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Abstract

Office Semantics is the study and explanation of organizational behavior with the intent of

understanding the problem solving processes behind the physical and mental actions occurring in the
performance of tasks. The goals of Office Semantics are to understand what people do in
organizations and why--the semantics of their actions. The reasons behind the actions are couched in
terms of the office workers' knowledge of their environment. This knowledge has two parts: the

organizational knowledge, both the informal and formal social structure of the organization; and the
application knowledge, the explicit subject domain of the organization.

A premise of Office Semantics is that organizations are goal oriented mechanisms. Office work is
viewed as a problem solving activity. The result of office work is the outcome of the problem solving
activity. However, problem solving in the office does not conform to the classical Al paradigm in
which a computer solves difficult intellectual problems by search in a state space with a well defined
initial state, well defined final state, and a given set of state transformers. We offer an alternative
paradigm in which problem solving is supported.

An implementation of the Omega description language is discussed along with a Viewpoint
.mechanism. Viewpoints are a mechanism for containing contradictions, thus when a contradiction is
reached reasoning can proceed outside the viewpoint as to why the contradiction was reached and
what should be done about the contradiction.
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Chlapter One

Introduction

Office Semantics is the study and explanation of organizational behavior with the intent of

understanding the problem solving processes behind the physical actions occurring in the

performance of tasks. One of the goals of Office Semantics is to understand what people do in

organizations and why--the semantics of their actions. The work people do is described using the

description system Omega. Omega is a description system used to embed knowledge within a

workstation and to aid workstation users in problem solving activities.

1.1 Office Semantics and Omega

Although Office Semantics and the description system Omega may appear to be separate unrelated

fields of study their co-development has had important influence on each other. Omega is developed

as a knowledge embedding language for use in real world situations. This contrasts with limited

application expert systems that have been applied to domains such as medical diagnosis, geology, or

organic chemistry. Office Semantics is developed in order to explain the structure and behavior of

organizations in terms of their problem solving functions.

This dissertation investigates the use of the knowledge embedding language Omega in an office

environment. Office semantics provides the theoretical foundation within which to explain

organizational behavior. Omega is used to express the concepts of Office Semantics in a concrete and

precise form. The interplay between the development of Office Semantics and Omega is important

as each functions as a test bed for the other. Office Semantics provides a domain within which to test

the knowledge embedding facilities while the abstract ideas of Office Semantics are tested and take

concrete form in Omega.



1.2 A Disclainmer Concerning Office Autonmation

This dissertation is not about Office Automation. Office Automation is often taken to mean the

replacement of office workers with technology, or the reorganization of office work into a style

suitable for automation. It is the opinion of the author that this is neither possible given current

technology nor desirable. Automation is possible when an environment can be carefully controlled.

An example is a production line: the design of parts is carefully controlled; the flow of parts down

the production line is controlled; the workstations where workers perform assemblies are carefilly

designed; tasks the workers must perform are carefully designed to take into consideration the

workers' physiological capabilities. That it is not possible to carefully control office work is an

inherent characteristic of most office work.

'lThis dissertation is about developing a model of what office work is and developing tools that office

workers can use in their work. The position taken is not that people should be replaced with

technology but that their capabilities should be augmented with technology.

1.3 The Problem

An example will introduce the context and the issues of concern in this dissertation. The scene is an

office in the Defense Department that is part of the Officer Transfer Process. This process is the

method by which Navy officers are reassigned to tours of duty or billets1 when their present billet

assignment expires. The Assignment Officer fills the role depicted in figure 1-1 below.

Billets are jobs, an officer is usually assinecd to a billet for 3 years.



Officers Due to Roll

Make To
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Figure 1-1: The Assignment Officer Role

Conceptually the Assignment Officer's role is simple; he or she has a list of officers that are due to

roll2 and a list of open billets. The assignment officer chooses a officer-billet pairing and passes this

proposal on to the Placement Officer for acceptance and keeping a record of the proposal. The

Placement Officer accepts or rejects the proposal. The assignment officer represents the interests of

the officers that are due to roll. Thus in each officer-billet proposal the Assignment Officer chooses a

billet that will help attain the career objectives of the officer due to roll.

The story begins:3 we find Assignment Officer Watkins in a quandary; Officer Daniels has just called

in from the field wondering why he hasn't received his travel orders as his current assignment expires

in 6 weeks. DIaniels is justifiably concerned; his wife is about to have their third child and his oldest

daughter is ready to start school. Officer Daniels knows he must move in six weeks but he doesn't

know where or even whether his family can accompany him.

After searching about the office Assignment Officer Watkins finds Daniels' papers. They have been

misplaced and as a result Daniels has not even been proposed for his next duty station yet. All is not

lost, Watkins finds the perfect billet for Daniels. Daniels won't have to move since the billet is in the

same area where he is stationed now. However there is a hitch, Daniels needs schooling to be eligible

2An office is due to roll when his or her current billet assignment will expire in 6 months.

3lhis description of a typical situation faced by an Assignment Officer is based on interviews the author conducted with
Assignnment and Placement Oflicers in 1978 and 1979. The author wishes to express his glateful appreciation to those officers
that took time out of their bu's ,chcdules to paticntlv and frankly ans\ýer the authors mn;tny que;tions. The names in the
examples presented are ficlitious, the examnples thcemsel\cs are based tin fact.



for the new billet and the school is !iill. Watkins renembhcis that a friend of his is associated with the

school, a quick phone call establishes that there has just been a cancellation and 1)aniels can attend

the school. Watkins quickly put together a proposal. He found the Placement Officer in charge of

the billet, he explained the situation and he received approval for the proposed transfer. In a matter

of hours Daniels' orders are being processed and Watkins calls Daniels to give him the good news.

There are 3 questions that we can ask that will be investigated in this dissertation.

1. What did he do? How best can one describe the work that Watkins did?

2. flow did he do it? How did Watkins do his work, what kind of knowledge did he use in
accomplishing what he did.

3. How can he be helped? What tools could Watkins use in performing his work. What jobs
could a computer do that are currently time consuming annoyances for Watkins; what
tasks should Watkins continue to do?

What did he do? In short Watkins did a lot of problem solving. Watkins found Daniels' papers,

realized they had been lost and went to work on them immediately. He deduced what would be a

good job for Daniels given his current situation and he circumvented the problems that presented

themselves when insuring that l)aniels was qualified for the new job.

How did he do it? Watkins used Organizational knowledge, both of the formal structure of the

organization and of Watkins' informal social relationships and Application knowledge of the domain

in question to solve the problem. Watkins used his knowledge about the Officer Transfer Process,

about the requirements fir billets and about Daniels current needs. Watkins' relationships with the

Placement Officer and the officer at the school were also important.

Watkins needs tools that can support his problem solving. He needs tools that will let him make

important decisions but that will take care of the details. The tools must be able to reason about the

organizational structure and about the application stnicture of a particular office. This dissertation is

about developing these tools.

Let us be more specific. Watkins needs a knowledge embedding system that can reason about change

and contradiction. Existing Al systems have trouble with change. This is discussed in chapter 6.

Popular logics have trouble with contradictions: if a contradiction is derived in the logic then

anything can be derived. In a sense the logic crashes. 'l'his dissertation is about a logic that has valid



inference rules, even though it may derive contradictions. The 'iewpointll mechanism is used to

manage contradictions. Reasoning proceeds in a viewpoint, when a contradiction is reached it is

reached within the viewpoint and thus its effects are contained within the viewpoint. The allows the

reasoning system to function outside the contradictory viewpoint, in a consistent viewpoint, and

analyze the contradictory viewpoint.

1.4 The Contributions of this Work

The main contributions of this dissertation are:

-Office Semantics: organizations are macro-intelligent systems, their behavior can be
explained in terms of the problem solving reasons behind the actions in organizations.

-Work in the office can only be understood and adequately described when the office
worker is considered as both a rational being and as a social being.

-Office work is a problem solving activity. The services and products provided by the
office are achieved by the office's knowledge of the domain in question and by the
office's problem solving capabilities. Therefore, the most valuable tools for individuals in
an organization are tools that support the individuals in their knowledge-based problem
solving activities.

-Omega's Viewpoints provide a powerful tool for reasoning about change and
contradiction. Contradictions can be confined to a viewpoint and the deduction
machinery can reason about why the viewpoint is contradictory from outside the
viewpoint.

- Description directed Sprite invocation is a more appropriate and efficient method for
pattern directed invocation than traditional systems. Description directed Sprite
invocation helps the efficiency of the Sprite system by using Omega's inheritance network
to turn broadcasts into point-to-point transmissions.

1.5 Preview of this Dissertation

The chapters in this dissertation proceed from the more abstract to the more concrete. Chapter two

provides a discussion of the relation between Office Semantics and Artificial Intelligence; this

chapter is of general interest. The reader interested in the issues related to Office Semantics,

describing orgranizational behavior, and the model of office wvoirk will be most interested in the

chapters 3 and 4. Chapter 5 is an introduction to the description system Omega. It contains a review



of some material that has appeared elsewhere as well as original material. This chapter along with

chapter 6, which introduces and discusses the viewpoint mechanism will be of most interest to those

readers interested in the knowledge embedding facilities provided by Omega. The implementation of

the Omega description system on MIT's lisp Machine is described in chapter 7. Chapter 8 is also of

general interest; it is an extended example showing how the ideas about organizational work are

embedded in the Omega description system. The final chapter, 9, is the conclusion.

A final note concerning the use of terms: in this dissertation the terms office and organization are

used interchangeably. These terms are taken to mean organizations which have the primary function

of gathering, processing, recording and disseminating inbnnrmation. These organizations are to be

distinguished from organizations which have the primary purpose of producing some physical

product such as an assembly line in a factory.



Chapter I'rwo

AI and Office Semantics

This chapter addresses the question "How are Al and the study of Office Semantics related?"

Although one may initially believe that there is little in common between these two fields, and

historically little cross-fertilization has existed, we argue that AL and Office Semantics have much in

common. The discussion in this chapter is a preview of the rest of the dissertation. This chapter

provides an overall picture, a map of relationships, between the various issues that are described in

detail in the body of the dissertation. The question of the relationship between Al and Office

Semantics is addressed along the following lines:

-Common Issues - Many issues in AI and Computer Science are similar to those found in
organizations.

- Organizations Exhibit a Kind of Intelligent Behavior - Organizational behavior has not
been extensively studied by Al researches even though organizations exhibit a kind of
intelligent behavior. In considering intelligent behavior micro- and macro-intelligent
systems are distinguished.

-Organizational Work is a Problem Solving Activity - Current organizational theories
cannot explain why organizational workers do what they do. The tasks organizational
workers do can be explained if they are viewed in terms of their problem solving
capabilities.

-Society Theories in Al - The study of organizations is relevant to the society theories in
Al. In these theories [Kornfeld, Hewitt 81, Minsky 77, Steels 79] an entity's intelligent
behavior--be it an individual or scientific community--is understood in terms of a society
of cooperating agents.

-Organizations are a Testled for Al - Organizations are a testbed for ideas about the
structure of intelligence. Organizations may be analyzed, metered, structured and
restructured in ways that is not possible with individual humans.

- Work vs Work Technology - Understanding the work that needs to be accomplished and
how tools can accomplish that work is important in both Al and Office Semantics.



2.1 Common Issues

Many issues that arise in Computer Science and Artificial Intelligence also arise in Organization

Theory. One reason for this is that many of the issues in Computer Science arise because computer

systems are used in an organizational setting. Some examples of important issues in Computer

Science and Organization theory are: reliability, the paychecks must go out on time; robustness, if

there is a failure in a sub-system, computer or organizational, it should have a minimum affect on the

overall system; and security, personal information about employees must be kept confidential. These

are common issues because they are at the interface of the two disciplines.

The general issue of distribution vs centralization c-1 resources is important in both Computer Science

and Organization Theory. The advent of inexpensive hardware such as microprocessors and

communication networks has stimulated interest in the distribution of computer resources. This

same technological force is responsible for stimulating interest in decentralized organizational

structures--the distributed office. But the interest in centralization vs distribution in the organization

has a longer tradition. The advent of batch computer systems in the 50's and 60's forced

centralization of many organizational functions such as accounting and inventory control. However,

distribution is not merely an organizational response to technological forces but a fundamental

characteristic of the organization. An organization is a distributed mechanism since it involves many

people--sometimes geographically dispersed--cooperating to achieve a goal: sell a sewing machine,

plan a corporate strategy, or negotiate a construction contract.

Decentralization in an organization implies multiple concurrent activities and the subsequent

necessity to synchronize and schedule these activities. Project engineers use PERT charts, managers

use appointment books and accountants use logs and audit trails to manage concurrent activity. In

Computer Science a parallel concern with concurrency exists. The literature is rich with research on

parallel problem solving techniques, mechanism for synchronizing concurrent processes and so on.

In comparing the two fields similar approaches are frequently found; many computer science

paradigms are derived from our experience with the real world.

Both Al and Organization theory face the problem of controlling complexity. One technique

organizations employ to control complexity is specialization. An organization, faced with with the

task of making and selling a product for example, consists of specialized departments that fiulfill a

variety of needs: accounting, production engineering, sales and custonIer service. Similarly,



specialization is a popular AlI paradigm, in the nam'ic of classification hierarchies, to control

complexity. March and Simon explain the structure of organizations in terms of the principle of

bounded rtionality [March, Simon 631, the need for humans to simplify complexity because of the

limits of their rationality. This need to simplify complexity explains the division of an organization

into specialized subparts.

There are other concerns that Organization theory and Al have in common: the problems of adapting

to a changing environment; the use of knowledge, its manipulation and representation; control

structures that insure that the parts of an organization/computer system function in harmony to

achieve the coherency of the whole. The list of common issues, being long and intertwined, prompts

one to ask why so little interplay exists between the two fields. The answer is that Organizations

theory has been concerned with the abstract/human side of the issues and A and Computer Science

has been concerned with the more concrete/technical side of the issues. However this distinction is

quickly disappearing for two reasons: first, computers must be more human-like to be usable by line

managers and clerks with a minimum of training, hence the more abstract/human issues must be

considered; second, Al systems, such as Omega, are rapidly becoming practical--they will support

human problem solving in the organization.

2.2 Organizational Behavior and Intelligence

Organizational behavior is a type of intelligent behavior; it includes such activity as problems solving,

knowledge acquisition and manipulation, and adapting to a changing environment. One may

speculate that organizational behavior--and work in the organization--is highly constrained and thus

easily describable. However this is not the case. Al programmers cannot simulate organizational

behavior given current programming methodologies and tools; neither can AI theories adequately

explain organizational behavior. In one respect this is not surprising: few Al researchers have applied

their theories to explain organizational behavior, one notable exception is [March, Simon 63].

However, a common AI research methodology is to examine behavior that may be considered

intelligent and to develop theories that explain this behavior. Various human behaviors such as

natural language understanding, problem solving and knowledge acquisition and manipulation have

been studied to this end. But AI researchers have not studied non-1Vuman systems, such as

organizational behavior, that exhibit complex behavior--behavior that would be considered

intelligent in humans.



Al researchers have focused on micro-intelligent systemns, humans and animals for example, as

opposed to nmacro-inielligent systems such as organizations. The distinguishing criteria between

micro- and macro-intelligent systems is based on the difficulty of analyzing the systems' component

parts. Observing human problem solving mechanisms is difficult: either one must deduce the

problem solving mechanisms from physical acts--filling out forms, verbal communication--or one

must instrument the brain. Instrumentation, of course, is also collecting phenomenological evidence

albeit of a more direct nature. Direct evidence such as electrical signals firom neurons is even more

difficult to interpret than physical acts since it is separated from the task at hand by several levels of

abstraction. Instrumentation also presents serious ethical and practical questions. Micro-intelligent

systems are also difficult to manipulate; restructuring micro-intelligent systems or changing their

components is not possible. cost/benefit analysis. Even the goal itself maybe discarded or

reformulated which is a behavior that is not a part of the state-operator paradigm. Another problem

with the state-operator paradigm is that it assumes a single problem solver. In an organization many

individuals cooperate in solving a problem.

Instead of the state-operator paradigm we propose Congruence Analysis. This paradigm

accommodates multiple problem solvers. Emphasis is removed from establishing a particular goal.

In Congruence analysis the emphasis is on finding a satisfactory goal that can be achieved.

Organization theory can also benefit from applying the paradigms of Al to the understanding of

organizational activity. Indeed it already has in the work of March and Simon. Although they do not

call it by name the use of the GPS style problem solving paradigm [Newell, Simon 72] is applied in

explaining the behavior in organizations. A production system technology and means-ends analysis

is used to explain behavior in organizations. The revolutionary contribution of Simon's work that led

to his 1979 Nobel prize in Fconomics is based on considering the individual in the organization as a

-problem solver of limited capacity; this is an application of the state-operator paradigm.

2.3 Society Theories in Al

Tfhe study of organizational systems is relevant to the current interest in the scientific community,

society and communicating experts metaphors in Al research [Kornfeld, Heiwitt 81, Minsky 77, Steels

79]. In these metaphors it is assumed that the complexity and sophistication of human intelligence

arises out of interactions between simple entities or entities of a limited domain of expertise. This is a



metaphor readily adaptable to the study ofiorganizations.

A possible objection to the idea that the complexity of organizational behavior arises from the

interaction of simpler parts is the claim that the ability of organizations to function as they do comes

from the individuals in the organizations. The individual intellectual capabilities of humans are

already highly developed, by combining them into organizational structures we are not producing a

more sophisticated entity from simple parts but just a sophisticated entity from sophisticated parts.

We gain nothing in our attempts to explain the makeup of sophisticated entities, Nothing is gained

by virtue of there being an organization and one can even argue that some of the flexibility of human

intelligent behavior is lost. However, it is certainly the case that a large organization performs

activities that are much more complex and on a larger scale than what an individual could do, both in

terms of physical and intellectual feats. Consider building a I)C-10, writing tax legislation or

developing a scientific theory.

Organizations are, at the very least, an existence proof that societies of communicating experts can be

organized in ways that can accomplish usefiul work that is beyond the capacity of any individual in

the organization.

In Al there is currently an interest in developing computer systems that can aid individuals in

accomplishing very complex tasks, such as VLSI design. These systems transcend the traditional

functions of computer based design tools which consist of analysis tools and database tools for

creating and maintaining graphic or textual information about the design. Complex tasks such as

VLSI design require high level facilities for management of the design, in a similar way that

architectural or engineering firms manage their projects. Computer systems that support complex

tasks must accommodate and record incremental change, allow for a mobile work force, provide

project management facilities such as PERT charts, provide cost accounting facilities and provide

project status functions.

2.4 Organizations as a Testbed for AI Theories

Organizations, or macro-intelligent systems, can be used as a testbed for theories in A[ in two ways.

First, Al theories can be used to explain the intelligent, problem solving behavior of organizations.

Second, Al theories on problem solving can be used to build systems that office workers use in their

day to day work.



Explaining the intelligent behavior of' organizations is methodologically promising because

organizations are accessible in a ways that humans are not. It is possible to examine the workings of

an organization in more detail than it is possible to examine the processes by which a human solves a

problem or understands natural language. An organization can be metered, analyzed and

experimented with in ways that are not possible with humans. Hypothetical organizational structures

can be implemented and examined.

There is a continuum of scale when considering organizations that is not present with humans. At

one end of the scale we have an organization composed of a single human. At the other end are

organizations composed of many thousands of individuals. This continuity is interesting from at least

two points of view. First, we may see how functions present in individuals can be implemented using

groups of individuals when the complexity or scope of the functions exceeds the capacity of a single

individual. Second, we see various ways in which the functions that organizations perform can be

factored as the size of the organization increases in the presence of differing demands on the

organization.

2.5 Work vs Work Technology

One can ask the questions "What have the years of study in Organization Theory produced?" "What

can Artificial Intelligence contribute?" "Is the wheel about to be reinvented again?" To answer this

question we consider the following view of organizations. There is a kind of work that organizations-

-especially infonnation intensive organizations such as offices--perform and there is a technology by

which this work is accomplished. By and large the technology by which the work is accomplished has

largely consisted of paper-based and verbal communication, paper-based storage of information, and

the members of the organization. The relation between the work that offices accomplish and the

technology used to accomplish the work has not been of concern because it has changed until

recently. Thus Organization theory has not dealt with the question of the relationship between work

in the office and how it is done. Much can be gained by examining the work in the office as

knowledge manipulation and problem solving activity.

The relationship between work and work technology has been an issue in more routinized,

production line style, non-information related tasks. There has been much study in the name of

Management Science and Industrial Engineering as a result. Within the office there has been the use



of centralized computer facilities for accounting and inventory. These functions have a highly

structured and rigid interface to the workers in the office. In their capabilities they are extensions of

the paper based systems. Technology that has changed the work in the office has been limited to

devices such as the batch computer facilities, telephone, typewriters and recently, word processing.

The introduction of each of these has affected the way office work is done. The impacts have been

handled on a case by case basis; no theory of what is happening when new technology is introduced

exists. The unpredictable results of the efforts to introduce word processors into the office is

testament to the fact that both the relationship between technology and office work is not well

understood and that office work itself is not understood. In the cases of the technologies mentioned

above the work in the office, the thinking, the knowledge processing, has not been affected in any

significant way. It certainly has not been as drastically affected as it will be in the years to come.

2.6 Summary

The study of organizational behavior and Al are ripe for cross fertilization. The two fields have many

issues in common. Organizations exhibit a kind of intelligent behavior that AI theories should be

able to explain; to some extent this has begun to happen. AI theories can be tested in the

organizational setting more readily than in humans. Organizations are also a source for ideas on how

complex tasks can be accomplished by cooperating experts. The research described in this

dissertation is the product of much mutual influence between Al and Organizational theory.



Chapter Three

Office Semantics

The theme of this chapter is that the characteristics of organizational behavior, referred to as Office

Semantics, derive from two sources. The first source is the organization's workers' rational abilities:

their problem solving capacities and their ability to make rational choices. The second source is the

setting of the office: office workers are social beings cooperating in a social environment to

accomplish their work. 'hese two sources are sometimes in conflict, sometimes complimentary;

taken together they can form a firm foundation on which to build a theory of organizational activity.

3.1 Background

Previous approaches to understanding organizational behavior have considered the individual in the

organization in different ways. The mechanistic view is best exemplified by the work in Scientific

Management [Taylor 47]. In this approach it is assumed that a worker's activities can be described in

terms of overt physical actions. The triumph of Scientific Management was that some types of work

could be adequately described in terms of overt behavioral movements. This approach is adequate

for describing such tasks as assembling farm tractors but is inadequate for information processing

tasks such as evaluating a load application or proposing an officer for a new tour of duty.

The individual as an optimnal decision maker is the view of Administrative Management. Here the

individual is seen as being faced with a given set of alternatives and a utility function by which he or

she ranks the alternatives. The individual makes the optimal decision given the alternatives and the

utility function. This approach is tailored for use with the tools of Operations Research. The major

criticism of this view of the individual is that in reality people do not know all possible alternatives to

a given decision. Operations Research is not properly applied to the organizational setting because a

utility function is usually not available with which to evaluate each alternative.

The individual as an infonwed decision maker presents the office worker as a decision maker given

alternatives from which to choose. For the informed decision maker emphasis is placed in the

infbrination flo"w between decision makers. In this case not much is said ,about the criteria upon



which the decisions are made. The specifics of the decision making process is not treated nor is the

eff'ect of the kinds and timeliness of information on decision making addressed. The emphasis is on

designing and analyzing information transport systems. Zisman's SCOOP system [Zisman 77],

information flow models such as Information Control Nets [Ellis 79], and [Sandewall 79] and forms

flow models [fsichritzis, Hudyma 80] are examples of this approach.

In [March, Simon 63] the individual is presented as a rational decision maker of limited capacity.

Emphasis is on the fact that the individual is limited in his or her cognitive abilities. The individual's

activity is characterized as problem solving. The ODYSSEY system [Fikes 80a] is an example of a

system that treats the individual as a rational problem solver and provides support in problem solving

activities.

Many sociologically based theories also exits. Systemic approaches such as [Katz, Kahn 78] consider

the organization as a open system 4 in analogy to biological system. Office work as Practical Action

has been proposed by [Suchman 79]. This approach considers the problem of applying general office

knowledge to specific instances in the social context of the office. Conversation as an information

media is focused on in [Wynn 79]. In this study the characteristics of conversation as a means of

acquiring and disseminating information are explored. All these approaches treat the individual as a

social being in various manners in the organizational context. These approaches do not consider the

characteristics of the work the individual performs but only his or her interactions with fellow

workers.

These views fall into two basic categories: those that treat the individual as a decision maker of some

sort, focusing on the subject matter of the decisions and those that emphasize the individual's social

relationships. A thesis of this dissertation is that in understanding organizational behavior a human

must be treated as both a rational problem solver and as a social being. To consider one without the

other in explaining organizational behavior is difficult and misleading.

4An open s stiem in one that is modeled as existing in an cnvironment. The system interacts w ith the environment,
conswning resources and producing products.



3.2 Office Semantics

Office Semantics is the study of information intensive organizational work. Its name reflects the

concern with the intent behind the act. Office Semantics is concerned with understanding the reasons

behind the physical and mental tasks that are performed in organizational work. To understand

organizational behavior a distinction is made between the applicatiown structure of the organization

and its organizational struncture. As illustrated in the diagram below the definition of Office

Semantics hinges on this distinction. The remainder of this chapter is concerned with what the

application and organizational structures comprise and what each contributes to explaining

organizational behavior.

Figure 3-1: Office Semantics: Application and Organizational Structures

It is beyond the scope of this dissertation to investigate in depths the issues related to the

organizational structures of Office Semantics. Many of these issues are treated by fields such as

group dynamics and individual psychology. We argue that these issues must be treated before a

satisfactory understanding of organizational behavior can be achieved. The main point of the

argument is that organizational factors have a direct effect on the performance of the organization,

thus they cannot be ignored in understanding organizational behavior. We do not, however,

investigate the effect of organizational structures in any depth on the behavior of organizations.

A fundamental premise is that office work is a problem solving behavior. The rest of this chapter is

developed with this premise and the following goals for Office Semantics in mind.

Description - Office Semantics should present a model that is powerful enough to
describe the phenomena of importance in Organizational Behavior.

Explanatory Poier - Office Semantics should explain the structure of organizations as

Office Semantics

Organizational Structure Application Structure

Informal andformal Explicit Subject Domain
Social Relations of the Office



they exist.

Predictability -Office Semantics should be capable of predicting the effects of changes on
organizations.

Role of Technology - Office Semantics should clarify the role of technology in the
organization. In particular Office Semantics should explain how technology is used in the
accomplishment of office work and how new technology influences the organization.

Character of Office Work - Office Semantics should provide an explanation of the nature
of office work and how office workers perform office work.

With the above goals in mind for Office Semantics the distinction between application structure and

organizational structure is put forth as a foundation from which to proceed. Below a brief description

of these two structures is given followed by sections which discuss them further.

The social structure of the organization will often be referred to as simply the organizational

structure. This is concerned with the aspect of an office which stems from the fact that the activity in

an office is realized by people cooperating in a social system. The organizational structure includes

both the formal organizational structure and the informal structure of social relations between the

members of the organization. T1he informal social structure is of interest for as pointed out in

[Browner, Chibnik, Crawley, Newman, Sonafrank 79] a system of formal controls and lines of

authority in an organization has a complementary structure of informal relations among the office

workers.

In contrast to the organization's social structure is its application structure. The application structure

concerns the subject domain of the office. The application structure comprises the rules and objects

that compose the intrinsic functions of a particular office system. For example, in a Credit and Loan

office the application structure includes such entities as loans, credit ratings and rules such as criteria

for accepting or rejecting loans. The application structure of an insurance company is concerned with

insurance policies, claims and actuarial tables. The application structure explains the scope of the

functionality of an office system on a subject domain as well as providing a model by which those

functions are characterized. The application structure is, overtly, the primary reason for the existence

of the office.



3.3 Organizational Structure

The organizational structure is of interest because social factors directly affect the behavior of an

organization and because changing technology influences both the formal and informal social

structures in an organization. Unfortunately, the study of organizational structure, especially

infobnnal social relationships, has been neglected in past efforts to introduce computers into the office.

As previously mentioned Organizational structure encompasses both the formnal social structure of

the organization and the informal social relations that arise between organizational workers. The

formnal organizational structure includes the authority relationships between workers and the

departmentalization of an organization into subunits. The informal social relations consist of the ties

coworkers form and include knowledge about coworkers with respect to the working environment.

3.3.1 Effects of Social Factors on Organizational Performance

The performance of an organization is directly influenced by the informal social structures among its

members. For example:

-The decisions individuals make that affect their coworkers are based in part on the social
relationships between the workers. They include the individuals' trust in their coworkers,
their assessment of their coworkers' competence, their beliefs about what their coworkers
know and their knowledge of their coworkers' habits.

-Pools of office workers, where each worker is performing thli same task tend to form their
own informal social hierarchies. The more experienced and skilled workers tend to be
accepted as the informal leaders and representatives of the groups. These informal
leaders are the ones most likely to form working relationships with managers of the work
pools. Via these relationships decisions are made and strategies and policies are
developed.

-When individuals depend on each other to accomplish the same goals informal working
relations are strongest and the common goal is most easily accomplished. In the case
where the relationship is less bidirectional, establishment of the goal becomes a more
difficult task; to the point that formal sanctions mtiy be necessary to insure that the goal is
accomplished properly and in a timely manner [Browner, Chibnik, Crawley, Newman,
Sonafrank 79].

- When a worker is introduced to unfamiliar technology he or she must learn about the
technology as well as new dependencies and intormnnal understandings. Workers generally
learn this kind of information from more experienced members of the office. In the case
of new technology there may he no experienced members and a leai ning period in which
the dependencies aid understandings are evohlved must be entered.



Each of the above are examples where social factors influence decision making and thus influence the

behavior of the organization. The first and second concern coworkers' knowledge about each others

capabilities. The third is concerned with workers' relations in the context of organizational goals.

The last concerns the worker's relation to office technology.

3.3.2 Conflicting and Common Interests

An important problem solving paradigm in AI is the use of proponents and skeptics in the process of

achieving a goal [Kornfeld, Hewitt 81]. In this metaphor, when a goal is to be achieved, both

proponents and skeptics are put to work on the goal. The aim is that the proponents attempt to

achieve the goal while the skeptics attempt to prove that the goal is not achievable or narrow the goal

to one which is achievable. If the goal is shown to be unachievable then no more resources are

expended on achieving the goal. The intuition behind having skeptics is that the skeptics can help

focus attention on promising possibilities. In the case where the goal is to maintain some constraint

the proponents and skeptics work in balance with each other, each does its part to establishing the

constraint and checking that the others do not violate the constraints.

This paradigm is found in organizational problem solving. It is frequently found as a system of

checks and balances or controls between offices charged with advancing somewhat conflicting

interests. An important strategy for maintaining balance is to establish separate groups in an

adversarial relationship within an organization to look after conflicting interests. Policies are then

established and evolved by negotiation. This strategy is often used in preference to the alternative of

attempting to have one group attempt to rationally balance the conflicting interests.

Accounting systems are an example where controls are maintained by adversarial relationships

Sbetween different groups. For example, accounting systems are required to have certain controls by

law. As a result some proposed computerized accounting systems which do not maintain these

controls would be illegal to use. This requirement influences the design of office system by placing a

constraint on information flow and requires that office systems be designed so users cannot violate

these information flow and authority constraints [Bailey, Gerlach, McAfee, Whinston 81].

Systems of common interest are used to advantage in offices. It has been noted [Ilrowner, Chibnik,

Crawley, Newman, Sonafrank 79] that workers cooperate better and form strong social relationships

if they share the goals of a task and are mutually dependent on each other to achieve the goals. Care



must be taken to avoid inadvertently uipsetting these systems of controls and dependencies. New

technology, by changing the social fabric of the organization as well as by information flow can have

this effect.

Structured conflict affects the social structure of the organization. D)esigners of organizations often

structure members into competitive groups. This mock conflict strengthens ties between group

members by creating shared goals among the group members.

3.3.3 The Impact of Technology on the Organization

The organization can be metered in scope and detail that was not previously possible. Mass storage

technology is such that large quantities of data can be inexpensively stored compared to paper based

storage methods such as file cabinets. This simply means that the volume of information that can be

kept for the same price is larger. This trend will continue in the future.

3.3.4 Measurement of Performance

Organizational performance is difficult to measure. This is because descriptive models of the office

have been weak in their expressive power in either the application or organizational structures. Many

of the problems are described below.

1. Organizational pci-formance is difficult to measure for the same reason office procedures
are hard to describe. 1This is discussed more fully in section 4.4 on page 38. ]'he problem
is that mental processes are very difficult to discern from an individual physical actions.

2. New and unexpected situations are the norm in an office. Measuring performance in an
unfamiliar situation is difficult. A descriptive system must accommodate open-ended
situations.

3. Reactions to situations may be dictated by powers beyond the individual's control such as
organizational policy or laws. Metering must take these non-local influences into
consideration. The application as well as the organizational constraints need to be
considered when measuring perfonnance.

4. In many cases a long time constant is involved in discerning the results of an action on a
organizational performance.

'This information is useful for rcgulatIorfunctions which gear organizational work to certain factors

such as production demand. Pe lf'ormance information is also useful for the adaplive purIposes which



seek to help the office evolve so that it may continue to survive in a changing environment. I lowever,

care must be exercised about what information is kept and how it is interpreted.

Numbers are exceedingly easy to collect in an electronic office system, but if these numbers are used

to drive an adaptive or regulatory mechanism it is essential that an attempt be made to analyze the

effect on the future behavior of the office. If this is not the case the resultant behavior may not reflect

goals of the organization.

A major problem here is that there is little understanding about how offices work in their day to day

operation. Initial performance measurement often points out surprising discrepancies between the

believed and actual office performance characteristics. As I[Browner, Chibnik, Crawley, Newman,

Sonafrank 79] point out, the temptation to enforce a particular behavior on an office must be resisted

until the implications of the change are well understood. 'This is particularly true in regard to the

effects of an enforced behavior on the social structure of an office.

3.4 Application Structure

In section 3.2 organizational work as problem solving is advanced as a premise for Office Semantics.

The application structure is the model in which many of the organizational goals and constraints are

expressed. The application structure also furnishes actions by which constraints may be maintained

and goals may be achieved. The importance of the Application Structure to office work is central--it

is a description of the organization's work neglecting the details of the organization accomplishing the

work.

The Application Structure is what most non-sociological attempts to describe organizational work

discuss.

1. The application structure is the model by which the objects of concern in the office are
characterized. The application structure also provides rules that indicate how the objects
of concern to the office may be manipulated.

2. Rules that pertain to objects in an office may be derived locally in the office itself, may be
derived from organizational rules or policies or may be laws governing acceptable
practices such as accounting laws.

3. The application structure includes the records, accountability, and audit trails that are
used to classify and describe past actions in an office.



For example, in the Officer Transfetr Pro)cess descrihed in the in troduction the application structure is

made up of records describing the officers, records of billets and their requirements, and financial

and budgetary records. Application structure rules are those that control under what circumstances

officer's may occupy billets, when they may be suggested for promotion and when the may be

enrolled in schools.



Chapter Four

The Nature of Work in the Office

4.1 Introduction

A useful characterization of office work is as a goal oriented activity, therefore, work in the office can

be viewed as problem solving in order to establish goals. The individuals' work contributes toward

the organization's goals; the organization as a whole can be viewed as a problem solving mechanism.

In order to understand the office worker's activity a model of problem solving is needed. This model

differs from the Al state-operator problem solving paradigm in subtle ways.

4.2 Some Fundamental Problems

As seen in chapter 3, individuals within an organization are considered more than instruments in the

ftnctioning of the organization: they are considered as rational beings with limited cognitive

capabilities. The individuals' rationality is with respect to a subjective reference frame corresponding

to the simplified model of what they know about their world. The processes of determining the

alternatives to a decision, judging the outcomes to each of those alternatives and comparing the

alternatives to make a choice are resource consuming tasks. In most cases all the alternatives to a

decision are not known and the outcome to any particular choice is not fully known.

Given the above mentioned assumptions about people in organizations and the organizational

environment certain fundamental problems arise with our goal of describing the behavior and

structure of organizations. T'hese problems must be addressed by a description system that is used to

describe organizational behavior and knowledge. We identify the following four problem areas.

4.2.1 Open-Ended Knowledge World

In contrast to some knowledge worlds such as the Bllocks World IWinograd 71] the world of

organizational knowledge is not a closed knowledge world. The complete set of actions relevant to



the organizational world is unkno\ mn and unknowable. The set of all possible states are unknowable

as are all possible alternatives for achieving a goal. The result is that unforeseen situations are a

common occurrence. This is as much a property of the perceiver of the world as it is of the world

itself since it is our assumption that the perceiver is of limited cognitive capabilities.

The open-ended character of the organizational knowledge world places demands on the kind of

description system used to describe organizational knowledge. In particular the description system

must be able to assimilate new information about actions, situations, and alternatives to achieving

goals in an incremental fashion. The description system must be able to reason with partial

information about problem solving states.

4.2.2 An Evolutionary Environment

Organizational environments are continuously changing. Any attempt to understand and describe

organizational behavior must cope with the problem of trying to hit a moving target. This is a central

problem both in talking about organizations and in doing work within organizations. A description

system must be able to describe an organization that is continuously changing. A description system

must also furnish tools to manage change so office workers may use it in performing their tasks.

4.2.3 Perception of Cognitive Processes from Overt Physical Actions

Trying to understand what task someone is doing and the reasons for each action performed in

carrying out the task by watching the person performn the task is in general not possible. Information

used in perfonnrming the task is not manifest in the physical actions the task entails. Even asking

someone how they accomplish a particular cognitive task yields at best partial information and often

apparently contradictory information. Thus the quality of information gathered by observation or

interview is limited. Hence, a reliance on acquiring information on organizational behavior in this

manner is not desirable.

4.2.4 Describing Cognitive Processes

Our goal of describing cognitive processes is not to develop a psychological theory of the individual

in an organizational setting but to describe the individual in a way that--taken in aggregate--explains

organizational behavior.



The premise is that there is a way to describe an orgalizaiiomal person in terms of application and

organizational knowledge. In adopting this premise an assumption is made that an organization

works in such a way as to factor out the individual idiosyncrasies of its members. The reason for

making this assumption is that many organizations have similar behaviors but are made up of diverse

personalities.

The approach adopted in this dissertation is to describe cognitive processes in terms of the

application and organizational knowledge required to perform organizational work.

Open Ended
Knowledge World

Evolutionary
Environment

Office Work

erceiving
agnitive Processes

)escribing
=ognitive Processes

Figure 4-1: The Fundamental Characteristics of Office Work

These four problems central to office work, shown above in figure 4-1, are accepted as given

characteristics of the organizational world. They make the task of describing organizational behavior

more difficult but they also help to explain why the organizational world is structured as it is. It is

beyond the scope of this dissertation to develop a complete theory of organizational behavior base on

the ideas of Office Semantics and the above four characteristics of the organizational world. The

belief is that they form a foundation upon which such an organizational theory can be developed.

__ __



4.3 The Pervasive Nature of Problem Solving

Organizations by nature are goal oriented. For example, a primary goal of organizations in the

private sector is to show a profit. Other organizations such as government agencies exist to provide a

service. From the standpoint that organizations have goals that they seek to establish and maintain,

they are problem solving mechanisms.

The details of problem solving and how it is supported are treated more fully in sections 4.5 and 4.5.2.

For the purposes of this discussion we consider problem solving to be the heuristically guided search,

deduction, judgment and application of knowledge in determining what actions are appropriate in

acquiring a goal.

4.3.1 The Need for Problem Solving

Since the function of individuals in an organization is to carry out the organization's goals the

individual's work is also problem solving in nature. One may initially believe that office procedures

describe an individual's task in sufficient detail that all an office worker need do is follow the steps

described in the specification of the office procedure. If this were the case office work would not

involve much problem solving. However consider the following example due to [Fikes 80b].

A certain organization accepts orders for copy machine supplies and delivers and issues
invoices for those supplies. When a customer calls to order supplies an order entry clerk
records the customer's identity, the supplies needed, and the delivery location of the
supplies. The customer is told the items are to be delivered within some period of time
but the exact delivery date is not known. After the order is taken the billing calculation is
made and the order is sent on to the shipping department.

When the items are delivered the customer is sent an invoice for the items delivered.
The amount billed is the sum of the cost of the items and a sales tax. The sales tax is the
sales tax in the state in which the supplies are delivered.

What seems like a trivial office procedure can easily become problematic:

A customer calls and orders supplies for a copier. When the customer is asked where
the supplies are to be delivered he answers that the copier is on a barge and that he must
know the delivery date in order to supply the delivery location. Hlowever, the order entry
clerk doesn't know the delivery date. The solution the order entry clerk selects is to take
the customer's phone number and attach a note to the order saying that the delivery
location can be determined by calling the phone nunber when the delivery date is known.
Note that the order entry clerk does not know that the delivery location is also needed in
order to calculate the sales tax.



When the cost of the items is being prepared the clerk finds a note and a phone number
instead of a delivery address. The clerk understands the problem, determines when the
delivery can be made, and calls the customer to determine the delivery location. With the
extra information the clerk can finish the billing calculation. The clerk sends the order on
to the shipping department noting the date the item must be delivered and the reason
why.

When the shipping department receives the order, special arrangements are made to
deliver the supplies on the specified date. It is not standard operating procedure to make
deliveries on specified dates but the shipping clerk can rearrange the delivery schedules to
accommodate the situation.

Thlere are many interesting points in this story that will be discussed in the following pages. Certainly

the story is an atypical example but it serves to illustrate two points. First, even the simplest office

procedures can involve a good deal of problem solving and second, this problem solving is handled

with relative ease on the part of the office workers. Although the story is atypical, that is not to say

that atypical situations are uncommon. Indeed, as has been pointed out in [Ellis, Nutt 80] the precise

specification of even simple clerical procedures is an open problem.

In the example the need for problem solving arises from an unforeseen contingency. There are other

situations where problem solving arises. A common need for problem solving activity is in

diagnosing anomalous behavior. In tl-:s case problem solving is needed to both determine the causes

of the anomaly and also to determine any corrective action. Problem solving can arise as a result of

disturbances in the environment in which the organization operates. A strike by air traffic controllers

sparks a flurry of problem solving in any organization that depends on air transport. Changes in laws,

organizational polices or procedures all introduce situations where it is necessary to make a transition

from an old way of doing things to a new. During a transition period, problem solving is necessary to

maintatain consistency of information. For example, parts of old procedures cannot be mixed with

parts of new procedures without care.

4.3.2 The Degree of Problem Solving in Office Work

With the above view of problem solving we can characterize office work in terms of the amount of

problem solving it entails as shown in figure 4-2 below.



Figure 4-2: The Degree of Problem Solving in Office Work

At one end of the spectrum is office work that involves a high degree of problem solving. This would

be work in weakly structured knowledge rich environments such as policy formation, establishing

long range objectives and formulating plans to achieve those objectives. At the other end of the

spectrum is office work that we characterize as algorithmic. This is office work that can be described

in sufficient detail so as to be realizable by machine. Examples of algorithmic office work are payroll

processing procedures, certain accounting functions and certain data base queries.

We distinguish two important points on this spectrum of problem solving. The first we can

characterize as algorithmic with problem solving exceptions. This is the case for algorithmic office

work that occasionally involves problem solving for cases the algorithm cannot handle. An example

"of this is the order entry procedure described above.5 In most cases the order entry process proceeds

normally. However there are exceptional occasions--when the delivery address is unknown--when

problem solving comes into play as illustrated above.

The other point we distinguish on the problem solving-algorithmiticity spectrum is mixed problem

solving with algorithmic tasks. An example of this type of office work is the Officer Transfer Process

5We are not considering the problems of understanding the customer's uttciances and e\acting fiom the customer his or her
precise needs as part of the order entry process. 'hese tasks are clcarl not algorithnlic. We consider the process of entering
the order once the information is knovwn as the order Cntry process.
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presented in the introduction to this dissertation. The Assignment Officer uses his or her knowledge

of the goals of the procedure and the requirements of the officers due-to-roll and the billets to make

an assignment proposal. Once the officer-billet pair is chosen the task of entering the information

into the proper forms and sending the proposal to the proper Placement Officer is algorithmic.

4.3.3 The Role of Automation

If we consider the automation of office work as the delegation of algorithmic tasks to machine we can

see the role that automation plays in supporting office work. The tasks that don't involve problem

solving, the algorithmic tasks, can be automated. Tasks that involve simple problem solving may be

automated but more complicated problem solving cases must be done by humans. Our belief is that

problem solving is one essential aspect of office work and can never be fully automated.

The goal of automating tasks in the office is to aid office workers in their problem solving functions.

This is accomplished by removing the time consuming tasks that, in their performance, don't

contribute to the office worker's goal of solving the problem. The results of the tasks do contribute to

the problem solving process, e.g., the mechanics of finding officer's files or entering information into

a form don't help the office worker, but once the files are collected or once the form is filled out the

office worker can use this result in accomplishing his or her goal. Once algorithmic tasks are

automated they can be powerful tools to the accomplishment of goals since their cost is drastically

reduced hence they m,-, be used more frequently. Querying data bases is a good example of this.

As illustrated by figure 4-2 above, much office work involves a mix of algorithmic and problem

solving tasks. An important property automated tasks must have is that they must be well integrated

with the problem solving they are supporting. For example, in tasks that are algorithmic with

problem solving exceptions the automated tasks must be so designed such that when an exception

arises the information necessary to accomplish problem solving is readily available. We achieve this

by letting problem solving requirements drive the automation of tasks. Thus algorithmic tasks are

automated in the context of the problem solving in which they will be used.



4.4 Describing Office Work

The purpose of describing office work is to make explicit the work that is done in the office. This

includes the mental and physical activities that an office worker engages in and tile reasons for these

activities. An approach to characterizing work in the office is to consider it as organized in

procedures in a fashion similar to the computer science notion of procedure. In this way office work

would be described as a sequence of steps with decision points to manage flow of control.

4.4.1 Pitfalls of a Sequential Procedural Description Methodology

A sequential procedural characterization (e.g. flow chart, Cobol program etc.) is problematic for

several reasons. Even routine tasks in offices are beset by a plethora of contingencies. In a

procedural approach it is necessary to foresee the possible alternatives that may arise and write the

procedure to accommodate them. When trying to describe office work in this step by step manner it

becomes clear that all the alternatives cannot be enumerated. Determining what the alternatives are

is part of what office work is; all alternatives cannot be determined in advance. As a result a

procedural approach is not a very useful style of work description.

Office work exhibits a looseness of step ordering that is not captured by a sequential procedural

description method. Steps may often be done in an arbitrary order; often steps that are order

dependent may be switched if precautions are taken to accommodate for the order dependency.

Office work is of an event-driven nature. A task begins when some event occurs, be it the arrival of a

form, a phone call, or the arrival of a particular day or time. This behavior can be thought of as

various actions that are triggered when a particular condition arises. A procedural approach is

cumbersome when trying to describe event-driven systems.

A procedural approach is too rigid a framework to accommodate change. As was mentioned above a

central problem in organizations is that- of dealing with change. A requirement for a description

language for office work is that it can accommodate incremental change easily.

A procedural approach is useful for suggesting what the key elements of a pý rticular office procedure

are in a concise manner. However, the reason for describing office work is tL elucidate, in detail, the

work that it entails. Thus a procedural description of office work is not appropriate because it tends

to hide much of the work that is actually performed in order to accomplish the goals of the office



procedure. Much of the work in following a procedural description of office work is in the problem

solving required in order to accomplish the steps in the description.

A result of viewing office work in a procedural manner is the in vs out of the systen syndrome. Since,

in office work, all future contingencies cannot be enumerated and since a procedural description

cannot easily accommodate change, exceptions and unforeseen situations have to be handled outside

of the system. The barge story in section 4.3.1 is a good example where this problem can arise. The

paper based forms system had no mechanisms for handling exceptions. Thus information had to be

sent along with the supply order form for the office work to be accomplished. This is misleading at

best: the amount of work necessary to fill the order is not apparent from the record of the order.

Accomplishment of the task depends on adhoc information workers know about their environment

which may not be right or which may change.

A procedural description methodology is useful as a way of describing an ideal. It has the advantage

that an overabundance of detail can be avoided. It provides, often implicitly, the goals the the office

procedure is trying to achieve. However, a procedural approach is not general enough and not

amenable to incremental change.

4.4.2 Explicit Representation of Goals and Actions

A description of office work in terms of goals and actions is a direct way of characterizing office work.

A procedural description of an order entry task, for example, succinctly characterizes the important

points of the task. But Precisely because of its succinctness a procedural description suffers from two

defects: first, it glosses over minor details--which it assumes are easily treated--that may be

problematic or critical in practice; second, the reasons for the actions specified by a procedural

-description must be inferred. Thus if it is impossible to fulfill a requirement in the procedural

description, such as obtain the delivery address for an order, the office worker must rely on intuition

and experience to select an alternative action. The more desirable approach is to state explicitly the

reasons the action is needed--the goals the action achieves.

The explicit representation of goals and actions provides a recourse to handle unexpected

contingencies. Office workers are able to handle unexpected contingencies in their daily work

because they know the goals of the office work and because they know what actions are needed to

achieve the goals of the office work. 'Ihese goals and constrints are often implicit in the work and in



the office wvorkers' knowledge of their work. If a particular action cannot be performed the computer

system can possibly suggest an alternative action. Failing this the office worker can use the computer

system to examine the goals an alternative action must inherit from the action that cannot be

performed. Together, the office worker and computer system can construct a new plan of action that

maintains the necessary constraints and makes progress toward achieving the goals in question.

To support the problem solving activity in office work knowledge about the goals and constraints of

the office work are explicitly represented. This builds a teleological structure of the office work.

Actions that would be performed during the course of the office work are linked to the reasons they

are performed and to the constraints that they are required to maintain. Explicit representation of

the goals and actions exposes hidden assumptions and implicit goals about the office work. In

addition, explicit representation makes the actions per'onned by an office worker more

understandable by machine or by another individual.

Added coherence between different functional elements of a system has the benefit that the user's

actions and the goals of the office procedure can be understood in terms of each other. It is useful for

the system to understand the goals in order to interpret the user's requests and suggest problem

solving tools for achieving the goals. In turn the user's actions suggest what the current goals are and

narrows the variety of problem solving methods and size of the solution space.

4.5 Problem Solving Paradigms

One classical problem solving paradigm in Al is the state-operator paradigm shown below in figure 4-

3. However, this paradigm is difficult to apply in the organizational world. The organizational world

differs from the traditional AI worlds such as crypt arithmetic or the blocks world in that: it is

distributed and parallel in that there is more than one individual working on the problem; and it is

open ended in the sense that knowledge about the work is incomplete. In the following we discuss

the drawbacks of the state-operator paradigm.

4.5.1 The State-Operator Paradigm

In the state-operator paradigm the problem solver is given a well defined initial state, for example the

configuration of a chess board, a well defined final state, to win the game, and a finite collection of

actions or state transformers. Consider the diagram depicting the state-operator )paradigni below.



Forward Chaining

Figure 4-3: The Classical Al Problem Solving Paradigm

Problem solving is characterized as a search for the sequence of actions that will achieve the goal

state. The test to see if the goal state has been achieved is objective and two valued, either the goal is

achieved or not. (We will discuss in section 6.1 how current problem solving systems are based on

the this paradigm.) The problem solver is assumed to be a single individual, thus there are no

problems with synchronization or conflict with other problem solvers. When more than one problem

solver is working on problem, as in an organization, a global state description of the problem and the

problem solver is no longer practical.

This is a seductive paradigm but it is hard to apply in the organizational setting. The reason for this is

that in using the state-operator paradigm one determines a possible means to achieve a goal by

examination of the current and goal states. But in many cases in office work the goal is vague and

how much infbnnrmation is relevant to achieving the goal is not clear; this makes an assessment of the

current state difficult. This problem is suggested by the case studies in [Wynn 79] and has been

pointed out by ISuchman 79, Garfinkel, Sacks 70].

Consider the order entry function described in section 4.3.1. We analyze the order entry function in
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the light of the state-operator paradigm. Since this paradigm is not applicable to a distributed

environment only the tasks carried out by a single order entry will be considered. The clerks state

when a customer calls may be described as follows: there are several partially complete orders on the

clerks desk as well as a new order for the customer on the phone; the clerk has access to other state

information such as inventory status, and customer account status. The clerk's goal is a completed

order form; enough information must be entered into the form so that the following ftnctions--

billing and shipping--may be completed. The actions the clerk uses to achieve the goal are to take

information from the customer and enter it into the order form, possibly referencing information

such as inventory state.

In the description of the initial state when a customer calls a great deal of information may be

irrelevant. However what is and is not relevant is not known until the goal is accomplished: the clerk

may reference the partially completed orders for inventory information or if one of them is one that

the customer has made that they want to change; or the clerk may reference inventory status

information or customer account status information.

The actions the clerk uses may be incrementally augmented. In the story about the barge the clerk

created a new action which was to attach a note to the order form describing how the supply clerk

could obtain the delivery address. Note that the goal is not to fill out the ord -r entry form but to

obtain enough information for other function to proceed. In the barge example this was achieved by

attaching the note to the order form. The goal is necessarily vague to accommodate new actions that

may achieve it.

These examples suggest that much of the work in offices does not fit into the state-operator paradigm

but more a style of problem solving where goals and relevant information towards achieving the goals

.are developed simultaneously. In fact, as March and Simon point out [March, Simon 63], often there

isn't a particular goal that is important but any goal that is in some sense satisfactory is acceptable.

The emphasis in this case is not so much on reaching a goal via some sequence of actions but on

finding a an acceptable sequence of actions to any one of a number of satisfactory goals. In

traditional goal oriented problem solving achievement of a specific goal is the desired outcome of the

problem solving process.

A great deal of work in the office is analyzing anomalous situations. Suchman describes an example

where an accounting office received a past due invoice that the accounting office's records showed as



paid. In diagnosing the situation the only goal initially is the wague "try and understand what

happened." The initial state is the knowledge that something isn't right and a collection of data, such

as the past due invoice and the records of the transaction, that may or may not be relevant. In this

case a state-operator paradigm is of little use. After examination the datal is partially assembled into

some coherency and a more explicit goal suggests itself. This interplay continues until finally a

course of action is determined.

In a sense the state-operator problem solving paradigm is so general that one may argue that it is all

that there is. Whether this is accepted or not the state-operator paradigm is a low level problem

solving paradigm. An analogy can be drawn with the Turing Machine. Although is some sense the

Turing Machine is all there is to computation and in fact defines it, it is often necessary to adopt

higher level computational models such as message passing models. Problem solving paradigms of a

higher level of abstraction than the state-operator paradigm are needed to describe office work.

The state-operator paradigm is a problem solving technique that is most easily used in a fact centered

deduction system as opposed to a object oriented system. In a fact centered systems knowledge is

represented as a data base of facts or logical statements. Fact centered systems include logic based

systems such as PROLOG, resolution based theorem provers, production systems such as GPS, and

pattern directed invocation systems such as PLANNER and AMORD. Typically, reasoning proceeds

when facts in the database trigger procedures that then assert new facts. In object oriented systems

information is structured around objects. Examples of object oriented systems are FRI., KL-ONE,

NETL, and KRL. These systems use if-added, if-removed, and if-needed daemons (FRL), explicit

database queries (NETL), or pushers or pullers (KRL, KL-ONE) to drive reasoning processes. The

state-operator paradigm is more amenable to fact centered systems since facts, initial and goal states

of the problem, drive the search for sequences of actions that will transform the initial state into the

goal state. Below we argue that object centered systems are a more natural choice for a system that

will support office workers.

4.5.2 Supporting Problem Solving

In supporting office workers in their problem solving the intent is to help thcem perform their work as

opposed to replacing them. The aim is to design a system that allows the office workers to do what

they do best and allows the computer to do what it does best. The computer's purpose is to help the

user, therefore the difficult problem sol\ing tasks are done by the user and the simple problem



solving and algorithmic tasks can be done by the comrputer.

An important property of problem solvers in an organization is that of delegated authority. There are

cases when a problem solver will make a choice not because he/she/it has made a reasoned decision

but because the choice was mandated by a supervisor. Thus an order entry clerk may not understand

the status of a particular customer account and ask a supervisor. The clerks supervisor will tell the

clerk what to do. The clerk's supervisor will either explain to the clerk the reason for the decision or

will ask the clerk to accept the decision on faith. In the first case the clerk will know what to do if the

situation arises again.

A similar relationship will exist between the office worker and the computer supporting problem

solving. A computer may delegate decision making to its user if either, the computer doesn't

recognize the situation as one it can handle or the situation is one that requires authorization from the

office worker.

In the classical problem solving paradigm the problem solver does all the work itself. It does not

include the idea of more than one entity working on a problem. Our approach is to support problem

solving. As a result we propose the P'roblem Solving Support Paradigm shown below.
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In the problem solving support paradigm the oftice worker cstablihecs a goal, for example to send a

message or to complete a step in an office procedure. Based on what Omega knows about the goal it

either tries to establish or refute the goal. If the goal can't be attained Omega complains to the office

worker that the goal cannot be established or that contradictory information has been discovered

during the attempt to establish the goal. At this point the office worker can either modify the goal or

make further assertions possibly supplying necessary information to establish the goal. Omega then

attempts to establish the goal again. This cycle continues until the goal is established. The analysis is

accomplished using Omega's viewpoint mechanism.

4.6 Acquiring Knowledge to Support Problem Solving

Knowledge about the goals and actions of office work must be gathered in order support problem

solving. March and Simon have suggested three approaches for collecting infbnnation on office work

[March, Simon 63].

1. Observing the behavior of organization members.

2. Interviewing member of the organization.

3. Examining documents that describe standard operating procedures.

Each of these possibilities presents problems. In the first case it is difficult to determine what an

individual is doing by observing his or her actions without understanding the reasons behind the

actions. Since much office activity involves knowledge processing one cannot understand an

individual's actions successfully by just observing it.

In the second case members of organizations themselves have difficulty articulating what they do. It

is very difficult to explain to an interviewer the minute details of work that a worker has learned over

many years of experience. This is partly because much of the task has been internalized and happens

subconsciously. To ask workers to explain the reasons behind their every move is asking them to

know what they do subconsciously. In addition, individuals differ in their ability to articulate what

they do and observe what they do. ']'There is no way to determine how their descriptions differ from

reality. Two people asked to describe the same work will produce two differing accounts of the work.

There is no objective means to determine which of the two accounts or which parts of the two

accounts confbrmn to reality.



We are ignoring further problems that arise from the fact that the work catn be dcscribed as it is

actually done or as it should be done. The workers may well give differing accounts because they

may do the work differently. The workers could be asked to give their conceptual model of how the

work should be done. But the "what should be done" vs "what is done" distinction may be

misleading because after many years at a task what is actually done may well become the conceptual

model of how the work should be done.

What the worker possesses is an ability to plan and execute, in the face of unexpected contingencies,

actions that achieve the goal of the office work. The results of interviewing office workers are the

outcome of this planning process. What is really desired is the knowledge that drives the planning

process and knowledge about how the planning process works. Consider interviewing the order entry

clerk described in 4.3.1. The interviewer would ask the clerk to describe the common case and then

the exceptional cases such as what happens when the inventory for the desired item is low, what

happens when the customer's credit is in question, or what happens when a customer wants an

unusual item the is not in the inventory. But there are an infinite number of exceptions; it is doubtful

that even the most farsighted interviewer would ask what would happen if the delivery location was a

barge.

The third case involves examining documentation of the standard operating procedures. It is well

known that this documentation is rarely accurate and seldom used. In most offices procedures

manuals are paper documents hence difficulty and expensive to update. Examination of these kinds

of documents can only give the barest of ideas of what the programs in an organization are.

A drawback of all the approaches mentioned above is that the interviewer is human, thus the

interviewer asks questions based on what he or she understands. It is then difficult to transfer the

knowledge to a machine because many assumptions that a human makes about the work are not

brought to light.

A more direct approach to acquiring office knowledge is to let the office workers, in conjunction with

their workstation, collect the knowledge needed to perform their roles in the office. In this way the

machine can ask questions about the work and in particular point out assumptions that the office

workers make. Although this subject is beyond the scope of this dissertation the use of systems such

as 'FIN KER [I.icberman, Hewitt 801 look very promising in this respect.



Chapter Five

OMEGA

Omega is used to build, maintain and reason over a lattice of descriptions. Descriptions are related

via an inheritance relation called the i s relation. The lattice has a top-most or most general element

called Something and a bottom-most element called Nothing. The element Something can be

interpreted as representing the state of no information while Nothing can be interpreted as over-

information or contradictory information.

This chapter provides an information introduction to the Omega language. The basic types of

descriptions and statements are presented with axioms and examples. Viewpoints are not discussed,

they are presented in latter chapters. For a more thorough treatment the reader is referred to [Hewitt,

Attardi, Simi 80]. A semantics and consistency proof for a subset of Omega is presented in [Attardi,

Simi 81].

Listed below are several of Omega's important properties. They have been derived from the desire to

use Omega in a knowledge iich environment (as described in section 4.2). These properties influence

the way Omega is implemented and the way it is used. They are themes that continuously reappear

in this dissertation.

- Monotonicity of Information - Information is only added to the system, never lost. As
information becomes older it may take longer to access because older, unused
information is migrated to mass storage archival devices that have slower access times.
Information is never changed within Omega. Updates are replaced by a mechanism
which marks the updated informnnation as out of date and uses the new updating
in formation.

- Conmmutativity of Assertions - Onicga is designed to accommodate the accumulation of
information. No fundamental differences occur if Omega is told the same things in a
different order. In practice, response times may vary but Omega is not sensitive to the
order in which it is given information. Mechanism exist within Omega to maintain the
consistency of descriptions when new descriptions are added. One of these is the
deduction mechanism described below.

- Making l)eductions - Omega has basic inference rules called merging and flsing. When
an ()object V0 hich is described in the system is further dc:,cribed. the new description is



combined with old descriptions resulting in a niore specific description about the object.

- Partial Descriptions - Partial descriptions are an important tool to the knowledge worker.
Partial descriptions are frequently used and are used to refer to a particular object or may
be accumulated and merged until the object they refer to can be deduced. As an example
a description of the form "the invoice for 100 widgets" is a partial description because it
does not describe an invoice fully but is useful in identifying it.

- Incrementality - Information can be added to Omega in an incremental fashion. In this
way unforeseen situations and new information can be added to Omega. The knowledge
necessary to function in a particular role can be accumulated over time, minimizing the
amount of start up knowledge necessary of effective use of Olnega.

- Finding the Extension of a l)escription - A common operation is to retrieve information
based on a description, e.g., retrieve all invoices whose total exceeds $10,000, or retrieve
all items that can fill a certain field of a form. This latter retrieval is possible because each
field contains a description of what can fill it.

- Managing Change with Viewpoints - Change is managed with a viewpoint mechanism.
The viewpoint mechanism insures that change proceeds in an orderly fashion, avoiding
race conditions that can lead to circumstantial contradictions.

5.1 The Axiomatization of Omega

The behavior of Omega is described via a set of description axioms. The axiomatization of Omega is a

powerful tool by which to communicate the behavior of the description system. The axioms function

as a contract between the user and the implementor of the system as well as a base firom which to

derive theorems about the system's behavior. This contrasts with other methods for describing the

behavior of knowledge embedding languages such as informal English descriptions or large program

texts.

It should be noted that this use of axioms is only distantly related to the attempts to axiomatize

systems in the program verification area. In program verification an attempt is made to describe a

program's behavior axiomatically and then to verify that the program indeed behaves as dictated by

the axioms. Omega's approach is to use axioms as a vehicle to study the structure of description

systems in a manner similar to that which set theorists have used axioms to study the structure of

different set theories.

The axioms are used to guide the implementation of Omega. Thus the soundness of Omega as a logic



can be investigated independent of the implemientation. For example, a model theory of a set of

axioms similar to those presented here has been developed [Attardi, Simi 81]. To be able to have

assurance that the conclusions a system makes are sound is of utmost importance. Some knowledge

systems are not based on a firm mathematical foundation and thus their conclusions are always

suspect. An example is Fahlman's NETLI system [Fahlinan 77] and its "copy confusion" problem.

This particular problem has been fixed by Fahlman but since there is no precise semantics for the

system and no consistency proof there is no assurance that the copy confusion problem or some other

problem may not reappear in a more subtle fonn.

Complicated knowledge processing problems can often be difficult to understand. In some

knowledge embedding systems that don't have a precise semantics it may be difficult to decide

whether suspicious behavior in the implementation is anomalous or correct. Omega's axiomatization

provides an objective way to verify the implementation's behavior.

5.2 Descriptions

The simplest description in Omega is the atomic description; the following are examples of atomic

descriptions:

proposal-1.7
invoice

Atomic descriptions are called as they are because they have no structure. A non-atomic description

is the Instance Description. A simple example of an instance description is of the form:

(an Office-Procedure))

This description is used for describing a typical member of a class of objects, in this case the class of

office procedures. Note that we use the convention that Omega's keywords are written in a boldface

italic font, such as the an above. The only part the instance description above has is its concept which

in this case is Office-IProcedure. An Instance descriptioni with more structure is:

(a Supply-Order (with Customer customer-17)
(with Item widget-5)
(with Item ividget-7))

This is an instance description for the concept Supply-Order and with three attributions. Attributions

further restrict the class of objects an instance description describes. In sonme cases the information in



attributions will restrict the class of objects ti• a single object or to the null class. In this latter case the

instance description will be identified with Nothing. The attributions of instance descriptions are

similar to the attribute-value pairs of frames as in FRL [Goldstein, Roberts 77] and the indicator-

value pairs of Lisp's property lists. However Omega's attributions are more highly developed, for

example in the case above attribute names and values are descriptions and there can be multiple

attributions with the same attribute name. There are other differences which will be described more

fully below. The instance description above describes a typical member of the Supply-Order class

with Customer attribute customer-17 and two Item attributes with descriptions widget-5, and

widget-7.

The simplest sentence in Omega is the predication and is of the form:

(customer-17 is (a Customer (with Address address-5)))

This statement says that customer-17 describes a typical member of a class of objects--no

commitment is made as to the number of members of the class--that are also members of the

Customer class with the given attribute. The is relation is the fundamental relation in Omega and is

referred to as the inheritance relation. The is statement is used to construct Omega's inheritance

lattice. Sometimes the statements in Omega will be written as infix expressions as above and

sometimes as prefix expressions depending on which is more readable. The bold italic font

distinguishes Omega's operators and disambiguates the statements. One of the basic properties of the

is relation is transitivity:

Axiom 5-1: (Transitivity of is)

If(d i is d2) and (d2 is d3) then (d, is d3).

1The is relation is reminiscent of the is-a relation of systems such as FRL. They are different for in the

.systems that use the is-a relation it is possible to say

John is-a Human and Hunian is-a Species

and if transitivity is allowed one can erroneously conclude that

John is-a Species

In Omega this example appears as:

(John is (a Man)) and (Man is (a Species))

and in this case, since Man and (a Rlan) are different descriptions transitivity cannot be applied to



obtain tie erroneous conclusion. What can be concluded is the following:

John is (a (a Species))

Which says that John is a typical member of a class of objects which are also members of a second

class of objects. What is known about the second class of objects (note, not the members of the class!)

is that it is a member of the Species class of objects. Note in the above example we have used the

concept of the instance description to talk about the class of objects as a whole that tie instance

description refers to. This will be used later when we describe viewpoints.

The is relation also is reflexive:

Axiom 5-2: (Reflexivity of is)

For every description d, (d is d).

The same relation is defined in terms of the is relation.

Axiom 5-3: (same Relation)

For all descriptions d,, d2,

d1 same d2 if and only if d, is d and d2 is d1

5.2.1 Description Lattice Operations

Other operators are available for creating new description from existing descriptions. These are the

familiar lattice operations, meet, join, and negation which are called dand, dor, and dnot. The

operators are prefaced with a d to indicate that they are description operators. Some examples of the

use of these descriptions are shown below

(dand (a Supply-Order (with unique Customer Floating-Copiers-Inc))
(a Task-Input (with Task (a Billing-Task))))

This description describes those objects that are both Supply-Order's for a particular customer and

inputs for the Billing-Task. The dor description joins the objects referred to by descriptions. For

example the following states that those individuals that perform a billing calculation are either

Billing-Clerks or Billing-(Clerk-Supervisors.

(is (a Task-Performer (with Task (a Billing Calculation)))
(dor(a Billing-(lerk)

(a Billinig-Clerk-Supeirvisor)))

The negation operation is used to describe the complement of classes of objects. The following



example states that a Billing-Clerk is not an Order-Entry-Clerk.

(is (a Billing-Clerk) (dnot (an Order-Entry-Clerk)))

Descriptions obey a DcMorgan's Law and a law of double negation. The axiom for the DeMorgan's

law is:

Axiom 5-4: (DeMorgan's Law)

(same (dnot (dand d d ))
(dor (dnot dl) (dnot d2)))

5.2.2 Attributions

There are 4 types of attributions that can be used with instance descriptions in Omega, these are of

with, with every, and with unique. The attributions differ in how they can be manipulated. First, the

properties that hold for all attributions are presented. The axiom of commutativity of attributions

states that the order of the attributions of an instance description does not matter.

Axiom 5-5: (Commutativity of Attributions)

For every description C and attributions a.
(aC a1 ... ai.l aoi ... an) same(aC aa ... ai i-l ... an)

For example:

(a Supply-Order (with unique Customer Floating-Copiers-Inc)
(with unique Delivery-D)ate (a Date)))

same
(a Supply-Order (with unique Delivery-D)ate (a Date))

(with unique Customer Floating-Copiers-Inc))

The omission axiom can be used to produce more general instance descriptions:

Axiom 5-6: (Omission Axiom)

For every description C and attributions ai
(aCaC ~.. "' ..i a n) is (aC a1 ... a i-lai+ 1 ... an)

For any instance description the deletion of an attribution produces a more general instance

description. For example:

(a Supply-Order (with unique Customer Flloating-Copiers-Ine)
(with unique I)elivery-l)ate (a Date)))

is
(a Supply-Order (with unique ('ustonmer Floating-Copiers-lne))



All attributions also have a monotinicity propcity:

Axiom 5-7: (Monotinicity of Attributions)

If' is one of the attribute types of with, with unique, or with every,
for descriptions C, P and (d is d )
then (aC (T v d1)) is (a C (T d))

For example, suppose that the following is known to hold:

(a Billing-Calculation) is (a Task)

Then the following inheritance relation can be deduced:

(a Task-Performer (with 'Task (a Billing-Calculation)))
is
(a Task-Performer (with Task (a Task)))

Monotinicity is an important property that holds for other types of descriptions as well. Other

monotinicity axioms will be discussed in section 5.4. The with attribution is mergible in the following

sense:

Axiom 5-8: (Merging of with)

Let at, and a, be with attributions, then
(dand (aC (a C a2)) same (aC at a2)

Using this axiom incremental infonnation is merged together to produce new descriptions. For

example, if it is know that

form- is (dand (a Supply-Order (with Item widget-5))
(a Supply-Order (with Item widget-7)))

it can be concluded that

form-i is (a Supply-Order (with Item widget-5)
(with Item widget-7))

In some cases merging of attributions in the manner shown above in combination with the axiom of

omission is not desirable. This is the reason for the of attribution. Consider the following description

for the sum of two numbers:

6 same (a Sum (ofargl 2)(ofarg2 4))

By the axiom of omission and since 6 is also a sum with an argument of I one can conclude that

6 is (dand(a Sum (of'argl 2)) (a Sum (ofarg2 1)))



If' merging were allowed for of attributions then a conclusion that 6 was the sum of 2 and I could

erroneously be produced. Thus the difference between the of attributions and the with attributions is

that with attributions are mergible. The of attribution is used where the attributions have some

relation to each other. In the example above, 2 and 4 are related to 6. The with attribution is used for

attributes that have no relationship with each other. The with eveiy attribution is used to specify that

all attributes with a certain name have a particular property.

Axiom 5-9: (Fusion of with every Attribution)

(is (a C (with v (dandd dd2)))
(a C (with every v dl1 (with v d2)))

If it is necessary to specify that all Items of a Suppiy-Order are constrained to be of a certain class of

objects this is expressed by the following statement:

(a Supply-Order) same (a Supply-Order (with every Item (a Supply-item)))

In some cases an attribution of an instance description may be unique. This is the function of the

with unique attribution.

Axiom 5-10: (Fusion of with unique Attributions)

(is (a C (with unique v (dand di d2)))
(a C (with v d1) (with unique v d)))

This axiom allows one to conclude that different attributes with the same attribute name are

mergible. For example suppose it is known that

(form-1 is (dand
(a Supply-Order (with Customer (a Local-Firm)))
(a Supply-Order (with unique Customer (a Customer)))))

It is possible to conclude that

(forml is (a Supply-Order (with unique Customer (dand
(a Local-Firm)
(a Customer)))))

In summary, attributions are a way of specifying relationships between descriptions. The triary

relation Sum can be expressed as:

(a Sum (of Argl 5) (of Arg2 3))

The first instance description expresses a triary relation between the object the description describes--

the su1m, 8 in this case--and the two ar'guments. Note that in keeping with Omega's goal of



supporting incremental accumulation of inionnation relations do not have to predefined as to the

number of arguments they have. An n-ary relation between a Supply-Order and its items may be

expressed as:

(a Supply-Order (with item widget-3) (with Item widget-9))

This says that the Supply-Order has two items associated with it. In the example above there is no

limit to the number of Items to the relation. New items can be merged in with the Supply-Order

description as needed.

5.2.3 Variables

There are two variable descriptions that are used during pattern matching and in statements. These

are:

Variable Description, written as: -Var
Qualified Variable Description, written as: (which is -Var d)

These descriptions are used as the bound variables in universally and existentially quantified

statements. The use of these descriptions in pattern matching will be considered in more depth in

section 7.4.1 on pattern matching. Variable descriptions are used during the pattern matching

process to bind descriptions to the variables. The qualified variable description, which is, restricts its

variable to be bound to descriptions that inherit from the qualifying description, the description d in

the example above. The qualified variable is used in pattern matching.

5.3 Statements

In addition to the descriptions described above Omega provides statements as a way to modify and

talk about the description lattice. The descriptions presented above cannot talk about the structure of

the lattice. Statements are used to represent relationships or constraints that cannot otherwise be

represented in the lattice. Statements are descriptions and thus are subject to all the axioms that

apply to descriptions. In addition, universal or existentially quantified statements may range over

any type of description, statements included.



5.3.1 Statement Types

Two statements have already been presented in the earlier sections of this chapter, these were the is

and same statements. Omega includes all the standard logical operators, these are shown below.

land Logical conjunction
lor Logical disjunction
Inot Logical negation
limplies Implication
lequiv Equivalence

As with descriptions, the first letter of these operators is I to distinguish them as logical operators.

Often the the word form of the logical operator will be replaced by its logical symbol, e.g. A for land

etc. In addition to the logical operators above a few more are defined for convenience. It is often

necessary to be able to state that a description refers to a single entity. This is done with the

individualpredicate which is defined as follows:

D)efinition 5-1: (Individual Predicate)

individual(d) a
(A -1 (d same Nothing)

(x is d > (V (x same d)
(x same Nothing))))

The interpretation of the individual predicate is that it is true of a description d ."and only if d is not

same with Nothing and any description that inherits from d is same with d. In other words, d is the

most specific description in the lattice that isn't Nothing. The motivation for this definition is that ifd

is to refer to a class of objects with a single member then any class of objects that inherits from d is

either same with the class, i.e. it refers to the same object or it is the null class of objects which is

Nothing.

.Another logical predicate that will be used is the exclusive predicate. The exclusive predicate is used

to express that two descriptions describe mutually exclusive classes of objects.

Definition 5-2: (Exclusive Predicate)

exclusive(x y) = (A (x same Nothing)
- (y same Nothing)
(x is (dnot y))
(y is (dnot x)))

In addition to stating that two descriptions are mutually exclusive the exclusive predicate expresses

the fact that the classes of objects referred to by the descriptions are non-null. I'lThe reason for this is



to make answering questions easier. Suppose (a man) and (a iomnan) arc stated as being exclusive

and then we asked whether joe, a man, inherited from (a woman). If (a man) was same with Nothing,

the joe would be to and the answer to the question would be yes. We avoid this situation by stating

that the arguments of an exclusion are not same with Nothing.

5.3.2 Quantification

Omega allows both universal and existential quantification, the first explicitly and the second

implicitly. The for all construct is used to universally quantify a statement. For example, the

following is used to say that all customer accounts that are overdue are accounts under review.

(for all =acet
(- (land (acct is (a Customer-Account

(with unique Stalus Overdue)))
(Inot(is -acct (a Special-Account))))

( acet is (an Account-Uinder-Review))))

Existential quantification is handled via the description mechanism. The following expresses the fact

that a customer account, fobr example account-17, has an account balance:

(account-17 is (a Customer-Account
(with unique Account-Balance Something)))

If more information is known about the customer account the Something may be replaced with

another description. In this case it could be replaced with (an Dollar-Amount) since that much is true

about all account balances.

5.4 Monotinicity Rules for Descriptions

The monotinicity axioms define the specificity or information content of descriptions. They are used

to relate descriptions of the same type in the description lattice. The monotinicity properties of

descriptions are central to Omega's semantic sprite invocation mechanism discussed in section 7.4. In

axiom 5-7 the monotinicity of attributions were defined, a monotinicity rule also holds for for

concepts in instance descriptions:

Axiom 5-11: (Monotinicity of Instance Description Concepts)

If(C I is C,) and ai attributions, then
(aC 1 a 1 ... a(n) is (aC 2 a ... a n)



Thus if it is known that

Supply-Order is (a Type-of-Order)

7Then it can be concluded that

(a Supply-Order) is (a (a Type-of-Order))

Below is the monotinicity axiom for the dand description.

Axiom 5-12: (Monotinicity of dand)

For descriptions di, and d, if d is dj then
(is (dand d ... d.1 d. d1.. d

(danddi ... d1 1 .

A similar axiom exists for the dor description. The monotinicity axiom for the dnot description is

defined in a similar way taking into considerations the properties of negation. Note that the sense of

inheritance for the argument to the dnot description is reversed.

Axiom 5-13: (Monotinicity of dnot)

If d1 is d2 then
(dnot d2) is (dnot dl)

The most specific dnot description is (dnot Something) which is same with Nothing and the most

general dnot description is (dnot Nothing) with is same with Something. For example, if we have

(a Billing-Clerk-Supervisor) is (a Billing-Clerk)

then we can conclude

(dnot (a Billing-Clerk)) is (dnot (a Billing-Clerk-Supervisor)).

Next we consider when predications, or is statements, are related by the is relation or in other words,

when one predication is a more specific case of another predication. The monotonicity axiom for the

is statement is more complicated.

Axiom 5-14: (Monotinicity of is)

Given the is statements d is d2 and d3 is d4
then (di is d,) is (d is d4
if both (d, is'd3) and (d4 Is d2)

Note that the sense of inheritance between the first and second arguments of the is statements is

reversed.



AMost General is Statement (Sonmehfing is Nothing)
Alosi Specific is Statement (Nothing is Something)

Note that there is no connection between inheritance and the truth of statements. So although the

most general is statement inherits to all is statements, it does not inherit its truth value. To

understand the inheritumce of is statements more fully we consider the following example. Suppose

we have the two inheritance relations:

(a Billing-Clerk-Supervisor) is (a Billing-Clerk) (5-1)
John is (a Billing-Dept-Employee) (5-2)

The monotinicity axiom states that predication 5-2 inherits from (or is more specific than) predication

5-1 if the following is true:

John is (a Billing-Clerk-Supervisor) (5-3)
(a Billing-Clerk) is (a Billing-Dept-Employee) (5-4)

Note that intuitively predication 5-2 is more specific that predication 5-1 because is states that a

smaller class of objects(John) is a member of a larger class of objects ((a Billing-l)ept-Employee))

which is a stronger statement than predication 5-1 in the following sense. The is statement is more

specific or stronger in that is discriminates a smaller class of things from a larger class of things.

Another possible definition for monotinicity of is statements is the following.

Given the is statements A is B and C is D then (C is I)) is (A is B)
ifC is A and I) is B

But this leads to the anomalous conclusion

(A is A) is (A is B)

or that (A is A) is more specific than (A is B). This same anomaly arises in the other two possible

.definitions for monotinicity of predications.

The monotinicity axioms for the other statements are not as tricky as that for the predication. Those

for the land and for statements are similar to those for the dand and dor descriptions. Consider the

monotinicity axioms for the same and Inot statements.

Axiom 5-15: (Monotinicity of same)

If(d3 is (d) and (d4 is dz) then
(same (13 4) is (same d d2).

Axiom 5-16: (NI onotinicity of Inot)

lf'(d 1 isd ) then (Inot d,) is (Inot d2)



Note that logical negation does not invert the sense of inheritance for its argument as does description

negation. Monotinicity axioms for dithe other statements in Omega, limplies, individual, lequiv etc.,

follow in a similar manner.

5.5 The Omega Presenter

The Omega Presenter is a graphical interface to the Omega system developed by Gene Ciccarelli. It

allows a user to view portions of an Omega description lattice graphically. In addition the the

Presenter allows the user to make assertions and thus build the description lattice further. In the

remainder of this dissertation we will often use Presenter diagrams to illustrate the relationships

between descriptions. Show below is an example of the Presenter's graphical output.

Figure 5-1: The Omega Presenter

The boxes represent descriptions, thus OFFICER-6 and PIIOT are atomic descriptions while the

other descriptions are instance descriptions. The single headed arrow indicates and is relation thus

the bottom two descriptions and their connecting arrow represent the following:

P11,OT is (A CARERII-OIBJ ECTIVE
(WITIH-UNIQUIE NUMBilER-OF-PI)RERQ-S(l IOOLING 1)
(WITI1l PRt'•lIRQ-SCl IO()LING GROUJNI)-SCI OOL)
(WITI l-UNIQU E NU Al 1I ER-O F-PRE R EQ-lILLET' 2)
(V 11 i IllRlEKQ-HlIL1T1 I)I,,K-JOli)
(Wlll I PR .R I)Q-HIII iEIT S\ II OR))

Instancedescription (a S
C HO O L -

R EC O RD

(with CLASS ADMINISTRATION)
(a BILLET-RECORD (with CLASS LIFE-AT-SEA)

(with BILLET DESK-JOB) (with-unique NUMBER-OF-CLASSES 2.))
(with BILLET SAILOR)
(with-unique NUMBER-OF-BILLETS 2.))

... Same Link

(an OFFICER Dsrpi
(with-unique BILLET-RECORD ) AtoicDescription
(with-unique NAME Juan Dia OFFICER-6
(with-unique SCHOOLING
(with-unique ULTTMATE-CAREER-OBJECTIVE PILOT))

CAREER-OBJECTIVE
(with PREREQ-BILLET DESK-JOB)
(with PREREQ-BILLET SAILOR)
(with PREREQ-SCHOOLING GROUND-SCHOOL)
(with-unique NUMBER-OF-PREREQ-BILLET 2.)
(with-unique NUMBER-OF-PREREQ-SCHOOLING 1.))

I



The double headed arrow represents the same relation between two descriptions. Thus the top most

configuration of descriptions represents the following:

OFFICER-6
same
(AN OFFICER

(WITH-UNIQUE NAME "Juan Diaz")
(\WITH-UNIQUE ULJ,'IMA'I'E-CAREEkR-OBJECT'FVE PILOT)
(WITH-UNIQUE BILLET-RECORI)

(A BILLET-IRCORI)
(WITHI BILLET I)ESK-JOB)
(WITH BILLET SAILOR)
(WIT'1H-UNIQUE NUMIBER-OF-BI,IETS 2)))

(WITH-UNIQUE SCHOOLING
(A SCH1OOL-RECORD

(WITIH-UNIQUE NUMBER-OF-CLASSES 2)
(WITti CLASS LIFE-AT-SEA)
(WIIH CLASS ADMIINISTRATION))))

Note how the diagrammatic representation of the descriptions and their relations is more concise and

easier to understand. Descriptions that are not atomic and appear as a part of a description are

presented outside the descriptions that contain them and are linked with a same arrow. 'his is the

case with the BILLET-RECORD and SCHOOL-RECORD instance descriptions shown above.

Whether these embedded descriptions are presented or not is up to the user. thus allowing control of

the amount of detail in the diagram.



Chapter Six

Viewpoints

6.1 Motivation

Viewpoints may be thought of as repositories for descriptions and thus statements. Viewpoints are

reminiscent of McCarthy's situational calculus [McCarthy, H-ayes 69] and the contexts of QA4

[Rulifsol;, Derksen, Waldinger 72] and Conniver [Sussman 72]. The most notable difference between

viewpoints and these systems is that viewpoints are objects within the system, they may be reasoned

about and described just as any other description in the system.

6.1.1 Viewpoints Compared to Contexts

In comparison with contexts viewpoints are a more flexible approach to organizing alternative

descriptions of a situation. Contexts are arranged in a tree-like fashion: to move from one context to

the next involves pushing the current context--moving from root to leaves of the tree--and popping

the current context--moving from leaves to the root. Switching contexts is expensive because the

environment must be set up when switching to a new context. With viewpoints there is no current

viewpoint, they all exist in the environment at the same time. Thus there is no current viewpoint and

no expense in switching reasoning processes from one viewpoint to the next.

In addition, viewpoints can be organized into arbitrarily complex graphical structures, they are not

limited to trees. The relations between viewpoints are explicitly described, they are not limited to

being ancestor or descendant relations of a tree. An important aspect of the viewpoint mechanism

that has no analogue in contexts is the ability to stand outside of a viewpoint and reason about its

contents. This is important in reasoning about viewpoints that have derived contradictions.

A key property of viewpoints that is different from contexts is that information is only added to them

and is never changed. Consider, for example, a description of an invoice. The description is in a

viewpoint and may be further described in the viewpoint increasing its specificity. T'here may be

rules that maintain constraints between attributes of instance descriptions. thus as inforbnation is



added to a viewpoint further information may be deduced. For example, a nile for invoice

descriptions may state that the subtotal plus a sales tax must equal the total; thus when any two of the

attributes is know the third may be calculated. Should a description in an attribute be changed in a

particular viewpoint, for example the subtotal change from $5 to $10, then the following scenario

might occur:

1. A new viewpoint is created and described as being a successor to the old viewpoint.

2. All descriptions that were not derived from the changed description are inherited to the
new viewpoint.

3. The new description is added in the new viewpoint, any deductions resulting from this
new information are made.

4. The descriptions in the new viewpoint describe the changed state of the invoice.

In this case the new viewpoint inherits all but the changed description and the descriptions deduced

from the changed description from the old viewpoint. What actions are taken when information in a

viewpoint is changed is controlled via sprites. In the examnple above a simple action is specified: all

information not derived from the changed information is inherited into the new viewpoint. Other

actions would be to disallow change, in the case of protected information, or to signal a contradiction

and allow the user to help resolve it. Examples of these actions are presented in detail in this chapter.

In the next paragraphs and in chapter 8 various approaches to handling change are surveyed.

6.2 Managing Change

Many approaches have been developed to manage change; we begin with the most simple and

proceed to the more sophisticated. In some cases the approach to keeping track of changing

information has been via updates to data structures. Systems based on property lists or records such

as in Lisp or Pascal have used put and get types of operations to update and read database

information. These are low level operations and have the disadvantage that they provide no support

for propagating changes. Thus, deductions based on updated inlbnnrmation must be handled explicitly

leading to excessive complexity and modularity problems. Languages like FRI [Goldstein, Roberts

77] solve this problem by using triggers on data structure slots (actually the slots of frames), to help

propagate changes. When an object is added to a slot in a flrame it may trigger an if-added daemon

that propagates the change. In addition there are if:pwethd and if-removed daiemons that fire when



slots are queried or retracted. The problem with this approach is that there is little support for

keeping track of what was deduced and why (particularly between slots in different data structures

linked by constraints). This makes changes difficult because deduction dependencies are not

explicitly recorded.

The language KRL has been used to implement a knowledge-based personal assistant called

OIDYSSEY [Fikes 80a]. ODYSSEY aids a user in the planning of travel itineraries by keeping track

of what cities a traveler will visit, how the traveler will get to the cities and where the traveler will stay

in the cities. In this system pushers and pullers are used to propagate deductions as a result of updates

and to make deductions on reads. A simple dependency mechanism is used to record information

dependencies. When a value is changed the dependency mechanism is used to retract those values

deduced from the original value and to recalculate new values if possible. The problem is that there

is a transition period from the time when a value is changed to the time that all changes are

propagated. During this transition period the database is in an inconsistent state and rules may fire

making deductions based on inconsistent information. The solution adopted was to retract a value,

let all values dependent on the original value be retracted and then assert a new value. This non-

monotonic approach avoids the transition period when the database is inconsistent. This technique

has efficiency problems since a change involves a retraction and reassertion and is cumbersome since

two steps are involved in changing information in the database. In addition, this technique precludes

the use of concurrency since retractions and assertions must proceed sequentially. In both KRL and

FRL it is necessary to be very careful about the order in which t: ;ggers fire for as updates are made

there is both new and old information in the database making it difficult to prevent anomalous results

due to inconsistencies.

The AMORD system attempts to maintain a globally consistent database at all times. A Truth

Maintenance System [Doyle 77] maintains the status of facts, when a fact becomes outed, or

disbelieved, the status of all facts that depend on the original fact are also set to out. During the

period of time that facts are being outed or reinstated.the database is unavailable for the firing of

rules. Thus when the rules do fire, they always see an apparently consistent database. 6 '[his system

reduces the possibility of making erroneous conclusions considerably at the expense of a global

notion of truth and efficiency. In a sense AMORD) goes too far because it is impossible to reason

\VWe call a database apparcntlb consistent when no contradictions haxe been derived but the :latabase hasn't been ptoven to
be consitcent. Plhus sonie contradictions may, be derivable.



within an inconsistent database, thus iethods for resolving the inconsistency cannot use the

reasoning machinery. We will discuss this point at some length latter.

Steele has developed a constraint based programming language [Steele 80]. In this system a network

of nodes and connections is used to build a constraint network. Values deduced by rules at the nodes

propagate through the network creating a flow of information through the net from input and

constant values to deduced values. A dependency network is also maintained so that when values are

changed the dependent values may also be updated. In character this system is an interesting median

between the KRL system used for ODYSSEY and AMORD. Like AMORD, Steele's system

enforces a global notion of truth, so if a consistent interpretation of the input values is at all possible

the system searches for it (using dependency directed backtracking when contradictions are

encountered), until it is found. Like KRL, rules can fire on an inconsistent database signaling

contradictions. These rules represent false alarms because once the propagation caused by the

original change is done, the database is consistent and the fired rules are no longer relevant. Partially

because of the "false alarm" problem Steele has devised a system of prioritized queues that defers the

processing of fired rules that are likely due to false alarms until rules that are likely to bring the

database into a consistent state have fired. Because of the global truth requirement false alarms will

not cause inconsistent results as is the case with the KRL system, they will just lead to inefficiency.

Steele has prioritized the queues to minimize this inefficiency but in an environment with parallel

processors this approach can't work because the queues would represent an unacceptable bottleneck.

A characteristic shared by all these systems is that they are non-monotonic, information is lost when,

for example, values of slots are changed in FRL or when inputs are changed in Steele's constraint

system. This is a fundamental limitation because it means that the systems are constrained in their

history keeping capabilities. If a value of some parameter in one of these systems is changed from A

'to B causing the implications of B to be deduced and then it is changed back to A there is no way for

the system to know the parameter's value was A at a previous time. One might object that this is not

the case in AMORD, that when the parameter is changed back to A the status of the relevant facts are

simply changed from out to in and no recomputation is necessary. liis may be true but this behavior

is implemented by a mechanism beyond the reach of the system's deduction machinery. 'IThere is no

way for AMORI) to reason about the fact that the parameter's value was A.

One might also point out that Steele's constraint system and AMORI)'s Truth Maintenance system

use so-called nogood sets to remember past states. Nogood sets are limited and do not represent a



general history keeping ficility. They are used primarifly an; an aid to the dependency directed

backtracking mechanism to remember particular state configurations that are inconsistent. In

addition, nogood sets, like AMORD'S outed facts are not within the grasp of the reasoning

mechanism.

The systems described above are inspired by the classical view of problem solving. In this view

problem solving is characterized as a search in a state space from a well defined initial state to a well

defined goal. A finite set of actions or state transformers are available; the problem solver finds a

sequence of state transformers that transforms the initial state into the goal state. The backtracking

machinery of these problem solvers is used to perform the search. Often, as in the AMORD, failure

to find the requisite sequence of actions signals a contradiction. This invokes thdie backtracking

mechanism that finds assumptions that led to the contradiction. One of these assumptions is

randomly selected and retracted and the search continues for a consistent state of affairs. The point is

that no reasoning is applied to determine which might be the best assumption to retract or even if the

search should continue.

6.3 Contradiction Handling with Viewpoints

The systems described above cannot reason directly about contradictions because they are based on

logics that suffer from the garbage in garbage out problem (GIGO). Since these system enforce a

global notion of truth, when a contradiction exists anything can be derived by their inference rules.

Thus when a contradiction is detected the systems deduction machinery is useless. The approach

taken by AMORD and Steele's constraint system for example, is to use a mechanism outside the logic

to reestablish consistency. Once the world is apparently consistent, the deduction mechanism can

operate normally.

The Viewpoint mechanisms provides a method to quarantine inconsistency to within a viewpoint so

that reasoning can be done outside of the inconsistent viewpoint and thus valid inferences can still be

made. Thus the truth of a statement is relativized to a viewpoint, dispensing with a global truth

interpretation for statements. Show below is a diagrammatic representation of how contradiction

processing proceeds.



Viewpoint 1

Sucessor V2

When a contradiction is discovered
reasoning proceeds in another viewpoint

Contradiction Handling Viewpoint

A new vicipoint contains
repaired inJbormation

Viewpoint 2

Figure 6-1: Contradiction Handling using Viewpoints

The ability to limit the effect of contradictions to within viewpoints and to relativize truth to

viewpoints is done by explicitly keeping track of what is believed to be tnrue, i.e. assertions, and why it

is believed to be true, justifications. l'his information is expressed in the Omega language so it is

within reach of the deduction mechanism. Steele has stated that a general purpose programming

language isn't one if an implementation for the language cannot t, written in the language itself. We

agree and recast this statement: a knowledge embedding language isn't one if it can't represent and

reason about why it believes what it believes. Given any statement, Omega can answer whether the

statement is believed to be true and why, whether the statement is believed to be false and why, or

whether Omega doesn't know.

The "I don't know" answer has a precise interpretation. When a person is asked a question like "Is

John McCarthy standing at this moment?" and the person is no where near John McCarthy or has no

information about what John McCarthy is doing or normally does then the person will usually

answer "I don't know." In this case the person can convincingly argue that he can't know what John

McCarthy is doing and in a sense can prove that he doesn't know what McCarthy is doing. This is

not the interpretation of Omega's "I don't know" answer. When a person is asked a question like "Is

the square root of 1849 the Inumber 43?" the person may well answer "I don't know." Tlhis is the sense

of Ornega's "I don't know" answer. In the case of the person the "I don': Know" means that the

__



answer is not immediately known but if more time is allowcd there is a possibility that the answer can

be determined. In the case of Omega the answer is not directly represented in Omega's semantic

network but if more resources are allowed it is possible that the answer can be determined.

6.4 Assertions and Dissemination

A statement that is believed to be true has more information associated with it than just what the

statement itself says. In particular a statement has a justification. For this reason statements that are

believed to be true in omega are represented as assertions. An assertion for a statement a in a

viewpoint vp has the structure shown below. Note that the in construct is use to indicate the

viewpoint in which a description resides.

(an Assertion (with unique Content a in vp)
(with unique Justification /3)) in vp

Note that by convention the assertion and the statement reside in the same viewpoint. To motivate

the structure of justifications consider that there are 3 operations one would like to be able to do

given an assertion:

1. Find out if the assertion is true in a given viewpoint.

2. Find out what justifications an assertion depends on.

3. Find out what assertions depend on a particular justification.

To accommodate these operations, justifications have the following structure:

(a Justification
(with unique Assertion (an Assertion))
(with unique 'Type (dorUser System Axiom Compound))
(with unique Time (a Timestamp))
(with unique number-of-depends-on (a non-negative-integer))
(with eveiy depends-on (a Justification))
(with eveiy depended-on-by (a justification))) in viiepoint-vp

Justifications can be of several types. The User type is a justification for an assertion the user has

entered; the System type is a justification for assertions that Omega uses in its operation; the Axiom

type is the justification for an Omega axiom; and the Compound type is when a justification depends

on other justifications. In this last case the number-of-depends-on attribute will be non-czero and it

will correspond to the number of depends-on with attribution1S for the justification. The description in



each of these with attributions will be a justification. 'l he depended-on-hy with attributions are used

to keep track of all the justifications that depend on the given justification. The Time attribution is

used to keep track of when and where assertions where made.

Thus given an assertion we can determine its justification and in turn determine what justifications

that assertion depends on. In addition, given a justification we can find what assertions depend on it

by following the depended-on-by links to other justifications and then the assertion links in those

justifications. What remains is how we tell if an assertion is true in a viewpoint and this gets us the

relationship between justifications and viewpoints.

A viewpoint describes a collection ofjustifications.

We will need the ability to include new justifications in viewpoints and the ability to talk about the

viewpoint itself. The convention we adopt is the following: given a viewpoint description d the

collection of justifications described by the viewpoint is referred to by the notation (a d). Often we

will speak of the instance description as being the viewpoint, this is a matter of convenience, the

viewpoint is actually the concept of the instance description. We use the instance description to

include new justifications in a viewpoint. This is discussed further below.

In the diagram below are shown 2 assertions the user has made. Only the justification for assertion

A-I is shown completely. Also note that in order not to clutter up the diagram we have not shown

that the assertion desc;iptions and the statements are in the OFFICE-VIEWPOINT viewpoint and

that the justification is in the viewpoint-vp viewpoint.



Assertions:

an ASSERTION

CONTENT
JUSTIFICATION JUST-2)) (BILLING-CLERK-2 i

(a JUSTIFICATION
(with-unique ASSERTION A-i)
(with-unique NUMBER-OF-DEPENDS-ON 0.)
(with-unique TIMESTAMP CADR6-9/30/81-14:45
(with-unique TYPE USER))

Figure 6-2: Two Assertions and Justifications

The process of determining if an assertion is true or not in a particular viewpoint is (almost, see next

paragraph) reduced to a matter of determining if the assertion's justification inherits from the

viewpoint or not. It is also easy for sprites (rules) to fire on assertions in particular viewpoints

(discussed in section 7.4). Intuitively this means that sprites are viewpoint specific. This will be

important when we discuss viewpoint inheritance in section 6.5 below. Not only can assertions be

inherited between viewpoints but so can sprites.

There is one aspect to assertions that we have not discussed yet. This is the problem that, so far, just

the existence of an assertion description with a justification could imply that the assertion is true.

This makes it difficult to talk about assertions without their being considered true by virtue of their

existence in the description system, certainly not a desirable situation. An assertion should be

considered true only if it is asserted. For this reason every description has a disseminated status that

is set to true if that description is asserted. A list of the steps that are done when a description is

asserted is:

1. Create the assertion description.

2. Create the justification description.

3. Record that the assertion and the justification are individuals.

4. Link the assertion and justification descriptions.

Justification:

|

N )I

- ---~- - - - -- ~" - - - ---

|
---



5. Insure that the justification description inherits from the viewpoint in which the assertion
is being made.

6. Set the disseminated status to true in the assertion description.

These steps are executed by the assert command so that they are not performed by the user explicitly.

In fact the user does not have access to the disseminated status except imnplicitly by creating sprites

that are triggered by disseminated descriptions.

6.5 Tangled fHierarchies of Viewpoints

Viewpoints, being descriptions, can be structured in flexible ways. Consider describing the work an

order entry clerk does. Facts and rules constrain what the order entry clerk does; these facts and

rules come from diverse sources. There are facts and rules that arise because the order entry clerk is a

member of the order entry department and because the clerk is working on a specific order. We can

use viewpoints as names for collections of facts and rules that should impinge on a particular

situation. The diagram below shows a hierarchy of such viewpoints.

I(a TASK-SNAPSHOT-JUSTIFICATION-4 )

(an ORDER-FORM-3-JUSTIFICATION )

(a BILLING-OFFICE-JUSTIFICATION )

I(a BILLING-OFFICE-APPLICATION-DOMAIN-JUSTIFICATION )

IJUST-31I 1 I
(a BILLING-OFFICE-SOCIAL-FACTORS-JUSTIFICATION

JUST-1 JUST-2

Figure 6-3: A Structure of Enc(mpassing Viewpoints

When a collection of justifications inherits from another collection of justifications we say that the

JUST-4

_ _L __ ___ __ __L___ I ___I ___

I - ' - I - - -- --- ---- -



viewpoint corresponding to thie second ciComlnassOs the viewpoint corresponding to the first. In the

diagram above the viewpoint BIILL ING(-OFFICI•E-VIEWAPOINT-17 encompasses the two viewpoints

VIEWPOINT-9 and VIEWPOINT-14. Note that the viewpoint that refers to a most specific

situation is the most general viewpoint, in this case TASK-SNAPSIIOT-VIEWlPOINT-5, and it

encompasses all the other viewpoints shown. This is because the more general a viewpoint is, the

more justifications there are that the viewpoint encompasses. In the above example viewpoint

VIEWPOINT-9 encompasses the rules and facts from the organizational domain pertaining to the

billing office as discussed in the Office Semantics chapter. The viewpoint VIEWPOINT-14

encompasses general facts and rules concerning the Billing Office applications domain. The

combination of these viewpoints into BILLING-OFFICE-V I\EWPOINT-17 encompass the facts and

rules pertaining to the billing office in general. More specific facts and rule pertaining to a particular

order fonn are encompassed by VIEWPOINT-6. All these viewpoints or sources of knowledge

combine into the TASK-SNA PSHIOT-VIEWPOINT-5.

So far we are able to state that justifications inherit from classes of justifications or, from another

point of view, viewpoints encompass certain justifications. So from the above diagram we can state

that JUST-1 inherits from (a TASK-SNAPSHOT-VIEW\POINT-5) or

TASK-SNA1PSHOT-VIEW\POINT-5 encompasses JUST-1. However we need to be able to talk

about the viewpoint itself, ie, about the collection of things the viewpoint encompasses to describe

them as, for example, being in contradiction. Note that we can't say that:

(a TASK-SNAP'31HOT-VIEWPOINT-5) Wrong!
is (a Contradictory-Viewpoint)

because then JUST-1 would be a contradictory viewpoint. IThe solution is to use the approach

described in section 5.2. We use the concept of the instance description to describe properties of the

class the instance description describes. We have used this tacitly in the above paragraphs when we

referred to viewpoints by just the mention of their concepts. Thus, to express the fact that a

viewpoint is in contradiction we would say:

TASK-SNAPSI IOT-V 1IEWPOIN'T-5 Correct
is (a Contradictory-V ieipoint)

The ability to describe and reason about viewpoints is very usefill. We will discuss further later.

Now it is time to present an example.



6.6 Tracking Change With Viewpoints

As an introduction to the viewpoint mechanism we consider a simple example in this section. In this

example the value of a field in a form is updated when the form is described as having a new value

different than its old value. In later chapters more complicated uses of the viewpoint mechanism will

be presented.

Change in a viewpoint is handled in the same way as contradictions are. Information is only added to

viewpoints, never changed. Thus, when informnation in a viewpoint is overspecified, e.g., the total

field of an invoice has two distinct values such as $23.00 and $26.00, a contradiction is signaled and a

new viewpoint is created for the information. Consider the diagramn shown below in which FORM-1

is described as an invoice with subtotal and sales tax attributes of $23.95 and 5% respectively.

(an ASSERTION
(with-unique CONTENT
(with-unique JUSTIFI

(FORM-1 is
The Assertion: IASSERT-11 .... •)/

(an INVOICE
(with-unique SALES-TAX 5%)
(with-unique SUBTOTAL $23.95))

CATION JUST-1))i
(an INVOICE-JUSTIFICATION-1 )

The Justification: i

(a JUSTIFICATION - JUST-1
(with-unique ASSERTION ASSERT-I)
(with-unique NUMBER-OF-DEPENDS-ON 0.)
(with-unique TIMESTAME CADR18-9/30/81-23:16) TOTAL-CALC-SPRITE-JUST-1

(with-unique TYPE USER))

(an OMEGA-AXIOMS-JUSTIFICATION-4 )

Figure 6-4: An Invoice Described in a Viewpoint

Notice that the justification JUST-1 is encompassed by the viewpoint INVOICE-VIEWPOINT-1. In

addition to this justification there is a justification for a sprite, 'ITOTAL-CA IC-SPRITE'-JUST-1,

(which we use below) and another viewpoint, OMEGA-AXIOMS-\'VIEW OINT-1. 'This last

viewpoint contains the justifications for the various sprites that implement Omega's axioms. We

won't always show all the justifications in a viewpoint as we have this time. Suppose we have a sprite

(whose justification we see above) that, given an assertion describing the subtotal and tax of a form,

deduces whatt the total is for the form. (Hlow this sprite is written will be considered in section 7.4.)

After this sprite fires we have the following situation.

I



ASSERT-2 (FORM-1 is )
The Asserted Calculated Total:

(an ASSERTION
(with-unique CONTENT
(with-unique JUSTIFICATION JUST-2))

The Justification:

(a JUSTIFICATION
(with DEPENDS-ON JUST-i)
(with DEPENDS-ON TOTAL-CAI.C-SPRITE-JUST-1 )
(with DEPENDS-ON WITH-UNIQUE-FUSION-AXIOM )
(with-unique ASSERTION ASSERT-2)
(wilh-unique NUMBER-OF-DEPENDS-ON 3.)
(with-unique TIMESTAMP CADR18-9/30/81-23:17)
(with-unique TYPE COMPOUND))

(an INVOICE
(with-unique SALES-TAX 5%)
(with-unique SUBTOTAL $23.95)
(with-unique TOTAL $25.15))

itin TNVnTrF-.11.1TTFTCATTnN-1 ~1

Other Justifications

Figure 6-5: An Invoice with a D)educed Total Attribute

Notice that the total has been calculated for the form. Notice also the new justification JUST-2 that

has been added to the viewpoint. This is a compound justification that depends on the previous

justification JUST-i; the justification for the sprite that did the calculation

TOI'AI,-CAICULATION-JUST-1; and on the justification for the fusion axiom for with unique

attributions W[ITHi-UNIQUE-FUSION-AXIOM. Now suppose that the subtotal must be changed,

this would be the case if running subtotals and totals were being displayed as the form was being

filled out interactively. We assume that the assertion for the new value for the subtotal has

justification JUST-3. When the fiuse attribution axiom tries to fuse the two values for the subtotals it

complains because they are individuals and they are not the same and thus cannot be fused. The fuse

attribution axiom asserts the viewpoint to be in contradiction resulting in the following situation.

I



The ssetionof Cotradctin: (INOIC-JUTIFIATIN-i is
l(an ASSERTIONe (a CONTRADICTORY-VIEWPOINT

(with-unique CONTENT (with-unique REASON))lu ithRiTninOp 1IISTTFTIATTON CONTRAnTCTTON-,IIUT-1• I

ICONTRADICTIO N- A SSERT-1 I

The Justification:

(a FAILURE-TO-FUSE-ATTRIBUTIONS
(with PROBLEM-JUSTIFICATION JUST-2)
(with PROBLEM-JUSTIFICATION JUST-3)
(with-unique ATTRIBUTE-NAME SUBTOTAL)
(with-unique CONCEPT INVOICE)
(with-unique NUMBER-OF-PROBLEM-JUSTIFICATIONS 2.))

1(a CONTRADICTION-HANDLING-JUST-6 )

(a JUSTIFICATION
(with DEPENDS-ON JUST-2)
(with DEPENDS-ON JUST-3)
(with-unique ASSERTION CONTRADICTION-ASSERT-1 )
(with-unique NUMBER-OF-DEPENDS-ON 2.)
(with-unique TIMESTAMP CADR18-9/30/81-23:45)
(with-unique TYPE COMPOUND))

Justificationsfor the

Contradiction Handling Sprites

< ECONTRADICTION-JUST-i

Figure 6-6: A Viewpoint Asserted to be in Contradiction

The assertion that the viewpoint is in contradiction depends on the two contradicting justifications

JUST-2 and JUST-3. The reason for the contradiction is described as a failure to fuise. The

description of the fusion failure contains enough information for contradiction handling sprites to

take appropriate action.

What happens at this point depends on the sprite that is handling contradictions for the particular

concept and attribute name combination. In our case it will simply assume that the latest value for

the attribute is the one of concern. Shown be low is how the new and old viewpoints are linked.

___ I

-- --

I(INVOICE-JUSTIFICATION-1 is #)IThe Assertion of a Contradiction:

I \"'*" """1"' """"'^""""'



I Ie AssertdU V r fielatililnip A

(an ASSERTION
(with-unique CONTENT
(with-unique JUSTIFICATION CONTRADICTION-JUST-2))

(INVOICE-JUSTIFICATION-T )
CONTRADICTION-ASSERT-2

w,,

a ( VI EWrPINiST (INVOICE-JUSTIFICATION-2 is )(with SUCCESSOR-VP INVOICE-JUSTIFICATION-2 ))i

(a VIEWPOINT
(with PREDECESSOR-VP INVOICE-JUSTIFICATION-i ))

The Justification:
(a CONTRADICTION-HANDLING-JUST-6 )

Other Justifications

CONTRADICTION-JUST-2

Figure 6-7: The I)cscription of a New Viewpoint

As a result of the contradiction handling a new viewpoint, INVOICE-VIEWPOINT-2, and

INVOICE-VIEWPOINT-1 are linked by the successor and predecessor relations. The justification

for this new assertion is a justification which depends on the justification for the contradiction

handling sprite JI'I)ATE-SPRITE-JJUS'T-1 (the one that picks the most recent value to be the

appropriate value in the new viewpoint) and on the justification for the statement that asserted the

first viewpoint to be in contradiction CONTRADICTION-JUST-1. Both contributed to the deduced

knowledge, if either of these justifications is not supported then the assertion

CONTRAI)ICTION-ASSERT-2 cannot be justified. The final result of the contradiction handling is

depicted in the figure shown below.

(a JUSTIFICATION
(with DEPENDS-ON CONTRADICITON-JUST-1 )
(with DEPENDS-ON UPDATE-SPRITE-JUST-1 )
(with-unique ASSERTION CONTRADICTION-ASSERT-2 )
(with-unique NUMBER-OF-DEPENDS-ON 2.)
(with-unique TIMESTAMP CADR18-9/30/81-23:47)
(with-unique TYPE COMPOUND))

r: .I

I
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k(an INVOICE-JUSTIFICATION-2 )II he Justifi1CaLIon:

(a JUSTIFICATION UST-4
(with DEPENDS-ON CONTRADICTION-JUST-2)
(with-unique ASSERTION ASSERT-4)
(with-unique NUMBER-OF-DEPENDS-ON 1.)
(with-unique TIMESTAMP CADR18-9/30/81-23:50) TOrALAL LC-SPRITE-JUST- 1
(with-unique TYPE COMPOUND))

(an OMEGA-AXIOMS-JUSTIFICATION-4 )

Figure 6-8: The Result of Contradiction Handling

In this figure the new value for the subtotal can be seen. In addition to the justification for the new

assertion and for the sprite that will calculate the new subtotal, this viewpoint also encompasses, as

before, the viewpoint in which the sprites that implement the Omega axioms are justified. Note that

the contradiction handling sprite knew that the subtotal and sales-tax were independent although

they were originally asserted by the same statement. This allowed the sprite to bring the sales-tax into

the new viewpoint. This is not always the case.

This example has demonstrated one way updating of information in a viewpoint might work. An

attempt to describe the subtotal in a viewpoint led to a contradiction because two distinct values were

specified for the same attribution. This led to an assertion that the viewpoint was in contradiction

'and the handling of the contradiction via sprites. The sprites picked the descriptions of interest in the

old viewpoint and brought them into the a new viewpoint. In addition the new viewpoint was

described as being a successor to the old viewpoint and the old viewpoint was described as a

predecessor to the new viewpoint. Information that depended on the changed viewpoint was not

brought into the new viewpoint: the total was not brought into the new viewpoint. The situation

above is as it was at the beginning of the example; we have shown it just prior to the point when the

sprite that will calculate the new total will fire.

We have shown the example in this matnner to demomistrate how contradictions might be handled.

__ __
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Depending on thdie application updates may be handled this way or they may be handled

algorithmically instead of using the reasoning mechanism. This addresses the issue of when to use

algorithms and when to use reasoning which will be discussed below. The new viewpoint would be

created without waiting for a contradiction to occur. Processing from this point on would proceed in

a manner similar to the example.

6.7 Knowledge and Reasoning vs Algorithms

As noted above and in other places in this document we have distinguished two fundamentally

different ways to perform a task, algorithmically or using knowledge and reasoning. When faced

with the decision of how to approach a certain task the criteria we use is the amount of problem

solving needed to perform the task.

If the task requires much problem solving where the structure of the problem is likely to change

frequently, where exceptions are frequent and each instance of the problem must be handled on a

case by case basis, and where new knowledge useful in achieving the goal frequently arises then a

knowledge based approach is called for. If, on the other hand. task is well defined and a satisfactory

way to accomplish the task for all conditions is known then an algorithmic approach is called for.

In the case where problem solving exceptions occur in algorithmic tasks it is necessary that the

problem solver have ac:ess to the details of the task at hand in order to understand the nature of the

exception. Kornfeld [Kornfeld 82] describes a method, called Virtual Collections of Assertions

(VCAs) that allows the problem solver to interface cleanly with tasks that are done algorithmically.

It is often useful for a process to proceed in an algorithmic fashion but notifying the problem solver

of certain important events. For example consider tracking a mouse cursor on a display. The actual

tracking of the cursor may be done in compiled code, whereas the fact that the cursor has moved over

a new window or that a button has been pushed may cause the assertion of a statement in the

description system. Reasoning based on this assertion may or may not affect further tracking of the

mouse. Another example is considered later in this document and concerns Sponsors, resource

management objects that control computation used in achieving a goal. Sponsors perform their tasks

algorithmically. t1hwever when an important event occurs--they run out of allocated resources or

they can proceed no further in their processing activities--they notify Omega of the situation by

making assertions.



6.8 Different Types of Viewpoints

The kinds of viewpoints that we have described in this chapter are called Logical viewpoints. Within

these viewpoints logical rules of inference are operable. For example if A and A = BI are asserted in

a logical viewpoint one can conclude 1B in that viewpoint.

In contrast to logical viewpoints are Opaque viewpoints. These viewpoints are useful for modeling a

person's beliefs. For example if we have a viewpoint that represents someone's beliefs and we know

that the person believes A and A => B we cannot conclude that the person believes B and thus we

cannot assert 13 in the opaque viewpoint.

A third viewpoint we distinguish is the Omega viewpoint. The Omega viewpoint is used as a meta-

descriptional capability to talk about the structure of descriptions. For example suppose we want to

talk about the structure of an is statement in the viewpoint vp. Then using the in operator to indicate

viewpoint we can say:

((A is B) in vp) is (an Is-Statement
(with unique Subject A)
(with unique Object B))

in
Omega

The type of viewpoint is controlled by what assertions and sprites are present in that viewpoint. A

logical viewpoint includes sprites and assertions that implement Omega's logical rules of inference.

The opaque and Omega viewpoints would have special rules of inference that control the deductions

that can be made in these viewpoints. Further development of these ideas are beyond the scope of

this dissertation but they look promising in that they give the knowledge base designer great

flexibility in the ways viewpoints may be used.

6.9 Summary

Omega separates information into different viewpoints. Contradictions are contained within

viewpoints. The propagation of information between viewpoints is controlled via justifications. An

advantage of the approach using viewpoints is that the system has a histori:al character. This is an

important step toward our goal of aiding office workers in problem solving Lbout dynamic processes.

Viewpoints can be used as historical records of past processes, as an aid in tracking ongoing processes,

and as an iid to determine the implications of'postulated actions. Descriptions ahout viewpoints can



be used to express the changes between viewpoints.



Chapter Seven

The Omega Implementation

This chapter describes the implementation of the Omega Description System on the Lisp Machine.

The implementation described is the second implementation of Omega, the first implementation was

written by G. Attardi and M. Simi. The primary goals of the Omega implementation are:

- To explore the hnimplementation and use of Viewpoints.

- To explore the implementation of description based Sprite invocation.

- To explore control structures using sprites and sponsors in an inheritance network.

- The use of axiomatization of Omega as an interface between the users and implementors
of the system.

- A unification of systems that are object-centered (systems that have their information
structured around objects) and systems that are fact-centered (system that have their
informnnation structured in a fact database of assertions and goals).

- To explore the implementation and maintenance of declarative structures using objects
and message passing.

- To keep the individual mechanisms of the description system as simple as possible. An
organization of well-complemented simple mechanisms is judged superior to a collection
of seemingly powerful mechanisms the are hard to combine.

- To interface cleanly with Lisp Machine Lisp. The facilities of the description system
should be usable from lisp code without special readers or translation.

Omega is implemented using the Lisp Machine Flavor system [Weinreb, Moon 80]. The Flavor

system provides an object oriented programming environment that supports message passing; it is a

further evolution of such object oriented languages as Smalltalk, CLU and Simula [Ingalls 78, Liskov,

Snyder, Atkinson, Chaffert 77, Dahl, Myhrhaug, Nygaard 701. The major capability that the flavor

System has with respect to other object oriented languages is that it maintains an inheritance

hierarchy of object classes. as does Smalltalk and Simula, and provides for inheritance from multiple

super classes of objects.



In the description of Omega's impleenltation thi, e are several programming techniques to note.

T'hese techniques helped to structure the implementation in a way that is relatively easy to change

and intuitively appealing. The most interesting techniques are:

- Serializers - Used for scheduling of concurrent requests. A serializer manages requests to
the description system so they are processed in an orderly fashion [Hewitt, Attardi,
Lieberman 79].

-Sponsors -Resource control is accomplished through the use of a trees of resource control
objects called Sponsors. Sponsors help implement a more general event based control
structure than Lisp's recursive control structure [Kornfeld 79].

- Inheritance of Flavors - The inheritance capabilities of the Flavor system are used to aid
modularity and save duplicated code.

In the next section (7.1) the top level structure of the description system is described along with a

scenario of what happens when a description is given to the description system. In section 7.2 the

structure of the flavor objects that imnplement descriptions is discussed along with the messages

descriptions receive. In section 7.3 the process by which a list representation of a description is

mapped to its Flavor object is described. Section 7.4 describes the imnplementation of Sprites and

their description based invocation scheme. Section 7.5 describes Omega's approach to resource

control using Sponsors. Section 7.6 cedscribes the Omega's user interface including facilities that aid

interaction with Omega and facilities for extending Omega.

7.1 Overall Description

The description system as well as its constituent parts are implemented using Flavor objects. Shown

below is the description system object and its constituent parts. The single-headed arrows indicate

that the object at the base of the arrow has the object at the head of the arrow as an acquaintance.7

The double headed arrow indicates mutual acquaintancy.

7Acquaintancy means that an object has access to its acquaintlalnce and can send it micssags directcl. In this case a pointer is
the means of acces,;: in a inultiprocessoC implementation a mOIre indirect Ibtmo ot acteess would hbe used.



Description System

Figure 7-1: The Components of the Omega Description System

The description system is composed of the following components:

- A Process - Each instantiation of a description system runs in its own process. This was
done so multiple Lisp Machine Processes could run in parallel and use the description
system. This increases the robustness of the description system since a crash in a process
using the description system will not affect the description system's process. Thus the
description system will still be available for other processes.

- An Interner - The process by which descriptions are translated from their external list
representation, eg (an Office-Procedure-Goal), to their corresponding flavor objects is
called internment. The internment process insures that each use of the external
representation will map to the same Flavor object. If no Flavor object exists for the
external representation of a description then one is created.

- A Serializer - Since Omega runs in its own process, requests to the description system are
scheduled via a serializer [Hewitt, Attardi, Lieberman 79]. Messages sent to the
description system are intercepted by the serializer and forwarded to Omega when it is
ready fbr the next request. When a reply from the description system is given to the
serializer, the serializer gives the reply to the process waiting for the reply.

- A Sponsor - Sponsors are the way Omega does processor resource control. They are used
to control processing that proceeds in parallel. The Top L.evel Sponsor is the root of a
tree of sponsors that control parallel computations. Sponsors are used as a more flexible
control structure that the recursive control structure provided by Lisp.

Omega Process Top Level Activity

Omega Interner Serializer
<---- Acquaintance

M--- Mutual Acquaintance

_ I ____



7.1.1 Questions Concerning the Structure cf the Description System

There are several questions of interest to address concerning the structure of the description system.

First, why is the description system itself implemented as a Flavor object. One can argue that in a

single workstation only a single instantiation of the description system is desirable. Multiple

instantiations of a descriptions system in a single workstation may cause communications problems

between the descriptions systems and lead to problems in manipulating knowledge. T'his problem is

seen as inherit to the manipulation of knowledge in an open knowledge domain. As Simon has

pointed out [March, Simon 631, a major structuring force in organizations is the fact that human

knowledge processors have limited capabilities. Thus humans structure their problem space and

divide up problem solving responsibilities. The resulting situation can be characterized as ctnters of

expertise communicating over channels of limited bandwidths. A similar scenario is expected for

descriptions systems. There is no apriori reason to expect that centers of expertise (description

systems) should be allocated on a one-per-workstation basis. The situation is further crystallized

when considering description systems in a distributed environment. In this case the problem of

communicating between description systems cannot be avoided for it is unacceptable to have one

centralized description system in a distributed network.

Implementing a descriptions system as an object allows one to make multiple description systems. In

this way mechanisms for communicating between descriptions systems can be examined and the

question of what exactly a description system is composed of can be addressed. Although

communications between description systems is not a subject addressed by this dissertation it is

expected to be a question for future examination.

There is a practical reason for allowing multiple description systems: robustness. A description

system runs in its own process to isolate itself from the vagaries of client processes. A similar reason

exists for having multiple descriptions systems. Why should a description system concerned with

describing the details of a graphical interface be sensitive to problems that may develop in the

description system concerned with the structure of office procedure goals. It is true that the

workstation is to be an integrated environment. However this should not be done at the expense of

modularity.

Another question concerns the serializer. The scrializer represents a bottleneck when the description

system is structured as presented. 'Ihe reason for this is more a question of intcrfacing the description

system with I isp Machine I.isp than a requirement of the description systenmi. The Lisp Machine has



a theory of concurrency built around stacks and a rccursive controi s;trIucturc. Omega has a different

theory of concurrency built around events, Sprites, and Sponsors (more on these in section 7.5.) In

effect, Omega implements its own theory of concurrency within a single Lisp Machine process. In

order to allow Lisp Machine processes to use the description system the serializer was employed. In a

more pure system serializers would be used at a finer level of granularity rather than around the

whole description system. These serializers would control access to objects such as parts of the

interner that deal with the hash table, descriptions when their instance variables were being modified,

and modification of the instance variables of Sponsors.

7.1.2 A Simple Scenario

A typical request to the description system is to request the flavor object corresponding to the

external representation of a description, to make an assertion or to establish a goal. Assertions and

goals are discussed in section 6.4. To retrieve a flavor object corresponding to the external

representation of a description, the representation is sent to the Interner. Here the representation is

hashed and the corresponding object is retrieved from a hash table. If the object is found, it is given

to the serializer and another request is processed. If the object is not found it is created, placed in the

hash table and installed in the description lattice. The idea behind installation is to place description

in the description lattice in such a way that all Sprites relevant to the description will be inherited to

the description. This will be further discussed in section 7.3.

In the following pages at times a distinction between a description and its list representation will be

made. In the notation this distinction is made in the following manner. A description object will

have its keywords in italics for example:

(an Office-Procedure (with Goal (an Office-Procedure-Goal))
(with eve.y Action (an Office-Procedure-Action))
(with unique Procedure- l) (an Eight-Digit-Nunmber)))

The list representation for the same description will appear as:

(an Office-Procedure (With Goal (an Office-Procedure-Goal))
(WithEvery Action (an Office-lProcedure-Action))
(With Unique Procedure-1 I) (an Eight-Digit-Number)))

This will only be important during this chapter.



7.2 Anatomy of a Description

Before discussing the structure of descriptions some understanding of the Flavor system is required

since descriptions are implemented in terms of Flavor objects. A Flavor object is composed of

instance variables (or slots) where the object's state is kept and a method dictionary. Flavor objects

are sent messages which consist of a keyword and arguments. When a flavor object receives a

message, it invokes the method in the method dictionary that corresponds to the keyword in the

message. This method can perform state changes, send further messages, and finally return a value.

A flavor object is defined using the following construct:

(D)effavor <flavor-name> <instance-variable-list> <superiors-list>
<options>)

Where <flavor-name> is the name of the Flavor being defined, <instance-variable-list> is list of the

Flavor's instance variables and <superiors-list> is a list of flavors this flavor inherits from. T'he

<options> are optional and will not be of relevance to this discussion but they control such things as

accessibility and initialization of instance variables, required instance variables and flavors etc.

For the purposes of this discussion, flavor inheritance can be illustrated by the following example.

Suppose flavor-1 is defined by the following statement:

(I)efflavor flavor-i (a-slot b-slot) (flavor-2 flavor-3))

Thus flavor-i has the two instance variables a-slot and b-slot and inherits from flavor-2 and flavor-3.

The inheritance means that flavor-I will also have all the instance variables that flavor-2 and flavor-3

have. In addition, flavor-1 will inherit any methods that are defined for flavor-2 and flavor-3.

Methods can be shadowed: suppose flavor-i defines a method for the keyword :YOU-ARE, if either

flavor-2 or flavor-3 define a method for this keyword, that method will not be inherited and only the

method defined explicitly for flavor-I will be used.

The Flavor system's inheritance capabilities are used to build a hierarchy of' description types. The

motivation for this is that there are certain characteristics that all types of descriptions have in

common. Other characteristics are shared by a smaller group of description types, statements for

example, and some characteristics are unique to a particular description type, an instance description

for example. This arrangement facilitates adding or changing the behavior of select groups of

description types.

'This hierarchy is shown below in figure 7-2. The Flavor instance variables and methods common to



all descriptions are defined on the Basic-lDsccr object. iThose instance variables and methods

common to all statements are defined on the Basic-Stmt object. The figure is the Flavor hierarchy for

the complete implementation of Omega. As will be seen in section 7.6 on the User Interface, more

kinds of flavor objects can be defined with ease. As can be seen the hierarchy is not strict for the true

and false objects are both statements and atomic descriptions. Future implementations of Omega

will take more advantage of multiple inheritance capabilities base on what was Icarned from this

implementation.

Basic-

Of-Attrib Var-Descr Multi-Arg-Descr Basic-i

Descr Most General Flavor Object

Stmt Inst-Descr Atomic-Descr Dnot-Descr

Which-Is-Descr Dor-Di

With-Attrib Dand-Descr

With-Every-Attrib Forall-Stmt Binary-F

I
With- Unique-Att rib Binary-Sym-Relat

1'

Something

Nothing

lelat Unary-Pred-Stmt

Lnot
ndividual

Multi-A rg-Stmt

Lor-Stmt
Land-Stmt

Implies-Stmt

Exclusive Equiv-Stmt

Figure 7-2: Inheritance Structure of Flavor Objects for Descriptions

Shown below in figure 7-3

These instance variables are

are the instance variables that each description, regardless of type, has.

defined for the Basic-Descr object.



(I)femavor Basic-l)escr
(Inherit-From ;Descriptions this one inherits fiom
Inherit-To ;Descriptions this one inherits to
Same ;Descriptions Same with this one
Negation ;This description's negation
Individual-P ; Whether description is an individual
Exclusions ;Descriptions exclusive with this one
Mono-descrs ;Descriptions related by Mfonotinicity axiomn
Ex- Rep ;External representation
Sprites ;List of inherited Sprites
I)isseminated-l' ; Whether this description has

;been disseminated.
I)escription-System :The description systemi object this

:description belongs to.
Mlarks) ;Mark depository for graph traversing

;algorithms
(Id-Mixin)) ;A flavor which generates interned

;lisp symbols, and binds this
;flavor object to it (for debugging)

Figure 7-3: Structure of the Basic-Descr Object

Most of the instance slots are self explanatory. 1'he description lattice is maintained via the pointers

in the Inherit-From, Inherit-To, and same slots. The ex-rep slot contains the fully expanded external

representation of the description object. The information in the Individual-P ard Exclusions slots is

kept for efficiency considerations. They contain information about the description object that cannot

be directly represented by the is relationship as discussed in section 5.3.

(Defflavor Inst-l)escr
(Concept ;Instance description's concept
Attributes) ;Instance description's attributes

(Basic-Descr)) ;Include Basic-Descr's structure

Figure 7-4: Flavor Definition of an Instance Description

The structure of the Instance Description flavor object is shown above in figure 7-4. Note that this

description inherits the structure of Basic-Deser and adds the two slots Concept and Attributes. The

Concept and Attributes are two parts that make up the instance description. The Concept is a

description, typically an atomic description and Attributes is a list of descriptions, typically one of the

four possible attribution types.



(I)efflavor Of-Attrib
(name :;Attribute name
description) ;Attribute description
(Basic-l)escr))

(i)efflavor With-Attrib ()
(Of-Attrib))

Figure 7-5: Flavor Definition for With and Of Attributions

In figure 7-5 the structure of the Of and With attribution Flavor objects are shown. The Of

attribution contains the two parts name, which is usually an Atomic Description, and description

which is the attribute description. Note that the W;th attribution inherits the instance variables from

the Of attribution and does not add any of its own. The reason for making a distinction between

these two flavor objects is that there will be methods defined on the With attribution that are peculiar

to it. Figure 7-6 shows the definition of the Basic-Stmt, Binary-Relat, and Is-Stmt Flavor object. The

Binary-Relat object is where the behavior common to all binary relations is defined. It adds the two

slots Descr-1 and Descr-2; these are the descriptions for which the binary relation holds. The Is-Stmt

is one example of a binary relation the inherits the I)escr-1 and I)escr-2 slots from the Binary-Relat

object.

(1)efflavor Basic-Stint
0 ;No instance Variables.
(Basic-l)escr)) ;Inherit Basic-Descr's structure

(I)effavor Binary-Relat
(Descr-1 :First argument of binary relation
Descr-2) ;Second argument of binary relation

(Basic-Stmnt)) ;Inherit Structure of Basic-Stint

(D)efflavor Is-Stmnt () (Binary-Relation))

Figure 7-6: Structure of Basic-Stmnt, Binary-Relation, and Is-Stint Objects

The other description types are defined in a manner similar to the definitions for Instance

Descriptions and Is statements. Once the slots are defined for a description the behavior of the

description can be defined. The behavior of a description is defined in two ways, by defining Flavor

methods, either directly for the Flavor object or indirectly via inheritance and by defining Sprites for

the particular description. In this section the methods for the descriptions are discussed, Sprites are

considered later.



There are various messages sent to description3, that are of interest. 1These Inessages are implemented

in terms of the Flavor system's methods. By convention all messages sent to flavor objects are

prefixed by a colon.

:you-are This messages establishes an inheritance relation between two descriptions, the
target and a description which is an argument. A second argument is a justification
description, since inheritance always has an associated justification. This message
modifies the inherit-from slot of the target and the inherit-to slot of the argument
description.

:you-are-same Similar to the you-are message but sets up a same relation between the
target description and the argument description. A justification is also included.

:you-exclude Ibis message is sent as a result of the exclusive statement. The result is that
the exclusion slot of the target and the argument descriptions are modified. It also takes a
justification.

:fast-inherit-from This message is sent to a description with a description argument and a
viewpoint. It determines if there is a description lattice link between the target and
argument description in the given viewpoint. This message just checks the lattice
structure, it does not try to establish the inheritance if it isn't found.

:check-sprites Causes the description which receives the messages to determine if it can
match any of the sprites it inherits.

:install-sprite The sprite which is the argument is installed in the description and is
inherited to other relevant descriptions.

:dissemninate Sets the disseminate status for the description to true. This is discussed
further below.

:free-vars Determines the free variables in the description target.

:subst-vars Substitutes values for variables in the target description.
environment, a pairing of variables and values. A new description
proper substitutions if any substitutions are made.

1'he argument is an
is returned with the

:mnitch Attempts a match with the "argument description. Returns an environment that is
created by the match if a match is possible.

:gen-or-spec-descr Generalizes or specializes a description. The argument specifies which
to do. Generalization and specialization is discussed further below. A generalized or
specialized description is returned.



7.3 Description Internment and Installation

Internment of a description is the process of linding the unique description object that corresponds to

a list representation of the description. The first question to consider is "Why do internment at all?"

An alternative is to create a new Flavor object for every list representation of a description presented

to the system. 'The short answer to the question is that internment saves a lot of work that would

otherwise have to be done. Consider the two descriptions:

(an Assign ment-Proposal (with Goal goal-1)
(with Actor officer-3))

(an Assignment-Proposal (with Actor officer-3)
(with Goal goal-1))

By the axiom of commutativity of attributions these two descriptions are same. If an attempt is made

to find all the descriptions that inherit from a description and there isn't a unique object for a

description then a search must be made to locate all the description objects that are same. Further

problems arise, for example assume the following assertions and goals:

(assert (exclusive (an Assignment-Officer) (a Placemnent-Officer)))

(assert (is Smith (an Assign ment-Officer)))

(show (Inot (is Smith (a Placenment-Officer))))

A considerable amount of search is necessary in the case where multiple objects per description are

allowed. A possible proof method that one would like to use is to determine if Smith inherits from

anything that is exclusive with (a Placement-officer), if so then it can be concluded that Smith does

not inherit from (a Placement-Officer). The problem is that all the Smith objects must be found, all

the objects that inherit to any of the Smith objects must be found and then all the exclusions of those

objects must be found and lastly (a Placement-Officer) must be tested for membership in the set of

exclusions. This process leads to excessive search and messy algorithms.

The internment process consists of the following steps:

1. Normalize the list representation or ex-rep of the description. This involves ordering
commutative elements.

2. Hash the ex-rep and look it up in a hash table. If there is an entry it is the desired
description object.

3. If no entry exits then an object must be created. During creation of the description object
the internment process is applied recursively to any constituent descriptions.



4. When the description and all its co);~tituent descriptions are created the description
object is installed in the description lattice.

7.3.1 Normalization of Descriptions

The first step of internment is to normalize the list representation of a description. The intent is to

map a set of syntactic objects to a single description object. Normalization involves two steps:

1. Any description objects in the list representation of a description are replaced by their list
representation

2. All commutative parts of a description are ordered.

The set of syntactic objects obtained by permuting commutative parts of a description form an

equivalence class that is mapped to the description object. Note that a limitation to current list

representation of descriptions is that circular structures of description objects are not possible. Thus

there is no way for the description of an attribute of an instance description to be the instance

description itself. This problem is circumvented by using the same relation and atomic descriptions.

7.3.2 Recursive Internment

In step 3 of the description of internment above it was mentioned that the internment process is

applied recursively when a description needs to be created. This guarantees that any constituent

descriptions of a description that don't exist will be created. The interned descriptions will be

included as parts of the description being created. 'Thus there is sharing of structure between

descriptions that have the same constituent parts. This saves space and is in line with the philosophy

that there should be only one description object per equivalence class of syntactic descriptions. There

is no problem with the sharing of descriptions since once created a description never changes. If a

attribute value, for example, of an instance description is changed then a new description is created.

As the description lattice is grown descriptions may acquire new objects that they inherit to or from

but the parts of a description never change.

Another benefit of the recursive internment of description is that a description may be represented by

any combination of list structure and description objects. This is often usefiul in Lisp code when one

builds descriptions out of description objects and lisp's list building fmnctions. This requires that

when a description representation is normalized so it can be looked up in the hash table that the



constituent description objects be replaced with thcir list representation.

7.3.3 Description Installation

The process of installing a description entails linking the description to other descriptions in the

description lattice via its Inherit-To, Inherit-From, and Same links. When a description is created the

only information available to use for the installation process is the structure of the description itself

and the description lattice. Thus the monotinicity axioms as described in section 5.4 are used.

The motivation behind installation is to establish inheritance links that are easy to deduce at

installation time and that will save work later when the descriptions are used. Installation is a type of

antecedent reasoning and as such involves tradeoffs. At one extreme a minimal amount of work

could be done and descriptions could be installed under Something and oxer Nothing. This would

result in a flat database and would leave a lot of structuring work to be done during reasoning

processes. The other extreme would be to do a lot of work searching for descriptions a particular

description inherits from and to and setting up the links; the risk here is that a lot of work will be

done that will never be used. The actual choice made is influenced by the Sprite invocation scheme

described in the next section. Sprites use the inheritance network to discover potential descriptions

that may match the Sprite's pattern. i'he approach taken is to install descriptions in such a way that

Sprites will inherit to descriptions that they will potentially match. The actual installation scheme

involves complicated issues involving Sprite invocation. The des, ription of the installation scheme is

delayed until after the description of Sprites in the next section.

7.4 Sprites

The implementation of Sprites in Omega builds on work on parallel problem solving methods by

Kornfeld [Kornfeld 79]. Kornfeld describes the use of Sprites and Sponsors that avoid the

bottlenecks and possible synchronization problems of previous pattern directed invocation system in

a parallel environment. Kornfeld has developed a way implementing sprite using point-to-point

communication in which some of the semantics of assertions can be embedded in specialized

procedures. The extension to Kornfeld's work in this dissertation is to integrate Sprites into Omega's

description lattice. In the following sections we will describe the structure of a Sprite, what

conditions trigger Sprites and how Sprites are installed and inherited in the description lattice.



Sprites are implemented as Flavor objects. As shown below ia figure 7-7 a Sprite object has 5

instance variables.

(Defflavor Sprite
(Pattern :The Sprite's pattern

Body ;Function to execute when Sprite fires.
Environment :The environment the Sprite will run in
Justification ;The Sprite's justification.
Name) ;The name of this Sprite.
0)

Figure 7-7: The Structure of a Sprite

The Pattern is a description, usually containing variables, that is matched against descriptions in the

description lattice. The body is a Lisp function that is executed in the environment augmented by any

bindings as a result of the pattern match. The justification of a Sprite is a description which is

interpreted to be the reason the sprite was created. Shown below is the syntax used for creating

sprites.

(when <sprite-name> <sprite-pattern> <sprite-justification>
<sprite-body>)

Figure 7-8: Defining a Sprite

When the above form is evaluated the following actions occur:

1. The function corresponding to the sprites body is defined.

2. The sprite object is created.

3. The sprite is installed in the description lattice.

One thing to note is that Sprites are always associated with a description. An interesting subject for

future work is a unification of Sprites with descriptions. Thus sprites would be implemented by

giving behaviors to descriptions.

One unusual feature of Omega's Sprites is that they are named, this a difference from most other

pattern invocation systems such as PLANNER, [Hewitt 69], AMORI) Ide Kleer, Doyle, Steele,

Sussman 77], F.I- IER [Kornfeld 79] etc. This was found useful for incrementally modifying the

behavior of a system without having to restart the system. The problem is that if Sprites are not

named then once a Sprite is installed there is no way to modify its behavior. New Sprites can be

added but the old one is still there and will still fire when it matches a pattern. 'IThe only recourse is to



restart the system from scratch. When Sprites are named they arc accessible and their bodies may be

modified. The change is not retroactive but will be in effect for any future executions of the sprite.

In previous systems, when an error was found in a pattern-invoked procedure the error was corrected,

the knowledge base cleared, and the entire system restarted. This of course will not be possible with

large knowledge based systems that reason about many activities at once. The naming of sprites is

only an interim solution. What is desired is the ability to access sprites by description and to replace a

sprite by switching to a new viewpoint in which the new sprite replaces the old sprite. '[his will be

accomplished by using the sprites justification.

7.4.1 Pattern Matching

Sprite pattern matching is very simple; it is a structural match between the pattern and description.

Only two descriptions are interpreted during the match--these are the Var-Descr (variable) and the

Which-Is-l)escr (qualified variable). The definition of matching is:

Definition 7-1: Two description match if and only if any of the following conditions hold:

1. They are the same description object or,

2. they are of the same type and their constituent parts match, or

3. a variable description (Var-Descr) that is not previously bound matches any
description binding the description to the variable, or

4. a qualified variable (Which-is-Descr) that is not previously bound matches any
description if the description inherits from the qualification, or

5. a variable description, qualified or not, that is previously bound only matches if the
description being matched is the identical one the variable is bound to.

For example the following descriptions match producing the environment shown.

The pattern:
(a =C (with Goal EG)

(with Performer Assignment-Officer-5))
WVill match the description:
(an Assignment-'Proposal-Step (with Goal Make-Proposal-32)

(with Performer Assignmnent-Officer-5))
Producing the environment:

=C bound to Assignmenmtcl-Proposal-Step
=G bound to llake-l'roposal-32

If a variable appears more than once in pattern then it will nmatclh a description only if the variable's



corresponding descriptions are identical:

The description:
(an Order-Form (with unique Bill-To-Address = Add)

(with unique I)eliver-To-Address =Add)
Will match the description:
(an Order-Form (with unique Bill-To-Address Address-78)

(with unique Deliver-To-Address Address-78))
Producing the environment:

Add bound to Address-78

A qualified variable matches a description if the description inherits from the qualification, for

example:

The pattern:
(an Invoice (with unique Date (which is = D

(a Date
(with Earlier-D)ate 7/21/81)'))))

Matches the description:
(an Invoice (with unique Date Date-i 7)
if
(is I)ate-17 (a 1)ate (with Earlier-l)ate 7/21/81)))
Producing the environment:
SD bound to Date-17

Currently the the matching process does not attempt to prove that descriptions inherit from a

qualifying description. Matching could easily do this and would provide an easy way for the

matching process to establish goals in order to establish matches. The reasons that this was not done

are first, as was mentioned at the beginning of the chapter the mechanisms of the implementation

were kept as simple as possible, and second, there are efficiency considerations that may be a

problem.

7.4.2 Installation of Sprites

The first question is "Where should Sprites be placed in the description lattice?" Intuitively the

answer is to replace all variables in the.sprite pattern with Something and install the Sprite at this

point in the lattice. In the case of qualified variables, they would be replaced with their qualification.

Thus a Sprite with a pattern of the formnn:

(an Officer (with unique I)ue-to-Roll-1)ate _EDt)
(with unique l)uty-Station

(which is I)S
(a Duty-Station
(with unique Location Pacific)))))



would be placed on the description:

(an Officer (with unique D)ue-to-Roll-Date Something)
(with unique Duty-Station (a D)uty-Station

(with unique Location Pacific)))))

This works fine since any description that could match the pattern of the sprite inherits from the

description obtained by generalizing the pattern. Note that in the case that a variable occurs more

than once in a Sprite pattern, this method of generalization will let the Sprite inherit to description

that it will not match, eg, those descriptions where the places where the variable occurs don't all have

the same description. There is a tradeoff between 1) the amount of effort that goes into finding a

place for the Sprite to hang and insuring that the Sprite inherits to the descriptions that it can match

and 2) between the efficiency considerations of making sure the Sprite is compared with as few

descriptions that it won't match as possible. For example, it is functionally correct to place every

Sprite on the most general description Something. But this results in intolerable inefficiencies when

the description lattice gets large.

The scheme for generalizing description patterns works fine until the patterns involve negations.

Consider the following Sprite pattern:

(dnot =-Var)

The Sprite corresponding to this pattern will be placed on the description:

(dnot Something) Which is same with Nothing

The Sprite will inherit only to Nothing which is not right. In addition to generalization a

specialization operation is needed. Thus the result of generalizing a description negation is that the

negation will specialize its argument. In the example above the resulting description will be:

(dnot Nothing) Which is sante with Something

This same problem occurs in the case of inheritance with the is description. By the Monotinicity

axiom for the is description in section 5.4 the proper generalization of the pattern:

(is Invoice-1 6 X)

is the pattern

(is
Invoice-16 Nothing)



7.4.3 Description-Based Sprite Invocation

The above approach has the weakness that it depends heavily on the inheritance hierarchy in

conjunction with the monotinicity axioms. If a description is not installed correctly in the inheritance

hierarchy then there is a chance that a sprite that would fire on the description will not be inherited to

the description. Consider the bollowing example:

(a Customer-Account (with unique Account-Number ~ A)
(with unique Balance-Due =B which is

(an Amount
(with Lesser-Amount $100.00))))

This pattern matches all customer accounts that have a balance due of more that $100.00. After

generalizing the above pattern, the sprite will be installed on the following description:

(a Customer-Account (with unique Account-Number Something)
(with unique Balance-Due (an Amount

(with Lesser-Amount $100.00))))

The problem is to insure that all descriptions that indeed inherit from this one are installed below it

so they will inherit the sprite. In general this is difficult; it requires a great deal of effort when the a

description is installed into the inheritance lattice to find all descriptions that the description being

installed might inherit to and from. Note that this scheme is based on the syntactic structure of the

description. Our solution is to take advantage of the semantic structure of the inheritance network as

expressed by the inheritance links that are not a result of the monotinicity axioms and at the same

time to give the user some control over where sprites are placed.

Giving the user control over where sprites are placed is important because automatic placement of

sprites cannot work sufficiently well in all circumstances. Consider the following argument. Suppose

a policy on sprite placement, in conjunction with a description installation policy, is chosen. The

sprite is placed at some location in the hierarchy, say on description d. The description d must be

fairly general because otherwise an inordinate amount of work would be required to install new

descriptions in the inheritance hierarchy. Now suppose the hierarchy below d is highly developed, ie,

many descriptions are installed below d. The sprite becomes a source of inefficiency because it must

be compared with many descriptions that it won't match. The problem is that placement of sprites is

not sensitive to how many descriptions there are below a possible point of sprite placement in the

hierarchy. 'To add mechanisms that would automatically move sprites to more specific installation

points when they are being compared with too niany descriptions that they don't mattch is an



excessively complicated approach.

As an alternative we give the user control over where sprites are to be placed. In this way the

placement of sprites can be controlled in accordance with the semantics of the application. Suppose

in the above example the user has described each account that is to be considered for retrieval as:

(an Account-Under-Consideration)

Extending the use of the which is description the pattern for the sprite would be:

(a Custonmer-Account (with unique Account-Number -A)
(with unique Balance-Due =-B which is

(an Amount
(with Lesser-Amount $1 00.00)j))

which is
(an Account-Under-Consideration)

The sprite is then installed on the description (an Account-Under-Considerat ion) because this is what

the outermost which is description generalizes to and inherits to a controlled number of descriptions

that it might match. Note that in the above example when a Customer Account is described as under

consideration the account balance would also be described as being over $100.00 if appropriate.

7.4.4 The Conditions for Firing of Sprites

Although a Sprite will inherit to all descriptions below the description it is attached to, the matching

of a pattern is not sufficient to cause the Sprite to fire. The Sprite's pattern must match the

description and the description must have been Disseminated. Within the implementation

dissemination is accomplished by sending a disseminate message to the description. This facility is

not available at the user interface. The only way for a user of the description system to cause a

description to be disseminated is via the assert or show statements. 'The reason for this is explained

fully in section 6.4 but intuitively the reason is because it is desirable to represent a statement in

Omega without the mere existence of the. statement implying that the statement is true.

7.4.5 The Efficiency of Description-Based Sprite Invocation

An advantage of semantic invocation of sprites is that the number of descriptions a Sprite must be

compared against can be controlled. This situation can be contrasted to pattern directed invocations

systems such as Micro-Planner [Sussman, W\inograd, Charniiak 70]. CON NVIVER [Sussman 72],



AMORI) [de Kler, l)oyle, Steele, Sussman 77] and otiers. T'ypically in these pattern directed

invocation systems facts are stored in a large database which is implemented via some kind of

discrimination network. When a new fact is added to the system it must be compared against all the

active sprites; when a new sprite is added to the system, its pattern must be matched against every

fact in the system. Adding a new fact is comparatively inexpensive since there are usually many more

facts than sprites. However adding a new sprite is expensive; the time complexity of accessing the

discrimination network to discover matching facts is O(log N) where N is the size of the database.

The problem is that as the size of the database grows to infinity the ratio of the amount of time spent

doing useful work to the time spent in the database accessing facts goes to 0. Thus, since practical

applications very often involve large numbers of facts these system become impractical.

With semantic invocation of sprites accessing of facts for pattern matching does not involve an O(log

N) operation. The number of descriptions involved in a pattern matching is not the entire database

but only those descriptions to which a sprite inherits. If a disseminated description is added to the

system it must be matched with the sprites that inherit to it. Thus adding a general description is less

expensive that a more specific one because it inherits fewer sprites. If a sprite is added to the system

then it must be matched with all disseminated descriptions it inherits to. This can be expensive if the

sprite pattern is a general one or not so expensive, if a sprite pattern is more specific. In practice the

more general sprites are added less often while specific sprites are added more often.

7.5 Resource Control -Sponsors

For resource control in Omega we have adopted the use of Sponsors as developed by Kornfeld

[Kornfeld 79]. The description of Sponsors here is brief, for firther information, the reader is

referred to Kornfeld's work.8 Sponsors control how much processing power a particular goal is given.

When a Sponsor is created for a particular goal it is given a quanta of processing power--an amount

of computational time that can be expended working on a goal. When the quanta is used the sponsor

must ask for more quanta to continue work on a particular goal. The sponsor does this by making

assertions as to how much quanta it has used.

8Kornfeld uses the term activity instead ofh the term sponsor in his work.
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(I)efflavor Sponsor
((Events Nil) ; The events that are to run under this Sponsor.
(State Quiescent) ; The Sponsor's state.
(Local-Proportion 0.) ; Proportion of quanta for local node.
(Local-Quanta 0.) ; The current quanta allocated to this Sponsor.
(Subtree-Quanta 0.) ; The current quanta allocated to the remainder of subtree.
(Sub-Sponsors NIL) ; the sub-sponsors, pairs of proportions and sponsors.
(Super-Sponsor NIL)) ; the super-sponsor.
0)

Figure 7-9: The Structure of a Sponsor

'The structure of a sponsor is shown above. A Sponsor has a list of events; the computational time

incurred by the execution of these events is charged against the sponsor's quanta. There are three

distinguished states that are interesting when discussing Sponsors:

1. Active - The sponsor has events that can be executed.

2. Quiescent - The sponsor has no events that it can execute. A sponsor leaves the quiescent
state when it is either stifled or becomes active be receiving events to execute.

3. Stifled - The Sponsored activity has been halted. Once a sponsor is stifled it cannot be
un-stifled; stifled is a tenninal state. A sponsor is stifled when its goal is achieved or
when it has been shown that its goal is unachievable.

Sponsors are organized into trees. A sub-sponsor is a sponsor that is working on a goal that is a

prerequisite goal for its super-sponsor. When a sponsor is given a quanta it divides it up, (usually in

equal parts) among itself and its sub-sponsors. If a sponsor cannot use all the quanta it is given, the

sponsor returns the unused quanta to its super-sponsor to be divided and distributed. When a

sponsor is stifled all sub-sponsors to that sponsor are also stifled.

7.6 The User Interface

There are various features of the Omega implementation that enable it to be used with relative ease

on the Lisp Machine. The major problems are to map the representation of a description into its

description object in the Lisp Machine environment and to make assertions, goals and sprites.



7.6.1 Internment of Descriptions from within Lisp

The way description objects are found is that the description type is defined as a function that interns

the description. For example:

Given the following lisp form for evaluation:
(A 'QUAIIIDI)-OFFICER)
A is a function which performs the following message transmission:
(SEN I) *SELECTEID-)OMEIGA*

': NTERN-I)IESCR '(A QUALIFI EI)ED-OFFICER))

The function defined on the symbol A constructs the list representation of the instance description

and sends this list to the description system (which is in the global variable *SELECTED-OMEGA*)

as the argument of an :IN'ERN-DI)SCR message. 'This is true with all the description types e.g.

WITH, LAND, DAND, etc. A more complicated example is the tbllowing:

(A 'QUALIFI ED-OFFICER (WITH 'BILLET (A 'BILLET)))

When this form is evaluated first the arguments will be evaluated. In this case the description object

of(A 'BILLET) is retrieved as in the above example. Then the WITH function is executed with the

arguments of BILLET and (a Billet). 9 The first being a lisp symbol and the second a description

object. The WITH function will send the following internment message:

(SEND *S ELECTEI)-OMEGA*
':INTERN-I)ESCR (LIST 'WITtH 'BILLET (a Billet)))

Note that the list contains both symbols and description objec ;. The normalization process will

replace all description objects with their list representation and then look up the description object in

a hash table using the list as a key. If the item exists it is returned otherwise it is created, put in the

hash table and returned. Thus the A function will execute with the arguments

QUAIIFIED)-OFFICER and the description object (with Billet (a Billet)). The A function will send

the following message:

(SENI) *SELECTEi' )-OMEGA*
':INTERN-DESCR (LIST'A 'QUALIFIED-OFFICER (with Billet (a Billet))))

Thus any of the elements of a description, e.g., concept, may be something that evaluates to either a

description object or a list that represents a description. ''This is why the clements of a description

91n the following discussion delcription objects are written as (a BildM) as opposed to (A 'I111,IFT) which is the lisp form
that returns the description object w hen it is c\ aluated.
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need to be quoted. The internment process normalizcs the representation of the description and

finds or creates and returns the appropriate description object.

The above scheme works for most description types with the exception of atomic descriptions that are

not part of a description (in the context of a description, a symbol is interpreted to be the

representation of a description object). A distinction must be made between lisp symbols and atomic

descriptions. This is done with a reader macro:

The lform: 6JUST1IFICATION-6 expands to:
(ATOMIC 'JUSTIFICATION-6)

The symbol ATOMIC is defined as a function with sends the following internment message:

(SEND *SEILECTED-ONEGA* ':INTERN-ATOMIC-DESCR 'JUSTI FICAT'I'ION-6)

Note that through the use of the ATOMIC function the description system may describe objects in

the lisp world. For example, a sponsor is a lisp object, suppose the symbol TOP-SPONSOR is

bound to a sponsor then the form:

(ATOMIC TOP-SPONSOR)

Will return an atomic description object that has the sponsor stored in its ex-rep slot.

7.6.2 Making Assertions and Establishing Goals

Two lisp functions exist to make assertions and establish goals. To make an assertion the following

function is used:

(ASSERT <statement> <viewpoint> <justification-type>)

When making assertions the statement and the viewpoint must be given, the justification type may

optionally be given, if it is not given it defaults to USER. The above results in the creation and

dissemination of a description as described in section 6.4. Goals are established in a similar manner:

(SHOW <statement> <viewpoint> <sponsor> <justification-type>)

When establishing goals the sponsor for the establishment of the goal is also included. The

evaluation of the above form results in the creation and dissemination of a goal description as

described in section 6.4.
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7.6.3 Sprites for Assertions and Goals

Some sprite macros for matching assertions and goals also exist. These expand into the appropriate

sprites. They allow the user to specify only the parts of the sprite that are of interest to the user: The

first one is for matching against asserted statements and is of the form:

(WIH1EN-ASSERI'TED) <sprite-namne> (sprite-just> ;Sprite Ifibnnmtion
<statement> <statement-just> <viewpoint> :Pattern Alatched Elements
<body>)

The statement, statement-just, and viewpoint elements are used in the pattern matching of the

assertion description. The sprite-name and sprite-just are used in the creation of the sprite and

controlling what viewpoints the sprite is known in. The sprites that match goals have a similar

structure:

(WHEN-GOAL <sprite-name> <sprite-just> ;Sprint Information
<goal-statement> <goal-just> <viewpoint> <sponsor> ;Pattern Elements
<body>)

As in the WHEN-ASSERTED sprite the goal-statement, goal-just, and viewpoint as well as the

sponsor are used in the matching of goal description. The sprite-name and the sprite-just are used in

the creation of the sprite and in controlling in what viewpoints the sprite is active.

7.6.4 Defining New Statement Types

Often it is necessary to define a statement in terms of other statements. For example the Individual

predicate is an abbreviation for a complex statement. There are several macros that the user can use

to define new statement types and thus new flavor objects. Suppose a user would like to define a new

Omega statement Procedure-Goal-Achieved. This would be done by using the following form:

(IDef-Unary-Predicate <Flavor-Name> <Dcscr-Keyword> <Print-String>)

The I)escr-Keyword is the symbol used to define the function for retrieving the description's flavor

object and the Print-String is used for pretty printing of the object. Thus in our example we would

evaluate:

(D)ef-Unary-Predicate P-G-A-Stmit Procedure-Goal-Achieved "Procedure Goal Achieved")

Once this is done sprites are written that implement the behavior of the statement. For example

sprites are written that irmplement antecedent and consequent reasoning in the cases that the



predicate is asserted or is posted as a goal. In a similar mannelc binary relations, binary symmetric

relations and multi-argument statements (such as land and lor) can be defined.
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Chapter Eight

Supporting Office Work

Omega provides a uniform framework within which to implement tools to support an office worker's

problem solving. This has the benefit that different tools may cooperate easily in achieving the goals

of particular office tasks. In this chapter we present some examples of how Omega can know about

the work being performed and how Omega can help achieve the goals of the work.

Knowledge is embedded in the form of descriptions about objects in the system and the relationships

between these objects. Some office systems have taken tie stand that forms are the basic element of

the system, an attempt is then made to represent everything in the system using forms. We view

descriptions as the basic element of the system. Since the knowledgebase is represented using

Omega's description lattice data does not have to be cast in a rigid form as it does in traditional data

processing applications. The consequence is that office tasks may be reasoned about more on an

individual basis.

Among some of the functions that traditional office forms provide that descriptions also provide are:

- Storage of information as in records.

- Transfer of information as in messages.

- Display of information in an abstracted and structured manner.

- Accumulation and modification of information as the form is used by individuals in the
accomplishment of their tasks.

However, descriptions provide much greater functionality than an automated forms flow system.

Descriptions are a very general facility; not only do they provide the functions that forms-based

systems have as shown above but they also are the basis for Omega's reasoning machinery.

Decscriptions provide:

- A means for error checking of information in an office system.

- A basis for retrieval of stored infonnation.
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- A means by which the structure of the application and organizational domains of an office
system are specified.

- Viewpoints by which change and inconsistent states may be reasoned about.

This chapter consists of detailed examples of the ideas that have been developed in earlier chapters.

The main ideas we will address will be the following:

-Problem Solving Support - Use of the problem solving support paradigm in helping office
workers in their tasks.

-Goals - The use of goals to describe office work. Hlow these goal descriptions can help
office workers in the performance of their tasks.

-Organizational Structure - The use of knowledge about an office worker's fonnal and
informal relationships to his or her fellow workers.

-Contradiction Handling - examples of Omega's contradiction handling capabilities in
dealing with real work knowledge.

8.1 Describing Office Work in Terms of Goals

As an example we show how part of the officer transfer process described in the introduction can be

described in terms of goals and how this description can help an Assignment Officers in their work.

The following description focuses on the internal mechanism that Omega uses to reason about a

particular domain. We do not describe the user interface with which the user would make assertions

or post goals or the way that Omega would present the results of its reasoning processes to the user.

Our goal is to first get the underlying mechanism working right and then to work on a user interface

for those mechanisms.

8.1.1 Posting a Goal

Shown below in figure 8-1 is the top level goal for a particular assignment proposal. The goal is to

show that OFFICER-6 and BILLET-17 form a reasonable assignment proposal. This goal may have

been posted by the assignment officer because he or she wanted to establish that the officer-billet pair

fonned a reasonable proposal or the goal may be part of a query that is trying to determine all the

reasonable proposals for a p)articullar group of officers and billets.
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( is
The Goal:

(•aI N REASON
_ . . .. .. . . .

(a GOAL
(with-unique CONTENT
(with-unique JUSTIFICATION GOAL-JUST-i))

ABLE-PROPOSAL )

(an OFFICER-BILLET-PROPOSAL
(with-unique BILLET BILLET-17)
(with-unique OFFICER OFFICER-6))

The Goal's Justification:
I(a PROPOSAL-JUSTIFICATION-4 )

(a GOAL-JUSTIFICATION
(with-unique GOAL GOAL-1)
(with-unique NUMBER-OF-DEPENDS-ON 0.)
(with-unique SPONSOR SPONSOR-1)
(with-unique TIMESTAMP CADR6-10/i/81-8:55
(with-unique TYPE USER))

)

n a( OMEGA-AX IOMS-JUSTIF )

Figure 8-1: The Assignment Proposal Goal

Now suppose that Omega has been told the following about what constitutes a reasonable proposal:

(= (A - B is (a Billet-Fulfilling-Career-Objectives
(with unique Officer 20))

20 is (a Qualified-Officer
(with unique Billet -_ B)))

(is (an Officer-Billet-Proposal
(with unique Billet _B)
(with unique Officer -0))

(a Reasonable- Proposal)))

This implication states that an Officer-Billet proposal is reasonable if the officer is a qualified officer

for the particular billet and if the billet fits in with the officer's career objectives. If and when Omega

decides that a particular assignment is reasonable is only according to the definition Omega has

concerning what it takes to be a reasonable proposal. T'he above goal would be used as a filter to pick

out the most obvious characteristics of the proposed assignment. The Assigrment officer may look at

a proposal that Omega has judged reasonable and reject it because of some criteria that Omega does

not know about.

___
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8.1.2 Posting of Subgoals

The assertion of the above rule creates several sprites, 10 one of which looks for a goal that matches

the consequent of the implication. If the sprite fires it posts the antecedent of the implication as a

goal. The sprite then creates a second sprite that watches to see if the antecedent is asserted. When

the antecedent is asserted the second sprite fires and asserts the consequent. 'Thus as a result of the

above implication and the goal in figure 8-1 the following subgoals will be posted.

Figure 8-2: The Assignment Proposal Subgoals

Notice that the justification for this subgoal contains a new sponsor SIPONSOR-2. The sprite that

created the new subgoal also created a new sponsor for the processing that attempts to establish the

subgoal. The reason for this is so that when the subgoal is achieved (or shown to be unachievable)

the subgoal can be stifled without affecting the processing of the supergoal. In addition the sprite

also linked the subgoal to the goal by setting up the following is relation:

GOAL. IUST-1 is (a Goal-Justification (with 1)epended-on-bhy GOAL-JUST-2))

This enables analysis of the reasoning when, for example, a goal cannot be achieved or is shown to be

10A sprile watches for the assertion of an implication. When the sprite fires on such an assertion it creates 4 sprites
corresponding to the 4 ways the inmplication can be used. These correspond to the antecedent and consequent reasoning of the
implicat ion and its contrapositive.

The Subgoals:

(a GOAL
(with-unique CONTENT 4
(with-unique JUSTIFICATION GOAL

(a BILLET-FULFILLING-CAREE
GOAL-2 I (with-unique OFFICER OFFICER-6)) I I'(with-unique BILLET BILLET-17))]

The Subgoals' Justification:

I(a PROPOSAL-JUSTIFICATION-4 )I(a GOAL-JUSiIFICATION
(with DEPENDS-ON GOAL-JUST-1)
(with DEPENDS-ON PROPOSAL-REASONABLE-SPRITE-JUST-1 )
(with-unique GOAL GOAL-2)
(with-unique NUMBER-OF-DEPENDS-ON 2.)
(with-unique SPONSOR SPONSOR-2)
(with-unique TIMESTAMP CADR6-10/1/81-9:01)
(with-unique TYPE COMPOUND))
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unachievable because of the 'ailure of some suibgoal. It is also usefiul when Omega explains how it

has achieved a goal.

A conjunctive goal as in the diagram above is handled in the following fashion, a sprite will notice

that there is a conjunctive goal. The sprite will fire and post the two conjuncts as goals. In addition

the sprite will create additional sprites that watch for the assertion of each of the conjuncts or

negation of either conjunct. When both conjuncts are asserted the conjunction is asserted; if either

conjunct is negated the negation of the conjunction is asserted.

Suppose the following knowledge is stored in the description lattice with relevance to the goal shown

above. Note that for brevity we do not include the assertions and justifications in this diagram, we

just illustrate the is relations directly. The reader will note that the officer fulfills the billet

prerequisites for past billets but not those for schooling. We describe how Omega discovers this.

(an OFFICER
(with NLIMBER-OF-PAST-BILLETS 2.)
(with NUMBER-OF-SCHOOLING 2.)
(with PAST-BILLET DESK-JOB)
(with PAST-BILLET SAILOR)

OFFICER-6 < > (with SCHOOLING ADMINISTRATION)
(with SCHOOLING LIFE-AT-SEA)
(with-unique NAME Juan Diaz)
(with-unique ULTIMATE-CAREER-OBJECTIVE PILOT))

Figure 8-3: Some Officer and Billet Knowledge

In this discussion we concern ourselves with how Omega shows that OFFICER-16 is a qualified

officer. The method used to show that BILLET-16 fulfills the officer's career objectives follows in a

similar manner. Omega has been given the following equivalence concerning qualified officers.
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(a BILLET
(with PREREQ-BILLET DESK-JOB)
(with PREREQ-BILLET SAILOR)
(with PREREQ-SCHOOLING GROUND-SCHOOL)
(with-unique NUMBER-OF-PREREQ-BILLET 2.)
(with-unique NUMBER-OF-PREREQ-SCHOOLING 1.)
(with-unique TYPE PILOT))

ILLET-17<
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( (A ~O is (an Fxperienced-Officer
(with unique Billet =_))

=O is (a Schooled-Officer
(with unique Billet -B)))

(is =0O (a Qualified-Officer
(with unique Billet =B))))

As in the previous implication, when this equivalence is asserted sprites are created that watch for

goals that match the either the left or right halves of the equivalence. When a sprite fires after

matching one half of the equivalence as a goal it posts the other half as a goal. In addition sprites are

created that watch for the assertion or negation of either side of the equivalence. Thus when an

assertion or negation of one side is made, the assertion or negation of the other side is made. 1•hus we

have the following subgoals posted with a new sponsor:

Figure 8-4: Subgoals to Establish Qualified Officer Status

Omega has been told the following concerning what it takes to be a Experienced Officer.

(a GOAL-JUSTIFICATION
(with DEPENDS-ON GOAL-JUST-2)
(with DEPENDS-ON QUALIFIED-OFFICER-SPRITE-JUST-1 )
(with-unique GOAL GOAL-3)
(with-unique NUMBER-OF-DEPENDS-ON 2.)
(with-unique SPONSOR SPROSOR-3)
(with-unique TIMESTAMP CADR18-10/1/81-9:05 )
(with-unique TYPE COMPOUND))

And Their Justifications:

(a PROPOSAL-JUSTIFICATION-4 )

GOAL-JUST-3



( (for all _ P
( =_B is (a Billet

(with unique Prereq-Billet =P))
0 is (an Officer

(with Past-Billet E-P))))
(is =O (an Experienced-Officer

(with unique Billet =B))))

These goal are more difficult to achieve. This rule states that if it is true that for every prerequisite of

a billet the prerequisite is a past billet for an officer then the officer is an experienced officer for the

billet and vice-versa. As with the previous equivalence the right half of the statement will be posted

as a goal when the left half is posted as a goal. Since this new goal involves a universal quantification

some knowledge of the domain over which the variable ranges is necessary. This is the purpose of tie

NUMBER-OF-PREREREQ-BILLETS and the NUMBER-OF-PAST-BILLETS attribute descriptions.

8.1.3 A Subgoal is Established

The method used to prove the universally quantified statement is to first retrieve the number of

prereq billets and the number of past billets via sprites. The general approach is to insure that all the

prerequisites are past billets; this means we must retrieve all the prerequisite billets. We know when

we have retrieved them all by the NUMBER-OF-PREREQ-BILLETS number. Once they are all

retrieved we check to see that each is a past billet. If each is a past billet then the universally

quantified statement is asserted. If one prerequisite is not a past billet (which we can know since we

know how many there are) then the negation of the statement is asserted. If there is not enough

information to determine the truth or falsity of the statement the sprites remain waiting for additional

information. Once the necessary information is known, if the sponsor of the sprites is still active, the

statement or its negation will be asserted.

The reason that the NUMBER-OF-PAST-BILLETS attribute is necessary is so that Omega can know

when to stop looking for billets. Without the number stated explicitly Omega cannot conclude that

an officer has 2 past billets only because that is all the information that is stored explicitly in the

description system. For example, it may be possible to prove the existence of more billets than are

explicitly known about. Without explicitly stating the number of past billets the question on whether

all billets are known or not is undecidable. This is an example of how Omega's goals of monotinicity

and assimilation of new infornmation affect the way Omega's reasoning processes.
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In our example the sprites, using the information that appears in figure 8-3, will conclude that the

officer is an experienced officer and will make the assertion shown below.

Figure 8-5: The Experienced Officer Assertion

Notice that this assertion depends on the information shown in figure 8-3

BILLET-17-INFO-JUST, OFFICER-6-INFO-JUST, on the justification for the universally

quantified statement, FORALL-JUST-1, and on the justification for the equivalence statement

EXPERII NC OCED-OFFICER-EQUIV-JUST. In particular it does not depend on any of the goals that

were posted in the process of achieving the goal; as pointed out in [de Kleer, Doyle, Steele, Sussman

77] this would be a mistake since we do not want the truth or falsity of an assertion to depend on

interest (as indicated by posted goals) in achieving the assertion.

Thus we have one of the conjuncts of figure 8-4 established.

8.1.4 A Subgoal is Refuted

The attempt to establishing the truth of the second conjunct follows in a similar manner. In this case

the fbllowing rule is used to try to establish that an officer is a Schooled Officer for a particular billet:

The Deduced Assertion: ASSERT-1 (an EXPERIENCED-OFFICER
(with-unique BILLET BILLET-17))

( a n AS S E R T I ON

(with-unique CONTENT q) > (OFFICER-6 is )
(with-unique JUSTIFICATION ASSERT-JUST-1))

The Assertion's Justification:

(an ASSERTION-JUSTIFICATION
(with DEPENDS-ON BILLET-17-INFO-JUST)
(with DEPENDS-ON EXPERIENCED-OFFICER-EQUIV-JUST )
(with DEPENDS-ON FORALL-JUST-1)
(with DEPENDS-ON OFFICER-6-INFO-JUST)
(with-unique ASSERTION ASSERT-1)
(with-unique NUMBER-OF-DEPENDS-ON 4.)
(with-unique TIMESTAMP CADR18-10/i/81-9:06)
(with-unique TYPE COMPOUND))

(a PROPOSAL-JUSTIFICATION-4 )

SASSERT-JUST-I



((for all -S
(=-- B is (a Billet

(with unique Prereq-Schooling -S))
-O is (an Officer

(with Schooling =S))))
(is =O (a Schooled-Officer

(with unique Billet =B))))

The difference is that in this case the outcome is the negation of the posted goal; Omega will assert

that:

( (OFFICER-6 is(a Schooled-Officer
(with unique Billet BILLE'T-17)))

The failure to establish this fact implies the failure to establish the conjunctive goal in the rule on

page 1I1 and hence the negation of the conjunction will be asserted which results in the negation of

the second half of the equivalence:

(OFFICER-6 is (a Qualified-Officer
(with unique Billet BILLET-17)))

We have been able to propagate back the fact that OFFICER-6 was not a Schooled Officer because

we had been using equivalences in our reasoning. When we get to our original implication, shown

again below, we can go no further.

( A (A -B is (a Billet-Fulfilling-Career-Objectives
(with unique Officer =-O))

=O is (a Qualified-Officer
(with unique Billet -B)))

(is (an Officer-Billet- Proposal
(with unique Billet = B)
(with unique Officer O- 0))

(a Reasonable-Proposal)))

This rule may be only one way that a proposal can be shown to be reasonable. There may be other

rules that can possibly achieve the goal.

At this point the question is: how can we know when a goal cannot be achieved and how do we

notify the user. One approach is the following. Suppose there are only 3 conditions under which a

proposal may be judged reasonable. The the following rule could be used:



( (V rl r2 r3)
(is (an Officer-Billet-Proposal

(with unique Billet =B)
(with unique Officer =O))

(a Reasonable-Proposal)))

Thus Omega can know that when all of rl, r2, and r3 fail then the goal cannot be established. This

approach has two undesirable consequences. First, if the Assignment Officer asserts that a particular

proposal is reasonable then Omega can conclude that one of rl, r2, or r3 is true which in fact may not

be the case. There may be some other criteria that the Assignment Officer has used to judge a

proposal as reasonable. The second problem is what to do when another criteria for judging a

proposal reasonable is to be told to Omega. This vwould mean that the above rule would have to be

contradicted and a new viewpoint would have to be constructed with an new equivalence rule with 4

criteria for judging a proposal reasonable.

8.1.5 Using Sponsors to Reason About Reasoning

A superior approach is to use information concerning the sponsor of a particular goal. As was

described in section 7.5, a sponsor is given a quanta with which to accomplish a goal. When the

sponsor uses all its quanta it must ask for more to proceed. If a sponsor has quanta but can do no

more work, i.e. it is quiescent, then it waits for additional work. The sponsor informs Omega about

these events by making assertions. In our case the assertions will be simply the total quanta the

sponsor has used. These assertions are made at two times, when the quanta allotted to the sponsor is

exhausted or when the sponsor is quiescent.

Thus when a user posts a goal he or she will also specify the amount of quanta to be allocated to

achieving the goal. When the quanta is used or no more of it can be used at a particular time then an

assertion is made as to how much has been used. Note that if the assertion is made because the

sponsor is quiescent at a particular time does not mean that no niore can be used in the future. A

new assertion, made firom other sponsored activity, may once again enable work to be done on a

particular goal. Thus in the case above when no more work can be done for a particular sponsor then

the following is asserted.

Sponsor-1 is (a Quiescent-Sponsor
(with lExhausted-Quanta 4.3))

Note that this assertion is monotonically compatible with past assertions of this type. The assertion
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will trigger a sprite that was created at the time the sponsor was given its quanta for the particular

goal. Again, at thdie time the sprite actually fires it may well be that the sponsor is no longer quiescent.

The sprite may well check to see if the sponsor is quiescent or if the sponsor's goal has been

established. If the sponsor isn't quiescent or the goal has been established the sprite may take no

further action. If the sponsor is quiescent then it can examine the progress toward the goal. The

progress toward the goal is analyzed by examining thdie DEPEI'NI)ED-ON-BY attributes in the goal's

justifications.

In this way Omega can determine what subgoals were posted for a goal and whether the goal or its

negation was asserted. In our case it is detennined that OFFICER-6 was determined not to be a

qualified officer. The following information can be extracted from Omega's descriptions.

Figure 8-6: Why the Officer is not Qualified

Thus the user can see that the reason Omega has concluded that the officer is not qualified is because

the officer is not Schooled. At this point the Assignment Officer may add the following assertion:

(- (A =O is (an Experienced-Officer
(with unique Billet =B))

O is (a Schooled-or-Enrolled-Officer
(with unique Billet =B ))

B is (a Billet-Fulfilling-Career-Objectives
(with unique Officer -O)))

(is (an Officer-Hillet-P roposal
(with unique Billet = B)
(with unique Officer =O))

(a Reasonable-I'roposal)))

Th'lis assertion says that if an officer is experienced, if the officer is Schooled or enrolled in school and
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OFFICER-16 is not a Qualified Officer

and

OFFICER-16 is not Schooled and Experienced An officer is Qualified if and only ifT he is Schooled and Experienced

OFFICER-16 is not Schooled
A-- B means A depends on B



if the billet satisfies tie officer's career objectives then the proposal is a reasonable proposal. The

officer would then go on to describe to Omega what it means for an officer to be schooled or enrolled

in school for a particular billet.

8.2 Reasoning About Contradictions

In the previous section we have described how a user might interact with Omega when he or she is

trying to achieve some goal and the goal cannot be achieved. The sponsors of a computation

communicate with Omega and thus allowing Omega to reason in a limited but useful fashion about

the proEgess in achieving a particular goal. In this section we describe how contradictions are

handled when they arise in the course of achieving some goal. For example, contradictions can arise

when a user makes an assumption that violates a system constraint.

In the following example we will continue the scenario from the previous section of this chapter.

Now the Assignment Officer has judged a proposal as reasonable and must calculate travel expenses

for the proposed reassignment. The contradiction will arise when the Assignment Officer assumes

there is enough money in the current quarter's expense account to cover the reassignment. To begin

the calculation of travel expenses the Assignment Officer posts the goal that the proposal be

financially viable:



The Goal's Justification

I(a PROPOSAL-JUSTIFICATION-4 )
(a GOAL-JUSTIFICATION

(with-unique GOAL GOAL-4)
(with-unique NUMBER-OF-DEPENDS-ON 0.)
(with-unique SPONSOR SPONSOR-4)
(with-unique TIMESTAMP CADR18-10/1/81-9:07) ----- GOAL-JUST-4
(with-unique TYPE USER))

otherjustifications

Figure 8-7: Representation of the Goal for Financial Viability

A sprite exists within Omega that watches for a goal of this sort. When the sprite fires on the goal it

calculates the travel expenses for the proposed assignment and asserts this information. A

abbreviated description of the sprite is shown below.

(when-goal Calc-Sprite-2 Travel-Expense-Sprite-Just-1
(is (an 'Officer-Billet- Proposal

(with unique 'Officer -O)
(with unique'Billet -B))

(a 'Financially-Viable-Proposal))
=G-JUST -VP -SPONSOR

;Name, Justification
;Goal to match

;Goal elements

1. Calculate travel expenses,
2. Use current expense account,
3. Assert the travel expenses and expense account.)

The assertion the sprite makes with its justification is shown in the diagram below.

S ,

L_



The Assertion:

(an ASSERTION
(with-unique CONTENT - -)

(with-unique JUSTIFICATION ASSERT-JUST-2))

ASSERT-21

(ASSIGNMENT-PROPOSAL-i is R)!

(an OFFICER-BILLET-PROPOSAL
(with-unique EXPENSE-ACCOUNT CURRENT-EXPENSE-ACCOUNT )
(with-unique TRAVEL-EXPENSES $4,000.00))

The Assertion's Justification:

(a PROPOSAL-JUSTIFICATIOr-4 )

Oth

c qASSERT-JUST-2

er Justifications

Figure 8-8: Travel Expense Assertion

The assignment proposal has been asserted to be same with the description Assignment-1Proposal-1

for brevity. The above assertion states that the assignment proposal will incur a cost of $4,000.00

from the current expense account for travel expenses. Now Omega uses the following rule to

calculate the new balance on the expense account.

(-= (is -P
(an Officer-Billet-Proposal

(with unique Travel-Expenses =TE)
(with unique Expense-Account

(an Expense-Account
(with unique Account-Number -=AN)
(with unique Balance -B)))))

(is (an Expense-Account (with unique Account-Number SAN))
(an Expense-Account

(with unique New-Balance (- =B -=TE)))))11

Assume that the expense account has a balance of $1,000.00 and that the description of an expense

account includes the following:

'Note that we have used the abbreviation (- A II) for the desciption (a I)ifference (ofMNlneiud A) (qfSublrahend It))

(an ASSERTION-JUSTIFICATION
(with DEPENDS-ON REASONABLE-GOAL-JUST)
(with DEPENDS-ON TRAVEL-EXPENSE-CALC-SPRITE-1 )
(with-unique ASSERTION ASSERT-2)
(with-unique NUMBER-OF-DEPENDS-ON 2.)
(with-unique TIMESTAMP CADR18-10/1/81-9:12)
(with-unique TYPE COMPOUND))

---~

- -~---



(an Expense-Account) is (an Elxpense-Accolunt
(with every Balance (> = 0))
(with every Nen-Balance (>) = 0)))

Where here we use the abbreviation (> = 0) for the description

(a Dollar-Amount (with Lesser-or-Equal-A mount 0))

When the rule that calculates the new balance fires it will assert that the new balance is $-3,000.00.

This will be fused with the constraint that every balance and new balance be greater than or equal to

0. The attempt to fuse will fail, signalling a contradiction by making the following assertion:

Figure 8-9: Assertion of the Contradiction

In the above, we have assumed that the assertion which calculated the NEW-BALANCE has the

justification ASSERT-JLUST-3. A sprite will fire when the contradiction is asserted. The sprite will

retrieve the justifications for the offending assertions. The sprite will analyze the assertions,

retrieving the descriptions in the NEW-BALANCE attributions derive the following dependencies.

120

(a FAILURE-TO-FUSE-ATTRIBUTIONS
(with PROBLEM-JUSTIFICATION ASSERT-JUST-3)
(with PROBLEM-JUSTIFICATION EXPENSE-ACCOUNT-DEFINITION-JUST )
(with-unique ATTRIBUTE-NAME NEW-BALANCE)
(with-unique CONCEPT EXPENSE-ACOUNT)
(with-unique NUMBER-OF-PROBLEM-JUSTIFICATIONS 2.))

The Assertion of Contradiction: (a CONTRADICTORY-VIEWP INT

(an ASSERTION (with-unique REASON 5))
(with-unique CONTENT e O ATN
(with-unique JUSTIFICATION CONTRADICTION-JUST-5 )) (PROPOSAL-JUSTIFICATION-4 is )

The Justification: CONTRADICTION-ASSERT-5

(a PROPOSAL-JUSTIFICATION-4 )

ASSERT-JUST-2

(an ASSERTION-JUSTIFICATION
(with DEPENDS-ON REASONABLE-GOAL-JUST)
(with DEPENDS-ON TRAVEL-EXPENSE-CALC-SPRITE-1 )
(with-unique ASSERTION ASSERT-2)
(with-unique NUMBER-OF-DEPENDS-ON 2.)
(with-unique FIMESTAMP CADR18-10/1/81-9:12 )
(with-unique TYPE COMPOUND))



Figure 8-10: Contradiction Dependencies

The possible actions at this point are various:

- The infonnation could be presented to the user allowing him or her to make a decision
about how to proceed.

- The problem, if it is frequent, could be recovered from automatically by using, the next
quarter's account or some slush fund that exists for this purpose.

- The constraint the the new balance be non-negative could be retracted, perhaps notifying
the user. In this way the user could proceed with the work and leave address the travel
funds issue latter.

In other situations more variations arise. If the contradiction arises from contradictory assertions

made by different sources then the reliability of the sources or the authority of the sources might be

compared in order to decide which assertion to accept and which to reject.

8.3 Summary

We have presented Omega's viewpoint mechanism along with some examples of its use to describe

change in an office. The viewpoint mechanism is useful for describing objects whose properties vary

with time as well as a means to handle contradictions that arise during reasoning processes.

The view\,point mechanism presented here is related to that in FI"ItlER [Kornfeld 79] and to the layers
of the PIE system [Goldstein 80]. Viewpoints are a powerful unifying mechanisin which combine

aspects of' McCarthy's situational tags [McCarthy, H ltayes 69] and the contexts of QA4 IRtIlifson,

Expense Account New Balance is $-3.000.00
Which Is Less Than 0. (Justification: Assert-Just-3)

Proposal Travel Expenses on Current Expense Accout Balance is $1,000.00
Current Expense Account are $4000.00 (lustification: Current-Balance-Just-i)
(Justification: Assert-Just-2)



Derksen, Waldinger 72]. They serve as a replacement for update and pusher-puller mechanisms.



Chapter Nine

Conclusion

This dissertation presents the beginnings of a theory of organizational behavior. We have pointed

out the need for a theory that includes both organizational knowledge and application knowledge.

The application knowledge is important because it is the explicit reason for the existence of the

organization. The organizational knowledge is important because it describes how people function

together to elicit the overall behavior of the organization. This dissertation has focused on a

characterization of office work as a problem solving behavior and on the development of the

description machinery necessary to describe activity in the organization (Omega and Viewpoints).

Our motivation for studying organizations arises from two concerns. The first is that new technology

is being used in a growing number of ways in today's organizations but the question of how to best

use that technology is not easily answered. Indeed, the use of technology such as word processors in

typing pools has produced unforeseen and in some cases undesirable consequences. Our contention

is that this reflects a basic lack of understanding of the organizational. The second concern is that

organizations represent a good domain in which to develop and test new Al theories.

In section 3.2 on Office Semantics we presented several goals for Office Semantics. We have only

begun to satisfy these goals in the limited scope of this work. Below are listed the goals, how this

dissertation has contributed toward their achievement and directions for future work.

Describing Organizational Behavior - We have presented the description system Omega
for describing organizational behavior. In the body of this dissertation are presented
several examples of the use of Omega in describing organizational activity. The examples
represent only a beginning in describing organizational activity. A direction for future
research would be to use Omega in conjunction with a analysis methodology such as that
described in [Sirbu, Schoichet, Kunin, Hammer 811 to perform field studies with the
purpose of describing and analyzing actual organizational situations.

Explanation of Organizational Structure - 'his also has not been fully developed here but
we feel that 3 ideas that we have developed will contribute significantly to an explanation
of organizational behavior. These are 1) including the informnal and formal social
structure as well as the application structure in understanding the behavior of
organizations, 2) the view of organizational work as being composed of problem solving



and algorithmic tasks, 3) the description of organittiton Nwork in tcrmis of goals. The
development of these three ideas into a coherent explanation of organizational structure
is a promising direction for future research.

Organizational Predictability - The ability to predict the effects of change on
organizations awaits further development of Office Semantics. Once more understanding
of organizational structure is achieved predictions of the effects of organizational change
can be done with more confidence.

Character of Organizational Work - We have described organizational work as goal
oriented and thus requiring problem solving capabilities on the part of the organizational
worker. Office work is characterized as a mix of problem solving and algorithmic tasks.
Algorithmic tasks are those that can be automated while problem solving tasks are those
that are perfonned by the office worker. We believe that technology is best used in
supporting organizational workers in their problem solving rather than trying to automate
the workers' tasks. We believe that problem solving in organizational work is an essential
element of that work.

Role of Technology - We have developed the idea that the role of technology is to support
organizational workers in their problem solving and algorithmic tasks. Much work
remains to be done in developing distributed workstation systems based on the ideas
presented here. We have addressed the issue of the underlying reasoning machinery
which we believe is directly related to the organization's structure and function. IlThese
ideas must be implemented in hardware and software systems that can support
organizational work.

This dissertation has emphasized the development of a knowledge embedding system that can be

used to reason about or1anizational and application area knowledge. To this end we have developed

Omega's Viewpoint mechanism. The Viewpoint mechanism contributes to the state of the art in

reasoning systems by allowing a a system to reason about contradictions and, to a limited extent, to

reason about the reasoning process itself.

In addition we have developed the idea of a description based sprite invocation system. This allows

the designer of a knowledge base to control the scope of a sprite in terms of the semantics of the

application and thus control the inefficiency of pattern directed invocation.

Many of the ideas relating to Omega and the Viewpoint mechanism in this dissertation offer

opportunities for further developed. As was mentioned previously the work on Office Semantics is

just a beginning. A great deal of work remains in the areas of studying and describing the structure

of organizations. We have done little in developing the informal and formal social structure of

organizations save to point out that it is a prerequisite to a successful theory of organizational



behavior. With respect to Omega there are sevxeral areas of fiuture rescarch.

A Distributed Omega description language that will function in the presence of many
workstations is necessary for the full utilization of Omega's potential in an organizational
setting.

A Graphic User Interface to allow a user to interact with Omega in a graphical and
intuitive fashion. This work has begun with Ciccarelli's Presenter for Omega but much
remains to be done. The ability to integrate diverse sources of knowledge into Omega's
knowledge base is needed. Omega must be able to manipulate and generate speech, color
graphics and to use pointing devices other than the mouse.

Development of Description D)irected Imvocation facilities for controlling sprite
inheritance. The basic mechanism is available for controlling the inheritance of sprites,
the problem is that it is hard to use. For each application the knowledge base designer
nmust explicitly control the inheritance of sprites. More automatic methods are needed
that don't need to be custom tailored to each application.

Facilities to Control Reasoning which are more powerful than those presented here are
possible. Facilities for detecting confusion, lack of knowledge, and inappropriateness of
knowledge would be extremely useful in reasoning about real work situations.

A Formal Semantics for Omega with Viewpoints is needed beyond the consistency proof
for a subset of Omega given in [Attardi, Simi 81]. It is necessary that the Omega system
be shown to be consistent. If this is not the case then a user cannot have confidence in
any conclusions the system deri, ,s.

This dissertation has addressed organizational issues and AI issues. Many of these issues are related

and it is the author's conclusion that these two domains are natural companions for study. Not only

does insight into an issue in one domain often arise from considering the issue in the other but many

new ideas arise from the consideration of the two fields together.
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