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Abstract

The ability to control the radiative properties of objects is of prime importance in di-
verse areas like solar and thermophotovoltaic energy conversion, narrowband thermal
emitters, and camouflage in military applications. Thermal radiation at the nanome-
ter scale is significantly different from classical or macroscopic radiative energy trans-
port - wave effects, such as interference and diffraction, and near-field effects play a
significant role. By modeling thermal radiation as governed by Maxwell's equations
and relating the source of thermal radiation to temperature induced fluctuations of
electric currents, it becomes possible to capture the nanaoscale effects that differren-
tiate it from classical blackbody radiation.

This work is focused on two aspects of nanoscale thermal radiation - the ability
to tailor the emissive properties using 1D photonic crystals and the enhancement of
radiative heat transfer due to electromagnetic surface waves. Theoretical investigation
of thermal radiation in ID photonic crystals led to the proposal of new type of selective
emitters using 1D metallo-dielectric photonic crystals that rival the more intricate 2D
and 3D counterparts. In addition to far-field spectral control, near-field enhancement
due to surface phonon polaritons is shown to be useful for enhancing the power density
of thermophotovoltaic energy conversion.

The difficulties of experimental investigation of near-field phenomena between
macroscopic parallel surfaces led to the theoretical investigation of near-field effects
betwene two spheres and experimental investigation between a sphere and a flat
plate. A new technique for measuring the radiative transfer between a sphere and
a substrate using a bi-material atomic force microscope cantilever as the sensor was
developed. By measuring "heat transfer-distance" curves, just as one measures "force-
distance" curves in atomic force microscopy, the experimental results are shown to
be in agreement with a theory.

Thesis Supervisor: Gang Chen
Title: Warren and Townley Rohsenow Professor of Mechanical Engineering
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Chapter 1

Introduction

Thermal radiation is composed of electromagnetic waves of different wavelengths.

Every student who has studied thermal radiation knows this. This was not the case

just a century and a half ago when Maxwell and his contemporaries were trying to

understand the fundamental nature of thermal radiation. The realization that light is

in fact an electromagnetic phenomena and is the result of the path-breaking works of,

in part, Ampere[1], Faraday, Maxwell [2], Kirchoff [3], and Weber [4,5]. The similari-

ties between the behavior of light and heat radiation (reflection by mirrors, refraction

by lenses, and most importantly interference phenomena) and Maxwell's theory of

electricity and magnetism led to the conclusion that thermal radiation was indeed

an electromagnetic phenomena. Subsequently, Stefan proposed the T4 dependence

of the intensity of radiation based on the experimental data of Dulong and Petit,

Tyndall, and others [6]. Boltzmann derived theoretically, using thermodynamics and

the concept of Maxwell radiation pressure, the T 4 relation between the energy density

and intensity of radiation from a black body at temperature T. Wien's work resulted

in the so-called "displacement law" that showed that if the spectral energy density is

known at a given temperature, it can then be deduced for all temperatures. All these

works (and others I surely have omitted) laid the foundation for Planck to propose

his famous hypothesis of the quanta. This paragraph is in no way meant to be a

review of the history of the science of thermal radiation. However, I do wish to instill

in the reader a sense of awe at the immensity of work that is behind the idea that

16



thermal radiation is composed of electromagnetic waves of different wavelengths.

1.1 Thermal radiation and classical electromagnetism

Though the study of thermal radiation was intimately linked to that of electromag-

netism, subsequent development of the classical theory of radiative transfer relied

more on Kirchoff's law, Stefan-Boltzmann law, and Planck's theory of the spectrum

of black body radiation. Crucially, the propagation of thermal radiation was treated

by the principles of geometric optics or ray tracing. Thermal radiation from an object

is treated as originating at the surface with the emissivity of the object taking into

account that it is not a black body. While such an approach is sufficient to understand

thermal radiation from objects much larger than the wavelength of the thermal radi-

ation, it does not take into account diffraction or intereference phenomena which are

important when the emitters have dimensions comparable to the wavelength. That

this is the case was recognized by Planck [7]. To take these effects into account the

wave nature of thermal radiation has to be taken into account.

To describe thermal radiation using Maxwell's equations a relation between the

temperature of an emitter and the electric current density that is the cause of thermal

radiation is necessary. This was achieved with the development of the fluctuation-

dissipation (FD) theorem. In 1928, Johnson discovered the noise due to thermal

agitation in electrical conductors and Nyquist theoretically showed the relation be-

tween the noise and temperature. In doing so, Nyquist developed the classical form

of the FD theorem. A quantum mechanical derivation of the FD theorem relating

the generalized resistance and the fluctuations of the generalized forces in linear dis-

sipative systems was provided by Callen and Welton in 1951 [8]. In 1953, Rytov

published his seminal work on the theory of electrical fluctuations and thermal ra-

diation, where he treated thermal radiation as a volumetric phenomena for the first

time. [9, This is the English translation. The Russian version was published in 1953]

Rytov's formalism clearly made it possible to include the effects of diffraction and

interference.
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The concept of dyadic Green's function (DGF) was introduced into literature by

Levine and Schwinger in 1951. [10] Since then the DGF has been used very widely by

the electromagnetic community to solve various types of scattering problems. [11-15].

The DGF is similar to the idea of Green's functions that appear in heat conduction,

electrostatics, or scalar wave propagation. The key difference is that the DGF de-

scribes the vector field (electric and magnetic fields) produced by a vector sources

(electric current density). The DGF is then a tensor that transforms the current

density vector into the electric or magnetic field vectors. Though it is not necessary

to determine the DGF to find the solution to a given electromagnetic scattering prob-

lem, it provides for very elegant formalism and is especially useful in the analysis of

radiative transfer. To determine the DGF for any given configuration of scatterers is

not always easy and most often numerical schemes run into computational difficulties.

For multilayered structures, though, the DGF is well known and used widely in recent

literature in near-field radiative transfer.

Work on near-field thermal radiation in the US began in the 1960s in Prof. Chang-

lin Tien's group. The enhancement of thermal radiation transfer between closely

spaced bodies was investigated theoretically by Cravalho et al. [16], Domoto and Tien

[17], and Boehm and Tien [18] and experimentally by Domoto et al. [19]. Polder and

Van Hove analyzed radiative energy transfer between closely spaced bodies for the

first time based on the FD theorem [20]. Around the same time, Hargreaves measured

the enhancement in radiative flux between metallic films of chromium (approximate

thickness 100 nm) deposited on optical flats (approximate area 4.8 cm 2 ). [21]. Xu et

al. [22] measured radiative transfer between a deformed indium surface and a gold

surface of area 0.0256 mm2 . With the emergence of scanning probe microscopies,

Hirsch et al. [23] and Kittel et al. [24] measured proximity effects in near-field radia-

tive transfer between a scanning tunneling microscope tip and a substrate. DiMatteo

et al. [25] observed an enhanced coupling between a heated surface and a photovoltaic

cell due to proximity effects. Around this time fundamentally new insight into the na-

ture of electromagnetic fields of thermal origin was gained with the works from Greffet

and collaborators [26-32]. The role played by electromagnetic surface waves and the
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effect they have on near-field thermal fields and radiative transfer is the main focus of

most of these articles. Almost all the theoretical works in near-field enhancement can

be divided into one of two groups - (1) analyzing enhancement between parallel sur-

faces (2) between two dipoles or between a dipole and a flat surface. The main reason

for this is the difficulty of determining the DGF in other configurations. One work

that attempted this but did not complete the analysis owing to numerical difficulties

is the work of Volokitin and Persson [33]. In this work, the authors tried to analyze

radiative transfer between two nanostructures. In particular they tried to investigate

the enhancement in radiative transfer when two spheres are extremely closely spaced.

They did not complete the analysis due to numerical difficulties. In comparison to the

theoretical analysis of near-field enhancement, experimental investigation is limited

to only a few cases [19,21-24].

1.2 Purpose and outline of thesis

The aim of my work is to futher the understanding of thermal radiation when nanoscale

effects become important. One area of energy conversion that can greatly benefit from

this understanding is thermophotovoltaic (TPV) energy conversion [25,34-37]. The

study of near-field effects is also important from a fundamental point of view. The

study of near-field forces between objects, like Van der Waals or Casimir forces, has

contributions from the zero point energy as well as a temperature dependent part,

which is much smaller that the zero point contributions at room temperatures. The

measurement of the temperature dependent part of the forces can be great facilitated

by studying the near-field heat transfer, thereby gaining information about the forces,

since both radiative transfer and the temperature dependent forces have the same ori-

gin in the fluctuation of charges due to the finite temperature [38]. My intention was

also to investigate near-field effects in configurations other than that between two

flat surfaces or between a flat surface and a nanoparticle. In particular, I wish to

investigate near-field effects in configurations that can be tested experimentally more

easily than between two parallel surfaces. To do so, I have investigated theoretically
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the near-field radiative transfer between two spheres and experimentally the radiative

transfer between a sphere and a substrate.

The outline of my thesis is as follows: Chapter 2 deals with the electrodynamic

origin of thermal radiation. The FD theorem, used to relate the current density to

the local temperature, and the DGF to analyze the emission from such sources is

described. Using this, the expressions for the Poynting vector and radiative transfer

between two objects is derived. In Chapter 3 the electromagnetic formulation is ap-

plied to the 1D multilayer structures. The near-field interaction between a half-space

of polar material and a thin film of photovoltaic (PV) material is investigated to il-

lustrate the effectiveness of near-field enhancement for TPV applications. The nature

of thermal radiation inside a 1D photonic crystal (PC) is studied by determining the

DGF of a periodic infinite structure using a technique known as the phased array

technique. The results of this analysis are used to propose a novel metallo-dielectric

structure with selective emission properties. Chapter 4 is an in-depth analysis of the

two-sphere problem. Since this problem has not been analyzed using the techniques

mentioned above, I present a detailed account of the method. Based on the numerical

results, I propose a new convergence criterion for the number of vector eigenfunctions

required. Chapter 5 deals with the experimental investigation of the near-field radia-

tive transfer between a sphere and a flat surface. The numerical results from Chapter

4 are used to identify the right type of sensor and experimental apparatus required for

such an investigation. Following a discussion of the apparatus and its similarities and

differences with an atomic force microscope (AFM), I show how we can obtain "heat

transfer - distance " curves and present results for conductive transfer and radiative

transfer between a sphere and a flat substrate. I details the pros and cons of the

present experimental setup and discuss improvements.

We know that the same electromagnetic formulation that describes thermal ra-

diative transfer also describes forces like Van der Waals and Casimir forces. However,

both theoretical and experimental work in investigation of forces span a wider range

of configurations (sphere-plate, sphere-sphere, cylinder-plate, cylinder-cylinder) than

that for near-field heat transfer (flat plate-flat plate or dipole-flat plate). I hope the
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latter part of my work involving radiative transfer between a spherical surfaces and

the experimental technique of the same will help in bridging the gap between the two

fields which are two sides of the same coin.
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Chapter 2

Fundamentals

2.1 Introduction and outline

In this chapter the basic theoretical framework necessary for predicting nanoscale

thermal effects is described. Section 2.2 deals with the relationship between thermal

radiation and Maxwell's equations. Starting from the microscopic Maxwell's equa-

tions, the macroscopic Maxwell's equations which are useful for describing thermal

radiation from emitters are "derived". In that process, the electrical and magnetic

susceptibilities, and the dielectric function are introduced. In Sec. 2.3, the stochastic

nature of the current sources is treated using the fluctuation-dissipation (FD) theorem

[8,39-42]. Using the FD theorem, a relation between the fluctuations of the current

density and the local temperature is established. The vector Helmholtz equations

for the electric and magnetic fields are derived. To solve this equation, the dyadic

Green's function (DGF) is introduced. The Poynting vector, and hence the radiative

flux, is expressed in terms of the the components of the DGF.
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2.2 Maxwell's equations

Any kind of electromagnetic field oscillating at a frequency w, be it thermal radiation

or radio waves, is governed by Maxwell's equations:

Vxe(r,w)-iwb(r,w) = 0 (2.1a)

V x b(r, w) + iwmp 0ce(r, w) = piij(r, w) (2.1b)

V-e(r,w) = P (2.1c)
Co

V -b(r, w) = 0 (2.1d)

Equation 2.1 is sometimes referred to as the microscopic Maxwell's equations and is

valid everywhere. The quantities j(r, w) and p represent the total current and total

charge. It is important to note that the field quantities in Eq. 2.1 are in the frequency

domain. Hence, even though I refer to them as electric fields, the units are not simply

Vm 1 . The units are in fact Vm-1(rad s-1)1. Similarly, the units of the quatities

must be modified too. While it is easily applicable to the case of wave propagation

in vacuum, it becomes unwieldy for wave propagation in other media. One way to

overcome this difficulty is to modify the equation to represent a relation between the

field quantities and the free charge and free current. j(r, w) can be split into a free

current, a polarization current, and a bound current due to magnetization. p can be

split into a free charge and a polarization charge. [43]

j(r,w) = Jf(r,w)+Jp(r,w)+Jm(r,w)

= J(r, w) - iwP(r, w) + V x M(r) (2.2a)

P = Pf+ pP

= pf - V -P(r, w) (2.2b)

where Jf is the free current, J, is the current due to polarization, and J, is that due

to magnetization. P is the polarization and M is the magnetization. Using Eq. 2.2,
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Eq. 2.1 can be modified to

V x E(r, w) - iwH(r, w) = 0 (2.3a)

V x H(r,w) + iwe(r)E(r,w) = Jf(r,w) (2.3b)

V - D(r, w) = pf (2.3c)

V -H(r, w) = 0 (2.3d)

where D(r, w) = EE(r, w) + P(r, w), H(r, w) = B(r, w)/p, - M(r, w). D is the

electric displacement vector, and H is the magnetic field vector. Vectors E(r, w) and

H(r, w) are spatially averaged values of e(r, w) and h(r, w) [43]. From this point

onwards, the subscript f will be dropped since all the currents will refer only to the

free currents.

2.2.1 Electric susceptibility and dielectric function

For the values of the magnitudes of electric and magnetic field vector encountered

in thermal radiation (including near-field effects), non-linear effects are negligible

and hence the polarization and magnetization are linearly related to the electric and

magnetic field vector. Cross-effects of electric fields resulting in a magnetization (or

magnetic fields resulting in a polarization) are not considered in this work. Since E

(H) and P (M) are vectors, the most general linear relation between them is given

by:

P(r, w) = Eog(r, w) -E(r, w) (2.4a)

M(r, w) = =m(r, w) -H(r, w) (2.4b)

where = and im, the electric and magnetic susceptibilities, are tensors. In general,

the susceptibilities are complex frequency dependent quantities. In this work, all

materials are assumed to be isotropic and hence X, and 3m reduce to scalar quantities.
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Equation 2.4 reduces to

P(r, w) = EoXe(r, w)E(r, w) (2.5a)

M(r, w) = Xm(r, w)H(r, w) (2.5b)

where Xe(r, w) and Xm(r, w) are scalar functions of frequency. An important point

to make about Eq. 2.4 and Eq. 2.5 is the "local" nature of the formulation. The

polarization and magnetization at r depend only on the electric and magnetic field

respectively at r. Most materials, in the mid-IR to UV frequencies, are non-magnetic

and hence Xm ~ 0. In this work, the materials are assumed to be non-magnetic. The

dielectric function E(r, w) is related to Xe(r, w) as:

e(r, w) = 1 + Xe(r, W) (2.6)

The real and imaginary part of the susceptibilities (and hence the dielectric function)

are related to each other through the Kramers-Kronig relations and are not indepen-

dent of each other. [43-45]. The dielectric function of polar materials, which exhibit

enormous near-field enhancement, is of the form:

e(w) = E0 (2.7)
(W2 _ U)2O + i~yW

where WLO and wTO are the longitudinal and transverse optical phonon frequencies,

y is a damping factor, and c, is the dielectric function at high frequencies or short

wavelength. The real part of the dielectric function for SiC, a polar material, is shown

in Fig. 2-1. Between the two frequencies, WLO and wTO, the real part of the dielectric

function turns out to be negative. For metals, the dielectric function is obtained by

letting wTO -+ 0. Below a frequency known as the plasmon frequency, the real part of

the dielectric function of metals is negative. In those parts of the spectrum where the

dielectric function of a material is negative, electromagnetic modes known as surface

waves can exist at the interface between the material and vacuum. These surface

waves can lead to resonant heat transfer around the region where E(w) ~ -1. The
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Figure 2-1: Real part of dielectric function of SiC

plasmon frequency of metals is generally in the visible to UV part of the spectrum.

On the other hand, the WLO and wTO frequencies for polar materials lie in the mid-IR

to far-IR range. This has important consequences for radiative heat transfer. More

on this topic will be discussed in Chapter 3.

2.3 Electromagnetic formulation of thermal radia-

tive transfer

In this work, all the materials are assumed to be non-magnetic and defined by a

complex, frequency dependent dielectric function, e(w). To compute the radiative

transfer we follow the method pioneered by Rytov [9,461 in which the source for

radiation is the thermal fluctuations of charges. The first step in this formulation is

to obtain the electric field in the regions of interest given the location of a source. To

do this we should know the DGF for the vector Helmholtz equation which governs the

electric and magnetic fields. The DGF is very similar to the scalar Green's function

used commonly in the solution of boundary value problems in electrostatics and heat

conduction [43,47,48]. The main difference is that it gives the vectorial response

(electric field vector) of a vectorial source (electric current density) and hence itself is
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a dyad or a tensor of second rank. All the DGFs used in this work can be expressed as

a sum (generally infinite number of terms) of terms of the form ab, where a and b are

vectors. Further details regarding the properties of dyads are given in [11, 49]. Once

this DGF is known, the one remaining step to compute radiative transfer between

objects is to relate the current density vector to temperature. This is achieved by

using the fluctuation-dissipation theorem.

2.3.1 Dyadic Green's function

The Fourier component of the fluctuating electric field, E(ri, w), and magnetic field,

H(ri, w), at any point, r1 , outside a volume containing the sources is given by [15, 45]:

E(ri, w) = iw jV dZrGe(ri, r, w) -J(r, w) (2.8)

H(ri, w) = Idar=(ri, r, w) -J(r, w), (2.9)

where Ge(ri, r, w) and Gh(rl, r, w), the dyadic Green's functions due to a point

source at r, are related by Gh(rl, r, w) = Vi x Ge(ri, r, w); J(r, w) is the Fourier

component of the current due to thermal fluctuations (The relation between J(r, w)

and the temperature is discussed in Sec. 2.3.2); and p,, is the permeability of vacuum.

The integration is performed over the entire volume V containing the source. The

dyadic Green's functions themselves obey the following equations [15,45]:

V x V x Ge(r,r') - e(r)Ge(r,r') = IJ(r - r') (2.10)

where I is the identity dyad and 6(r -r') is the Dirac-delta function. At the boundary

between two dielectric materials, the DGF satisfies the following boundary conditions

to ensure continuity of tangential electric and magnetic fields:

n x G, (ri, r') = x e(r 2, r') (2.11)

n x V x Ge(ri,r') = f x V x Ge(r 2 , r') (2.12)
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where r1 and r 2 are points on either side of the boundary and A is a unit normal to

the boundary surface at r1 (or r 2 ). We see from Eq. 2.10 that the units of the DGF

is L-1 or the inverse of length. Though we have obtained expression for the fields

in terms of the DGF, determining radiative transfer requires know of the spectral

Poynting vector, which is given by S = E x H*. In order to compute the spectral

Poynting vector at r1 , we must compute terms of the form (Ei,,Hj), where the *

denotes the complex conjugate, the brackets denote a statistical ensemble average,

and i and j refer to the three Cartesian components (i 0 j). From Eq. 2.8, we can

write an expression for (EWHj) as:

(E (ri, w)Hj(ri, w)) =

iw/p, f dr IVdr'{G,,(ri, r, w)G*, (ri, r', w) (J (r, w) J*, (r', w))}1(.3

2.3.2 Fluctuation-dissipation theorem

The stochastic nature of the current density vector results in the average electric

and magnetic fields becoming zero. However, as seen from Eq. 2.13, the quantity of

interest is not the average value of the current density vector but the average value

of the products of current density vector components. The fluctuation-dissipation

theorem states that the cross spectral density of different components of a fluctuating

current source in equilibrium at a temperature T is given by [8,42,50]:

(Jj(r,w)J,(r',w)) = 'w 61m6(r - r'), (2.14)
7r

where E"(w) is the imaginary part of the dielectric function of the source, E, is the

permittivity of vacuum, and

e(w, T) = hw + , (2.15)
2 (exp(hw~kBT ) - 1)]

where 27rh is Planck's constant and kB is Boltzmann's constant. The hw/2 part is

the zero point energy which contributes to van der Waals and Casimir forces between
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objects but not to radiative transfer. Equation 2.14 relates the cross-correlation of

current density components to the optical properties of the material and temperature.

Importantly, it relates the cross-correlation to only the imaginary or absorptive part of

the dielectric function. The 6im that appears in Eq. 2.14 is because of the fact that we

have assumed all materials to be isotropic and hence no coupling between fluctuations

in orthogonal directions. The Dirac delta function, 6(r - r') that appears in Eq. 2.14

is an approximation, known as a local approximation, and is valid at all but the

smallest of length scales comparable to the mean free path of electrons in metals or

atomic spacing in case of dielectrics. The presence of 6(r - r') leads to a singularity

in the radiative heat transfer between objects as the gap between them decreases to

zero. This unphysical result is because of the assumption that the dielectric function

depends only on the temporal frequency (w). Irrespective of the spatial frequency

or wavevector of the wave, the dielectric function remains the same. This results in

overestimating the contribution of the waves with high spatial frequency. In fact, the

dielectric function can be generalized to be a function of temporal frequency as well as

spatial frequency or wavevector [39,40, 51,52]. By doing so the Dirac delta function

in Eq. 2.14 is replaced by a "smoother" function which eliminates the singularity

in the near-field radiative transfer [9,40]. The finite correlation that exists between

fluctuations at r and r' is known as a non-local effect. In this work, we shall use only

the local formulation and assume the validity of Eq. 2.14

2.3.3 Thermal radiative transfer

Using Eq. 2.13 and Eq. 2.14, we have

(Ei(ri, w)Hj(ri, w)) =

P7() wT) jd3r{(G(ri, r, w).GTi*(ri, r, w))i} (2.16)

where the superscript T stands for the transpose of the dyad. Once the Green's

function for the given configuration is determined, the above integral is computed

numerically. To determine spectral radiative transfer itself between two objects at T
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and T2 , we use the following equation:

R(Ei(ri,w)Hj(ri,w)) =

6* *ll(WI [E(w, T1) - E(w, T2)] [ dar{(Ge(ri, r, w).G *(ri, r, w))i}

(2.17)

where R and stand for the real and imaginary parts. The net result of using the FD

theorem and the DGF formalism is to reduce a problem of thermal radiative transfer

to a problem of determining the DGF for a given configuration of objects. Chapter 3

involves determining the DGF for planar multilayer media and Chapter 4 deals with

the DGF in a two-sphere configuration.
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Chapter 3

Thermal radiative transfer in

planar configurations

3.1 Introduction and outline

In this chapter the radiative transfer in 1D configurations is discussed using the for-

malism developed in Chap. 2. The DGF for multilayer configurations is a topic of

numerous publications, some of which are cited here [14,15,37,44,45,53]. Section 3.4

deals with the enhancement in thermal radiative transfer with decrease in gap. In par-

ticular, the problem of near-field transfer between a polar material and a photovoltaic

material is investigated to establish the relevance of nanoscale thermal radiation to

thermophotovoltaic (TPV) energy conversion. Spectral control of far-field radiation

is dealt with in Sec. 3.5. The problem of the nature of thermal radiation inside a 1D

photonic crystal (PC) is investigated using the phased array technique (PAT). The

results of this problem provide the basis for proposing a novel type of 1D metallodi-

electric PC thermal emitter that could be potential interest as a selective emitter for

TPV conversion.
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3.2 Dyadic Green's function for multilayered me-

dia

Dyadic Green's function have been used extensively for the solution of wave propa-

gation problems in layered media. A schematic of the stratified media that is repre-

sentative of most of the structures to be investigated in this chapter is shown in Fig.

3-1. The layers are homogeneous in the x-y plane. The dielectric properties of the

materials change only along the z-axis, as shown in Fig. 3-1. Because of the symme-

try in the x-y plane, the specific directions of the x and y axes are of no consequence.

Starting from the DGF for an infinite, isotropic, homogeneous medium it is possible

to find an expression for the DGF of the multilayered medium. Unknown coefficients

in the expressions for the DGF can be solved for by using the boundary conditions

in Eq. 2.11 and Eq. 2.12. For a homogeneous, isotropic, infinite media, the dyadic

Green's function is given by [15,45]:

Ge(r, r') = X

0 -0 dksdky (e (+kz.,) 6 (+kz) + h (+kz) h (+kz) eK r-t ) z > z'

_ _ kzS ((-k.,) e (-ks) + h- (-k.) h(-kz) ei(K.r-Kr) Z Z
-00 -00

(3.1)

where the unit vectors e (±kz) = (ky^ - k.y)/k, and h (+kz) = -F(kz/k)(kxi +

k)/k+(kk)2. kZ = 2 k2 = k2+k2. k = kx+ky+kzz and K = k+

k - kz2. kx, ks, and kz are wavevectors in the x, y, and z directions respectively.

The subscript s is used to indicate that the layer in consideration contains the source.

The sign of the square root for kz is very important. It should be chosen such that

Q(kz) > 0 to ensure that fields decay as z -> oo in any unbounded region. By the

same logic, :(Kz) < 0 to ensure that fields decay in any unbounded region where

z -+ -o. The wavevectors kx and ky are referred to as in-plane wavevectors and k_

as out-of-plane wavevector. Equation 3.1 is a representation of the DGF in terms of
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plane waves propagating with wavevectors (k., ky, tk,). It is important to note that

these plane waves are vector plane waves. The electromagnetic fields in layered media

can be divided into two types of polarization transverse electric (TE) and transverse

magnetic (TM). For TE(TM) waves, the electric(magnetic) field lies entirely in the

plane tangential to the interfaces. Expansion of a DGF in terms of vector waves

appropriate to the configuration of objects will be used in Chapter 4 too. Except

for the fact that we are dealing with vectorial quantities, this is no different from

expansion of a function in terms of orthogonal functions. The integration over k"

and ky extends from -oo to +oo because of the continuous and infinite extent of the

multilayer system in the x-y plane. As mentioned in Section 2.3, the DGF in Eq. 3.1

is of the form ab. We can learn a lot more from the form of the DGF. The second

vector (b in ab) refers to the layer which contains r' or the source point. The first

vector (a in ab) refers to the location in which the observation point r is located.

Since the medium is homogeneous and infinite, a wave from a source will not undergo

any reflections and hence we have the form of the DGF in Eq. 3.1. The discontinuity

in the DGF at the source point, z = z' is to take into account the presence of the

source. However, in a multilayered medium, a wave from a source region is reflected

(and transmitted) at each interface. Consider a particular "parent" wave from the

source region. Because of multiple reflections, this wave produces multiple "children"

waves in each of the layers. All these waves in each layer can be divided into two

groups - waves traveling along - direction or those traveling along -- direction.

The Green's function for a particular polarization in layers that do not contain

the 5 source, which we shall call the homogeneous part, is given by:

Ale kzzei(kl.rkxr')$ (kz1) & (kzs) +

= , idk-dk, Bieikz/z1ei(K.r-k..r') (_ ) (k 8 ) +
Gl (r7 72 z i)=k.-Kr)8 00 k(, C)e- z= 8w ik.- x (kzl) & (-kzs) +

Dieszzi Ke rK.) x - kzl ) X- (- kzs )
(3.2)

In Eq. 3.2, - = & for a TE wave and - = hi for a TM wave. The DGF itself
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Zz

Zx

Figure 3-1: Schematic of stratified media for Green's function analysis. Layers of
different properties are sandwiched between two semi-infinite half-spaces. The prop-
erties are assumed to vary only along the z-axis. The coordinate system is such that
layer 1 is between z, and z1+1

is a sum of both contributions. The subscript 1 is to indicate that the DGF is for

r belonging to the 1th layer and subscript p is to indicate that the DGF is for a

particular polarization. We see that each type of plane wave from the source region

(say e-ik*' (k,)) produces two types of waves ( ei x (k,1 ) and eiKr (K.,)). The

DGF in the source layer needs to be augmented to take care of the discontinuity when

z = z'. This is achieved by the addition of the DGF in Eq. 3.1 to yield:

Ge, (r, r') =Gesp (r, r') +

81r2 { kz (+k.,) (+k. 8)ei(K.r-Ke')Z Z
-00 -00

With the expression for the DGF known the expression for Poynting vector in the z
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direction can be determined by computing:

(ExHy* - EyH*) W 2 w 2p 0 e60 " (w) 0 (w, T) X
87r3

P*Qjis (kzs) -xi (kzs) e-'(k..-*,)z'+

dz' ffw dkxdky RjQ 11 (-kzs) - (kzs) ei(k..+k*a)z'+

Z1 -00 C k-0 12 P*Qlj^ (kz,) - - (-kz,) e i(kz+k 8,)z'+
ZS-1 -0-00O

R*SIX^(-kzs) - ^(-kzq) e ~~z-.,z

(3.4)

where

P i ( Al + BI) ; Q, = kz (A, BI );(+B)Q(1  -for TM polarization
R 6=i(C + D); S, =7 (Cr - Di); J

P = ( A, + B ) ; Q, = k-2- (At - B ) ;(( ) / for TE polarization
R1 = (Cl + DI); S, = kl(Cl - DI);

The quantities A, B 1, C, and D, are determined by using the boundary conditions

(Eq. 2.11 and Eq. 2.12). It should be noted that A, B, and C, DI separate into

two independent streams. Effectively, each multilayer system of N thin films and 2

bounding regions, as shown in Fig. 3-1, has 2N + 2 unknowns (2 for each thin film

and 1 for each bounding semi-infinite region) for every source "parent" wave. Each

interface furnishes 2 equations and the multilayer system with N thin films has N +

1 interfaces. Thus, each of the unknown coefficients can be determined. The most

popular method of solving for the unknown coefficients may be the transfer matrix

method [54). The details of the method are given in [55]. With the DGF for the

multilayer system known, the radiative transfer in two types of 1D system will be

discussed in the next three sections.
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3.3 Enhancement in thermal radiation due to near-

field effects

To talk about enhancement in heat transfer, generally across vacuum, the value of

N in the system shown in Fig. 3-1 is set to 1, i.e, we have one thin film sandwiched

between two semi-infinite media. If the intervening medium is vacuum (or any ma-

terial with no losses), it is possible to make a clear distinction between "far-field"

effects and "near-field" effects. In the case of vacuum, all waves with k, < w/c

lead to "far-field" radiation which can be modelled using classical radiative transfer

theory [56-58]. When the gap becomes comparable to the wavelength, interference

effects become important. However, it is the effect of those waves with k, > w/c that

leads near-field enhancement effects. Enhancement due to near-field effects happens

because the gaps between objects become small enough that evanescent waves that

normally decay in vacuum begin to contribute. Before going into the application of

near-field effects for thermophotovoltaic energy conversion, I will discuss evanescent

waves and surface waves and see how they affect thermal radiation.

3.3.1 Non-resonant evanescent waves

An introduction to evanescent waves generally begins with the description of the

phenomenon of total internal reflection. Beyond a critical angle of incidence, electro-

magnetic waves incident at an interface of a material with lower refractive index are

completely reflected. The waves in the medium with lower index decay rapidly giving

rise to evanescent waves. With air or vacuum as the material of lower refractive index,

this criteria includes all waves with k, > w/c. The effect of tunneling of evanescent

waves in enhancing the radiative energy transfer becomes appreciable only when the

spacing between the participating bodies is less than the characteristic wavelength

of the thermal radiation, as given by Wien's law. The nature of enhancement in

radiative transfer due to evanescent waves of the type that give rise to total internal

reflection phenomena is shown in Fig. 3-2. The two objects are assumed to have the
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dielectric function 12 + 0.00001i for all frequencies. The temperature of one of the

objects is 1000 K and the other object is at 300 K. Under such conditions, we notice

a broadband enhancement because evanescent wave enhancement occurs at all wave-

length. Naturally, the deviation from classical Stefan-Boltzmann law becomes more

apparent at cryogenic temperatures, where the characteristic wavelength is of the or-

der of 75 pm (4 K) to 60 jptm (50 K). The effect of small spacing on radiative transfer

between two non-lossy, semi-infinite dielectrics separated by a layer of vacuum was

investigated as early as 1967 [16]. It was found that the radiation tunneling contri-

bution decays rapidly with increase in spacing and is no longer important beyond a

characteristic thermal wavelength. However, the source of thermal radiation was not

specified, since the dielectrics were assumed to be non-absorptive. Polder and Van

Hove analyzed radiative energy transfer between closely spaced bodies for the first

time based on the FD theorem [20]. Caren [59] investigated the thermal radiation

between closely spaced metal surfaces at low temperature using the concept of surface

impedance. (At low temperatures, and hence long wavelengths (50 ptm 100 pm), the

mean free path of electrons exceed the skin depth and the dielectric function can be

replaced by a surface impedance [60]. This condition is knows as the extreme anoma-

lous skin effect (EASE). This, however, is valid only when the absolute magnitude

of the dielectric function at that frequency is very high and is not valid at optical

frequencies.) In the case of low temperature (cryogenic) energy transfer between two

good conductors, the radiative energy transfer follows a d-4 behavior, whereas at

room temperatures or higher it is d-2 . This difference in behavior can be easily seen

by appropriate approximations. In the case of near-field energy transfer, the evanes-

cent waves dominate in energy transfer. Hence kZ = (w/c)2 - kP, ; ik, . In the

metal this approximation is valid only when the refractive index or dielectric function

is not too large in magnitude. This happens to coincide with the short wavelength

regions, which are encountered in radiative energy transfer at room temperatures or

higher. On the other hand for wavelength which are important at cryogenic temper-

atures k, = (w/c)xA . With these approximations, it can be shown easily that the

radiative transfer exhibits d- 2 behavior at short wavelength and d-4 behavior at long
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Figure 3-2: Radiative enhancement due to evanescent waves between two semi-infinite
objects with a vacuum gap. The value of the gap is indicated adjacent to each curve.
The two objects are assumed to have the dielectric function 12 + 0.00001i for all
frequencies. The temperature of one of the objects is 1000 K and the other object
is at 300 K. Under such conditions, we notice a broadband enhancement because
evanescent wave enhancement occurs at all wavelength.

wavelengths. Various theories and regimes involved in near-field energy transfer are

discussed in greater depth in Whale [34].

3.3.2 Electromagnetic surface waves - resonant effects

With improvements in microfabrication technology, the idea for utilizing the close gap

enhancement for TPV applications has been studied theoretically as well as experi-

mentally. As seen from Fig. 3-2, the enhancement due to evanescent waves is broad-

band, favoring the long wavelength photons. An enhancement which is narrow-band,

favoring short wavelength photons, would be ideal for TPV applications. Until a few

years back, metals and lossy dielectrics were the main candidate materials for investi-

gating effects of near-field energy transfer. Developments in near-field optics [61,62],

surface-enhanced Raman scattering [63], extraordinary transmission of light through

sub-wavelength holes [64], etc have led to a greater scrutiny of the role played by

electromagnetic surface waves in these phenomena. It has been found that enhance-
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ment of radiative energy transfer is especially pronounced when the participating

materials can support surface waves. Surface waves are defined to be "waves that

propagate along an interface between two different media without radiation" [65]. Of

course, such waves are achievable only on perfectly smooth interfaces. Any surface

roughness, however minute, will in general lead to radiation. If the two materials

at the interface are such that E1E2 < 0 , they can support surface waves known as

surface polaritons (SP) [65]. We have seen earlier that metals and polar materials

exhibit negative dielectric regions in cetain parts of the spectrum. Surface polaritons

occurring at the interface between a metal and a lossy dielectric are known as surface

plasmon polaritons, whereas those occurring at the interface between a polar material

and a lossy dielectric are known as surface phonon polaritons. Figure 3-3 shows the

dispersion relation of a surface phonon polaritons at the interface of a half-space of

SiC with vacuum. Notice that in the regions between the WLO and WTO frequencies

the surface polariton dispersion curve lies outside the light cone, indicating that it is

a non-radiative mode. The dispersion relation is almost flat at the frequency marked

WS, or the surface polariton frequency. Though these modes cannot contribute to

energy transfer in the far-field, they enhance the energy transfer considerably around

w,, in the near-field. The enhanced radiative transfer is discussed in the next section.

3.4 Surface phonon polaritons and thermophoto-

voltaic conversion

Polar materials such as SiC, cubic boron nitride (cBN), hexagonal boron nitride

(hBN), and boron carbide (BC) have the ability to support surface phonon polaritons.

In the frequency range of interest, the dielectric function can be expressed by the

relation e(w) = ex(w - wLO + i-yw)/(w 2 _ 40 + iyw), where wTo and WLo are the

transverse and logitudinal optical phonon frequencies, -y is the damping factor, and

c, is the high frequency dielectric constant [661. The values of wLo and wTo for SiC

[67], BN [68, 691, and BC [70] are listed in Table 3.1. For the case of energy transfer
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Figure 3-3: The dispersion relation of a
between a half-space of SiC and vacuum.

Table 3.1: Values of WLO, WTO, 7(in eV)
[(U].

WLO WTO 7 E00

SiC 0.12 0.098 : 5.88 x 10-1 6.7
cBN 0.1616 0.1309 m 6.55 x 10-4 4.46

hBN a 0.1996 0.1695 e 6.59 x 10-4 4.88
hBN b 0.1978 0.1872 : 9.92 x 10- 3.9

BC 0.1959 0.1352 C C

surface phonon polariton at the interface

and c for SiC [67], BN [68,69], and BC

aE I c, Electric field is perpendicular to optical axis.
bE |1 c, Electric field is parallel to optical axis.
c Not available.

between two half planes of cBN, one of them (z < 0) is at temperature T (1000 K)

and the other (z > d) is at room temperature (300 K), separated by a layer of vacuum

of thickness d. The results of the analysis are plotted in Fig. 3-4. When the distance

between the half planes is much larger than the characteristic wavelength (3 Am -

10 Am), the spectral energy transfer between the two plates reaches a constant value.

Notice that there is very little energy transfer between WTO and WLo at d = 1 mm.

As the distance between the two half planes is decreased,. the shape of the spectral

energy transfer curve begins to change drastically, the region between wTo and WLO
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Figure 3-4: Results of analysis of energy transfer between two half planes of cBN.

becoming more and more prominent. At a spacing of 100 nm, the peak spectral

energy transfer, at 0.1565 eV, is close to three orders of magnitude larger than the

energy transfer between two plane black surfaces at the same temperatures. This

increase in energy transfer is because of the tunneling of fields due to the surface

phonon polariton modes. The smaller peak that is observed at 0.1307 eV is due to

the tunneling of evanescent waves since the dielectric function near WTO takes on very

large values. As the gap decreases, the near-field radiative heat transfer between the

two half planes increases as 1/d, similar to the trend described in Section 3.3.1

This narrowband energy transfer phenomenon can be exploited for a TPV appli-

cation by introducing a thin layer of absorbing PV material as shown in Fig. 3-5.

The emitter, cBN, is modeled as a half plane at a temperature T (1000 K). Layer

A is a layer of vacuum, B is a layer of PV absorber at room temperature, and C is

vacuum. The imaginary and real parts of the dielectric function of the PV material
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are assumed to be of the form :

E4(w) = {Ax- 1 X>1 (3.5)
0 ,X<1

Er(W) = { B+Ax- 2(2- /1+x) ,x>1

B+Ax-2(2 - v/1+x - ,- x) x <1,

where x = hw/Eg and A and B are constants dependent on material properties[66].

This form of the dielectric function is appropriate for direct bandgap semiconductors.

For the purpose of our calculation, we have chosen (A, B, Eg) = (6, 10, 0.13 eV).

A B C MBN/SiC/BC
PV material

0z'

0 z1 z2

Figure 3-5: Potential structure for TPV application.

The energy absorbed by the PV layer is calculated by computing the difference in

the component of Poynting vector normal to the interfaces at z = zi and z = z2. We

have chosen the thickness of the PV layer, z2 - z1 , to be 100 nm. For the assumed

dielectric function, most of the flux above the bandgap of the PV layer is absorbed.

The results for varying thickness of the vacuum layer (layer A) are shown in Fig. 3-6.

We see that as z, decreases, the flux absorbed by layer B increases in addition to

becoming more narrowband in nature.

The total flux absorbed by the PV layer between 0.14 eV and 0.15 eV is plotted

in Fig. 3-7 as a function of the vacuum gap thickness. It is seen that the power

absorbed at a vacuum gap of 20 nm is 117 Wcm-2, almost three orders of magnitude

higher than the solar insolation. At a vacuum gap of 100 nm, the power absorbed
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Figure 3-6: Spectral flux absorbed by PV layer for A = 6, B = 10, Eg = 0.13 eV, and
100nm of PV layer. Solid (dashed) lines refer to flux (photon flux). z, is the vacuum
gap.

is 4.86 Wcm~2 . While less than the power emitted by a blackbody source at 1000

K (5.67 Wcm- 2 ), the advantage is that the energy absorbed by the PV layer is in a

much narrower bandwidth (Full width half maximum (FWHM) is ~ 2.5 x 10- eV

as compared to ~ 0.345 eV for blackbody radiation at 1000 K). While the detailed

efficiency analysis for the present TPV cell will be presented elsewhere, a plot of the

photon overexcitation efficiency (Fo) [71] is shown in Fig. 3-7. FO is defined as the

fraction of the energy absorbed by the PV layer that is usable. The value of FO is

roughly 0.86 for this near monochromatic energy transfer while it is only 0.445 for a

blackbody source at 1000 K and similar cell. This is an indication that in addition

to improvements in power density, there could be improvements in efficiency as well.

With hBN as the radiative layer, materials like InSb or Hg 1 _,CdTe can be potential

materials for the PV layer. In the interest of brevity the results for hBN as emitter,

which are similar to the results for cBN, are not presented here.

In summary, we have implemented a general scheme based on a Green's function

method and the fluctuation-dissipation theorem to compute radiative energy transfer

between layered media. We have used the above method to compute the spectral

energy transfer between two half planes. In particular, we have seen that in materials
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Figure 3-7: Total flux absorbed by PV layer within the range 0.14 eV to 0.16 eV and
photon overexcitation efficiency (FO).

that support electromagnetic surface waves, it is possible to see not only an enhance-

ment but also a narrowband characteristic to the thermal energy transfer between

the surfaces. While we have analyzed only materials supporting surface phonon po-

laritons, plasmon polaritons could also be used to produce a similar effect, generally

at higher frequencues. To utilize surface plasmons, we should find the right materials

which can support low loss surface plasmon polaritons in the frequency range around

0.3 eV to 0.8 eV to match current TPV materials. We have analyzed the spectral

energy transfer between a source material which can support surface waves and an

absorbing PV layer. The energy transfer retains a part of the enhancement and nar-

rowband characteristics that we have noticed between the two half planes. This effect

can be used to improve the power density and efficiency of low temperature TPV gen-

erators. Since this material was published [37], works related to near-field radiative

enhancement and thermophotovoltaics have appeared in literature [36, 72, 73]. The

efficiency of near-field TPV energy conversion using tungsten emitters and quasi-

monochromatic emitters is shown to increase with decrease of gap between emitter

and PV cell in [72]. The enhancement of thermal radiation between two half-spaces

of doped Si is investigated in [73]. A review of work related to micron-gap TPV
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Figure 3-8: 1D periodic system being investigated. Each unit cell consists of 2 layers
- an emitter and vacuum in between. rp is the primitive lattice vector of the 1D
periodic structure. The unit cells extend to -oo and oo in the z direction. Each
planar layer extends to -oo and oo in the x and y directions, which are in the plane
of the layers. .

conversion is available in [36].

3.5 Far-field control of thermal radiation

3.5.1 Thermal radiation in a 1D photonic crystal - Phased

array technique

As seen in Chapter 2, the problem of understanding thermal radiation inside a periodic

structure entails the determination of the DGF for a 1D photonic crystal that is

infinite in extent. The one complication that comes up with infinite periodic media is

the lack of sufficient boundary conditions to solve the problem. The two semi-infinite

media that bound the thin films in Fig. 3-1 are lacking for the 1D infinite PC shown

in Fig. 3-8. This means that we will never have the same number of equations as the

number of unknowns. We have to use the symmetry or the repetetive nature of the

structure to make up for the lack of sufficient boundary conditions.

Normally, for periodic media, Bloch's theorem is used to determine the band
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structure, transmissivity, reflectivity, and other such properties. In this case Bloch's

theorem cannot be used because of the presence of the delta source, which disrupts

the periodicity. Instead, the problem is circumvented by making use of the phased

array method [74]. In this method, a whole array of 6-sources is introduced in addition

to the original one, as shown in Fig. 3-8. The dyadic GF of this modified problem,

termed the periodic GF, is determined initially. The important thing is that the 6-

source in the Nth unit cell to the right (left) of the unit cell in consideration is phase

shifted by NO (-NO) and all of them have the same arbitrary orientation, a. It can be

shown that the field due to this array of 6-sources is given in terms of the periodic

GF by the equation:

E (r) = iwo ,u (r, r'; w, ) -a6 (r - r') dr' (3.6)
U0

where the integration domain is restricted to the primary unit cell, Uo; and subscript

P indicates that the DGF is a periodic DGF. Uo refers to that unit cell where the

6- source is at zero phase. By appealing to superposition, the periodic DGF can be

expressed in terms of the actual GF as:

00

Gep (r, r'; w, 0) = e (r, r' + nrp; w)e"' (3.7)
n=-oo

27r

-+ Ge (r, r' + nrp; w) = J Gep (r, r'; w, 0) e-inod6 (3.8)
27rI

0

where rp is the primitive lattice vector of the 1D periodic lattice as shown in Fig.

3-8. From Eq. 3.7, it can be shown that:

Gep (r, r' + rp; w, 6) = Gep (r, r'; w, 6) eio (3.9)

The above relation can be used to augment the boundary conditions at the interfaces

and the problem is now restricted to only a single unit cell as opposed to an infinite

structure. Further details of this problem have been published in [75]. However, the
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analysis of this periodic structure proved to be useful in proposing a new type of 1D

periodic structure that can mimic the behavior of much more complicated selective

emitters - emitters that emit preferentially in parts of the electromagnetic spectrum

that are useful to us.

3.5.2 Thermal emission from a 1D metallo-dielectric pho-

tonic crystal

Metals are used as emitters for TPV applications because of their inherently low

emissivity in the mid- and far-IR. As seen from their usage in incandescent bulbs,

tungsten has a relatively good emissivity in the optical (light) as well as near IR

(heat) regimes compared to far-IR. While the high emissivity in the near IR is a

disadvantage for lighting applications, it is very good for TPV applications with low

band gap semiconductors like GaSb (band gap 0.72 eV or 1.72 ptm). In fact, the emis-

sivity of tungsten-based emitters is increased by the appropriate use of anti-reflective

coatings [76], 1D and 2D surface-relief gratings [77,781, and 3D PCs [79]. The 1D

PC structure itself consists of 10 unit cells, each unit cell composed of a 10 nm film

of tungsten (emitter) and a 60 nm film of alumina. We have used measured values of

optical constants for tungsten from literature [80]. We have used a damped oscillator

model for the dielectric function of alumina with values taken from literature [81]. In

order to simulate more closely a practical situation, this PC structure is assumed to

be on a dielectric substrate with the metal touching the substrate. The substrate is

assumed to have a constant relative electrical permeability of 12. Although alumina

could also act as an emitter, the emission from the alumina layers is negligible (<

1%) compared to the emission from tungsten. Hence we have plotted only the emis-

sion from the tungsten layers. The spectral hemispherical emissivity of the 1D PC

described above is plotted in Fig. 3-9 along with that for a bare tungsten half plane

and experimental data from the 3D PC [79]. Compared to the emissivity of bare

tungsten, the 1D PC shows increased emissivity at all wavelengths in the range con-

sidered. In particular, the emissivity in the near IR and optical regimes is around 0.85
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Figure 3-9: Emissivity of tungsten/alumina PC. Curves marked 10/60 and 10/300
refer to 1D PCs with 10 nm of tungsten and 60 nm or 300 nm of alumina. In both
cases, the PCs have 10 unit cells with the metal layer deposited on the substrate. The
dots refer to experimental data from a 3D PC [791. The lines connecting the dots are
only representative of the experimental curve.

while it remains comparatively lower in the far IR regime. By varying the dielectric

thickness, the frequency around which the transition from low emissivity (=0.1) to

high emissivity (~0.7) occurs can be controlled. Unfortunately the dielectric function

of tungsten, unlike that of silver, is such that with a simple 1D PC it seems unlikely

that the transition frequency can be decreased below 2.0 pm. Nonetheless, the 1D

PC compares very well with the 3D PC and could be a more practical alternative as

an emitter technology for TPV applications.

In summary, the following can be said about thermal emission from 1D MDPCs:

(1) Metallic films with thickness of the order of the skin depth, when arranged as

a 1D PC, exhibit photonic effects which can be used to tailor the spectral emissiv-

ity of the PC structure. Generally, this results in an increase in emissivity in the

frequency spectrum in consideration. With the right material, the 1D PC offers a

simple structure that could have great implications for incandescent bulb technology.

(2) One reason the emissivity increases over a broad spectrum could be the effect of

the top-most film. Making structural changes to the top-most film could result in

48



the desired reduction of emissivity. (3) A 1D PC structure made of tungsten thin

films exhibits enhancements in emissivity remarkably similar to a more complicated

3D PC. The advantage of the 1D PC is that it can be fabricated much more easily

compared to the 3D PC.

3.5.3 Far-field control, quo vadis?

From the results shown in this chapter as well as other publications [79,821, we see

that it is possible by texturing emitters to increase the emissivity. The large increase

in emissivity in a part of the electromagnetic spectrum (generally visible or near-IR)

is accompanied by an increase in the longer wavelength parts (mid-IR and beyond).

This behavior can be explained by considering the emitter to be a medium with an

effective dielectric function. The difference between the dielectric function of the

emitter and the surrounding medium (generally vacuum) is a measure of how poor

the emitter is. The dielectric function performs the role of an impedance and a large

difference in the dielectric function results in a large impedance mismatch which leads

to low emissivity. Now consider an emitter with a large mismatch in dielectric function

with the surrounding medium, assumed to be vacuum. Any texturing of the emitter

involved removal of the emitter material, which is replaced by vacuum. In the long

wavelength limit, this results in an effective medium with dielectric function inbetween

that of the original emitter and vacuum. As long as the emitter does not become

transparent, this results in an increase of emissivity. What will be truly interesting is

to see whether it is possible by using texturing (surface or volumetric) to decrease the

emissivity over a broad band of the electromagnetic spectrum, comparable in extent

to thermal radiation (as opposed to decreases over a narrow band, as seen in thin film

filters).
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Chapter 4

Near-field transfer between

spherical surfaces

4.1 Introduction and outline

In Chapter 3, the electromagnetic formulation discussed in Chapter 2 was applied to

planar multilayer structures. In particular, the near-field radiative transfer between

polar materials is shown to exhibit a hundred-fold enhancement compared to far-field

thermal radiation. However, experimental investigation of near-field transfer between

parallel plates is no trivial task - a topic that will be discussed further in Chapter

5. In order to overcome some of these challenges, we can replace one or both of

the surfaces by a sphere, thereby eliminating the necessity for alignment to achieve

parallel surfaces. This idea of using spheres as opposed to planes has been used

successfully in measurement of Casimir forces [83-85]. To date, theoretical analysis

of heat transfer between a sphere and a plane or between two spheres are limited

to the sphere being approximated by a point dipole [86]. It is possible to derive an

asymptotic expression for radiative transfer between two large spheres separated by

a very small gap (gap is very small compared to the radius of either of the spheres)

from the results of radiative transfer between two semi-infinite objects. This idea

is used extensively in the Casimir force literature and is known as the proximity

force theorem (PFT) [83,87]. Generally, the diameter of the sphere involved in the
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experiments range from a few microns to a few tens of microns, which is no longer

in the point dipole approximation. Hence a complete Mie scattering solution to the

problem is necessary to verify with experiments as well as to gauge the validity of

simpler models. In this chapter, I shall discuss the near-field radiative heat transfer

between two spheres using the dyadic Green's function (DGF) of the vector Helmholtz

equation [14,15, 45] and the fluctuation-dissipation theorem [9,46,50].

Electromagnetic scattering by a sphere has been very well studied since the sem-

inal work of Mie, almost a century ago. The two sphere scalar and vector scattering

problems have also been investigated for almost the same amount of time by many

authors [88-90]. The two sphere problem involves expansion of the field in terms of

the vector spherical waves (VSW) of each of the spheres and re-expansion of the VSW

of one sphere in terms of the VSW of the second sphere in order to satisfy the bound-

ary conditions. The two sphere problem, and multiple sphere scattering in general,

is especially tougher due to the computational demands of determining translation

coefficients for the (vector) spherical wave functions [88, 91-93]. Recurrence relations

for the scalar [94] and vector spherical waves [95] have reduced the computational

complexity considerably. In this work, the DGF for the two sphere configuration is

determined by satisfying the boundary conditions for fields on the surface of the two

spheres. The translation coefficients are determined using the recurrence relations in

[94, 95].

The chapter is arranged as follows. In Section 4.2, a simplified, asymptotic result

for the radiative heat transfer between two spheres of equal radii, based on the PFT

is presented. In Section 4.3 the two sphere problem is described and the DGF for this

configuration is determined in terms of the VSW of the two spheres. In Section 4.4,

the expression for radiative flux, and thus the spectral conductance, from one sphere

to another is determined. Details regarding the convergence of the series solution and

numerical solutions for sphere sizes up to 25 pm in diameter is presented in Section

4.5.
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4.2 Asymptotic result for near-field thermal radi-

ation

The purpose of this section is to present an asymptotic formula for the radiative heat

transfer between two spheres from the results of the radiative heat transfer between

two half-spaces [20, 29, 37,96]. It is possible to define a radiative conductance between

the two spheres at temperatures TA and TB as:

G = lim P(ATB) (4.1)
TA--T ITA - TBI

where G (units WK- 1)is the radiative conductance, P (TA, TB) is the rate of heat

transfer between the two spheres at TA and TB. It should be noted that G is a

function of temperature. A similar quantity for flat plates is the radiative heat transfer

coefficient, h (units Wm- 2 K 1 ). The heat transfer coefficient h(z) in the near-field,

especially when dominated by surface polaritons, is known to vary as 1/z 2 , where z is

the gap between the half-spaces. The spheres are separated by a minimum gap z. We

will assume in this section that the spheres are of equal radii, R. The conductance

between two spheres is computed by approximating the spheres to be flat surfaces of

varying gap. By doing so we get a relation between G and h given by

G(z; R) = 7rzRh(z) (4.2)

Since h(z) varies as 1/z 2, it is expected that G(z; R) varies as 1/z. The PFT is shown

to be valid for the case of dispersion forces between curved surfaces. Despite their

origin in fluctuations of the electromagnetic field, a significant difference between force

and flux is that forces decay to a negligible quantity in the far-field whereas thermal

flux attains a finite value in the far-field. This implies that larger gaps between the

spheres contribute very little to forces whereas they could contribute significanly to

flux because of the larger areas involved. Hence a PFT type approximation would be

valid only when the heat transfer is dominated by contributions from the near-field

52



region. Hence we expect the result of Eq. 4.2 to be valid only when R is small enough

that near-field radiation dominates and z/R -* 0. The discussion in Section 4.5 shows

that this is indeed true.

4.3 Two sphere problem

The configuration of the two spheres is shown in Fig. 4-1. At the center of each sphere

is a coordinate system. Without loss of generality, the two spheres are arranged such

that the z-axes of both coordinate systems pass through the line joining the centers.

The x axis (and y axis) of both systems are parallel to each other so that a given

point in space has the same # coordinate value in both systems. The two spheres are

at temperatures TA and TB. In order to determine the radiative transfer, we have to

determine the DGF when the source point is in the interior of one of the spheres. We

shall take the Dirac-delta source point to be in the interior of sphere A. The most

convenient way of dealing with DGF in spherical coordinates is to expand the DGF

in terms of vector spherical waves [45], which are solutions of

V x V x P(r) - k 2P(r) = 0 (4.3)

The vector spherical waves we will need are given by:

M(P (kr) = z ")(kr) , (4.4)

N(P (kr) = ()(kr) + (kr) (1
kr

where M(P)(kr) and N(,)(kr) are VSW of order (1, m). 1 can take integer values

from 0 to oo. For each 1, jml <; 1. The superscript p refers to the radial behavior of

the waves. For p = 1, the M and N waves are regular waves and remain finite at

the origin and z, (kr) is the spherical bessel function of order 1. For p = 3, the M

and N waves are outgoing spherical waves that are singular at the origin and z( (kr)

is the spherical hankel function of the first kind of order 1. The radial function
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Figure 4-1: Two sphere configuration. Two non-overlapping spheres of radii a and b
are separated by a distance d. At the center of each sphere is a spherical coordinate
system oriented such that the two spheres lie along the common z axis. The x and
y axes are also oriented such that for a given location in space, the 4 coordinate
is the same in both coordinate systems. In this figure, the point P has coordinates

(rA, A, OA) and (rB, 6B, OB) such that OA = OB. Region A(B) refers to the interior
of sphere A(B). Region C is the exterior of both spheres and is taken to be vacuum.

()= 2 (xz)(x)) . ( ), V2(6, q#), and V ((6, 0) are vector spherical

harmonics of order (1, m). The three vector spherical harmonics can be expressed in

terms of the spherical harmonics, Ym(O,#) as:

V (, M( ) = r Yim (4.5a)

V ,2) = 1 8 +y 5 im (.bVIM Y7 7UD j1M) (4.5b)
fll+1) 30 sinO

V l 1 s+ im) (4.5c)
1M j(j + 1) 190 si6 (45c

The vector spherical harmonics are orthonormal to each other and satisfy the following

relation:

(0, b)8. vs)*(0, #)dQ = 6,soipomq (4.6)

where the integration domain Q refers to the surface of a sphere of unit radius and dQ

is a differential area element on such a sphere. The VSW M( (kr) and N1f (kr) are

related by N(P) (kr) = V x M(, (kr) and M(P (kr) = V x N,) (kr). Any solution
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to Eq. 4.3 can be expressed as a linear combination of the vector spherical waves.

Further properties of spherical harmonics and vector spherical harmonics useful for

this analysis is included in Appendix A. In this particular case, the field is a linear

combination of VSW of the two coordinate systems as shown in Fig. 4-1. To satisfy

the boundary conditions on the surface of each sphere the VSW of one coordinate

system should be expressed in terms of the VSW of the other coordinate system. This

is what is achieved by means of translation addition theorems for VSW.

4.3.1 Coefficients for translation addition theorems

The vector translation addition theorem [45, 95, 97]states that:

1/=O0

M m (krb) s [A (+kd)M M )(kr) + B(kd)N (krd)] (4.7a)

N(P) (kr,) =5 [B'm(+kd) M) (kra) + A'm(+kd)N () (kra)] (4.7b)
/L -V
V= 1

The position vectors r,, and rb refer to the same location in space in coordinate

systems A and B respectively. Computing the coefficients A'7m(+kd) and Blm(±kd)

has been the topic of many publications [91-93,95]. Generally, the expressions for

the coefficients require calculations of Wigner 3j symbols which involve calculations of

large number of factorials making it computationally expensive. Recurrence relations

for computing the coefficients efficiently have been proposed by Chew [95]. In the case

of the two sphere problem, with translation along the z-axis alone, Eq. 4.7 simplifies

so that the coefficients are non-zero for p = m alone.

In the region C (exterior to both spheres), the electric and magnetic fields should

be expanded in terms of outgoing VSW of both coordinate systems so that waves

decay as 1/r as r -- oo. Hence M(3(krb) and N(3(krb) need to be expressed in terms

of M4(kra) and N4(kra) on the surface of sphere A and vice versa. Since Iral=

a <d for all points on the surface of sphere A, only the regular VSW or M,(kra)
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and NM(kra) should be used. In addition to A" (+kd) and B" (+kd), we will also

need Atm(-kd) and B (-kd), which can be obtained through symmetry relations

[98]. For further details regarding the computation of the recurrence relations, the

reader is referred to [94,95].

4.3.2 DGF - vector spherical wave expansion

The DGF for any configuration can be split into two parts - one that corresponds to

a Dirac-delta source in an infinite medium, G, and one that takes into account the

scattering, G,,. In this case, the source point is confined to the interior of sphere

A. The DGF for source point in sphere A, assuming the whole space to of the same

material, is given by:

Go(ra, r') = (r - r')+
a

M=1 M (kara)Mffm(kar + Nlm (kara)N (kar') if ra<r

M=M1 (kara)M _(ka' + 1ka)N_(kar') if ra > ra'
1=1 1,-Mrn 'a

(4.8)

In particular, we are interested in the case where ra > r' since the source is inside the

sphere A whereas the boundary of interest is the surface of the sphere. The part of

the DGF that depends on the boundaries takes different forms in the three regions,

A, B, and C. Inside A, the DGF is a combination of Go and G, whereas outside A

the DGF is entirely G,,. Each term, M 2(kara) or N (kara), in Eq. 4.8 can be

thought of as an independent VSW that produces scattered waves, i.e. coefficients

of scattered waves due to M3) (kara) (or N1 ((kara)) are completely decoupled from

VSW of other orders. Let us consider the scattered field due to M(3 (kara). The
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scattered field in the three regions is given by:

ika [ (AlM,,A(kara) + A NM (kara)) + (BvM 3(karb)+ BAjNv(karb))] ,in A

ikf [(CvM (kfra) + CvNNm(kra)) + (DIM',M (kfrb) + D Nv)(kfrb))] ,in C

a'=(m,1) ikb[ (EvMvm(kbra)+ ENM(kra)) + (FvmMv(kbrb)+ FIN)(kbrb))] ,in B

(4.9)

where the symbol (m, 1) refers to the greater of m and 1. Al is a coefficient of a

VSW of order (v, m) that it is produced by a VSW of order (1, m) . The superscript

M (N) is to indicate that it is a coefficient of a M (N) wave. In practice, the

upper limit for the summation is resticted to a value Nm which depends on kfd. The

appropriate value of Nm will be discussed in Section 4.5. Using Eq. 4.9, Eq. 2.11,

and Eq. 2.12, the following set of coupled linear equations can be obtained for the

coefficients of the VSW in the scattered field in region C:

Nmax

C +u,,(a) [Dl A"m(-kfd)+ IN B (-kfd) p J,0 (4.10a)
V=(m,1)

Nmax

CINm + +v,(a) [D B;(-kfd) + DIAm(kfd)] = 0 (4.1b)

Nmax

D + u,,(b) [CvmAm(+kfd) + C NmB=(+kfd)] = 0 (4.10c)
V=(m,1)

Nmax

DN+v,,(b) >j [CGB=(+kfd) + Cv$mAm(+kfd)] = 0 (4.10d)
a'=(m,1)

where 77 ranges from (m, 1) to Nm. u,1(a) and v,,(a) are Mie coefficients that one

encounters in the scattering of a spherical wave by a single sphere and are given by

ka( n(kaa)z,'i (kf a) - kC417 ( kfa)zn(1 (kaa)

(7(ka (kaa)z,3 ) (kfa) - k(,73) (kfa)z,(') (kaa)

u,(a) = ka( 1 ' (kfa)z(1 (kaa) - kf ( kaa)z 71) (kf a)
,,() = 7a - (4.lb)
kaC, 3 (kfa)z/0(kaa) - kf(C 0(kaa)z$3 (kfa)
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Expressions for u,(b) and v.(b) are obtained by replacing ka and a by kb and b respec-

tively. If the original wave is N,3 (kara) instead of M(3) (kara), the only difference is

that the right hand side (RHS) of Eq. 4.10a becomes 0 and the RHS of Eq. 4.10b

becomes P; ql- p77 and are given by

M ~_fe

kjM ~ (a~$ 3  -i/(kf a)
kaa(,() (kaa) (kf a) - kfa(n(3)(kfa)zq()(kaa)

= i/(k a)
kaa(1i73 (kf a) zj7'~ (kaa) - kf aCn'" (ka a)zn(3 ) (kf a)

(4.12a)

(4. 12b)

For a given m, we have (Nm - (m, 1) +1) M waves and (Nm - (m, 1) +1) N waves.

We see that the left hand side (LHS) for a given value of m remains the same while

the only difference is in the RHS (pg and pr). Once all the coefficients in Eq. 4.10

are obtained, the DGF due to scattering, G8,, and its curl, V x Gc, can be written

as:

m=Nm
,v=Nm

Gac(ra,ra)=ikf -
L,=(1,m>
m=-Nm

m=Nm
I,P=Nm

VxGsc(ra,T')=k2 (_1)m

m=-Nm

(ChM$(kf ra)+ CvNSN(kira))+ 1
IN IM -

(DIM (krb) + DvNvmN(kf r))

(C|}M$(kfra) + C|NNM(kfra)) + 1
(D)'M3(krb)+ DN (kf rb

(4.13)

E (CgN(kfra) +CmMm (kf ra))
(3) IN iM(1 (kar')+

(DMN (kfrb)+ D vm)(kf rb))

(C,';Nv(kf ra) +C 3m'(kfra) +
I~~~ N v(k1,ma' a

(D" Nv(k Tb) +kf) D',,N m
(4.14)
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4.4 Radiative flux

The radiative heat transfer between the two spheres is calculated from the Poynting

vector normal to the surface of sphere B, which in turn depends on the tangential

fields on the surface of sphere B. The expression for the DGF can be modified to

reflect tangential and normal fields on the surface of sphere B by using Eq. 4.10c and

Eq. 4.10d in Eq. 4.13 and Eq. 4.14 and eliminating M,(kfra) and N,3(kf ra) to

result in the following equations:

G.,c(ra, r) =

Dl z '(kbrb)
kbbCY0 (kbb)zW (kfb)-kfbK,() (kfb)z(,1 (kbb)

(k+ k DI (()(kbrb)

kbbC1' (kf b)z( )(kbb)-kfbC,1, (kbb)z 1'(kfb)

V(2)
V(b, kb)

VJ(3)(b, b)

+

+

+ [similar terms with primed coefficients N(112m(kar')

(4.15)

(kb/kf)D4(( 1')(kbrb)
kbbC ,1 (kbb)zVI )(kfb)-kfb4, 1V)(kfb)zv (kbb)

(kb/kf)DI Z, (kbrb)

kbb(, (kfb)zi,1 ) (kbb)-kf bC, 1 ) (kbb)z4, 1 (kfb)

+ Dba z ()(k
br b)(v(b+))/kbb )

SkbbC,(,'(kbb)zt("(kfb)-kfb ,('(kfb)zt( (kbb)

t'M(Ob7 Ob

V2)(0b 7b)

V)(eb) AOb)

+

+ similar terms with primed coefficients N im(ka r)

(4.16)

Using Eq. 2.16, Eq. 4.15, Eq. 4.16, Eq. A.47, Eq. A.48, Eq. A.49, Eq. A.50,

and some algebraic manipulation to yield this expression for the spectral radiative
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transfer between the two spheres, one at temperature TA and the other at TB:

P (W;TA, TB) = ((W, TA) - (W, TB) X

Sz(')(kaa)DlM 2 z l)(kaa)DIN 2

x0b Q 1 \"b rI 2(kfb)

m,l, 1(~ r'(ka a)D3  2 (1 rr(kfa)D 2 (
\x(b) z'(kfb) (k (b) r'(kfb) J y(a) J

(4.17)

where x1(a) = k(k and y(a) = k (

kfa( "(kaa)zi 1u(kf a). Just as in Eq. 4.1, it is possible to define a spectral radiative

conductance between the two spheres at a temperature T ( TA -+ T, TB -T as:

P(W;TTB) X 2ex a
G (w; T)= lim k B X

TA.-+TB TA -TB (eX l 2 b

r 1 ~ '(kaa)D M 2 z kaa)D~ 21 __N

x ( b) z 
1 )(k b) Y ( b) Z f)(b) , x(a) ()

L2 2

(4.18)

where X = hw/kBT. It can be seen from Eq. 4.18 that the spectral conductance has

units of kB(JK-1 ) and can split into two parts, one that depends on temperature and

the other that is obtained from the DGF of the two sphere problem. The radiative

conductance between the two particles that one would measure in an experiment is

the integral of G (w; T).

G(T) = G (w;T) dw (4.19)

L 0

4.5 Numerical results

To ensure that the program written to determine the near-field radiative transfer

heat transfer is not misbehaving, a few tests can be performed. One of them is
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agreement between the numerical results and the analytic expression for conductance

in the point dipole limit. For spherical particles in the 1 nm to 50 nm radius, the

numerical results agree well with the expression for conductivity in the point dipole

limit [28,32]. In addition to this another test to ensure the correctness of the method

is based on the principle of detailed balance. The radiative conductance between two

spheres of arbitrary radii must be independent of the numbering scheme for naming

the particles, i.e G12 = G21, where the subscripts 1 and 2 refer to the two spheres.

This is necessary to ensure that when the two spheres are at the same temperature

the net heat transfer between the two spheres is zero. It is indeed seen from results

shown in Table 4.5 that by switching the position if the spheres, keeping the gap the

same, results in the same value of conductance (the relative errors are generally of

the order 10-14)

Gap (jtm) a (pm) b (pm) Conductance (WK- 1)
0.5 1 2 1.63816 x10 11

0.5 2 1 1.63816 x10- 1

0.8 2 3 3.34409 x10-11

0.8 3 2 3.34409 x10-11

Table 4.1: Conductance obtained for spheres of unequal radii. By swapping the radii
of the spheres, it is seen that the value of conductance remains the same.

4.5.1 Convergence analysis

Though the two-sphere scattering problem has been discussed in literature, the near-

field interaction between the two spheres has not been analyzed in detail. In par-

ticular, the number of terms required for convergence for the near-field problem has

not been mentioned at all. For Mie scattering by a single sphere of radius a and

wavevector magnitude k the number of terms for convergence, N,, is given by [881:

Ncn = 1 + ka + 3(ka)1/ 3 (4.20)
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For the two sphere problem a slightly different criterion based on the center to center

distance between the two spheres is proposed and given by [99]:

1
Neo = -ekd (4.21)

2

where e is the base of the natural logarithm. Both Eq. 4.20 and Eq. 4.21 are valid

criteria for computing far-field quatities, like the scattering coefficient. For the near-

field problem, we expect the gap between the two spheres to be of great importance.

To determine the number of terms required for convergence of near-field quantities we

seek parallels to the much simpler and often investigated problem of near-field transfer

between two half-spaces. In the near-field two half-space problem, the equivalent of

the number of terms for convergence is the truncation for the in-plane wave vector.

For a gap z between the two half-planes, the predominant contribution to radiative

flux in those frequency regions where evanescent waves are important is from in-plane

wave vectors up to the order of ki ~ 1/z. If we can draw an analogy between the

in-plane wave vectors in the two half-space problem and the two sphere problem, we

can propose a criterion for convergence. In the case of the two-sphere problem, the in-

plane wave vector equivalent is given by the wavelength of periodic variations on the

surface of the sphere. A given vector spherical harmonic, '(6, ), (p = 1,2, or 3)

corresponds to a variation exp(im#) along the equator of the sphere. The period

of this particular vector spherical harmonic (along the equator) is 21ra/m and the

corresponding wave vector is m/a, where a is the radius of the sphere. For a given

gap z between two spheres of radii a (equal for now), the number of terms Non

for convergence should be chosen such that (Ncon/a)z ~ 1. Hence the convergence

criterion for near-field effects is given by:

Nenv ~ a (4.22)
z

For spheres of unequal radii the number of terms depends on the greater of the two

radii. The convergence criterion proposed here is an upper limit and depending on the

optical properties of the spheres, it could be considerably lesser. For spheres which
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exhibit surface wave resonances, Eq. 4.22 is a valid convergence criterion as shown

by our numerical investigations. Depending on the configuration of the spheres, the

criterion for convergence is given by max(lekd, a).

Since silica spheres are easily available for experimental investigation, we will

present our numerical results of radiative transfer between two silica spheres of equal

radii at 300 K. In addition, silica is a polar material and hence supports surface

phonon polaritons in certain frequency ranges. The dielectric function of silica is

taken from [80]. The real part of the dielectric function is negative for silica in two

frequency ranges in the IR - from 0.055 to 0.07 eV and 0.14 to 0.16 eV. It is expected

that (and shown later) that surface phonon polariton resonances occur in the these

frequency ranges. To confirm the prediction of Eq. 4.22, the contribution to the

spectral conductance from each (1, m) mode is plotted as a function of 1 for different

values of m in Fig. 4-2. The spectral conductance is plotted at two frequencies -

0.061 eV and 0.045 eV. The surface polariton mode exists at 0.061 eV but not at

0.045 eV.

2.0 109
Sy m =0, 0.04 5 eV
E

1.5 109' m =1, 0.045 eV

o m=1, 0.061 eV
S1.010. ',.0m = 0, 0.061 eV

S.10 a =b =10 pm

*0.0 101 10 1 00
1 1010

I quantum number

Figure 4-2: Plotted in this figure is the contribution to spectral conductance as a
function of 1 for m = 0, 1 at 0.061 eV and 0.045 eV for two spheres of equal radii
a = b = 10pim at a gap of 100 nm (d = 20.1im). Surface phonon polaritons contribute
significantly to the radiative transfer at 0.061 eV and not at 0.045 eV. Hence the
number of terms required for convergence is significantly lesser than that prescribed
by Eq. 4.22

In Fig. 4-3 the spectral conductance at 0.061 eV for m = 0 between two spheres
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of radius 10 /Lm is plotted as a function of 1 for two different gaps - 100 nm and

200 nm. As the gap doubles, the number of terms required for convergence approxi-

mately reduces by half, confirming Eq. 4.22. For instance, the spectral conductance

is 1.02 x 10- 1 WK'eV-1 at 1 = 181 for 100 nm gap and 1 = 99 for 200 nm gap. The

contribution to spectral conductance from smaller values of I (1 2 15), corresponding

to propagating waves, does not change much with variation in gap. It is the contribu-

tion from larger values of 1, corresponding to surface waves, that changes appreciably

with gap. Based on these results we use at least Nm. = 2a/(d - 2a) terms in our

computations. Because of the computation difficulties in solving Eq. 4.10, we present

results for a maximum radius to gap ratio of 100 for computations at one frequency

and 25 for computations over the spectrum from 0.04 eV to 0.16 eV. Equation 4.10

is solved using the software package Mathematica.

-9
. 1.2 10. .

a a=b=10 Im
frequency = 0.061 eV

9.0 101 kd =6.21

M 106 3.0 10

gap=00nm

,a-0.0100 .
. *0 50 100 150 200 250

1 quantum number

Figure 4-3: Plot of spectral conductance at 0.061 eV between two spheres with equal
radii of 10 Mm at gaps of 100 nm and 200 nm. The curves plotted are for m = 0.

As mentioned earlier, the symmetry associated with the two-sphere problem allows

for solving for the contribution from each value of the m independently, starting from

m = 0 and proceeding with increasing values of m. As m increases, the contribution

to conductance decreases as shown in Fig. 4-4. The computation is stopped when a

vacule of m is reached such that the contribution to conductance is less than 5 x 10-

times the contribution from m = 0. Even though the contribution to conductance

is significant for terms with 1 ~~ Nm, the contributions from m drops much faster.
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This is fortunate - the time taken to compute the conductance is proportional to the

number of values of m required.

m quantum number
20 15 10 5 0 -5

2.5
d=200nm d=100nm

. R =20 pm R= 10 m
~-2.0-

, 1.5

:3 I
0 1 .0

d =400 nm0 0.5-) R =20 sm
(I)

0.0
-5 0 5 10 15 20

m quantum number

Figure 4-4: Contribution to spectral conductance from each value of m at 0.061 eV.
The curves shown are for different values of radius of the spheres and gap between
them. The x-axis on the top of figure is reversed and is the abcissa for the spectral
conductance of the 10 pm sphere.

4.5.2 Spectral conductance

Unlike the case of near-field radiative transfer between two half-spaces, where the

conductance is a function of only the gap between the half-spaces (and the optical

properties of the half-spaces and interveing medium), the conductance in the case

of sphere-to-sphere radiative transfer varies as a function of the gap as well as the

size of the sphere. A gradual transition occurs from a region of near-field dominated

radiation to that of far-field dominated radiation. In Fig. 4-5 the spectral conductance

between two silica spheres of 1 pm radius is plotted as a function of frequency. We

see from the two peaks that the conductance is dominated by the surface phonon

polariton regions.

The spectral conductance between the two spheres for larger radii, shown in Fig.

4-6, displays several features of interest. The ratio of radius to gap is maintained
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Figure 4-5: Plot of spectral conductance between two silica spheres of 1 Pum radii
at gaps of 50 nm, 100 nm, and 200 nm from 0.04 eV to 0.16 eV. Surface phonon
polaritons in the 0.055 to 0.07 eV range and in the 0.14 to 0.16 eV range contribute
to the two peaks seen in the figure.

the same as in Fig. 4-5. Though the height of the peaks remain approximately the

same this figure as well as Fig. 4-5, the significant difference is from the contribution

from those frequency regions that do not support surface polaritons (0.04-0.055 eV,

0.07-0.14 eV). The contribution to the conductance from these ranges do not vary

significantly with gap (as long as gap < radius). The relation between the ratio of

gap to radius and the contribution to spectral conductance is also illustrated in Fig.

4-7. In Fig. 4-7, the spectral conductance of spheres of radii 1 tim, 2 pm, and 5 Prm at

gaps of 100 nm, 200 nm, and 500 nm respectively are shown. Since the ratio of gap to

radius is a constant (0.1), we expect from the asymptotic theory that value of spectral

conductance should also be the same in all three cases. We see from the data that this

is approximately the case in the regions where electromagnetic surface waves dominate

the heat transfer. In the rest of the region, where near-field radiative transfer is non-

resonant, increasing radius leads to increased contribution from propagating waves.

The spectral conductance as the radius of the spheres is increased to 20 pm is shown

in Fig. 4-8. The increased contribution from the non-resonant parts of the spectrum

is evident from the graph. This has an important implication from an experimental
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point of view. We should be careful not to increase the size of the sphere to such an

extent that the resonant radiative transfer is swamped by the non-resonant radiative

transfer. For a 20 pm sphere, we can see that the increase in conductance as the gap

decreases is still predominantly due to electromagnetic surface waves as shown in Fig.

4-9. In Fig. 4-9, the increase in spectral conductance as the gap is decreased from

2000 nm is plotted. Compared to Fig. 4-8, the signature of electromagnetic surface

waves is clearer from this plot.

30.
CD

25 d =250 nm

20

:15 d =500 nm
15

- 0d =1000 nm
0

5

Cl 0.04 0.08 0.12 0.16
Frequency (eV)

Figure 4-6: Plot of spectral conductance between two silica spheres of 5 pIm radii at
gaps of 250 nm, 500 nm, and 1000 nm from 0.04 eV to 0.16 eV. The gaps have been
chosen so as to maintain the same ratio of gap to radius as for the curves shown in
Fig. 4-5.

In Fig. 4-10 the spectral conductance at 0.061 eV (corresponding to the first

peak in Fig. 4-5) between two spheres is plotted as a function of gap for different

values of the radii. The exponent of a power law fit (of the form y = AxB) to the

data points in Fig. 4-10 is -1.001, -0.984, -0.9024, -0.7781,-0.6119 for radius 1 pm, 4

pm, 10 pm, 20 [pm, and 40 pm respectively. As the radius increases from 1 pm to

40 pm, the slope of the curve decreases, indicating an increased contribution from

propagating waves. The behavior at smaller radii can be predicted from the variation

of conductance with gap between two planes and the PFT, as discussed in Section

4.2. For larger diameters, the PFT type approximation is seen to fail as a result of
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Figure 4-7: Spectral conductance of spheres of radii 1 pm, 2 pm, and 5 pm at gaps
of 100 nm, 200 nm, and 500 nm respectively. The value of gap to radius for all the
curves is 0.1.

C)
C

(0

C.)

CL
C.)

140

120

100

80

60

40

20

0 L
0.04 0.08 0.12

Frequency (eV)
0.16

Figure 4-8: Plot of spectral conductance between two silica spheres of 20 um radii
at gaps of 200 nm, 400 nm, and 2000 nm from 0.04 eV to 0.16 eV. Unlike the case
of plane-to-plane near-field radiative heat transfer, where the contribution from sur-
face polaritons dominate, the conductance between the two spheres has comparable
contributions from the resonant and non-resonant regions.

the far-field contribution.
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Figure 4-9: The increase in spectral conductance from 2000 nm gap in Fig. 4-8 is
shown here for gaps of 200 nm and 400 nm.
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Figure 4-10: Plot of spectral conductance between two spheres of equal radii at
0.061 eV as a function of gap for various radii. For each of the curves, the spectral
conductance is computed for the same values of radius/gap. The markers on each
curves corresponds to radius/gap values of 100, 50, 25, and 10.

4.5.3 Total conductance

The frequency limits for the calculation of conductance is taken to be 0.041 eV to

0.164 eV. The contribution to conductance from the rest of the frequency spectrum
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at 300 K is not significant for spheres of smaller radii. However, it is seen from Fig.

4-8 that frequencies below 0.04 eV contribute to the non-resonant heat transfer. This

will not affect the increase in radiative transfer as the gap is decreased because that

increase comes predominantly from the regions supporting surface waves. The total

conductance for spheres upto radius of 5 pm are plotted against gap in Fig. 4-11.

The slope of -6 (approximate) for spheres of radius 20 nm and 40 nm, which can

be approximated as point dipoles when the gap between the spheres is much larger

than the radius, is in correspondence with the results from the dipole approximation.

However, the dipole theory predicts that the conductance should flatten and reach

a finite value as the gap decreases to zero, i.e., a slope of zero. What happens in

fact is that the near-field effects begin contributing as the gap decreases and the

slope in fact decreases from -6 to approximately -1, once again corresponding to the

asymptotic theory. However, as the radius increases to 5 Pm, the slope decreases

further. This decrease is because of increased contribution from non-resonant regions

of the spectrum, as seen in Fig. 4-6. For larger values of spheres, the conductance

is plotted in Fig. 4-12. On a log-log scale as plotted in Fig. 4-12, the near-field

effects are apparent for the spheres of 1 Im and 2 pm. The reason it does not

seem so for the spheres of larger diameter is because of the large contribution from

the non-resonant parts of the spectrum, as evidenced from the curve corresponding

corresponding to the results of classical radiative transfer for the 20 Pm sphere. To

understand the effects of near-field transfer for larger spheres, the total conductance

for 20 pm and 25 pim spheres is plotted in Fig. 4-13. The data points are fit with a

curve G = Aix-"+A 2x+A 3 , where x is the gap, Ax-" is the near-field contribution,

A 2 x is the contribution due to non-resonant parts of the spectrum (as well as any

changes from classical effects due to increase in view factor). We see that the values

of the exponent n is 0.5574 for the 20 pm sphere and 0.5035 for the 25 pm sphere. If

the asymptotic theory we valid at these values of the gap, one would have expected

a value of n = 1. It is expected that as the gap decreases, the conductance will

approach the form predicted in Eq. 4.1 by the asymptotic theory.
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Figure 4-11: Total conductance plotted as a function of gap. The number next to each
curve is the corresponding radius of the spheres. For 20 nm and 40 nm spheres, the
slope of the conductance vs gap curve is approximately -6 for values of gap larger than
the radius of spheres. As the radius of the spheres is increased, the slope gradually
changes to approximately -1, corresponding to the asymptotic theory.
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Figure 4-12: Variation of total conductance with gap for various sphere radii.
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Figure 4-13: Variation of total conductance for spheres of radii 20 pm and 25 pm
with gap. The computation has been restricted to a minimum gap of 200 nm because
of the stringent numerical requirements of convergence discussed earlier. Notice that
the plot is no longer on a log-log scale.

4.6 Regime map for the two-sphere problem

Unlike the two half-space problem discussed in Chapter 3, the two-sphere problem has

three length scales - the wavelength in consideration, the radius of the spheres, and

the gap between the spheres. Depending on the ratio of the length scales, different

approximate theories can be used to predict the conductances. The most obvious one

is the case when the radii are large compared to the wavelength and the gap is more

than a wavelength. In this case classical radiative transfer can be employed. However,

while near-field effects may not be important, interference effects can become impor-

tant. As the radii of the sphere become comparable or smaller than the wavelength,

diffraction effects prevent the usage of classical radiative transfer for even emission

from a single sphere. When the radii between the spheres is much smaller than the

wavelength, the gaps larger than the diameters of the particles but much smaller

than the wavelength, and when the dipole moment of the particles is the dominant

contributor to the radiative transfer, the point dipole approximation can be used.

However, it should be mentioned that even though the gaps are numerically small,
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Figure 4-14: Regime map for the two sphere problem. Radius of spheres is R, the
gap between them is d, and the wavelength of radiation is A

this is not a near-field effect in the sense discussed in this thesis. Finally, for spheres

with radii not larger than a few microns, the conductance seems to agree with the

the proximity approximation when the gaps are much smaller than the radii. These

regions in which different theories are applicable can be represented on a regime map

with the two axes representing two non-dimensional length scales, as shown in Fig.

4-14.

4.7 Summary

The purpose of solving the two sphere problem is to extend the theoretical and nu-

merical formulations of near-field radiative transfer to configurations of objects which

can be tested experimentally. While the two half-space problem is useful to under-

stand the physics of near-field effects, testing its predictions can become extremely

challenging, as will be seen in the next chapter. The solution to the two-sphere prob-

lem gives us an estimate of the value of radiative conductance one can expect from

such an experiment. For microspheres with radii of 25 pm, we expect a radiative

conductance between two spheres around 4.5 nWK- 1 at a gap of 200 nm. From Fig.
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4-13, we see that we can expect a conductance of 5.6 nWK- 1 at a gap of 100 nm. If

the experimental configuration is not a two-sphere configuration but a sphere adja-

cent to a flat plate, the results of this chapter can be used as a guide to estimating

the conductance. We expect trends to be similar - that is we expect the increase in

conductance to be of the form Ax-", where x is the gap between the sphere and the

flat plate. Most importantly, we expect n to be a number between 0 and 1.

The Mathematica code I have written to solve two sphere problem is included in

Appendix B.
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Chapter 5

Experimental investigation

5.1 Introduction and outline

In this chapter, the theoretical investigations of Chapter 4 is followed by experimental

investigation of a near-field enhancement in a similar configuration. This chapter is

arranged as follows: In Section 5.2, the problems associated with existing methods

of investigating near-field phenomena are discussed. The principle of the experiment

is discussed in Section 5.3. In Section 5.4, the rationale for choosing the bi-material

cantilever as the sensor and the experimental setup are described; in section 5.5 the

method for obtaining "heat transfer - distance" curves is described and experimental

results for conductive heat transfer and radiative heat transfer is presented.

5.2 Previous investigations

Experimental investigations of near field radiative transfer involve meaurement of

radiative transfer between two parallel surfaces [19, 21, 22, 100] or between a nanopar-

ticle and a planar surface [101]. Hargreaves measured the enhancement in radiative

flux between metallic films of chromium (approximate thickness 100 nm) deposited

on optical flats (approximate area 4.8 cm 2) [21] to a gap of 1 pm. Measurements

of radiative transfer between copper disks at cryogenic temperatures upto a gap of

50 /Lm revealed a proximity effect in qualitative agreement with theory [19]. In con-
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ducting experiments between macroscopic parallel surfaces, three obstacles have to

be overcome:

1. Measuring and maintaing constant gap

2. Measuring, minimizing, and maintaining constant angle (ideally 00)

3. Ensuring cleanliness of surfaces

Hargreaves solved the first two problems by measuring the capacitance between

the two surfaces (and variants of this technique to measure angle). [21] Capacitance

measurements are ineffective if the surfaces are insulators. Presence of dust particles

prevented Hargreaves from measuring radiative flux accurately to sub-micron gaps.

Xu et al. [22] overcame the third problem by decreasing the area of the surfaces.

They measured radiative transfer between a deformed indium surface and a gold

surface of area 0.0256 mm2 . By decreasing the area of the surfaces the probability of

achieving dust-free surfaces increases, thereby ensuring possibility of achieving smaller

gaps. The choice of indium for one of the surfaces is precipated by the fact that it is

easy to deform a thin indium needle to conform to the topology of the gold surface,

thereby creating parallel surfaces. Though they could attain sub-micron gaps, they

did not find any evidence of near-field effects [22]. The problem of dust between the

interacting surfaces is one that has been encountered in measurements of forces (van

der Waals or Casimir) [102]. Instead of decreasing the size of the surfaces, one of the

two planar surfaces is replaced by a curved object. Generally the curved object is a

spherical or cylindrical surface, with radius of curvature around 10 cm. A fundamental

difference between measuring near-field radiative transfer and forces is the presence

of a finite far-field radiation component which increases proportional to the area of

the curved surface. The corresponding far-field force is negligible and hence the near-

field force can be measured despite using a curved surface of macroscopic radius of

curvature.

A different technique to measure the heat transfer has been to replace one of

the surfaces by a nanoparticle [101]. The problem of dust is reduced to a minimum
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because of the reduced surface area of the nanoparticle. However, measurement of

the radiative flux becomes more challenging because of the decreased magnitude. In

addition, radiative transfer to other parts of the apparatus to which the nanoparticle

is attached can swamp the near-field signal and does not seem to have been taken

into consideration in Kittel et al. [101]. Between the two limits of a nanoparticle

and a large macroscopic surface is a microsphere. Microspheres have been used ex-

tensively to measure van der Waals forces [103] and Casimir forces [84,85]. It should

be possible to measure the heat transfer between a microsphere and a flat substrate.

The problem of dust is mitigated compared to the configuration of two flat substrates

while the near-field signal is significantly larger than that in the case of the nanoparti-

cle. Another reason that makes a microsphere an attractive option is the fact that no

special care needs to be taken to align the sphere to the flat surface. One of the rea-

sons the experiments have been restricted to the case of two flat surfaces or between

a nanoparticle and a flat substrate is that the theory to guide the experiments exist

only for these cases. The theory presented in the previous chapter partly offsets this

problem and extends the fluctuational electrodynamic theory of near-field radiative

transfer to configurations more amenable to experimental investigation.

5.3 Principle of experiment

We have seen in the previous chapter that the near-field conductance between two

silica spheres of diameter 50 ptm is approximately 10- WK- 1 . The near-field conduc-

tance between a sphere and a flat surface is expected to be of the same magnitude.

With a temperature difference of 50 K between the two surfaces, the thermal power

to be measured is approximately 500 nW. Not too many sensors are capable of mea-

suring such low thermal heat flux. A scanning thermal microscope tip, such as the

XE SThM Nano Thermal Probe (PSIA Inc.) or a thermocouple probe [104] used in

a scanning thermal profiler, could be used. The drawback is that the temperature

resolution (0.1 'C) is not enough to measure a flux as small as 500 nW. A similar

case can be made for the Wollaston wire probe used to measure the thermal and
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thermoelectric properties of nanowires and nanotubes [105]. Another drawback of

the Wollaston wire probe (and similar probes) which uses electrical heating of the

wire is that any electrical voltage applied to the wire can also induce a force that

interferes with the measurement.

Bi-material cantilevers have been used as sensitive thermal sensors, generally to

measure infra-red radiation [106-109] or scanning thermal imaging. [110] To measure

the deflection of the cantilever, a laser beam in focussed at the tip of the cantilever

and the position of the reflected spot is measured using a position sensitive detec-

tor. Further discussion of this technique will follow. When they have been used for

measuring forces, the defelection of Au/Si3 N4 cantilevers due to thermal effects is

considered to be a minor irritant to be dealt with. In this work it is such a deflection

that is to be detected. The deflection of the cantilever due to cooling or heating of the

cantilever as the gap between a sphere and a substrate is changed can be measured

as a function of the gap yielding a "heat transfer - distance" curve. To maintain

a temperature between the sphere and the substrate some method of heat input is

required. A convenient solution is provided by the laser beam that is used for detect-

ing the deflection. A part of the laser incident on the cantilever is absorbed by the

cantilever and provides the necessary temperature difference between the sphere and

the substrate.

5.4 Experimental configuration

A schematic and an image of the experimental apparatus are shown in Fig. 5-1(a)

and Fig. 5-1(b). The main components of the apparatus are the laser diode module

(LTG, LaserMate Inc., Pomona, CA), a lens system to focus the laser beam, the AFM

cantilever and its holder, a substrate mounted on a motion control device (Oriel motor

mike), and a position sensing detector (PSD) (duolateral PSD, On-trak Photonics

Inc.). A postion sensing amplifier (OT-301, On-Trak Photonics Inc.) is used to

convert the output of the PSD into a X and Y output corresponding to the position

of the spot on the PSD and a sum output proportional to the laser power incident
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AFM cantilever
motion with sphere
control

PSD

flat substrate

laser convex adjustable
module lens mirror

(a) Schematic of experimental apparatus. The

beam from a laser diode module is focussed at

the tip of an AFM cantilever and the reflected
portion is directed onto a PSD.

(b) An image of the experimental setup.
The red line from the laser diode module to

the PSD shows the path of the laser beam.

Figure 5-1: Experimental apparatus to measure heat transfer - distance curves.

on the PSD. All these components are mounted on an standard aluminum optical

breadbord (10" x 12"). To measure the deflection of the cantilever, the PSD X signal is

measured using a Keithley 182 nanovoltmeter. The PSD sum signal is measured using

a HP33401 multimeter. One way in which this apparatus is different from the AFM

is the angle between the cantilever and the substrate. In the AFM, the cantilever is

almost parallel to the substrate. The cantilever responds to forces between the sphere

and the substrate by bending. Since the cantilever is made of dissimilar materials,

it also responds to temperature differences in a similar way. When the cantilever

is perpendicular to the substrate, forces on the sphere try to stretch the cantilever

as opposed to bending it. The stretching of the cantilever to such forces does not

affect the measurement of the deflection due to heat transfer. However, the angle

between the cantilever and the substrate is not exactly 900. Within the capabilities

of alignment in the current experimental setup (see Sec. 5.4.2.2), the angle can be

adjusted to 900 ± 20. This increases the effective stiffness of the cantilever 28 times

compared to stiffness when the cantilever is parallel to the substrate. The response of

the cantilever to temperature changes remains the same irrespective of angle between

the cantilever and the substrate.

79



5.4.1 Attaching microspheres to cantilevers

Spherical particles have been attched to AFM cantilevers to study different types of

forces. There seems to be no standard method to attach spheres to cantilevers. It

is possible to purchase cantilevers with spheres of smaller diameters (0.5 pm to 5

jpm) from various vendors of AFM cantilevers. However, in my case I wanted to use

cantilevers with larger spheres (50 jim diameter) attached. Attaching such spheres

(silica spheres of diameter 50 jpm from Corpuscular Inc.) are quite easy and with

practice it takes less that 30 minutes to attach a sphere to a cantilever successfully.

Figure 5-2 shows the image of the AFM cantilever attached to its holder (Fig. 5-2(a))

and a closeup of the sphere attached to the cantilever (Fig. 5-2(b)). Before attaching

the sphere, I attach the AFM cantilever chip to a copper base (Cl in Fig. 5-2) using

silver epoxy (epoxy name). I do this to make the handling of the AFM chip easier.

The next two steps to attach the sphere to the cantilever are shown in Fig. 5-3. A

drop of glue is placed at the edge of a glass substrate as shown in Fig. 5-3(a). By

viewing under a microscope (10OX magnification), the AFM chip is positioned using

a micromanipulator so that the tip touches the drop. A small dab of glue sticks to

the tip. A few microspheres are dropped on another glass substrate and some of them

are positioned such that they are very close to the edge, as shown in Fig. 5-3. Once

the cantilever touches the sphere (as observed through the microscope), I flood the

cantilever with UV light for about 20 seconds. It cures the glue sufficiently so that

the sphere is now bound to the cantilever. The cantilever is retracted and allowed to

cure for another 5 minutes under a UV lamp.

5.4.2 Sources of errors

5.4.2.1 Effect of vibrations

The whole apparatus is placed inside a vacuum chamber during the experiment. In

order to reduce the effects of the vibration caused by the mechanical pump and turbo

pump, three passive elastomer vibration dampers (Veeco Instruments) are used to

separate the apparatus from the rest of the chamber. One way to ensure that the effect
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C1 C2

AFM cantilever
(a) AFM cantilever attached to cop-
per base. The cantilever is attached
to base C1 (using silver epoxy) which
is later attached to C2 (using the
same epoxy). The base C2 is fastened
to aluminum breadboard as shown in
Fig. 5-1(b)

Figure 5-2: Image of the AFM cantilever
sphere attached.

glue
cantilever

V

(b) SEM image of silica sphere attached to
AFM cantilever.

holder and a close-up of the cantilever with

glue
silica sphere

glass substrate

(a) A drop of glue is deposited at the edge of
a glass substrate. The cantilever position is
adjusted using a micro-manipulator so that
the tip just touches the glue. All this is done
under a microscope (10OX magnification).

glass substrate
(b) A microsphere is adjusted so that it is
right at the edge of a clean glass substrate.
The sphere adheres to the glue near the tip.

Figure 5-3: Method of attaching microsphere to cantilever
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Au Silica sphere Au UV glue

SiN UV glue SiNL Silica sphere
(a) Good attachment. (b) Bad attachment.

Figure 5-4: Good and bad ways of attaching spheres to cantilevers. The reason for
this is discussed in Section 5.4.2

of the mechanical pump and turbomolecular pump is minimized us to measure the

noise spectral density of the AFM cantilever. The thermal noise spectrum curves for

the cantilever in vacuum, shown in Fig. 5-5, are obtained from the deflection signal of

the PSD (PSD X signal) using a lock-in amplifier (SR850, Stanford Research system).

The noise spectrum of the cantilever shows the behavior of a damped mass-spring

oscillator. By fitting the data to the noise spectrum of a damped harmonic oscillator

[111-113], the resonance frequency and the Q-factor can be determined. As shown in

Fig. 5-5(a), when the apparatus is well isolated from the vacuum chamber, the noise

spectrum curves are "clean" and a consistent value of the resonance frequency and Q
factor can be obtained. From six such noise spectrum curves, the resonance frequency

was found to be 1.315 t 0.0002 kHz. The obtained Q-factor is 316.6 ± 16.9. While

the resonance frequency and Q-factor can be used to understand the forces on the

cantilever as the gap between the sphere and the substrate decreases, that is not the

purpose of this work.

In contrast to the noise spectrum in Fig. 5-5(a), that for a case when the vibration

from the chamber affects the signal is shown in Fig. 5-5(b). The spikes in the noise

spectrum are eliminated when the damping is improved. In this case, the culprit was

surprisingly three vibration dampers purchased from Radio Shack. On removing the

offending dampers, the noise spectrum improved significantly (It was a surprise that

adding dampers to the apparatus actually resulted in poorer performance!). This can

also be seen from the low frequency noise spectrum, as shown in Fig. 5-6.
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Figure 5-5: Thermal noise curves of the cantilever.
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Figure 5-6: Low frequency noise spectrum of the cantilever.

5.4.2.2 Misalignment of cantilever

However, these are not the only sources of error. Shown in Fig. 5-7 is one common

source of error. This is due to the position of the cantilever relative to the edge of

the substrate. If the cantilever is away from the edge of the substrate, it is likely

that as the substrate closes in near the sphere, the edge could intersect a part of
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AFM cantilever AFM cantilever

(a) Path of laser beam is obstructed when (b) Path of laser beam is unobstructed when
the gap between the substrate and the the substrate is sufficiently away from the
sphere is small enough sphere

Figure 5-7: Restrictions on the positioning of the cantilever and the substrate due to
obstruction of the laser beam by part of the substrate

the laser beam, leading to a cooling of the spurious cantilever, as shown in Fig. 5-7.

The chances of this error manifesting itself increases if the sphere is attached to the

cantilever as shown in Fig. 5-4(b). Another source of error is the angle between the

cantilever and the substrate. To ensure that the angle is as close as possible to 900,

the cantilever and substrate are viewed through a Specwell magnifier and adjusted. A

Canon Powershot A95 digital camera is used in conjunction to the Specwell magnifier

to take images, as shown in Fig. 5-8, to get an estimate of the angle. A configuration

like in Fig. 5-7(b) or Fig. 5-8(b) leads to an error of the form shown in Fig. 5-9, the

details of which are discussed in Sec. 5.5.

5.4.2.3 Issue of drift

The bi-material cantilever is a good sensor of choice because of its sensitivity to

temperature changes as small as 10-4 K. It is precisely this sensitivity that makes

the cantilever extremely susceptible to environmental temperature changes as well

as any fluctuations in the output of the laser beam. The laser diode module takes

approximately 5 hours for the fluctuations in output to decrease and stabilize inside

the vacuum chamber. Hence the measurements are all taken at least 5 hours after

the turbo-pump is turned on.
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(a) Image of the AFM cantilever (b) In this image, the cantilever and
aligned almost perpendicularly to the the substrate are not aligned perpen-
substrate. The cantilever is also posi- dicular to each other. In addition the
tioned such that it is nearly at the edge cantilever is positioned away from the
of the substrate. This ensures that the edge making it more likely for the error
error described in Fig. 5-7 does not oc- discussed in Fig. 5-7 to occur. In fact,
cur in this case. the error does occur and is discussed in

Fig. 5-9

Figure 5-8: Images of the AFM cantilever and substrate taken using a hand-held
Canon digital camera through a Specwell magnifier mounted on a stand. The mag-
nifier is used to align the cantilever and the substrate.

5.5 Obtaining "heat transfer - distance" curves

Atomic force microscopes have been used since the conception of the AFM to measure

the molecular forces between the AFM tip and a substrate or a colloidal particle and

a substrate. The cantilever experiences a deflection proportional to the force exerted

on it. As the gap between the cantilever and the substrate decreases, the deflection

is measured and this gives a measure of the molecular forces once the stiffness of the

cantilever is known. The force versus gap curve thus obtained is known as a "force

- distance" curve. When bi-material cantilevers are used (Au is used as a reflective

coating on one side of the Si3N4 cantilever), the cantilever can bend due to forces as

well as heat transfer. Since the cantilever is nearly perpendicular to the substrate, it

acts as a stiff spring for forces (force have to axially stretch the cantilever) whereas

the cantilver is as compliant to heat-transfer. The amount of laser power that is

absorbed by the cantilever decreases as the substrate is moved closer to the sphere

and manifests as a deflection signal.
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Figure 5-9: A plot of deflection signal (y-axis on left) and PSD sum signal (y-axis
on right)corresponding to Fig. 5-7(b) and Fig. 5-8(b). On the x-axis is an index
proportional to time. With increasing value of the abscissa the gap is decreasing
and the cantilever is cooling, corresponding to increasing deflection or PSD X signal.
The PSD sum signal is relatively steady and drops by 3.5 mV as indicated by the
black arrow. This happens because the substrate is close enough to the cantilever
to obstruct a part of the laser beam from reaching the cantilever. This results in a
cooling of the cantilever not related to the cooling due to heat transfer between the
sphere and the substrate.

5.5.1 Calibrating the cantilever

To convert the deflection signal to heat absorbed or released from the sphere at the

end of the cantilever, a calibration routine is necessary. Fortunately, this can be done

without any modification to the apparatus. The power output of the laser diode

module can be modified by varying the varying the DC voltage required to power

the laser, as shown in Fig. 5-10. By varying the DC voltage to the laser module

from 4.0 V to 5.0 V, the power output can be varied from 2.5 mW to 2.75 mW.

The variation of laser power with DC voltage is measured using a power meter. This

increase in power of the laser causes a heating of the cantilever and hence a change in

the PSD X signal. This is also accompanied by an increase in the sum signal because

of the increased power incident on the PSD. Two such calibration procedure results

are shown in Fig. 5-11 and Fig. 5-12. In Fig. 5-11, the calibration procedure is done
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Figure 5-10: Variation of laser power output with power supply voltage. The diode
module "turns on" around 3.8 V (data not shown) and varies linearly with voltage
in the range between 3.9 V to 4.4 V. Beyond 4.5 V the power output of the module
saturates at ~ 2.75 mW.

at atmospheric pressure inside the vacuum chamber. In Fig. 5-12, the calibration

is done at 6.6 x 10-3 Pa. When the cantilever is at atmospheric pressure only a

part of the absorbed laser power flows through the cantilever and causes a deflection.

Natural convection (mainly conduction) from the sphere accounts for rest of the heat

loss. When the pressure is as low as 6.6 x 10-3 Pa, the mean free path of air molecules

approximately 1 m, much longer than the characteristic lengths affecting heat transfer

from the sphere and AFM cantilever (length of the cantilever is 200 Jm and diameter

of the sphere is 50 nm). Under such conditions, all the laser power absorbed flows

through the cantilever and results in a larger deflection signal compared to that when

the cantilever is in air at atmospheric pressure.

5.5.1.1 Measuring absorptivity of cantilever

The sum signal from the PSD is an indication of the amount of laser power reflected

from the cantilever and incident on the PSD. To determine the relation between the

deflection of the cantilever and the power absorbed, the absorptivity of the cantilever
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Figure 5-11: Deflection of cantilever in air due to change in incident power. The
x-axis is proportional to time elapsed. The deflection signal corresponds to the y-axis
to the left. The sum signal corresponds to the y-axis on the right. On changing the
power supply voltage from 5.0 V to 3.99 V, the power output of the laser changes
from 2.75 mW to about 2.5 mW. This decrease in power results in a cooling of the
cantilever as shown by a decrease in the sum signal and a corresponding increase in
the deflection signal (increasing deflection signal implies cooling og the cantilever).
The shift (in x-axis or time) between the curve corresponding to the delfection signal
and the sum signal occurs because of an interval of time between the instant that the
datalogger for the sum signal is started and that for the deflection signal is started.

should be known. For a known amount of laser power incident on the cantilever, the

absorptivity can be determined by measuring the reflected and scattered light, and

using Kirchoff's laws of radiation. The PSD sum signal as measured by the PSD

during the experiment is a measure of the reflected power. The main portion of the

scattered light is that portion of the incident beam that is slight diffracted by the

cantilever but proceeds directly behind the cantilever (as opposed to getting reflected

in front of it). This can be estimated by measuring the sum signal with the PSD

placed behind the cantilever. The power in the incident beam can be measured by

removing the cantilever from the path of the laser so that it is directly incident on

PSD screen. The data from one such measurement are shown in Fig. 5-13. The

sum signal in the case of reflected signal is 1.911 V, scattered light is 0.306 V, and
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Figure 5-12: A similar curve as in Fig. 5-11 except this is done at 6.6 x 10- Pa.
The increase in the value for the deflection signal for a similar decrease in sum signal
occurs because of the decreased heat transfer from the cantilever and the sphere to
the ambient at reduced pressures.

the incident or total is 2.495 V. A significant portion of the scattered light is in fact

light that is not directly incident on the cantilever. The cantilever absorption is then

proportional to [2.495 - (0.306 + 1.911)] = 0.278 V. This results in an absorptivity of

approximately 0.11. It should be noted that this is an upper limit for the absorptivity

of the cantilever. This is because only a portion of the scattered light (though most

of it) is taken into account. In the experiments to be described, it is not the incident

(or total) but the reflected light that is measured. The ratio of the absorbed to the

reflected signal is given by 0.278/1.911 P 0.13. Finally, it should be mentioned that

the DC voltage for the laser diode module is 5.0 V, corresponding to an incident

power is approximately 2.75 mW. Hence, a sum signal of 2.495 V corresponds to 2.75

mW or 1.122 mW/V of sum signal.

With the absorptivity of the cantilever known, we can analyze the data in Fig. 5-

11 and Fig. 5-12 to calibrate the cantilevers. In Fig. 5-11, the sum signal varies on an

average by 0.168 V as the DC voltage to the laser is changed from 5.0 V to 4.0 V. This

corresponds to an absorption of 0.13 x 0.168 x 1.122 mW/V = 24.5pW. At the same
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Figure 5-13: PSD sum signal data for measuring the absorptivity of the cantilever.

time, the PSD X signal, corresponding to the deflection of the cantilever, changes by

214.3 mV. This implies that an absorption of 24.5 puW results in a deflection signal

of 214.3 mV or a sensitivity of 114.3 pLW/V of PSD X signal. A similar analysis of

the data from Fig. 5-12 results in a sensitivity of 21.5 ptW/V of PSD X signal. This

increased sensitivity of the cantilever to heat transfer at the tip is because of the

reduced heat losses when the pressure is reduced.

5.5.2 Conductive heat transfer between a sphere and a sub-

strate

The conductive heat transfer between a sphere and a substrate is at least 100 times

larger than the heat transfer expected from near-field radiative transfer. Given the

problems associated with performing the experiment in vacuum conditions (mainly

vibrations) and the coarse nature of the motion control for the substrate, obtaining

heat transfer-distance curves for conduction transfer between the sphere and the

substrate can be helpful in illustrating the details of the method. Since conduction

heat transfer between the sphere and substrate is detectable over larger length scales
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(a few multiples of the diameter of the sphere), the coarse nature of the motion control

becomes less of an issue. A subset of the data that is plotted in Fig. 5-14 is shown in

Table 5.5.2. Each data point is obtained at a given position of the substrate, which

can read from a display in the encoder of the Oriel motor mike. At each position,

the "PSD X average" and "PSD X stdev" are obtained from the mean and standard

deviation of approximately 100 data points. Contact between the sphere and the

substrate manifests itself as a large signal in the PSD X signal (as well sum signal).

Once the contact point is known, the position of the substrate can be converted to an

equivalent gap. The calibration data for these data was shown in Fig. 5-11 and the

sensitivity was determined to be 114.3 pW/V. Taking the standard deviation of the

PSD X signal (= 0.4 mV) as a noise floor for the measurements, we see that we can

measure heat-transfers as small as 45.72 nW. In fact, the standard deviation of the

measurements can be decreased to less that 0.1 mV by using a slower filter setting in

the K182 nanovoltmeter, implying measurement of heat transfer as small as 10 nW.

However I have not done so to ensure that the time response of the nanovoltmeter is

appropriate for my purpose.

5.5.3 Near-field radiative transfer data

With the vacuum chamber evacuated to approximately 6.6 x 10- Pa, the same pro-

cedure as described previously to obtain heat-transfer distance curves is repeated.

However, there are a few significant differences. The operation of the vacuum pumps

during the measurements makes vibration induced noise a greater problem. In addi-

tion, the flux is much smaller and that makes the measurement tougher. Near-field

effects, as seen from the previous chapter, become noiceable when the gap is approx-

imately 10 pm or less. Given the sensitivity of measurements and the resolution of

the motion control stage (100 nm), this allows for only about 6 or 7 data points for

each heat transfer-distance curve measurement. The raw data from one of the exper-

iments is shown in Fig. 5-15. Shown in the figure are two curves corresponding to the

deflection signal (y axis to the left) and the sum signal (y axis to the right). As time

increases along the x-axis, the gap between the sphere and the substrate decreases.
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Gap (pm) PSD X average PSD X stdev
153 -0.341 0.332

144.4 1.415 0.399
139 4.136 0.325

133.3 7.412 0.311
127.9 10.684 0.347
123.6 13.119 0.350
117.4 17.494 0.334
112.8 20.730 0.294
108.4 23.883 0.271
104.3 27.459 0.346
99.2 32.152 0.354
95.3 35.711 0.502
90.1 40.534 0.309
88 42.786 0.470

84.9 46.033 0.346
79.8 52.307 0.283
75 58.246 0.279

70.5 64.398 0.470
67.4 68.884 0.281
65.1 72.377 0.395
62.5 76.492 0.348
60.1 79.834 0.293
57.6 84.316 0.340
54.9 88.988 0.300
52.3 94.191 0.429
50.1 98.465 0.342

Table 5.1: A subset of the data for a heat transfer-distance curve showing the average
values and standard deviation at each value of the gap. All PSD data are given in
mV.
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Figure 5-14: Conduction heat transfer between a silica sphere and a silicon substrate
as a function of gap. The five curves correspond to five different heat transfer-distance
curves

The sum signal curve is noisy but steady and flat even as the gap decreases. This

ensures that the signal that is measured is predominantly due to the near-field effect

and not due to the spurious effect described in Fig. 5-9. As described in the previous

section, the data from multiple heat-transfer distance curves have been averaged and

the resulting data is shown in Fig. 5-16. The data corresponding to gaps of less than

2 pm is shown in Fig. 5-17. Shown in the figure is also a curve fit with the function

Ax- as discussed in Chapter 4. From the data, we get a best fit value of n = 0.5073

from Fig. 5-16 and n = 0.4432 from Fig. 5-17. This is in agreement with the predic-

tion from the numerical results, which predicts an exponent of approximately 0.5 for

spheres of radius 25 Im (see Fig. 4-13). From the calibration of the cantilever (Fig.

5-12), we see that a value of 20 mV for the PSD X signal corresponds to 430 nW. Is it

possible to estimate the conductance at this value of flux? For that the temperature

difference between the sphere and the substrate is necessary. Though the response of

the cantilever to power input is known, the response to temperature changes is not

know. However, the dimensions of the cantilever, shown in Fig. 5-18 can be used to
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Table 5.2: Values of thermal conductivity of thin Si3 N4 and Au.
Material/Processing Film thickness (nm) Thermal conductivity (Wm-'K-1)

Si3N4/LPCVD 236 2.5 ± 0.1 [115]
Si3N4/LPCVD 300 2.4 + 0.25 [116]
Si 3N4 /PECVD 300 1.8 t 0.5 [116]

Au/sputtered on quartz ~ 650 nm ~ 190 [117]

estimate the conductance of the cantilever. The thickness of the Si3N4 layer is 450

nm and that of the Au layer is 70 nm (from vendor data). The thermal conductivity

of bulk Si3N4 is approximately 30 Wm-'K-1 and that of bulk Au is 296 Wm- 1K-1

[107, 114]. The conductance of each leg is approximately 7 x 10-6 Wm-'K-1. From

Fig. 5-12, we know that the sum signal is approximately 1.54 V. The absorbed power

is then (1.54/2.485) x 0.13 x 2.75 mW = 221 pW. This implies a temperature dif-

ference of approximately 15.75 K. This estimate of temperature difference implies a

near-field radiative conductance of 430 nW/15.75 K = 27.3 nWK-1. This value for

conductance seems to be larger than what the theory predicts. However, it is well

known that the thermal conductivity of thin films can be considerably lower than

that of the bulk material. Sample values of the thermal conductivity of thin film

Si3 N4 and Au from literature given in Table 5.2. Assuming the reduced thermal con-

ductivity of Si3 N4 and Au to be 2.5 Wm-'K-1 and 100 Wm- 1K-1 respectively, the

conductance of the cantilever reduces to 3.32 x 10-6 WK- 1. With this as the conduc-

tance of the cantilever, the temperature difference between the tip and the substrate

is 66.6 K, resulting in a conductance of 6.46 nWK- 1. This value of the conductance

is much closer to what is expected from theory. Using the values of conductivity and

dimensions of the cantilever stated above, the near-field radiative conductance from

the data in Fig. 5-16 is plotted in Fig. 5-19. A theoretical estimate of the near-field

radiative conductance between a sphere and a substrate is also shown in the figure.

The method described in Chapter 4 cannot be used to predict the near-field radiative

conductance between a sphere and a substrate due to computational restraints. How-

ever, the aymptotic theory described in Sec. 4.2 predicts that the near-field radiative

conductance between a sphere and a substrate is twice the conductance between two

spheres [118]. Due to the lack of a better theory, I have estimated the near-field
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Figure 5-15: Raw data from one experiment to obtain a heat transfer - distance curve

conductance between the sphere and the substrate by multiplying the near-field con-

ductance (only the part of the conductance that varies as Aix-") from Fig. 4-13 by 2.

It is seen from Fig. 5-19 that the experimental results are in agreement with theory.

However, further experimental modifications as suggested in Sec. 5.6 should enable

better confirmation of theory with experiments.

5.6 Improving the current experimental apparatus

I list a few methods by which the experiment can be refined. I believe there can be

at least a 100 fold decrease in the minimum flux that can be measured. The steps

are:

1. Use a better vacuum chamber. Ideally, it should be possible to pump down

the chamber and switch off all the pumps and retain the pressure inside the

chamber at 10- 3 Pa. If this is possible, vibration induced noise can be decreased

significantly.

2. Use better motion control for the substrate. I did try to use a simple lever
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Figure 5-18: Close up view of a bi-material cantilever with dimensions in microns.
The location of the laser spot on the cantilever is also shown. This is an approximate
location.
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Figure 5-19: Near-field radiative conductance with variation of gap between sphere
and substrate. The continuous curve is best fit to the data. The dotted curve is a
theoretical estimate of the near-field radiative conductance between a sphere and a
substrate.
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technique to convert the 100 nm steps of the current stage into a 10 nm steps.

Though I was succesful at that, I could not perform a successful experiment with

that configuration for radiation experiments. A shielded piezo stack should be

a good choice.

3. Alter the apparatus so that the substrate is in a horizontal plane (like the

substrate in a conventional AFM). The cantilever is still perpendicular to the

substrate but is now vertical. The reason for this is that it become much easier

to incorporate an microscope with the whole setup.

4. Better control for adjusting the position of the substrate. Currently everything

is done manually, frequently resulting in the destruction of cantilevers (with

spheres!).

5. Cleanliness of sphere and substrate. Even though care was taken to clean them

as much as possible, there is at least an hour of work in ambient air before the

whole apparatus is ready for the experiment. This could lead to contamination

of the surface.

5.7 Similarities and differences between "force-distance"

and "heat transfer-distance" curves

In the preceding sections, I have discussed some of the similarities and differences be-

tween measuring "force - distance" curve using an AFM and measuring "heat transfer-

distance" curves using the current apparatus. The force - distance curve in the AFM

can be measured in one of two modes - static or dynamic. Static refers to measuring

the deflection of cantilever as it approaches a substrate. Dynamic method refers to

measurement of shift in the resonance frequency of the cantilever as it approaches a

substrate. The dynamic method is possible because the effective spring constant of

the cantilever is modified by the non-linear change of force as the gap decreases. The

heat transfer - distance curve measured so far corresponds to the static type of mea-

98



surement. It does not seem there is a corresponding dynamic method for measuring

the heat transfer - distance curve. It is possible to modulate the cantilever with a

separate pump beam but finally measurement of heat transfer requires measurement

of an amplitude, not the shift of the resonance frequency. It will be interesting to see

if heat transfer measurements can also have a dynamic method based on shift of a

resonance frequency.
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Chapter 6

Summary and outlook

6.1 Summary

This work in the area of nanoscale thermal radiation started with an investigation

of near-field enhancement due to surface phonon polaritons and its application to

thermophotovoltaic energy conversion (Section 3.4, [37]). That was followed by in-

vestigating thermal radiation in 1D periodic structures. The phased array technique

was used to determine the DGF for an infinite periodic structure (Section 3.5.1, [75]).

Based on this work 1D periodic metallo-dielectric structures are proposed as selec-

tive emitters that mimic the performance of more complicated 2D or 3D structures

(Section 3.5.2, [53]).

Attempts to experimentally validate the near-field enhancement effect using par-

allel surfaces proved to be unsuccessful due to problems cited in Chapter 5. Replac-

ing one of the surfaces by a sphere simplifies the situation considerably. Generally

sub-micron spheres are favored because they can be treated using the dipole ap-

proximation. However the radiative conductance with radiative transfer between a

sub-micron sphere and a substrate is of the order of 10-10 WK' - at least one order

of magnitude smaller that what can be measured easily. Since no rigorous model

exists for near-field radiative transfer between two spheres, the two-sphere problem is

solved by determining the DGF and subsequently determining the conductance with

the help of the fluctuation-dissipation theorem. Though scattering by two spheres
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has been discussed extensively in literature, one area that has not been is the near-

field interaction between them. Generally, the quantity of interest has been far-field

scattering parameters. A new convergence criterion for the two-sphere problem is

proposed based on analogy with work in near-field radiation problems between paral-

lel surfaces. This criterion has been verified by subsequent numerical results. A new

regime map for the validity of various theories is also proposed.

Even with the extension of the theoretical work to the two-sphere problem, it

remains a question as to the best way to test this experimentally. After elimination of

other techniques of measurement (scanning thermal microscopy based on Wollaston

wire type sensors, scanning thermocouple microscopy), the bi-material sensor was

chosen as it is one of the most sensitive temperature sensors. By attaching a sphere

to an AFM cantilever, it has been possible to measure heat transfer between a sphere

and a substrate to obtain "heat transfer-distance" curves. This is the first time the

concept of "heat transfer-distance" curves has been discussed in literature. Using this

technique it has been possible to measure near-field radiative transfer vs. gap curves

for heat transfer between the sphere and a substrate. The quantitative value and

trend obtained are in agreement with theory.

6.2 Possible extentions of this work

Though the formulation of the two-sphere problem is complete, computational re-

straints impose a limit on the maximum radius to gap ratio that can be investigated.

White it is possible to utilize larger computational resouces to solve the problem, it

seems like there should be a more elegant way of approaching the the limit of small

gaps. This will also be of great use to the experimentalist since it should provide a

route for better prediction for near-field interaction between a sphere and a flat plate,

the configuration that is closer to that used in the experiment.

Though dispersion forces like Van der Waals and Casimir forces have their ori-

gin in fluctuational electrodynamics, just as thermal radiative transfer, the area of

measuring molecular forces between objects is a much more mature field of study.
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By comparison, the area of near-field thermal radiation is quite young. I hope that

the work on the two-sphere problem and the subsequent development of the experi-

mental technique to measure the small radiative transfer involved will go some way

in addressing that situation. The experimental apparatus discussed here can be im-

proved in the future to build a device capable of measuring extremely small radiative

transfers - much like what the surface force apparatus in measurement of forces [118].
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Appendix A

Scalar and vector spherical

harmonics

A.1 Spherical Harmonics

Given below are a collection of formulae related to scalar and vector spherical har-

monics I found useful when formulating the two-sphere problem. While I have not

given references for any of the equations, I found the following references very useful

[43,98, 119, 120].
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A.2 Vector spherical harmonics

V01)= rYim(0, #)

V = V x rYm(0, q) _ r x VYm(, q)
1(1 +1) l(l +1)

1(imy, YiM- m\

V(3- rVYim(O,#0)
m( + 1)

(i Y + )

Tr (V (V(2)

Tr (V 17)

Tr (V () ) -

Tr V 1 )

#(13 + 1)1 (1 + 1)

+ 1)1 (1 + 1)

( 0Yor 0Y,-rn
09 0

(0yom 0Yi,-r

00 00

3(/+ 1)1(l + 1)

(+ 1)1(1 + 1)

( im)
(im"\ 0

+ Y,3my,-msin+ 1

sinG 2o

a (YOnY,-M)

(Ylm Y,-m)

Tr(vo(±V) ) = (-1)mY3mYim

((v±)

(

( + 1) imY) YmYn,-m

+1)M Ylm
V/3(/3+ 1) 00

I dQ cos 0Tr (V
VMj~ dQ cos OYlnY,-

(l +1) 2 _m 2

(-1)m i36,+1 (21 + 1)(21 + 3)
12 - M 2

(21 - 1)(21 + 1)

(A.39)

108

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)

(A.37)

(A.38)VM1 -M ) &



((2)(2)dQ cos9OTr )V$V3 - 1____
f/ V3()3 + 1)1(1 + 1)

ay
,3m 19y

dQ cos 0 + t M2 Yomyl,-m-- 2 n
ao 190 6111 v

(+ 2)
(1 + 1)2 - M 2

(21+ 1)(21 + 3)
VI2--I

+ op~z- 1
2 -m

2  1
(21- 1)(21 + 1)

= dQcos 6Tr (v'v 1)

(A.40)

dQcosOTr 3 = rn(1+ )(1+1) fdQcos0 (YmYim,_)

= (-1)m"r 6m
1+ 1

(A.41)

SdQ sin ( vV = (-1' 
+1

=( 1) + 1)

dQYlmY,_m

(A.42)

dQ sinO (V Im

=(-1)" 6 (2m + I + 2) (l + 1) 2 - m 2

, (l + 1)(l + 2) (21 + 3)(2l + 1)
+ (2m - l + 1)

- ( -- 1)

12 -m 2

(21+ 1)(21 - 1)

(A.43)

sin0 (v

=-1 2 (2 + 1) 2 -,m 2

+ 1 (21 + 3)(21 + 1) 1'~1 l

12 -M 2

(21 + 1)(21 - 1)

(A.44)

1(l+ 1) dQsin0 (VV,()

V( +2) (l±1) 2  -6 7n21(1 ± (1 + 3)(21 + 1) /,-

12-rn2

(2 ±1)(21 - 1)

(A.45)

109

I

I

JdQ

= (~1)m [6/31+1



j (s, ) x vS*(oq)) . i dQ = 0

(2, #) x v3 )*(, #)) . f dQ = 6pl5mq

(3,q#) x V2)*(O,#)) . f dQ = -ip6mq

k e'J' Mm)(kar') . M )*(kar')dr' =

61pomqa9('k*az, (k a)(,('*(k a))
mq a aa

k 2 J' Ni1 (kar ) .N )*(kar') dr'

Jlp6.qaQ k*azl *a(k kaa (A.50)

110

(A.46)

(A.47)

(A.48)

(A.49)



Appendix B

Mathematica code for the solution

to the two-sphere problem

<< LinearAlgebra'MatrixManipulation'

ElecCharge = 1.602*10^(-19);

PlanckBy2Pi = 1.0546*10^(-34);

kBoltz = 1.38*10^(-23);

LightVel = 3.0*10^8;

T = 300;

wmin = 0.06; (* minimum frequency in eV*)

wmax = 0.07; (* maximum frequency in eV*)

wlo = 0.12; (*longitudinal optical freq*)

wto = 0.098; (*longitudinal optical freq*)

gam = 5.88*10^(-3); (*damping*)

epsinf = 6.7;

(*w = Table[wmin + (r - 1)*(wmax - wmin)/(Nfreq - 1), {r, 1, Nfreq}];*)

(*dielecfn = epsinf*(wlo^2 - w^2 - I*gam*w)/(wto^2 - w^2 - I*gam*w);

refind = Sqrt[dielecfn];*)
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Nfreq = 100;

Nfreql = 45;

Nfreq2 = 45;

resfreql = 0.061;

resfreq2 = 0.144;

freqBW = 0.04;

wi = Table[resfreql-freqBW/2+(r-1)*freqBW/(Nfreql-1),{r,1,Nfreql}];

w3 = Table[resfreq2-freqBW/2+(r-1)*freqBW/(Nfreq2-1),{r,1,Nfreq2}];

w2 = Table[wi[[Nfreql]]+r*(w3[[111-wi[[Nfreqi]])/(Nfreq-Nfreql-Nfreq2+1),

{r,1,Nfreq-Nfreql-Nfreq2});

w = Join[w1,w2,w3);

freqinterval = Table[0,{r,1,Nfreq-1}];

freqinterval = Table[w[[r]],{r,2,Nfreq}]-Table[w[[r]],{r,1,Nfreq-1}];

refinddata = Import[I'SiliconDioxideAmorphousIRRefInd.dat"];

SpecConductance12 = Table[0, {r, 1, Nfreq}];

SpecConductance2l = Table[0, {r, 1, Nfreq}];

(*a = 25000.0*10^(-9);

b = 50.0*10^(-9);

d = 100.0*10^(-9);*)

<<inputfile.txt

d = d + (a + b);

(*w[[1]] = 0.061;*)
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For[s = 1, s < Max[2, Nfreq + 1],

FreqEv w[[s]];

FreqRad = FreqEv*ElecCharge/PlanckBy2Pi;

freqlist = refinddata[[All,1]];

freqposl = Last[Position[Negative[freqlist-FreqEv],False]][[1]];

freqpos2 = First[Position[Negative[freqlist-FreqEv],True]][[1]];

RefIndA \

=((freqlist[[freqposl]]-FreqEv)*(refinddata[[freqpos2,2]]+I*refinddata[[\

freqpos2,3]])+(-freqlist[[freqpos2]]+FreqEv)*(refinddata[[freqposl,2]] +I*\

refinddata[[freqposl,3]]))/(freqlist[[freqposl]]-freqlist[[freqpos2]]);

(*RefIndA = 1.0*refind[[s]];

RefIndB = 1.0*refind[[s]];*)

RefIndB = RefIndA;

RefIndVac = 1.0;

ka = (FreqRad/LightVel)*a;

kb = (FreqRad/LightVel)*b;

kd = (FreqRad/LightVel)*d;

kta = (kBoltz*T/(PlanckBy2Pi*LightVel))*a;

PowerIndicator = 1;

conductive = 0;

Nmax = Ceiling[3*(1 + Abs[kd])/2.0] + delNmax;

(*Nmax = 200;*)

Tmatrix = Table [0, {2*Nmax + 3}, {2*Nmax + 3}];
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PowerMatrix12 =

ZeroMatrix[Nmax + 1,

Nmax]; (*This will contail final flux vales. Almost half wilcat 1 be \

empty*)

PowerMatrix2l = ZeroMatrix[Nmax + 1, Nmax];

(*Evaluating various Bessel's

Begins here*)

BesRicJArrayka = Table[O, {n,

BesRicYArrayka = Table[O, {n,

BesRicJArraykb = Table[Q, {n,

BesRicYArraykb = Table[O, {n,

BesRicJArraykAa = Table[O, {n,

BesRicYArraykAa = Table[0, {n,

BesRicJArraykBb = Table[O, {n,

BesRicYArraykBb = Table[Q, {n,

functions for further calculations.

1, Nmax + 1}];

1, Nmax + 1}];

1, Nmax + 1}];

1, Nmax + 1}];

1, Nmax + 1}];

1, Nmax + 1}];

1, Nmax + 1}];

1, Nmax + 1}];

(*For input argument ka. These are all for kfa and kfb.

Need to compute separate bessel function for the reflection \

coefficients*)

BesselJArrayka = Sqrt[Pi/2.0/ka]*Table[BesselJ[n + 0.5, ka], {n, 0, Nmax}];

BesselYArrayka = Sqrt[Pi/2.0/ka]*Table[BesselY[n + 0.5, ka], {n, 0, Nmax}];

BesselHArrayka = BesselJArrayka + I*BesselYArrayka;

BesRicJArrayka[[Table[n, {n, 2, Nmax + 1}]]] =

BesselJArrayka[[Table[n, {n, 1, Nmax}]]] -

Table[n, {n, 1, Nmax}]/ka*BesselJArrayka[[Table[n, {n, 2, Nmax + 1}]]];
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BesRicYArrayka[[Table[n, fn, 2, Nmax + 1})]] =

BesselYArrayka[[Table[n, {n, 1, Nmax}])] -

Table[n, {n, 1, Nmax}]/ka*BesselYArrayka[[Table[n, fn, 2, Nmax + 1}]]];

BesRicJArrayka[[1]] = Sqrt[Pi/2.0/ka]*BesselJ[-l + 0.5, ka];

BesRicYArrayka[[1]] = Sqrt[Pi/2.0/ka]*BesselYE-l + 0.5, ka];

BesRicHArrayka = BesRicJArrayka + I*BesRicYArrayka;

(*For input argument kb*)

BesselJArraykb = Sqrt[Pi/2.0/kb]*Table[BesselJ[n + 0.5, kb], fn, 0, Nmax}];

BesselYArraykb = Sqrt[Pi/2.0/kb]*Table[BesselY[n + 0.5, kb], fn, 0, Nmax}];

BesselHArraykb = BesselJArraykb + I*BesselYArraykb;

BesRicJArraykb[[Table[n, fn, 2, Nmax + 1}]]] =

BesselJArraykb[[Table[n, fn, 1, Nmax}]]] -

Table[n, fn, 1, Nmax})/kb*BesselJArraykb[[Table[n, fn, 2, Nmax + 1}]]];

BesRicYArraykb[[Table[n, fn, 2, Nmax + 1}]]] =

BesselYArraykb[[Table[n, fn, 1, Nmax}])] -

Table[n, fn, 1, Nmax}]/kb*BesselYArraykb[[Table[n, fn, 2, Nmax + 1}]]];

BesRicJArraykb[[]] = Sqrt[Pi/2.0/kb]*BesselJ[-l + 0.5, kb];

BesRicYArraykb[[l] = Sqrt[Pi/2.0/kb]*BesselY[-l + 0.5, kb];

BesRicHArraykb = BesRicJArraykb + I*BesRicYArraykb;

(*Computing Bessel's functions for complex arguments.*)

BesselJArraykAa =

Sqrt[Pi/2.0/(ka*RefIndA)]*

Table[BesselJ[n + 0.5, ka*RefIndA], fn, 0, Nmax});

BesselYArraykAa =

Sqrt[Pi/2.0/(ka*RefIndA)]*

Table[BesselY[n + 0.5, ka*RefIndA], fn, 0, Nmax}];

BesselHArraykAa = BesselJArraykAa + I*BesselYArraykAa;

BesRicJArraykAa[[Table[n, fn, 2, Nmax + 1}]]] =
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BesselJArraykAa[[Table[n, {n, 1, Nmax}]]] -

Table[n, {n, 1, Nmax})/(ka*RefIndA)*

BesselJArraykAa[[Table[n, {n, 2, Nmax + 1}]]];

BesRicYArraykAa[[Table[n, {n, 2, Nmax + 1)]]] =

BesselYArraykAa[[Table[n, {n, 1, Nmax}]]] -

Table[n, {n, 1, Nmax}]/(ka*RefIndA)*

BesselYArraykAa[[Table[n, {n, 2, Nmax + 1}]]];

BesRicJArraykAa[[1]] =

Sqrt[Pi/2.0/(ka*RefIndA)]*BesselJ[-1 + 0.5, ka*RefIndA];

BesRicYArraykAa[[1]] =

Sqrt[Pi/2.0/(ka*RefIndA)]*BesselY[-1 + 0.5, ka*RefIndA];

BesRicHArraykAa = BesRicJArraykAa + I*BesRicYArraykAa;

(*Completed for complex input argument ka*RefIndA*)

(*For input argument complex kb*RefIndB*)

BesselJArraykBb =

Sqrt[Pi/2.0/(RefIndB*kb)]*

Table[BesselJ[n + 0.5, RefIndB*kb], {n, 0, Nmax}];

BesselYArraykBb =

Sqrt[Pi/2.0/(RefIndB*kb)]*

Table[BesselY[n + 0.5, RefIndB*kb], {n, 0, Nmax}];

BesselHArraykBb = BesselJArraykBb + I*BesselYArraykBb;

BesRicJArraykBb[[Table[n, {n, 2, Nmax + 1}]1] =

BesselJArraykBb[[Table[n, {n, 1, Nmax}]]] -

Table[n, {n, 1, Nmax}]/(RefIndB*kb)*

BesselJArraykBb[[Table[n, {n, 2, Nmax + 1}]]];

BesRicYArraykBb[[Table[n, {n, 2, Nmax + 1}]]] =

BesselYArraykBb[[Table[n, {n, 1, Nmax}]]] -

Table[n, {n, 1, Nmax}]/(RefIndB*kb)*

BesselYArraykBb[[Table[n, {n, 2, Nmax + 1}]]];
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BesRicJArraykBb[[1]] =

Sqrt[Pi/2.0/(RefIndB*kb)]*BesselJ[-1 + 0.5, (RefIndB*kb)];

BesRicYArraykBb[[1]] =

Sqrt[Pi/2.0/(RefIndB*kb)]*BesselY[-1 + 0.5, (RefIndB*kb)];

BesRicHArraykBb = BesRicJArraykBb + I*BesRicYArraykBb;

(*Completed for complex input argument kb*RefIndB*)

(*For input argument kd*)

BesselJArraykd =

Sqrt[Pi/2.0/kd]*Table[BesselJ[n + 0.5, kd], {n, 0, 2*Nmax + 2}];

BesselYArraykd =

Sqrt[Pi/2.0/kd]*Table[BesselY[n + 0.5, kd], {n, 0, 2*Nmax + 2}];

BesselHArraykd = BesselJArraykd + I*BesselYArraykd;

(*Evaluating various Bessel's functions for further calculations.

Ends here*)

ReflMNumA = (ka*RefIndA*BesRicJArraykAa/BesselJArraykAa -

ka*RefIndVac*BesRicJArrayka/BesselJArrayka);

ReflMDenA = (ka*RefIndA*BesRicJArraykAa/BesselJArraykAa -

ka*RefIndVac*BesRicHArrayka/BesselHArrayka);

ReflMNumB = (kb*RefIndB*BesRicJArraykBb/BesselJArraykBb -

kb*RefIndVac*BesRicJArraykb/BesselJArraykb);

ReflMDenB = (kb*RefIndB*BesRicJArraykBb/BesselJArraykBb -

kb*RefIndVac*BesRicHArraykb/BesselHArraykb);

ReflNNumA = (ka*RefIndA*BesselJArraykAa/BesRicJArraykAa -

ka*RefIndVac*BesselJArrayka/BesRicJArrayka);

ReflNDenA = (ka*RefIndA*BesselJArraykAa/BesRicJArraykAa -

ka*RefIndVac*BesselHArrayka/BesRicHArrayka);

ReflNNumB = (kb*RefIndB*BesselJArraykBb/BesRicJArraykBb -
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kb*RefIndVac*BesselJArraykb/BesRicJArraykb);

ReflNDenB = (kb*RefIndB*BesselJArraykBb/BesRicJArraykBb -

kb*RefIndVac*BesselHArraykb/BesRicHArraykb);

(**)

RhsMArray = (ka*RefIndA*BesRicJArraykAa*BesselJArrayka -

ka*RefIndVac*BesRicJArrayka*

BesselJArraykAa)/((ka*RefIndA*BesRicJArraykAa*BesselHArrayka -

ka*RefIndVac*BesRicHArrayka*

BesselJArraykAa)*(BesselJArrayka^2));

(*RhsMArray = (ReflMNumA/ReflMDenA)/(BesselJArrayka*BesselHArrayka);*)

(**)

RhsNArray = (ka*RefIndA*BesselJArraykAa*BesRicJArrayka -

ka*RefIndVac*BesselJArrayka*

BesRicJArraykAa)/((ka*RefIndA*BesselJArraykAa*BesRicHArrayka -

ka*RefIndVac*BesselHArrayka*

BesRicJArraykAa)*(BesRicJArrayka^2));

(*RhsNArray = (ReflNNumA/ReflNDenA)/(BesRicJArrayka*BesRicHArrayka);*)

RevRhsMArray = (ReflMNumB/ReflMDenB)/(BesselJArraykb*BesselHArraykb);

RevRhsNArray = (ReflNNumB/ReflNDenB)/(BesRicJArraykb*BesRicHArraykb);

(*Print ["Loop over m begins"];*)

(*Loop over m begins here. For each m, there are m, m + 1, ... ,

Nmax values of 1 for solutions*)

(*For[m = 0, m < Nmax + 1,*)

For[m = 0, m < Max[5,Nmax + 1],

(*Calculation of recursion coefficients for translation theorems,
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for each value of m*)

v = Table[n, {n, m, 2*Nmax}];

anmp = Table [0, {2*Nmax + 3}-];

anmp[[Table[

p, {p, 2 + m,

2*Nmax + 2}]]] = -Sqrt[(v + m +

1)*(v - m + 1)/((2*v + 1)*(2*v + 3))];

anmm = Table[Q, {2*Nmax + 3-];

anmm[[Table[p, {p, 2 + m, 2*Nmax + 2}]]] =

Sqrt[(v + m)*(v - m)/((2*v + 1)*(2*v - 1))];

bnmp = Table[O, {2*Nmax + 3}];

bnmp[[Table[p, {p, 2 + m, 2*Nmax + 2-]]] =

Sqrt[(v + m + 2)*(v + m + 1)/((2*v + 1)*(2*v + 3))];

bnmm = Table[O, {2*Nmax + 3}];

bnmm[[Table[p, {p, 2 + m, 2*Nmax + 2-]]] =

Sqrt[(v - m)*(v - m - 1)/((2*v + 1)*(2*v - 1))];

(*Calculation of translation matrix for scalar spherical waves.

The following blue section determines the scalar translation \

coefficients for a given value of m and all allowable values of n and nu,

upto n = nu = Nmax. The If statement is for starting values.*)

q = Table[p, {p, 2 + m, 2*Nmax + 2}] - 2;

If[m == 0,

Tmatrix[[2 + m, q + 2]] = (-1)^q*Sqrt[2*q + 1]*BesselHArraykd[[q + 1]]

(*Tmatrix[[2 + m, q + 2]] = (-1)^q*Sqrt[2*q + 1]*

BesselJArraykd[[q + 1]]*)

1;

For[n = m, n < 2*Nmax + 1,
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TmatrixE[2 + n + 1,

Table[p, {p, 2 + m,

2*Nmax +

2}]]] = (anmm[[Table[p + 1, {p, 2 + m, 2*Nmax + 2}]]]*

Tmatrix[[n + 2, Table[p + 1, {p, 2 + m, 2*Nmax + 2}]]) +

anmp[[Table[p - 1, {p, 2 + m, 2*Nmax + 2}]]]*

Tmatrix[[n + 2, Table[p - 1, {p, 2 + m, 2*Nmax + 2}]]] -

anmm[[n + 2]]*

Tmatrix[[n - 1 + 2, Table[p, {p, 2 + m, 2*Nmax + 2}]]])/

anmp[[n + 2]];

n++;

1;

(*Tempmatrix takes over the role of Tmatrix since Tmatrix has to be used \

for evaluating the coefficients for future values of m.

The Tmatrix statement 5 lines below is evaluating the translation \

coeffs starting values for the next value of m.*)

TempMatrix = Table [0, {2*Nmax + 3}, {2*Nmax + 3}];

TempMatrix = Tmatrix;

Tmatrix = Table [0, {2*Nmax + 3}, {2*Nmax + 3}];

Tmatrix[[2 + m + 1,

q + 2]] = (bnmm[[q + 2 + 1]]*TempMatrix[[2 + m, q + 2 + 1]] +

bnmp[[q + 2 - 1]]*TempMatrix[[2 + m, q + 2 - 1]])/bnmp[[m + 2]];

(*" scalar addition done for m"; *)(*Timing bracket*)

(*Print[" scalar addition done for m"];*)
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(*Start point for coefficient matrices - for each m,

1 starts at the greater of m and 1.*)

startpoint = m;

If [m == 0, startpoint = 1];

(*Defining translation matrices. First matrix sizes. TransCoeffs -

scalar trans matrix for + ve kd. MTransCoeffs - scalar for -

ve kd. VecTransAMat - Vector M to M + ve kd. VecTransBMat -

Vector M to N + ve kd. *)

TransCoeffs = ZeroMatrix[Nmax - startpoint + 1];

MTransCoeffs = ZeroMatrix[Nmax - startpoint + 1);

VecTransAMat = ZeroMatrix[Nmax - startpoint + 1];

VecTransBMat = ZeroMatrix[Nmax - startpoint + 1];

MVecTransAMat = ZeroMatrix[Nmax - startpoint + 1];

MVecTransBMat = ZeroMatrix[Nmax - startpoint + 1];

(*TransCoeffs gives the alpha matrix of Chew -

scalar translation coefficients*)

TransCoeffs =

SubMatrix[

TempMatrix, {startpoint + 2, startpoint + 2}, {Nmax - startpoint + 1,

Nmax - startpoint + 1}];

(*VecTransAMat - Vector M to M + ve kd. VecTransBMat - Vector M to N +

ve kd.*)

nutable = Table[nu, {nu, startpoint, Nmax}];

For[n = 1, n < Nmax - startpoint + 2,-

VecTransBMat[[n, nutable - startpoint + 1]] =
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TransCoeffs[[n, nutable - startpoint + 1]]/

Sqrt[(n - 1 + startpoint)*(n +

startpoint)*(nutable*(nutable + 1))];

VecTransAMat[[n, nutable - startpoint + 1]] =

Sqrt[(nutable + m +

1)*(nutable - m +

1)/((2*nutable + 3)*(2*nutable + 1))]/(nutable + 1)*

TempMatrix[[startpoint + 2 + n - 1, 2 + nutable + 1]] +

Sqrt[(nutable + m)*(nutable - m)/((2*nutable - 1)*(2*nutable + \

1))]/

nutable*TempMatrix[[startpoint + 2 + n - 1, 2 + nutable - 1]];

n++;

];

VecTransBMat = I*kd*m*VecTransBMat;

VecTransAMat = kd*VecTransAMat + TransCoeffs;

For[n = 1, n < Nmax - startpoint + 2,

VecTransAMat[[n, nutable - startpoint + 1]] =

VecTransAMat[[n, nutable - startpoint + 1]]/

Sqrt[(n - 1 +

startpoint)*(n + startpoint)/(nutable*(nutable + 1))];

n++;

];

TransCoeffs = Transpose[TransCoeffs];

VecTransBMat = Transpose[VecTransBMat];

VecTransAMat = Transpose[VecTransAMat];

(*Print[" vector addition done for m"];*)

(*Completed computing VecTransAMat and VecTransBMat*)
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(*Going from traditional translation matrices to those matrices which \

have eigenvalues less than 1. This is the true equivalent of the \

translation \

matrix for plane waves.

This is achieved by appropriate multiplication of bessel's \

functions.*)

(*Right below in blue are eight matrices that multiply appropriate \

translation matrices to reduce them to forms more useful for computation.*)

BessMat11 =

BessMat12 =

BessMat2l =

BessMat22 =

MBessMat11 =

MBessMat12 =

MBessMat21 =

MBessMat22 =

(*To compute

DomainArrayN

ZeroMatrix[Nmax

ZeroMatrix[Nmax

ZeroMatrix[Nmax

ZeroMatrix[Nmax

ZeroMatrix [Nmax

ZeroMatrix[Nmax

ZeroMatrix[Nmax

ZeroMatrix[Nmax

- startpoint + 1];

- startpoint + 1];

- startpoint + 1];

- startpoint + 1];

- startpoint + 1];

- startpoint + 1];

- startpoint + 1];

- startpoint + 1);

translation matrices for the negative direction*)

= Table[n, {nu, startpoint, Nmax}, {n, startpoint, Nmax}];

DomainArrayNu = Table[nu, {nu, startpoint, Nmax}, {n, startpoint, Nmax}];

MTransCoeffs = TransCoeffs*(-1)^(DomainArrayN + DomainArrayNu);

MVecTransAMat = VecTransAMat*(-1)^(DomainArrayN + DomainArrayNu);

MVecTransBMat = -VecTransBMat*(-1)^(DomainArrayN + DomainArrayNu);

123



BessMatll =

DiagonalMatrix[

Table[l.O/BesselHArraykb[[r]], {r, startpoint + 1,

Nmax + 1}]].VecTransAMat.DiagonalMatrix[

Table[BesselJArrayka[[r]], {r, startpoint + 1, Nmax + 1}]];

BessMat12 =

DiagonalMatrix[

Table[l.O/BesselHArraykb[[r]], {r, startpoint + 1,

Nmax + 1}]].VecTransBMat.DiagonalMatrix[

Table[BesRicJArrayka[[r]], {r, startpoint + 1, Nmax + 1}]];

BessMat2l =

DiagonalMatrix[

Table[l.O/BesRicHArraykb[[r]], {r, startpoint + 1,

Nmax + 1}]].VecTransBMat.DiagonalMatrix[

Table[BesselJArrayka[[r]], {r, startpoint + 1, Nmax + 1}]];

BessMat22 =

DiagonalMatrix[

Table[l.O/BesRicHArraykb[[r]], {r, startpoint + 1,

Nmax + l}]].VecTransAMat.DiagonalMatrix[

Table[BesRicJArrayka[[r]], {r, startpoint + 1, Nmax + 1}]];

MBessMatll =

DiagonalMatrix[

Table[l.0/BesselHArrayka[[r]], {r, startpoint + 1,

Nmax + 1}]].MVecTransAMat.DiagonalMatrix[

Table[BesselJArraykb[Er]], {r, startpoint + 1, Nmax + 1}]];

MBessMatl2 =

DiagonalMatrix[

Table[l.O/BesselHArrayka[[r]], {r, startpoint + 1,

Nmax + 1}]].MVecTransBMat.DiagonalMatrix[
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Table[BesRicJArraykb[[r]], {r, startpoint + 1, Nmax + 1}]];

MBessMat21 =

DiagonalMatrix[

Table[1.O/BesRicHArrayka[[r]], {r, startpoint + 1,

Nmax + 1}]] .MVecTransBMat .DiagonalMatrix[

Table[BesselJArraykb[[r]], {r, startpoint + 1, Nmax + 1}]];

MBessMat22 =

DiagonalMatrix[

Table[1.O/BesRicHArrayka[[r]], {r, startpoint + 1,

Nmax + 1}]].MVecTransAMat.DiagonalMatrix[

Table[BesRicJArraykb[[r]], {r, startpoint + 1, Nmax + 1}]];

(*Using the eight matrices to convert translation matrices obtained into \

final form such that eigenvalues are less than 1 in absolute value.*)

VecTransMatPlus =

BlockMatrix[{{BessMat11, BessMatl2}, {BessMat2l, BessMat22}}];

VecTransMatMinus =

BlockMatrix[{{MBessMatll, MBessMatl2}, {MBessMat2l, MBessMat22}}];

ReflMArrayA = Table[O, {r, 1, Nmax - startpoint + 1}];

ReflNArrayA = Table[0, {r, 1, Nmax - startpoint + i}];

ReflNArrayB = Table[0, {r, 1, Nmax - startpoint + 1}];

ReflNArrayB = Table[O, {r, 1, Nmax - startpoint + 1}];

ReflMArrayA =

Table [Ref lMNumA [Er]] /ReflMDenA [[r]], {r, startpoint + 1, Nmax + 1}]

ReflNArrayA =
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Table[ReflNNumA[[r]]/ReflNDenA[[r]], {r,

ReflMArrayB =

Table[ReflMNumB[[r]]/ReflMDenB[[r]], {r,

ReflNArrayB =

Table[ReflNNumB[[r]]/ReflNDenB[[r]], {r,

ReflMatA = ZeroMatrix[2*(Nmax - startpoint

ReflMatB = ZeroMatrix[2*(Nmax - startpoint

startpoint + 1, Nmax + 1}];

startpoint + 1, Nmax + 1}];

startpoint + 1, Nmax + 1}];

+ 1)];

+ 1)];

ReflMatA = DiagonalMatrix[Join[ReflMArrayA, ReflNArrayA]];

ReflMatB = DiagonalMatrix[Join[ReflMArrayB, ReflNArrayB]];

(*Print[" VecTransMat done"];*)

(*temparray2l[[Table [

r + Nmax - startpoint + 1, {r, 1,

Nmax - startpoint + 1}]]] =;*)

f12 =

LinearSolve[

IdentityMatrix[

2*(Nmax - startpoint +

1)] - \

(ReflMatB.VecTransMatPlus).(ReflMatA.VecTransMatMinus)\

];

f21 =

LinearSolve[

IdentityMatrix[

2*(Nmax - startpoint +
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1)] - \

(ReflMatA.VecTransMatPlus).(ReflMatB.VecTransMatMinus)\

1;

CoeffDMMat =

ZeroMatrix[Nmax - startpoint

CoeffDNMat =

ZeroMatrix[Nmax - startpoint

CoeffCMMat =

ZeroMatrix[Nmax - startpoint

CoeffCNMat =

ZeroMatrix[Nmax - startpoint

CoeffDMat = ZeroMatrix[2*(Nmax

CoeffCMat = ZeroMatrix[2*(Nmax

+ 1, 2*(Nmax - startpoint + 1)];

+ 1, 2*(Nmax - startpoint + 1)];

+ 1, 2*(Nmax - startpoint + 1));

+ 1, 2*(Nmax - startpoint + 1)];

- startpoint + 1)];

- startpoint + 1));

RhsMat = ZeroMatrix[2*(Nmax - startpoint + 1)];

RevRhsMat = ZeroMatrix[2*(Nmax - startpoint + 1)];

RhsMat =

DiagonalMatrix[

Join[Table[RhsMArray[[r]], {r, startpoint + 1, Nmax + 1}],

Table[RhsNArray[[r]], {r, startpoint + 1, Nmax + 1}]]];

RevRhsMat =

DiagonalMatrix[

Join[Table[RevRhsMArray[[r], {r, startpoint + 1, Nmax + 1}],

Table[RevRhsNArray[[r]], {r, startpoint + 1, Nmax + 1}]]];

(*RhsMat = ReflMatA;*)

CoeffDMat = f12[-(ReflMatB.VecTransMatPlus).RhsMat];

CoeffCMat = f21[-(ReflMatA.VecTransMatMinus).RevRhsMat];
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CoeffDMMat =

SubMatrix[

CoeffDMat, {1, 1}, {Nmax - startpoint + 1,

2*(Nmax - startpoint + 1)

CoeffDNMat =

SubMatrix[

CoeffDMat, {(Nmax - startpoint + 1) + 1, 1}, {Nmax - startpoint + 1,

2*(Nmax - startpoint + 1)}];

CoeffCMMat =

SubMatrix[

CoeffCMat, {1, 1}, {Nmax - startpoint + 1,

2*(Nmax - startpoint + 1)

CoeffCNMat =

SubMatrix[

CoeffCMat, {(Nmax - startpoint + 1) + 1, 1}, {Nmax - startpoint + 1,

2*(Nmax - startpoint + 1)}];

(*For[r = 1, r < Nmax - startpoint + 1,

CoeffDMat[[All, r]] =

CoeffDMat[[All, r]/BesselJArrayka[[r + startpoint));

CoeffDMat[[All, r + Nmax - startpoint + 1]] =

CoeffDMat[[All, r + Nmax - startpoint + 1i]/

BesRicJArrayka[[r + startpoint]];

r++;

] ;*)

DMM =

SubMatrix[
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CoeffDMMat, {1, 1}, {Nmax - startpoint + 1, Nmax - startpoint + i}l;

DMN =

SubMatrix[

CoeffDNMat, {1, 1}, {Nmax - startpoint + 1, Nmax - startpoint + 1}];

DNM =

SubMatrix[

CoeffDMMat, {1, Nmax - startpoint + 1 + 1}, {Nmax - startpoint + 1,

Nmax - startpoint + 1}];

DNN =

SubMatrix[

CoeffDNMat, {1, Nmax - startpoint + 1 + 1}, {Nmax - startpoint + 1,

Nmax - startpoint + 1}];

CMM =

SubMatrix[

CoeffCMMat, {1, 1}, {Nmax - startpoint + 1, Nmax - startpoint + 1}];

CMN =

SubMatrix[

CoeffCNMat, f{, 1}, {Nmax - startpoint + 1, Nmax - startpoint + 1}];

CNM =

SubMatrix[

CoeffCMMat, {1, Nmax - startpoint + 1 + 1}, {Nmax - startpoint + 1,

Nmax - startpoint + 1}];

CNN =

SubMatrix[

CoeffCNMat, {1, Nmax - startpoint + 1 + 1}, {Nmax - startpoint + 1,

Nmax - startpoint + I}]

(*CoeffCMMat =

SubMatrix[
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CoeffCMat, {1, 1}, {Nmax - startpoint + 1,

2*(Nmax - startpoint + 1)

CoeffCNMat =

SubMatrix[

CoeffCMat, {(Nmax - startpoint + 1) + 1, 1}, {Nmax - startpoint + \

1,

2*(Nmax - startpoint + 1)

temparrayl = Table[O, {r, 1, 2*(Nmax - startpoint + )];

temparray2 = Table[O, {r, 1, 2*(Nmax - startpoint + 1)}];

For [u = 1, u < 2*(Nmax - startpoint + 1) + 1,

temparrayl[[u]] =

Total[Table[

Im[l.0/ReflMNumB[Er]]]*(Abs[

CoeffDMMat[[r - startpoint, u]]])^2, {r, startpoint + \

1,

Nmax + 1}] -

Table[Im[

1.0/ReflNNumB[[r]]]*(Abs[

CoeffDNMat[[r - startpoint, u]]])^2, {r, startpoint + \

1,

Nmax + 1}]];

u++;

];

(*Solving for coefficients C and D*)

temparray12 = Table[O, {r, 1, 2*(Nmax - startpoint + 1;

temparray2l = Table[O, {r, 1, 2*(Nmax - startpoint + 1)}];
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temparrayl2[[Table[r, {r, 1, Nmax - startpoint + 1}]]] = (-I/ka);

temparrayl2[[Table[

r + Nmax - startpoint + 1, {r, 1, Nmax - startpoint + 1}1]] = (I/

ka);

q = Table[r, {r, startpoint, Nmax}];

PowerMatrixl2[[m + 1, qI] =

Im[1.O/ReflMNumA[[q + 1]]]*temparrayl[[q - startpoint + 1]] -

Im[1.O/ReflNNumA[[q + 1]]]*

temparrayl[[q - startpoint + 1 + (Nmax - startpoint + 1)]];

PowerMatrix12 [Em + 1, q]] = (1.0/(ka*kb))*(2.0/Pi)*

PowerMatrixl2[[m + 1, q]];

If[m > 0,

PowerMatrixl2[[m + 1, q]] = 2*PowerMatrixl2[[m + 1, q]];

(*PowerMatrix2l[[m + 1, q]] = 2*PowerMatrix2l[[m + 1, q]];*)

1;

For [1 = startpoint, 1 < Nmax + 1,

If[PowerMatrixl2[[m + 1, 1]] < 0, PowerIndicator = 0];

If[PowerMatrix2l[[m + 1, 1]] < 0, PowerIndicator = 0];

(++;

];

(*Print[m];*)
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(*PutAppend [

SequenceForm[m, "

FortranForm[Total[PowerMatrixl2[[m+1,All]]]]],

StringJoin["Nmax", ToString[Ceiling[Nmax-3*(1 + Abs[kd])/2.0]], "kd",

ToString[Ceiling[(d-a-b)*10^(10)]], "Aka",

ToString[Ceiling[a*10^9]], "nmkb", ToString[Ceiling[b*10^9]],

"nmNmaxAnalmfile .txt"]] ;*)

If [Total[PowerMatrix2[[m+I1,All]]] < 5.0*10^(-3)*Total[PowerMatrixl2[1,All]]],

(*For [1=1, l<Nmax+1,

PutAppend[SequenceForm[1, " ", FortranForm[PowerMatrixl2[[m+1,1]]*(kBoltz*Elec

StringJoin["Nmax", ToString[Ceiling[Nmax-3*(1 + Abs[kd])/2.0]], "kd",

ToString [Ceiling [(d-a-b)*10^(10)]] , "Aka",.

ToString[Ceiling[a*10^9]], "nmkb", ToString[Ceiling[b*10^9]], "nmNmaxAnallf il

1++;

]; *)

M++;

] ;

SpecConductancel2[[s]] = (ka/kta)^2*Exp[-ka/kta]/(1 - Exp[-ka/kta])^2*

Total[Total[PowerMatrixl2]];

SpecConductance2l[[s]] = (ka/kta)^2*Exp[-ka/kta]/(1 - Exp[-ka/kta])^2*

Total[Total[PowerMatrix2i]];

Print["Frequency ", s, " done"];

PutAppend[

SequenceForm[FreqEv, "

FortranForm[SpecConductancel2[[s]]*(kBoltz*ElecCharge/PlanckBy2Pi)]],
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StringJoin["Nmax", ToString[Ceiling[Nmax-3*(1 + Abs[kd])/2.0]], "kd",

ToString[Ceiling[(d-a-b)*10^(10)]], "Aka",.

ToString[Ceiling[a*10^9]], "nmkb", ToString[Ceiling[b*10^9]],

"nm.txt"J];

Print[FortranForm[SpecConductancel2[[s]]*(kBoltz*ElecCharge/PlanckBy2Pi)]];

S++;

]

SpecConductance12 = SpecConductancel2*(kBoltz*ElecCharge/PlanckBy2Pi);

SpecConductance2l = SpecConductance2l*(kBoltz*ElecCharge/PlanckBy2Pi);

(*TotalConductancel2 = (wmax - wmin)/(Nfreq - 1)*(Total[SpecConductancel2] -

0.5*(SpecConductancel2[[l]] + SpecConductancel2[[Nfreq]));*)

TotalConductance12 = Total[(Table[SpecConductancel2[[r]],{r,1,Nfreq-1}]+

Table[SpecConductancel2[[r],{r,2,Nfreq}])/2*freqinterval];

TotalConductance2l = (wmax - wmin)/(Nfreq - 1)*(Total[SpecConductance2l] -

0.5*(SpecConductance2l[[1]) + SpecConductance2l[[Nfreq]]));

Print[PowerIndicator];

PutAppend[

SequenceForm["d = ", d*10^6, "; a = ", a*10^6, "; b = ", b*10^6,

" ; Nmax = ", Ceiling[Nmax-3*(1 + Abs[kd))/2.0], " ; Power = ", \

FortranForm[TotalConductancel2]], "specconductance.txt"];

Exit[]
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