
DEVELOPMENT OF DYNAMIC DATABASE STRUCTURES
USING OWL ONTOLOGIES

by

Kurt R. Stiehl

Submitted to the Department of Mechanical Engineering in Partial
Fulfillment of the Requirements for the

Degree of

Bachelor of Science

at the

Massachusetts Institute of Technology

June 2007

@ 2007 Kurt Stiehl
All rights reserved

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document in whole or in part

in any medium now known or hereafter created.

1 ._-

Signature of A uthor · ..
Department of Mechanical Engineering

ebruary 2007

Certified by...
C. bes Dewey

0Pr Mr echanical Engineering ar Biongineering
esis Supervisor

Accepted by

MASSACHUSETTS INSTIT,
OF TECHNOLOGY

JUN 2 2007

LIBRARIES

.................

John H. Lienhard
Chairman, Undergraduate Thesis Committee

ARCHcES

ij

DEVELOPMENT OF DYNAMIC DATABASE STRUCTURES

USING OWL ONTOLOGIES

by

Kurt R. Stiehl

Submitted to the Department of Mechanical Engineering

on February 28, 2007 in partial fulfillment of the requirements

of the Degree of Bachelor of Science in Mechanical Engineering

ABSTRACT

Standard query language database systems cannot provide the level of flexibility and
functionality needed to store all of the data that a modem biologist requires. OWL ontologies
provide much more information about how fields relate to each other including adding
annotations with each field, but do not allow for the storage of mass amounts of data. By
integrating OWL ontologies with modem database systems, scientists will be able to build
ontology-based databases that combine the ease of development of ontologies with the power of
the modem database. In addition, other scientists can now search ontology-based databases and
know that even though the databases are different, the types of data are the same because they
are based on a consistent ontology. The use of ontologies in building modem databases will
create a new environment where users can customize databases to account for new methods in
biology, while at the same time maintaining the ability for others to effectively search the
modified databases.

Thesis Supervisor: C. Forbes Dewey

Title: Professor of Mechanical Engineering and Bioengineering

1. Introduction
The amount of information generated by a modem biologist is growing rapidly. Biologists

are beginning to generate terabytes of data using modem imaging methods as well as complex

analysis programs. The modem SQL database has failed to keep up with the rate of change of

biology. Information is being lost because it is getting misplaced in databases, or it is not

getting stored at all. To combat this problem, new database technology must be developed to

allow for the growing need for data storage and organization. This paper shows how OWL

ontologies developed by the W3C consortium will provide the solution to the current

deficiencies in modem databases.

OWL ontologies are documents that store the relationship between different objects as well

as storing the object description itself. SQL databases on the other hand will only store objects

and their attributes. There is no way to really tell how database objects are linked to one another

without independently discovering the functionality of a specific table. However, by combining

SQL databases and OWL ontologies, it is possible for database designers to build structures that

not only have objects, but have descriptive comments to define what those objects are and how

they relate to one another. Because the ontologies use the descriptive power of the Rich Data

Format (RDF) proposed by the W3C, the descriptions are parsable using machines rather than

requiring human comparisons.

This paper describes the process of creating an ontology-based database and shows that a

laboratory can successfully build a database system without the headaches of current database

technology. Databases are no longer places to store static entries in a few tables, but can

become dynamic resources where entries can be made and entire tables can be created as needed.

2. Theory

The design of dynamic databases using ontologies requires two parts. First the ontology

must be able to create a database, as shown in Figure 1. Ontologies must be able to fully

describe a relational database, so that there is no functionality compromised when using

ontologies instead of making the database directly. Secondly, and more importantly, ontologies

must be able to update and change the database on the fly, while maintaining other users' ability

to search and navigate the database. Only then will the database become truly dynamic in nature.

PMas
Dea

Figure 1 - The structure of the database is controlled by the OWL ontology. The only
things exchanged between the database and the user are the data

In order to understand how the ontologies will create dynamic databases, it is first important

to show how an ontology can map itself onto a SQL database structure. Ontologies are made up

of a class structures to organize data into different classes. Each of these classes can have sub-

classes and super-classes, thus creating an inheritance model. Each of these classes can very

easily represent tables in a database. The tables in the database do not need to know the table

that they inherit their properties from, so the connection is quite simple.

I"~agh~,~a~~rmrrrr rrr

Ontology classes can also contain a number of properties. These properties can either hold

data or links to items in other properties. In a relational database, properties map to columns in

tables. Each class will have properties and each table will have columns. If an ontology

property is a data-type property, then the connection is very simple. All data in that column will

have the properties of the data-type property in the ontology. On the other hand, if the property

is meant to hold objects from other classes, the connection is less direct. The database will be

set up to store the key from the object in the matching table. For example, if a table of

microscopes has a link to another table of lenses, then the link will be created by the key for the

lens table. While the map is not as clean as the data-type properties, the link enables for a much

more robust method to record items in a database than is currently available.

There are some features of ontologies that will not map to the database. The hierarchy of

super-classes and sub-classes can never be written directly into a relational database, and can

only be inferred by the inheritance of properties. In addition, the ontologies contain annotations

for each of the properties and classes that do not transfer into a database structure. But both of

these features are not necessarily lost in the user experience. A user can work directly with the

database and look at only what the tables hold. But to really maintain the power behind the

ontology based database, a user must look through the ontology as well as the database itself.

There, the user will not only find the table format and the data, but can read how one table relates

to others and find information about the tables that a relational database was never meant to hold.

A perfect example is the units of a field. Ontologies will enable a field to have units stored with

it, so a user will always know what the units are that apply to a field. In a relational database,

the same user would only see the data and would never be able to infer in what units the data

were recorded. Thus when a user enters data into the database, that user must look at the

annotations of each column to verify that they are entering the right data.

While ontologies can hold useful information about a relational database table, there are a

few pieces of information that the ontology is missing. Ontologies do not contain the actual

commands to create columns other than the property names themselves. The solution to this

problem comes in two forms. First, properties do contain a range field, even though they do not

contain a specific type field. Thus a hash map must be created to map from ontology range to

database column type. For example, wherever the link to the standard integer of the W3C

consortium is used, the integer form will be applied to the column in the relational database.

These mappings can then be customized to create specialized types and mappings as the user

sees fit. The other pieces of information will come from custom annotations in the database, as

shown in Figure 2. Wherever a user wants to set the size of a field that is separate from the

default size, they can add an annotation that will store this size. Then, in the conversion

program, all the user has to do is point out which annotations are the size annotations, and the

converter will read them into the relational database tables accordingly. If a field is never

supposed to be null, an annotation can be added that will tell the converter to make all fields with

this annotation non-null.

Figure 2 - This is an image from the Prot6g6 property editor showing the annotations that
can be added to complete the translation from OWL property to SQL column

Ontologies can easily create a database, but the crucial part of using ontologies is their

ability to make the ontology dynamic. Unlike fields in a database, each table and field in an

ontology represents a unique link. For example, whenever the property "Molarity" shows up as

a column in a database, the meaning is always the molarity of the specified solution in that entry.

There are no duplicates inside the database. The power of ontologies extends farther when you

can use the synonym functionality. Not only is it possible to say that the property is the same in

the specific database, but it is possible to say that the property is the same as the property in

another database. Thus, "Molarity" means the same thing between databases and can be used

accordingly. The result is that users can now perform searches over multiple databases, using

terms that are defined over a large quantity of databases.

Currently, the solution to creating a global database system is to standardize all of the

databases, so they look exactly the same, making it seem that ontologies are unnecessary. The

problem with standardized databases is that users cannot alter the standard to meet their needs.

But with ontologies, all of this is changed. Users can come in and alter the ontology as they see

fit. They can change the units of "Molarity" to something that is more amenable to their lab (e.g.

nano-molar rather than micro-molar.) They can add and remove tables. The result is that they

do not link to others' definitions, but instead are creating their own definitions others' can now

link to. If one scientist adds a table for a new class of microscopes, other scientists can mimic

those additions and say that their addition has the same form of the first scientists. Then whole

new sets of tables are searchable without ever having to meet and confer that the standard is

correct. In addition, the user has the ability to include annotations with the tables' new and

changed properties, such that other users can better understand the changes without having to

directly contact the first user. Scientists can alter their databases as they see fit, and other

scientists can search these databases for information knowing that as long as the term for which

they are searching is linked to the term they are considering, the values should match

accordingly. Thus a fully dynamic standard can be created that consists of the standard derived

by scientists modifying the database as needed.

3. Methods
Using the theory developed to integrate ontologies into relational databases, tools were

assembled to perform all of the required functions. The first operation required by the user is the

ability to edit and work with the ontology. Although, it is possible to write ontologies by hand

in a text editor, the experiments performed utilized Prot6g6 from Stanford as the ontology

builder. Prot6g6 offers the user the ability to easily visualize and work with the ontology, from

class creation to property editing. Prot6g6 also offers the ability to localize the ontology quickly

and includes a set of standard data-type property ranges. Therefore it is easy to develop a map

of a database in an OWL ontology format.

While Prot6g6 already exists to edit ontologies, there is no tool currently available to convert

them to relational databases. Thus, OWLdb was created to perform the missing task. OWLdb is

built entirely using java, like Prot6g6, allowing it to work on any platform. OWLdb will take a

standard .owl file and will allow you to create and update SQL databases. Currently, OWLdb

only supports MYSQL databases, but other major databases can be added by simply including

their various JDBC plug-ins. A user will not only be platform independent, but will also be

database system independent. As long as the database accepts common SQL commands, they

will be able to create their database from the ontology.

OWLdb also provides functionality to maintain an ontology-based database. A user can

compare an ontology to a database, and see what changes they have made to their ontology, as

shown in Figure 3. Then, once these changes have been documented, a user can upload their

new versions of the ontology. The result will be that only the affected tables and columns will

be changed, keeping all of the other data. This method is opposed to having to reinstall the

database every time. Users can add classes as needed, and all of the older classes with their

respective data will be maintained.

Figure 3 - Shows the Compare tab of OWLdb where a user can look at the differences
between an OWL file and an uploaded database, and then can upload the OWL file to make the

database match it.

Finally, OWLdb allows for the user to control how the ontology is interpreted and to view

how the ontology will be transformed into tables. OWLdb provides a full interactive interface

to look at not only the ontology version of the table as shown in Figure 4, but its converted SQL

view. Users can test ontologies that they create and see if they create the desired tables before

they ever load it into a live database. In addition, users will be able to edit the mapping of the

ontology properties. If they choose to add a data type, or add an annotation for field size,

OWLdb will be able to accept their changes and interpret appropriately. A more complete

description of how OWLdb is built and organized is provided in Appendix A.

The user will be able to easily connect one ontology to another using LSIDs and a simple

web hosting service. By hosing an ontology online, each definition in that ontology becomes a

unique entity that can be found by its LSID. The LSID for an ontology consists of a link to the

ontology, and then a link to the individual objects inside of the ontology. Thus, each class,

property, and annotation has its own address. Users can utilize the equivalent class functionality

in the ontology standard to link their ontologies to other ontologies. Other users can then verify

that two objects are the same and can be used in the same way in a search.

Figure 4 - The OWL viewer in OWLdb. The viewer allows you to look through classes
and compare them to how the translated SQL versions of the classes look when you click the

SQL View tab.

The last tool required is the database itself with OWLdb and Prot6g6. Users can choose any

of the modem SQL databases and operating systems to run their data storage. At this point,

there are no tools written to create pages to input and view the data, but a standard SQL system

should allow for data input into the tables.

4. Results
Using all of the tools above, databases were built and modified to see how the system

worked. There were two groups of people that were targeted. First, the perspective of the

database designer was analyzed. It was crucial to figure out whether or not the designers would

actually benefit from a system that may seem more complicated than what they already have.

Secondly, it was important to look at the database from the perspective of a user who wants to

simply input and search data. Is integrating OWL ontologies a worthwhile decision to make a

database more usable?

4.1 Creating and Modifying a Dynamic Database
From the perspective of the database designer, making a database with OWL ontologies and

the OWLdb converter is easier than most of the current alternatives. The designer can create

tables and sub-tables using the OWLdb interface and then use them to create or modify the

database. They do not have to worry about writing SQL commands, and they can gain from the

class system that OWL offers. The problem of using ontologies for a designer is where to start

to make sure the database is designed carefully.

While creating databases is easy, designing them is still slightly tricky. The standard must

be very well thought out so that users are not constantly fixing bugs and then making databases

dissimilar and hard to search. From the tests run with building different ontologies to make

databases, the better the first version of the database, the more consistent the database would

remain from iteration to iteration. For example, if a database is started and it only has a table for

experiments, the database is essentially unusable on its own because users will have to create

sub-tables for different experiments and operations. Then the only search functions that can be

performed across a wide array of databases are those searches with the top-level experiment

parameters, meaning that no specific experiment will be able to be queried. On the other hand, if

a standard database holds a number of pre-created experiments, then users will be able to start

taking data on those experiments and get more information out of their basic searches without

having to re-work their databases right away.

The conclusion from this finding is that users will not build many ontology structures all the

way from scratch. Instead, different groups with different functions will set up base ontologies.

There could be an ontology for bio-imaging as well as an ontology for DNA sequencing.

Databases will start from a well defined mold instead of completely from scratch. While the task

of making these initial ontologies may seem daunting, groups have already built standardized

databases. Experibase from the Dewey lab is an excellent example of a complete database that

creates all of the tables needed for bio-imaging. There are also other databases available that

simply have to be converted into the OWL format so that they can be then be modified and built

upon.

The real power of the system of using ontologies comes in the design of database

modifications. There are two types of modifications that can be performed. The first is a

modification that simply extends the current capability of a database. An example of this

modification is a user who wants to make a table for a specific type of microscopes, so they

create a subclass of microscopes. The second is a modification that adds a completely new set

of features to the database, allowing the user to store an entirely new type of data.

The ability for a designer to extend a database by simply creating a subclass of a table is

extremely powerful. First and foremost, the designer will inherit all of the properties of the base

table. Any of the annotations on the super-class will be passed on. All of the properties will

have the same sizes and types. All of the information stored on how to build the original table is

saved. Then, all the designer has to do is add the fields that are not available in a normal

iteration of that table. To continue with the microscope example, if the original microscope

does not have a property for a contrast setting, then the user can make a new class of these

microscopes in one click, and then just add the new property titled Contrast. The other

advantage to using ontologies is that other users looking at the database can still see the new

microscopes in their searches even though they are in a new table. In a traditional database, the

user will only be able to search for data table by table, because there is no way of guaranteeing

that the columns in one microscope table are the same as the columns in another microscope

table. With ontologies, the user knows that the columns are the same and can simply look

through not only the microscope table, but every table sub-classed from it

. Database designers may start with a standard, but there is no real restriction to keep it

absolutely consistent with other databases.

The other advantage of using ontologies is that designers can build whole new sections of an

ontology and then send them to other designers to quickly drop them into their database design.

For example, a designer can build a whole set of tables devoted to the operation of a confocal

microscope. The user can then separate the XML code for these tables from the XML code of

the other tables by simply cutting around the tags in the OWL document. Then, any new user

can paste the new tables into their database by adding the XML code to the their ontology.

Ontologies do not read the files in any particular order, so the user could technically add the

tables anywhere inside the ontology as long as it is not inside the defining statement of any other

objects. The result is that users can make plug-ins for all of their different lab techniques, and

then post the small snippets of XML code for other users to add. Instrument manufacturers can

easily support the capabilities of their instruments by adding native tables to the existing

databases. Users can now create a new standard by simply adopting new sections of the

ontology as they see fit. Ontologies allow designers to feel free from dated technology and

organization and can design and share entire new sections without drastic search implications as

seen in current static databases. Labs will be able to reach a state such that whenever a new

technique is performed or a new piece of equipment is acquired, the corresponding OWL tables

will be added to the master database.

Overall, the use of ontologies in database design allows for a much faster turn around and a

much more relaxed approach when trying to design a standard that encompasses every point of a

field. What used to take years to build the perfectly structured database, can now be shortened

to months as database standards can grow. This is especially pertinent to modem biology where

more often then not the science is out-pacing the rate IT can grow to accommodate it. OWL

ontologies will make the use of database storage a real possibility for a fast paced laboratory.

Thus, the major advantages of relational databases that have been developed over the past 20

years can be captured and exploited in a dynamic environment.

4.2 Searching and Entering Data into a Dynamic Database
Noticeable improvements in the ability for users to search and work with were also found

when ontologies were integrated. One major source of improvement comes in the simple form

of documentation. A normal database comes with next to no inherent documentation. Some

database systems come with their own methods for adding information to databases, but there is

no standard across all systems. Ontologies correct for this by providing a cross platform, cross

server interface where a designer can include all of the information a user would need to

correctly and accurately input data into a system. One example already cited earlier is the use of

units throughout different properties. Each numerical property can come with its own unit, as

well as numerical exponent and other desired parameters. In addition, non-numerical inputs can

also begin to be documented. When a column for Description pops up in a database, the user

may not know what they are supposed to describe. But, if Description has a comment attached

to it saying that it is supposed to be used to give a written observation of any abnormalities in a

sample, the user then can correctly fill in the information. A standard SQL database cannot

store all of that information, but using ontologies, this shortcoming can be compensated for by

adding the fields easily and non-destructively as needed. Thus, whenever data are accessed or

deposited into the database, the user needs to look at the ontology as well as the database

schema.

One specific area that has not been pursued is the field of data input into the ontology based

database. In some ways, it would seem that data input has only gotten more complicated because

there is an extra layer of abstraction on top of the database. Based on the limited work done

with test databases, ontologies create a more tractable environment. Ontologies allow for a

developer to quickly create a custom application that will build more complete pages without

ever having to look at the specific schema of the database. Custom input pages can easily be

generated from the ontology itself, because the ontology holds so much more information than

the average database table about what is supposed to be entered. Using ontologies, it is now

possible to develop methods such that the instant a table is created, it's corresponding input page

and display page are also created, as opposed to making custom pages for each table.

Lastly, and most importantly, users gain the ability to search multiple databases easily and

freely. Ontologies allow designers to create dynamic databases that can be based on standards

instead of building a custom database that is only fit for the application of the lab. With the

implementation of these new standards, users can create queries that extend over a large range of

servers, and while some of the servers may have modified the tables slightly and may no longer

contain that specific data, other servers will hold true to the standard and can be searchable

quickly and easily. In addition, it is easy for small clusters of people to synchronize their

databases together. A database does not need to be a centralized entity, but can operate more

like a document for each user, allowing other users to come in and search their data when they

plug into the network. The use of ontologies in database management allows for a whole new

level of computation to be performed on large amounts of data, while still maintaining the ability

for customization to specific applications.

5. Conclusions

The use of ontologies in a modem database system allows for scientists to create and modify

their own database, while at the same time providing a platform for other scientists to search

those databases with better knowledge of the kinds of data they are reading. Problems like

incorrect unit conversions and abstract columns can now be eliminated. The modem SQL

database can start to provide the functionality and the customizability of an XML document,

while building in the power and search-ability of a relational database, all through the overlay of

OWL ontologies.

Acknowledgments

I would also like to thank the individuals in the Dewey lab, including Shiva Ayyadurai, for
helping to work through all of the ideas that have been generated.

Appendix A - The Design Of OWLdb

OWLdb represents the major source of innovation in the work that was performed in this

project. OWLdb has enabled the user to be able to convert their ontologies into full database

schemas without ever having to write a single line of SQL code. In addition, OWLdb has

created a process that allows for a user to create a database entirely using GUI's and a

WYSIWYG interface instead of having to go through and write out each table with each

resepective column, as shown in Figure 5. The major objectives for OWLdb were to first make

the program easy to use. Without a simple and straightforward program, the whole purpose of

OWLdb would be defeated. Second, OWLdb has to be multi-system. The solution to this

problem was simple by just using the Java language from Sun Microsystems. OWLdb should

be able to run in any environment that supports Java. Lastly, OWLdb has to be flexible. Not so

flexible, that the interface is no longer easy to use, but flexible enough that advanced users can

customize the conversion process as well as how they move their ontologies into databases.

OWLdb provides the key link to obtaining a fast and easy database development process.

Through the rest of this appendix, the function and underlying structure of OWLdb will be

described.

Figure 5 - The figure shows the user environment on the left featuring tasks that a user
would want to perform when creating a database. These paths then move through the ontology

stage and into OWLdb as the triangles, where they will finally reach the actual database.

The structure of OWLdb is based on four classes that run each of the functions of the

interface, as shown in Figure 6. The first action that OWLdb must perform is to take an owl

ontology and create objects that can be read and interpreted by the rest of OWLdb. These

objects are called owlTables. In order to create an owl object, the software must run through

and find all of the super classes of the designated class. Then the process of making an

owlTable begins. First the name of the table is inserted as the object name. Then, each of the

annotations related to the class itself are added. These annotations will be displayed next to the

class name, allowing the user to gain more information about each class individually. Next all of

the properties of the class must be included. To do this, the software must find each of the

associated properties for the class, and all super classes, as properties are inherited. The

properties will define all of the parameters that each class has. Lastly, the annotations for each

property must be included. The software must loop back around and check each of the

individual properties for relevant annotations. The annotations will be used to show the user

information about each property as well as to convert the property into a SQL column.

Figure 6 - The figure shows the overall layout of OWLdb, detailing the five major classes
and their functionality.

The next step in the process is to convert the owl object into a SQL table object. The

purpose of having two separate objects is that the conversion process can be controlled such that

the user only performs the process at one instant, and then the results are saved, instead of having

to convert the table every time the SQL properties are accessed. In addition, it enables the

creation of SQL objects from the database itself. To convert to a SQL object from an OWL

object, the name is transferred, and then each of the individual properties are converted into

columns. In order to convert each of the individual properties, the size and type of the column

must be determined. The column type comes from the range field of the property. The ranges

are matched using a list of possible ranges and converting them into their corresponding SQL

types as described in the theory section. The size of the field is derived from an annotation. The

user sets the annotation, so that any annotation they choose can be the field that sets the size of

the SQL column. The only requirement is that the annotation be of an integer type. The last

step of the conversion process is to add in any annotations that have pertinent SQL qualifiers

···I _ I _

(e.g. unique or key.) Each SQL object also includes two additional features. First, the object can

output a SQL string to create the table that is represented by the object. It is then easy to build

databases by simply collecting all of the strings from each of the objects. Lastly, each SQL

object includes functionality to compare its columns to an input column. The SQL objects

created by the database can then be easily compared to the SQL objects created by the ontology,

and the underlying differences can be outlined.

The last step in the process is to connect to the relational databases themselves and enable

the SQL table objects to create and modify tables. The SQL database manager class first takes

care of connecting to the database. The class gathers the connection information from the user

interface and then connects to the respective database. To connect to the database, the class pulls

the correct JDBC plug-in from its library of plug-ins, and uses it to connect. Currently, only one

plug-in is installed, but it should be straightforward to integrate multiple plug-ins at a later point

in time. Once the database is connected, the database manager provides three options. First, it

can download all of the tables from the database and create SQL table objects out of them so that

they can be displayed to the user. The manager can compare each of the downloaded objects to

the list of SQL table objects that are derived from the ontology and include colors to designate

whether an ontology object is creating, modifying, or deleting an object from the database

schema. Lastly, the database manager can modify the database by making select queries that

force the database to resemble the loaded ontology. By using only the required queries, the rest

of the data in the database is preserved, and as long as users are only creating objects, no data are

lost. The ability to merge the ontology is the key behind OWLdb's functionality, and by using

all of the described classes; the process is as clean and clear as possible.

The GUI is the last class required to make OWLdb work. The GUI provides the user with

the ability to view each of the Owl objects as well as each of the SQL objects individually. The

user can then browse through the database and compare how their ontology is being converted

into a table. The GUI then provides a pane to upload it to the database. The pane will either

show the results when the user simply compares the current ontology to the database, or when

the user merges the ontology and actually makes changes to the database. The ability to view

differences in color enables a fast method to spot differences and judge whether the changes are

required or whether, the ontology should be modified to match the database in order to not loose

valuable data. Lastly, there is a pane that allows the user to set up all of the configuration

properties of OWLdb including the source for the OWL file and the SQL database connection

properties. By providing a clean and simple interface, the GUI provides the final element needed

to make a smooth transition from OWL ontology to SQL database.

OWLdb can make the transition from OWL to SQL clean and complete by providing all of

the necessary operations, neatly organized into four different classes. In the future, it will be

possible to add additional features by connecting in new classes and operations, as well as

building on the original classes. OWLdb is a flexible and expandable platform that brings two

worlds together by providing a straight forward path for conversion.

References
Dewey, C.F. et al. (2004) A Unique Opportunity in Biological Information Object Standards. W3C

Conference Paper, 10/27/2004. http://www.w3.org/2004/1 0/swls/forbes_dewey.ppt

Knublauch, H. Dameron, O. and Musen. M.A. (2004) Weaving the Biomedical Semantic Web with the
Prot6g6 OWL Plugin. First International Workshop on Formal Biomedical Knowledge Representation, Whistler,
Canada,2004.

Kohler, J. and Shulze-Kramer, S. (2002) The semantic metadatabase (SEMEDA): ontology based integration
of federated molecular biological data sources. In Silico Biology, 2(3), 219-231.

Lam, YK et al. (2006) Using web ontology language to integrate heterogeneous databases in the neurosciences.
AMIA Annual Symposium Proceedings, 464-468.

Lee, T.J. et al. (2006) BioWarehouse: a bioinformatics database warehouse toolkit. BMC Bioinformatics, 7,
170.

Lee, J. and Goodwin, R. (2006) Ontology management for large-scale enterprise systems. Electronic
Commerce Research and Applications, 5(1), 1.

Michael, H et al. (2005) Deriving an ontology for human gene expression sources from the CYTOMER
database on human organs and cell types. In Silico Biology, 5(1), 61-66.

Ma, J. (2006) Building an Ontology-driven Database for Clinical Immune Research. AMIA Annual Symposium
Proceedings, p1018.

McGuinness, van Harmelen. (2004) OWL Web Ontology Language Overview. W3C Recommendation.

Noy, N.F. and Musen., M.A. (2003) The PROMPT Suite: Interactive Tools For Ontology Merging And
Mapping. International Journal ofHuman-Computer Studies.

Perez,C and Conrad, S. (2006) Database to Semantic Web Mapping using RDF Query Language. Conceptual
Modeling - ER 2006, 25th International Conference on Conceptual Modeling, Tucson, AZ, USA, November 2006.

