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ABSTRACT
The rotator cuff is composed of the supraspinatus, infraspinatus, subcapularis, and teres
minor tendons. Rotator cuff injuries are common athletic and occupational injuries that
surgery cannot fully repair. Therefore tendon tissue engineering can provide alternatives
to surgical solutions. Tendons are composed of parallel lines of bundles of collagen
fibers and fibroblasts called fascicles and a glycoprotein, superficial zone protein (SZP),
which is expressed by the gene, proteoglycan 4 (PRG4) may play a role in joint and
intrafascicular lubrication. Studies have shown that a smooth muscle actin isoform
(SMA), which plays a role in the contraction of smooth muscle cells, is expressed in the
rotator cuff tendon cells. Previous investigations have been conducted to study PRG4
expression and distribution in different regions of the infraspinatus (ISP) tendon. The
aim of this study was to investigate the behavior of adult goat ISP tendon cells and
bovine bone marrow-derived mesenchymal stem cells (BMSCs) cultured in three-
dimensional pellets in chondrogenic (CM), expansion (EM), and tenogenic media(TM).
The focus was on the effects of such growth factors as TGF-fl and hormones such as
dexamethasone and various culture methods, such as the use of 96-well plates and 15 ml
tubes, on the ISP tendon cells' and BMSCs' cell proliferation, chondrogenesis, and
expression of PRG4 and SMA. ISP tendon cells and BMSCs were obtained from five
adult Spanish goats ranging. After 14 days, the pellet cultures were analyzed using
Safranin-O staining and immunohistochemical staining for SZP and SMA. The
biochemical contents of the cell pellet cultures were also evaluated using a DNA assay on
days 0 and 14 and a GAG assay on day 14. It was found that CM, containing TGF-fll
and dexamethasone, induced the most cell proliferation and chondrogenesis. SZP was
expressed in all of the ISP tendon cells pellet cultures that were cultured in tubes. In
comparison to the larger CM-pellets, the ISP tendon and BMSC EM- and TM- pellets
cultured in tubes had higher percentages of SMA present. However SMA was also
expressed in the CM-pellets cultured in the 96-well plates. The results of our study
showed that environmental differences can change SMA expression. Further
investigations on tendon cells and the effects of growth factors, bone morphogenetic
proteins (BMPs), and culture methods on the cell proliferation, chondrogenesis, and SZP
and SMA expression need to be conducted.

Thesis Supervisor: Myron Spector, PhD
Title: Professor of Orthopaedic Surgery (Biomaterials), Harvard Medical School

Senior Lecturer, Department of Mechanical Engineering
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CHAPTER 1- Introduction

1.1 The Rotator Cuff and Ligaments and Tendons

The rotator cuff is a combination of tendons and ligaments that with the synovial

capsule stabilizes the shoulder by holding the head of the humerus in the glenoid cavity

of the scapula. Since the shoulder is a comparatively unstable joint due to the

shallowness of the glenoid fossa and weak supporting ligaments, its stability is dependent

mostly on the rotator cuff tendons and muscles. The main components of this support

system, as shown in Fig. 1, are the supraspinatus, infraspinatus, subcapularis, and teres

minor.

Rotator cuff muscles

- -•.SupraspinaLOus-4-3- -1

raspinatt
scle

Anterior shoulder Posterior shoulder

0 ADAMV.
Figure 1: Diagram of rotator cuff tendons and muscles: supraspinatus, infraspinatus, subcapularis, and
teres minor.2

Tendons and ligaments are fibrous connective tissues that attach muscles to bones

and bones to bones, respectively. Their high tensile strength allows for the range of

motion and stability of the joints. Tendons are complex composite materials that are

mostly water, which is 55% of the net weight, proteoglycans, which are less than 1% and

consist of glycosaminoglycan (GAG) chains, cells and type I collagen, which make up

85% of the dry weight, and smaller amounts of other collagens, such as collagens type

III, V, XII, and XIV. 3 The production and maintenance of the collagen in the tendons is

the main role of tenocytes. 4



The primary structures of tendons are collagen polypeptides that consist of a

glycine molecule at every third amino acid. The three polypeptides form triple-helical

collagen molecules which then form larger collagen molecules by the cleavage of N- and

C-terminal polypeptides. The collagen monomers further form the fibrils which make

bundles of collagen fibers. The fibers combined with fibroblasts are bundled into

Figure 2: Structure and composition of a tendon.

fascicles.6 As seen in Fig 2, the fascicles are formed by fibers being surrounded by a

layer of a fine loose connective tissue sheath of endotenon. The epitenon bundles parallel

lines of fascicles to form the tendon.7

1.2 Tendon Injury and Repair and Restoration Challenges

Since all of the support in the shoulder depends on the tendons comprising the

rotator cuff, the shoulder is actually quite unstable. Rotator cuff injuries are common

athletic and occupational injuries, which can lead to chronic pain and disability.8

(a) (b)
Figure 3: Anthroscopic views of (a) a normal rotator cuff and (b) a small-to-medium tear of a rotator cuff.9

When a tendon is torn or injured, surgery is unable to fully repair and restore its

function.10 According to Ahmed, at al., under normal conditions, a fully developed



tendon is a tissue with a low density of cells and poor vascularization. 11 These are

believed to be reasons for the large amount of time required for the healing of tendons

and the production of an extracellular matrix of lesser quality than before injury.1 2

1.3 Significance of Tendon Tissue Engineering

While surgeries, such as the margin convergence procedure in Fig. 4, on a torn

Figure 4: Diagram of the margin convergence procedure to repair the rotator cuff before (A) and after (B)
the procedure.13

tendon are routine, it is clear that a more effective solution is necessary in providing

improved solutions for the healing of tendons. It has been purposed that the development

of tendon tissue engineering could provide alternatives to existing surgical solutions.14

Surgical procedures such as autografts, allografts, and prosthetic devices are currently

used to treat tendon and ligament injuries. There have been many disadvantages

identified with the use of biological grafts and there are still questions about the lifetime

and quality of prosthetic devices. A large gap caused by a tendon tear is usually difficult

to repair. When a tendon has been completely removed, a graft or replacement device is

used. However, the developmental process of tendon and ligament tissues has not yet

been completely understood. Tissue-engineering solutions such as the use of growth

factors, gene transfer, biodegradable biomaterials, and cell therapy have shown to be

successful in improving the quality of the healing of tendons and ligaments. 15 With this

progress in the research of tissue-engineering and its applications in tendon and ligament

repair, it is essential to increase the understanding of tendon cell growth and repair to

help develop alternatives to surgical repair procedures.

r%



Chapter 2- Research on Rotator Cuff Tendons
and Injuries

2.1 A Review of Research in Tendon Repair and Tendon Tissue Engineering

The investigations of therapeutic approaches for rotator cuff repair and

regeneration, reported in this section, have been conducted in human trials, animal

models, and in cell/tissue culture.

In vitro studies provide the opportunity to evaluate the behavior of cells in well-

controlled environments. One of the culture conditions which can affect the behavior of

cells in vitro is the configuration in which the cells are grown: whether they are grown in

monolayer on the surface of a conventional tissue culture dish or in a three-dimensional

culture. The latter configuration may more closely simulate the environment of the cells

in vivo. Such three-dimensional culture configurations can be achieved by employing

culture methods that allow cells to aggregate into a "pellet" or by seeding cells into

sponge-like scaffolds.

2.1.1 Effects of Growth Factors

Many studies have attempted to define the effects of growth factors on the healing

process of tendons and ligaments. Growth factors such as those from the transforming

growth factor (TGF), epidermal growth factor (EGF), platelet-derived growth factor

(PDGF), and insulin-like growth factor (IGF) families have been able to improve matrix

formation and tendon and ligament cell growth both in vitro and in vivo. However, since

there are still many remaining questions about the regulatory signals that direct the

proliferation of tendon and ligament cells, further studies about these growth factors need

to be performed.16



2.1.2 Effectiveness of the Gene Transfer Method

Using the gene transfer technique, specific genes are transferred into cells in vitro

or in vivo to change their functions. Due to the continuous expression of the exogene, a

high concentration of growth factors can be maintained at the repair site. The exogene

may improve tendon and ligament repair and prevent adhesion. For example, for flexor

tendon injuries, gene therapy can help promote tissue regeneration and prevent adhesion.

Several studies have also demonstrated successes in the transfer of marker genes to

tendons. 17 Many groups have been successful in transferring genes encoding PDGF-BB,

TGF-fl, and ppl25FAK to tendons. 18 19 20

2.1.3 Use of Prostheses and Augmentation Devices

Biological grafts were the first ligament and tendon reconstruction solutions. 21 22

However major problems occurred due to issues such as donor site morbidity, limited

sources, transmission of pathogens, and difficulties with storage. Artificial ligaments

were also designed. However there were more factors which prevented their complete

success. For example, there were continuous inflammatory reactions in the new

ligaments, small amounts of new collagen fibers which were oriented poorly were

produced, there were negative responses to the wear particles of the synthetic materials,

and the articular cartilage underwent reactive degeneration. 23 24 25 Therefore now

biosorbable polymers are used as materials for scaffolds in the area of tendon and

ligament tissue engineering. 26

2.1.4 Role of Cell-Seeded Implants

One major factor in the tissue repair and regeneration process is the presence and

availability of necessary cells. Cells need to be accessible due to their proliferation

potential, cell-to-cell signaling processes, biomolecule production, and the production of

extracellular matrix (ECM). Therefore the quantity of the initially seeded cells can

strongly influence cell-mediated processes. 27 It has been established that there may be a

required minimum number of cells at a repair site for normal neotissue formation.28 Thus

many groups have developed fibroblast-seeded collagen scaffolds for ligament

regeneration on which fibroblast viability and proliferation was studied. Mesenchymal



stem cells (MSCs) have also been isolated from various types of animals and humans.

MSCs can develop into progenitors of different structural and connective tissues such as

bone, cartilage, fat, tendon, and muscle. 29 It has also been reported that autogenous

MSCs can significantly improve the structure and biomechanics of injured tendons. 30 31

2.1.5 Bioreactor Method

One approach to tissue engineering is the implantation of a cell-scaffold

mechanism directly into the repair site so that the body acts as a "bioreactor." Another

solution is the use of an ex vivo bioreactor in which a cell-scaffold composite can be

cultured for a certain amount of time before transplantation into the body. With an ex

vivo bioreactor, biochemical and physical regulatory signals that direct cell

differentiation, proliferation, and tissue development can be introduced in a controlled

manner. An ex vivo bioreactor allows for a better understanding of tissue development. 32

2.2 Previous Studies on Superficial Zone Protein (SZP)/ Lubricin/
Proteoglycan 4 (PRG4) and Alpha-Smooth Muscle Actin (a-SMA)

2.2.1 Studies on Superficial Zone Protein (SZP)/Proteoglycan 4 (PRG4)/Lubricin

Articular cartilage found at joint surfaces has surface, middle, and deep layers that

have different cell architecture, biochemical composition, and mechanical properties. 33 34

A glycoprotein called superficial zone protein (SZP) is produced and secreted by

chondrocytes in the superficial layer of the articular cartilage into the synovial fluid. SZP

is not retained in the ECM. 35 36 SZP has also been found in synovial fluid lining

tendons.37 After a glycoprotein was first identified and isolated to have a role in joint

lubrication, it was named lubricin.38 39 40 Further studies showed that it was related to

SZP; lubricin and SZP are commonly referred to by the name given to the gene which has

been found to encode them, proteoglycan 4 (PRG4).4 1 42 Studies have shown that SZP is

not only involved in joint lubrication, but also growth promotion and cytoprotection.43 44

45 Since there is so much potential in the roles of SZP, further investigations are needed.

Khalafi, et al., studied the influence of bone morphogenetic protein 7 (BMP-7) on

SZP accumulation in cell culture models of bovine superficial articular cartilage. They

also investigated the effects of BMP-7 in combination with other growth factors and



cytokines, such as TGF-fll, FGF-2, IGF-1, and PDGF, on bovine superficial articular

chondrocytes. Chondrocytes treated with the growth factors produced significantly more

SZP than those treated with other growth factors and cytokines. Also the addition of

BMP-7 to the growth factors did not lead to a significant increase in the amount of SZP

produced. In fact, TGF-fll led to the most SZP accumulation.

2.2.2 Studies on Smooth Muscle Actin (SMA) Isoform

As discussed above, tendon fibroblasts in the rotator cuff are important for the

production and maintenance of tendon tissue. During the repair process of an injured

tendon, fibroblasts may display characteristics of a smooth muscle cell and express the

gene for a smooth muscle actin isoform (SMA).46 47 Alpha-smooth muscle actin (a-

SMA) plays a role in contraction and is usually expressed in vascular smooth muscle

cells. 48 Premdas, et al. investigated the effects of different growth factors (TGF-fll,

PDGF-BB, and IFN-by) on the regulation of SMA in rotator cuff cells. The group

discovered that a significant portion of the nonvascular cells expressed SMA in all of the

seven rotator cuffs. It was the first identification of the expression of SMA in rotator cuff

cells and in any type of human tendon.49

In another study, a-SMA was expressed by human MSCs during chondrogenesis

undergone by cells cultured in pellet cultures. The addition of TGF-fll significantly

increased differentiation of the human MSCs which led to an increase in GAG and type II

collagen synthesis and a-SMA expression. The pellet cultures were grown in

chondrogenic media (CM) and growth media (GM). The cells in the peripheral layers of

the CM pellets that were positive for a-SMA mimicked the cells found within the

superficial layer of the articular cartilage and are believed to play an important role in

cartilage development and maintenance. 50

2.3 Previous Studies on PRG4 Expression in Infraspinatus Tendon Tissue
and in Infraspinatus Tendon Cell Pellet Cultures in Various Media

2.3.1 Previous Investigation of PRG4 expression in Infraspinatus Tendon Cells

In the study conducted immediately before this investigation, the goal was to

understand the PRG4 expression and distribution in different regions of the infraspinatus



(ISP) tendon using tendons from eight different goat rotator cuffs.51 PRG4 may act as a

lubricant between fascicles and help separate the collagen bundles during normal

shoulder movement.52 Lubrication between the fascicles helps minimize the shear stress

caused by the movement of the fascicles relative to each other. In this study, the crimped

fascicles were defined as collagen bundles separated by loose connective tissue, as shown

in Fig 5.53

Immunohistochemical staining for PRG4 showed positive staining in the tendon,

in the synovial fluid of the synovium, and on the humeral head, as shown in Fig 6. There

was no staining in the bone. Inside the tendon, the endotenon surrounding the fascicle

expressed positive staining for PRG4. Cells inside the fascicles and the intrafascicular

region between the fascicles were also positively stained.

The fascicle diameter and crimp length of the bursal side of the tendon were

compared to those of the joint side. The crimp length of the joint side was significantly

shorter than that of the bursal side which led to the conclusion that ISP tendons function

under various mechanical conditions. It was also concluded that perhaps intrafascicular

PRG4 expression also changed under various mechanical conditions.54

After verifying the expression of PRG4 in the ISP tendon tissue between the

fascicles, the next steps were to explore PRG4/SZP expression in vitro in monolayer and

pellet cultures.

Figure 5: Photographs of ISP tendon tissue showing the crimped fascicles separated by loose connective
tissue.5s
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Figure 6: (a) Photograph of ISP tendon section after immunohistochemical staining for PRG 4. Note
positive staining for PRG4 in the tendon, synovium, and on the humeral head and negative staining for
PRG4 in the bone. (b) Positive immunohistochemical staining for PRG4 in ISP tendon.56

2.3.2 Investigation of ISP Tendon cell Cultures in Chondrogenic, Expansion, and

Tenogenic Media

The aim of the study following the previous investigation was to understand

PRG4/SZP expression in the rotator cuff and determine the best media for tendogenesis

using monolayer and pellet cultures of ISP tendon cells cultured in chondrogenic media

(CM), expansion media (EM), and tenogenic media (TM). The samples were obtained

from five Spanish goats: #60(+), #60(-), #217(+), #140, #171 and four types of cells were

investigated. Table 1 indicates the cell types.57



Table 1: Goat and Cell Type of the samples and their origins

Goat and Cell Type Origin

# 60 (+) Exclusively from articular side of ISP tendon

#60 (-) From remainder of ISP tendon

#217 (+) Exclusively from articular side of ISP tendon

#140 Whole tenocyte from ISP tendon

#171 Whole tenocyte from patellar tendon of the kneecap

After 14 days, the pellet sizes were measured. Chondrogenic media stimulated

the largest pellet sizes, followed by tenogenic media, with expansion media having the

smallest pellet sizes, as seen Fig. 7.

c -~

N

*'- rJd

6 DO

500

400

300

200

100

000
#60+ #60- #217+ #140 #171

E CM EM OIM Cell Type

Figure 7: Histogram comparing the five cell pellet culture sizes after 14 days of cells being cultured in
CM, EM, TM.58

The pellet cultures were immunohistochemical stained for SZP and stained with

Safranin-O. According to the results, seen in Fig. 8, expansion media seemed to

stimulate SZP expression for all of the cell types. The #140 cell type pellet culture

cultured in tenogenic media was completely positively stained for SZP. The #217 cell

type pellet culture cultured in tenogenic media was partially positively stained for SZP.

The remaining TM pellet cultures were not stained for SZP. Therefore it was unclear if

tenogenic media stimulates SZP expression. Even though the EM pellet cultures

expressed positive staining for SZP, the effects of expansion media in comparison to

other types of media on SZP expression needed to be investigated further.



As seen in the Safranin-O staining results, shown in Fig. 9, CM stimulated ECM

production, chondrogenesis, while the TM pellet cultures did not produce any ECM.

Questions also remained about EM's ability to stimulate chondrogenesis and TM's ability

to stimulate tenogenesis. 59

Immunohistochemical Stamnmn for SZ~
Cell
Type EM TM

#140

Figure 8: Micrographs of immunohistochemical staining of SZP in ISP cell pellet cultures (#60(+), #60(-),
#217, and #140) cultured in EM and TM. All EM pellet cultures were positively stained for SZP.60
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Figure 9: Micrographs of Safranin-O staining of ISP cell pellet cultures (#60(+), #60(-), #217, and #140)
cultured in CM and TM. All CM pellet cultures were positively stained indicating GAG production. 6 1

This study helped in gaining a basic, introductory understanding about ISP cell

pellet cultures, effects of various media, SZP expression, and chondrogenesis. The next

step was a thorough investigation comparing cell types cultured in high density pellet

cultures in various media and their effects on PRG4/SZP and a-SMA expression and

chondrogenesis.
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2.4 Purpose of Current Study

The aim of this thesis was to investigate the behavior of adult goat infraspinatus

tendon (ISP) cells and caprine bone marrow-derived MSCs (BMSCs) cultured in three-

dimensional pellet cultures in chondrogenic, expansion, and tendon media. The reason

that BMSCs were included in this thesis is that they could be of value in future

therapeutic modalities for the treatment of rotator cuff injuries, and therefore it is

important to compare their behavior with cells taken directly from the ISP tendon. The

focus was on the effects of various culture media and culture methods on the ISP cells'

and BMSCs' expression of PRG4/SZP and a-SMA and the stimulation of

chondrogenesis.

2.4.1 Use of Cell Pellet Cultures to Investigate Cell Behavior

Other groups have successfully used pellet cell cultures in their studies. Tanaka et

al found that collage type II was most expressed in pellet mass cultures. Sections of the

pellet masses showed round cells which resembled hyaline chondrocytes and were

forming cartilaginous lacunae. 62 It has also been found that a high-density

microenvironment stimulates chondrogenic differentiation of embryonic stem (ES)

cells. 63 Three-dimensional cultures and pellet cultures of chondrocyte have been used for

in vitro production of large populations of chondrocytes which have the ability to

maintain their phenotype.64 A monolayer chondrocyte culture is unable to maintain the

chondrogenic phenotype.65

A study by Zhang, et al. has shown that chondrocytes cultured using pellet

cultures have similar characteristics of cellular distribution, matrix composition and

density, and tissue ultrastructure as native cartilage.66 Studies have shown that cells

proliferated in pellet culture or high cell density micromass culture form three-

dimensional masses that allow cell-cell interactions that are similar to those in

precartilage growths during embryonic development.67 68 69 70 In another study, cell-cell

contacts such as gap junctions were identified in tendon high-density cultures using

electron microscopy. 71



Schulze-Tanzil, et al. concluded that the use of three-dimensional high-density

cultures could be a significant new method to stimulate differentiation of tenocytes to be

used for autologous tenocyte transplantation in tendon and ligament repair and to study

the effects of various factors affecting the tendon in vitro.72

2.4.2 Characteristics of ISP Tendon cells and BMSCs

It has been suggested that tenocytes can be considered to act like myofibroblasts

and tendons can be considered to act like a contractile organ. 73 Therefore it is appropriate

to use ISP tendon cells to explore their capabilities in relation to tendon repair. Another

challenge in tissue engineering is that when grown in vitro, primary chondrocytes lose

their phenotype which does not allow them to be used for the repair process. However it

has been found that BMSCs are pluripotential.74 75 Therefore it has been suggested that

BMSCs can act as seed cells to differentiate into chondrocytes and for use in tendon

tissue engineering. 76

2.4.3 Goal to Observe Chondrogenesis

Currently there is much discussion and debate about the identity and location of

cells that stimulate collagen synthesis and chondrogenesis during the tendon healing

process. It is believed that both tenocytes and external cells such as cells fron tendon

sheath have roles in tendon repair.77 It is still uncertain if the necessary number of

tenocytes or connective tissue progenitor cells that are needed for repair of an injury are

readily available within the body. There is a need for the use of exogenous cells for

tendon tissue healing.78 Therefore it would be a significant contribution to tendon tissue

engineering if methods could be developed for the stimulation of chondrogenesis in vitro

using cell cultures.

2.4.4 Role of Transforming Growth Factor, TGF-pl and hormone, Dexamethasone

Many studies show that members of the transforming growth factor (TGF) family

stimulate chondrocyte development. 79 For example, the growth factor, TGF-/1, can

stimulate mitotic activity, proteoglycan synthesis, and chondrogenic differentiation. 80 In



fact, Johnstone, et al. observed 100% chondrogenic differentiation in MSCs treated with

TGF-fll while 25% of marrow cell controls underwent chondrogenic differentiation.8

The hormone, dexamethasone, has been shown to induce multiple end-

phenotypes.82 83 In several studies, dexamethasone has stimulated chondrogenic

differentiation of undifferentiated mesenchymal cells.84 In a study conducted by

Zimmerann and Cristea, dexamethasone induced chondrogenesis of murine embryonic

cells that were in organoid cultures. 85 In another study, it induced chondrogenesis in

mesodermal progenitor cells.86 However in the investigation conducted by Tanaka, et al.,

dexamethasone did not seem to have had a significant effect on the stimulation of

chondrogenic differentiation of the embryoid bodies (EBs) which were formed by ES

cells after five days in culture and were encapsulated in alginate. It was suggested that

further investigations were necessary to evaluate the effect of dexamethasone in such

cultures as pellet or micromass cultures.87 .



Chapter 3- Investigation on the Behavior of
Infraspinatus Tendon (ISP) Cell and Bone
Marrow Mesenchymal Stem Cell (BMSC) Pellet
Cultures

3.1 Purpose

In the study differences in behaviors were compared between ISP tendon cells and

BMSCs cultured in pellet cultures in chondrogenic, expansion, and tenogenic media.

We were also studying the effects of differences in growth methods by using 96 well

plates and 15 ml tubes. The investigation's focus was on the effects of contents of the

various media, such as growth factor, TGF-fil and hormone, dexamethasone, and culture

methods on the ISP cells' and BMSCs' expression of PRG4/SZP and a-SMA and the

stimulation of chondrogenesis.

After 14 days, the pellet cultures were analyzed using Safranin-O staining and

immunohistochemical staining for SZP and a-SMA. The biochemical contents of the

pellet cultures were also analyzed using a DNA assay on day 0 and 14 and a GAG assay

on day 14.

3.2 Materials and Methods

3.2.1 ISP Tendon Cells and BMSCs Isolation

The infraspinatus tendons were obtained from the rotator cuffs of five different

Spanish goats ranging in ages two to five. The BMSCs were also taken from the same

five goats (#208, 211, 253, 254, 256). After being minced, the ISP tendons were digested

under shaking for three hours using 0.25% collagenase (M6C8665, Worthington

Biochemical Corporation, Lakewood, NJ). The isolated tendon cells were then treated

with protease, followed by being treated with 0.05% Trypsin/EDTA (GIBCO 25300,

Grand Island, NY) and washed three times using Dulbecco's modified Eagle's medium

with 1 g/l glucose (DMEM-LG; GIBCO 11885, Grand Island, NY) and 10% Feral bovine



serum (FBS). The cells used in the study were at passage 2. The cells were then spun in

20 ml of expansion media (HG-FBS) and 10 ml of media was added.

From the same five Spanish goats, bone marrow was aspirated from the iliac bone

and the ISP tendon cells and MSCs were isolated as discussed above. The bone marrow

sample was then washed with phosphate buffered saline (PBS) and Ficoll-Paque PLUS.

After spinning in the centrifuge at 3000 rpm for 30 minutes, the whitish band at the

interface was removed and washed with PBS. The BMSCs and ISP tendon cells were

plated in a T75 Flask.

For cell suspension of 1 x 106 cells/ml, three types of media were used: CM, EM,

and TM.

3.2.2 Preparation of ISP cells and Bone Marrow Mesenchymal Stem Cells pellet

cultures.

The pellet cultures were cultured in 96 well plates and 15 ml tubes. 200 py of

aliquots were used to sterilize a 96 well, V-bottom, 300 py polypropylene microplate

(Phenix, Hayward, CA, USA). Each pellet culture consisted of 0.2 x 106 cells/well. A

total of six pellet cultures were prepared for each of the five goats so that there would be

three pellet cultures for histological analysis, one for DNA assay on day 0, one for DNA

and GAG assays on day 14, and one for stock.

Six pellets per goat were cultured in sterile 15 ml falcon tubes. 0.5 ml of cells

suspension was placed in each tube and was spun at 1500 rpm for 10 minutes. The cap

was then loosened to allow ventilation and placed in an incubator. Five of the six pellets

were for culture and one was for DNA analysis on day 0. The media of the pellet

reserved for DNA analysis was removed and the pellet was frozen in -20"C. Three of the

pellets were cultured for histology, one for DNA and GAG assay on day 14, and one for

stock. Both the plate and tube were centrifuged for 10 minutes at 1500x g.

3.2.3 Chondrogenic, Expansion, and Tendon Media Preparation

The chondrogenic media (CM) was prepared using Dulbecco's modified Eagle's

medium (DMEM) high glucose with 1% of Hepes (GIBCO, 15630 056), 1% of MEM

non-essential amino acid (NEAA; GIBCO, 11140 050), 1% of Penicillin/Steptomycin/



Glutamate (PSG; GIBCO 10378 016), and 1% of insulin-transferrin-selenium (ITS+1;

SIGMA, 12521). Also bovine serum albumin (BSA) was added so that the concentration

was 17 pl/ ml of media. Immediately before experimentation, using 10 E1 of stock

aliquots per one ml of media, 0.1 mM of L-ascorbic acid 2-phosphate (A2P), 100 nm of

dexamethasone (SIGMA, 2915), and 10 nm/ml media of TGF-fll (240-B-002, R&D,

Minneapolis, MN) was added. The final concentration of TGF-fil was 10 ng/ml media.

The expansion media (EM) was prepared using 500 ml of DMEM low glucose.

50 ml of DMEM was then removed and kept separately. 45 ml of fetal bovine serum

(FBS) and 5 ml of pen/strep (PS) was added. L-ascorbic acid 2-phosphate was added for

a concentration of 10 pl/ ml.

The tendon media (TM) was also prepared using 500 ml of DMEM high glucose

with 1% each of Hepes, NEAA, Pen/Step/Glutamate (PSG), and ITS+1 (100x). 9.37 ml

of bovine serum albumin (BSA) was added so that the concentration was 17 ll/ ml of

media. Then 45 ml of ham was removed and 45 ml of 10% FBS was added. L-ascorbic

acid 2-phosphate was added for a concentration of 10 pl/ml.

The media in the 96-well plates and the 15 ml tubes were changed every other day

for 14 days.

3.2.4 Histological Analysis using Safranin-O staining and Immunohistochemical

Staining of SZP and a-SMA

To determine the effective diameters of the pellets, Image J software (NIH,

Bethesda, MD) was used to find the area of each pellet. To prepare sections for

immunohistochemical staining, the pellets were rinsed with PBS, fixed in 4%

paraformaldehyde for three hours, embedded in paraffin, and cut into 5 pm thick cross-

sections.

One of the immunohistochemical staining process was the safranin-O staining to

stain sulfated glycosaminoglycans (GAG). The sections were also stained for SZP and a-

SMA.

The following immunohistochemical staining processes were performed by the

DakoAutostainor (DakoCytomation, Caprinteria, CA) using the program for PRG4.

After deparaffinization with xylene, the sections were hydrated in ethanol and were



treated with a final wash of tris-buffered saline (TBS, S3001; DakoCytomation,

Carpinteria, CA.). They were then treated with 0.1% protease XIV (P5174; Sigma, St.

Louis, MO) for 45 minutes to aid with the penetration of the antibody into the tendon

tissue. Before incubation with the primary anti-body, the sections were treated with

peroxidase-blocking regent (S2001; DakoCytomation) for ten minutes and 5% goat

serum (Sigma) for 30 minutes. The primary antibody used for 30 minutes was a purified

monoclonal antibody to PRG4 (#S6.79; from T.M. Schmid, Rush University Medical

Center, Chicago, IL) at 1:1000 dilution (1 p g/ml protein concentration). The anti-body

was produced in a mouse against human PRG4 and it reacts to different mammalian

PRG4/lubricin molecules (Su, 2001 #67). Instead of being treated with the PRG4

antibody, the negative immunohistochemical control sections were treated with non-

specific mouse myeloma immunoglobulin IgG 2a (cat. #02-6200; Zymed Laboratories,

South San Francisco, CA). The stains could be seen by using biotinylated link as a

secondary reagent, streptavidin-HRP as a tertiary reagent (K0675; DakoCytomation), and

AEC substrate chromogen (K3464; DakoCytomation). After the staining procedures, the

slides were counterstained with hematoxylin.

A MicroFire Model S99809 camera (Meyer Instruments, Houston, TX) mounted

on an Olympus BX51 microscope (Olympus, Tokyo, Japan) was used to capture pictures

of the stained sections.

3.2.5 Biochemical Analysis of Pellets
In preparation for the biochemical analysis of the cell pellets, the pellets were

digested with protease K (Sigma, P6556). The amount of DNA was measured on days 0

and 14 using Quant-iT PicoGreen dsDNA Assay Kit (P7589, Invitrogen). The amount of

GAG was spectrophotometically measured by using dimethylmethylene blue (Farndale,

1986 #396), with chondrotin sulfate as a standard and by being normalized to the amount

of DNA.

3.2.6 Statistical Analysis

An analysis of variance (ANOVA) was used to evaluate the effects of the three

different media and two cell types on the results. To determine the DNA and GAG



content significance, Fisher's post hoc test was used. The data was collected and the

mean ± SD was calculated. The significance level for the data was set at p < 0.05.



Chapter 4- Results and Discussion on the
Behavior of ISP Tendon Cells and BMSCs Pellet
Cultures

4.1 Results

4.1.1 Cell Pellet Culture Macroscopic Observations

All of the pellet cultures had smooth surfaces. However the CM pellets were the

smoothest and most transparent, as seen in Fig. 11.

Figure 10: Micrographs comparing pellets of ISP cells and BMSCs cultured in 96 well plates and 15 ml
tubes in CM, EM, and TM.



The EM- and TM-pellets were globular and white. The CM-pellets were much

more irregular in shape that the EM- and TM-pellets because they consisted of small

aggregates that combined together.

The largest pellet sizes were of those cultured in the chondrogenic media, as seen

in Figs. 10 and 11. Pellets cultured in tendon media were the second largest and those

cultured in expansion media were the smallest.

While the ISP tendon cells pellets cultured in CM were significantly larger than

the EM and TM groups, there was a smaller difference between the BMSCs CM-, EM-,

and TM-pellets, as seen in Fig. 11 (b).

The large sizes of the CM-pellets facilitated the experimentation and analysis

process. Usually due to their small size, the EM-pellets were often lost during various

procedures, such as changing of media and paraffin sectioning. The EM-pellets were

difficult to distinguish and pick up inside the 96-well plates and 15 ml tubes.
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Figure 11: (a)-(b) Histograms comparing the average area of the ISP cell and BMSC pellets cultured in
CM, EM, and TM. (c) Histogram comparing the average effective diameter of the ISP cell and BMSC
pellets cultured in CM, EM, and TM. Mean ± SD.

As observed in Fig. 11 (c), the effective diameters of the pellets ranged from

approximately 0.75 mm to approximately 3 mm, a difference of four-times. The ISP

tendon cell pellet sizes were greatly affected by the type of medium as demonstrated by

the two-fold difference between the sizes of the CM- and EM- pellets groups.

Three-factor analysis of variance (ANOVA) demonstrated that there were

significant effects of cell type (p < 0.0001; power = 0.99), medium type (p < 0.0001;

power =1), and culture condition (i.e., well or tube; p = 0.001; power =0.95) on the

diameter of the pellets.
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4.1.2 Safranin-O, SZP, and a-SMA staining

Safranin-O staining was used to evaluate the stimulation of chondrogenesis in the

pellet cultures. As seen in Tables 2 and 3 and Fig. 14, all of the 96-well plate and tube

ISP tendon cells and BMSCs pellet cultures cultured in the chondrogenic media, which

contained TGF-fll and dexamethasone, had positive staining for safranin-O staining,

indicating chondrogenic differentiation. However none of the pellets cultured in either

expansion or tenogenic media. Also neither culture media contained any growth factors

or hormones, were stained by safranin-O. During the study, many EM-pellet cultures,

indicated by a N/A in Tables 2 and 3, were lost during changing of media, cutting of

paraffin sections, or other processes due to their small size. Therefore they could not be

studied.

As shown in Tables 2 and 3, none of the pellets cultured in the 96-well plates

stained positively for SZP. However a little less than half of the ISP tendon cells CM-

pellets and all of the ISP tendon cells EM-pellets cultured in the tubes expressed SZP.

None of the BMSC pellets indicated SZP expression.

All of the ISP tendon cells and BMSCs CM-pellets that were cultured in the 96-

well plate stained positively for a-SMA. However a smaller portion of the CM-pellets

cultured in the 15 ml tubes indicated the existence of a-SMA. While none of the 96 well

plate EM-pellets had positive staining for a-SMA, all of the EM-pellets cultured in the

tubes were positive. For the TM-pellets, the results varied depending on the cell type and

culture methods. As shown in Table 2, TM did not affect the ISP tendon cells pellets in

the 96-well plates. However most of the ISP tendon cells pellets in the tubes and all of

the BMSCs pellets stained positively for a-SMA.

Table 2: Summary of staining of ISP tendon cells pellet cultures.

ISP Saf-O SZP SMA
96well Tube 96well Tube 96well Tube

CM 4 (4) 5 (5) 0 (5) 2 (5) 4 (4) 2 (5)
EM N/A 0 (3) N/A 3 (3) N/A 2 (2)
TM 0 (4) 0(5) 0 (4) 0 (5) 0 (4) 4 (5)

Note: Data represented in following form: Number of positively stained pellets (total number of pellets)



Table 3: Summary of staining of BMSCs pellet cultures.

BMSC Saf-O SZP SMA
96well Tube 96well Tube 96well Tube

CM 3 (3) 4 (4) 0 (3) 0 (4) 2 (2) 1(4)
EM 0 (3) 0 (4) 0 (3) 0 (4) 0 (1) 3 (3)
TM 0(4) 0(4) 0(4) 0(4) 4 (4) 4(4)

Note: Data represented in following form: Number of positively stained pellets (total number of pellets)

Figure 12: Micrographs comparing the 30 to 50% positive stain to the 50 to 70% stain and more than 70%
stain of the immunohistochemical staining using safranin-O, a-SMA, and SZP staining.

4.1.3 Cell Proliferation and DNA Assay Results

To study cell proliferation of the pellet cultures, the DNA content of the pellets

was measured using DNA assay on 0 and 14 days after culture. As shown in Fig. 13,

after two weeks, the DNA content per pellet decreased in all of the pellet cultures. In the

ISP tendon cells CM-pellet cultures the DNA content was significantly higher than that in



the EM- and TM-pellet cultures. There was also a significant difference between the

DNA content of the pellets cultured in the 96-well plates and 15 ml tubes. For both ISP

tendon cells and BMSCs groups, the 96-well plates had significantly less DNA content

than the tubes.

Figure 13: Histogram comparing the DNA assay results for ISP tendon cells and BMSCs cultured in CM,
EM, and TM in 96-well plates and 15 ml tubes. Mean±SEM.

4.1.4 GAG content and GAG Assay Results

The results from the GAG assay matched the immunohistochemical staining

results. GAG content was significantly higher when ISP tendon cells were cultured in

chondrogenic media. The ISP tendon cells CM-pellets grown in tubes had the highest

GAG content in comparison to all of the other pellet cultures. However the GAG content

in the ISP tendon cells pellets cultured using 96-well plates was significantly lower than

that in the ISP tendon cells pellets cultured in tubes.
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Figure 14: Histogram comparing the GAG assay results for ISP tendon cells and BMSCs cultured in CM,
EM, and TM in 96-well plates and 15 ml tubes. Mean±SEM.

4.2 Discussion and Future Studies

From the study we learned that adult goat infraspinatus tendon (ISP) cells can

survive in pellet cultures for at least two weeks. Previous work has demonstrated this for

BMSCs. Similar to previous studies, it appeared that TGF-fll and dexamethasone, which

were two of the contents of the chondrogenic media, encouraged the most cell

proliferation. Chondrogenic media also stimulated the most chondrogensis due to the

combination of TGFf/-1 and dexamethasone. Of importance, the results of our study

showed that ISP tendon cells as well as BMSCs can undergo chondrogenesis in vitro

under appropriate conditions. This finding is consistent with the presence of

cartilaginous regions within tendons, particularly at sites under compressive loading.

Moreover, the 15 ml tubes would be recommended over the 96-well plates to produce

higher DNA and GAG content.

Another notable finding of this thesis is that ISP cells were found to express the

gene for SZP. Interestingly, this expression was dependent on the medium type, with no

such expression seen in ISP cells in TM. This observation is consistent with the finding

of SZP within tendons at certain locations, likely serving to lubricate regions of the

tissue.

Khalafi, et al. reported that in their study on the effects of growth factors, BMPs,

and cytokines on SZP accumulation, TGF-fll induced the largest response.88 Their
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results corresponded with those of other studies which indicated that TGF-fll is a strong

stimulator of SZP expression. 89 90 91 However the results from our study did not indicate

that TGF-fil had a large effect on SZP synthesis. In fact a significantly smaller

percentage of ISP tendon cells CM-pellets cultured in tubes were stained positively in

comparison to the 100% of the ISP tendon cells EM-pellets which expressed SZP.

Therefore no definite conclusion could be made about the contributions of the contents of

the media culture on SZP expression. Further studies would be able to clarify the

findings of this study.

For the ISP tendon cells and BMSCs pellets cultured in tubes, a higher portion of

those in expansion media and tenogenic media were positively stained for a-SMA than

those cultured in chondrogenic media. The smaller EM and TM-pellets had higher

percentages since a-SMA acts to contract the smooth muscles, which matches with

results of previous studies. Smooth muscle actin expression leads to the generation of

higher contractile forces by the musculoskeletal tissues to help produce tissue specific

architecture. 92 'On the other hand, the bigger CM-pellets cultured in the 96 well plate

were also positively stained for a-SMA. It has been reported that TGF-fll can stimulate

SMA expression. 93 94 "The SMA-positive cells in the peripheral layers of the

chondrogenic pellets mimic those within the superficial layer of articular cartilage and are

speculated to play a major role in cartilage development and maintenance.""95 The results

of this study show that different biomechanical environments can affect SMA synthesis.

This study helps us understand some of the factors which contribute to cell

proliferation and chondrogenesis of tendon cells. We also verified that it is reasonable to

use pellet cultures to study the behavior of tendon cells. One of the considerations for

future investigations is the use of bone morphogenetic proteins (BMPs). They have been

shown to promote chondrogenesis from commitment to terminal differentiation. 96 It has

been proposed that BMSCs can be induced to differentiate into tenocytes using BMP12, a

BMP in the TGF-fl family. Wang, et al. reported they were successful in introducing an

exogenous BMP12 gene into BMSCs from rhesus monkeys using a gene transfection

technique. Using morphological and molecular biological techniques, they confirmed the

irreversible differentiation of BMSCs into tenocytes.97



It is also believed that TGF-fl3 plays a role in chondrogenic maturation. Mackay

reported that human MSCs differentiated into chondrocytes when cultured in cell pellet

cultures and treated with TGF-fi3.98

It has been suggested that high-density cultures are promising methods for long-

term growth of human tenocytes in vitro. They could be applied to study the effects of

drugs and for autologous tenocyte cultivation.99 Further studies of factors, such as those

suggested above and those from the current and previous studies, affecting the

chondrogenesis of ISP tendon cells and BMSCs and the differentiation of BMSCs into

tenocytes are necessary to near the goal of producing effective methods for tendon tissue

engineering and alternatives to surgical solutions.
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