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Abstract

A large online retailer strategically stocks inventory for SKUs with low demand.
The motivations are to provide a wide range of selections and faster customer fulfillment
service. We assume the online retailer has the technological capability to manage and
control the inventory globally: all warehouses act as one to serve the global demand
simultaneously. The online retailer will utilize its entire inventory, regardless of location,
to serve demand.

We study inventory allocation and order fulfillment policies among warehouses
for low-demand SKUs at an online retailer. Thus, given the global demand and an order
fulfillment policy, there are tradeoffs involving inventory holding costs, transportation
costs, and backordering costs in determining the optimal system inventory level and
allocation of inventory to warehouses. For the case of Poisson demand and constant
replenishment lead time, we develop methods to approximate the key system
performance metrics like transshipment, backorders and average system inventory for
one-for-one replenishment policies when warehouses hold exactly one unit of inventory.
We run computational experiments to test the accuracy of the approximation. We
develop extensions for cases when more than one unit of inventory is held at a
warehouse. We then use these results to develop guidelines for inventory stocking and
order fulfillment policies for online retailers.

We also compare warehouse allocation policies for conditions when an order
arrives but the preferred warehouse does not have stock although there is stock at more
than one other location in the system. We develop intuition about the performance of
these policies and run simulations to verify our hypotheses about these policies.

Thesis Supervisor: Stephen C. Graves
Title: Abraham J. Siegel Professor of Management Science & Engineering Systems
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Chapter 1

1.1 INTRODUCTION AND MOTIVATION

'A large online retailer strategically stocks inventory for items with low demand for

several reasons. One reason for an e-tailer to keep low demand items in its catalog is to

provide customers with a wide range of product choices. A second motivation to hold

inventory is to fill customer orders faster as orders are filled from stock rather than

through a drop-shipper. The third incentive is to gain a competitive advantage from

other online retailers. Suppose that an e-tailer only drop-ships the low-demand SKUs,

then its drop-shipper who serves many online retailers, may choose to satisfy a

competitor's demand. These reasons become significantly more important in the online

retail context as the customer has very low switchover cost from one e-tailer to another.

This work builds on the research done by Ping Xu for her doctoral thesis [Xu05]. Some of the material in
this section follows closely that in her thesis.
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Efficient inventory planning and order fulfillment for low-demand items is important in

the retailing setting. Often over 90% of a retailer's catalog comprises slow moving items

with demand in the range of 0.2 - 0.8 units per week. Therefore, the inventory planning

for low-demand items is very critical for the ultimate success of an online retailer.

For many of these low demand items, the e-tailer may only stock a few inventory units

across all warehouses and use centralized order fulfillment to provide faster response

time to the customer. Thus, we assume that if a warehouse is out of stock, its demand

can be satisfied by on-hand units in other warehouses. We also assume that when all

warehouses are out of stock, a customer demand is met by the warehouse that would

first receive an on-hand unit regardless of its location. Such order fulfillment policies are

consistent with the practice of online retailers, due to their emphasis on fast customer

response times.

Inventory planning for low-demand items is challenging primarily because of these

reasons - the discrete effect in deciding whether to stock 2 or 4 units in the system

makes a significant difference in costs given the large number of such low demand

items; current inventory models often assume all variables are continuous. We illustrate

this with an example.

Suppose that we have two demand regions in the system, and one has 30% of the

total demand and another has 70%. The total demand during the replenishment lead-

time is a Poisson random variable with rate d. We want to stock enough inventory in the
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system so that the fill rate (probability of serving a customer immediately by on-hand

inventory) is at least 90%. We can plan inventory according to two ways: global

planning (plan for the entire system) or regional planning (plan for the two regions

separately).

For global planning, in order for the probability that an order is filled immediately to be

at least 90% , we set the system inventory of as follows:

arg min {Pr[System Demand during lead time _ k]• 0. l}
k

Similarly, for regional planning, we find the on-hand inventory required for the

probability that an order is filled immediately to be at least 90% by:

Z arg min {Pr[Regional Demand during lead time 2 ki<• 0. 1}
Regions i=1 ki

Two examples for different values of d are given in the table below:

System Demand Global Planning Regional Planning
during Lead Time

0.5 2 4
10 15 17

TABLE 1: EXAMPLE OF THE DISCRETE EFFECT

In these examples, when system demand is low, the regional planning case holds

twice the inventory that the global planning case, although there is some compensation

for the regional planning due to lower delivery costs.

-17-



We study these trade-offs between inventory holding, penalty for backorders, and

transportation costs for an online retailer. We assume that the e-tailer has several

warehouses in the system. We also assume that it has the technological capability to

manage and control the inventory globally: all warehouses act as one to serve the

global demand. Specifically, the e-tailer will utilize its entire inventory, regardless of

location, to serve demand. We develop methods to calculate key performance metrics

and determine the optimal inventory policy for such a system given the global demand

rate and distribution.

1.2 LITERATURE REVIEW

This work builds on the research done by Ping Xu as part of her doctoral dissertation.

Her thesis, [Xu05], provides a detailed literature review of this problem.

Although we did not come across any inventory planning research in the online retail

environment, a related body of research studies lateral transshipments, often in a

context of spare parts inventory distribution systems. The goal is to develop operational

rules for joint order and transshipment policies. Many papers have considered a single-

item, multi-location, periodic review inventory system with lateral transshipments.

Notable papers in this category are: Gross [Gro63], Krishnan and Rao [KR65], Das
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[Das75], Karmarkar and Patel [KP77], Robinson [Rob90], Tagaras and Cohen [TC92],

and Archibald [AST97]. However a common problem in most of these is that lead times

for replenishment are assumed to be zero, and hence have limited applicability for non-

zero lead times.

Other papers consider continuous review inventory systems with lateral

transshipments. Lee [Lee87] considered a two-echelon model in the context of spare

parts inventory. The first echelon had a repair center while the second echelon

comprised of service centers that received customer requests for parts. Lateral

transshipments were allowed between the service centers when one of them ran out of

stock and had a customer request to fill. Lee developed approximations for the number

of backorders and lateral transshipments for the case when all service centers faced

identical demand processes. Axsater [Axs90] extended Lee's model to include non-

identical service centers. He used a different modelling approach and developed a more

accurate approximation to predict the system performance parameters. Alfredsson and

Verrijdt [AV99] built on Axsater's work and allow for more order fulfillment options like

direct delivery from the upper echelon repair center and the manufacturing plant. Dada

[Dad92] worked on a two-echelon model with prioritized lateral transshipments among

the lower echelon service centers, emergency shipments from the upper echelon repair

center and if no inventory was available in the system, then the demand was lost. His

model assumed the replenishment lead times from the repair center to the service

centers to be exponentially distributed. Hence, he developed an exact markov process

model and a fast approximation to estimate system performance parameters. Grahovac

-19-



and Chakravarty [GC01] allowed for lateral transshipments not only when a warehouse

is out of stock, but also pro-actively based on on-hand and in-transit inventory

information.

Most papers in the spare parts inventory literature assume one-for-one or (S-1, S)

replenishment policies; we also use this policy. Lateral transshipment lead-times in the

above literature are assumed to be instantaneous but with additional cost. We assume

that if a warehouse is out of stock, on-hand units in other warehouses can fill its

demand, which is equivalent to an instantaneous transshipment from other warehouses

with an additional transportation cost. This instantaneous transshipment assumption is

realistic for retailers with good IT infrastructure. However, unlike these papers, we also

assume that even if all warehouses are out of stock, a lateral transshipment is allowed if

another warehouse would have an on-hand unit earlier. Such order fulfillment policies

are consistent with online retailers due to the emphasis on fast customer response

times. This is the main difference between our model and those in the literature.

Recent work by Xu [Xu05], focused on the effect of inventory allocation on outbound

transportation costs for an online retailer. Her model is built on the same assumptions

as our model. Given that the e-tailer stocks a certain number of units of inventory in the

system, Xu studied how best to allocate inventory to warehouses by considering

outbound transportation costs from the warehouses to customers. She develops a 2-

state Markov Chain based model that encompassed all the possible states of a 2-unit 2-

warehouse system, with the transition probabilities being functions of the demand rate
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and demand distribution among regions. Then, the transshipment proportions from one

warehouse to another could be derived as functions of the steady state probabilities of

the Markov Chain and the transition probabilities. Her approach produced exact

solutions for the 2-unit 2-warehouse case, but was not tractable for the general N-unit

N-warehouse case.

In chapter 2, we describe the model, its assumptions and the 2-unit 2-location case

solved by Xu [Xu05]. We then develop a method to calculate transshipment in an N-unit

N-location (one unit in each location) system for two special cases of the demand

distribution over the regions. In chapter 3 we use these exact results to develop an

interpolation-based approximation method for transshipment for the case of a general

demand distribution over the regions. Then we describe another method to approximate

the transshipment in a k-unit N-location system (k>N), where each warehouse holds at

least one unit of inventory. This is described in chapter 3. In chapter 4, we build models

to compare different inventory policies that can help determine the optimal policy for an

e-tailer. We also compare different order fulfillment policies and provide

recommendations.
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Chapter 2

In this chapter, we describe the online retailer's model that we work with in this

dissertation. We first explain the assumptions in the model, properties arising out of

these assumptions, and then introduce some notation that will be used throughout the

rest of the dissertation. We then examine the simplest non-trivial model for the online

retailer, the 2-unit 2-location model that was developed by Xu [Xu05].

2.1 MODEL

We want to find methods to estimate key performance metrics like transportation

costs, backorders, average system inventory, and determine the optimal inventory

policy for an online retailer. We start with the following assumptions for the model.

A-1 The system demand process is Poisson with rate A.
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A-2 The demand process is split into N independent processes, 1 to N. With

probability a,, a demand arrival is from region 1; with probability a2, a demand arrival is

from region 2; and so on. The aj are non-negative and sum to 1.

A-3 There are N warehouses, one for each region. The replenishment lead-time for

each warehouse is the same constant L.

A-4 The inventory policy is one-for-one replenishment at each warehouse: at each

demand epoch, we assign the demand to a warehouse, as specified in A6, A7 and A8;

this assignment triggers a replenishment for the selected warehouse.

A-5 Demand is backlogged when there is no on-hand inventory in the system.

In the context of online retailing, the e-tailer can utilize any warehouse or fulfillment

center to serve the customer demand. Specifically, a demand is always served by an

on-hand inventory unit in the system if there is any; if there are no on-hand inventory

units in the system, the demand is served by and triggers replenishment at the

warehouse that has the next arriving unassigned replenishment. We then have the

following assumptions on how the system operates for all stocking scenarios.-

A-6 When a customer arrives and its closest warehouse has on-hand inventory, then

its closest warehouse serves the demand and triggers a replenishment. (The closest

warehouse is the warehouse in the same region as that for the customer.)
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A-7 When a customer arrives and its closest warehouse does not have inventory on-

hand, the system will assign the demand to another warehouse if there is on-hand

inventory elsewhere in the system. A warehouse with on-hand unit is chosen according

to an order fulfillment policy, P, to serve demand; this assignment triggers a

replenishment for the chosen warehouse.

A-8 If a customer arrives and the system has no on-hand units, then the policy is to

assign the demand to the warehouse with the next arriving unassigned replenishment.

This assignment triggers a replenishment for the chosen warehouse.

Note that assumption A-8 is possible because we assume deterministic supply lead-

times, so we know exactly when all future replenishments arrive. Also, assumption A-7

and A-8 are analogous to an emergency transshipment.

By our model assumptions, every demand is matched with the next available unit and

a replenishment is triggered at each demand epoch. We see that the system inventory

level, fill-rate and the customer waiting times are the same as in an aggregate model

where all inventory in the system is stored in one warehouse. Thus, the system-level

inventory holding costs, ordering costs, and backorder costs are independent of how the

inventory is allocated among the warehouses. On the other hand, outbound

transportation costs depend on the location from which demands are served. Therefore,

we will need to examine how inventory allocations to the warehouses influence the
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outbound transportation costs. We now introduce some notation to be used throughout

the dissertation.

Notation

DL

SI

: Number of regions in the system; each region has a warehouse.

: System demand rate from a Poisson process

: Replenishment lead-time for each warehouse; L is a constant, and same for all

warehouses in the system

: Random variable for the system demand over the lead time. E[DL]= AL

: Random variable for the on-hand system inventory, SI = (N - DL)X

We define the following probabilistic events:

Fi,j : Event that an order from region i is filled immediately from on-hand stock at

warehouse j

Bi,j : Event that an order from region i is backordered and filled subsequently from a

replenishment to warehouse j

Ai,j : Event that an order from region i is filled from warehouse j. Hence, Ai,j = Fj, u BI,

The system performance metrics such as the fill rate and average inventory can be

calculated for general cases under the assumption that lead-time demand DL is

Poisson. These metrics directly affect the backorder costs and the inventory holding

costs.

System fill rate = 1 - Pr[DLN]
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System inventory SI = (N - DL)X

N

Average system inventory = ZixPr[SI = i]
i=1

However, the outbound transportation cost is affected significantly by the number of

transshipments in the system. (We will use transshipment to denote when a customer

demand in a region is served by a warehouse from outside the region) The proportion

of transshipments in the system in turn depends on the demand distribution across the

regions and the specific order fulfillment policy in the system. In this dissertation, we

describe methods to estimate the probability of an order being transshipped when its

preferred warehouse does not have stock on-hand. The next section provides a model

to exactly calculate the transshipments between regions in a 2-location scenario where

each warehouse holds one unit of stock.

2.2 2-UNIT 2-LOCATION MODEL

Xu [Xu05] developed a 2-state Markov Chain to model all the possible states of a

2-unit 2-warehouse system, with the transition probabilities being functions of the

demand rate and demand distribution among regions. Most of the content of this section

have been taken from her dissertation. This section explains this initial approach, and

why it is not tractable for cases of more than 2 units and 2 locations.
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Suppose the e-tailer decides to stock two units of inventory in two warehouses in

the system, A and B, where warehouse A is the preferred server for region 1 and

warehouse B is the preferred server for region 2. We intend to find the proportion of

shipments from warehouse A to region 2 and from warehouse B to region 1. As a result

of our assumptions, we see that the system inventory position at each warehouse is

always one, where inventory position is on-hand and on-order inventory minus

backorders. Hence, given our one-for-one replenishment policy, there is always exactly

one unit of inventory associated with each warehouse that has not yet been assigned to

any demand. This unassigned unit can be either on-hand or on-order. This gives us

three scenarios that can occur for the relative positions of the two unassigned units in A

and B:

(i) both units are on-hand

(ii) unit for A is on hand or will arrive before the unit for B

(iii) unit for B is on hand or will arrive before the unit for A

on-nrdp.r m m

on-hnnd {
unass(iined (iiiunit in A

1 unassioned unit in A

FIG 1: POSITIONS OF unassined unit in

FIG 1: POSITIONS OF UNASSIGNED UNITS IN 2-UNIT 2-LOCATION SYSTEM
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We can then visualize the order fulfillment process as a "race" between the two

unassigned replenishment units.

Now consider a system with demand rate A, that is split into independent processes

with probabilities r, and r2, for the two regions being served by warehouses A and B

respectively. We define a Markov Chain with 2 states: State A indicates that the most

recent order was assigned to warehouse A, while state B indicates that the most recent

order was assigned to warehouse B. Let the probability of zero orders during the lead

time be indicated by q (which is equal to e-AL). The Markov Chain is as illustrated in the

figure below.

,-l I" Transshipment
S -q nv ur

qri qr2

1lq __ ll - -

I I

T (a demand served T+
FIG 2: MARKOV CHAIN FOR 2-UNIT 2-LOCATION SYSTEM

We describe the transition out of state A only, since the same logic applies for those

out of state B. Suppose the kth demand epoch occurs at time tk and is assigned to
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warehouse A. Then, we start at state A at tk. The kth demand also triggers a

replenishment at tk for A. This replenishment unit would not arrive to A until tk +L. The

dotted-line transitions represent the next demand arriving before tk + L, tk+1 < tk + L. The

solid-line transitions represents the next demand arriving after tk + L, tk+1 > tk + L. The

state of the system at tk is of case (iii) in Figure 1 with the unit in A being L time units

away; the unassigned unit for B must be either on-hand or on-order within L time units

of delivery. If tk+1 < tk +L (with probability 1-q), by our policy, the (k+l)st demand would

be assigned to B and the system transitions to state B. If tk+1 > tk + L (with probability q),

then at time tk + L we know that both units are on-hand, i.e, case (i) in Figure 1. Then,

with probability ri, the system transitions to state A and with probability r2, the system

transitions to state B since we assign the demand at time tk+1 > tk + L to its closest

warehouse.

This is an aperiodic, single recurrent class markov chain. Hence, there exist steady

state probabilities for being in states A and B. Let these steady state probabilities of the

markov chain be indicated by PA and PB. Then, the probability of a transshipment from

warehouse i to region j is given by Pij:

PA2 = pB(l-q)r 2  PB = pA(1-q)rl

The above formula can be easily verified. Note that PA2, the probability of a

transshipment from warehouse A to region 2, occurs if and only if the following events

take place- the most recent order at tk was assigned to warehouse B (which has
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probability, PB), and the next order came in before tk +L from region 2 (which has

probability, (1-q)r 2). Since, warehouse A's unassigned unit is ahead of warehouse B's

unassigned unit when the demand from region 2 occurs, warehouse A ships its unit to

region 2.

This approach produces exact solutions for transshipment proportions for the 2-

unit 2-location case. A similar approach in [Xu05] also allows for analysis when the

replenishment lead times for the 2 warehouses are different.

Note that in the 2-unit 2-location case, whenever a demand is assigned to a

warehouse, the other warehouse will then have the next arriving unassigned

replenishment unit. However, when we try to extend this model to a larger system of say

3-units and 3-locations, we notice that the transition probabilities need to take into

account the time of the last order filled at each of the warehouses in order to track the

earliest arriving unassigned replenishment unit. Thus the state now changes with time,

hence requiring the system to have as many states as there are points in the real line.

This makes the markov chain approach intractable for the general N-unit N-warehouse

case.

This problem motivates us to explore other methods to calculate or estimate the

proportions of orders being shipped from warehouses that are outside the region of the

customer demand. In chapter 3, we develop some methods to calculate or estimate this

quantity.
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Chapter 3

In this chapter, we first develop methods to estimate the probability of transshipment

of an order for the general case of N-units and N-locations where each warehouse

holds exactly one unit of inventory. We then extend this methodology to estimate the

probability of transshipment of an order for the case of k-units and N-locations (k>N)

where each warehouse may hold one or more units of inventory. This will provide the

tools necessary to analyze a range of inventory configurations for the online retailer,

enabling us to determine the optimal inventory policy for it.

3.1 N-UNIT N-LOCATION MODEL

We solve the N-unit N-location transshipment estimation problem by decomposing it

into a few different cases that can be solved individually using specific probabilistic

approaches. In sections 3.1.1, we calculate the probability of transshipment of an order

for the case of balanced demand, when all regions have the same demand rate. Next,

in section 3.1.2, we consider the case of an extreme demand distribution, when all
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warehouses hold one unit of inventory but all the demand is concentrated in one region

only. This is not a realistic scenario but it allows us to exactly calculate the

transshipment probability from each region to the region that has all the demand. Then,

in section 3.1.3, we use a monotonicity argument to justify using interpolation between

the probabilities of transshipment developed earlier as an estimate for the

transshipment probability for other cases of demand distribution among the regions. We

compare the estimates obtained by this interpolation method with simulation results for

a wide variety of system fill-rates, configurations and demand distributions, and show

that these estimates perform extremely well.

3.1.1 BALANCED DEMAND CASE

We first analyze the case in which each of the N-warehouses faces a demand rate

of A/N from its local region. We consider the order fulfillment policy as stated in A-6 and

A-7, with the feature that if a customer arrives and its closest warehouse does not have

inventory on-hand, but one or more of the other warehouses do have inventory on hand,

then a warehouse with an on-hand unit is chosen randomly (with equal probability) to fill

the order. We call this policy P1 . This case allows for a neat analytical solution making

use of certain properties of the Poisson process.

Result I

The probability that an order from region i is filled from warehouse j immediately from

stock under the above condition is given by:
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N

Pr[Fj = Pr Fi, ISI=k]xPr[SI=k]
k=l

e-AL (jL)N-k
where Pr[SI= k]= Pr [D, = N- k]= N-kN-k!(k-
Pr [F,j I SI = k ] N-k N for i= j

N
Pr-F |SI=k]= 1-k)- I for icj

The probability that an order from region i is backordered and filled from a

replenishment to warehouse j under the above condition is given by:

Pr [B,= Pr [B,j SI= 0]xPr [SI= O]

where Pr[SI = 0]= Pr[DL N]

and Pr[B, SI = O] =

Proof:

The results follow from application of the Total Probability Theorem, and properties of

the Poisson process. The key insight used here is that for a given level of system

inventory, each inventory state is equally likely. This result depends on the assumptions

that the demand process is Poisson with equal rates for each region and that we use

the allocation policy Pi. For example, if N=3 and SI=2, then the inventory states (1,1,0),

(1,0,1) and (0,1,1) are equally likely to occur. Hence, conditioned on SI=2, we can argue

that the probability that a demand from region 1 is served from warehouse 1 is
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Pr[F,, I SI= 2]= 2/3, as this will happen for inventory states (1,1,0) and (1,0,1).

Similarly, conditioned on SI=2, a demand from region 1 is served by warehouse 2 or 3

only if the inventory state is (0,1,1), where each warehouse has an equal probability;

thus, we have Pr[F 1,2 SI= 2] = Pr[F,3 I SI= 2]= 1/6.

A customer order is back-ordered if and only if none of the warehouses in the

system has inventory, i.e, SI=0. Again, since demand is Poisson with equal rates for

each region, when the system inventory is 0, each warehouse is equally likely to have

the next arriving unassigned replenishment unit. Thus:

Pr[B1, I SI = O] =

QED

With the above results, we can find the probability a demand in region i is served

by a transshipment from warehouse j: Pr[Fi,j]+Pr[Bi,j] for i #j.

3.1.2 EXTREME DEMAND CASE

We now suppose that all demand originates from one region, e.g., ai=l, while aj=0 for

j=2,..N

We now analyze the case where one of the N-warehouses faces a demand rate of A
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from its local region, while the other warehouses do not face any demand but still carry

a single unit of inventory. The order fulfillment policy for this analysis is P1, as described

in the previous section. Although this is not a realistic scenario, we can analyze it

exactly using a renewal theory based approach.

Consider the demand arrival process with a1=1. We define a renewal as occurring

whenever an order is filled by warehouse 1 either immediately from stock or as a

backorder. We define the inter-renewal interval (Mt) as the number of demands that

occur between renewal epochs. Then the counting process that looks at the number of

orders served by warehouse 1, is a renewal process, and Mt are lID RVs for renewals

occurring at t.

Result 2

The probability that an order from region 1 is filled from warehouse 1 immediately

from stock under the above condition is given by:

Pr[r [F,, I A1,] xPr [A1]
where

Pr F, A,, = Pr[DL <N]

Pr A ,, 11+E[M]
N-1

E[M]= kxPr[DL =k]+(N-1)Pr[DL N]
k=O

The probability that an order from region 1 is backordered and filled from a
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replenishment to warehouse 1 under the above condition is given by:

Pr [B] = Pr [B, A x Pr [A,]
where

Pr[B A, ,]=1-Pr [F I A,] = 1-Pr[D, <N]

Pr A, = 1
, 1 = +E[M]

N-1

E[M]= kxPr[DL =k]+(N-1)Pr[DL _N]
k=O

Proof:

The results follow from application of the Total Probability Theorem and

Renewal-Reward Theory [Ga196].

Recall that A1,1 = F1,1 u B11 ; then by applying the Total Probability Theorem, we get:

Pr[Fi,1]=Pr[F 1j, I A1,1]x Pr[A 1,1]

Next, to see how Pr[Fi,1 I A,1j] = Pr[DL < N], consider the following argument:

Without loss of generality, suppose a demand occurs at time t and is assigned to

warehouse 1. Then this event triggers replenishment for warehouse 1, which will arrive

at time t + L. We consider how this replenishment will be used. There are two cases to

consider:

1. Let D(t, t + L] denote the demand over the interval (t, t+L], and suppose D(t, t+ L]

< N. Then at time t + L, the system on-hand inventory is non-negative and the
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item that arrives at time t + L to warehouse 1 enters the on-hand inventory. By

the assumed assignment rule, this item will be used to serve the first demand

after time t + L.

2. Suppose D(t, t+ L] 2 N. Then the on-order item to warehouse 1 will be assigned

to the Nth order that occurs within the time interval (t, t + L]; when this item arrives

at time t+L, it will be immediately used to serve the earlier demand.

Case 1 corresponds to using the item to serve a demand from stock, whereas case 2

corresponds to using the item to fill a backorder. Furthermore, this is a general

characterization of how we allocate a replenishment to warehouse 1, as each

replenishment to warehouse 1 is triggered by a prior demand assignment that occurred

a lead time earlier. Thus, we see that Pr[F1,1 I A1,1] = Pr[DL < N] holds.

Finally, we need to show the probability that a random demand is assigned to

warehouse 1 is given by:

1
Pr[A 1,1] = where the average inter-renewal interval is [1+E(M)]

1+ E(M)

From the renewal process as defined in the beginning of this section, the inter-renewal

interval is the number of orders that come in between consecutive renewals. This is the

number of orders that are assigned to warehouses other than warehouse 1, just after an

order was assigned to warehouse (triggering a renewal), plus the final order in this

interval that is assigned to warehouse 1, which triggers the next renewal. Let M be the
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number of orders assigned to warehouses other than warehouse 1, between renewals.

Then the mean inter-renewal interval is given by [1+E(M)]. The value of M varies

between 0 and N-1, with the probability depending on the number of demands during

the replenishment lead-time. There are two cases to consider:

1. Suppose an order is assigned to warehouse 1 at time t and let D(t, t + L] denote

the demand over the interval (t, t+L], and suppose D(t, t+ L] < N. Then M equals

D(t, t + L], as the next demand after time t + L is assigned to warehouse 1, which

is the next renewal point.

2. Suppose an order is assigned to warehouse 1 at time t and suppose D(t, t+ L] >

N. Then M equals N -1 as we will assign the first N - 1 demands to the other

warehouses and will assign the Nth demand to warehouse 1, which is the next

renewal point.

Thus, we get:

N-1

E[M]= kxPr[DL =k]+(N-1)Pr[DL N]
k=O

Let us define a reward function, R(k) = 1 if order k is assigned to warehouse 1. Then,

the reward accumulated during every inter-renewal interval is exactly one, since a

renewal occurs immediately after an order is assigned to warehouse 1. Thus, E[R(n)]=1.

By applying the Key Renewal Theorem, we get:
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E[R(n)]
Lim E[R(t)]= -
n-oo X

where X is the average inter - renewal interval, X = 1 + E(M)

and E[R(n)] is the average reward accumulated during X

However, E[R(t)] is the expected rate of reward accumulation, which in this model, is the

probability of an order being assigned to warehouse 1 to be fulfilled either immediately

from stock or from a replenishment unit when it arrives, i.e., P[AI,1]. Hence, the result

follows.

The only difference in the proof for Pr[B1,1] is that:

Pr [BI A,, = 1-Pr [F, I A,]= 1-Pr[DL <N]

This follows immediately by recalling that F1,1 and B1, 1 are mutually exclusive events,

and A1,i = F1,1 u B1 ,1.

QED

For the other warehouses, we can similarly show that,

forj •1:

pPr[DL < N]-Pr[F,,]
Pr'[F] N-1

(1- Pr[DL < N])-Pr[B,,,]
SJN-I
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As explanation, we note that the fill rate from the non-local warehouses to serve

demand in region 1 equals the system fill rate, net of the fill rate from warehouse 1; by

symmetry, we then divide the total fill rate associated with the non-local warehouses

equally across these N-1 warehouses. Similarly we find the probability that a non-local

warehouse serves a backordered demand from region 1.

With the above results, we can find the probability a demand in region i is served by a

transshipment from warehouse j; Pr[Fi,j] + Pr[Bi,j] for i #j.

3.1.3 INTERPOLATION METHOD

For other demand distribution across the regions, exact solutions could not be found

either by similar methods or using the method Xu [Xu05]. However, we expect Pr[Fi,i] to

be monotonically decreasing in ai for a given system demand rate, A, since we are

effectively increasing the demand rate for the region while maintaining the same

inventory level of one unit at the regional warehouse. This holds true provided that

demand in all other regions remains proportional, and the order fulfillment policy in

place is P1. Thus, we propose to approximate the Pr[Fi,i] for other cases of demand

using some form of monotonic interpolation. Using the known results for 4=l1 and

e=1I/N, we considered a linear interpolation and exponential interpolation approximation

for Pr[Fi,i] using the values of Pr[Fi,i] for the balanced and extreme demand distribution

cases. Let yk = Pr[Fi,i] for ui = k, 0<klI1.
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The linear interpolation for Yk is given by:

(y - yIN) x (k- 1)
yk = yl +

The exponential interpolation for yk is given by:

yk=axexp(bxk) where b = - log Yj a = ylx exp(-b)
I-1/N ( y11N

We compared these approximations with Monte-Carlo simulation results for Pr[Fi,i] for

a wide range of scenarios. A sample case for a 4-unit 4-warehouse scenario with A=1

and L=3 is shown below. We set ai = (1 - ai)/(N - 1) for i=2, 3, ... N.

TABLE 2: COMPARISON OF SIMULATION AND INTERPOLATION RESULTS

al

Pr[F11,J 1 0.8 0.6 0.5 0.4 0.3 0.25 0.2 0.1 0.05

Simulation 0.1958 0.2202 0.2501 0.2719 0.291 0.3161 0.3282 0.3386 0.37 0.3761

Linear approx 0.1945 0.2306 0.2667 0.2847 0.3028 0.3208 0.3298 0.3389 0.3569 0.3659

Exponential approx 0.1945 0.2239 0.2578 0.2766 0.2968 0.3184 0.3298 0.3417 0.3666 0.3797
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FIG 3: COMPARISON OF SIMULATION AND INTERPOLATION RESULTS

We observe empirically that the exponential approximation performs slightly better

than the linear approximation. In general, the approximations are both reasonably good,

within 5% of the simulation results. Furthermore, the error seems systematic with the

approximation overestimating Pr[Fi,i] when a1 e [1/N,1] and underestimating Pr[Fi,i]

when i e [0,1/N]. This allows us to estimate the proportion of system-wide

transshipment better since some regions have lower than average demand rates while

other have greater than average demand rate, thus balancing the underestimation with

the overestimation.

However, this approximation method does not account for the effects due to the

demand distribution across the warehouses. For instance, consider a 3-unit 3-location

scenario. If ai=0.33, a2=0.67, and a3=0, then Pr[FI,1 I ai=0.33, a2=0.67, a3=0] is
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clearly less than Pr[FI,1 I al=0.33, a2=0.33, a3=0.33]. To see this, consider an order

arriving from region 2 when warehouse 2 does not have stock but Warehouses 1 and 3

have stock. Under the order fulfillment policy P1, warehouse 1 may be chosen to fill the

order with probability /2. This event occurs more often when a2=0.67 compared to

z2=0.33, thus lowering warehouse 1's probability of filling region 1's orders from stock,

Pr[F1,1]. Clearly, the better allocation policy is to fill the order from warehouse 3 stock

which does not have any demand in its region. We use this concept in developing and

comparing different order fulfillment policies in Chapter 4.

We expect these approximation methods perform best when local demand faced at

the other warehouses is equal, i.e., ai = (1 - az)/(N - 1) for i=2, 3, ... N. If demand at

other warehouses is not equal, then under the order fulfillment policy P1, the

approximation underestimates Pr[Fi,i]. This effect can be illustrated using the same

example as in the previous paragraph.

We define another performance metric, Service Failure, as the probability that an

order is not filled immediately by its local warehouse. We say that a Service Failure

occurs when a demand is backordered or when a demand is filled immediately by some

warehouse other than its local warehouse. Thus,

Service Failure for region i, SFi = 1- Pr[Fi,i]
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N

Service Failure for system, SF =1- - a,,x Pr[Fi, ]
i=l

Note that the Service Failure for the system is just the demand-weighted service

failure in the regions. We can estimate the Service Failure for the system quite

accurately using the above formula despite the errors in estimating Pr[Fi,i]. This is due

to the cancellation of the systematic errors in the approximation of Pr[Fi,i] as some

a, e [1/N,1] while other •x e [0,1/N].

We approximate the probability of a backorder filled by its local warehouse, Pr[Bi,i], as

being almost equal for each warehouse in the system, then:

1
Pr[Bi, i] - Pr[DL 2 N]

N

Thus, we can estimate the probability of transshipment for each region and for the

system as:

TS, = SF, - Pr[B,,]

N

TS = x TS,
i=1

We compared these estimates of Service Failure and Transshipment for the system

with Monte-Carlo simulation results under a wide range of conditions. We considered

systems with 3 to 5 warehouses, each warehouse holding one unit of inventory. The fill
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rates for each system was varied ranging from 70% to 99%, by changing the system

demand rate X for a constant value of L=3. Finally, the demand across regions was

changed from almost balanced to extremely unbalanced by varying %k = 1/N + m8 for

m=k-[(N+1)/2] where k=1,2,...,N and 5>0. We set 8 based on the scenario we want to

model. For instance, to model a scenario of unbalanced demand, we set 6 such that ac

is close to 0. Similarly, to model a scenario of almost balanced demand, we set 8 such

that a• is close to 1/N. Finally, for the middle case, we set 5 to a value between the two

previous values. To give an example, one such scenario (Table 3, row 13) was for a 4-

unit 4-warehouse system that had a system demand rate of X=0.58 items per week and

lead time of 3 weeks (giving a fill rate of 90%) and with demand across regions being

a4=0.4, a3=0.3, a2=0.2, ai=0.1 (demand distribution spread is high) for 8=0.1.

Each simulation scenario was run 100 times for 500,000 orders to reduce variability

inherent in the simulation. The mean and standard deviation of the estimates of the

transshipment and service failure rates in simulation runs for each scenario were

recorded, and confidence intervals derived for these parameters. For example, consider

the scenario from (Table 3, row 13); From the simulation, we computed an estimate of

0.4463 for service failure with a standard deviation of 0.0009, thus giving a 95%

confidence interval that the actual service failure is in [0.4445, 0.4481]. These

confidence intervals were found to be quite tight, with interval length being around 0.3%,

thus giving a good estimate of the actual service failure value for comparison with the

approximation. A sample table (Table 3) is shown on the next page.
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The summarized results of the computational tests for the service failure and

transshipment values using the linear approximation are shown in tables 5 - 10. The

parameter values for the demand rate, corresponding fill-rate and demand distribution

for each of the test scenarios is listed in Table 4. Tables 5 and 8 show the service

failure and transshipment approximation values for each of the scenarios. Tables 6 and

9 show the mean service failure and transshipment values obtained from simulation for

each of the scenarios. Finally, Tables 7 and 10 show the relative error between the

approximation and simulation values as a percentage [(Approximation value -

Simulation mean value)/Simulation mean value %]. These tables show that the relative

error between the approximation and the simulation result systematically increases with

the number of warehouses in the system, with increasing fill-rates, and as demand gets

increasingly unbalanced between regions. However, these errors are small, with

absolute error below 2%, and relative error below 5% for the most part. Thus, we

conclude that there is a generally good fit between the approximation and the

simulation. This gives us greater confidence in using this method as a tool in estimating

transshipment proportions and using it to determine optimal inventory policies.
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TABLE 3: SIMULATION AND APPROXIMATION RESULTS FOR SERVICE FAILURE
(4-UNIT 4-WAREHOUSE SYSTEM WITH VARYING FILL RATES AND DEMAND DISTRIBUTIONS)

Policies / Parameters Equiprobable Random
Selection of WH

Demand Rate and Distribution across Approx
Fill Rate Mean Std Dev

Regions Method

99% A=0.28 (0.28,0.26,0.24,0.22) 0.2103 0.0006 0.2102

96% A=0.42 (0.28,0.26,0.24,0.22) 0.3129 0.0007 0.3127

90% A=0.58 (0.28,0.26,0.24,0.22) 0.4246 0.0009 0.4247

80% A=0.76 (0.28,0.26,0.24,0.22) 0.5396 0.0008 0.5399

70% A=0.28 (0.28,0.26,0.24,0.22) 0.6297 0.0009 0.6301

99% A=0.28 (0.34,0.28,0.22,0.16) 0.2175 0.0006 0.2155

96% A=0.42 (0.34,0.28,0.22,0.16) 0.3205 0.0008 0.3181

90% A=0.58 (0.34,0.28,0.22,0.16) 0.4317 0.0009 0.4295

80% A=0.76 (0.34,0.28,0.22,0.16) 0.5456 0.0009 0.5439

70% A=0.42 (0.34,0.28,0.22,0.16) 0.6346 0.0008 0.6334

99% A=0.28 (0.4,0.3,0.2,0.1) 0.2320 0.0006 0.2261

96% A=0.42 (0.4,0.3,0.2,0.1) 0.3361 0.0007 0.3289

90% A=0.58 (0.4,0.3,0.2,0.1) 0.4463 0.0009 0.4393

80% A=0.76 (0.4,0.3,0.2,0.1) 0.5576 0.0009 0.5512
70% A=0.42 (0.4,0.3,0.2,0.1) 0.6444 0.0009 0.6399
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TABLE 4: PARAMETER VALUES FOR COMPUTATIONAL TESTS

Demand

Fill Rate Distribution 3U-3L 4U-4L 5U-5L

Spread

A=0.14 A=0.28 A=0.43
99% Low

(0.367,0.333,0.3) (0.28,0.26,0.24,0.22) (0.24,0.22,0.2,0.18,0.16)

A=0.25 A=0.42 A=0.62
96% Low

(0.367,0.333,0.3) (0.28,0.26,0.24,0.22) (0.24,0.22,0.2,0.18,0.16)

A=0.37 A=0.58 A=0.81
90% Low

(0.367,0.333,0.3) (0.28,0.26,0.24,0.22) (0.24,0.22,0.2,0.18,0.16)

A=0.51 A=0.76 A=1.02
80% Low

(0.367,0.333,0.3) (0.28,0.26,0.24,0.22) (0.24,0.22,0.2,0.18,0.16)

A=0.64 A=0.28 A=1.21
70% Low

(0.367,0.333,0.3) (0.28,0.26,0.24,0.22) (0.24,0.22,0.2,0.18,0.16)

A=0.14 A=0.28 A=0.43
99% Medium

(0.4,0.333,0.267) (0.34,0.28,0.22,0.16) (0.3,0.25,0.2,0.15,0.1)

A=0.25 A=0.42 A=0.62
96% Medium

(0.4,0.333,0.267) (0.34,0.28,0.22,0.16) (0.3,0.25,0.2,0.15,0.1)

A=0.37 A=0.58 A=0.81
90% Medium

(0.4,0.333,0.267) (0.34,0.28,0.22,0.16) (0.3,0.25,0.2,0.15,0.1)

A=0.51 A=0.76 A=1.03
80% Medium

(0.4,0.333,0.267) (0.34,0.28,0.22,0.16) (0.3,0.25,0.2,0.15,0.1)

A=0.64 A=0.42 A=1.21
70% Medium

(0.4,0.333,0.267) (0.34,0.28,0.22,0.16) (0.3,0.25,0.2,0.15,0.1)

A=0.14 A=0.28 A=0.28
99% High (0.467,0.333,0.2) (0.40,0.30,0.20,0.10) (0.36,0.28,0.2,0.12,0.04)

A=0.25 A=0.42 A=0.43
96% High (0.467,0.333,0.2) (0.40,0.30,0.20,0.10) (0.36,0.28,0.2,0.12,0.04)

A=0.37 A=0.58 A=0.81
90% High (0.467,0.333,0.2) (0.40,0.30,0.20,0.10) (0.36,0.28,0.2,0.12,0.04)

A=0.51 A=0.76 A=1.02
80% High (0.467,0.333,0.2) (0.40,0.30,0.20,0.10) (0.36,0.28,0.2,0.12,0.04)

A=0.64 A=0.42 A=1.21
70% High

(0.467,0.333,0.2) (0.40,0.30,0.20,0.10) (0.36,0.28,0.2,0.12,0.04)
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TABLE 5: SERVICE FAILURE APPROXIMATION

Demand Distribution Demand Distribution Demand Distribution
Spread Spread Spread

Low Medium High

Fill Rate 3U-3L 4U-4L 5U-5L 3U-3L 4U-4L 5U-5L 3U-3L 4U-4L 5U-5L

99% 0.14 0.21 0.26 0.14 0.22 0.27 0.15 0.23 0.28
96% 0.25 0.31 0.37 0.25 0.32 0.38 0.26 0.33 0.39
90% 0.36 0.42 0.48 0.36 0.43 0.48 0.37 0.44 0.50
80% 0.48 0.54 0.59 0.48 0.54 0.59 0.49 0.55 0.60
70% 0.58 0.63 0.67 0.58 0.63 0.67 0.58 0.64 0.68

TABLE 6: SERVICE FAILURE SIMULATION MEAN

Demand Distribution Demand Distribution Demand Distribution
Spread Spread Spread

Low Medium High

Fill Rate 3U-3L 4U-4L 5U-5L 3U-3L 4U-4L 5U-5L 3U-3L 4U-4L 5U-5L

99% 0.14 0.21 0.26 0.14 0.22 0.27 0.15 0.23 0.30
96% 0.25 0.31 0.37 0.25 0.32 0.38 0.26 0.34 0.41
90% 0.36 0.42 0.48 0.36 0.43 0.49 0.37 0.45 0.51
80% 0.48 0.54 0.59 0.48 0.55 0.60 0.49 0.56 0.62
70% 0.58 0.63 0.67 0.58 0.63 0.68 0.58 0.64 0.69

TABLE 7: SERVICE FAILURE APPROXIMATION ERROR PERCENTAGE
(RELATIVE TO SIMULATION RESULTS)

Demand Distribution Demand Distribution Demand Distribution
Spread Spread Spread

Low Medium High

Fill Rate 3U-3L 4U-4L 5U-5L 3U-3L 4U-4L 5U-5L 3U-3L 4U-4L 5U-5L

99% 0.14 -0.08 -0.36 -0.06 -0.95 -2.12 -0.70 -2.63 -5.18
96% 0.14 -0.06 -0.21 0.02 -0.75 -1.63 -0.56 -2.18 -4.04
90% 0.19 0.01 -0.16 0.08 -0.51 -1.16 -0.38 -1.58 -2.94
80% 0.16 0.04 -0.07 0.12 -0.30 -0.73 -0.27 -1.17 -1.93
70% 0.14 0.06 -0.01, 0.10 -0.20 -0.47 -0.15 -0.71 -1.30

Statistics taken over 100 simulation runs of 500k orders
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TABLE 8: TRANSSHIPMENT APPROXIMATION

Demand Distribution Demand Distribution Demand Distribution
Spread Spread Spread

Low Medium High

Fill Rate 3U-3L 4U-4L 5U-5L 3U-3L 4U-4L 5U-5L 3U-3L 4U-4L 5U-5L

99% 0.14 0.21 0.26 0.14 0.21 0.27 0.15 0.22 0.28
96% 0.23 0.30 0.36 0.24 0.31 0.37 0.24 0.32 0.38
90% 0.33 0.40 0.46 0.33 0.40 0.46 0.33 0.41 0.48
80% 0.41 0.49 0.55 0.41 0.49 0.55 0.42 0.50 0.56
70% 0.48 0.56 0.61 0.48 0.56 0.61 0.48 0.57 0.62

TABLE 9: TRANSSHIPMENT SIMULATION MEAN

Demand Distribution Demand Distribution Demand Distribution
Spread Spread Spread

Low Medium High

Fill Rate 3U-3L 4U-4L 5U-5L 3U-3L 4U-4L 5U-5L 3U-3L 4U-4L 5U-5L

99% 0.14 0.21 0.26 0.14 0.21 0.27 0.15 0.23 0.29
96% 0.23 0.30 0.36 0.24 0.31 0.38 0.25 0.33 0.40
90% 0.33 0.40 0.46 0.33 0.41 0.47 0.34 0.42 0.49
80% 0.41 0.49 0.55 0.41 0.50 0.56 0.42 0.51 0.57
70% 0.48 0.56 0.61 0.48 0.56 0.62 0.48 0.57 0.63

TABLE 10: TRANSSHIPMENT APPROXIMATION ERROR PERCENTAGE
(RELATIVE TO SIMULATION RESULTS)

Demand Distribution Demand Distribution Demand Distribution
Spread Spread Spread

Low Medium High

Fill Rate 3U-3L 4U-4L 5U-5L 3U-3L 4U-4L 5U-5L 3U-3L 4U-4L 5U-5L

99% 0.02 -0.12 -0.37 -0.16 -0.95 -2.10 -0.70 -2.59 -5.13
96% -0.02 -0.14 -0.25 -0.09 -0.76 -1.61 -0.51 -2.09 -3.94
90% 0.00 -0.08 -0.20 -0.05 -0.52 -1.15 -0.30 -1.47 -2.82
80% -0.01 -0.06 -0.11 0.01 -0.33 -0.71 -0.16 -1.06 -1.79
70% 0.00 -0.03 -0.05 -0.01 -0.20 -0.46 -0.07 -0.60 -1.18

Statistics taken over 100 simulation runs of 500k orders
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3.2 MULTIPLE UNITS AT ONE WAREHOUSE

Until now we have only considered the case where one unit of inventory is held at a

warehouse. However, for cases where demand between regions is extremely

unbalanced or when service level measures such as fill rate are high, holding more than

one unit in a warehouse may be required. We can represent a warehouse that holds

say m units (m>l) as m warehouses that hold one unit each, and in addition, use a

specific order fulfillment policy, say P2. This order fulfillment policy has a priority list

whereby these m warehouses have equal preference to fulfill orders from each other in

the event that any of them receives an order but does not have inventory on-hand.

For example, consider a system with 2 warehouses where warehouse 1 receives

70% of customer demand and warehouse 2 receives 30% of customer demand. Let us

assume that the system demand requires 3 units of inventory to be held in order to

satisfy a fill rate target set by the e-tailer with warehouse 1 stocking 2 units of inventory

and warehouse 2 stocking 1 unit of inventory. Then we can analyze this system as a 3-

unit 3-warehouse system where warehouse 1 is represented as two warehouses, say

warehouses 1A and 1B, each receiving 35% of the customer demand, and holding 1

unit of on-hand inventory. Warehouse 2 remains with 1 unit of on-hand inventory and

receives 30% of the customer demand. The priority list for order fulfillment is shown in

the table below (1 being highest priority):
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Warehouse Filling Order
1A 1B 2

Warehouse Receiving Order

1A 1 2 3

1B 2 1 3

2 2 2 1

TABLE 11: PRIORITY LIST FOR ORDER FULFILLMENT
FOR 3-UNIT 3-WAREHOUSE SYSTEM

The first row of this table says that when an order comes from region 1A, then the

first preference is to assign the order to warehouse 1A. If warehouse 1A does not have

stock, then the second preference is to assign the order to warehouse 1B. If warehouse

1B also does not have stock, only then does the system assign the order to warehouse

2. If none of the warehouses in the system have stock, then the earliest arriving

unassigned replenishment unit in the system is assigned to this order.

This system is equivalent to the 3-unit 2-warehouse system as described above.

Thus, we can extend this method and describe any k-unit N-warehouse system (k>n) as

an equivalent k-unit k-warehouse system, where the warehouses may have different

demand rates and a priority list for order fulfillment that gives strict preference to

warehouses that were derived from the same parent warehouse in the original system.

The present methodology (described in Section 3.1) only allows us to estimate the

proportion of local demand that is filled immediately from stock at the local or preferred
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warehouse from a k-unit k-warehouse system when the order fulfillment policy in effect

is P1. However, since some of the warehouses are physically the same, and the order

fulfillment policy in effect is P2, we need to develop a new methodology to estimate the

proportion of orders that are transshipped.

The new method entails two steps:

1. Use the present methodology (described in Section 3.1) to estimate the

proportion of local demand that is filled immediately from stock at the local

warehouse from a k-unit k-warehouse system when the order fulfillment

policy in effect is P1.

2. Apply a correction factor to these estimates to account for fact that some of

the warehouses are physically the same, and the order fulfillment policy in

effect is P2,

We now describe this new method in more detail. Given only the demand rates seen

by each warehouse and the replenishment lead time, we can calculate the system fill

rate, FR. We can use the method from section 3.1 to estimate the proportion of local

demand that is filled immediately from stock at the local warehouse, P(Fii), under the

assumption that the order fulfillment policy in effect is P1. The transshipment into each

region depends on the proportion of the regional demand that is not filled by its local

warehouse, multiplied by a correction factor for the regional demand that is actually

assigned to the dummy warehouse(s) at the same physical warehouse. In the example
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that we are using, this correction ratio is the ratio of region 1A's demand filled by

warehouse 2 to region 1A's demand filled by warehouses 1B and 2. Thus, we estimate

the percentage transshipment into each region and for the system as:

TS, = (1- P(Fii) - P(Bi)) x [Correction Ratio]

Correction Ratio = Ratio of local region's demand filled by foreign

warehouse to local region's demand filled by dummy and foreign warehouse

k

TS = ZaxTS
i=1

The Service Failure in each region depends on the proportion of the regional demand

that is not filled by its local warehouse immediately, with a correction term for the

regional demand filled immediately by the dummy warehouse(s) at the same physical

warehouse. Since the proportion of demand filled immediately from stock in any region

is equal to the system fill-rate, this correction term depends on (FR - Pr[Fi,i]). In the

context of the current example, this correction ratio is the ratio of region 1A's demand

that is filled immediately by warehouse 1B to region 1A's demand that is filled

immediately by warehouses 1B and 2. The service failure for each region and for the

system can be estimated as:

SF, = [ {1 - P(Fii) } - {FR - P(Fii) } x {1 - Correction Ratio } ]

Correction Ratio = Ratio of local region' s demand filled immediately by
foreign warehouse to local region's demand filled immediately by

dummy and foreign warehouse
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k

SF = a, x SF
i=l

We note that the above approximations require us to calculate the proportion of local

demand that is filled by the foreign warehouses under the order fulfillment policy, P2.

This is not easy to calculate in the current scenario. However, If we assume that the

replenishment lead time follows an exponential distribution with the mean equal to the

actual constant replenishment lead time, then the k-unit k-warehouse system with the

priority shipment policy, P2, can be modeled as a markov process. This markov process

model enables us to approximate the proportion of local demand that is filled by foreign

warehouses as a function of the steady state probabilities and flow rates. The markov

process model for the current 3-unit 2-warehouse system is shown in Figure 4.
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S9

S10

FIG 4: MARKOV PROCESS MODEL FOR 3-UNIT 3-LOCATION MODEL
WITH PRIORITIZED TRANSSHIPMENTS (POLICY P2)

Each state of this system is represented as (xi, x2, x3 , x4) where xi indicates the level

of on-hand inventory at warehouse i, for i=1, 2, 3. The value of x4 indicates the number

of backorders in the system. The flow rates between the states of this markov process

model incorporate the priority shipment rules for the order fulfillment policy, P2 . For
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example, the flow rate from state (1,1,0,0) to (0,1,0,0) is ~1A+X2 /2 since this transition

occurs only if an order comes from region 1A or if the order comes from region 2 and

warehouse 1A is chosen to fill the order (which occurs with probability /2 since

warehouse 1B has equal priority in filling warehouse 2's order).

We note that the online retailer model allows for any number of backorders, not just

two, as shown in the markov process model above. This truncation is done for

computational purposes, and can be justified since the probability of having greater than

2 backorders is negligible in the above case. For other cases, we can extend the

markov process model up to a stage where the probability of exceeding that many

backorders is negligible, less than 0.05.

We first calculate the steady state probabilities, P(Si), of this system using the flow

balance and probability normalization equations. We then calculate the ratio of orders

from region 1A filled by warehouse 2 immediately to orders from region 1A filled by

warehouses 1B and 2 immediately, as:

P[F1A,2] = P(S5)/[P(S2) + P(S5) + P(S7)]

The explanation of this factor is as follows: The rate of orders from region 1A filled by

warehouse 2 is [R1A x P(S5)] since S5 represents the state where only warehouse 2 has

stock, and if any order from region 1A comes, then it must be assigned to warehouse 2.

Similarly, the rate of orders from region 1A filled by warehouse 1B is [h1A X
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{P(S2)+P(S7)}] since S2 and S7 represents the states where warehouse 1B has stock

while warehouse 1A does not have stock, and if any order from region 1A comes, then it

must be assigned to warehouse 1B.

Correction Ratio for Service Failure = P[FIA,2]

Similarly, the proportion of region 1A's orders that are filled by region j as backorders

is given by:

P[B1A,j ] P(DL>3)/3

Then the proportion of orders from region 1A filled by warehouse 2 (either

immediately or as a backorder) is:

Correction Ratio for transshipment =

{P[F1A,2 ] + P[BIA,2 ]}/ {P[F1A,2] + P[BIA,2] + P[F1A,1B] + P[B1A,1B ]}

We use this approach for the above example, and then compare its results with

simulation results obtained for the 3-unit 2-warehouse system with 70% demand from

region 1 and 30% from region 2. The following results were obtained for system fill rate

ranging from 99.9% to 0.6%, by setting L=3 and varying the system demand rate, X.

The table 12 shows the simulation and approximation results for this case. More

computational tests were conducted for 3-unit 2-warehouse systems and 4-unit 2-

warehouse systems (shown in tables 13 - 15). The approximation yields very good
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results, usually within 1% of the value obtained by simulation. Moreover, the

approximation is very good for fill rates for practical systems (>90%). However,

simulation results also show that this estimate worsens as the number of units in the

system, k, increases.

Transshipment
(Simulation) %

2.070
5.770

17.150
23.180
28.020
33.090
36.320
40.080
42.890
43.400

Transshipment
(Approx) %

2.122
5.919

17.756
24.100
28.672
33.538
36.897
40.308
42.816
43.297

Service Failure
(Simulation) %

2.120
6.280

22.900
34.780
45.340
58.520
69.310
82.920
95.780
99.570

Service Failure
(Approx) %

2.178
6.425
23.417
35.353
45.727
58.794
69.571
82.885
96.074
99.612

TABLE 12: COMPARISON OF SIMULATION AND APPROXIMATION RESULTS
FOR 3-UNIT 2-LOCATION SYSTEM (70:30 DEMAND DISTRIBUTION)

Transshipment
(Simulation) %

1.420
4.550
15.380
21.380
25.300
30.360
33.650
36.390
39.250
39.840

Transshipment
(Approx) %

1.493
4.897
16.311
22.234
26.624
31.151
34.240
37.324
39.550
39.949

Service Failure
(Simulation) %

1.470
5.120

21.810
33.930
43.880
57.670
68.860
82.410
95.740
99.610

Service Failure
(Approx) %

1.550
5.430

22.300
34.156
44.686
57.905
68.846
82.413
95.836
99.577
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Fill-Rate
(%)9
99.9
99.1
90
80
70
55
42
25
6

0.6

Fill-Rate
(%)

99.9
99.1
90
80
70
55
42
25
6

0.6

TABLE 13: COMPARISON OF SIMULATION AND APPROXIMATION RESULTS
For 3-Unit 2-Location System (80:20 Demand Distribution)
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Transshipment
(Simulation) %

3.150
7.550
19.560
25.830
30.910
36.060
39.560

Transshipment
(Approx) %

3.072
7.510

20.032
26.412
31.212
36.271
39.797

Service Failure Service Failure
(Simulation) % (Approx) %

3.190 3.123
7.980 8.004

24.860 25.433
36.240 37.083
46.920 47.344
59.720 60.112
70.370 70.605

25 43.420 43.409 83.320 83.515
6 46.380 46.101 95.950 96.138

0.6 46.710 46.626 99.680 99.628

TABLE 14: COMPARISON OF SIMULATION AND APPROXIMATION RESULTS
For 3-Unit 2-Location System (60:40 Demand Distribution)

Fill-Rate Transshipment Transshipment Service Failure Service Failure
(%) (Simulation) % (Approx) % (Simulation) % (Approx) %
99.9 2.650 2.886 2.730 2.948
99.1 5.620 6.310 6.240 6.877
90 14.590 15.956 20.930 22.171
80 19.650 21.158 32.050 33.567
70 23.520 25.039 42.610 43.831
55 27.870 29.189 56.090 57.064
42 30.880 32.014 67.160 68.059
25 34.530 34.926 81.340 81.911
6 37.160 37.057 95.510 95.687

0.6 37.790 37.468 99.630 99.588

TABLE 15: COMPARISON OF SIMULATION AND APPROXIMATION RESULTS
For 4-Unit 2-Location System (75:25 Demand Distribution)
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Chapter 4

In this chapter, we use the performance metrics developed in chapters 2 and 3 to

create guidelines for optimal inventory stocking for online retailers. Given regional

demand rates and the replenishment lead-time, we develop methods to determine how

much inventory should be held in the system and how should this be distributed among

the warehouses. Finally, we study various order fulfillment policies and find the best

order fulfillment policy to service demand under specific conditions.

4.1 INVENTORY PLANNING

The objective here is to develop an optimal inventory stocking policy for each item.

We consider a scenario where the e-tailer has N warehouses. Essentially we want to

find under what conditions should the e-tailer hold k units of inventory and in which of its

N warehouses.
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There are three primary dimensions when considering the inventory holding policy

for this e-tailer: the inventory holding cost, the transportation cost of orders to the

customer and the loss of customer goodwill if the customer order has to be backordered

(when there is no on-hand inventory in the system to fulfill the order). We call this loss of

customer goodwill as backorder cost. Furthermore, the transportation cost can be

divided into the local transportation cost (cost of delivery from local warehouse to the

customer) and the additional transshipment cost when the local warehouse does not

have on-hand inventory and the order has to be shipped by a warehouse in some other

region to the customer.

Low inventory holding cost requires the e-tailer to hold less system-wide inventory

but that increases both the transshipment cost and the backorder cost due to the

centralized order fulfillment policy of the system. The best inventory holding policy

develops the optimal trade-off between these costs.

When the system demand rate, A, and the replenishment lead-time, L, is known,

we can calculate the average inventory held in the system and the percentage of

system orders that are backordered. Let the backorder cost per order be denoted by B,

and the holding cost per unit per period be denoted by H. Then,

N-1

E[BackorderCost / period] = A * B * (1- FR) = A * B * (1- P(DL = i))
i=O

E[InvCost / period] = H * Avglnv = H * ixP(DL = N-i)
i-O

-64-



Estimating the transportation cost for an item is more complicated as it is affected by

the inventory holding configuration of that item in the system. For example, if the e-tailer

has a single warehouse and holds just one unit of inventory in the system, then the local

transportation cost is high since the single warehouse serves all demand; however, for

the same reason there is no transshipment cost. However, if the e-tailer holds N units of

inventory in N warehouses, then the local transportation cost goes down but

transshipment cost needs to be considered. For inventory holding configurations

between 1 and N, the e-tailer will need to revise the fulfillment regions for each

warehouse that holds inventory of that item, and then estimate local transportation and

system-wide transshipment costs. We perform inventory planning under such a general

model for transportation costs in Section 4.1.1. Since we are studying low demand

items, we only consider k-unit k-warehouse inventory configurations at first (k _< N),

although this can be easily extended to evaluate costs for m-unit k-warehouse (m > k)

inventory configurations.

On the other hand, if the e-tailer already has established warehouses and logistics

processes for transshipment, then the inventory planning problem reduces to

determining how many units of an item to stock in each warehouse given the holding,

backorder and transportation costs (for local and cross-region shipments). If the e-tailer

can estimate the demand split between the regions in the system for this item, we can

estimate the percentage of system orders that are transshipped by using the

approximation developed in Chapter 3. This approach is explained in Section 4.1.2.
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4.1.1 GENERAL TRANSPORTATION COST MODEL

Transportation cost depends on a number of factors including distance traveled or

transportation zones, and fixed costs. However, for the sake of simplicity, we develop a

general method to estimate the transportation cost for a k-unit k-warehouse system. Let

the system-wide area be A. Then assuming a uniform demand split over the k regions,

each warehouse needs to cover an area of size approximately A/k. The average

distance traveled to deliver a customer order in the local region is then approximated as

~I(A/k). Thus, if the local transportation cost of delivery is R/unit distance, then the

average local delivery cost is R1/(Nk). However, we assume that the average

transshipped distance does not change significantly when the number of warehouses is

increased or decreased, and also involves significant fixed costs. Hence, in this model,

we keep the additional transshipment cost as a constant, say T per order being

transshipped.

TransportationCost / period * * + T * P(Transshipment)

In order to decide how many units of inventory to hold in the system and in which

of the N warehouses, we need to evaluate the costs for all possible inventory holding

configurations among the N warehouses. Thus, for N=2, we would have to evaluate the

costs for the (1,0), (0,1), (1,1) inventory configurations. This may seem as a large

computational problem with 2N-' evaluations. However, e-tailers generally don't have
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more than 10 warehouses and so this brute force method has a relatively small number

of numerical calculations.

Thus, the total cost of a k-unit k-warehouse system can be estimated as the sum of

the Inventory Holding cost, Backorder cost and the Transportation cost. This can be

optimized numerically for different values of k, and the best inventory holding

configuration determined.

Some examples of developing optimal inventory holding policies using the procedure

described above are shown below. For the given parameter values, we determined the

total cost of the system for various values of k, and we selected the value of k that

minimized the total cost.

TABLE 16: PARAMETER VALUES/RANGE AND OPTIMAL STOCKING
POLICY FOR INVENTORY PLANNING
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Parameter Value/Range

System demand rate, A 1

Demand during Lead Time, 1

System Area, A 1

Inventory Holding Cost per unit per period, H 1

Backorder Cost per order, B 1 to 3

Local Transportation Cost per order per unit 1 to 3
distance, R

Additional Fixed Transshipment Cost per order, T 1 to 3

Number of warehouses holding inventory, k 1 to 5



Optimal Min Total
R B T k Cost

1 1 1 1 2
1 1 2 1 2
1 1 3 1 2
1 2 1 1 2.6321
1 2 2 1 2.6321
1 2 3 1 2.6321
1 3 1 2 2.9195
1 3 2 2 3.2356
1 3 3 1 3.2642
2 1 1 1 3
2 1 2 1 3
2 1 3 1 3
2 2 1 2 3.3624
2 2 2 1 3.6321
2 2 3 1 3.6321
2 3 1 2 3.6266
2 3 2 2 3.9427
2 3 3 2 4.2588
3 1 1 2 3.8053
3 1 2 1 4
3 1 3 1 4
3 2 1 2 4.0695
3 2 2 2 4.3856
3 2 3 1 4.6321
3 3 1 3 4.2951
3 3 2 3 4.5939
3 3 3 3 4.8927

We notice that k=1 is optimal when B is low and R is low. This agrees with

intuition, as there is no incentive to hold more inventory or distribute inventory if the

backorder and local transportation costs are low. Similarly, k=2 is optimal when B

and/or R is high, and T is medium or low. This can be explained by the incentive to

hold either more or distributed inventory for the optimal policy. Again, k=3 is optimal
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when R and B are high, and T is relatively lower. This can be attributed to the

incentive to hold larger quantities of regional inventory.

4.1.2 INVENTORY PLANNING FOR ESTABLISHED E-TAILER

Another situation that often arises in practice is when the e-tailer has established

warehouses and centralized order fulfillment procedures, and wants to decide how

many units of inventory to hold and in which warehouses, for a particular item. The

decision then requires the analysis of the trade-off between the inventory holding,

backorder and transportation costs under various inventory configurations. We use the

methods developed in the chapters 2 and 3 to calculate the costs, and illustrate this with

an example.

Consider a two-warehouse system where 70% of the demand comes from the first

region and 30% from the second. The system demand rate is given by A=0.25 orders/

week, and the replenishment lead-time, L=2 weeks. The costs of transportation within a

local region and to the foreign region are known, as are the holding and backorder

costs. We consider seven inventory configurations for the system - (1, 0), (0, 1), (2, 0),

(0, 2), (1, 1), (2, 1), and (3, 1) where (a, b) indicates the amount of inventory held in

each warehouse. Table 13 illustrates the trade-offs in this example.
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2

0.25

0.7
0.3

0.1

1

1 (1,0) 0.607 10.0606510.6065 0.09831
2 (2,0) 1.516 0.15163 0.9098 0.0225 1

3 (0,1) 0.607 0.06065 0.6065 0.0983 0

4 (0,2) 1.516 0.15163 0.9098 0.0225 0

5 (1,1) 1.516 0.15163 0.9098 0.0225 0.1625

6 (2,1) 2.502 0.25019 0.9856 0.0036 0.1529

7 (3,1) 3.5 0.35002 0.9982 0.0004 0.1384

0

1

1

0.2309

0.0384

0.0048

0.825

0.825

0.925

0.925

0.8026

0.7015

0.7008

0.9840

0.9991

1.0840

1.0991

0.9767

0.9553

1.0512

3.9360

3.9967

4.3360

4.3967

3.9071

3.8212

4.2051

TABLE 17: PARAMETER VALUES AND STOCKING POLICY COSTS FOR
VARIOUS INVENTORY PLANNING SCENARIOS

Table 13 shows that when the local transportation costs is $3 and transshipment cost

to the other region is $4, when holding cost is $0.1 per week and a backorder costs $1,

then the optimal inventory configuration is (2,1), i.e, holding 2 units of inventory in the

first warehouse and 1 unit of inventory in the second warehouse. Such a cost structure

is typical for media items. This example illustrates the usefulness of such a

methodology for inventory planners at online retailers.

In fact, we can use this methodology to develop an efficient frontier of inventory

policies - inventory stocking policies that minimize total cost per unit sold over a range

of system demand rate, A, for a given replenishment lead-time, L. This will enable online
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retailers to better understand the trade-offs of the various policies and determine which

policy is optimal for them. For example, continuing with the same example as earlier, we

vary k from 0.1/week to 0.65/week for L=2 weeks. We compare the total cost per unit for

the previously studied inventory policies over this range of k and graph it. Then the

lower envelope of the total cost per unit over all inventory policies is the efficient frontier

of inventory policies. This is illustrated in Table 14 and Figure 5.

-71 -

FIG 5: TOTAL COST PER UNIT FOR VARIOUS INVENTORY STOCKING POLICIES



3.998 4.398 4.295 4.695 4.156 4.362 4.947

3.936 4.336 3.997 4.397 3.907 3.821 4.205

3.945 4.345 3.839 4.239 3.804 3.465 3.684

4.006 4.406 3.785 4.185 3.812 3.227 3.268

4.069 4.469 3.812 4.212 3.884 3.140 3.076

TABLE 18: TOTAL COST PER UNIT FOR VARIOUS INVENTORY STOCKING POLICIES

The efficient frontier of inventory stocking policies is the policy (1,0) for X < 0.45, then

policy (2,1) for 0.45 < X < 1.10, and then policy (3,1) for X > 1.10. Note that policies like

(0,1) and (0,2) have total costs per unit that are always higher than those of policies

(1,0) and (2,0) respectively. Thus, these policies are completely dominated and should

not be used.

For an online retailer who faces an uncertain demand rate for an item (within some

bounds), these graphs enable the e-tailer to make an informed decision by showing how

the various policies perform over the range of interest. For example, suppose that an e-

tailer estimates the system demand rate for an item to be in the range [0.3, 0.6]. Then

the policy (1,1), which is fairly robust in this range, might be preferred to the policies

(1,0) and (2,1) even though it is not on the efficient frontier.

We also compare the performance of a centralized order fulfillment policy with that of

a policy that does not allow transshipments across regions. Consider a two-warehouse

system where 70% of the demand comes from the first region and 30% from the
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second. The system demand rate is given by A=0.25 orders/ week, and the

replenishment lead-time, L=2 weeks. The cost of transportation within a local region is

known, as are the holding and backorder costs. We consider seven inventory

configurations for the system - (1, 1), (2, 1), (3, 1), (2, 2) and (3, 2) where (a, b)

indicates the amount of inventory held in each warehouse. Table 15 illustrates the

trade-offs in this example.

2

0.25

0.7

0.3

2

3

4

5

(1,1)

(2,1)

(3,1)

(2,2)

(3,2)

0.705

1.656
2.651
1.656

2.651

0.861

0.861

0.861

1.119

1.119

0.157

0.252

0.351

0.277

0.377

0.705

0.951

0.994

0.951

0.994

0.861

0.861

0.861

0.990

0.990

0.062

0.019

0.011

0.009

0.002

0.1

1

0.525

0.525

0.525

0.525

0.525

0.225

0.225

0.225

0.225

0.225

0.969

1.021

1.113

1.037

1.129

3.875
4.083

4.450

4.147

4.515

TABLE 19: TOTAL COST PER UNIT FOR VARIOUS INVENTORY
STOCKING POLICIES WITHOUT TRANSSHIPMENT

This policy not only has poorer service in terms of longer waiting times for customers

and lower fill rates, but also has higher inventory holding costs when compared to a

policy that allows transshipments (Table 13). Only the transportation cost is lower. This

suggests that when transshipment cost is relatively much higher than holding and
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backorder costs, then this policy will perform better than the policy that allows

transshipments.

4.2 ORDER FULFILLMENT POLICIES

We have only considered the order fulfillment policy, P1, in the previous cases due to

its computational tractability. However, we find that other order fulfillment policies can

perform better than P1 in terms of reducing the transshipments in the system, without

affecting the average system inventory and backorders.

In this section, we consider two other types of order fulfillment policies that have the

same rules as stated in A-6 and A-7, but now with a different fulfillment policy when a

customer arrives and its closest warehouse does not have inventory on-hand. When

one or more of the other warehouses do have inventory on hand, then a warehouse

with an on-hand unit is chosen by a certain rule to fill the order.

In the first type of policy, say P3, the warehouse is randomly chosen but with higher

probabilities for warehouses facing lower local demand rates. In the second type of

policy, say P4, the warehouse is chosen from a priority list that orders the warehouses

according to their local demand rates, with lower local demand having a higher priority.

We perform a computational study of the proportion of orders transshipped in the
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system under the order fulfillment policies, P1, P3 and P4. We vary A while keeping L=3

constant, in order to study the performance under different fill-rates. We also compare

performance for different system sizes (3-units 3-locations to 5-units 5-locations), and

also under different demand distributions among the regions ranging from almost

balanced to extremely unbalanced. We compare the mean value and coefficient of

variation of transshipment obtained for each scenario over 100 Monte-Carlo simulation

runs of 500,000 orders each, for the order fulfillment policies, P1, P3 and P4 . Results

from simulation indicate that the strict priority policy P4 has the best system-wide

performance in terms of service failure and transshipments. However, there was not a

significant difference in system performance between these policies. A sample set of

simulation results for transshipments in the 3-unit 3-location case is presented below.

TABLE 20: TRANSSHIPMENT PERCENTAGE UNDER VARIOUS
SYSTEM CONFIGURATIONS AND POLICIES

Policies I Parameters P1 P3 P4

Demand Rate and Distribution
Mean CV Mean CV Mean CV

Fill Rate across Regions

96% A=0.25 (0.65,0.3,0.05) 0.2906 0.0021 0.2815 0.0019 0.2787 0.0020

42% A=1 (0.65,0.3,0.05) 0.6012 0.0010 0.5956 0.0011 0.5940 0.0010

96% A=0.25 (0.367,0.333,0.3) 0.2344 0.0027 0.2344 0.0028 0.2331 0.0028

42% A=1 (0.367,0.333,0.3) 0.5839 0.0012 0.5838 0.0012 0.5832 0.0014

96% A=0.25 (0.3433,0.3333,0.3233) 0.2336 0.0028 0.2337 0.0027 0.2334 0.0026

Statistics taken over 100 simulation runs of 500k orders
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Chapter 5

Conclusion

In this dissertation, we present an inventory-planning problem for low demand items

motivated by the customer fulfillment process in online retailing. This problem

underscores the variety of issues that are particularly important in managing an efficient

supply chain in online retailing. In particular, we show how analytical tools can assist in

this complex decision making process - strategic, tactical or operational.

In chapter 2, we explain the assumptions and key performance metrics of the online

retailer model with centralized order fulfillment. We also study the special case of when

the system comprises only two warehouses with each warehouse holding exactly one

unit of inventory of an item, and explain how Xu [Xu05] modeled this as a two-state

markov chain. Unfortunately, this approach could not be extended to larger systems of

three or more warehouses as the state space explodes. In chapter 3, we present
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methods to calculate the transshipment performance metric across regions under

special cases of demand distribution. We then develop an approximation for this metric

in the case of general demand distribution across the regions for N-units N-warehouses.

Finally, we extend this method to estimate the transshipment in a system of k-units and

N-warehouses where each warehouse holds one or more units of inventory. Comparing

the performance of this approximation against Monte-Carlo simulation results indicate

that these are good estimates. In chapter 4, we use these performance metrics to

develop guidelines for optimal inventory stocking for online retailers. Given regional

demand rates and the replenishment lead-time, we developed methods to determine

how much inventory should be held in the system and how should this be distributed

among the warehouses. Finally, we studied various order fulfillment policies and found

the best order fulfillment policy to service demand under specific conditions.

So far we have examined inventory planning for low demand items individually.

However, customers often place orders for more than one item. Then the overall cost of

shipping is lower for the online retailer if shipping can be consolidated for the various

items in the order into as few shipments as possible. This will require investigation into

the correlations between such low demand items being ordered together, and then the

development of an aggregate inventory-planning model that takes into account multi-

item orders.

Another key issue of interest is whether the demand for low-demand items, as seen

by the online retailer, actually follows a Poisson process. This will involve testing actual
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order data from an online retailer. Another issue to examine is how well the methods

developed in this paper perform when the demand distribution is not Poisson.
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