
Huge Networks, Tiny Faulty Nodes

by

Enoch Peserico

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Massachusetts Institute

March 2007

of Technology 2007. All rights reserved.

A uthor- .-. :.·
Department of Electrical Engineering and Computer Science

March 19, 2007

Certified by.. ·
Larry Rudolph

Principal Research Scientist
Thesis Supervisor

/

Accepted by

ARMY Arthur C. Smith
Chairman, Department Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

AUG 1 6 2007

LIBRARIES

· · ·~_~·-"i~;""·~

; - ---- --111-` --- '

*:

Huge Networks, Tiny Faulty Nodes

by

Enoch Peserico

Submitted to the Department of Electrical Engineering and Computer Science
on March 19, 2007, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Can one build, and efficiently use, networks of arbitrary size and topology using a
"standard" node whose resources, in terms of memory and reliability, do not need
to scale up with the complexity and size of the network? This thesis addresses two
important aspects of this question.

The first is whether one can achieve efficient connectivity despite the presence of a
constant probability of faults per node/link. Efficient connectivity means (informally)
having every pair of regions connected by a constant fraction of the independent,
entirely non-faulty paths that would be present if the entire network were fault free
- even at distances where each path has only a vanishingly small probability of being
fault-free. The answer is yes, as long as some very mild topological conditions on
the high level structure of the network are met - informally, if the network is not too
"thin" and if it does not contain too many large "holes". The results go against some
established "empyrical wisdom" in the networking community.

The second issue addressed by this thesis is whether one can route efficiently on a
network of arbitrarly size and topology using only a constant number c of bits/node
(even if c is less than the logarithm of the network's size!). Routing efficiently means
(informally) that message delivery should only stretch the delivery path by a con-
stant factor. The answer again is yes, as long as the volume of the network grows
only polynomially with its radius (otherwise, we run into established lower bounds).
This effectively captures every network one may build in a universe (like our own)
with finite dimensionality using links of a fixed, maximum length and nodes with a
fixed, minimum volume. The results extend the current results for compact rout-
ing, allowing one to route efficiently on a much larger class of networks than had
previously been known, with many fewer bits.

Thesis Supervisor: Larry Rudolph
Title: Principal Research Scientist

Acknowledgments

I have to thank a vast number of people for their encouragement, support, and advice

in writing this thesis, among them its readers (Tom Knight and Piotr Indyk), my

fellow students at MIT's computer science lab, and, last but not least, my parents.

But above them all I have to thank my advisor, Larry Rudolph, for all these years of

guidance and freedom.

Contents

1 Introduction

1.1 A theoretical issue: scalable computing and scalable networking .

1.2 Practical applications

1.3 Towards ultimate network scalability

2 Robust network connectivity

2.1 Introduction.............

2.1.1 Related work

2.11.2 Our contribution

2.2 A simple network model

2.2.1 Networks as multigraphs. .

2.2.2 Holes, cuts and phases . . .

2.2.3 Robustly linked zones

2.3 Robustly linked zones are connected

2.4 Extending the applicability

2.4.1 A node-centric model

2.4.2 Geometric Radio networks .

2.5 Simulations

2.6 Conclusions

.................. 19

... 21

... . . . 23

.. 25

. 25

. 27

90

active paths w.h.p. 34

.. 41

.. 41

. 44

.. 45

.. 50

3 New results for Compact Routing

3.1 Introduction .

3.1.1 Compact Routing

3.1.2 Lower and upper bounds for generic graphs 54

3.1.3 Interval routing on trees (and other graphs) 55

3.1.4 Compact routing on "growth restricted" graphs 56

3.1.5 Our contribution 57

3.2 Compact Routing on the Line and on the Ring 60

3.2.1 Preliminaries 60

3.2.2 A simple scheme for routing on the line and ring 62

3.3 Compact Routing on Bounded Degree Trees. 63

3.3.1 Overview 64

3.3.2 Routing Upwards 65

3.3.3 Routing downwards 66

3.4 Compact routing on polynomial growth graphs 68

3.4.1 Overview 68

3.4.2 Multiscale naming and routing on arrays 70

3.4.3 Efficient tree-hashing in polynomial graphs 71

3.4.4 Region aggregation 75

3.4.5 Travel between neighboring regions 77

3.4.6 Tallying the costs 81

3.5 Conclusions 82

4 Conclusions

List of Figures

2-1 Source and destination are robustly linked if connected by a strip/double

cone of width logarithmic in its length. Holes effectively "erode" part

of the connecting strip width: every hole erodes connectivity up to a

distance logarithmic in its width. 24

2-2 A network with two large holes (and many smaller ones). The dot-

ted edges form a minimal cut (of both holes). The numbered edges

form a phase assignment to the hole on the right. Note that the only

requirement on the labels is that they are distinct positive integers. 29

2-3 The graph G (top), a mesh, and the graph G(A,B) (bottom) obtained

by collapsing the two regions A and B into single points and connecting

them with an additional edge e(A,B). 32

2-4 Efficiency of usage of a 106 hexagon long strip, as a function of its

width (expressed as a number of disjoint paths), for different failure

probabilities. 46

2-5 The minimum width required to reach 50% efficiency as a function of

the length of the connecting strip (with a constant link failure rate of

10%) 47

2-6 The "horizontal slashes" do not reduce the "bandwidth" between source

and destination in the absence of faults - but they create holes, of girth

equal to twice their length and cut of size equal to their distance, which

erode connectivity in the presence of faults. 48

2-7 The degradation of the efficiency of usage of the strip with the length

of the slashes, for different numbers of parallel sequences of slashes. 48

2-8 The minimum hole cut size (i.e. distance between "slashes") that guar-

antees 50% efficiency, as a function of the hole's girth (i.e. twice the

"slash" size.) 49

3-1 The n-comb (in the figure, n = 5) is formed by a backbone of n nodes

(on top), each of them the first of "tooth" also of n nodes. The n-comb

has a doubling dimension of at least log 2 n, since it can be completely

covered by a ball of diameter 3n - 3, but no ball of diameter ' can

simultaneously cover the tips of two distinct teeth. 57

3-2 Two phases of the alignment to the leftmost node of a stream of dat-

ablocks entering from the third node from the left: first datablocks

stream to the left, then, as nodes are "filled", to the right. 61

3-3 The dotted lines show the virtual nodes in the virtual trees Tsp(T)

(left) and Tdon(T) (right), obtained from the same tree T. 64

3-4 The logarithm of the number of level i-i regions in a level i region,

as a function of the region level. The area under the curve is the

logarithm of the region volume. The dashed curve corresponds to a

graph with doubling dimension at most d - the curve never goes above

d. The thick continuous curve corresponds to a graph with degree d

polynomial growth - the curve is on average below d, but it can exceed

d after being lower for several levels. The thin straight line represents

the logarithm of the number of neighbors a region can keep track of as

a function of the region level. 79

3-5 A "cube" made of 1-dimensional "wires" has degree-2 polynomial growth

(it can be "folded" into two dimensions) but its doubling dimension is

3 and at the largest scale behaves like a 3-dimensional object. 80

Chapter 1

Introduction

Can one build, from nodes with little reliability, small memory and low computa-

tional speed, networks that efficiently scale to arbitrary size and topology? This

thesis attempts to address some aspects of this question. This first chapter explores

the general question in greater depth; it explains its relevance, both theoretical and

practical; it describes the state of the art in the field; and, placing them in the context

of the greater whole, it introduces the two issues, robust connectivity and compact

routing, that form the core of the thesis.

1.1 A theoretical issue: scalable computing and

scalable networking

This thesis focuses on issues of scalability, but in the context of networking rather than

in that of computing. There is a fundamental difference between the two. The function

of a computing device, or a network used as a computing device, is to receive an input

and produce an output in a "black box" fashion. In order to achieve this result one

might have to carefully orchestrate the flow of information between different parts of

the computing device; but there is no specific requirement that each component of the

device should be individually controllable and capable of communicating efficiently

with every other component. In contrast, the fundamental function of a network is

to allow each individual component node to (efficiently) send information to (and

receive information from) every other node; whatever computational ability nodes

have is purely ancillary to this task.

This thesis explores the issue of the existence of a "universal" node, with a fixed

amount of resources, that can be used to assemble efficient networks of arbitrary size

and complexity. A parallel from the computing world would be that of universal

cellular automata that, using lattices of cells with a finite amount of state, can carry

out computations of arbitrary complexity (once again, note that cellular automata

are typically treated as computing ensembles, rather than networks - one is interested

in their global behavior rather than in the ability of having arbitrary pairs of cells

communicate). In this regard, cellular automata sharply contrast with other parallel

computing models, such as the PRAM [27], where the complexity of the individual

CPU, and in particular the size of its registers, must grow with the number of CPUs

involved in the system and with the amount of memory. It is natural then to ask

whether one can build a network where each node can route information to any other

node, even if the memory of each node is a constant independent of the size of the

network - and in particular less then the logarithm of the size of the network. Or

must the resolution at which we can address the individual components of a system

necessarily worsen as the system increases in size?

Note that scalability is not only about memory size - but also, for example, about

reliability. Engineering considerations, but also fundamental physical limits, make

it impossible to create devices that operate with 100% reliability. Instead, in any

given time interval, every elementary device - whether a register storing 1 bit, a half

adder adding 2 bits, or a physical link transmitting 1 bit, has a certain probability

of malfunctioning. As the space and time complexity of a computation increases,

there are more points in space and time where a computing device carrying it out

may fail; similarly, as the size and diameter of a network increases, there are more

points where information in transit may be lost or corrupted. It is then natural to

ask whether, as the complexity and diameter of a network grow, one can achieve

communication between arbitrary pairs of nodes with non-vanishing probability, even

at distances considerably larger than the mean distance between failures. Or can one

achieve reliable communication only at bounded distances in any system subject to

a constant density of noise?

In addition to whether scalable networking is feasible, it is natural to ask how

efficient it can be made. For example, even if it is feasible to route between nodes

with relatively little memory, how much longer are the resulting paths compared to

a network where every node had an unbounded amount of memory available? Are

there tradeoffs between resources, so that one can achieve communication with little

memory, but only with high reliability, or viceversa?

1.2 Practical applications

It might seem that the questions we raise are only of theoretical relevance. For

example, one might argue that a few hundred bits are in any case sufficient to address

every elementary particle in our galaxy - and today even the smallest processors easily

exceed those memory requirements. Yet, we believe the questions raised by this thesis

can actually have practical impact. Some immediate, practical consequences of our

results will become apparent during their exposition. But we can immediately begin

to argue about practical impact of this line of research in the long term.

Advances in nanotechnology and biological engineering promise to bring us, over

the next decade or two, a wealth of "smart materials", composed by myriads of mi-

nuscule sensor/actuators units. Each unit would be constantly interacting with the

environment it is immersed in on an extremely fine scale: acquiring information, ex-

changing it with its neighbors (turning the whole material into an extremely large

adhoc network) and potentially reacting (e.g. exerting mechanical force). A number

of prototypes have already been built, the most well known probably being the Berke-

ley motes [18] and the Intel motes [23]; all these employ silicon based chips for their

computational needs. While these chips have indeed a memory capacity of several

kilobytes at least, the prototypes are already pushing the limits of electronic minia-

turization, while each node is still fairly bulky: even shrinking the size of each gate to

one atomic radius, maintaining the current node-to-gate size ratio individual nodes

would still be visible to the naked eye. In order to achieve true nanoscale interaction

with reality, the logic used by these sensors/actuators must be made simpler.

In addition, because in smart materials computing functions are secondary to

sensor/actuator functions, researchers are looking to substrates other than silicon

to base individual nodes on - substrates that, although offering other advantages in

terms of interaction with the environment, offer much weaker computational potential.

One prime example would be living cells whose protein transcription logic has been

hijacked to provide computing/networking functionality (for preliminary examples of

what can already be achieved through this approach see [7]). In the case of protein

transcription logic, energy bounds on the maximum protein transcription load that

a cell can bear limit the total number of logic gates that can simultaneously have a

positive output to perhaps a hundred - more than an order of magnitude less than

even the very earliest (and smallest) silicon chips.

True scalability in terms of reliability would also be a boon. As it stands, silicon

is sufficiently reliable to guarantee functionality on chips of a few hundred million

transistors (though safety margins are not particularly large). But just like silicon

is the cutting edge for density, it is the cutting edge for reliability. No other sub-

strate matches it, from living cells to nanomechanical devices. Thus, turning to other

substrates for smart materials, composed by billions or even trillions of units, would

definitely mean dealing with adhoc networks where faults on any given path connect-

ing two nodes are almost a certainty.

In fact, even some current systems based on silicon experience serious difficulties

due to architectures that do not scale well in terms of reliability; and would benefit

from any approach that guaranteed scalable reliability. A prime example are sensor

networks deployed in "extreme environments". High temperatures, mechanical stress,

and even simply environmental radiation found in space or at very high altitudes

often compromise their computational abilities of individual units - or simply disable

them altogether. In these networks the mean distance between failures can become

considerably shorter than the diameter of the network, compromising long range

connectivity. Peer to peer networks, where virtual paths between nodes often fail

because of hardware and software heterogeneity, ISP traffic shaping policies, and

most of all selfish user behavior, are another area that would benefit from architectural

approaches aimed at guaranteeing scalable reliability.

1.3 Towards ultimate network scalability

The ultimate goal of this line of research would be the development of all the layers

from the schematics of a simple "universal" computing/networking element (ideally

less than 100 gates in terms of circuit complexity), to a truly distributed operat-

ing system and expressive programming language capable of efficiently controlling

in an arbitrary fashion an arbitrarily large number of such elements arbitrarily con-

nected together, even when a sizable fraction of them (e.g., up to 20%) are subject

to failures. Researchers of new nanotechnology "hardware" - whether modified bac-

terial cells, nanomechanical machines, etc. - who managed to implement the simple

schematics would then know that their "platform" would be able to support any

desired functionality, without having to worry about how to code that functionality

into their hardware. At the same time, application developers would be able to code

sophisticated system behaviors in an expressive language, with the knowledge that

their work would be portable to any platform that implemented the basic schemat-

ics. Such a grand goal is beyond the scope of this thesis; we do, however, take two

important, preliminary steps towards it.

Chapter 2 addresses the following question: in networks affected by a small, but

positive rate of"topological noise" - noise due to imprecise node positioning and/or

a small probability of failure of nodes and links - (when) can one still have good

connectivity at arbitrarily long range? Good connectivity means that arbitrary pairs

of nodes or regions are connected by nearly as many disjoint, fault-free paths as

if the entire network were fault-free and nodes were optimally placed. Clearly, good

connectivity in the presence of a strictly positive fault rate is not always achievable: a

1-dimensional line of nodes becomes fragmented into a number of small, disconnected

"islands" if every link has a small probability of failure.

We give a simple topological condition that guarantees good connectivity at ar-

bitrary range and is satisfied in many cases of practical interest. A rigorous formal-

ization of the intuitive notion of "hole" in a (not necessarily planar) graph is at the

heart of our result and our proof. It turns out that "holes" effectively erode connec-

tivity in the region "around" them, to a distance that grows logarithmically with the

"circumference" of the hole itself, and proportionally to the probability of link/node

failure. Extensive simulations refine our theoretical analysis. This result essentially

characterizes networks where connectivity depends on the "big picture" structure of

the network, and not on the local noise caused by faulty or imprecisely positioned

nodes and links. It also nicely complements a recent result [19] by Ho et al. that

shows how to automatically exploit good connectivity when it is available, using a

simple randomized network coding scheme that uses only local information at every

node.

Chapter 3 wields new results in the well studied problem of compact routing: is it

possible to efficiently route messages in a network of arbitrary topology and size with

only a constant number of bits per cell? "Efficiently" means that the total number

of nodes involved in the transmission, the total number of bits transmitted, and the

total time required for the message to arrive to destination are all within a constant

factor of the optimal, i.e. of what would be achievable if every node had an oracle

telling it to which of its neighbors route any incoming bits.

It is known [34] that, in general, to achieve efficient routing one needs a number

of bits per node polynomial in the size of the network. However, we show how a

constant number of bits per node is sufficient for efficient routing in any network

with polynomial growth - i.e. where the total number of nodes at a distance of

at most h hops from any given point is at most polynomial in h. We note that

polynomial growth is a fairly mild condition satisfied, for example, by any physically

implementable network having only "local" connectivity (it is a much milder condition

than low doubling dimension [13], [41]). As a side result, we also obtain an efficient

routing scheme for trees that uses only constant bits per node (improving on the

previous logarithmic bound by Thorup and Zwick [421).

Chapter 2

Robust network connectivity

Can networks scale in terms of connectivity/bandwidth without their nodes having

to become more and more reliable as the diameter of the network grows and paths

lengthen? And in particular when the average distance between source and destina-

tion becomes much longer than the average distance between faults? In this chapter

we show that the answer to this question can be positive as long as the network

meets some very mild topological conditions: namely, it should not be too "thin"

and it should not sport too many large "holes". The notion of hole is at the core of

our result, and has a number of implications of immediate, practical applicability to

networking, from sensor network simulations to peer to peer networks.

2.1 Introduction

This work analyzes the connectivity of large diameter networks where every link has

a probability p of failure. We derive a simple and yet widely applicable condition on

the topology of the network that guarantees good connectivity, i.e. a number of edge

disjoint, non faulty paths between any two regions of the network almost as high as if

no faults where present. Our condition can easily hold even if the two regions are at a

distance much larger than the expected "distance between faults", 1/p, and thus, even

if any single path between the two is faulty with high probability. We then extend our

result to give a simple condition on the topography of the deployment area of large

diameter radio networks that, despite random positioning of nodes and faults, again

guarantees connectivity between regions of the deployment area almost as good as if

no faults occurred and if all nodes were placed optimally. Our result characterizes

networks where connectivity depends essentially on the "big picture" structure of the

network and not on the local "noise" due to imprecise node positioning or to faulty

nodes and links.

The connectivity between distant regions in large diameter networks depends on

two main factors: large scale structure and small scale noise. The large scale structure

of a network is typically linked to the topography of the area in which the network is

deployed. For example, a city-wide adhoc radio network is essentially two dimensional

(but could have an elongated shape in the case of a city along a river or in a narrow

mountain valley) and necessarily has a large number of "holes" in areas, such as ponds

or electromagnetically shielded buildings, that nodes cannot populate and through

which information cannot flow. As another example, a SmartDust [20] large sensor

network deployed on the surface of a building, of an aircraft or of a ship to detect signs

of impending structural failure has a topology essentially determined by the nature of

the building - a topology that could be particularly intricate in cases such as that of

the Eiffel tower. Of course, there are many examples of large scale adhoc distributed

peer to peer networks whose "large scale" topology depends not on physical factors,

but on the algorithm used to form the links.

Connectivity is also affected by a level of "small scale noise": in large networks

a fraction of the nodes is almost inevitably faulty, the deployment process is often

imprecise, and sometimes mobility can alter the position of nodes over time. The

effects of this noise, even when relatively limited on short range communications,

can accumulate and seriously compromise long range connectivity: if every link has a

probability p of failure, then the probability that a path of h hops is entirely fault free

is % e-hp, which becomes vanishingly small when h is much larger than the average

distance between faults, li/p. This can make long range communication problematic

in large diameter networks with even a moderate level of small scale noise, such as

sensor networks, large mobile radio networks, or nanotechnological ensembles.

This work characterizes networks whose connectivity essentially depends only on

their large scale structure and is independent from small scale noise. In these "ro-

bustly linked" networks connectivity is always, with high probability, within a small

factor of the optimal.

2.1.1 Related work

Most of the (vast) literature on connectivity in the presence of small scale noise

studies how different types and levels of small scale noise affect networks with a single,

specific large scale structure - rather than how variations in large scale structure affect

connectivity in the presence of a given level or range of small scale noise. 1

Resilience to faults was widely studied in the 1960-80s for now classic networks

such as the mesh, the butterfly, the hypercube and many others (for an excellent re-

view see [27]). More recently, the surge of interest in structured peer to peer networks

(such as Tapestry [46], Pastry [37], Kademlia [31], Chord [40] or CAN [36]) has been

generating a growing literature on the effects of small scale noise caused by individual

nodes joining and leaving the network - but again, the focus is on the effects of this

noise on a specific large scale structure.

The bulk of the literature on networks without an a priori well specified large

scale structure, such as ad hoc mobile networks and sensor networks, seems to study

"for simplicity" deployment areas that are either circles or squares. We remark that

square and circle enjoy this vast popularity in studies of mobility, routing, energy

efficiency etc. even though, due to space limitations, we have to focus this brief

review on studies of connectivity. With a "balls and bins" argument, [16] shows that

in the unit square populated at random with nodes of communication radius r << 1,

a population of E((1/r)2 log(1/r)) nodes, i.e. a log(1/r) node density, is necessary

and sufficient to guarantee that with high probability every node is connected to

every other, and that O(1/r) connections can be maintained simultaneously between

"'Small world" phenomena [2] [43] [22] [30] [26] - where a few long range random links can
radically alter the large scale structure of a network, are a somewhat orthogonal problem; also, most
of the related literature focuses on how these long range links shorten path length rather than how
they affect the number of disjoint, non-faulty paths between regions.

randomly chosen pairs of nodes. This result actually holds even in the presence of

interference under some very mild assumptions on the nature of interference [4].

On the square or circle, a constant node density is sufficient to guarantee that

the majority of nodes (rather than all nodes) are connected to each other with high

probability, even if they are positioned at random and/or a constant fraction of them

and/or of the links is faulty. This is a well known percolation theory result ([8],

refined by a long sequence of papers - see [32] for an excellent review). Booth et

al. [3] and Gupta and Kumar [15] exploit this property to estimate optimum power

ranges for connectivity. Haas et al. [28], Krishnamachari et al. [25], and Sasson et

al. [39] exploit it to save on the energy cost of network broadcast: every node fails to

retransmit the broadcast (and therefore saves on energy) with a constant probability,

without seriously compromising the reach of the broadcast itself. Several other papers

investigate the effects on long range connectivity of different small scale connectivity

situations: for example Franceschetti et al. [9] consider the case of nodes whose local

connectivity area is not a disk but a ring, and Dubhashi et al. [6] consider the effects

on long range connectivity of increasing node density, while reducing the fraction of

the (growing number) of neighbors with which a node communicates.

Once again, we remark that all the results in the previous paragraph are proved

for the square or the circle; there is no evidence that they would hold on deploy-

ment areas of different topologies - e.g. long and narrow strips, or even "Sierpinski"

circles and squares with many holes. Among the few works that consider areas of

different topologies, Dousse et al. [5] point out that, with nodes and faults placed

uniformly at random in a strip of constant width, the probability of two nodes being

connected becomes exponentially small with their distance; and therefore argue for a

reliable, correctly placed infrastructure of base stations to ensure connectivity in the

long and narrow valleys of the Swiss Alps. Li et al. [29] investigate experimentally

connectivity in ellipse shaped regions between the foci of the ellipse, when the area

is populated with a constant density of randomly placed nodes and faults; although

no clear asymptotic behavior emerges from their analysis.

The general thrust seems to be that long range connectivity is possible, even with

randomly placed nodes and/or faults, in regions whose width is "sufficient" compared

to their length. But there is no clear analytical notion of just what is "sufficient".

And there is no study of how connectivity might be affected by the lack of a simply

connected topology (informally speaking, what happens if the network is peppered

with holes).

2.1.2 Our contribution

We provide a detailed theoretical analysis of the effects of the large scale structure of a

network on its connectivity, supported by extensive experimentation. Informally, we

show that even extremely narrow strips (of width logarithmic in their length) are suf-

ficient to guarantee good connectivity in a network with imprecisely positioned/faulty

nodes and links, provided there are not too many large holes in the network. Large

holes require larger width, since, in the presence of small scale noise, they can ef-

fectively erode connectivity in the region surrounding them to a distance that is

logarithmic in the girth (informally, the "circumference") of the hole, and grows with

the level of small scale noise (see fig. 2-1).

We model the network as a multigraph whose vertices correspond to cells of the

deployment area, and where a cell may contain many network nodes. A link be-

tween two cells indicates that those two cells have the potential to communicate,

even though that potential has some probability p of not being achieved because of

faults and other small scale noise. This approach enables a unified treatment of a

large number of cases of practical interest: random and optimal placement of nodes,

random faults either in links or in the nodes themselves, with either failstop faults

(where faulty nodes/links are simply silent) or Byzantine faults (where faulty nodes

jam all communication in their neighborhood). We consider connectivity between

pairs of regions (which we term zones), rather than between pairs of individual ver-

tices, as this allows much stronger connectivity guarantees. Section 2.2 presents our

model, and formally introduces some graph notions crucial to our subsequent analy-

sis. In particular, we formalize the notion of hole in a multigraph, which is intuitive in

multigraphs representing two dimensional networks yet far more subtle in the case of

connectivity holeerosion area I

a
(D
crr.
5

ct
r·

O

5

souce-destination distance

Figure 2-1: Source and destination are robustly linked if connected by a strip/double
cone of width logarithmic in its length. Holes effectively "erode" part of the connect-
ing strip width: every hole erodes connectivity up to a distance logarithmic in its
width.

complex topologies such as those created by the presence of long range links. Equally

important is the notion of robustly linked zones. Informally speaking these are zones

connected by a strip/cone of width at least logarithmic in their distance even when

the region around each hole (to a distance logarithmic in its circumference) is not

counted.

Section 2.3 analytically proves our main result - namely, that robustly linked

zones enjoy a level of connectivity (measured in terms of edge disjoint fault free paths

between them) almost as high as if there was no small scale noise due to faulty or

imprecisely positioned nodes or links. Our proof hinges on a novel analysis technique

that provides an upper bound to the number of distinct cut sets of a given size between

two sets of vertices in a multigraph, paired with Menger's theorem and a Chernoff

bound.

Section 2.4 shows how our analysis can be easily extended, not only to point-to-

point networks with randomly failing links, but for a much wider variety of networks.

It can encompass the effects of faults on both links or nodes, either failstop (where

.41

faulty nodes or links are simply silent) or Byzantine (where faulty nodes maliciously

jam all communication in their neighborhood), as well as geometric radio networks

where nodes are randomly placed in a deployment area with a given topology.

Simulations, involving as many as a hundred million cells, validate the analysis

and give a feel for the constant factors in Section 2.5.

Section 2.6 summarizes our results and analyzes their significance. Some of the

implications are counterintuitive and surprising. For example, when designing a mul-

tipath connection between two areas to provide fault tolerant connectivity, the widely

favored choice of completely disjoint paths turns out to be, in the light of our find-

ings, a strongly suboptimal choice at distances much larger than the average distance

between faults.

2.2 A simple network model

This section presents our model (in subsection 2.2.1) and reviews and introduces

several concepts central to both the theoretical and the experimental analysis carried

out in the subsequent sections; in particular the notion of holes (subsection 2.2.2) and

that of robustly linked zones (subsection 2.2.3).

2.2.1 Networks as multigraphs.

We represent networks as undirected multigraphs - informally speaking graphs where

the same pair of vertices can be linked by multiple edges. Vertices of the multigraph

can represent nodes of the network; they can also represent, instead, "cells" of the

deployment area. The latter interpretation allows our model to easily extend to a

large number of cases of practical interest, presented in section 2.4. An edge between

vertices of the multigraph represents the potential of a direct link between two nodes

in the first case, or two cells of the deployment area in the second case.

Every edge in the multigraph has an i.i.d. probability p of being inactive: inactive

edges represent "faulty" links that provide no connectivity. Note that there is a

fundamental difference between pairs of nodes/cells that have no direct connectivity

because there is no link between them whatsoever, and pairs nodes/cells that have no

direct connectivity because all direct links between them are inactive. The presence

or absence of an edge in the multigraph models the topology of the deployment area:

it is a fixed, known aspect of the network. For example, an impassable mountain

range may prevent connectivity between pairs of antennas/cells on the opposite sides

of it; we model this as an absence of edges between the corresponding vertices of the

multigraph. The probability p that each individual edge may be inactive represents

instead the inevitable uncertainty in the exact positioning/behavior of nodes in the

network, a divergence from the "ideal" situation that can be known a priori only

in probabilistic terms. For example, two adjacent nodes/cells that are not directly

connected only because of a hardware or software malfunction are modeled by two

multigraph vertices connected by an inactive edge.

We evaluate the connectivity of the network in terms of the number of edge-disjoint

paths that are active (i.e. formed entirely by active edges) between two nodes of the

multigraph, or, more in general, between two sets of vertices in the multigraph. For

brevity we call such sets zones.

We acknowledge that the hypothesis that links may fail with an i.i.d. probability

p is a simplification - some simplification in a large network model is inevitable to

make it tractable. Our work can be viewed as using a simpler model of local effects in

order to analyze with greater accuracy the effects of large scale network structure - as

opposed to other studies that make the opposite sacrifice, and use a greatly simplified

model of the large scale structure to analyze with greater accuracy local effects. The

two approaches can easily complement each other. Remembering that nodes in our

multigraph model can represent cells of the deployment area rather than nodes of

the network, one can choose a cell size larger than the scale of the local phenomena

causing fault correlation. In this way one can study the large scale structure of a

network through our model, deriving the parameters that drive it from a model that

can deal with the intricacies of intra-cell interactions at a scale where the topology of

the network is still quite simple.

2.2.2 Holes, cuts and phases

This subsection formalizes the intuitive notion of hole and introduces the related

concepts of girth, cut and phase.

Roughly speaking, we represent a hole as the set of all cycles "around" it - cycles

that cannot be shrunk smoothly to a single point, but instead "tighten" around the

hole itself. This corresponds to the intuitive notion of a hole on a two dimensional

deployment region. The intuition is somewhat more fragile when we try to extend it

to a multigraph corresponding to a three dimensional deployment region. In this case,

the "hole" in the middle of a doughnut fits our definition, but the intuitive notion

of "spherical hole" in a piece of swiss cheese does not, since a cycle can "slip to one

side" of the surface of the spherical hole and smoothly shrink into nothingness. It

is important to note, however, that our formal notion of hole is well defined on any

multigraph topology, even particularly intricate ones on which visual intuition tends

to fail.

In order to give a formal definition of holes, we first have to formally define cycles

and what it means to "smoothly" transform one into another. We capture the latter

concept of small topological distance between two cycles by measuring how many edges

must be added/removed at a time to transform one cycle into the other without ever

"opening" it.

Definition 1. A path of length e in a multigraph G is a sequence of e edges of G,

(ul, vi),..., (ue, ve), such that vi = ui+l for 1 < i < t. If vy = ul the path is a cycle.

Definition 2. The topological distance between two cycles y and y' in a multigraph

G is the least d such that there exists a sequence of cycles starting with y and ending

with y' with no two consecutive cycles in the sequence having symmetric difference 2

larger than d.

Note that the symmetric difference of two sets of cycles (and, in particular, the

difference of two cycles) is always a set of cycles, since a set of edges is a set of cycles
2The symmetric difference between two sets A and B is (A u B) G (An B), i.e. the set of elements

in one but not both of A and B.

if and only if every vertex appears in it an even number of times. We are now in a

position to formally define holes and hole cuts - set of edges that "cut" every cycle in

a hole.

Definition 3. Given a cycle y of length g, the set of all cycles at topological distance

less than g from 7 is a hole of girth g if it contains no cycle shorter than y. 3

Definition 4. A cut of a hole h is a set of edges that intersects every cycle of h. A

cut of a set of holes H = {hi,...,hn) is a set of edges that intersects every cycle in

every hole in H. A cut of a set of holes H is minimal if none of its proper subsets is

also a cut of H.

Note that some cycles may be elements of no hole. These are cycles that "go

around" multiple holes of the same girth; and thus are always the symmetric difference

of two or more cycles belonging to holes. While the girth of a hole h is in some sense its

"circumference", the size of its minimal cuts (those cuts with no "unnecessary" edges)

represents the thickness of its "walls" separating h from other holes of equal or greater

girth. These walls can obviously contain holes of lesser girth than h, whose cycles

are in the symmetric difference between different cycles of h. In the next sections

we shall see how the presence of these lesser holes can substantially deteriorate the

connectivity in the region surrounding h if they occur at many points where the cuts

of h are small. This motivates the notion of phase of a cut, with which we end this

subsection and whose significance will become clearer in the next subsection and in

the following section.

Definition 5. A phase assignment to a hole h is a cycle yh of h whose edges are

labeled with distinct positive integers. Given yh, the phase ¢,h (C) at which a cut C

of h intersects h is equal to the largest label of an edge of Yh in C.

Note that for every hole of girth g there is a trivial phase assignment where every

cut of the hole has phase at most g - one need only number the g edges of a minimal
3This is a slightly different notion than that of hole often used in graph theory (that of a non-

chordal cycle). Our definition allows one to model the "thickness of the wall around the hole" - a
parameter of crucial importance for this work.

length cycle from 1 to g. In fact, in most situations simply using the girth of a hole

instead of the phase of a cut under a particular phase assignment makes the analysis

considerably simpler without affecting too much its accuracy.

Figure 2-2: A network with two large holes (and many smaller ones). The dotted edges
form a minimal cut (of both holes). The numbered edges form a phase assignment to
the hole on the right. Note that the only requirement on the labels is that they are
distinct positive integers.

2.2.3 Robustly linked zones

In this last subsection we introduce the notion r-robustly £-linked zones - which will

be central to the remaining sections of the chapter and is, indeed, its cornerstone.

Informally speaking, two zones are robustly linked if there are not too many small

cuts separating them, and if those cuts do not intersect too many large holes. This

guarantees - as shlwn in section 2.3 - that the number of small cut sets separating

the two zones is not too large, limiting the number of points where a few faults might

entirely compromise connectivity. Two robustly linked zones are then connected, even

in the presence of faults, by almost as many disjoint, fault-free paths as if no faults

were present.

More formally:

Definition 6. Let A and B be two zones of a multigraph G connected by f (edge)

disjoint paths. Consider the multigraph G(A, B) obtained by collapsing A and B each

into a single point, and joining the two points with an edge e(A, B). A and B are

r-robustly G-linked if for every hole h of G(A, B) there exists a phase assignment yh

such that, for every minimal cut C of all paths from A to B in G, the set of holes of

G(A, B) cut by C, HG(A,B)(C), satisfies:

ICI r r - log2(17,(C)) (2.1)
hEHG(A,B)(C)

Note that HG(A,B) (C) can be much larger than the set of all holes containing

cycles with e(A, B), since in order to cut those holes C might have to intersect holes

of lesser girth "embedded" in their "walls". Each of these lesser holes contributes the

logarithm of its phase to the right hand term of the inequality above, and therefore

diminishes the robustness r with which the two zones are linked.

Equation 2.1 may seem daunting - one may well wonder how easy it is to check its

validity for a given multigraph. It is written to be as widely applicable as possible, at

the cost of being rather unwieldy. Most of the times, it can be considerably simplified

without compromising its applicability. The main way to simplify it is to just use

the girth of a hole as an upper bound for the phase term 0,, (C) - without having to

deal with the intricacies of phase assignment. A further simplification can often be

obtained grouping all holes in a region in a small set of classes C1, ... , Ck comprising

holes of roughly the same girth - typically with each class comprising holes arising

from the same "aspect" of the network. For example, a sensor network deployed in

the streets of a city with an elongated topology might produce a multigraph with

three classes of holes: the main hole obtained from joining together the extremities of

the city, secondary holes corresponding to city blocks, and tertiary holes arising from

the local geometry of the sensor network (e.g. whether it is deployed in a hexagonal

or square lattice). For each class Ci, one can bound the logarithm of the girth of

every node with the logarithm of the largest girth gi of a node in the class, and the

size of the cut of each hole with the size ci of the cut of the smallest hole in the class.

Then, equation 2.1 can be weakened to become simply:

1 r. - log2(gi) (2.2)
i=1...k

The rest of this subsection attempts to give a more precise intuition of what

it means for two zones to be r-robustly £-linked, an why, for many networks of

practical interest, the "robustness factor" r between any two zones is a constant that

depends only on the "local" geometry of the network, and not on the distance between

the two zones.

Let G be a rectangular mesh of length L and width W (with L >> W), and let

us see when the two short sides of the mesh (which are connected by W disjoint edge

disjoint paths running parallel to the long sides) are r-robustly W-linked. The holes

of G are essentially all the little squares of side 1 that form the mesh - holes of girth

4 and cut 1.

Collapsing the two short sides of mesh into two points A and B, and connecting

them with an additional edge e(A, B), we obtain the graph G(A, B). G(A, B) has

all the holes of G, and in addition it has one large hole - that formed by all paths

from A to B that have been turned into cycles by the addition of e(A, B). All these

cycles, the shortest of which have length L + 1, form a single hole h of girth L + 1,

since they can be "smoothly" changed into each other by adding or removing, one at

a time, little square cycles of length 4 < L + 1. The singleton {e(A, B)} is a minimal

cut of h, since it intersects all its cycles. Note that every other minimal cut of h has

size at least W, since it necessarily intersects every path from A to B.

In this case we can easily show that the two short sides of the mesh are 0.2-robustly

W-linked if W > log2 (L + 1) - in fact, they are r-robustly W-linked if (I - 4)W >

log 2(L + 1). Every minimal cut C of h intersects at most 21C I little square holes of G

(since every edge belongs to at most 2 squares), both with phase no larger than their

girth, 4. Similarly, it cuts h with a phase no larger than its girth, L+ 1. Then the sum

of the logarithms of the phases of all holes intersected by C (1/r of the right-hand

term in equation 2.1) is no more than 21C log2 (4) +log2 (L+ 1) = IC| -4+ log2 (L + 1),

and equation 2.1 is satisfied as long as these two terms add up to at most r times the

A B
IJI E IL I

A B

Figure 2-3: The graph G (top), a mesh, and the graph G(A,B) (bottom) obtained by
collapsing the two regions A and B into single points and connecting them with an
additional edge e(A,B).

size of the cut itself - i.e. as long as W + 1-- log2(L + 1).

This example should give the intuition of why we are considering the graph

G(A, B) instead of G itself. For any two zones A and B in an arbitrary multigraph

G, the phases of the holes in G(A, B) add together the logarithm of the distance

between A and B with the logarithms of the girths of the holes across a section of G

itself, and compare the sum with the width of the strip connecting A and B. Two

zones are then r-robustly linked if they are connected by a strip whose width is at

least as large as r times the logarithm of its length, even when every hole "eats up"

the surrounding area of the graph up to a distance equal to r times the logarithm of

the hole's girth, effectively removing this eroded area from contributing to the width

of the strip connecting A and B.

It is natural to then ask why we are introducing the notion of phase, and adding up

logarithms of phases, rather than directly adding up logarithms of girths in equation

2.1. The reason is that, for our proof in the following section, we do not need the

strips between A and B and around every hole to have a width logarithmic in their

length at every point in the strip. All we need is for the width to be proportional to

the length's logarithm at only 1/2 the points of the strip; proportional to the length's

logarithm minus 1 at only 1/4 more of the points of the strip; proportional to the

length's logarithm minus 2 at only 1/8 more of the points of the strip; and so on.

This weaker condition allows us to consider robust connectivity between single points

or small zones with limited fan-out at arbitrarily large distance - not just at distance

exponential in the fan-out. For example, two points are robustly linked if they are

connected by two conical regions tipped by the two points and joined at the bases, if

the section at distance d from the tip of each cone is at least logarithmic with d.

As a somewhat more complex example, consider the d-dimensional hypercube of

2d nodes - a particularly popular network that is the basis for the networking substrate

of both supercomputers (e.g. the Intel HyperCube [33]) and peer to peer networks

(e.g. CAN [36]). The holes of a hypercube coincide with its faces - and have therefore

girth 4 and minimal cuts of size 1. Consider two points A and B at the opposite sides

of the hypercube: A = 0,.. ., 0 and B = 1,..., 1. Consider the d (edge disjoint) paths

of length d between A and B, Po,... Pd-1, where the 1th edge of pi crosses dimension

(i + j)mod(d). Every two paths pi and Pi+1 run "at one square of distance" from each

other. It is then easy to see that all these paths lie in a subgraph of the hypercube

(still with all holes of girth 4) where every edge insists on at most two squares. By

the same argument used for the mesh, A and B are then e.g. 0.2-robustly d-linked

as long as d > 0.2(2dlog2(4)) + log 2(d + 1)), which is satisfied for all d > 1 (again,

the first of the two terms on the right side of the inequality comes from the holes of

the hypercube proper, and the second from the hole formed when connecting A and

B with e(A, B)).

We can easily extend this to prove that any pair of points on the d-dimensional

hypercube are 0.2-robustly d-linked: if the two points differ on 6 < d dimensions,

we simply consider the 6 paths of length 6 on the sub-cube where A and B differ on all

dimensions, and d - 6 additional paths of length 6 + 2 obtained by first moving away

from A on one of the d - 6 dimensions on which A and B coincide, running parallel to

one of the "short" paths, and the crossing back to B over the first dimension crossed.

By virtue of the theorem proved in the next section, this means that a hypercube can

tolerate a constant failure rate independent of its size and still guarantee a number

of disjoint paths between two points almost as high as if no faults were present.

A simple example of two regions that are not robustly linked, even though they

are connected by a very "fat" (in fact, square!) strip, underscores the importance

of holes. Consider the graph G formed by two points A, B, and d disjoint paths of

length d between them. This graph is full of holes of large girth and small cut! Each

contains a single cycle of size 2d formed by two of the disjoint paths connecting A and

B - the fact that the paths are disjoint ensures that the cycle cannot be "shrunk". A

and B cannot then be r-robustly d linked with a robustness r that remains bounded

away from 0 as d grows, since every edge in a minimal cut intersects at least one

such hole. It is indeed easy to see that for any given probability p of link failure, as

d grows A and B become almost certainly disconnected. The probability that any

particular path between them is entirely fault free is at most e- dP - meaning that the

probability of at least one entirely fault free path between the two points is no larger

than de-dp, which quickly converges to 0 as d grows much larger than 1/p (i.e. when

A and B are at a distance much larger than the "expected distance between faults").

2.3 Robustly linked zones are connected by active

paths w.h.p.

This section is devoted to proving that, if two zones A and B are r-robustly £-linked,

then with high probability they are linked by R disjoint active paths even if links are

inactive with some probability p that depends solely on r. More formally:

Theorem 1. If A and B are r-robustly £-linked in a multigraph G (or in a supergraph

of G) in which every link is independently inactive with probability p < 2- +9 , then

the probability that at less then R2 disjoint and fully active paths connect them is

2-Q() .4

Note that the constants involved in theorem 1 (and, later, in theorem 2) are

rather large, due to a number of simplifications in the proof. We refine the constants

in section 2.5 through extensive simulations.
4With the Q(£) here and in theorem 2 we mean "at least k£ for some constant k that does not

depend on the multigraph but only by the margin by which p satisfies the inequality."

Proof. Our proof proceeds in two steps. First, we obtain an upper bound on the

number of minimal edge cuts of a given size intersecting all paths between A and B.

Then we apply Chernoff's inequality to bound the probability that in any of them less

than 2f links are going to be active, thereby proving the thesis by virtue of Menger's

theorem.

To obtain an upper bound on the number of minimal edge cuts of a given size in-

tersecting all paths between A and B, we consider the multigraph G(A, B) obtained

from G by collapsing A and B each into a single point, and adding a single edge

e(A, B) between the two. Note that any cycle of G(A, B) containing e(A, B) corre-

sponds to a path connecting A and B in G, and that if and only if E is an edge cut

intersecting all paths from A to B in G then EU {e(A, B)} is an edge cut intersecting

all paths from A to B in G(A, B). We then construct and analyze a cut tree T(A, B),

a tree whose edges are each labeled with an edge of G(A, B). More precisely, all the

edges connecting any node of T(A, B) to its children are labeled with distinct edges

from a phase assignment of a hole in G(A, B). The edge labels implicitly associate to

each node v of T(A, B) the set of edges of G(A, B) labeling the path that connects v

to the root of T(A, B). We prove that every minimal edge cut intersecting all paths

from A to B is associated to at least one leaf of T(A, B) - obviously at a height

equal to the number of edges in the edge cut. Then, an upper bound on the number

of leaves of T(A, B) at height h translates into an upper bound on the number of

distinct minimal edge cuts of size h intersecting all paths from A to B. We prove

such a bound leveraging the fact that A and B are r-robustly f-linked: intuitively,

if this is the case, then there cannot be too many holes of large girth intersected by

any path connecting A and B, and therefore the branching factor of T(A, B) cannot

be too large.

Let us analyze the process through which the algorithm builds the cut tree T(A, B).

For any node v of T(A, B), let E(v) be the set of all edges of G labeling the path

from v to the root of T(A, B), plus the edge e(A, B) connecting A and B in G(A, B)

(but not in G). The cut tree T(A, B) is iteratively created as follows:

1. Create the root of T(A, B).

2. While there exists a current leaf v of T(A, B) (possibly the root if yet without

children) such that there exists a cycle with an odd number of edges of E(v):

(a) Let h be a hole of minimum girth containing one such cycle.

(b) For all edges el,..., en in Yh such that E(v) U {ej is a subset of a minimal

cut of all paths from A to B add a child vi to v and label the edge connecting

v and vi with ei.

Note that throughout the construction process, for every node v of the cut tree

T(A, B), E(v) is a (not necessarily proper) subset of a minimal cut of all paths from

A to B in G(A, B): this property holds when the root of T(A, B) is created, since

every edge cut of all paths from A to B must include e(A, B), and, by construction,

it also holds whenever a new node is added to the cut tree.

The key to proving that the construction process terminates, with every minimal

edge cut intersecting all paths from A to B associated to at least one leaf of T(A, B),

is the following lemma:

Lemma 1. Every node v of T(A, B) such that E(v) is a proper subset of some

minimal edge cut C intersecting all paths from A to B in G(A, B) will eventually

have a child v' such that E(v') is also a (larger) subset of C.

Proof. We first prove that throughout the construction process, as long as there exists

a node v of the (partially constructed) cut tree that is currently childless when E(v)

is not an edge cut of all paths from A to B, at least one more iteration of the while

loop will take place. In this case, there is certainly a path p connecting in G(A, B)

A to B without edges in E(v). Also, since E(v) is by construction a subset of a

minimal edge cut of all paths from A to B, for every edge in E(v) there must be a

path connecting A to B containing only that edge of those in E(v) - otherwise that

edge could be removed without compromising any cut that is a superset of E(v), and

E(v) would no longer be a subset of a minimal cut. One such path and p then form

a cycle in G(A, B) with exactly one edge in E(v), making the condition of the while

loop hold.

Let h be a hole of least girth g among those containing a cycle with an odd number

of edges in E(v). Such a hole certainly exists, since a cycle that satisfies the condition

of the while loop either belongs to a hole, or is the symmetric difference of two or more

cycles - at least one of which must contain an odd number of edges in E(v) - that

all belong to holes. We now prove that all cycles of h, and in particular Yh, contain

an odd number of edges in E(v). Suppose this is not the case. Then h contains two

cycles, the first with an odd and the second with an even number of edges in E(v),

and there is a sequence of cycles starting with one and ending with the other, such

that every pair of consecutive cycles has a symmetric difference smaller than g. Of the

set S, of all such sequences of cycles, consider the (nonempty) subset Sg_1 consisting

of all those sequences in S, minimizing the number of pairs of consecutive cycles with

a symmetric difference of size g - 1. Iteratively, of every set Si, 0 < i < g - 1, consider

the (nonempty) subset Si-1 consisting of those sequences minimizing the number of

pairs of consecutive cycles with a symmetric difference of size i - 1. Consider an

arbitrary sequence of cycles in So; since the sequence would begin with a cycle with

an odd number and end with a cycle with an even number of edges of E(v), there is

at least a pair of consecutive cycles in the sequence, - and y', the first with an odd

and the second with an even number of edges of E(v).

All that is left to prove is that the symmetric difference between the two cycles,

y 8 7', which must obviously contain an odd number of edges in E(v), consists of a

single cycle 6 belonging to a hole of girth 161 < g - contradicting the hypothesis that

g is currently the minimal girth of a hole containing an odd number of edges of E(v).

If 7 e8 y' could be partitioned into n > 2 cycles 61,..., 6n, each smaller than -y 7y'

then, by inserting between the 7 and '}' the n - 1 cycles 8 6 1,..., 7y8 61 E ... E 6-•-1,

one would remove from the sequence a pair of consecutive cycles with symmetric

difference of size 7 e -y', introducing n - 1 pairs of cycles with smaller symmetric

differences - violating the hypothesis that the sequence under consideration is in So

and therefore also in S-oey. Then 7y 7' consists of a single cycle 6. If 6 were at

topological distance less than 161 from a cycle 61 such that 1611 < 161, i.e. there existed

a sequence of n cycles 61,..., 6 = 6 starting with 61 and ending with 6 such that

1ji e ji+1 I < 161 for all positive i < n, then, by inserting y7 8 61,..., y 8 6,-1 between

y and y', we would replace in the sequence chosen from So a pair of consecutive

cycles whose symmetric difference has size 161 with several pairs of consecutive cycles

with smaller symmetric differences, violating again the hypothesis that the sequence

of cycles under consideration belongs to So and therefore also to S5. Then y7 7'

contains a single cycle 6 with an odd number of edges in E(v) belonging to a hole of

smaller girth than h, contradicting the hypothesis. This proves that indeed, if h is a

hole currently of least girth containing a cycle with an odd number of edges of E(v),

then all cycles of h, and in particular yh, must also contain an odd number of edges

of E(v).
Finally we can prove that every minimal cut C of all paths from A to B that is

a superset of E(v) must also contain at least one edge from yh not already in E(v),

thereby proving the lemma, since by construction on step 2.b we add one child to v

for every such edge. Since C is a minimal cut of all paths from A to B, each edge of

C must have one vertex that is either in A or connected to A by a path with no edges

of C, and one vertex that is either in B or connected to B by a path with no edges in

C; let us call them the A-vertex and the B-vertex of that edge. If, while following yh,

we encounter first the A-vertex and then the B-vertex of an edge in C, then, of the

next edge in C we encounter, we must first encounter the B-edge and then the A-edge

- or there would be a path with no edges of C connecting A to B. Symmetrically,

whenever we encounter of an edge of C first the B vertex, of the next edge of C we

must encounter first the A vertex. Then, yh must contain an even number of edges

of C, and therefore at least one that is not in E(v). O

As a consequence of Lemma 1 we can immediately prove the following:

Lemma 2. The construction process of T(A, B) eventually terminates, and for every

edge cut C intersecting all paths from A to B in G there exists at least one distinct

leaf v at height ICI in T(A, B) such that E(v) = C ' {e(A, B)}.

Proof. The construction of T(A, B) eventually terminates, since by Lemma 1 at every

iteration of the while loop the cut tree grows by one edge and the cut tree is limited

in degree and height by the number of edges in G(A, B).

We now prove that, for each minimal edge cut C(A, B) intersecting all paths from

A to B in G(A, B), there is at least one node v at height ICI in T(A, B) such that

E(v) = C(A, B). This follows from the observation that, if we denote with p the

root of the cut tree T(A, B), E(p) = {e(A, B)} is a subset of every minimal cut

intersecting all paths from A to B in G(A, B). Then, by Lemma 1, for every minimal

cut C'(A, B) of all paths from A to B in G(A, B) there is a path from the root to

a leaf of T(A, B) such that C'(A, B) is a superset of each of the (growing) edge sets

E(v) associated to each node v encountered along the path, the last of which must

coincide with C'(A, B) itself.

The thesis follows immediately remembering a set of edges C of G is a minimal

edge cut intersecting all paths from A to B in G if and only if C [{e(A, B)} is a

minimal edge cut intersecting all paths from A to B in G(A, B), and that, for any

node v at height h in T(A, B), IE(v) E {e(A, B)}I = h. O

Our next goal is to obtain an upper bound on the number of leaves of T(A, B) at

a given height - which by virtue of Lemma 2 immediately translates into an upper

bound on the number of minimal edge cuts of a given size intersecting all paths from

A to B in G. We prove the following:

Lemma 3. If A and B are r-robustly £-linked the number n(h) of leaves at height

h in the cut tree T(A, B) satisfies:

n(h) = O for h < f and

n(h) < 22[1]+3h-2 for h > f.

Proof. Since a leaf at height h corresponds, by virtue of Lemma 2, to an edge cut of

size h intersecting all paths from A to B in G, and no such edge cut of size less than

f exists since A and B are f-linked, we immediately have that n(h) = 0 for h < f.

To bound n(h) for h > £, consider a generic leaf v of T(A, B), and let C(v) =

E(v) 8 {e(A, B)} be the set of edges labeling the path from v to the root of T(A, B).

Obviously the height of v is equal to IC(v)l. Note that every edge e , 1 < i < IC(v)l ,

of C(v) belongs to the phase assignment yh, of some hole hi, cut by C(v) since

when hi was taken under consideration in the first step of the while loop all its

cycles contained an odd, and therefore positive, number of edges from a subset of

C(v). For every edge ei let Oi be its label in 7hi, which by definition is equal or

less than the phase of C(v) on hi. Let us now focus our attention on the sequence

[log 2(1 (V))],..., lo.g2(C(v)l(v))] . It is easy to see that the leaves u of T(A, B) at

the same height IC(v)I as v that satisfy Flog2(i(u))] = log 2 (i (v))] for all positive

i • IC(v)| are at most HjClv)I 2 Flog 2(gi(V)) =- 2 IE(v)1x log 2(~i(U))j) since if u and v are

distinct 4i (v) i# i(u) for some i and there are at most 2 k distinct positive integers

whose base 2 logarithm, rounded up to the nearest integer, is k. Since A and B are r-

robustly i-linked, we have that r log 2) (v) , i.. C(vI log2) < I

and therefore , l"c)l0 [log 2((i)] < [FI] + C(v)I - 1. Since A and B are r-robustly

f-linked, we have that r EIC(v)i log2 (0) IC(v), i.e. 1 log2(Vi) i< I) and

therefore c'(v)I[log 2(i) [IC()l + C(v)l- 1.

The number of distinct sequences of IC(v)| non-negative integers nl,...,nlc(v)l

such that ECv)• ni 5 k is at most ((LkjlC(v)l)). Then, the total number of leaves at

the same height h in T(A, B) is:

n(h) < (LFIl+ihl-1J+h) 2r3]+h-1
h /

< fl+2h-1) 21+2h-1

< 22[h] + 3 h - 2

We now derive a simple upper tail Chernoff bound for the probability that, of a

set of n > f edges, each inactive with probability p, more than n - i are inactive,

i.e. less than if are active. The probability that, of n trials, each negative with

probability p, more than (1 + 6)np are negative is less than ((1+•1+,)")n, which,
_ 2 -np enp)n-1-

letting (1 + 6)np = n- 3f, becomes e-n•p n-•

This upper bound can be combined with that of Lemma 3 to give an upper bound

to the probability that any edge cut set of G will have less than 2e active nodes:

P(A, B) < E , e-p' g ()- o22 +3i-2)

< E-i= (3ep)_ . 2'(+3)

_E 0 2 (12 2 log 2 (3 e) + 9
-- Ei=i 3 -r- 7 -• 3 ,'

where the last term is 2 -"(e) as long as log2(p) <

- (+ log2(3e) + 9).

By Menger's theorem, this is also an upper bound to the probability that less than

2 active disjoinstpaths exist in G between A and B, completing the proof of theorem

1. O

2.4 Extending the applicability

Our model can be applied directly to networks with point-to-point connectivity where

the position of nodes is well known a priori, and the only source of divergence from

the ideal situation are faults in the network links. In this section we show how it can

be applied to many other cases of practical interest at the cost of some small measure

of approximation in the parameters that define the network. In subsection 2.4.1 we

consider a "node-centric" model, where nodes (rather than edges) of a multigraph may

become inactive with some probability p, and one is interested in the number of node

disjoint (rather than edge disjoint) active paths between two zones. In subsection

2.4.2 we show how to leverage the results of subsection 2.4.1 to model large adhoc

radio networks with random placement of nodes in the deployment area (both in the

absence and in the presence of node faults): in this case connectivity depends on the

topography of the deployment area.

2.4.1 A node-centric model

In the previous section we have analyzed networks as multigraphs where links between

nodes may become inactive, evaluating their connectivity in terms of active edge

disjoint paths between two zones. In this subsection, we show how our model can be

easily adapted to be "node-centric", considering faulty nodes instead of faulty edges,

and evaluating the number of node disjoint rather than edge disjoint paths between

two zones.

We can easily adapt the techniques of Theorem 1 considering, instead of edge cuts,

node cuts between two zones, i.e. sets of nodes such that every path between the two

zones contains at least one edge incident on a node from the set; and in particular

minimal node cuts between two zones, i.e. node cuts without any proper subsets that

are themselves node cuts between those two zones. We can then prove the following:

Theorem 2. Let A and B be two zones of a multigraph G. If G can be extended by

adding a set of nodes B' in such a way that:

1. every node of B' is connected only to nodes of B and every node of B is con-

nected to at least one node of B',

2. the resulting graph G(A, B) has degree at most d,

3. A and B' are r-robustly linked in G(A, B),

4. there exist at least e node-disjoint paths between A and B',

then, even if every node is inactive with independent probability p < 2 -(- +(log 2(3e)+9d)),

the probability that less than 2f node disjoint active paths exist between A and B in

G is 2- ()(e)

The "addition" of the set B' and condition 1 are essentially technicalities to deal

with the degenerate case of the source and destination sharing some nodes; the only

substantial condition imposed in addition to those of theorem 1 is the upper limit

on the degree of nodes in the region between source and destination (to ensure that

node cuts between them are of sufficient size).

Proof. Note that the set of all node cuts between A and B in G coincides with the

set of all node cuts between A to B' in G(A, B) that do not contain nodes of B' -

this follows from the fact that one can reach a node of B' only through some node(s)

of B and that from any node of B one can always reach some node(s) of B'.

The major effort in the proof is proving that for any minimal node cut C between

A and B in G there exists a distinct minimal edge cut of size at most dICI between

A and B' in G(A, B). For any (not necessarily minimal) node cut C between A to B

consider the set of all paths from some node of B' to some node of C with only one

edge (the last) incident on a node of C; denote with E(C) the set of all such "last"

path edges incident on C. Obviously E(C) is a (not necessarily minimal) edge cut

between A and B'; and if C is minimal, for every node v E C, every subset of E(C)

that is also an edge cut between A and B' must contain at least one edge incident in

v. We associate to every minimal node cut C between A and B an arbitrary subset

Em(C) of E(C) that is a minimal edge cut between A and B', and prove that, for

any distinct pair of minimal node cuts C1 and 02 between A and B, there is at least

one edge in one but not both of Em(Ci) and Em(C2).

We prove that in E(C1 UC2) there is at least one edge in one but not both of Em(CI)

and Em(C2). In order to do so, we first prove that at least one edge e E E(C1 U C2) is

incident on a node v in one but not both of C1 and 02. Suppose this is not the case.

Then every edge in E(C1 U C2) is incident on some node belonging to a set of nodes

C3 E E(C0) n E(C2); meaning that every path from C1 U C0 to B', and therefore

every path from A to B, passes through C3 - against the hypothesis that C1 and C2

are both minimal and distinct. Assume without loss of generality that v belongs to

C1 and not to 02. Then e cannot belong to Em(C2) (having no vertices in 02), and

all we have left to prove is that it belongs to Em(C1).

By definition of E(C1 U C2), there exists a path p starting with the vertex of e in

C1, and reaching B' without ever touching any other vertex of either C1 or 02. Since

C1 is minimal, then either v E A, or there exists a path p' from A to v where the

only edge incident on 01 is the last. In the first case, p is a path from A to B' and

its only edge incident on a vertex of E(C1) is e, so e must belong to every minimal

edge cut between A and B' that is a subset of E(C1). In the second case, consider

the path < p', p > from A to B': only two of its edges are incident on some vertex of

C1: the last edge e' of p' and the first edge e of p. Every minimal edge cut between

A and B' that is a subset of E(C1) must then contain at least one of them. It is easy

to see that e' ý E(C1), or there would be a path from its vertex not in C, to some

node of B' without any edges incident on nodes of C1, which, juxtaposed to p 8 e',

would form a path from A to B' that never crosses C1. Then e must belong to any

minimal edge cut that is a subset of E(C0); and then E,(C1) ? Em(C2), proving

that to every minimal node cut C between A and B in G we can associate a distinct

minimal edge cut Em(C) between A and B' in G(A, B).

We can then apply Lemma 3 used in the proof of Theorem 1 in the previous

section to obtain an upper bound of 22[~]+3hd-2 on the number of node cut sets of

size h intersecting all paths from A to B in G for h > £ - obviously, by virtue of

Menger's theorem, no node cuts of size less than £ intersect all paths from A to B in

G. Employing the same Chernoff bound used in Theorem 1 we then have that the

probability that less than £e node disjoint active paths exist between A and B in G

is no more than:

S r ee-pi e(P)i-Y -22[r +3id-2

EC,=(3ep)- -2")

= i=0 2i(3(r 3

where the last term is 2
- 1(e) if p < 2-(±+(0og 2(3e)+9d))

2.4.2 Geometric Radio networks

In this subsection we leverage the results of subsection 2.4.1 to analyze the connec-

tivity of large adhoc radio networks where individual nodes (of which a small fraction

may be faulty) are placed uniformly at random in the deployment area. We derive a

condition on the topography of the deployment area that guarantees that the "noise"

due to random placement of nodes and to a small fraction of faulty nodes produces

only a small reduction of connectivity compared to the case of optimal placement of

entirely non-faulty nodes.

The fundamental idea is to interpret the nodes of our multigraph model as cells

of the deployment area rather than as nodes of the network itself. For example, tiling

a 2-dimensional deployment area with hexagonal cells of side at most 1/v/T3 J 27%

of the communication radius of individual radios, a node in a cell is always within

range of any node in any of the 6 adjacent cells. We can then obtain an upper bound

on the probability p that each cell of the multigraph is "faulty" as a function of

active node density n measured in terms of average active nodes/cells, p < e-"; and

exploit the analysis of the previous section and subsection to obtain a condition, on

the topography of the area in which a radio network is deployed, sufficient for almost

optimal connectivity between two regions despite a constant fraction of silently faulty

nodes, and despite random placement of all nodes. All that is required is a thin strip

of width (measured in terms of cells) logarithmic in the distance between the two

regions, with either no holes, or enough extra width to compensate for every hole

"eroding" a strip around it of thickness logarithmic in the hole's "circumference" -

the base of the logarithm being a function of r.

In fact, with this cell oriented approach we can model not only failstop failures that

simply silence a node, but also maliciously active nodes which jam all communication

within their communication radius. The key idea is to evaluate upper bounds to

the probability pj,,am that any given cell falls within the communication radius of a

malicious node and is jammed, and to the maximum number of cells axmzal in a

minimal cut that a single malicious node can affect. For most "reasonable" tilings

- tetrahedral, cubic, hexagonal, square or triangular - maxm,al is a relatively small

constant that depends only on the local geometry of the tiling, while pjam • knpmaz,

where pmal is the probability that any given node is malicious, n is the node/cell

density introduced above, and k is, like maxmal, a relatively small constant depending

only on the local geometry of the tiling.

2.5 Simulations

Simulations confirm our theoretical analysis as to how connectivity is affected by

faults in robustly linked networks. In particular, they show that even with relatively

high link failure probabilities, thin strips of a few dozen nodes can maintain good

connectivity at extremely long ranges (millions of hops). Furthermore, they confirm

the logarithmic relationship between the length of the connecting strip and mini-

mum width to guarantee connectivity. Finally, they confirm the drastic reduction of

connectivity caused by holes.

Consider a long rectangular network, tiled with a hexagonal lattice, where the

two "short" sides of the rectangle constitute the source and destination zones and are

80

70

.2 60

S4

S5302

20

10

0 10 20 30 40 50 60 70 80 90 100

width of connecting strip

Figure 2-4: Efficiency of usage of a 106 hexagon long strip, as a function of its width
(expressed as a number of disjoint paths), for different failure probabilities.

parallel to one side of the hexagons. The strip is 106 hexagons long, and we vary its

width from 1 to 50 hexagons, i.e. from 1 to 99 disjoint paths (a width of h hexagons

translates into a width of 2h - 1 paths).

Figure 2-4 shows the number of active paths between source and destination, as a

percentage of the number that would be active in the absence of faults, as a function of

the width of the connecting strip, for various fault probabilities (" 1%", "3%", "10%"

and "30%"). The percentage, which we can interpret as the efficiency of usage of the

strip, increases with the width of the strip; although there is relatively little increase

above a width of 30 - 40 paths, reflecting the fact that this is indeed the critical

width range needed to support, in the presence of faults, efficient communication at

a distance of up 1, 000, 000 hops.

Our theoretical analysis predicts that this "critical width", at which efficiency

peaks, should grow as the logarithm of the length of the connecting strip. Our simu-

lations validate this prediction. In Figure 2-5 we plot the minimum width (again, in

p=1% -+
n Qo/ • ,- l.

-7,.'
/U

60
.o

CD 50
0 50
Lo 40
L_
o

.: 30

E 20
E
E 10

1 10 100 1000 10000 100000 l1e+06 le+07 le+08
Strip length

Figure 2-5: The minimum width required to reach 50% efficiency as a function of the
length of the connecting strip (with a constant link failure rate of 10%).

terms of paths) required to reach a 50% efficiency as a function of the connecting strip

length, assuming a link failure rate of 10%. Note that the x axis is on a logarithmic

scale, from 2 to 20 million hops; the datapoints lie very close to a line, as expected.

Figure 2-7 underscores the crucial role of holes in degrading a network's resilience

to failures. We "tear" a connecting strip 100000 hops long and 99 paths wide with long

series of "slashes" running equidistant and parallel to its length, effectively creating

holes of girth equal to twice the length of the slashes and cut size equal to the distance

between the slashes (see figure 2-6). Note that these slashes do not reduce the number

of paths connecting source and destination in the absence of link failures!. However,

as predicted by our theoretical analysis, in the presence of a 10% failure rate a large

number of long slashes (corresponding to a large number of holes of high girth) can

seriously affect the network's connectivity. Figure 2-7 shows how efficiency of usage

of the strip degrades with the length of the slashes, for 2, 10 and 50 parallel sequences

of slashes respectively running at a distance of 33, 9 and 2 paths from each other.

Our theoretical analysis predicts that holes effectively "erode" connectivity in the

' ' 'I ' ' 'I ' ' 'I ' ' I1 ' " 1 I ' I I ' ' I ' '

- -'

++ +÷

- +" +

+ ++
I j

C,

(0

0I

Figure 2-6: The "horizontal slashes" do not reduce the "bandwidth" between source
and destination in the absence of faults - but they create holes, of girth equal to twice
their length and cut of size equal to their distance, which erode connectivity in the
presence of faults.

1 10 100 1000 10000
cut length

100000

Figure 2-7: The degradation of the efficiency of usage of the strip with the length of
the slashes, for different numbers of parallel sequences of slashes.

surrounding region to a distance that is logarithmic with their girth. Figure 2-8

validates our theoretical analysis, showing the minimum number of paths between

slashes to guarantee a 50% efficiency, as a function of the slash length (which equals

half the corresponding hole's girth). The strip connecting source and destination is

105 hops long, 100 paths wide and the link failure rate is 10%.

100

Hole girth
1000 10000

Figure 2-8: The minimum hole cut size (i.e. distance between "slashes") that guar-
antees 50% efficiency, as a function of the hole's girth (i.e. twice the "slash" size.)

+

7+~

+7 111 111 111111 1 1111

2.6 Conclusions

At the core of this chapter lies a rigorous formalization of the intuitive concept of

hole and the notion of robustly linked zones - zones that are connected by a strip (or

just a "cone") of width logarithmic in their distance even when one "gives up" a strip

(or just a "cone") around every hole of length logarithmic in the girth of the hole

itself. Our main result is the proof that robustly linked zones can tolerate with high

probability a constant failure rate and random node placement, without losing more

than a fraction of the "ideal bandwidth" achievable in the absence of faults and if all

nodes where optimally placed. Robust linking between zones therefore characterizes

connectivity that is insensitive to the local "noise" caused by faulty or imprecisely

positioned nodes or links, and instead depends essentially only on the "big picture"

topology of the network.

Our result has a number of important consequences:

* While a truly 1-dimensional support is indeed not sufficient for a network to

scalably tolerate failures, it is "almost" sufficient: our result shows that networks

can have extremely elongated shapes (e.g. millions of nodes long and only a few

dozen nodes wide - the aspect ratio of a typical fishing line!) and still tolerate

well a fairly high failure rate.

* Considering connectivity between two zones that, in the absence of failures, are

linked by a number of disjoint paths at least logarithmic in the distance between

the two zones, rather than between two points that are connected by a single

path, has two considerable advantages. First, it allows one to amortize the

necessary logarithmic width of the connecting strip over a logarithmic number

of fault-free paths. Second, it makes the probability that there are not at least

that many fault-free paths between the two zones exponentially small in the

width of the strip - whereas clearly a constant failure probability is the best one

can achieve when considering simple point to point connectivity.

* The presence of holes, particularly holes with a circumference much larger than

the expected distance between faults, can seriously degrade the ability of a large

network to maintain its connectivity in the presence of faults. Two networks

that, in the absence of faults, have the same diameter and the same bandwidth,

can exhibit radically different connectivity in the presence of faults if one of

them contains a large number of large holes with thin "walls" around them.

This should be kept in mind when simulating the behavior of large networks

in realistic environments, which inevitably have large "holes" (bodies of water,

electromagnetically shielded buildings, etc.) - restricting one's analysis to e.g. a

solid disc or the unbroken surface of a sphere could lead to excessively optimistic

results.

* In order to guarantee high availability of connectivity between two areas of a

network, designers often try to ensure that they are connected by a virtual

network formed by multiple completely disjoint paths. This approach might

be valid when the two areas are separated by a number of hops smaller than

1/p, where p is the probability of failure at any given hop - in other words,

when the probability that any single path is entirely fault-free is relatively high.

However, it is remarkably ineffective if the distance between the two areas is

much larger than 1/p. In this case the probability that any single path is

entirely-fault free becomes exponentially small, and even a fairly large number

of disjoint paths stand a very small chance of safeguarding the connectivity

between the two areas. In terms of our analysis, a virtual network formed by

many completely disjoint paths contains several extremely large and extremely

"thin walled" holes. At a distance much larger than 1/p the only option to

safeguard connectivity (without resorting to an exponentially large number of

disjoint paths) is instead to keep the paths connecting two areas tightly linked,

in such a way that one can "splice" together non-faulty portions of different,

faulty paths to obtain a new, entirely non-faulty path.

* One important consequence of the logarithmic ratio between the width and

length of a strip between regions (and around holes) that is sufficient to guar-

antee good connectivity is that, in a geometric radio network or in a nanotech-

nological ensemble, a larger number of smaller cells is desirable not only because

it provides higher bandwidth in the absence of faults. In the presence of faults

a larger number of smaller cells guarantees a constant fraction of that larger,

"ideal" bandwidth with higher probability. This means that cell size reduction

can produce by itself an improvement in the overall reliability of the resulting

network even when not accompanied by an improvement in the reliability of the

individual cells themselves.

Chapter 3

New results for Compact Routing

3.1 Introduction

Is it possible, without increasing the memory capacity of individual nodes (and there-

fore without increasing the complexity of their routing tables) to keep routing along

"almost optimal paths" as a network grows in size and complexity? In particular,

is it possible to efficiently route between arbitrary source and destination pairs in

networks of n nodes even if each node can store less than the log2 n bits required to

store a unique identifier?

We show how it is possible to efficiently route between arbitrary pairs of nodes,

using a number of bits per node that is independent of the size of the network. Our

results hold for bounded degree trees, and for the important class of polynomial growth

networks - any network where the number of nodes within h hops of any one point

is at most polynomial in h, and thus any network that is physically implementable

assuming bounded link lengths and node volume bounded away from zero. We review

the problem (and the current literature) before presenting our results in greater detail.

3.1.1 Compact Routing

The problem of compact routing can be informally described as that of simultaneously

minimizing the size of a network's routing tables, the routing information embedded in

the message, and the routing stretch, defined as the the highest ratio (uv) between

the length d(u, v) of the route actually connecting any two nodes u and v and the

length dpt(u, v) of the shortest path potentially connecting them. Intuitively, with

larger routing tables and/or with more routing information stored in the message, a

node is better equipped to choose the best edge(s) through which to forward messages

for any given destination.

Different results are achievable depending on the restrictions on the assignment

of node addresses and port numbers (informally, edge labels). At one end of the

spectrum, addresses and port numbers are preassigned - potentially in the way that

least facilitates routing. At the other end, the routing scheme designer has complete

freedom to assign any address and port numbers; thus one can potentially "embed"

in the address of a node a substantial amount of information on how to reach it.

Results can also vary depending on whether a message can change or add to the

routing information it is carrying on its way to the destination (e.g. from nodes it is

passing through).

The literature on compact routing and its many variants is vast; we briefly review

the results that are most relevant to our work, either because we improve upon them

or because we use them as starting points for our schemes. For a more comprehensive

review of compact routing, see [12].

3.1.2 Lower and upper bounds for generic graphs

Peleg and Upfal [34] show that a fairly severe tradeoff between routing table size and

routing stretch is indeed inevitable if all the information required for routing must

be stored in the routing tables. They prove that, to achieve stretch s, ne(s) bits per

node are both sufficient on all (undirected and unweighted) graphs of n nodes and

necessary on at least some (undirected and unweighted) graphs of n nodes. This result

has been extended to weighted graphs and the constants involved have subsequently

been refined by a large number of papers - at the time of this writing Thorup and

Zwick provide the tightest known bounds for general graphs in [42].

We remark that the lower bounds above are existential. They are generally ob-

tained on families of graphs with a number of edges equal to nl+°-j and girth (i.e.

the size of the smallest cycle) approximately equal to s. Informally, the presence or

absence of each edge must be recorded with at least one bit somewhere in the routing

tables, since one cannot route through that edge if it is absent (obviously) and one

must route at least some messages through that edge if it is present in order to avoid

a large stretch. Then, the number of bits stored in a node's routing table must be

equal to at; least the average number of edges per node. On many graphs that do

not sport relatively high density and high girth, one can achieve substantially better

memory/stretch tradeoffs.

3.1.3 Interval routing on trees (and other graphs)

On trees of degree g and n nodes, a very simple strategy known as interval routing

[38] allows stretch 1 (i.e. the message always takes the shortest path between source

and destination) with only O(g log2 n) bits per node. In the simplest version of

interval routing, one needs only assign to nodes sequential addresses from 1 to n in

depth first order; then all addresses assigned to nodes in disjoint subtrees belong

to disjoint intervals. Every node stores the intervals of addresses contained in the

subtree rooted at each of its children, as well as its own address - this obviously takes

(2g + 1) [O(log2 n)] bits per node. It is easy to verify that routing along the shortest

path can be achieved by checking, at each node, if the destination address coincides

with the node's address; if not, forwarding the message to the child whose interval

contains the destination address or, if no such child exists, to the node's parent.

This simple version of interval routing forms the basis of several more sophisticated

routing schemes, including the one proposed in this chapter. The most compact

routing scheme on trees to this date is that in [42]: assuming freely assigned addresses

and port numbers it guarantees stretch 1 with only log2 n + 0(1) bits per node.

Interval based schemes can also provide compact routing solutions on graphs other

than trees. Frederickson and Janardan show in [10] how c-decomposable graphs

admit interval based routing schemes with stretch between 2 and 3 with routing tables

of O((log 2(n)) 2) bits and addresses of O(log2 n) bits. Gavoille and Peleg present in

[11] an interval based scheme that provides constant stretch with polylogarithmic

storage on "almost all" graphs!

3.1.4 Compact routing on "growth restricted" graphs

Compact routing is also simpler than in the general case if the number of vertices

that can be reached within a given number of hops does not grow "too rapidly".

Talwar in [41] considers graphs that have doubling dimension k [13]: graphs where

every open ball of diameter 2d (i.e. the set of all nodes at distance less than d

from a given node) is contained in the union of at most 2k open balls of diameter d.

Talwar obtains a routing scheme with stretch (1 + e) that requires routing tables and

message headers that are only polylogarithmic in the aspect ratio of the graph (the

ratio between the maximum and the minimum distance between nodes in the graph)

i.e. polylogarithmic in the size of the graph if the graph is unweighted. Gupta et

al. in [14] improve this result obtaining the same stretch with routing tables of size

O(log2(D) log2(g)) where D is the aspect ratio and g is the degree of the graph.

It is tempting to use the assumption of a small, constant doubling dimension to

capture the "expansion constraints" imposed on "realistic networks" ([17]), from chips

to WANs, by the physical dimensionality of the world: fast connections must be local,

and the total number of nodes in a given area or volume is limited. The fact that

growth constrained graphs ([21] - informally speaking graphs where doubling a ball's

radius increases its volume by at most a constant factor) are a (strict) subset of graphs

of constant doubling dimension only reinforces this temptation. Indeed, several peer

to peer algorithms have been designed to run on networks of low doubling dimension

(e.g. [35],[1],[45]).

Unfortunately, low doubling dimension is a very strong property not satisfied by

many real networks that still satisfy many natural definitions of low dimensionality -

e.g. embeddability in a low dimensional Euclidean lattice with adjacent nodes occu-

pying sites that are "horizontally, vertically or diagonally" adjacent ([24]). Consider

for example the n-comb, an unweighted graph formed by a "backbone" line of n

nodes, every node being the first of a "secondary" line of n nodes (see figure 3-1).

The n-comb can be obviously embedded in the 2 dimensional lattice with adjacent

nodes occupying adjacent sites. It can be considered a good approximation of many

real world Ethernet based networks; as well as of many real world subway networks.

On the other hand, its doubling dimension is log2 (n) (exactly like an hypercube of

the same size!) and can therefore grow arbitrarily large with n.

Figure 3-1: The n-comb (in the figure, n = 5) is formed by a backbone of n nodes (on
top), each of them the first of "tooth" also of n nodes. The n-comb has a doubling
dimension of at least log 2 n, since it can be completely covered by a ball of diameter
3n - 3, but no ball of diameter 3`3 can simultaneously cover the tips of two distinct
teeth.

3.1.5 Our contribution

We study compact routing under the very restrictive condition of constant memory per

node (independent of the size of the network). Under these conditions, an individual

node's memory may not be sufficient to hold the entire message - in fact, it may

not be sufficient to hold a single address! We solve this problem by adopting the

well known technique of wormhole routing [44]: the destination address and the body

of the message are split into a sequence of constant sized blocks that "snake" their

way to the destination. Note that any route, even when routing a message between

adjacent nodes, will necessarily include at least [g2 9l] nodes since the message needs

to collect at least log2 n bits of "local information" to ascertain that the destination

has indeed been reached (we call the quantity [1Ol] the orientation distance and

denote it with dmin(n, m), or simply dmin if n and m are clear from the context).

Our schemes assume freedom to assign an O(log2 n) bit address to each node (but

note that, with memory m = o(log n), no individual node can store its entire address)

and that the message header is initially equal to the destination address but can be

"annotated" while in transit, although always remaining of size polylogarithmic in

the size of the network.

We also show how to work around the "orientation distance limitation" by allowing

the initial header to depend on the source (rather than only on the destination alone);

for example adopting a scheme similar to that used for ordinary mail delivery, where

one can omit the name of the destination country or even city if the mail is being

sent from the same country or city.

We study two classes of networks: (unweighted) trees, and polynomial growth

(unweighted, undirected) graphs. A graph has (degree k) polynomial growth if at most

dk nodes reside in any ball of diameter d. Graphs with degree k polynomial growth

include all graphs that are k-dimensional according to the natural definition of [24]:

all graphs whose nodes can each be embedded in a unique site of the k-dimensional

Euclidean lattice Zk in such a way that nodes adjacent on the graph are mapped

into sites at unitary infinite norm distance on the lattice. Therefore, polynomial

growth graphs include all graphs modeling networks that can be implemented in

physical space assuming a minimum volume for each node and a maximum length for

each link. Polynomial growth graphs then form a more "natural" and strictly larger

class than graphs of constant doubling dimension (note that the class of polynomial

growth graphs is closed under subgraph operation, unlike that of graphs with constant

doubling dimension).

We describe a scheme TreeRoute for asynchronous wormhole compact routing on

(unweighted) trees of size n that reduces the memory requirements of that of Thorup

and Zwick from O(log(n)) to 0(1), at the cost of only a slightly larger stretch. More

precisely, TreeRoute satisfies the following:

Theorem 3. TreeRoute makes use of node addresses of O(log 2 n) bits, and routes

messages formed by a header of h = O(log 2 n) bits and an arbitrarily long body of b

bits. TreeRoute uses m bits of memory per node, where m can be chosen to be as low

as 0(1), independent of n (although using larger memory will reduce the orientation

distance). TreeRoute routes any message of h + b bits between any two nodes at

distance d through a route of d + O(dmin) = d + O(lg2O) nodes. Every node in

the route transmits a total of O(h + b) bits. If we assume that nodes communicate

asynchronously by exchanging blocks of B bits, with no exchange taking more than

time 1, the total time between the instant the source transmits the first block and the

time the destination receives the last block is O(d + !). TreeRoute assumes that

ports can be freely named (or, more precisely, that they are numbered in order of non-

increasing subtree size), but can be modified to work with preassigned port numbers of

at most g bits each by adding g bits to the memory of each node, and increasing the

nodes involved by an additive factor d (to 2d + O(dmin)).

We also describe a scheme PolyRoute for asynchronous wormhole compact routing

on (unweig:hted, undirected) graphs of degree k polynomial growth and n nodes, that

extends and improves that of Talwar [41] and Gupta and al. [14], sacrificing a slight

increase in stretch in exchange for being applicable on a much wider class of graphs

and requiring considerably less memory per node (constant vs. polylogarithmic bits).

More precisely, PolyRoute satisfies the following:

Theorem 4. PolyRoute makes use of node addresses of O(log2 n) bits, and routes

messages formed by a header of h = O(20 (k)(log 2 n)2) bits and an arbitrarily long

body of b bits. TreeRoute uses m bits of memory per node, where m can be chosen

to be as low as 20(k), independent of n (although using larger memory will reduce the

orientation distance). PolyRoute routes any message of h + b bits through a route

of O(kd + dmin) = O(kd + g2 n) nodes. Every node in the route transmits a total of

O(h + b) bits. If we assume that nodes communicate asynchronously by exchanging

blocks of B bits, with no exchange taking more than time 1, the total time between the

instant the source transmits the first block and the time the destination receives the

last block is O(kd + -). PolyRoute works with arbitrarily preassigned port numbersB '1VYLVL~LV JWrl ll~~rLI~yYC13rI CIVI L~lVI

(at most polynomial in the degree of the graph).

A simple analysis of our schemes would show that, even when no node can store

its entire address, it is possible for each node to reconstruct and sequentially output

it, involving at most O(dmin) = O(1on1]) other nodes, each transmitting O(dmin)

data blocks, in total time O(dmin).

The rest of the chapter is organized as follows. Section 3.2 introduces some of the

basic notions and techniques used throughout the chapter, showing how to perform

compact (constant memory) wormhole routing on networks with the simple line (and

ring) topology. Section 3.3 describes TreeRoute, and proves theorem 3. Section 3.4

describes PolyRoute and proves theorem 4. Section 2.6 summarizes our results and

discusses some open problems, before concluding with the bibliography.

3.2 Compact Routing on the Line and on the Ring

This section describes a simple compact routing scheme with constant size tables on

networks with line or ring topology. The description is informal and supported by

visual intuition, but a formal (and very tedious) specification can be easily obtained

from it. The techniques developed here are used extensively in the next sections to

route on more complex topologies.

3.2.1 Preliminaries

We begin by introducing two simple "primitives" used extensively throughout the

chapter, alignment and comparison. Consider a segment of n nodes v1, ... , v,, with

vi adjacent to vi+l, operating asynchronously, each capable of holding and trans-

mitting to its neighbors one or two datablocks plus an additional constant number

(independent of n or the size of the datablocks) of state bits. vi is marked with a

special flag First; otherwise nodes are all initially in the same state.

The first primitive is align s packets from vi to v1. Informally, we can "stream"

into the segment, from any one node vi of it, s < n data packets (in order!), in such a

way that in the end every node vj (for 1 < j < s) holds the jth packet (and is notified

that it does - note that in general the memory of a single node is not sufficient to

hold all the bits to represent j). Figure 3-2 attempts to give a visual intuition of how

this is accomplished: each node vj (including the "input" node vi) attempts to push

every packet it receives to the lowest index "empty" node in the segment. Every node

vj carries a flag marking whether there is empty space at lower indices, and therefore

whether it should push packets towards indices lower or higher than j. vi raises the

sign "no more parking at lower indices" as soon as it receives a packet; a generic node

vj raises it as soon as it sees vj-1 raise it and it holds a packet. Note that when a

node raises such a sign it necessarily holds its "rightful" packet. It would be easy,

but extremely tedious, to formalize the above and prove that:

Lemma 4. Aligning s packets from vi to vi involves no nodes of indices above

max(i, s), each of which has to transmit O(s) packets, and requires time O(max(i, s)).

Figure 3-2: Two phases of the alignment to the leftmost node of a stream of datablocks
entering from the third node from the left: first datablocks stream to the left, then,
as nodes are "filled", to the right.

The second primitive is compare x to x' over the segment vl,..., v,. Informally,

given two integers x and x' of sn bits, each "distributed" over the n nodes of the

segment (vl carrying the most significant bits), we want to compute the difference,

also "distributed" over the segment; and then notify each node the sign of the result.

This is easily accomplished having each node vj, starting from vn, compute the "local"

difference and pass the carry bit to vj-1; vl is then able to determine the sign of the

result and propagate it to the rest of the segment. Again, it would be easy, but

extremely tedious, to formalize the above and prove that:

Lemma 5. Comparing x and x' over the segment v1, . . . , vn can be accomplished with

each node transmitting 0(1) bits and requires time O(n).

3.2.2 A simple scheme for routing on the line and ring

The key idea to efficiently route on the n node line with m bits/node is to divide it

into segments of e(dmin) = 6([log2(n) nodes each; and then decompose the task of

routing to a node into a) routing to the correct segment of the line, and b) routing

to a node within the current segment once the address has been aligned into the

segment. The address of each node is correspondingly divided in two parts, both of

O(log2 (n)) bits: a "global" address containing the information to reach the node's

segment and a "local address" containing the information to reach the node from

within the segment. The O(log2 n) bit header h of each message can then be written

as h =< g, e >, where where g is (the binary representation of) the global address of

the destination and e its local address. We can imagine that each bit, or block of bits

of the message (whether in the body or in the header) is marked to indicate whether

it belongs to the body, to the global address, or to the local address.

The global address of the ith segment is simply i - which can be represented

with O(log2 n) bits divided into O([log(n) 1) blocks of 8(m) bits each - and can be

"embedded" into the nodes of the segment with the jth node holding the jth block of

bits. The message is streamed into a generic node of the line, and the global address

is aligned and compared to the current segment's embedded address: if they are not

equal, the message is then streamed to one of the two adjacent segments (depending

on the sign of the difference), and the process is repeated until the segment of the

destination is reached.

At that point the destination's global address is discarded from the header of the

message, and the local address is aligned to the first node of the segment. The local

address of the jth node of a segment is simply -'11; therefore, once it is aligned, one

bit per node, to the first node of the segment, the destination can immediately be

identified as the only node carrying the single digit of the local address equal to 1,

and the message body can be easily wormholed into it.

A very simple modification of the scheme above allows efficient routing on the ring

topology with little extra overhead. Remembering that g is be the global address of

the destination, let c be the embedded address of the current segment, and s the total

number of segments in the ring. Then, if Ig - cl < c/2, the direction of the shortest

path to the destination is the same that would be determined with the line scheme

above, i.e. routing towards lower indices if g < c and towards higher ones if g > c;

if Ig - cl > s/2 the direction is the opposite. Making the above decision requires the

involvement of no extra nodes, and no change in the header, but only a (very small)

constant factor increase in the size of each node's memory and in the total time and

packet transmissions required.

It would be easy to give a more formal description of the process above and prove

the following:

Lemma 6. The routing scheme above for the n node line (and the n node ring)

requires headers (and addresses) of h = O(log2(n)) bits, and constant memory per

node. With O(m) bits of memory per node, routing a message of h + b bits between a

source and a destination at distance d from each other involves the d - 1 intervening

nodes, as well as O(dmin)1 additional nodes at distance O(dmin) from the source or

the destination. Each node involved transmits O([-h+b-] packets and the total time

required is O(d + dmin).

3.3 Compact Routing on Bounded Degree Trees.

This section describes and analyzes the algorithm Treeroute, and presents the proof

of theorem 3.

ldmin, the orientation distance, is equal to ([]n) if we require the initial header to be source
independent. We show later in this chapter how source dependent headers can reduce the orientation
distance to O(d); Lemma 6 continues to hold even in this case.

3.3.1 Overview

TreeRoute is based on classic interval tree routing, modified leveraging the tech-

niques developed in section 3.2. Informally, we aggregate connected sets of nodes to

distributedly simulate "virtual nodes" of larger memory that form themselves a vir-

tual tree. The task of routing to a destination is then decomposed into first routing

to the destination's virtual node, and then routing to the correct node within the

virtual node. Aggregation and address assignment require some subtlety if one wants

to avoid paying (poly)logarithmic stretch costs.

We further subdivide the task of routing from source to destination into two

phases: routing upwards to a common ancestor of source and destination, and routing

downwards from that common ancestor to the destination itself. We do not necessarily

route to the lowest common ancestor, but rather to a "sufficiently low" common

ancestor. The message header h is correspondingly written as h =< hp, hdon >: hop

is used in the up phase and is dropped at the beginning of the down phase, where

only hdown is used. The aggregation process is similar, but not identical, for both

phases, producing from a tree T two different virtual trees Tup(T) and Td,,w(T).

A
/ \

ets

/
/

Figure 3-3: The dotted lines show the virtual nodes in the virtual trees Tp(T) (left)
and Tdow,(T) (right), obtained from the same tree T.

.a . . . -J . .

/

3.3.2 Routing Upwards

The virtual tree Tp(T) is formed iteratively as follows. The virtual root contains

the root of T and all its descendants within distance [log2 (n)]. A virtual node V is a

leaf of the virtual tree if none of its nodes have children outside of V; otherwise, for

any such child u, V has one virtual child formed by u and all its descendants within

distance [log2(n)] (see figure 3-3).

Assign to each virtual node V a unique address from 1 to |Tup(T)I in depth first

fashion, as per interval routing. The address portion hup of a node is just the address

assigned to its virtual node. Each virtual node V one node that is the ancestor of all

other nodes in V; we call that node V's leader. Store in any node in V at distance i

form its leader the (i + 1)th block of m most significant bits of max(V) and min(V),

where max(V) and min(V) are the maximum and minimum address values of the

virtual nodes in the subtree rooted at V. It is easy to see that any path from the

leader of V to a node in a virtual child of V has length [log2 (n) and can therefore

contain the full description of the [min(V), max(V)].

Upwards routing then proceeds as follows: a message enters from a node in a

virtual node V and is streamed upwards until it encounters the leader of that node.

Either that leader is the root of T and therefore an ancestor of the destination - in

which case the upward phase is completed - or the message can continue upwards

until it reaches the leader of V's parent U. At that point, aligning < hup > to U's

leader, one can easily establish if the destination address falls in the virtual subtree

rooted at U - in which case the upward phase is completed - or whether the message

should keep climbing. It would be easy, if tedious, to formalize the above process and

formally prove the following:

Lemma 7. The upward routing phase described above routes a message of h + b bits

from the source to a common ancestor u of source and destination that is at less

than distance 2 [l~1)1 = 2dmin from the lowest such ancestor. Only nodes in the

direct path between the source and u are involved; each transmits O(f['l2(h+b)]) m bit

packets. The total time required is O(d + dmin) = O(d + F[]).

3.3.3 Routing downwards

The downward routing phase, and particularly the construction of Td,,,,(T) is more

complicated. The hdown portion of the address/header is actually formed by inter-

leaving three fields, all of O(log2 n) length: hinterval, hturn and hport We explain their

role after introducing some notation.

We assume that the ports corresponding to the children of a non-leaf node are in

order of non-increasing size of the corresponding subtrees: i.e. port i leads to the ith

largest subtree. At the end of this section we show how to remove this assumption

at only a moderate additional cost.

Let the it h child of a node v be the child at which the ith largest subtree is rooted.

Let the first child of v be its heir, and let the first child of the ith heir be the (i + l)th

heir. Let the i- dynasty founded by v, for i > 0, be the set of v and every jth heir of v

for j < i. Let the cadets of a dynasty be all the children of nodes in the dynasty that

are not heirs, and let the heir of a dynasty be the only heir of a node in the dynasty

that is not itself in the dynasty. All virtual nodes of Tdo,,(T) are dynasties of at

most dmin = [g2] nodes. The children, if any, of a virtual node are the dynasties

whose founders are the cadets and heir of that virtual node. (see figure 3-3). Finally,

let the current tree of a node v be the subtree of T rooted at its highest ancestor u

of which v is a heir (then u is the the root of T, or a cadet).

Every virtual node of d nodes is assigned an address of 2 + [log 2 n] bits, with all

but the most significant dm + 2 being Os. Thus, one can store the address of a virtual

node using only m + [2/d] < m + 2 bits/node, starting from the last node of the

dynasty (with the trailing Os being stored "implicitly"). Addresses are assigned in

such a way that different virtual nodes can have the same address, but a virtual node

always has a lower address than that founded by its heir.

The hinterval field is formed by a stack of addresses encoded with the same "implicit

trailing Os" notation. A message routed downwards follows, by default, the first child

of every node. Whenever the header of the message is aligned to the last node of

a virtual node, the address embedded in the virtual node is compared to the first

address in the hinterval stack. If the embedded address is lower, the message passes to

the virtual node's heir; otherwise, the message is wormholed into one of the dynasty's

cadets using the hturn field to determine which one. The ht,,rn field is a stack of

strings in the form Oil, whose function is identical to that of the local address used

in line routing (see section 3.2); when aligned to the last node of a virtual node,

with 1 bit/node, the 1 of the top string marks the exact "turning point" within the

dynasty. The hport field is also a stack of strings, each being the binary representation

of the port number to take at the next turning point. Upon taking a cadet branch,

the message pops the top string from each of the three stacks hinterval, ht,,n and

hport. We :note in passing that the appropriate popping must and can be done as a

node begins its downward phase from a node other than the root of T. The necessary

information can be easily embedded in the last virtual node of Tup(T) visited, without

asymptotically increasing the memory requirements.

The key idea in choosing the size and determining the address of a virtual node

V founded by a node v is the following. Let a be the address of the virtual node of

which v is a heir (let a = 0 if v is a cadet or the root of the main tree). V is chosen of

the minimum length such that, by adding to a the size p of the largest cadet subtree

of V (or of V itself if larger), and rounding a + tp up to the lowest number a' that

can be embedded in implicit trailing Os notation in V, the roundup error is not "too

much larger" than 1t. a' then becomes the address of V.

This guarantees that virtual node addresses never grow too much larger then the

size of the current tree; and at the same time, that a virtual node holding a b bit

address leads to cadet trees of size (approximately) 2
- b times the size of the current

tree, or smaller. Thus, larger virtual nodes lead to smaller cadet trees, and the larger

"backtracking", as well as the larger space taken in the stack, is amortized over a

faster reduction in the size of the current tree.

More precisely, let {U1,..., Up} be the set of virtual nodes that the path from the

root of T to any node u crosses without entering their heirs (i.e. the path either ends

in Ui or branches to a cadet). It is easy to see that E-••<<(IUlI - 1) = o([lg2(n)) =

O(dmin). The left hand term is an upper bound to the number of nodes, visited by a

message to u during the downward phase, that are not in the shortest path to u. The

inequality also shows that both hinterval(u) and htu,,(u) have length O(m din) =

O([log 2 (n)]). hpot(u) is also of length O([log 2(n)]) if the i t h port always leads to the

it h largest subtree, since then the product of all port numbers in hpot is at most n.

TreeRoute can be easily modified to work with preassigned port numbers of at

most g bits, by a simple lookup table scheme: if a child of a node can be reached

through the port with the it h largest label, have it store the port number of its sibling

at which the i th largest subtree is rooted. The corresponding entry in hport is i, and

it is easy to verify that the overhead is that given in theorem 1.

3.4 Compact routing on polynomial growth graphs

This section describes and analyzes PolyRoute and presents a proof of theorem 4. The

basic idea of our scheme resembles that of [34]; we improve on it with the techniques

of this and the previous sections.

3.4.1 Overview

The routing scheme for polynomial growth graphs is more complex than that for

trees. This first subsection provides a high level, informal overview.

The fundamental idea is to construct a minimum spanning tree of the graph. The

tree is then recursively decomposed into a Van Emde Boas hierarchy of subtrees called

regions. Every region at the ith level of the hierarchy has approximately the same

diameter 2' (within a factor 2), and stores information on how to reach every other

"neighboring" region at the same level within distance 2i , or on how to retrieve such

information from the neighboring regions without "going too far". Note that every

node belongs to exactly one region at each level of the hierarchy (most schemes in the

literature use instead overlapping regions).

Then, a message being routed from a source node to a destination node a distance

£, attempts to determine, for every i starting from 0, whether the destination lies

either in the same level i region of the hierarchy, or in a neighboring one (within

distance 2ý - note that two neighboring regions are not necessarily adjacent). The

search is bound to succeed by the time the message reaches level [log 2 £]. Then, the

message is routed to the root of the level i destination region, and makes its way

down the tree to the destination node.

There are a number of challenges that our scheme has to overcome. First, note

that every node can store only a constant number of bits, but it belongs to a loga-

rithmic number of regions (one for each level); storing a region's information without

interfering with the other regions holding the same nodes at different levels requires

some finesse.

Second, the same logarithmic levels vs. constant bits issue requires a careful design

of the tree routing algorithm. The main difficulty is that the "heavy child" of a node

may not be the same at all levels of the hierarchy. This makes generally inapplicable

the standard interval tree routing techniques that, when routing "downwards" route

by default to the heavy child.

Third, a region may have polynomially less nodes than the number of neighboring

regions, potentially making it impossible to store in a given region even the identifiers

of (not to mention the routing information to) the neighboring regions. This problem

can be avoided in graphs with constant doubling dimension - where a careful con-

struction of the regions themselves can lower the number of neighbors a region has

to a constant at every level of the hierarchy. In the more general case of polynomial

growth graphs, however, the problem is unavoidable, in the sense that there are some

graphs for which at least one connected subgraph of a given size will have "too many"

neighbors.

Fourth, note that regions that are neighboring according to our definition are sim-

ply "close", not necessarily adjacent - they may be separated by a number of regions

of the same level that is potentially proportional to the intervening distance, even if

the regions have large diameter. One has to find a way to "cross" these intervening

regions without traveling, within each, a distance proportional to its diameter.

3.4.2 Multiscale naming and routing on arrays.

This subsection addresses one possible workaround to the requirement of shipping a

full log2 n address bits to the destination, presenting a technique that will be crucial

for our hierarchical routing scheme for polynomial growth graphs; in particular it

will allow us to have regions at different levels of the hierarchy coexist in the same

(constant memory) nodes.

Intuitively, if we eliminate the requirement that the starting message header be

independent of the injection point, we can adopt a scheme very much like that used

in ordinary mail communication: when sending departmental email, one can omit

the street address and the country of the recipient, and when sending anything but

international mail, one can omit the country. If source and destination are known to

be at a distance of at most £, an address of O(d log2) bits should be sufficient to

identify the destination among one of the O(Qd) possible ones.

Let us first show how this can be done on a 1-dimensional graph. Assume the

number of nodes n is a power of 2 (if not, one can simply have some nodes effectively

simulate two "virtual nodes" each). Partition the graph into blocks of 2' nodes, with

0 < i < log2 n, with every pair of consecutive blocks of size 2' forming a block of size

2i+1. Every block of size i, carries, in two well specified positions, two bits: an (order

i) address bit (w.l.o.g. the leftmost of the two) and a(n order i) free bit (w.l.o.g. the

rightmost of the two). The address bit is the (i + 1)th significant bit of the address

for all the nodes in the block. The next bit is reserved for use at the i + 1 block level.

If the i-order address bit is 0, the i-order free bit is the (i + 1)-address bit; if the

i-order address bit is 1, the i-order free bit is the (i + 1)-order free bit.

Thus, one can reconstruct the first i + 1 bits of any node by moving a total of

2i - 1 nodes. This is clearly true for i = 0, since every node is a level 0 block, and

carries its least significant address bit. Inductively, once the node containing (i - 1)-

order address bit has been reached, if that bit is a 0, the node storing the (i)-order

address bit is the one storing the (i - 1)-order free bit in the current block, and can

be reached by moving exactly 2
i- 2 nodes to the right. If the (i - 1)- order address

bit is a 1, then the i- order address bit is stored in next block to the left, in the node

storing that block's (i - 1)-order free bit - which is exactly 2i-2 nodes to the left of

the node storing the current block's (i - 1)-order address bit.

It is simple, if somewhat tedious, to prove that one can stream an arbitrary mes-

sage of m bits exactly 2' nodes to the left or to the right having each of 0(2 i) nodes

transmit only O(m) bits and in total asynchronous time O(2i). One can do this by

first marking a node 2i-1 bits to the left or right, and then having each node between

the current and the marked bit produce a counter that moves to the first node without

a counter to the left or right of the marked node. If the current node sends a specially

tagged counter, the node that ends up carrying that counter marks the (2i)th nodes

to the left or right of the original one.

In fact,, using a partial modification of this scheme, one can not only address a

node, but to create a hierarchy of "superimposed" arrays, sharing the same nodes but

formed of progressively larger blocks of size 2, 4,..., 2', where a block of size b can

store up to b1-` bits for any c > 0 even if every node needs to store only 0(1/c) bits.

Moreover, it is not difficult to implement such schemes in such a way that the b(l-E)

bits are not "concentrated", but are spread through the block so that, by visiting

£ > bE consecutive nodes, one can retrieve Q(f/b") of these bits.

3.4.3 Efficient tree-hashing in polynomial graphs

This subsection shows how to perform a Van Emde Boas decomposition of a minimum

spanning tree of a polynomial growth graph, in such a way that every region of size n

at level i can store, and efficiently retrieve, B = Q(n -2-i") bits, divided into r records

indexed by arbitrary keys for any B = O(b).

The decomposition process is very simple. Begin with a minimum spanning tree

T of the graph of depth A. The root of T is the (only) [log 2 A] -root and T is the

(only) [log 2 A] -region. Then, for i = [log 2 A] - 1, ... , 0, consider the set of all

(i + 1)-trees. In any such tree T, any node v at depth k -2i that is the root of a

subtree of height at least 22 becomes an i-root, and all its descendants that are not

i-roots or descendants of an i-root descendant of v form the i-region of v. Clearly,

every i-region is a tree of depth at least 2' and less than 2 - 2i , and therefore its

diameter is at least 2' and less than 4 -2i.

If the whole tree held only one level of regions in its nodes, efficient hashing of

records could be carried with a scheme very similar to, and in fact even simpler than,

the one presented in the previous section. We first illustrate at a somewhat informal

level of detail this simpler scheme before showing how to adapt it to allow multiple

levels to share the same nodes.

Assume without loss of generality a single region of n nodes that spans the entire

tree, of height h. Consider the edge circuit induced by a depth first tour of tree: denote

with r the root, and with so, ... , s, its c < 2d its children subtrees, if any, ordered

by increasing weight (i.e. so is the one with the least number of nodes), and visit

r, , o, r, ... , , r , ,r. Write the records in order of increasing key, bit by bit sequentially

along this circuit, writing 1/e bits per edge, and skipping edges the second time they

are visited. The bits of an edge between parent and child are stored in the child.

Then, as in the previous section, consider the "backbone" of the tree, formed by the

root, its heaviest child, that child's heaviest child etc., and partition it into segments,

recording in each segment the range of addresses to be found in the subtrees rooted

at the children of that segment that are not themselves part of the segment. Repeat

the same process for those subtrees.

To check if a given record is present in the tree, and recover any information it

might hold, one need only follow the backbone, checking at each segment if the key

sought falls within the corresponding range. If so, perform a binary search to find

out which of that segment's subtrees (if any) is responsible for a range containing the

key being sought. If no range containing the desired key is found along the backbone,

the key is absent from the tree.

The distance traveled from the root to the record sought is equal to the length

of the shortest path between the two plus the total extra distance traveled whenever

deviations from the backbone are taken. In a tree of n nodes and height h there are

at most log2 n = O(d log2 h) such deviations. If each segment is of length s, the total

extra distance spent at each deviation is at most ds log 2 s. Thus, as long as each

segment is O(h'/ 2) nodes long, the total overhead is at most O(h').

The fundamental difficulty in extending this process to multiple layers, as men-

tioned in the previous subsection, lies in the fact that higher level regions can store a

vanishingly small amount of information per node (or one would need nodes with at

least logarithmic memory) - but in order to follow the backbone, one needs to record

at each node which of its children is the heaviest, which may vary depending on the

level one is considering. For example, one child v might have more descendants than

another child v' within a short distance, but less within a larger distance. v would

then be "heavier" at some lower level of the hierarchy, and v' at some higher level.

We now show how to solve this problem.

Given a level i region p, consider the m = 0(2(1-E)i) level ic subregions pl,..., p,m

comprising; the main region. For each such subregion pj, consider the dynasty of p

passing through the root of pj; such a dynasty either ends or leaves pj at one of its

leaves Ay. Then record, as a record under a specific, unique key of pj, the identifiers

of Ay and, if any, of the leaves at which the dynasty leaves the next R(i) subregions

it enters (we'll determine the exact value of R(i) later). Aj is identified simply by

the key of the appropriate record that is (partially) stored in Aj, and by the distance

from the beginning of the record of Aj .

Then, traveling to A• (in pj) allows one seeking a particular key in p to follow the

dynasty of p from the root, reading along the segments of that dynasty the key ranges

held in the subtrees rooted at the cadets of the dynasty. If and when the interval

recorded in a segment matches the corresponding key sought, one must abandon the

dynasty and follow a cadet branch. The correct branch that must be taken can be

found by binary testing, as follows. pj stores the identifier of the "one half leaf', i.e.

the leaf leading to the region Pl/2 such that exactly half of the regions rooted at a

child of a leaf of pj hold lower key ranges; pj also stores which of the children of that

leaf is Ph. Every region rooted at a child of a leaf of pj then stores the identifiers

of two other such regions and the corresponding leaves of pj, in which one should

search for a key if the range held by that region is, respectively, higher or lower than

that key; choosing the two leaves and regions in such a way that, at each step, the

number of candidates potentially holding the desired key is halved. Since pj has at

most 20(diE) nodes, the search takes at most O(dic) such steps - i.e. logarithmically

many in the diameter of pj. Once the correct cadet branch is located, search begins

again along that dynasty. Note that, since the volume of p is 0(2di) in the path from

p to the key sought there are at most O(di) deviations from the current dynasty.

Let us now compute the total cost of the search. Consider the (shortest) path from

the root of p to the key sought; it intersects p level ic regions pjl,..., pjp. The cost

T(t) of finding the key in p of depth e is then equal to the sum of three components:

1. the cost of moving to a specific key in each of pjl, ... , pjp (the one leading to the

continuation of the current dynasty of p), P=, T(eh), where £h is the depth of

the appropriate leaf in pjh.

2. the cost of finding those "dynasty" keys - by searching in one subregion out of

every R(i), starting with the first subregion of the dynasty and starting again

with the first subregion of each cadet dynasty followed. Since the path takes

at most O(di) cadet branches, and since all regions at the same level have the

same depth (within a factor 4), the cost of this step is at most O(maXhT(eh)

di + CPh= 1 T (h)).

3. the cost of performing a binary search for the correct cadet branch whenever

one such branch is taken, which is at most O(di -dii -maXhT(ph)).

We can then write (noting that the first of the two terms in the second component,

maXhT(ph) - di, can be subsumed in the third component, di -dic -maxhT(eh)):

T(f) <_ c(di)2maxhT(ph) + (1 + -5) -~= T(fh)
= O((di)2E2i') + (1 + d'-) Ph=l T(gh)

with the T(k) = 0(1) for k equal to any small constant. It is immediate to verify

that, as long as •i = O(1/(il+±)) for any a > 0, the recursion yields T(f) = O(e).

This is clearly achievable since it only requires each subregion to store in one of its

records an amount of information that is polylogarithmic in the size of the region

itself.

3.4.4 Region aggregation

As mentioned earlier, a region of size n might have Q(n d- l) neighboring regions,

making it impossible to store the routing information about those neighbors entirely

within the region itself. Somewhat surprisingly, the polynomial growth condition

allows a scheme where a relatively small number of neighboring regions can "gang

up" and store together the routing information about all neighbors of every region

in the group. More precisely, we first show how to aggregate regions into groups

in such a way that each group stores routing information to all neighboring regions

part of groups with fewer total nodes (breaking ties); and then how to reorganize

this information so that each region can efficiently retrieve information about its

neighboring regions.

Throughout the rest of this subsection, when we say that a group or region is

larger than another, we mean that it either has more nodes, or that it has exactly as

many nodes but a larger ID. Initially, every region forms by itself a tentative group.

Since each group is formed by "accretion" of regions around this initial region, we

can simply assume that this ID is the ID of its initial region.

Definition 7. A group F of level i regions is (1 - c)-stable (or simply stable when

the quantity (1 - E) is clear from the context) if it contains at least 2i(1-E) nodes for

each neighboring (level i) region in a smaller group - i.e. for each such region within

distance 2i of a region in F.

Aggregation proceeds in steps, and terminates only when no more unstable groups

are left. At each step, consider the largest unstable group F, and break up every

smaller group into its constituent regions. F then absorbs any region within distance

2i . The aggregation process obviously terminates, since at each step one group strictly

grows (if a group F) is unstable, it means there is a smaller group close enough for F

to cannibalize at least one of its region); and to a size larger than any group that is

broken up.

In fact, we prove that:

Lemma 8. The aggregation process of level i regions terminates with every group's

diameter being at most O(2id log2 (4)) (where d is the dimensionality of the network),

and at most 0(2id) for i = Q(log2 M

Proof. We show that no group undergoes more than O(d log2(d) consecutive growth

steps before being broken up - which proves the thesis, since at each step the diameter

of the group grows at most by twice the sum of the "neighbor distance", 2', and the

diameter of the largest possible i-level region, less than 4 -2', for a total diameter

that after j steps is less than 10 j - 2'.

Consider a generic group F, that evolves through a series of growth steps. Denote

with F1 its original region, and with Fj the group after j - 1 additional growth steps.

Denote with Vj the volume of F1 (i.e. the number of nodes in it), and with Nj the

number of regions neighboring rj that belong to groups smaller than rj.

If rj is (1 - e) unstable, then 2(1-E)i - N3 > V3. Therefore, remembering that

every region at level i holds at least 2' nodes and that Frj+ absorbs every region that

contributes to Nj, we have that V.+1 2 Vj + N3 - (2i) > Vj(1 + 2i)). Since V1 Ž 22,

as long as F is not broken up, Vj > 22ij) . Since the dimensionality constraints of the

graph impose that V3 <• (10. j - 2i)d, it must be that iEj = O(di + dlog2 j), which

proves the thesis. O

We have shown that every group has Q(2 (1-')i) distinct "information storage"

nodes for each neighboring region in a smaller group. Then, each group can also

reserve, for each larger, neighboring group, Q(2 (1-E)i) distinct information storage

nodes in some region part of a neighboring group. If a group has no more than

2(1- e)i/2 larger neighboring groups, it can reserve £(2 (1- e)i / 2) nodes to each, with all

these nodes clustered in a single region of a neighboring group. Otherwise, if it has

more than 2(1- e)i/2 larger neighboring groups, it can reserve Q(2 (1-
E)i/2) distinct nodes

to each, with these storage nodes clustered together in a small number of regions, each

region containing the information nodes reserved for Q(2 (1-E)i/2) distinct groups.

We show now how the information within a group can be efficiently retrieved.

Note that, although the tree routing scheme presented in the previous subsection

allows efficient navigation within a region, it is not immediately applicable within a

group - a collection of neighboring, but not necessarily adjacent regions. We organize

the regions of a group as a (complete) tree of regions, with the initial region of the

group being the root of the tree, and every region added on step j of the aggregation

process being a child, at depth j, of the (depth j - 1) region closest to it. It is

immediate from the construction process that the tree has depth O(log 2(), and

that any parent and child are at distance no larger than 2' from each other.

We allocate information about neighbors in a group following a tree hashing

scheme like the one presented in the previous subsection, dividing the address space of

such neighbors in intervals. The first interval, containing information about the first

Q(2(1-c)i/2) neighbors is assigned to the root itself. Each of the remaining intervals

contains information pertaining to a number of neighbors proportional to the size of

each of the root's subtrees, and is recursively assigned to the corresponding subtree.

Each region also contains enough information to route to its parent; and to all its

children if there are at most 0 (2 (1- c)i/2) of them. Otherwise, we can "explode" each

node of the tree into a subtree of degree at most 0 (2(1-~)i/2); balanced in such a way

that the exploded global tree has depth no larger than O(d 1g 2 (d)). Each region can

then simply store the routing information between its children, and the root of its

exploded subtree. We then immediately obtain the following:

Lemma 9. Assuming each node has memory M/E, it is possible to retrieve Q(M

2 (1- E)i/2) bits of information for any neighbor of a level i group, starting from any

region within the group, by traveling at most O(d log 2(d)) paths between regions at

distance 2' or less from each other, and traveling within each of these region a path

long enough to retrieve Q(M . 2 (1-E)i/2) bits.

The next subsection shows how to travel efficiently between neighboring regions.

3.4.5 Travel between neighboring regions

This subsection presents and analyzes an efficient, recursive scheme to travel between

level i regions that are neighbors, i.e. at distance no larger than 2' from each other,

after having checked that the destination region is indeed a neighbor of the source

and having retrieved the appropriate routing information (which we show is at most

polynomial in i - i.e. polylogarithmic in the diameter of the regions and the travel

distance) and having routed to the node of the source closest to the destination.

A possible scheme would be to partition the shortest path between source and

destination into h segments of length e = O(2i/h), and choose for each segment

a level log 2 () region intersected by that segment. Then, one could route to the

destination by recursively routing to each of these lower level regions, and retrieving

from each the information necessary to travel to the next such subregion (or to the

closest subregion of the destination region). Unfortunately, since each level of the

recursion can increase the stretch by a constant multiplicative factor greater or equal

to d, this leads to a stretch that is at the very least polylogarithmic in i.

The fundamental idea to overcome this difficulty is to take advantage of the fact

that each level i group can provide routing information to each of its neighbors that is

polynomial in the diameter of the group, but the scheme above requires only polyloga-

rithmic information; then, we might be able to "holographically" replicate this smaller

amount of information "all over" the group, reducing the overhead of retrieving local

routing information to a constant (i.e. to a product series whose terms become only

vanishingly larger than 1). Another way of interpreting this strategy would be to

see every level i group carrying routing information not only for its neighboring level

i groups, but also for those groups of level up to (1 + a)i for some a > 0. Then,

routing between source and destination at distance £ at level i requires a total travel

distance at level i equal to i(1 + 2 -e(i)); and thus, recursing, a total distance equal

to -O(1).

Unfortunately, while this is always possible in a (carefully partitioned) graph of

doubling dimension d - where each point has at most 20(d) regions of level i within

distance 2' for all i, it is not necessarily so in the case of degree d polynomial growth

graphs. Figure 3-4 illustrates the point. As a function of i (on the x axis) we plot

the logarithm of average number of regions of level i within distance 2' of any given

point. In a (properly partitioned) graph of doubling dimension d, the curve never

grows beyond d. In a degree d polynomial growth graph, only the average of the

curve must remain below level d, since integral of the curve between 0 and i represents

corresponds to the logarithm of the volume of a level i region. This means that a

degree d polynomial growth graph can look as a graph of dimensionality much higher

than d at a given scale, as long as it has "saved dimensionality" at smaller scale.

Consider for example the "cube" in figure 3-5. Even though a cube is technically

3-dimensional, our cube is no more than 2-dimensional (i.e. it can be "folded" into

a 2 dimensional lattice, with adjacent nodes occupying adjacent sites) because it is

built of 1--dimensional "wires"; and yet it still presents all the difficulties of routing

on a 3-dimensional object, at least at the larger scale.

0

dU

4ý

0

ol
0c

Region level - log of region diameter

Figure 3-4: The logarithm of the number of level i-1 regions in a level i region, as a
function of the region level. The area under the curve is the logarithm of the region
volume. The dashed curve corresponds to a graph with doubling dimension at most
d - the curve never goes above d. The thick continuous curve corresponds to a graph
with degree d polynomial growth - the curve is on average below d, but it can exceed
d after being lower for several levels. The thin straight line represents the logarithm
of the number of neighbors a region can keep track of as a function of the region level.

Fortunately, the effects of this "dimensionality wobbling" can be kept under con-

trol. We prove that, although one might have to resort to searching information for

Figure 3-5: A "cube" made of 1-dimensional "wires" has degree-2 polynomial growth
(it can be "folded" into two dimensions) but its doubling dimension is 3 and at the
largest scale behaves like a 3-dimensional object.

travel at distance 2i within a group of level i, this will happen only at O(d) levels ;

(for some a > 0) at all remaining levels routing information can be retrieved from

a group of level (1 - a)i. In any level i region, we store, routing information to all

the neighboring regions for the k levels (1 + a)i,..., (1 + a)i + k - 1, as long as

there is sufficient storage space (which is certainly the case as long as there are at

most O(12- i (1- e) /2) such regions). In case of an "overflow", i.e. if there are more

than O(2-i(1 -E)/2) regions at one or more of those levels, only routing information to

those O(G2 - i(1-)/2) with the highest volume is stored. In addition, if all the k levels

are overflowing, routing information is stored for all the regions in the next higher

non-overflowing level, if any.

Then, when routing at level i(1 + a), with an ultimate destination at level j >

i(1+ a):

1. if there is enough information within the local level i subregion to route at level

i(1 + a) + h for some h < k such that j > i(1 + a) + h, simply route at that

level.

2. Otherwise, if there is some level between j and i(1 + a) at which overflow does

not occur, route at that level, bypassing the intermediate levels.

3. Otherwise, search for routing information in the local level i(1 + a) group.

It is immediate from figure 3-4 that any "dimensionality peak" that makes it

impossible for local level i regions to store routing information to all level (1 + a)i

regions cannot have a width of more than O(d) levels (or the volume constraints

imposed by polynomial growth restrictions would be violated). Then, by choosing

k = E(d), the only situation in which a message is forced to search for information at

in the local group, is if the level of the final destination lies within the peak itself - in

which case, there are at most O(d) levels at which a message has to resort to "group

searching".

3.4.6 Tallying the costs

This subsection tallies all the costs of our construction, in terms of stretch, memory,

header length, time and bits transmitted to route between two points at distance £

with i = [lo0g 2 f].

In terms of memory, our construction only uses 2e(d) bits/node. This quantity

depends essentially on the costs of storing local routing information in level 0 regions.

The space costs involved in higher levels decrease exponentially with the level.

In terms of header length, splitting a level j path into at most h subpaths means

carrying alongside the message the IDs of h groups or regions; if this is done at every

level, a message must carry 8(hj) IDs of at most O(dj) bits each. This means that

the header length is O(d(log2 ()) 2) if we choose h to be a small constant. However,

if we choose h = 2e(d), and thus a header length of O(2 (d) (log2(e)) 2) we can make

sure that there will be at most one level of group searching, by dropping the scale of

the recursion by 8(d) levels when at the "final peak".

In terms of stretch, each level of recursion increases the length traveled by a mul-

tiplicative factor. The product of these factors for all levels at which the local group

is not visited converges to 0(1). By choosing a sufficient header length, we can make

sure that there is at most 1 level at which the local group is visited, resulting in the

maximum possible stretch being multiplied by a factor d. The total distance traveled

is then O(max(log2 n, d£)) if the header is initially formed in a source independent

fashion by the full destination address, or simply O(d&) if the header is initially formed

by an appropriate prefix of the destination address suitable for local routing.

Since the underlying techniques for message streaming are those utilized for the

line, it is immediate that the number of nodes involved in the transmission is propor-

tional to the distance traveled, that the number of bits transmitted by each node is

proportional to the message length (including the header), and that the time taken is

proportional to the sum of the message length (including the header) and the distance

traveled by the message.

3.5 Conclusions

The previous chapter improves the current lower bounds in compact routing, greatly

extending the class of networks for which subpolynomial routing tables are sufficient

to obtain constant stretch, while at the same time bringing down the routing table

size to a constant number of bits (from at least a logarithmic or polylogarithmic table

size). In particular, we showed that constant stretch is achievable with a constant

number of bits/node on any physically implementable network, i.e. any network in

which bounded linked length and node volume bounded away from zero impose a

limit on the number of nodes within h hops of any given point that is polynomial in

h - as well as on any bounded degree tree.

Several of our techniques are novel, and shed light on the profound difference

between bounded doubling dimension [13] and the more natural notion of polynomial

growth [24]. Bounded doubling dimension essentially implies bounded dimensionality

at all scales; whereas a graph with polynomial growth can behave as a much higher

dimensional object at some scale, if it has "saved dimensionality" at lower scales.

A number of problems remain open. First of all, it would be desirable to refine

the constants involved beyond asymptotic notation. Second, it would be interesting

to close the gap between compact routing lower and upper bounds, answering the

question "what makes compact routing hard"? In particular, is it true that any

graph with constant degree only requires a constant number of bits/node to achieve

constant stretch routing? The intuition developed in this chapter seems to indicate

otherwise, and makes us conjecture that there are indeed constant degree (expander -

necessarily) graphs that require more than a constant number of bits/node to achieve

constant stretch.

Chapter 4

Conclusions

Can networks scale? I.e. is there a "universal node" with constant resources (memory,

reliability etc.) out of which one can build networks of arbitrary complexity - without

sacrificing performance (bandwidth, latency etc.) by more than a constant factor?

This thesis addressed two issues within this general problem. First, it tackled

the question of long range connectivity in the presence of faults - in some sense

whether one can achieve constant bandwidth efficiency without having to increase

the reliability of individual nodes as the network size increases. Then, it tackled the

question of truly compact routing - in some sense whether one can achieve constant

latency without having to increase the memory of individual nodes as the network

size increases.

In both cases, the answer is that networks can scale as long their topology satisfies

some very mild conditions. Low latency can be achieved with a bounded amount of

memory per node (independent of the size of the nework) in any network that is

physically implementable - i.e. any network in which bounded linked length and node

volume bounded away from zero impose a limit on the number of nodes reachable with

h hops that is polynomial in h. Efficient bandwidth utilization can be achieved with

bounded node reliability (independent of the size of the network) in any network

that is not too "thin" and does not sport too many large "holes" (a concept with

promising, independent applications): conditions that seem often easy to satisfy in

practice.

It would certainly be interesting to combine these results, and extend them (e.g.

looking for low latency on expander graphs, or for efficient bandwidth utilization in

the presence of other error models). At least as interesting, however, would be a more

concrete implementation of the techniques presented here. Achieving the "universal

networking node" remains our ultimate goal, one that we believe has promising prac-

tical applications in fast growing fields of sensor/actuator networks, nanotechnology,

and cellular engineering.

Bibliography

[1] I. Abraham, D. Malkhi, and 0. Dobzinski. LAND: Stretch (1 + E) locality aware

networks for DHTs. In Proceedings of the ACM-SIAM Symposium on Discrete

Algorithms (SODA 04), 2004.

[2] B. Bollobas and F. Chung. The diameter of a cycle plus a random matching.

SIAM Journal on Discrete Mathematics, 1:328-333, 1988.

[3] L. Booth, J. Bruck, M. Franceschetti, and R. Meester. Continuum percolation

and the geometry of wireless networks. Annals of Applied Probability, 13(2):722-

731, 2003.

[4] Olivier Dousse and Patrick Thiran. Connectivity vs capacity in dense ad hoc

networks. In Proceedings of IEEE INFOCOM, 2004.

[5] Olivier Dousse, Patrick Thiran, and Martin Hasler. Connectivity in ad-hoc and

hybrid networks. In Proceedings of IEEE INFOCOM, 2002.

[6] Devdatt Dubhashi, C. Johansson, Olle Haggstrom, Alessandro Panconesi, and

Mauro Sozio. Irrigating ad hoc networks in constant time. In Proceedings of

ACM SPAA, 2005.

[7] Michael B. Elowitz and Stanislas Leibler. A synthetic oscillatory network of

transcriptional regulators. Nature, 403(6767):335-338, 2000.

[8] E.N.Gilbert. Random plane networks. Journal of the Society for Industrial and

Applied Mathematics, 9(4):533-543, 1961.

[9] M. Franceschetti, J. Bruck, M. Cook, and R. Meester. Continuum percolation

with unreliable and spread out connections. Journal of Statistical Physics, 2004.

[10] Greg N. Frederickson and Ravi Janardan. Space efficient message routing in

c-decomposable networks. SIAM Journal on Computing, 19(1):164-181, 1990.

[11] Cyril Gavoille and David Peleg. The compactness of interval routing for almost

all graphs. In Shay Kutten, editor, 12th International Symposium on Distributed

Computing (DISC), volume 1499 of Lecture Notes in Computer Science, pages

161-174. Springer, 1998.

[12] Cyril Gavoille and David Peleg. Compact and localized distributed data struc-

tures. Distributed Computing, 2(16):111-120, 2003.

[13] Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded geometries,

fractals, and low-distortion embeddings. In Proceedings of the symposium on

Foundations of Computer Science (FOCS), Cambridge, MA, 2003.

[14] Anupam Gupta, Bruce Maggs, and Shuheng Zhou. On hierarchical routing in

doubling metrics, 2004.

[15] P. Gupta and P. Kumar. Critical power for asymptotic connectivity in wire-

less networks. Stochastic Analysis, Control, Optimization and Applications: A

Volume in Honor of W.H. Fleming, 1998.

[16] P. Gupta and P. R. Kumar. The capacity of wireless networks.

tions on Information Theory, 46(2):388-404, March 2000.

[17] Kirsten Hildrum, Robert Krauthgamer, and John Kubiatowicz.

in realistic networks. In ACM Symposium on Parallelism in

Architectures (SPAA), 2004.

[18] J. Hill and D. Culler. A wireless embedded sensor architecture

optimization, 2002.

IEEE Transac-

Object location

Algorithms and

for system-level

[19] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong.

Toward a random operation of networks. Submitted to IEEE Transactions on

Information Theory, 2005.

[20] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges: Mobile

networking for "smart dust". In International Conference on Mobile Computing

and Networking (MOBICOM), pages 271-278, 1999.

[21] David Karger and Matthias Ruhl. Finding nearest neighbors in growth-restricted

metrics. In Proceedings of the ACM Symposium on Theory of Computing

(STOC), 2002.

[22] Jon Kleinberg. The Small-World Phenomenon: An Algorithmic Perspective. In

Proceedings of the 32nd ACM Symposium on Theory of Computing, 2000.

[23] Ralph Kling, Robert Adler, Jonathan Huang, Vincent Hummel, and Lama Nach-

man. Intel mote: using bluetooth in sensor networks. In ACM Conference on

Embedded networked sensor systems, page 318, 2004.

[24] Robert Krauthgamer and James R. Lee. The intrinsic dimensionality of graphs.

In Proceedings of the ACM Symposium on Theory of Computing (STOC), pages

438-447, 2003.

[25] Bhaskar Krishnamachari, Stephen Wicker, and Ramon Bejar. Phase transition

phenomena in wireless ad-hoc networks. In Proceedings of the Symposium on

Ad-Hoc Wireless Networks (GlobeCom), 2001.

[26] E. Lebhar and N. Schabanel. Almost optimal decentralized routing in long-

range contact networks. In Proceedings of the 31st International Colloquium on

Automata, Languages and Programming, pages 179-188, 2004.

[27] T.F. Leighton. Introduction to parallel algorithms and architectures. Arrays,

Trees, Hypercubes. Morgan Kaufmann, San Mateo, California, 1992.

[28] L. Li, J. Halpern, and Z. Haas. Gossip-based ad hoc routing. In Proceedings of

IEEE INFOCOM, 2002.

[29] Xiang-Yang Li, Kousha Moaveninejad, and Ophir Frieder. Regional gossip rout-

ing for wireless ad hoc networks. MONET, 1(1):61-77, 2005.

[30] Chip Martel and Van Nguyen. Analyzing kleinberg's (and other) small-world

models. In Proceedings of the twenty-third annual ACM symposium on Principles

of distributed computing, 2004.

[31] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system

based on the xor metric. In Proceedings of IPTPS02, March 2002.

[32] R. Meezer and R. Roy. Continuum Percolation. Cambridge University Press,

1996.

[33] William J. Ouchark, Jay A. Davis, S. Lakshmivarahan, and Sudarshan K. Dhall.

Experiences with the intel hypercube. In Proceedings of the 1986 SIGAPP Sym-

posium on Applied Computing, pages 2-7, 1986.

[34] David Peleg and Eli Upfal. A trade-off between space and efficiency for routing

tables. Journal of the ACM, 36(3):510-530, 1989.

[35] C. Greg Plaxton, Rajmohan Rajaraman, and Andrea W. Richa. Accessing

nearby copies of replicated objects in a distributed environment. In ACM Sym-

posium on Parallel Algorithms and Architectures (SPAA), pages 311-320, 1997.

[36] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott

Shenker. A scalable content addressable network. In Proceedings of the ACM

SIGCOMM Conference, 2001.

[37] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object

location, and routing for large-scale peer-to-peer systems. Lecture Notes in Com-

puter Science, 2218:329-339, 2001.

[38] N. Santoro and R. Khatib. Labelling and implicit routing in networks. The

Computer Journal, 28:5-8, 1985.

[39] Yoav Sasson, David Cavin, and Andre Schiper. Probabilistic broadcast for flood-

ing in wireless mobile ad hoc networks. In Proceedings of IEEE Wireless Com-

munications and Networking Conference (WCNC), 2003.

[40] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrish-

nan. Chord: A scalable Peer-To-Peer lookup service for internet applications. In

Proceedings of the ACM SIGCOMM Conference, 2001.

[41] Kunal Talwar. Bypassing the embedding: Algorithms for low-dimensional met-

rics. In Proceedings of the Symposium on Theory Of Computing (STOC), pages

281-290, 2004.

[42] Mikkel Thorup and Uri Zwick. Compact routing schemes. In A CM Symposium

on Parallel Algorithms and Architectures, pages 1-10, 2001.

[43] D. Watts and S. Strogatz. Collective dynamics of small world networks. Nature,

pages 393-440, 1998.

[44] Wikipedia. Wormhole routing.

[45] Bernard Wong, Aleksandrs Slivkins, and Emin Gun Sirer. Meridian: A

lightweight network location service without virtual coordinates. In Proceedings

of ACM SIGCOMM, 2005.

[46] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph,

and John Kubiatowicz. Tapestry: A resilient global-scale overlay for service

deployment. IEEE Journal on Selected Areas in Communications, 22(1), January

2004.

