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Abstract

In this thesis, we study important facets of two problems in methodological and applied operations
research. In the first part of the thesis, motivated by optimization problems that arise in the context
of Internet advertising, we explore the performance of the greedy algorithm in solving submodular
set function maximization problems over various constraint structures. Most classic results about
the greedy algorithm assume the existence of an optimal polynomial-time incremental oracle that
identifies in any iteration, an element of maximum incremental value to the solution at hand. In
the presence of only an approximate incremental oracle, we generalize the performance bounds
of the greedy algorithm in maximizing nondecreasing submodular functions over special classes of
matroids and independence systems. Subsequently, we unify and improve on various results in
the literature for problems that are specific instances of maximizing nondecreasing submodular
functions in the presence of an approximate incremental oracle. We also propose a randomized
algorithm that improves upon the previous best-known 2-approximation result for the problem of
maximizing a submodular function over a partition matroid.

In the second part of the thesis, we focus on the design and analysis of simple, possibly non-
coordinating contracts in a single-supplier, multi-retailer supply chain where retailers make both
pricing and inventory decisions. Specifically, we introduce a buy-back menu contract to improve
supply chain efficiency, and compare two systems, one in which the retailers compete against each
other, and another in which the retailers coordinate their decisions to maximize total expected
retailer profit. In a linear additive demand setting, we show that for either retailer configuration,
the proposed buy-back menu guarantees the supplier, and hence the supply chain, at least 50% of
the optimal global supply chain profit. In particular, in a coordinated retailers system, the contract
guarantees the supply chain at least 75% of the optimal global supply chain profit. We also analyze
the impact of retail price caps on supply chain performance in this setting.
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Chapter 0

Outline of Thesis

This thesis concerns itself with two diverse topics that arise in optimization and incentive

contracts, respectively: submodular set function maximization, and incentive contracts in a

pricing regime. For this reason, the thesis is structured in two parts, PART I and PART II.

In this chapter,. we briefly outline the contents of the thesis.

Part I

In Chapter 1, we consider optimization problems that arise in the context of Internet adver-

tising. There are two predominant paradigms in web advertising: display-based advertising

and search-based advertising. Display-based advertising broadly refers to the paradigm of

displaying ads on webpage banners, rich media ads such as videos, and graphics that pop up

on webpages. Search-based advertising refers to the format of advertising based on sponsored

search results for search queries that users type in search engines. We analyze a few problems

that have been studied in the literature, covering both advertising paradigms. Interestingly,

we observe that a greedy algorithm is an efficient heuristic in solving many variants of adver-

tisement placement problems. Based on this observation, we find that such problems may

actually be posed in the more general framework of maximizing a nondecreasing submodular

set function over independence system constraints. This would provide the basis therefore,

for the classical results of Fisher, Nemhauser, Wolsey, and others [19, 38, 80], on the perfor-

mance of the greedy algorithm for submodular function maximization, to apply. However,



these results about the greedy algorithm assume the existence of an optimal polynomial-time

incremental oracle that identifies in any iteration, an element of maximum incremental value

to the solution at hand. In the problems that we consider, it turns out that selecting an

element of maximum incremental value may itself be a hard problem, such as the KNAP-

SACK problem or the RECTANGLE PACKING problem. Therefore, this raises the question of

whether the aforementioned results for the greedy algorithm would generalize when only an

approximate incremental oracle is available for the greedy algorithm. This is precisely the

question we address in Chapter 2.

In Chapter 2, given only an approximate incremental oracle, we generalize the perfor-

mance bounds of the greedy algorithm, and a related variant, the locally greedy algorithm

[38], in maximizing nondecreasing submodular functions over (i) uniform matroids, (ii) par-

tition matroids, and (iii) independence systems. Subsequently, we are able to unify and

reinterpret several results in the recent literature by showing that such problems are in fact

special cases of maximizing nondecreasing submodular functions in the presence of an ap-

proximate incremental oracle. In the case of certain problems, we are even able to improve

on the best-known approximation results for these problems.

Based on these insights, we also develop an improved randomized (2 - l)-approximation

algorithm for the problem of maximizing a nondecreasing submodular function over a parti-

tion matroid, where n is the maximum number of elements in any partition. Since MAximum

SATisfiability problem is an example of maximizing a submodular function over a parti-

tion matroid with n = 2, this algorithm reveals, to the best of our knowledge, a new 3

approximation algorithm for it. We also reinterpret the greedy algorithm as a limiting case

of this randomized algorithm.

Chapters 1 and 2 are based on joint work with Prof. Andreas S. Schulz, and reflect the

chronological order in which this work was done. For the ease of the reader, the chapters

have also been kept self-contained and may be read in a stand-alone manner.

Part II

A supply chain setting is inherently characterized by strategic interactions between multi-



ple agents seeking to maximize their own utilities. The design of coordinating contractual

agreements as incentives to align the interests of different members of a supply chain has

received wide attention in the literature. In Chapter 3, we focus on the design and analy-

sis of simple, possibly non-coordinating contracts in a single-supplier, multi-retailer supply

chain where retailers make both pricing and inventory decisions. Specifically, we introduce

a buy-back type incentive mechanism, known as a buy-back menu contract, to improve sup-

ply chain efficiency. We compare two systems, one in which the retailers compete against

each other and another in which the retailers coordinate their decisions to maximize total

expected retailer profit. In a linear additive demand setting, we show that for either retailer

configuration, the proposed buy-back menu guarantees the supplier, and hence the supply

chain, at least 50% of the optimal global supply chain profit. In particular, in a coordinated

retailers system, the contract guarantees the supply chain at least 75% of the optimal global

supply chain profit. We also analyze the impact of retail price caps on supply chain per-

formance in this setting, and establish that price caps can hurt supply chain performance,

while being significantly detrimental to retailers.

Chapter 3 is based on joint work with Prof. Lap Mui Ann Chan and Prof. David Simchi-

Levi.
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Chapter 1

Optimization in Internet Advertising

1.1. Introduction

The advent of the Internet as a global communications network for a variety of services

has made it an attractive medium for the publicity and advertising of commercial products

and services. Advertising on the web has grown tremendously from a $ 906.5 million per

annum market in 1997 to a $ 12.5 billion per annum market in 2005 (Interactive Advertising

Bureau [11]). Industry research firms estimate that continued reallocation of traditional

media advertising spending to the Internet will see web advertising spending grow to over

$16 billion in 2006 (Wall Street Journal [1]). Many firms, such as Google, Yahoo, and MSN,

to name a few, have for this very reason adopted a business model where revenue is generated

from selling advertisement slots while they provide free content-based service to their clients.

Hence, maximization of revenue from advertisements is of utmost interest to such firms. For

this reason, optimization in advertising has a been a problem of interest in recent times

[4, 5, 28, 37, 55].

Web advertisements are used for two primary purposes: direct marketing and brand

awareness. According to a study by Nielsen/NetRatings [81], web advertisers use a wide

selection of ad formats to convey their messages. However, two predominant formats of web

advertising, namely search-based advertising and display-based advertising, account for over



65% of the revenue generated (Interactive Advertising Bureau [11]). In the current work, we

focus on optimization problems that arise in the context of these two advertising formats.

Display-based advertising broadly refers to the paradigm of displaying ads on webpage

banners, rich media ads such as videos, and graphics that pop up on webpages. Despite a

growing trend towards a search-based advertising paradigm, display-based banner advertise-

ments remain an important form of online advertising, accounting for over 21% of all web

advertising revenue in 2005 (Interactive Advertising Bureau [11]). One of the distinctive

features of banner advertising is the space-sharing of these advertisement banner spaces,

wherein possibly two or more advertisements of varying sizes share the banner space during

a particular time slot. Also, in order to increase advertising effectiveness, the banner space

is time-shared. In other words, the same banner space is updated periodically with different

ads.

One of the most popular pricing models for web advertisements is the cost-per-thousand-

impressions (CPM) model (see [52, 55, 11]), associated with over 46% of web advertising

revenue in 2005 (Interactive Advertising Bureau [11]). In this model, the cost of advertising

is associated with the number of exposures of the advertisement. This model may also be

improved by providing guarantees on the number of exposures in a given period of time. In

this paper, we study the advertisement revenue maximization problem under such a pricing

scheme. In subsequent sections, we discuss a few variants of a problem wherein a website

owner would like to decide which advertisements it would like to display on a banner space

of fixed dimensions, over a period of time. We broadly refer to this problem and its variants

as the AD PLACEMENT problem.

Characteristic of the fast-evolving nature of the Internet, paradigms of web advertising

have also shifted rapidly in the past few years. Search-based advertising refers to the format

of advertising based on sponsored search results for search queries that users type in search

portals. Search-based advertising is increasingly the most important channel of Internet ad-

vertising, generating 41% of all web advertising revenue in 2005 [11], and is the main revenue

stream for Internet search companies such as Google and Yahoo. Moreover, pricing formats



for advertising having also recently been trending towards performance-based schemes such

as cost-per-click (CPC) and cost-per-action (CPA) [37, 11, 49]. Later in this chapter, we

also discuss briefly some optimization problems that arise within this setting, and show that

even though paradigms may have shifted, the underlying structure of web advertising opti-

mization problems remain closely connected to submodular function maximization problems,

which is our focus in Chapter 2.

1.2. Preliminaries

Before we describe the optimization problems under consideration, we briefly review some

concepts and optimization problems of relevance to our study. We begin with the notion of an

approximation algorithm. An a-approximation algorithm for a maximization problem

P is a polynomial-time algorithm, A, that for all instances I of problem, P, generates a

feasible solution of value A(I) such that OPT(I) 5 a -A(I), where OPT(I) is the objective

value of an optimal solution to instance I. Observe that by this definition, it must be that

a > 1. A fully polynomial-time approximation scheme (FPTAS) provides, for every

e > 0, a (1 +e)-approximation algorithm whose running time is polynomial in both the size of

the input and 1/E. More generally, a polynomial-time approximation scheme (PTAS)

provides a (1 + e) approximation algorithm whose running time is polynomial in the size of

the input, for any constant e.

1.2.1 Knapsack Problem

While the KNAPSACK problem is known to be NP-hard, it belongs, in some sense, to the "eas-

iest" class of N1P-hard problems. It admits a pseudopolynomial time dynamic-programming

based algorithm. Ibarra and Kim [56] extended the idea of this DP-based algorithm to de-

KNAPSACK

Instance: Nonnegative integers n, pl,... , pn, wl,... , wn and W.

Task: Find a subset S C {1,... ,n} such that Ejes wj • W and E•jsPj is maximum.



velop a FPTAS for the KNAPSACK problem, whose running time is O( 3). This is the best

possible algorithmic result one would hope to expect for this problem, unless P=NP. Since

then, more efficient FPTASes have been developed for the KNAPSACK problem, but for the

sake of simplicity, we will use the above mentioned FPTAS in our analysis. We refer the

reader to Martello and Toth [73] or Kellerer et al. [62] for a detailed survey on this problem

and its variants.

1.2.2 Multiple Knapsack Problem

The MULTIPLE KNAPSACK problem (MKP) is an extension of the classical knapsack prob-

lem. It is known to be strongly NP-hard, thus precluding the existence of an FPTAS for

it. For the case of the MKP with identical bin capacities, a PTAS was constructed by

Kellerer [61]. Subsequently, the above problem was also shown to have a PTAS by Chekuri

and Khanna [15]. They also demonstrated that the above problem is a restricted version of

the GENERALIZED ASSIGNMENT PROBLEM (GAP), for which a 2-approximation algorithm

was proposed by Shmoys and Tardos [94]. However, Chekuri and Khanna [15] also showed

that even certain restricted cases of GAP, more general than MKP, are APX-hard and hence

have no chance of having a PTAS unless P=NP. The reader is referred to Kellerer et al. [62]

for a detailed survey of this problem.

1.2.3 Rectangle Packing Problem

The RECTANGLE PACKING problem is an extension of the KNAPSACK problem to two

dimensions. Informally stated, the objective is to select a subset of rectangles of maximum

weight that may be feasibly packed in a larger rectangle. In a feasible packing of rectangles,

MULTIPLE KNAPSACK

Instance: Nonnegative integers, n, m, pl,... ,pn, wl,..., wn, and W, ... , W,.

Task: Find m subsets S1,..., Sm cf {1,..., n, SinSk = 0 for i / k, such that -jES ij <

Wi for i = 1,..., m and i=1 E jESi Pi is maximum.



as termed above, none of the rectangles may overlap. Also, none of the rectangles may be

rotated in a packing. More formally, the problem is stated as follows:

The RECTANGLE PACKING problem is known to be strongly NP-hard even for packing

squares with identical profits. The best-known approximation result for the RECTANGLE

PACKING problem is due to Jansen and Zhang [58], who develop a (2 + e)-approximation

algorithm for this problem based on a strip-packing result of Steinberg [97].

1.2.4 Sub:modular Functions and Matroids

A real-valued set function f : 2E R is normalized, nondecreasing and submodular if

it satisfies the following conditions, respectively:

(FO) f(0) = 0;

(F1) f(A) < f(B) whenever A C B C E;

(F2) f(A) + f(B) > f(A U B) + f(A n B) for all A, B C E, or equivalently:

(F2a) f(A U {e}) - f(A) 2 f(B U {e}) - f(B) for all A C B C E and e e E \ B, or

equivalently:

(F2b) f(A U C) - f(A) 2 f(B U C) - f(B) for all A C_ B C E and C C E \ B.

Henceforth, whenever we refer to submodular functions, we shall in particular imply normal-

ized, nondecreasing, submodular functions. We also adopt the following notation: For any

two sets A, B C E, we define the marginal value (incremental value) of set A to set B as

pA(B) = f(A U B) - f(B).

RECTANGLE PACKING

Instance: Set of n rectangles, RP = (ai, bi,pi), where ai 5 a and bi < b are the height and

width of R, respectively and pi is the profit associated with Ri. Also, a big rectangle R

of height a and width b.

Task: Find a subset of rectangles S C {R1,..., R,} that can be feasibly packed in R

which maximizes E•is Pi



Additionally, we will use the subscript e instead of {e} whenever the context is clear. In

particular, (F2a) can equivalently be written as pe(A) Ž pe(B) for A C B.

A set system (E, F), where E is a finite set and F is a collection of subsets of E, is an

independence system if it satisfies the following properties:

(Ml) 0 e F;

(M2) If X C Ye F then X E F.

An independence system (E, F) is a matroid if it satisfies the additional property:

(M3) If X, Ye F and |XI > JIY, then there is an x E X \ Y with Y U {x} e F.

In this chapter, we will also focus our attention on a few special types of matroids. A

uniform matroid is specified by (E, F), where E is a finite set, k is a positive integer, and

F := {F _ E: IFI < k}.

A partition matroid is specified by (E, F), where E = U=1 Ei is the disjoint union of k

sets, 11,..., lk are positive integers, and

• = {F: F = U=,F where Fg C Ei, IFiI < li for i= 1,...,k}.

We refer the reader to standard combinatorial optimization textbooks [21, 42, 67, 79, 93] for

a substantive discussion on these topics.

1.3. Our Results

In this chapter, we study variants of optimization problems that arise in Internet advertising.

Our focus is primarily directed to problems related to display-based banner advertisements,

namely AD PLACEMENT and related problems. In Section 1.4, we describe the AD PLACE-

MENT problem more formally. We then survey related work done on the problem and past

results in Section 1.5. In Section 1.6, we formulate our problem as an integer program, and

present a proof for its strong NP-hardness. With an aim to develop improved approximation



results, in Section 1.7, we study a relaxation of the AD PLACEMENT problem and show that

the relaxed problem has a relevant interpretation in the context of banner advertisements as

well. In Section 1.7.1, we propose a greedy algorithm, and a polynomial-time variant of it, to

solve the relaxed AD PLACEMENT problem. In Section 1.7.2, we show that this algorithm is

in fact a (,- +e) ; (1.58 + )-approximation algorithm for the relaxed problem, which as we

show in Chapter 2, leads us to also prove some interesting generalizations of classical results

on the performance of the greedy algorithm to maximize submodular functions over matroids

and independence systems. These results are then extended for a two-dimensional variant

of the AD PLACEMENT problem in Section 1.8, and we present an (V-_ + e) ; (2.54 + c)-

approximation bound for the relaxed 2-DIMENSIONAL AD PLACEMENT PROBLEM.

We briefly discuss a few optimization problems that arise in the context of search-based

advertising in Section 1.9. Specifically, from an search portal's perspective, based on the

AdWords paradigm of Google, we consider the ADWORDS ASSIGNMENT proposed by Fleis-

cher et al. [39]. We show that this problem is also closely related to the submodular function

maximization problems that AD PLACEMENT was a special case of. Using this insight, we

later improve on a (3.16 + e)-approximation result for ADWORDS ASSIGNMENT [39] and

construct a greedy (3 + E)-approximate algorithm for the problem. We also discuss an adver-

tiser's BUDGET OPTIMIZATION problem in an AdWords auction setting, that was recently

studied by Feld:man et al. [37]. We finally conclude in Section 1.10 with some closing remarks.

1.4. Ad Placement: Problem Description

The AD PLACEMENT problem was first studied by Adler et al. [4], and was referred to by

them as the offline version of the Ad Placement problem. The problem may be defined more

formally as follows: We are given a rectangular display area of fixed height (for eg., a banner

on a web page) and width W which needs to be utilized for T periods, which we model as

T bins of size W each. Also, we are given a collection of N prospective ads, all of which

have the same height, which is the height of the display area, but may have differing widths.

These N ads are modeled as jobs, each defined by a triple (ci, ti, wi). Here, ti represents the



number of times that ad i must appear in T periods (exposure), wi the size of the ith ad and

c, represents the profit obtained for a feasible assignment of all ti copies of the ith ad. A

feasible assignment of ads consists of k (0 < k < N) sets of jobs, all of whose copies have

been assigned to the T bins, subject to the constraints that:

(a) no two copies of the same job are assigned to the same bin, and

(b) the capacity of all jobs assigned to a bin does not exceed the capacity of the bin itself.

The advertising scheduler is to decide which of these ads to accept or reject, and if accepted,

how to place these ads in a feasible manner on the T banners, in order to maximize the total

profit obtained. More formally, the problem may be stated as follows:

We observe that the notion of time-sharing is captured by the exposure specification of

each ad, that we model as copies of the ads to be placed among T different time slots. Also,

the differing ad sizes, given by wi for each ad, means that two or more different ads may be

placed simultaneously on the banner, as long as their combined width does not exceed the

width of the banner itself. Thus we utilize the concept of space-sharing of the banner space.

In stating the AD PLACEMENT problem, we have made the following assumptions:

* The advertiser is forbidden to place more than one copy of the same ad in any banner

at the same time, as this inherently decreases the exposure of the commodity being

advertised. In fact, it is this assumption that differentiates this problem from related

scheduling problems and the MULTIPLE KNAPSACK problem.

* The exposure of every ad may be specified exactly in the form ', with ti being an

integer (clearly, ti <_ T, for i = 1,... , N). In other words, T may be viewed as the

least common multiple of the denominators of the exposure fraction of all the ads.

AD PLACEMENT

Instance: Ads A 1,A 2 ,... ,AN, each Ai specified by (ci, ti, wi), for i = 1,... ,N; a banner

of size W ; T time slots. (T > ti, for i = 1,..., N)

Task: Find a feasible allocation of ads with maximum profit.



* We cannot obtain partial profits by the partial fulfillment of ad requirements, i.e.,

by scheduling fewer than ti copies of ad i. However, in Section 1.7, we relax this

assumption to study an alternate variant of the AD PLACEMENT problem.

* Finally, the profit obtained from scheduling an ad need not depend on only the size

of the ad, and might also depend on factors such as product competition, desire for

visibility on the particular banner/website, etc. This general assumption was first

studied in the context of the AD PLACEMENT problem by Freund and Naor [40]. We

note that this assumption is more general than those made by Adler et al. [4], Kumar et

al. [28], Amiri and Menon [7] and Dean and Goemans [30], who assumed that ci = wi.

An Instance of the Ad Placement Problem

Ad l:•I II c=7 w,=2

Ad2 : c=12 wi 3

Ad 3:~~C l0 wF= 4

Ad4:i cp8 t w,=2

Ad 5: c 10 w,=3

Optimal Solution for the Ad Placement Problem, when T=3, W=6

T=1

T=2

T=3

Total Profit = c + c,+ c4

= 7+10+8=25

Figure 1-1: An instance of the AD PLACEMENT problem

We survey these and other results related to the AD PLACEMENT problem in Section 1.5.

Note that if in the AD PLACEMENT problem, we assume that ti = 1 for all ads, this problem

reduces to the well-studied MULTIPLE KNAPSACK Problem with identical bin-capacities.

It should be observed that the AD PLACEMENT problem, as described at the beginning

of this section, is one of high-multiplicity since the set of T banners, which are identical,



may be considered as one banner-type. This is also true of the jobs (ads), where identical

copies of each job (ad) are encoded compactly. Hence T and the number of copies of each

ad i, ti, may be encoded in binary format, and therefore, a polynomial time algorithm for

the problem would have to be polynomial in N, log T, log c and log W, where c = maxi{ci).

Recent papers in scheduling, including on the AD PLACEMENT problem, have addressed this

question of high multiplicity encoding of the input and provide polynomial time algorithms

even under such an encoding (see Clifford and Posner [18]). We will also present an efficient

approximation scheme in Section 1.7.1 for a related variant of this problem, even when the

problem input is specified using high-multiplicity encoding.

While the AD PLACEMENT problem described so far assumes a fixed height for all the

ads, the AD PLACEMENT problem might also be studied in a more general setting, wherein

ads have both height and width specifications and we require to place these rectangular

ads in a rectangular banner display. We refer to this problem as the 2-DIMENSIONAL AD

PLACEMENT problem. This problem was first studied by Adler et al. [4], however under

very restrictive assumptions. In the special case of the problem when T = 1, this problem

reduces to another problem of recent interest, namely the RECTANGLE PACKING problem

[58, 97]. In this chapter, we also study a relaxation of the 2-DIMENSIONAL AD PLACEMENT

problem and present some results for it.

1.5. Literature Survey

Adler et al. [4] were the first to study the algorithmic questions of advertisement schedul-

ing and its related optimization variants, under both static (offline) and dynamic (online)

settings. They assumed that the pricing scheme (profit) of the prospective advertisements

was proportional to the space utilized by them. In other words, they assumed that ci = wi

in their model. Under this restriction, they studied the AD PLACEMENT problem in the

form described in the previous section and showed it to be NP-hard via a reduction from the

PARTITION problem. They proposed a 2-approximation algorithm for the problem, under

the restriction that the ad sizes are divisible which however, performs arbitrarily badly if



ads sizes are not divisible. Apart from this problem, they also looked at the ad scheduling

problem with ad geometries of higher dimensions under the same settings as the previous

problem, and showed that any algorithm for the 1-dimensional case could be generalized to

that of higher dimensions. For the online-version of the problem under the size-dependent

pricing scheme and divisible size setting, they developed an online algorithm that is optimal.

In many ways, their work was the main motivation for much of the subsequent work in ad

scheduling.

Following the work by Adler et al. [4], the AD PLACEMENT problem under a size-

dependent pricing scheme (ci = wi) was studied over a series of papers by Kumar, Sriskan-

darajah and their coauthors [57, 27, 26, 28], who referred to the problem as the MAXSPACE

problem. These papers developed a min{10/3,4L/(L + 1)} for this MAXSPACE prob-

lem and presented improved bounds for other special cases of the AD PLACEMENT prob-

lem. Amiri and Menon [7] performed a computational study of a Lagrangean-decomposition

based algorithm to solve the MAXSPACE problem. More recently, Kumar et al. [69] also

present computational results for a hybrid genetic algorithm that they propose to solve the

MAXSPACE problem.

The AD PLACEMENT problem in its most general form, with the profit associated with

each ad i, ci, independent of its size, wi, was studied by Freund and Naor [40]. They proposed

a (3 + e)-approximation scheme for the AD PLACEMENT problem, which is polynomial even

under the high-multiplicity encoding format. Their result even improved upon the previous

best-known bound of Kumar et al. [28] for the MAXSPACE problem, which is the special

case of the AD PLACEMENT problem where ci = wi.

Another optimization variant of the ad scheduling problem, namely the problem of mini-

mizing the width of a banner, given a set of ads to be necessarily allocated, was also studied

by Adler et al. [4] and Kumar et al. [28], who referred to it as the MINSPACE problem.

In the case where ti = 1 for all ads, this problem reduces to the classical NP-hard scheduling

problem of minimizing the maximum completion time (makespan) over identical parallel

machines, PjIICax, for which Graham [47] had developed a 4/3-approximation algorithm.



Kumar et al. [28] presented an LP-based 2-approximation algorithm and a 3/2-approximation

algorithm for the MINSPACE problem. This result was subsequently improved upon by

Dean and Goemans [30] to 4/3, using a generalization of Graham's algorithm, whose run-

ning time is even strongly polynomial, and does not depend on the number of banners, T.

Thus, the algorithm of Dean and Goemans [30] is polynomial even under high-multiplicity

encoding. They also develop a polynomial time approximation scheme for the MINSPACE

problem, whose running time is polynomial in T.

As observed earlier, The AD PLACEMENT problem has a structure similar to that of

a large number of scheduling problems, involving scheduling of parallel jobs on a set of

identical processors. A very special case of the AD PLACEMENT problem is when ti = 1 for

all the ads, in which case the problem reduces to the MULTIPLE KNAPSACK problem with

identical bin capacities. Another problem that is closely related to the AD PLACEMENT

problem, and a relaxation that we study, is a weighted throughput maximization problem

over multiple machines in real-time scheduling. In this problem, n jobs need to be scheduled

on k identical parallel machines. Each job has associated with it, a release date, a deadline,

an associated weight, and a processing time. The objective of the scheduler is to schedule

jobs on machines, so as to maximize the weight of all feasibly scheduled jobs. Bar-Noy et al.

[8] studied this problem, which may be represented as Pjr , di•I w (1 - Ui) in scheduling

notation, and developed an LP-based approximation algorithm with ratios of (i+!/ýL- for

polynomially bounded integral input, and (1+1/2k)-k for arbitrary input, where k is the

number of identical machines. It may be noted that by setting ri = 0 and di = d for all jobs,

the throughput maximization problem reduces to the MULTIPLE KNAPSACK problem.

1.6. Problem Formulation and Complexity

The AD PLACEMENT problem described formally in Section 1.4 may also be formulated as

an integer program. Let xi denote a binary variable which indicates whether ad i belongs

to a feasible solution, and the binary variable yij indicates whether the ith ad is assigned to

the jth time banner. The AD PLACEMENT problem may now be rewritten as follows:



maximize -N=l CiXX

subject to N w ~• < W j=1,2,...,T, (1.1a)

-T Yij = tixi i= 1,2,...,N, (1.1b)

yi E {0,1} i= 1,2,...,N,j= 1,2,...,T,

xi E {0,1} i = 1,2,...,N.

In this integer program, The set of constraints, (1.1a), ensure that the sum of the widths

of the ads assigned to the jth banner does not exceed W, the capacity of the jth banner. The

second set of constraints, (1.1b), ensure that in order for the it h ad to belong to a feasible

solution, all ti copies of it must be assigned among the T banners. The 0-1 integrality

constraints on yij ensure that no two copies of the same ad are assigned to the same banner.

Finally, integrality constraints on xi ensure that no copy of the ith ad is assigned to any bin,

unless there is feasible assignment for all ti copies of ad i.

As discussed earlier, this problem is closely related to the MULTIPLE KNAPSACK prob-

lem and thus, we may interpret our problem as a generalization of the latter. Noting this

similarity, in the rest of the paper we will use the words 'banner' and 'bin' interchangeably,

and so also 'ad' and 'job'.

We now proceed to prove that the decision version of the AD PLACEMENT problem is

strongly NP-co:mplete, by a reduction from the 3-PARTITION problem. Note that this does

not directly follow from the strong NP-hardness of the MULTIPLE KNAPSACK problem, since

in that problem, the bin capacities need not be equal for all bins.

Garey et al. [44] showed that 3-PARTITION is strongly NP-complete.

3-PARTITION

Instance: Nonnegative integers al, a2, ... , a3n; -1 ai = nb.

Question: Is there a partition of the integers into n sets S1, S2,..., S, of 3 elements each,

such that Eajes, aj = b, for i = 1, 2,..., n ?



Theorem 1.1. AD PLACEMENT is strongly NP-hard.

Proof. Given an arbitrary instance of 3-PARTITION, we construct an associated instance

of the decision version of AD PLACEMENT, which is polynomial in the size of the given

instance. We will then show that the instance of 3-PARTITION is a "yes" instance if and

only if the associated decision version of AD PLACEMENT is a "yes" instance.

Let us define K = nb, i.e. K = E-3 ai. Consider the following associated decision

instance of the AD PLACEMENT problem:

Instance: Ads A1 , A 2 ,... , A3n, each Ai specified by (1, 1, K + as), for i = 1,.. , 3n; a banner

of size 3K + b ; n time slots.

Question: Does there exist a feasible allocation of ads with profit at least 3n?

Clearly the above instance of AD PLACEMENT is polynomial in the size of the corre-

sponding instance of 3-PARTITION, since K is polynomial in the size of the 3-PARTITION

instance.

Now suppose the instance of 3-PARTITION is a "yes" instance. In other words, there

exists a partition of the 3n elements into S1,..., S, such that each set is of size 3 and the

sum of the elements in each set is b. Consider the following allocation of ads. For each

element ai E Sj, assign ad Ai to the jth time slot banner. Observe that:

(a) Each ad Ai is assigned to some banner, since each corresponding element a2 is in some

set Sj.

(b) For each banner j, exactly 3 ads are assigned to it, namely those ads Ai corresponding to

the elements ai in Sj. Also, since Za-ES. ai = b, so EA•Ej w(Ai) = 3K + EaiEs ai = 3K + b.

(c) The allocation of ads is feasible, and so the profit obtained from this allocation is 3n.

Hence the corresponding AD PLACEMENT instance is also a "yes" instance.

Conversely, suppose the AD PLACEMENT instance is a "yes" instance. Then, since

we have only 3n ads each with profit 1, all the 3n ads must be present in the feasible

allocation. Also, note that since the banner size is 3K + b, by definition of K, each time

slot banner cannot accommodate more than 3 ads. Hence, exactly 3 ads must be allocated

in a feasible manner to each time slot banner in the given "yes" instance. Now for each



ad Ai in banner j, assign element ai to set Sp. Since, E,,,s, ai <• b by this construction,

and Ej=1 Za,-s. ai = -=1 ai = nb, it follows that a•,sE ai = b. Hence, we have that the

3-PARTITION instance is also a "yes" instance. U

The above result implies that the AD PLACEMENT problem does not admit a fully polynomial

time approximation scheme, unless P=NP. So, the best we can hope to achieve for this

problem is a PTAS.

1.7. A Relaxation of the Ad Placement Problem

Freund and Naor [40] developed a (3 + E)-approximation algorithm for the AD PLACEMENT

problem by studying a relaxation of the IP described in Section 1.6. Consider the following

related KNAPSACK problem instance: Corresponding to each set of ads Ai = (ci,tj,wi),

introduce a job i of width ti -w and profit ci. The problem is to find a packing of jobs

of maximum profit in a knapsack of width T - W. Clearly, any feasible solution to the AD

PLACEMENT problem yields a feasible solution with the same profit for the above instance of

the KNAPSACK problem, by concatenating the contents of all the T bins of the AD PLACE-

MENT instance solution. Hence, the optimal solution of the above instance of the KNAPSACK

problem is an upper bound on the optimal profit of the AD PLACEMENT problem.

Thereafter, using the solution of the FPTAS for this knapsack problem instance, Freund

and Naor [40] determined the set of corresponding prospective ads, S, that they would

attempt to pack feasibly among the T banners. Clearly, if all the ads in S can be packed

feasibly among the T banners, then this would be an (1+ E)-approximate solution to the AD

PLACEMENT problem. Using an SSLF (Smallest Size first Least Full bin first) assignment

policy for the ads amongst the banners, they partitioned S into three sets of ads S1, S2 and

S3, for each of which they showed feasible packings among the T banners. By selecting

the subset of ads among S1, S2, S3 with the highest profit, they showed that their algorithm

was in fact a (3 + e)-approximation scheme and that their analysis was tight. The reader is

referred to [40] for details of their (3 + e)-approximation result.



In order to develop a better approximation algorithm for the AD PLACEMENT problem,

we will study an alternate relaxation of the above problem, where we relax integrality con-

straints on xi. In other words, 0 < xi < 1, for i = 1,2,... ,N. This ILP relaxation then

appears as follows:

maximize

subject to

zi1 Ci " Xi

EJfWi -yij < W

Ej=1 Yij = ti - Xi

Yij E {0 ,1}
0 < xi < 1

1,2,...,T,

1,2,...,N ,

1,2,...,Nj = 1,2, ... , T,

1,2, ... , N .

(1.2a)

(1.2b)

In the above relaxation of the AD PLACEMENT problem, it is possible to eliminate all

the xi variables, which in turn yields the following reduced integer program, (1.3):

wi -yij < W

i=1 Yij < ti

Yij E {0,1}1

(1.3)

j= 1,2,...,T,

i= 1,2,...,N,

i= 1,2,...,N,j = 1,2,...,T.

The above formulation has a very intuitive interpretation, and may be thought of as an

alternate banner advertisement placement problem: we again have N sets of possible ads,

with each ad i having ti copies of weight wi and profit i each. We want a feasible assignment
ti

of these copies of ads to T banners of size W each, subject to the constraint that no two

copies of the same ad can be assigned the same banner. Our objective is again to maximize

the profit obtained from a feasible assignment. The key aspect that makes this problem (1.3)

different from the AD PLACEMENT problem is that in this problem we can assign fewer than

ti copies of any ad i in a feasible assignment.

maximize

subject to



While (1.3) is a relaxation of the AD PLACEMENT problem, it turns out that the problem

still remains strongly NP-hard.

Lemma 1.2. The relaxed AD PLACEMENT problem (1.3) remains strongly NP-hard.

Proof. The proof again follows from a reduction of the 3-PARTITION problem to 1.3, by the

same construction used in Theorem 1.1. N

Although the relaxed problem, (1.3), is harder than the other KNAPSACK relaxation

of the AD PLACEMENT problem considered by Freund and Naor [40], it still possesses an

interesting structure. We therefore attempt to devise good approximation algorithms for this

problem. We begin by first observing that any LP-relaxation based algorithm for (1.3) cannot

provide an approximation guarantee better than 2. In other words, possibly an alternate

formulation of the problem and its relaxation might in fact provide the basis for a better-

than-2 LP-relaxation based algorithm, but this does not hold for the simple LP-relaxation

of (1.3).

Lemma 1.3. The integrality gap of (1.3) with respect to the standard LP relaxation is at

least 2.

Proof. We prove the above claim by giving an example of the problem where the LP/IP gap

is 2. Consider the following instance of (1.3): We are given two ads, each with an exposure

requirement of T. Both ads have a size of W/2 + e, and profit c each. Also, banners have

size W and we have T banners in which to assign the ads.

Clearly, an optimal solution of the LP relaxation of the problem would be:

Yij = W/(W + 2E), i = 1, 2 j = 1,...,T,

yielding an optimal profit of 2cW/(W + 2E). It is clear however, that in an optimal solution

to (1.3), only one copy of either of the two ads can be feasibly assigned to a bin, yielding a

profit of profit of c. Hence, for this example:

OPT(LP)/OPT(IP) = 2W/(W + 2e) x 2. U



We now present a greedy approximation algorithm for the relaxed AD PLACEMENT

problem and show that it in fact guarantees a better-than-2 approximation result for the

problem.

1.7.1 A Greedy Algorithm

Informally speaking, a greedy approach is employed by the above algorithm, where the

KNAPSACK problem is solved T times in order to determine the contents of the T bins. Since

while solving any single KNAPSACK problem, we consider only one representative copy of

each ad, we always ensure that no more than one copy of the same ad in present in any

bin. Thus we ensure that the solution generated by the above algorithm is indeed a feasible

solution to the problem (1.3).

The running time of this greedy algorithm, however, is pseudopolynomial in the size

of the input, as it solves the KNAPSACK problem O(T) times, whereas the input may be

represented compactly in O(logT) using high-multiplicity encoding. We now proceed to

improve the computational complexity of the greedy algorithm, in order that its running

time is polynomial in log T. We describe a modified greedy algorithm below and show how

it has an improved running time without affecting the performance guarantee of the original

greedy algorithm. In the new algorithm, if Si is not explicitly computed, it means that

GREEDY ALGORITHM

Step 1: Set i = 1; let L represent the set of indices of ads, not all of whose copies have

been to assigned to bins. Initially, L = {1, 2,..., N}.

Step 2: For bin i, solve the KNAPSACK problem, with the set of prospective jobs con-

sisting of exactly one representative copy from each ad whose index is in L, and job i

having a profit a. Let Si represent the set of ads whose copies have been selected to be

placed in the ith bin.

Step 3: If a copy of ad j is in Si, then tj := t 3 - 1;

Step 4: If (tj = 0) for job j, then L := L \ {j}.

Step 5: Set i := i + 1. If i < T, then goto Step 2.



Si = Si-1.

To prove that the equivalence of the solution of the greedy algorithm and the modified

greedy algorithm, we make the following important observation:

Lemma 1.4. In the original greedy algorithm, an a-approximate solution Si calculated for

the ith bin remains a-approximate with respect to profits for the following t = minj~Es{t j

iterations.

Proof. Follows from the fact that all the elements in Si remain in L for the next t iterations,

after which the element in Si with the least number of copies available may get eliminated

from L. Moreover, in each successive iteration, the value of the corresponding optimal

solution for the ith bin is nonincreasing, while the objective value of the approximate solution

remains the same. U

Having made this observation, the equivalence of the two greedy algorithms, in terms

of the profit they compute, is obvious. All that remains to be shown is that the modified

greedy algorithm has a superior running time.

Lemma 1.5. The number of iterations of the modified greedy algorithm is bounded by N,

the number of prospective ads. As a consequence, the running time of the modified greedy

MODIFIED GREEDY ALGORITHM

Step 1: Set i = 1; let L represent the set of indices of ads, not all of whose copies have

been to assigned to bins. Initially, L = {1, 2,..., N}.

Step 2: For bin i, solve the KNAPSACK problem, with the set of prospective jobs con-

sisting of exactly one representative copy from each ad whose index is in L, and job i

having a profit Ei. Let Si represent the set of ads whose copies have been selected to be

placed in the ith bin.

Step 3: Find t = minjes({tj} and set tj = tj - i Vj E Si;

Step 4: If (tj = 0) for a job j, then L := L \ {j}.

Step 5: Set i := i + . If i < T, then goto Step 2.



algorithm, using a pseudopolynomial time algorithm to compute the optimal KNAPSACK

solution, is O(N 2W).

Proof. In the modified greedy algorithm, an optimal bin configuration Sj is computed only

if at least one prospective ad i is removed from L. Hence the number of iterations of the

greedy algorithm, which is the number of times an optimal bin configuration is computed,

is bounded by N. Each optimal computation of a bin configuration takes at most O(NW)

time, using the pseudopolynomial algorithm for the KNAPSACK problem. E

Whereas in the original greedy algorithm the number of iterations was always T, we are

able to reduce the number of iterations now to at most N. Hence the dependence of this

new greedy algorithm is only polynomial in the encoding of T. Henceforth, while for the

sake of explanation we will use the original greedy algorithm, the actual greedy algorithm

that will be implemented will be the modified greedy algorithm.

1.7.2 Analysis of the Greedy Algorithm for Ad Placement

We begin by showing that the relaxed AD PLACEMENT problem (1.3) problem is in fact an

instance of the more general problem of maximizing a normalized, nondecreasing, submodular

function over a uniform matroid. The reader may recall the definitions of these terms from

Section 1.2.

Lemma 1.6. The relaxed AD PLACEMENT problem, (1.3), is an instance of maximizing a

normalized, nondecreasing, submodular function over a uniform matroid.

Proof. Let S represent a set of ads, such that the sum of the size of one copy of each ad

does not exceed W (i.e. EA•ES wj _ W). Let s represent the "type" of a bin containing

exactly one copy of each ad in S. For ease of representation, we say that ad i E s whenever

Ai E S. Notice that any feasible assignment of the relaxed AD PLACEMENT problem (1.3)

can contain at most miniEs(ti) bins of the bin-type s corresponding to S. Now, construct a

ground set E of bins, containing exactly minis(ti)} bins of type s, for each possible bin-type,

s. Note that the size of E may potentially be exponential in the size of the input.



Since in the relaxed AD PLACEMENT problem, we can use at most T bins, it follows that

a feasible solution to (1.3) contains at most T elements from E, with an additional restriction

that the ad assignment is feasible, in that no ad i is assigned more than tj times in the T

bins. For the time being, we ignore this restriction, as we shall capture it in the definition

of f by not including the profits for the copies of an ad i beyond the first ti copies. Now

it follows that the set of feasible T-bin configurations of (1.3), say F, is a uniform matroid,

since F := {F C E: IF < T}.

Define a function f : E - R+, with f(0) = 0 as follows:

f (e) c= for e E E.
iEe

In other words, f is a measure of the profit of a feasible bin-type. It is obtained by summing

the profits of individual ad copies i in the bin-type e. For any subset A C E, let nA represent

the number of copies of ad i in the AIl-bin configuration given by A. Clearly, nA < JAI|. We

define f(A) as:
N

f(A) = -min{nA, ti}
i= %

Thus, we ensure that for any ad i, only the first ti copies are allocated a profit of - each, in

any bin configuration A. Observe now that:

* f is nondecreasing: Consider any set A C E and add to it another element, say

e E E \ A. Now,

N N

f(AU {e}) = i min{r Au{e) c - min{n , ti} = f (A).
i=l i=1

The inequality follows from the fact that min{n Au{e), til} _ min{n, ti}.

* f is submodular: Suppose A C B C E and e E E \ B. We define a new binary variable

vs(S) corresponding to ad i and a set S C E to be: vs(S) = 1 if nas  _ t1 and vi(S) = 0

otherwise. Notice that vi(B) Ž vi(A) for any ad i, since A C B. Now, clearly:



f(AU{e})- f(A) = Eiie .(n(e}- vi(A)) > Eie ti.(ne} -v,(B)) = f(BU{e})-f (B).

So we have proved that f is normalized, nondecreasing, submodular. It may be noted that

the function f that we have defined measures exactly the objective function value of the

relaxed AD PLACEMENT problem. E

Suppose that we use an a-approximation algorithm for KNAPSACK in the modified greedy

algorithm presented earlier. Clearly, given the existence of an FPTAS for it, we know that we

could use a good enough approximation factor, a. The greedy algorithm proposed for (1.3)

in Section 1.7.1 determines a bin e to add at each iteration as the bin e that approximately

maximizes the incremental function value, Pe(S) = f(SU {e}) - f(S), at each iteration using

an a-approximate algorithm for KNAPSACK over the remaining set of ads, L. Note that the

set S in the above statement is the bin configuration selected by the greedy algorithm up

to the iteration in question. As it turns out, the greedy algorithm presented for the relaxed

AD PLACEMENT problem may be generalized to a greedy algorithm used for maximizing

nondecreasing submodular functions over a uniform matroid, and for whose performance, we

prove a more general approximation result in Chapter 2 (refer Theorem 2.3).

Our main result for the performance of the modified greedy algorithm in solving (1.3) is

as follows:

Theorem 1.7. The modified greedy algorithm, using an a-approximation algorithm to solve

the KNAPSACK problem, is in fact an ~- -approximation algorithm for the relaxed AD

PLACEMENT problem, (1.3).

Proof. Follows as a consequence of Theorem 2.3, where we show that a more general form of

the modified greedy algorithm is in fact an e --approximation algorithm for the problem
ec --1

of maximizing a nondecreasing submodular function over a uniform matroid, of which the

relaxed AD PLACEMENT problem is a special case. U

Now, using that fact that there is an a = (1+e)-approximation scheme for the KNAPSACK

problem, it follows that:



Corollary 1.8. The modified greedy algorithm, with the FPTAS for the KNAPSACK problem

as a subroutine, is an (A + E)- approximation scheme, whose running time is O(-).

Chekuri and Khanna [15] showed the same result for the performance of the greedy

algorithm in solving the MULTIPLE KNAPSACK problem with identical bin capacities, a

special case of the relaxed AD PLACEMENT problem.

Another special case of the AD PLACEMENT problem is where ti = t for i = 1,..., N

and the number of banners, T, is an integral multiple of t. This special case of the problem

was considered by Dawande et al. [28], under the assumption that ci = wi and they proposed

a 2-approximation algorithm for it, that was tight. It follows from the description of the

modified greedy algorithm that it outputs a feasible solution of this special version of the

AD PLACEMENT problem. Hence, we may make the following observation that improves

upon their 2-approximation result:

Observation 1.9. For the special case of the AD PLACEMENT problem where ti = t for

i = 1,..., N and the number of banners, T, is an integral multiple of t, the modified greedy

algorithm with the FPTAS for the KNAPSACK problem as a subroutine, is an (A + e)-

approximation scheme, even if ci Z wi for i = 1,..., N.

1.8. The 2-Dimensional Ad Placement Problem

The 2-DIMENSIONAL AD PLACEMENT problem is an extension of the AD PLACEMENT

problem, wherein we now consider rectangular ads that need to be placed in a rectangular

display area, without constraining ads to be of a specified height. In this problem, ads may

be specified by a 4-tuple, (li, wi, ci, ti), where li and wi represent the height and width of

the ad, ti represents the exposure of the ad, and ci is the profit associated with a feasible

assignment of the ad. Also, we are given T rectangular banners of height L and width W

each, in which 'we have to determine a feasible allocation of the ads, so that:

(a) no two copies of the same ad are assigned to the same banner,

(b) any ad, Ai, in the allocation, appears in at least ti of the T banners, and



(b) no two ads ever overlap with each other, and ads may not be rotated.

As the ad scheduler, our objective is to maximize the profit of a feasible allocation of ads.

The problem may be defined more formally as follows:

Since the AD PLACEMENT problem is a special case of the above problem, the strong

NP-hardness of this problem follows. The AD PLACEMENT problem in higher dimensions

was first studied by Adler et al. [4], who proposed an algorithm that constructs a feasible

solution to the higher dimensional problem, given an algorithm that constructs a feasible

solution for the AD PLACEMENT problem. However, this algorithm only worked under a

setting where ad dimensions were divisible. In this section, we will state some results for a

relaxation of the 2-DIMENSIONAL AD PLACEMENT problem, analogous to the relaxation of

the AD PLACEMENT problem (1.3) that we studied in Section 1.7.

Consider the following relaxation of the 2-DIMENSIONAL AD PLACEMENT problem: We

again have N sets of possible ads, with each ad Ai having ti copies of size (li, wi) and profit i

each. We want a feasible assignment of these copies of ads to T banners of size (L, W) each,

subject to the constraint that no two copies of the same ad can be assigned the same banner.

Our objective is again to the maximize the profit obtained from a feasible assignment. This

problem is different from the 2-DIMENSIONAL AD PLACEMENT problem because in this

problem we may assign fewer than ti copies of any ad i in a feasible assignment and make

the corresponding fraction of a profit.

Consider the case when ti = T = 1 for all i = 1,..., N. In this case, both the 2-

DIMENSIONAL AD PLACEMENT problem and its relaxation reduce to the RECTANGLE

PACKING problem that was mentioned in Section 1.2.3. It may easily be seen that if we

2-DIMENSIONAL AD PLACEMENT

Instance: Rectangular ads A1,A 2 ,... ,AN, each ad Ai specified by height li, width wi,

exposure requirement ti and profit ci, for i = 1,... , N; a rectangular banner of height L

and width W ; T time slots. (T > ti, for i = 1,..., N)

Task: Find a subset, S C {1,..., n} of ads such that all ads Ai for i E S may be assigned

amongst the T banners feasibly, so as to maximize profit, EiEs ci.



model a set E consisting of feasible 1-banner display configurations, then through a trans-

formation similar to that used for the relaxed AD PLACEMENT problem in Lemma 1.6, the

relaxation of the 2-DIMENSIONAL AD PLACEMENT problem also reduces to the problem of

maximizing a submodular function over a uniform matroid. Moreover, one might think of

an extension of the greedy algorithm presented in Section 1.7.1, wherein, instead of solving

the KNAPSACK problem to determine a configuration for each banner, the greedy algorithm

solves a RECTANGLE PACKING problem to determine the configuration of each banner. This

greedy algorithm for the relaxed 2-DIMENSIONAL AD PLACEMENT problem may be stated

as follows:

As with the greedy algorithm for the relaxed AD PLACEMENT problem, one might also

modify the greedy algorithm presented above to ensure that it is still polynomial under high-

multiplicity encoding. Using the 2-approximation algorithm of Jansen and Zhang [58] for

the RECTANGLE PACKING problem, our result for the performance of the greedy algorithm

in solving the relaxed 2-DIMENSIONAL AD PLACEMENT problem is that:

Theorem 1.10. The greedy algorithm, using the (2 + E)-approximation algorithm for the

RECTANGLE PACKING problem, is an ( + E)-approximation scheme for the relaxed 2-

DIMENSIONAL AD PLACEMENT problem.

GREEDY ALGORITHM FOR RELAXED 2-DIMENSIONAL AD PLACEMENT

Step 1: Set i = 1; let L represent the set of indices of ads, not all of whose copies have

been to assigrLed to bins. Initially, L = {1, 2, ... , N}.

Step 2: For bin i, solve the RECTANGLE PACKING problem, with the set of prospective

jobs consisting of exactly one representative copy from each ad whose index is in L, and

job i having a profit S. Let Si represent the set of ads whose copies have been selected

to be placed in the ith bin.

Step 3: If a copy of ad j is in Si, then tj := tj - 1;

Step 4: If (tj = 0) for job j, then L := L \ {j}.

Step 5: Set i := i + 1. If i < T, then goto Step 2.



Proof. Follows as a consequence of Theorem 2.3, where we show that a more general form

of the greedy algorithm presented above is in fact an --'-approximation algorithm for
ea -1

the problem of maximizing a nondecreasing submodular function over a uniform matroid,

of which the relaxed AD PLACEMENT problem is a special case. Moreover the role of the

a-incremental oracle discussed in the more general greedy algorithm is fulfilled by the (2+E)-

approximation scheme for the RECTANGLE PACKING problem, yielding that a = 2 + e. E

1.9. Search-based Advertising: The AdWords Assign-

ment Problem

Search-based advertising is, increasingly, the most popular form of advertising on the Inter-

net, and a significant source of revenue for search portals such as Google, Yahoo, and MSN,

to name a few. In this paradigm, portals solicit advertisements for particular keywords,

called "AdWords" in the case of Google. The phrase, "linear programming," would be an

example of one such keyword, with which advertisers might like to associate their advertise-

ment. When a user of a search portal types in a query, it is matched with a corresponding

keyword and the associated advertisements are displayed on the search results page. Hence,

advertisers would have different valuations for their advertisement being associated with

different keywords, which in turn, would depend on which queries match each keyword.

If a search firm is aware of advertisers' private valuations and, therefore, their willingness

to pay for each keyword, then one might think of framing the search firm's problem of

assigning advertisements to keywords to maximize revenue as the following optimization

problem proposed by Fleischer et al. [39]:



It turns out this ADWORDS ASSIGNMENT problem also has an underlying structure very

similar to the relaxed AD PLACEMENT problem described earlier. It is in fact a special case

of maximizing a nondecreasing submodular function over a partition matroid (recall from

Section 1.2). We present this transformation below.

Lemma 1.11. The ADWORDS ASSIGNMENT problem is a special case of maximizing a

nondecreasing submodular function over a partition matroid.

Proof. Consider an underlying ground set E = UL,1 EE, where each element es E Ej corre-

sponds to a feasible assignment of ads, S, that may be accommodated in the rectangular

display corresponding to AdWord j. A feasible solution to the ADWORDS ASSIGNMENT

problem would constrain that at most one element may be picked of each type, E3 , thereby

defining a partition matroid on E.

For any subset, F C E, suppose that Fj = F n Ep. Furthermore, let Fj, = {es E Fj :

ad i E S}. Define a function, f, on a subset F C E as follows:

n m

f(F) = min(Bi, vijFjI)
i=1 j=1

It is not hard to verify that f is exactly the objective function of ADWORDS ASSIGNMENT

over all feasible sets in the partition matroid, and therefore over all feasible solutions of AD-

ADWORDS ASSIGNMENT [39]

Instance: A set of n bidders with a budget Bi for each bidder i; a rectangular ad Ai

of length li and width wi that bidder i would like to advertise; a set of m AdWords

(keywords), each AdWord j with a rectangular display area of length Lj and width Wj;

bidder i has a maximum willingness to pay, vij, for having its ad associated with AdWord

3.
Task: Find a feasible assignment of AdWords, Si, to bidder i so as to maximize total

revenue, where the revenue obtained from bidder i is min(Bi, Ejes, vii). In a feasible

assignment, all ads assigned to AdWord j must be feasibly displayed in the rectangular

display without having to rotate any of the ads.



WORDS ASSIGNMENT. Moreover, observe that f is indeed nondecreasing and has decreasing

marginal values, by construction. Hence the claim holds. U

For the problem of maximizing a nondecreasing, submodular function over a partition

matroid, we later show in Chapter 2, that even a simple variant of the greedy algorithm,

namely the locally greedy algorithm proposed by Fisher et al. [38], is an (a+ 1)-approximation

algorithm, given an a-approximation algorithm to solve a certain increment maximization

problem. Based on this result, we are able to develop a polynomial-time (3+e)-approximation

scheme for ADWORDS ASSIGNMENT (see Theorem 2.9). Consequently, we are able to im-

prove on a previous (3.16 + e)-approximation result due to Fleischer et al. [39] for the prob-

lem. We defer the presentation of this improved approximation algorithm and the proof of

its performance to Chapter 2.

In practice, however, it is hard for search firms to know the willingness to pay of ad-

vertisers and, consequently, search firms such as Google and Yahoo use a generalized second

price auction mechanism to determine not only which ads are matched to a keyword, but

also to determine the position of an ad on the search results page. Moreover, there is also an

additional challenge specific to the context of Internet search: a user query to a search en-

gine might correspond to more than one keyword, thereby creating the challenge of different

keyword auctions competing against each other to appear of the search results page. This

therefore raises a problem for the advertiser, to determine how much it must bid on each

keyword so as to maximize its objective, whether the objective be clicks or "actions" (such

as subscribing for a newsletter, or signing up for an account, etc.). Of course, the advertiser

only has a limited budget to invest on such search-based advertisements. Feldman et al. [37]

study this BUDGET OPTIMIZATION problem for the advertiser, given that a search firm uses

a generalized second price auction mechanism. We refer the reader to their paper for further

details about their model and results, but we do note that even if the objective of the ad-

vertiser is performance-based, with different weights associated for each query, the BUDGET

OPTIMIZATION problem may in fact be framed as maximizing a nondecreasing submodular

function over a submodular knapsack constraint. Thus the inherent underlying structure of



even this problem is closely related to that of the other optimization problems discussed in

this chapter. We leave as an open question whether this more general view of the BUDGET

OPTIMIZATION problem might yield improved approximation results.

1.10. Conclusion

In this chapter, we studied optimization problems that arise in the context of Internet adver-

tising. Within the banner-based advertising paradigm, we considered the AD PLACEMENT

problem and other related variants and developed approximation algorithms for some of

them. More importantly, we observed a close relationship between assignment problems

similar in spirit to the AD PLACEMENT problem, and submodular function maximization.

Even in problems that arise in search-based advertising, such as the ADWORDS ASSIGNMENT

problem, we observe a similar relationship. Building on these insights and observations, we

address the more general problem of maximizing nondecreasing submodular set functions

over special classes of constraints in the next chapter.





Chapter 2

Revisiting the Greedy Approach to

Submodular Function Maximization

2.1. Introduction

Submodular set functions are widely used in the economics, operations research, and com-

puter science literature to represent consumer valuations, since they capture the notion of

decreasing marginal utilities (or alternatively, economies of scale in a cost framework). While

these properties make submodular functions a suitable candidate of choice for objective func-

tions, submodular objective functions also arise as a natural structural form in many classic

discrete optimization settings, such as the MAX SAT problem in Boolean logic, the MAX

CUT problem in graphs, and the MAXIMUM COVERAGE problem in location analysis, to

name a few.

The role of submodularity in discrete optimization is akin to that of convex functions

in continuous optimization, given their analogous prevalence, structural properties, and the

tractability of solving minimization problems on both functions (Lovasz [72], Fujishige [42]).

Interestingly, submodular functions are also closely related to concave functions, and this

raises the question of the tractability of maximizing submodular functions. However, since

many NP-hard problems may be reduced to the problem of maximizing submodular func-



tions, it is unlikely that there exists a polynomial-time algorithm to solve this problem

(unless P=NP). Consequently, a vast body of literature has focussed on developing efficient

heuristics for various instances of this problem.

The greedy algorithm, that iteratively augments a current solution with an element of

maximum incremental value, has been shown to be an effective heuristic in maximizing

nondecreasing submodular functions over different constraint structures [19, 34, 38, 78, 80,

99, 107]. In most prior works, it was implicitly assumed that the greedy algorithm has

access to an incremental oracle that, given a current solution, returns in polynomial time an

element of highest incremental value to the current solution. However, it turns out that in

some problems, determining an element with the best incremental profit may itself be an NP-

hard problem, thus necessitating the use of only an approximate incremental oracle. In this

chapter, we generalize the performance bounds of the greedy algorithm and an interesting

related variant, the locally greedy algorithm (Fisher et al. [38]) for maximizing nondecreasing

submodular set functions over various constraint structures, when the algorithm only has

access to an approximate incremental oracle. Subsequently, we discuss how various results

in the modern literature for problems that arise in the context of assignment problems,

Internet advertising, wireless sensor networks, combinatorial auctions, and utility games

among others, may be reinterpreted using these generalized performance bounds.

2.1.1 Preliminaries

A real-valued set function f : 2E --+ R is normalized, nondecreasing and submodular if

it satisfies the following conditions, respectively:

(FO) f(0) = 0;

(Fl) f(A) < f(B) whenever A C B C E;

(F2) f(A) + f(B) > f(A U B) + f(A n B) for all A, B C E, or equivalently:

(F2a) f(A U {e}) - f(A) > f(B U {e}) - f(B) for all A C B C E and e E E \ B, or

equivalently:

(F2b) f(AU C) - f(A) 2 f(BU C) - f(B) for all A B C E and CCE \ B.



Henceforth, whenever we refer to submodular functions, we shall, in particular, imply nor-

malized, nondecreasing, submodular functions. We also adopt the following notation: For

any two sets A, B C E, we define the marginal value (incremental value) of set A to set

B as

PA(B) = f(A U B) - f(B).

Additionally, we will use the subscript e instead of {e} whenever the context is clear. In

particular, (F2a) can equivalently be written as pe(A) 2 pe(B) for A C B.

A set system (E, F), where E is a finite set and F is a collection of subsets of E, is an

independence system if it satisfies the following properties:

(M1) 0 e F;

(M2) If X C Y E F then X E F.

Furthermore, any set X E F is called an independent set, whereas a set Y E 2E \ 7 is

called a dependent set. A maximal independent set in F is called a basis.

An independence system (E, F) is a matroid if it satisfies the additional property:

(M3) If X, Y E F and IXI > IYI, then there is an x E X \ Y with Y U {x} E F.

Matroids have the property that all bases in F have the same cardinality.

In this chapter, we will also focus our attention on the following special classes of matroids:

- Uniform. matroids: E is a finite set, k is a positive integer, and

.F:= {F C E: IFI < k}.

- Partition matroids: E = UIk=1Ei is the disjoint union of k sets, lI,..., I are positive

integers, and

T = {F: F = UkFi where Fi 9 Ei, jFil 5 1i for i= ,...,k}.

- Laminar matroids (Calinescu et al. [14], Gabow and Kohno [43]): Let E be a finite

set. A family of subsets S C 2E is said to be a laminar family if for any two sets



X, Y E S, at least one of the three sets, X \ Y, Y \ X, X n Y is empty. Let S be

a laminar family of sets, and each set S E S is associated with an integer value ks.

Then,

F = {F C E: IF n S < ks for each S E S}.

Starting with the seminal work of Edmonds [32], submodularity and matroids have received a

lot of attention in the optimization community. The reader is referred to standard textbooks

in combinatorial optimization [21, 67, 79, 93] for a detailed exposition on submodularity,

matroids, and independence systems.

Since our focus is on developing approximation algorithms for a variety of problems, we

must formalize the notion of an approximation algorithm. An a-approximation algorithm

for a maximization problem P is a polynomial-time algorithm A for P such that

OPT(I) < a -A(I)

for all instances I of P, where OPT(I) and A(I) are the optimal value and the objective value

returned by the algorithm A for an instance I of P. Observe that by this definition, it must

be that a > 1. A fully polynomial-time approximation scheme (FPTAS) provides, for

every E > 0, a (1+ E)-approximation algorithm whose running time is polynomial in both the

size of the input and 1/E. More generally, a polynomial-time approximation scheme

(PTAS) provides a (1+ e) approximation algorithm whose running time is polynomial in the

size of the input, for any constant E.

Finally, an inequality that will be useful in some of the analysis presented in this chapter

is the power means inequality. Given n nonnegative numbers a, a2, ... , a,, and two

nonzero real numbers p, q with p > q, the inequality states that:

(ap + aP2 + ... + a) a' + a+ (2.1)
n n

with equality holding if and only if al = a2 - ... - an.



2.1.2 Problem Description and Literature Survey

The problem we address may be stated as follows:

zot = max{f(S) : S C E,S E F} (P)

where f is a normalized, nondecreasing, submodular function, and (E, F) is, in general,

an independence system. As stated earlier, our focus is on the performance of the greedy

algorithm (and its variants), described below, in solving some special cases of this general

problem.

Informally stated, the greedy algorithm starts with an empty set, and in each iteration

adds an element with highest marginal value to the solution using an incremental oracle,

while ensuring independence of the resulting solution set using an admissibility oracle (also

known as independence oracle). The algorithm continues as long as there remains an element

which it has not previously considered.

A special case of the problem (P) is the maximization of a linear function over a matroid.

For this problem, the greedy algorithm is known to be optimal (Rado [87], Edmonds [32]).

Korte and Hausmann [66] studied the problem of maximizing a linear function over an

independence system and present tight bounds (that are functions of the rank quotient) on

STANDARD GREEDY ALGORITHM

Initialization: S:= 0 , E' := E.

Incremental Oracle: Select an element e* E E' \ S such that

e* = argmaxpe(S).
eEE'\S

Admissibility Oracle: If SU {e*} E F

Then S := SU {e*}.

Else E' := E' \ {e*}.

Loop back: While E'\ S : 0 goto Incremental Oracle.

End



the performance of the greedy algorithm for this problem. Nemhauser et al. [80] considered

the problem (P) over a uniform matroid and showed that greedy is a tight (e/(e - 1))-

approximation algorithm for this problem. In a companion paper, Fisher et al. [38] studied

the problem (P) over a general independence system that is an intersection of M matroids

and showed that greedy is an (M + 1)-approximation algorithm. This result yields a 2-

approximation factor when (E, F) is a matroid. The authors also considered a simpler variant

of the greedy algorithm, that they refer to as the locally greedy heuristic, and showed that

this algorithm is also a factor-2 approximation algorithm for the problem (P) when (E, F)

is a partition matroid. Subsequently, Conforti and Cornuejols [19] studied the problem (P)

over a matroid, but for a richer class of objective functions, f, by introducing the notion

of total curvature to characterize a set function. They showed that the performance of the

greedy algorithm for maximizing a nondecreasing submodular set function of total curvature

a is an (a + 1)-approximation. Moreover, by showing that 0 < a < 1 for nondecreasing

submodular functions and a = 0 if and only if the function is linear, they generalized the

results of Rado-Edmonds and Fisher et al. [38] regarding the performance of the greedy

algorithm.

Wolsey [107] considered the problem (P) over an independence system (E, F) given by:

F= SCE:'• we <W}
eES

where we,, for each e E E, are nonnegative weights and W is a nonnegative integer. This

system is simply the set of all feasible solutions to a knapsack constraint, and exemplifies

independence systems where F may be exponentially large, and yet may be encoded suc-

cinctly in a problem instance. In what follows, we will see examples where the ground set E

itself may be exponentially large and yet may be encoded concisely in a problem instance.

Extending a result of Khuller et al. [64] regarding the performance of a greedy with partial

enumeration algorithm for the BUDGETED MAXIMUM COVERAGE problem, Sviridenko [99]

showed that this algorithm is also an (e/(e - 1))-approximation algorithm for the problem

(P) over a knapsack independence system. The (e/(e - 1))-approximation results of Sviri-



denko [99] and Nemhauser et al. [80] for their respective problems are in fact best possible

for any polynomial-time approach, unless P=NP (Feige [35]).

Upon the completion of this work, we learnt that recently Calinescu et al. [14] have

developed a pipage rounding based (e/(e - 1))-approximation algorithm for the case of

problem (P) where (E, F) is a matroid and f is a sum of weighted rank functions of matroids,

which are a rich subclass of monotone submodular functions. Moreover, the authors also

give a somewhat different proof for the performance of the standard greedy algorithm with

an approximate oracle for the problem (P) when (E, F) is a p-independent family.

2.2. Motivation

Whereas all of the works highlighted in the previous section, with the exception of the

recent paper of Calinescu et al. [14], assume the existence of a polynomial-time procedure

(or incremental oracle) in the greedy algorithm to find an optimal incremental element in

each iteration, such an oracle may not always be available. We motivate this scenario via an

example where the ground set, E, itself may be exponentially large. Consider the following

problem studied by Fleischer et al. [39]:

Observe that the family of feasible subsets for each bin i, Ii, is an independence system.

Also note that therefore, the constraints defining feasible packings for bin i, implicit in Zi, are

separable from the constraints for bin j, i.e., the set of feasible packings of bin i are unaffected

by the set of feasible packings of bin j. Finally, the authors assume the existence of an a-

approximation algorithm for the single-bin subproblem for each bin i: select a feasible packing

of items from 1i of maximum profit. As an example, the GENERALIZED ASSIGNMENT

SEPARABLE ASSIGNMENT [39]

Instance: A set, U, of n items and a set, B, of m bins. Each bin i E B has an independence

system 1i of subsets of items that fit in bin i. A profit pij for assigning item j to bin i.

Task: Find a subset of items, S C U, and an assignment of these items, Si E Ii to bin i,

Si n Sk = 0 for i : k, so as to maximize profit, "iEB •jESi Pij.



problem is a special case of the SEPARABLE ASSIGNMENT problem, where the single bin

subproblem is the KNAPSACK problem. Specifically, in the GENERALIZED ASSIGNMENT

problem, items also have sizes wij corresponding to each bin i, and each bin itself is a

knapsack of a particular capacity Bi. Hence, the single-bin subproblem corresponding to bin

i for GENERALIZED ASSIGNMENT would be to find a maximum profit subset of items that

fits in bin i. However, for other special cases of SEPARABLE ASSIGNMENT, the single-bin

subproblem may be characterized by other forms of resource packing problems, such as the

RECTANGLE PACKING or the 2-DIMENSIONAL KNAPSACK problem.

As also noted independently by Chekuri and by Fleischer et al. [39], this problem is an

instance of maximizing a normalized, nondecreasing, submodular function over a (partition)

matroid. For the sake of completeness, we describe this transformation here.

Observation 2.1. SEPARABLE ASSIGNMENT is an instance of maximizing a monotone

submodular function over a partition matroid.

Proof. For any instance of the SEPARABLE ASSIGNMENT problem, define a ground set E =

UiEBEi, with an element es E Ei corresponding to each feasible packing, S E Zi, of bin i.

The constraints on SEPARABLE ASSIGNMENT now transform to picking at most one element

from each set Ei. Let F = UiEBFi, where Fi C Ei and IFil < 1, represent the set of elements

picked. This underlying constraint structure is therefore a partition matroid. However, note

that the packings of bins corresponding to any set F, may contain multiple copies of the

same item. Therefore it is important that one does not double-count the profit for these

items. This may be taken care of by writing the objective function as:

f(F) = Zmax{pij : i E B, es E F, j E S}
jEU

Observe that this definition of f extends to all subsets F C E, even when IFi is more than

1. Observe also that the summation is over all items j E U, and the maximum is over all

bins i that contain item j. In other words, if an item j is in multiple bins corresponding

to a set, F, then out of all the bins, i, that item j is in, we assign only the maximum pij



value to item j. It is not hard to verify that indeed this function f is nondecreasing, and

has decreasing marginal values. Suppose that S E 2i is a feasible packing for bin i. Observe

that the incremental value of element es to a set F, pes (F) is given by:

pes(F) = f(F U {es}) - f(F) = E max{pij - max(pkj : ep E F, P E 1k,j E P},0}.
jEs

Intuitively, the incremental value of an element is the incremental profit value of the set of

items in the corresponding packing that the element represents. As the set F grows, the

likelihood of the items in the packing, S, of bin i having the highest profit, pij, decreases

and hence, f has decreasing marginal values. Therefore, f is submodular. U

We have seen that in the underlying matroid, an element of the ground set corresponds to

a feasible packing in a bin. Consequently, the role of an incremental oracle in the greedy al-

gorithm for this problem is to pick a feasible packing among all feasible packings of maximum

incremental value to the existing solution. This would typically involve solving a knapsack

problem (or even a rectangle packing problem), since the set of all feasible packings might be

exponentially large. However, since such packing problems are typically NP-hard, we cannot

hope to have an optimal incremental oracle, unless P=NP. Hence, generalized results such

as the one described below, assuming instead the existence of an a-approximation oracle to

find a "good" incremental element, are in order.

In this chapter, we present bounds on the performance of a greedy algorithm that uses an

a-approximation algorithm as the incremental oracle to determine an incremental element

to add to the greedy solution. We summarize our main results in the following section.

2.3. Our Results

We begin by considering the problem of maximizing a nondecreasing submodular function

over uniform matroids. Generalizing a previous result due to Nemhauser et al. [80], we show

that in the presence of an a-approximate incremental oracle, the standard greedy algorithm



is an ( -- -approximation algorithm for this problem. Further, we also discuss how our

result generalizes similar previous results due to Hochbaum and Pathria [51] in the context

of the MAXIMUM COVERAGE problem, and Chekuri and Khanna [15] with regards to the

MULTIPLE KNAPSACK problem with identical bin capacities.

Partition matroids generalize uniform matroids, in that the ground set E contains ele-

ments of different kinds, with individual restrictions on how many elements may be selected

of each kind. In Section 2.5, we consider a variant of the standard greedy algorithm, namely

the locally greedy algorithm, previously proposed by Fisher et al. [38] and consider the

performance of this algorithm for maximizing nondecreasing submodular set functions over

partition matroids. Extending a result of Fisher et al. [38] to a-approximate incremental

oracles, we show that the locally greedy algorithm guarantees a tight factor-(a + 1) result

for the submodular function maximization problem over partition matroids. We also show

that various optimization problems that arise in the context of the winner determination

in combinatorial auctions (Lehmann et al. [71], Dobzinski and Schapira [31]), generalized

assignment problems (Fleischer et al. [39]), basic utility games (Vetta [101], Mirrokni and

Vetta [75]), wireless networks (Abrams et al. [2]), etc. may be cast into the framework of

maximizing a submodular function over a partition matroid. Consequently, we reinterpret

and unify the results pertaining to these problems within our framework.

Adapting a randomized algorithm proposed by Dobzinski and Schapira [31] for the winner

determination problem in combinatorial auctions with submodular bidders, we propose a

randomized algorithm for maximizing a submodular function over a partition matroid, in

Section 2.6. We show that in expectation, this algorithm guarantees a (2 - 1)-approximate

solution for the problem, where n = maxi IEi . If the size of the ground set, IE , is polynomial

in the size of the input, we show that this algorithm also runs in polynomial time. Finally,

we show that this algorithm implies a new polynomial-time randomized L-approximation

algorithm for MAX SAT, interestingly matching the performance of Johnson's algorithm for

the problem (Johnson [60], Chen et al. [17]). Indeed, there do exist improved linear and

semidefinite programming-based approximation algorithms for MAX SAT, but our approach



serves to illustrate the benefits of a more generalized study of optimization problems.

In Section 2.7, we consider the problem of maximizing a submodular function over an

independence system. If the independence system is an intersection of a finite number,

M, of matroids, then Fisher et al. [38] show that the greedy algorithm with an optimal

incremental oracle is an (M + 1)-approximation algorithm for this problem. When only

an a-approximate incremental oracle is available, we show that the greedy algorithm is an

(aM + 1)-approximation for the problem. Based on this result, we improve upon a previous

result of Fleischer et al. [39] for the k-MEDIAN WITH HARD CAPACITIES AND PACKING

problem and we present a greedy (a+ 1)-approximation algorithm for it. Finally, we conclude

in Section 2.8 by highlighting some interesting open questions and future directions that

result from this work.

2.4. Generalized Results over Uniform Matroids

Let (E, F) be a uniform matroid, i.e., F = {S C E : SI < k} for some integer k. Consider

the problem of maximizing a normalized, nondecreasing, submodular function f over this

uniform matroid. Using notation introduced by Farahat and Barnhart [34], we represent

this problem as fslFu. We describe a generalized greedy algorithm below that uses an

c-approximation algorithm as the incremental oracle to find an element e with the best

incremental value, pe(S) = f(S U {e}) - f(S). Note that in the case of uniform matroids,

the role of the admissibility oracle in the greedy algorithm is trivial - as long as the size of

the solution set, S, is strictly smaller than k, any element is admissible.

GREEDY ALGORITHM FOR fslFU

Step 1: Set i = 1; let So = 0.

Step 2: Select an element ei E E for which a -Pe,(Si_l) > maxeeE\Sil Pe(Si-1) using an

a-approximate incremental oracle.

Step 3: Set S = Si-1 U {ei}.

Step 4: Set i := i + 1. If i < k, then goto Step 2.



Si represents the set generated by the greedy algorithm after i iterations. Let SG = Sk be the

solution returned by the greedy algorithm. Let pi represent the incremental profit obtained

by the addition of element ei to the set Si-1. Let p' represent the optimal incremental profit

that could have been obtained, given the set Si-I was selected by the first i - 1 iterations

of the greedy algorithm. Since we use an a-approximation oracle in order to determine the

element with the best incremental objective function value, it follows that pi < p' < a - pi.

Observe that if one had access to an optimal incremental oracle, then it would be the case

that pi Ž pi+l. However, since we only use an approximate incremental oracle, this need

not hold anymore. Thus, the use of an approximate incremental oracle does not preserve the

nonincreasing property of incremental values of elements selected by the greedy algorithm.

This is a recurring theme throughout the paper and adds a measure of complexity to the

original proofs of Nemhauser et al. [80] and Fisher et al. [38].

We begin with the following characterization for nondecreasing submodular functions,

and present its proof for the sake of completeness:

Lemma 2.2 (Nemhauser et al. [80]). f is a nondecreasing submodular set function on E if

and only if f(T) < f(S) + E•jT\sPi (S) for all S,T C E.

Proof. Suppose that f is a nondecreasing, submodular set function defined on E. Fur-

thermore, for any two subsets, S,T C E, let T \ S = {el, e2, ... ek}. In other words,

S UT = S U {el, e2 ,..., ek}. Now, since f is nondecreasing, we have that:

f(T) < f(S U T)

= f(S) + (f(S U {el}) - f(S)) + (f(S U {el, e2}) - f(S U {el})) +..

+(f(S U {el,e2,..., ek}) - f(S U {el,...,ek-1}))

= f(S) + pe (S) + pe2(SU {el}) +...+ pek(SU T \ {ek})

< f(S) + pe (S) + pe2 (S) + ... + pek(S) (2.2)

= f(S) + pe(S).
ecT\S



Inequality (2.2) follows from the decreasing marginal values definition of submodularity,

(F2a).

Conversely, suppose that a function f satisfies the inequality, f(T) f (S)+••eT\S Pe(S)

for all S,T C E. Suppose that A c B C E and e E E \ B. In addition, suppose that

B\A = {e, e2,... , ek). Now, substituting, T = A, S = B, we have that f(A) 5 f(B), since

A \ B = 0, and therefore f is nondecreasing. Moreover, substituting T = A U {el, e} and

S = A, we have that:

f(A U {e, e}) : f(A) + pe(A) + pe,(A) = f(A U {ei}) + pe(A),

which in turn implies that:

f(A U {ei, e}) - f(A U {el}) • pe(A) •= pe(A U {el}) • pe(A).

Using one-element increments, one may similarly show that p,(A U {el, e2}) _ pe(A U

{el}), and so on. Putting these together, we would therefore have that Pe(B) 5 pe(A U

{el,e 2, ... , ek-1} < ... • pe(A U {el}) 5 pe(A). Hence it follows that f is nondecreasing

and submodular. U

Suppose that zopt = maxscE{f (S) : SI 5 k}, with f is normalized, nondecreasing, and

submodular. We then show that:

Theorem 2.3. If zg is the value of the GREEDY ALGORITHM FOR fS.FY, then zP <
Zg

(ak)kCl <

(ak) 0-(ak-lk - -L

Proof. Suppose that SG is the set generated by the greedy algorithm and T is an optimal

solution to the above problem. Let p' represent the best incremental value that could have

been obtained during the ith iteration of the greedy algorithm. By substituting S = 0 in

Lemma 2.2 and observing that ITI < k, it follows that:

zopt = f(T) <5 f(j) < kpi 5 k(ap_).
jET



Now, applying Lemma 2.2 to the solution of the greedy algorithm after j iterations, Sj,

implies that:

zopt < f(Sj)+ Z p(SJ).
iET\S,

Given that f(Sj) = E pi and that

apj+l Ž Pj+i pi(SS) for all i E \ Sj,

equation (2.3) now yields the following inequality:

i
zopt 5 E p + k -(p* )

(2.3)

which implies that

Pj+1 -, zopt -a i
i= 1

Adding E,=i pi on both sides of the above inequality, we get an inequality of the form:

1
Pi ->ZoptIV~l

(ak - 1)
ak i

i= 1

We now prove by induction on j that:

(ak)j - (ak - 1)i
i=1(ak

For j = 1, we have that pi > ! - zopt. Assume that the claim holds for j - 1. Now, applying

the induction hypothesis on equation (2.4), we have:

1
ZPiŽ-k

ak - 1
Szopt + akake

(ak)j - 1 - (ak - 1) j - 1

(ak)j-1 . Zopt. (2.5)

Simplifying the right-hand side of the above expression yields the induction claim. Finally,

(2.4)



setting j = k we have:

k (ak)k - (ak - 1)k
i= ()k

which proves the approximation ratio claim that :

zopt (ack)k e_

z9 (ak)k - ea- - Ik-e

The above result essentially follows in a manner similar to that of Nemhauser et al. [80]

and serves to point out the effect of a on the approximation factor of the greedy algorithm.

For the case when a = 1, the result is precisely that of Nemhauser et al. [80] and therefore

tight. Theorem 2.3 also generalizes a similar result due to Hochbaum and Pathria [51]

(see also Hochbaum [50]) in the context of the MAXIMUM COVERAGE problem and its

applications. We discuss this in greater detail in subsequent sections.

2.4.1 Discussion on Running Time of Greedy Algorithm

Denote the running time of the a-approximate incremental oracle by P. It follows then

that the running time of the GREEDY ALGORITHM FOR fs|l•u is O(kP), where at most k

elements need t;o be selected from the uniform matroid. Observe that the running time of

the algorithm itself does not depend on the size of the ground set, E, which may possibly

be exponentially large. As discussed earlier, and motivated in SEPARABLE ASSIGNMENT, in

certain underlying problems, the ground set E may be encoded concisely, even though it is

exponentially large. However, without loss of generality, any constant-factor approximation

algorithm to fsl:Fu must select O(k) elements (else consider a modular objective function

with equal weights for all elements). Hence in that sense, the greedy algorithm is an efficient

algorithm as long as P is polynomial in the input size of the underlying problem. Moreover,

for problems such as the relaxed AD PLACEMENT problem (Section 1.7) where the number



of elements to be selected is itself encoded using log k bits, it is often possible to modify

the greedy algorithm appropriately so that its running time is still polynomial, as we had

showed in Section 1.7.1 for the relaxed AD PLACEMENT problem.

2.4.2 Applications of Generalized Result

We begin by studying implications of Theorem 2.3 for the MAXIMUM COVERAGE problem

in discrete optimization. The MAXIMUM COVERAGE problem may be stated as follows:

Vohra and Hall [105] noted that MAXIMUM COVERAGE is indeed a special case of fsiFu.

For completeness, we present this transformation below.

Observation 2.4. MAXIMUM COVERAGE is a special case of fslFu.

Proof. Consider an underlying uniform matroid (E, F) where each element i E E corre-

sponds to a subset Ui E 1, and F is the collection of all subsets of E of size at most k. This

matroid would characterize the underlying constraint in MAXIMUM COVERAGE. Moreover,

the objective of MAXIMUM COVERAGE may be rewritten as the following function f:

f(F) = p(UiEFUi), where p(S) = 1 pj for each S C U.
jES

It follows from this definition that f is normalized, nondecreasing with decreasing marginal

values, and therefore submodular. U

Hochbaum and Pathria [51] present a greedy algorithm to solve MAXIMUM COVERAGE,

and a scenario where finding a subset that gives maximum improvement might be hard.

They obtain the same bound as the one in Theorem 2.3, assuming that one is able to pick an

MAXIMUM COVERAGE

Instance: A set of elements, U, a collection R of subsets of U, and an integer k. A

nonnegative profit, pj, corresponding to each element j E U.

Task: Select k subsets U1,..., U, of U, with each Ui E 7, such that the profit of the

elements in UL Ui is maximized.



a-approximate solution in each stage. Hochbaum and Pathria [51] also describe a number

of applications that can be modeled as the MAXIMUM COVERAGE problem in a setting of

approximate improvement.

Theorem 2.3 also implies the bound of the performance of the greedy algorithm obtained

by Chekuri and Khanna [15] for the MULTIPLE KNAPSACK problem with identical bin

capacities. The MULTIPLE KNAPSACK problem may be stated as follows:

In the case that all m bins have the same capacity, Wi = W2 = ... = Wm = W, this problem

is an instance of fslFu. The transformation for this is essentially identical to that described

for SEPARABLE ASSIGNMENT in Observation 2.1. Using an FPTAS for the KNAPSACK

problem as an incremental oracle, the greedy (e + e)-approximation result of Chekuri and

Khanna [15] follows from Theorem 2.3.

2.5. The Locally Greedy Algorithm and Partition Ma-

troids

In this section, we generalize the performance bounds of a special version of the greedy

algorithm, namely the locally greedy heuristic of Fisher et al. [38], to maximize a submodular

function over a partition matroid. Recall that a partition matroid, (E, .F) is given by F =

{F : F = Ul Fi where Fi C E_, Fi| _ li for i = 1,..., k}. We assume that we only have at

our disposal an a-approximation algorithm to play the role of an incremental oracle for each

element type, Ei. We shall refer to this problem as fslFp, where the subscript P denotes

the partition matroid. The locally greedy algorithm for this problem is as follows:

MULTIPLE KNAPSACK

Instance: Nonnegative integers, n, m, Pi,... ,Pn, wl,..., wn, and W1,..., Wm.

Task: Find m subsets SI,..., S, C {.1,..., n}, SinSk = 0 for i # k, such that -Ej~si wj
Wi for i = 1,..., m and E•i EjEs. pj is maximum.



In the above algorithm, i is a counter of the type, Ej, of elements in consideration; j is

a counter for the number of elements selected within a particular type; and m represents

the number of elements selected by the greedy algorithm at any point. The locally greedy

algorithm basically begins by selecting "profitable" elements of the first type, El, from E,

until it has picked 11 elements from El, and then it proceeds to do so for the second type of

elements, E2 in E and so on. Thus, the number of elements, m, in the greedy solution, SG,

is at most Ei= 1 li

It is important to note that, the order in which the locally greedy algorithm deals with

elements of different types is completely arbitrary. Furthermore, the incremental oracle in the

locally greedy algorithm only need select an approximate best element within each particular

type, rather than an approximate best element across all element types. Of course, with

an a-approximate incremental oracle over each type, one may simulate an a-approximate

incremental oracle over all types in O(k) time, by taking the a-best element of each of k

types and selecting the best of them.

We now present our main result for partition matroids.

Theorem 2.5. If z, is the value of the solution provided by the LOCALLY GREEDY ALGO-

RITHM FOR fs Fp, and zpt is the value of an optimal solution, then Zo < a + 1.

Proof. Let SG represent the greedy solution and T an optimal solution to fs l.p. Substitut-

LOCALLY GREEDY ALGORITHM FOR fsI FP

Step 1: Set i := 1; let So := 0; m := 1.

Step 2: Set j:= 1.

Step 3: Select an element ej E Ei for which a pe, (Sm-1) > maxeGEi\Sm_l pe(Sm-1) using

an a-approximation algorithm as the incremental oracle of type i.

Step 4: Set Sm:= Sm_1U{ej}; m:= m + 1.

Step 5: Set j := j + 1. If j 5 li, then goto Step 3.

Step 6: Set i := i + 1. If i < k, then goto Step 2.



ing them in Lemma 2.2, we have that:

zopt = f(T) f (SG) + pj(SG).
jET\SG

Now, suppose T \ SG= Uk=1Ti, where Ti _ Ei. Also, suppose SG = Ui 1S where

Sý 9 Ei. Let ei be the element in Sf that was selected with the lowest p value, which was

at a point in the algorithm when the current greedy solution, just before the addition of ei,

was Se . Mathematically,

pe,(Se' ) = min pe(Se)
eES?

In other words, pe,(Sei) is the minimum incremental value selected by the greedy algorithm

among elements in S?. But given that we are using an a-approximation algorithm, we also

know that:

a• pei(Sei) Ž pe(Sei) for all ee E \ Se' .  (2.6)

Also, since ZjET\SG pj(SG) = Ek=1 ZjET, pj(SG), it now follows that:

k

zopt • f(SG) + p(SG)
i=1 jETi

k

< z, + pj(Sei) . (2.7)
i=1 jETi

Inequality (2.7) follows from the submodularity of f (see property (F2a)), since Se' C SG,

for i = 1,..., k. Noting that Ti C E. \SG Ei \Sei and using inequality (2.6), the right-hand

side of inequality (2.7) yields further that:

k k

zopt zg + a ) . pei ,(Se') = z, + E ,a . ITi .p,,(Se )

i=1 jETi i=1

Sz + a - zg (2.8)

• (a+ 1) zg



Inequality (2.8) is implied from the way we picked ej to be the element with the lowest

incremental function value in Sý, and since we may assume without loss of generality that

ITil 5 JSýl 5 1i (recall that (E, F) is a matroid and f is nondecreasing, and therefore we

can always add elements to Sý so that Til <_ ISKI). S

2.5.1 Discussion on Running Time of Locally Greedy Algorithm

It is easy to see that the running time of the LOCALLY GREEDY ALGORITHM FOR fSlFp

only depends on the number of elements, 1i, to be picked of each type i, and the running time

of the incremental oracle of type i, Pi, as O(E•I liPi). It does not depend on the size of the

ground set, E, which may potentially be exponentially large, as in SEPARABLE ASSIGNMENT.

Moreover, as noted in the running time of the GREEDY ALGORITHM FOR fSI|Fu, since any

constant-factor approximation algorithm selects a solution of size O(E- 1, lk), it follows that

the locally greedy algorithm is an efficient algorithm as long as the running time, Pi, of each

oracle is polynomial in the size of the input of the underlying optimization problem.

If one uses an optimal incremental oracle in the greedy algorithm, implying a = 1,

Theorem 2.5 matches the result of Fisher et al. [38], and guarantees a bound of 2 for the

performance of a locally greedy algorithm over fslFp. This result of Fisher et al. [38] for the

locally greedy heuristic seems relatively unknown compared to their result for the perfor-

mance of the standard greedy algorithm for fslFM, where the subscript M denotes arbitrary

matroids. In the following subsections, we reinterpret some results in recent literature based

on the result of Fisher et al. [38] for the locally greedy heuristic. But first, we begin by

illustrating an application of the theorem to MAX SAT.

2.5.2 Max Sat

The SATISFIABILITY problem is one the most seminal problems in theoretical computer

science, and was the first problem shown to be NP-complete (Cook [20]). The optimization

version of the problem, MAximum SATisfiability, may be stated as follows:



We first show that MAX SAT is a special case of fslFp. Corresponding to any instance

of MAX SAT, define an independence system, (E, Y), where the ground set, E = U!'Ei,

contains elements of n different types. Each type of elements, Ei, represents all possible

truth assignments of a Boolean variable, xx E X. More specifically:

E= {eT, e} for each x, E X,

where eT (eF, respectively) would correspond to xi being assigned the value true (false,

respectively). In any feasible truth assignment to MAX SAT, each variable, xi, may be

assigned at most one truth value (true or false). This constraint defines a partition matroid

over E, wherein at most one element may be picked of each type, Ei.

We claim that the objective of maximizing the weight of satisfied clauses may be rewritten

as the following function, f, defined over subsets of E:

f(S) = c(z) where Zs = {z E Z : x e z, e E S or i E z, eF E S}
zEZs

This may be easily verified by considering the set S corresponding to any given feasible truth

assignment. Furthermore, f is normalized and nondecreasing, since Zs is nondecreasing in S,

and since c(z) 2 0. Moreover, without loss of generality, the incremental value of any element

eT E E to any set S would correspond to the weight of all additional clauses containing the

literal xx that were not already satisfied by literals corresponding to the elements by S.

From this inter:pretation, it follows that f has the property of decreasing marginal values,

and is therefore submodular. Finally, note that since f is nondecreasing, corresponding to

any solution to fslFp, one may construct a new solution that is a basis with at least the

MAX SAT

Instance: A set X of n Boolean variables, a family Z of clauses, each a disjunction of

literals over X, and a weight function c : Z - R>o.

Task: Find a truth assignment T of X such that the total weight of the clauses in Z that

are satisfied by T is maximum.



same objective value as the original solution. Moreover, any basis solution corresponds to a

feasible truth assignment, thus completing the claim.

It is not hard to see that the locally greedy algorithm for MAX SAT would then corre-

spond to arbitrarily deciding on an ordering of the variables, and iteratively assigning the

truth value, true or false, to each variable xi that has maximum incremental value (sum

of weight of additional clauses satisfied) to the solution at hand. The result of Fisher et al.

[38] would imply that this algorithm has an approximation guarantee of 2 for MAX SAT. Of

course, the locally greedy algorithm does not exploit the complete underlying structure of the

objective function, aside from submodularity. Consequently, there are a number of improved

approximation algorithms for this problem, based on linear programming, semidefinite pro-

grams, and the probabilistic method. We refer the reader to standard texts in approximation

algorithms such as [67, 100] for further exposition on MAX SAT.

2.5.3 Winner Determination in Combinatorial Auctions

Combinatorial auctions are mechanisms via which multiple non-identical items are sold to

bidders who express preferences over combinations of items, and not just single items. Such

auctions assume particular relevance when the items being sold are either complements or

substitutes to each other. In particular, Lehmann et al. [71] study the problem of an auc-

tioneer who would like to allocate a set of items, X, of decreasing marginal values amongst

n submodular bidders so as to maximize total social welfare. More formally, the problem

may be stated as follows:

It has been observed in the literature that the WINNER DETERMINATION problem is a

special case of fsIkFp. We present the transformation below.

WINNER DETERMINATION [71]

Instance: A set X of items; n bidders, each bidder j having a submodular valuation

function, vj : 2x --+ R>0 which is normalized and nondecreasing.

Task: A partition of the items X, into pairwise disjoint sets, Si,..., Sn, so as to maximize



Consider a ground set given by E = UiExEi, where each element eij EEi corresponds

to allocating item i to bidder j. The constraint defined by the WINNER DETERMINATION

problem, that any item i E X may be assigned to at most one bidder, would therefore

transform to picking at most element from each set Ei. Clearly, the set of all feasible

subsets of E defined by this constraint would therefore be a partition matroid. Moreover,

the objective function of the auctioneer is to maximize social utility, E•Z vn(Sn) where

(S1,..., S) is a partition of X. This objective is also nondecreasing and submodular, since

it is a sum of nondecreasing submodular functions. Based on any set F C E, define

Sf = {ileij E F}.

Furthermore, the objective function of the auctioneer may be rewritten as f(F) = _Ef= v~(Sf),

which is clearly monotone submodular on the base set, E. This may be easily verified by

noting that the marginal value of any element eij to a set F is indeed nonincreasing, since the

marginal value of the corresponding item i being allocated to bidder j is itself nonincreasing.

Thus the WINNER DETERMINATION problem is indeed an instance of fsklFp, as also noted

by Lehmann et al. [71].

Interestingly, we point out that the factor-2 greedy approximation algorithm proposed

by Lehmann et al. [71] for this problem turns out to be exactly the locally greedy algorithm

of Fisher et al. [38], as both algorithms are independent of item ordering. To complete

the analogy between both these greedy algorithms, we observe that Lehmann et al. [71]

assume access to a value oracle for each player, to encode the submodular valuations of the

players. That is, given a set S of items, the value oracle for bidder j outputs vj (S). In

the corresponding locally greedy algorithm, the existence of an optimal incremental oracle

follows from the existence of the value oracle, and from the fact that there are only n bidders

whose valuations need to be checked to find the best incremental element. The authors do

not make this connection and instead claim that the family of greedy algorithms that they

consider is wider than that of Fisher et al. [38].



One might observe that in the transformation described earlier in this section, the struc-

ture of the submodular objective function is "separable," in the sense that the marginal

utility of any item eij only depends on which other elements have been allocated to bidder j,

i.e., elements of the form ekj in the current solution, F C E. It is conceivable that one

might leverage this special structure to devise improved approximation algorithms for the

WINNER DETERMINATION problem. Indeed, Dobzinski and Schapira [31] propose a (2 - )-

approximation algorithm for this problem, where n represents the number of elements of

each type. However, we show in Section 2.6, that their algorithm may be adapted to provide

a (2 - -)-approximation algorithm for fs -Fp as well. Interestingly, Khot et al. [63] recently

showed that there is no polynomial time approximation algorithm with a factor better than

e/(e - 1) for the WINNER DETERMINATION problem, unless P=NP.

2.5.4 Convergence Issues in Competitive Games

Vetta [101] studied the following strategic game played amongst n players: associated with

each player j is a disjoint ground set Vj of actions, and Sj, a collection of subsets of Vj. Any

set sj E Sj corresponds to a feasible strategy of player j. In addition, suppose that Oj E Sj

corresponds to the null strategy for player j. A strategy profile or state, S = (si,..., sn),

represents the corresponding strategies being played by each player at a particular time. Let

S s = (S, .. .. , s j-, Sj+l, 1, ... , 1Sn) denote the state obtained if player j were to change

its strategy to s'. Assume that cj : •IjSj - IR represents the private utility function of

player j, and 7y : HjSj -- R, the social objective function. Suppose that the social objective

function, 7(.), is a monotone submodular set function defined on Ujl 1 Vj, i.e.,

=(S) = g(Un sj),

where g is a monotone submodular function defined on UjVj. Based on different assumptions

on y and aj, Vetta [101] introduced the following types of games:

- Utility Game: A strategic game as described above is said to be a utility game if it



satisfies the Vickrey condition:

ajY(S) 7y(S) - y(S ( 0) for all feasible states, S.

- Valid Utility Game: A valid utility game is a utility game that satisfies the Cake

condition:

a~c(S) 5 -(S) for all feasible states, S.

- Basic Utility Game: A basic utility game is a valid utility game that satisfies the

Vickrey condition with equality:

ajY(S) = y(S) - y(S De 0) = g(Uiss) - g(UiA si).

We reinterpret valid utility games, and in particular, basic utility games, as an equivalent

decentralized approach to maximizing a submodular function over a partition matroid, where

at most one element may be picked of each type. We illustrate this equivalence for basic

utility games, and the equivalence for valid utility games follows similarly.

Corresponding to an instance of a basic utility game, construct a ground set E = UEj

and add an element e3 in Ej corresponding to each feasible strategy sj E Sj of player j. That

a player may select at most one strategy from its feasible set of strategies would lead to a

natural partition matroid on this underlying ground set, E. Correspondingly, a function, f,
may be defined on any subset F C E as follows:

f(F) = g(UeEFSj).

It may be verified that f is monotone submodular on E, since g itself is monotone submodular

on the underlying ground set UVj.. This would require making use of an alternate charac-

terization of submodular functions, namely that pA(B) _ PA(C) for all A C E, B C C C E.

Observe that in the transformation so far, we have made no assumptions whatsoever re-



garding the underlying private utilities of the players. Thus, by imbuing each player with

any private utility function, we may define a corresponding partition matroid game, where

Ej would correspond to the strategy space of player j. Indeed, if the private utility of each

player in the partition matroid game is set to

asj(F) = f(F) - f(F \ Ej) for any F C E

then this partition matroid game defined would in fact be the basic utility game we sought

to transform, since this private utility matches the private utility of player j in the basic

utility game.

Conversely, starting with any instance of fs lFp wherein at most one element may be

picked from each type (we argue later in Section 2.6 that this is without loss of generality),

we may similarly define a partition matroid game over the instance. By imbuing the player

representing elements of type j with the private utility function,

aj(F) = f(F)- f(F \ Ej) for any F C E

we clearly satisfy the Vickrey condition with equality. Moreover, it is not hard to verify that

these utilities also satisfy the Cake condition (refer Theorem 2.5 of Vetta [101]). Thus, we

may define a basic utility game corresponding to each instance of fs .Fp as well. Additionally,

by defining alternate private utilities in the partition matroid game, one may draw a similar

correspondence to valid utility games. Via this correspondence, we may now reinterpret the

results of Vetta [101] for valid utility games as the performance bounds of a decentralized

approach to fs lFp.

One of the main results of Vetta [101] (Theorem 3.4) is that there exists a Nash equi-

librium in any valid utility game, and that the expected social value of any (pure or mixed

strategy) Nash equilibrium is at least half the social optimal value. This result may alter-

nately be interpreted as:

Corollary 2.6. Any Nash equilibrium of a decentralized valid-utility game approach to fsfTp



is a factor 2 approximation to the optimal solution.

Vetta [101] gives examples that imply that this factor 2 result is indeed tight. Unfortu-

nately, Goemans et al. [45] show that for some instances of valid utility games (alternately, in

a valid-utility game approach for certain instances of fsl.Fp), finding a Nash (sink) Equilib-

rium is PLS-complete. However, whether there exist polynomial-time convergence schemes

to good equilibrium solutions in alternate decentralized approaches to fsl|jp remains an

open question.

Interestingly, iterative improved response strategies in a valid-utility game framework for

fsl.Fp closely resemble local search approaches to fs I.p. Indeed, Fisher et al. [38] give similar

bounds on the performance of an interchange heuristic, a local improvement procedure. In

an iteration of the interchange heuristic, while there exists an element e outside the current

solution, S, that may be swapped with an element in S so as to improve the value of

the solution while maintaining independence simultaneously, modify S by interchanging the

elements accordingly. The heuristic terminates when no feasible improving element remains

in the "swap" neighborhood. Fisher et al. [38] show that a locally optimal solution obtained

using the interchange heuristic is a 2-approximate solution to fslP.F (and more generally,

over arbitrary matroids). Any locally optimal solution in a "swap" neighborhood to fsl.FP

in fact corresponds to a pure-strategy Nash equilibrium in a basic-utility game. The result

of Fisher et al. [38] would imply that any pure-strategy Nash equilibrium in a basic utility

game is at least half of the social optimal value. The result of Vetta implied in Corollary 2.6

is more general, in that it holds for valid utility games and for mixed strategy Nash equilibria

as well, although the structure of both proofs are similar in spirit.

Mirrokni and Vetta [75] also consider the notion of a state graph D = (V, 8) corresponding

to a utility game, where each vertex in V represents a strategy state, S = (sl,..., sn). There

is a directed edge in 8 from state S to S' with label j if the only difference between S and

S' is the strategy of player j; and player j plays its best response in strategy state S to go

to S'. A one-round best-response path is a path P that starts from an arbitrary state and

the edges of P are labeled in order il, i2,.. ., in, where il, i2,..., in is an arbitrary ordering of



the n players. One may easily define a similar state graph and related notions for a partition

matroid game.

We claim that starting with an initial state (01, 02,..., n) in the state graph of a basic

utility game and following a one-round best response path would correspond to the execution

of the locally greedy algorithm of the underlying partition matroid. To see this, without

loss of generality, one may assume that the best response path in consideration is labeled

1,2,... , n. Furthermore, let the vertices in this path correspond to So = (01, 02,7... ,n)

S1 = (S1, 02, ... , 0?n), ... , Sn = (81, S2, ... , Sn) in order. Now, in any iteration j of the locally

greedy algorithm, the role of the incremental oracle is to pick an element e E Ej of maximum

possible incremental value, pe(Fj-_1) = f(Fj_1 U e) - f(Fj_-), to the current solution at hand,

Fj_1 . In the one-round best response path being considered, the social objective at vertex

Sj-1 is given by g(Uii l s i ). By induction, suppose that Fj_ = {eili = 1,...,j - 1} where

each ei corresponds to the strategy si of player i in state Sj-1 = (sl,..., sj- 1, 0j,..., n).

Clearly by definition,

f(Fj-1) = g(ui=s i) = 1 (Sj ).

Moreover, in transitioning from Sj_1 to Sj, player j selects s so as the maximize

ayj(T) = g(Ui=1 j U s) - g(Ui sj),

where T = (sl,..., sj1, s,..., 0). However, observe that

aj(T) = f(Fj_1 U e) - f(Fj_1) = pe(Fj_1),

where e would be the element in Ej corresponding to the strategy s. Hence, it must be that

the element selected by the locally greedy algorithm is indeed the ej that corresponds to sj.

The claim follows by induction.

Mirrokni and Vetta [75] show that a one-round best response path starting from the

initial state, (01, 02,... , On), provides a 2-approximation to the state S that maximizes 'y(S).

By our interpretation of this path as the execution of the locally greedy algorithm, the same



result would follow from Theorem 2.5.

In thinking about partition matroid games, an interesting question that arises if one

might be able to imbue players with private valuation functions so that good approximate

solutions may be found for fsl.7 using iterated best responses, or even improved responses,

as discussed earlier. Alternately posed, recall that in an underlying state graph, directed

edges between vertices are determined by the private utility functions of players, and the

corresponding best responses based on these utility functions. Therefore, by appropriately

selecting the players' private utility functions, may one reorient edges in the graph so that

starting from any state, one is guaranteed to reach a state with a good social optimal value in

a polynomial number of steps? Goemans et al. [45] show that indeed this would be possible

by setting up the players utilities as a basic-utility game. Specifically, they show that:

Theorem 2.7. (Goemans et al. [45]) In basic-utility games, for any constant e > 0, there

exists a constant c such that the expected social value of a state after cn log ( random best

responses is at least 2 - e of the optimum. Moreover, for any constant e' > 0, there exists

constants e, c' > 0 such that after c'n log n log ( random best responses, the social value is at

least 1- e' oleast -~ of the optimum with high probability.

2.5.5 Set k-Cover Problems in Wireless Sensor Networks

Motivated by applications in wireless sensor networks, Abrams et al. [2] consider the following

variant of the SET k-COVER problem:

The intuition behind the formulation of this problem is as follows: the underlying elements

of the set U are meant to represent distinct regions being monitored by a sensor network,

and each subset Si E S represents the regions monitored by a particular wireless sensor i.

SET k-COVER [2]

Instance: A set of elements, U, a collection S of subsets of U, and an integer k > 2.

Task: Find a partition of the collection of subsets S into k parts, C1,..., Ck such that

Ej=l I Us,-ci S- I is maximized.



The objective of the planner is to partition these sensors into k parts so as to maximize

the number of times the regions are covered by these parts. Each part of the partition

corresponds to a group of sensors that are activated for a particular period of time, and

different parts of the partition are activated at different times, so as to conserve the battery

power of the wireless sensors.

Consider a ground set E = U~ Ej, where any element eij E Ej corresponds to assigning

set Sj to partition Ci. That a set in S may be allocated to at most one partition defines

a partition matroid on E. Moreover, for any subset F C E, create a partition with CF =

{Sjleij E F}. Now, the objective function of the SET k-COVER problem would correspond

to:
k

f(F) = UsEcF S|.
i=1

It is not hard to see that f is nondecreasing and submodular, using a similar argument as

seen for MAXIMUM COVERAGE. Therefore, this problem is an instance of fs FP. Abrams et

al. [2] propose a number of algorithms, including a distributed greedy algorithm, and show

that it is a 2-approximation algorithm for the problem. This distributed greedy algorithm

is in fact analogous to the locally greedy algorithm, and the performance of the distributed

greedy algorithm of Abrams et al. [2] follows from Theorem 2.5.

2.5.6 Applications of Generalized Result for Partition Matroids

Based on the result of Theorem 2.5, we now put into perspective other results in the literature

where in the absence of an optimal incremental oracle, the locally greedy algorithm uses an

a-approximate incremental oracle. As mentioned earlier, the SEPARABLE ASSIGNMENT

problem is an instance of fs lFp. Fleischer et al. [39] devise a polynomial-time local search

(a+±l+)-approximation algorithm for SEPARABLE ASSIGNMENT, given an a-approximation

algorithm for the single-bin subproblem. It may be seen that any such ac-approximation

algorithm for the single-bin subproblem corresponds exactly to an a-approximate incremental

oracle for the locally greedy algorithm. Theorem 2.5 therefore implies that:



Corollary 2.8. There is a polynomial-time locally greedy (a + 1)-approximation algorithm

for SEPARABLE ASSIGNMENT, given an a-approximation algorithm for the single-bin sub-

problem.

Fleischer et al. [39] do propose a linear programming-based ae/(e - 1)-approximation

algorithm for SEPARABLE ASSIGNMENT, given an a-approximation algorithm for the single-

bin subproblem. However, observe that if a > (e - 1), then (a + 1) < ae/(e - 1). Hence, if

we only have "weak" approximation algorithms for the single-bin subproblem (such as the

RECTANGLE PACKING problem), the locally greedy algorithm outperforms the LP-based

algorithm for SEPARABLE ASSIGNMENT.

Chekuri and Khanna [15] prove that for the MULTIPLE KNAPSACK problem, the perfor-

mance ratio of a greedy algorithm solving the KNAPSACK problem successively is (2 + e),

and note that the same result holds even when the weights of items vary across bins. Also,

Dawande et al. [25] propose a similar greedy algorithm-based (2 + e)-result for a MULTIPLE

KNAPSACK problem with "assignment restrictions," wherein items are restricted to be as-

signed only to certain specified sets of bins. We note that both these results follow from the

corollary above, since these problems are special cases of SEPARABLE ASSIGNMENT.

Chekuri and Kumar [16] study a variant of the MAXIMUM COVERAGE problem, that

they call MAXIMUM COVERAGE WITH GROUP BUDGET CONSTRAINTS. They also con-

sider the performance of a greedy algorithm that uses an a-approximate incremental oracle

and show that the performance of their greedy algorithm for the cardinality version of MAX-

IMUM COVERAGE WITH GROUP BUDGET CONSTRAINTS is (a + 1). By observing that the

cardinality version of MAXIMUM COVERAGE WITH GROUP BUDGET CONSTRAINTS is a

special case of fs FP, and that their greedy algorithm is analogous to the locally greedy

algorithm, Theorem 2.5 implies the same result.

In Section 1.9, we discussed the ADWORDS ASSIGNMENT problem introduced by Fleis-

cher et al. [39], and showed in Lemma 1.11 that it was a special case of fs~Fp. From the

transformation presented, it is not hard to see that the role of the incremental oracle in a lo-

cally greedy algorithm for this problem would be played by an algorithm for the RECTANGLE



PACKING problem discussed in Section 1.2.3. For RECTANGLE PACKING, the best-known re-

sult is a (2+e)-approximation scheme due to Jansen and Zhang [58]. Consequently, Theorem

2.5 would imply that:

Theorem 2.9. The locally greedy algorithm, with a (2 +) -approximation scheme for RECT-

ANGLE PACKING as an approximate incremental oracle, is a (3 + e) -approximation scheme

for the ADWORDS ASSIGNMENT problem.

The above result improves on the previous best (2 + E)e/(e - 1) e (3.16 + e)-approximation

result of Fleischer et al. [39] for the ADWORDS ASSIGNMENT problem.

It is instructive to understand the difference between the locally greedy algorithm and the

standard greedy algorithm. A standard greedy algorithm in any iteration tries to pick the

"best" incremental element in E over all element types, and does not constrain itself to pick

only from a certain subset Ei. One might therefore expect that for partition matroids, the

standard greedy performs better than the locally greedy algorithm. However, as it turns out,

even the standard greedy algorithm achieves the same approximation factor as the locally

greedy algorithm, and this factor is tight.

Observation 2.10. For the problem fsl•Fp, the worst-case performance of a standard greedy

algorithm as well as a locally greedy algorithm using an a-approximate incremental oracle is

no better than (a + 1).

Proof. Consider a partition matroid, with E = E1 U E2 , with E1 = {a, b}, E2 = {c}, where at

most one element may be picked from El and E2 respectively, and a submodular function,

f defined as f(0) = O,f({a}) = a,f({b}) = f({c}) = 1, f({a,c}) = f({a,b}) = a +

1, f({b, c}) = 1, f({a, b, c}) = a + 1. It may be easily verified that f is indeed normalized,

nondecreasing and submodular. Moreover, the optimal solution in this instance yields a

value of f({a, c}) = a + 1. However, the standard greedy algorithm and the locally greedy

algorithm may yield the solution f({b, c}) = 1, by picking b in the first iteration, using

an a-approximate incremental oracle. Thus the approximation guarantees of both these

algorithms is (a + 1). U



We end this section by pointing out that indeed, for a lot of the problems discussed,

there are algorithms with better performance guarantees than that of the locally greedy

algorithm. For example, Fleischer et al. [39] give a (e/(e - 1))-approximation algorithm for

the GENERALIZED ASSIGNMENT problem, that has recently been improved to (e/(e - 1) - E)

by Feige and Vondrik [36]. For the MULTIPLE KNAPSACK problem, there exists a PTAS

constructed by Chekuri and Khanna [15]. Abrams et al. [2] also provide an (e/(e - 1))-

approximation algorithm for their variant of SET k-COVER. For the winner determination

problem in combinatorial auctions with submodular valuations, Feige and Vondrik [36] de-

velop a (e/(e - 1) - e)-approximation algorithm using a demand oracle, and Dobzinski and

Schapira [31] develop an (2 - 1/n)-approximation algorithm using a value oracle. A demand

oracle, given a set of prices pi, one for each element ei, outputs a set S that maximizes

f(S) - eiýss Pi. This assumption of the existence of a demand oracle is a stronger as-

sumption than that of a value oracle, as it may shown that a demand oracle simulates a

value oracle in polynomial time (Dobzinski and Schapira [31]). Recall that the existence of

a value oracle is sufficient to show the factor-2 performance of a locally greedy algorithm for

this problem. Nevertheless, these results do hint that there might be better approximation

algorithms for the general class of problems, fslFp, itself.

Calinescu et al. [14] have recently developed an (e/(e - 1)-approximation algorithm for

the problem of maximizing the sum of weighted rank functions of matroids over an arbitrary

matroid constraint. The sum of weighted rank functions are a rich subclass of monotone

submodular functions, and include most of the objective functions of problem instances

discussed in this chapter, but there do exist instances of monotone submodular functions that

do not belong in the above class, notably including the objective function illustrated for the

ADWORDS ASSIGNMENT problem in Lemma 1.11. Calinescu et al. [14] also conjecture that

an e/(e - 1)-approximation algorithm exists for maximizing monotone submodular functions

over arbitrary matroids, fslFM. In the following section, we show if the size of the ground

set, E, is polynomial in the input size, then there is a randomized (2 - 1/n)-approximation

algorithm for fsI.Fp, where n = maxi IEil.



2.6. An Improved Randomized Algorithm for Parti-

tion Matroids

In Section 2.5.3, we showed that the WINNER DETERMINATION problem in combinatorial

auctions with submodular bidders is in fact a special case of fslFp. We also observed that

the objective of the WINNER DETERMINATION problem, while submodular, has a special

separable structure. More specifically, in the WINNER DETERMINATION problem posed

as fslF.p, the items assigned to bidder j do not affect the resulting valuation of player

i, whereas in arbitrary submodular functions defined over ground sets, this might well be

the case. Dobzinski and Schapira [31] propose a randomized algorithm that guarantees a

(2 - 1)-approximate solution in expectation for the WINNER DETERMINATION problem,

where n is the number of bidders in the auction. In this section, we adapt the algorithm

of Dobzinski and Schapira [31] for the more general problem of fsl YP and show that it is a

(2 - l)-approximation algorithm for this problem as well, where n = max IEvi.

Recall that we had earlier defined a partition matroid, (E, F), over a ground set, E =

U~, Ei as:

Y = {F: F = UlFi where Fi C Ei, |Fil li for i = 1,...,m}.

If the objective is to maximize a nondecreasing submodular set function f over this partition

matroid, then we claim that without loss of generality, it is sufficient to consider the case

when at most one element may be picked of each type, E2 . Instead of picking l4 elements

from Ei, we could make li copies of Ei and pick at most one element from each. Moreover,

to ensure that duplicate copies of the same item are not selected in a solution, we extend the

original nondecreasing submodular function, f, so that the incremental value of an element e

to a set S is 0 if a duplicate of element e is already present in S. If no duplicate of element e

is present in S, then the incremental value of e to S only depends on the distinct underlying

elements in S. By this definition of the new objective function, it is clearly nondecreasing,

since adding new elements can only increase its value. Moreover, the incremental value of



any element in the new partition matroid also decreases as the underlying set grows, and

therefore the new objective function still remains submodular.

Observe that the duplication process described above is "efficient," in the sense that

any optimal solution must contain O(li) elements of each type (without loss of generality,

i I Ei ), and in our transformation, we multiply the size of the input by at most maxi i.

Thus, it is sufficient to consider the following definition of a partition matroid, (E, ~), for

our purposes:

E: = UimE and F = {F C E : F n E• <I for i = 1,... , m

Recall that n == maxi E;I . Without loss of generality, we may also assume that each set Ei

has n elements, by adding dummy elements of 0 incremental value if Ei has fewer than n

elements. In addition, we extend the submodular function so that the incremental value of

any of the original items does not depend on any of the dummy elements in the underlying

set. Using similar ideas as above, it may again be verified that the modified objective function

is still nondecreasing submodular. Note that the process of adding dummy elements to Ei

is guaranteed to be polynomial if the ground set size, E|, is polynomial in the size of the

input. By arbitrarily indexing elements, we further assume that Ei = {ej Ij = 1,..., n} for

all i = 1,..., m.

We are now ready to present the randomized algorithm:

RANDOMIZED ALGORITHM FOR fs .F

Step 1: Set i := 1; let So := 0.

Step 2: For all elements of type i:

Le; tj = (f(Si_1U {ej}) - f(Si_l))n- 1 for each j = 1,... ,n.

Select ei, with probability qj = n=.tk

Step 3: Set i := i + 1, Si := Si-1 U {eij}. If i < m, then goto Step 2.

Intuitively, the randomized algorithm in each iteration, picks an element of a particular

type with a probability that depends on its incremental value to the solution relative to the



incremental value of other elements of the same type. However, the algorithm scales the

relative impact of each element appropriately by raising the incremental value of an element

to the power of n - 1. We shall discuss the potential impact of other scaling measures later

in the section.

Observe that the algorithm presented above requires access to a value oracle that given

a set S, returns the value f(S). Recall that the greedy algorithm and the locally greedy

algorithm only required access to an incremental oracle. A value oracle can simulate an

incremental oracle by enumerating the incremental value of all elements and then selecting

the element with the best incremental value. Hence, the assumption of a value oracle is a

stronger than that of an incremental oracle. However, for most applications, including those

discussed in this chapter, this is a reasonable assumption.

Observation 2.11. The RANDOMIZED ALGORITHM FOR fslFp requires the existence of

a value oracle, a stronger assumption than an incremental oracle.

The reader will also note that the running time of the RANDOMIZED ALGORITHM FOR

fs jFp depends polynomially on n, the number of element types, m, and the running time of

the value oracle. In fact, the algorithm runs in time O(n 2m + nmP), where P is the running

time of the value oracle, since the value oracle is invoked once for each element, and it takes

O(n) time to compute the probability of picking each element, with there being at most nm

elements in E.

Our main performance result regarding the algorithm is that:

Theorem 2.12. The RANDOMIZED ALGORITHM FOR fs FP is a (2 - -)-approximation

algorithm.

Proof. We prove the result by induction on the number of element types, m.

Let m = 1, i.e., there are elements of only one type, E = El, and we may pick at most

one of them. Let I denote an instance of this problem. Furthermore, let pj = f({elj})

denote the value of each element. Clearly, the optimal solution of this problem is OPT(I) =

Pk = maXj=l,...,n Pj. Moreover, the expected value of the solution returned by the randomized



algorithm, E[ALG(I)], is given by:

E[ALG(I)] = qjpj E n Z= Pj=1 j=1 in '-

Recall that qj denotes the probability that the RANDOMIZED ALGORITHM FOR fsl.Fp picks

element eu1 . We- would like to verify that OPT(I) •< (2- -)E[ALG(I)]. From the expressions

for OPT(I) and E[ALG(I)] above, we have that:

OPT (I) Pk P- P + Pk jk Pn- < 1 + Pk k P- (2.9)
E[ALG(I)] p • + •jk p p +  ~j7k • - P- + •-jzk P(

Let p denote .n-i Then, it follows from the power means inequality (recall inequality

(2.1) from Section 2.1.1) that:

n-- > P- 1- Hence, pp > (n - 1)pn- . (2.10)
jik

Substituting p and inequality (2.10) into inequality (2.9), we have that:

OPT(I) Pk(n - 1)p
_<1+ (2.11)E[ALG(I)] - pk + (n - 1)pn-1

Using elementary calculus, it may be verified that the expression in the right-hand side of

inequality (2.11.) is concave in p and maximized when p = p~-l. This would yield that:

OPT(I) <+ Pk( -1)Pi - 1  1 = + n 2 1
E[ALG(I)] pk + (n - 1)p" n n

thus proving the claim for m = 1.

Assuming that the claim holds for m - 1, we seek to show that the claim holds for m.

Suppose again that I denotes an instance of the problem with m types of items. Additionally,

let P denote the instance of the problem where element ejl is selected among all items of

type 1. Thereby, in IP, one would need to select only among the elements of m - 1 types,



E 2,... , E,,. In order for IP to be an instance of fs.Fp, the objective function, f, in P must

be normalized. We may do this by redefining the objective of I as:

f(S) = f(S U {exj}) - f({elj}) for all S C_ U,2Ei.

By again denoting pj = f({elj}), we would then have that f(S U {elj}) = f (S) + pj.

Let the random variable ALG(I) denote the value of a solution generated by the ran-

domized algorithm for instance I. Similarly, let ALG(P) denote the value of the solution

generated by the randomized algorithm for the instance P. Then, it follows from the de-

scription of the algorithm that:

n
E[ALG(I)] = Eq (E[ALG(P)] + pj) . (2.12)

j=1

Moreover, by the induction assumption, we also have that OPT(P) < (2 - I)E[ALG(PI)].

If we had the inequality that:

n n
OPT(I) E qOPT(I) + (2 - 1) pj q, (2.13)

j=1 j=l

then it would follow using the induction assumption and inequality (2.12) that:

n n
OPT(I) < (2 - ) E q3E[ALG(P)] + (2 - 1) Z pj q

j=1 j=1

(2 - 1) qj{E[ALG(I')] + pj} = (2 - 1)E[ALG(I)],
j=1

thus proving the induction claim. Hence, we are left to show that inequality (2.13) holds.

Lemma 2.13. > =1 q (OPT(I) - OPT(P)) • (2 - ) Z=1 p q3 .

Let O C E denote an optimal solution to instance I. Also, among elements of type 1,

let elk E O and denote O' = 0 \ {elk}. Then, O' is a feasible solution to each instance, PI,

since it does not contain any element of type 1. To prove the claim, we bound the value of



OPT(I) - OPT(Ij) for each j = 1,..., n.

Observe that 0' must be an optimal solution to instance I k . If it were not, and S were

instead the optimal solution to Ik, then observe that by adding element elk to set S, we

would have a feasible solution to I with objective value:

f(S U {elk}) = fk(S) + Pk > fk(1O') + Pk = f(O' U {elk}) = f(0) = OPT(I),

where the second inequality follows from the assumption that O' is not an optimal solution

to I k . This is a contradiction, since O is the optimal solution to instance I. Now since O' is

an optimal solution to I k , it follows that:

OPT(I) - OPT(Ik) = f(0) - fk(O') = pk. (2.14)

For any j ' k, it follows that since O' is a feasible solution to instance Ij :

OPT(I) - OPT(I1) < f(O)- fj(O')

= f(0) - (f(O' U {el}) - pj)

< f(O') + Pk - f(O' U {elj}) + Pk

< pk P+Pj

Inequality (2.15a) follows from the fact that fJ(O') < OPT(IJ); inequality (2.15b) follows

from the definition of fj(.); inequality (2.15c) from the submodularity of f, and inequality

(2.15d) follows since f is nondecreasing.

n-1
From equations (2.14) and (2.15d), and since qj = l we now have that:

n

'qJ, (OPT(I)- OPT(IP)) -

j=1

Enj=l pj-1 (OPT(I) - OPT(Ij))

EZnkP n-P P
n--i~l Pi

[EjT~k Pi-lp nt k)-- rEn1 Pjn-i

(2.15a)

(2.15b)

(2.15c)

(2.15d)



Moreover, dividing both sides by j=1 pjqj, we have that:

[Z; p_ (pj +pk)] +P7

Ej=I qj (OPT(I) - OPT(P)) - OiPjP ) 1-

W e =1 pjqj p
eZlePment, (y =piSk) U {}-S ) [fm t e p ?(PI fPak)] t r-

= -1
=1 r + jkvj (2.16)

Observe that the structure of the right-hand side of equation (2.16) exactly matches that of

equation (2.9). In a similar manner as derived for equation (2.9), it therefore follows that:

np En q( + (OPT(I) - OPT(I)) 1

p jj= Pqj n

thereby completing the proof. s

We return now to a question that we had posed earlier with respect to Step 2 of the

RANDOMIZED ALGORITHM. What if one considers the modified incremental value of each

element, tj = (f(Si- U {eij}) - f(Si_l))P, for some arbitrary integer p ? In fact, the ran-

domized algorithm would behave asymptotically like the a randomized version of the locally

greedy algorithm as p -- oc, since the probability of picking the element with the largest in-

cremental value (if unique) in each iteration would approach 1, or else the probability would

be equally distributed amongst all elements with the highest incremental value. It is not

hard to show that if p > 0, the analysis of Theorem 2.12 would reveal that this algorithm is

a (1 + (n--_)r+ ~j)-approximation algorithm. Moreover, using elementary calculus, it may

be shown that this factor is indeed minimized when p = n - 1. In the case that p _ 0, the

analysis does not hold true any longer.

When p K 0, the algorithm does not make intuitive sense, since items with a relatively

high incremental value are picked with a lower relative probability. We demonstrate this via

an example.



Example 2.14. Consider a uniform matroid, a special case of the partition matroid, with

E {el, e2, ... ,en, and a modular function, f defined as f(e) = 10, f(e 2) = f(e 3 ) =

= f(en) = 1. The optimal solution to this problem is OPT(I) = 10. If p < 0, then

each element ei, i > 2 is picked with probability at least 1, and element el is picked with

probability at most 1 by the RANDOMIZED ALGORITHM FOR fsl•FP. This would yield that

ALG(I) < n+, making the performance of the algorithm at least 2 is n > 3.

Thus in the presence of a value oracle, the ability to randomize over elements rather

than acting in a locally optimal manner helps achieve a better performance ratio for fs Fp.

Combining aspects of the randomized and greedy approaches might pave the path towards

closing the approximation gap between (2 - 1) and ( -~y), the best known lower bound on

approximability for the problem, unless P=NP.

As mentioned earlier, as p - oc, the RANDOMIZED ALGORITHM FOR fs Fp behaves as

a natural randomized extension of the greedy algorithm. Given a value oracle, this extension

to the greedy algorithm would be that if in any iteration, more than one element have the

same best incremental value, then the algorithm picks any one of these "best elements"

with equal probability. However, as we show in the example below, this randomized greedy

algorithm would also have a worst-case guarantee arbitrarily close to 2.

Example 2.151. Consider the partition matroid specified by E = El U E 2, where El = {a, b}

and E 2 = {c} and at most one element may be picked of each type. Furthermore, consider the

submodular function defined by: f(0) = 0, f({a}) = 1, f({b}) = 1 +e, f({c}) = 1, f({a, c}) =

2, f({a; b}) = 2, f({b, c}) = 1 + E, f({a, b, c}) = 2. It may be easily verified that f is indeed

normalized, nondecreasing and submodular. Moreover, the optimal solution in this instance

yields a value of OPT(I) = f({a, c}) = 2. However, the randomized versions of the greedy

algorithm and the locally greedy algorithm behave exactly as the standard versions, and may

yield the solution f({b, c}) = 1 + e. Thus the approximation guarantees of the randomized

versions of these algorithms approach 2 as c -+ 0.



2.6.1 Application to Max Sat

Recall from the transformation of MAX SAT to fsl.Fp presented in Section 2.5.2, that for

each variable xi, IEil = 2, implying therefore that n = 2. Additionally, since the number of

variables is polynomial in the input size of MAX SAT, it also follows that IEJ is polynomial

in the input size of MAX SAT. This would make MAX SAT an ideal candidate problem for

which the RANDOMIZED ALGORITHM FOR fs|JFp would be a polynomial time approximation

algorithm. Therefore, from Theorem 2.12, it follows that:

Corollary 2.16. The RANDOMIZED ALGORITHM FOR fs.Fp is a 3/2-approximation algo-

rithm for MAX SAT.

Interestingly, this performance matches the tight 3/2-factor performance of Johnson's

algorithm for MAX SAT (Johnson [60]), as shown by Chen et al. [17]. Whether the perfor-

mance of RANDOMIZED ALGORITHM FOR fslFp is tight for MAX SAT, or even whether the

analysis presented in Theorem 2.12 is tight, remains an open question.

2.7. Generalized Results over Matroids and Indepen-

dence Systems

Observe that for uniform matroids and partition matroids, the admissibility1 of an element

into an independent set S depends only on the number of elements of each type present in

S. Since the admissibility of an element into the greedy solution can be determined trivially

for partition matroids and does not involve the need of an admissibility oracle, as would be

the case for general matroids and independence systems, the above study was simple, and

the running time of the greedy algorithms was independent of the size of the ground set,

E. If a polynomial-time admissibility oracle does exist for a particular class of matroids or

independence systems, then it is possible to study the performance of a greedy algorithm

with an a-approximate incremental oracle for such a class of matroids.

'An element e is said to be "admissible" into an independent set S if S U {e} remains independent.



Suppose that an independence system (E, F) is the intersection of M different matroids.

In this section, we shall generalize the result of Fisher et al. [38], who proved that if an

independence system (E, F) is an intersection of a finite number, M, of matroids, then the

standard greedy algorithm is a (M + 1)-approximation algorithm. More formally, for the

problem of maximizing a nondecreasing submodular function over (E, F), we shall show that

a greedy algorithm, with an a-approximate incremental oracle as well as an admissibility

oracle for (E, F) at its disposal, is in fact an (aM + 1)-approximation algorithm.

We begin with a description of a generic greedy algorithm for this problem.

Similar to the standard greedy algorithm described earlier for uniform matroids, the GREEDY

ALGORITHM FOR fsl|F uses the a-approximate incremental oracle to select a candidate

element of "good" incremental value. The algorithm then uses the admissibility oracle to

check if the selected element is indeed admissible into the solution at hand, and modifies

the ground set and solution set accordingly. Observe from the definition of an independence

system that if an element e is not admissible to the candidate solution in an iteration i of the

algorithm, then it is never admissible to the candidate solution after iteration i. Therefore,

such elements may be removed from the underlying set for future consideration.

Theorem 2.17. Suppose (E, F) is an independence system that can be expressed as the in-

tersection of a finite number, M, of matroids, and f is a normalized, nondecreasing, submod-

ular function. If zg is the value of the greedy heuristic solution, utilizing an a-approximate

GREEDY ALGORITHM FOR fsl F

Initialization: Set i = 1; let So = 0, Eo = E.

Step 1: If E,:_1 = 0, STOP.

Step 2: Select an element ei e E E• for which ca pe,(Si_l) Ž maxeEEi_ pe(Si-1) using

an a-approximate incremental oracle.

Step 3: Using the admissibility oracle, check if Si-1 U {ej} E F.

Step 4a: If "no," set E _1 := Ei_- \ {ei} and return to Step 1.

Step 4b: Set Si := S-1 U {ej}, p-1i := Pe,(Si•1) and E := E_1 \ {el}.

Step 5: Set i := i + 1 and return to Step 1.



incremental oracle and an admissibility oracle, for the following problem:

max{f (S) : S E F}

and zopt is the value of an optimal solution, then op < aM + 1.

Proof. Let us define Ut to be the set of elements considered in the first (t + 1) iterations

of the greedy algorithm before the addition of the (t + 1)st element. Let rm(S) denote the

rank of set S in matroid m (where the rank of S is the cardinality of the largest independent

subset of S in the matroid), and spin(S) be the span of S in matroid m, defined by:

spm(S) = {e E E: rm(S U {e}) = rm(S)} .

In order to proceed with the proof, we shall utilize two lemmata shown by Fisher et al.

[38].

Lemma 2.18 (Fisher et al. [38]). Ut C Um,=1 spm(St) t = 0, 1,...

Proof. If j E Ut, then either j E St C UM= 1 spm(St) for all m, or j is not admissible according

to the admissibility oracle, implying that j E sPm(St) for some matroid m. M

Lemma 2.19 (Fisher et al. [38]). If EZ-1 xi < t for t = 1,2,..., K, and pi-_ 2 pi with

Pi, xr > 0 fori= 1,..., K - 1 and PK = , then • pXi < -l Pi.

Proof. Consider the following linear program:

V =max •ix
i=0 I ZEx· t,t=1,...,K, xzi>Oi=O,...,K-1 .

i=O

It is easy to verify that its dual is:

W = min{ tZt-1
t=1

K-1
I E zt-pi,i=0,...,K -1, zt>_O,t=0,...,K -1 .

t=i



As pi 2 pi+l, the solution zi = pi - pi+l,i = 0,..., K - 1 (where PK = 0) is dual feasible

with value E (Pi-1 - P) = EK-1 Pi. By weak LP duality, the result follows. U

Suppose that S and T represent the greedy and an optimal solution, respectively, to the

above problem. Additionally, let ISI = K. Note that since (E, F) is an independence system

and not necessarily a matroid, ITI need not be K.

For t = 1,... , K, let st-1 = IT n (Ut \ Ut- 1)1, where Ut is the set of elements considered

in the first (t + 1) iterations before the addition of a (t + 1)st element to St. We assume

without loss of generality that Uo = 0 and UK = E. Also, let p*(Si) = maxeeE, Pe(Si) for

i = 0,..., K - 1.

Since f is a nondecreasing submodular set function, Lemma 2.2 yields:

Zopt = f(T) < f(S) + ± pe(S) . (2.17)
eET\S

Suppose t E {1,2,... ,K} and p,(t) = min{pi i = 0,... ,t - 1}. Now for all elements

e E Tn (Ut \ U_-1), we have that:

Pe(S) 5 pe(St) < p*(St) < p*(Sq(t)+,) • apq(t) . (2.18)

While the first inequality follows from the submodularity of f, the second and third follow

from the definition of p*. The final inequality follows from the fact that we are using an

a-approximate oracle: If e* is such that Pe.(Sq(t)+l) = p*(Sq(t)+l), then by the fact that

e* E Eq(t)+1 was not considered by the greedy algorithm in iteration q(t), the inequality

follows. Given the above inequality, define p'_i = aPq(t). We then have:

p,(S) < pt- for all eE Tn (Ut \U Ut-), t= 1,2,...,K. (2.19)

Note that by the way that we have defined p'_, it has the nonincreasing property. In other

words, pt- Ž p/' for all t. This is based on the definition of q(t), which itself has the same

nonincreasing property. Additionally, pt = apq(t+l) • apt.
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Using this fact in equation (2.17), we now have that:

f(T) < f(S) + pe(S)
eET\S

< f(S)+ Zpe(S)
eET

pe (S)

K

f(s)+Ept --1t-i

where the last inequality follows from (2.19) and the definition of st.

Now, observe that since st-1 = IT n (Ut \ Ut-1)l, it must be that i=1 si-1 = IT n Utl.

By Lemma 2.18, we also have that Ut _ UM=l spm(St), which in turn gives us that:

M

ITn ut E ITn spm(St)
m=1

But since T is independent in each of the matroids and rm(spm(St)) = t, it follows that for

each m, IT n spm(St)l < t. This implies that:

t M

E si-1 E T n spm(St) I M t
m=1

(2.21)

where the above inequality is true for each t = 1, 2,..., K.

Since p', st > 0 for all t, and pt has the nonincreasing property, by substituting xi := si

and Pi := p' in Lemma 2.19, inequality (2.21) now gives us that

K-1 K-1

(2.22)Sp Si ! M p
i=0 i=0

(2.20)

K

E E
t=1 eETN(Ut\Ut-1)

= f(S) +



Substituting back inequality (2.22) into inequality (2.20), we now have that:

K-1

f(T) 5 f(S) + M p
i=O

K-1

< f(S) + aM pi (2.23)
i=0

Sf(S) (1 + aM)

where inequality (2.23) follows from the fact that p' < apt for all t. U

In parallel to this work, Calinescu et al. [14] have also recently noted a somewhat dif-

ferent proof for the performance of the greedy algorithm for fs1|F in the presence of an

a-approximate incremental oracle. In the next section, we present a more substantial dis-

cussion of the greedy algorithm and its performance.

2.7.1 Discussion on the Running Time of the Greedy Algorithm

As we have noted in earlier sections for uniform and partition matroids, the greedy algorithm

and the locally greedy algorithm have a running time that depends only on the restrictions

of the number of elements that must be picked, and is independent of the size of the ground

set, E. However, the greedy algorithm presented for fslF in fact has a running time that

depends on the size of E. Hence, if E is exponentially large, this would yield a poor running

time for the greedy algorithm. It must also be noted that this dependence of the running

time on IEI only comes because sometimes, the incremental oracle might pick an element

e E E that need not be admissible. If however, there were a hybrid incremental oracle that

always finds a "good" incremental element that is necessarily admissible, then the running

time performance of the greedy algorithm will not necessarily depend on jIE, but on the size

of a largest independent set in E.

In certain instances of fslF, such as when the independence system (E, F) is a matroid,

it may be possible to bound the size of the largest independent set polynomially in the

size of the input of the underlying combinatorial optimization problem. We now present an



instance of such a problem, and as it turns out, the greedy algorithm consequently provides

the best-known approximation ratio for this problem in polynomial time.

2.7.2 k-Median with Hard Capacities and Packing Constraints

Fleischer et al. [39] present the following variant of the k-Median problem, that they call the

k-MEDIAN WITH HARD CAPACITIES AND PACKING CONSTRAINTS problem.

This problem has very similar flavor to the SEPARABLE ASSIGNMENT problem discussed

in Section 2.2. In fact, using the transformation of Observation 2.1, it can be seen that the

underlying constraint structure is a laminar matroid, defined by E = Ui 1Ei, and

F= {F C F E, nEl I 1fori=1,...,mand F <k} .

In the above matroid, it is easy to see that the size of the largest independent set (or ba-

sis of the matroid) is k, which is polynomial in the input (since k < m). Moreover, the

objective function for this problem can be rewritten exactly as in Observation 2.1. Conse-

quently, monotone submodularity follows. Thus we establish that K-MEDIAN WITH HARD

CAPACITIES AND PACKING CONSTRAINTS is an instance of fsl.FM.

Fleischer et al. [39] devise a polynomial-time local search (a + 1 + e)-approximation al-

gorithm for K-MEDIAN WITH HARD CAPACITIES AND PACKING CONSTRAINTS, assuming

there is an oz-approximation algorithm for the single bin subproblem. The authors also

k-MEDIAN WITH HARD CAPACITIES AND PACKING CONSTRAINTS [39]

Instance: A set, U, of n items and a set, B, of m bins. Each bin i E B has an independence

system 7i of subsets of items that fit in bin i. A profit pij for assigning item j to bin i.

An integer k < m.

Task: Choose a set of K bins, IK < k, and a subset of items, S C U, with a feasible

assignment of these items to the bins in K, Si E Zi for bin i E K, Si n S, = 0 for i - 1,

so as to maximize profit, LiEK -jeSi Pij.



remark that this result is, to the best of their knowledge, the first constant-factor approxi-

mation to this problem.

Given an a-approximation algorithm for each of the single bin subproblems corresponding

to the m bins, one may easily design an a-approximate hybrid incremental oracle over all

element types. At the start of any iteration i, suppose that the current solution generated

by the greedy algorithm is S. If ISI < k - 1, then selecting the a-best incremental element

among the 1 element types corresponding to the 1 bins for which a feasible packing has not

been selected as yet, would indeed be a feasible selection. Hence the running time of a

greedy algorithm for this problem is polynomial in the input size. Specifically, if Pi is the

running time of the a-approximate oracle corresponding to bin i, then the running time of

the algorithm is O(k E•Z Pi). Since the problem is an instance of fs TFM with a hybrid

incremental oracle available, Theorem 2.17 implies:

Corollary 2.20. Given an a-approximation algorithm for the single bin subproblem, there

is a polynomial-time (a + 1)-approximation greedy algorithm for K-MEDIAN WITH HARD

CAPACITIES AND PACKING CONSTRAINTS.

Hence, by generalizing the results of Fisher et al. [38], we are able to improve upon

the previous best-known result of Fleischer et al. [39] for this problem. More recently,

Calinescu et al. [14] have developed an improved e/(e - 1)-approximation algorithm for the

GENERALIZED ASSIGNMENT problem subject to a laminar matroid constraint on the bins.

2.8. Concluding Remarks and Open Questions

In this chapter, we extend some classic results of Fisher et al. [38] and Nemhauser et al. [80]

on the performance of the greedy algorithm for maximizing monotone submodular functions

over independence systems and other special subclasses. Our work is based on the premise

that the greedy algorithm need not always to be able to pick an element of maximum

incremental value, and may only be able to select an element of "good" incremental value.

We show that this is indeed the case by posing some interesting and important discrete



optimization problems as the problem of maximizing a monotone submodular function over

an independence system. Based on our generalized results, we are able to reinterpret as well

as present a new view to many recent results. In certain cases, we are even able to establish

improved approximation results based on these insights.

We conclude this chapter by highlighting some interesting open questions that remain

intimately connected to this work and even served to motivate this study of submodular

function maximization:

* Consider the problem fsJFM, of maximizing a submodular function over an arbitrary

matroid constraint, given a value oracle. Calinescu et al. [14] have recently conjectured

that there exists an e/(e - 1)-approximation problem for this problem. For a rich

subclass of submodular functions, Calinescu et al. [14] show that there is indeed such

an algorithm, based on pipage rounding and considering an appropriate extension

of a submodular function. We believe that the submodular function extension due to

Lovisz [72] might be of related interest in proving this conjecture using pipage rounding

techniques.

* Consider the restricted problem, fsl.Fp, of maximizing a submodular function over a

partition matroid. We believe that a insightful first step in proving the conjecture for

fslFM would be to develop an e/(e - 1)-approximation algorithm to fsIFP, given the

special simple structure of the partition matroid, that may appeal to developing other

combinatorial techniques in proving the conjecture.

* Consider the standard greedy and local greedy algorithms described for fs.Fp. One

would note that in the tight worst-case examples described in Example 2.10, the greedy

algorithms' bad performance may be attributed to the greedy algorithm not selecting

the "correct" optimal incremental element in the first iteration. While simple ran-

domizing over all optimal incremental elements in any iteration does not necessarily

improve the performance of the greedy algorithm (as highlighted in Example 2.15),

smarter randomized schemes might lead to improved approximation algorithms for



fs IFp. Indeed, we develop an improved randomized (2- 1/n)-approximation algorithm

for fs IP. An interesting question is therefore if one might leverage an intermediate

randomized scheme coupled with a greedy strategy to develop improved approximation

results for fsl'Fp.

* In Section 2.6, we develop a randomized (2 - 1/n)-approximation algorithm for fslFp,

that has a polynomial running time if El| is polynomial in the input size. However,

it remains open whether the analysis presented is indeed tight. Even for the special

case of MAX SAT discussed in the section, the result guarantees a 3/2-approximation.

However, the worst approximation ratio example that we were able to find was 4/3. It

would be interesting to resolve if this analysis is indeed tight, or might be improved.

* In Section 2.5.4, we describe the correspondence between basic-utility games and a

decentralized approach to fsl.Fp. We point out an interesting relevant conjecture

posed by Mirrokni and Vetta [75] in this context. The authors show that starting from

any feasible state in a basic-utility game, a one-round best response path guarantees

a state with a 3-approximate social objective value. However, they conjecture that

such a path might indeed guarantee a 2-approximate social objective value. Resolving

this conjecture is an interesting question as it might suggest a polynomial time 2-

approximate local search approach for fsl.p.



PART II



Chapter 3

The Impact of Pricing and Buy-back

Menus on Supply Chain Performance

3.1. Introduction

A variety of trade promotions are used regularly in supply chains to align the interests of

retailers with the interests of the suppliers. Such trade deals provided by suppliers to retailers

try to incentivize retailers to lower their prices and thereby increase sales. In many cases,

this is done through promotions involving price discounts and other strategies that entail

suppliers reducing list prices. Unfortunately, such price discount trade promotions are not

viewed favorably by managers as they are seen to be "eroding the power of the brand" (see

Ailawadi et al. [6]).

To better understand channel efficiency and other alternative incentive mechanisms in

decentralized supply chains, we consider a single supplier multi-retailer supply chain selling a

single product, in which retailers need to make pricing and inventory decisions. Our objective

is to quantify the loss of efficiency due to decentralization, and to analyze the feasibility of

incentive mechanisms, such as a buy-back menu, to improve supply chain efficiency.

We focus on a Stackelberg game wherein the supplier is the leader, and the retailers are

followers that face stochastic demand, that is a function of their prices. In the simplest form



of this supply chain game, the supplier proposes a wholesale price to each of the retailers.

The retailers then specify to the supplier their respective order quantities and decide their

retail prices. Finally, demand for the period is realized. The supplier and the retailers

are assumed to be selfish, rational, risk-neutral agents, seeking to maximize their expected

profits.

A special case of our model is the single-supplier, single-retailer case when customer

demand is not a function of retail price. It is widely known in the literature that price-only

contracts do not coordinate the supply chain in this case [12, 70, 83, 85]. Lariviere and

Porteus [70] and more recently, Perakis and Roels [85] present a detailed analysis of the

supply chain efficiency in this game. On the other hand, Pasternack [83] showed that buy-

back contracts coordinate the supply chain in this setting. A contract is said to coordinate the

supply chain if the set of supply chain optimal actions is a Nash Equilibrium, i.e., no agent

has a profitable unilateral deviation from the set of supply chain optimal actions (Cachon

[12]).

The situation is different when demand is endogenous. Emmons and Gilbert [33] an-

alyze the use of buy-back contracts ("returns policies") in an endogenous, multiplicative

demand setting faced by a single retailer. Emmons and Gilbert demonstrate that under

certain conditions, the performance of a buy-back contract is better than that of a price-

only contract. However, they do not quantify theoretically the performance of a buy-back

contract in that setting. Indeed, Bernstein and Federgruen [9] establish that in a single-

supplier, single-retailer setting, a buy-back contract cannot coordinate the supply chain in

any price-dependent demand scenario. However, Granot and Yin [48] evaluate the effective-

ness of the buy-back contract in this two-echelon supply chain facing multiplicative demand.

Particularly, they show that when the random part of the demand is uniformly distributed

and the expected demand is a linear (resp., exponential) function of price, then the channel

efficiency of the decentralized supply chain is 75% (resp., _ - 73.58%). Song et al. [95]

further generalize the results of Granot and Yin [48] to the class of all multiplicative demand

functions where the random part of the demand follows an Increasing Generalized Failure
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Rate (IGFR) distribution. They also provide illustrative examples to show that none of the

structural insights of buy-back contracts in multiplicative demand settings continue to hold

for additive demand. In both these papers however, the authors leave open the analysis of

the performance of a buy-back contract in an additive demand setting.

Bernstein and Federgruen [9] show that coordination is possible in a two-echelon sup-

ply chain facing additive (or multiplicative) price-dependent demand using a price-discount

sharing (PDS) scheme coupled with a buy-back scheme. Specifically, the authors analyze

a general model with a single supplier and multiple non-competing retailers and show that

a linear PDS scheme along with a buy-back scheme may be used to coordinate the supply

chain. Moreover, they show that even in the case of competing retailers, there exists a Nash

Equilibrium for the retailers where coordination may again be achieved via a nonlinear PDS

scheme coupled with a buy-back scheme.

As observed earlier, there are managerial limitations to the PDS scheme (Ailawadi et al.

[6]). Granot and Yin [48] also note that, "the PDS scheme bears close resemblance to the

traditional 'bill back' or 'count-recount' schemes, which, unfortunately are reported to be

disliked by retailers (see, e.g., Blattberg and Neslin [10], Chapter 11)." Moreover, Ailawadi

et al. [6] report that Everyday Low Purchase Price approaches (simple fixed wholesale price

strategies) are widely preferred by managers for their simplicity. Addressing this fixed whole-

sale price approach, Bernstein and Federgruen [9] also identify conditions under which a fixed

price scheme coupled with a buy-back scheme may coordinate the supply chain. However,

in this case, "the constant pricing-scheme allows for only a single vector of wholesale prices"

and this "may result in very small or zero margins for the supplier," see Bernstein and Fed-

ergruen [9]. Thus while the buy-back contract may be coordinating, it may yield very low

margins of profit for the supplier, therefore deterring the supplier from adopting such an

arrangement.

In this paper, we study the influence of a buy-back menu as an incentive in an additive

demand setting with multiple coordinating or competing retailers. More specifically, we

consider a payment scheme described by a constant per-unit wholesale price and a buy-back
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menu, that is a decreasing linear function of the retailer's selling price. Intuitively, such a

buy-back menu would tempt retailers to lower their prices (thus countering the effects of

"double marginalization" (Spengler [96])) so that they may receive higher buy-back prices.

Our proposed incentive scheme has the advantage of retaining the virtues of an "every day

low purchase price" (EDLPP) approach, that is viewed favorably by managers (Ailawadi et

al. [6]). Moreover, the buy-back menu scheme does not have the problem of forward-buying,

often associated with quantity-discount based trade deals, or the problem of "scam-backs"

associated with price-discount based trade deals.

Unfortunately, the buy-back menu-based contract described above does not coordinate

the supply chain. However in a linear demand setting, we establish worst-case bounds

on the supply chain profit as well as on the supplier's profit in the Stackelberg game and

show them to outperform price-only contracts. Specifically, we show that by using the

suggested buy-back menu contract, the supplier's profit and therefore the supply chain profit

is at least 50% of the optimal supply chain profit. Indeed, we show that no other contract

involving a constant per unit wholesale price and a buy-back scheme can provide a better

worst-case guarantee on the fraction of the global supply chain profit that the supplier

can obtain. Furthermore, under a buy-back menu contract, we suggest heuristic wholesale

pricing strategies for the supplier, using which the supplier may improve the performance

of the entire supply chain to at least 75%, while still being guaranteed at least 50% of the

optimal global supply chain profit. Thus, such a scheme may also provide for alternative

sharing arrangements between supplier and retailer, subject to negotiations.

To quantify the performance of non-coordinating contracts in decentralized supply chains,

we use the notion of Price of Anarchy, a term coined by Papadimitriou [82] and introduced

in the theoretical computer science literature. Informally, the price of anarchy "measures

the extent to which competition approximates cooperation" (Roughgarden [89]). More for-

mally, the Price of Anarchy of a decentralized system is defined as the ratio of the optimal

performance of a centralized system and the performance of a decentralized system at its

worst Nash Equilibrium, with respect to the performance metric.
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The Price of Anarchy concept was first studied by Koutsoupias and Papadimitriou [68]

in the context of atomic games, wherein a common resource (a network) is shared by a

finite number of players (wishing to send traffic across the network), each using an non-

infinitesimal amount of it. Subsequently, this notion was extended to non-atomic games

(Schmeidler [92]), wherein a resource is shared by an infinite number of users, each using an

infinitesimal amount of it.

Some of the most important Price of Anarchy results to date have been for Congestion

Games (Rosenthal [88]). See for example, Roughgarden and Tardos [90, 91], Correa et al.

[23, 23, 24], and Perakis [84]. Other games for which the Price of Anarchy has been looked

at include cost-sharing games (Moulin [77]), network resource allocation games (Johari and

Tsitsiklis [59]), and network pricing games (Acemoglu and Ozdaglar [3]). In supply chain

management literature, the use of the notion of price of anarchy has been relatively sparse

(see (Martinez-'de-Albeniz and Simchi-Levi [29]) and (Perakis and Roels [85])). Similar to

Perakis and Roels [85], who use the Price of Anarchy as a measure to quantify the worst-

case performance of price-only contracts in an exogenous demand setting, we use the Price of

Anarchy concept to quantify the efficiency of a supply chain using a buy-back menu contract

in an additive linear demand setting. Specifically, for a single retailer two-echelon supply

chain using a buy-back menu contract, in the absence of explicit caps on retail price, the

Price of Anarchy using a buy-back menu contract is 4 (i.e., a relative efficiency of 75%).

Thus the worst-case performance of a buy-back menu contract in an additive linear demand

setting matches that of the buy-back contract in a multiplicative linear demand setting (Song

et al. [95]). Furthermore, we show the same result also holds true for the case of multiple

coordinating retailers. When retailers compete, we are able to establish that the Price of

Anarchy of a supply chain using a buy-back menu is worse than that of a coordinating

retailers system, but does not exceed 2 (i.e., a relative efficiency of 50%).

Finally we discuss the impact of vertical price constraints on supply chain performance

in a buy-back menu regime. Specifically we study the Price of Anarchy of the supply chain

configurations discussed earlier when retailers' maximum prices may be capped. We show
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that price caps increase the price of anarchy in all the systems discussed to 2, while potentially

eliminating any profit for the retailers.

3.2. Motivation

To motivate the loss of efficiency due to decentralization, we consider a simple model that

though elementary, provides much of the governing intuition on the ramifications of decen-

tralization. Consider a single product, single supplier, single retailer system facing deter-

ministic, endogenous demand that is a linear function of the retail price, p. In other words,

the retailer's demand is d = a - bp. Suppose that the supplier incurs a per unit cost of c for

manufacturing the product. The supplier needs to decide on a wholesale price w at which

she is willing to sell the product to the retailer, and subsequently, the retailer decides on

his own retail price p, as well as inventory level, q. In this case, since the retailer possesses

complete information regarding his demand once he has set his retail price, it follows that

q = d = a - bp.

The Stackelberg game described above is easy to analyze and it follows that:

Observation 3.1. In the system described above:

* The optimal retail price in the decentralized system, 3a+b, is higher than the optimal

retail price, ac, in the centralized system

* The optimal order quantity in the decentralized system, abc, is only half of the optimal

order quantity, -bc, in the centralized system

* The optimal centralized system profit is (a-)2 and the optimal decentralized system

profit is 3(a-bc)2 which is 75% of the optimal centralized system profit

* The optimal expected supplier profit in the decentralized system is (a-bc)2 and this is

50% of the optimal centralized system profit.

This supply chain efficiency loss due to decentralization is attributed to a phenomenon

referred to in the literature as "double marginalization" (Spengler [96]). The question, of

104



course, is what is the impact of demand uncertainty on the loss of efficiency? Equally

important, what is the effect of having many competing retailers on the loss of efficiency?

To answer some of these questions, we make the following observation.

Observation "3.2. There exists an instance with a single supplier and a single retailer facing

stochastic demand, specified by d = a - bp + e, in which the optimal decentralized expected

system profit is only 18.75% of the optimal centralized expected system profit. Furthermore,

the optimal supplier profit in the decentralized case is only 12.5% of the optimal centralized

expected system profit.

Given this huge drop in supply chain efficiency when demand is stochastic, we are moti-

vated to study incentive contracts that improve the efficiency of the supply chain. Further,

given the prevalence of an "Everyday Low Purchase Prices" approach in practice, we focus

on the following question:

Are there 'fixed wholesale price"- based incentive mechanisms that can help increase the

efficiency of this decentralized supply chain?

In this work, we answer this question in the affirmative for a general single supplier multiple

retailer model. Details of the model, our proposed scheme, and our results follow in the next

section.

3.3. Preliminaries

We consider a supply chain with one supplier selling a single product to n retailers over a

single period. Each retailer, say i, charges a price pi for the product. We use the notation

x to denote the vector (l,X 2 ,... , n) t , corresponding to any parameter xi for retailer i.

Accordingly, we denote the retail price vector by p. In this work, the demand, di(p), faced

by retailer i is modeled as an linear function of p, with demand uncertainty modeled as an

additive random variable, ei. In other words, the demand vector d(p) = a - Bp + (, where

a is a constant vector, B = [bij]nxn is a constant matrix and ( = (e,... , n) is a vector

of random variables. Without loss of generality, we assume that each ~i is a non-negative
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random variable with a continuous cumulative distribution function, Fi, and expected value,

14i.

We study two scenarios in this work: one is which there are no bounds on the retailers

prices, and one in which there is an upper bound py on each retailer's selling price, pi. The

motivation to consider retail price caps is due to a U.S. Supreme Court ruling in 1997 that

overturned an earlier ruling banning manufacturers from setting retail price caps (Supreme

Court [97], Felsenthal [35]), while maintaining the illegality of price floors. In the presence

of price bounds, we assume that a - Bp > 0 for any p < pU. Finally we assume that

information regarding the demand structure, i.e. a, B, pU and the distribution of ( is

symmetric, and therefore known to the supplier as well as the retailers.

In our model, any demand that cannot be satisfied from the inventory of the retailer is

assumed to be lost. This is in contrast to the possibility of unfulfilled customers moving to

a competing retailer with available inventory. Additionally, we assume that lost sales do not

incur a penalty for the retailer. Excess inventory at retailer i may be salvaged at the end of

the period at a per unit value of ej.

Since ej is a non-negative random variable, the amount of inventory that retailer i must

maintain for demand di(p) is no less than the deterministic part of di(p), ai - El<j<n bjpj .

In addition, let ui denote the amount of inventory that retailer i maintains to meet the

random part of it's demand, e~. The retailer's choice of ui therefore determines its customer

service level for the product.

We model the supply chain as a Stackelberg game in which the supplier is the leader

and the retailers are the followers. The sequence of events is as follows. The supplier first

offers a wholesale price wi to retailer i and an incentive mechanism through a buy-back

menu si (wi, e). The buy-back menu offered to retailer i is a collection of per unit buy-back

prices, each corresponding to a different retailer i selling price, paid by the supplier for each

unit of inventory that retailer i salvages. After receiving the wholesale price wi and the

buy-back menu si (wi, *), each retailer decides on its own selling price, pi, and order quantity

a - ••jSn bijpj + ui. Furthermore, in the decentralized case, each retailer must submit
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order quantities without knowing other retailers' selling prices and order quantities.

Upon receiving the order quantities, the supplier begins production and delivers items to

retailer i at a per unit cost of ci(< py), for each i. This cost is borne by the supplier. Finally,

demand for the period is realized and the retailers fulfill demand based on their available

stocks. At the end of the period, the retailers send back any excess inventory to the supplier

for a buy-back price si(wi,pi)(> ei) paid by the supplier to retailer i. The supplier salvages

this inventory at a per-unit price of ei for items received from retailer i.

We make the following assumptions regarding the matrix B, that are commonly used in the

literature [9, 74, 103, 104]:

Assumption 1 (Substitutes): bii > 0 and bij < 0 for any i, j = 1, 2, ..., n and i j j. That is,

a retailer's price has a negative effect on its own demand, but a non-negative effect on other

retailers' demands.

Assumption 2 (Symmetry): bij = bji for any i,j = 1,2,..., n and i 5 j. That is, the

cross-effects of retailers' prices on each other are symmetric. In fact, Vives [104](see also

Vives [102]) shows that demand with symmetric cross-effects in an oligopoly setting arises

as a natural consequence if the demand system is derived from the optimization problem of

a representative consumer with a quasilinear utility function.

Assumption 3 (Strict Diagonal Dominance): l<j<n bij > 0 for i = 1, 2, ..., n. That is, a

retailer's price has a higher effect on its own demand than the total effect of the prices of

all other retailers. Analytically, the diagonal dominance condition allows for a contraction

mapping method to show the uniqueness and stability of Nash Equilibria in a multi-retailer

setting, see for e.g., Bernstein and Federgruen [9], Milgrom and Roberts [74], and Vives [103].

We now highlight a few important structural properties of the matrix B. For notational

convenience, we denote the set {1, 2,..., n} as N. Furthermore, for any subset K C N, we

define the complement set as K = N\K. Consequently, for any vector z, we may define

ZK = (zi)iEK, and for any matrix Z, ZK,K = (Zij)iEK,je and ZK = (Zij)i,jEK.

Observation 3.3. Under assumptions 1,2, and 3, B is symmetric and positive definite.

Consequently, ptBp is a strictly convex function of p.
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The above result implies that B is nonsingular, i.e. B- 1 exists (Strang [98]). Furthermore,

it also guarantees that B- 1 is symmetric and positive definite. However, assumptions 1 and

3 allow us to make a stronger observation regarding B-1, that is not true in general for

arbitrary SPD matrices.

Observation 3.4. Under assumptions 1 and 3, B - 1 exists and has non-negative entries.

Additionally, all diagonal elements of B - 1 are positive.

Proof. Matrices that satisfy assumptions 1 and 3 in fact belong to class of Leontief matrices

(see also M-matrices (Horn and Johnson [54])), which have the property that their inverse

exists and has non-negative entries. This result for Leontief matrices is due to Samuelson's

Substitution theorem (See for eg., chapters 7, 8, 9 of Koopmans [65], or Holley [53]).

To verify that the diagonal elements are positive, observe that the matrix corresponding

to the cofactor of bii again satisfies assumptions 1 and 3 and so from the non-singularity of

it, the positivity of bii follows. U

Note that since B = Bt, B- 1 is also symmetric. Also, since B- 1 has non-negative entries, it

follows that if for any vector x, Bx > a, then x > B-la.

We study three different systems in this paper. The first is a centralized system in which

retail prices p and inventory quantities a - Bp + u at the retailers are set by the system,

so as to achieve the maximum possible expected system-wide (supplier plus retailers) profit.

We henceforth refer to this optimal system-wide expected profit in the centralized system as

global optimal profit.

The second is a coordinated retailers system in which the supplier sets the wholesale

prices, w, and a buy-back menu, s(w, e). The retailers then set the retailer prices p and

inventories a - Bp + u together, so as to maximize the expected total retailer profit.

The third system of interest is a competing retailers system. In this decentralized system,

after the supplier sets the wholesale prices w and the buy-back menu, s(w, .), each retailer i

decides on its own retail price pi and order quantity. Clearly, the question here is whether or
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not there exists a Nash equilibrium, and how retailers can make ordering decisions without

knowing each other's pricing strategy.

In the following sections we discuss each of the above systems. In Section 3.4, we charac-

terize the global optimal policy for the centralized system. In Section 3.5, we introduce the

buy-back menu and present our main results regarding the price of anarchy of the coordi-

nated retailers system when a buy-back menu contract is employed. Further, we show that

the price of anarchy of the coordinated retailers system can drop significantly in the presence

of retail price caps. To remedy this situation, we develop a heuristic supplier wholesale policy

for the coordinated system. Using this heuristic wholesale price policy, we establish that the

expected profit of the supplier is no less than half of the global optimal profit, while that of

the supplier and the retailers together is no less than three quarters of the global optimal

profit.

In Section 3.6, we present our results regarding the price of anarchy of the competing

retailers system when the supplier adopts a buy-back menu contract, in settings with and

without retail price caps. Again, we suggest a heuristic supplier policy for the competing

retailers system. We show that this heuristic allows the supplier to capture no less than

half of the global optimal profit. Similarly, the competing retailers system expected profit

is at least three quarters of the global optimal profit. Additionally, we also show that for

a fixed supplier wholesale price, retailer prices drop when retailers compete, rather than

coordinate. Finally, we show that the supplier can attain a higher expected profit with

competing retailers than coordinated ones, while the customers continue to experience the

same retail prices and service levels. We end with some concluding remarks in Section 3.7.

3.4. The Centralized System

In a centralized, system, with supplier costs, c, and salvage values, e, the system needs to

decide on retail prices, p, and customer service levels, u, so as to maximize expected system

profit. This problem is exactly the newsvendor problem with pricing, which has been studied

extensively in the literature. For a detailed survey of the problem, the reader is directed to
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Petruzzi and Dada [86].

In this setting, the system-wide expected profit for a given retail price p and inventory

level a - Bp + u is given by:

IIC(p,u) = pt(a-Bp+u-o)-ct(a-Bp+u)+eto

= (p-c)t(a - Bp+u) - (p - e)to,

def def
where oi~ E [ui - ei]+ denotes the expected overstock of retailer i. Additionally, let vi =
f([ i). The following observation relates u, v, and o:

Observation 3.5. u > v > o.

Proof. For each i, ui > ui - E[e Esi < ui] = E[uilei • ui] - E[ei e 5 u]il = E[•-e~ = vi and

vi = F(u,) > E [ui - Ei] + = oi.

Let pC and uc be the vector of prices and inventory levels that maximize II (p, u). Also,

let oý = E [u - e]+ and v = Eý = .F( We have the following result from the newsvendor

with pricing model, that relates pC and uc.

Lemma 3.6. (Whitin [106]) Fj (uc)= - for i = 1, 2, ..., n.

Proof. HI (pe, u) = (pC)t (a - Bpc + u - o) - ct(a - Bpc + u) + eto

= (pC - c)t (a - Bpc) + (pC - c)t u - (pC - e)t o.

Since reC(Pc,u) = pi - ci - [pc - ej] Fi (us), is nonincreasing in ui, I (PC, u) is concave in ui

and is at it's optimal value when Fi (us) = ' Hence F2 (u4) = • for i = 1, 2,..., n. 0

3.5. The Coordinated System

In this system, retailers set their price and inventory vectors together so as to maximize the

expected total retailer profit. For a given wholesale price vector w and buy-back menu s(w, .)
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from the supplier, if the retailers set their retail prices at p and inventories at a - Bp + u,

their expected total profit is given by the expression:

Hr ( w , s (w,* ), , u) = pt(a-Bp+u - o) - wt(a-Bp+u)+s(w,p)to

S(p-w)t(a - Bp+u) - [p - s (w,p)]t o

In general, even for a constant buy-back menu s(w, *), i.e., when the buy-back payment

is independent of the selling price, Hr (w, s(w, .), p, u) need not be jointly concave in (p, u).

However, we propose a heuristic buy-back menu for the supplier that not only ensures con-

cavity of the resulting retailer profit function, but also ensures that customers receive the

same service level as they do in an optimal centralized system.

3.5.1 Proposed Buy-back Menu Contract

In Observations 1 and 2, we showed that randomness in demand can have large negative

effects on the performance of a decentralized system. We now propose a buy-back menu that

may be used by the supplier to counter these negative effects. Consider the buy-back menu

specified by:

sH (wiP) def Pi - Wi
( pPi - if pi ! w for i = 1, 2, ..., n

F( (Fu)

and wi otherwise. For each i, sH (wi, e) is a nonincreasing function of pi and encourages

retailer i to set a lower retail price pi and therefore, order a larger quantity of the product

from the supplier. It is not hard to see that the buy-back value offered according to such

a menu is always less than the wholesale price being offered by the supplier. A buy-back

menu contract comprises a fixed per-unit wholesale price and a buy-back menu of prices for

unsold inventory. Such a buy-back menu contract may be viewed as an alternative incentive

mechanism between the simple buy-back contract (Pasternack [83]) and the Price-Discount

Sharing (PDS) scheme coupled with buy-back (Bernstein and Federgruen [9]), in that it

adopts the fixed per-unit wholesale price of a simple buy-back contract and a price-dependent
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buy-back value that is also implicit in a PDS scheme.

Observe that the returns value specified by the buy-back menu sH (wi, pi) can be less than

the salvage value, ej, available in the market, especially when pi is large. Ineffective buy-

back prices such as these can be transformed into a buy-back price satisfying si (wi,pi) _ ej

as follows. Instead of charging the retailer a linear cost for returning the unused product,

the supplier could announce a higher wholesale price and provide the end customers with

a manufacturer "instant" rebate. Specifically, suppose w is the wholesale price the supplier

wishes to select and the anticipated retailer price is p with sH (w, p) < ei. To transform

the problem, the supplier selects some ( Ž ej - sH (w, p), announces a wholesale price of

w + ( with buy-back menu si (w + (, Pi) = sH (w, pi - () + ( for each feasible retail price

pi- -, and announces a manufacturer rebate of (. Note that when the retailer selects a retail

price of pi + (, the customer actually faces a product price of pi per unit product due to

the manufacturer rebate. The retailer obtains a profit of pi + ý - (w + i) = pi - w per unit

product sold, but loses w+±- s (w + , pi + ) = w - sH (wi,pi) per unit of unused product.

The supplier obtains a revenue of (w + w) -~ = w per unit product sold by the retailer, and

a revenue of (w + () - si (w + 6,pi + w) = w - sg (wi, p) per unit product returned by the

retailer. Thus, this scenario with a manufacturer rebate is equivalent to a situation in which

the supplier sets a wholesale price of w with buy-back menu sH (w, *) (< e2), and the retailer

sets his price as pi, with no manufacturer rebate offered by the supplier.

We now proceed to show that for our choice of buy-back menu sH (w, *), the optimal

centralized system customer service level, uc, is the maximizer for the customer service level

in a coordinated retailers system as well, for any feasible retail price vector p. Hence, the

retailers optimal decision regarding their customer service level is fixed as uc, and the retailers

need only to decide on the price vector p that maximizes Hr (w, p) = I1r (w, sH (w, ) , p, u),

that we show is concave in p.

Lemma 3.7. For any p > w, IHr (w, sH(w, p),p, U) Ir (w, sH(w, p),p, uC).
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Proof. HI (w, sH(w, p), p, u) = (p - w)t (a - Bp + u) - [p - s H (w, p)]t o. Since

onr (w, SH (W, p), p, - s (,p)] u
aui

is nonincreasing in ui, it follows that H' (w, sH(w, p), p, u) is concave in ui and is maximized

when Fi (ui) = pi-i = F (u).pi-sp (Wi,pi), Z

The reader would note that it is sufficient to consider the case when p > w in order to

determine the optimal retail price vector, because otherwise, those retailers with pi < wi

would have an incentive to all increase their prices to wi, thereby improving their own profit

as well as that of the system.

It is not hard to see that Lemma 3.7 in fact holds for any arbitrary additive demand

function, d(p) + (. Moreover, for any feasible price vector p such that d(p) 2 0, Lemma 3.7

also holds for any arbitrary multiplicative demand function, [di(p) -ei]'1. Thus, by offering

the buy-back menu sH(w, .), the supplier may ensure that it is optimal for the retailers

to maintain the same customer service levels as they do in the centralized system. More

intuitively, the heuristic buy-back menu controls the effect of randomness in demand on the

retailers' ordering decisions. We now return our attention of the retailers' pricing decisions

in a linear additive demand setting.

3.5.2 Evaluating the Optimal Retail Price Vector

By substituting; the expression for sH (w, p), we may rewrite the expected retailer profit

function as:

HII (w, p) = Hr (w, sH (W, .), p, U)

= (p - w)t (a - Bp + uc) - [p- sH (w,p)]toc

= (p - w)t (a - Bp + uc - v).

Since B is SPD, it follows that Hr (w, p) is strictly concave. The objective of the retailers
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is now to maximize HIr (w, p). Here, we must distinguish in the two circumstances that we

analyze: in the absence and presence of caps on the retail prices. We present our results for

these two cases in the following.

3.5.3 Absence of Price Caps

In the absence of upper bounds on the retailers' prices, solving for the optimal retail prices,

p*(w), that maximize the total expected profit of the retailers is an unconstrained concave

quadratic maximization problem. We now present our main result regarding the performance

of the coordinated retailers supply chain when the supplier offers a buy-back menu contract

to the retailers:

Theorem 3.8. In a coordinated retailers system where the supplier proposes a buy-back

menu contract, and the retailers face linear additive stochastic demand, the total expected

supply chain profit is at least 75% of the global optimal profit. Moreover, the total expected

supplier profit is at least 50% of the global optimal profit.

Proof. As discussed earlier, the centralized system profit, HC, is given by:

Hc(pC, uc) = (pC - c)t(a - Bpe + uc) _ (pC - e)to c

Since ) = vi, we have that o,(p - e) = voc(pý - c.). Consequently, we may rewrite Hc as:

ic(pc, uc) = (pC - c)t(a - Bpc + uc - vc).

Furthermore,

pc = B- (a + Bc + uc - o).
2

We shall now compare the global optimal profit with the expected system profit in the

coordinated retailers system. For coordinated retailers in a buy-back menu regime, we have
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that:

Hr(w, p) = (p - w)t(a - Bp + uC - vc) and p*(w) = 1B-l(a + Bw + u c - ve)
2

where p*(w) denotes the retail price vector that maximizes Ir (w, p). Observe that for the

retailers to maximize their profit, it must be the case that p*(w) 2 w. Indeed it is easy to

verify that as long as a - Bw > 0, i.e. the supplier offers a wholesale price with nonnegative

demand for each retailer, the retailers' expected profit function is well-behaved.

From Lemma 3.14, the

given by:

supplier's expected profit in a coordinated retailers system is

I(w) = (w - c)t(a - Bp(w) + uc - ve) + (p(w) - pC)t(vC - o c)

Substituting the expression for p*(w) from above, it is easy to verify from the properties of

B that IH(w) is strictly concave in w. Therefore, we have that:

V.IIP(w)

Moreover, the wholesale

by:

1 1
= a-Bp*(w)+u c - v c-  _ B(w-c)+1(v -o c)2 2

a UC oc  1
- -Bw --+ +-Bc
2 2 2 2

price that maximizes the supplier's expected profit, 1-P(w) is given

w* = B-1(a + Bc + u c - oc ) = pC
2

and correspondingly, the retailers' optimal decentralized retail price, p*(w*) is given by:

1 1

p*(w*) = 1B-l(a + uc - vc) p+ pC f w* = pC2 2

Since p*(w*) ! pC and vc 2 00 (Observation 5), it follows from the expression for IP(w*)
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that:

n'(w*) 2 (w* - c)t(a - Bp*(w*) + uc - vc)

= (p c) (a - Bp*(w*) + uc - v c)

= (pC c)t(a - (a + Bpc + uc- v) +u - v)

1 1
= (pC - c)t(a - Bpc + uc - vc) = (pc uc)

In order to establish bounds on the system profit, we first rewrite the expression (p*(w*) - c)

as follows:

(p*(w*) - c) = B-l(a+ uc - vc) + p - c
2 2

1 1

= B-l(a + Bc + uc - oc) - c- B-l(v - oC) + (pC - c)2 2 2
3 1= (pC - c) B-1(vc - o) (3.1)2 2

Now, we have that:

In(w*, p*(w*)) + IIS(w*)

= (p*(w*) - c)t(a - Bp*(w*) + uC - v) + (p*(w*) - pC)t(v - o )

= (p*(w*) - c)t(a - Bpc + uc - v c) + (p*(w*) - pc)t(vC - oc)2
3= (p - c)t(a - Bpc + uc - vc) (3.2)

- (B-1(vc - oc))t(a - Bpc + uc - vc) + (p*(w*) - p)t(vC - oc )4
3 1

= •• C(p, uC) + 1(B-1(v - oc))t(a - Bpc + uc - vC)
4 4

Ž IH0(pcuc)4

where equation (3.2) follows by substituting equation (3.1) in the expression above, and the

final inequality from Observations 4 and 5, and since d(pc) = a - Bpc > 0 . M
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Thus, we establish that the price of anarchy of a coordinated retailers system that uses

a buy-back menu contract is 1. Consider a special case of the coordinated retailers setting,

where the number of retailers is 1. Stated alternately, the above result guarantees that if a

supplier offers the proposed buy-back menu contract to a single retailer facing linear additive

demand, and then acts as a leader in the Stackelberg game, then the supply chain profit

in the decentralized system is at least 75% of the global optimal profit. Furthermore, the

supplier is guaranteed at least 50% of the global optimal profit. Observe that in this case, the

supplier selects it's wholesale price, w, selfishly. From the deterministic example considered in

Observation 1, it also follows that these bounds are in fact tight. Thus, in a linear additive

demand setting with a single retailer, the proposed buy-back menu contract matches the

worst-case performance of a buy-back contract in a linear multiplicative demand setting (Song

et al. [95]). However, while the optimal buy-back contract in a multiplicative setting was

distribution-free, the parameters of our buy-back menu contract (a decreasing linear function

of retail price) :in an additive setting depend on the demand distribution. Nevertheless, our

result is of interest since as observed by Granot and Yin [48] and Song et al. [95], the worst-

case properties of the buy-back contract in a single retailer, multiplicative demand setting

cease to hold in an additive demand setting even when the stochastic component of demand,

e, is uniformly distributed. Moreover, we establish our result about the performance of a

buy-back menu contract even for multi-retailer coordinated systems.

3.5.4 Retail Price Caps

In a setting where the supplier imposes price caps, pU" pC, on the retailers prices, the

objective of the retailers is to maximize IIr (w, p) subject to these upper bound constraints

on retail prices. It follows from the strict concavity of the objective function and the convexity

of the underlying constraint set, that a local maximum would correspond to the unique global

maximum for this problem.

To solve the retailers' problem, we begin by solving the unconstrained problem of maxi-

mizing Ilr (w, p). Since Hr (w, p) is strictly concave in p, it is maximized when p = p*(w) =

117



SI{B-l(a + Bw + uc - vC)}. In the case that p*(w) < p', the optimal retail price vector2

for the constrained optimization problem is set to be the solution to the unconstrained

optimization problem, i.e. p(w) = p*(w).

Suppose instead that p*(w) 5 p". In this case, it follows from strict concavity that

HI (w, p) must attain its constrained maximum value at a local maximum point on the

boundary p*(w) = p (w) for some L(w) C N. Then by the Karush Kuhn Tucker (KKT)

optimality conditions, which are both necessary and sufficient for the problem at hand,

PL(w) must be set to --* where -- satisfies the condition that or(w,p) L(w)= 0.L(W) f(-w) W) Lpz-

Equivalently, from the strict concavity of HIF (w, p) in PL-(w after fixing PL(w) = P(w), we

have that:

S{B-1 [(--+ c - v
L(w) 2 L(w L L(w) L(w) L(w)

-BL(w),L(w) (2pj( - WL(w)) W L(w)

< pL (3.3)

Additionally, the KKT conditions also have that for each i E L (w) the partial derivative of

Ir (w, p) with respect to pi at PL(w) = p-- and PL(w)\{i} = p()\{} is no less than 0

Using a similar argument as above, this may be equivalently stated as:

p(w) = 2b [ai + - vc - B{i},L(w)\{i} (2p(w)\{i} - WL(w)\{i})

-B {i},L(w) (2P(w) - wL(W)) + w

> pi (3.4)

Since the above optimization problem is an instance of a convex quadratic programming

problem, it can be solved in polynomial time using interior-point methods. To the best of our

knowledge, the fastest interior-point algorithm to solve linear constrained convex quadratic

programming is one that uses O(n3L) arithmetic operations, where L is the number of bits

needed to encode the input, see e.g., Monteiro and Adler [76] or Goldfarb and Liu [46].
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However, the simplicity of the underlying constraints and the special structure of B allow

us to propose a faster and simpler polynomial-time algorithm to determine a set L(w) and

p-( satisfying the KKT conditions. We divert our attention in the following subsection to

the details of this algorithm.

A Polynomial-Time Algorithm to solve the Retailer's Problem

As noted earlier, our problem is a linear constrained convex quadratic programming problem,

and hence if the unconstrained optimal solution is not feasible, then an optimal solution

must lie on the boundary of the feasible region. We propose a simple "dual"-type active set

approach, that turns out to solve the problem to optimality in polynomial time. Consider the

following more general quadratic programming problem with only upper bound constraints

on the decision variable, p:

maximize -lptBp + a'p + E (P)

subject to p < pU

Additionally, suppose that in problem (P), B = (B + Bt) satisfies assumptions 1 and 3

(i.e., B is a Leontief matrix). In this case, it is not hard to see that the problem (P) is a

convex quadratic programming problem. The gradient of the objective function of (P) with

respect to p is of the form i - Bp. We show that Algorithm A, described shortly, can be

used to find the optimal boundary L* and the optimal solution p* of (P). Let Ai represent

the n-dimensional unit vector in the ith direction.
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Informally, Algorithm A begins by guessing that the optimal boundary solution is at Lo.

Based on this guess, it then computes the corresponding value of pO so as to satisfy the

KKT conditions for Lo. Having done so, the algorithm then proceeds to check whether the

KKT conditions are satisfied for the indices in Lo, in a manner analogous to inequality (3.4).

This is indicated in the first If-condition of Step 2. If indeed the KKT conditions are valid

for indices in Lo, the algorithm terminates and exits to Step 3. If not, the algorithm updates

the set of boundary indices L by removing the indices where the KKT condition is violated,

and iterates.

It is clear that the algorithm terminates in at most n iterations, where p is a vector of

dimension n. Also, it follows that the cost of each iteration is at most the order of a cost

of inverting an n x n matrix, for which the current best known algorithm is O(n2+y) with

y = 0.376 (Coppersmith and Winograd [22]). Hence, the running time complexity of the

Algorithm A is O(n3+-).

To prove correctness, all that is left is to ensure that the solution computed by the

algorithm for pr;- is indeed an interior solution, analogous to inequality (3.3). Unsurprisingly,
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ALGORITHM A

(Initialization)

Step 0: Set Lo = 0 and k = 0.

Step 1: For i = 1, 2,..., n, if AhB-'i > p, then set Lo = Lo U {i}.

(While loop)

Lk L a k L k 7 P )Step 2: Define PLk = P and P- = BL -iP - B -kLk"
If - [aI - B{i},Lk\{i}Pk\{i} iLk ] P i L

or Lk = 0 then goto Step 3.

Else set Lk+1 = Lk, and for each i E Lk, set Lk+1 = Lk+l\ {i} if

a - ,B{i},L\{iPLLk{-}- - k] < P!

and repeat Step 2 with k = k + 1.

(Termination)

Step 3: Set L* = Lk and p* = pk



the special structure of B helps us to show just this.

Lemma 3.9. Vk, < pL . Consequently, pj- < p!-.

The proof of Lemma 3.9 is via induction. For details, we refer the reader to Appendix A.0.2.

As a consequence of this result, we may now state our main result regarding the algorithm:

Theorem 3.10. Algorithm A determines in polynomial time the unique optimal solution to

the convex quadratic programming problem (P).

The uniqueness of the optimal solution for problem (P) and Theorem 3.10 imply that:

Corollary 3.11. Starting with any Lo with pO < p instead of Step 1, Algorithm A will

generate the unique boundary L C N at which optimality conditions for (P) are satisfied.

Returning to our main discussion, we may now easily solve the retailer's problem using

Algorithm A. p is then set to be p(w) with PL(w)(W) = P(w) and p (w) = pw)

Furthermore, using the KKT conditions we may easily verify that for any feasible supplier

wholesale price w < pU, the corresponding retailer price satisfies p(w) > p.

Lemma 3.12. For any w < pU, p(w) > w.

Proof. First, note that WL(w) 5 pL(w) = PL(w) (w). By the KKT conditions, at p = p (w),

the partial derivative of H' (w, p) with respect to p (- is

[a-- - BL(- ,N (w) + U(w - V - B--,N [p (W) - W] = 0. (3.5)

The feasibility of p(w) implies that a- _ BL(w),N p (w). Additionally, we have from

Observation 3.5 that u- - vC > 0. Combining these facts with equation (3.5) and

using Assumption 1 of B, we have that:

BT- [PL(w) (w) - -] BL(w),N [p (w) - w] > 0

and hence pL-y (w) - wL---( >. 0
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Bounds on the Retailers' Profit

To develop bounds on the performance of the coordinated retailers system in a setting with

price caps, we need to relate the sum of the supplier's and retailers' profits in the coordinated

retailers system, to the centralized system profit. The following lemma serves as a first step

in relating these quantities.

Given any index set K C N, we define HI' (c, pK) d_ maxpK {IY (c, p) : PK = P~, p p}.

Lemma 3.13. For any K C N, I (c) d= maxp<p (c, p) r , pK) (pC, ) and

p (c) < pK < pC

The reader is referred to Appendix A.0.3 for a detailed proof of Lemma 3.13.

If a centralized system were facing a buy-back menu sH(c, *) instead of a per unit salvage

value, e, then according to Lemma 3.13, the expected system profit would increase, i.e.

Ir (c) > I c (pC, UC). Alternately, if a supplier were to replace fixed salvage values by the

proposed buy-back menu, then the expected retailer profit would increase, and additionally,

the optimal retail prices would decrease, i.e. p (c) < pC . This also supports our earlier

claim that the proposed buy-back menu would encourage lower retail prices.

In Lemmas 3.7 and 3.13, we have seen how our proposed buy-back menu affects the

retailers' decisions and the centralized system decisions, respectively, in the presence of

demand randomness. In the following section, we shall try to "artificially" use the buy-back

menu to control the effect of randomness on the supplier's decisions so that system efficiency

is not sacrificed.

Supplier's Wholesale Price Decision

In the coordinated system, let the supplier's expected profit be denoted by IS (w, s (w, .)),

where w denotes the supplier's wholesale price and the buy-back menu is given by s (w, .).

In using the proposed buy-back menu sH (w, .), the supplier's expected profit may be written

as:

(w) df (w,s H (w, )) = ( - )t[a- Bp(w) ] - [sH (w,p(w)) - e]oc.
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To find the optimal wholesale prices for the supplier, we first consider optimizing the function

FI (w) •[ (w - c)t [a - Bp (w) + uc - vC].

We observe that fPI (w) is the expected profit of the supplier, if she were also offered a buy-

back menu sH(c, .), instead of a salvage value, e, for unsold products. As we demonstrate

below, if the supplier were to make decisions based on IP (w), it would be able to "artificially"

use the buy-back menu to also control the effect of demand randomness on its decision, that

is, it would be able to motivate the retailers to order more than what they would order

otherwise.

Lemma 3.14 aids us in doing precisely this, by establishing that for large enough retail

prices, IP (w) is a lower bound on I1 (w).

Lemma 3.14. IP (w) = 18 (w) + [p (w) - pc]t (vc - oC). Hence, IP (w) F1' (w) for

p (w) > pC and equality holds when p (w) = pC

Proof. Since sI (Wi,p) o = fi( - ) oý = po - (pi - wi) vf for i = , 2,..., n,

IP (w) - fI (w) = (w - c)t vc - [sH (w,p ()) - e]t oc

= (w - c)t VC - p (w)t oc + [p (w) - w]t vC + etoc

= [p (w) - c]t vc - [p (w) - e]t oc

= [p (w) - pC]t (VC - oc) + [pC c]t vc - [pC - e]t oc

= [p (w) - PC]t (VC - oC)

since oý = E [u' - i]+ = vFiF (uý) = VC~p-c for i = 1, 2, ... , n. U

Taken together, Lemmas 3.13 and 3.14 imply that the performance of a decentralized

system with a buy-back menu sH(c, .) also offered to the supplier is no better than a decen-

tralized system with a salvage value e offered to the supplier, for large enough retail prices.

A by-product of this observation is that the main results of the paper would still hold if the

supplier were facing a buy-back menu si(ci, pi) = pi - P for some constant Fi, instead ofF

e. Note however, that in this case, the supplier would offer the retailers a buy-back menu of

the form Si(Wi,.pj) = Pi - .

Different wholesale price vectors can induce the retailers to select the same retailer price
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vector p when pi = p' for some i E N. In order to maximize the supplier's profit, we propose

Lemma 3.15 to select the best wholesale price, r. The key idea of Lemma 3.15 is to raise

the supplier's wholesale price to the maximum value, p", for all those retailers whose retail

price is at p". To ensure that this change in the supplier's wholesale price does not change

the retailer price vector, the wholesale price available to other retailers whose price is not at

p" needs to be changed appropriately. As we show shortly, this new supplier's price vector,

w, is unilaterally the maximum wholesale price vector that induces the same retailer price

vector.

Lemma 3.15. For any w < p", set L(w) = P(w) and

WB WL) -1 B (w)L(w) [PL(w) (w) - WL(w)] WL-() .L(w-) = WL(w) B BLL(w)  w

Then w < p"; Moreover, p(wG) = p(w).

Proof. Since PL(w) (w) = P(w) and PL-() (w) < p , we have from the KKT optimality

conditions for rL(-- (w) that:

0 = aL(w) + u'( - - BE NP (W) - BL(w),N [p (W) - WI
= aL- + U - v- - BL p (w)

L(w) L(w)- (w)
BL(w) [PL-(W) (w) - W(-W)] - BL(W),L(w) [PL(w) (W) - WL(w)]

aL(w)w + UL- (w) - BL(w),NP (W)

-BL ( p (w) - (W) B BL(w)L(w) [PL(w) (W) - WL(w)]

= aw) + u-- - v - BL(w),Np (w) - BL(w [W) (w ) - (3.6)

= aL(w) + U - V•_ - BL(w),NP (w) - BL(WN [p (w) - ] (3.7)
T(-L(w) L(w)

where equation (3.7) follows by noting that PL(w)(W) = PL~(w) = WL(w). From the feasibility

of p(w)(< pU) and Observation 3.5, we have that aL--(w)+ u~ -~v BL(w),Np (W) > 0.

Combining this fact with equation (3.6), it would imply that:

B [PL (w) - L(w)] 0 and hence w < PL(-w (w) L_ p(w Now that we have
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established that jv < p", it follows from Lemma 3.12 that i < p(i). Hence it must be

that PL(w)(W) = P'L(w) = PL(w)(W) and consequently, equation (3.7) provides the optimality

condition for p L(w) (w) = pL(w) (w). N

The above result provides a procedure to determine the maximum supplier price vector

for any feasible retailer price vector. Of course, the supplier needs also to determine what

retail price vector to "push for", so as to optimize its own profit. However, this is a hard

problem to solve for in closed form, since L(w) is a set-valued function of w. Moreover, we

are able to show via an example that:

Theorem 3.16. In the presence of price caps, the total expected supply chain profit of a

coordinated retailers supply chain is at least 50% of the global optimal supply chain profit.

Additionally, the supplier itself is guaranteed at least 50% of the global optimal supply chain

profit. However, these bounds are tight.

Proof. In the proof of Theorem 3.23, we construct a heuristic wholesale price strategy, using

which the supplier is guaranteed at least 50% of the global optimal supply chain profit,

thus implying the claim above. One would expect that if the supplier acts selfishly, rather

than adopt a heuristic wholesale pricing strategy, then it would be able to obtain a larger

portion of the supply chain profit. However, we show via an example that in fact the bounds

claimed above are tight, meaning that in the worst-case the supplier can do no better than

our heuristic wholesale pricing strategy and moreover, retailers may make no profit!

Consider an example of a deterministic single retailer system where the retailer's demand

function is specified by d(p) = 10-p, i.e., a = 10, b = 1. Let the supplier's cost of production

be c = 2 and salvage value e = 1. Furthermore, let there be an upper bound on the retailer's

price, given by pu = 6 + 2/2 - 5 for some 0 < S < 0.8. Since there is no stochasticity

in demand, it follows that u = 0. In this case, the centralized system profit, H1 (p, u) =

(p - c) (a - bp). Hence, pC = p(c) = (a + bc) = 6, uc = 0 and Hc (p, uc) = (a - bc) 2 = 16.

In a decentralized (coordinated retailers) system, the retailer's profit may be expressed as

IIr (w, p) = (p -- w) (a - bp), which attains its maximum value, a - b) 2 at p = p(w)

(a + bw) if ,(a + bw) < p*.
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We now evaluate the supplier's optimal wholesale price decision in the Stackelberg game,

when the supplier selects the wholesale price to maximize its own profit. We may split the

supplier's optimal choice of w into two cases. When 1(a + bw) < pu, the supplier's expected

profit is
1

Ir(w) = (w - c) (a - bp*(w)) = - (w - c) (a - bw)
2

which attains its maximum value of l(a - bc)2 = 8 at w = 1b(a + bc) = 6. However, when

l(a + bw) > pU, as seen in Lemma 3.15, it is optimal for the supplier to set it's wholesale

price at w = pU, and therefore the supplier's maximum expected profit is (pU - c) (a - bpu) =

(4 + 2V/ - ) (4 - 2v + 6) = 16 - (2v/ - 6)2 = 8 + 4V/6 - 62 if pU > 8.

Hence, if 6 -- 0+ , then the optimal supplier wholesale price would be p", with HI(w) =

8= IIc (pc, uc) while Ur(w,p) approaches 0. I

Thus, the supplier's ability to set price caps on the prices charged by the retailers to the

end customer increase the price of anarchy of the supply chain from 1 to 2. Moreover, we see

that price caps may significantly decrease the profits of the retailers. As an alternative to

the supplier acting selfishly, we propose a feasible wholesale price wHC that would guarantee

the supplier 50% of the global supply chain profit, while also improving the total retailer

expected profit. Note that wHc need not optimize either HI(w) or HS(w). However, as

we have established via the example in Theorem 3.16, the supplier cannot do any better

in terms of worst-case fraction of the global supply chain profit by selfishly optimizing its

profit.

To determine w Hc and the corresponding retail price, pl/2 we consider a new construct

whose optimal solution is the desired retail price vector. For any 0 < p < 1, suppose that

the partial derivative of the supplier profit function w.r.t. to p is given by:

a + u" - vc - Bp- (1 - p)[a + u - v - Bp (c)] (3.8)

We can apply Algorithm A to obtain the unique L(p) C N with pL(p) P aL(p)

B1(p) = B ( a-(P) + - v(p) + (1 - p) BL-(P)• (c) - BL(p ),L( (p)< p2(e)T (p-) L(p) L~) L(p) L~p)

126



so that the following KKT optimality conditions are satisfied:

aL-- + U(- - - BL(p),NpP -(1 -p) [aL- + U- V - B T,Np (C) = 0 (3.9)
L~p)L(p) L(p) - Bzp, [TL(P)

and

aL(,) + u (p)- v (p)- BL(p),NP - (1 P- ) [aL(p) + Uc(p)- - (p)- BL(p),Np (C)] > 0 (3.10)

An intuitive interpretation of equation (3.8) is as follows. In the deterministic model

of Observation 1, we saw that whereas the optimal centralized order quantity was ,

the optimal decentralized order quantity was only a , half of the optimal centralized order

quantity. Motivated by this observation, in the analysis that follows, we select for the supplier

the highest wholesale price, w, in the coordinated system that targets an order quantity that

is approximately 1 of the optimal centralized order quantities. Note that this choice of w

might not optimize either IP(w) or H1"(w). However, we show later that this choice still has

the same worst-case guarantee as the best-possible choice of w for the supplier. To prove

this result, we keep track of the retailer prices pP in the coordinated system which target an

order quantity that is approximately (1 - p) of the optimal centralized order quantity, and

this is precisely the condition of equation (3.8).

Returning to the output of Algorithm A for the construct of equation (3.8), we now

present a comparative statics result for L(p) and pP:

Lemma 3.17. For any 0 < p < p <1 , L(p) C L(ý) and pP < pP.
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Proof. We have from the definition of P that:

p" > PL

SB a( + u - v -(1 -p•)[a +uý - v B •~ (c)]
L(--) -(PL(L ),NP)PL( I

-B:---B (p
> B• ýa( + u() - v - (1 - p) [aT( + u- - v() - BL(,N p (C)

-B ~) B (,L( ) P( (3.11)

where inequality (3.11) follows by observing that ' > p and a - Bp(c) > 0. By Corollary 1,

we may replace Step 1 of Algorithm A with Lo = L( ) to obtain L(p), and it then follows

that L(p) C Lo = L(-). Consequently, p( = p > r(.

Since L(p~) L(p), equation (3.9) implies that:

a-- + u( - v - B ,N (1- [a U - V - B Np (C)

for ; = p, p. Furthermore, since the RHS of the above equation is positive, we may conclude

that:

0o BL-,N (p - pP)

= BL( (Pb p - pL(P-)) + B pL(. (Pý- p

and hence P - P > 0. UL(-- P L-(- --

In Observation 1, we also noted that when the decentralized system order quantity was

(1 - p) of the optimal centralized order quantity, the decentralized system profit was (1 -

p)(1 + p) of the optimal centralized system profit. In Lemma 3.18 below, we show that

even in the multi-retailer system with stochastic demand, if the supplier uses the proposed

buy-back menu, and targets an order quantity that is (1 - p) of the optimal centralized order

quantity, then the expected system-wide profit would be at least (1 - p)(1 + p) of the optimal

centralized system profit.
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Let 0 = pl < P2 < 3 < ... 0-1 O =1 be the values at which L(p) changes. That is,

L(p) is the same for pi • p < p+l for i = 1, 2, ..., 7-1 but L (p-) L (pi) for i = 2, 3, ..., 0-1.

In addition, let L (po) = 0 and L (pi) = L (pi) \L (pi-1) for i = 1, 2, ..., 0 - 1. Observe that

ppi = p(c).

Lemma 3.18. For any pi 5 p < pi+1 for some i = 1, 2,..., 0- 2 or Po-1 p P o,

(pP - c) [a + u'" - ve - Bp]t
_> -~Zi < (1 + p) (1-p ,~) [ (c) - c()] t [a( + u() -v - B (Pj),Np (c)]

+ (1 + p) (1- p) p L() (C)- C(pa ) L(+ )- - BL(p ) (c).

(1± +P) ( 1[ -c ((pj)) L(pi)

We refer the reader to Appendix A.0.4 for proof details.

With this structural insight into the properties of pP, we are now ready to answer ques-

tions regarding what retail price vector the supplier would like to induce via its wholesale

price vector, and therefore regarding the underlying wholesale price decision of the supplier.

Define a new wholesale price vector w1/2 as follows:

1/2 _
L(1/2) - PL(1/2)

1/2 1/2 -1 [ C - -w(1/2)- 2p - B L(1/2) a/ 2) + (1/2) (1/2) BL(1/2),L(1/2)PL(1/2)

We show that the wholesale price vector defined above in terms of pl/2 is in fact one that

induces a retail price of pl/2

Lemma 3.19. w /2 < pu; moreover, p (w1/2) /2

Proof. Observe that

0=B w 1  -2p 1  +B2  a + -B p 1aB 1/2 ) (1/2) /
L (1, /2) ) L(1/ 2) L(1/ 2 ) NP B(/L(2,2 ) (1/2 L/2)

=a -j-Uf----vj---B- /2,N 2-• ,(p -
/- /

The remainder of the proof follows in a similar manner to that of Lemma 3.15. N

It is important at this point to observe that w 1/2 has been chosen so that the supplier

may not be able to raise its wholesale price without affecting the retail price. Suppose now

that pl/2 > pc, i.e, our newly defined retail price pl/2 is at least as large as the retail price

129



in the centralized system for each retailer. We then show that it is sufficient for the supplier

to set its wholesale price, wHC, to be w I / 2

Lemma 3.20. If p1 /2 > pC, then the expected coordinated retailers system profit is at least

75% of the centralized system profit. Additionally, the supplier's expected profit in this case

is at least 50% of the centralized system profit. More formally:

I-s (WHC)•+ r (wHC) > 3]c (pC, uc) and f (wHC)> 1c (pC, uC).

Proof. If pl/ 2 > pc, then we have from Lemma 3.14 that:

HI (wHO) + ir (wHC) > fs (wH•) + r (WHO)

= (pl/2 _ c) [a + uc - v c - Bp 1/ 2]

Using Lemma 3.18, we are now able to prove the desired lower bound result as follows:

(p1/ 2 _ c) [a + uC - v c - Bp1 / 2]

> j-=1 (1+ p) (1 - pj) [PL(p3 )

+ (1 + 2) (1 - ) [pL- (c)-

(c) - CL(p)] [aL(p) + U - V - BL(),NP (c)]I~j L(pj) L(pj)

cL(1/2)] a L( + u- L(/)- V -/
[ar(,-/) + L(/2) L(1/2)

BL(/2),NP (C)]

Furthermore since 0 < pj < 1/2, it follows that:

> = PL(pc)(c) - L(pj)] [a() + u

- cL(1/2)

= 3 [p (c) - c] [a + uc - vc - Bp (c)]-4-'

- v() - BL(pj),NP (c)]

- B (l-/2),N (c)]

> (pC, uC).4 I (c)

where the last inequality follows from Lemma 3.13. It should be evident from the above

analysis that the key to proving this result is the strong lower bound result provided by
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Lemma 3.18.

We now proceed to provide a lower bound on the supplier's expected profit. When p = 1

we may rewrite the optimality condition of pP in equation (3.9) as:

"(I + v1 CV - B1/2 = 1 [a + v- VC B r I l
a1/ 2) - L(1/2) 1,N(1/2) L(1/2) - BL(1/2),Np(C)

Substituting for pL1/2 from the above equation, we have that:

HC 2p, 1/2 B-1 a + vc  u ]
L(1/2) L(1/2 L(1/2) L(/ 2 ) +U( 1 /2 ) (1/2 BL(1/2),L(1/2)P (1/2)

-- p - (c) + B-1 a +• u1/ VC

L(1/2) ( + (1 )(1/2) - L(1/2))

+B-•l/ 2 ) (1/2 ),L( 1/ 2)L(- 1/ 2) BL(/ 2 )(1/ 2 )PuL(1/2)
-BL(1/2) [aL-(- + u - V1) (1/2)-

= PL-(/) (c) - B- •/2) B L(1/2),L(1/2) [P(1/2) - PL(1/2) (c)]

> p( (c) (3.12)

The last inequality follows from the non-negativity of B -1, assumption 1 regarding B, and

since p(c) < p".

Hence Is (wHCe ) fis (wH C ) = (wHC - C)t [a - Bp (wHC) + UC - VC]

Since we know that p(WHC) = pl/2, the above expression can be split up as:

S[Pu(1/ 2) - CL(1/2) L(1/2) L(1/2) (1/2)- BL(1/2),NP1/2]

H c +[W - C [a( - - B pl/2

Furthermore, equation (3.12) would lend that:

> [P(1/ 2 ) - CL(1/2) [aL(1/2) + U( 1/ 2) - V L(1/2) BL(1/2),NP 1/2]

+ pZ (c) - Cr(t/2)] [a(1/-) + ucL(/ 2 - v c  - BL(1/2) ,Npl/2]

Using the optimality conditions of equations (3.9) and (3.10) for p = 1/2, we may now
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replace p1 /2 in favor of p(c) in the above inequality to obtain:

rs (WHC) S[P(1/2) - CL(1/2)]t [aL(1/2) + UcL(1/ 2 ) - V( 1 / 2 ) - BL(1/2),NP (C)]

2 1L(/ 2) + (1/2) L(/2) - L(/2  c)
1 [PL(I/2) (C) - CL(1/2)] t [aL(1/2) + Uc(1/ 2) - VL'(1/ 2) - BL(1/2),NP (C)]

+ P [PL-/2 (C) - CL(1/2) ] [aT + u - V-C B K2,NP (C)]

1 1
=- Y (c) > (Pc•p ucC)2 2

The lemma thus completely characterizes the worst-case performance for the supplier

and the system when p1 /2 > pc. This case is relatively easy to analyze since, FI is a lower

bound on the supplier's profit, IP.

This lower bound does not hold, however, if pl/ 2  c pC (recall Lemma 3.14), and so the

above proof technique would fail in this case. Thus, when pl/ 2  c pC, we suggest a new

wholesale price, w H C and a corresponding retail price, pl/2 > pC, that would in turn be

favorable for the supplier.

Suppose now that pl/2 c pC. Let G be the set of those indices where the above inequality

holds, i.e., G = i E N : p/2 < p 1. Recall from Lemma 3.13 that we may now define a new

retail price vector pG 2 p(c) with the property that pG = pc. Correspondingly, we modify

our partial derivative construct of equation (3.8) to consider only those retail price vectors

p such that PG = pc. In other words, we fix the retail prices of those retailers with indices

in G to be pc. Let a' = 0 and a- = aG- BU,Gp .

To define a modified retail price vector D1/ 2 that still leads to the retailers ordering

approximately half of the centralized system order quantity, consider the following appropri-
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ately modified partial derivative construct. For any 0 < p •< , define:

a- - u- - v- - Bp - (1 - p) [a- + u a - v- - Bp-- . (3.13)

Intuitively, in the above construct we raise the retail prices of those retailers in the set

G to be the same as it was in the centralized system case, i.e. PG = p~. However, since we

have raised retail prices for the set G, we now need to determine the corresponding retail

prices of the remaining retailers so their order quantity is approximately half of that in the

centralized system. For any c _ G, let " represent those indices in G not present in ý, i.e.

"= G\r c G. Again, we use Algorithm A to obtain the unique optimal boundary solution

for the above partial derivative construct. That is, we determine the set of indices ; (p) C G

with p = P, P(p) = P(p) and

(p) = B-(p) [p a + u-- -v(-) + (1 - p)B (), P - B p < p-)
j -Br ) [ p( a ±Z>p -s)) B(1-p) B-----) 0  G B P ] 1

such that the following KKT conditions are satisfied:

a + u - v - B (p),G (--p) a +- u- - v - B-p),p 0 (3.14)

(p _(P) -(p) ,p > (3)(P) -(P) (p = .1)

) + u - ) - B (p),GPG - (1 - p)[ a(p) + u() - v - B _PG 2 0 (3.15)

We proceed to define a wholesale price vector wHC that would indeed induce retailers to
{r -1/2 u e wHC

select their retail price to be pl/2. Let = i E N : -/2 = p . Define wHC as follows:

HC u
W, = p,

wHC = 2p1/2 - BT-1 (a-7 + u - v - B-,p

It is not hard to see, via a result similar to Lemma 3.19, that p (wHC) = pl/2. We shall now

show that this new wholesale price satisfies our requirements regarding expected system and

supplier profits. For this purpose, we need the following two lemmas.

Lemma 3.21. If pl/ 2  c pC, then pl/2 p/2

Lemma 3.21. verifies that pl1/ 2 > pC, since •/2 = pc and p1/2> p/2 p> . Consequently,

we still have MI(w) is a lower bound on HI(w). Details of the proof of Lemma 3.21 may be
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found in Appendix A.0.5.

Lemma 3.22. If p1 /2  c pC, then w - CG> (p - CG).

Recall that for those retailers in G, we were forced to set PG to be pc, so that it could

not be tuned for retailers in G to order half of their centralized system inventory levels.

However, Lemma 3.22 helps us in this matter by establishing that for our choice of wHC,

the supplier's share of the profit margin of each item sold is at least half. A detailed proof

of Lemma 3.22 may be found in Appendix A.0.6. We are now ready to state the main result

of this section:

Theorem 3.23. HI (wHO) + nr (wHO) > H iHC (pC, uc) and NI (wHC) > !jc (pC, UC).

Recall from Lemma 3.20 that when p1/ 2 > pC, the supplier can guarantee at least 50%

of the global optimization profit for itself, and 75% for the system by setting wHC = w 1/ 2

Theorem 3.23 extends these results to the case when pl/2 c p . Indeed, if in this case

the supplier selects wHC to induce a modified retail price p1/2, then the same system and

supplier profit bounds can be established. The reader is directed to Appendix A.0.7 for a

complete proof of this case.

Observation 1, pertaining to the deterministic demand scenario, implies that the results

of Theorem 3.23 are tight. In fact, Observation 1 also suggests the supplier cannot obtain

a better worst-case guarantee on its fraction of the global supply chain profit by optimizing

its own profit, e.g., by optimally selecting w, instead of the proposed wHC. In fact, as we

establish in the example illustrated in Theorem 3.16, retailers may also benefit from the

supplier's choice of wHC, rather than having the supplier maximizing its own profit.

3.6. The Competing Retailers System

In the competing retailers system, each retailer is assumed to be a selfish, rational agent.

Retailers set their own price and order quantity so as to maximize their own expected profits.

134



The expected profit of retailer i is given by:

n n

Hi (wi, s (w,,) , p, u) = pi (a - bjpj + u - oi) - w (a - bijpj + ui) + si (wi, pi) o0
i=1 i=1

n

= (p - wi) (ai - -bip) + (pi - w,) u - [pi - si (wi,pi)] oi (3.16)
i=1

Again, we consider the buy-back menu, s (wi, pi) = Pi - i for i = 1, 2, ..., n. Similar

to Lemma 3.7, it is not hard to show that:

Lemma 3.24. For p Ž w, IIr (wi, sH (Wi, .), p, u2 ) 1 •II (wi, sH (Wi, .) , p, u ).

Proof. If p > w, then ~ waf ,),p, ~ - [pi i - (wi,p,)] Fi (ui) is decreasing in

ui and equals to zero when Fi (ui) = P-wi = F (u).

As with Lemma 3.7, the results of Lemma 3.24 also continue to hold in arbitrary additive

demand settings, d(p) + ý, as well as arbitrary multiplicative demand settings, [di(p) - i] 1,

as long as d(p) > 0. In the following subsections, we analyze the performance of the buy-

back menu contract in a competing retailers system with caps on retail prices. Most of the

results of the case when there are no bounds on retail prices carry over from the analysis of

the price caps case, and hence we omit discussing the case of no price caps in detail.

3.6.1 The Retail Price Equilibrium

By the definition of sH (wi, pi), it follows that:

7(w, p) = (Wi, W i, (Wi, ,), p, u)
n

= (pi - wi) (ai - bijpj)
i=1

= (pi - wi) (ai -

= (pi - wi) (ai -

n

Z: bijpj)

+ (pi - w~) U, - [Pi - SY (Wi, p w)] o v

+ (Pi - wO) u' - piol + pioc - (pi - w) Vic

bijpj + u= - v1).
i=-1
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We have from the Debreu-Fan-Glicksberg theorem that since the retailers' strategy space

p < p" is compact and convex, and from the concavity of retailers' payoffs that there exists

at least one pure strategy Nash Equilibrium in this game (see for e.g., Fudenberg and Tirole

[41]). Furthermore, the Strong Diagonal Dominance property of B implies that the best-

response mapping corresponding to the retailers' profit functions is a contraction mapping

on the retailers' entire strategy space, p < p" (see for e.g., Cachon and Netessine [13]). As a

consequence, there exists a unique Nash Equilibrium for the retailers' game. Leveraging our

assumptions regarding B, we can even compute this Nash Equilibrium in polynomial time.

Let B be the diagonal matrix of B. That is, bij = 0 for i j and bii = bii for i = 1, 2, ..., n.

Observe that in order for p* to be a Nash Equilibrium, it must be that p* is the best response

corresponding to p*__. Considering the differential condition of the best response function,

we have that the partial derivative of II (wi, p) with respect to pi for i = 1, 2, ..., n may be

expressed as:

a + u - v- Bp - B (p - w).

Equivalently, p* must be a local maximum corresponding to an objective function whose

partial derivative with respect to p is as indicated above, with the upper bound constraints

p < p". It is not hard to see that (B + B) satisfies the three assumptions of B. As

a consequence, the equivalent optimization problem is a convex quadratic programming

problem with upper bound constraints p < pu. Hence our Algorithm A can be used to find

the unique equilibrium price vector p* = pe (w) and an index set L e (w) C N such that

PeL(w) (w) = Pue(w)

p (w) Lw= B"w + + u - v +  w(w) (B + SLe(w Le(w)+Le(w) Le(w) (w),NW)

- (BLe(w) + Be() (B (w),Le(w) + B Le((w),L(w)) PLe(w) < PLe(w)

By arguments discussed earlier, this equilibrium retail price pe (w) satisfies the following

optimality conditions :

aLe(w) + Uc,(w) - V e(w) - BLe(w),NPe (W) - BLe(w),N [pe (W) - w] > 0 (3.17)
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and

a-( + ue() - Vww v - BLe(w),NPe (W) - B-LC(w),N [pe (w) - W] = 0 (3.18)

To bound the system profit in the competing retailers case, we relate the competing

retailers system profit with the coordinated system profit. Given wholesale price w in the

coordinated system, we characterize a wholesale price ' in the competing retailers system

under which retailer prices are same in both settings. Note that the total expected profit of

the retailers may be expressed as:

n

IIZ (, Pe (w)) = [pe (w) - w]t [a - Bp (w) + uc - v] = (w, (w)). (3.19)
i=1

Lemma 3.25. For any w < p", let L(w) = PL(w) and

-= L(w) - (BL(w) ( (w) - w

--B- B( L((w) ) - WL(w) > W(,

then pe (W) = p (w); Moreover, pe ( W.)

The proof of Lemma 3.25 may be found in Appendix A.0.8.

We now verify the intuitive notion that pe(w) is weakly monotonic in w.

Lemma 3.26. If w < w' < pu, then pe(w) < pe(w'). Consequently, for any w, pe(w) <

pe(l) = p(w).

Lemma 3.26 implies that if the supplier fixes its wholesale price at w, then retail prices

drop when the retailers compete amongst themselves, i.e., customers prefer the competing

retailers system over the coordinated retailer system. Lemma 3.26 may be easily verified

using ideas similar to those in Lemma 3.17, and Corollary 3.11.

3.6.2 Supplier's Decision: Evaluating Wholesale Price

For a given wholesale price w and a buy-back menu s (w, .), let the supplier's expected

profit be denoted by 11 (w, s (w, .)). In using the proposed buy-back menu sH (w, *), the
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supplier's expected profit may be expressed as:

II (w) = IIW (, (w,, )) = (W - c)t [a - Bpe (w) + uc] - [sH (w,pe (w)) - e]t o.

To obtain the heuristic wholesale prices, we first consider optimizing the function:

HI (w) = (w - c) t [a - Bpe (w) + uc - v] , (3.20)

which we show is a lower bound of HI (w) for large enough retailer prices pe (w).

Lemma 3.27. MII (w) = H (w) + [pe (w) - pC]t (VC - oc). Hence, eIs (w) _> HI (w) for

pe (w) 2 pC and equality holds when pe (w) = pC

Proof. Since sH (wi, i) = i = pfor i 1, 2,...,n,

HI (w) - (w) = (w - c) vc H (w,pe (w)) e] t oc

= ( - )t v c - pe ()t o c + [pe (W) - w]t v c + etoc

= [pe (w) - c]t vc - [pe (w) - e]t o c

= [pe (w) - pc]t (vc - oc) + [pC - c]t vc - [pC - e]t o c

Since o = E [-] = F () = (--'i for i = 1 2, ...,n,

[pC c]t vc _ [pC - e]t OC = 0. U

The following Theorem summarizes the performance guarantees if the supplier uses the

wholesale price vector wHD = w H C (as defined in Lemma 3.25) and the proposed buy-back

menu sH (w, .).

Theorem 3.28. In the competing retailers system, we have that:

IIs (HD) + 1  (D, e H(wD)) = Is (wHC) + r (w H C ) > 3Ic (pC, uc) and

i (i (wHD) w nf (wH) > 1ric (pc, u).

Proof. We first note that pe (wHD) = (wHC) by Lemma 3.25. Additionally, the Lemma

also gives us that wHD > wHC. By Theorem 3.23, we may assume w.l.o.g. that p(wHC ) >

p'. We set u = uc since we are using the proposed buy-back menu sH (w, .) in the heuristic
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schemes for the coordinated and competing retailers systems. In the competing retailers

system, if the supplier offers a wholesale price of wHD, then it follows that the retailer order

quantities are exactly the same as the retailer order quantities in a coordinated system with

a wholesale price of wHC. So the total system profits in both systems are exactly the same,

since transfer payments between supplier and retailers do not matter. This, together with

Theorem 3.23, verifies the first claim of the theorem.

Then, from Lemma 3.27, and equations (3.19) and (3.20):

n n

n: (wHD)+ n (w" , p (WHD)) fHs (wHD) + H(w , pM (e HD))
i=l i=l

= H (pe (wHD), U)

= n (p (wHC) , Uc)
= i1 (wHC) + Ir (wHC)

3> 3 C(p, uC)-4

where the last inequality may be observed from Theorem .

Since wHD > wHC and pe (wHD) = p (wHC), it is easy to check that iI (wHD) >

f" (wHC). Also, since p(wHC) _ pC, we have that II (wHD) > fs (wHD). Putting these

together:

]iL (wHD) _ fjI (wHD) _ fis (wHC) > cII (p, u)22
where the last two inequalities may be seen from Theorem 3.23. U

Similar to the coordinated system case, Observation 1 also implies that there exist in-

stances of the competing retailers system for which the bounds in Theorem 3.28 are tight.

We note some interesting implications of Theorem 3.23 and Theorem 3.28. In both

the coordinated and competing retailers systems, the proposed heuristic for the supplier's

wholesale price need not optimize its profit, H'(w). Hence, while the supplier can perhaps

do better for itself by selecting an alternate w* that optimizes it's profit, this need not be
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beneficial for either the supply chain or the retailers.

Indeed, the two theorems imply that if the supplier optimizes its wholesale price, she can

guarantee at least half of the global optimization profit. However, this may lead to a supply

chain expected profit arbitrarily close to the same amount, thus eliminating any profit for

the retailers. We illustrate this through the example below.

Example 1: Consider deterministic single retailer system where the retailer's demand func-

tion is specified by d(p) = 10 - p, i.e., a = 10, b = 1. Let the supplier's cost of pro-

duction be c = 2 and salvage value e = 1. Furthermore, let there be an upper bound

on the retailer's price, given by p' = 6 + 2V2 - S for some 0 < J < 0.8. Since there

is no stochasticity in demand, it follows that u = 0. In this case, the centralized sys-

tem profit, Ic (p, u) = (p - c) (a - bp). Hence, pC = p(c) = -(a + bc) = 6, uc = 0 and

HIc (p, uc) = 1(a - bc)2 = 16.

In a decentralized (coordinated retailers) system, the retailer's profit may be expressed as

IIr (w, p) = (p - w) (a - bp), which attains its maximum value, !(a - bw) 2, at p = p(w) =

(a + bw) if I(a + bw) < p*.

To determine the proposed heuristic retail price, pl/ 2, we must satisfy the condition that

a - bp = [a - bp (c)]. This condition would imply that p = + lp (c) = 5+3 = 8 < p

Hence pl/2 = 8. Since pl/2 > pC, the heuristic wholesale price would then be specified by

WHC = W H D - W 1 / 2 = 2p 1/2 
a- = 16 - 10 = 6. Hence the supplier's profit in the decen-

tralized system is IP (wH C) = II (wHD) - (w1/2 - c) (a - bpl/ 2) = (6 - 2) (10 - 8) = 8 =

IIc (pC, uC). In addition, the retailer's profit in a decentralized system would be Fir (wHC) =

HII (wHDpe (HD)) (p1/ 2 _ /2 ) (a - bp1/ 2) = (8 - 6) (10 - 8) = 4. Hence, the total

system profit in this case is IH (wHC) + I r (wH C) = s (WHD + Ir (wHD,p e (w HD))

8 +4 = 12 = !H (pC, uc).

We now evaluate the supplier's optimal wholesale price decision in the Stackelberg game,

when the supplier selects the wholesale price to maximize its own profit. We may split the

supplier's optimal choice of w into two cases. When (a + bw) <p, the supplier's expected
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profit is

IP(w) = (w - c) (a - bp*(w)) = (w-c)(a-bw)

which attains its maximum value of g(a - bc)2 = 8 at w = (a + bc) = 6. However, when

'(a + bw) > pU, as seen in Lemma 3.15, it is optimal for the supplier to set it's wholesale

price at w = p"', and therefore the supplier's maximum expected profit is (pU - c) (a - bpu) =

(4 + 20v - 5) (4 - 2v/ + 6) = 16 - (2Jv - 6)2 = 8 + 4 2 - if ¢ > 8
Hence, if J -+ 0+ , then the optimal supplier wholesale price would be pu, with IP(w) =

8 = 1Hc(pc, uc) while IH(w, p) approaches 0. U

Observe that in Example 1, the heuristic wholesale price, w1/ 2 , for the supplier cor-

responds to optimal Stackelberg wholesale price when 5 < 0. Thus, the supplier cannot

guarantee more than 1 of the global optimal profit by acting selfishly. In addition, the ex-

ample also illustrates that when the supplier acts selfishly, the retailers profit may be exactly

zero, and hence the total supply chain profit can be as low as half of the global optimization

profit. An important corollary, therefore, of Theorems 3.23 and 3.28 is as follows:

Corollary 3.29. The worst-case system efficiency for both the competing retailers and the

coordinated retailers systems in a regime with retail price caps, when the supplier uses the

suggested buy-back menu scheme, is 50% of the global optimal supply chain profit. Addition-

ally, in the worst-case, it is possible that the retailers make no profit.

The following theorem generalizes the results of Theorem 3.28 to show that under any

proposed buy-back menu scheme, the supplier can gain a higher expected profit with com-

peting retailers rather than coordinated ones, while the customers experience the same retail

prices and service levels in either setting.

Theorem 3.30. For any wholesale price vector wo < pu and any buy-back menu so (wo, .)

applied to the coordinated system, there exists a corresponding wholesale price vector wd and

a buy-back menu sd (wd, ) in the competing retailers system such that H (wd, d (wd, ))
HI (wo, so (WO, .)). In addition, the retailer prices, order quantities and hence the expected

system-wide profit are identical for both systems.
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See proof in Appendix A.0.9

3.7. Concluding Remarks

In this work, we analyze the benefit of buy-back menu contracts for supply chains with a

single supplier and competing retailers. We show that a selfish supplier can lock in at least

50% of the global optimization supply chain profit. In fact, in this case, when the supplier

behaves selfishly, the retailers may have no profit at all. We provide a remedy wholesale

price strategy that still guarantees the supplier 50% of the global profit but increases supply

chain profit to at least 75% of the global optimal supply chain profit. In this case, retailers

are guaranteed to lock in some profit, as long as retail prices are not at their upper bounds.

In addition, our work provides certain normative insights into supply chain operations.

One of our key results is that the supplier's expected profit in a purely decentralized supply

chain is higher than in a supply chain with coordinated retailers. This is true even when

retail prices and customer service level are identical in both systems. Similarly, for the same

supplier strategy, customers will face a lower retail price in a decentralized supply chain.

A corollary of our results arises when, due to either governmental or market restrictions

or due to impositions of the supplier, there are upper bounds on the retail prices that

retailers might set. Our work indicates that in such cases, there may exist circumstances

where it is optimal for the supplier to set its wholesale price at this upper bound, leaving the

retailer with no profit whatsoever. In such cases, the phenomenon of double marginalization

vanishes, and since there is no incentive for the retailer to remain in the system, this may

lead to the collapse of a supply chain to a single entity. Moreover as discussed in the previous

section, from a system perspective, an argument may be made against the setting of price

caps, since the use of price caps increases the price of anarchy of supply chains.
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Appendix A

Appendix to "The Impact of Pricing

and Buy-back Menus on Supply

Chain Performance"

A.0.1 Proof of Observation 3.2

Proof. Consider a single-supplier single-retailer system similar to the one described earlier,

except with stochasticity added into the demand model, i.e., d = a - bp + e. Suppose that

a = 2 + J, b = 1, the production cost c = 0, and let p" = 2 + 6 be an upper bound on the

price that the retailer can charge and where 6 is a small positive number.

The density function of e is given by: P (4k ) = 1 for k = 0, 1, 2, ..., 31 and P(0) =
31 31

1 - E p (4k). It follows that p = E (e) = E 4kP (4k) = 32 () = 2.
k=O k=O

Consider the centralized system. Clearly, the system needs to produce at least an amount

to cover the "deterministic" portion of the demand, i.e., an amount equal to a - bp. In

addition, it needs to add an amount u to cover for the uncertain component of customer

demand.

Thus, the optimal global expected profit is easily seen to be Hc(p, u) = p (a - bp + ip) =

IIc(p, 431), since production cost is zero. Moreover, HI(p, 431) attains its maximum value of

143



(a+=O) 2 (4+6)2 ap _

4b 4 2b

In the decentralized system, the retailer needs to order an amount equal to a - bp plus

an amount u to cover for the uncertain demand. The retailer's expected profit is thus given

by

Ir (w,p,u) = p (a - bp+ E [u - e]+) - w(a - bp+ u).

When u = 0, Hr (w, p, 0) = (p - w) (a - bp) and it attains its maximum value of (a-b) 2 at

Sa+bw
P- 2b

The supplier's profit in the decentralized system is given by IH (w, p, u) = w (a - bp + u) .

When u = 0,I (w, aw 0) = w (a - bw) with maximum value of (2+6)2 at w=

The retailer's expected profit is (2 16

If however u > 0, then it follows from the optimality of the uth unit that pP{e 2 u} >
31 31 c00 1 __ 1 p and w(a-bp) <

w. Since P f{ > 0} = EP (4k) = E < 1 1 and w (a - bp) <
k=O k=O k=O

wa < a = ()12 12
S_ 2+6

12 12

Also, wu < pP { > u} u = P(u)uP(u P()u < puP(u) 1 = <
v>u k=O

Hence, for u > 0, I1 (w, p,u) = w (a - bp + u) < 2 + 2+5 6+5j+12
12 12" - 12 <

4+46+2 = ( 0). Hence, the supplier attains its maximum profit at u = 0 and so

correspondingly, by setting w = -, induces u = 0 and p = as the optimal decision for the

retailer.

The ratio of the optimal expected supplier profit and the optimal expected system profit

would then be (2)2 / (4)2 - as 6 - 0. Similarly, the ratio of the corresponding system
o/• , P\2 .I /A , \2

expected profit and the optimal system expected profit /ex ected profit and the o timal s stem ex ected profit ý4 to)--+ 7ý as -* 0

A.0.2 Proof of Lemma 3.9

Proof. The proof is by induction. We first show that Po< p!-. Observe that by rewriting

a- as:

a0 = =~ f3B -1r L+o
0I 0 f~oo( 3ii) Lo
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we have that:

B~a = B a
+ o1 0T-,, 0 B IL

=- 0 To-BlLo Lo= B1 - • •o-BLo -) o

fLo Lo L

= B1 a< pu.

+ T ,o i)Lo)

where inequality (A.2) follows by noting that (a) by Step 1 of Algorithm A,

puo, (b) by assumption 1, all elements of BL o are non-positive, and (c) according to

Observation 3.4, all entries of B-1 are non-negative. Finally, inequality (A.3)Lo- follows from

equation (A.1) and Step 1 of Algorithm A.

Applying the inductive hypothesis, now assume that pý < pt. From Step 2 of the

Algorithm, we have that for each i E Lk\Lk+l = Lk+1\Lk,

[klPaij--(i},Lk\{i}PL,\i-- {i},-P 7
bij

< p!

Rearranging and combining the above inequality for all i E Lk+l\Lk, we have that:

-\ < -B +\ Lk k +kk L+\ -,NPk
+k+lýk LkUB Lk+l\L ;Pi =NP

LkSimilarly from the definition of p we have that:

a7 = Bp•P- P + B kLkPL BZk,NP

(A.4)

(A.5)
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Combining equations (A.4) and (A.5), and observing that Lk+1 C Lk we have that:

pLk+ 1 BLk+i k+,Lk+1 L, k+1

< -1 B- p - B (A.6)
-- k1 +l Bk+ Lk,N Lk+LkpLk+l) (A6)

SBLBLk Tk+l k+l Lk+1

Notice that in the above, we also use the fact that all entries of B-1  are non-negative.
Lk+1

Moreover, Observation 3.4 also implies that the diagonal entries of B3- are positive. Com-
Lk+1

bining this observation with the strict inequality of (A.4), we have further from the above

inequality that pk+1- < P-k . Hence by induction, pk < P"U
Lk+1\Lk Lk+1\LF Lk Lk

A.0.3 Proof of Lemma 3.13

Proof. That IIr (c) > I1 (c, pK) follows from the fact that H' (c) is the optimal value over

a larger feasible region. By an analogous argument, Hr (c, pK) >_ Hr (c, pC).

Since sH (Ci, p) o = - o = [p - (py - ei)] o = eo, we now have that:

IH (c,p) = (pC- c)t(a - Bpc+ uc) - [pC SH(c,pc)]toc

= (pC c)t (a - Bpc + uc) - [pc e]t oc

= C (pC, uc)

It follows that Ir (c) _ IVH (c, pK) c> Jc (pC, uC).

To show that pK < pC, we provide a proof by contradiction. Suppose that pK c pC, and

let P be the largest subset of N with pp > pc. Note that P C_ K. Since pK is the

optimal solution to Ir (c, pK), it follows that pp is the optimal solution to maximizing

Hr (c, p) subject to the constraints pp = p . Now, the expression for HI (c, p) subject to

the constraints pp = pK may be written as:

(pp - cp)t [ap - Bppp - Bpp + u] - [pp - S (cp, pp)]to

Sp - c]t [ap - B - B-p,ppp + up] - [p5 - s (c,p )]t o0
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which is strictly concave in pp. As a consequence, it's derivative with respect to pp at

pp = pP < ppK must be positive. That is:

ap - Bpp, - Bp,ppi + up - Bp (p, - cp)

-BpP (p~ - cp) - o, + sH' (cp, pc)tIo > 0

Since p < pL and sgH (cp, *) is a decreasing function of pp, we have that:

ap - Bpp, - Bp,pp + u

-Bp (pc - cp) - Spp (p4 - cp) - o

* ap - Bppc - Bpp•E + uc

-Bp (pc - cp) - Bp,p (pK - c) - oc + sH ' (cp, p,)t oP

> 0. (A.7)

On the other hand, we have that pc maximizes the centralized system profit, IIC(p, uc)

[p - c]t [a - Bp + uc] - [p - e]t o. Consider now He(p, u c) subject to the constraint that

pp = pp, which is the expression:

[pp - cp]t [ap - Bppp - Bpppfp + u] - [pc - ep]t oc

+ [p -- cy]t [ap - Bpp- - Bp,ppp + u-] - [pp - ep] op

Now, since the above expression is strictly concave in pp and maximized at pp(< pp • p)),

it follows that it's derivative with respect to PK at PK = Pc is zero. That is,

ap - Bpp, - B3 pppp + u, - Bp (pc - Cp) - Bpp (p- - cp) - oc = 0,

which contradicts equation (A.7). Hence, pK < pc. In particular, p (c) = po • pC.

It remains to show that p(c) 5 pK. Observe that the derivative of Hr (c, p) = (p - c)t (a-

Bp + uc - v c) with respect to Py, given by:

ay + uj - vL - Bypy - Bk,KPK - By (py - cy) - BX,K (PK - CK)

= ay + uj - V - 2Bypy - 2BL,KPK + BR,NC

is a non-decreasing function of PK. Consider the optimal solution pK of Ir (c, pK), and
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suppose that LK - {i E N : p = pi}. Then by the KKT optimality conditions, it follows

that:

u K
PK\LK > P \LK

= B\LK \LK + U\L K - V +\K - \LKNC

-B KB \LKLK\KPLK\K - B LK B-\LK,KPK

2 K\LK \LK UK\LK - V\K + BK\LLNC

-B-\LK B\LK,LK\KPLK\K - BI\LKBS\LK,KPK (C) (A.8)

> B' LK1 LK Us-K - V2\LK + Bk\LKNC2 K\LK \ LK + K\LK K\L- •kLK,NC-B-1 1 B(

-B\LKB\LK,LK\KPLPLK(C) - B-\LK 7B\LK,KPK (C) (A.9)

where inequality (A.8) is implied by p (c) _ pC and inequality (A.9) is implied by pLK(C) <

PLK. Hence \LK LK P-\LK (c). Adding this to the facts that pK = p PK (

and pfK = PUK > PLK (c), we have the desired result that p (c) pK < p.

A.0.4 Proof of Lemma 3.18

Proof. We prove the lemma via induction on i. For any pi • p < P2, we first need to show

that the desired bound holds for (pP - c) [a + uc - v c - BpP]t, which may be rewritten as:

(P() - CL(p) (aL(p) + U(p) - ()- BL(),Np) (A.10)

+ Lp - c tL( [aL + u-() - v--2 - BNPP] (A.11)

To provide these bounds, we will need to eliminate pP from the above expression and instead

replace it by p(c). Before we begin bounding these replacements in expressions (A.10) and

(A.11), we present a few facts useful in this analysis.
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Rearranging the optimality condition presented in equation (3.9), it may be shown that:

P-- P- (c)P!L(,;) L(P)(C= pB1 a- + u--, - v - B ,p (c)-L(p -L) -,L(p) L(pL)

-B BL(pBL ),L(p ) [P2(P1) - PL(pi) (c)

= PB-a + - VL - BL p (c)l

= PBL)BL-,N [p (c) - c]

1 pp ) (c) - C PL(pi)
+P -(B L(p ),L(p) [PL(pi) (C) - CL(pl)]

Equation (A.12) follows from the fact that L(pi) = L(p) and pP1 = p(c), which in turn imply

that PP() = PL(p) (c). Equation (A.13) is derived using the KKT optimality conditions for

p(c) in the indices L (pl). Finally, equation (A.14) is obtained by expanding out BL(p-),N.

Consider the expression (A.10). We now have that:

(P p - C(p)) (aL(p) + U(p - --BL(p),NPP)
L(P L(P L()

= [PL(pi) (C) - CL(pl)]'

= [PL(pi) (C) - CL(pi)] t

(aL(pl) + Uc(pl )

[aL(pl) + U(pl)

- V~(pl ) - BL(pl),NPP)

- VL(p1) - BL(pl),NP (C)]

- [PL(pi) (C) - CL(pl)] t BL(pl),L(pl) [P-j. - L(p)(C)]

= [PL(pi) (C) - CL(p) t [aL(pl) + U2(pl ) - Vc(pl) - BL(p1),NP (C)]

-P [PL(p) (C) - CL(p)t BL(pl),Lp)Bj -- l u - v- - BLNp (c)]

(A.15)

where equation (A.15) is obtained by substituting equation (A.12) in the above expression.

Similarly from expression (A.11), we have that:

p -c-L(~)] t [a~ +u) -(p L Np •,NPP

which may be rearranged as

-p - p cp )(c)] [aP + u() - v L - Bl(P•,NPP]Lp Lp Lp L(pi) L(pi) pi,

+ p[ ()(c - cL] t aL-- + u - v - B - PP
Pp) L(pi) L(pi),N

Substituting from the optimality condition given in equation (3.9), this may be written as:
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= (1- p) PP - pL-((c)-] "[a- + U - ) - BL(,Np(C)

+(1- p) [pT (c) - CL(p)] [aL + u• - vC - B(pl),NP(c)]

Substituting for P L( - PTL() (C)] from equation (A.14) in the above expression, we have

that:

= (1+ p) (1 - p) [Pi) (c) - cL(p)] [aL() + u - v- - BL(p•,NP (C)]

+p [PL(pl) (C) - CL(pl)] t BL(p ),L'(P)B-  [a( + - - BL(
•p ) Bp) L(p) 1) UL(pi) ,L(pi)NP(C)

-P 2 [PL(pi) (c) - CL(pl•t  BL(pl),L(pi•B ) [aL(--+ u - V - BL(-),Np ()]

Adding the above expression with equation (A.15), we have that:

(pP - c) [a + uc - vC - BpP]t

= [PL(pi) (C) - CL(pi)] t [aL(pl) + U(pl )

+(1 + p) (1 - p) [p1) (c) - C-]

- VC
L(p 1)

- BL(pl),NP (C)]

a + u(p- - v -
[LkP1) L~pi) L(pi)

p2 [PL(p) ) - CL(pi)] BL(p)L(pi) B() +() - (p) - BL(i)NP

> [PL(pi) (C) - CL(p)] [L(p) + U(pl) - L(p) NP (c)

(c)]

+(I+ p)(1- ) [PL(P1 ) (c) - CL;] aL(p•) + U L(p) - L(pi) - BL(p-),Np (C).

So, the statement holds for i = 1.

For any pi-1 p < pi for i = 2, 3,..., 0- 1, assume (pP - c)[a + uc - vC - BpP]

> E•- (1 + p) (1p- p) P() (c) - CL(p)

+ (1 + p) (1- p) p[ (c) - CL(p] t a

a() + u - V() - BL(pJ),NP (c)

+ u- -C - B p (c)
pi-1) UL(piI) L(pi-1)- (pi1),N (0 .

For any pi < p < Pji+ or po-1 • P < Po when i = 0 - 1, we have to prove a bound on:

(pP - c) [a + uc - vc - Bp P] = (pPi - c) [a + uc - v~ - BpPi]

+ (p - c) [a + uc - vc - Bp P] - (pPi - c) [a + uc - vc - BpP%]

(A.16)

(A.17)

The expression in equation(A.17) can be further rewritten in two parts, corresponding to

the sets L(pi) and L(pi). We shall analyze each of these two parts separately. First, consider

expression (A.17) for the set L(pi):
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[p - CL(pi)] aL(pi) U(i) - V i) - BL(pi),NPP

Pi- P CL(pi)] [aL(pi) + U(pi) - V ,)- BL(pi),NPP

From the equality of L(pi) = L(p), this may be simplified as:

=- [P P) - c(j,) [BL((Pi )

Substituting for the formulas of pP and p , the above may be rewritten as:L(P•) L(Pi)

= -- (P - Pi) [P(mpi) - CL(pi) BL B - 1I (Pi,L(Pi) L -(p) a + u(P - v - B N p (c)

(A.18)

Now, consider the expression (A.17) restricted to the set of indices L(pi):

-C pi)]' [a(P) + Uc - - BL(p7)NPP]
-(P (~) (p) L(pi) U (p) (•(p- c ] [T + uc -v -( ),NP i

p -L( ci) t L( pi L(pi) L(Pi),N
tLL(P + uh - VP - B LpNpP

L(Pi) L(pi) L(pi) L(p)N

[aL(P) + U - V - B PP]
L+ UL() L( vi) BL(pi),NPP

a u- + U-- VC- B -- ,NpP
L(Pi) L(Pi) L(p•i) L(Pi),NP

L(i (i) T(PT))N)i
From the optimality conditions of equation (3.9) for p and pi,

[P - P )] t
__ P_ T-Pi,

- (P - Pi) [ CL-•-)]

the above expression reduces

(A.19)

(A.20)aý + U- - vr--( - B ý(, N (c)]

In order the replace the p(p)s by p(c) in expressions (A.19) and (A.20), we need to derive a

few additional facts. From the optimality conditions of equation (3.9) for p and pi, we have

that:

L(pi) L(Pi)
= (P - Pi) B- aL--) + u - VL- -

-B ) BL(pi),L(pi) LL(pi) (Pi)

BL(i),Np (c)
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Since L(p) = L(pi) implies thatPL(p = Pp' and from the optimality of p(c) for wholesale

price c:

= (P - Pi) B--' )Brp,N [P (c) - c]

(P - Pi) P (c) - Cl(P)] + (p - pi) B B L() PL(pi)(P -Pi) T(pi) L(pi) ,Lp (C) - CL(pi)]

Additionally, we have from the definition of pP--- that:

(p P - PL(p) (c)

L(pi) _ +c -- L B(pj) L t= iBr' + au+u - v +( - pi)B p - P), ) - C)
(pi) () - () L(p),NP(C) -L(p) L(p),L(pi) P PL(p)(C)

From the optimality of p(c) for the wholesale price c, the above expression may be rewritten

as:

=pi [P(c) - cL(pi) + PiBL( p)BL(pi) [PL(pt)(C) - CL(pi)]

-B B L(Pi) [Pi pi) - PL(p)(C)] (A.22)

With these results in hand, we return to expressions (A.16) and (A.17), and substitute in

them the inductive hypothesis and our results from expressions (A.18),(A.19), and (A.20)

regarding the two parts of expression (A.17):

Hence (pP - c) [a + uc - vc - BpP]

= (pP' - c) [a + uc - vc - BpPi]

+ (pP - c) [a + uc - vc - BpP] - (pPi - c) [a + uc - vc - BpPi]

Pi) [PL(pi) (C) - CL(P)] [aL(,)

+ (1 + i) (1- A) [PL(Pi,) () - C- C(p]

+ u( ) - V - BL(p3 ),Np (c)]L(p 3 ) L(pj)-

[aPL( + L(p_) - V() B ,NP (c)]

BLP),NP (C)

+P-P - + - v• -B PP

[a L+ u - v - BL(P,N (C)]

Substituting for pP - pP'  from equation (A.21) and from equation (3.9) of the optimality
L(p 1 ) L(pi)
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conditions, we have that:

= E- (1 + pj) (1 - pj) [PL(p) (c) - C(p)] [aL( + u - v- - BL(p ),NP (c)]

+ (1 + pi)(- I) [PL(Pi-1 ) (c) - c pI)] [a+L u(P c- - v - B p (c)(1 + A) A) 1 pi1) + upi-1) L(pi-1)_,NP(l

-(P - Pi) [PLj) - c BL(P),L(pi) ( i) ) u i) - L(p),Np (C)

+ (P- Pi) (1- p) [pij (C) - C- [a-- + u c - - v--- B- ,Np (C)]+ (P - Pi) (1 - p)) Iprpg (c)i) -Pi) BN M]u
+ (P - Pi) (1 - P) [pL(pi)(C ) CL(p,) ] tBL(pi),T(-P -1 [af- c c(

- B -,Np (c)]

E ýý-T-iY - PTC() (c)1'
[PT(-y~-(C) - C H(P)]

Finally, substituting for (p

we have:

aL(Pi + u v) L

[ j + U ( - L i_

- B (,NP (c)]

BL--B,),Np (C)]

- p~(c)) from equation (A.22) in the above expression,

+ (1 + pi) (1 -

- (P - Pi) [P(
+ (p - Pi) (1 -

i) (1 - p•) [PL(pi) (c) - CL(p] [a + u - v - BL(pj),NP(C)

Pi ) () ]) - C [aL(P~l) +L(p) L(p) - - B NP1),NP C)]

pi)

p)

- CL(p)] BL(p)L(P) a + u- ( - B p (c)
L(pj),L(pj) L(pi i) i)LPi L(pi) ,P( l

FPL(-P1 ) (C) - CL(P)] aL() + u ) - vP- BL p (c)

+(P - Pi) (1 - p) [PL(p)(c) - CL(p,)] t B [ + u - - B p ()- --L(Pi),(i), L(pi) + u - •Pi) B-(p),NP (C)

- Pi) (1 + Pi) [PL(P, (c) - Cl(] [aT + u

- (P - Pi) Pi [PLI(pi) (c) - CL(pi)]t BL(pi),L(P.B

L(P- v - B N (c)

L(p i) (PL )

+ (P - Pi) [P2i) - PL(p) (C)]t BL(p ),B~B-I + u,( a) - V - BLNp (c)

Via simple rearrangements and carefully observing the signs of expressions, this reduces to:

> =1 (1 + p) (1- pj [PZ(p) (c)- CL(p)] t [a(p) +L(p) - VL(p.) - B(p),Np (c)]

- cL()] t- + u( - v_ - BL(-p),Np (c)]

- (P - Pi) [P(,i) - CL(pi)] B L( •+ [uaLi - v+ - V() - BL(-P),Np (C)]L(Lp) L(pj Ti) [aTp) (i) L(i -Pi,
+ (P - Pi) (1 - P) [P- (c) - C) ()] [aL-- + uL -- - B p (C)]L~i) L(i) LPi) ),NP M
+ (P - Pi) [[P(pi) - CL(p) BL( L [a),L(p,) + u - v - B ,NP(C)]

- (P - Pi) (1 + Pi) [PL-) (C) - cf P] a7 + u( - vc - BL( N p (c)
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_ _ t B ~-1 [L•(P - Pi) Pi [PL(p) (c) - CdL)B tB L(p(-- [a + ui - v - B ,N (C)]

Collecting common coefficients:

=- 1 (1+ p) (1- pj) [PZ(,) (c) - CL(p)] [a(p) + U[(p ) - VE - BZ(pj),N p (c)

+(1 + p) (1- ) [P(p (c) - CLr(p)] [a- + u-+ - v- - B-Np (c)]

(P- Pi) Pi [PL(pi) (c) - CL(p)]t BL(p ),-(B + v - B1NP (C)]

=1 (1 + pj) (1- pj) [PL() (c) - C(pj)] [ap•) + U( - ) - B (c)

+ (+ p) (1- p)[ P (c) - C-( [aL- +

A.0.5 Proof of Lemma 3.21

Proof. Observe that:

a( + u-.- - v-.. - B• /2
q (1/2) -(1/2) (1/2),N -

= a- + u- - v-. - B/2
,(1/2) q(1/2) -(1/2) c(1/2),G

U- - v - B7- ,p(c .
L(pi) L(pi) Lp),NP \I

by absorbing terms into ac. Substituting the optimality condition of equation (3.14) for

p = 1/2, we have further that:

= +
1 a +2 ( -;12

C C
U-.-- - -;(12) G

Rearranging the above equation, we now have that:

- V- + 1B PG-(1/2) 2 -(1/2),N
(A.23)

Since p (c) < p' (Lemma 3.13), the optimality conditions for pG and p(c) give us that:

a- + uc- - v-. -1 B p (c) - B N [p (c) - c] = 0 and-(1/2) -;(1/2) q(1/2) -(1/2),N ;(1/2),N

a +uc-
-; (1/2) (1/2)

- - B- BN [pG _ c] =0
q(1/2) 4 ,N 1 ,N

The two statements above imply that B pG B p (c),(1/2),N = B 2,N ( )
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Now, from equation (A.23), 1/2 may be evaluated to be:

u -1/ 2
p >-;(1/2) q(1/2)

= B-1 a- + u--
- 2 L (1/2) a + (1/2

- v1/2) +1-1 ~ B G - B-1 B; (-•f) c(1/2),NP -- B(1/2),Gp

-B- B ,(1/2) K(1/2)U tc(1/2)
Using the fact that B pG = B p (c), we further infer that:,(1/2)N (1/2),N

SB-1 a- + uc- - vC
2 <(1/2) ) c(1/2) c(1/2)

-Bý- (B P(1/2)
-;(1/2) ( 1B'',c(l/2)

+ B-IB pB2 (1/2) (1/2),NP

> 1B-1 a + uc- -
-- 2 (1), c(1/2)P 1

-- 21

(1/2))
+B-1 B)NP (c) -B B p1/2

S (1/2) ( ,Np (1/2) l2, G

Hence pu
;(1/2)

1/2
PG

=1/2 > P1/2
-(1/2) -

1/2

-(1/2)
. Furthermore, from the definition of G, we have that

2)

< p• < p•. It then follows that L (1/2) g C (1/2), and hence p1 /2 < j1/2.

A.0.6 Proof of Lemma 3.22

Proof. The proof is via comparisons of wGHC with w1/2 through a couple of wholesale price

vectors corresponding to combinations of p1/ 2 and pl/2. More specifically, we construct two

new wholesale price vectors W and w and by establishing key properties are relations between

the two, we prove the result.

1/2Consider pc = p~ and P = p~ . We observe that G C L (1/2) by the definition of G.

Let W be defined as follows:

WL(1/2) = P"(1/2) and
215_L(1/2 -B1 [a2+ - Bv

WL(1/2) 1/2) (1/2) L/ 2) + (1/2) - VL(1/2) BL2,L(1/2)PL(1/2)
Via an argument similar to that of Lemma 3.19, one may verify that p(W) = P. With a

little more care, it may also be observed that W = w 2

From the optimality condition of equation (3.14) for p = 1/2, we have that:

1
aG + uc - vB - B,NP/ 2 = [aG + u - vc - BG,Np (c)]G G 2 G (A.24)
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and from the optimality of p(c) for a wholesale price of c and definition of G, we have that:

aG + u' - v' - BG,Np (C) = BG,N [p (c) - c] (A.25)

Rearranging equation (A.24), we may obtain pG/2 to be:

1/2
PG > PG

=B- B (aG + uc - vc) + !B'BG,NP (c) - B ,BG 'P/2

We substitute for the value of pG(c) from equation (A.25) in the above expression, which

yields

= B-1 (aG + u1 - v) + B-1'BG,p (c) - B1B Gp 1/2
-GG Z (C-B G )  G G,?7Pi

+± [IB' (aG + uc - vc) + !B 'BG,NC - BU 1BG,p (C)]

= 2B-1 (ac + uC - vc) + B-'BG,NCe - B-1'BG,~p /2

From the optimality of Y for the wholesale price W we have that:

aG + uc - vc - BG,NP = BG,N (p - W) (A.26)

Following equation (A.26), we may write WG as:

WG = 2pc - B-1 (aG + uc - vc) + 2B'BG, - B•BG,GW-

Substituting for pc from the previous result for pc:

> PG + BG-1 (aG + UG - vc) + B- BG,NC - B'G,UP /2
-B-1 (aG + uc - vc) + 2B'Ba,, - BG-BG, W

=~P + B- 1 (aG + uc - vb) + B B 'G,NC + B BG-' 2 -- B' BG,a W

Since aG 2 BG,NC:
1 c 1 -1 1B-11• /2 -'B
> c + !B 'BG,NC + !B 7B -B2 P+G BG,Nc + BG G,-OP/2 -G ByIG,BWU

B y1/2 - B-1B 1/2

By the definition of w-/2,we have that:
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w_ = 2p 2  - B 1  a[ 2 + UC - - B ,L(1/2)PL(1/2)L(1/2) L(1/2) L(1/2) B -1/2)

with in turns implies that:
1 - w2 1/2 = B- aL- + U - v - B /,Np l1/2

= B L• [aL(17  + /) - /- BL/2),N (from equation (3.9))

=B-1 B [p (c) - c] (from optimality of p(c) for wholesale price c)

=- ,2 (c) - CL(1,/2) + B- Bl/2 )L(/ 2 ),L(1/2) PL(1/2) C) - CL(1/2)

< p C/ -(c) CL . (since p(c) 2 c). 1/2 1/2

If in the definition of w /2 noted earlier in the proof, we plug in the formula for 1/2
L(1/2) L(1/2)

through straightforward algebraic manipulations, we obtain that:

f/2 w w -i Bw = p12 (c) - B-l BL(1/2),L(1/2) (PL(,/2) -PL(P1/2)C))
from which we may infer that 1/2 > p/2 (c). As a consequence of the previous fact

and this one, it then follows that:

1/2 1/2 1/2
w _ - L(1/ 2) p(/2) (c) - cL(1/2) 2 p/ 2) - w / 2 )). (A.27)

Armed with these results, we return our discussion following equation (A.26) regarding a

lower bound on WG:

W G P +Ip 1B -1 I]I-B G1 : _ 1/2 ] l-l ]:l B 1/2
G 12 + CG + BG, +1B-1B 1/2

2=PG + CG B2 G G,nL(1/2)C-7nL(1/ 2) + 1B-BG,?nL(1/2)P2L(1/ 2 )

-BG'•BG,nL(1/2)W L(1/2 ) + 1BBG,UnL(-1/ 2)CUnL(1-/2 ) + 1BGn( 1/2

G G,GUnl(1/2) GnL(1/2)

Noting that WL( 1/2) = p(1/ 2) = P~L(/ 2 ), the above expression may be simplified as:
__1/2) = - uL( .) GnL(I/2)) CiL(I/2))

= 2p + 2CG - BG  G,nL(1/ 2) (PnL(1/2) - CL(1/2)
- 1B G1 1/2 - CGnL(1/2) (1/2 1/2w'GL(l2 ) [( L(1/2) L ( L(-/2) WGL(1/2))]

2P- + "CG,

as a consequence of equation (A.27) and straightforward sign arguments about B and B-1.

From a discussion prior to this proof, we know that p(wHC) = p1/2. To complete this

proof, we consider an alternate wi that would also induce a retail price of •1/2. Suppose:

iwL(1/2) = P' (1/ 2) and
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_r(/2)-- -= [ap+u •_2 B (1/2),L(1/2)PL(1/2)L(1/ 2) - /2) /- B /a + U -L/2) L - B ,(1p l( I

It is not hard to show that p (W-) = p1/2. Furthermore, from the definitions of WL(,/ 2) and

WL(/ 2 ) it follows easily that:

-1/22(1/2) - L(/2) = 2PL(1/2) L(1/2)

S1/2 -p/2 <,_)_ -_ (-/ -- (A.28)
tL(1/2) -- L/(1L/2) = PL(1/2) - WL-(/2) •L(1-/2) (1 /2) P - W (). (2.28)

The last inequality in (A.28) may be inferred from the definition of 15 and the result that
Mrvr1/2 in1/2 -1/2p1/2 > p1/2 (Lemma 3.21). Moreover /2 = P = PG implies in (A.28) that 1/2- W

PG - WG and hence, iGE = WG.

From the definition of -HC, we may infer that:

By 1/2 wHC) = a + u - v - B,N 1/ 2  (A.29)

From Lemma 3.21, we have that p1/ 2 > p1/ 2. This would imply that L(1/2) C T- (recall that
-1/2

7 =i E N : p- = pi}) or that 7 C L(1/2). Using this fact in the definition of w" , we

then have that:

,L( /2) -= a + u- - vc - B7,N 1 /2  (A.30)

From equations (A.29) and (A.30), we can infer that:
1/2 HC = B B (/(1/2) -2)Ti -w 7 7,T( 2 (1W/2)-

1/1/ L(1/2 L(1/2-1) ~1/2 -

= - 7, + B(y T ,L(1/2)\ L- W i • -

where the last inequality follows from observing that p('j) = p1/2. More importantly, we

may conclude that wC > G

Via these results for the new construct iv, we finally arrive at:

wG\ r 2- WG\r = WG\,r PG\r + CG\r

and wGHC > P > 1 rp nr + pcGn- = 'P Gn + CCGn-
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Putting these together:

1 C 1 wHC 1
w - PG c+CG GHC - CG (pG - CG)

2 2 22

A.0.7 Proof of Theorem 3.23

Proof. By Lemma 3.20, it only remains to consider the case when p1 /2  c p'. In this case,

we use the newly constructed retail price p1/ 2 and the corresponding wholesale price, wHC

to prove our proposition.

The reader :may remember from discussion at the end of the lemma 3.21 that 1/2 > p.

Therefore we appeal to Lemma 3.14, which tells us that Pj.(wHC) < pH(wHC). As a result,

I( ) (wHC + r (wHC) fi (WHC) + Ir (wHC) = (W1/2- c)t(ac + UC - v- B1/'2 ) (A.31)

We analyze the RHS of equation (A.31) separately for the index sets G and G. For G, we

have that:

1/2 - c) [av + u - v - B,N 1/2

(-1/2 ( [a&) -_ -1/21

To establish a lower bound on the above expression, we argue the applicability of Lemma 3.18

to it. Suppose we were to assume that all retailers in the index set G fixed their retail prices

at pc apriori. In this case, the optimal centralized retail price would be pG (by definition)

and expression (3.8) would reduce to expression (3.13). Hence it follows from Lemma 3.18

and from a similar exercise as in Lemma 3.20 that:

> > = 4 (pB- cP) [a+ + u (- v~- B_,NpG]

(A.32)

For the index set G, we know that G/2 = pg = pc and so we have that:

(1G/2 -cc) [acG + u -vB - BcN1/2 = ( - CG) [a + uG - vc - BG,Np 1/2]
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2 (p' - CG) [aG + uc - v - BG,NpG].

Putting together the results for G and G in expression (A.31):

II" (wHC) + fir (w H c ) > ' (pG _ C) [a + uc - Vc- BpG]
34U (c, pG)=-4

Observe that the last inequality is a consequence of Lemma 3.13.

For the supplier's profit, we have that:

118 (WHC) Ž IFs (wHC) = (HC - c)t [a - Bp 1/2 + Uc - VC]

To compare this expression with Pc(P , uc), we need to replace the terms p1/2 and wHC

appropriately. So, we split the expression into three parts, corresponding to the index sets

G, q(1/2) and q(1/2). It follows then follows from 4(1/2) C r that:

= (wgHC CG)t (aG + UH - Vc - BG,NI 1/ 2)

+ (pc(/ 2) - C(1/ 2)) (a,(1/2) + Uc(1/ 2) - V 1/ 2)- B-(1/2),NP1/2

+ q(1/2)

t
-C-

-1/2)
a(a + u--,;12 (1/2)

- (wGHC - CG)' (ac + u~ - Vc - BG,NPG) - (WHC - CG)t BG,G (/2

+ (P/ 2) - C(1/2) )t (

+ (wHC2 - C/
( q(1/2) -

;(1/2 ) + Uc( 1/ 2)- V( 1/2)- .(1/2),/22 B

(ca-;(1/2)

Further, from Lemma 3.22, and the optimality conditions of expressions (3.14) and (3.15):

1 (PC - CG)t (aG + u - V - BG,N G  HC - CGt G,- -1/2

S(P1/2) - C(1/ 2)) t (ac(1/ 2) + U( 1/ 2) - Vc(1/2) - B 2),G
2 ';( 4; 4; -;(1/2),Z7PZ7i).

+1 (wHO
t

- C-q(12)

!2g)

(A.33)

We now derive a lower bound on wHCZ to be substituted in inequality (A.33).
-(1/2)

Rearranging

the definition of wcH (in a similar manner as Lemma 3.19) and restricting to the subset

c (1/2) C_ 7, we have that:
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vc-- B - 1/2
(1/2)

C - v-v - B /2
-(1/2) ;(1/2) (1/2), G

ae-+ uC--- - vC- - B G),p-
+(1/2) -(1/2) -(1/2)



0=a) + U --- v --( 2 ,2 Bw)= 1/2) c(1/2) -(1/2) -- (1/2),N - (1/2)w

-1/2= a(- + uc-- - v-- B -, PG
c(1/2) c(1/2) s(1/2) s(1/2), G

p- 1/2( r\-;(1/2)

B- p--1/2 W(1/2))

SHCO.-w

Rearranging this for wHe
-(1/2)

wHeC 2 1/2  _B-- awc( ((1/2) - (1/2)i / + u2 B -
;(1/2) ;(1/2) q(1/2) ( (1/2) -;(1/2)

p1/2?\(12SHC--W-c12

From the optimality condition (3.14), we have that:

S+u - v - B 12 1
q(1/2) ((1/2) -(1/2) (1/2),G 2

ac +
-ý(1/2)

U(1/2)
((1/2)

- v. - B /2),
c(1/2) < ),

Since <(1/2) C G, we may rearrange the optimality condition above to derive an expression

for 1/2. Substituting this expression in the above formula for w HC -, we then have that:

((1/2)
wHC=,G + B-. -1 +a/ u _-

-2B Bc • (1/2) ((1/2)

+B B P1/2
((1/2) (1/2) (1/2)

G -Bv B
((1-/2 ((2 ((1/2) 1/2)

+BB1/2
(1/2) (1/2) ((1/(/2)

> p-1 +
- (1/2)

:B faB 5(\( 1/2
((1/2)/2

/2) /2),(1/2) 
(

WHC

1 P c(1/2)

HC

HC

1/2) 7\-(1/2)

Substituting back this lower bound on wHCL in expression (A.33),
-(1/2)

we have that:

S(p- G) (ac + u~ - vc - BG,NpG) - wHC - G)t BG (/2
G G G G \P G

(ac(1/ 2 ) + Uc( 1/ 2) - Vc(1/ 2) - B(1/2)
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Cv( - B(• p U(1/ 2)
q(1/2) ; ,(1/2),;(1/2) q

+B- 1 '
-€(1/2) 0(/2), \T(1/2)

+ Bci-B P-(•1,/) /2)q(1/2) < ,(/) (12

2 (pu(1/2) - C,(1/2) t



+1 pG
2 -(1/2)

- C-

1 (-1/2
2 T\ (1/2)

_ HC

a -+ u. - v- - B p7u
(1/2) ((1/2) (1/2) (

-"B B-1 ac + uc---- - v- - B- P-
(1/2) /2),(/2)(1/2) (1/2) (1/2) ?7 ,

(A.34)

Since 1/2 _ HC < WHC- - c by lemma 3.22, we have for the last part of

expression (A.34) that:

-1/2

( wHc--r- \(1/2)

- (wHC_2)

HC\€1 :-

B B-i.
" \c(1/2),c(1/2) c(1/2)

-C - B ---/B J-1T\ ) (1/2),q(1/2) B;(1/2)

q(1/2)
c
U(1/2)

a-- + u.q(1/2) ;(1/2)

- v%- - B -

- v-- - B
q(1/2) -(1/2) '• , G

c \ B B- B-B (p- cU)TV(1/2) Y\ -;) (1/2) s12,

-(1

(wHC - c ) B  B -1 B- (•G
+ \(\(1/2) \(1/ 2)) \ 1 2) (B)(12) ,(11 2) (P(1/2)

Moreover, the optimality condition of equation (3.14) implies that:

(A.35)

p1/2 G
P -P

(1/2) (1/2)

- 2 -; (1/) ( -;1/2)+ uC..- - v%- -
-(1/2 ) ;(1/2)

B /), (1/2) 1/2) PG;(1/
2 ))

Using the optimality condition of pG for the index set r (1/2):

=1B-1  B- (pG - cU) - B- ) 1/2) 1( /2) G/2)
-;21/2) -;B ( /2) , (/2) -

+ IB-L-B- pG
,; (1/2) -(1/2),-(1/2) (P

+ ~(~!B-1 B-( G -C2 (1/2) -;12 , -(1/2) (P-(1/2) ;(1/2)

Since by lemma 3.22 wHC > cG, and by lemma 3.21 /2 > p2, we may use the previous

result to bound the second part of expression (A.34) as:

WGHC CGtJ G, PZ/2
162

HC1

W\c(1/2)

-c t B,;€(1/2) B \,;(-/2,;(1/) ,

- C;(1/2)
)

B - ' pO P

=1 G
2 (1/2) c,;12 )

-B-1B - (1/2 _ G

-;(1/2) (1/2) , - (1/2) -; (1/2)0 /)

-c )

- C-(1/2))

1 Gp
(- ; (1/2)



PG
-(1/2

G
-(1/2)

S- C--

I) c1

_C_\ý' ) B B;\(1/2) -- '2--B (1/2) - c) (1/2)

Notice that this expression is exactly the RHS of inequality (A.35) and so it follows that:

> - p/2- 2 v (/) SB (A.36)

(A.36)

Finally, substituting inequality (A.36) in expression (A.34):

S(S (wHC) Ž ! (p - CG)t (aG + uc - v' - BG,NpG)

+P (1/2) - C-( 1/ 2)) ac(1/2) + Uc( 1/ 2) -

C(1/2) c (1 /2) ( /2)-

2 (pG - cG)t (aG + uG - - BGNPG

S( (1/2) - (1/2))t (ac(1/ 2 ) + Uc( 1/ 2) -

+1 G- a- C u- vac + uc
2 -(1/2) c (1/2) ((1/2) + (1/2)

V4(1/2)- B(1/2),?p2 )

-V•c - B pg
q(1/ 2) G

V4(1/2) - B(1/2),Up

-vc--
c(1/2)

-B ,pg),;(1/2) G )j
i (pG - c)t (a + u - vc - BpG) = lr (c, pG) > HI (p, uC).2 2 2 2

A.0.8 Proof of Lemma 3.25

Proof. Suppose that the boundary of p(0) is indeed L(w), i.e., Le(Wr) = L(w). We then

show using our definition of W that all optimality conditions are satisfied by p(iW) at this

boundary.

First note that PL(w)(') = PU(w), by our assumption. Then from the optimality condition

of equation (3.18), it follows that:
Lp--(() = (BL- + BL-- - (a-

L () L() L(w)

(BI-(w-) + Bw) -w (a )(

-(B7 7pw) + IB (w)) BL(w),L(W)P

(w+ ULw-(W) L(w) VV  + BL(w) Lw,
BL(w),L(w) + BL(w),L(w)) PL(w)

(7) 

- v•L(w) 

=

L(w) ' L(w ) = PuL(w))

163

w"H - c • B1/2C( \( (1 ,c(I1/2)
7\;(/2 7\-; (1/) 7 (1/2)',;(1/2)

- C;( ' _•) B-f\;(12 ) \c(1/2) , (1/2)
1 HC
2 

(
-1 WHC

Hc B B-_a
c
-

\c('/2) ,-\c(1/2),c(1/2) s(1/2) c(1/2)
+ u1- - v(/2

,(1/2) -(1/2)



- B +B B B a + -

+ (B(W) + B BIw w(w) - B (B(w) - B ) (p (w) (w) - w (w)

w- B + -BL(w) (P(w) - L(w))

- (B(w) + fBL(w-) BpL(w) )PL(w) (substituting forpTL(w)())

Similarly, substituting for B-1 (a ---T + Us-- - vL-)) from the optimality condition of

p(w) for the index set L(w) (see for e.c., equation (3.5)):

Hence we have that pT (W) = P (w) < p2  and so all optimality conditions are

satisfied for the index set L(w). To verify the optimality condition of equation (3.17), we

see that:
aL( (w) - V(w) - BL(w),NP (w) - BL(w),N [p (w) - (]

= aL(w) + u( -V -- BL(w),NP () ( ()L(w) = PL(w) = PL(w)

> aL(w) - BL(w),NP (w) > 0.

Thus we have verified that all optimality conditions are satisfied at L(w) and moreover, that

Note that by the optimality condition of equation (3.18):

aL(w) + uaL(w) - v-(w) -BL(w),NP (W ) -BL(w) ,N [p (W) -']

= aL( + uL(-- -V -(- - BLp (W)- B L( W)

a(w) -d beca (w),NPuse + u -v - B (w) - B ,p (w) 0
it must be that all optimality (w)- are satisfied at (w0, and hence that(w)

A.0.9 Proof of Theorem 3.30
Proof. In a coordinated system, suppose the optimal retail price vector is p( and the cor-

responding optimal inventory vector is a - Bpo + uo for the wholesale price vector w ° and
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buy-back menu so (w', .). For i = 1, 2, ..., n, the optimality of the inventory levels implies

that p- ,p=) Fi (u?). Let o = E [u - ei]+ and v'io E F-Eu( . Now, the expected

retailer profit may be expressed as:

rr (WO, sc (WO ,.) , p0 , UO) = (pO - WO)t (a - Bp °) + (pO - wo)t u0 - [pO - sO (wo , po)]t 00

= (p - wO)t (a - Bpo + uO - v).

In addition, suppose that Lo = {i E N : pN = p)}. The optimality of po for the retailer would

imply that:

aLo - BLo,NPO + UL o - VL o, - BLO,N (pO - Wo) 2 0

and

a- - B ,NPO+ -- •- - v- - B-,N (pO - w o) = 0.

In a decentralized setting, consider the following wholesale price vector:

WLO = PLo with

i LO _ /_ L - -ZLo (PLO - WO)

In addition, consider the following buy-back menu:

d
f(wd , pi ) = Pi p- for any piand i = 1, 2,..., nSi • Fj (u?)

For any retailer i, it's profit Pi (wd , s4 (wi, e) , p, uj) is given by:

= (pi - 0wv) (ai - EC1l bijpj) + (pi - w•) u~ - [pi - s (w,pi)] oi
and is maximized when ui = u? since the derivative of (pi- wd) u - [pi- s ,

with respect to ui, pi - w4 - [pi - s, (w,,pi)] Fi (ui) is decreasing in ui (for feasible pi, i.e.

pi > w4) and equals to zero when Fj (ui) Pi- = Fi (u;). Hence the optimal value_ pi_ s4( A),p,)

of ui is ut.

The partial derivative of HI (w0, si (w0, ) , p, u?) with respect to pi for i = 1, 2, ..., n is

a + uO- v - Bp - B (p - wd). Using an analogous argument as in the competing retailers

system to show how we may compute the unique Nash equilibirum of retailer prices using

our proposed Algorithm, and via an analogous procedure to lemma 3.25, it may shown that
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equilibrium price vector is p'. Similarly, analogous to lemma 3.25, it can also be easily shown

that p 0 > wd.

Since the retail prices and inventories are the same for both policies, it must be that:

n (wd, d (Wd, .)) + 1 n (wn , s (w~,.) po, u?) = fle (po, uo)

= Hs (w0, s) (wo, .)) + 1rj (wo, So (w0,.) ,, UO).
Since s (w,p) o = p - o = poo - (p - w) v for i = 1, 2,..., n

H: (wd, sd (wd, )) = (wd - o)t [a - Bp + u] - [sd (wd, po) - e]t o o

= (W d  o)t [a - BpO + uo] - p~oO + (pO - w d ) v o .

Since s? (w?, p) o? = - '- o? = po? - (p - w ) v for i = 1, 2 ..., n

nI (wO, sO (wo,.)) = (wo - o)t [a - Bpo + uo] - [s (wo, po) - e]t o0

= (wo - o) t [a - BpO + uo] - po0 + (po _ w o) v o

= : (wd, sd (wd, )) - (wd - wo) [a - Bpo + uo - vO] • I1 (wd, sd (wd, .))
since w d > wo by definition. U
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