
Persistent Vision-Based Search and Track Using

Multiple UAVs

by

Brett Bethke

S.B., Aeronautical/Astronautical Engineering
S.B., Physics

Massachusetts Institute of Technology (2005)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2007

© Massachusetts Institute of Technology 2007. All rights reserved.

A uthor v-. . ;. . 4..

Department of Aeronautics and Astronautics
May 25, 2007

Certified by.......
Jonathan How

Professor
A is SupervisorI

Accepted by.............. T *IIIN

VA** Jaime Peraire
Professor of Aeronautics and Astronautics

Chair, Committee on Graduate Students

AERO

2

Persistent Vision-Based Search and Track Using

Multiple UAVs

by

Brett Bethke

Submitted to the Department of Aeronautics and Astronautics
on May 25, 2007, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

Unmanned aerial vehicles (UAVs) have attracted interest for their ability to carry

out missions such as border patrol, urban traffic monitoring, persistent surveillance,
and search and rescue operations. Most of these missions require the ability to detect

and track objects of interest on or near the ground. In addition, most of the missions

are inherently long-duration, requiring multiple UAVs to cooperate over time periods

longer than the endurance of a single vehicle. This thesis presents a framework to

enable such missions to be carried out autonomously and robustly. First, a technique

for vision-based target detection and bearing determination that utilizes a video cam-

era onboard each UAV is presented. The technique is designed to detect the presence

of targets of interest in the camera video stream and determine the bearing from the

UAV to the target even when the video data is noisy. Next, a cooperative, bearings-

only target estimation algorithm is presented. The algorithm is shown to provide

better estimates of a target's position and velocity in three dimensions than could

be achieved by a single vehicle, while being computationally efficient and naturally

distributable among multiple UAVs. Next, a task assignment algorithm that incorpo-

rates closed-loop feedback on the performance of individual UAVs and sensor suites

is developed, enabling underperforming UAVs to be dynamically swapped out by the

tasking system. Finally, flight results from several persistent, multiple-target search

and track experiments conducted on MIT's Real-time indoor Autonomous Vehicle

test ENvironment (RAVEN) are presented.

Thesis Supervisor: Jonathan How
Title: Professor

3

4

Acknowledgments

I would like to thank a number of individuals for their invaluable support in com-

pleting this thesis. My advisor, Jonathan How, was extremely helpful in providing

guidance and encouragement during this process. In addition, I would like to thank

Kathryn Fischer for her tireless assistance and good spirits. I am grateful to Mario

Valenti for his insightful advice throughout our time working together, and for his

genuine concern for those around him. His friendship and wisdom helped me through

many difficult times. My colleagues, Spencer Ahrens, Dan Dale, Adrian Frank, Ray

He, and Jim McGrew, were and are a pleasure to work with. Their sense of humor,

brilliance, and hard work made working in the lab a fun and creative experience.

I thank my family for always believing in me, and for the hard work and sacrifices

they have selflessly made to give me so many opportunities to follow my dreams.

Their love and encouragement is a continual source of strength. Finally, I thank

Anna Massie for her unwavering support and love. My life is infinitely richer because

of her.

I would like to gratefully acknowledge the Hertz Foundation and the American

Society for Engineering Education for their generous support of this research. This

research has been supported in part by Boeing North America, Incorporated under

contract title "Vehicle And Vehicle System Health Management" and by AFOSR

grant FA9550-04-1-0458.

5

6

Contents

1 Introduction

1.1 M otivation .

1.2 Literature Review .

1.3 O bjectives .

1.4 Overview of MIT RAVEN Research Platform

1.5 A pproach .

2 Robust Vision-Based Target Detection and Bearing

2.1 Hardware and Software Configuration

2.2 Image Processing System

2.2.1 Raw Image Processing

2.2.2 Persistent Object Filter

2.2.3 Video Stream Quality Estimation

2.3 Bearing Determination

2.3.1 Determination of q,

2.3.2 Determination of q2

2.3.3 Determination of q3

3 Cooperative Bearings-Only Estimation

3.1 Problem Formulation and Nomenclature

3.1.1 Discussion

3.2 Pseudo-Intersection Optimization

3.3 Kalman Filter Design

7

Determination

15

16

19

20

21

23

25

27

30

31

34

35

38

40

40

42

43

46

48

50

53

3.4 Estimator Performance .. 54

3.4.1 Experiment 1: Stationary Target 55

3.4.2 Experiment 2: Maneuvering Target 58

4 Health Management Feedback in Task Assignment 61

4.1 Task Assignment Problem Definition 64

4.2 Selection of Performance Model . 65

4.3 Example: Modification of RHTA to Include Health Feedback 66

4.4 Simulation Results . 68

5 Experimental Results 71

5.1 Real-Time 3D Operator Interface . 71

5.2 Flight Experiments . 73

5.2.1 Cooperative Tracking of a Ground Vehicle 73

5.2.2 Cooperative Tracking of a Flying Vehicle 75

5.2.3 A rea Search . 78

5.2.4 Persistent Search and Track 78

6 Conclusion 85

6.1 Performance Criteria Summary . 85

6.2 Future W ork . 87

A Derivation of the Pseudo-Intersection Formulae 89

A.1 Problem Statement . 89

A .2 Solution . 90

8

List of Figures

1-1 Northrop Grumman RQ-4 Global Hawk

1-2 General Atomics MQ-1 Predator

1-3 NASA Helios prototype .

1-4 System success criteria .

1-5 Five vehicle coordinated flight test on MIT's RAVEN . . .

1-6 RAVEN operator interface

1-7 Operator station .

1-8 Two Vicon cameras .

1-9 Draganflyer V Ti Pro RC helicopter

1-10 RC ground vehicles .

2-1 Draganflyer SAVS RC helicopter [8]

2-2 Draganfly SAVS receiver

2-3 RC vehicles used as targets for the vision tracking system

2-4 Examples of noisy images from the camera system.....

2-5 LifeView FlyVideo 3000FM video capture card [26]

2-6 Image processing system schematic

2-7 Raw Image Processing Algorithm

2-8 Raw image processing step 1: raw image

2-9 Raw image processing step 2: downsampling and conversion

2-10 Raw image processing step 3: histogram equalization . . .

2-11 Raw image processing step 4: conversion to binary image

2-12 Raw image processing step 5: blob location determination

9

. 16

. 16

. 16

. 20

. 21

. 22

. 22

. 22

. 22

. 23

. . . 26

. . . 26

. . . 27

. . . 28

. . . 29

. . . 30

. . . 31

32

ayscale 32

. . . 33

. . . 33

. . . 34

to gr

2-13 Persistent Object Filter Algorithm 36

2-14 Raw im age . 37

2-15 Processed image with detected and filtered objects (green circles) . . 37

2-16 Bearing vector a . 39

2-17 Pre-calibration misalignment . 41

2-18 Aligning camera centerline . 41

2-19 Adjusting camera yaw. Calibration finished 41

2-20 Pinhole camera model . 42

3-1 The bearings-only estimation problem. Observation vehicle: blue. Tar-

get vehicle: green . 44

3-2 Non-observable motion in the bearings-only estimation problem . . . 44

3-3 Use of multiple observation vehicles to eliminate the observability prob-

lem . 46

3-4 With perfect measurements, the observation rays intersect in a single

p oint . 48

3-5 With real (noisy) measurements, the observation rays do not intersect

at all . 48

3-6 hi(q)2 is the shortest distance from q to li(A) 50

3-7 Non-cooperative estimator vehicle configuration for Experiment 1 . . 56

3-8 Cooperative estimator vehicle configuration for Experiment 1 56

3-9 Non-cooperative estimator results for Experiment 1. Mean estimation

error: x = 0.0795 m, y = 0.0390 m. Standard deviation: ox = 0.0852 m,

o- = 0.0425 m . 57

3-10 Cooperative estimator results for Experiment 1. Mean estimation er-

ror: x = -0.0265 m, y = 0.0368 m. Standard deviation: cx = 0.0082 m,

01 = 0.0083 m . 57

3-11 Non-cooperative estimator results for Experiment 1 (stationary observ-

ing vehicle case). Mean estimation error: x = -0.6339 m, y = -0.1280 m.

Standard deviation: r, = 0.8718 m, u, = 0.3069 m 58

10

3-12 Setup for Experiment 2 . 60

3-13 Results for Experiment 2 . 60

4-1 Overall autonomous mission system architecture 62

4-2 Incorporation of health state feedback in the Task Assignment component 63

4-3 Simulation results (normal RHTA) - Median service time: 18.8 see,

Average service time: 21.3 see, Vehicles lost: 5 of 20 (25.0%) 70

4-4 Simulation results (extended RHTA) - Median service time: 14.0 sec,

Average service time: 17.4 see, Vehicles lost: 1 of 20 (5.0%) 70

5-1 Operator interface showing flying vehicle and ground vehicle locations,

vision system target vectors (red lines) and position estimate (yellow

sphere with vertical column), and environmental obstacles (blue box) 72

5-2 Estimation of target vehicle position (yellow sphere) and velocity (red

arrow) for use in active tracking . 74

5-3 Results of cooperative estimation and active tracking of a ground vehicle 74

5-4 Cooperative tracking of a flying vehicle 76

5-5 Flying vehicle tracking results. Mean x estimation error: 0.0312m.

Standard deviation: o = 0.0192m . 76

5-6 Flying vehicle tracking results. Mean y estimation error: -0.0501m.

Standard deviation: o = 0.0417m . 77

5-7 Flying vehicle tracking results. Mean z estimation error: 0.0557m.

Standard deviation: o-, = 0.0318m . 77

5-8 Area search: detecting multiple targets 79

5-9 Persistent search and track mission setup 80

5-10 Persistent mission, detection phase 83

5-11 Persistent mission, estimation of a stationary ground vehicle 83

5-12 Persistent mission, tracking of a moving ground vehicle 84

5-13 Persistent mission, tracking of a moving ground vehicle 84

11

12

List of Tables

3.1 Mean estimation errors and standard deviations for Experiment 1 . . 58

13

14

Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs) have attracted significant interest in recent years.

Due to improvements in embedded computing, communications, sensing, and other

enabling technologies, UAVs have become increasingly capable of carrying out so-

phisticated tasks. Because UAVs lack a human occupant and are generally simpler

and less expensive than their manned counterparts, they are especially well suited

to a wide range of "dull, dirty and/or dangerous" missions. Examples of such mis-

sions include traffic monitoring in urban areas, search and rescue operations, military

intervention, remote weather monitoring, natural disaster relief, and border patrol.

To date, many different types of UAVs, for a number of different purposes, have

been designed and used [14]. Military applications have spurred the development of

a large number of UAVs for both research and in-the-field operations. The Northrop

Grumman RQ-4 Global Hawk (Figure 1-1) is a long-duration UAV designed for

surveillance. Equipped with Synthetic Aperture Radar, optical and infrared cam-

eras, and other sensors, the Global Hawk can loiter over a target area for over 24

hours and provide a rich set of data to remote observers [37]. The General Atomics

MQ-1 Predator (Figure 1-2) is similarly intended to fill a long-duration surveillance

role, and has also been modified to carry weapons [17]. On the civilian side, NASA

has experimented with a high-altitude, solar-powered UAV called Helios (Figure 1-3).

The project was designed to explore technologies that might allow UAVs to cruise

for weeks or months at altitudes near 100,000 feet using no consumable fuels [36].

15

Figure 1-1: Northrop Grumman Figure 1-2: General Atomics MQ-1
RQ-4 Global Hawk Predator

Figure 1-3: NASA Helios prototype

General Atomics has also built a civil variant of the Predator UAV, which was flown

by NASA to investigate the use of UAVs in high-altitude science missions [351.

1.1 Motivation

The operation of UAV systems has traditionally required a large amount of continuous

human support. Some UAVs require a human pilot to fly the vehicle by hand from a

remote ground station, or at least monitor the systems of the UAV and intervene in the

event of a system failure or off-nominal condition. In addition, the sensor data from

a UAV is often monitored continuously by one or more people on the ground. These

people interpret the data and make a plan for what the UAV should do next based on

their knowledge of the mission. Thus, flying UAVs becomes a very personnel-intensive

activity. Especially in missions that require multiple UAVs to perform many complex

tasks, the amount of human activity and coordination required may be a limiting

factor in the overall performance of the mission.

16

In order for a UAV system to become truly useful for such complex missions, the

level of autonomy in the system must be increased. There are many aspects in the

design of a UAV system where having a high level of autonomy is beneficial. Two

very important aspects are:

" The ability to automatically extract useful information from the sensor data

gathered by the UAVs and autonomously generate a sequence of actions based

on that information that will help to accomplish the mission.

* The ability to autonomously monitor the subsystems of each UAV and decide

what to do in the event of a failure or degraded performance, especially with

regard to deploying or reassigning another vehicle for a vehicle which is no

longer capable of carrying out its assigned duties.

A UAV system that had these abilities would be extremely useful and robust. In

order to build such a system, it is necessary to understand the associated challenges.

Some of these challenges are described below.

Many of the mission scenarios for UAVs require the ability to remotely detect and

track objects of interest on or near the ground. For example, this ability is clearly

necessary in search and rescue operations or when assisting law enforcement during

a high-speed chase. In these missions, the deployment of video cameras onboard

the UAVs is of particular interest due to the richness of information and real-time

situational assessment capabilities that can be provided by the video stream. How-

ever, using this data in an autonomous system poses several challenges. First, vision

processing algorithms must be developed to recognize the object(s) of interest in the

video stream. Second, if the target is found, its state (usually position and velocity)

must be estimated so that the UAV can maneuver to track the target. Especially

when the target is itself maneuvering rapidly or the environment contains obstacles

or terrain that can block the line of sight, it may be difficult for a single UAV to

accurately estimate the state of the target. In such cases it may be beneficial to use

several cooperating UAVs to track the target.

17

Additionally, many of the mission scenarios for UAVs are inherently long in du-

ration, meaning that the goals of the mission cannot be fully achieved within the

useful flight time of a single UAV. For example, in a forest fire monitoring scenario,

it might be required to have aerial coverage of the affected areas on a continual basis

for days or weeks at a time. Successful completion of the mission therefore requires

multiple UAVs to be used in a cooperative fashion, so that new vehicles are ready

to come on-scene when the vehicles currently performing the mission need to return

to base for refueling or maintenance. Developing a system architecture that can

autonomously handle such activities is a difficult problem, especially when vehicle

failures and degradations are considered. These failures are more likely to occur as

the mission length increases, making it very important that the system is able to

handle such occurrences robustly by anticipating their effects and reacting when they

occur.

This thesis addresses the development of an autonomous UAV system that uses

video data from onboard cameras to perform search and track missions over long

periods of time. The system incorporates vision processing algorithms to detect the

presence of objects of interest in the video streams. These algorithms are designed

to be robust to noise in the video data. A cooperative and distributed estimation

algorithm is used to synthesize the processed data from each camera into an estimate

of the position and velocity of the target object, and this estimate is used to predict the

future location of the target and generate a set of tasks that will allow the system to

actively track the target. A task assignment algorithm is used to assign these tasks

to individual UAVs. The task assignment algorithm uses closed-loop performance

feedback to adaptively respond to under-performing or low-fuel vehicles, calling in

replacement vehicles if necessary. This architecture allows the system to perform the

search and track mission in a robust way over long periods of time.

18

1.2 Literature Review

This thesis builds upon a range of work that has been done previously in vision based

techniques, task assignment, and health management of UAV systems.

The use of vision for navigational purposes has been widely studied. A visual

odometer was used in [38] to estimate the translational motion of a helicopter over

flat ground. Another type of visual odometer, suited for use in building inspection,

was presented in [13]. Several groups have studied vision-based landing techniques

[6, 16, 15]. A system for autonomously following a road using vision was presented in

[11]. Additionally, detection and avoidance of obstacles using forward looking cameras

on a UAV was demonstrated in [47].

Vision based techniques have also been used for environmental urban monitoring

and data collection. The problem of remotely detecting forest fires using a group of

UAVs was studied in [25, 24, 7]. The feasibility of using a UAV to collect information

about traffic flows and parking lot utilization was studied in [2].

Use of vision for estimation and tracking of ground based targets has also been

studied. [30] presents a method to circle a target on the ground while keeping the

target in view using a gimballed camera. Another gimballed camera system was used

in [29] to track a target and estimate its position. More recently, a method to use

the measurements from several UAVs to cooperatively estimate and track a moving

target was presented in [1].

The task assignment problem has received considerable attention in the context

of UAV systems. A method for assigning search tasks to a group of UAVs using a

network flow approach was presented in [5]. Task assignment in the persistent aerial

denial mission was studied in [53]. A receding-horizon approach to the task assign-

ment problem was presented in [27] and subsequently developed into a decentralized

version in [28]. Another approach to decentralized task assignment that uses Voronoi

partitions to determine assignments was shown in [10].

The problem of autonomous UAV health management also has been studied. A

system for coping with sensor and control actuator failures was presented in [22].

19

[33] presented techniques for enabling 24/7 persistent surveillance operations, while

[32] presented results of a full surveillance mission with fuel management and sensor

failure recovery.

1.3 Objectives

The objectives of this thesis are to design and demonstrate an autonomous UAV

system capable of executing long-duration, vision-based search and track missions.

The success criteria in Figure 1-4 will be used to evaluate the performance of the

system.

Figure 1-4: System success criteria

20

System success criteria: The system should be able to:

1. Search for and detect a target of interest, which may be moving in three
dimensions, using one or more camera-equipped UAVs. This detection
should be robust to noise in the video data, which may be present due to
radio interference in the wireless transmission of the data or other factors.

2. Estimate the quality of the video data from each UAV, so that the system
can determine if a given UAV's camera is not performing well.

3. Combine the sensor information from one or more UAVs to create an es-
timate of the position and velocity of the target, and use this information
to predict the future position of the target.

4. Use a task assignment algorithm to assign a set of UAVs to locations that
will keep the target in view, given the predicted position of the target. In
addition to simply ensuring that there are UAVs assigned to the proper
locations, the task assignment algorithm should account for the health state
of the vehicles, swapping out underperforming vehicles and those that must
return to base for refueling.

5. Continue the search and track mission for an extended period of time. Here
extended means a time span longer than the flight time of individual UAVs,
thus necessitating the swapping out of vehicles in order to accomplish the
mission.

Figure 1-5: Five vehicle coordinated flight test on MIT's RAVEN

1.4 Overview of MIT RAVEN Research Platform

The MIT Real-time indoor Autonomous Vehicle test ENvironment (RAVEN) was

used as the hardware testbed for this research. A brief overview of RAVEN is pre-

sented here; for more details see [31] and [34].

The core of the testbed consists of a Vicon motion capture system [50] that is

used to provide highly accurate measurements of the positions of numerous ground

and aerial vehicles within a flight space measuring approximately 6x8x5 meters. Two

Vicon cameras are shown in Figure 1-8. This positioning information is distributed

in real-time to a number of processing computers that run the controllers for each

vehicle in the system. The control commands are then sent to the vehicles over a

R/C wireless link, closing the control loop and stabilizing the vehicles.

Each vehicle control computer in the system can receive commands, such as way-

point, takeoff, and landing commands, over the network, allowing multiple vehicles

to coordinate their actions. These commands may be generated autonomously by

higher-level software, such as a task assignment algorithm. They may also be gener-

ated by a human operator through a 3D interface (Figure 1-6) that allows the operator

to easily visualize data from the system and issue commands.

The system allows many different types of vehicles to be flown and tested in a

21

Figure 1-6: RAVEN operator interface Figure 1-7: Operator station

Figure 1-8: Two Vicon cameras Figure 1-9: Draganflyer V Ti Pro RC he-
licopter

controlled environment. To date, a number of different vehicle types have been used

in the system. This research used the Draganfly Innovations [8] Draganfly V Ti Pro

quad-rotor helicopter as the primary vehicle (Figure 1-9). Figure 1-5 shows five such

vehicles hovering autonomously in the RAVEN. The vehicles for this research were

outfitted with the Draganfly SAVS camera system, which enables the video to be

received on the ground by a wireless connection. The system also supports a number

of ground vehicles, such as those shown in Figure 1-10. These ground vehicles were

used as target vehicles in a number of experiments.

22

Figure 1-10: RC ground vehicles

1.5 Approach

This thesis is structured as follows. Chapter 2 presents a technique for vision-based

target detection and bearing determination that utilizes a video camera onboard

each UAV. Chapter 3 develops a cooperative and distributed estimation algorithm

that uses the bearing information generated by the vision system to estimate the

position and velocity of the target. Chapter 4 presents a task assignment algorithm

that incorporates closed-loop feedback on the performance of individual UAVs and

sensor suites, enabling under-performing UAVs to be dynamically swapped out by

the tasking system. Chapter 5 presents a number of increasingly complex flight

results, culminating with presentation of data from a fully integrated search and track

mission. Finally, Chapter 6 concludes the thesis with a summary and and shows that

the performance of the autonomous system meets the criteria specified in Figure 1-4.

23

24

Chapter 2

Robust Vision-Based Target

Detection and Bearing

Determination

Clearly, an important aspect of the overall cooperative search and track mission is the

sensing equipment and processing algorithms that the UAVs use in order to detect

objects of interest. Vision-based methods (i.e., methods that use the data from one

or more video cameras mounted onboard each UAV) are attractive for this purpose

for several reasons. First, the necessary hardware that must be carried onboard the

UAV, which usually consists of the video camera itself and either a video processing

unit onboard or a wireless transmitter to relay the video signal to a ground station,

is readily available in a number of different sizes, weights, and configurations suitable

for use even on small, payload-limited UAVs. Researchers have used a number of such

small camera systems for the purpose of obtaining onboard video from small UAVs

[15, 16, 1, 30]. Another advantage is that once an object of interest is located in the

camera image, the direction to the object in physical space (also referred to as the

bearing) can be determined using a pinhole model of the camera.

For this research, the Draganfly Innovations SAVS wireless camera system (Fig-

ures 2-1 and 2-2) was selected due to its light weight, low power consumption, and

ease of integration with existing hardware. The system consists of a boom-mounted

25

Figure 2-1: Draganflyer SAVS RC heli- Figure 2-2: Draganfly SAVS receiver
copter [8]

camera, onboard transmitter and power circuitry, and a ground based receiver. Using

the video stream from the camera, it was desired to build a vision-based system to

detect objects of interest, such as the small RC vehicles shown in Figure 2-3, and

estimate the bearing from the camera to the object.

In order to accomplish these goals, there are several tasks that need to be accom-

plished. First, a computer hardware and software configuration to transfer the video

stream from the onboard camera into a computer for image processing needs to be

established. Since the objective of the vision system is to provide timely target bear-

ing information for tracking purposes, real-time considerations are important in the

selection of the computer setup. Second, an image processing algorithm for detecting

the position, in image coordinates, of objects of interest in individual camera frames

must be designed. Finally, accurate calibration models of the camera must be devel-

oped so that image coordinates can be translated into target bearing information in

physical space.

A very important design consideration in the image processing system is that noise

and other undesirable image characteristics are very often present in the video stream.

This is especially true with many of the camera systems that can be used on small,

lightweight UAVs, since these cameras must be designed to be light, consume little

power, and often must broadcast their video signals back to a ground station over a

noisy wireless link. Examples of real images from the cameras demonstrating the type

26

Figure 2-3: RC vehicles used as targets for the vision tracking system

of nose that appears are shown in Figure 2-4. In order for the overall vision tracking

system to function reliably, it must be designed to account for these characteristics.

Furthermore, it is desired to estimate the quality of the video signal at any given

point in time, since this information is useful to the tasking system for determining

whether a given UAV has a sufficiently well-functioning camera to be able to carry

out its mission. The following sections will explain how the overall system is designed

and how noise is accounted for in various parts of the processing.

2.1 Hardware and Software Configuration

The hardware setup necessary to capture onboard video from the UAV consists of

an onboard camera, ground based receiver, video capture card, and PC. The camera

onboard the UAV transmits a wireless video stream to a diversity receiver on the

ground. The diversity receiver outputs an analog, composite video signal, which is

connected. to a LifeView FlyVideo 3000FM video capture card (Figure 2-5) installed

in a dual-processor, 64-bit AMD Opteron PC running Gentoo Linux [18] in native

27

Figure 2-4: Examples of noisy images from the camera system

64-bit mode.

Gentoo was selected for the vision processing PC due to its flexibility, good support

for 64-bit architectures, and ability to compile system packages with optimizations

for the particular hardware configuration in use, helping to improve the real-time

performance of the system. The FlyVideo card was found to be a good choice for use

with linux. The card is supported under the saa7134 driver in the linux kernel. The

module should be loaded into the kernel using the modprobe command as follows:

modprobe saa7134 card=2 tuner=39 gbuffers=2

The card and tuner options are necessary so that the card is properly detected and

configured by the driver. In addition, it was determined that the gbuffers option

plays an important role in the real-time performance of the card. According to the

module documentation, gbuf fers controls the number of internal capture buffers the

driver maintains, with a range of 2-32. Setting this number too high resulted in high

latencies, so it is desired to set gbuf f ers as small as possible.

Proper functioning of the module can be tested by running the command dmesg

after loading the module. If the card and module are both working, dmesg should

show messages similar to the following.

saa7133[0]: found at 0000:01:0a.0, rev: 16, irq: 169,

latency: 64, mmio: Oxfc6ffOOO

saa7133[0]: subsystem: 5169:0138, board: LifeView Fly

28

Figure 2-5: LifeView FlyVideo 3000FM video capture card [26]

VIDE03000

saa7133[0]:

saa7133[0]:

saa7133[0]:

saa7133[0]:

[card=2,insmod option]

board init: gpio is 39900

registered device video0 [v412]

registered device vbi0

registered device radio0

For testing purposes, the output from the video capture card can be easily viewed

using a program such as tvtime [49].

The Intel OpenCV computer vision library [21] is used as the main software library

to request images from the video driver and perform the image processing steps.

OpenCV interfaces natively with the Video4Linux2 API supported by the saa7134

driver and provides a large set of very useful utilities for image processing.

29

I Raw Image Instantaneous Persistent Persistent

Processing _object list- - Object Filter object list ,

VideoVideo quality estimate

Estimator

Figure 2-6: Image processing system schematic

2.2 Image Processing System

The function of the image processing system is to generate image coordinates (u, v),

where u and v are measured in pixels, of all objects of interest in the camera video

stream. For the purposes of this research, the objects of interest were various types

of radio-controlled cars and trucks (examples shown in Figure 2-3). The system was

also required to track flying objects, such as the Draganfly UAV shown in Figure 2-1.

These objects were to be detected against a relatively uniform background (in this

case, a white tile floor).

The requirements of the image processing system were to reliably provide the lo-

cations of the objects under a range of different lighting conditions and independently

of the particular camera being used, while being robust to noise in the video stream.

Also, the system had to be capable of running in real-time, so computation time of

the overall image processing algorithm was important. Finally, the system should

estimate the quality of the video signal.

Given these requirements, the image processing system was broken into three

parts, as shown in Figure 2-6. The Raw Image Processing component searches for

objects in individual, instantaneous frames. These objects are then passed to the

Persistent Object Filter, which tracks the presence of the same object across multiple

frames, filtering out objects which appear for only a very short time. This is necessary

since noise may introduce false targets that appear for only one or two frames. Finally,

a Video Quality Estimator determines how much noise is present in the video signal.

30

2.2.1 Raw Image Processing

An algorithm for detecting the presence of target objects in the raw camera images

was designed. The algorithm is shown in pseudo-code in Figure 2-7 and discussed in

detail below.

1 function processRawFrame(:
2 image1 = getRawFrameFromCamera(;
3 image2 = convertToGrayscale(image1);
4 image3 = downsample(image2);
5 image4 = histogramEqualize(image3);
6 image5 = convertToBinarylmage(image4, thresholdValue);
7 array instantaneousObjects[] = findBlobs(image5);
8 return instantaneousObjects;
9 end function;

Figure 2-7: Raw Image Processing Algorithm

First, a raw image from the camera (Figure 2-8) is captured, converted to grayscale,

and downsampled (Figure 2-9). In the current implementation, the raw image size

is 640x480 pixels, and the downsampled image is 320x240 pixels. Downsampling al-

lows the overall algorithm to run much faster, since the downsampled image contains

only one quarter the number of pixels as the original. Furthermore, since the image

processing algorithms used only look for large-scale features of the images, the full

resolution is not needed to reliably detect the targets of interest.

Next, histogram equalization is performed on the image (Figure 2-10). This step

serves to adjust the contrast in the image, which is important since experimental

use of the cameras revealed that different cameras often have dramatically different

contrast levels. In addition, the contrast level of an individual camera can change

as the battery powering it depletes, causing the overall image to darken. Finally,

different lighting conditions also affect the contrast level. By performing histogram

equalization, the intensity level of objects of interest will remain much more constant

over time and across different cameras and lighting conditions, allowing for more

robust object detection.

31

Figure 2-8: Raw image processing step 1: raw image

Figure 2-9: Raw image processing step 2: downsampling and conversion to grayscale

32

Figure 2-10: Raw image processing step 3: histogram equalization

Figure 2-11: Raw image processing step 4: conversion to binary image

33

Figure 2-12: Raw image processing step 5: blob location determination

Next, the image is converted to a binary image (i.e. an image where each pixel

can have only one of two values, 1 or 0) by applying a threshold (Figure 2-11). Here

the assumption that the targets of interest are darker than their surroundings is

used. Since the image contract was normalized in the previous step, it is possible

to experimentally determine a threshold value that differentiates the target from the

background, independent of the camera, battery state, and lighting conditions. It is

clear that the target objects appear as continuous regions in the image.

Finally, the number, size, and location of all such continuous regions ("blobs") in

the image are found using the OpenCV Blob Extraction Library [20]. At this point,

the raw image processing is finished (Figure 2-12).

2.2.2 Persistent Object Filter

As mentioned above, the objects found by the Raw Image Processing algorithm

(instantaneousObjects in Figure 2-7) may contain a number of false targets in-

troduced by noise in the image. Since the noise is highly uncorrelated from one frame

34

to the next, these false targets generally appear very briefly in the video stream, while

real targets persist over many frames. Therefore, a filter was designed to remove tran-

sient objects while retaining ones that appear consistently. The filter is described in

pseudo-code in Figure 2-13.

The algorithm maintains a dynamic list P of objects which have been seen in

previous frames. At each filtering step, the objects in P are compared with those that

have been detected in the current frame (set C). If an object seen previously is similar

enough to one in C, its frame count number is incremented, up to a maximum number

maxFrameCount. If it is not similar to any object in C, its count is decremented.

At the end of the filtering step, objects whose frame counts have dropped to zero are

removed, while those whose counts are above a threshold are returned as persistent

targets.

Results of the filtering algorithm are shown graphically in Figures 2-14 and 2-15.

The figures show a false object resulting from noise that is rejected by the filter (red

box with no green circle), while several true objects are consistently tracked even

when noise obscures them for several frames (red boxes with green circles). This is

possible because the filter remembers that the object was there, even if it disappears

temporarily.

2.2.3 Video Stream Quality Estimation

Detecting the quality of the video signal can be accomplished by designing a filter that

amplifies the type of noise typically seen in the signal. As seen in Figure 2-4, the noise

is characterized by rapidly alternating horizontal dark and light bands. Detection of

these bands is possible by convolving the incoming image I with a kernel K designed

to find horizontal edges, such as

K= 0 0 0 (2.1)

-1 -1 -1

35

1 set C = 0; (The set of objects in the current frame)
2 set P = 0; (The set of persistent objects)
3 function persistentObjectFilter(:
4 for p in P do:
5 p.foundThisFrame = false; (Mark p as "not found")
6 end for;
9 C = processRawFrameO; (Find objects in the current frame)
10 for c in C do:
11 found = false;
11 for p in P do:
12 if (||c.x - p.x|| < Cx) and (|c.A - p.A| < CA) do:

(Determine whether c is similar to p in terms of location in the
image x and area A)

13 p.foundThisFrame = true; (Mark p as "found")
14 p.f rameCount = min(p.f rameCount + 1, maxFrameCount);

(Add 1 to the running frame count of p, up to a maximum count)
15 found = true;
16 break; (Since p was determined, there is no need to continue

examining the other elements of P)
17 end for; (Ends for p in P)
18 if found == false do:
19 c.frameCount = 1; (Initialize the frame count for c)
20 P.push(c); (If c is not found anywhere in P, append c to P)
21 end if;
22 end for; (Ends for c in C)
23 for p in P do:
24 if p.foundThisFrame == false do: (If p was not found in this frame...)
25 p.frameCount = p.frameCount - 1;

(...subtract 1 from the running frame count of p)
26 end if;
27 if p.frameCount == 0 do: (If the frame count of p is zero...)
28 P.pop(p); (...remove p from P)
29 end if;
30 end for;
31 return Q = {q E P : q.frameCount > frameCountThreshold};

(Return all objects that have appeared for at
least f rameCountThreshold frames)

32 end function;

Figure 2-13: Persistent Object Filter Algorithm

36

Figure 2-14: Raw image Figure 2-15: Processed image with de-
tected and filtered objects (green circles)

The processed image P is then given by

P=IOK (2.2)

where 0 denotes the convolution operation. If a metric d(P) over the space of pro-

cessed images is defined as

d(P) =E E |Pi| (2.3)
i=1 j=1

where n, and ny are the width and height of the images and Pij is the value of the

pixel located at (i, J) in the image, then d(P) for a noisy image will be large, while

d(P) for a clear image will be small. Thus, d(P) is a quantitative measure of the

quality of a single image.

The video stream consists of a sequence of incoming images {I1,1 2, I 3 , ... }. For the

image It captured at time t, the processed image Pt and the metric d(P) is computed.

A running average over the previous k frames can be calculated as

D(t) = k :d(P,) (2.4)
r-t--k

D(t) is then a good overall metric of the health of the video system: when D(t) is

large, it indicates that many of the recently received images have been noisy; when

it is small, it indicates that the images have on average been clear. Note that since

37

D(t) is computed at each frame, it represents a continually updated estimate of the

video system health. D(t) can be passed to the tasking system, which can then make

informed decisions based on knowledge of the current quality of each vehicle's video

stream.

2.3 Bearing Determination

The persistent object filter in Figure 2-13 returns a list Q of persistent objects in

the video stream. Each element of Q contains the location of the object in image

coordinates. In order to be of use for estimation and tracking of the object, each set

of image coordinates must now be converted to a unit-length bearing vector a from

the camera to the object in physical space (see Figure 2-16). The bearing vector is

a result of the composition of three successive rotations, which are represented as

quaternions q 1 , q 2 , q 3 :

* qi is the rotation from the fixed global frame to the UAV body frame. This is

determined from the UAV's inertial sensors.

* q2 is the rotation from the UAV body frame to the camera frame, which is

necessary to account for since the camera may not be aligned with the body

frame of the vehicle. For example, the camera may be canted downward at an

angle to provide a better field of view of objects on the ground. This rotation

must be carefully measured prior to flight.

" q3 is the rotation due to the target's position in the image. This is determined

from knowledge of the camera model parameters and the image coordinates

(u, v) of the target.

The quaternions are represented using the standard quaternion notation

q = (q., q., q,, q) -- q. + q.i + gj + qzk (2.5)

Once q 1 , q 2 , and q3 are known, the bearing vector d can be found. This is ac-

38

Figure 2-16: Bearing vector d

complished by first calculating the total rotation quaternion qt by composing the

individual rotations:

qt = qa *2* 1

Here, * represents quaternion multiplication. Next, the 3x3 rotation matrix equivalent

to qt is calculated using the conversion formula

1 - 2q2 - 2q

2qq + 2qzq.

2qxq, - 2qyq,

2qxqy - 2qzqw

1 - 2qx - 2q

2qyqz + 2qxqw

2qxqz + 2qyqw

2qyqz - 2qxqw

1 - 2qx - 2q2

(here the t subscript has been dropped for clarity). Finally, the bearing vector is

calculated by multiplying the unit vector k by R(qt):

d = IZ(qt)k = R(qt)(1, 0, O)T (2.6)

In this case, i is be chosen to be consistent with the particular coordinate frames in

use. Particularly, x in the.UAV body frame is rotated by q 2 to the central axis.of

the camera.

39

R(qt) =

The next three sections describe how each of q1 , q1 , and qi are calculated. Many

of the calculations involve conversion from Euler angles # (roll), 0 (pitch), and @ (yaw)

to quaternions. The necessary conversion formula is presented here for reference.

qw = cos($0/2) cos(O/2) cos(#/2) - sin(@/2) sin(O/2) sin(#/2)

q, = sin(0/2) sin(6/2) cos(#/2) + cos(Vi/2) cos(O/2) sin(#/2)

qy = sin(0/2) cos(6/2) cos(#/2) + cos(@/2) sin(O/2) sin(#/2) (2.7)

qz = cos(@/2) sin(6/2) cos(#/2) - sin(0/2) cos(6/2) sin(#/2)

2.3.1 Determination of qi

qi represents the rotation from the fixed global frame to the UAV body frame. The

UAV's inertial sensors may provide this information directly, or they may give the

rotation of the UAV in terms of Euler angles #b (roll), 6 b (pitch), and @b (yaw). If

this is the case, qi is calculated using Equations 2.7.

2.3.2 Determination of q2

q2 represents the rotation from the UAV body frame to the camera frame. This

rotation must be found through the use of a calibration procedure. It is important

that this procedure be fast to perform, especially since the particular hardware used

in this research, the Draganfly SAVS camera system, uses rubber bands to secure the

camera to the UAV. The camera may sometimes be jostled from its position in the

course of handling the vehicle and thus require calibration on a regular basis.

For calibration, the rotation is first represented by Euler angles #, 0c, and 0c,

where #c and 0c are the azimuth and elevation angles of the camera, respectively, and

e, is the rotation of the camera about its centerline ("yaw"). The UAV is placed on

a stationary stand, and three targets are place in view of the camera. One of the

targets is moved until it is directly in the center of the camera image. Comparing the

computed rays ai with the true positions of the objects using the 3D visualization

tool, the angles are adjusted by hand until the rays intersect the true positions of the

40

Figure 2-17: Pre-calibration misalignment

Figure 2-18: Aligning camera centerline

Figure 2-19: Adjusting camera yaw. Calibra-
tion finished

41

Figure 2-20: Pinhole camera model

objects (Figures 2-17,2-18,2-19). Once the angles are found, q3 is calculated using

Equation 2.7.

2.3.3 Determination of q3

The camera is modeled as a pinhole camera (see Figure 2-20. In this model, light

from an object located at P(x, y, z) follows a straight line from the object, through a

small aperture located at the origin, to the point p(u, v) on the camera image plane.

The camera is parameterized by the distance from the aperture to the focal plane.

This distance is known as the focal length and is denoted by f in Figure 2-20. Once f
is known, the unit direction vector OP can be found using simple geometry, since the

direction is characterized by the Euler angles #i (elevation) and O (azimuth), which

are given by

= arctan -

1= arctan -

Once #4 and 0; are found, they can be converted to quaternion form using Equa-

tions 2.7, with Oi = 0. At this point, q1, q2 , and q3 have all been found, and the

bearing vector d can be computed using Equation 2.6.

42

Chapter 3

Cooperative Bearings-Only

Estimation

The most important outputs of the vision processing system presented in the previous

chapter are the estimated bearing vectors from each camera to the target. In order

for the UAV autonomous system to be able to track the target, this information must

be used to generate an estimate of the position and velocity of the target in three

dimensions.

The problem of estimating the state of a target given only bearing measurements

from a single observation vehicle is known as the bearings-only estimation problem

and has been studied extensively [52, 45, 23]. Figure 3-1 shows the general setup for

the two-dimensional bearings-only tracking problem, where the observation vehicle

is in blue and the target vehicle is in green. Geometrically, it is clear that it is not

possible to determine the state of the target using a single observation (since the

target may line anywhere along the observed line-of-sight). Thus, the problem is

to somehow combine multiple observations to form an estimate of the target state.

In its standard form, the bearings-only estimation problem is nonlinear because the

observed state variables are the measured angles to the target (6 in Figure 3-1). For

this reason, researchers have investigated using nonlinear filtering techniques, such as

Extended Kalman Filters and Unscented Kalman Filters [12, 43, 3], to determine the

state.

43

V

Figure 3-1: The bearings-only estimation Figure 3-2: Non-observable motion in the
problem. Observation vehicle: blue. Tar- bearings-only estimation problem
get vehicle: green

There is an inherent observability problem when bearings-only estimation is at-

tempted with a single observer. The problem is illustrated in Figure 3-2. Geometri-

cally, the problem is simple to understand: when the target vehicle's motion is purely

radial (i.e. along the line-of-sight of the observation vehicle), the measurement 6 will

be constant even though the target is moving. Thus, the observer is unable to detect

radial motion of the target vehicle, regardless of the number of observations taken.

One approach to solving the observability problem is to require the observing

vehicle to execute maneuvers in order to obtain vantage points where the target ve-

hicle's motion is not purely radial [44, 9, 48, 4, 39]. This approach can work very

well, especially if the observing vehicle is very maneuverable, or the target vehicle

is moving slowly or at nearly constant velocity. However, if the target is maneuver-

ing rapidly, it may be difficult for the observing vehicle to complete the necessary

maneuvers quickly enough to improve its estimate.

This research presents a different approach that eliminates the observation prob-

lem by simultaneously combining the measurements of several observation vehicles.

Figure 3-3 illustrates the basic idea. By working together, the two observation ve-

hicles can unambiguously determine the location of the target, even if the target is

44

maneuvering aggressively. Furthermore, this is accomplished without requiring the

observation vehicles to move at all; the system is fully observable at all times. Thus,

the problem of designing and executing potentially complex trajectories for the ob-

servation vehicles is completely eliminated, freeing the observation vehicles to follow

other types of trajectories that may be better suited to the mission at hand. For

example, target tracking becomes simpler to accomplish because the observation ve-

hicles only need to calculate trajectories that keep the target in the field of view of

the camera, without attempting to simultaneously meet the constraints of designing

an observable trajectory as well.

In addition to solving the observability problem, the cooperative approach has

other key advantageous. Multiple UAVs provide redundancy, allowing for continued

tracking even when individual vehicles experience failures. Such failures may include

malfunctions of the camera system or mechanical problems that necessitate the vehicle

returning to base for servicing. Furthermore, the presence of obstructions in the

environment may temporarily block the field of view of a UAV as it attempts to

observe the target. Using multiple UAVs with different lines-of-sight increases the

probability that the target will remain observable to the group of UAVs, even when

individual vehicles' lines-of-sight are blocked. Finally, the cooperative UAV vision

tracking problem can be reformulated as a linear estimation problem. Using the

observed bearings of the target from each UAV, an estimate of the three-dimensional

target position can be obtained by solving an optimization problem. The solution

to this problem can be found very efficiently in time that is linear in the number of

observation vehicles. This estimate is then used as a measurement input to a simple

linear Kalman filter whose state is the position and velocity of the target.

This chapter presents a vision-based estimation and tracking algorithm that ex-

ploits cooperation between multiple UAVs in order to provide accurate target state

estimation and allow good tracking of the target without the need for observation

vehicles to execute maneuvers to gain better vantage points. The method uses an op-

timization technique to combine the instantaneous observations of all UAVs, allowing

for very rapid estimation. Furthermore, the algorithm can be naturally distributed

45

Figure 3-3: Use of multiple observation vehicles to eliminate the observability problem

among all participating UAVs with very modest communication bandwidth require-

ments and is computationally efficient, making it well suited to implementation on

real-time applications. In addition, although the algorithm is designed for use with

multiple observing vehicles, we show that it can also be used in the case where only

a single vehicle is available.

3.1 Problem Formulation and Nomenclature

The statement of the estimation problem is as follows. There is a set V = {V1 , V2 , .. .

containing one or more vehicles, each equipped with a camera and vision processing

subsystem that generates estimated bearing measurements to the target at regular,

discrete intervals T1 , T2 ,...,T,... Denote the set of discrete times by T. Each

measurement consists of a pair of vectors (icv,k, da,k), where the subscripts v E V and

k E T denote the observing vehicle and time the measurement was taken, respectively.

Xv,k denotes the estimated location of vehicle v at time k (as given by the UAV's

onboard navigation sensors), and dv,k denotes the estimated bearing from v to the

target (as given by the video processing system) at that time.

It is assumed that the location and bearing vectors are not perfectly known, since

sensor noise or other factors may cause uncertainty in both the knowledge of the

location of the UAV and the bearing to the target. To capture this uncertainty, we

46

define

Xv,k = xv,k + 6Xvk, Xv,k E R3 (3.1)

where Xv,k is the true location of the UAV, kv,k is the estimated location, and 6 X,,k is a

random variable that captures the uncertainty in the UAV's position. The probability

distribution of 6 Xv,k is assumed to be known. Similarly, we define

dv,k = dv,k + 6dv,k, dv,k E R3 (3.2)

where again d,,k is the true bearing to the target, dv,k is the estimated bearing, and

Jdv,k represents uncertainty in the bearing vector. For convenience, since the length

of ad,k is unimportant (only the direction matters), we shall assume dl,k is unit length

|lv,kI=1 (3.3)

Also, assume that

6d T ,a = 0 (3.4)

This assumption is reasonable given that uncertainty in dl,k is most naturally char-

acterized by uncertainty in the angles from the camera to the target. Again, assume

that the probability distribution of Jdv,k is known. In addition, we assume that the

uncertainty 6dv,k is small:

16dv,ki < Iv,ki = 1 (3.5)

This is reasonable since the uncertainty in direction is likely to be largely a function

of camera calibration, which can be measured relatively easily and accurately.

Finally, a weight W,,k is associated with each measurement. This weight may be

used to account for differences. in the quality of each vehicle's measurement at par-

ticular times (i.e., differences in video quality as estimated by the vision subsystem).

47

Figure 3-4: With perfect measurements, Figure 3-5: With real (noisy) measure-
the observation rays intersect in a single ments, the observation rays do not inter-
point sect at all

3.1.1 Discussion

Note that given the true quantities Xv,k and d,,k, the target must lie along the ray

Iv,k(Av,k) = Xv,k + Zo,kdo,kj Av,k > 0 (3-6)

If the measurements (i5c,k, av,k) from the UAVs were perfect - in other words, if

5Xo,k = do,k = 0 so that Xv,k = Xv,k and dok = dok - then the problem of estimating

the target location would be simple, because all of the rays would intersect in a single

point (see Figure 3-4). To calculate the position of the target in this case, all that is

required is to calculate the intersection of any pair of rays. It is interesting to note

also that in this case, the addition of more measurements does nothing to improve

the estimate, since the intersection is known exactly with only two measurements.

Of course, the real measurements obtained will not be perfect. Instead, each

measurement will be slightly inaccurate, resulting in a picture like the one shown in

Figure 3-5. In this case, it is unlikely that any of the rays will intersect perfectly.

Despite this, it is intuitive from looking at Figure 3-5 that good information about

the location of the target should be obtainable from the measurements, and that in

this case, having more measurements is beneficial in. improving the estimate of the

target position.

48

To incorporate the information from all of the measurements into the estimate, we

would like to calculate the "pseudo-intersection" of all of the rays. This problem can

be formulated as an optimization problem and solved very efficiently. The method to

do this is presented in the next section.

Before presenting the solution to the pseudo-intersection problem, however, the

question of which particular measurements (:k,,k, dv,k) to use at each time step K

needs to be addressed. The objective is to select the measurements whose pseudo-

intersection will yield the most accurate estimate of the current position of the target

(i.e. the position of the target at time K). At the same time, it is clear geometrically

that at least two such measurements must be used in order to determine the pseudo-

intersection. Therefore, if multiple vehicles are present, our strategy will be to use

only the most current measurement from each vehicle. Specifically, the measurement

set Mmutiple is selected as

Mmutiple = {(kvji, dv,k) : v E V, k = K} (3.7)

If, however, only a single vehicle is present, at least one measurement from a previous

time step must be used in addition to the current measurement:

Msingle = {(kv,k, do,k) : v = V, k E {K - n, K - n + 1, ... , K}} (3.8)

Here, care must be taken in selecting how many previous measurement(s) n to use.

Selection of many measurements (large n) will provide greater spatial separation

between the measurements (since the observation vehicle must be moving in the single

vehicle case). However, this will also increase the effective phase lag of the estimator

since many older measurements are being used, resulting in a time-delayed estimate of

the position of the target. Conversely, selecting fewer measurements reduces the lag

of the estimator but may provide small spatial separation, resulting in poor estimates

of the target position. Therefore, the design of the estimator for the single vehicle case

contains a fundamental performance tradeoff that is absent in the multiple vehicle

case. Thus, we expect the overall performance of the multi-vehicle estimator to be

49

q

Xi

Figure 3-6: hi(q)2 is the shortest distance from q to li(Ai)

superior to that of the single vehicle estimator. This prediction will be confirmed in

experimental results to be presented later in this chapter.

3.2 Pseudo-Intersection Optimization

The pseudo-intersection problem is to estimate the true position of the target, q, given

the set of measurements M. The problem can be formulated as an optimization

problem by choosing an appropriate objective function. In this case, a reasonable

choice of objective function is

E(q) = wiki(q) (3.9)
iEM

where hi(q) is the square of the minimum distance from q to the ray li(Ai):

hi(q) = min|Iq - li(Ai)|| 2 = min| q - (xi + Aidi)|I2 (3.10)
Ai Ai

Figure 3-6 illustrates the relationship between q, hi(q), and li(Ai). Minimizing

hi(q) with respect to A yields the result

hi(q) = qTq - 2qTxi + xTi - (dTq - dTxi)2 (3.11)

50

Substituting this result into Eq. 3.9 and minimizing E(q) with respect to q yields the

equation that the optimal estimate must satisfy:

Aq* =b (3.12)

where

n

A = w%(I - did) (3.13)

n

b = wi(x - (xT di)di) (3.14)

See Appendix A for a complete derivation of the above formulae.

Now, A and b cannot be calculated by the algorithm directly because only the

the noisy measurements ki and di are known. To compensate for these errors, A and

b are expanded by substituting Eqs. 3.1 and 3.2 into Eqs. 3.13 and 3.14. After drop-

ping second-order terms and grouping the known and unknown terms, the equations

become

A = A+6A (3.15)

b = b+6b (3.16)

where

A = w a(I-adT) (3.17)

n

6A = -Z wi(6di d + aTdi) (3.18)

b = w (ks-(T l)I) (3.19)

n

6b = wi(Jxi - ([Jdi)di - (6xidi)di - (kJdi)6di) (3.20)

Note that A and b are known terms, because they involve only quantities that are

51

measured directly. 6A and 6b are random variables because they involve the uncertain

quantities 6xi and di. The optimal estimate can now be written as

q* ~~ A-b = (A + 6A) 1(b + 6b) (3.21)

The error term 6A is small (6A < A), since it is composed of terms involving the

small errors 6di. Expanding the matrix inverse function in a Taylor series around A

gives

(A +A) ~ -6A- (3.22)

Thus, Eq. 3.21 becomes

q* ±-16 + A- 16b - A -16AA'b - A 1 oA1 6b (3.23)

~ + A- 16b - -16A -16 (3.24)

where

q* =- (3.25)

is the optimal estimate that can be calculated from the measurements. The error 6q*

in the estimate is

6q* = A- 16b - A- 16AA- 1 b (3.26)

Since the probability distributions of the random variables 6xi and 6di are known, the

covariance of 3q* can be calculated. This covariance is needed in order to implement

the Kalman filter, discussed below.

Eq. 3.25 demonstrates that the optimal estimate q* can be computed in time that

is linear in the number of measurements to the object n. A and b can be constructed

in linear time since they are sums over all rays. Once A and b are known, Eq. 3.25

can be solved in constant time by inverting the 3 x 3 matrix A. Since the entire

process runs in linear time with respect to n, this method is very computationally

efficient. Note that if there is only a single vehicle, n = 1, the matrix A is singular

and Eq. 3.25 cannot be solved. In this case, a single vehicle would have to make

52

an additional assumption about the location of the target, such that it is located on

the ground (z = 0), in order to calculate a solution. In all other cases, however,

A is invertible as long as the observed direction vectors di are not all parallel to

each other. As long as the observation points x, are not in the same location (which

cannot happen since the UAVs cannot occupy the same physical point in space) or on

diametrically opposite sides of the target (which is unlikely for a ground target since

one observation point would be under the ground; for an aerial target, the observing

vehicles need to coordinate to ensure they avoid this situation), a solution can be

found.

3.3 Kalman Filter Design

Once the estimate 4*, taken at time k, is known, it can be used as the measure-

ment into a simple linear Kalman filter based on the assumed dynamics of the target

vehicle [3]. This research uses a system model with state vector

X = [x, y, z,ip , i]T (3.27)

The discrete time system dynamics are then given by

Xk+1 = AXk + Vk (3.28)

Yk = 4* = CXk+ 6q* (3.29)

where Vk is the process noise and 3q* is the measurement noise. The process noise

covariance Vk is assumed to be known based on the dynamics of the target and the

environmental disturbances present. The covariance of 6q* is found as discussed

53

above. A and C are given by

1 0 0 At 0 0

0 1 0 0 At 0
1 0 0 0 0 0

0 0 1 0 0 At
A C= 0 1 0 0 0 0 (3.30)

0 0 0 1 0 0
0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1/

where At is the sampling rate of the filter. Using these dynamics, a linear Kalman

filter can be easily designed and implemented. This filter can be run on each UAV;

the only requirement is that the UAVs communicate their locations xi and estimation

directions di to each other. Since each of these quantities is a three dimensional vector,

this method requires only six numbers to be transmitted by each UAV, making it well

suited for environments where communication bandwidth is limited.

3.4 Estimator Performance

Several flight experiments were carried out to test the relative performance of the non-

cooperative, single-vehicle estimation approach and the cooperative, multi-vehicle

estimation approach. The experiments were conducted by running the estimation

algorithms in parallel with a logging process that collected raw position data of the

target from the Vicon motion capture system. The Vicon measurements were then

used as the truth data against which the estimator data was compared.

In all of the experiments, the performance of the cooperative approach was supe-

rior to that of the non-cooperative approach, as expected. In addition, the assump-

tions made in the derivation of the cooperative estimation algorithm (in particular,

the smallness of the error terms in Eq. 3.5) were experimentally verified by the overall

performance accuracy of the method. In general, the cooperative estimator was able

to give the position of the target to within 0.04m at all times. This is a strong result,

especially given that the target vehicle itself was approximately 0.30m long.

54

3.4.1 Experiment 1: Stationary Target

For the first experiment, a stationary target was used. For the single-vehicle, non-

cooperative estimation, one quadrotor was commanded to move at constant velocity

of approximately 0.2m/s the vicinity of the target in order to provide the spatially

separated measurements required by the single-vehicle estimation process (see Fig-

ure 3-7). For the multi-vehicle, cooperative estimation, two quadrotors were com-

manded to hover at an altitude of 1.25m at stationary locations in view of the target

(see Figure 3-8).

Results of the experiment confirmed that both estimators were able to estimate

the position of the target in the stationary target case, though the performance of

the cooperative estimator was significantly better than that of the non-cooperative

estimator. Scatter plots showing the estimation error for the non-cooperative and

cooperative estimators are shown in Figures 3-9 and 3-10, respectively. From the

figures, it is clear that the cooperative estimator is able to provide a much more

precise and consistent set of measurements; the standard deviation of the estimation

error in the cooperative case is about an order of magnitude smaller than that in

the non-cooperative case (see Table 3.1). The small bias in the cooperative estimate

is due to uncertainty in the orientation of the camera since it is attached to the

UAV with a vibration-dampening rubber band attachment system that may shift

slightly during flight. With a more rigid attachment, the camera could be calibrated

more accurately and the results of the cooperative estimate would be even better.

Furthermore, the data presented for the non-cooperative estimator represents the

best-case scenario where the tracking vehicle is moving constantly. Data taken while

the tracking vehicle was hovering is shown for reference in Figure 3-11. This data

clearly shows that the non-cooperative estimator struggles to give accurate estimates

when the tracking vehicle is not moving much (i.e. when in a hover, where the only

vehicle motion is due to small wind disturbances). Note that the scale in Figure 3-11

is increased by a factor of about 15 as compared with Figures 3-9 and 3-10. This poor

performance is due to the lack of spatial separation in the measurements obtained.

55

Figure 3-7: Non-cooperative estimator vehicle configuration for Experiment 1

Figure 3-8: Cooperative estimator vehicle configuration for Experiment 1

56

One Vehicle Non-cooperative Estimation Error

-U

-

estimated position
true position

* *1'~**

- s'" "

-0.1 0 0.1
x estimation error (m)

0.2

3-9: Non-cooperative estimator results for Experiment 1. Mean estimation
x = 0.0795 m, y = 0.0390 m. Standard deviation: ox = 0.0852 m, a, =
m.

Two Vehicle Cooperative Estimation Error

- estimated position
. true position

-

-0.1 0
x estimation

0.1
error (m)

0.2

Figure 3-10: Cooperative estimator results for Experiment 1. Mean estimation error:

x = -0.0265 m, y = 0.0368 m. Standard deviation: o = 0.0082 m, o-, = 0.0083 m

57

0.2-

0.15-

0.1 F

0.05k

0

0

0

E
.'

-0.2

-0.2

Figure
error:
0.0425

0.1 -

0.05k

0

L.
0t

a-

U)

0

E -0.05-

-0.1 -

-0.15-

-0.2-

-0.2

Jeft L_ II

5 'I I

-T- .
me

-0.05 -

-0.1 -

-0.15 -

0.2

0.15

-0.2

Table 3.1: Mean estimation errors and standard deviations for Experiment 1

T (m) W (m) z (m) o-X (m) U (m) U2 (m)
Non-cooperative 0.0795 0.0390 0.0162 0.0852 0.0425 0.1397
Cooperative -0.0265 0.0368 0.0201 0.0082 0.0083 0.0074

One Vehicle Non-cooperative Estimation Error (Stationary case)
0.5-

0O - "-f ~ au

0 a. a

o -0.5-

E

- estimated position
- true position

-1.5 -
-4 -3 -2 -1 0 1 2

x estimation error (m)

Figure 3-11: Non-cooperative estimator results for Experiment 1 (stationary observ-
ing vehicle case). Mean estimation error: x = -0.6339 m, y = -0.1280 m. Standard
deviation: ox = 0.8718 m, a- = 0.3069 m

3.4.2 Experiment 2: Maneuvering Target

The second experiment examined the estimators' performance in tracking a vehicle

which was maneuvering on the ground. For this experiment, the cooperative estimator

was run using observations from two quadrotors commanded to move in order to keep

the estimated location of the target in view of both vehicles (see Figure 3-12). The

non-cooperative estimator was run in parallel, using observations from only one of

the quadrotors.

Results of Experiment 2 are shown in Figure 3-13. The figure shows the estimated

trajectory of the maneuvering target from both of the estimators, along with the

target's true trajectory. It is clear that in the maneuvering target case, the non-

58

cooperative estimator gives very poor results; its estimate tends to oscillate wildly

back and forth in the radial (non-observable) direction. The problems encountered

by the non-cooperative estimator worsen when the target vehicle makes a sharp turn,

due to the fact that the estimator must use time-delayed data to make its estimate.

Overall, tracking the target reliably using the non-cooperative estimator would be

very difficult or impossible in this case.

Meanwhile, the cooperative estimator tracks the target vehicle almost perfectly

throughout its entire trajectory, including during the sharp turning maneuver. The

average estimation error during this test for the cooperative estimator was 0.0382m

and the standard deviation was 0.0087m. Comparing these results with the stationary

case, we see that the performance of the cooperative estimator is almost identical

for stationary and moving targets, which the performance of the non-cooperative

estimator degrades sharply as discussed above. Since the cooperative estimator has

no inherent observability problems, maneuvering targets pose no problem, unlike in

the non-cooperative case. This property makes the cooperative estimation approach

attractive for use in difficult tracking problems where the target is free to maneuver.

59

Figure 3-12: Setup for Experiment 2

Non-cooperative vs. Cooperative Estimation of Maneuvering Car
6r

I.
0

* non-cooperative estimate
m cooperative estimate
* true location

0 * 0 *d%

* 0 0 *

0 0

00

@0

0
S

I I

0.5
x (m)

1 1.5 2

Figure 3-13: Results for Experiment 2

60

4k

2k

Ok

-2k

0

Chapter 4

Health Management Feedback in

Task Assignment

The problem of simultaneously controlling and coordinating the actions of multiple

autonomous agents in a dynamic environment is very complex. For this reason,

proposed methods for solving the overall problem typically involve formulating several

smaller sub-problems, each of which is simpler and therefore easier to solve [32].

One such solution architecture is shown in Figure 4-1. In this architecture, there

are a number of components that work together to achieve the overall goals of the

mission. The Mission Planning component is the highest level in the system. It

keeps track of the mission objectives and generates tasks, which are discrete actions

whose completion will aid the overall accomplishment of the mission. Examples of

tasks include searching for, identifying, or tracking an object of interest. The Mission

Planner provides the list of tasks to the Task Assignment component, which decides

which of the available vehicles should perform each task based on information about

the tasks and the capabilities of the vehicles. Once the assignments have been made,

they are sent to the Trajectory Designer, which plans feasible trajectories for each

vehicles. The output of the Trajectory Designer is a sequence of waypoints for each

vehicle to follow. These waypoints are sent to the Vehicle Controllers, which compute

the actual controls needed to follow the waypoint plans.

Inherent in each of the components in the architecture are a set of interconnected

61

System Health information

iMissio n Trajectory I Waypoint Plans ,Vehicle
Planning _ Design Controllers

Actuatilon

Environment
I Vehicle/Obstacle/Target States Estimator V

Figure 4-1: Overall autonomous mission system architecture

models that are used to make predictions of future system behavior. For example,

the controller contains a model of the control input dynamics of the vehicle, while

the task assignment component contains a model of the performance each vehicle

can be expected to produce if assigned to a given task. In the most general sense,

system actions are selected by searching for actions that lead to desirable predicted

outcomes as given by the system models. Clearly, the performance of the system

therefore depends heavily on the accuracy of these models.

One strategy for improving the accuracy of the system models is based on de-

signing feedback loops that adjust the models according to sensor data and other

observations gathered as the system is running. The amount, type, and quality of

feedback information that each component receives plays a large role in how effec-

tively the system can deal with dynamically changing factors in the environment,

mission objectives, and state of the vehicles. Intuitively, feedback is necessary any-

where there is uncertainty in the system, so that the initial plan of action made by

each of the components in the system can be modified if disturbances occur. In the

complex environments and problems under consideration, there are many different

sources of disturbances which occur at all levels of the architecture and should be

accounted for. Of the many types of disturbances that may be present in the system,

those which pertain to the current capabilities and status of the vehicles themselves

are particularly interesting and important. The question of how to incorporate feed-

back loops that address these effects is generally referred to as health management.

Examples of health management problems at each of the levels in the system are:

62

Assignment list to trajectory designer

Vehicle state information
Performance

Model Environment observations

Figure 4-2: Incorporation of health state feedback in the Task Assignment component

" At the control level, it may be desirable to track the status of the control

actuators during flight and feed this information to the controller. Use of this

information may allow the controller to avoid overly aggressive command inputs

when one of the actuators is determined to be near the point of failing.

" At the trajectory design level, information about the overall health of the control

actuators may allow the trajectory designer to generate dynamically feasible

trajectories that are adjusted for the current agility of the vehicle. For example,

knowledge of a failing actuator may cause the trajectory designer to generate a

path that is smoother and requires less actuation.

* At the task assignment level, knowledge of the vehicles' current sensor and

fuel states may allow the task assignment algorithm to dynamically adjust to

conditions that make particular vehicles unable to perform certain tasks. For

example, a vehicle whose onboard camera fails is unable to perform surveillance

tasks, but could still be useful for serving as a communications relay.

" At the mission planning level, feedback about the long-term maintenance needs

of the vehicles performing the mission may allow the mission planner to make

informed decisions about how long the vehicles should be allowed to perform

tasks before returning for maintenance.

This chapter focuses on the health management problem at the task assignment

level, developing a feedback mechanism for the performance model used by the task

assignment algorithm. To date, the task assignment problem has been studied ex-

tensively [41, 42, 19, 46, 10]. However, most of the work done to date has used only

63

Tasks from mission planner

a static vehicle performance model, making it difficult for these approaches to adapt

to unexpected changes, such as sensor failures, during the course of the mission. The

goal of this chapter is to develop a feedback loop that uses health state information

to update the performance model in real-time. A general schematic for incorporating

health feedback into the task assignment problem is shown in Figure 4-2. By taking

this approach, previous work that has already developed task assignment algorithms

can be leveraged and extended without requiring modification of the existing algo-

rithm; its performance can be improved only by improving the quality of information

used to make assignments.

4.1 Task Assignment Problem Definition

Formally, we define a task as a tuple (wi, pi), where wi is the location of task i

and pi is the priority (or value) of task i. The tasks may be known to the planning

system beforehand, but more commonly, they are generated in real-time as the mission

progresses. For example, during a search and track mission, new tasks are generated

at the predicted future locations of the target as new information about the target

velocity and position is acquired. A task is called active if it has not been performed

yet, and the set of currently active tasks is denoted by W.

The set of vehicles available to perform tasks is denoted by V = {v 1 ,... , vn,

where n is the total number of available vehicles. The vehicles originate from a base

location Xbase.

Given the above definition, the task assignment problem is to compute a mapping

T : V -+ W

which assigns a task for each vehicle to visit. The goal is to compute the map T

which minimizes the total weighted service time over all the tasks:

min pi tj
mT 6

64

where ti is the wait time before task i is performed by any vehicle.

4.2 Selection of Performance Model

The selection of the performance model incorporating health state information about

the vehicle is clearly an important aspect of the feedback design. The particular

details of the model depend on the mission problem in question and vehicle hardware

being used. However, there are a number of classes of general features that may be

appropriate to include in a performance model:

Vehicle translational dynamics At the level of the task assignment problem, the

vehicle dynamics are usually abstracted as being first-order with a maximum

speed vmax. This abstraction allows the task assignment algorithm to capture

important aspects of the vehicles' performance (in particular, how long they can

be expected to take in order to reach a particular task), while being sufficiently

simple to allow computational tractability. Recall that the trajectory planning

and control levels below the task assignment level are responsible for carrying

out those lower-level functions, allowing this simplification to be made. Note

also that this is the model used in most of the previous work on task assignment.

Propulsion system state The vehicle propulsion system may be abstracted as an

entity that provides the ability to move at the maximum speed vmax above.

Health feedback about the propulsion system may dynamically modify vmax to

reflect the state of the system. For example, knowledge of a failing motor may

cause Vmax to decrease from its nominal value.

Fuel state Knowledge of the fuel state of the vehicle is important in order to be

able to estimate the remaining useful flight time of the vehicle. The perfor-

mance model should include an estimator that performs the remaining flight

time calculation based on fuel remaining, average fuel consumption rates, and

perhaps other environmental factors. Use of this information allows the task

65

assignment algorithm to safely make assignments while ensuring that vehicles

can return to base before running out of fuel.

Sensor states The current performance level of any sensing systems onboard the

vehicle should be included in the model if they are required to carry out tasks.

For example, if an onboard camera is to be used for a surveillance task, the

state of the camera (quality of the video signal, etc) should be accounted for in

the model.

Communication system state Communication with other vehicles is often a re-

quirement to enable vehicles to coordinate their actions with each other or relay

messages to a distant ground station. Accounting for a vehicle's current esti-

mated transmission and reception distances may allow the tasking system to

avoid sending a vehicle to a location where it will be out of communication

range.

4.3 Example: Modification of RHTA to Include

Health Feedback

For the purposes of illustration, an example of incorporating a simple health feedback

loop in the Receding Horizon Task Assignment (RHTA) algorithm developed in [27]

is presented here.

Briefly, the RHTA algorithm works as follows (for more details, see Algorithm

2.3.1 in [27]). Given the set of tasks W and distances d(ij) between tasks, RHTA

enumerates all possible task sequences, or petals, Pj up to a specified length nc. The

cost of each petal is estimated as

SV,= ' Asm (4.1)

where Ti is the time task i is completed in petal p, swd are the task values, and A

is a time discount factor. Given the values of all the petals Svp, RHTA solves the

66

following optimization problem to select the optimal petal for each UAV:

N, Np,

max J = E[SoPx1, (4.2)
V=1 p=1

Nv Nvy

subj. to 5 Axv <; 1, v, C{0, 1} (4.3)
V=1 p=1

N,,y

, = 1, V v E {1,...,N} (4.4)
P= 1

Here, xz, is a binary variable which is equal to 1 if the pth petal is selected and 0 if

not, and Avpi equals 1 if task i is visited by vehicle v in petal p and 0 otherwise.

In the example, health state information is represented by adding a fuel state to

the vehicle model. In this case, the fuel model is straightforward:

" The vehicle's fuel level fi decreases at a constant rate kfyUe anytime the vehicle

is flying.

" If fi reaches zero before the vehicle refuels, the vehicle crashes and is lost.

" In addition, the occurrence of failures is modeled as a Poisson process with

time intensity pf; when a failure occurs, the rate of fuel burn increases to

kfuel,failure > k'uej. Thus, this failure mode increases the rate at which fuel is

burned (and thus decreases the time a vehicle can complete tasks).

The RHTA algorithm was extended to the health information embedded in the

fuel state to the vehicle model. This was accomplished by including an estimate

of each vehicle's operational radius, which is defined here as ri Vmax kf The

quantity ri represents the maximum distance a vehicle can fly given its current fuel

state, before running out of fuel. This information can be used to effectively prune

the list of petals that RHTA considers in order to ensure that the vehicle can always

safely return to base before its fuel is exhausted. More specifically, the following

pruning criterion was added to the RHTA algorithm:

67

For every petal under consideration, reject the petal if

Li + d(wnc , Xbase) > ri

Here, d(wvn, Xbase) represents the normal Euclidean distance between the last way-

point in the petal and the base, and

Li = d(v, wi) + E d(w_ 1 , wj)
j=2

is the total length of the petal. The pruning criterion rejects a petal if the length of

the petal plus the distance from the terminal waypoint wc to base is greater than

the current operational radius of the vehicle. This ensures that the vehicle only visits

waypoints that allow it to return safely to base.

With this extension, RHTA will assign a vehicle to return to base when every

possible permutation of waypoints is rejected by the pruning criterion. Thus, this

method provides a simple rule that determines when a vehicle should return to base

for refueling since it cannot safely service any of the remaining tasks. Note that this

method can create some problems if the above rule is followed too strictly since too

many vehicles may be sent back to base unnecessarily (i.e. when they still have large

operational radii) if there are few or no active tasks. This problem can be solved by

inserting artificial loiter tasks (Wioiter, Pioiter) into W. These tasks are treated in the

same way as real tasks by the RHTA algorithm, but their purpose is to force the

vehicles to remain in advantageous areas.

4.4 Simulation Results

A multi-vehicle mission simulation was developed to test the performance of the

nominal RHTA algorithm against the extended algorithm with health feedback. The

simulation includes a base location and a number of vehicles (20 vehicles were used in

the following tests), as well as a mechanism to randomly generate tasks and vehicle

68

failures. The simulation runs RHTA to repeatedly assign tasks to vehicles.

Two performance metrics are calculated in the simulation: the average time it

took to service each task; and how many vehicles were lost during the mission (where

vehicle loss occurs when a vehicle runs out of fuel before returning to base).

In the first test, RHTA in its original form was run. The simulation test was as

follows. All 20 vehicles started at the base location. Tasks were generated randomly,

and as they appeared in the system, they were assigned to vehicles using RHTA.

As the vehicles flew toward their assigned targets, they were subject to randomly

generated vehicle failures which decreased their remaining flight time as described

above. In its original form, RHTA does not account for these failures, so the vehicles

would continue toward their assigned targets, even though they might run out of fuel

and crash before they arrived. If this occurred, the original form of RHTA would then

assign a new vehicle to carry out the task of the crashed vehicle. From Figure 4-3,

it can be seen that the nominal performance of RHTA results in an average service

time of 21.3 sec, and a vehicle loss rate of 25%.

In the second test, the modified form of RHTA was run, where the modified form

of RHTA proactively recalls failed vehicles to base while quickly reassigning a new,

healthy vehicle to the task, using the idea of the operational radius discussed above.

From Figure 4-4, it is clear that that the modified RHTA provides a smaller average

service time due to its proactive reassignment behavior. The reduction in service time

is about 18%, which is fairly significant considering that the speed of the vehicles has

not been changed, only the way they are assigned. In addition, the vehicle loss rate is

significantly reduced because failed vehicles are returned to base instead of continuing

toward their assigned tasks. Note that vehicle loss can still occur if a failure occurs

sufficiently far from base so that the vehicle is unable to travel the distance to base

even if it begins returning immediately.

Flight tests of the modified RHTA algorithm were also carried out using real hard-

ware on the MIT Real-time indoor Autonomous Vehicle test ENvironment (RAVEN).

These results are presented in Chapter 5.

69

Histogram of Service Times for Normal RHTA
20

15

101-

5F

OL
0 10 20 30 40 50 60 70

Service time (sec)

Figure 4-3: Simulation results (normal RHTA) - Median service time: 18.8 sec,
Average service time: 21.3 sec, Vehicles lost: 5 of 20 (25%)

20
Histogram of Service Times for Extended RHTA

15 I

o

Z

10|-

5

0
0 10 20 30 40 50 60 70

Service time (sec)

Figure 4-4: Simulation results (extended RHTA) - Median service time: 14.0 sec,
Average service time: 17.4 sec, Vehicles lost: 1 of 20 (5%)

70

0

z

Chapter 5

Experimental Results

The main goal of this thesis is to demonstrate capability to carry out long-duration,

multiple-target search and track missions. To achieve this goal, a number of flight

experiments were carried out on the MIT RAVEN platform. These experiments were

designed to test the performance of the cooperative vision-based estimation system

and the task assignment health management feedback in a number of real flight

conditions.

5.1 Real-Time 3D Operator Interface

In order to carry out the desired flight experiments, a real-time, 3D operator interface

for the RAVEN system was developed. The operator interface was designed to fulfill

a number of functions:

Data visualization The interface provides the ability for a human operator to eas-

ily visualize the state of the experiment both in real-time and during post-

processing analysis of data collected. Because the interface communicates with

the rest of the RAVEN system in the same way as the vehicle controllers, adding

or subtracting data to be displayed is a simple process.

Environment awareness The interface can display additional features of the flight

environment, such as obstacles and flight boundaries.

71

Figure 5-1: Operator interface showing flying vehicle and ground vehicle locations,
vision system target vectors (red lines) and position estimate (yellow sphere with
vertical column), and environmental obstacles (blue box)

Vehicle control The interface provides functionality to perform low-level control of

any of the vehicles in the experiment via a number of straightforward point-and-

click commands. These commands include take-off, land, and fly-to-waypoint.

Because the interface shows the full state of the experiment, it is easy for a

human to avoid collisions and other undesirable events if controlling the vehicles

manually.

Experiment control The interface also provides high-level, easily customizable con-

trol of the experiment being conducted. For example, during a search and track

mission, commands can be built in to allow a human operator to begin the test,

stop the test, and log data of interest.

Flight area safety When being used in a complex experiment, the operator inter-

face allows a human to function as a "safety pilot" for the experiment. The

human operator can monitor the progress of the experiment as it runs. If the

experiment is proceeding normally, the human can allowing it to run fully au-

72

tonomously, while if a situation develops that could result in a crash, the human

can press a single button to stop the test and/or land the vehicles.

The operator interface was developed in the Python programming language [40].

The Visual Python 3D programming module was used to implement the 3D graphics

in the interface [51]. A screenshot of the operator interface is shown in Figure 5-1,

which demonstrates a number of features of the software, including visualization of

vehicle states as well as vision tracking data and environmental obstacles.

5.2 Flight Experiments

5.2.1 Cooperative Tracking of a Ground Vehicle

Results validating the performance of the cooperative, vision-based estimation algo-

rithm for estimating the state of both stationary and maneuvering vehicles on the

ground were presented in Chapter 3. Further experiments were carried out to in-

corporate active tracking into the estimation problem, so that the observing vehicles

would move along with the target vehicle so as to keep the target in view at all times.

In these experiments, two UAVs were commanded to detect a ground vehicle and es-

timate its state, consisting of its location xtrget and velocity Vtarget. Figure 5-2 shows

a ground vehicle with its estimated position and velocity as calculated by the vision

system. Using the state information, the predicted location of the target a short time

At in the future was calculated using the simple formula

Xpredicted ~ Xtarget + VtargetAt (5.1)

For these experiments, At was chosen to be 1 second. This time was chosen since

the target vehicle was able to maneuver and change its velocity on a time scale of

several seconds, so 1 second provided a good balance between allowing the tracking

vehicles to move to an advantageous position and not attempting to predict too far

in advance, when the vehicle would have a chance to maneuver away.

73

Figure 5-2: Estimation of target vehicle position (yellow sphere) and velocity (red
arrow) for use in active tracking

2

1

0.5

-0.5-

-1

-1.5-

-2 -

-2.5
-3

Cooperative Target Estimation and Tracking

o estimated target location
-true target location

+ UAV 1
x UAV 2

-2 -1 0
x (m)

1 2

Figure 5-3: Results of cooperative estimation and active tracking of a ground vehicle

74

Once the predicted location xpediced was known, the two observing vehicles were

commanded to fly to positions that would keep xpredicted in their field of view. In this

case, the positions were chosen to keep one UAV two meters south of the xpredided

and the other UAV two meters west of the xpredicted.

Results of a typical tracking experiment are shown in Figure 5-3. The results

show that the UAVs were able to estimate the position of the ground vehicle well

(within about 5cm) even while they were moving cooperatively in order to keep the

vehicle in the field of view of both UAVs. Note that in this experiment, the ground

vehicle moved enough that it would have been outside the field of view of both UAVs

at times had the UAVs not moved along with it.

5.2.2 Cooperative Tracking of a Flying Vehicle

To further extend the results of Chapter 3, more experiments were carried out with

the goal of tracking a flying vehicle using the same estimation algorithm. The flying

vehicle case is interesting for a number of reasons:

" Since a flying vehicle is not constrained to move along the surface of the earth,

techniques that involve estimating the position of the vehicle using a single

measurement combined with knowledge of the height of the local terrain cannot

be applied. In comparison, the cooperative approach presented in this thesis

can be used without modification in the flying vehicle case.

" Many types of flying vehicles are inherently more maneuverable than ground-

based vehicles, making it more difficult to estimate their position and velocity.

* Since flying vehicles are free to move in three dimensions, the problem of track-

ing a flying vehicle (in other words, moving the observation vehicles along with

the target to keep it in view) is more difficult. In the case of flying vehicles

observing a ground vehicle, the flying vehicles may simply fly high above the

ground vehicle, making it easy to keep the target in view.

75

Figure 5-4: Cooperative tracking of a flying vehicle

-0.5-

-1-

-1.5
0 20 40 60 80 100 120

t (s)

Figure 5-5: Flying vehicle tracking results. Mean x estimation error: 0.0312m. Stan-

dard deviation: o-x = 0.0192m

76

t (s)

Figure 5-6: Flying vehicle tracking results.
Standard deviation: a- = 0.0417m

80 100 120

Mean y estimation error:

E0.7
Na

0 20 40 60 80 100 120
t (s)

Figure 5-7: Flying vehicle tracking results. Mean z estimation error: 0.0557m. Stan-
dard deviation: u = 0.0318m

77

-0.0501m.

In this experiment, two observing quadrotors were commanded to track a target

quadrotor that was maneuvering in three dimensions in the flight area. Figure 5-4

shows the experiment setup. Results of the experiment are shown in Figures 5-5,

5-6, and 5-7. The data reveals that the two observing quadrotors were able to track

the target quadrotor in all three dimensions with a high degree of accuracy, even

while the target quadrotor was maneuvering. Overall, the mean estimation error and

variance were 0.0811m and 0.0558m, respectively. Note that during this test, there

were two brief time periods around t = 40s and t = 75s where the target quadrotor

moved to a location that could not be tracked by the other quadrotors due to safety

constraints that prevent the vehicles from moving outside a designated flight area

in order to prevent collisions with walls and other obstacles. Thus, the estimator

could not provide data during those periods, resulting in the straight line segments

in Figures 5-5, 5-6, and 5-7.

5.2.3 Area Search

Another experiment was carried out to verify that a single quadrotor could search

for and detect multiple target objects distributed over a large flight area. For this

experiment, two R/C trucks were positioned in separate parts of the RAVEN flight

space, and a single quadrotor was commanded to fly a search pattern through the

space and detect as many object as it could.

Results of the experiment are shown in Figure 5-8. The figure shows a time-lapse

history of the vehicle's progress as it moves around the search area; lighter shaded

quadrotor images are more recent. The two trucks were detected by the quadrotor

at different times throughout the search, confirming the system's ability to find the

targets of interest in the search area.

5.2.4 Persistent Search and Track

A final set of experiments incorporating all aspects of the work presented thus far

was conducted to demonstrate a complete, fully autonomous, persistent search and

78

Figure 5-8: Area search: detecting multiple targets

track mission on the RAVEN platform. In these experiments, the mission goals were

to search for, detect, estimate, and track an unknown number of ground vehicles in

a predefined search region. Furthermore, the mission was to be carried out over a

period of time longer than the flight endurance of the UAVs being used (around 12

minutes), necessitating the coordination of multiple UAVs coming in and out of the

flight area as required to maintain coverage. Finally, active health monitoring was a

requirement in order to detect and adapt to potential vehicle camera failures during

the test.

In order to carry out the mission, the vision estimation system was combined with

the modified RHTA algorithm presented in Chapter 4. Furthermore, the RHTA task-

ing system was interfaced to an autonomous mission system (see [32]) that employed

battery monitors to estimate the time of flight remaining for each UAV in the search

area and handled requests by the tasking system to activate vehicles for use in the

search or tracking activities.

The experiment setup is shown in Figure 5-9. Three UAVs are initially stationed

79

Figure 5-9: Persistent search and track mission setup

80

at their base location at the far north end of the flight area, while two ground vehicles

are positioned at random locations in the southern region. For these experiments,

one of the vehicles was positioned on top of a box, while the other was located on

the ground and could be remotely controlled to move. Note that the existence of

a concrete pillar in the center of the flight area creates an obstacle that the system

must account for in planning safe trajectories for the vehicles.

The progression of the mission is as follows:

1. At the beginning of the test, the tasking system requests a single UAV from the

mission system.

2. Once the requested UAV is airborne, the tasking system commands this UAV

to begin an area search (as described in Section 5.2.3 and shown in Figure 5-8).

During this initial detection phase, the UAV keeps track of how many distinct

targets it has detected so far and stores them in a target list. The detection

phase lasts for two minutes.

3. After the detection phase ends, the tasking system requests another UAV from

the mission system.

4. Once the second UAV is airborne, the system enters the tracking phase. The

tasking system commands the second UAV into the search area so that there are

now two UAVs in the area. Together, these two UAVs sequentially visit each

location in the target list found during the detection phase. The UAVs spend

one minute at each location before moving on to the next. If there is a target

at the given location when the UAVs arrive, they track the target by moving

with it using the strategy outlined in Section 5.2.1. Additionally, although the

tracking logic is designed to prevent collisions between the vehicles, a potential

function based method is used to ensure an additional level of safety. If a UAV

comes too close to another UAV or an obstacle in the environment, it is repelled

away by seeking to move to an area of lower potential.

5. At any point in the mission, the tasking or mission systems may determine that

81

a particular UAV needs to return to base. The reason for this may be either

that the UAV is getting low on battery lifetime remaining, or that the UAV's

camera has failed or is performing poorly. In either case, when a return-to-

base condition is detected, the tasking system send a sequence of waypoints to

the UAV to command it back to base. Once at the base location, the mission

system lands the UAV and schedules any necessary refueling or maintenance.

At the same time, another UAV is launched and sent to the search area. In this

manner, the mission is able to continue as UAVs cycle in and out.

6. The mission continues until a preset mission time expires or the human operator

stops the mission. For these experiments, the mission time was 20 minutes.

Several results from the experiment are shown in Figures 5-10-5-13. Figure 5-

10 shows the detection phase of the mission, where the first UAV has detected the

presence of two ground vehicles. Figure 5-11 shows an early segment of the tracking

phase, where the two UAVs were estimating the position of the eastern ground vehicle.

Finally, Figures 5-10 and 5-11 show a time-lapse of later parts of the tracking phase

in which the two UAVs were actively tracking the western ground vehicle, which was

moving.

At several points during the mission, UAVs were successfully changed out due to

low battery states. In addition, a simulated camera failure during the tracking phase

of the mission resulted in the failed vehicle returning to base and a replacement vehicle

being sent out. Due to these correct system responses, the goals of the overall mission

were able to be accomplished continuously over the course of the mission.

82

Figure 5-10: Persistent mission, detection phase

Figure 5-11: Persistent mission, estimation of a stationary ground vehicle

83

Figure 5-12: Persistent mission, tracking of a moving ground vehicle

Figure 5-13: Persistent mission, tracking of a moving ground vehicle

84

Chapter 6

Conclusion

6.1 Performance Criteria Summary

This thesis has presented a framework for carrying out persistent search and track

missions using multiple, cooperating UAVs. These missions present a number of

challenges, and Figure 1-4 listed the criteria used to judge the success of the framework

in addressing these challenges. We now address these criteria and show that the work

presented in this thesis satisfies each of them.

Search for and detect a target of interest, which may be moving in three

dimensions, using one or more camera-equipped UAVs. This detection

should be robust to noise in the video data, which may be present due to

radio interference in the wireless transmission of the data or other factors.

Chapter 2 presented a method for achieving this objective through the use of on-

board cameras and a number of video-processing techniques. In particular, the video

stream is processed using a persistent object filter as a strategy for dealing with noise

in the video stream. Tests indicated that the filter effectively detects targets even

when they are temporarily obscured by noise, while at the same time rejecting false

targets introduced by the noise. The ultimate output of the video-processing system

is a bearing vector to the target from each camera-equipped UAV.

85

Estimate the quality of the video data from each UAV, so that the system

can determine if a given UAV's camera is not performing well.

Chapter 2 also presented a method based on convolving the incoming images with

a noise-detection kernel to estimate the quality of the video stream, which is able to

detect poorly-functioning camera or receiver equipment.

Combine the sensor information from one or more UAVs to create an

estimate of the position and velocity of the target, and use this information

to predict the future position of the target.

Chapter 3 presented a cooperative estimation algorithm that uses the bearing vec-

tors generated by the video-processing system to provide accurate estimates of the

position and velocity of the target vehicle. The cooperative approach presented was

shown to have a number of advantages over the non-cooperative approach, including

greater robustness to failures, better tracking ability of maneuvering targets, and the

lack of a fundamental observability problem present in the non-cooperative approach.

Using the information provided by the estimator, the future location of the target

could be predicted.

Use a task assignment algorithm to assign a set of UAVs to locations that

will keep the target in view, given the predicted position of the target. In

addition to simply ensuring that there are UAVs assigned to the proper

locations, the task assignment algorithm should account for the health

state of the vehicles, swapping out underperforming vehicles and those

that must return to base for refueling.

Chapter 4 presented a framework for integrating health management information

into the overall mission architecture of an autonomous UAV system. The health

management information can be specialized to the type of vehicle and sensors in use.

In the flight experiments presented in Chapter 5, the health state was selected to be

86

the flight time remaining and current camera performance of each UAV. The flight

experiments utilized the target state estimate to predict the future location of the

target and command the tracking UAVs to move, ensuring that the target remained

in the field of view of the UAVs. This tracking worked well even in the case of a

rapidly maneuvering, flying target. Furthermore, the health management framework

functioned as expected, commanding a UAV that had experienced a simulated camera

failure to return to base and sending a replacement UAV to continue the mission.

Continue the search and track mission for an extended period of time.

Here extended means a time span longer than the flight time of individual

UAVs, thus necessitating the swapping out of vehicles in order to accom-

plish the mission.

The flight experiments in Chapter 5 were conducted over the span of several flight

times of a single UAV. The experiments demonstrated the successful swap-out of

vehicles that were running low on fuel, allowing the mission objectives to continue to

be accomplished as new vehicles entered the mission area.

6.2 Future Work

The framework and techniques developed in this thesis have led to the successful

demonstration of a long-duration search and track mission under laboratory condi-

tions. There are a number of ways that this work could be extended for eventual

use in a real, in-the-field autonomous UAV system. First, the image processing al-

gorithms used could be extended to deal with the background clutter that would be

present in video data from a UAV flying above a forest in a search and rescue mission,

for example. Second, more health state data could be incorporated into the health

management framework. This would be especially valuable in cases where the UAVs

in use were larger and more sophisticated, and therefore had more health state vari-

ables to track. Finally, the computing and communications hardware used for these

laboratory experiments could be modified to be carried onboard the UAVs, which

87

would be important for implementation in a system designed to be used over large

distances where communication bandwidth between UAVs and their ground station

is limited. Further investigation of these issues could lead to highly autonomous,

robust UAV systems that can reliably perform very useful, real-world missions over

long periods of time with little or no human intervention.

88

Appendix A

Derivation of the

Pseudo-Intersection Formulae

The full derivation of the optimization problem presented in Section 3.2 is given in

this Appendix.

A.1 Problem Statement

There is a set M of observations, each consisting of an observation location xi E R3,

a unit-length direction vector to the target d, E R3, and a weight wi E R. Given M,

find the point q E R that minimizes the objective function

(A.1)E(q) = E wihi(q)
iEM

where hi(q) is the square of the minimum distance from q to the ray li(Ai):

hi(q) = min|q - li(Ai)j| 2 = minlq - (xi + Aidi)||2 (A.2)

89

A.2 Solution

First, the definition of hi(q) in Equation A.2 is expanded using a change of variable

pi = q - xi:

hi(q) =min||q -(x + Ajdj)||12 (A.3)Ai

- mini|pi -AidI|| 2 (A.4)

= min(pi - Aid)T(pi - Aidi) (A.5)

= min piTpi - 2Ajd p + Ai2 dT di (A.6)
A ii

Minimizing hi(q) with respect to Ai gives

d _2d pi + 2AdTdi = 0, (A.7)

so the optimal value A* is

A* = =~* 'di (A.8)

since dTdi = 1. Substituting A* back into the expression for hi(q) gives

hi(q) = Ip - dTpid || 2 (A.9)

= (p - dipd)T(p- dipid) (A.10)

= ppi - 2(dipi)2 + (di p) 2 di di (A.11)

= pi pi - 2(dip4) + (dip4) (A.12)

= Pi - (dipi)2 (A.13)

= (q - xi)T(q - xi) - (dT(q - X,))2 (A.14)

qTq - 2qlxi + xTxi - (dq - d x)2 (A.15)

Note that the derivative of hi(q) with respect to q is

dhi(q) = 2q - 2xi - 2(d7q - di)di (A.16)
dq

90

Now, the optimality condition for q* can be found by differentiating E(q) (Equa-

tion A.1) with respect to q and substituting the derivative formula in Equation A.16.

dE(q)
dq

d
= -- wii(q)

iEM

dhj(q)
dq q

iEM

= wi(2q - 2xi - 2(d Tq - dTii)di)
iEM

(A.17)

(A.18)

(A.19)

Therefore, q* satisfies

(A.20)wi(q* - xi - (diq* - dixi)di) = 0
iEM

Rearranging Equation A.20 yields

(wididi q*
\iEM /)

Wi (I - didi)) q*

= (wixi - wi didxi)
\iEM / iEM /

= wi (I - did) xi
iEM

Here, didT denotes the vector outer product. In this form, it is clear that Equa-

tion A.22 is a linear system in q*,

Aq* = b (A.23)

where

and

A= wi (I - did)
iEM

b= wi (I - did) xi
iEM

(A.24)

(A.25)

91

(wi q* -
\iEM /)

(A.21)

(A.22)

Therefore, the optimal solution q* is given by

q* = A-lb (A.26)

92

Bibliography

[1] B. Bethke, M. Valenti, J. How. Cooperative Vision Based Estimation and Track-

ing Using Multiple UAVs. In Proceedings of the Conference on Cooperative Con-

trol and Optimization, Gainesville, FL, January 2007.

[2] B. Coifman, M. McCord, R.G. Mishalani, M. Iswalt, Y. Ji. Roadway traffic

monitoring from an unmanned aerial vehicle. Intelligent Transport Systems,

IEEE Proceedings, 153:11-20, 2006.

[3] N. Gordon B. Ristic, S. Arulampalam. Beyond the Kalman Filter: Particle

Filters for Tracking Applications. Artech House, Boston, MA, 2004.

[4] C. Jauffret, D. Pillon. Observability in passive target motion analysis. IEEE

Trans. Aerospace and Electronic Systems, 32:1290-1300, 1996.

[5] C. Schumacher and P. R. Chandler and S. J. Rasmussen. Task allocation for

wide area search munitions via iterative network flow. In Proceedings of the 2002

AIAA Guidance, Navigation and Control Conference, Monterrey, CA, August

2002.

[6] C. Sharp, 0. Shakernia, and S. Sastry. A Vision System for Landing an Un-

manned Aerial Vehicle. In Proceedings of the 2001 IEEE International Confer-

ence on Robotics and Automation, volume 2, pages 1720-1727, 2001.

[7] D. Casbeer, S. Li, R. Beard, R. Mehra, T. McLain. Forest Fire Monitoring

With Multiple Small UAVs. In Proceedings of the American Control Conference,

Portland, OR, April 2005.

93

[8] Draganfly Innovations Inc. Available at http://www.rctoys.com, 2007.

[9] E. Fogel, M. Gavish. Nth-order dynamics target observability from angle mea-

surements. IEEE Trans. Aerospace and Electronic Systems, AES24:305-308,

1988.

[10] E. Frazzoli, F. Bullo. Decentralized algorithms for vehicle routing in a stochas-

tic time-varying environment. In IEEE Conference on Decision and Control,

December 2004.

[11] E. Frew, T. McGee, Z. Kim, X. Xiao, S. Jackson, M. Morimoto, S. Rathinam,

J. Padial, R. Sengupta. Vision-Based Road-Following Using a Small Autonomous

Aircraft. In Proceedings of the 2004 IEEE Aerospace Conference, Big Sky, MT,

March 2004.

[12] E. Wan, R. Van Der Merwe. The unscented Kalman filter for nonlinear estima-

tion. In Adaptive Systems for Signal Processing, Communications, and Control

Symposium, Alta, Canada, October 2000.

[13] F. Caballero, L. Merino, , A. Ollero. A visual odometer without 3D reconstruc-

tion for aerial vehicles. Applications to building inspection . In Proceedings of

the 2005 IEEE International Conference on Robotics and Automation, Barcelona,

Spain, April 2005.

[14] G. Goebel. In the Public Domain: Unmanned Aerial Vehicles.

http://www.vectorsite.net/twuav.html, April 2006.

[15] G. Tournier. Six Degree of Freedom Estimation Using Monocular Vision and

Moire Patterns. Master's thesis, Massachusetts Institute of Technology, 2006.

[16] G. Tournier, M. Valenti, J. P. How, and E. Feron. Estimation and control of a

quadrotor vehicle using monocular vision and moire patterns. In Proceedings of

the AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone,

CO, August 2006.

94

[17] General Atomics Aeronautical Systems. Predator Unmanned Aerial Vehicle.

Available at http://www.ga-asi.com/products/predator.php, 2007.

[18] Gentoo Foundation, Inc. Gentoo Linux. Available at http://www.gentoo.org/,

2007.

[19] A. E. Gil, K. M. Passino, and A. Sparks. Cooperative Scheduling of Tasks for

Networked Uninhabited Autonomous Vehicles. In Proceedings of the 2003 IEEE

Conference on Decision and Control, pages 522-527, Maui, HI, December 2003.

[20] Intel Corporation. OpenCV Blob Extraction Library. Available at

http://opencvlibrary.sourceforge.net/cvBlobsLib, 2007.

[21] Intel Corporation. OpenCV Computer Vision Library. Available at

http://www.intel.com/technology/computing/opencv/, 2007.

[22] J. Boskovic, R. Mehra. An Integrated Fault Management System for Unmanned

Aerial Vehicles. In 2nd AIAA Unmanned Unlimited Conf. and Workshop and

Exhibit, San Diego, CA, September 2003.

[23] J.P.L. Cadre, 0. Tremois. Bearings-only tracking for maneuvering sources. IEEE

Trans. Aerospace and Electronic Systems, 34:179-193, 1998.

[24] L. Merino, F. Caballero, J. R. Martinez de Dios, A. Ollero. Cooperative Fire

Detection using Unmanned Aerial Vehicles. In Proceedings of the 2005 IEEE

International Conference on Robotics and Automation, Barcelona, Spain, April

2005.

[25] L. Merino, F. Caballero, J. R. Martinez de Dios, J. Ferruz, A. Ollero. A Coopera-

tive Perception System for Multiple UAVs: Application to Automatic Detection

of Forest Fires. Journal of Field Robotics, 23:165-184, 2006.

[26] LifeView Inc. FlyVideo 300FM Video Capture Card. Available at

http://www.lifeview.com/usa/html/products/PCITV/FlyVideo3000-w1.htm,

2007.

95

[27] M. Alighanbari. Task assignment algorithms for teams of UAVs in dynamic

environments. Master's thesis, Massachusetts Institute of Technology, 2004.

[28] M. Alighanbari, J. How. Decentralized Task Assignment for Unmanned Aerial

Vehicles. In Decision and Control, 2005 and 2005 European Control Conference,

December 2005.

[29] M. Campbell, M. Wheeler. A Vision Based Geolocation Tracking System for

UAVs. In Proceedings of the AIAA Guidance, Navigation, and Control Confer-

ence, Keystone, CO, August 2006.

[30] M. Quigley, M. Goodrich, S. Griffiths, A. Eldgredge, R. Beard. Target Acqui-

sition, Localization, and Surveillance Using a Fixed-Wing Mini-UAV and Gim-

baled Camera. In Proceedings of the 2005 IEEE International Conference on

Robotics and Automation, Barcelona, Spain, April 2005.

[31] M. Valenti, B. Bethke, G. Fiore, J. How, and E. Feron. Indoor multi-vehicle

flight testbed for fault detection, isolation, and recovery. In Proceedings of the

AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone,

CO, August 2006.

[32] M. Valenti, B. Bethke, J. How, D. Pucci de Farias, J. Vian. Embedding Health

Management into Mission Tasking for UAV Teams. In American Controls Con-

ference, New York, NY, June 2007.

[33] M. Valenti, D. Dale, J. How, and J. Vian. Mission Health Management for 24/7

Persistent Surveillance Operations. In Submitted to the 2007 AIAA Guidance,

Control and Navigation Conference, Myrtle Beach, SC, August 2007.

[34] MIT Real-time indoor Autonomous Vehicle test ENvironment (RAVEN).

RAVEN home page. Available at http://vertol.mit.edu/, 2007.

[35] National Aeronautics and Space Administration. Altus II Unmanned Aerial Ve-

hicle. Available at http://www.nasa.gov/centers/dryden/news/FactSheets/FS-

058-DFRC.html, 2007.

96

[36] National Aeronautics and Space Administration. Helios Prototype. Available at

http://www.nasa.gov/centers/dryden/history/pastprojects/Erast/helios.html,

2007.

[37] Northrop Grumman Corporation. Global Hawk Unmanned Aerial Vehicle. Avail-

able at http://www.northropgrumman.com/unmanned/, 2007.

[38] 0. Amedi, T. Kanade, and K. Fujita. A visual odometer for autonomous heli-

copter flight. Robotics and Autonomous Systems, 28:185-193, 1999.

[39] P. Shar, X.R. Li. A practical approach to observability of bearings-only target

tracking. Proc. SPIE, 3809:514-520, 1999.

[40] Python Programming Language. Available at http://www.python.org/, 2007.

[41] R. W. Beard and T. W. McLain and M. A. Goodrich and E. P. Anderson.

Coordinated Target Assignment and Intercept for Unmanned Air Vehicles. IEEE

Transactions on Robotics and Automation, 18:911-922, 2002.

[42] A. Richards, J. Bellingham, M. Tillerson, and J. How. Coordination and Con-

trol of Multiple UAVs. In Proceedings of the AIAA Guidance, Navigation, and

Control Conference and Exhibit, Monterey, CA, August 2002.

[43] S. Julier, J. Uhlmann. A new extension of the Kalman filter to nonlinear sys-

tems. In Proceedings of the 11th International Symposium on Aerospace/Defense

Sensing, Simulation and Controls, 1997.

[44] S.C. Nardone, A.G. Lindgren, K.F. Gong. Fundamental properties and per-

formance of conventional bearings-only target motion analysis. IEEE Trans.

Automatic Control, 29:775-787, 1984.

[45] S.C. Nardone, M.L. Graham. A closed form solution to bearings-only target

motion analysis. IEEE Journal of Oceanic Engineering, 22:168-178, 1997.

97

[46] C. Schumacher, P. R. Chandler, S. J. Rasmussen, and D. Walker. Task Allocation

for Wide Area Search Munitions with Variable Path Length. In Proceedings of the

2003 American Control Conference, pages 3472-3477, Denver, CO, June 2003.

[47] T. McGee, R. Sengupta, K. Hedrick. Obstacle Detection for Small Autonomous

Aircraft Using Sky Segmentation. In Proceedings of the 2005 IEEE International

Conference on Robotics and Automation, Barcelona, Spain, April 2005.

[48] T.L. Song. Observability of target tracking with bearings-only measurements.

IEEE Trans. Aerospace and Electronic Systems, 32:1468-1471, 1996.

[49] tvtime SourceForge project. Available at http://tvtime.sourceforge.net/, 2007.

[50] Vicon Company. Vicon Motion Capture Systems. Available at

http://www.vicon.com/, 2007.

[51] Visual Python 3D Programming Module. Available at

http://www.vpython.org/, 2007.

[52] V.J. Aidala, S.E. Hammel. Utilization of modified polar coordinates for bearings-

only tracking. IEEE Trans. Automatic Control, AC-28:283-294, 1983.

[53] Y. Liu and J. B. Cruz, Jr. and A. G. Sparks. Coordinating networked uninhabited

air vehicles for persistent area denial. In Proceedings of the 43rd IEEE Conference

on Decision and Control, Paradise Island, Bahamas, December 2004.

98

