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Abstract
Intensive Care Unit (ICU) patients are physiologically fragile and require vigilant
monitoring and support. The myriad of data gathered from biosensors and clinical
information systems has created a challenge for clinicians to assimilate and interpret such
large volumes of data. Physiologic measurements in the ICU are inherently noisy,
multidimensional, and can readily fluctuate in response to therapeutic interventions as
well as evolving pathophysiologic states. ICU patient monitoring systems may potentially
improve the efficiency, accuracy and timeliness of clinical decision-making in intensive
care. However, the aforementioned characteristics of ICU data can pose a significant
signal processing and pattern recognition challenge---often leading to false and clinically
irrelevant alarms.

We have developed a temporal database of several thousand ICU patient records to
facilitate research in advanced monitoring systems. The MIMIC-II database includes
high-resolution physiologic waveforms such as ECG, blood pressures waveforms, vital
sign trends, laboratory data, fluid balance, therapy profiles, and clinical progress notes
over each patient's ICU stay. We quantitatively and qualitatively characterize the
MIMIC-II database and include examples of clinical studies that can be supported by its
unique attributes. We also introduce a novel algorithm for identifying "similar" temporal
patterns that may illuminate hidden information in physiologic time series.

The discovery of multi-parameter temporal patterns that are predictive of physiologic
instability may aid clinicians in optimizing care. In this thesis, we introduce a novel
temporal similarity metric based on a transformation of time series data into an intuitive
symbolic representation. The symbolic transform is based on a wavelet decomposition to
characterize time series dynamics at multiple time scales. The symbolic transformation
allows us to utilize classical information retrieval algorithms based on a vector-space
model. Our algorithm is capable of assessing the similarity between multi-dimensional
time series and is computationally efficient. We utilized our algorithm to identify similar
physiologic patterns in hemodynamic time series from ICU patients. The results of this
thesis demonstrate that statistical similarities between different patient time series may
have meaningful physiologic interpretations in the detection of impending hemodynamic
deterioration. Thus, our framework may be of potential use in clinical decision-support



systems. As a generalized time series similarity metric, the algorithms that are described
have applications in several other domains as well.
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1.Introduction

Similarly to other physical systems such as manufacturing plants or large-scale computer

networks, the function and status of the human body must, at times, be vigilantly monitored to

ensure dangerous states are avoided when possible, and appropriate interventions are applied in a

timely manner when needed. Individuals with life-threatening conditions (trauma victims,

acutely-ill intensive care unit (ICU) patients) are physiologically fragile and unstable, and require

close monitoring and rapid therapeutic interventions. A major role of medical personnel in

clinical settings is to make frequent observations, and to obtain multiple quantitative measures of

organ system function. Physiologic and clinical data can vary widely based upon a particular

patient's pathophysiologic state, and the inherent noise adds another level of complexity to their

analysis and interpretation. The resultant data must be assimilated and interpreted to develop

pathophysiological hypotheses that motivate therapy. The need for real-time assimilation and

interpretation of medical data presents a motivation for the development of automated

physiologic monitoring systems with capabilities to rapidly assess a patient's physiologic state.

Furthermore, computerized analysis of clinical data can potentially illuminate "hidden"

information that can be used to optimize clinical care. The development of pattern recognition

and machine learning techniques suited for processing such signals is a major challenge in the

advancement to the next generation of monitoring and clinical decision-support systems. This

thesis is focused on utilizing data-driven pattern recognition to extract meaningful information

from ICU data sources for retrospective as well as real-time applications capable of identifying

deterioration in ICU patients.

1.1. Overview

In many sectors of our society, advances in computer networking, microprocessor

speeds, and information storage technologies have resulted in an explosion in the

volumes of data that are generated. In the modem Intensive Care Unit (ICU), these



advances have been coupled with a significant evolution in biomedical sensors and

devices capable of obtaining an impressive array of invasive and non-invasive

physiologic measurements. Providing life support in the ICU is becoming an

increasingly complex task, however, because of the growing volume of relevant data

from clinical observations, bedside monitors, mechanical ventilators and a wide variety

of laboratory tests and imaging studies. The enormous amounts of ICU data and its poor

organization make its integration and interpretation time-consuming and inefficient.

Furthermore, the projected increase in the population of elderly patients requiring close

ICU monitoring and predicted shortages of nurses and intensivists may exacerbate the

predicament facing the healthcare system of tomorrow. The "information overload" that

results may actually hinder the diagnostic process, and may even lead to neglect of

relevant data, resulting in errors and suboptimal ICU care [22]. On the other hand, the

richness and detail of the collected data make it possible for a new generation of

"intelligent" monitoring systems to track the physiologic state of the patient, employing

the power of modem signal processing, pattern recognition, computational modeling, and

knowledge-based clinical reasoning. With the advent of wearable biosensors, automated

physiologic monitoring is expandable to arenas outside of traditional medical settings,

such as military combat and home healthcare.

The Artificial Intelligence (AI) community was hopeful that AI would have a

great impact on healthcare. However, a brief assessment of the current state-of-the-art in

ICU patient monitoring suggests that AI contributions have been minimal. While there

have been significant advances in the storage, networking, and acquisition of signals that

can be simultaneously monitored, AI applications within patient monitoring systems have

been primarily limited to arrhythmia analysis.

There have been several impediments to integrating "expert systems" and other

AI technologies into medical settings in general, and ICU environments in particular.

Ideally, an advanced system should have access to all the data generated for a single

patient: physiologic waveforms (e.g. ECG, blood pressures), vital sign measurements

(heart rate, temperature, cardiac output), lab results (blood gasses, microbiology, blood

chemistry), medication profiles (IV drips, bolus medications), and clinical notes (nursing

notes, patient history). Traditionally, different types of data have resided on separate



systems in an ICU. However, industry has made several recent advancements that will

likely solve the challenge of integrating and accessing data from a single system [32].

Once the data are accessible to an advanced monitoring system, the challenges of

processing and interpreting large medical data sets will be formidable. The physiologic

and non-physiologic "noise" in medical data poses a significant challenge in developing

monitoring systems capable of detecting important physiological events while

maintaining an acceptable specificity. Moreover, there is a wide variation in features

within medical data sets for a large and diverse patient population. A short-coming of

previous AI approaches to patient monitoring is that they have relied upon a "black-box"

approach to alarm generation. Alarms are generated with little or no supporting evidence

or rationale based upon the available clinical data. For example, a pattern recognition

system may warn that a patient is likely to have an adverse cardiovascular event in the

near future. However, such an alarm may not highlight the features in the clinical data

that are supportive of one diagnosis versus another. The "expert-system" approach to

physiologic monitoring relies on the development of a set of rules used to interpret data

sets. These rules are derived from knowledge bases of human physiology and medicine.

As the number of physiologic signals available for analysis grows and the class of disease

processes varies more, the task of codifying knowledge bases into rules becomes more

complex. There will also be inherent differences between two or more experts on the

optimal interpretation of physiologic data. Finally, in the domain of high dimensional

physiologic patterns, there may be subtle patterns of physiologic significance that are not

characterized by expert rules due to limitations in human knowledge.

An alternative approach to "expert systems" is to utilize data-driven techniques

based upon machine learning and statistical pattern recognition. Statistical clustering,

principal component analysis (PCA), support vector machines (SVM), and Bayesian

graphical networks are among the most popular machine learning techniques [13]. These

statistical techniques can be adapted to utilize "training" or "labeled" data to learn

classification rules, or attempt to classify data in an unsupervised mode without the use of

training data. The advantage of the former technique is that the human labels and

annotations would ideally guide the pattern recognition system to produce similar

classification decisions to human experts. However, the process of generating a "good"



training set that is representative of the overall population of data can be quite

challenging. There are domains such as computational biology and bioinformatics where

the sheer amount of data are so voluminous and relatively new, that no training sets even

exist or the training sets are quite limited in extent [14].

Unsupervised statistical pattern recognition that does not utilize annotated data for

learning can be quite useful in such domains as computational biology, document and

web page retrieval, and financial data analysis [13]. Such frameworks attempt to derive

novel rules from data by identifying statistically significant patterns and trends in data

that can be separated into different classes. To implement such techniques for high

dimensional physiologic data, the high-dimensional space is extremely difficult to

interpret, and thus identify meaningful "clusters". This general rule has been referred to

as the "Curse of Dimensionality" within the AI community [2]. In practice, high-

dimensional pattern recognition problems require far more training samples so that

statistically meaningful clusters can be identified. The use of physiologic knowledge

bases can still be incorporated into the implementation of unsupervised machine learning-

based methods. For example, the data must be pre-processed to remove noise.

Physiologic knowledge can be utilized for assessing the fidelity of the data as well as

attenuating the noise when possible. Machine learning and pattern recognition techniques

are usually presented with a feature vector that is ideally a "good" representation of the

data. For example, in developing a machine learning algorithm to classify ECG rhythms,

a feature vector may consist of R-R intervals, QRS widths, P-R intervals, QT intervals, T

wave amplitude, and ST elevation/depression. These features were chosen based on

cardiac electrophysiology knowledge as a set of data representative of the underlying

physiology. Similarly, in multiparameter patient monitoring, the feature vectors can be

constructed by leveraging human physiology knowledge. Finally, once significant high

dimensional patterns are identified by processing large data sets, it is vital that such

patterns have plausible physiologic interpretations so that optimal care and therapeutic

interventions can be guided.

The automated analysis and processing of ICU data need not be limited to real-

time applications. Retrospective analysis of ICU clinical and physiologic data can also be

of significant importance in improving the provision of the healthcare in the ICU [66].



For example, retrospective analysis of therapeutic strategies that lead to better outcomes

can optimize future patient care. The Joint Commission for the Accreditation of

Healthcare Organizations (JCAHO) established quantitative criteria based on

automatically acquired ICU clinical data to indicate the quality of care in an ICU. Pattern

recognition and data mining of ICU clinical data sets may identify other quantitative

metrics of ICU care provision. Retrospective analysis of physiologic data may also

provide insight into the fidelity of ICU physiologic measurements. For example, the ever-

increasing utilization of non-invasive technologies, such as non-invasive blood pressure

(NIBP) modules, may sacrifice measurement accuracy, and lead to suboptimal care based

on the interpretation of erroneous physiologic measurements.

The present thesis addresses several challenges in developing advanced

physiologic monitoring algorithms. In particular, the major focus of this thesis is towards

the development of data-driven frameworks for physiologic pattern recognition of

hemodynamic deterioration in ICU patients. We describe the design, acquisition, and

management of a major ICU patient database of unprecedented size and scope that will

serve as an ideal resource for refining and evaluating our algorithms. We also present

novel algorithms for data pre-processing, feature extraction, and pattern recognition that

can be applied to multiparameter physiologic and clinical data. In particular, we motivate

the use of feature extraction techniques, such as wavelets, that can characterize the

dynamics of physiologic data at several scales. The major contribution of this thesis is the

development of a framework to "learn" models from massive physiologic datasets by

fusing robust statistical pattern recognition techniques with simple physiologic

knowledge bases. By leveraging the availability of clinically rich data with modern signal

processing, machine learning, and medical knowledge bases, we hope to illustrate the

potential utility of our proposed framework for the development of next-generation

advanced physiologic monitors.

1.2. Thesis organization

We now present the major organization of the thesis. In Chapter 2, a review of the

relevant literature is included and motivations for the approaches we have adopted in



addressing some of the pertinent challenges in the development of next-generation patient

monitoring systems. In Chapter 3, we describe a new multiparameter ICU patient

database (MIMIC-II) that we have acquired and developed, as well as the software

infrastructure necessary for its management. We provide quantitative characterizations of

the physiologic and clinical data in our database. In Chapter 4, we include examples of

retrospective clinical studies that process ICU physiologic measurements and quantitative

therapeutic data from MIMIC-II and discuss their implications for improving ICU care.

In Chapter 5, we introduce the signal-processing and pattern recognition framework we

have developed for multiparameter physiologic data streams. We motivate the use of

wavelet analysis and feature extraction for compactly representing physiologic signals for

real-time monitoring algorithms as well as retrospective temporal databases. We

demonstrate that this technique can serve as a robust method of assessing the similarity of

multiparameter trends from massive time series databases. In Chapter 6, we apply our

physiologic signal processing and pattern recognition framework with simple

cardiovascular models to identify early sign of hemodynamic deterioration in ICU

patients. We assess whether the statistical similarity between ICU events is correlated to

their physiologic similarity. We develop applications for clinical-decision support and

database mining tasks as well as near-real time monitoring. In Chapter 7, we summarize

the major contributions of this thesis and discuss future extensions of our research within

the domain of ICU patient monitoring as well as other arenas.



2. Background

ICU patients tend to be physiologically fragile, and require close observation and

constant interventions to maintain homeostasis. Clinicians in the ICU are challenged with

integrating and assimilating ever-increasing volumes of clinical data into the decision-

making process while caring for patients. Optimal ICU care provision will become even

more challenging with predicted shortages in nurses and intensivists [32]. Furthermore,

shifts in patient demographics are resulting in a growing elderly patient population with

chronic ailments and increased susceptibility to disease, thus requiring more vigilant

monitoring. Advanced patient monitoring and clinical information systems may alleviate

the "information overload" problem plaguing ICU clinicians by providing timely alarms,

clinical decision-support tools, and facilitating the rapid integration and assimilation of

ICU data. However, a brief survey of commercially available ICU patient monitoring and

clinical information systems reveals that only a relatively small proportion of the

acquired data are ever manipulated beyond simple tasks such as storage [see Table 2-1].

In this chapter, an overview of the many challenges in developing ICU patient monitoring

systems is presented. This chapter is organized in the following manner. In the next

section, we summarize the major data types that are typically acquired and processed

with ICU patient monitoring and clinical information systems. We also provide a brief

synopsis of the major data processing tasks that are integrated into current state-of-the-art

commercial ICU systems. Then, we describe some of the major research initiatives in

advanced patient monitoring algorithms. Finally, we motivate the need for developing a

more comprehensive database as a resource for ICU monitoring algorithm development

in general, and the research presented in this thesis in particular.

2.1. Summary of monitoring system capabilities
The modem ICU has undergone a significant evolution with the rapid advances of

hardware and software technologies. Biomedical sensors have been developed to monitor

continuously several physiologic measurements including: ECG, blood gasses, cardiac

output, arterial, venous, and pulmonary pressures, and blood chemistry, such as serum



glucose. Another important advance in sensors is the introduction of minimally invasive

or non-invasive technologies to replace or augment more invasive measurement systems

[2]. Imaging technologies such as ultrasound systems, Computer Aided Tomography, and

MRI are rapidly emerging as significant tools to diagnose disease. Advances in silicon

chip technologies and bio-assays have now made it possible to obtain rapid lab results

from small blood and urine samples at the patient's bedside [70]. With the dawn of the

era of genomics, it may become possible to acquire genomic or proteomic profiles of ICU

patients to guide optimal treatment pathways [6].

Along with the increased capability to acquire numerous and complex physiological

measurements, technology has also evolved to improve device connectivity as well as

information storage. Relational database software is being leveraged for storing clinical

laboratory data in an efficient and accessible manner. Disk storage capacities have grown

significantly over the years such that a single personal computer (PC) can store a terabyte

of data. Standards such as HL7 for device communication are also receiving more

attention for their role in facilitating seamless communication between different devices

in the ICU [52]. Finally, networking technologies have advanced to allow devices to

send data at speeds beyond 1 gigabit/second across wired and wireless networks.

These technological advances in the acquisition, storage, and transmission of electronic

data have resulted in both a challenge and an opportunity in advanced ICU patient

monitoring. The challenge for clinicians is in interpreting and assimilating the plethora of

available data into hypothesis for guiding optimal therapies provided to patients.

However, as the volume of data continues to grow, clinicians are being overwhelmed in

completing all their required tasks. The aforementioned technological advancements have

also created an opportunity for developing advanced patient monitors and clinical

information systems. Such advanced systems would ideally be capable of processing

physiologic and clinical data and providing clinically relevant interpretations, alarms, and

displays to support clinicians in deciding on appropriate care of their patients.



It is useful to define terms used frequently in this thesis. Terms such as "physiologic

data," will generally refer to higher resolution measurements that are acquired

automatically at the bedside in a continuous or near-continuous fashion by a patient

monitor. For example, physiologic trends and numerics include high-resolution data that

are computed on a minute-to-minute (sampled at 1/60 Hz) basis such as heart rate,

systolic/mean/diastolic blood pressures, oxygen saturation, respiration rate, and cardiac

output (see Table 2-1 for an extensive listing of physiologic trends in ICU patient

monitors). Typically, physiologic trends are derived after processing physiologic

waveforms sampled at even higher rates (125 Hz) such as ECG and intra-arterial blood

pressure (ABP). Physiologic waveforms are processed at the beat-to-beat level. The

features extracted at the beat-to-beat level are then saved and averaged over one-minute

intervals to compute a value for each feature that is used to create the minute-to-minute

physiologic trend data (see Figure 2-1).

"Clinical data," will generally refer to sparsely and irregularly sampled diagnostic

measurements as well as therapeutic parameters. Diagnostic clinical data includes

analyses of manually collected specimens of ICU patients such as blood gasses, complete

blood count (CBC), and blood chemistry. Diagnostic clinical data are often grouped into

different categories related to body systems (or physiologic functions) such as

hematology, fluid-balance, cardiovascular and pulmonary functions. Clinical data also

includes therapeutic intervention parameters such as the type and dosage of a medication

or the settings of a ventilator as well as free-form nursing progress notes. Finally,

clinically data also encompasses patient vital statistics such as age, gender, and weight.

Clinical information is typically stored in a clinical information system that is used by

clinicians for charting. Table 2-2 includes a more extensive listing of the different clinical

data that are pertinent to ICU patient care and explored in this thesis.

Figure 2-1 is an illustration of the major signal processing and pattern recognition

modules that are found in state-of-the-art bedside patient monitors. Typically, several

physiologic waveforms (e.g. ECG, intra-arterial blood pressure, respiration signal) are

recorded from ICU patients. Once the signals have been discretely sampled, low-pass



digital filters are utilized to remove noise that is outside the frequency bands (0-40 Hz) of

physiologic waveforms. Furthermore, specific filters optimized for the unique

characteristics of the different physiologic waveforms are also utilized. For example, a

high-pass filter may be utilized to remove low-frequency noise such as baseline wander

from an ECG. Waveform signal processing is beyond the scope of this thesis and the

reader is referred to [16] for a more in-depth review of physiologic waveform analysis.

After the physiologic waveforms are pre-processed, several different feature extraction

and pattern recognition algorithms are applied to the respective waveforms to determine

the parameters that characterize a patient's physiological state. In the case of ECG

analysis, pattern recognition may be used to discern features in a signal that are indicative

of physiologic processes instead of noise. For example, algorithms are used to identify

different ECG features representing the electrical activation of the human heart such as

the R-wave (ventricular depolarization) and T-wave (ventricular repolarization). The R-R

time intervals (period of time between R-waves in successive beats) can then be

computed to derive an instantaneous (beat-to-beat) heart rate. The beat-to-beat heart rates

are then averaged over running windows of approximately 10 seconds to arrive at an

updated heart rate to display on the patient monitor. Another level of averaging over a

window size of 1 minute in duration is applied to generate minute-to-minute heart rate

numerics (or trends). The specific averaging processes will be described in the next

chapter (Chapter 3) with greater detail as related to the physiologic trends utilized in this

thesis.

In addition to ECG, other signals such as arterial and pulmonary pressure waveforms are

analyzed by bedside monitor algorithms to identify characteristic hemodynamic features.

For example, a patient's beat-to-beat systolic, mean, and diastolic blood pressure are

estimated from the intra-arterial blood pressure (ABP) waveform features [see Figure

2-1]. Then, beat-to-beat values are averaged over different window sizes to generate

physiologic trends.



Many of the minute-to-minute as well as beat-to-beat numerics have threshold-based

alarms associated with them. If a numeric exceeds the bounds of the pre-determined

thresholds, an alarm is triggered and announced to the clinical staff. In addition to

numeric-based alarming, ECG arrhythmia algorithms trigger alarms based on pattern

recognition of high-resolution waveform data to identify waveform morphologies

indicative of disturbances to the heart's electrical conduction system.
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A major focus of this thesis centers on developing algorithms that characterize

physiologic trends of ICU patients that may be suggestive of hemodynamic instability.

Physiologic trends generated by patient monitoring devices are corrupted frequently by

noise. Noise is a major cause of false alarms and presents a challenge in developing more

advanced monitoring algorithms. While there are several resources available in the

literature that provide more extensive reviews of noise [16], a brief overview is included

here to introduce the reader to various sources of noise in ICU patient monitoring data.

Physiologic waveforms are the highest resolution data and may be corrupted by noise

processes. A noise source can be defined as any process that alters the value of a

measured phenomenon (such as the radial artery blood pressure). Abrupt noise with rapid

changes to a physiologic signal's value is frequently due to patient motion, and is merely

one example of the type of noise that may appear in blood pressure trends. A clot

formation in a pressure catheter over a time-course of minutes to hours may cause a

gradual dampening of the acquired blood pressure waveform. A damped waveform will

result in erroneous systolic and diastolic blood pressures. In pressures that are typically

lower than systemic arterial blood pressure such as the pulmonary artery pressure and

central venous pressure, shifting a patient's position relative to the height of a pressure

transducer will cause a "step" change in the measured pressure. Ideally, advanced patient

monitoring systems should identify changes in physiologic measurements that are due to

underlying physiologic changes in a patient while suppressing noise.



Table 2-1 Summary of major capabilities of ICU bedside patient monitors

Acquired Signal Recorded Parameters Alarms Present

ECG HR Arrhythmia, HR, ST

Invasive Arterial Blood HR (derived from blood High/Low Threshold-based

Pressure pressure), BP alarms

Systolic/Mean/Diastolic BP

Pulmonary Artery Pressure Systolic/Mean/Diastolic High/Low Threshold-based

PAP

Central Venous Pressure CVP High/Low Threshold-based

Non-invasive Blood Systolic/Mean/Diastolic BP High/Low Threshold-based

Pressure (NIBP)

Respiration Respiration Rate High/Low Threshold-based

EEG Bi-spectral Index (BIS) High/Low Threshold-based

Cardiac Output (CO) CO High/Low Threshold-based

Mixed Venous 02 Sv02 High/Low Threshold-based

Saturation (Sv02)

Temperature Temp High/Low Threshold-based

Capnography Expired C02 High/Low Threshold-based

Ventilation Parameters FiO2, tidal volumes, etc High/Low Threshold-based

Anesthesia Gases Anesthesia partial pressures High/Low Threshold-based

Trans-cutaneous Gases 02, C02 High/Low Threshold-based

Figure 2-2 includes an example of approximately 140 hours of high resolution numerical

trends of invasive arterial blood pressure that are generated continuously at one sample

per minute by processing the acquired blood pressure waveform. In this example, the

trends are corrupted by noise. In particular, the segment of data after 120 hours in the

record is heavily corrupted by noise.
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Table 2-2 is a brief description of the major classes of clinical data stored in a clinical

information system. Clinical information systems generally store sparser data than

bedside patient monitors. Clinical data are also irregularly sampled and subject to

erroneous values due to measurement error. However, while clinical information data are

generally sparser, clinical data are far more diverse and may include hundreds of different

types of laboratory measurements and therapeutic interventions. Clinical information

systems have hitherto served as an electronic nurse charting system with little focus on

advanced algorithm development capable of assessing a patient's physiology. For

example, Figure 2-3 is a sample of clinical data that includes the nurse-validated vital

signs and arterial blood gasses and pH over an interval of 100 hours. While there are

physiologically significant changes to the acid-base status of this particular patient,

clinical information systems have provided little or no interpretation of the stored clinical

0



data. Researchers have introduced the concept of clinical advisories that alert the clinical

staff when a laboratory value is beyond physiologically acceptable bounds [65].

However, several pathophysiologic states (requiring different treatments) can result in a

common physiologic measurement deviating from a normal value. For example, both

cardiogenic shock and hypovolemic shock may result in low blood pressure alarms and

thus, require different therapies. Aggressive intravenous fluid administration would be an

appropriate therapy in a state of hypovolemic shock but may be detrimental if given to a

patient in cardiogenic shock.

Table 2-2 Summary of major clinical data types available from clinical information systems

Example Typical Charting Interval

Nurse-validated Vital HR, BP, RR Hourly

Signs

Medication Interventions IV Medication Drip Rate Hourly

Ventilator Settings PEEP, PIP, FiO2, Every 8 Hours or more

Ventilation Mode, Tidal frequently with changes to

Volume settings

Clinical Laboratory Serum Sodium, Complete Every 12 to 24 Hours

Measurements Blood Count (CBC)

Fluid Balance I/O Hourly IV Fluid Input, Hourly

Hourly Urine Output

Nursing Progress Notes Free-form text notes Every 8-12 Hours

summarizing patient state
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2.2. Advanced patient monitoring algorithms

An intriguing and important challenge is to explore the extent to which the wealth of

available (and machine-accessible) patient data can be used to formulate automatically

dynamic pathophysiologic models of the patient's changing clinical status. Such models

or hypotheses would provide rational structures around which to present the data to

clinicians, would provide the basis for more sophisticated and sensitive alarms, and

would play a pivotal role in developing decision support paradigms to guide therapy.

Over the past fifteen years, research in academia and industry has begun to address the

general area of "intelligent patient monitoring" [52].

The only acquired physiologic signal that is processed with sophisticated algorithms to

provide clinically significant interpretation is the ECG. Most bedside monitoring systems

are capable of generating arrhythmia alarms. However, the majority of physiologic

signals and parameters are never interpreted beyond simple single-parameter

comparisons to high and low thresholds. For example, multiparameter algorithms capable

of identifying a gradual increase in heart rate concomitant with a decrease in arterial

blood pressure may be more specific for shock, but have not been utilized in monitoring

algorithms. The development and deployment of such algorithms in an FDA-regulated

industry are considerable. Such advanced algorithms that operate on multiparameter

physiologic data require large sets of "real" data for algorithm refinement, performance

characterization, and FDA validation studies. In the following discussion about prior

research in the area of intelligent patient monitoring, the availability of large sets of

realistic ICU measurements across diverse patient populations emerges as one of the

primary reasons that such algorithms have not been deployed in clinical settings for real-

time monitoring applications.

Intelligent patient monitoring (IPM) refers to patient monitoring systems that are capable

of one or more of the following tasks related to the interpretation and display of



physiologic patient data: multiparameter processing and interpretation, temporal

reasoning and trend prediction, physiologic modeling and hypothesis generation, and

sophisticated display and visualization of physiologic data.

A major challenge to a system performing any of the aforementioned tasks in intelligent

patient monitoring is the inherent noise present in physiologic and clinical data. In this

thesis, "noise" refers to the corruption of quantitative measurements of physiologic

function due to non-physiologic sources. For example, noise in an ECG is commonly due

to electrode movement or poor contact with the skin. Such noise corruption often leads to

false arrhythmia alarms [16] or improper heart rate calculations. Noise may be additive to

the underlying signal, such as a mild ECG baseline wander due to breathing, or it can

completely replace an underlying signal, such as a sensor saturation or signal dropout.

Signal processing for monitoring has many challenges. Physiologic waveforms such as

ECG and invasive arterial blood pressure (ABP) can be corrupted by non-physiologic and

physiologic sources, and derived parameters such as systolic blood pressure (SBP) or

heart rate (HR) may be corrupted by algorithmic or instrumentation errors. Furthermore,

there are intervals in which such data may be missing, as when a patient is being

transported between units. A consequence of noise includes the generation of false

monitoring alarms.

Traditional monitoring alarms are rules that have been defined to trigger the enunciation

of a message to warn the clinical staff of a dangerous physiologic state such as an

arrhythmia, low blood pressure, apnea, or low oxygen saturation. The rules are triggered

when the monitored physiologic signal or an abstraction of the signal is compared to a

decision boundary that delineates an alarm from a "normal" state.

Several studies have suggested that over 80% of alarms generated by the current

generation of monitors can be classified as "false-positive" or "clinically irrelevant."

[75, [76]. The high number of false alarms leads not only to sleep deprivation for patients

and stress for patients and staff, but also to wasted time, resources, and neglect of truly



dangerous events. For example, one study recorded thirty-three separate audio sounds in

the ICU and asked staff to listen to the tones individually in a quiet room; they correctly

identified only 50% of the critical alarms [9]. Multiple monitors, each capable of

producing multiple false alarms, are the norm in typical ICUs; in some units, it is possible

to count more than forty alarm sources for a single bed - the mechanical ventilator,

telemetry, pulse oxymetry, infusion pumps, etc. -- essentially none of which are

integrated to provide more useful data.

Advanced monitoring systems must deal robustly with noise, artifact, and data loss such

as illustrated by Figure 2-2. To address the challenge of reducing false alarms, there has

been a significant amount of research in the area of noise detection and noise suppression

in physiologic data [74]. Zong and colleagues developed a fuzzy-logic based algorithm to

detect noise in ABP waveforms by fusing information from the ABP and ECG

waveforms. Zong's algorithm significantly improved the specificity of the blood pressure

alarms of ICU patients while preserving the alarm sensitivity [84]. Tsien et al.

developed trend-based noise detection algorithms using several different machine-

learning techniques such as neural networks and support vector machines [74].

Multiparameter data streams were projected onto predefined templates, and machine-

learning algorithms were trained on annotated ICU data such as HR, ABP, and 02

saturation. These techniques were successful in significantly improving the specificity of

vital sign alarms. The data sets were limited in size, however (-300 hours total), and did

not include all the measurements that are captured in a ICU. The prospective nature of

Tsien's study resulted in the acquisition of an insignificant number of physiologic events

with hemodynamic instability. Thus, it is difficult to evaluate the clinical efficacy of such

algorithms. There is clearly a need for an extensive collection of real-world data from

ICU patients to support further development and evaluation of advanced monitoring

technology.

Once data have been pre-processed to reduce artifacts and noise, the next signal-

processing task involves extracting features from waveforms, vital signs, and clinical

measurements. The sampling frequency and regularity of different measurements may



vary widely; for example, heart rate can be calculated every second, but there may be

several hours between consecutive arterial blood gas measurements. Information from

different sources can also be inconsistent; for example, an invasive ABP value may drop

dramatically during periods of cuff inflation, while the HR measurement from the ECG

remains unchanged. Thoraval et al. developed a ventricular rhythm tracking algorithm

that fused analysis from the ECG and the invasive ABP waveforms in short, but noisy

datasets using simple binary logic [73]. However, to properly evaluate the performance of

such an algorithm under different stresses, richer physiologic data sets are needed that

include different pathophysiologic states, effects of therapies, different classes and

severities of noise, and different patient populations.

Several recent studies describe examples of prognostically or therapeutically useful

physiologic signals and parameters. One landmark study showed improved outcome in

early goal-directed therapy in sepsis using a protocol that followed continuous ScvO2 as

well as urine output, MAP, and CVP [61]. Identification of additional useful parameters

that may lead to earlier warning for potential decompensation, more timely treatment, and

more accurate determination of prognosis requires large amounts of data. Larger data sets

not only increase the statistical power of such studies, but can also better characterize the

performance of monitoring algorithms across different patient populations,

pathophysiologic states, and treatment protocols.

Another challenge that has received limited attention among researchers centers on

developing algorithms with predictive capabilities. Arrhythmia algorithms are quite

sensitive to the onset of ventricular fibrillation or tachcycardia. However, little progress

has been made in developing algorithms that can predict the likelihood of a future

episode of ventricular fibrillation based on present and past data. Such an alarm may help

focus the clinical staff's attention to a problem when it is more manageable and requires

less aggressive interventions. Since true ventricular fibrillation is such an "infrequent"

event in the ICU, collection of a database with a sufficient number of true ventricular

fibrillation episodes and false alarms would greatly aid researchers engaged in the

development of such an algorithm.



Acuity scores such as APACHE and SAPS I-II, were developed to predict patient

mortality in the ICU and to categorize the severity of illness of patients for clinical

studies and unit performance metrics. Typically, a set of observed clinical variables and

vital signs are: assigned a certain weighting based upon how far their values are beyond

normal ranges. The composite score is the summation of these weighed observations and

is mapped to a likelihood of ICU mortality [42]. However, these acuity measures were

not optimized to guide therapy or alert the staff of impending problems. Rather, such

acuity metrics are utilized as measures of ICU performance in terms outcomes or length

of stay. The development of real-time acuity metrics that are optimized to outcomes other

than mortality may prove to be useful in guiding more timely therapy. For example, one

can imagine optimizing a formula based on a set of dynamic physiologic and clinical

variables with respect to an outcome such as the development of hypotension or shock.

Several researchers have proposed model-based frameworks for interpreting physiologic

and clinical data. Zhao et al. developed an expert system for interpretation of

hemodynamic data of ICU patients using a lumped-parameter cardiovascular simulation

and a knowledge base of the static cardiovascular system. Although the decision process

did not incorporate the valuable information in past values of physiologic trends and

assumed the data to be noise-free, this expert system performed comparably to human

experts over several simulated data sets [82]. The SIMON project was another effort

toward the development of a model-based monitoring system [10]. This prototype system

estimated the physiologic state of patients and predicted the temporal evolution of

monitored variables, and also ranked the importance of monitored data streams based

upon the context.

The reader is referred to [26] for a more in-depth review of ICU alarms research. The

aforementioned studies exemplify only a limited set of the challenges confronting

researchers seeking to develop and deploy ICU monitoring systems. A major

commonality between all such projects centers on the limited access to sufficiently rich,

"real" clinical data support ongoing research and validation of novel algorithms.



2.3. ICU patient database to support advanced algorithm
research

To develop robust automated patient monitoring algorithms, large amounts of well-

characterized clinical test data are needed. The complexity of such data renders hopeless

efforts to develop analytic techniques by intuition or reasoning alone. It is essential to

develop and test algorithms with real data, and to be able to perform such tests repeatedly

and reproducibly as algorithm refinements evolve. The availability of large training sets

becomes even more paramount when dealing with algorithms that attempt to process and

classify several parameters and measurements simultaneously.

The process of creating a comprehensive ICU database requires development of a high-

throughput data archiving system capable of storing several physiologic and clinical data

streams, detailed profiles of therapeutic interventions, relevant diagnoses and problem

lists, and contextual understanding of the patient ICU stay from nursing and/or physician

progress notes. The introduction of clinical information systems [15] has greatly

facilitated much of this data collection. Access to high-resolution physiologic waveforms

requires understanding and decoding of proprietary vendor data communication and

storage formats.

Along with the "raw" data that is acquired, clinician-reviewed annotations may be

developed by retrospectively reviewing the archived ICU records. Accurate and detailed

annotations are not only "gold standards" to evaluate monitor performance, but would

also facilitate research in data mining and knowledge-discovery using rich clinical data

sets. Advances in computer networking, disk storage, and processing power now make it

possible to acquire and organize an ICU patient database of unprecedented size and

scope. An annotated database that is rich in physiologic and clinical information will be a



tremendous asset to the research community at large, and may help realize the

development of next-generation intelligent patient monitoring systems.

In the next chapter, we describe the new database that we have developed and

quantitatively characterize its relevant attributes. We also provide a review of other ICU

databases that have been developed and compare their features and specifications to our

database.



3. Design and Characterization of a

Large Scale Temporal ICU Database:

MIMIC-II

3.1. Introduction

Chapter 2 provided an overview of ICU patient monitoring. ICU patient monitoring

systems are now able to acquire an impressive array of detailed measurements from each

patient. In the long term, monitoring systems are needed that not only report these

measurements to human users but also form pathophysiological hypotheses that best

explain the rich and complex volume of relevant data from clinical observations, bedside

monitors, mechanical ventilators and a wide variety of laboratory tests and imaging

studies. Such systems should reduce the ever-growing problem of information overload,

and provide much more clinically relevant and timely alarms than today's disparate limit-

based alarms.

The development of such advanced monitoring and clinical decision support systems

requires large amounts of well-characterized clinical test data. Digital recordings are ideal

test data for these purposes, as has been well demonstrated in research on cardiac

arrhythmia and monitoring of transient ischemia [19]. The need for large-scale

physiologic databases becomes even greater when the algorithms under development

operate on several physiologic signals. Current ICU bedside patient monitors primarily

deploy algorithms designed to process a single class of physiologic signals such as

analyzing the human electrocardiogram for the presence of an arrhythmia. However,

newer algorithms may fuse several continuous physiologic signals with intermittent



laboratory measurements to arrive at a more integrated approach to patient monitoring

and clinical decision support. In general, as the dimensionality of the input data increases,

an algorithm requires a much larger training set of data to optimize its performance [2].

Thus, in developing a new ICU patient database, particular emphasis should be placed on

developing a high throughput archiving system that would enable the acquisition of a

sufficiently large number of ICU patient data sets.

Large scale physiologic databases can also be utilized to support data mining research to

identify and characterize novel multidimensional dynamic patterns that would be

challenging for the un-aided human to recognize. For example, identifying correlations

between the time of day, ICU staffing levels, and simultaneous occurrence of

hypotension, tachycardia, and oliguria (low urine output) may provide useful quantitative

feedback regarding the impact of ICU staffing shortages on patient care. Such data

mining algorithms may also uncover unique physiologic signatures that may be

predictive of future hemodynamic instability. Shoemaker at al developed a database of

trauma patients to study the development of novel acuity scoring algorithms based on

noninvasive data recorded from trauma patients [67]. Retrospective analysis of ICU

physiologic databases can also be utilized to identify iatrogenic causes of patient

morbidity and mortality. For example, Schoenfeld et al [68] utilized ICU records to study

different measures of efficacy in clinical trials of treatments for acute respiratory distress.

The major goal of this chapter is to introduce the MIMIC-II database as a new resource

for developing ICU patient monitoring algorithms. The database will be described and

characterized in terms of its attributes so that a researcher can define the scope of

questions that can be investigated with the MIMIC-II database. This chapter is organized

in the following manner. The next section provides an overview of previous ICU

databases. Section 3.3 describes the new database (MIMIC-II) that we have developed.

The methodology for acquiring and integrating ICU patient records is briefly reviewed.

Section 3.4 provides a quantitative and qualitative analysis of MIMIC-II to characterize

the patient demographics and morbidities as well as the physiologic and clinical data in

the database.



3.2. Overview of ICU databases

Several efforts have been made in developing ICU databases aimed at improving various

aspects of patient care. ICU databases can be classified along several different attributes.

Perhaps the most significant attributes include: number of records, patient populations

(e.g. medical, trauma, coronary, neonatal), sparseness and completeness of ICU records

(e.g. sparse clinical data, clinical progress notes, higher resolution physiologic,

therapeutic intervention profile, waveforms), inclusion of clinician annotations, and the

availability of the database to other researchers (e.g. commercial, academic, freely

downloadable). Table 3-1 includes several of the more widely-published ICU databases

that have been developed by researchers. A brief comparison of the qualities of these

different databases is included.

Within the critical care community, well-known databases including APACHE [83] and

Project IMPACT [8] have resulted in the acquisition of hundreds of thousands of ICU

patient cases from dozens of hospitals throughout the United States of America.

Researchers have utilized these databases to support clinical studies. Among the main

contributions of PROJECT IMPACTICU and APACHE are supporting the development

of several classes of acuity scoring systems such as APACHE I-IV, SAPS, SOFA, and

MPM [42]. These databases have also supported researchers in developing guidelines for

various ICU practices such as goal-directed therapy for septic patients [61]. However,

these aforementioned databases failed to capture high resolution information such as

waveforms, minute-to-minute vital signs, and hourly charts of medications, labs, and

fluid balance. Higher resolution data are necessary for ensuring that transient but

clinically significant physiologic events are not overlooked. Also, clinician-validated

annotations to serve as "gold-standards" are not available. As demonstrated in previously

published databases, annotations can be an invaluable resource for improving patient

monitoring algorithms [19].



Among the first multiparameter ICU databases, the Massachusetts General Hospital /

Marquette Foundation (MGH/MF) Waveform Database was collected in 1992 in

Massachusetts General Hospital critical-care units, during surgery, cardiac

catheterization., or other electrophysiology studies [35]. The MGH database was primarily

designed to support research in waveform analysis and includes several channels of

hemodynamic and ECG waves. However, the database does not contain bedside

monitoring alarms, numerics, and relevant clinical and laboratory data.

The SIMON (Signal Interpretation and MONitoring) project began at Vanderbilt in 1998

and is among the largest multiparameter trauma ICU databases [10]. SIMON was

developed to support research into the development of intelligent patient monitoring

algorithms that fuse physiologic and clinical data. SIMON is an ongoing project and has

thus far resulted in the collection of over 3000 ICU patient records. The SIMON database

consists of several streams of second-to-second vital signs (heart rate, mean blood

pressure, respiration, etc) acquired from bedside monitors as well as laboratory

measurements. The vast majority of SIMON patient records do not contain actual

physiologic waveforms nor do they include records of therapeutic interventions and

relevant free-text clinical data such as nursing progress notes.

The IMPROVE database was collected in Finland and resulted in the acquisition of 59

ICU records [36] with significant cardiovascular and pulmonary disorders. However,

each record was approximately 24 hours in length. The recordings were annotated in real-

time by physicians at the bedside to denote significant physiologic state changes in a

patient. IMPROVE records include relevant clinical and laboratory data for each patient

record. Following the IMPROVE database, the same research group developed the IBIS

database and included similar types of ICU data from 200 patients with significant

neurological disorders.

The MIMIC (Multiparameter Intelligent Monitoring in Intensive Care) database (referred

to as MIMIC.-I in this thesis) [51] was also developed to support research in intelligent

patient monitoring in the ICU. MIMIC-I was dependent on cumbersome data acquisition

technologies that required a great deal of human overview during the recording period.



Researchers attempted to record 24 to 48 hours of continuous hemodynamic, respiratory,

and ECG waveforms from bedside monitors of patients that were deemed to have an

increased likelihood of hemodynamic instability during the recording interval. However,

because it was not feasible to record an entire ICU stay for a patient, a recording period

of 24 hours may not have been sufficient to encompass a period of hemodynamic

instability. The relevant clinical data were manually extracted from paper records by

research nurses. The low-throughput data collection methodology resulted in the

assimilation of approximately 100 patient records with high resolution waveforms

(500Hz), physiologic parameters, bedside alarms, and a relational database to store the

associated clinical and laboratory data. The major clinical problems are available for each

record, but significant hemodynamic events were not annotated. Towards the end of the

MIMIC-I project, newer data acquisition technologies were available that allowed for the

development of MIMIC-II.



Table 3-1: Comparison of Major ICU Database

MGH SIMON IMPROVE IBIS APACHE & MIMIC-I MIMIC-II

IMPACT-

ICU

Category of DatEL from Trauma ICU with ICU and ICU (data SICU SICU/MICU/CC

Database surgery, ICU (hypovolemia, OR gathered for U/CSRU data

cath. or heart failure, patients large-scale MICU from patients

electro- sepsis, or needing outcomes CCU with

physiologic respiratory neuro- and protocol hemodynamic

studies problems) monitors studies) Patients instability and/or
with hemo- other disorders
dynamic
instability

Number of 250 -3000 59 200 > 100,000 100 (-2100

Records Complete records

to date with

physiologic and

clinical data)

-14000 records

with clinical data

only

Record 12-86min Entire 24 hrs 3 hrs Entire ICU 24-48 hrs Entire ICU stay

Length ICU stay stay (7.2 day mean

lhr avg (3.2 day stay)

mean

stay)

Physiologic 3 ECG/ABP/ None 2 Leads of 2 Leads of NA All Up to 4

Waveforms ECG, ABP, ECG, 2 Monitored Simultaneously

PAP/CVP PAP, CVP, Channels Waveforms monitored

RESP, AWF, of EEG, (Multi-lead waveforms

LAP/CO2 AWP, 02, ABP, ECG,ABP,

CO2, AA, PAP, PAP,CVP, Typically: (Two

CVP, RESP) Leads of

RESP, ECG,ABP,PAP)

AWF,

AWP, 02,

CO2, AA,

Evoked

Potentials

Vital Signs NA. 1 Value 1 Value every I Value NA 1 Value 1 Value every 1

& Numerics every 2 Minutes for every 2 every Minute for all

second for all monitored Minutes second for monitored and

all and derived for all all derived numerics

monitored numerics monitored monitored



3.3. Creation of the MIMIC-II Database

There were several formidable challenges in creating the MIMIC-II database. The

acquisition and integration of several disparate streams of physiologic and clinical data

needed detailed understanding of proprietary data formats and database schema.

Furthermore, advanced monitoring algorithms that process very high dimensional data

require an unprecedented large set of representative training examples. Thus, the data

acquisition technology needed capabilities of simultaneously recording from several ICU

beds over an entire ICU stay. Once the data are acquired, an open-source, user-friendly,
secure, and scalable database was developed to allow researchers to analyze and annotate

ICU patient records [63]. In order to meet these challenges, a data acquisition system was

and and and derived

derived derived numerics

numerics numerics

Bedside Available NA NA NA NA Available Available

Alarms

Laboratory/ NA Partial Available Available Available Available Available

Clinical

Data Data

Clinician NA NA NA NA NA Available Available

Notes

Therapy NA NA Nursing NA NA Available Available

Profiles Actions Only

ICD9 Codes NA NA Available Available Available Available Available

/ Problem

Lists

Annotation NA NA Patient State Patient NA NA Ongoing

& Nursing State &

Actions Physician

Free Text

Commercial Academic Academic Academic Academic Commercial Academic Academic

or Academic (Owned by

Cemrner

Corporation)

Availability WEB Private Fee-based N/A Fee-based WEB Only physiologic

availability availability data available via

web



designed in close collaboration with the aid of the patient monitoring system vendor

(Philips Medical Systems-Andover, MA).

We will describe the technology that was used to prospectively acquire physiologic

signals and clinical data generated from ICU bedside monitors and clinical information

systems. Then, we describe the process by which MIMIC-II ICU patient records are

synthesized and integrated into cohesive patient records that can be annotated by

clinicians. We also describe the major issues in developing a generalized framework for

physiologic and clinical database development that can be extended across different

clinical sites.

3.3.1. Physiologic data acquisition from ICU bedside monitors

In a typical ICU, each patient's physiologic state is monitored in real-time by the

placement of several electrodes and catheters to acquired physiologic waveforms such as

ECG and arterial blood pressure. The signals are analyzed and displayed by a bedside

patient monitor that may alarm if a monitored physiologic variable deviates from an

acceptable range. An ICU may also have a networked monitoring architecture so that all

the bedside monitors can transmit their acquired data to a central computer. This

centralized terminal (referred to as a "central station") allows a clinician (nurse or

physician) to observe the status of the monitored variables of all ICU patients in a unit at

a central location. The networked central computer (database server) is capable of saving

the monitoring data of each patient for up to 96 hours so that a patient's data may be

analyzed retrospectively. The acquired data are purged from the database server once a

patient is discharged from the unit. Through collaboration with the monitoring system

vendor (Philips Medical Systems, Andover, MA), an archiving system was developed to

create permanent archives of the physiologic data residing in the central database server.

The monitoring data were recorded in the vendor's proprietary data formats [38] and was

subsequently translated to the MIT WFDB format [19].



Figure 3-1: MIMIC-II physiologic data archiving architecture

We monitored up to 48 simultaneous ICU beds from Medical Intensive Care Unit

(MICU), Coronary Care Unit (CCU), Cardiac Surgical Recovery Unit (CSRU), Surgical

Intensive Care Unit (SICU), and Trauma SICU (T-SICU). Each patient record

commenced with a patient admission and ended with a final discharge from the ICU.

Each record consisted of four continuously monitored waveforms (2 Leads of ECG,

Arterial Blood Pressure, and Pulmonary Artery Pressure) sampled at 125 Hz, 30 1-minute

parameters (HR, BP, SpO2, Cardiac Output), and monitor-generated alarms and in-ops.

"In-ops" refer to monitor-generated alarms that indicate states such as electrodes being

taken off a patient, and thus, precluding the monitoring of the intended physiologic

MIMIC

Archiving Waves, Parameter, Alarms

I



signals. The waveforms and parameters were originally sourced from Philips CMS

bedside patient monitors (Philips Medical Systems, Andover, MA). The bedside

monitoring data were then transmitted to a Philips Information Center Database Server

(PICDBS). With the assistance and cooperation of the manufacturer, a customized

archiving agent was developed to query the PICDBS. The archiving agent, equipped with

a 200 Gigabyte hard drive, continuously retrieved and stored the waveform, parameter,

and alarm data from all the monitored ICU beds. At approximately two-week intervals,

all completed records were downloaded from the archiving agent and subsequently

purged from the archiving agent. The physiologic data were retrieved from the archiving

agent onto hot-swappable USB 2.0 or IEEE1394 ("Firewire") hard-drives.

3.3.2. Specifications of physiologic data

Physiologic Waveforms

As mentioned previously, the physiologic waveforms can include up to 4 simultaneously

monitored signals. The archiving system was configured to archive 2 leads of ECG, 1

arterial blood pressure (ABP) waveform, and 1 pulmonary artery pressure (PAP)

waveform. Figure 3-2 is an example of a set of physiologic waveforms included in a

MIMIC-II patient record. The archiving technology did not allow for prioritization or

substituting pressure waveforms. Thus, if an ABP or PAP was not available, the total

number of recorded waveforms for that interval would decrease. The ECG waves are

saved with 8-bit quantization at a sampling rate of 125 Hz using a peak-picking algorithm

from an original 500 Hz ECG signal [28]. The pressure waveforms are saved with 8-bit

quantization at a resolution of 125 Hz using conventional decimation from the original

500 Hz waveform signals.

3.3.3. Physiologic parameter trends



Physiologic trends and numerics include high-resolution data that are computed on a

minute-to-minute (sampled at 1/60 Hz) basis such as heart rate, systolic/mean/diastolic

arterial blood pressures, oxygen saturation, respiration rate, and cardiac output (see Table

3-2 for a listing of physiologic trends available in the MIMIC-II database).

Table 3-2: Physiologic trends available in MIMIC-II

Trend Classes (1 sample/minute)

Heart Rate

Systolic (SBP), mean (MBP), diastolic (DBP) arterial blood pressures

Systolic (SPAP), mean (MPAP), diastolic (DPAP) pulmonary arterial blood pressures

Oxygen Saturation (SpO2)

Respiratory Rate (Resp)

Cardiac Output (Thermodilution Method:TCO) {intermittent measurements}

Pulmonary Artery Wedge Pressure (PAWP) {intermittent measurements}

Typically, physiologic trends are derived after processing physiologic waveforms such as

ECG and ABP. Physiologic waveforms such as ECG and ABP are processed by

monitoring algorithms at a beat-to-beat level to produce parameters for each beat. The

respective parameters of each beat may include, for example, an instantaneous heart-rate

from an ECG signal or a beat's systolic, mean, and diastolic blood pressure in an ABP

waveform. The beat-to-beat parameters are then averaged over a pre-defined window size

(where the window size is based upon the number of beats within a window). Equation 1

is an infinite impulse response (IIR) filter that is used to compute the running average

(Pavg[i]) for pressure parameters that is updated on a beat-to-beat basis. The number of

beats in a window is dependent on the signal being analyzed. After this first stage of

averaging the beat-to-beat numerics, another level of averaging is utilized on a minute-to-

minute basis. Thus, the final physiologic parameters represent a one-minute average of

the IIR filter output during each non-overlapping minute.



Equation 1

(P[i] - Pg [i - 1])
Pavg [i] = Pavg[i- 1] -i k[i]

Pavg[i] = averaged pressure value numeric

P[i] = beat-specific pressure (systolic, diastolic, mean) for beat i

k = weighting factor [2-30], for venous and pulmonary pressure

k = 8, for arterial and intracranial pressure

k = 2 for all i greater than 0, else 1 (at start up)

The aforementioned description for the derivation of physiologic parameters (trends) is

applicable to those parameters that are continuously acquired on a beat-to-beat basis such

as heart-rate, ABP, and SpO2. Other continuously acquired parameters such as

respiration are derived using logic over longer time scales. The reader is referred to [50]

for a more in-depth overview of the processing of respiration signals. Finally, aperiodic

(intermittent) parameters such as cardiac output (thermodilution-derived) and pulmonary

artery wedge pressure are included in the minute-to-minute physiologic trends (when

measured) with several hours between successive valid measurements.



Grid intervals: 0.2 sec, 0.5 mV (I), 50 mmnHg (ABP), 12.5 nmilHg (PAP)

Figure 3-2: Examples of physiologic waves

3.3.4. ICU monitor alarms in MIMIC-II

The monitor-generated alarms are also archived with each MIMIC-II record. Table 3-3

includes a listing of all the alarm classes available in the MIMIC-II database. The alarms

cover a broad range of physiologic signals such as ECG (arrhythmia alarms), blood

pressure, oxygen saturation, and respiration. A severity is associated with each alarm, and

is denoted by a red, yellow, or green label. In general, red alarms are considered "life-

threatening" alarms that are indicative of rapid patient deterioration. For example, alarms

indicative of asystole, ventricular fibrillation, and apnea are intended to alert the clinical

staff to a patient that may need immediate life-saving interventions. Yellow alarms are

triggered when a condition has been detected that may be classified as clinically



significant but not immediately life-threatening. For example, a high rate of premature

ventricular contraction (PVC) detected from an ECG signal would trigger a yellow alarm

but may not signify rapid patient deterioration. Green alarms are generally utilized to

indicate monitoring system problems such as disconnected electrodes resulting in the loss

of ECG monitoring. A time stamp indicating when an alarm condition has been triggered

is also included.



Table 3-3: Summary of Bedside Monitor-Generated Alarms in MIMIC-II Database

Red ECG Alarms

Asystole

VFib/VTach

VTach

Extreme Brady

Extreme Tachy

Red Pressure Alarms

Pressure Disconnects

Red Respiration Alarms

Apnea

Vent Disconnect

Vent Failure

Red SpO2 Alarm

Extreme Desat

Yellow Alarms

Non Sustain VTach

Run PVCs

Pair PVCs

Pacer Not Capture

Pacer Not Pace

Missed Beat

High Pressure (Arterial, Pulmonary)

Low Pressure (Arterial, Pulmonary)

All Inops (Green)

ECG Inops

Pressure Inops

Respiration Inops

SpO2 Inops

Other Inops

Alarms Off {Suspend, Standby & All Alarms Off}



3.3.5. Specifications of clinical data

Along with monitor-generated physiologic data, there is a wealth of clinical data that can

be used to characterize an ICU patient's physiologic state. The clinical data are available

in electronic clinical information systems. To capture the relevant clinical information for

each monitored patient, we leveraged the use of the Philips Information Support Mart

(ISM) that was interfaced with the unit's clinical information system, CareVue (Philips

Medical Systems). The ISM is an Oracle relational database that warehouses clinical

information such as lab results, nurses' text notes, medications, fluid balance, and patient

demographics. Customized scripts were written in SQL to query the ISM database and

retrieve the clinical information for each monitored patient. The retrieved ISM records

were uploaded into an open-source Postgres relational database. The data schema for the

clinical information in MIMIC II was based on the schema reported in the Philips ISM

User's Guide (Philips Medical Systems, Andover, MA). The most relevant tables that

contained data salient to the present research are summarized briefly in Table 3-4.



Table 3-4: Description of clinical data within CareVue tables

Table Name Clinical Data Purpose

CensusEvents Admit Timestamp, Defining dates and length of ICU stay. The
Discharge Timestamp information regarding discharge status (e.g.

outcome, discharge destination) was
incomplete.

ChartEvents Clinical Laboratory Results Clinical data used to assess body system
(e.g. CBC, Blood function, document therapeutic parameters
Chemistry), Ventilator (ventilator settings, intra-aortic balloon
Settings, Nurse Validated pump, pacemakers, catheter insertion sites),
Vital Signs and near-hourly charting of validated vital

signs (e.g. heart rate, blood pressure,
Oxygen saturation).

DPatients Patient Names, Dates of Identifying patient information is used to
Birth, Medical Record match clinical data with monitor-generated
Number physiologic data. Table DPatients is

subsequently de-identified to preserve
patient anonymity and comply with HIPAA
standards.

MedEvents Continuous (IV drip), MedEvents represents a time series profile
Medications of medication hourly rates (dosages) that

are charted. Bolus medications are not
included in MedEvents.

IOEvents Hourly Input (IV, PO) This table includes a comprehensive listing
of the various fluids administered to a
patient on an hourly basis are charted here
(e.g. crystalloid solutions, blood products,
total parentral nutrition (TPN)). Also,
output (e.g. urine, chest tubes, stools) is
charted with a varying frequency (from one
to several hours between successive
measurements)

TotalBalEvents Net hourly and 24 hour fluid Clinical information system generated
balance calculation summation and integration of net fluid

balance on a 1- and 24-hour basis.

Utilizing the clinical information system as a high-throughput method of accessing a

patient's clinical data did not encompass all the clinical data generated for each ICU

patient. In order to facilitate a more complete characterization of a patient's ICU stay,

clinical and demographic data that were unavailable in CareVue were obtained from

several different hospital information systems. Table 3-5 includes a listing of the

supplemental data that were gathered from other hospital information systems. The

clinical and laboratory measurements of ICU patients admitted from the Emergency



Department (ED) were included in the MIMIC-II database when available. Clinical data

that are not normally recorded in CareVue (such as urinalysis) was also obtained for each

ICU patient. Patient demographics and length-of-stay were obtained so that retrospective

outcomes studies and other related questions could be investigated using MIMIC-II. The

discharge summary for each ICU patient was archived so that a physician's synopsis of a

patient's stay could be included in MIMIC-II. The Computerized Provider Order Entry

(CPOE) data for each MIMIC-II patient were obtained so that the actual and

contemplated clinician's therapeutic interventions could be recorded for each patient. The

CPOE data partially addresses limitations in the CareVue medication profile of each

patient. Clinicians chose not to include IV bolus and oral medications in CareVue even if

their orders were included in CPOE. However, it should be noted that CPOE only

provides information about an intervention being ordered and does not confirm the actual

administration of a therapeutic intervention. ICD-9 codes were obtained for each patient

to serve as a standardized list of patient problems and interventions for each MIMIC-II

patient. Lastly, radiology and ECG interpretations were also retrieved for patients when

available. While these additional data streams do not form a complete electronic medical

record, they substantially improve the richness of MIMIC-II so that a wide range of

scientific studies can be supported in ICU patient monitoring and clinical decision

support research.



Table 3-5: Description of supplementary clinical data tables

Clinical Data Class Description

Emergency Department Data Vital signs and clinical

laboratory measurements

measured from an ED

patient prior to ICU

admission.

ICD-9 Codes used for billing that

describe the problems

assigned to a patient

Length of Stay / Demographics Length of stay in an ICU

bed, and status {stable,

deceased, to nursing home,

to rehabilitation services}

upon discharge

Clinical Laboratory Measurements Laboratory measurements

not archived in CareVue

clinical information system

(e.g. urine chemistries)

Microbiology Results of cultures sent

from patient specimens

12 Lead ECG Reports Interpretation of 12-lead

ECG

Echo Interpretations Interpretation of Echo

Radiology Radiology impression of

diagnostic imaging (x-ray,

Computerized

Tomography, Ultrasound)

Discharge Summary Physician summary of

patient ICU course upon

discharge

Computerized Provider Order Entry Listing of provider orders

(medications, procedures)



3.3.6. Merger of physiologic and clinical data

The first step in merging disparate monitor-generated physiologic data and clinical data

from the hospital clinical information system includes matching data records

corresponding to the same patient. The monitor-generated data included a unique

identifier (referred to as a CASEID) with a patient name (first and last name) and medical

record number (MRN). The name and MRN fields were manually entered by a nurse into

the networked central station when a patient was admitted. Often (approximately 30% of

cases), one or more identifier fields were not filled for an admitted patient. The CareVue

clinical information system also included a unique patient identifier (referred to as a PID)

for each ICU stay of a patient. The CIS also includes identifying information such as a

patient's name and MRN which is automatically input through the hospital-wide

information system when a patient is admitted to a unit.

If the patient's identifying information (name, and MRN) was available with a

physiologic data record (indexed by a CASEID), the respective physiologic data record

was matched to the corresponding clinical information record from CareVue. There were

two stages to the merger process. The first stage included matching names and medical

record numbers (when available) from the monitor-generated data records and the clinical

data records from CareVue. The second stage included comparing the similarity of the

physiologic trends from the higher resolution monitoring data (approximately 1 sample

per minute) with the nurse-validated vital sign trends in the clinical information system

sampled on an hourly basis. Briefly, determination of trend similarity included assessing

the overlap (intersection) in the available trends that were present in the physiologic and

clinical data. For example, if the nurse-validated clinical data included hourly

measurements of central venous pressure and pulmonary artery pressure, then the

monitor-generated physiologic trends of a correctly matched record should also contain

non-zero values for these signals during the same time interval. If the set of vital sign

trends from physiologic and clinical records are disjoint, it is sufficient to detect a

mismatched pair of records. However, a matched set of trends is not sufficient to

guarantee a correct pairing of physiologic and clinical data records. Thus, the physiologic



trend values were sampled at the same times that nurse-validated clinical data were

available for the respective trend, and the actual time-varying trends from both sources

were correlated with one another. A high level of correlation (greater than 0.8) was

deemed sufficient to establish that a clinical data record was matched to the correct

physiologic data record.

3.3.7. Annotation of merged ICU patient records
A major goal in developing the MIMIC-II database as a research resource is to include

physician annotations of the major physiologic events occurring over a patient's ICU

stay. An "annotation station" was developed to allow physicians to view and annotate a

rich class of physiologic and clinical data. The annotation process is not a major focus of

this thesis, and the reader is referred to [1] for a more extensive review of both the

annotation station as well as the overall annotation process.

3.4. Quantitative and qualitative characterization of the MIMIC-

II database

In the preceding section, the process and technology used to develop the MIMIC-II

database was described. In this section, several qualities of the MIMIC-II database are

statistically and clinically analyzed. In particular, the overall patient population in the

MIMIC-II database is characterized along several demographic, diagnostic, and

therapeutic criteria.

Table 3-6 includes an analysis of the patient demographics and outcomes of the MIMIC-

II patient population. As the MIMIC-II database in undergoing constant development and

growth, a patient data set of 2094 records were chosen for analysis and to be

representative of the overall database. The average length of stay (and hence, length of a

patient record) is 7.2 days. However, there is a wide variation due to outliers with

prolonged stays even though approximately half the patients have stays of less than or

equal to 3 days.



The overall mortality rate was 14.1% within the MIMIC-II patient population. The

mortality rate can also be analyzed by stratifying across different ICU units as well as

patient acuities. As shown in Figure 3-4, the mortality rate is significantly different from

unit to unit. The highest mortality rates (approximately 20%) are associated with SICU

and MICU patients, and the lowest mortality rate (-7%) occurred in the CSRU. The

difference in mortality rates between the different units reflects a difference in patient

demographics between these units as well as common medical problems and acuities

associated with the respective units. For example, the age of patients in different units is

significantly different. Figure 3-4 also illustrates the difference in mortality rates

stratified across different age groups.



Table 3-6: Summary of MIMIC-II database demographics and outcomes

Number of patients

Length of Stay (days)

Mean

Median

Mortality

Age (years)

Mean +/ Standard Deviation

Median

Patient Unit Distributions

CCU

SICU

CSRU

MICU

Gender Distribution

Female

Male

Acuity Characterization

(SAPS-I Score)

(Mean +/- St. Dev)

2094 (with complete

physiologic and

clinical data)

-14900 (with clinical

data only and no

physiologic

waveforms)

7.2

3 days

14.1%

65.4 +/- 16.7

67.7

560

125

643

760

886 (42.4%)

1206 (57.7%)

13.5 +/- 5.6



Number

of

Patients

Length of Stay in ICU, Mean = 7.2 days Median = 3 days

Days

Figure 3-3: Length of stay distributions for MIMIC-II ICU patients
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Another method of characterizing the MIMIC-II patient population includes an analysis

of patient acuities or severity of illness. Acuities can be based on diagnostic as well as

therapeutic criteria. For example, the Simplified Acute Physiology Score (SAPS) was

introduced as a metric to predict ICU patient outcomes (mortality) and assess the critical

care unit performance as a function of the severity of illness of patients. There have been

several refinements to the original SAPS algorithm [41]. The SAPS-I formula was chosen

for its simplicity and requiring only readily available clinical laboratory measurements

and vital signs. The mortality rate in MIMIC-II patients is trended as a function of SAPS-

I score in the cumulative distribution curve of Figure 3-5. As the SAPS-I score increases,

the mortality rate significantly increases. The overall trend is consistent with previous

studies [41]. The SAPS-I distribution and formula also provides a means for researchers

to study patient groups from MIMIC-II with similar overall acuities.

Figure 3-5: SAPS-I distribution & mortality rates

160

140

120

Number of 100

Patients 80

60

40

20

tO

O 6 10 15 20 25 30 35 40
SAPS-I Score

1

0.8

Mortality
0.6

Rate

0.4

0.2

0 5 10 16 20 26 30 36 40

I- -~

L

Oreater Tharn or Equal to SAPS-I Score



The ICD9 codes provided with each patient record can be utilized as a high-throughput

method of identifying patients with specific problem lists that may interest a researcher.

The ICD9 codes reflect what the clinical staff at the time identified as the major problems

that were taken into consideration when treating the patient. Figure 3-6 is a graphical

representation of the distribution of major problems within the MIMIC-II patient

population. A patient generally has a number of problems as classified by the ICD9

codes. In subsequent chapters, the ICD9 codes will be utilized for identifying patients

with similar hemodynamic instability patterns.

sirs + infectn = 31
bacteremia = 64

sepsis = 227

septic shock = 36

shock no trauma = 45

trauma + shock = 3

anemia+

SDKA = 26

fluid overload = 25

hemorr = 117

hemorrhage = 175
rypovolemia = 156

respfailure = 416

pneumothorax = 133

pulm. embolus = 35
HTN = 12

arrhy = 263

AMI = 465cardiac tamp = 8
cardio shock = 85

I I I I I

Figure 3-6: Distribution of ICD9 problems in MIMIC-II patients

0 50 100 150 200 250

Number of Patients

-1

h

300 350 400 450 500



Patients in the MIMIC-II database were also characterized based upon several

hemodynamically significant interventions. The class of intervention may be indicative of

the underlying pathophysiology. For example, an intra-aortic balloon pump (IABP) may

be indicated for a patient with significant cardiogenic shock. Thus, selecting patients with

IABP interventions for further analysis is likely to yield a patient set rich in cardiogenic

shock events. As Table 3-7 indicates, there are different mortality rates associated with

patients receiving different classes of interventions. The highest mortality rate (19.4%)

was associated with patients on mechanical ventilation while the lowest mortality rate

(5.5%) was associated with patients requiring pacing. The analysis does not establish a

causal relationship between an intervention and a mortality rate. However, the patients

that are sicker and hence, more likely to expire, may require more significant

interventions to maintain homeostasis.

Table 3-7: Major cardiovasucalar interventions in the MIMIC-II database

Major Number of Mortality

Cardiovascular Patients Rate

Interventions

Ventilator 1186 19.4%

Vaso-active 1069 18.7%

Medications
(Neosynephrine,
Levophed, Dopamine,

Dobutamine, Epinephrine)

Blood Products 1015 17.0%
(whole blood, packed red

blood cells, fresh frozen

plasma, cryoprecipitates}

Intra-aortic 129 16.4%

Balloon Pump

Pacemaker 475 05.5%



Another method that can be used to characterize an ICU patient includes analyzing the

physiologic signals that were recorded from the patient. The availability of a certain

physiologic signal may be indicative of the underlying problem that the ICU staff was

attempting to monitor. As Table 3-8, demonstrates, certain physiologic signals such as

ECG and Non-invasive blood pressure (NIBP) are measured on almost every patient

while other signals are not as common (such as Pulmonary Artery Pressure). Thus, the

availability of a pulmonary artery pressure signal may indicate that a patient may be

hemodynamically unstable in comparison to a patient with only a non-invasive cuff-

based blood pressure.

Table 3-8:Availability of major physiologic signals in MIMIC-II patient records

Measured Physiologic % of Total Patients

Signals (N=2094)

ECG 98%

Respiration 96%

Oxygen Saturation 97%

Intra-arterial Blood Pressure 60%

Non-invasive blood Pressure 92%

Central Venous Pressure 38%

Pulmonary Artery Pressure 29%

PAWP 5%

Cardiac Output 13%

Intra-cranial pressure 1.4%

3.4.1. Comparison of Clinical and Physiologic Data

The characterization of the MIMIC-II database is based upon analysis of both clinical and

physiologic data. As defined previously, the physiologic data refers to bedside-monitor

generated signals such as ECG and blood pressure waveforms as well as numerics such



as heart rate and oxygen saturation (SpO2). Physiologic data are typically sampled at

high resolution rates of 125 Hz for waveforms and 1 sample/minute for numerics. The

clinical data refers to data extracted from a clinical information system that includes

diverse laboratory measurements, nurse-validated vital signs, and interventions that are

typically recorded on an hourly time scale. The bedside-monitor generated vital signs are

subject to noise corruption. Thus, prior to including vital signs into a patient's hourly

chart in a clinical information system, a nurse is charged with validating (or filtering) the

monitor-generated data first. The nurse-validation step is intended to increase the fidelity

of the vital signs from a clinical information system. However, the results as shown in

Table 3-9demonstrate that there is a statistically insignificant difference in the overall

vital sign numerics when the nurse-validated and monitor-generated data are compared.

The results suggest that the higher-resolution monitor-generated physiologic data can be

exploited for identifying salient hemodynamic events with automated algorithms. In

subsequent chapters of this thesis, such algorithms will be described in greater detail and

their performance assessed with the MIMIC-II database.



Table 3-9: Distribution and comparison of physiologic parameters from monitors and nurse-
validated charting data.

Nurse- Bedside

Validated Parameters

Heart Rate 84.3 +/- 13.5 82.3 +/- 14.2

Intra-arterial

Blood Pressure

Systolic 121.4 +/- 18.3 118.7 +/- 19.2

Diastolic 59.8 +/- 9.8 58.1 +/- 10.4

Mean 80.8 +/- 11.6 78.1 +/- 12.3

Non-invasive

Blood Pressure

Systolic Not Specified 115.5 +/- 19.0

Diastolic 53.0 +/- 11.6

Mean 74.0 +/- 12.1

CVP 11.2 +/- 3.9 10.5 +/- 4.7

Mean PAP 30.1 +/- 6.6 25.5 +/- 7.6

PAWP 17.0 +/- 5.8 17.0 +/- 5.8

CO 5.4 +/- 2.1 5.4 +/- 2.1

Respiratory 19.3 +/- 3.5 18.6 +/- 4.0

Rate

SpO 2 97.0 +/- 2.4 97.2 +/- 2.1



4.Clinical Studies with MIMIC-II

The MIMIC-II database can potentially support a broad array of clinical studies that may

provide additional insight into ICU patient care, biomedical sensor performance, and

validate novel physiologic signal processing and pattern recognition algorithms. In

particular, the relatively high-resolution physiologic and clinical data that is available

allows for the posing of novel questions in the field of ICU patient monitoring. The large

size and high-resolution characteristics of the database also pose significant challenges to

undertaking valid clinical studies. The inherent noise that often corrupts the invalidated

data is of particular concern when one is attempting to test clinical hypotheses with the

MIMIC-II database.

There are several possible studies for evaluating biomedical sensor modalities that are

susceptible to noise in the ICU. As an example of one such study, the performance of

automated noninvasive blood pressure modules was evaluated using the MIMIC-II

database. An accurate method of monitoring of blood pressure is of fundamental

importance in ICU patient care. The deterioration of blood pressure in an ICU patient

requires a vigilant therapeutic response from the clinical staff to prevent end-organ

damage.

The large scale of the MIMIC-II database and the availability of high-resolution

physiologic and therapeutic data permit novel insight into the temporal vigilance of

clinicians in response to physiologic patterns suggestive of hemodynamic deterioration.

Patient records from the MIMIC-II database were utilized to study the diurnal variation in

the incidence of hypotensive episodes (concomitant decreases in mean arterial pressure



below 60 mmHg and increases in heart rate) and the corresponding diurnal variation in

the initiation of therapeutic interventions.

This chapter is organized in the following manner. The next section (4.1) describes a

retrospective analysis of the degree of agreement between cuff-based non-invasive blood

pressure measurements and invasive (intra-arterial) blood pressure measurements in ICU

patients. Then section 4.2 includes a studies the diurnal pattern of hemodynamic

deterioration as well as therapeutic responses of ICU clinicians.

4.1. Analysis of agreement between noninvasive and invasive
blood pressure measurements in ICU patients.

ICU patients are in general physiologically fragile and require constant physiologic

monitoring and support. An intra-arterial catheter is commonly accepted as the most

accurate method of measuring arterial blood pressure [4]. However, noninvasive

technologies that can provide accurate measurements of arterial blood pressure may be

preferable for several reasons: noninvasive technologies have reduced risk of nosocomial

infections, invasive catheters can be a cause of emboli, invasive monitoring may be

relatively more restrictive of a patient's ambulation, and noninvasive monitoring may be

psychologically less stressful to the patient and his or her family.

Arterial blood pressure is among the most routinely monitored signals in an ICU patient.

As reported in the previous chapter, approximately 60% of MIMIC-II patients are

monitored for a portion of their overall ICU stay with an invasive arterial catheter.

Noninvasive methods of automatically measuring arterial blood pressure using an

inflatable cuff and the oscillometric method have been previously described in the

literature [5]. Several vendors have introduced automated noninvasive blood pressure

(NIBP) modules for in-hospital patient monitoring. Several studies have evaluated NIBP

performance in comparison to intra-arterial blood pressure measurements [21]. However,

most such studies have only included a limited number of patients and did not monitor



the patients over extended ICU stays of several days or more. As the number of subjects

and duration of monitoring increases, it may be possible to study the performance of

NIBP with respect to different physiologic states such as hypotension or shock. Previous

prospective studies were carefully designed to control for optimal NIBP setup parameters

such as choosing the appropriate cuff sizes for a given arm circumference, constant

calibrations, and arm positioning. In reality, the clinical staff in a busy ICU environment

will often overlook these set-up parameters and procedures. As researchers attempt to

utilize NIBP measurements for real-time patient monitoring algorithms, it is essential to

understand the measurement accuracy of NIBP technologies in realistic ICU

environments. ICU clinicians need to know whether NIBP measurements can be trusted

in routine ICU settings.

The aim of the present study was to compare the blood pressure measurements obtained

from automated NIBP with respect to intra-arterial blood pressure in a large ICU

population over extended monitoring intervals.

4.1.1. Review of oscillometric blood pressure measurement

The oscillometric method for measuring blood pressure is the most common automated

and non-invasive method used to measure arterial blood pressure in ICU patients [4]. An

oscillometric blood pressure device determines blood pressure by detecting a sequence of

oscillations in cuff pressure [18]. As demonstrated in Figure 4-1, the cuff around the

upper arm is inflated so that the cuff pressure exceeds the systolic blood pressure. The

high trans-luminal pressure occludes the underlying brachial artery so that the pressure

downstream of the point of occlusion drops to 0 mmHg. The cuff pressure is then slowly

deflated automatically so that the cuff pressure approaches the systolic blood pressure.

The pulsatile arterial flow causes oscillations superimposed on the cuff pressure. As the

cuff pressure continues to drop, the magnitude of the oscillations increases as the cuff

pressure approaches the intra-arterial mean blood pressure. Then, the oscillation

amplitudes decrease as the cuff pressure approaches the intra-arterial diastolic blood

pressure.



Results from empirical [18] and modeling studies [77] have supported the general

practice of choosing the cuff pressure during maximal oscillations as an accurate estimate

of the intra-arterial mean blood pressure. However, the ad-hoc algorithms that different

vendors have utilized for determining systolic and diastolic blood pressure have rarely

been disclosed [18]. The accuracy of these algorithms has been reported in several studies

when compared to invasive intra-arterial blood pressure (ABP), which is considered the

most accurate ("gold standard") method of measuring arterial blood pressure. Many of

these studies have shown clinically significant discrepancies between the non-invasive

oscillometric blood pressure and ABP [46]. In general, the NIBP systolic and diastolic

blood pressures were reported to be the least accurate measurements, whereas the NIBP

mean blood pressure was deemed to be the most reliable measurement when using the

oscillometric method. In the next section, the description of the retrospective analysis of

agreement between NIBP and ABP within the MIMIC-II database will be provided.
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Figure 4-1: Oscillometric method of blood pressure measurement



4.1.2. Methodology: Patient ABP and NIBP data and noise
processing

The available 1-minute average intra-arterial and NIBP blood pressure trends were

analyzed from all the records in the MIMIC-II database. The M1008A NBP module

(Philips Medical Systems, Andover, MA) is the standard NIBP module utilized in the

ICUs that were the source of data for MIMIC-II. From among those records with

simultaneous NIBP and intra-arterial blood pressure measurements, a subset of patient

records were included in the present study that met the following criteria: 1) at least 20 or

more individual NIBP measurements spanning a minimum of 8 hours were available with

simultaneous valid intra-arterial blood pressure measurements, 2) the difference between

the mean intra-arterial blood pressure and mean NIBP was less than 50 mmHg (an error

greater than 50 mmHg is likely due to a systematic error that does not reflect the actual

measurement technologies).

The methodology of this study includes an automated algorithm for removing

measurement pairs in which the intra-arterial blood pressure was deemed to be noisy.

Dampening of the arterial line can be a frequent source of error in invasive blood

pressure measurements [46]. Typically, the observed arterial waveform morphology

changes over time such that the pulse pressure tends to decay towards 0 mmHg without a

significant change in the mean blood pressure. Thus, a comparison of a simultaneous

non-invasive blood pressure measurement would typically result in the systolic NIBP

being significantly greater than the observed intra-arterial systolic blood pressure. The

difference between the NIBP mean blood pressure and intra-arterial mean blood pressure

would however be significantly less. Thus, in order to remove measurement pairs in

which the ABP measurement is unreliable, a simple set of rules were developed. The

schematic in Figure 4-2 details the rules used in identifying noisy ABP measurements.

Essential to the rule process is the utilization of an "estimated" mean blood pressure

(EMBP) based upon the well-known formula (see Equation 2) for estimating mean blood

pressure from the systolic and diastolic blood pressure [59].



Equation 2

EMBP = (2 * DBP + SBP)
3

If a significant difference between the measured mean arterial blood pressure (monitor-

derived) and the estimated mean arterial blood pressure is found, then the pressure

measurements (diastolic, mean, and systolic) are rejected.

Based upon the aforementioned exclusion criteria, 302 patient records were included in a

comparative analysis of intra-arterial (invasive) blood pressure (ABP) and non-invasive

blood pressure (NIBP) in ICU patients.
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4.1.3. Methodology: Physiologic factors analysis

Several investigators have reported that discrepancies between NIBP and ABP

measurements may be correlated to several physiologic factors [4]. For example, the

appropriate cuff size for a particular patient is generally a function of a patient's weight.

Inappropriate cuff sizes will lead to inaccurate NIBP measurements. The MIMIC-II

database affords one the opportunity to analyze the error between ABP and NIBP as a

function of the patient weight. Arterial stiffness is another contributing factor to NIBP

inaccuracies that has been mentioned in the literature [77]. Arterial stiffness can be

affected by pathological processes as well as age-related stresses and various vaso-active

medications. The error between NIBP and ABP was analyzed as a function of such

factors as age as well as the presence or absence of vaso-active medications when NIBP-

ABP paired measurements were available.

4.1.4. Methodology: Comparison between NIBP and ABP to
detect hemodynamic instability in ICU patients

A primary reason for monitoring a patient's blood pressure is to assess end-organ

perfusion. Ideally, clinicians should respond to deterioration in blood pressure by

initiating appropriate therapy to preclude end-organ damage. Vaso-active medications

("pressors") are one of the most commonly used interventions in the ICU. Vaso-active

medications' pharmacological effects include the increase of total peripheral resistance as

a means of increasing blood pressure. Levophed and neosynephrine were chosen as

examples of the most potent pressors that are indicative of hemodynamic instability. The

MIMIC-II database was utilized to assess the possibility of developing a detector of

hemodynamic instability using NIBP or ABP. In particular, the pressure measurements

(NIBP and ABP) during the period of time preceding the onset of a vaso-active

medication were utilized to develop a simple threshold-based detector. An example of

NIBP and ABP trends prior to the onset of a vaso-active medication is provided Figure

4-3. The period of time for the inclusion of measurements spanned from 5 minutes to 90

minutes prior to the onset of therapy (vaso-active medication). This interval is utilized



because of the assumption that a deterioration of systemic blood pressure (acute

hypotension) was noticed by the clinical staff and prompted the initiation of therapy.
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The utilization of vaso-active medications can be considered a therapeutic criterion for a

fiducial point indicating hemodynamic instability. However, it may also be possible to

leverage other diagnostic data (apart from blood pressure) as being indicative of

hemodynamic instability. When the cardiovascular system fails to perfuse the kidneys

adequately due to a drop in systemic blood pressure, a form of pre-renal failure may

develop. The hourly urine output may drop to levels below 20 ml/hr. The fluid balance

information in the MIMIC-II database was utilized to identify intervals of transient and

sustained oliguria. The NIBP and ABP measurements during an interval prior to the onset

of oliguria were analyzed. Oliguria is in general a more slowly evolving process that may
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take several hours to notice. In comparison, acute hypotension may develop over a few

minutes. Thus, the interval of time included up to 12 hours prior to the onset of oliguria.

Along with oliguria, other diagnostic variables that are utilized to assess renal perfusion

and the glomerular filtration rate (GFR) include serum creatinine and blood urea nitrogen

(BUN). A significant increase in the values of these variables from their baselines is often

indicative of acute renal failure. The creatinine and BUN values were processed to

identify significant transient increases between consecutive measurements occurring

within an interval of 36 hours. The NIBP and ABP measurements during an interval prior

to the onset of oliguria were analyzed. The time window of pressure measurements

included all measurements within 18 hours prior to the detected increase in BUN or

creatinine.

4.1.5. Results: Relative error analysis

Data are expressed as mean with standard deviation where applicable. Categorical

(partitioned) data were expressed with percentages. The difference between

measurement methods was assessed with Bland-Altman analysis [3] and the paired

Student's t-test.

Tracking relative changes in blood pressure over time may be as important as the overall

absolute value of blood pressure in determining the physiologic state of a patient. Thus,

the pair-wise NIBP and ABP measurements were analyzed for agreement with respect to

changes in pressure. For each systolic, mean, and diastolic pressure time series of a

MIMIC-II patient, the overall average value of the time series was subtracted from each

individual value, and the result was then divided by the respective average. The resultant

time series reflected the percent change in an individual measurement from the overall

mean of the time series. The error between the paired values of percent changes from

NIBP and ABP is then analyzed by pooling the time series from all patients. The

normalization procedure that is described will result in the removal of bias between the



two measurement techniques. Thus, the relative agreement between the methods can be

summarized by the standard deviation of the error and is included in Table 4-1.

4.1.6. Results: NIBP-ABP overall analysis of agreement

Table 4-1: Absolute and relative error analysis

25,345 pair- NIBP ABP Absolute Absolute Correlation Relative

wise Mean Standard Coefficient Pair-wise

measurements Error Deviation of to Average Standard

analyzed from (NIBP- Error of NIBP and Deviation of

302 patients ABP) (NIBP-ABP) ABP Error

(NIBP-ABP)

Systolic 114.8+/- 115.3+/- -.5 17.5 -.37 11.1%

23.8 30.0

Mean 77.5+/- 72.8+/- -4.7 10.7 -.32 12.2%

18.7 15.5

Diastolic 51.5+/- 58.3+/- -6.8 10.5 .02 17.2%

14.9 14.7

The overall agreement between NIBP and ABP is summarized in Table 4-1. The systolic

blood pressure had the lowest (absolute) overall bias (-0.5 mmHg) between NIBP and

ABP. However, the standard deviation of error for systolic blood pressure was the highest

(17.5 mmHg). The diastolic blood pressure had the highest (absolute) bias (-6.8 mmHg)

and a standard deviation of error of 10.5 mmHg. The bias and precision error for diastolic

blood pressure are the higher than either systolic or diastolic after normalizing the error

by the population mean diastolic pressure (51.5 mmHg). The precision error between

NIBP and ABP was lowest using mean blood pressure after the same normalization. The

bias error (-4.7 mmHg) between NIBP mean and ABP mean is consistent with previous

findings [4].



As Figure 4-4 and Figure 4-5 and demonstrate, the error between NIBP and ABP for

systolic as well as mean had a statistically significant correlation to the underlying

pressure (p < .005). In general, at lower pressures (systolic blood pressure less than 90

mmHg) the NIBP systolic pressure tends to over-estimate the ABP systolic pressure. At

higher pressures (systolic blood pressure greater than 150 mmHg) the NIBP systolic

blood pressure under-estimated the ABP systolic pressure. The NIBP mean pressure had

a significant bias error under both normotensive and hypertensive pressures (mean

pressure greater than 70 mmHg). The error in diastolic blood pressure did not exhibit a

significant correlation to the underlying pressure.

Another measure of agreement between NIBP and ABP can include the assessment of

relative changes with respect to the mean of a trend. Thus, by replacing each

measurement by its percent change from the mean value of the respective trend, and

dividing by the mean of the trend, a percent change from the mean can be calculated. The

difference in the percent change from the mean of NIBP and ABP can then be compared.

Table 4-1 includes a summary of the error between NIBP and ABP relative changes for

systolic, mean, and diastolic parameters. The diastolic NIBP and ABP had the poorest

level of agreement (17.2% error). The relative errors between NIBP and ABP for systolic

and mean pressure were 11.1% and 12.2%, respectively.
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Figure 4-6: Bland-Altman analysis of (diastolic) NIBP-ABP agreement

4.1.7. Results: Analysis of factors influencing NIBP-ABP
agreement

The error (NIBP-ABP) between paired pressure measurements was correlated to various

factors and the results summarized in Table 4-2. Among the factors that were analyzed,

the error between NIBP and ABP measurements was found to be most correlated to the

measured mean arterial blood pressure. The error correlated poorly with other factors

such as heart rate, age, and patient weight.

CA



Table 4-2: Analysis of factors influencing agreement between NIBP and ABP

Correlation Coefficient Mean Heart Rate Age Weight Presence of

between NIBP-ABP error Blood Vaso-active

and various physiologic Pressure Medication

factors

Systolic -0.46 .16 -0.09 0.02 0.08

Mean -0.56 .10 -0.04 0.00 0.09

Diastolic -0.28 .02 0.03 -0.06 0.03

,0

Age (Years)

Figure 4-7: NIBP-ABP (systolic) Error vs Age
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Heart Rate

Figure 4-9: Error (Sys NIBP - Sys ABP) as a function of heart-rate

4.1.8. Results: Hemodynamic instability detector performance
NIBP and ABP measurements are evaluated as features for a simple threshold-based

hemodynamic instability detector. The motivation for this study is to provide insight into

the potential overall clinical utility of such measurements in hemodynamic monitoring.

The NIBP and ABP features were evaluated using a simple clinical rule for the detection

of hypotension. The respective NIBP and ABP data distributions from periods prior to

instability were analyzed using a threshold-based detector. A systolic blood pressure

below 80 mmHg or a mean blood pressure below 60 mmHg was chosen as the threshold

for the detection of hypotension. These aforementioned thresholds using the intervals of

data during hemodynamic instability quantitatively characterize the sensitivity of a

detector for clinically significant hypotension. Sensitivity is defined as the percentage of

U0



measurements below the hypotension threshold in the monitoring interval prior to the

onset of a vaso-active medication. The false positive rate of such a detector can be

studied using data from intervals of relative stability (no pressors such as neosynephrine

or levophed given within 12 hours before or after a pressure measurement is taken).

Ideally, a detector would not alarm during a period of stability, and thus the percentage

(defined as false positive rate) of measurements below the respective hypotension

thresholds should be minimal. The results of the detector performance are summarized in

Table 4-3 and Table 4-4.

This study is limited by the assumption that the ICU staff is constantly vigilant to

transient hypotension and thus, initiates vaso-active medications when it is appropriate to

do so, and does not use such medications when they are unnecessary. Thus, we are

assuming that the error between NIBP and ABP is not correlated to the level of vigilance

of the ICU staff.

During periods of hemodynamic instability (90 minutes prior to an onset of a pressor),

the mean blood pressure (MBP) using invasive ABP was the most sensitive detector as

indicated by 51% of measurements being below a threshold of 60 mmHg (see Table 4-4).

The MBP as measured with NIBP had a comparable sensitivity of 47%. However, when

using the systolic blood pressure (SBP) from NIBP, the sensitivity of an NIBP-based

detector is significantly less (21% of points below threshold during instability).

The false positive rate (as measured by the percentage of points below the hypotension

threshold during a period of stability) was also assessed and summarized in Table 4-4.

The SBP-based threshold using NIBP had the lowest false positive rate (2%). The MBP-

based threshold using ABP had a higher false positive rate at 14%. A limitation of the

study of false-positives is that there may have been a transient episode of hypotension

without a subsequent intervention on the part of the clinical staff.



Table 4-3: Sensitivity of hemondynamic instability detector

531 paired measurements (pooled)from 76patients SBP < 80 mmHg MBP < 60 mmHg

NIBP 21% 47%

ABP 41% 51%

Table 4-4: False positive rate of detector during hemodynamic stability

8603 paired measurements from 282 patients SBP < 80 mmHg MBP < 60 mmHg

NIBP 2% 17%

ABP 6% 14%

4.1.9. Results: NIBP-ABP trends prior to renal failure
The preceding analysis focused on sensitivity analysis of NIBP and ABP as predictors of

hemodynamic instability. The definition of hemodynamic instability was based on a

therapeutic criteria set including the use of vaso-active medications. However, the use of

a medication may have been influenced by the blood pressure values prior to the onset of

the medication. In this section, we define purely diagnostic criteria to evaluate the

agreement between NIBP and ABP during an unstable physiologic state. The systemic

blood pressure is measured as a surrogate for end-organ perfusion pressures. Low

perfusion pressures can lead to organ failure. For example, renal failure may ensue in the

presence of sustained hypotension or shock. An example of acute renal failure preceded

by a drop in blood pressure is given by Figure 4-10 (NIBP and ABP systolic blood

pressures). The same patient's NIBP and ABP mean blood pressures are plotted in

Figure 4-11. In this ICU example, the NIBP systolic blood pressure did not decrease over

time to the same extent as did the NIBP mean blood pressure. However, the systolic

(invasive) ABP did decrease in time. This example may suggest that the systolic NIBP

may be a poor indicator of pre-renal failure. The MIMIC-II database allows for studying

this relationship in a large ICU patient populations.



Table 4-5 includes the results for blood pressure measurements using ABP and NIBP

prior to renal failure in ICU patients. Acute renal failure was identified as a serum

creatinine increase greater than 30% within 36 hours [46]. Those patients with

simultaneous NIBP and ABP measurements within 36 hours prior to renal failure were

included for analysis.

As Table 4-5 demonstrates, there was a significant difference between systolic NIBP and

ABP prior to renal failure episodes (as defined by increases in creatinine). Systolic NIBP

had a positive bias of 4.15 mmHg and standard deviation of error of 18.6 mmHg in

comparison to systolic ABP. The error between NIBP and ABP in measuring mean

systemic pressure included a smaller bias (-2.4 mmHg) and standard deviation (10.6

mmHg). Bland-Altman analysis of error for NIBP-ABP is included in Figure 4-12 (for

mean pressures) and Figure 4-13 (for systolic pressures).
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Figure 4-13: Bland-Altman analysis of NIBP-ABP (systolic) error prior to creatinine increases

Table 4-5: Result on NIBP-ABP error prior to acute renal failure

Analysis ofNIBP-ABP error within BIAS +/- Precision Correlation Coefficient

18 hours prior to creatinine (mmHg)

increase (989 paired

measurements from 63 patients)

Systolic 4.15 +/- 18.6 -0.45

Mean -2.4 +/- 10.9 -0.25

Diastolic -6.0+/- 10.2 0.12
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Discussion: NIBP-ABP measurement of agreement

The utilization of the MIMIC-II database to analyze retrospectively the agreement

between NIBP and ABP measurements in an ICU patient population revealed novel and

clinically significant discrepancies. Previous studies comparing NIBP and ABP

measurements were prospective in nature and limited to a smaller patient population. The

unique aspects of the current study include the size of the patient population, various

pathophysiologic states (such as renal failure) under which patients are monitored, and

"realistic" non-ideal conditions in which pressure measurements are performed.

Previous studies have regarded the invasive ABP measurements as the "gold-standard"

measurement by which non-invasive blood pressure measurement accuracies are

assessed. However, the retrospective and large-scale nature of this study necessitated that

an algorithm be utilized to reject "noisy" ABP measurements (see Figure 4-2).

Furthermore, the Bland-Altman analysis which utilized the average of NIBP and ABP

measurements was not reliant on the ABP measurement as serving as the "gold standard."

Finally, NIBP and ABP measurements were independently analyzed for serving as

sensitive and specific indicators and/or predictors of various physiologic states.

The overall analysis revealed that a clinically significant bias and precision error between

NIBP and ABP measurements was most pronounced when patients were hypotensive as

defined by the average of NIBP and ABP systolic measurements (or NIBP and ABP

mean arterial pressures). The agreement between NIBP and ABP was significantly worse

when using systolic blood pressures for comparison during hypotension (SBP < 80

mmHg). The NIBP and ABP mean blood pressures had a higher level agreement in terms

of bias and precision during hypotension (MBP < 60) than the systolic pressures.

The analysis of agreement was also extended across different physiologic states. The

NIBP systolic blood pressure was found to have poor sensitivity in indicating when a
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patient had a hypotensive episode as defined by the initiation of vasopressor therapy.

However, the NIBP mean blood pressure was found to be nearly equally sensitive as the

ABP mean and systolic blood pressures. Another physiologic state that was assessed

included renal failure. In evaluating the blood pressure measurements prior to renal

failure, the systolic NIBP was shown to have a clinically significant bias and precision

error in comparison to systolic AB. The bias and precision error was most pronounced

during hypotension prior to renal failure and greater than the error demonstrated when

analyzing the overall population. On the other hand, the mean NIBP measurements had

less bias and precision error when compared to the mean ABP measurements.

This finding is particularly salient when one considers a physiologically optimal

definition of hypotension. The mean pressure is the true driving pressure for peripheral

blood flow [46]. However, many clinicians utilize the systolic blood pressure for defining

hypotension and shock [references]. For example, several ICU patient acuity formulae

include the systolic blood pressure as a core measurement while excluding the mean

blood pressure. A simple indicator of shock is a formula called the "Shock Index" [58].

The shock index is defined as the ratio of the heart rate to the systolic blood pressure.

However, the findings of this study would suggest that the conventional shock index

would lack sensitivity if reliant upon NIBP systolic blood pressure.

The preference for systolic blood pressure as the de-facto parameter indicative of

hypotension is perhaps based on the limitations of the most popular non-invasive

measurement technology---the auscultatory method [18]. Prior to the introduction of

automated NIBP measurements, clinicians would assess blood pressure with a simple

cuff and use a stethoscope to find the Korotkoff sounds that are indicative of the systolic

and diastolic blood pressures. Alternatively, clinicians could use a cuff and simply

palpate the wrist for the radial pulse. Such simple techniques would readily provide a

systolic blood pressure measurement, but not the mean pressure. Thus, clinical practice

was influenced to utilize the measurements that were available at the time. The findings

of the present study may support the re-evaluation of a more clinically optimal definition

of hypotension and shock.
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A principal motivation for the current study is to evaluate the performance of NIBP in a

realistic ICU setting and provide guidance to enhancing the performance of NIBP

algorithms. The retrospective analysis of agreement between NIBP and ABP highlighted

clinically significant discrepancies between the two methods in measuring the systolic

blood pressure. A common method to identify the systolic and diastolic blood pressure

using the oscillometric technique is to assume that the ratios of oscillation amplitudes (at

the systolic and diastolic blood pressures) to maximal amplitudes (corresponding to the

mean blood pressure) are constant (see Figure 4-1). Geddes et al found that the ratio

between the oscillation amplitude occurring at the systolic blood pressure (As) and

maximal oscillation (AM) amplitude (at the mean blood pressure) was equal to 0.62

(average of all subjects) in dogs with simultaneously measured invasive and cuff

pressures [18]. However, across the different animal subjects, there was clinically

significant variability in the optimal ratios used to identify systolic and diastolic blood

pressures. Similar studies have been conducted in humans by measuring the oscillation

amplitudes with respect to the Korotkoff sounds obtained from the auscultatory method.

Ursino et al described a physical model to characterize factors affecting the agreement

between oscillometric and invasive blood pressure measurements [77]. Their model

predicted that aforementioned ratios (systolic/mean, and diastolic/mean) of the cuff

pressure oscillation amplitudes are dependent on the underlying mean blood pressure,

pulse pressure, heart rate, and blood vessel wall stiffness. Many of these parameters can

widely vary across an ICU patient population, and within an individual ICU patient's

stay. Thus, experimental and model-based studies suggest that the characteristic ratios

that relate the systolic and diastolic oscillations should not be considered constant values

across an ICU population. The retrospective study in this thesis also supports a re-

evaluation of the ad-hoc algorithms used to identify SBP and DBP. In particular, the

significant bias (overestimation of ABP) in the comparison between NIBP and ABP

systolic pressures during hypotension suggests that the ratios relating the oscillation

amplitudes at systolic blood pressure to the maximal oscillations (that signify the mean

blood pressure) should be decreased when the mean blood pressure is found to be low.

Thus, the results of this study suggest a pressure-dependent ratio for systolic blood
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pressure identification may significantly improve the performance of NIBP during

episodes of hypotension. The pressure-dependent functional used to optimally tune the

ratio of amplitudes need not be linear, and can be optimized through regression of the

NIBP/ABP dataset in MIMIC-II.

4.2. Diurnal variation in hemodynamic interventions in the ICU

4.2.1. Introduction

There has been recent interest in studying the diurnal pattern of medical interventions in

the ICU [17]. Ideally, the collective vigilance of ICU clinicians to transient changes in a

patient's physiology should be consistent throughout a 24-hour cycle. The large scale of

the MIMIC-II database and the availability of high-resolution physiologic and therapeutic

data allows for novel insight into the temporal vigilance of clinicians in response to

physiologic patterns suggestive of hemodynamic deterioration.

Failure to respond promptly to a physiologic pattern that is suggestive of deterioration

can arguably be considered a medical error of omission. The reduction of medical errors

and iatrogenic injury has emerged as a major focus in the efforts to improve the delivery

of care in the ICU environment [62]. Medical errors are estimated to cause between

44,000 and 98,000 deaths each year [27]. Indeed, one of the motivations for the

development of clinical decision support systems has been the belief that such

technologies can significantly reduce medical errors and adverse events within hospital

environments. Several researchers have utilized epidemiologic methods to study the

incidence of adverse events and medical errors in intensive care. Medical errors have

been defined as a "failure of a planned action to be completed as intended or the use of a

wrong plan to achieve an aim." An adverse event is defined as "any injury due to medical

management, rather than the underlying disease" [39]. The major studies on the

occurrence rate of in-hospital medical errors have focused primarily on errors of

commission rather than errors of omission. However, several researchers have suggested

that errors of omission are far more common than errors of commission [Brigham study,
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others]. A main challenge in studying errors of omission in the ICU is identifying

physiologic events that may meet certain treatment criteria but are otherwise ignored or

not acted upon promptly. Furthermore, it is important to identify factors that may be

linked to errors of omission in order to promote better clinical practice in the ICU.

A particular aspect of clinicians' vigilance that has been receiving increased attention is

diurnal variation in vigilance. For example, the use of medical emergency teams (METs)

to respond to ICU patient crises was analyzed as a function of the time of day [17]. METs

differ from traditional "code teams" that respond to cardiac arrests in that the rationale for

the deployment of METs is to offer earlier interventions to prevent a patient from

deteriorating. Thus, METs are ideally used to prevent a cardiac arrest instead of

responding to one. The results of two major studies on the activation of METs concluded

that there is significant time-dependent variability in the hospital ability to consistently

detect conditions that meet MET activation criteria [17, [31]. However, both of these

studies were limited by the availability of high-resolution physiologic data and were

dependent on sparser paper-based nursing charts. While cardiac arrest represents one

class of hemodynamic events, the MIMIC-II database allows for the study of a broader

set of physiologic states that require therapeutic interventions.

Among the principal roles of ICU clinicians is to monitor and maintain the hemodynamic

stability of ICU patients. Signs of hemodynamic instability may include significant drops

in systemic blood pressure and concomitant changes in heart rate. During periods of

hemodynamic instability, hypotension may result in poor end-tissue perfusion and,

ultimately, end-organ failure. The maintenance of adequate blood pressures in critically

ill patients is most frequently achieved through the administration of intravenous fluids,

vaso-active medications, and inotropic agents [46].

The MIMIC-II database was utilized to study the diurnal variation in the incidence of

hypotensive episodes. The diurnal variation in the initiation of hemodynamically

significant vaso-active therapeutic interventions was also studied. Factors that may

influence the need for therapeutic interventions, such as the hemodynamic patterns of an
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ICU patient, were also characterized as a function of time of day. In the next section, the

methodologies for identifying hypotensive events as well as the therapeutic interventions

that are suggestive of hemodynamic instability are described. Then, the major results are

summarized with particular focus on the variability in the incidence of hemodynamic

events and interventions as a function of the time of day. Finally, a discussion of the

major findings and the potential ramifications for ICU practice are provided.

4.2.2. Methodology

A basic level of analysis of hemodynamics included computing the summary statistics

(mean and standard deviation) of specific vital sign variables (nurse-validated) as a

function of time of day. For example, all the heart rates stored in the CareVue database

were first sorted by the hour of the day (with rounding to the nearest hour) in which they

were recorded. Then, all the heart rate values for each hour are grouped together and the

respective means and standard deviations are calculated. This temporal analysis is

repeated for other variables such as mean blood pressure, respiration rate, and oxygen

saturation.

The MIMIC-II database presented unique challenges in developing definitions for

hypotension based upon quantitative and objective criteria. In particular, the high

resolution and volume of physiologic and clinical data coupled with inherent noise in the

data required the use of automated algorithms to identify hypotensive episodes. These

automated algorithms utilized different quantitative definitions for hypotension that were

dependent upon a combination of therapeutic and diagnostic data.

The first definition of a hypotensive event relied strictly on the availability of diagnostic

vital signs data. In particular, definitions were developed that identify events suggestive

of acute changes in a patient's hemodynamic stability. The nursing chart data from

CareVue was utilized as the source of vital signs data for this aspect of the study. A

hypotensive event was defined any point in time in which the following three criteria

have all been met: 1) the nurse-verified mean blood pressure (MBP) was less than or

equal to 60 mmHg, 2) the MBP has dropped by more than 10 mmHg within two hours,

107



and 3) there is a concomitant increase in heart rate by more than 10 beats/minute within

two hours. This aforementioned multiparameter definition was utilized to identify those

events that are likely to reflect actual acute changes to physiology rather than noise in the

diagnostic measurements.

A shortcoming of relying upon purely diagnostic (monitoring) data in defining

hypotension is that such data are subject to noise. Noisy data may lead to the false

detection of hypotensive events. Thus, another definition of hypotension was developed

that was dependent upon therapeutic criteria. Two of the most common therapeutic

interventions utilized in the ICU in response to acute hypotension include intravenous

fluid infusions and vaso-active medications. An intravenous fluid bolus was defined by

satisfying one of the following two criteria: 1) total intravenous fluid input exceeding 800

ml within one hour, or 2) total intravenous input exceeding 1200 ml within two hours. A

vaso-active medication is typically given to a hypotensive patient in order to increase

total peripheral resistance and thereby raise the systemic blood pressure. A list of vaso-

active medications is provided in Table 4-6.

Analgesics and hypnotics are common medications utilized in ICU practice to maintain a

patient's comfort. However, the administration of certain analgesics (e.g. morphine) and

hypnotics (propofol) has been linked to iatrogenic acute hypotension in ICU patients

[references]. Thus, analysis of the hourly variation in medications that may cause

hypotension may provide further insight into the temporal hemodynamic variations in

ICU patients.

Table 4-6: List of Vaso-active Medications
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dopamine

epinephrine

Levophed (Norepinephrine)

Neosynephrine



Table 4-7: List of hypnotics and analgesics

The fiducial point that was used to demarcate a hemodynamic event was determined by

the time of onset of a vaso-active medication. The onset of administration was chosen

because of the high likelihood that the initiation of the treatment was in response to the

clinical staff's detection of hemodynamic deterioration.

Finally, those hemodynamic events defined by an onset of a vaso-active medication were

further analyzed to characterize the blood pressure values prior to therapy initiation. The

motivation for this method of analysis is based upon a desire to characterize the

hemodynamic patterns that lead to the initiation of therapy. Furthermore, one can study if

the patterns are statistically similar throughout the 24-hour care cycle. Thus, prior to each

medication onset, those hemodynamic events that had available minute-to-minute

resolution mean blood pressure measurements were identified. Then, the blood pressure

measurements up to one hour prior to the medication initiation were processed to identify

the hourly mean value as well as the minimum pressure value.

Another class of medications that is commonly used in the ICU includes hypnotics and

analgesics. However, while such medications are intended to sedate a patient and

maintain adequate patient comfort, certain hypnotics and analgesics have also been linked

to causing hypotension in a patient [Propofol reference]. The incidence of propofol onsets

was analyzed as a function of time of day in the MIMIC-II patient population in a manner

similar to the vaso-active medication onsets.

4.2.3. Results: Hourly variations of blood pressure and heart
rate

109

Medication Name

Propofol

Morphine

Ativan

Fentanyl



The population-averaged heart rates and mean blood pressures are plotted as a function of

time of day as shown in Figure 4-14 and Figure 4-15, respectively. The unpaired t-test

and Ranksum test were used to determine if there were statistically significant

fluctuations as a function of time of day. The temporal fluctuations in both blood pressure

and heart rate were minor when normalized by the standard deviations, but statistically

significant (p < 0.005). The population-averaged heart rate was lowest at 2 AM (85.4 +/-

17.4 bpm) and highest at 7 PM (88.2 +/- 17.6 bpm). The population-averaged mean blood

pressure was lowest at 2 AM (79.0 +/- 16.6 mmHg) and highest at 8 AM (81.9 +/- 17.6

mmHg).
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Figure 4-14: Mean blood pressure (population-averaged) variations throughout 24-hour cycle
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Figure 4-15: Mean heart rate (population-averaged) as a function of time of day

4.2.4. Results: Hourly variations of clinical data charting
Nurse-charted vital signs (e.g. blood pressure, heart rate, respiration, oxygen saturation)

are typically entered every hour in the clinical information system. The rate of charting of

vital signs was trended over the 24-hour cycle. As demonstrated in Figure 4-16, the

charting rate was uniform throughout the 24-hour cycle except for two noticeable

decreases (approximately 20% decrease) in frequency at 7 AM and 7 PM. Nurse shift

changes also occur at these two hours.
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Figure 4-16: Rate of charting of hemodynamic variables (heart rate and blood pressure) as a function
of time of day

4.2.5. Results: Diurnal variation in onset of hemodynamically
significant interventions

The frequency of onset of hemodynamically significant therapeutic interventions was

charted as a function of time of day (in hours). In Figure 4-17, the total number of vaso-

active medication onsets (initiation of a medication) is trended as a function of time of

day. The MIMIC-II patients with vaso-active medication onsets were randomly sorted

into 5 different groups and the mean and standard deviations of the hourly medication

onsets are shown in Figure 4-17(b). There was a statistically significant decrease in the

number of vaso-active medication onsets at 7 AM (lowest hour of total onsets) in

comparison to 8 PM (peak hour of total onsets) using the Student's t-test at (p < 0.05).
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Another method to treat hypotension is the administration of a bolus of intravenous fluid.

In a manner similar to the analysis of hourly variations in vaso-active medication onsets,

hourly variations in the total fluid bolus administrations in patients are shown in Figure

4-18. Patient randomization into five groups allowed for the calculation of hourly means

and standard deviations. The charted hourly statistics demonstrated significant

differences as a function of time of day. The lowest number of fluid bolus administrations

was at 7 AM, while the peak hour was at 2 PM (p < 0.05).

The variation in the total hourly initiations of an analgesic or hypnotic medications is

graphed in Figure 4-19. Patient randomization into five groups allowed for the

calculation of hourly means and standard deviations. The charted hourly statistics

demonstrated significant differences as a function of time of day. The lowest number of

total onsets of hypnotics/analgesic medication administrations was at 7 AM, while the

peak hour was at 11 AM (p < 0.05).

Figure 4-17: Frequency of vaso-active medication onsets as function of time of day
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Figure 4-18: Frequency of IV fluid bolus onsets as function of time of day

A: Total hypnotic/sedative medication

onsets (per hour) in 2100 MIMIC-II

patients as a function of time of day. The

average number of onsets per hour (36) is

nlnttpd
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B: The average and standard deviation of

hourly hypnotic/sedative medication

onsets in 2100 MIMIC-II patients as a

function of time of day from 5 randomly

sorted groups of patients.

Figure 4-19: Frequency of hypnotic/sedative medication onsets as function of time of day
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4.2.6. Results: Temporal analysis of hypotensive events

The number of acute hypotensive events (see methodology for definition of hypotensive

event) was charted as a function of time of day as shown in Figure 4-20(a). The

hypotensive events were identified by analysis of the nurse-validated heart rates and

blood pressures that were charted in the clinical information system. There was

significant hourly variation in the incidence of hypotensive events. The peak incidence of

acute hypotensive events occurred at 5 PM while the minimal number of events occurred

at 9 AM. However, there was not as distinct of a diurnal pattern in the incidence of

hemodynamic events as there was in the initiation of hemodynamic interventions.

In Figure 4-20(b-c), analysis of blood pressure values prior to the initiation of vaso-active

therapy is shown. In particular, the high-resolution minute-to-minute monitor-generated

arterial blood pressures (mean) were analyzed during the 60 minute window prior to the

initiation of therapy. The average value of the MBP measurements during the 60-minute

window (Figure 4-20b) and the minimum value (Figure 4-20c) are shown. The hourly

window representing the time between 7AM-8AM had the lowest average and minimum

MBP. The window representing the time between 4PM-5PM had the highest average and

minimum MBP. Statistical analysis using the two-sample t-test found significantly

different average and minimal MBP values prior to vaso-active medication onsets as a

function of the time of day (p < 0.05).
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A: The average and standard deviation of

the number of hemodynamic events in

2100 MIMIC-II patients as a function of

time of day from 5 randomly sorted

groups of patients.

B: The average mean arterial blood

pressure within one prior to a vaso-active

medication onset in 2100 MIMIC-II

patients as a function of time of day

(hourly mean and standard deviation of

MBP from all events nlotted)

C: The minimal mean arterial blood

pressure within one prior to a vaso-active

medication onset in 2100 MIMIC-II

patients as a function of time of day

(hourly mean and standard deviation of

MBP minima from all events nlotted)

Thme Day n Hur

Figure 4-20: Temporal variation of acute hypotensive events

4.2.7. Discussion

The MIMIC-II database was utilized to study the temporal variations in hemodynamic of

ICU patients. The major contribution of this study involved the analysis of high-

resolution therapeutic and diagnostic (monitoring and nurse-validated) vital signs

measurements over the 24-hour daily cycle in a large cohort of ICU patients.

The baseline analysis of vital signs (mean blood pressure and heart rate) demonstrated

minor but statistically significant variations over the 24-hour cycle of care. The heart rate
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and blood pressure changes were less than the diurnal variations observed in normal

healthy subjects [57]. The autonomic control system exerts a powerful influence on the

blood pressure and heart rate. The changes in heart rates and blood pressures in healthy

subjects over a 24-hour cycle are linked strongly with the sleep-wake cycle [57].

However, ICU patients are subject to various therapeutic interventions that modulate both

the autonomic control system (via vaso-active medications) and the sleep-wake cycle (via

hypnotics/analgesic medications). The timing of interventions may be independent from

patient to patient. The temporal analysis of the onset of new vaso-active medications and

hypnotics suggests that there are intervals where medications are more likely to be

started. This time-dependent variation may result in the small but statistically significant

variation of hourly averaged heart-rates and blood pressure time series in the ICU patient

population as a whole. The massive sample size (greater than 300,000 measurements)

used in this study from the MIMIC-II database is most likely the principal reasons that

such hourly differences in heart rate and blood pressure are statistically significant.

The heart-rate and blood pressure trends were also analyzed to identify episodes of acute

hypotension (see Figure 4-20). While there were significant hourly variations in the

incidence of acute hypotensive as a function time, there was less of a distinct transition in

the rate of hypotensive events over the 24-hour cycle (day vs night). The peak incidence

of hypotensive events (based only on blood pressure and heart rate time series) occurred

at 5 PM. The peak hour also fell close to the hour of peak administration of vaso-active

medications and (IV bolus) fluids which occurs at 7 PM. However, there were several

hours with significant hemodynamic events that occurred after midnight, thus night time

was not as quiescent as the therapeutic profiles (histograms) would suggest.

The nurse-validated vital sign data were utilized for certain aspects of the analysis of

temporal hemodynamic variations. Nurse-validated vital sign data are typically charted at

hourly intervals in the clinical information system. While the overall charting frequency

as determined by the analysis of the entire ICU patient population was mostly uniform,

there were two significant decreases in charting frequency at 7 AM and 7PM. The

decreases in charting frequency occurred at the hours of nursing-shift changes. Clinician
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shift changes in the ICU should ideally result in minimal changes to the collective

vigilance and completion routine tasks on the part of the staff. Hourly charting of vital

signs by nurses is important so that clinically significant trends suggestive of physiologic

status changes are detected in a timely fashion. Failure to chart clinical data during shift

changes may represent a transient decrease in workflow effectiveness. The time-

dependent automated histogram analysis of hemodynamic variables can perhaps be

investigated as a novel method of measuring workflow effectiveness during shift

changes.

The initiation of hemodynamically significant therapeutic interventions was studied as a

function of time of day. Vaso-active medications such as Norepinephrine or

Neosynephrine are presumably started in response to a patient's acute hemodynamic

deterioration. There are no studies that we are aware of that would suggest that an ICU

patient is more likely to deteriorate at specific times of the day due to underlying disease

processes. In particular, a recent study by Galhotra et al demonstrated that the incidence

of MET activation events and cardiac arrests did not have a diurnal variation in the ICU

[17]. However in the MIMIC-II database, the initiation of therapeutic interventions that

may be appropriate to treat hemodynamic deterioration showed a strong diurnal variation

(see Figure 4-17 and Figure 4-18). Furthermore, the initiation of analgesic and hypnotic

medications that may be indicated when a patient complains of pain and discomfort also

demonstrated a similar diurnal variation (see Figure 4-19). A possible explanation of

these results is that hypnotics like propofol have known hypotensive side effects, and

thus, their initiation causes an increased likelihood of hemodynamic deterioration.

However, a similar temporal histogram analysis of hemodynamically significant

interventions (pressors and fluid bolusses) in patients that were not given propofol or

morphine still demonstrated similar diurnal variations in intervention onsets.

Another level of temporal analysis fused physiologic data from bedside monitors with

therapeutic information such as the administration of vaso-active medications. As

mentioned previously, a therapeutic intervention such as the initiation of a vaso-active

medication may be preceded by a transient drop in blood pressure. Thus, the blood
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pressure can be considered the independent variable. The blood pressure was

characterized during the one-hour period prior to the initiation of vaso-active

medications. Figure 4-20 shows that both the average and minimal value of the MBP

over the window vary significantly over the 24-hour cycle. Furthermore, the hourly

differences are far greater in magnitude than the hourly differences in baseline blood

pressure (see Figure 4-14). Typical ICU protocols call for the initiation of vaso-active

medications when the mean (or systolic) blood pressure drops below a predefined

threshold. Ideally, the ICU staffs vigilance to acute hypotension should remain constant

over the 24-hour cycle. The minimum mean blood pressure prior to the initiation of vaso-

active medications was smallest in the 7AM-8AM window (52 mmHg) and highest in the

4PM-5PM window (65 mmHg). These findings suggest that, on average, the clinical staff

allows the blood pressure to drop significantly lower between 7AM-8AM before

initiating appropriate therapy.

The increasing focus on the use of ICU guidelines and standards of care [66] is--in part--

reflective of an effort to reduce medical errors. Developing an objective and quantitative

metric for identifying medical errors of omissions is a challenge in the ICU environment.

For example, allowing a patient's blood pressure to drop precipitously low can be

considered an error of omission. Whether such an error would lead to a poorer outcome

or longer ICU stay is unknown. However, a prolonged deficit in end-organ perfusion can

compromise a patient's physiologic stability [46].

In the preceding analysis of diurnal variation in therapeutic interventions and vital signs,

significant hourly differences were found. The 24-hour care cycle includes periods of

time in which patients are more likely to be subject to different procedures and diagnostic

studies. Furthermore, the workflow of the clinical staff includes several time-dependent

administrative tasks and staffing changes. However, vigilance to a fragile ICU patient's

physiologic status changes should remain optimal over the entire 24-hour cycle if

possible. The novel methodology utilized in this study may be considered as a high

throughput data analysis tool to characterize ICU consistency as a function of the time of

day. The resultant analysis may focus a clinician's attention to windows of time where
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the delivered care is inconsistent with typical unit performance or clinically accepted

standards of care. The identified inconsistencies may warrant further analysis. If a lack of

vigilance is identified as the primary cause of inconsistency, changes to clinical practice

may be considered as corrective measures.
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5.Novel Time Series Similarity Metric

In the previous chapters, we introduced the MIMIC-II database as a new resource for

supporting research in patient monitoring and clinical decision support algorithms. The

availability of multiple streams of high-resolution physiologic signals as well as salient

therapeutic data allows for the development of novel pattern recognition algorithms. In

Chapter 2, we motivated the need for developing algorithms capable of fusing

information from several different parameter time series (such as heart rate, blood

pressure, and respiration rate) to support clinicians in identifying clinically significant

physiologic conditions as they evolve. We summarized several different approaches such

as rules-based expert systems as well as different types of pattern recognition algorithms

(neural networks, fuzzy logic, and multidimensional clustering). A particular area of

pattern recognition and data mining that has received significant research in the past

involves the development of algorithms that identify "similarities" between different time

series [33]. The definition of "similarity" among time series is a vague concept. The

metrics that are used to identify similar signals or records are typically based on

quantitative functions. However, the quantitative similarity between two or more signals

does not necessarily translate into a meaningful practical similarity. Thus, a major

challenge in developing physiologic similarity metrics with applications to ICU patient

records is identifying statistical (quantitative) metrics that also demonstrate physiologic

or clinical similarity.

Time series similarity metrics are not restricted to medical domains. The ongoing

advances in computer processing power, networking, and data storage have enabled

modern computers with capabilities of generating, processing and storing terabytes of

data. Often the data are time-varying, such as data from biomedical sensors attached to

patients in a hospital intensive care unit (ICU) or seismic recordings from geological

studies. Massive volumes of data can be readily archived in a digital data warehouse to
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support research in automated data mining and knowledge discovery. Ongoing research

in time series datmining includes developing algorithms that identify "similar" temporal

patterns in a collection of time series [1]. For example, one may consider the following

queries:

Q : Identify corporations with similar stock price fluctuations with respect to a change in

oil price.

Q2: Identify a group of ICU patients with similar changes in their heart rate and blood

pressure trends prior to an episode of severe hypotension.

A time series in general and an ICU patient record in particular, can be of varying lengths

--- from a few hours to several hundreds of hours. Multiparameter records can consist of

several different data streams that convey unique and important information. In

meteorology, weather patterns may be characterized by humidity, temperature, and wind

speeds. In MIMIC-II, patient records include high resolution (125 Hz) physiologic

waveforms of ECG that monitor the heart's electrical activity, and vital parameter

recordings acquired at a resolution of 1 sample per minute to follow a patient's blood

pressure, heart rate, and blood oxygen saturation. Also, there are fluid balance data and

medication drip rates charted on a near-hourly basis. Finally, there are clinical laboratory

values that are sparsely recorded at a rate of approximately 1 to 3 samples a day.

The aforementioned characteristics of the MIMIC-II database pose several challenges for

developing suitable temporal similarity metrics. Ideally, a similarity metric should be

capable of comparing two records that are of different lengths. Furthermore, a temporal

similarity metric must be capable of characterizing an ICU record using more than one

data stream. For example, a slowly increasing heart rate trend over several hours

accompanied by a concomitant decrease in blood pressure (or cardiac output) may be

indicative of an internal bleed in a patient. Thus, a similarity metric that fails to capture

dynamical relationships between two or more parameters would be of limited use in

identifying internal bleeds in a large-scale ICU patient database. A database consisting of

terabytes of time series data may have unique patterns that have hitherto been
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undiscovered. Thus, for data mining and "knowledge-discovery" applications, an

algorithm cannot be heavily dependent on user-tunable parameters or inputs. All of these

aforementioned challenges are compounded by the inherent noise in ICU data.
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Figure 5-1 includes examples of two channels of physiologic time series (heart rate,

systolic blood pressure (SBP)) from 88 ICU patient episodes prior to hemodynamic

deterioration and reference time series during intervals of stability. The trends are

population averaged (with means and standard errors) and demonstrate that there is

significant variability from patient to patient. However, data mining may reveal that there

are "signatures" in multidimensional physiologic space that may be predictive of

hemodynamic deterioration. The identification of similar signatures shared by patients

with similar pathophysiologies is a major goal in our ICU clinical decision support

research.

In this chapter, we introduce a new temporal similarity metric based on

transformation of time series data into an intuitive symbolic representation. This

symbolic transform allows us to model a temporal record in a manner similar to popular

information-retrieval (IR) models of documents or web pages. The classical IR

algorithms utilize a high-dimensional vector-space model in which each element of the

vector represents the number of occurrences of a given word in the document [64]. Thus,

the structure of the document is characterized by this "term frequency vector" (TFV). In

order to transform time-series into a collection of "words" or symbols, a transform is

needed that compactly represents the salient characteristics of single and multiparameter

time series. We demonstrate that a wavelet-based representation of temporal records

offers an intuitively appealing and computationally efficient solution.

The chapter is organized in the following manner: in the next section, we provide

a brief overview of some popular methods used to assess the similarity between time

series. Then, we describe the methodology for implementing our new trend similarity

algorithm. We assess our algorithm's performance using multidimensional time series

from publicly available and standardized time series databases. We also assessed its

performance in classifying physiologic time series generated from a computational model

of the cardiovascular system.

5.1.1. Review of time series similarity algorithms
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Keogh et al [33] provide an excellent survey of methods developed for the retrieval of

similar time series. Previous algorithms can be grouped into time-domain methods and

transform-based methods. The simplest time-domain algorithm for computing a similarity

metric between time series is the Euclidean distance between two discrete time series

x[n] and y[n] where the distance between the two series is defined as:

Equation 3

D(x,y)= (x[n]- y[nI)

While the Euclidean distance metric is rather simple, its shortcomings exemplify the

challenges in developing more robust time series similarity metrics. The Euclidean

distance metric assumes that discrete time series in a database have the same length and

are uniformly sampled from their original continuous time processes. Euclidean distance

algorithms in particular, and most time-series similarity metrics in general assume that

signal are aligned so that "similar" signals will have similar dynamics at the same points

in time. For example, Figure 5-2 demonstrates two sinusoidal signals that have similar

amplitudes with slightly different frequencies and phase shifts. The calculated point-to-

point error is significant and would result in a large value for a distance metric between

the two signals. To overcome these constraints, modifications to the Euclidean distance

metric have been utilized based on the principle of time-warping where signals are

"stretched" or "compressed" so that pertinent features are aligned in time[33]. However,

such signal processing methods may significantly change the unique characteristics of a

signal and require careful tuning parameters. Windowing and segmentation techniques

have been developed to divide a signal into a set of sub-sequences which allows greater

flexibility in matching time series by using shifting operations [25].
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Two Similar Signals

Figure 5-2: Example of point-to-point error between two "similar" time series for the Euclidean
distance metric.

Transform-based techniques have been applied to the time series similarity metrics to

overcome the limitations of Euclidean and time-warping methods that are restricted to the

time-domain. The transform-based techniques project time series of interest onto a set of

functions such as sinusoids or principal components [25]. The data transformation

reduces the dimensionality of the original times series and facilitates the use of machine

learning techniques in matching similar time series.

Fourier-based transform techniques are commonly utilized to represent a time series.

However, transformations of signals from the time domain to the transform (Fourier)

domain may at times be non-intuitive. For example, in Figure 5-3, two different "ramp"

function time series are presented with their respective Fourier Transforms. Only the

magnitude of the Fourier transforms is included (the Fourier transform has complex

representations). Because the phase information is excluded, the two different ramp

functions appear to have very similar magnitude values for their respective Fourier

coefficients. Thus, this simple example demonstrates that phase information cannot be

neglected in utilizing the Fourier transform to represent time series. An attractive feature
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of a time series similarity algorithm is to identify why two or more signals are similar to

one another upon the request of a user. However, the phase information of a signal is not

an intuitive and simple concept to convey. Thus, the requirements for needing both

magnitude and phase components of a Fourier transform would be an unappealing

method for querying "similar" time series.

Figure 5-3: Example of FFT-based transformation of two different ramp time series

While an improvement over time-domain techniques, transform-based similarity metrics

are still an active area of research. In particular, computationally efficient algorithms for

real-time (online) applications are sought that can identify similar multidimensional time

series from large databases.

In reviewing the literature, we will now focus on algorithms that are based upon

"symbolic" representations of time series. The SAX (Symbolic Aggregate

Approximation) method introduced by Lin and Keogh [44] is among the most popular

symbolic methods utilized for time series similarity searches. The SAX method segments
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a time series into equal length segments with piece-wise constant approximations, and

then assigns a symbol (or letter) to each segment. The symbolic transformation of each

segment is based upon a probabilistic mapping of numeric data to symbols. Thus, a time

series is transformed into a string of letters (or symbols). Then, time series are matched

by assessing the differences of the symbols from equal-length strings. An attractive

feature of the SAX algorithm is that it allows for significant dimensionality reduction.

SAX also provides for a lower bound that guarantees no false-dismissals of a time series

within a certain Euclidean distance from the query signal. While there may be a

mathematical elegance to providing guarantees of no false dismissals in a Euclidean

sense, the previously described limitations of Euclidean distance metrics may limit the

practical importance of such a guarantee.

Another recent method that has been published during the course of the present thesis

work is the MVQ (Multiresolution Vector Quantized) approximation algorithm of

Megalooikonomou et al [47]. The MVQ method segments a time series at several

resolutions (or scales). Instead of fitting piecewise constant approximations to each

segment, the MVQ technique finds optimal vectors using the traditional Generalized

Lloyd Algorithm (GLA) and generates a codebook. The vector codes then become the

symbolic representation of the time series. In [47], the authors have shown that the MVQ

technique has superior performance in comparison to other state-of-the-art time series

retrieval algorithms using standard time series test databases. One of the major

limitations of the MVQ technique is that it requires training to generate the optimal

vector codebook and has several parameters that need to be tuned.

5.1.2. Introduction of novel wavelet-based similarity metric

We introduce a new temporal similarity metric based on transformation of time series

data into an intuitive symbolic representation. This symbolic transform allows us to

model a temporal record in a manner similar to popular information-retrieval (IR) models

of documents or web pages. The classical IR algorithms utilize a high-dimensional

vector-space model in which each element of the vector represents the number of
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occurrences of a given word in the document [60]. Thus, the structure of the document is

characterized by this "term frequency vector" (TFV). In order to transform time-series

into a collection of "words" or symbols, a transform is needed that compactly represents

the salient characteristics of single and multiparameter time series. We demonstrate that a

wavelet-based representation of temporal records offers an intuitively appealing and

computationally efficient solution.

In the next section, we briefly review the vector space model that is commonly

implemented in information retrieval systems such as document indexing and web-search

engines [64].

5.1.3. Review of classical information retrieval model

In this section, we describe the classic information retrieval (IR) model and define terms

that are frequently used in describing the novel extensions and applications of the IR

model to time series signals in general, and physiologic time series in particular. In this

thesis, a "record" is used to refer to a set of words or numerical values that collectively

characterize a particular entity in a database. For example, a collection of words in a

specific sequence can be members that uniquely characterize a particular record such as a

document or a web-page. The collection of records can consist of a library of documents

or the internet (collection of web-pages). A sequence of observations (samples) from a

multidimensional time-varying process can form a record that represents the original

time-varying process. A record can also consist of heterogeneous members such as

numbers and words. For example, the MIMIC-II database can be seen as a collection of

ICU patient records. Each record consists of several different physiologic time series and

text-based entries such as nursing progress notes and discharge summaries.

In order to identify and retrieve "similar" records in a database, the original raw record

must be converted into a representation that characterizes the salient features of that

respective record. The classical text-based information retrieval (IR) systems represent

records using the vector-space model. Using the method of Salton et al, unique words are
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chosen from a document to represent the various dimensions of the vector [64]. Thus, the

value of a specific element in the vector is equal to the frequency of occurrence of the

word in the document. Figure 5-4 includes an example of how a simple document may be

transformed into a vector. Another important observation concerning the Salton model is

that the original ordering of the terms in a document is no longer preserved in the term-

frequency vector.

Sample Document

The yellow fox

jumped over the

yellow fence to

escape the angry

dog.

Document-

to-Vector

Conversion

Figure 5-4: Example of document-to-vector conversion

As is demonstrated in Figure 5-4, the vector-space model transforms text-based records

(documents or web-pages) into mathematical representations. This transformation allows

for the utilization of classical pattern recognition approaches used in statistics for various

detection problems. The various dimensions of the feature vector need not be weighted
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angry 1

dog 1

escape 1

fence 1

fox 1

over 1

the 3

to 1

yellow 2

red 0

hunter 0



equally. For example, words that may appear frequently in text-based records such as the

words 'the' or 'to' are generally not helpful in characterizing the important properties of a

record, and thus, receive less weight in the overall vector weighting scheme. In fact,

uninformative words can be eliminated from an overall feature as a means of

dimensionality reduction. A study of captioned words on British television concluded that

approximately 250 words accounted for 68% of all the spoken words [29]. A popular

term weighting method to account for the significant difference in the prior probability of

a word being utilized in a given sentence is referred to as the term frequency, inverse

document frequency method (TF*IDF) [60]. A common variant of the TF*IDF algorithm

is described in Equation 4. The IDF weight of a term f, is defined as:

Equation 4

N
IDF(fi) = log

where N is equal to the number of records in the database, and f,, is equal to the number

of records in the database that have at least one occurrence of the term Ji. Thus, the IDF

weight tends to de-emphasize terms in a vector that occur frequently across many records

in a database (where fi,,n tends to be large). The final value, W(fd, of each element in the

term frequency vector for a given record is defined as:

Equation 5

W(f) = TF(f )* IDF(f)

where TF(f') is the number of occurrences of termfi in a given record.
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Figure 5-5: Example of identifying "similar" sentences

132

1. New Alligator exhibit at Boston Zoo to
open this fall.

2. Alligator swallows Boston jogger near
Charles River.

3. New gourmet restaurant on Charles to
serve Alligator on menu.

4. Exotic menu to include Alligator at the
Cajun Restaurant.

5. Stone Park Zoo will feature Alligator
display



Table 5-1: Feature vectors used to create feature matrix of individual sentences (or records).

Term Sentence 1 Sentence 2 Sentence 3 Sentence 4 Sentence 5

(Number ol (Number of (Number of (Number of (Number of

occurrences in occurrences in occurrences in occurrences in occurrences in

sentence) sentence) sentence) sentence) sentence)

Alligator 1 1 1 1 1

Restaurant 0 0 1 1 0

Jogger 0 1 0 0 0

Swallows 0 1 0 0 0

Menu 0 0 1 1 0

Zoo 1 0 0 0 1

Gourmet 0 0 1 0 0

Boston 1 1 0 0 0

Charles 0 1 1 0 0

River 0 1 0 0 0

Cajun 0 0 0 1 0
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Figure 5-6: Sentence similarity matrix displayed using color mapping of correlation coefficients

The example presented in Figure 5-5, Table 5-1, Figure 5-6 for matching similar

sentences also highlights several challenges that are nontrivial. For example, in the

simple term frequency vector model, each dimension or "term" is modeled to be

independent from other dimensions or terms. However, certain terms are related and

convey information about similar concepts. For example, the words "gourmet" and
"menu" both convey information that would suggest that the record may be referring to

concepts related to food or restaurants. However, the term frequency vector would

consider such elements to be independent in a probabilistic model. There are many other

challenges to constructing optimal term feature vectors that include language modeling

and are beyond the scope of this thesis. The interested reader is referred to [64] for more

detailed reviews.

5.1.4. Detection of similar time series as an information retrieval
problem
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While IR-techniques are popular for indexing records consisting of collections of words

(documents), very little research exists on applying the IR model to records of

multidimensional time series. A principal challenge confronting researchers is developing

an adequate mapping algorithm that can transform time-series into a set of "words" or

symbols. The symbols that are derived should adequately describe the structure and

"uniqueness" of a time-series. The use of wavelets to characterize the multi-resolution

(multiscale) structure of a time-varying signal offers an intuitively appealing and

computationally efficient algorithm for symbol generation. There is also a physiological

basis to focus on multiscale transforms. Physiologic control systems include short-term

(within seconds) and long-term (within hours or days) mechanisms for modulating the

physiologic state of a patient. In the next section, we describe the methodology used to

derive a new wavelet-based symbolic transform and similarity metric.

5.1.5. Multiscale dynamics characterization of time series:
wavelet-based approach

Wavelets have become increasingly important in areas of signal processing such as data

compression, signal de-noising, and feature extraction in pattern recognition [45].

Wavelets are basis functions that can be used to decompose time-varying signals into

terms of averages and differences at several different time scales. Several researchers

have discussed many of the attractive properties of wavelets [71]. Wavelets have some

properties comparable to other popular transform techniques like Fourier analysis.

However, wavelets are localized in time, whereas Fourier coefficients represent signal

energy components defined over a signal's entire support (time-span). In the present

research, we take advantage of the time localization property of wavelets to develop a

novel time series similarity metric. Next, we briefly review the implementation scheme

used for computing the wavelet transform of a signal.

The continuous wavelet transform (CWT) for a continuous signalf(t) is defined as:
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Equation 6

CWT(f , j,b)= j-1/2 f (t)w(2- t -b)at
-00o

wherej is a scale parameter and b is a shifting parameter. In Equation 6, the wavelet basis

function is characterized by w(t). The CWT is calculated by continuously correlating

shifted and scaled versions of w(t) with f(t). The CWT of f(t) transforms a one-

dimensional signal into two dimensions indexed by j and b. A wavelet coefficient

characterizes the signal dynamics at a certain scale j and a certain location in time

indicated by b. Coefficients at coarse scales (where j is large) characterize global

dynamics of a signal, whereas finer scale (where j is small) characterize finer detail

dynamics of a signal. The CWT results in highly redundant information in coefficients

when b and j are varied in small steps. In practice, signals are discretely sampled and

thus, a discrete version of the CWT is often utilized and is referred to as the Discrete

Wavelet Transform (DWT). There are several families of wavelet basis functions that

could be utilized in the CWT or DWT. Wavelet families are chosen based upon desired

properties such as smoothness, computational complexity, and orthogonality. Numerous

reviews in the literature provide excellent overviews of the properties of wavelets and can

be consulted [53]. The Haar wavelet is perhaps the simplest wavelet to implement and

can be represented by successive local-difference and local-averaging operations. As can

be seen in Figure 5-7, the Haar wavelets at different dyadic scales are orthogonal to one

another, and can be used to form a complete basis in discrete space. Thus, a discrete

signal, x[n], can be perfectly reconstructed by applying an "inverse" discrete wavelet

transform on the wavelet coefficients. For example, a signal x[n], that is defined over 16

samples in duration requires only 14 detail wavelet coefficients and 2 approximation

coefficients to be perfectly reconstructed.
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Harr Basis Functions:

By projecting a signal, x[n], on

each wavelet basis function, the

resulting coefficient characterizes

the signal dynamics at the

respective wavelet scale. Thus,

the coarser wavelet scales can be

used to represent changes in a

time-series occurring over longer

time intervals of several hours,

whereas the finer scales can be

used to represent changes over a

few minutes. Haar functions can

be chosen based on their scale and

shift properties to be orthogonal to

one another.

Over-complete Wavelet Basis

Function: Wavelets are shifted so

that there are two basis functions of

the same support (where values are

non-zero), but are non-orthogonal to

one another. In practice, over-

complete wavelet representations

are implemented by over-sampling

operations using a filter bank as

illustrated in Figure 5-10.

Figure 5-7: Example of Haar wavelet basis functions

5.1.6. Review of wavelet convolutions
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Discrete Haar wavelet basis functions, wj[n] and wj+l[n] (as illustrated in Figure 5-7) can

be utilized in the DWT. As we change j, the wavelet basis functions can be dilated or

contracted as illustrated in Figure 5-7. The signal dynamics at scale jcan be characterized

for any signal fn] by convolvingffn] with wj[n] to yield an over-sampled set of wavelet

coefficients, hj*[n]:

Equation 7

hi.,[n] = wj[n]* f[n]

However, hi*[n], still represents an over-sampled (redundant) version of the wavelet

coefficients of scale j. In practice, hj*[n], where wj[n] has support of 2M points, is

decimated by a factor of 2M, which leads to the wavelet coefficients, hj [n], of scale j. In

the over-complete discrete wavelet transform implemented in this research, the

decimation was only by a factor of M or less.

I 1

I I
Figure 5-8: Discrete wavelet transform utilizing Haar basis function to calculate wavelet detail
coefficients

Along with the Haar wavelet basis function wj[n], a smoothing operation on the signal is

utilized to characterize the global trend of a signal by a moving average filter to yield a

smoothed approximation, a[n], of the original signalf[n].
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Figure 5-9: Discrete wavelet transform utilizing Haar function to calculate approximation
coefficients

In order to obtain the multiscale collection of wavelet coefficients wj[n] and

approximation -coefficients, aj[n], investigators commonly utilize efficient multirate filter

bank implementations [62]. In the implementation utilized in this research, a modified

filter bank implementation is utilized and is described in Figure 5-10 and Figure 5-11.

139



F[n]

j=Jwjn
I ] .... I h;nl

-- 0 1 I .-.

-1.5i

j=3 !

, 4 h3n]

0 2 4 6 8 10

j=2

---- 0 J2 - 7 h2 Z]
0 01 * *nl

0 2 4 6 8 10

j=1

-- F77 m

4
0 2 4 6 8 n 10Y1

Figure 5-10: Filter bank implementation of DWT to calculate wavelet detail coefficients
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Figure 5-11: Filter bank implementation to calculate wavelet approximation coefficients
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Detail (a, b, c) and Approximation (d)

signals reconstructed from wavelet

and approximation coefficients.

2 8

n 2 d
0-

-2o 2 4 8n  10 12 14 16

A time series, x[n], is resolved into three scales of wavelet coefficients and one set of

approximation coefficients. The wavelet coefficients at scales 1, 2, and 3 are used to reconstruct

gradually coarser detail information of the original signals as shown in a, b, and c. The

approximation coefficients are used to construct the coarse approximation as shown in d. The

signals detail signals a, b, and c can be added to the approximation signal, d, to perfectly

reconstruct the original time series, x[n].

Figure 5-12: Example of multiscale decomposition of a signal with Haar wavelets

The simulated signal in Figure 5-12 illustrates how any signal can be resolved into

multiscale components that describe the dynamics as well as the approximation (low-

frequency) characteristics using wavelet analysis. For example, the three detail signals

from the wavelet coefficients have been reconstructed at scales 1, 2, and 3. As can be

seen, each scale has successively coarser detail information extracted from the original

signal, x[n]. The approximation coefficients are used to reconstruct the crudest

approximation of the signal without the wavelet coefficients. The three detail (wavelet)

trends and one approximation trend can be added to perfectly reconstruct the original

signal. The time domain signal, x[n], consists of 16 samples. The wavelet information at

scales 1, 2, and 3 consist of 8, 4, and 2 coefficients respectively. The approximation

information consists of 2 coefficients. Thus, the total collection of wavelet and

approximation coefficients consists of 16 points as well. The detail and approximation

coefficients can be used to reconstruct the different detail and approximation information

of the original signal, x[n].
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We have chosen to utilize an over-complete form of the Haar wavelet transform which

does not have the orthogonality property and is a slight modification of the framework

proposed in [55]. An over-complete expansion allows us to increase the expressive power

of our feature vector while retaining the computational simplicity of the DWT. In

practice, this is accomplished by simply over-sampling the wavelet coefficients. Thus, it

will result in a greater number of coefficients than the conventional DWT. If there is

energy in a signal which falls at the edge of a wavelet defined at scale j with compact

support of length 2M, the over-complete implementation would better characterize the

temporal dynamics because the signal of interest would be projected onto the next

wavelet which would have the same compact support 2M but be shifted by only 2M-1

points. In the classical DWT, the next wavelet on the same scale would be shifted by 2M

and thus potentially "miss" edges in a signal at a certain scale. In this thesis, an over-

complete discrete wavelet transform has been utilized by reduced decimation factors (2k),

where k < m, for each scalej.

5.1.7. Methodology: Wavelet symbol generation

In order to transform a time series into features that can be utilized in classic

information-retrieval vector space models, the wavelet coefficients at each scale are

quantized into discrete symbols as illustrated in Figure 3. The quantization method that

was chosen is the simple uniform quantizer. The number of symbols for each scale is a

tunable parameter. We now define the methodology used to create the wavelet symbol

vectors.

Time series in general and physiologic time series in particular, can be treated as

continuous time varying processes. To simplify computation and handling of such

signals, the amplitudes of time series are quantized to varying resolution. Quantization is

advantageous because it restricts the possible values a signal can assume. Ideally, the

quantization should not result in the loss of physiologically meaningful information. For
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example, if a mean arterial blood pressure signal was quantized to either 0 mmHg or 100

mmHg, then significant physiologic information would be lost in the quantization

process. Different physiologic signals require different quantization schemes because of

the differences in their dynamic ranges. For example, arterial blood pH can only have

physiologic ranges between 6.5 and 7.7, whereas a patient's heart rate may vary from 0 to

300 beats per minute. The quantization schemes for these two different signals must

accommodate the difference in statistics between these signals. The aforementioned

examples of quantization are referring to the actual time-domain value of the physiologic

signals. However, the same arguments would apply to the respective wavelet coefficients

of such signals in the wavelet domain. We now describe the quantization technique we

utilize for generating quantized wavelet coefficients of time series.

A collection of time series xi[n] are resolved into their respective wavelet coefficients at

several different scales. The time series xi[n], are assumed to be of a similar class. For

example, x[[n] may represent a set of arterial blood pressure time series from several

different patients. The assumption that time series are representative of similar dynamics

is important within the domain of physiologic signal in particular because different

signals may have vastly different characteristic dynamics as shown in the aforementioned

example of arterial pH and arterial blood pressure.
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Figure 5-13: Scheme for generation of quantized wavelet coefficients

The schematic presented in Figure 5-13 demonstrates the overall wavelet coefficient

quantization process. We model a wavelet coefficient probability distribution at each

scale j and find the minimum and maximum wavelet coefficient values that bound the

wavelet coefficient distribution from the lower 0.5% to the upper 99.5% values. The

advantage of identifying these bounds in a wavelet coefficient distribution is that such a
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process accommodates different signals that may have different dynamic ranges

(physiologic bounds) while rejecting outliers within a class.

The range of values between these bounds is uniformly split in K divisions. K is chosen

based upon a desired level of granularity of the wavelet coefficients and is a compromise

between data compression and acceptable signal loss. Each division is then assigned a

unique 'symbol', wjk (wherej is the scale of the wavelet and k is one of K divisions in the

distribution). Thus, any wavelet coefficient that falls within one of these divisions is

represented by its respective symbol. Thus, a time-domain signal will be represented by a

collection of "symbols" or "terms." This transformation allows us to apply the

information retrieval (IR) models that have been previously described for text-based

records to time series.

x[n] Wavelet

Transform

M1 1111
I i

d 0~
a o:

u ,i"
o
~t ri

I:

b~--;b~

Wavelet (Scale = j) Coefficient Values

Symbol Transformation via

Uniform Quantization

Figure 5-14: Wavelet symbols created by quantization

To generate the high-dimensional wavelet symbol vector for a given time series, the

elements of the feature vector are assigned values equaling the number of wavelet

coefficients (at the respective scale, j) that are quantized to the corresponding wavelet
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symbol of those elements. Thus, the wavelet symbol vector is similar to a histogram of

the frequency of wavelet symbols over all the scales. The wavelet symbol vectors of each

scale,j, are concatenated to create one final high-dimensional vector.

5.1.8. Methodology: Histogram smoothing using Parzen density
estimators

A histogram is used as a quantitative characterization of the distribution of values

sampled from a set of measurements [13]. As shown in Equation 8, a histogram is simply

created by finding the number of samples from the total collection of samples of

coefficients wj,i(i=l..N) at a certain scale, j, that take on a certain value for all possible

values y.

Equation 8

N

hist(y) = (wj i - y)
i=1

where 8(y) = 1 when y = 0, else &(y) = 0 for all other y. If the samples are assumed to be

from a random variable, then as the number of samples approaches infinity, the

normalized histogram will approximate the probability density function (pdf), or

probability mass function (pmf) in the discrete random variable case. However, in

practice, the number of samples is limited and other techniques can be applied to estimate

the pdf of a random variable.

The parzen density estimator is one of the most popular nonparametric techniques of

estimating a pdf. The reader can consult [13] for a more in-depth review of

nonparametric pdf estimation techniques. In the present application of wavelet-based

symbolic representations, this feature of parzen density estimators is particularly useful.

As shown in Figure 5-14, the wavelet symbol bins are organized so that symbols that are

assigned to neighboring bins in the feature vector are more closely related to one another

than are symbols that are mapped to distant bins. The attractive feature of the parzen
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density estimator is that it can be used to effectively "smooth" a conventional histogram

by weighting the values of neighboring bins of a histogram (see Figure 5-15). The

similarity or dissimilarity between individual symbols is a significant difference between

the time series similarity model we are developing and the traditional text-based

information retrieval models. The text-based retrieval model presented earlier in the

chapter assumed that the words in the limited feature vector were independent and their

individual similarities were not modeled.

Equation 9

1 -1N Y-Wji
PN (Y; a ) = -N j -, a

Equation 10

1
K(z)= exp(-z 2 / 2)

We utilized a parzen density estimator with a Gaussian smoothing function as defined by

Equation 9 and Equation 10. The variance, o, of the Gaussian function is a tunable

parameter. In practice we used a value of o= 0.5. Relatively small changes (0.125 to 1.0)

in the variance parameter did not result in significant changes to overall performance.

Since we are utilizing an over-complete wavelet transform technique (low

decimation factor in the filter bank implementation), the wavelet coefficient values

already have "smooth" histograms. Thus, the Parzen density estimators did not

significantly change the results in the examples used in this thesis. However, if one would

use a more highly decimated wavelet transform, the Parzen density estimators would

make a greater difference.
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Figure 5-15: Example of Parzen smoothing of a wavelet symbol histogram

Loss of Timing Information of Wavelet Coefficients

As can be seen from Equation 6, a wavelet coefficient has three inherent values that

characterize a signal in the transform domain: 1) the scale of the wavelet coefficient, 2)

the time value (or shift with respect to the beginning of the time-domain signal), and 3)

the actual value of the coefficient. Figure 5-16 includes a collection of N different

wavelet symbol feature vectors derived from N different time series. The scales of the

wavelet coefficients are still preserved in the symbol vector based on the element

location. The value of each wavelet coefficient is subject to a lossy quantization process

when the symbols are generated. However, the quantized value still provides for an

"approximate" value of the original wavelet coefficient. The number of wavelet

coefficients with a specific value and scale is represented by the value of the element, and

is color-coded based on an intensity mapping for visualization purposes. However, the

relative time or sequence of a wavelet coefficient is discarded in the overall wavelet

symbol feature vector. The loss of the timing information in our wavelet symbol feature

vector is consistent with the IR model used in text-based record retrieval. The sequence

of occurrences of words in a sentence or document is also not utilized, but the retrieval

performance was not significantly degraded. We hypothesize that loss of the wavelet
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timing information will not compromise the performance of the time-series retrieval

algorithm.

Figure 5-16: Collection of wavelet symbol vectors from different time series

The value of each element is then further weighted by use of a modification of the

popular "Inverse Document Frequency" (IDF) weighting scheme [64]. The IDF weight

of an element, wj,i, is defined as:

Equation 11

N
IDFassic (wj,i) = log N

f(wj,i)
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where N is equal to the number of records in the time series database, and f(wj,i) is equal

to the number of records in the database that have at least one wavelet coefficient that is

quantized to the symbol, wji. For example, wji may represent the wavelet symbol

indicating a systolic blood pressure time series, x[n], has a segment of data where systolic

blood pressure decreased by approximately 20 mmHg when averaged over a 4-hour time

scale. An intuitively appealing aspect of the IDF weighting scheme is that the wavelet

symbols that are less frequently observed in the database of time series are more heavily

weighted. Thus, the data-driven IDF weighting scheme favors matching time series

records that have similar "rare" temporal dynamics.

The IDF as defined by Equation 11 was developed for text-based record retrieval. It does

not consider the intra-record frequency of a symbol. Thus, if a given term, wjl, appears at

a rate of 100 times in every record in the database, and another term, wj2, appears 2 times

in every record, they would still have the same IDF weight. Experimentally, we found

that ignoring the intra-record frequency of symbol for time series retrieval applications

led to poor performance. Thus, we developed a modified functional for a weighting

scheme that does not ignore the intra-record frequency of a symbol.

Equation 12

N
IDF(w,i) = log N

f(w,) * Lf(wj,i,k)
k=l

In Equation 1:2, f(wj,)d represents the total number of records in the database that contain

at least one occurrence of the wji symbol. The function, f(wji,) represents the frequency

of occurrence of a given wavelet symbol wj,i in a specific record, k, in the database.

The final term frequency vector that includes all the wavelet symbols, (wi,i.. .wj), of a

time series, x[n], is defined as:

Equation 13

TFV(x) = [IDF(w,i) * wj,i.. JDF(wJ,I) * w, ]

151



The distance between the term frequency vectors of two time series, x[n] and y[n] is

calculated by computing the correlation coefficient of the two vectors:

Equation 14

D(x, y) = p(TFV(x),TFV(y))

5.1.9. Results:

Description of Synthetic Time Series Databases

The algorithms for assessing similarities in time series were evaluated with libraries of

synthetic signals. The first library included several different classes of signals: sinusoids,

random walks, increasing trends, and decreasing trends. The synthetic signals were

created in MATLAB (Mathworks, Natick, MA). The following equations were the

characteristic equations used to generate three different classes of signals:

Equation 15

y[n] = y[n - 1] + randn[n]

Equation 16

y[n] = Asin[27z(fn + QD)]

Equation 17

y[n] = r * n

Equation 15 describes a random-walk time series. The randn() function in MATLAB was

utilized to add a Gaussian noise variable to every consecutive sample. Equation 16 is a

representative equation for synthetic sinusoidal signals. The frequency, f, and phase, 0,

of each signal was varied to create several different sinusoids. Equation 17 represents a

simple ramp function that represents continuously increasing or decreasing time series

based upon the chosen values for ri. Other classes of signals included "saw-tooth"
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patterns. Based upon the above equations, 100 synthetic time series were generated and

are referred to as Library A. Example time series from Library A are shown in Figure

5-17.

Figure 5-17: Examples of synthetic signals for Library A

The second library, Library B, was generated by utilizing the commercially available

physiology simulator software, QCP Simulator-Research Edition (Biological Simulators,

Jackson, MS). The QCP algorithm is based on detailed physiologic models of several

organ systems and their respective feedback mechanisms. A scripting module allowed for

the generation of three different physiologic classes including hemorrhage, left-heart

failure, and sepsis. The different scenarios were simulated by manipulating various

physiologic parameters of the cardiovascular system (see QCP User's Manual). Within

each class, various severities of abnormalities were simulated. For example, the simulator

was used to generate 12 different severities of hemorrhage by modifying the bleeding rate

(see Figure 5-18). Other profiles were generated for acute myocardial infarction by

varying the degree of left-heart contractility (see Figure 5-20). Sepsis was difficult to
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simulate with the QCP program due to its complex pathophysiology. For example, the

capillary permeability which is thought to change in human sepsis, was not accessible in

the QCP program. Thus, only the total peripheral resistance (TPR) was decreased by

various degrees to simulate the vasodilation that is known to accompany sepsis (see

Figure 5-19). By examining the corresponding figures, we see that these different

physiologic processes may produce distinct multidimensional hemodynamic patterns. In

addition to the 36 simulated physiologic records, 12 additional records were generated

using low-pass filtered noisy random time series using the randn() function in MATLAB

and a low-pass filter. Thus, Library B consisted of a total of 80 records.

In order to simulate the inherent noise that is found in most physiologic signals, the

simulated signals in Libraries A and B were corrupted with additive Gaussian noise of

varying levels by utilizing the randn() function in the MATLAB environment. The

variance of the Gaussian noise was modified in order to study the performance of the

time series retrieval algorithm under different noise stress levels.
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Figure 5-18: Example from Library B: simulation of hemorrhage
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Figure 5-19: Example from Library B: simulation of sepsis
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Figure 5-20: Example from Library B: simulation of acute myocardial infarction

In order to compare different time series indexing methods, it is essential to test

different algorithms on standard datasets that all researchers have access to. The Control

Chart synthetic dataset (SYNDATA), for the UCI KDD archive [47] has been previously

utilized by other researchers for benchmarking time series similarity algorithms and was

utilized to test our algorithm as well. The SYNDATA library contains 600 examples of

synthetically-generated control charts (of 60 points). There are six classes (each with 100

examples) of time series data in the SYNDATA library: Normal, Cyclic, Increasing

trend, Decreasing trend, Upward shift, and Downward shift. Examples of the SYNDATA

library are shown in Figure 5-21.
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Figure 5-21: Examples of six classes from SYNDATA library of time series
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Results: Example queries from Library A

80[

Figure 5-22: Example of increasing trend
time series.
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(from Library A) as query time series, and top 6 retrieved

Several different classes of signals from Library A were utilized as query signals to test

the performance of the time series similarity algorithm. Figure 5-22 demonstrates the

performance of our retrieval algorithm when sample time series (increasing ramp

function) is utilized as a query (Q), and the resultant time series (in ranked order of

similarity) are returned. The retrieved signals are the most similar based upon the

parameters of the ramp function that are used to generate them.
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Figure 5-23: Library A sinusoidal signal as query (Q), and retrieved time series (1-5)

Results with different sinusoids from Library B demonstrated that the wavelet-based

retrieval algorithm was able to retrieve the five most similar sinusoidal time series when a

sinusoid (Q) was submitted as a query signal. In the query example of Figure 5-23, the

amplitudes of the sinusoids were constant over all the time series, but the frequencies and

phases were different.

o
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Figure 5-24: Random walk time series from Library A
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Finally, random walk time series were used to test the retrieval algorithm performance on

more complex signals. The objective performance on random-walk time series data were

difficult to assess. As shown in Figure 5-24, the two time series that were retrieved had

subjective characteristics that were similar to the original query.

5.1.11. Results: Query performance with a noise stress test

Real-world signals are frequently corrupted by noise. The time series retrieval algorithm

was assessed for robustness to additive Gaussian noise. In Figure 5-25, the results are

shown for two sample query simulations from Library A. The left panel represents a

query sinusoidal signal and the nine most similar time series that were retrieved. The

right panel shows the results after all the signals in Library A are corrupted by additive

Gaussian noise with a standard deviation of 50. In the presence of noise, the most similar

noisy time series that are retrieved correspond exactly to the same series in the noise-free

test. The other retrieved signals also have sinusoidal structure. The simulations

demonstrated the robustness of the wavelet-based symbolic feature vector in

characterizing; the most important characteristics of a time series even in the presence of

noise.

161



Q1 0
0 2W 0 6 W NO 14W 1390 1W 10 14 M 3

0 200 00 N0 00 1 0 1 1400 1 100 0

20 00 400 NO 1000W 1300 1400 1600 10 200

0 200 00 N N 1040 130 1400 140 14W 200

0 20 400 M 00 8 I1 1200 1400 164 18 2300
100

0

0 2 0 O 6W N 1WO 130 1400 10 1800 300

-iw
0 200 0 DW 10 1 300 1 140 14 10 Wm

0 400 00 800 1000 1200 14 14W 1800 200
I100-ý ý.ý - ý

0 200 400 D N0 1000 130 14W 10W M 200

0 200 00 60 800 130 1280 140 14 1800 oo

A: Q1 is query signal from Library A (without

noise), and top retrieved signals are shown.

02"
0 0 400 W 00 10W 1200 1400 10 10 2000

0 20 410 60 800 1000 1 0 14 1600 1800 2000

0 20 00 0 W 60 10000 130 1400 1600 1800 M0

-M I IV--l"'il -"W- l~ IT• +I
• '  

,i
i'

T

- - 

"W _ -•il i

0 200 100 0 00 1000 1200 1400 1600 1800 300
.20 PI, 110

o 200 10 60 0 1 1200 10 1 14 1600 18W 200
30-0200 -LLA--I: lj~, ·Y -Y. ~i

--'-T-',Ji.'•
" ~~- T

• 
-" •-WW- I ? -WRO" "Tr -•- .."-2300 200 00 6W NO IWO 1300 1400 1600 140 300

0 200 400 600 8NO 1000 1200 140D 1600 1400 2300
300

0 , ~WP IýiYWl

0 200 400 80 800 1000 1200 1400 1600 18W 2000
30 - I I I A .• . .,.. . .. .

0 200 400 60 800 10 1300 1400 100 1WB 20
L0l _ ll II

0 200 400 600 1000 1200 1400 1600 1 2000

B: Q2 is query signal from Library A (with

noise), and top retrieved signals are shown.

Figure 5-25: Time series retrieval performance in the presence of additive Gaussian noise

5.1.12. Results: Retrieval of similar computational model-
generated ICU time series of Library B

In order to assess the performance in retrieving similar physiologic patterns in Library B,

the mean blood pressure, cardiac output, and pulmonary capillary wedge pressure trends

from the 36 cases were used as queries. For each of the 36 cases, the 5 most similar cases

were retrieved from Library B. The similarity metric (based upon the correlation between

wavelet symbol feature vectors) was used to weigh the likelihood of belonging to a class.

The accuracy in classifying each of the three classes (hemorrhage, sepsis, acute

myocardial infarction) is given in Table 5-2. The classifier achieved a high accuracy. The

few cases that were misclassified were typically examples where the severity of the

disease was very limited.
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Table 5-2: Classifier accuracy with synthetic physiologic time series from Library B

Classifier Accuracy for 12 cases of each class 3 most

when retrieving 5 most similar cases similar cases

Hemorrhage 10/12 = 83.3% 10/12

Sepsis 9/12 = 75% 10/12

Acute Myocardial 12/12 = 100% 12/12

Infarction

5.1.13. Results: Evaluation of retrieval algorithm with a
benchmark time series database (SYNDATA)

The SYNDATA time series were also assessed to compare the accuracy of our time

series retrieval algorithm with other algorithms that have been tested with the SYNDATA

library. To assess algorithm accuracy, we used the same methodology described in [47]

and compared our results to the statistics they reported for other algorithms.

To test the retrieval accuracy of our algorithm on the SYNDATA library, each one of the

600 time series was used a query signal. Retrieval accuracy, r, is defined by Equation 18

as the number of retrieved time series, q,,, that are from the same class as the query

signal, divided by the total number of time series in the database that are from the same

class as the query signal, CN.

Equation 18

r = qm
CN

We determined the retrieval accuracy by selecting the top 99 similar signals that are

retrieved by the algorithm, and then finding the subset of which belongs to the same class

as the query signal. Thus, the retrieval accuracy can be assessed for each query signal.
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We then averaged the retrieval accuracy over all 600 signals to arrive at the final retrieval

accuracy for the database.

The performance statistics on the SYNDATA are reported in Table 5-3 and Figure 5-26.

Both our algorithm and the MVQ algorithm report the highest accuracy in comparison to

other published methods as well as the simple Euclidean distance metric. The MVQ

algorithm is a relatively new time series retrieval algorithm that has been reported to have

superior performance over other techniques such as SAX, DFT, and DTW

algorithms[47]. Our algorithm achieved an overall accuracy of 0.83 on the challenging

SYNDATA dataset which is equal to the accuracy of the MVQ algorithm. Many of the

time series with subtle changes are quite difficult to classify even by a human. Thus, the

similar accuracies of both algorithms on this dataset may suggest that an even higher

accuracy will be difficult to achieve due to the nature of the dataset. A major advantage

our algorithm enjoys over the MVQ algorithm is that the MVQ algorithm requires

extensive training data from a subset of the SYNDATA library in order to create an

optimal codebook of features. Our algorithm is unsupervised and thus, requires no

training data. Moreover, our algorithm has few tunable parameters. We modified 2

parameters (number of symbols per scale, and the width of the parzen kernel) and found

that the results were not significantly altered. The MVQ algorithm requires tuning of 6

parameters in addition to training of a codebook. The Euclidean method had a very poor

retrieval accuracy of 0.51.

We also assessed the classification accuracy of our algorithm by classifying a query

signal with the class label of the most common class among the retrieved time series. Our

retrieval algo:rithm achieved a classification accuracy of 0.95. Thus, 95% of the time

series were assigned to the correct class from among the six classes in the database.

These results motivate the use of our algorithm in classifying ICU physiologic time series

to possible classes that may be suggestive of different states of physiologic stability.
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Table 5-3: Comparison of Retrieval Accuracy of Different Algorithms on SYNDATA Library

Algorithm Retrieval Accuracy

Our Algorithm 0.83

MVQ Algorithm 0.83

Euclidean 0.51

Time Series Index

83% Retrieval Accuracy

o 1 o sco m o sco cc

Time Series Index

95% Classification Accuracy

Figure 5-26: Retrieval and classification accuracy with SYNDATA Library
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6.Prediction of Hemodynamic

Deterioration in ICU Patients

In Chapter 5, we introduced a new temporal similarity metric for the retrieval of similar

time series. We evaluated the performance of our retrieval algorithm on synthetic time

series generated from different classes of waveforms such as sinusoids, random walks,

and ramps. In addition, a computational physiologic model was used to generate time

series that simulate the hemodynamics of patients in different ICU disease states such as

sepsis, hemorrhage, and heart failure. The algorithm's retrieval performance using the

physiologic model-based time series was robust in the presence of additive noise.

Furthermore, the retrieval accuracy of our algorithm on a publicly available time series

database (SYNDATA library) was shown to have superior overall performance in

comparison to several of the most popular time series indexing algorithms. In this chapter

we will apply the similarity metric to real physiologic time series from the MIMIC-II

database.

A modem ICU bedside monitor typically measures several signals from an ICU patient.

As previously noted, each signal is typically processed and classified independently of

other signals. Several parameters (vital signs) are displayed by the monitor without an

overall quantitative characterization of the state of the patient. A busy clinician is then

challenged to track several simultaneous parameters from each of the patients that he or

she may be caring for. One example of instability that ICU clinicians react to is in the

domain of hemodynamic deterioration. The classic sequence of events in hemodynamic

deterioration involve drops in a patient's blood pressure followed by therapeutic

interventions intended to raise the systemic blood pressure to a range that is compatible

with homeostasis. There are several mechanisms that may contribute to the deterioration
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of blood pressure in a patient and include: heart failure, hypovolemia, septic and aseptic

inflammatory syndromes [69]. A high level of vigilance is required to appropriately react

to and treat hypotension. Recent reports [37] have found that the duration of hypotension

prior to the initiation of therapy was the critical determinant of survival in human septic

shock. Thus, the development of monitoring algorithms that can predict impending

deterioration in ICU patients may improve clinical vigilance in a busy ICU.

Figure 6-1 includes examples of three channels of physiologic time series (heart rate,

systolic blood pressure, and mean blood pressure) from 88 ICU patient episodes prior to

hemodynamic deterioration. In these cases, the fiducial point at t = 240 minutes indicates

the point in time when a vasopressor medication was initiated as a treatment for

hypotension. The physiologic trends are population averaged (with means and standard

errors on a minute-to-minute basis) and displayed from four hours prior to the point of

intervention (intervention at t = 0 minutes). The composite trends with error bars

demonstrate that there is significant variability from patient to patient. However, data

mining may reveal that there are "signatures" in multidimensional physiologic space that

may be predictive of hemodynamic deterioration. A number of clinical studies have

shown that certain patterns of physiologic deterioration may precede cardiopulmonary

arrests [17]. We hypothesize that analysis of hemodynamic time series with our wavelet-

based symbolic similarity metric may illuminate patterns with significant physiologic

similarity as well.
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Chapter 6 is organized in the following manner. The next section provides a problem

formulation for hemodynamic deterioration we wish to address using the MIMIC-II

database. We then describe the subset of data segments in the MIMIC-II database that are

ideal for developing and evaluating predictive algorithms for hemodynamic deterioration

in ICU patients. Then, we describe the feature extraction process that is based on the use

of the framework for wavelet symbolic representation of time series that was introduced

in Chapter 5. Finally, we evaluate the performance of our algorithm for predicting

hemodynamic deterioration in ICU patients.

6.1. Problem formulation

Hemodynamic monitoring is utilized for obtaining real-time assessments of the

functioning of the cardiovascular system in fragile ICU patients. Several studies have

shown that identifying ICU patients with physiologic deterioration such as multi-organ

failure or sepsis at earlier stages in the disease process results in improved outcomes [37].

Shoemaker et al developed an algorithm that predicted outcomes in trauma patients based

upon similarities in a patient's observed vital signs and diagnoses with a database of other

patients with known outcomes [67]. Their algorithm's ultimate purpose is to provide an

early warning of impending deterioration by fusing several monitored physiologic

variables into one composite indicator of overall stability.

We motivate our current problem of hemodynamic instability prediction in a manner

similar to how we motivated the overall time series retrieval challenge in Chapter 5. In

particular, we will cast the problem of predicting hemodynamic deterioration as a

problem in information retrieval such as is commonly done in document and web-page

indexing. As shown in Figure 6-2, query search terms are commonly input into an

internet search engine with access to a vast internet database of web pages. The search

engine processes the query and returns a ranked list of relevant web pages. In a similar

manner, it may be possible to submit an ICU record which consists of one of more

physiologic time series as a query to an algorithm with access to a vast ICU database of
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physiologic time series. The algorithm will process the query time series and identify

"similar" physiologic time series in the database from other patients. The retrieved

records may also have associated outcomes that may be utilized to predict the outcome in

an ICU record utilized in the query. The retrieved physiologic time series are ranked

based on their statistical similarity to the query time series. We hypothesize that statistical

similarity may also imply physiologic similarity and thus, clinical inference based on

known outcomes from retrieved time series may be suggestive of an outcome in the query

ICU physiologic time series.

Patient Physiologic

Record Similarity

Numbers and Algorithm17&

Ranked List

Of
Matching

Patient

Records &

Times

Figure 6-2: ICU record retrieval formulated as problem in information retrieval
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6.1.1. Selection and automated annotations of physiologic time
series from ICU records

In each MIMIC-II record there are several physiologic signals. Different physiologic

signals convey unique information about different organ systems. For example, the

ventilator paramneters and arterial blood gasses are used to monitor the pulmonary system.

We are particularly interested in hemodynamic deterioration and the cardiovascular

system. The physiologic signals that are frequently monitored in hemodynamically

unstable ICU patients and readily available in MIMIC-II include heart rates and invasive

arterial blood pressures. The availability of different physiologic signals is often limited

by their inherent invasiveness. For example, pulmonary artery pressure and cardiac

output monitoring would be physiologically informative, but are infrequently measured

due to the invasiveness that is required to make such measurements. Based on the readily

available physiologic time series, we seek to classify the hemodynamic state of an ICU

patient into one of two states (or classes): A) Impending Hemodynamic Instability

(deterioration), and B) Hemodynamic Stability. While this classification scheme is

simplistic, it is also based on conventional therapeutic decision making in the ICU. In

particular, hemodynamic instability is defined as the state in which patient requires

aggressive vasopressor support in order to maintain adequate blood pressure and vital

organ perfusion. Hemodynamic stability is assumed when a patient is not treated with

aggressive therapeutic support to maintain adequate systemic blood pressure.

To evaluate the performance of our predictive (classification) algorithm, it would be

advantageous to have access to "gold-standard" labels from clinician annotations that

label the ICU record segments into periods of hemodynamic stability and instability.

However, developing and implementing an objective annotation process that can

retrospectively label the ICU records is a challenging and time-consuming task. Thus, we

will evaluate the performance of our predictive algorithm based upon the available

therapeutic data time series of ICU patients.
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6.1.2. Therapeutic profiles of hemodynamic stability and
instability

An ICU patient typically receives aggressive therapeutic interventions when the clinical

staff concludes that the patient is becoming hemodynamically unstable. In the modem

ICU, the patient's blood pressure is closely controlled so that it does not deviate from a

physiologically acceptable range. In Figure 6-3, physiologic time series from an ICU

patient are shown. At approximately 16 hours into the record, the clinical staff reacted to

the drop in blood pressure by starting Neosynephrine, a potent vasopressor. The hourly

IV fluid was not sufficient to maintain hemodynamic stability. However, as can be seen,

prior to the onset of the vasopressor, the trajectory of the blood pressure at 14 hours

started to drop. An algorithm that could have provided an early warning two hours before

the point of vasopressor intervention may serve as a useful clinical decision support tool.
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Blue is HR, Green Is Sys ABP, Red is Mean ABP

Figure 6-3: Example of hemodynamic instability

The means of controlling the blood pressure include the use of drugs that increase

systemic resistance (vasopressors) or heart function, as well as intravenous fluid to

increase intravascular volume. Table 6-1 is a listing of the classes of interventions and

relevant examples of each intervention that are commonly found in the MIMIC-II

database. The use of a vasopressor is typically reserved for the most hemodynamically

unstable patients. The onset of a vasopressor intervention (such as Levophed) was

interpreted to suggest that a patient is hemodynamically unstable. To simplify the
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classification process as well as account for the variability in clinical decision making,

the actual dosage of a vasopressor was not utilized.

Nearly all ICU patients (stable and unstable) receive certain levels of maintenance IV

fluids to replace insensible losses and to maintain homeostasis. However, patients that

may be showing signs of intravascular volume depletion may receive significant amounts

of IV fluids within a short period of time. A stable patient state required that no

vasopressors are utilized and only minimal IV fluid is being administered. The patient

state was classified as an intermediate state (neither stable nor unstable) when a

significant amount of fluid (see Table 6-1) was administered, and hence, was not used in

the library.

Table 6-1: Hemodynamic therapeutic interventions

Class of Example of Thresholds (if Conditions that

Medication Medication applicable) negate stability

Vasopressors Dopamine Any Dose Any Dose

Neosynephrine

Levophed

IV Fluids IV Fluid or N/A Greater than 1.2 L/hour

Blood Products Crystalloid

or 2 units PRBCs/hr

Table 6-2 includes the criteria used for classifying data segments of ICU records as being

indicative of stability or future instability. The selection of the particular therapeutic

criteria allowed for a high-throughput and automated annotation technique of ICU record

segments, while meeting clinically acceptable definitions of hemodynamic stability.
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Table 6-2: ICU Record segment stability/instability criteria

Hemodynamic Stability Hemodynamic Instability

Minimum 2 hours 2 hours

Window Size

Med Criteria No onset of a pressor for at least Onset of a new pressor within N

12 hours after the end of the hours of the end of the segment

segment of data (window) of data (window)

Fluid Criteria Less than N L/hr for all hours N/A

within window

Physiologic Required heart rate and invasive Required heart rate and invasive

Data ABP 1-min time series numerics ABP 1-min time series numerics

Availability

Other Intra-aortic balloon pumps N/A

Exclusions Pacemakers

6.1.3. Limitations of hemodynamic instability criteria

In MIMIC-II[, we utilized the continuous medication and fluid-balance data to

automatically identify the segments of stability and instability. This framework implicitly

assumes that the clinicians' judgment with respect to therapeutic support is correct.

However, as we have previously stated, effective vigilance in the ICU is difficult to

achieve at all times, and thus, there may be occasions when a clinician's decision making

is suboptimal. Thus, there may be episodes of time in which a therapeutic response in the

form of a vasopressor would have been appropriate, but was not given. Also, there may

be episodes in which the use of a vasopressor was unnecessary. Development of an

unbiased annotation and adjudication process to deal with such discrepancies is a

challenging task, and was not utilized.
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As previously mentioned, documentation of clinical data are not without errors. The time

an intervention was made (such as increasing the level of an IV medication) may be off

by up to 30 minutes or more. Furthermore, certain medications may not have been

charted in the appropriate field and were, thus, not factored into the labeling of a window

of data.

6.2. Methodology

In the preceding section, we motivated the clinical need for predicting hemodynamic

deterioration in ICU patients. In this section we will describe the methodology that was

utilized for developing a novel algorithm for predicting hemodynamic deterioration.

MIMIC-II records are rich in several physiologic signals. We sought to use those signals

that are commonly found in most hemodynamically unstable patients (patients who

received vasopressor therapy). For example, most hemodynamically unstable patients

will be monitored with an ECG and invasive intra-arterial catheter to track systemic

blood pressure. The most hemodynamically unstable patient may also have Swan-Ganz

catheters for tracking pulmonary artery and central venous pressures as well as cardiac

output [72]. While such hemodynamic measurements are helpful in assessing the

hemodynamic status of a patient and optimizing therapy [46], they are considered to be

invasive and are utilized only in a minority of patients (those patients that may be the

most hemodynamically compromised within an ICU).

In our signal selection process, we chose to include the heart rate and arterial blood

pressure trends (sampled on a minute-to-minute interval) because they are readily

available and informative. We chose to exclude the recorded invasive PAP, CVP, and

cardiac output measurements since they were not readily available in all patients. We

determined that their inclusion may bias our results since patients with PAP, CVP, or CO

trends would be more prone to having episodes of hemodynamic instability. Others have

factored the mere presence of such signals into severity of illness scores [42].

Furthermore, the PAP and CVP measurements are typically low pressures and subject to

severe noise corruption which limits their use in practice. However, the cardiac output
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measurement is not typically as noisy and provides valuable information about the

mechanical work of the heart. It would be advantageous to include cardiac output trends

in our signal analysis algorithms. However, there lack of availability in all patients was a

limiting factor. To overcome this challenge, we sought to employ cardiac output

estimation techniques using only the blood pressure and heart rate trends. We and others

have demonstrated that estimates of cardiac output may be derived within an acceptable

level of accuracy by processing the blood pressure and heart rate data [72]. Prior to

deriving an estimated cardiac output time series, the blood pressure and heart rate trends

require pre-processing to remove noise. In the next section, we describe a simplified

knowledge-base framework for filtering physiologic time series.

6.2.1. Physiologic trend pre-processing
As previously noted, physiologic trends such as blood pressure and heart-rate are

inherently corrupted by noise. We utilized a combination of physiologic-knowledge

based noise detection and outlier removal to process the one-minute parameter heart rate

and blood pressure data. The schematic in Figure 6-4, provides an overview of the artifact

and noise removal algorithm.
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Figure 6-4: Noise processing of physiologic trends

As shown in Figure 6-4, the one-minute heart rate and blood pressure (systolic, mean,

and diastolic) are first filtered with a 5 point median filter to remove outliers. Then,

physiologic bounds are applied to the all of the physiologic time series as described in the

schematic. The actual mean arterial pressure (MAP) is compared to absolute thresholds

as well as to the estimated mean arterial pressure (EMAP). The formula to derive EMAP

from the measures systolic and diastolic arterial blood pressures was explained in Chapter

4. The difference between EMAP and MAP is compared to a threshold (MAP _ERR) and

is used to identify noisy data when the threshold is exceeded. In order to exclude blood
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pressure trends that are damped, the pulse pressure (PP) must be greater than 30% of the

MAP. The heart rate trend is deemed noisy if the heart rate value exceeds 200 beats per

minute (bpm) or is less than 10 bpm. For those values of heart rate and blood pressure

that were deemed to be noisy based on these physiologic bounds filters, they were

replaced by linearly interpolating values from neighboring points. Thus, the process

yields de-noised heart and blood pressure trends as well as a signal quality index. The

signal quality index is binary value (where 1 equates to noise in any of the physiologic

time series and 0 equates to noise-free data) for each minute (or sample). If more than

25% of the one minute samples are deemed to be noisy for a specific hour segment of

data, then that segment is not included in the overall analysis of deterioration for a given

patient. Thus, the patient state will not be assessed over an hour interval if there is

excessive noise in the physiologic trends.

There are physiologic conditions, such as a transient arrhythmia, that may result in an

abrupt change in a signal over a small time interval of one or two minutes. The median

filtering may suppress such real physiologic changes. However, the embedded arrhythmia

alarms within a bedside monitor should ideally detect such transient episodes. The focus

of the present work is to predict longer-term changes in a patient state (over hours) that

maybe signatures of deterioration. Thus, the framework presented here will not address

physiologic processes that may occur over a few seconds to a couple of minutes.

6.2.2. Derivation of estimated cardiac output

Sun et al [72] utilized the MIMIC-II database and compared the performance of several

previously published blood pressure-based cardiac output estimation techniques with the

recorded thermodilution-based cardiac output. A modified algorithm based on the work

of Liljestrand et al [72] demonstrated the best performance in comparison to other cardiac

output estimation techniques.

Equation 19

HR x (SBP - DBP)
ECO = k MAP

MAP
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The estimated cardiac output we derived by using the de-noised heart rate and blood

pressure trends. Using a slight modification of the method of Liljestrand, the estimated

cardiac output (ECO) is defined in Equation 19. The pulse pressure (PP) is defined as the

difference of the systolic blood pressure (SBP) and diastolic blood pressure (SBP). The

constant of proportionality, kco, is related to the arterial compliance. In practice, the

arterial compliance is not a known parameter. Thus, the estimated cardiac output must

either be calibrated to actual thermodilution cardiac output measurements, or the

estimated cardiac output should be interpreted as a signal that is proportional to the actual

cardiac output. Intermittent cardiac output is typically measured using a Swan-Ganz

catheter with the thermodilution technique which requires an expert user at the bedside.

Since few patients have thermodilution cardiac output measurements, ECO cannot be

calibrated in most MIMIC-II patients. Thus, the actual value of ECO is difficult to

interpret physiologically. We focus on changes to ECO over time as being more

meaningful because they would ideally reflect the same percent change in actual cardiac

output if we assume that kco remains constant. In [72], the blood pressure waveforms

were first processed to arrive at the blood pressure parameters and signal quality

estimates. In this thesis, we estimate cardiac output using only the one-minute heart-rate

and blood pressure trends to reduce the amount of processing that would have been

required for 125 Hz waveform data. Thus, we rely on the bedside monitor estimates of

blood pressure (systolic, mean, and diastolic) and heart rate.

6.2.3. Hemodynamic event library creation

To test our physiologic similarity metric as a predictor of hemodynamic deterioration, we

define two classes (or physiologic states) that we will attempt to differentiate. The

"Unstable" class will be ICU record segments consisting of physiologic trend data prior

to an onset of a significant vasopressor. The minimal length of a segment of data was at

least two hours of available trend data prior to a pressor onset. The "Stable" class

includes ICU patient record segments consisting of physiologic trend data in which there

are no significant pressor medications given 12 hours before the start of the window and

12 hours after the end of the window. The input features to our predictive algorithm
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include 1-minute averaged heart rate and arterial blood pressure trends as well as

estimated cardiac output (ECO).

The unstable class consisted of 170 segments (windows) of data from 119 different

patients. The stable class consisted of 162 segments (windows) of data from 128 different

patients. The Hemodynamic Event library is summarized in Table 6-3.

Table 6-3: Summary of hemodynamic event library

Number of Number of Unique Total Monitoring

Segments Patients Hours

Stable 162 119 1420 hours

Unstable 170 128 765 hours
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Figure 6-5: Flow diagram for hemodynamic instability using "similar" segments retrieved from
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6.3. Results

In this section, we will characterize the performance of the hemodynamic deterioration

prediction algorithm with real MIMIC-II patient data. We will also characterize the

important physiologic factors that are important in affecting the sensitivity and specificity
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of our predictive algorithm. We also present the output of the predictive algorithm with a

physiologically meaningful interpretation in term of changes in physiologic variables.

Before we present the results of the predictive algorithm, we briefly analyze the

performance of the estimated cardiac output (ECO) technique in terms of its agreement

with actual cardiac output measurements that are available in a subset of MIMIC-II

patients. The ECO trend is utilized as one of the features in our wavelet-based symbolic

feature vector, and thus, its agreement with actual CO is important to characterize.

6.3.1. Performance of estimated cardiac output technique

Figure 6-6: Bland-Altman analysis of agreement between estimated cardiac output (ECO) and
thermodilution cardiac output (TCO).
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The method described by Equation 19 to estimate cardiac output was compared against

actual thermodilution cardiac output (TCO) measurements in a subset of patients. For

each patient with available cardiac output measurements and invasive arterial blood

pressure, the estimated cardiac output (ECO) was calibrated so that the mean ECO over

the patient-stay was equal to the mean of the actual TCO measurements over that stay.

The error for each measurement was calculated as the difference between the estimated

CO and actual TCO normalized by the actual TCO. The Bland-Altman analysis of error

is displayed in Figure 6-6 in terms of the percent error between ECO and TCO as a

function of TCO. There are 2881 individual TCO measurements pooled from 290

patients. The bias (1.5%) is small since the calibration method described above resulted

in the same mean for each patient ECO and TCO time series. The precision error

(standard deviation of the error pooled from all patients) was 17.3%. Some patients had

more TCO measurements during an ICU stay and thus contributed more points for the

overall analysis. If the precision error is averaged for the 290 patients equally (without

weighting by the number of TCO measurements), the average precision error is then

calculated to be 15.6%. The error between ECO and TCO was uncorrelated with

measured TC'O (p = -0.28).

The results of the present study are significant because the size of the study in terms of

the number of patients is --- to the best of our knowledge --- among the largest reported.

Other studies have utilized analysis of the arterial blood pressure waveform to derive an

estimated cardiac output with one of several different pulse contour analysis techniques.

We previously published a comprehensive analysis of 11 different techniques to estimate

cardiac output changes by analyzing the ABP waveforms [72]. The present results

demonstrate that utilizing only the ABP trend and HR trend is sufficient to achieve a

comparable level of agreement between ECO and TCO in comparison to several recently

published papers using waveform-level analysis. Finally, this cardiac output study

demonstrates that the MIMIC-II database is an ideal platform for measuring the accuracy

of an ECO algorithm. MIMIC-II data are representative of the realistic dynamics with

which cardiac output estimation algorithms may be challenged. The challenges include

physiologic waveform dynamics across different hemodynamic states during an ICU stay
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as well as waveforms that may be corrupted by noise and suboptimal maintenance (e.g.

clot-formation in catheters or improper calibration of transducers).

Some of the ECO measurements were significantly different from the corresponding

TCO measurements in certain patients. Such significant errors may be due to several

factors: noise in the blood pressure or heart rate trend that was not detected with our

simple signal quality estimator, inaccurate TCO measurements [54], and limitations of

the models described in [72] to estimate CO. While these errors may preclude the ECO

from being clinically accepted as a replacement for TCO, we hypothesize that the ECO

may still be a useful derived measurement for detecting which patients may deteriorate

and require aggressive hemodynamic interventions prior to a significant drop in blood

pressure. In the next section we characterize the performance of our predictive algorithm

for hemodynamic deterioration.

6.3.2. Evaluation of hemodynamic deterioration prediction
alarm

We evaluated the performance of our predictive algorithm for hemodynamic instability.

We chose M (M = 150) segments of trend data that were 120 minutes in length. The

trends were first processed with our simple signal quality estimator as described in Figure

6-4. Segments which had greater than 10% of data deemed to be noisy were excluded

from the analysis. Each test segment was utilized as a query to the physiologic trend

similarity algorithm. The similarity between the test segment and a library of

representative stable and unstable segments from other patients was assessed. The

schematic in Figure 6-2 summarizes the classification algorithm. For each query segment,

the top N most similar library segments are retrieved. In practice, we set N = 40 to yield

the best performance. The number of retrieved unstable library segments

(K_UNSTABLE) was divided by N and compared to a threshold

(THRESH_UNSTABLE). If the threshold was exceeded, then the test segment was

classified to be unstable. Otherwise, the test segment was classified to be stable. The
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percentage of unstable library segments among the top N retrieved segments was defined

as the "Instability Index."

In Figure 6-7, we provide an example of a predictive alarm that is based on the

physiologic similarity algorithm. In this example, the input is a two-hour sliding window

of data. Ever), 15 minutes, the instability index is updated with newly available data. This

particular example includes a normal systolic blood pressure that would generally not be

indicative of imminent hemodynamic instability. As reported in Table 6-4, the systolic

blood pressure is the parameter with the greatest class separation between stable and

unstable patients. Four hours (at t=120 minutes) prior to the point of deterioration

(vasopressor onset at t=360 minutes), the systolic blood pressure is far more similar to a

stable patient than an unstable patient. However, there are fluctuations in blood pressure

as well as heart rate that occur over 30 to 60 minute time scales that are prominent in this

record at t = 130 minutes and t = 220 minutes. These fluctuations are captured in the

multiscale wavelet representation. The instability index continues to increase because

these fluctuations are more "similar" to fluctuations in the reference hemodynamically

UNSTABLE library as compared to the STABLE library segments.
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Figure 6-7: Example of predictive hemodynamic deterioration alarm

To assess the performance of the classifier, the classifier labels were compared to the

"true" labels as determined by the corresponding therapeutic profile associated with each

segment of 120 minutes of data. If there was a pressor onset within 4 hours of the end of

the test segment, the true class was set to UNSTABLE. If there were no pressor onsets

within 12 hours of the end of the segment, the true segment class was set to STABLE.

The performance of the classifier was characterized in terms of sensitivity and specificity.

The sensitivity and specificity are defined as:

TP
Sensitivity =

TP + FN
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Specificity 
= TN

TN + FP

where TN (true negative) equals the number of correctly labeled stable events, FN (false

negative) equals the number of true unstable events that were labeled as stable, FP (false

positive) equals the number of true stable segments that were labeled as unstable, TP

(true positive) equals the number of correctly labeled unstable events.

We performed several cross-validation studies where the reference segments for the

STABLE and UNSTABLE libraries were varied, as were the query segments.

Furthermore, the threshold (THRESH_UNSTABLE) was also varied to determine the

optimal value to yield the best performance in terms of sensitivity and specificity. A

characteristic receiver operator curve (ROC) was constructed as is shown in Figure 6-8.

A sensitivity of 0.76 and specificity of 0.82 was achieved. The area under the curve as a

measure of overall accuracy equaled 0.83.
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Figure 6-8: ROC for predictive algorithm two hours to vasopressor onset
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6.3.3. Optimal feature selection and analysis

The four physiologic parameters that were studied include heart rate (HR), systolic blood

pressure (SBP), mean blood pressure (MBP), and estimated cardiac output (ECO). The

present study allows for an analysis into the informativeness of each trend towards the

prediction of future instability. To determine the level of informativeness of each trend,

different trend combinations were utilized in the sample queries to be submitted to the

physiologic similarity algorithm. The informativeness of each trend combination was

evaluated in terms of the overall specificity and sensitivity of the predictive algorithm to

identify hemodynamic instability. As shown in Table 6-4, the systolic blood pressure was

the most informative single trend parameter for predicting deterioration. The mean blood

pressure as a single parameter had more specificity than systolic blood pressure, but less

sensitivity. The best performance was achieved by combining heart rate, systolic blood

pressure, and estimated cardiac output. The addition of mean blood pressure did not

improve the ROC. As can be seen in the ROC included in Figure 6-9, estimated cardiac

output (ECO) improves the overall classifier performance when combined with other

parameters.

Table 6-4: Informativeness of different trend parameters

Feature Sensitivity Specificity Area under ROC

SBP 69 79 0.74

MBP 63 82 0.72

HR 63 62 0.61

ECO 52 73 0.62

SBP + HR 77 73 0.79

SBP + HR + MBP 73 79 0.79

SBP + HR + ECO 76 82 0.83

SBP + HR + MBP + ECO 77 81 0.83
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Figure 6-9: Effects of ECO on ROC

6.3.4. Comparison of physiologic similarity algorithm with
conventional time domain feature descriptors

The physiologic similarity algorithm employs wavelet feature extraction to characterize a

times series at multiple scales. The multiscale feature extraction technique captures the

structure of the multiscale dynamics of a time series. Classical time domain techniques

that can characterize a time series in terms of its mean and slope may be simpler

alternatives. Thus, the test segments were characterized in terms of the trend mean and

slope. The mean value was determined over a test segment using the sample trend mean

over the window of interest (see Figure 6-10). The slope was found using least-squares

regression fitting functions from the MATLAB statistical toolbox.
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Figure 6-10: Example of line regression fitting.

The mean and slope parameters were determined for the heart rate, blood pressure

(systolic/mean/diastolic), and estimated cardiac output. The slope is defined as unit

change per minute, and is denoted in this thesis as A. The class separation between the

time domain parameters was assessed by comparing the reference library segments

representative of stable and unstable hemodynamics. The definition of class separation, D

between a parameter, P., from an unstable class and parameter, P,, from a stable class is

given as:

Equation 20

D(Ps,Pul P abs(ms - mU)
as +a,

In Equation 20, m,,s is defined as the mean value of the parameter for a given class (U or

S), and ao,, is the standard deviation of the parameter for that class. The class separation

191

Systolic

Blood

Pressure

Time (Minutes)

Blue line represent original systolic blood pressure in patient over 120

minutes, and the red line represents a least-squares regression best fit

line.



of the different parameters is presented in Table 6-5. The most significant difference

between the stable and unstable classes was seen with the mean systolic blood pressure

(separation = 0.575). The mean blood pressure was also significantly different between

the two classes. The mean heart rate was not as well separated between the two classes.

The slopes of the mean and systolic blood pressures, (ASBP, AMBP), were significant

different between the two classes. The slope of the estimated cardiac output (AECO) had

only weak separation between the two classes. It is important to consider that this slope is

estimated over an entire two-hour window. Thus, there may be changes in a trend that

occur over shorter or longer time scales that would not be captured by the two-hour slope

estimate.

Table 6-5: Time Domain Parameter Characterization

Unstable Stable Separation

HR 92.1 +/- 19.9 84.4 +/- 14.1 0.2274

AHR -0.009 +/- 0.10 0.003 +/- 0.07 0.0715

SBP 104.12 +/- 19.43 126.26 +/- 19.04 0.5752

ASBP -0.067 +/- 0.17 0.0197 +/- 0.13 0.2959

MBP 71.74 +/- 11.7 84.19 +/- 12.84 0.5076

AMBP -0.04 +/- 0.11 0.02+/- 0.08 0.2846

DBP 54.65 +/- 9.22 61.88 +/- 10.72 0.3625

ADBP -0.02 +/- 0.08 0.01+/- 0.08 0.2576

AECO -0.03 +/- 0.11 -0.01 +/- 0.07 0.1425

To compare the performance of the physiologic similarity algorithm with a "simpler"

time domain alternative, the time domain features (mean and slopes of respective

parameters) were incorporated into an overall feature vector. The simple time domain

feature vector replaced the wavelet symbol feature vectors for the queries as well as the

reference libraries. In a manner similar to what was described in Figure 6-5, the N most
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similar segments based upon time domain features are retrieved for a given query record

and utilized to predict the likelihood of deterioration.

As can be seen in Figure 6-11, the time-domain "simplified" classifier demonstrated a

sensitivity of 0.74 and specificity of 0.78 in predicting hemodynamic deterioration. The

overall performance was moderately worse than the wavelet method (sensitivity of 0.78

and specificity of 0.82). The results suggest that simple time-domain techniques are

capable of having reasonable performance in predicting hemodynamic deterioration two

hours prior to the point of deterioration. The signal characteristics at a gross level in

terms of mean and slope are informative in the predictive model that was evaluated. The

superior performance of the wavelet technique in terms of both sensitivity and specificity

suggests that different ICU records may share some signal dynamics at multiple time

scales that are similar to one another. Such dynamics can be characterized using a

wavelet representation since wavelets resolve a signal into several scales. The mean and

slope of a trend at only one scale would be insufficient for such a characterization.
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Figure 6-11: ROC of time-domain regression and wavelet-symbolic representations for the prediction
of hemodynamic instability

In Figure 6-12, the wavelet-based instability index gradually increases from t = 200

minutes to t = 330 minutes. At t = 360 minutes, a vasopressor is started in response to the

deterioration. The signal dynamics between t=250 minutes and t=370 minutes are similar

to dynamics seen in the highest ranked reference segment retrieved from the unstable

library. However, by examining the "best-fit" line approximations of the last 120 minutes

of the systolic blood pressure trend from the query record and the retrieved record in

Figure 6-13, we see that the best-fit line does not adequately preserve the similarity of

these two signals.
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Figure 6-13: Best-fit lines representative of two different segments

Physiological Interpretation of Wavelet-Based Symbolic Feature Vector

The wavelet methodology used in this thesis characterizes physiologic trends at multiple

time scales in terms of the trend dynamics at each respective time scale. Furthermore, the

wavelet method also produces an approximation or "average" at one time scale, thus

characterizing the static value of a trend. Physiologic homeostasis requires that the static

values of certain physiologic variables not exceed certain bounds. For example, if the

mean blood pressure is 30 mmHg, the body cannot adequately perfuse all end organs.

Consequently, the static characterization of a physiologic trend would be clinically

important to characterizing the hemodynamic stability of a patient. The relative

importance in the static and dynamic wavelet symbols as input features for the

physiologic similarity algorithm was evaluated using Equation 20. The class separation of

the different wavelet symbols is plotted in Figure 6-14. As can be seen, certain wavelet

symbols allow much greater class discrimination than others. In particular, the as can be

inferred from Table 6-6 and Table 6-7, the static wavelet symbols have a greater class
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discrimination (mean SBP and mean MBP) than the dynamic wavelet symbols. However,

the dynamic wavelet symbols still do have significant class discrimination utility. The

wavelet symbols that indicate dynamics of the ECO parameter had the best class

separation among the dynamic wavelet symbols.

Figure 6-14: Wavelet symbol class separation
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Table 6-6: Class separation of static(approximation) wavelet symbols

Class Separation (D) Parameter Average value over 60
minute window length

0.3762 SBP 89.9

0.3451 MBP 60.4

0.3300 MBP 62.8

0.3098 MBP 57.9

0.2945 SBP 93.8

0.2830 SBP 78.2

0.2756 SBP 86.0

0.2726 SBP 140.6

0.2704 MBP 65.2

0.2560 SBP 144.5

Table 6-7: Class separation of dynamic wavelet symbol

Class Separation Wavelet Scale Change over
Parameter (Length of Wavelet Length

wavelet in
minutes)

0.2512 ECO 16 -10.6000
0.2345 ECO 16 -7.3000
0.2268 ECO 16 -11.7000
0.2243 MBP 16 -16.3000
0.2174 HR 8 0.1000
0.2129 SBP 8 4.0000
0.2120 ECO 32 -7.3000
0.2061 MBP 8 1.7000
0.2059 SBP 4 2.2000
0.2053 ECO 8 -10.2000

In Figure 6-15, the hemodynamic instability index smoothly increases as the patient's

hemodynamics deteriorate. This example is particularly useful to demonstrate that the

percent change in the instability index is greater in magnitude than any one commonly

measured parameter such as heart rate or blood pressure. The instability index changes

from approximately 0.3 to 1.0 over 4 hours (200% increase). The blood pressure, heart

rate, and estimated cardiac output have individual percent changes of less than 50% each.

Thus, the instability index may be useful as a single derived numeric that is sensitive and

specific for hemodynamic state changes. Fusion of several physiologic measurements

into one clinically useful variable may help to alleviate information overload in the ICU.
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Figure 6-15: Hemodynamic instability index with progressive deterioration over four hours
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7.Conclusions

In this final chapter, the major contributions of this thesis are summarized. In particular,

we have introduced and characterized a major new ICU database, MIMIC-II, to support

the development of next-generation patient monitoring systems. Examples of novel

clinical studies that can be facilitated with MIMIC-II were also provided. A novel trend

similarity algorithm based on classic information-retrieval models was introduced and

evaluated. Finally, the trend similarity algorithm was utilized as a hemodynamic

instability index that was predictive of the need for significant therapeutic interventions

in unstable ICU patients. This chapter is organized in the following manner: in the next

section, we review the main contributions of this thesis. Then, the final section of the

thesis discusses future extensions of this work that may be explored.

7.1. Major Thesis Contributions

7.1.1. Development of a major new ICU database: MIMIC-II
The MIMIC-II (Multiparameter Intelligent Monitoring in Intensive Care) database was

created through a partnership between industry and academia to support the development

of advanced ICU patient monitoring systems that can substantially improve the

efficiency, accuracy and timeliness of clinical decision making in intensive care. Previous

efforts in developing physiologic and clinical databases have been limited by the

selection of only a partial subset of all the data generated over a patient's stay. MIMIC-II

is a far more comprehensive database that includes several continuous channels of high

resolution physiologic waveforms such as ECG and blood pressures, vital signs,

monitoring alarms, continuous therapeutic intervention profiles of each patient's stay,

laboratory results, fluid balance, nursing progress notes and discharge summaries.

MIMIC-II currently includes over 17000 ICU patient records (with clinical data from one
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hospital. In Chapter 3, we described how MIMIC-II was created and characterized its

contents. We have characterized the MIMIC-II ICU patient population with respect to

patient acuity, availability of physiologic measurements, frequencies of significant

interventions, demographics, and clinical problems (ICD-9 codes). Our research group is

developing "gold-standard," UMLS-based annotations of clinically significant

hemodynamic events in patient records using clinical expertise from a committee of

clinicians. We are also developing automated methods of de-identifying records per

HIPAA requirements. The ultimate goal will be to disseminate significant portions of the

MIMIC-II database so that other researchers can utilize this resource to support their

research.

7.1.2. Clinical studies with the MIMIC-II database
In Chapter 4, we presented examples of two clinical studies that can be supported with

MIMIC-II. In the first study, we compared the agreement between non-invasive (NIBP)

and invasive blood pressure measurements that are simultaneously recorded in MIMIC-II

patients. The availability of such a massive dataset that was acquired under realistic

clinical conditions allows for a more comprehensive analysis of agreement between

NIBP and ABP under different physiologic states. In particular, NIBP and ABP were

assessed prior to the start of vasopressor therapy as well as prior to acute elevations of

creatinine (as a marker of renal failure). The results of this retrospective study suggest

that NIBP systolic blood pressure is an inadequate estimate of the true underlying arterial

systolic blood pressure. The results were consistent with theoretical model-based studies

of NIBP as well as animal studies.

The second clinical study involved analyzing the diurnal variations in hemodynamic

variables (blood pressure, heart rate) of patients as well as hemodynamically significant

interventions in the ICU. The results of the study suggest that there may be statistically

significant differences in the response of clinicians to hemodynamic deterioration as a

function of time of day in the ICU. In particular, patients' blood pressures were allowed

to deteriorate further in the early morning in comparison to the afternoon or evening.

Furthermore, there were significant differences in the likelihood of starting a new
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vasopressor as function of time of day. Thus, this clinical study has introduced a novel

high throughput histogram-based method that may highlight clinically important patterns

in ICU care that warrant further investigation.

7.1.3. Development of a time series similarity algorithm using
wavelet-based symbolic representations

In Chapter 5, a new method for assessing similarities between multiparameter time series

was described. We introduced a novel wavelet-based symbolic transformation that allows

for the use of information retrieval algorithms that are popular in the document indexing

research community. We characterized time series using wavelet feature extraction and

then mapped the wavelet coefficients to symbolic representations. We then integrated the

symbols into a term-frequency vector that could be processed using classical information-

retrieval algorithms. We evaluated the performance of the novel time series similarity

algorithm on several different synthetic data sets. The algorithm that was described has

several attractive features: it can be implemented in an unsupervised framework, it is

computationally efficient, and its accuracy is comparable to state-of-the-art algorithms

that require significant training data.

7.1.4. Novel algorithm to predict hemodynamic instability in ICU
patients

In Chapter 6, the wavelet-based similarity metric was utilized for identifying physiologic

patterns that may be predictive of hemodynamic deterioration in ICU patients. The

predictive algorithm identified multiscale dynamics in heart rate, blood pressure, and

estimated cardiac output (ECO) as salient features to distinguish between hemodynamic

stability and impending hemodynamic deterioration. The algorithm was able to

"discover" unique multiparameter signatures in an unsupervised framework. The K-

nearest neighbors algorithm was used to identify "similar" hemodynamic patterns for a

library of ICU records with hemodynamic time series and their respective medication

administration profile.
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The classifier that was developed from the new similarity metric had a relatively high

specificity (-0.8) and sensitivity (-0.8) in predicting the need for a vasopressor

intervention at least two hours before it is given. The difficulty in attaining a higher

sensitivity is also due to the predictive nature of the classifier. The performance analysis

of the predictive algorithm was limited by the definition of "gold-standard" labels that

were used to adjudicate algorithm decisions as "true" and "false." The use of medication

profiles for defining the "gold-standard" labels implies that clinicians are 100% sensitive

to hemodynamic deterioration and do not initiate therapy with a vaso-active medication

when it is not necessary to do so. However, as shown in Chapter 4, ICU clinical vigilance

is suboptimal and medication administration decision may at times be inconsistent with

the physiologic needs of patients. To our knowledge, there is little research in developing

automated algorithms that can forecast a blood-pressure drop hours before it happens. It

is hoped that other investigators can utilize MIMIC-II to develop similar algorithms and -

--in the process---refine the "gold-standard" label for hemodynamic "instability" and

"stability."

The framework presented here can accommodate additional physiologic and clinical

signals that can perhaps improve the sensitivity. For example, fluid-balance time series as

well as clinical laboratory measurements may further aid in identifying patterns of

impending hemodynamic deterioration.

7.2. Future Work

7.2.1. Next-Generation clinical database development
Advances in hardware and software technologies have facilitated the development of the

MIMIC-II database. The evolution in technology is likely to continue and will allow for

the development of even larger, and more comprehensive databases in the future.

The development of massive storage systems that can store terabytes of data on a single

desktop machine will facilitate the acquisition of high resolution physiologic data over
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extended monitoring intervals. Furthermore, such data acquisition systems are likely to

be networked to monitoring networks with gigabit data transfer rates; thus allowing for

transmission of even more physiologic data on a single network. Archiving systems that

can be networked to a remote clinical environment in different geographies may be

possible in the future. Such advances may allow for the development of a richer database

that is representative of several different patient populations at disparate clinical sites. A

more diverse database is less likely to reflect the clinical practice of only one institution.

Thus, physiologic and clinical patterns in ICU data that are detected may be more

applicable to broad patient populations.

Other clinical environments outside of the ICU may pose their own unique challenges.

For example, interpretation of physiologic and clinical data from the emergency

department (ED) has its own unique challenges-patients are usually monitored with

only non-invasive technologies, monitoring intervals are typically shorter, and the data

may be far noisier. The operating room (OR) may be a data rich environment with a

myriad of monitoring devices attached to a patient during a highly invasive surgery.

Anesthesiologists are responsible for closely monitoring the physiologic stability of the

patient at all times. Such a need motivates the development of automated algorithms that

may support the clinical decision making in the OR. Thus, development of a database that

can support algorithm development for OR and ED monitoring systems can particularly

benefit from a database like MIMIC-II with a focus to those environments.

The bedside monitoring data in MIMIC-II was archived by a customized system supplied

by a medical equipment vendor. Such collaboration is necessary in order to translate the

proprietary native data formats into an open data standard such as WFDB. Creation of a

common data standard would greatly facilitate the ability of researchers to utilize

databases such as MIMIC-II in their algorithm development and validation process. By

working with a common database, it would be possible to compare the relative merits of

different algorithms for patient monitoring. Furthermore, common databases and

standards also allow researchers to use common toolsets for visualizing and annotating a

database. It has proven to be extremely challenging to annotate a large-scale database
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such as MIMIC-II by a limited number of clinicians. Development of web-enabled

visualization and annotation tools may allow for the creation of a greater community of

researchers and clinicians with interests in annotating MIMIC-II data. Thus, it may be

possible to leverage such a community in a successful manner similar to the open-source

movement that has been responsible for innovative software, and more recently---the

wikipedia.

Along with the aforementioned information storage and networking technologies,

measurements technologies are likely to advance to the point of facilitating the

acquisition of richer physiological datasets. For example, the MIMIC-II database contains

commonly reported laboratory measurements such as blood chemistry and cell counts. In

the era of bioinformatics, a patient's genomic, proteomic, and metabalomic profile may

be measured with the ease in the future. For example, septic shock is thought to be a

manifestation of a systemic inflammatory response to a bacterial infection. The dynamics

of sepsis physiology may be dependent on a patient's inflammatory response pattern

which may be in part determined by a have a certain genotype [69]. Identifying

physiologically important trends based upon genomic, proteomic, and conventional

physiologic measurements would be greatly facilitated by a database that contains such

information on a significant number of ICU patients.

The future extensions to physiologic database development will certainly pose ethical and

legal challenges with respect to dissemination of clinical data to a wide community of

users while simultaneously protecting a patient's confidential medical information.

Research in automatically de-identifying medical data is ongoing [12]. Ultimately,

governmental agencies such as the NIH will need to set guidelines and standards that

protect patients and their caregivers while facilitating access to data that researchers can

use to develop technologies that advance medical care.

7.2.2. Future clinical studies with the MIMIC-II database.
In chapter 5, two clinical studies were described as examples of retrospective research

that was enabled by the MIMIC-II database. The richness of data in MIMIC-II can
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facilitate numerous other clinical studies. While the focus of this thesis has been in the

domain of hemodynamic monitoring, other physiological systems can be studied. For

example, the pulmonary system is of particular importance in the significant number of

ICU patients that are ventilated. In [30], MIMIC-II was utilized to study acute respiratory

distress syndrome (ARDS) in ICU patients. In particular, physiological and non-

physiological factors, such as ventilator settings, were identified that may play causal

roles in the development of ARDS.

One of the most unique aspects of MIMIC-II includes the availability of high resolution

waveform data. In [72], we utilized the arterial blood pressure waveforms and

intermittently measured cardiac output measurements in the MIMIC-II database to

evaluate several different algorithms that derive CO from ABP waveforms. The

availability of large volumes of data along with variability in physiologic states in

MIMIC-II can facilitate several different research studies with physiologic waveforms.

Besides cardiac output, there are several other invasive measurements made in the ICU

that can perhaps be estimated with less invasive monitoring modalities. For example, the

pulmonary artery wedge pressure as measure of left-heart filling is valuable in evaluating

the volume status of a patient but typically requires invasive right heart catheterization.

Utilization of the ABP waveform along with physiologic signal processing may allow for

the development of a less-invasive, continuous PAWP estimate. Such a research study

could be facilitated by the MIMIC-II database.

False arrhythmia alarms are among the most significant challenges plaguing the value of

ICU monitors. The development of novel alarming algorithms that are both sensitive and

specific requires access to a large database of annotated physiologic waveforms from

ICU patients. The total number of monitoring hours available in MIMIC-II far exceeds

any other database. Efforts are underway to utilize ECG waveforms in MIMIC-II to

evaluate more advanced arrhythmia alarms. In particular, utilization of several

physiologic waveforms such as ECG, arterial blood pressure, and photo-plethysmography

may allow for the development of robust alarming algorithms.
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7.2.3. Time series similarity metric

The time series similarity metric based on the wavelet-based information-retrieval model

has many possible research extensions. In this thesis, the only wavelet basis function that

was evaluated was the Haar function. The Haar function was chosen for its simple

implementation and computational tractability. However, other basis functions with

different smoothness properties may yield different results depending on the given

application.

In this thesis, we focused on physiologic time-series trends with regularly sampling

intervals (1 sample/minute). However, several clinical time series such as laboratory

values are typically irregularly sampled. The symbolic information-retrieval model is still

applicable to irregularly sampled time series. However, the wavelet feature extraction

must be adapted to characterize irregularly sampled data. In an ICU monitoring

application, this may be particularly challenging because the sampling frequency of a

laboratory measurement may be suggestive of an underlying instability in a patient. Thus,

if five arterial blood gasses (ABG) are sampled in a day in one patient, and only just

ABG is sampled in another patient, one may infer that there are different concerns

regarding the acid-base status of these two patients.

The symbols that have been generated reflect the value of a single wavelet coefficient

derived from one time series. Furthermore, the symbol frequency feature vector that is

generated reflects the frequency of occurrence of individual symbols. However, there are

several real-world processes within and outside of the ICU that are best characterized by

two or more time series. For example, the direction of change in a patient's estimated

cardiac output while the pulmonary artery pressure is increasing may be more important

in characterizing the physiologic state than characterizing each trend direction

independently. Thus, an extension of our work may involve formulating a symbolic

feature vector that characterizes the relative, simultaneous change in time series along

with their individual dynamics. An advantage of using the information-retrieval model is

that there is a rich literature in document processing for evaluating different term
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frequency vector approaches. An analogy could be made to document retrieval methods

where terms in the vector may consist of more than one word, rather than the simple one-

word terms that are used as examples in Chapter 5.

The simple histograms and Parzen density estimators are considered non-parametric

estimators of a probability density function. In utilizing the Parzen density estimators,

widths for the Gaussian kernels were chosen based upon each wavelet coefficient's

sample distribution. Suboptimal kernels may lead to inaccurate density estimates that

over-fit the data. There are techniques for kernel variation to overcome such problems

that can be explored [13].

A parametric model may allow for a more optimal estimation of the true wavelet

coefficient density function. For example, a Gaussian mixture model of the wavelet

coefficients can be estimated using the Expectation-Maximization (EM) algorithm. The

EM algorithmn is a technique for finding the maximum likelihood (ML) estimates of the

parameters (mean, variance, prior probabilities) of a mixture model for a density

function. The optimal number of mixtures can be determined using an information

criterion such as the Akaiki Information Criterion (AIC) or the Bayesian Information

Criterion(BIC) [13]. Characterizing a distribution with a set of parameters may have

important advantages. A parametric model may be more robust to outliers as well as

allow for a significant data compression by storing feature vectors consisting only of

model parameters.

7.2.4. Hemodynamic instability prediction
The similarity metric was used to develop an algorithm for the prediction of

hemodynamic instability. There are several possible extensions in this area of research. In

Chapter 6, only the one-minute heart rate and arterial blood pressure trends were utilized

for predicting future deterioration. However, there are several other variables that may

significantly improve the performance of the predictive algorithm. The fluid-balance data

(IV fluid input and urine output) can contribute significant information about whether a

patient may have underlying hypovolemia. Furthermore, developing a more
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comprehensive model that includes other interventions may provide for a more complete

physiologic characterization of a patient. For example, if a patient's blood pressure

deteriorates after receiving an IV fluid bolus, one may infer that heart function

(contractility) is poor. A more refined characterization of the patient's physiology may

allow for the development of an algorithm that can also classify the instability pattern.

For example, deterioration in blood pressure can be due to one of more of the following

etiologies: sepsis, hypovolemia, or acute heart failure. Identifying the type of shock is

important because the optimal therapy would be different. Thus, creation of "symbols"

that correspond to physiologic responses to therapeutic interventions may allow for

characterizing the similarity of ICU records in more novel and clinically meaningful

frameworks. Real-time clinical decision support tools that can aid in timely therapy

selection may ultimately improve outcomes in the ICU.
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