive indices of As2Se3 and PES are 2.73 and 1.65 at 10.6 ýpm,

respectively (see http://mit-pbg.mit.edu/Pages/DataBase.html for spectroscopic

ellipsometric data for these materials at NIR and MIR wavelengths). The calculated PBG

diagram of the hybrid fiber is depicted in Fig. 4.3c. This structure results in an

omnidirectional bandgap extending from 9.4 to 11.4 ýtm. Blue areas represent guided

modes inside the core, while red areas correspond to regions where light is not guided,

but instead radiates through the multilayer structure (see 'Band diagram calculation' in

Methods). The inset in Fig. 4.3c shows a magnified segment of the PBG diagram

detailing the guided modes near the light line (0=900), where the dispersion curves of

three modes appear as light blue stripes. The transmission spectrum of a 1-m long fiber

was measured by a Fourier transform infrared (FTIR) spectrometer (Tensor 37, Bruker)

and is shown in Fig. 4.3d. Excellent agreement between the measured (Fig. 4.3d) and the

calculated spectrum (Fig. 4.3c) is observed.

Heat generation in the cladding is predominantly due to either radiation leakage of the

guided modes into the cladding or to localized defect states. Typical radiation lengths

range from a few meters for the low-energy modes, to a few centimeters for higher order

modes. However, structural perturbations such as fiber bends and defects tend to increase

the overall losses due to coupling to both higher order propagating modes and to

localized defect states. In such cases the radiated power from the multilayer structure is

absorbed in the polymer cladding and transforms into heat. As a result, thermally excited

electron-hole pairs in the GAST layer changes its electrical conductivity. The equivalent

conductance of length L of the fiber can be modeled in terms of the local temperature

distribution T(z) as GEq oc Jexp(- AE/kBT(z))dz.
L

We demonstrate the delivery of high-power laser light through the hybrid fiber while

monitoring the temperature in the fiber. A CO2 laser (GEM-25, Coherent-DEOS) at 10.6

ýtm was coupled to the fiber and a 50-V DC voltage was applied to the device electrodes.

The input and output optical power as well as the current through the electrodes were

recorded. We also measured the power radiated from the fiber outer surface and found it

to be negligible with respect to the overall power loss. This suggests that the difference in



power between the input and output dissipates in the fiber cladding and converts into

heat, which is further monitored using an infrared (IR) camera (FLIR). We measured the

fiber current as a function of the dissipated power AP (AP=Pin-Pout) for a 40-cm long bent

fiber. We carried out several measurements for decreasing bend radii and recorded the

output power, electrical current and temperature distribution (Fig. 4.4a) for a fixed input

power of 2 watts. The temperature distribution is found to have an oscillatory behavior

[80] due to mode-beating between modes coupled by the bend [18] with a Gaussian

envelope centered midway on the fiber bend (Fig 4.4b). Since the mode-coupling strength

is inversely proportional to the square of the bend radius [49], an enhancement of the

radiated power in the bend is expected, and consequently a raise in temperature. The

results are presented in Fig. 4.4c where the increase in current for higher dissipated power

(lower radii) is easily observed. The equivalent resistance of the fiber was calculated

assuming a Gaussian function for T(z). We found good agreement between the measured

values and the calculated response as shown in Fig. 4.4c. Note that the beating amplitude

is much smaller then the temperature envelope and therefore its effect on the current is

negligible.

4.2.3 SelfMonitoring ofFailures
The potential usage of this hybrid fiber to cope with the failure of waveguides in high

power laser systems by detecting faults prior to their occurrence is a very crucial

achievement. Such failures normally happen due to distortions in the waveguide structure

that result in the appearance of localized defect states. Consequently, high optical energy

is coupled from core to the defect state resulting in extensive heat generation. The ability

to detect hot spots in the fiber can prevent catastrophic failures. However, the existence

and location of defects is usually unknown a priori, and monitoring of the temperature

along the fiber is required, as achieved by the temperature-sensing device embedded

along the entire length of the fiber. The only challenge is to devise a method to obtain an

indication of the local defect temperature from integrative current measurements which

we proceed to demonstrate. Earlier work on studying the temperature distribution along

fibers designed for high power laser delivery has relied on scanning the external fiber



surface using a point thermal sensor [80,81]. This approach obviates the possibility of

real time monitoring and is only feasible in a laboratory setting.
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Figure 4.4: Power dissipation along the bent fiber. a, Thermal photograph of a bent fiber captured by an

IR camera for a dissipated power of AP=700 mW (AP=Pij-Pout). b, The temperature distribution along the

fiber. Periodic variation in the temperature along the fiber is clearly seen. This is due to the fact that

(orthogonal) modes are coupled by the fiber bent, resulting in mode beating. c, The measured current on the



fiber increases for decreasing bent radii, for a fixed input laser power. The theoretical model agrees well
with the measurements.

In order to investigate the self fault detection capabilities of our fiber we measured the

current as a function of the dissipated power for defect-free and defective 40-cm long

fibers. The defect on the fiber was intentionally generated by burning a small spot on the

fiber by a CO2 laser beam. The temperature distributions along the fibers were recorded

using an IR camera for fixed dissipated power as shown in Fig. 4.5a. While the

temperature is low and almost constant along the defect-free fiber, a high-temperature

spot is observed at the location of the defect in the other fiber. These measured

temperature profiles are fitted to Gaussian distributions in Fig. 4.5b. The areas under the

two curves are equal as expected since the dissipated powers in both cases are equal.

Thus, for fixed dissipated power (equal areas of the Gaussian thermal distribution),

defects that are more localized (narrower widths of the distributions) result in a higher

peak temperature. It is the exponential relation that exists between the temperature

distribution and the measured current that results in the capability of ascertaining whether

a certain amount of power loss is attributed to a highly localized defect or a uniformly

distributed loss. Because of this exponential relation, the currents generated in these two

cases are not equal, even though the amount of dissipated optical power is equal.

The current recorded for these two fibers (by their respective sensitive elements) reveals

a dramatic divergence as a function of dissipated power, as shown in Fig. 4.5c. The solid

lines are calculated using the temperature data obtained by the IR camera and then

implementing the above described model of fiber conductivity. Our model of the

electrical response of the heat sensing device indicates an exponential dependence of the

local conductivity on temperature. This suggests that a point on the fiber having

temperature much higher then the rest would provide the dominant contribution to the

current. In fact, for a given dissipated optical power the current would increase

exponentially with increase in the peak temperature along the fiber. This significant

difference between these fibers for identical dissipated power clearly suggests that a

sufficient condition for determining fiber failure from current measurement can be

obtained and a damage threshold current can be set.
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Figure 4.5: High-power laser light delivery through the hybrid fiber and failure prediction. a, Thermal

photographs of a fiber containing a single localized defect (upper panel) and a defect-free fiber (lower

panel) captured by an IR camera. Both fibers carry identical CO2 laser energy. High power IR light

accumulates at the defect site, and consequently heats up the region around the defect. b, Temperature

distributions along the two fibers shown in a. The solid lines provide Gaussian fits to the measured

temperature profiles for both cases. c, Measured currents as a function of dissipated laser power for defect-

free and single-defect-containing straight fibers. The solid lines are calculated by assuming that the

temperature distribution along the fiber is Gaussian as in b. The current increases dramatically in the

defective fiber case. d, Calculated current as a function of the maximum temperature along the fiber for a

constant dissipated power. A higher maximum temperature corresponds to a more localized defect

(narrower temperature distribution at defect site). The two points correspond to the measured current values

for defect-free (blue circle) and single-defect containing (red circle) fibers for a dissipated power of

approximately 360 mW (vertical dashed line in c).
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In order to place a failure onset, we calculated the current as a function of temperature

distribution width for a given dissipated power (Fig. 4.5d). The maximum temperature is

determined by localization properties of the defect, i.e. width of Gaussian distribution

(see Fig. 4.5b). In the absence of a localized defect, the current does not exceed a certain

threshold value for straight and bent configurations. Hence, when the monitored current

exceeds a critical value (failure onset) for a fixed input power level, it is most likely to be

due to heat-generated-defects on the inner surface of the fiber.

In conclusion, we have introduced a new approach to integrating multiple materials and a

multiplicity of functional devices into a single fiber which is drawn from a macroscopic

preform at high speeds. We have incorporated two different semiconductors, an insulator

and a metal in the same fiber preform and have codrawn it with no structural

deformations while preserving the initial geometry. The thermal-sensing devices

embedded in the fiber structure become functionalized only upon drawing down to small

cross-sectional dimensions. The utility of this approach was demonstrated by integrating

a photonic bandgap optical transport device with multiple thermal sensors within a single

fiber. The thermal sensing layer along the fiber enabled electrical monitoring of

temperature changes within a high power transmission fiber allowing for the

discrimination - in real time - between normal transmission conditions and those which

are typical of localized defect formation. The ability to integrate optical transport and

thermal monitoring for failure prediction is of paramount importance if high power

optical transmission lines are to be operated safely and reliably in medical, industrial and

defense applications. This work may also pave the way for new types of fiber sensor

devices.



5 Optical-Field Detection Using Geometric Fiber Constructs

5.1 Introduction

The novel fiber structure described in the previous chapter has remarkable properties in it

own right. Nevertheless, interesting and unique possibilities stem from the construction

of functional fabrics using such optoelectronic fibers. The fibers are both flexible and

mechanically tough, and can thus be woven. Furthermore, interesting device applications

follow not only from the ability to engineer the single-fiber properties, but also from the

specifics of fiber arrangements into larger assemblies. For example, in constructing a 2D

optical detector array, a desired resolution of NxN pixels per unit area would require N2

point (dimensionality zero) detection elements. A fabric woven out of linear 1D fibers, on

the other hand, provides a grid structure which in turn can be used to localize an

illumination point on a surface-but with detection elements of only order N (as

suggested by comparing figure 5.1a and b). Moreover, by overlapping layers of this

fabric, one could even ascertain the direction of incoming illumination.

We envision that arrays of photodetecting fibers can replace traditional optical

systems through the use of a novel geometric approach to optical detection.

Measurements of optical fields are typically performed using sequential arrangements of

optical components such as lenses, filters, beam splitters in conjunction with planar

arrays of point detectors placed on a common axis [85]; both the human eye and the

photographic camera are examples of such systems. A generic conventional optical

system is shown in Fig. 5.1a, involving a single lens and a planar optical detector array.

In the limit of geometric optics (where light is represented by rays) the role of the lens is

to apply a specific linear transformation T to the incident light rays that results in the

mapping of an incoming vector to an outgoing vector which is subsequently detected by

the detector array. The approach described in this section involves the implementation or,

in some cases, the emulation of arbitrary optical systems through the spatial geometric

arrangement of photodetecting fibers in 3D constructs. A geometric arrangement of 1D

photodetectors is shown in Fig. lb which is capable of detecting the direction of an

incoming ray. The linear transformation T corresponding to the action of a lens [85] is



then computationally applied, allowing one to answer the question of what direction

would the outgoing ray emerge were there to be a lens in its path. Thus, in the geometric

optics limit, the lens-detector optical system is computationally emulated by the spatial

fiber arrangement.

Note that although an optical detector obstructs the path of a ray since light detection is,

in general, a destructive process, nevertheless, an optical array made sufficiently sparse

will offer little disturbance to the incident field. The first array in Fig. 5.1c registers the

location of the incident beam, which continues its path, only slightly perturbed, to the

second web which records the new position of the beam. One may then easily determine

the angle of the beam from knowledge of the two locations and the distance d between

the planes of the webs, which, along with the position of the beam in a plane, constitutes

a complete representation of the ray in the limit of geometric optics [85]. The angular

resolution of this arrangement is determined by the ratio of the spatial resolution of a web

to d, and the angular bandwidth is limited by the ratio of the size of the array to d.

A physical realization of such an arrangement is shown in Fig. 5.1c where two 32x32

arrays, or 'webs', are used to detect the direction of a beam of light. The arrays are

constructed of one-dimensional (1D) photodetecting fibers produced by a fabrication

process that enables the incorporation of insulators, conductors, and semiconductors in

mesostructured fibers combining both optical and electrical functionalities [69].

Specifically, the fibers we make use of here are constructed of a photoconductive glass

core contacted to metal electrodes that run along the length of the fiber and then

surrounded by a protective, transparent polymer cladding. A micrograph of the fiber

cross-section is given in Fig. 5.1d. The resulting fibers are arbitrarily long, light-weight,

flexible, ID light-sensitive elements that produce an electrical signal, in the form of a

change in current in an external circuit, when light impinges on their external surface [41,

86].

This new geometric approach to optical field measurements lifts some of the

fundamental limitations associated with conventional measurement systems and,

moreover, enables access to optical information on unprecedented length and volume

scales. These tough, polymeric, photodetecting fibers [41] are woven into light-weight,

low-optical-density, 2D and 3D constructs that measure the basic attributes of



electromagnetic fields on very large areas. The precise geometric construct is tailored to

address specific measurement requirements and, in particular, does not necessitate an

optical axis. The problem of optical field measurement is therefore transformed from one

involving the choice and placement of lenses and detector arrays to that of designing

geometrical constructions of polymeric, light-sensitive fibers. These fibers, moreover,

enable the realization of large-area optoelectronic functional surfaces, presenting the

opportunity to deliver novel semiconductor device functionalities at fiber-optic length

scales and cost.
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Figure 5.1: Photodetecting fiber webs. a, A typical optical imaging configuration. A lens implements an

optical transformation T that results in mapping incoming rays to outgoing ones. A 2D detector arrays then

detects the intensity distribution. b, Two transparent, planar detector arrays constitute a directional light

detector. Given the location and direction of the ray, one may implement the optical transformation of the

lens T digitally on a computer. c, A physical implementation of a directional light detector consisting of

two planar fiber webs, displaying the path of a ray of white light in three dimensions on the computer

screen. The two planar fiber webs detect the positions of the two intersection points that determine the

beam direction. d, A scanning electron microscope micrograph of a fiber cross-section showing four

electrodes in contact with a photoconductive, semiconducting glass core, surrounded by a protective

polymer cladding.
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5.2 Fiber Photodetectors
A well known characteristic of crystalline semiconductors is the change of their

electrical conductivity under optical illumination due to the transition of electrons from

the valence band to the conduction band through the absorption of photons having

sufficient energy. Although the lack of long-range order in amorphous media, such as

chalcogenide glasses, renders the Bloch theorem (and thus the crystal momentum k),

irrelevant, the energy-band diagram is still a useful conceptual tool that may be used as

an approximation to describe the density of electronic states. Amorphous materials

possess an energy band gap between the valence and the conduction bands, but in

contrast to intrinsic crystalline semiconductors, the density of states is not zero in the gap.

Indeed, the random electronic potential in any amorphous structure is responsible for an

exponentially decaying density of states that extends out of the conduction and valence

bands into the band gap, called Urbach's tail, corresponding to localized states below the

mobility edge. Moreover, defect states, such as dangling bonds, that can be present at

energies generally corresponding to the center of the gap, are responsible for the

characteristic properties of chalcogenide glasses such as p-type conductivity and the

pinning of the Fermi level [87].

When light impinges on an amorphous semiconductor, such as that in the fiber

core described above, holes from the valence band, as well as from localized states inside

the band gap, can gain sufficient energy by absorption of a photon to transit to an

extended state in the conduction band, a process not dissimilar from what occurs in the

crystalline case. It is interesting to note, however, that there is no sharp energy edge for

excitation of electron-hole pairs in amorphous semiconductors, due to the non-zero

density of states in the gap. These materials are therefore sensitive to light over a wide

range of wavelengths, and are also suitable for sub-bandgap detection, which has

important consequences for our fiber-based photodetectors.

Returning to the above described fiber device, when the metal electrodes (that

interface with the chalcogenide glass core along the entire length of the fiber) are

connected to an external circuit and a voltage is applied, a current determined by the

conductivity of the glass in the dark will flow. The fiber undergoes a change in electrical



conductivity when externally illuminated since electron-hole pairs are created, driven

apart by the electric field, that contribute to the current flowing through the fiber. The

striking originality of this new type of light-sensing device, besides its low cost and

simplicity of production, resides in its geometry. It is the first one-dimensional (1D)

distributed photodetector that detects light incident on it from any direction at any point

along its entire length which may extend to hundred of meters. Producing a

photodetecting line with current point photodetectors (of dimensionality 0) would require

a large number of devices, and the price of their assembly scales with the detection length

required. An inherent disadvantage of an integrating lD photodetector such as our fiber,

however, is that no information about the location of the incident beam along the fiber is

obtained. This may be overcome, however, by constructing two-dimensional (2D)

assemblies of fibers to localize a point of illumination in a plane.

5.3 Optical Intensity Detection Using Fiber-Webs
We now proceed to demonstrate a more sophisticated task, namely the detection of an

arbitrary optical intensity distribution using a planar fiber web. An important observation

brings to the fore which body of theoretical work is of relevance to this problem. Since

each fiber detects the incident intensity distribution along its whole length, the

intercepted power (and, consequently, the electrical signal produced) is therefore a line

integral of the intensity distribution along the fiber. A fiber, of length L and diameter A

(A << L) placed along the line xcos0+ysin0= t, in an optical field having a two-

dimensional intensity distribution I(x, y), as illustrated in Fig. 5.2a, generates a

photocurrent that is proportional to the intercepted optical power Po (t), given by

(5.1) Po(t)= dxdy I(xdxdy I(x,ylAffdxdyI(x,y)5(xcosO+ ysinO-t)
fiber area

where tl is the intercept of the fiber with the t axis, which makes an angle 0 with the x

axis.

Consequently, the measurements performed by a set of parallel photodetecting fibers

form a 'parallel projection' of the incident intensity distribution, a term used in the

literature on computerized axial tomography (CAT) [88]. In that context it refers to the



measurements performed by a linear array of point detectors placed on one side of a 2D

object of interest, when a linear array of point sources (e. g., X-rays) is placed on the

opposite side of the object. In our case, each fiber records the line integral of the intensity

distribution of the optical field along its length. An example of a parallel projection

produced by a fiber web is shown in Fig. 5.2b, where a 32x32 fiber web (of dimensions

24x24 cm2) intercepts an image of a letter 'E' and the two orthogonal projections

obtained by the rows and columns of the web are displayed. The image is produced by a

white-light lamp (Xe-Hg) illuminating a transparency with dimensions 14x14 mm2

placed at a distance of 1.2 m from the web. No lens is needed to form an image of the

object transparency in this case because of the large dimensions (relative to the

wavelength of light) used, highlighting the unique advantage of a detector array having

such a large area.
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Figure 5.2: Reconstructing an arbitrary optical intensity distribution with a planar fiber web. a, A

photodetecting fiber of thickness A detects the line integral of the arbitrary incident optical intensity

distribution, I(x,y). b, An image of the letter 'E' is projected onto a 32x32 fiber web of dimensions 24x24

cm2. The detected electrical signals from the web rows and columns (constituting 2 orthogonal projections)

are also shown. The image of the letter 'E' seen here is formed on a white sheet placed behind the

transparent web. c, Reconstructions of the incident intensity distribution, obtained using the backprojection

algorithm, are shown with increasing number of projections. These projections are obtained by rotating the

object transparency. I angle: 00; 2 angles: 00, 450; 3 angles: 00, 300, 600; and 18 angles: 00 to 850 in 50 steps.

These two apparently different arrangements (CAT and our fiber webs) are, surprisingly,

mathematically isomorphic, allowing us to import the theoretical foundations of CAT for

use in the problem at hand. In particular, we employ the backprojection algorithm (Radon

transform) [88], commonly used in CAT, to reconstruct an estimate of the impinging

optical intensity distribution. In the case of fiber webs there are several strategies to

achieve this: (1) rotating the fiber web; (2) using adjacent or interleaved fiber webs, each

rotated by an angle with respect to each other; or (3) rotating the object that is imaged. In

Fig. 5.2c we show the reconstruction results of the image, obtained using the

backprojection algorithm, with increasing number of projections recorded by rotating the

object transparency. Increasing the number of projections acquired improves the fidelity

of the reconstructed image to the incident intensity distribution.

5.4 Optical field detection and lensless imaging
While a single planar fiber web can detect the intensity of an incident optical field, two

such webs can be used to detect both the field amplitude and phase, which constitute a

complete representation of a scalar optical field. The effect of any optical device may

then be simulated on a digital computer by manipulating this information about the field.

The human eye, for example, implements a specific transformation (that of an iris

followed by a lens) with variable parameters, before detecting a 2D intensity distribution.

One could also prepare a hologram using this information, or conceivably implement

object-recognition algorithms that benefit from the availability of the complex optical

field instead of relying on a 2D intensity image.
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The ability to reconstruct the field enables lensless imaging of an object by detecting the

diffracted intensity image and then using phase retrieval algorithm [35, 89-93] in order to

gain complete information on the field. We then can calculate numerically the field in

any other plane by using the Fresenl transform. The idea proceeds as follows. We use two

planar fiber webs, located at two distinct diffraction planes, and obtain the incident 2D

intensity distributions from both (by means of the CAT algorithm outlined above); we

then implement the phase retrieval algorithm to retrieve the phase of the wave front;

knowing the complex field at the first web, we can 'back-propagate' the wave front

computationally until an estimate of the object is obtained.

The feasibility of this approach is demonstrated by producing an estimate of the

amplitude and phase of an optical wave front produced by a letter 'E' having an overall

size of 750x750 im2 (with features size of 150 tm; the object was a chrome mask on a

glass substrate) illuminated with laser light having a wavelength of 830 nm. The 2D

intensity distribution data obtained by a fiber web at two different locations in the far-

field of the object is depicted in Fig. 5.3b. We implemented the phase retrieval algorithm

on the two obtained intensity distributions to reconstruct the object wave front. We define

an error metric E = Jdr I ýGn(r~ - I(r) describing the distance between an estimate
n=1,2

IGnl2 and a measured intensity distribution I, in both diffraction planes, n =1,2. The

distributions in the two diffraction planes are related to the object field distribution

g(x,y) through the Fresnel transform 3, G,(u,v)= 3{g}(u,v). The Nyquist frequency for

such system is I/L, where L is the size of g (in one dimension) and the sampling rate

corresponds to fiber spacing < 2md/kL, where A is the wavelength and d is the distance

betweeen the object and the array. The array size sets a cutoff for the spatial frequencies

and therefore determines the sharpness of the reconstructed image. The phase retrieval

algorithm used requires the minimization over the metric 0 with respect to the set of

two-dimensional variables {g(n,m)}, where n and m are discretized spatial coordinates.

The minimization is performed iteratively by repeating the following steps: (1) Calculate

Gn in both planes using the previous estimate of g (an initial guess for g is needed in the

first iteration). (2) Calculate O and its partial derivatives with respect to g(n,m). (3)
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Using the gradient-search method, find the next estimate of g (with smaller error). These

steps are repeated until the change in the error metric is limited by the system noise.

We comment on the extent of the disturbance to the optical field produced by

absorption of a portion of the impinging optical power by the fiber array. Consider the

general situation depicted in Fig. 5.3a where an optical field E,(x,y) incident on the first

array is perturbed by the first planar array before propagating to the plane of the second

array where the field is E2(x,y). To investigate the limits placed on this procedure by

diffraction caused by the fibers in the first array, assume that all the fibers in the first

array are identical, have an effective width 8 and are arranged on a uniform square grid

with separations A. The incident field, E,(x, y), is modulated by the 2D transfer function

of the array, T2D (x, y), such that the field directly after the array is E1 (x, y). T2D (x, y). The

array transfer function is separable, T2D(X, y)= TID(x). TD(y ) ,  with

TID(x)=1- rect S'8(x-nA); rect =1 when Ix_ < and is 0 elsewhere; 2N+1 fibers
()n=-u 2

are assumed along one direction. We assume that the first fiber array is large enough such

that it captures most of the incident field E, (x, y). This allows us to let N formally become

infinite, and the Fourier transform of T,, becomes

(5.2) FT{T(D}(u)/2r = 6(u) sinu u-2znA u /2 n=-oo

where 6D (u) is the Dirac-delta function. Note that the zeroth-order component in the

second term (n=0) on the right-hand side of Eq. (5.2) is weighted by a factor of 8/A with

respect to the first term. After propagating a distance d to the second array, the diffracted

field E2 (x,y) is given by the Fresnel integral of the modulated incident

field, E2(u, v) = E,T2D }(u, v) = E, }(u, v) FT(T2D (u, v), where 0 stands for the convolution

process (we have ignored an unimportant overall phase term). Two conditions need to be

met: (1) the size of the second array should be smaller than the separation between the

delta functions in the second term on the right-hand side of Eq. (5.2), and (2) 8/A << 1

(by using fibers of thickness much smaller then the fiber spacing) such that the

contribution of the zeroth-order second term in Eq. (5.2) becomes negligible; E2(x,y)

becomes approximately the Fresnel transform of E,.
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A Gaussian beam, from a Ti:Sapphire laser tuned to a wavelength of 830 nm, is incident

perpendicularly on an amplitude mask with the letter 'E', generating a Fresnel diffraction

pattern 12 cm away from the mask with size of - 1 mm, and a Fraunhofer diffraction

pattern 80 cm away with size of - 6.5 mm. In this proof-of-principle experiment, we

magnified those patterns to match the array size. We implemented the above described

phase retrieval algorithm using an optimization routine from MATLAB©, and optimized

the error function to obtain the reconstructed field at the plane of the mask. The iterative

process converged after less than 20 iterations to an error of less than 1%. Having an

estimate of the amplitude and phase of the field in one plane, one can use to propagate the

field to any other plane, and a "focused" image is observed at a distance that matches the

location of the object We compared these results to a theoretical model that numerically

propagates the field from the object, using the object distribution modulated by the

incidencet laser beam (as captured by a Vidicon camera) and taking into consideration

the 32x32 discretization of the diffracted fields at the measurement planes. The

calculated images and the reconstructed fields are given in Fig 5.3c.

In order to verify the fidelity of the amplitude and phase estimation, we use the

acquired complex wave front to 'propagate' the field computationally at distances

receding from the first web towards the object. A set of these computed estimates is

shown in Fig. 5.3b. The estimates are blurred until we approach the location of the object

where a clear image is formed. For comparison, we used scalar diffraction theory to

calculate the diffracted field of a letter 'E' modulated by a Gaussian beam at the two

measurement planes, the resulting amplitudes, truncated to the array size, are shown in

Fig. 3. We then used the phase retrieval algorithm to reconstruct the object at those same

planes receding from the first array.

This approach may eventually become useful in optical imaging when a larger

number of fibers are included in the web to form images of objects with more detail. Note

that this system has an infinite depth of focus, i.e., an image is formed of the object

regardless of the distance of the object from the webs, provided that the diffracted field at

the locations of the two webs, is intercepted. Furthermore, the image reproduces the

object with its real physical dimensions and also determines its physical distance from the

webs. In principle, by virtue of obtaining a complete description (both the amplitude and

103



phase) of the electromagnetic field, this approach may be used to image 3D objects that

are translucent enough so that excessive occlusion does not occur. A distinct approach

relies on the use of a single dense array having a higher fill factor. While such an array

will result in a strongly perturbed field at the second plane, the reconstruction can still be

achieved using a single intensity measurement [94] without the need for a measurement

at the second plane. This procedure requires that an over-sampling requirement be

satisfied: the sampling of the diffracted field must be dense enough to enable the

reconstruction of the autocorrelation function of the object [91, 95]. Moreover, one can

arrange for the photoconductive glass core in the fibers to be responsive in different

regions of the optical spectrum.

There are several unique features of our approach that are not captured by other

techniques that sample a 3D electromagnetic field such as photorefractive crystals, for

example. First, our fiber webs are 2D manifolds embedded in 3D space, and therefore

they capture much less light than a truly 3D volumetric sampling detector. This serves to

reduce the amount of acquired data and minimizes the absorbed power. Second, no

optical readout is required, as is the case in photorefractive crystals, since information is

acquired directly in the form of an electrical signal. Most importantly, the size of our

fiber webs can be made arbitrarily large, an advantage not shared by any other rival

technology.

Finally we comment on the weight of such arrays. Assume a 1 xl m2 array formed

of 1-mm diameter fibers with 1-cm spacing providing 10,000 detection points. With

average density of the fiber materials being 1.84 gm/cm3, the overall weight of the array

is 0.289 kg, which is negligible when compared to the weight of any traditional optical

component of comparable size. Note that using fibers with smaller diameters allow for

weaving denser arrays.
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Figure 5.3: Non-interferometric lensless imaging using two fiber webs. a, An object (letter 'E') is

illuminated with a laser beam (the image of the object is captured with a Vidicon camera) and the diffracted

fields propagate to the planes of two 32x32 planar fiber arrays at two different locations (Fresnel zone, 12

cm, and Fraunhofer zone, 80 cm, shown on the right, first row) are obtained using the fiber webs. The

Fresnel number NF [1] is also given. b, Two intensity distributions are measured. The phase retrieval

algorithm is used to obtain back-propagated images in the direction receding from the webs towards the

object (the object reconstruction is at at 0 cm, shown on the left). The reconstructed images are blurred, but

a clear image is obtained at the location of the object. c, The second row shows the results of theoretical

reconstructions with the phase retrieval algorithm when using near- and far-field diffraction patterns that

were obtained from the measured illuminated object distribution.
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5.5 Dynamic Distributed Detection

5.5.1 Modeling the fiber as a transmission line

The detection scheme suggested so far requires a multiple-projection measurement in

order to reconstruct any arbitrary intensity or field distribution. In practice, rotating the

object or alternatively the detector to obtain the data might pose a problem. Here we

suggest a technique that allows us not only to obtain the spatial distribution of light

incident upon a fiber but also to have the capability of dynamically controlling the

detection resolution.

The reconstruction of a spatial distribution of a layered structure that is accessible from

only one end surface has been studied recently in several disciplines. In biology, Optical

coherence tomography (OCT) is employed for noninvasive cross-sectional imaging in

which the longitudinal locations of tissue structures are determined by measuring the

time-of-flight delays of light backscattered [96]. In geology, Time domain reflectometry

(TDR) is used to reconstruct the dielectric constant and electrical conductivity of soils

having different electrical conductivities [97].

One can harness these same techniques to reconstruct the spatial light distribution of our

photo-detecting fiber by noting that this structure can be regarded as a transmission line.

The reasoning behind it is the observation that a fiber with electrodes surrounding a

uniform core supports the propagation of transverse-electromagnetic (TEM) mode.

Figure 19a shows a calculation of the electric field distribution in a cross section of a

fiber with two electrodes surrounding a glass core. This calculation was made by FDTD

techniques using Femlab and clearly shows the existence of TEM field solution to that

structure. We note that for a fiber having a thin-film detecting layer as shown in Fig. 5.4b

(with insulating polymer core) the structure would still support a TEM mode. Here

however, a perturbation to the structure is introduced by the conductivity of the glass

layer.
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Figure 5.4: The Modeling of one-dimensional fiber detector as a transmission line. a. a photocunducting

glass core surrounded by two metal electrodes supports a TEM mode with a complex impedance due to the

finite resistively of the glass. b. analytical solution to idealized structure can be obtained using conformal

mapping technique. This structure consists of two metal rods and a uniform core. In the case of thin film

fiber detector with a polymer core, the thin layer of photoconducting glass is considered as a perturbation to

the structure that introduces a complex permittivity.

The solution for the idealized structure (Fig. 5.4b) can be obtained simply by using

conformal mapping. This mathematical technique allows particular transmission line

geometry to be transformed into a new geometry in a second coordinate system, with a

certain rules governing the relationship between the electrical properties of the lines in

the two systems. Using this technique the electrical parameters of the transmission line

are found to be

C=
cosh- (c/b)

(5.3) L p=cosh-'(c/b)

Z L p cosh-'(c/b) 120

Zo -cosh- m (c/b)
C n

these parameters assume a uniform core having a refractive index of n and two

cylindrical electrodes separated by a distance of 2c and having diameter of 2b.
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The permittivity of the glass is in general a complex number with the imaginary part

proportional to its conductivity

-"dc+ ac -i(dc +_A

(5.4)

Z = cosh-'(c / b) + i : +
n 2n

where •ac=A ac is the a.c. conductivity of the amorphous glass with typical values of

a-l for different glass compositions [98-101]. Under illumination the conductivity can

change by a few orders of magnitude [69,86] resulting in a change that is proportional to

the local light intensity of the imaginary part of the transmission line impedance. We note

that the induced change is inversely proportional to the modulation frequency. It is

therefore expected that in order to obtain a measurable change in Zo at high frequencies

the a parameter of the a.c. conductivity need to be close to unity.

We also note that the above analysis is valid for the thin-film fiber configuration, in

which a thin detecting layer of glass surrounds a polymer core, with the appropriate

geometrical modification to the complex term.

5.5.2 Reconstruction of the non-uniform impedance

Under illumination this one-dimensional fiber detector translates the intensity distribution

into a non-uniform distribution of the complex characteristics impedance, Zo(z). This

distribution can be reconstructed in terms of time domain reflectometry by sending an

electrical pulse on the fiber electrodes and measuring the reflected signal (Fig. 5.5). In the

simple case of single point illumination the pulse would reflect from the point along the

fiber axis where the impedance is discontinuous due to change in conductivity. In that

case the location can be reconstructed by measuring the time-of-flight of the signal. For

an arbitrary distribution of the intensity the procedure is somewhat more complicated

[102-103]. The basic idea behind the procedure is the reconstruction of the system

response function using discrete linear system techniques. The transmitted and reflected

signals are represented by their Z-transform and the coefficients of the system response
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function (the non-uniform impedance) are reconstructed using either reconstruction

methods or other techniques.

Impinging light

Electrical Probe Signal . .

JV\JW-
Zo() = Z+ iZ~( )

Reflected Electrical Signal

-Z

Figure 5.5: Reconstruction of the non-uniform impedance using Time-Domain-Reflectometry (TDR). An

arbitrary light intensity distribution is incident on the outer surface of the fiber and in turn translated into

non-uniform impedance due to the local change in the glass conductivity. These variations are

reconstructed from the reflection of an electrical pulse that is sent on the fiber electrodes.

109

RL

I RL

0i"/-,Ný_A



6 Conclusions

This work demonstrated the design, characterization, and analysis of a broad range of

optical and optoelectronic fiber devices with functionality ranges from waveguiding

electromagnetic radiation in a hollow-core photonic bandgap structure to imaging system

constructed of an array of photodetecting fibers. The work begins with the study of the

mode properties supported by the multimode PBG fiber. We use the leaky mode

technique to calculate the core, defect, surface, and cladding modes and to analyze the

interaction between them. In practice, the field emerges out from a multimode fiber is a

superposition of the fiber eiegnmodes. Since each mode is characterized by different

propagation properties, obtaining the modal content of the intensity measured at the

output is of great importance for the understanding of light propagation inside the fiber.

We developed an algorithm to decompose the complex expansion coefficients of the

vectorial modes of any general multimode waveguide by using a phase retrieval

technique to reconstruct the complex field from two intensity measurements. These set of

tools enabled us to design and analyze higher functionality fiber devices such as the

surface emission fiber laser. Here we introduced an organic gain medium into the hollow

core and exploited the omni-reflectivity of the multilayer cladding to generate laser

emission with an interesting dipole like radiation in the radial direction. Furthermore, the

ability of the group to incorporate metals, semiconductors, and insulators in well defined

fiber geometry enabled the fabrication of semiconductor fiber devices. We demonstrated

here two such devices. The first was designed to have the dual functionality of both

guiding high power laser power and at the same time, by integrating thermal element to

the cladding, to self-monitor the temperature inside the entire fiber length for the purpose

of real-time failure detection. The second made use of photo-detecting fibers to construct

an optical imaging using large-area, three-dimensional optical-detector array. Lensless

imaging of an object is achieved using a phase retrieval algorithm.
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