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ABSTRACT

The time dependent M/G/k queue is studied with the aim of obtaining
good numerical approximations and descriptors of system behavior rather than
exact closed form solutions. Five models that have been used to investigate
this problem are presented: Simulation; first order models: "fluid approxi-
mation" and equilibrium analysis; second order models: "diffusion approxi-
mation" and Koopman's model. The assumptions used in postulating these
models and their consequences are evaluated. The impracticality of direct
numerical solution is reviewed.

The second order models are investigated in detail. From the diffusion
approximation information about the transient behavior of stationary M/G/l
queues is obtained. Exact closed form expressions for the transient state
probabilities of the stationary M/M/l queue (Morse) are given and the time
constants for this system derived. The exact value of the time constant of
the M/M/1 system is compared to the corresponding result from the approximat-
ing diffusion model. The general properties of the transient behavior of
the M/G/l queue are discussed. An application where knowledge of these time
constants is imperative is given in a model due to Gupta. Also, a new model
for solving the time dependent M/M/l queue, using closed form expressions
for the transient behavior of the M/M/l queue, is presented.

The models are evaluated and the importance of the time constant is
discussed in the context of a case study on airport runway queuing systems.
Special emphasis is given to explaining the reasons for the success of
Koopman's model. Other numerical results for specific cases of the transient
behavior of various M/G/k queues are provided to further describe the time
constants and supplement theoretical results.

Thesis Supervisor: Amedeo R. Odoni
Title: Associate Professor of Aeronautics and

Astronautics
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Chapter 1

INTRODUCTION

This thesis investigates a service facility with a strongly time

varying Poisson arrival rate and service times governed by some general

pdf. This is referred to in Queueing Theory as the M/G/k queueing system.

The simultaneously probabilistic and time-dependent nature of the arrival

process, as well as the "general" character of the service process render

this problem impossible to solve by analytical means. The aim here,

therefore, is to obtain good approximations and descriptors of system

behaviour rather than exact closed form solutions.

The time-dependent M/G/k queue is studied here in the context of

airport runway usage. It is clear that this is a situation where there

are very large social and economic costs associated with providing either

excess or less than adequate capacity. Either large tracts of land occupied

by underutilized runways or long queues of aircraft in the air waiting

landing clearance are costly, as well as socially unacceptable conditions.

We are concerned here with the busiest of airports - handling large

number of scheduled aircraft every day of the year. The time dependency

of the demand in these airports extends beyond the presence of morning and

evening (or similar)travel peaks common to all transportation systems. Weekly

and seasonal demand variations are also very noticeable and extremely impor-

tant. Further time-dependence is also introduced by the airport authorities

themselves who may schedule additional capacity during traffic peaks, by

utilizing more runways than during off-peak periods. Weather,

as well, in the case of airports, has a highly varying effect on capacity.

Consequently it is evident that no single queueing analysis of any airport



system can be expected to model this situation accurately except for a

fraction of the time. The need for efficient computational methods is

therefore apparent.

There are two common criteria for judging the level of service

provided at a facility, both of which are extensively used by aviation

authorities. These are the average waiting time per aircraft (clearly

as a function of the time of day) and the fraction of aircraft delayed

for an amount of time greater than some time t o , (also as a function

of time of day). The first of these is the readily available from

existing queueing models and in addition forms a base for many other

frequently used statistics - total daily delay, annual delay and annual

delay cost. Chapter 2 therefore discusses the numerous approaches that have

been suggested for determining the expected waiting time in a time-dependent

M/G/k queue. In approximately their historical order of appearance, 5

models are presented. The first is the traditional approach of simulation.

The remaining four models are obtained by relaxing various conditions of

the time dependent M/G/k queueing system. Of these, the first two (Newell

[11]) are firstordermodels in the sense that they either ignore the proba-

listic nature of both the arrival and service processes or their time-

dependence. Second order models, (Gaver [1], Koopman [ 8]) to these are

constructed by including both of these conditions but making other assump-

tions on their probabilistic characteristics. With increased accuracy,

however, comes a substantial increase in computational effort required.



As these latter two models are developed the concept of the transient

behaviour of the expected waiting time becomes important as a unifying

concept between them. This is because the strong time dependence of the

utilization ratio p (ratio of demand to service capacity) rarely allows

the system to remain in equilibrium. Chapter 3 therefore addresses the

problem of seeking the descriptors of system behaviour (in our case the

expected waiting time) when the system is not in equilibrium.

We start by presenting exact models (Morse [ 9], [10]) for the tran-

sient behaviour of both the finite and infinite queue capacity M/M/l sys-

tems. When the forms of the two results are compared we conclude that, as

expected, large finite capacity queues behave in the transient state not

much differently from infinite capacity queues. The major outcome of this

analysis is a single time constant for the M/M/l system that is valid for

all values of p > 0.

At this point in the analysis, we recall the approximating model of

the M/G/1 queue given by Gaver and presented in Chapter 2. The time con-

stant of the M/M/l system as determined from this model is shown in fact

to coincide with the time constant from the exact model. This allows at

least some theoretical justification for accepting the time constants from

the approximating M/G/l model as the true values for the M/G/l queue.

Based on this we then relate the general properties of the relaxation

time of the expected waiting time of an M/G/l queue to its equilibrium

value.



Chapter 3 concludes with the presentation of two other models.

The first is an approximating model (Gupta [4]) of the time-dependent

M/G/k queue that expressly needs analytic forms of the time constant

just described. The other model (Clarke [15]) is just an alternate form

of the exact transient behaviour model of M/M/1/o given by Morse [9].

After we indicate how to modify this model to remain valid for p > 1

this form becomes just as useful and computationally much more efficient

than the model for M/M/l/m presented at the beginning of the chapter.

In Chapter 4 we first give a case study to which we apply three of

the models discussed: equilibrium analysis (a first order method),

Koopman's model and the last model given in Chapter 3. We discuss the

relative merits of the models and the specific applications to which each

is likely to be most useful. The transient behaviour of queues is ultimate-

ly shown to be responsible for the considerable success of Koopman's method.

Then in the next two sections, we pass to numerical analysis of the

transient behaviour of the expected waiting time for single and multiserver

queues under specific conditions. For the single server queue we first

compare the observed time constant to its exact value. Then the observed

relations between the transient behaviour of the expected waiting times

of various M/G/l queues are compared to the behaviour predicted by the

approximating M/G/l model. For the multiserver queue we first give some

analytical results (Morse [9]) from which we obtain an approximate

evaluation of the time constant for these systems. Again numerical

comparisons are provided to verify these. A brief comparison is also



made between the relaxation times of M/M/k and M/D/k systems as k

increases from 1.

As will be indicated all along, the transient behaviour of queues

is a controlling factor in the modelling of time dependent M/G/k queues.

The analytic and approximating expressions for the time constant as given

in Chapter 3 and the numerical experience of Chapter 4 should provide

a sound basis for extending the modelling and numerical analysis of

time-dependent M/G/k queues.
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Chapter 2

FIVE MODELS FOR THE TIME DEPENDENT M/G/k QUEUE

2.1 Airport Runway Queuing Systems

We illustrate the generic attributes of queuing systems

in the context of airport runway use in Figure 2.1

overflow

arrivals

Im 1 .7 . -. 111

departure

"arrival"
process

finite queueing
space

k servers

service
process

Schematic diagram of airport runway use

Figure 2.1

We define the arrival process with aclass of time dependent demand

profiles described by the inhomogeneous Poisson pdf with average (time

dependent) arrival rate X(t). The Poisson assumption on the arrival

process which has been extensively used in the study of airports accounts

for the randomization of actual "arrival" times at the server due to

runway ±

I runway 2 1

Irunway k
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various ATC factors. The time dependence for the larger more congested

airports reflects the traffic peaks common to transportation systems and,

generally, is cyclic with a period of 24 hours.

In contrast to the arrival process, we will not assume a "neat" proba-

bilistic characterization of the service process. This is motivated by the

fact that aircraft service times are neither completely regular (different

aircraft have different service times) nor completely random (there do

exist standard ATC practices). Also, since the mean rate of service changes

infrequently during the course of the day, we assume for simplicity that

the service process operates at constant rate i(t) = p. The service process

defined by these attributes is called the "general" homogeneous service

process.

Throughout the mathematical analysis, whenever the number of servers

k (runways) is greater than one, they will be assumed independent and

identical. They will operate with a single queue governed by a "first-in,

first-out" service discipline. Except in very special cases,l this is not

a serious misrepresentation of airports.

In summary, we have outlined a time dependent M/G/k/m (k < m < o)

queuing system in the context of airport operations. All of our subsequent

examples will draw from airport situations. The arrival process which is

simultaneously probabilistic and time dependent, as well as the "general"

character of the service process render this problem impossible to solve by

analytical means. The aim, therefore, is to obtain good approximations and

1 Such as the case where a certain class of users (e.g., general aviation)
commands exclusive use of a particular runway.



descriptors of system behavior rather than exact closed form solutions.

To this purpose, we shall discuss or describe in this and the following

chapters a number of mathematical models and approaches. Five of the total

eight models will be discussed here in Chapter 2. We will refer to them

by number from the list as follows:

Model 1: Computer Simulation, M/G/k

Model 2: Time Dependent "Fluid" Approximation, D/D/k

Model 3: Equilibrium Analysis M/D/k, M/M/k, M/E /1

Model 4: Stationary Diffusion Approximation, M/G/I

Model 5: Time Dependent Chapman Kolmogorov Equations, M/M/k, M/D/k

The first model is the traditional and only non-analytic approach to

the time dependent queuing problem. The second is a deterministic model -

it ignores the probabilistic nature of both the arrival and service processes,

relying entirely on the time dependency for the estimate of the delay. We

contrast this immediately to Model 3, equilibrium analysis, which uses

fully the probabilistic characterizations of the queuing system processes

but ignores the time dependency. The estimates from Models 2 and 3 will be

valuable for both the lower and upper bounds they give for delay as well

as for providing the groundwork for more sophisticated models. Models 4 and

5 are the extensions of 2 and 3, respectively. The key to these extensions

turns out to be the transient behavior of queues which is the central concern

for the models to be discussed in later chapters. (Models 6, 7 and 8 are

heavily dependent on transient concepts and hence will be omitted from

this chapter.)



2.2 Model 1: Computer Simulation, M/G/k

A most accurate representation of a runway queueing system can be

obtained through use of a simulation model. The simulation user though

pays heavily in terms of computational effort for the additional detail.

Each simulation run includes essentially the same computations as those

for a single Model 2 estimate, with the addition only of sampling from

probability distributions for interarrival and service times. (The assump-

tion of course is that these probability distributions are available and

empirically or otherwise verifiable.) For practical purposes, however,

because of the sampling, one simulation run provides no more statistical

evidence than a single day spent in observing the actual airport. The

number of simulation runs needed to provide statistically reliable data

must then be large and depends on the stochastic properties of the inter-

arrival and service time probability distributions. In cases where many

airport configurations and demand patterns have to be considered this

approach is then quite impractical. Moreover, Koopman [8] showed that the

number of computations in Monte Carlo simulation increases as the square of

the desired statistical precision. This is to be contrasted with an

increase which is proportional to the logarithm of the relative precision

for the direct solution approach (Model 5).



2.3 Model 2: Deterministic "Fluid" Approximation, D/D/k

We have mentioned that the airport queueing problem exhibits a strongly

time dependent arrival rate X(t). Frequently, although not always,

this X(t) contains "rush-hours" where X(t) increases to a point exceed-

ing the service rate of the facility and then subsides. In these situ-

ations, the analysis of delays has frequently been conducted with the aid

of deterministic queuing models of the type D/D/k. Such a model essential-

ly needs two variables, the actual cumulative number of customers entering

the queuing system, A(t), and the actual cumulative number of customers

leaving the system, D(t). If the interarrival and service times were

deterministic then the model would be exact. Since, however, in most

real systems the arrival and service processes are stochastic, the "deter-

ministic" approximation is obtained by assuming that the actual number of

operations is exactly equal to the expected number of operations, i.e. that

A(t) = E[A(t)] D(t) = E[D(t)]

D/D/k analysis is customarily done graphically (Figure 2.2). The

curve E[D(t)] is superimposed on the curve A(t) . Cumulative delay is

then easily calculated by the time integral of the vertical difference

of the two curves over the period of interest.
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This method is particularly attractive, computationally, if the number
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model treats customers as a continuous fluid that is flowing into a res-

ervoir at some rate dt A(t) (Figure 2.3). The maximum flow

rate out is. the service rate p:

dE[D(t)] 1

dt

As long as dA(t) remains less than the maximum service rate, i.e.
dt

X(t) < p, we approximate the queue to be zero. A queue exists between time

t0 when X(t) first exceeds p, and time t1 when A(t) first again equals

E[D(t)].

The consequences of ignoring the statistical fluctuations inherent

in the random functions of time, A(t) and D(t), are of course non-

negligible. The deterministic model assumes that the server works at a

rate p from the beginning of the rush hour until A(t) and E[D(t)] are

again equal. In a real queuing process, even under heavy traffic conditions,

there is a significant finite probability that the server remains idle.

Service in reality proceeds at a rate p whenever a queue exists, and is

interrupted otherwise. Thus, the real average service rate over the

1. The method does not actually require a constant maximum flow rate p.
The maximum flow rate, just like the average arrival rate,can be
time dependent, i.e. p = M(t). Nothing would change in the following
discussion under the assumption of a time dependent maximum flow rate.



rush hour can never exceed P, and as we have pointed out, is expected

to be somewhat less. On account of this loss of system capacity we

expect a nonvanishing queue even when X(t) < p for all t. The D/D/k

model, however, ignores the presence of a queue for p(t)= X(t)/vp< 1,

and this underestimation of cumulative delay is nondecreasing in time for

the duration of the period of interest.

The simplicity of the D/D/k approach, however, has led to its

adoption by the FAA in a real time system for anticipating and preventing

1
large delays to scheduled traffic due to inclement weather. As in these

situations the system will almost always be in the oversaturated, p(t) > 1,

state, the queue is likely to grow rapidly in time, making it less likely

that statistical fluctuations could allow the queue to vanish. This would

tend to support empirical evidence that themodel performs adequately

in these situations. However, in other than rush hour situations, by

ignoring the stochastic nature of the arrival process, we disregard, in

effect, all of the known queuing phenomena which actually take place

on an everyday basis at major airports.

1. Developed at the Transportation Systems Center of the DOT for
the Flow Control Facility of the FAA in Washington D.C.



2.4 Model 3: Equilibrium Analysis, M/D/k/c, M/M/k/o

The governing integro-differential equations for M/G/k/o queuing

systems are very complex. Therefore, even the simplest case when

the system is in equilibrium does not yield queuing theoretic statistics

in closed form. A single exception to this involves the expected steady

state delay E[W] for an M/G/1/c system, which is given exactly by the

Pollaczek-Khintchine formula:

E[W] = - 1 + 2 1 1  P < 1 (2.1)
91

where s is the random variable described by the service time distribution,

and gi is the ith moment of the random variable s.

For some special cases of the M/G/k/o queue, with well-behaved

service processes,the governing equations do turn out to be relatively easy

write and solve analytically. For these cases the state probabilities and

other statistics obtainable from the state probabilities (expected waiting

times, etc.) can be derived from the governing equations. In particular,

two cases that have received much attention in this type of analysis are

the M/D/k/o and M/M/k/c queuing models. These are in fact extreme cases

since service times are constant for the first while "perfectly random"

for the latter. (The negative exponential pdf, governing the service process

in the M/M/k systems, is frequently called "perfectly random" because of

its property that at no matter what point in time we observe the process,

the time until the next completion of a service is completely independent

of the past history of the system). Furthermore, it turns out from

the evaluation of (2.1) that E[W] for the M/D/1/cp system is exactly one



half of that of the M/M/l/M system, independent of p or pi. If we accept

the intuitive proposition that individual aircraft service times must be

"less regular" than the perfect regularity of constant service time, yet

"less random" than the "perfect randomness" of the negative exponential

service time, then we have shown that the delays for M/D/l/o and M/M/l/o

systems provide lower and upper bounds on the true value of delay in an

M/G/l/o system. Although no similar relation to (2.1) is available for

the multiserver queues M/D/k/o and M/M/k/o, the closed form formulas for

E[W] of these systems are available and again provide bounds on the

M/G/k/o delay.

2.4.1 Poisson Arrivals, Deterministic Service (M/D/k/o)

When service time is of a deterministic nature, for the purpose of

making the analysis tractable, the servers are assumed to be identical

and to always commence and terminate service simultaneously at equally

spaced discrete points in time. These separating time intervals are

exactly equal to the service time of -, where p is the service rate

(operations/unit time) of a single one of the identical k servers. At the

designated points in time the model will discharge k or fewer aircraft

from service, depending on the number of aircraft in the system, and

observe n new aircraft arriving into the queue with probability a(n)

given by the Poisson probability distribution

a (,t)n e- t
a(n)= ,n n = 0,1,...

We then define the state probability Pi(t) as

the probability that at time t the queue is of length i, (i=0,l,2,...).



The recursion equations relating the state probabilities, known in the

literature as the Chapman-Kolmogorov (C-K) equations, for any and all dis-

crete instants of time are given by:

1 -•s

Po(t + e) = e qsk(t)XJ Xj- -1 (2.2)
j es j-1 s

pj(t + 1 = qk(t) + s e -s
pj + (js j! k P(j- k+)! Pk+j (t) + .t) + e pk+j

1 <j

where the following notational conventions have been adopted:

S= (t) * [one service interval] = X(t)

k
qk(t) = Pi(t)i=O

It is possible for stationary X to solve the system of equations (2.2)

for the steady state probabilities Pi(t) and other queueing statistics. Of

particular interest here is the steady state expected waiting time E[W].

Saaty [12] gives for the arbitrary server M/D/k/c queue:

E[W] = , e-ipk (ipk) 1_ (ipk)E
i=l j=ik ! P j=ik+l J

p = - < 1

2.4.2 Poisson Arrivals, Negative Exponentially Distributed Service,

(M/M/k/o)

Alternatively consider the case of a probabilistic service process with

a negative exponential pdf for service time duration (maintaining Poisson

arrivals). The C-K equations describing the state probabilities Pi(t) for



the M/M/k/o system are as follows:

p0(t + At) = (1 - XAt - iAt) p0(t) + Atp l (t)

pj(t + At) = XAtpj_l(t) + (1 - XAt - jpAt) p (t) + (j+l) vjAtpj+l(t)

1 < j < k-I

Pi(t + At) = XAtPj_l(t) + (1 - XAt - kjAt)pj(t) + kpAtpj+l(t)

k <j

Passing to the limit, as At O, we obtain from the difference equations

Kolmogorov's forward differential equations:

dpo(t)dp(t) Xpo(t) + pPl(t)
dt

dp.(t)dt -t Xpjl(t) - (1+ J-) pj(t) + (j + 1) •Pj+l (t)
dt

1 < j < k-I

dp (t)
dt pj-_l(t) - (X + ki) pj(t) + kljpj+l(t) k<j (2.3)

As for the M/D/k queue, closed form expressions for the pi and E[W] are

available. For the arbitrary server M/M/k/o queue:

p(kp)k
E[W] = 2 Po

Xk!(l-p)
P - <1k'P

where



p k1 n I kp)k
Ln=0 +n l-

2.4.3 Application of Equilibrium Analysis

The main problem with the application of equilibrium analysis to the

airport queuing problem is that although it correctly recognizes the problem

as stochastic, it really is valid only when X(t) is invariant, or varies

extremely slowly with time. Even then, the equilibrium approximation with

a constant X must be made over a sufficiently long period of time so as to

dominate any transient effects. Examination of the demand profiles of the

airports most likely to exhibit uniform traffic throughout the day (which are

generally the most congested airports, such as New York's LaGuardia, where

a quota system on operations is in effect) indicates significant peaks and

valleys that seem to invalidate the steady state approach except as a very

rough first order approximation.

Furthermore, situations where demand equals or exceeds capacity require

special treatment. Up until now, we have been using infinite queue systems.

Equilibrium analysis is invalid for these systems when p > 1 because the

queue length is not approaching any limiting steady state value. We could

partially circumvent this by considering finite queue systems of large

maximum length m.1 This ensures a finite value of delay for all values of

p and furthermore, it is a good approximation of the infinite queue system

when p < 1. We illustrate this property for the M/M/l/m and M/M/l/o cases.

1 It is by choosing m to be large that we are, later in this study, able to
model systems with infinite queue capacity on the computer (i.e., to
"solve" an "infinite" number of C-K equations).



The closed form equilibrium state probabilities for these systems, Pm and P.11

respectively, are known and simple to compare:

finite queue: pT = (1-p p
1 l-p

infinite queue: Pi = (1-p)pi P < 1

Clearly, for p < 1, the lim (1-pm+l) = 1 and

lim P = P. (2.4)1 1

On the other hand, when p > 1 in a finite queue capacity system, the

delay analysis hinges on the fact that there is a large probability that the

queue is saturated. When this happens, aircraft "arriving" into the queue

are being forced to cancel operations altogether. As a result, the waiting

time obtained from finite queue analysis will be less than the true value of

delay in a system where actually all aircraft are served. We conclude that

waiting time in the queue may then no longer be a sufficient descriptor of

system performance.

Unfortunately, the approximation of an infinite queue capacity system

by finite queue capacity system cannot be extended to the M/D/k case, simply

because there are no closed form results. Therefore, inevitably, in cases

where temporary oversaturation does occur, the estimating of delays with

equilibrium analysis reduces to educated guesswork on the period of time and

level of oversaturation. It appears that for the very intervals of time

when the most significant delays occur at our major airports, the steady

state models provide only a very crude approximation.



2.5 Model 4: Stationary Diffusion Approximation M/G/l

2.5.1 Motivation and Assumptions

The deterministic or "fluid" approximation treated in Model 2

should be considered a "first-order" approximation. A "second-

order" model is the diffusion approximation model which is the main

topic of this section. Whereas the deterministic approximation relied

only upon the expected values of the parameters X(t) and p(t), the dif-

fusion approximation requires also the second moment of the service process.

We review here the analysis by Harris [61 to obtain E[Wd(t)] > 0, the

expected waiting time in queue for a customer arriving a time t after a

step demand has been turned on at t = 0. The service facility consists of

a single server characterized by a "general" stationary service process,

with first and second moments of service time gl and g2.

E[Wd (t

(a) Step demand at a service facility applied at t = 0

(b) Response of system to given input.

Figure 2.4
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Model 4 will differ substantially from the previous three models

in the sense that we will define a new state variable. Previously,

we used q(t), the queue length, or the probabilities Pi(t) of queue

length i, as the state variables. For systems with the particular

service processes we have discussed so far, these were state variables

because knowledge of their values alone was sufficient to determine

probabilistically all future states of the system. For example:

(a) With the deterministic service process we discretize time into

intervals of single service time length. Then the departure time of a

customer from service, given that the customer is in service now, is

always the beginning of the next interval, which is entirely independent

of the system history. (b) With service time governed by the "perfectly

random," negative exponential pdf, we have the Markov memoryless property.

Therefore, by definition, the time to next departure from service is

completely independent of system history at all times.

In the case of the "general" service process, the probability of

a departure from the system in any instant is no longer independent of

the system history. We seek then to construct a simple new state variable,

one which hopefully would possess the Markov property. Our experience

with the differential equations of Models 3 for systems possessing the

Markov property indicated that treatment of such systems was considerably

simplified by this property.

Therefore, let W(t) be the waiting time in queue for a customer



arriving at time t. This is the virtual waiting time proposed by

Takacs as a state statistic. The basic shape in time of a W(t) path

of a queuing system (with infinite waiting room) is a random sawtooth.

W(t) increases with vertical jumps of independent identically distributed

(iid) service time magnitudes at the instants of customer arrival while

continuously decreasing deterministically at slope -1 whenever the queue

is nonzero.

The W(t) path so described is both additive and Markovian. Since

the arrivals follow the Poisson process, the next arrival will, independent-

ly of the past history, occur on the basis of an interarrival time with

negative exponential distribution with (possibly nonstationary) mean .

All arrivals, independent of the state of the system, cause jumps in W(t)

of height given by iid random variables which are distributed as the ser-

vice times of the system.

In addition to the additive and Markovian properties of W(t) we make

two key assumptions on W(t) prior to presenting the diffusion model. The

first assumption requires that changes in W(t) in a small time interval

be negligible with respect to W(t). Due to the jumps observed in W(t)

this requires that the queue always contain many customers as well as

W(t) >> gl. In general, W(t) remains large, and the first assumption

is satisfied when p is "close" to unity. As the model parameters

are defined, the implications of, and measures for "closeness" will

be made more precise.



The second assumption hypothesizes the existence of an infinitesimal

time interval T, short enough to allow W(t) to change only by a negligible

amount, but simultaneously long enough for many events to take place in

T. (The mean interarrival time must therefore be short when compared to

the time scale of the approximation.) This allows us to invoke the

Central Limit approximation of sums of random variables. Were it not

for the condition W(t) > 0, then W(t) could easily be obtained by adding

sums of independent normal random variables (of waiting time) correspond-

ing to arrivals and departures from the queue. Also it is clear that

invoking the Central Limit Theorem causes the discrete component of W(t),

the number of teeth in the random sawtooth, corresponding to the Poisson

arrivals, to be modelled only approximately.

2.5.2 Model Development

In the following discussion we will describe the (conditional)

transition pdf f(x,t IxOt0) for the waiting time x in the system

at time t, given that it was x0 at t0 a short time earlier. As postu-

lated, x is described by a continuous transition Markov or diffusion process.

This approximation method to the waiting time problem is governed by the

partial differential equation of the Weiner process:

af af b a 32fat = -a(t)-x + (2.5)ax 2 ~



This process has the property that it is completely specified by the

parameters a(t) and b(t) once :initial boundary conditions are set.

a(t) and b(t) correspond to the infinitesimal mean and variance of the

motion of the process. They are given by:

a(t) = T-1E[W(t + T) - W(t)]

b(t) = T-1 Var[W(t + T) - W(t)]

Now a(t), b(t) can be readily computed because of the Markovian property

of W(t). Only two events are possible in time T - no arrival (and the

waiting time decreases by T), or an arrival (and the waiting time

increases by random variable s, from the distribution of the service

times, less service completed on the customer in service, T)

E [W(t + T) - W(t)] = -T(l - X(t)T) + X(t)T(g 1 - T) = Ta(t)

- a(t) glx(t) - 1

Var[W(t + T) - W(t)] (t)-rg 2 = Tb(t)

=> b(t) = X(t)g 2

The boundary condition is simply f(O,t) = 0 t > 0

Although there are many possible solution methods to this problem,

the most commonly cited approach is the method of images from physics

(Harris [6], Gaver [5], Newell [11]). For the



stationaryI parameter case ,(t) = X:

E[Wd(t)] =

3 2
Xg2  (g2X) - (l-g1 )

2(1-g 1X) 2(lg 1 )2t½ e 2g2X

3
gl-l)t + g2  (g)

2( X)2 - e 2g 2
2(glX) 2 2(l-glX)2t½

2.5.3 Characteristics of E[Wd(t)] (Model 4)

It is clear that the expressions (2.6) - (2.8) for E[Wd(t)] from

Model 4 differ substantially from the values obtained by the methods of

Model 2. The most obvious improvement over Model 2 is that the diffusion

approximation predicts a delay for all p > 0, not just p > 1. Another

aspect is that E[Wd(t)] agrees at least in form with the behaviour we

would expect by solving directly the integro-differential for the M/G/1

1. Harris shows that straight forward application of this method will not
work for nonstationary parameters.

glx< 1

gl = 1

(2.6)

(2.7)

(2.8)gl > 1

-)2
-g1 t
g2X



system: namely E[Wd(t)] is a composition additively of terms which are

functions of time and a term which is a constant independent of time -

the transient and steady state terms - respectively.

Before examining the transient and steady state terms we pause

briefly to observe why Model 4 is in fact a "second-order" approximation

with respect to Model 2. The argument centers on assumption two (and the

Central Limit Theorem) which implies that events during a small interval

of time T are normally distributed. Equating the two incremental parameters

a(t) and b(t) of the real and approximating (f(x,t)) processes ignores

all higher moments of the real transition pdf. Contrast this with Model 2

which neglects the possibility of fluctuations in events completely, through

a law of large numbers argument. This corresponds to the total neglecting

of the term b(t) 2 in (2.5).2 x2

Model 2 had no transient or even steady state component. The only

term appearing in the waiting time for both Models 2 and 4 is the linear

growth with time: (glX - l)t for p > I. The much more intuitive behaviour

of Model 4 will be illustrated in the following. The E[Wd(t)] (2.6) - (2.8)

are valid for the case of a step demand X beginning at time t=O, with

initially no customers in the queue. We expect and observe the time

dependent waiting time E[Wd(t)] approaching its limiting steady state

behaviour from below.

The case p< 1 is the only case that approaches an equilibrium

solution with the decay of the transient. For the overloaded queue,



p > 1, not all the customers can be served, causing the queue to grow

with time. There is still, however, a transient term. As for p < 1,

the transient decays exponentially, and E[Wd(t)] approaches growth as

(gl, - 1)t. The relation for the special case of demand exactly equal-

ing the mean rate of throughput also agrees with intuition. Neither

an equilibrium solution as for p< l,nor linear growth with time, as

for p > 1 ,is expected for E[Wd(t)] when p = 1. The observed growth

as A/, slower than for p > 1, indicates the basically unstable nature

of the queue, as expected.

The behaviour of the transient term should be closely examined.

Apparently for both p ý 1 the transient term decreases as t½e/to where

to is a constant. Because of the dominance of the exponential com-

ponent in t, to has been termed the relaxation time, defined as the

length of time required for the transient part of the queui~ng statistic
1to relax to 1 of its original value. Chapter 3 will be devoted entirelye

to analytic and empirical treatments of the transient behaviour. There-

fore, this behaviour will not be discussed further here. We will, how-

ever, quote known steady state results in the next few paragraphs to show

that the asymptotic behaviour E[Wd] = lim E[Wd(t)l does reasonably
t-_oo

approximate these results.

The expected steady state delay E[W] for an M/G/l system is given

exactly by the Pollacek Khintchine formula (2.1). With the diffusion

results Gaver[5] shows:



E[Wd] = Xg2  -P g2  [g Va [s]] E[W]2(1-p) 2(l-p) 1 2(1-p) 1 9 (2.9)

The expected values are therefore exactly equal. The exact

expression for the variance of the waiting time is

Var[W] = 'g2 2
2(1-p)

Xg3

6(1-p)

To obtain Var[Wd] we return to the original differential equation

for the diffusion process:

af af b(t) 2f
t a(t) +

2 ax2

For the stationary case a(t) = a = constant, b(t) = b constant, we

afcan set =t - 0 and solve for f, the density of the waiting time in queue.

The equation is satisfied by:

f(x) = 2 (l-P) exp [_2(12)x ]g2X gex p< 1

Recognizing this as an exponential distribution we obtain the variance

Var[Wd] = E 2[Wd] = 2(l-pL < Var[W]

Therefore, we obtain a smaller variance for p< 1. Gaver I]

was able to prove that these do coincide for the case p = 1.



2.6 Model 5: Numerical Solution of the Time Dependent Chapman

Kolmogorov Equations, M/D/k, M/M/k

2.6.1 Method and Assumptions

Koopman [8], rather than relying on steady state results, has sought

and obtained numerical solutions for the Chapman-Kolmogorov equations

for M/D/k and M/M/k systems. Since the queuing equati:ons are valid for

all values of p (not just p< 1), iterative numerical solution of the

equations yields the distribution of the queue length Pi(t) i = 0,1,...

from which the expected delay E[W(t)] is calculated. Further it is

possible to adjust the average arrival or service rates at any iteration

of the numerical solution of the equations to reflect any corresponding

variations in the "real world." (Frequently airports operate with fewer

runways at nights or during bad weather. This situation can be accomodated

in the numerical solution.)

Koopman has shown that, in the absence of steady state conditions,

periodicity of the X(t) and -p(t) usually observed at airports (diurnal

24 hour schedule pattern) guarantees the existence and uniqueness of

the state probabilities Pi(t). These solutions for the state probabilities

will be valid as long as (a) the average service time - of an aircraft is

small enough such that no significant change in arrival rates or general

conditions is observed during a single service time and (b) there exists

during the day a period when the level of operations is negligible compared

to the airport capacity. This point must be chosen as the starting point



so that transient considerations remain negligible. In the event that

such a point does not exist the Pi(t) should be evaluated over a period

of time equal to twice the cycle of the X(t) to ascertain that periodicity

is indeed achieved. For practical purposes, however, this issue is not

particularly important. The remaining basic assumptions of this approach

are identical to those presented in section 2.4. Koopman developed the

one runway case assuming a finite maximum queue length (since numerically

it is possible to solve only a finite number of state equations). No

distinction was made between arriving and departing aircraft, although

possible extensions to multiqueue situations were illustrated.

2.6.2 Computational Considerations

Minor changes must be made to the last k equations in (2.2) and (2.3)

when there are only a finite number of states m. These are to ensure

that the maximum queue length is not violated by the number of new

aircraft arriving into the queue,as well as to ensure that the probabilities

add up to 1. For the M/D/k system the last k equations are:

j -Xs j-1 - j-(m-k) -Xs
1 X e s e e

pj(t + ) = qk(t) + s mk+l s p (t)
j! (j-1)! [j-(m-k)]!

m - k< j< m-l

1 =qk(t +) + Pk+l (t +) + + m(t + 1k~t + 1 1

and for the M/M/k system:
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dp (t)
= MPj-l(t) - (X+ kP)p (t) + kp pj+ 1 (t) m - k< j m-l

dt

1 = p0(t) + Pl(t) +...+ Pm(t)

According to the discussion of Model 3 we would like m to be large

enough such that queue saturation never takes place. Bearing in mind

the strongly time dependent X(t) (and/or lp(t)), we realize that in the

course of an iterative solution the value of m for which pm(t) becomes

negligibly small can vary appreciably. Much computational effort may be

saved by recognizing that negligibly small probabilities need not be

calculated. Thus a fictitious "maximum allowable" queue length can be

set up to vary at each iteration in a fashion to ensure that the proba-

bility of queue saturation does not exceed a negligibly small predetermined

tolerance.

Given then a set of initial values pi(O) i = O,l,...,m, and the

average arrival and service rate profiles X(t) and p(t) for a time period

of interest [0,T], the equations can be solved for the queue length

distributions at discrete points in time for the interval. For the

M/D/k case the distributions obtained correspond to points in time i-t)

(=1 aircraft service time) apart. The M/M/k equations must be solved

as difference equations and consequently yield the solutions at arbitrarily

small, but regular, intervals of time At.



2.6.3 Application

The statistic usually of greatest interest, the expected waiting

time in queue ,E[W(t)],is readily obtained once the pi(t) are known:

m
E[W(t)] = kt (i-k+l) Pi(t) (2.10)

A minor change to (2.10) must be made for the M/D/k case to account

for the modelling hypothesis that all arrivals into, and all departures

from the system occur at discrete instants of time:

1 m 1
E[W(t)M/D/k k-(t) k (i-k+-) p(t)

Other measures of importance, the expected queue length,

m
E[L (t)] = E (i-k)pi(t)

i=k

and probability that an aircraft is delayed prior to service,

k
P(W > 0) = 1 - Pi (t)

i=O

are easily computable.

Koopman discovered that delays observed in systems with A(t)

strongly time dependent were remarkably insensitive to the precise



stochastic properties of the service process.

Also, we have noted in our discussion of steady state results, from

the Pollaczek-Khintchine formula for the single server queue, and closed

form expressions for many server systems, that M/M/k and M/D/k systems

appear to provide upper and lower bounds on the average equilibrium delay.

Together these observations imply a tremendous simplification of the

study of the M/G/k queue. Koopman's results suggest that judicious inter-

polation of nonequilibrium M/D/k and M/M/k solutions is all that is needed

to obtain a good approximation of actual delays in a nonstationary M/G/k

queuing system. Similar closeness of the variances of the expected queue

lengths (the variances tend to be large compared to the difference of the

expected queue lengths for the two different service policies) further

strengthens the case for the validity of interpolation.

2.6.4 An Alternative to Interpolation

We conclude this section with a brief investigation of a mathematical-

ly tractable alternative to interpolation between M/M/k and M/D/k delay

statistics in obtaining the delay for M/G/k systems. At least part of

the success of Koopman's solution technique is due to the fact that

these two extremes have the simplest forms of the C-K equations (2.2) and

(2.3). We will now investigate the efficacy of numerically solving

C-K equations when more general service processes are introduced. In

particular we write the C-K equations for a class of service processes

that includes both the deterministic and negative exponentially distributed



service times as its extremes. The outcome will be that even for the

simplest case of a single server, numerical solution of these equations

fails to be practical when compared to Koopman's method.

The class of service processes we mean is the cth order Erlang

distribution whose pdf f(s), for an arbitrary integer c > 0, is given by:

(c)c c-1 -c0s
f(s) s e s > 0 (2.11)

(c-l)!

By definition f(s) is the distribution of the sum of c iid exponential

random variables x, f(x) = cpe -c .x, x > 0, each x having mean c.

Therefore, the mean service time and variance of s are:

1 1g = c . - -

(2.12)
2 1 1

Var[s] = c = c - =
x (c 1) 2 c-2

From (2.11) and (2.12) it is obvious that both negative exponentially

distributed and deterministic service times are special cases of service

time described by the cth order Erlang pdf, with c given by 1 and o

respectively.

For the purpose of writing the C-K equations of a single server

queueing system with service process defined by the cth order Erlang pdf

(still with Poisson arrivals) abbreviated as M/Ec/l, we note that although

the Erlang distribution itself is not Markovian, the distribution



is composed of c lid negative exponential units. We call these units "phases"

and imagine a queueing system with cth order Erlang service time distribution

as the "c phase service" queue illustrated in Figure 2.5:

overflow 1 1 1

1 0- /Luzz. . fie
"arrival" finite queueing service
process space process

A schematic diagram of the cth order Erlang type service queue

Figure 2.5

The effect of increasing the number of phases required by each customer, i.e.

going from "perfectly random" to deterministic type service, on the distribu-

tion of the service times is shown in Figure 2.6.

A,

4J

Oi

O S2
ju t o0

(1-cumulative distribution function) of the cthorder Erlang pdf(Morse[lO])

Figure 2.6
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We take advantage of the description of service as "phased "

by measuring the queue length in terms of phases remaining to be com-

pleted, rather than the total number of waiting customers. This is

easily done as the arrival of every customer corresponds to the bulk

arrival of c phases of service. The state diagram for the M/E3/1 queue,

in terms of the phases is given in Figure 2.7. As each phase possesses the

xAt At xAt At xAt

31 31' 3 311 3-1

State diagram for an M/E3/1 system

Figure 2.7
Markovian property the state transition probabilities are independent of time.

The differential equations fore pi(t) = 0,1...., the probability of i

phases of service remaining to be completed at time t, are then written

as in (2.3):

dpodp0  -Xp0 + c.- P1
dt

dpi
dt -(c + cp)Pi + cl.Pi+l O< i < c (2.13)

dpi

dt = Pi-c - ( + c.p)Pi + c. Pi+l i > c



The numerical solution of the equations (2.12) is obtained the

same way as for (2.3) although such a direct solution is computationally

disadvantageous. The reason, of course, is that the number of states,

and consequently the number of differential equations, is c times that

of the "equivalent" (in the sense of customers in the queue) M/M/l

system. As these equations must be solved simultaneously the increase

in computational effort is greater than linear. Solving, for instance,

M/E3/1 systems takes about an order of magnitude more computation time

than the M/M/l system. However, mumerically solving the M/Ec /l system

will provide the exact results for the transient behaviour of yet other

special cases of the M/G/l queue (besides M/M/l and M/D/1). Therefore,

many results will be presented for this case in the section on numerical

results.



2.7 Summary

In this chapter we have reviewed the five main types of models

which have been used in the analysis of nonstationary M/G/k queues.

The main objections to three of the models were:

Model 1, Computer Simulation: requires excessive computation time

and poses serious statistical difficulties in interpreting results.

Model 2, D/D/k "Fluid Approximation": ignores known and observed

statistical fluctuations in both the demand profile and service

times. Predicts no waiting time unless p > 1, and always underestimates

waiting time. When compared to exact solutions Model 2 fares

worst when p is frequently less than, but close to, 1. Performance is

better when p > 1 and is best for lengthy periods of oversaturation.

Model 3, Equilibrium Analysis: fluctuations in airport demand

profiles are very significant with the resultant conclusion that the

system is never truly in the steady state. No solution for common

"rush hour" situations, p > 1, for infinite queue systems, and

difficulties in interpreting the values of E[W] for finite queues

(because of queue saturation).

The fourth model (stationary diffusion approximation) was introduced

as a natural extension of the deterministic approximation Model 2. Al-

though analysis of delays for nonstationary demand profiles has been

conducted with this method (Harris [6]), it is limited to particular



demand profiles and single servers, and hence was not discussed here.

However, the results of Model 4 are invaluable in providing approximate

closed form results for the transient behaviour of (stationary) M/G/l

queues, since exact results exist only for M/M/I.

The most promising method so far is Koopman's method of interpolating

between the results of numerical solutions of the M/M/k and M/D/k

systems because:

(1) apparently in time dependent M/G/k systems E[W(t)] is not

strongly dependent on the exact form of the general service

process. Therefore, interpolation between the extreme values of

E[W(t)], based on theproperties of the service process, is generally

sufficient to approximate the true value of E[W(t)]. Besides,

direct solution of the C-K equations for the particular service

process was shown to require excessive computation time for even

relatively "well behaved" service process such as the Erlang k.

(2) it requires substantially less computational effort than a

simulation, and overcomes the difficulties of both Model 2

(when p< 1) and Model 3 (when p > 1) by calculating exact results

for all values of p.

The following chapters will offer an explanation, based on theoretical

considerations, for the success of Koopman's method. It will also provide

a framework for investigating other models that can be developed for the

M/G/k system with this knowledge.



Chapter 3

DERIVATION OF THE TIME CONSTANT OF THE M/G/1 SYSTEM AND APPLICATIONS

3.1 Motivation

Until now we have mentioned the term "transient behaviour" infre-

quently and each time in a slightly different connection. The first men-

tion of it was in Model 3 where we said that the equilibrium approximation

could be safely applied only when X(t) has been (nearly) constant for a

sufficiently long period of time so as to overshadow any transient effects.

Although constant demand profiles are currently rarities for airports, this

might change. Setting of hourly quotas on runway movements, and marginal

cost pricing of runway use are two of the policy decisions that may at

least partly bring this about. If the resultant policy creates (near) con-

stant daily demand profiles, then the application of Model 3 would seem to

provide adequate rough approximations to the delays. Consideration of

transient effects will show that this can in fact be misleading. Steady

state delays increase exponentially (2.1), as the utilization ratio

approaches 1. However, the length of time required to reach the steady

state also increases exponentially. Therefore, both the relaxation time

and the actual transient component of E[W(t)] must be known before steady

state results can be of any value.

Our second mention of the transient concerned the response of an M/G/l

queue, Model 4, to a step demand applied at time 0 when the queue was

1. For average steady state delays per operation in the tolerable range
for airports this period of time approaches a length equal to that
of the operating day.



initially empty. Closed form results available from the governing equa-

tions of Model 4 can be used in creating approximating models of the more

complex time dependent queue. For instance, the expression for the tran-

sient behaviour is the controlling factor in a computationally efficient

methodology developed by Gupta. Based on knowledge of the steady state

behaviour and some (incomplete) knowledge of the duration of nonnegligible

transient effects, he was able to construct and solve an approximating

differential equation for the queue length of time dependent M/M/K and

M/D/K queues.

The third reference to the transient was in Model 5 in connection with

initial starting conditions. Besides this, the transient plays another

extremely important role in Model 5, and we take this opportunity to men-

tion it. The reader will recall that the results of equilibrium analysis

indicated that the steady state E[W] for the M/M/K and M/D/K queues dif-

fered by approximately a factor of 2 for small k. Koopman, however, ob-

served that in the numerical solution of the equations the two systems

provided relatively tight bounds on the system delay. It is of interest

then to investigate the transient behaviour of the M/M/K and M/D/K systems

as a cause of this behaviour.

It is clear from the discussion that any progress we make in analyz-

ing transient behaviour will be extremely useful. We will start by pre-

senting yet another model, Model 6, comparable to Model 4 in the sense

that it deals with a stationary queue, with the differences that it is an

exact model and limited to the M/M/l case (as opposed to the approximating



M/G/l analysis). Our aim is to obtain some workable expression for the

transient behaviour that can be considered exact. We will note the simi-

larity of the queueing statistics obtained from Model 6 and Model 4, and

make comparisons. Since Model 4 will turn out to be a very good approxi-

mation of the stationary M/M/l queue, we make attempts to stretch our

knowledge of the "exact" transient behaviour to the gamut of M/G/l queues

via the parameters of Model 4. We conclude with Models 7 and 8. The former

is an approximation model of the time dependent M/M/k and M/D/k queues

which expressly needs the kinds of closed form results that this chapter.

is concerned with. Model 8 uses the development of Model 6 to formulate

a new model for the time dependent M/M/l queue. In particular we suggest

Model 8 as an alternative to Model 5 when quick approximations are needed.



3.2 Model 6: Transient Solutions for Stationary Queues, M/M/I

3.2.1 Morse's Methodology

This section develops series-form expressions for the transient state

probabilities pi(t) for stationary finite queues. The methodology is due

to Morse [lO],and is perfectly general provided the arrival and service

processes constitute a birth and death Markovian model.

Drawing upon the birth and death process property of the model we

are able to write the linear Chapman-Kolmogorov equations. When the sys-

tem is not in equilibrium we have the forward Kolmogorov differential

equation for the time rate of change of the state probabilities:

dpi(t) m
dt n 0 EinPn(t) (3.1)

where the Ein are the rates of transition into state i given the system was

in state n an arbitrarily short time earlier. The E.in are the mean arrival

rates of the exponential units, which may in their most general form be

themselves functions of time. For the transient analysis, however, all

parameters will be assumed stationary.

The analysis begins with the assumption that the transient state proba-

bilities we seek, Pi(t), are completely described by the form (3.2):

m -Yst
Pi(t) = E Bise (3.2)s=O

where: (a) the queue is of finite maximimum length m
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(b) Bis i,s = 0,1,2,...,m are constants to be adjusted to

meet initial conditions

(c) Ys s = 0,1,2,...,m are rates of decay of transient com-

ponents

Substituting (3.2) into the differential equations (3.1)we obtain:

Y YiB i te + E
n=O

EinPn = 0 i = 0,l,...,m

(Yi + Eii)Pi + Z
Sn=O

nOi

EinPn = 0 i = 0,1,...,m

Equations (.3.3)must have solutions for the pi, for all i, yielding

the following secular equation (3.4) in the yi:

(YO + E00 )

S Elm(y + E11 )

(Yn + Enm )

(3.4)= 0

From linear algebra the system(3.3) has a nontrivial solution if and only

if the determinant of coefficients (of the pi) (3.4) equals zero. We show

(3.3)



this to be the case for the general birth and death queueing system

from the properties of a Markov process. The rate of transition into

a state always equals the rate of transition out. By definition (from

equation (3.3) above), -(Eii + yi) equals the rate of transition into

state i. Now the column sum of the determinant over all rows j, j i

is:

m
SE.. = rate of transition out of state i

j=0 31

jti

Consequently, the column sum of (3.4) is 0 for every column. It

follows then that the determinant (3.4) is zero.

The secular equation is of the (m + 1)st order in the variable y.

Solution for the m + 1 roots ys yields:

(1) the zero root, Yo = 0: the determinant of the coefficients is zero

and consequently the coefficient of the zeroth power of y, i.e. the

constant, in the secular equation is zero. Therefore, one root of the

equation in these systems will always be 0.

(2) n positive roots ys, s = l,...m

When the coefficients B. are adjusted to fit the initial conditions

the pi(t) are readily computable for (3.2) The presence of the zeroth root

implies that the first term in the expression (3.2) must be a constant in-

dependent of time, i.e. the steady state probability Pi. The remaining

n roots are therefore associated with the transient behaviour of the



system. With a constant term added to an exponential transient term,

it should be noted that this behaviour coincides at least in form with

the approximating diffusion result given in section 2.5.

3.2.2 Application of Morse's Methodology to the Queue M/M/l/m

For small m the roots yi are readily obtainable from the secular

equation (3.4). In the case of large m though, Morse avoids writing (3.4)

explicitly. Instead, he obtains the roots by appropriate manipulations

of the m + 1 state equations.

The forward Kolmogorov differential equations, written for the

single channel case are:

dp0dtp -= Pl(t) - xpO(t)

dp idp1  = Xpi- ( t ) - ( +  )Pi(t) i = ,...,m- (3.5)

dp

dct = XPm-l(t) - lPm(t)

Assume the transient to be of the form

i
2i -Yst

Pi(t) = pB e (3.6)



where p is the utilization ratio, -.

Substitute (3.6) for each s, s = l,...,m into the differential equations

(3.5) to obtain the following algebraic equations:

v6 Bi, s+ (xs - p) BO s = 0 (3.7)

/ (B s + B ) + (xs - 1 - p) Bi s = 0

(3.8)

v/ Bm-l,s + (x s - 1) Bm, s = 0 (3.9)

where xs = ys/1i

Writing the determinant of the coefficient and solving for the m+ 1

roots of the system (3.7)-(3.9) would be tedious. Instead Morse provides

simple algebraic and trigonometric manipulations that will reduce the

consideration of the m + 1 equations (3.7)-(3.9) to the single equation

for the s nonzero roots:

Ys = X + p - 2Ai- cos-l) s = l,...,m (3.10)

The derivation of (3.10) proceeds by first finding the value of the

coefficients Bis i = l,...,m-1 s = l,...m satisfying the m-l equations

(3.8). Fundamental to the reduction is the trigonometric identity:

sin[(i-l)y] + sin[(i+l)y] = 2 sin(iy)cos(y)



Trying Bi, s = sin(iy), substituting in equations (3.8) yields the

following equation which is independent of the state i, i = 1,..., m - 1,

2VY cos(y) = 1 + p - xs  (3.11)

Now, although B. = sin(iy) does not satisfy the first boundary condition

(3.7), the form Bi. s = sin(iy) - /p sin[(i+l)y] does. Moreover, substitu-

tion of the latter form of B. into equation (3.7) yields the identical

equation (3.11) in xs.  The second boundary condition, equation (3.9), is

also satisfied by this value of B. provided we can set sin[(m + l)y] = 0.
sllAny multiple of · m-'+ 1 would do. In particular, let y = mpt T where s

is integer valued s = 1,...,m corresponding to the s in the subscript of

Bi,s and the m district roots ys = Xs//p of the secular equation.

The zero root corresponds to the steady state term Pi to which the

queue will relax to regardless of initial conditions. Then, except for

a constant Cs chosen to suit the initial conditions, P?, the m+l time

dependent state probabilities are given by the sum of the constant and

transient parts:
i m t

Pi(t) = + p sm= Cs[sin( •  - v sin(m+ )1] et

For initial conditions of the following type:

pi ( 0) = 6ij i = O,...,m

i.e. for when there are exactly j customers in the system at t = 0, the



-(i-j) m
pi3 (t) = Pi + 2i X ) sin[j - V sin[s( m+l)

s=l m

(3.12)

sin[i--j] - vP sin[s(i+l)1-]e -Yst

For arbitrary initial queue length distributions po j = O,l,...m the

transient state probabilities are obtained by forming the appropriate

combinations of (3.12).

Pi(t) = p (t) i = 0,...,m (3.13)
j=O

Since the ys can be shown to be positive for all values of p, it

is clear that after some period of time the pj(t) will be composed purely

of the constants Pi. Now the systems of equations (3.5) are valid for all

p > 0, and furthermore the system is finite. Therefore Pi exist for all

p > 0 and consequently the piJ (t) (3.12) are :similarly valid for all p > 0.

3.2.3 Closed Form Transient Solutions for M/M/l/c Queues

Much the same type of analysis,l leading to a form similar to (3.10)

can be used for infinite queue systems.

We note first of all that letting the queue length m-> 0 eliminates

1. Alternative derivations exist that use generating functions, although
the resulting form of the transient state probability is such that
its convergence to the known steady state results is not as obvious
as before.



one of the boundary conditions (3.9) from the previous problem as the

system now consists of infinitely many differential equations. Keeping

the same basic presumed form of the solution as (3.2):

q i (e,t) = pBi, e-Yt (3.14)

e replacing s (as s becomes a continuous variable for m -> oo) and
m+l

performing the same manipulation to fit the remaining boundary conditions,

(3.7), (3.8), we obtain

B. = sin(i,e) - Jv' sin[(i+l)e] (3.15)

and let

Ye =w = X + P - 2Ajii cose

The initial conditions which are as before,

Pi(O) = 6ij i = 0,1,2,...

can be met through the following two step process. First define the

function

Qi(j,t)= -( S2 1  sin(je)qi(e,t)de (3.16)

It can be shown that this function satisfies the following initial

conditions:



-1 i = j-1
Q ,(j O) = 0 i j-1,j

+1 i = j

The original conditions can then be met from combinations of Qi(j,t)

to give, as before, the time dependent component p'(t) of the transient

state probabilities

i 0 k
p'J(t) = E Q (k,t) - E ( X) Qi(k,t) j,i = 0,1,2...

k=l k=l

or equivalently the true time dependent state probability pj(t) =

P. '+ p'j (t). Morse claims that this reduces to:
1 T

)½i-j)
P3 (t) P. + (27r 1

p(t) = P + ()(J 0 [sin(je) - rpsin[(j+l)O]] (3.17)

[sin(ie) - Vrsin[(i+l)]] e- do

(3.17) of course resembles very closely the series representation for

the M/M/l/m queue (3.12) when the integral is replaced by a finite sum

of the identical function evaluated at increments of 211 .
m+l

Retracing a few steps to the definition (3.16) of the function

Qi(j,t), there is an alternative way of expressing (3.16) that will

become significant later on. For this we need two of the properties

of the hyperbolic Bessel function In(z):



I (z) = I (z) = i-nJn(i) II

0

cos(ne)ez cosO dO n = 0,1,2,...

Using the trigonometric identity on the product of sines an equivalent

representation of Q.(j,t) (3.13) is:
I

1(i-j)
- -(X+P))t I (zz)(Z) _ V[[Ij (z) _ (3.18)

with Z = 2tVX*j-

Qi(j,t) =

Ij+i+1 (Z)]1



3.3 Transient Behaviour of Model 6, M/M/1

In the previous section we developed two exact expressions for

the transient behaviour of the M/M/l queue. An approximate expression

for transient behaviour was also discussed in section 2.5 for Model 4.

So far our analysis has shown that for both the exact expressions of

Model 6 and the approximation of Model 4 this behaviour in time is

determined essentially by an exponential function of time, additive to

the (constant) expected steady state value. Section 3.3 will attempt

to characterize, based largely on Model 6, the parameters that are

the natural descriptors of this evolution of a queue in time. The

following section 3.4 will be a more general extension based on Model 4.

3.3.1 Exact Time Constant for M/M/l

The expressions for the transient state probabilities (3.12) and

(3.17) immediately reveal that the time dependent terms approach 0

exponentially at a rate no slower than the smallest coefficient of t

in the exponential, i.e. the smallest ys for (3.12), and the smallest

w(e) for (3.17). Knowledge of the actual rate of decay will enable us

to determine the length of time T after which the transient is reduced

to a certain fraction of its initial value. In particular, the time

for the transient to reach - of its original value is defined by Morse

and others as the relaxation time. An appropriate root ys or value of

m(e) is then referred to as the time constant of the system. The



remainder of this section will be devoted to finding an expression for

the relaxation time.

We will examine first the (finite) M/M/l/m queue,arriving at its

time constant by examining the values of the roots y from (3.10).

Of all the ys , the smallest nonzero one is Y1l

y = X + I - 24-p cos -1 m (V- - 4r)
m+l

Thereafter, as s increases, ys increases to its largest value

ymN (v + v/o)2 . By definition (3.2), each transient state probability

p.(t) is of the form 8.s e-Yst. Therefore each Pi(t) will have com-
1 "S -S t

ponents decaying at varying rates, from the slowest e , to the fastest
-Ymt -Ys t
e . However, by virtue of the product Bise , the relative mag-

nitudes of the constants Bis are major determinants of the rate of

decay of the sum (3.2) and consequently the relaxation time. Without

explicit evaluation of the constants B. of (3.12) for particularITS
ilitial conditions we have no way of knowing which of these are the

largest in magnitude. We can, therefore, only infer from the above

that the true value of the relaxation time is limited to being some-

where between the reciprocal of the smallest and largest roots, y

and ym respectively:

-1 (j+ 2  1 + p)2 1+ 2
y 1 ( 2 = 2 ( -p )



-1 1 1 + p 2 V
m ( + X)2 P(l-p)

By assuming simply that the relaxation time Tr may be obtained from the

arithmetic mean of the y• and ym , we obtain:

Tr = 2p)2 for pal (3.19)r -) -1)1 for -rpl

To complete the analysis of the relaxation time from the "exact"

expressions of Model 6, we will discuss briefly the extensions of the

above discussion to the queue M/M/1/oo. Since in deriving (3.19) we

were dealing with large finite queues, we note that as m approaches

infinity 1sL approximates more and more the continuous variable 0
m+l

in (3.15). The time constant for the finite system, Ys , therefore

converges to its counterpart in the infinite queue system, w(8). To

show that the magnitudes of the constants Bie do not change the

relaxation behaviour, it suffices to inspect the sum (3.12) and

integral (3.17) as we did in the previous section to see that they

do approach each other as m -> o.

Since the Pi(t) of the M/M/1/m and M/M/1/o queues appear to con-

verge for large m, we expect T to do the same. To determine T for ther queue, Morse obtained the auto-correlation function
M/M/l/0o queue, Morse obtained the auto-correlation function '(t)



for the queue length:

2_ _)_ (p -_X ~2t
Y(t) = [ + 2] exp [-(- )2 t

and from '(t) the frequency spectrum of the fluctuations about the

mean queue length. The relaxation time of these fluctuations Tr

is described as a measure of the transient behaviour of the queue by

Goddard [2], and is given by:

T - 2p
r )

which is identical to (3.19).

3.3.2 Approximate Time Constant for M/M/l from Model 4

We now have, for the very specific case M/M/1, an "exact"1l

expression (3.19) for the relaxation time. The aim now will be to see

how (3.19) compares with the relaxation time that we could derive

from the approximate Model 4.

1. We use "exact" in quotations since it is really an approximation
from the exact closed form transient pi(t).



Consider the transient component of E[Wd(t)] for Model 4:

3 -(l-glX) 2t
(9 X) e 2g2X

2(1-g 1A)2t½ (3.20)

Substituting the values of gl and g2 for the M/M/l case into (3.20)

we obtain the expression in t, which we define as R (ignoring the
d

the constant coefficient):

2 2 2
(1-p) 2i t (l-p) 2t

-½ - 2X. 2 -½ - 4p (3.21)
t e =t e = Rd

Basically Rd differs from the form (3.2) by the presence of the leading

term t'. Fortunately, however, we will be able to show that this

behaviour does indeed still coincide with the "exact" results.

For the purpose of obtaining an expression Re similar to (3.21)from

Model 6 we return to the Bessel function form (3.18) of the p.(t).

The two forms (3.16) and (3.18) are equivalent by construction and must

clearly exhibit the same behaviour. To show, however, that we obtain

a somewhat different relaxation time, consider the asymptotic behaviour

of the hyperbolic Bessel function:



Z 2 1e n -4 Z

In(Z) -> 2Z + ->
(21Z) (21Z)

Therefore, the Q (m,t) used to build up the pm(t)n n

as Z -> *

behave as

e- (,X+l)t 2 5ji• t

(211 2vXT t)

t½e-(VI- ) 2t

The result Re,(3.2 2), is another expression for the "exact" transient

behaviour of the M/M/l queue. As p is comparable with 1, and A/ * p,

we see from (3.21) and (3.22) that

_ ( 2 p)2 t = R

R = t½ e-()X t2t)t-e -[ +-X+270 - t ½e 4p Rd
(3.23)

We conclude from (3.23) the remarkable fact that for the M/M/I queue

the approximating Model 4 exhibits the same transient behaviour as the

exact Model 6. This is tremendously important as it leads us to expect

that the transient behaviour is modelled "exactly" by Model 4 for all

types of M/G/1 queues.

Before we can attempt to prove that Model 4 does indeed correctly

SRe

(3.22)



predict transient behaviour, we need workable expressions for the

relaxation time. This task is complicated by the presence of the

t2 term in (3.21). We noted in (3.23), however, that Td , the Model

4 relaxation time, given by the inverse of the coefficient of t in

the power of e,

4p
Td (l-p) 2

was the same for both (3.21) and (3.22). For the M/M/1 queue the

relation of Td to Tr is given in (3.24)

T = 4p -2 22T
d P(-p) )2  r (3.24)

(3.24)

We might believe that a similar simple relation holds between the

Model 4 relaxation time Td and the time value Tr for all queues of the

type M/G/I. This would considerably simplify the analysis of transient

behaviour for M/G/l queues other than M/M/l. Section 3.4 will present

a result indicating that Tr does indeed describe, within a constant,

the transient behaviour of Model 4. Numerical results presented in

Chapter 4 will also confirm (3.24) for a few different M/G/1 queues.



3.3.3 Properties of the Relaxation Time

We conclude the section with a few notes on the basic properties

of the relaxation time we have obtained. The first concerns the

fact that its value, depends not only upon the dimensionless

utilization ratio, but also the mean service rate. The second is that

(3.19) for Tr is valid for all p > 0, exhibiting similar behaviour for

both underloaded and overloaded queues. The relaxation time is there-

fore approximately symmetrical around p = 1. As p increases T grows

rapidly, peaking at p = 1, and then gets smaller as: p becomes much

greater than 1. The actual peak value of Tr has been approximated by

Morse

r = 2 for M/M/l/m queue

p=l

Since we said earlier that the Tr is related to the autocorrelation

function of the queue length we present a quick summary (for M/M/1) of

the expected number of coustomers in the system Q, and the mean square

fluctuation (AQ)2 about Q (for the steady state, M/M/l/m queue)

m + p p<< 1
Q = ip. - 1Q E i=O P m(m+2) p - 1i=0 2pf

m (_) p >> 1



(AQ) + 2p2 p<< 1
( i 2p. L2 > 1
i=0 - 12 (m+2) p -> 1

S1 2 p >> 1

we observe that AQ for the large values of m that we are concerned with

becomes very large as p -> 1. Furthermore, these fluctuations are

approximately symmetric around p = 1. It would seem that as the fluctu-

ations AQ around Q become large the relaxation time of the queue length

to Q would likewise become larger. This was born out by (3.19).

Since Tr is strictly valid only for finite queues (although m may

be very large) when p > 1, it is interesting to observe the transient

behaviour of Model 4 which is an infinite queue system. The E[Wd(t)]

(2.6)-(2.8) show that the transient part for p< 1 is identical to the

transient part for p > 1. This not only confirms that Model 4 approximates

the exact transient behaviour very well, i.e. one expression Td identical

to Tr independent of p, but also the assumption that large finite queues

behave very much like infinite queues. The latter, which has been

emphasized throughout this section will be a key assumption in Model 8.



3.4 Transient Analysis of Model 4, M/G/1

Model 4 actually offers much more information than is presented

in section 2.5. Both the underlying steady state and transient be-

haviours of the M/G/l queue become clear when we reduce the diffusion

equation(2.5) to dimensionless form. We will show that there exist

natural descriptors inherent to this equation that justify further

(3.24)as an alternative characterization of the transient of Model 4.

We recall that in setting up the parameters a(t) and b(t) of the

governing partial differential equation (2.5) of Model 4, only two items

of information about the pdf of the service process were actually used -

the mean rate and mean square rate of service. We point out here that

by a simple rescaling of these coordinates we can obtain a dimensionless

equation depending neither on a(t) nor b(t). Solution of the dimension-

less equation then provides, under appropriate variable transformations,

E[Wd(t)] for any choice of service process. These variable transforma-

tions will be performed by choosing new units of time and waiting time

in queue:

t'= and x' =TO  W00 0

where TO and WO are defined respectively as the characteristic time and

waiting time in queue. The differential equation (2.5) then becomes
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af_ T0a(t) af Tb(t) (3.25)
ax5 W 1' .2 12

0  2W ax0

We render the coefficients of the equation (3.25) dimensionless by choos-

ing:

T0a(t) 1 and Tob(t) (3.26)

W2 -WO0 WO

i.e. W0 =  b(t•  TO b(

[a(t)] 2

The resultant equation

af +f 1 a 2f (3.27)

at, afX 2 a IV
has been solved by Gaver [1], Harris [6], and Newell [11l], with an ex-

tensive tabulation provided by Harris. As it is much faster to scale

variables and look up tables, rather than solve a new partial differential

equation each time, there is considerable computational advantage to using

the equation (3.27) to solve for E[Wd(t)] of the M/G/1 queue. In Chapter

4 we will make use of this property to compare the exact solutions of

various special cases of the M/G/l queue to the results of Model 4.

Returning to the nondimensional equation (3.27), since there are



no parameters in it other than constants of order 1, its qualitative

behaviour can be described by inspection. Given an initial value of the

nondimensional waiting time in the queue of order x' = 1, or some non-

equilibrium distribution of waiting times over a range of x' of

order 1, then the relaxation to the equilibrium waiting time distribu-

tion must occur within a time t' of order 1.

Using this qualitative observation we can proceed to an interpreta-

tion of what this means in terms of our original values of time t and

waiting time x. In order to do that though we must take a closer look

at the variable transformations (3.26). We already have from the

Pollaczek-Khintchine formula (2.1) the relation for steady state waiting

time for E[W] for the M/G/l queue. Now

W0 = (t 2 - 2E[W]
a(t) 1-g9X

indicating that what we described earlier as the characteristic waiting

time for (3.25) is exactly, except for a constant, equal to E[W].

Therefore, since we showed in section 2.5 that E[Wd (m)] = E[W], we have

W0 = 2E[W] = 2E[Wd(0)]

= b(t) 92
TO [a(t)]2 (l-gl1 )2 (3.28)



Similarly, in the previous section 3.3 we already showed that the

characteristic value TO of (3.25) coincided with the "exact" relaxa-

tion time result (3.19) for the special case of the M/M/l queue. On

the basis of the relation of W0 to(2.1),T0 to (3.19), we have cause

to believe that there exists an analogous form for the relaxation time

of the M/G/1 system as exists for E[W] in the form of (2.1). Again, the

probable validity of this inference will be shown by numerical comparisons

in Chapter 4.

Having now made W0 and TO precise by setting x' = t' = 1, we obtain

the result that the equilibrium waiting time

x = W0 is proportional to (l-gl ~)-l  = (-p)

whereas the relaxation time

t = TO is proportional to (1-g1) - 2 = (l-p) - 2

The relaxation time grows much faster than the equilibrium queue length.

It is evident that in any situation with p close to I the transient

component is significant for a very long time.



3.5 Model 7: Approximating Method for the Time Dependent Queues,
M/M/k, MID/k

The following method for solving the time dependent queuing

problem depends strongly on the knowledge of transient behaviour.

It was suggested by Gupta [4] as an approximate scheme for cases where

the values of the individual state probabilities were not needed. The

method proceeds by defining a differential equation in the time dependent

expected queue length q(t). It then draws upon intuition and steady state

queuing results to fit the solution of the differential. equation to the

transient behaviour determined analytically. Exactly as in Koopman's

method, two equations are derived for M/M/k and M/D/k respectively.

In addition to the usual "quantity" p(t) we also need to define

the following quantity s(t), which plays a key role in the development

of this approach:

s(t)
s(t) = y(t)

where S(t) is the time dependent actual service rate of the system. In

defining these terms we note that the parameter of the service process,

P(t) represents the average service rate when the server is busy. Even

when the expected queue length is large though there remains a finite

probability that the server remains idle . Therefore, in an expected

value sense the time dependent throughput of the server, s(t), will

always be less than the maximum rate -p(t). From this we infer the first



property of s(t) - that it is always less than 1. Dropping the t

dependence for notational simplicity we have the differential equation

in the state variable of the model:

dq = - s or equivalently (3.29)

dt

The only other obvious property of s is observed from the differential

equation under steady state conditions:

dq (P - s) = 0 => p=s
dt

From steady state results presented earlier it is easy to show that

for infinite queue systems,independent of the queuing process, the steady

state probability of having the server idle is p = 1 - p. Therefore,

s is at least a function of p. Now analytic expressions show that in

the steady state the queue length is a function of p and the number

of servers, k:

qsteady state = Q(pk)

Gupta assumes that the steady state queue length is independent of

the number of servers,

Q(p,k) = Q(p) k = 1,2,...



Assume then that the time dependent s(t) is some function of the

instantaneous values of p and q. (This is an approximation much

the same as the diffusion approximation makes - s is in general dependent

on the entire history of the model. However, when the queue lengths are

large compared to 1, then the success of the diffusion equation verifies

the effectiveness of the assumption that the movement of the differential

equation is governed by "local" behaviour ). Gupta suggests the follow-

ing as a possible form of s:

s = s(p,q) = pC(q) + (1 - p)p (3.30)

where p and ý(q)are two functions yet to be determined.

To suit the boundary condition s(p,Q(p)) = p, define C(q) =.p

when dq = 0. C(q) then just turns out to be the inverse function
dt

of Q(p) = q. The steady state solution Q(p) > 0 exists and is monotone

increasing for all 0 5 p < 1 with lim Q(p) = c. By the property
p>1

of inverse functions then E(q) exists and is monotone increasing for

all q > 0 with lim E(q) = 1. Therefore by construction, for p < 1 inq>:o

the steady state, s(p,q) = s(p,Q(p)) = p as required. On the other hand,

a very large queue need not be associated with the steady state result

for some p < 1. In rush hour situations it is common for p to exceed 1

temporarily . A large queue could then be temporary for some p > 1.



s is now given by

s(p,q) = pE(q) + (1 - p)p 1 p 1

This may violate the first condition that s s 1. To correct for this

we arbitrarily modify the form (3.30) of s to:

PI 1

s = pg(q) + (1 - p)pp =  (3.31)

For stationary p z 1, lim s(t) = 1 which satisfies the intuitive notion
t->O

that if p has been large for a long time then the probability of the

server being idle converges to 0.

So far it is not clear what the form of p should be. We expect

however, that s exhibits a transient behaviour similar to that of p (t),

the time dependent probability of having the server idle. Therefore, p

must exhibit the behaviour of the time constant for the system. Sub-

stitution of (3.31) into the differential equation (3.29) yields:

S = Up p -p (q)ý (3.32)

Let q = Q(p), then E(q ) = p and the steady state condition is of



course

d =  p p -p  = 0

Otherwise, assume that the queue length q is sufficiently close to

qo' q = q + q' such that the following approximation holds:
0' 0

C(qo + q') = o(qo) + q' q
q=q

0

Substituting this in the differential equation (3.32) now for q',

=pdQ
)I=

The solution for this equation is

upt

dQ
q' = e- dp

Thus, transient effects of the expected queue length q' decay exponential-

ly to 0 with a relaxation time TG:

dtq p Pdt

(dQ)dýý=



TG = (d) p where p is still an unknown

quantity. Further consideration of the model now depends on fore-

hand knowledge of the two unknown quantities in the expression for p:

1) ! the behaviour of the steady state queue length with the

utilization ratio p.

2) TG, the analytically or empirically determined values of the

relaxation time.

The first set of conditions is easily met. We already have from

Chapter 2 the Pollacek Khintchine formula (2.1) which yields Q(p,l)

for arbitrary service processes and in particular the result that

Q(p,)M/D Q(pl)MM [E[W] =

Although no similar result is available for comparisons of M/D/k and M/M/k

systems, the steady state expressions E[W] are available and were given

in Chapter 2.

The description of the transient behaviour is not as clearly

determined. We have already seen that the relaxation time Tr = T r(p,p)

and from (3.12) and (3.17) that this may be dependent on initial con-

ditions. The conclusion of the former sections was that TrM/M/1 is

approximated by

T 2p
rM/M/l P(1-p) 2



and we can infer from (3.28) that the corresponding value for the

deterministic service case is:

T - T =
rM/D/I 2 rM/M/1 (1 - p) 2

Now at least for the one runway case, the Gupta model calibration

may be completed. Noticing that QM/D/ (-p) = QM/M/l and

T M/D/T we find that substitution into the expression for

p yields the same form independent of the service process

dQ
d'

p P = 1 - .5ý(q) (3.33)

Yt-P

Gupta assumed that all the relationships holding for single server

queues held for multiple server systems. When programmed and compared

to exact solutions from Model 5, the Gupta model was found to corroborate

these assumptions except under certain conditions. It was found that

whenever a large expected queue length existed, and conditions were

such that q was decreasing, then the queue length in Gupta's model al-

ways decreased at a slower rate than the exact solution. Gupta supplied

an arbitrary fix for this discrepancy by modifying (3.33) as follows:

whenever E(q) > 0.85 (i.e. queue length is large) and q is decreasing,

use p = 0.9, otherwise use p as in (3.33). This was found to work well.
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Although the fix is somewhat arbitrary it does have the effect of

reducing the relaxation time TG and thus causing the queue length

to decrease at a faster rate.



3.6 Model 8: A New Model for the Time Dependent Queue, M/M/l

3.6.1 Introduction

The contention of this section is that the behavioural aspects of

the relaxation time presented up to now could be helpful in developing

approximating schemes for the time dependent M/G/k system. Model 7 is

one such example. The advantage of that model is its significant re-

duction of computation time over the exact method of Model 5. The dis-

advantages, however, are due to the fact that the model does not

provide the individual (time dependent) state probabilities which are

needed to calculate any of the following:

(a) prob (queue length < x0 at t0)

(b) expected number of operations cancelled due to lack of

waiting space (queue saturation)

(c) the (time dependent) variance of the queue length

Therefore, the technique we will suggest here aims to determine

an alternative method to Model 5 for determining the time dependent

state probabilities by successively evaluating the transient state

probabilities over the period of interest.

3.6.2 Methodology

In evaluating the transient state probabilities we can only use

results for the queues for which the Pi(t) are available in closed form,



namely M/M/l. The method to be proposed here evaluates an equivalent

form of the Pi(t) (3.17) for the M/M/l/o queue, given by Clarke[15].The form

given by Clarke, as we were able to show with Morse (3.18), contains

Bessel functions, but the two are not the same, and Clarke's form is

considerably easier to compute.

Let Ik(v) be the modified Bessel function as given in the alternative

form (3.18) in terms of Bessel functions for (3.17). The probabilities

pi(t) have the same interpretation as in (3.12) and (3.17), and are given

by:

P (t) = e- (x + P)t [( /X)j- I (v) + ( /X)j+i+l j+i+ (v) +
j-1 j+i+l

00

Pi z ( p/l) Ik(v)]
k=j+l+2

where v = 2/X-pt i,j = 0,1,2... (3.34)

and Pi = M/M/1/co steady state probability = (1 - p)p .

As given earlier, arbitrary initial queue length distributions can

be met by computing
00

P (t) = E P (t) n = 0,1,2...
n i=O 1 n

We note, however, the presence of the steady state probabilities P.1

in (3.34). This is the greatest obstacle to the implementation of (3.34)

as the Pi do not exist for M/M/1/c when p > 1. Since a large part of the



discussion so far has included situations with temporary oversaturation,

it is crucial that we show how to overcome this.

Fortunately, we have the developments of the two cases M/M/l/m and

M/M/l/o given in Model 6. There we were able to show that for large

m the form (3.12) converges to (3.17), separately in both thesteady

state and transient components. We believe therefore that the substi-

tution of PT (state probabilities for the finite queue M/M/l/m, in the

steady state) for Pi into (3.34), provided we make m large enough, yields

a justifiable approximation of M/M/l/o in the transient state. The

actual concept of making m large enough is not difficult to justify

either, because there exists a k such that for all i > k the Pi(t)

remain less than a specified small probability and contribute only a

negligible amount to E[W(t)]. We call Clarke's form with large finite m,

and pm substituted for P., the modified Clarke's form.

3.6.3 Computation Requirements

The computational aspects of the modified Clarke's form are much

more attractive than either of the series form for M/M/l/m (3.12) or

the integral form for M/M/1/o (3.17) because of the expression in the

Ik(V), and the need for considerably fewer multiplications. There

exists for the modified Bessel function Ik(v) a simple recursion formula

Ik_(v) - k+l(v ) = 2 Ik(v)

(3.35)



and the relation I-k(v) = Ik(v)

In order to use the recursion relation (3.35), it would seem

that we need to compute at least two of the infinite sums Ik(v)
to get the recursion started. We show, however, that in fact there

are no infinite sums to be computed.

The reason for this is that there are severe roundoff problems

incurred by using (3.35) in the increasing k direction. Instead

that for k > v, the Ik(v):

00 (v/ 2)k+2iIk(v) = E 0 2k+iT!
i=0 k+i

is a decreasing function, lim Ik(v) = 0. Therefore, the following
k->oo

method for computing Ik(v), due to Morse [9], should be employed.

Let q be the number of significant digits required in the final

result, and m be the largest value of k for which Ik(v) is needed. Set

n = m + q, In(v) = 0, I 1n-(v) = 10-q (3.36)

where Ik(v) is defined as Ik(v) _ AIk(v), where A is some constant.

Using the recursion formula (3.35), and the initial conditions (3.36),

compute Ik(v), k = n-2, n-3,...0. To obtain from the Ik(v) the value

of Ik(v) consider the normalizing equation:

ev = 10(v) + 211(v) + 212 (v) + ...



to obtain

e I(v) + 2Il(v) + 21P(v) + ...

Consequently,

I (v)ev
Ik(V) = 0 (v) + 2I1(v) + 21(v) + ... (3.37)

1 + 2

In computing the values (3.37) it is possible to simultaneously compute

(/7 )k kI k(v)

After that, essentially all that remains to obtain a numerical

value of (3.34) is a sequence of additions which clearly are more

easily performed than the multiplications needed in (3.12) and (3.17).

3.6.4 The Time Dependent Model

We have shown that it is computationally feasible to evaluate

the transient state probabilities (3.34). The application of this

process yields for constant p,p the values of the Pi(t) at an arbi-

trary period of time T after to , under arbitrary initial conditions:

m
pi(t 0) i = 0,l,...,m satisfying E pi(t 0) = 1 (3.38)

i=O



To use this method in a time dependent situation we propose

the discretization of the time period of interest into intervals

of lengths t. (not necessarily all equal). Once the time inter-

vals are selected, a representative value of p and p for each

interval should be chosen and the transient state probabilities

for the end of the interval evaluated by (3.34). The outcomes

(3.39)

Pi(t0 + ti) i = O,l,...m (3.39)

for each interval form the initial conditions (3.38) for the next.

Note that if we make the intervals small enough, e.g. 1 minute,

we are in effect obtaining the same figures as those from a direct

solution of the C-K equations. It is clear that it is not

desirable to do this, though, for the value of the model lies not

in high accuracy estimates but rather in its ability to sketch out

quickly the nature of the queuing statistics. This is done by assuming

k is constant for longer time intervals and estimating the delay from

the observed transient behaviour (based on constant X). In com-

parison to Model 5, Model 8 overestimates delay in the increasing

X situations and underestimates it for decreasing X. We expect,

therefore, the total delay for a typical demand profile of an airport

to be approximately the same whether analyzed by Model 5 or Model 8.

By employing Model 8 it is possible to save much computation time in the

evaluation of queuing statistics for periods of the day not likely to
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need much scrutiny. However, if more accurate figures are needed,

Model 8 provides the queue length distribution at the end of each

time interval. This is the essential piece of information

needed if it is desired to pass to more accurate study of certain

periods by using, say, Model 5.



Chapter 4

NUMERICAL EVALUATION OF THE MODELS AND THE TIME CONSTANT

4.1.1 Introduction

In this chapter specific numerical results illustrating the behaviour

of transient terms and its implications on modelling are presented. There

will be two areas of concentration:

(1) A case study for which all of the model.s discussed in the thesis

are applicable is presented. Some attention is first given to the construc-

tion of the input demand profile from the data. Then the relative merits of

the different methods are evaluated. The new Model 8 is tested on the case

and compared to the results obtained with Model 5. Results of a first order

method, Model 3 provide an opportunity to see how the effects of transient

behaviour can be used in constructing simpler models.

(2) Analysis of the transient behaviour in stationary queues. We

start by considering the single server queue. The theoretical results avail-

able for Tr from Model 6 for M/M/l and from Model 4 for M/G/l are reviewed

and compared to the exact results obtained by numerical evaluation of the

C-K equations of these systems with Model 5. To justify use of Tr derived

from the approximating Model 4 we provide numerous examples comparing Model 4

to the exact results of Model 5. Having the theoretical value of Tr and using

Model 5, we then study the behaviour of the transient under varying initial

conditions.

We then study the multiserver queue and observe the deviations of Tr for

the multiserver queue from that of the single server queue. This will be based

entirely on numerical results from Model 5.



4.2 A Case Study and Comparisons of Results

4.2.1 Introduction

To illustrate the applicability of the models we elaborate on the following

case study from Scalea [13]. Schiphol is a large international airport in

Amsterdam, Holland servicing mainly the scheduled airlines. Currently the

airport operates two independent parallel runways, one exclusively for

departures and the other for arrivals. The data used in the case study comes

from the Schiphol airport authority who maintain precise records on each

operation.1

There are two central issues to be resolved before passing to analyses

with the models: (a) whether the assumptions of the models are satisfied,

and (b) what method should be used to construct a demand profile from the

raw data.

The major assumptions for the stochastic models are that the arrival process

is Poisson and that the servers are independent and identical. We indicated

in section 2.1 that the "arrivals" into the queue of landing aircraft satisfy

the Poisson assumptipn to a much greater degree than the pattern of "arrivals"

into the takeoff queue. Therefore, we concentrate in the case study on the

single independent runway for landings. Also, it is expected that the air-

craft service time for arrivals is more consistent with the negative

1. In the United States the F.A.A. currently maintains on-line, all
schedule data for airlines listed in the OAG (Official Airline Guide)
for domestic airports. Additionally, the F.A.A. provides general
aviation (GA) factors where applicable. The GA factor is a percentage
which relates estimated GA activity to air carrier activity.



exponential service process than the departures' would be. Therefore, as.a

predominantly M/M/l case, the Schiphol arrivals runway is also an ideal

situation for testing the validity of Model 8.

Issue (b) is closely related to (a) because of the assumption of Poisson

arrivals. The probabilistic models need the average arrival rate X(t) of

what is assumed to be the governing inhomogeneous Poisson process. The raw

airport data give the estimated arrival time of the aircraft. For all the

reasons given in section 2.1 we might expect that the actual arrival time

will have a substantial variance, Steuart [14]. The deterministic models

ignore this, of course, and need nothing but a cumulative arrival count over

the period of interest. This is trivial to obtain from the data of Table 4.1

(where the first column lists the arrivals at Schiphol).

STA Flight Route RMP/GTE REG Remarks

0120 KL017 STR HAJ VRI/ DNOIG FL K

0235 SR798 BSL VR2/ D98 FL Kll

0240 KL055 GOT ARN VR2/ PHDNN FL K

0250 SK051 CPH VR2/ L188 FL Kll

0315 DG807 LBV VR2/ D855 FC A

0340 SM100 LGW VR1/ DC3 FL Kll

Sample of Data Maintained by Schiphol Airport

Table 4.1



To compute an average X(t) though, the simplest method involves splitting

the day into a mesh of equal segments (such as hourly intervals), counting up

the number of aircraft arriving in each interval, and letting this be the mean

arrival rate, constant throughout the corresponding time interval. We call

this Method a. Method a may be undesirable if we believe that the observed

demand peaks are more frequently gradual changes rather than step changes.

Therefore, the alternative is to compute the average hourly arrival rate, fix

X(t) as this value at some point in the interval, and interpolate between the

A(t) in adjacent intervals for all other values of t. We call this Method B.

It is still possible, though, that the selection of the mesh size is inap-

propriate for either method, i.e. hourly intervals might simply be too long to

indicate all the traffic peaks actually observed. Certain scheduling practices

or desirable arrival times may cause activity peaks that are hidden because of

the averaging over a large mesh! On the other hand, shrinking the time inter-

val affects the assumptions of the model. Precisely for the reason that the

demand fluctuates wildly, arrivals in small time intervals may no longer be

statistically independent.

For the purposes of the case study we will assume that meshes of 15, 30,

and 60 minutes do satisfy the statistical independence assumption. Decreasing

the mesh size from 60 to 15 minutes will give us a handle on the delays caused

by convenience scheduling practices. In the event that statistical indepen-

dence does not hold, we still have an upper bound on the delay. The substan-

tial differences that can exist between the demand profiles when 10 and

I. This is particularly true of departure situations. "On the hour" departure
times, for instance are conveniently remembered by passengers. The
"quarter hours" also exhibit these demand peaks.



60 minute meshes are used are shown in Figure 4.1 for the case of the

Atlanta airport (one of the busiest in the world).

We wish then to perform comparisons of delays for the single runway

with the following models:

(4.2.2) Model 3: Equilibrium Analysis for M/M/l

(4.2.3) Model 8: Numerical Evaluation of the Closed Form Transient

Solution, M/M/l

(4.2.4) Model 5: Numerical Evaluation of the Time Dependent C-K

Equations, M/M/l

4.2.2 Model 3: Equilibrium Analysis for M/M/l

The 60 minute mesh demand profile for Schiphol is given in Figure 4.2.

It is clear that since equilibrium analysis is based on the assumption that

demand is constant for substantial periods of time, no mesh size less than

one hour could be adequate (except in cases where p is always much less

than one). Even so, from the strong time dependency of the data, it is

unlikely that equilibrium analysis is at all amenable to delay calculation

in these situations. However, in view of our progress in understanding

the transient, we now possess a means to interpret correctly steady state

results, should that be our only recourse in delay calculation.

E[W] for each hour can easily be evaluated for p< 1 with the Pollaczek-

Khintchine formula (2.1). This yields for the M/M/l queue of the case study:

1. Actually, Scalea elected to give results for twice the observed
demand. The real level of demand would have been too low to
exhibit significant queueing delay.
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airport on March 11, 1976

Figure 4.2



p
E[W] = p < 1

P( 1 - p)

Alternatively, if it is felt that service time deviates significantly

from the negative exponential pdf the following relations for steady state

waiting times can be used:

E[W] 1 E[W]M/M

M/D/1 2 M/M/1

E[W] c + 1 E[W]M/M/1
M/E /1 2u W]

When p > 1 no equilibrium results can exist. For the purpose of illustra-

tion we construct a procedure that parallels the diffusion equation results

for p > 1 and t very large. Let the delay in an interval of oversaturation

be given by the steady state delay for the immediately preceding interval

(if this is "close" to saturation) plus the term (p-l)At, where At is the

mesh size. If the hour immediately preceeding has very low delay use the

diffusion result directly.

p
+ (p-1)At p > 1

v(p-1)
E[W] =

4pAt p_ 1

Using this procedure we obtained the results of Table 4.2 and the

expected daily delay of 4757 minutes. We would expect this, however, to

be way too high. We know that delays increase as (l-p) - 1 but that the

relaxation time increases even faster as (l-p) -2 . During the peak hours



one hour mesh
opns/hr E[W] mins/op

0.000

0.143
0.500

0.500

0.143
0.143
1.333
4.000

1.000

1.333
28.00

33.00*

28.00

1.750
1.500

9.495*

17.36*

1.750
5.500

28.00
3.00
1.333
2.250
0.500

two hour mesh
opns/hr E[W] mins/op

0.069

0.069
0.500

0.500

0.143
0.143
2.250
2.250
1.158

1.158

9.653*

15.95*
4.667
4.667
3.000
3.000

8.000
8.000
10.00

10.00

2.000
2.000
1.158

1.158

* =mean value

The arrival rates and corresponding delays obtained by

equilibrium analysis for the demand profile Figure 4.2

Table 4.2

hour
begi'nning



then the transient component remains large, and the expected delay far

from equilibrium even after 60 minutes. Therefore, the error incurred by

equilbrium analysis is rapidly increasing as p - 1I. As often is the case

in these demand profiles the following hour has a drastically different

number of operations and the transient again has a large component.

We propose a correction of this by choosing a larger mesh size which

will have the effect of simultaneously reducing the number of hours with

both very great and very low arrival rates. Choosing a two hour mesh

and computing E[W] based on the arrival rate averaged over two hours is

then a method of crudely estimating the average value of the transient.

This correction of the mesh size also follows an accepted practice in the

calculation of airport delays from FAA handbooks. The practice has been to

compute the sum of the top two consecutive demand hours in the profile, and

then to do a table lookup based on 4 calculated from the averaged arrival

rate.

When the calculations with the increased mesh size were performed the

delay turned out to be 2282 minutes or approximately one half of the original

estimate. Results of the other models will show in fact that this is the more

reasonable estimate. However, it is clear that equilibrium analysis coupled

with a knowledge of the transient behaviour can be used to derive meaningful

delay estimates using even the hourly mesh. To illustrate this we solved the

M/M/l C-K equations, using Model 5, an hourly mesh and Method a (X constant

for each hour) for the same Schiphol demand profile. Since we specify that

p does not change, p is constant for each hour,then by definition each hourly

interval represents a stationary queueing situation with some arbitrary ini-
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tial conditions. These initial conditions are given by the distribution of

the queue length at the end of the previous one hour interval, and the initial

E[W(t)] computed with (2.10). The transient component of E[W(t)] is then the

difference between the initial waiting time and the equilibrium value of E[W]

for the particular value of p.

The delay calculated with Model 5 and Method a is 3149 minutes and much less

than Model 3 delay with a one hour mesh, yet more than with the two hour mesh.

The comparison of Model 3 delay with both hour and two hour meshes to the

"exact" Model 5 delay is illustrated in Figure 4.3. When we observe from the

diagram the exponential decay (with rate given by the time constant) of the

transient component, and thus compare E[W(t)] from Model 5 with the constant

value of delay E[W] given by Model 3, it is clear why equilibrium analysis is

not suited to strongly time dependent demand profiles. Furthermore, for those

periods when p>l, when no Model 3 results exist, it is notable that the diffu-

sion approximation results which were used duplicated surprisingly closely the

exact behaviour. In fact, this example shows the inconsistencies that occur

when equilibrium analysis is used on time dependent profiles with periods of

oversaturated conditions: when p is close to 1 (.9<p<l), we predict with equi-

librium analysis a much higher value of delay than when p>l and the diffusion

approximation is used. Since, this is clearly wrong, it does indicate how

valuable more information about the transient behaviour would be.

4.2.3 Model 8: Numerical Evaluation of the Closed Form Transient Solution

This section will describe the straightforward application of Model 8 to

delay analysis of time dependent M/M/l queues. We conclude that in exchange

for a probably insignificant variation of delay from Model 5 results, a sub-

stantial reduction in computation time is achieved.



We first point out the reasons for the differences in delay values

obtained. These are a function of the interpretation of the demand profile

by two methods that we earlier labelled Method a and Method f. We recall

Figure 4.2 in which we give an hourly mesh demand profile typical of air-

port runway situations. For this demand we give in Figure 4. 3., among other

curves, the behaviour of E[W(t)] using Method a. Now the property we proved

and indeed observe in Figure 4.3 is that as p > 1 the relaxation time becomes

large. Therefore in the presence of peak periods, with p either increasing to,

or decreasing from a very large value (p . 0.9) the choice of Method a or

Method B will not affect E[W(t)] greatly. For instance, in the increasing

p direction Method a will yield a slightly higher delay than Method B because

the constant large value of p is being applied for the entire 60 minute period.

On the other hand, even using Method B,p is changing sufficiently rapidly dur-

ing the 60 minute period that E[W(t)] always has a substantial transient com-

ponent. The opposite will hold true in the decreasing p sense. Some of the

error between the two methods therefore, will cancel.

The situation is somewhat different for small values of p (p s 0.7). In

most cases (where initial delay is not very large) relaxation time for small

values of p is very short. Method a will in this case predict virtually a

constant delay across the 60 minute interval (i.e. the steady state value).

For Method 8 we can assume, because of the short relaxation time (when p is

small) that E[W(t)] is mostly given by the steady state E[W] for the instan-

taneous value of p. The E[W(t)] we observe over the 60 minute interval is

then essentially the straight line connecting the values of E[W] correspond-

ing to average values of p for the adjacent hours before interpolation. How-

ever, even though the delay behaviours for Method a and Method B differ



substantially in form, when p is small, the delays during these periods are

frequently insignificant when compared to the total delay.

Hence we obtained for the profile given in Figure 4.2 the delay

Method 6: 3149 minutes

Method$ : 2862 minutes

The two methods therefore yield delay values only 10% apart.

In view of the other assumptions made in modelling the time-dependent

queue, a 10% error is probably not significant. This is strong motivation

to devise a technique that could estimate the delay at some point(s) in the

mesh intervals without having to go through the whole lot of intermediate

computation required by numerical solution of the C-K equations. Evaluation

of the closed form transient state probabilities, Model 8 is precisely such

a technique (i.e. given any initial conditions at t = t , we can evaluate

the (transient) state probabilities, in one step, an arbitrary period of time

hence).

We reiterate at this point that Model 8 can reproduce exactly the Model

5 results for the M/M/l queue. That would involve setting the mesh size at

one minute, computing the expected delay for that minute and using the

resultant queue length distribution as the initial conditions for the next one

minute step. This, however, is computationally impractical. Empirically

it turns out thatit is faster to solve the differential equations than to use

Model 8. On the other hand the results are encouraging, since a mesh.

size of 1 minute proves to be far less than required. Apparently as few as 2

evaluations per hour (30 minute mesh) can be used to approximate within 10%



100

the value of the delay obtained via Method B. Additionally, in so doing

the computer time needed to evaluate the total daily delay has been reduced

seven fold.

estimated delay computer time

60 minutes

30 minutes

continuous solution of
C-K equations

3590 minutes

3161 minutes

2862 minutes

.021 minutes

.025

.188

mesh size
__ __ __
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1 mesh size ÷ 15 30 60
ops/hr total daily delay (minutes)

25 M/M/I - 8580 7008

M/D/1 7560 5256

ratio - 1.13 1.33

30 M/M/1 4986 4092 2862

M/D/l 4176 3288 1908

ratio 1.19 1.24 1.50

35 M/M/1 - 2358 1458

M/D/I - 1812 846

ratio - 1.30 1.72

40 M/M/l 2148 1482 852

M/D/I 1782 1056 456

ratio 1.21 1.40 1.87

Expected total daily delays on Schiphol arrivals

runway for both negative exponentially distributed

and deterministic service times. The delays and

their ratios are given as p varies: 25,30,35,40

operations/hour, and as the mesh size of the demand

profile varies: 15,30 and 60 minutes.

Table 4.3 -
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4.2.4 Model 5: Numerical Solution of the C-K Equations, M/M/1, M/D/l

This section discusses the numerical solution of the C-K equations for

the M/M/l and M/D/l systems. Two issues (which will be shown to be closely

inter-related) will become important here: (1) the selection of the mesh

size, and (2) the error incurred by not knowing the exact form of the service

time pdf. We will use the results for expected daily delay for the demand

profiles, illustrated in Figures 4.2, 4.4 and 4.5, obtained by Scalea [13]

and reproduced in Tables 4.3.

To each of the Tables 4.3 we have added in the bottom row the ratio of

the M/M/l expected delay to that of the M/D/l. What we observe is that the

ratios E W(t)]MM/1 increase with increasing mesh size and/or service rate.

This behavior is summarized in Table 4.4:

mesh
i size 15 30 60

40 1.21 1.40 1.87

35 - 1.30 1.72

30 1.19 1.24 1.50

25 - 1.16 1.33

Ratios of the daily delays observed for M/M/l and M/D/l queue

TABLE 4.4

Large ratios are troublesome because they leave more room for error in

the interpolation process. If service time can be no more regular than a

constant, nor more random than a negative exponentially distributed random

variable, then we expect the true value of the M/G/l queue delay to be

between these bounds. Therefore, it is clear that the smaller the ratio,
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the smaller the maximum possible error in our daily delay estimate, regardless

of the true service time pdf. Fortunately, we will be able to conclude that

we associate with large ratios, demand profiles that are not of particular

interest to this study, i.e. (a) time dependent demand profiles with p << 1

at all times such that equilibrium analysis yields very much the same results

as direct solution of the equations or (b) virtually constant demand profiles

to which application of equilibrium analysis is fully justified. The general

conclusion will be that the excellent performance of Model 5 is explained

largely by the behavior of the time constants of the M/M/k and M/D/k systems.

In order to present the simple analysis that follows, we will assume

Method a pertains. All of Scalea's results, given in Tables 4.3, were actu-

ally obtained through consideration of demand profiles constructed with Method

ý. As our analysis is aimed more at developing an understanding of the behav-

ior rather than describing it exactly, this will not be a significant problem.

The basis for the analysis is the hypothesized form of the transient

state probability from Model 6 (ignoring the dependence on initial conditions):

Pi(t) = Pi +  Bis eY

From this, we can compute the expected value of the queue length, and hence

the expected waiting time:

E[W(t)] = E[W] - ge tTr (4.1)

where the time dependent part has been greatly simplified to have a single

constant g and a single time constant Tr. Tr of course is the relaxation

time of the system as determined from the autocorrelation function of the
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expected queue length. The only information available about g is that when

E[W(O)] = 0, then g - E[W]. With the extreme simplification we have intro-

duced in (4.1), we will be able to show, in very general terms, that the key

concept in comparing the M/M/l and M/D/I time dependent delay estimates for

a given profile is the time constant, or its inverse, the relaxation time.

It is clear that M/M/l and M/D/I system delays, when the systems are in

transient state, would always be related by a factor of 2 if their relaxation

rate was the same. This is easy to show. Let the equilibrium values of

delay for pi be given by Ei[W]M/D/, and Ei[W]M/M/1. Suppose E[W(O)] = 0,

and furthermore suppose the (common) rate of relaxation of E[W(t)], after

the step demand of po begins, is . After time to , we observe E[W(to)]M/D/1'

(call it A ), and E[W(t )]M/M/1, (call it Bo). Substituting values in (4.1):

-to/T IT1 o/T

Ao = E[W]/D/1 - Eo[W] e E [W] M/M 1 E [W]IM/1 e0 o M/D/1 o M/D/l 2 o M/M/l 2 o M/M/1

= PO20
The reader can easily verify that the next time interval tl, which starts

with initial waiting times of A in the M/D/l system and Bo in the M/M/l

system, finishes with the waiting times still related by a factor of 2,

independent of to and t1. The factor of 2, of course, is a consequence of

the Pollaczek Khintchine result (2.1).

The relaxation times, however, are not the same for M/M/l and M/D/l

systems. In fact, we showed with (3.28) that T = T . With
rM/D/1 r rM/M/1

this information, let us now consider a time dependent demand profile con-

sisting of two time intervals of length to and t1 during which the values of

pO and pI, respectively. Let To denote the value Tr M/M/ for po. Then:
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-2t /T
Ao = E[W]MD/l (1 e 0

-to/T
B = 2E[W] (1-M/D/ e o 0)
o MI/D/1

-to/T
Bo _ 2(1 - e )

Ao  -2t /To
1 -e

Evaluating (4.2), for the purposes of illustration, at to = TO:

o = 2(1 - e- I ) 1 2.0.632 = 1.462
A -2 .865o 1 -e

This means that the M/M/l system delay at a

the relaxation time Tr of the M/M/l system)

M/D/1 system delay. Next, assume that at t

relaxation time T1 = TrM/M/ ). At the end

the system delays:

A1 = El[W]M/D/1 - (El WIM/D/1

(4.3)

time to (given in this case by

is much less than twice the

0 =Tq, changes to p1 (with new

of the next interval, we observe

-2tl/T
1-A o) e

B1 = E[W]M/M/1 - (EW]M/M/1 - Bo ) e

and their ratio:

B1
A1

B -tl/T 1
2- (2 - E [W]M/D/ ) e

1 M/D/1
A -2t /T1

o )eM/D/

(4.3)

For the purposes of illustration, if t T (which we happen to know

to be the true value of the relaxation time under these initial conditions),

then by definition we expect Bo = .63 Eo[W]M/M/1, and if po = 0.8, p1 = 0.9,

(4.2)
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I1 = I/minute, E [W]M/M/2 = 4.0 minutes and E1[W]M/D/1 = 4.5 minutes, then

evaluation of (4.3) yields

2.528 1tl/T1 1/T1
B 2 - (2 - 5 e 2 - 1.438e1 - •= (4.4)
A .4.5 -2t /T -2t /T

1 - (1 - 4.500 ) e 1 - 0. 6 1 6 e

Evaluating (4.4) with t1 = T = T/minuterM/M/l p = .9, Ii = 1/minute

B1 _ 1.471 = 1.60Al  0.917

In spite of the broad simplifications introduced, this example presents

fairly representative numbers. To prove this, we provide an example of a

three interval demand profile with p = 0.8, 0.9 and 0.95 in intervals of 20,

40 and 40 minutes, respectively, and p constant at I/minute. Listed in

Table 4.5 are the ratios of the values of E[W(t)] illustrated in Figure 4.6

for the M/M/I and M/D/I systems as t goes from 0 to 100. We observe that

the ratios increase rapidly for p = 0.8, less rapidly for p = 0.9. For

p = 0.95, the relaxation time is so long that after 40 minutes, the ratios

were still ,in fact,decreasing. For comparison, we show in Table 4.6 the

values of the ratios for p = 0.9 p = 1/minute when E[W(O)] = 0. It is clear

by comparing the first 20 minute intervals of both examples that there are

substantial differences in the ratios observed for p = 0.8 and p = 0.9.

To show that the three interval example coincides with the somewhat

more analytical treatment given earlier, we need some results from the sec-

tion on the single server queue, 4.3. We show there two properties:

(1) that when E[W(O)] = 0, the observed value of the relaxation time is

1/2 of its theoretical value.



......... ........

..... .... . .

I t -

---··---- ··-1

I :

1
...... _... ... ...:._.

(Sal MTm) [(4)M]H amyE Suturoe p 9:-adxa

1 9

e,%

00 - -

:i· ~-r--
I I

-- ·------ --- ·-i--.-.. ~- .,... ·--- e · --- .- ;---i

00 Co
Cj

s-

00

0000C) C)
Grr-

0-I--'

ek )L-- jc
4-WU
0

0 Q.W

E E

a)I."

(1) s- *4i r-
4-) U)
·rCIJ4p 0Jr-

04) S-4l J - · '.4- 0
LC C tm

LL0.H ')OC) 5

4\.i*. LL

0 -0 -
r_

CYU

u-a4J

0 CD
4J 0EcC-00

0 Uei I-C4- 0

0 1
r-4

l. -
0 s-U) .

.a -P
CL =
0 r

C E

II

~-.----- --- ·T-·--- ·i- : · ·- · · : ·. . . .....i ... ...__;... . i

. ... ......... :._. ... 1. ........ 1 ...... ~-.L.



OC
Cti

(J

O o
• •C) O

O

0

C)

O

coCLJ00N-

r--O) O

COce)

CCj
Ck

Rd0

Q- E
*r- r
c 1

= OT
c,

4 -a) CO
LS-

4- II

Ca

O *r-
- E

E II

S-LU

-o\ C

4-0Sa)

-)a C
4-r
o or

4

Or-

Ce *r-

( II

" I'

04- ).

4--O

c

4-)o r

4-) -
co

' -0

110

Wlt
o (k

0 '.

LO

C ) Rr-

o LO
C\*

00

CCO

C\J

L)
r-- U))O L

E E
*r-
4-) ~ I



111
(2) the relaxation time Tr , even when the above property is considered,

cannot be substituted into (4.1) to obtain a reliable value of

E[W(t)] outside the region I Tr < t < 2T

Property (1) tells us therefore that the value 1.426 derived in (4.3) for the

relation of the E[W(t)] for M/M/l and M/D/l systems should hold at values of

t given by t = 2 Tr Therefore, we compare 1.426 to the observed valueM/M/1

of 1.661 for p = 0.8 at t = 20 and 1.656 for p = 0.9 at t = 90. Whereas it

might not seem at the outset that (4.3) is very accurate, we recognize the

bounds that it provides us. For this, we recall from Chapter 3 that whereas

E[W] increases as (1 - p)-l, Tr increases as (1 - p)-2. Equation (4.3) tells

us that when initial waiting time is 0 or very small we can expect the M/M/l

system delay to be approximately 146% of the M/D/l delay at the value of time

t that grows as (1 - p)2. Since in our demand profile we are concerned with

values of very high p of one half or one hour's duration, we are in effect

expecting even smaller ratios. Furthermore, from (3.28)

2p

r 1O - P)
which implies that as p is reduced, Tr also increases exponentially. Again

using (4.3), we see that the time t at which we expect a ratio of 1.46 grows

exponentially.

Property (2) is important because it means that, especially as p becomes

large, E[W(t)] increases much faster in its initial stages (T = t- < 0.5)
r

than specified by the time constants. The consequence of this is, unfortu-

nately, that our rough analytical model (4.1) cannot be extended to consider

the ratios of E[W(t)] at values of t < 1 T without much more informationr rM/M/l
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about the true relaxation time. However, at values of t comparable to Tr

as with (4.3), our calculated ratio of 1.6 compares well with the pattern

of the ratios from t = 20 to t = 60 in Table 4.5, as well as with the ratio

of , 1.75 observed in a separate example with similar numbers.

We conclude therefore that large values of the ratios are only possible

in time dependent situations where either the transient components are

always very small, and the exponential terms therefore negligible, as in

the case of demand profiles with nearly constant levels of demand, or in

highly time dependent situations where p < ", 0.7 at all times such that the

relaxation time is very short and the exponential term becomes negligible

very quickly. Neither of these cases is usually of much interest for the

purpose of time dependent delay evaluation. On the other hand, as congestion

increases (p increases) the importance of accurate knowledge of delay in the

system is magnified. We have shown here that the values of E[W(t)] of M/D/k

and M/M/k systems in exactly these cases move closer to each other, thus

providing tight bounds on the true value of delay.
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4.3 The Transient Behaviour of the Single Server Queue

4.3.1 Introduction

This section will illustrate numerically the important properties

of the transient behaviour of the M/G/1 queue for some special cases.

For the most part the analysis will be concerned with the relaxation

time, with many comparisons of exact numerical results with theoretical

results. Except as indicated the conditions p = 1/minute and

E[W(O)] = 0 apply to the illustrations.

The first concern will be to select from the M/G/l queues specific

cases for numerical study. The most obvious candidates, the ones for

which we were easily able to write the C-K equations, have already been

suggested in sections 2.4 and 2.7. Since we would definitely like to

study the extreme cases, the queues M/D/l and M/M/l are acceptable

choices. Inclusion of the queue M/Ec /1, as pointed out in section 2.7

is desirable because not only does it include the above extremes, as c

goes from 1 to infinity, but it also represents or approximates extremely

well many service time pdfs that lie,t in terms;of'pr6babilistic char-

acteristics (Figure 2.6),between "perfectly random" and deterministic.

We will decide on which value of c (in M/Ec/l) to study on the

basis of past models. Odoni [7] has studied the time dependent queueing

delays with models of Type 5. For estimation purposes (and based

purely on intuition) Odoni has assumed that the delay is given by the
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relation:

E[W(t)] =
2 1
- E[W(t)] + E[W(t)]M/M/1M/D/i ) ]M/M/I1 (4.5)

Examining (4.1) more closely, assuming steady state conditions, and using

(2.1):

2 E[W]M3 M/D/1 + 1 E[W]M3 M/M/1w
2
3 + l- E[W]3 M/M/1

(4.6)3 E[WrM/M/1

But we can show for a single server, using (2.1):

E[W]M/Ec/l = 1 [ 12(1 [p)c-1 j1-

(c+l) E[W] (4.7)
2c M/M/1

Evaluating (4.7) for c = 3 (M/E3/1) yields:

M/E3/1I = 2 E[W]M
3 M/M/1

implying that (4.5) and (4.7) coincide.

(4.8)

Thus, calculating (4,5) is

equivalent to finding E[W]M/E3/1 when the system is in the steady state,

It does not seem unreasonable therefore to suggest the M/E3/I queue for

study in this section in addition to M/D/l and M/M/1.

4.2.2 Comparison of Relaxation Times for M/M/1, M/E,/1 and M/D/I, with

E[W(O)] = 0

We give first for the three queues the theoretical relaxation times

1
2 M/M/1
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as hypothesized in sections 3.3 and 3.4, then pass to Model 5 for

numerical evaluations of the systems. Also this part will examine

the relationship(3.28) between the relaxation times of various M/G/l

queues as predicted by Model 4 and show that(3.28) is an excellent ap-

proximation to the relationship observed from the exact numerical solution

of Model 5.

For the theoretical Tr, we begin with (3.19) to obtain Tr for

M/M/1:

2p

TrM/M/1 (1 - p)

For example, when p = .8, 1 = 1/minute, T is 40 minutes. For the otherrM/M/1

systems we assume (3.28) holdssubstituting c = 3 and c = c to obtain

Tr
rM/E 3 /1 + 2

T 2c 3
rM/M/l c=3

rM/D/1 .c +1 1T = lim 2T c oorM/M/1

Hence Tr for M/E3/1 and M/D/l are theoretically 26.7 minutes and 20 minutes

respectively for the same values of p and p.
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time
(mins) Tr (theoretical value) Or (observed value)

.7 .8 .9 .7 .8 .9queue

M/M/l 15.6 40.0 180 8.0 17.5 67.0

M/E3/1 10.4 26.7 120 5.1 11.3 44.0

M/D/l 7.8 20.0 90.0 3.3 7.5 32.0

ratic Theoretical Observed

ratio ratio
queues

M/D/1 .500 .413 .429 .478
M/M/l

M/E3/1 .667 .638 .646 .657
M/M/1

Theoretical and empirical values of the relaxation time T of
the queues M/M/l, M/E3/1, and M/D/l from an initial value of

E[W(O)] = 0 with p = .7, .8, .9, p = 1/minute. Also the theo-

retical and empirical ratios of the relaxation time of these

systems.

Table 4.7
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The empirical values of Tr for p = .8, p = I/minute are found from

Figure 4.7 as the time at which the transient component has been reduced to

1 of its original value. Since we assumed for these cases the specific initiale

condition E[W(O)] = 0, the transient component is clearly equal to the entire

steady state value, E[W] itself. We replot Figure 4.7 in Figure 4.8, this

time having the vertical axis denoting the "% of E[W]". The empirical

values of Tr are then found from the time axis to be the values corresponding

to the points (1 - 1) . 100% = 63.2% on the vertical axis of Figure 4.8.e
After similar analysis for p = .7 and p = .9, p = I/minute for both, we obtain

the theoretical and empirical values of Tr listed in Table 4.7.

It appears that the observed values of the relaxation time, 0r are

far from the theoretical values Tr. However, we recognize that our value

Tr (3.19) from Model 6 was based on the mean (an arbitrary weighting of

the fastest and slowest decay rates, and is highly dependent on the initial

conditions. Since we calibrated Td of Model 4 by (3.19) and (3.24), the

deviation of Or from Tr for M/E3/1 and M/D/l is not unexpected either.

The significance of the deviations of the observed ratios from the

expected ratios is difficult to interpret. While exhibiting somewhat the

behaviour expected from the theoretical results, the magnitudes of the errors

appear to be large. Therefore we propose to examine closely the transient

behaviour of the queues for longer periods of time.

To investigate the relaxation time as a valid measure of the dissipa-

tion of the transient, consider the dimensionless quantity T given by i.
r

Then let f(T) be the fraction of the transient component of E[W(t)]

dissipated at time t = Tr T. If the relaxation time Tr given by (3.19) is
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Comparison of the percentages f(T) of the transient component

of the expected waiting time dissipated after time T =
for the systems M/M/1, M/E3/1, and M/D/I for the conditi6ns

p = .7, .8, .9, p = 1/minute and E[W(O)] = 0 .

Table 4.8

queue 0.20 0.25 0.50 1.0 2.0 3.0 E[W]

*** p = .7 *** (mins)

M/M/1 37.9 44.5 63.0 78.2 90.3 95.2% 2.333

M/E3/1 43.0 48.5 64.2 79.2 91.2 95.9 1.556

M/D/I 47.0 51.0 66.0 81.0 92.3 96.7 1.167

*** p = .8 ***

M/M/1 46.5 50.8 66.2 81.0 92.5 96.4 4.000

M/E3/1 48.8 52.5 67.5 81.8 93.0 96.8 2.667

M/D/I 49.5 53.6 68.6 82.5 93.2 97.1 2.000

*** p = .9 ***

M/M/1 50.7 55.0 69.4 83.2 93.4 97.0 9.000

M/E3/1 50.8 55.3 69.8 83.5 93.6 6.000

M/D/I 51.8 55.9 70.5 83.8 93.7 97.1 4.500
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indeed correct for all queues of type M/G/l, then f(T) should be the same,

or close, for M/M/1, M/E3/1 and M/D/l for all values of T. This is approxi-

mately true for each value of p individually, although three distinct

patterns of deviations from this postulated behavior are observed in Table

4.8:

(1) for constant T, for all values of T, the differences between f(T)

for the systems M/M/l, M/E3/1 and M/D/l decrease as p increases.

As an example, when T = 1, the differences in values of f(l) for

p = .7, 18 and .9 are 2.8%, 1.5% and 0.6%. Small values of T

have larger differences in values of f(T) and vice versa for

large values of T.

(2) for constant T, for all values of T, the value of f(T), for any

of the systems M/M/1, M/E3/1 and M/D/l, is increasing as

p increases. Considering the M/M/l system as an example, we

observe f(0.2) increasing from 37.9% for p = .7 to 50.7% for

p = .9.

(3) the mean value of f(T) of the three systems M/M/l, M/E3/1 and

M/D/l, as p varies, are closer for large values of T than for

small values of T. For T = 0.2, the mean values of f(0.2) for

p = .7, .8, .9 are 42.6%, 48.3% and 51.1%. The corresponding

values for T = 3.0 are much closer: 95.9%, 96.8%, and 97.1%.

Of these (2) is very significant in terms of the modeling we presented

briefly in Section 4.2.4. The variable values of f(T) for any system for

small values of T mean that systems with large values of p relax in their

initial stages much faster than systems with low values of p. SinceT = 1.0

for large values of p represent very long values of elapsed time, in the
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modeling of time dependent gueues we are almost always concerned with small

values of T, where, unfortunately, the least consistent behavior is observed.

To show the data diagrammatically, and possibly highlight the reasons

for the differences in f(T) observed in Table 4.8, we compare the exact

results to the plot R(s) of the solution of the dimensionless diffusion

equation (3.27). (The reader will recall that the Tr (3.19) used to compute

T in Table 4.8 are based on (3.27) for queues other than M/M/1.) The coor-

dinates of the points plotted in the Figures 4.11, 12, 13, 14 are

calculated from p, t, g2, X and E[W(t)], obtained with Model 5, by:

E[W(t)]

(g2X)/(l-p)
on the vertical axis and:

r= = (1 P) )T

on the horizontal axis.

Figures 4.11-4.13 illustrate the comparison to R(s) of M/M/l for p = .7,

.8, .9, j = 1 and M/D/l for p = .2, .7, .8, .9 i = I. Results for p = .95

(Table 4.10) with service as described in Table 4.9 were provided by Gaver

[1] and are shown in Figure 4.14.

Case A B C D E
Queue Parameter

g1(minutes) 1 1 1 1 1

92 (minutes2) 2 1.25 3.8 2 1.25
X (per minutes) .95 .95 .95 1.1 1.1
Queue Type M/M/l M/E8/1 mixed M/M/1 M/E8/1

Table 4.9
Parameters of the Various Service Processes Used by Gaver [1]
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Time (in hours)

expected
waiting time

E[W(t)]

E[Wd(t)]

E[W(t)]

E[Wd(t)]

E[W(t)]

E[Wd(t)]

E[W(t)]
E[Wd(t)]

E[W(t)]

E[Wd(t)]

42

9.02
9.14

6.33
6.43

12.57
13.78

19.3
20.14

16.9
17.2

Comparison of E[W(t)] as

11.64

11.92

7.85

7.91

16.99
18.25

32.7
33.4

29.4

30.0

6

13.23
13.4

8.69
8.75

19.91
21.0

45.2
46.06

41.6
42.0

15.17
15.26

9.58

9.6

23.77
24.4

69.7

70.6

65.7

66.1

19

19

10.68
10.68

36.1
36.1

obtained by (a) (lower rows)
Model 4 and (b) (upper rows) exact, explicit numerical

inversion of the Laplace transform.

Table 4.10

From Figures 4.11, 12, 13, and to a lesser extent Figure 4.14, it

appears that the M/M/l and M/D/I values of E[W(t)] are very close together

in their nondimensional forms, and (for Figures 4.12,13) in the range O<s<1.4

they are closer to each other than to R(s). The apparent consistency of

this type of behavior would tend to explain the failure of relations (4.7 )

Case

14.34
14.54

9.22

9.25

22.07
23.4

57.5
58.46

53.7
54.3

8 10
CO
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and (4.6) to hold exactly for small values of T. On the other hand, it does

suggest that the M/G/l queue is indeed governed by a dimensionless differen-

tial equation, such as (3.27). This observation is supported by Gaver [1]

who indicates that although it hasn't been proven it appears that the solu-

tion to (3.27) provides an upper bound to E[W(t)].

From Figures 4.11-4.14, it can be seen that the bound becomes succes-

sively less accurate as p decreases. This is expected because of the under-

lying assumptions of the model given in Section 2.5. However, we note that

the coordinate on the horizontal axis is IF , which is just a multiple of

vFr. Consequently, for a case such as p = .2, the value of T is very small,r r

and from Figure 4.11, even though for large values of s the error we observe

may be large, the value of t =TTr=s 2Tr will still be comparatively small.

As a result, after any significant period of time, the exact solution will

be very close to R(s). We observed this in Table 4.8:as T increases the

differences in f(T) for the three cases diminish. The precise form of the

nondimensional equation though is still unknown.

4.2.3 Comparisons of Relaxation Times for Initial Conditions other than

E[W(O)] = 0
Up to now, we have investigated the relationships that exist for the

relaxation time of the M/G/l queue(3.28). We have said nothing about how we

expect to modify Tr to account for varying initial conditions, as seems

necessary from the results of Section 3.3. Studying the analytical expres-

sions (3.12) and (3.17) is difficult as it necessitates studying the

constants Bis, which vary as the initial conditions, for each Pi(t). There-

fore, as a substitute, we show the behavior by simply examining the values
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of E[W(t)] obtained from Model 5.

At this point, it is imperative to separate two concepts: the relaxation

time and the transient behavior. The relaxation time is defined as the time

required to dissipate (1 - 1) or some other specified fraction of the tran-

sient component. Transient behavior on the other hand refers to the shape

of the E[W(t)] curve in time, i.e., the path described by the relaxation of

the transient component to equilibrium. Even though both terms are essen-

tially specified by the same parameter, the time constant w, we show that

whereas the relaxation time is highly dependent on the initial value E[W(O)],

the transient behavior varies much less. We show the meaning of this with

an example.

Suppose we apply at time 0 with E[W(O)] = 0 a step demand equivalent to

p = 0.8 to an M/D/l system resulting in a stationary queuing system in tran-

sient state. Call this System A. Further suppose we observe System A at to,

when the expected waiting time is given by E[W(t )], and specify the state

of System A at to as the initial conditions for a separate, otherwise iden-

tical, M/D/l system which we call System B. Then if, neglecting the

interval [0, to] of System A, we compare the two curves of E[W(t)] for

Systems A and B, naturally they would be identical. The relaxation time of

course would be completely different because the transient component of

System A is 2 (from equation (2.1 )) and that of System B is 2 - E[W(t )].

Since Tr is defined by the autocorrelation function of the queue length,

we expect to find situations where the time relaxation time is either shorter

or longer than Tr (as we have already seen at the beginning of this section).

What is not clear,however,is how significant the initial conditions are to

the transient behavior when,contrary to our example with System A and
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Relaxation of E[W(t)] from various initial conditions for p = .7, V = 1/min
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Relaxation of E[W(t)] from various initial conditions for p = 1.2, p = 1/min

Figure 4.18 (M/D/l/co)
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System B, the initial queue length distributions are not identical.

In each of Figures 4.15-4.18 we illustrate the transient response of

E[W(t)] for M/D/l to a step demand applied to a variety of initial queue

length distributions and waiting times E[W(O)]. For the purpose of comparison,

for each p we select one set of initial conditions and draw the curve for that

set as the datum. All other curves for varying initial conditions are then

compared to the datum for their particular value of p.

Perhaps the most important thing to reiterate about these curves is that

the initial conditions are specified not only by E[W(O)], but also by the

queue length distribution, which, as has been shown in Section 3.5, can have a

substantial variance. We contend that it is plausible, therefore, that,in the

presence of large queues in nonstationary systems with the initial variance

"close" to the variance of the equilibrium distribution, the relaxation occurs

faster than would be expected from (3.19) or (3.24). Therefore, alongside

each curve in Figures 4.15-4.18, we give the variance of the queue distribution

when the step demand was applied.

To a large extent our hypothesis is verified, although the differences

do not appear to be very large in most cases. With regard to the effects of

the differences in the initial variance, one pattern of transient behaviour is

especially visible in Figure 4.17. The systems are relaxing to equilibrium

with p = 0.9, in which case the equilibrium variance is given approximately as

24. We observed that in two cases where E[W(t)] is less than E[W], but the

initial variance was greater than the equilibrium value (a2 = 31 and 33), the

relaxation occurred extremely quickly (compared to the slowly increasing tail

of the datum. (Here the datum is the response of E[W(t)] to a step demand
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of p = 0.9 when E[W(O)] = 0). Also on Figure 4.17, consider two other cases:

one in which E[W(t)] = 1.681, a2 = 8.134 and the other with E[W(t)] = 1.174,

a2 = 2.616. Whereas the initial expected waiting times are close, the

relaxation to the equilibrium value of delay is noticeably faster for the

initial conditions with the higher variance. It appears therefore that in

the three cases where the variance was the closest to the equilibrium vari-

ance that relaxation of E[W(t)] to E[W] proceeded noticeably faster.

The observed consistency of the transient behavior lends credibility

to the fact that some reliable time constants can be given for transient

behavior in certain strongly time dependent systems. This is the concept

on which Gupta built his model. The point to remember when considering

anomalies such as the behavior for p = 0.9 in our last example is that

although the forms for the datum and the other curve were radically different,

the difference in expected waiting times was only about 10% of the E[W].

Lots of other pathological cases can undoubtedly be created: for instance,

the transient behavior of relaxation for p = 0.8 from the initial condition

of, say, exactly 60 a/c in queue will almost certainly be much different

from the behavior for p = 0.8 seen on Figure 4.16. However, in most of the

solutions for time dependent profiles that we have seen, the probability

that there are 60 a/c in the queue is usually small and almost always negli-

gible. Thus, for strongly time dependent profiles, where no unusual conges-

tion takes place, consideration of transient effects can probably provide

reliable estimates of E[W(t)].
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4.4 The Multi-Server Queue in Transient State

Comparatively little is known about the transient behaviour of

multi-server queues. Saaty [12] has obtained a form for the Laplace

transform of the transient state probabilities pi(t) for the M/M/k/c queue

with arbitrary k . However, in view of the successful treatment

of the transient behaviour based on Model 6, the most useful form is

available from Morse [9]. Although he does not complete the derivation

of the Pi(t) for the multiserver queue, we will be able to deduce

the theoretical transient behaviour from the form of the components of

pi(t) given. Again, as for the single server queue, the theoretical

results will be compared to exact numerical results provided by Model 5.

The components given by Morse are the integrands qi(0,t) in the

form (3.16) and are given by (4.9) - (4.11)

for the single server case:

qi(,t) : ()2 [sin(ie) -j sin(i+l)]I e- t (4.9)

w = 9 + A - 2VJiP cosa

for the two channel case:

q0 (,t) = 1/ vri sine e'- t, (o = A + 2P - 2V/I cose)

q.(0,t) = (X/2 )i sin(i-2)e - I-(vA72p + /27) sin(i-1)e (4.10)

+ sinCie) - T OXi- sin(i+l)8 e , (i > 0)
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and for the three channel case:

q0(Ot) = 9-13 sine et, ( = X+3p - 2/3X- cose)

ql(0,t): / V-7j (sine - Aý/3p sin20)e - t ,

q (O,t) = (/3p) ½i[~sin(i-4)- - 1A//3 + 3 ;7 ) sin(i-3)B (4.11)

+ -(7 + 3p/X) sin( i-2)0 - -(73j + -+ 37) sin( i-1)0

+ sin(io) - ?12 sin(i+l)O]e - t , (i > 1)

These qi(0,t) can be used to obtain expressions similar to (3.17) for

M/M/k/c with arbitrary k. We showed in section 3.3 that the coefficient

w of t in the integrand (4.9) is a descriptor (to within a constant) of

the relaxation time for the single server queue. By analogy to the

qi(e,t) and w(e) for the single server case we can make some inferences

about the behaviour of the relaxation time for 2 and 3 server cases.

Note especially that if we maintain the total service capacity P of

a facility constant at some value po (operations/unit time), varying

only the number of (independent, identical) servers k, then for

the multiserver cases:

110o 1o
X = , + kp - 2ky/ = X + k - 2 + o -2 A

7k (4.12)

Apparently, w, the time constant and hence the determinant of the

relaxation time remains independent of k. We do recall, however, that
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w was not the sole determinant of the relaxation time. The relaxation

time is actually bounded above and below by the inverse of the smallest

and largest values of w respectively. The precise value of the

relaxation time depends on the coefficients B.i of e-' (A)t, which

are dependent on the initial conditions (the initial queue length

distribution) and vary for each pi(t). Ignoring for the moment the

dependence on initial conditions, the transient component of each Pi(t)

is composed of terms of the form

0 BiB e-w()t dO

(for infinite queues; for finite queues we replace the integral by a sum).

1 2Let the integrands for the single server be given by Bi0 and let Bi2

be the comparable integrands for the two server case. Then, even for

a single one of the Pi(t), and in spite of the fact that w ý w(t),

it is not immediately obvious how the quantity

0 B1 e-(O)t dO
io

20r

0 B 2e-_W()tdo
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will change as t goes from 0 to c.

We pass therefore to numerical analysis of the transient behaviour

of multiserver queues. First, the systems M/D/k and M/M/k, k = 1,2,3

were evaluated for p = .8, - = I/minute, E[W(O)] = 0, using Model 5.

The resultant values of E[W(t)] are plotted vs. time in Figures 4.9 and

4.20 and the ratios E[W(t)] 100% listed in Tables 4.11 and 4.12.E[WJ
From these tables it is immediately obvious that the relaxation

time for multiserver queues is greater than that for single server

queues. To further investigate the relationships between the transient

behaviours of queues as k varies, we observe the time tf needed to

attain the ratio f = E[W(tf)] for the following values of f: 0.6,

0.8, 0.9. E[W]

In Table 4.13 record for the M/M/k system with p = 0.8, p = 1/minute,

for each of the three values of f, the value E[W(tf)], tf, and the ratio
t

f = M/M/a The same analysis was performed for M/D/k

fM/M/b

p = 0.8, p =1 in Table 4.14 In addition, we observed two other cases of

the M/D/k queue. Shown in Table 4.15is the same case as inTable 4.14

i.e. p = 0.8,except with the service rate reduced to I1 = 0.5 /min. Then we

show in Table 4.16 the case where p is increased substantially to

p = 0.9, maintaining p = 1/min.

The trend for the multiserver queues that we observe from Tables

4.13- 4.16 is that the time required to reach any two fractions fl and f2
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f = 0.6

E[W(t)] t.6 r .6

(mins)

2.400 15.2

2.133 18.9

1.942 22.2

2.400 15.2 1.461

f = 0.8

E[W(t)] t. r.8

3.200 38.1 1

2.844 43.0

2.589 47.4

3.200 38.1 1.244

f = 0.9

E[W(t)] t 9 r.9

3.600 67.7 1 0

3.200 73.5

2.912 78.5 1.068

3.600 67.7 1.160

E[W(tf)]
M/M/k - Comparison of times tf to reach f = E[W]

for f = .6, .8, .9 for p = .8, p = 1/minute

Table 4.13

f = 0.6 f = 0.8 f = 0.9

queue E[W(t)] t r.6 E[W(t)] t.8 r.8 E[W(t)] t9 9.6 .6 8 9  9

(mins)

M/D/I 1.200 6.7 1.600 17.5 1.800 31.7 1
1.179 1.100 1.064

M/D/2 1.078 7.9 1.437 19.2 1.616 33.7

M/D/3 0.988 8.8 1.114 1.317 20.7 1.075 1.481 35.4 050

M/D/I 1.200 6.7 1.600 17.5 1.183 1.800 31.7'

M/D/k - Comparison of times tf to reach
E[W(tf)]

E[W]

for f = .6, .8, .9 for p = .8, p = 1/minute

Table 4.14

queue

M/M/1

M/M/2

M/M/3

M/M/1
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f = 0.6

E[W(t)] t.6 r.6

(mins)
2.400 13.5 1.170

2.156 15.8

1.976 17.6

2.400 13.5

f = 0.8

E[W(t)] t.8 r.8

3.200 35.0 1.100

2.874 38.5 }1.068
2.634 41.3

3.200 35.0 1.180

f = 0.9

E[W(t)] t 9 r

3.600 63.2•
1.066

3.232 67.4
1.050

2.962 70.8
3 1.120

3.600 63.2

E[W(tf)]

M/D/k - Comparison of times tf to reach f = E[W]

for f = .6, .8, .9 for p = .8, i = .5/minute

Table 4.15

f = 0.6 f = 0.8 f = 0.9

queue E[W(t)] t r E[W(t)] t.8 r E[W(t)] t 9 r
.6 .6 .8 8 .9

(mins)
M/D/1 2.700 27.3 3.600 73.1 4.050 133.3

M1.088 }1.048 1.030
M/D/2 2.573 29.7 3.430 76.6 3.859 137.32 1.064 1.035 1.027
M/D/3 2.474 31.6 3.299 79.3 3.712 141.0

1.158 1.085 1.058

M/D/I 2.700 27.3 3.600 73.1 4.050 133.3

M/D/k - Comparison of times tf to reach f
E[W(tf)]

S EW]

for f = .6, .8, .9 for p = .9, i = 1/minute

Table 4.16

queue

M/D/1

M/D/2

M/D/3

M/D/1
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of E[W] by two systems of the type M/x/a, M/x/b are not related by the

same constant. Instead, we observe the ratios r.6, r.8, and r9 consistent-

ly forming a decreasing sequence for every pair of systems M/x/a, M/x/b.

Since we showed that w is independent of k for all M/M/k queues, we might

expect the times required for E[W(t)] to first attain E[W], i.e., reach

equilibrium, to be close for all M/M/k queues. The fact that the ratios

are decreasing toward 1 would tend to support this.

We also produce one piece of evidence to support the contention that

some aspects of the transient behavior of M/D/k systems are the same as

for M/M/k systems. We do this by observing equations (4.9) - (4.11) for

M/M/k systems and noting that the dissipation of the transient is governed

by the product pt for constant values of p. This is because wherever v'

appears in the constant coefficients of e-m (O)t, I appears as well, and when

we keep p constant, nothing changes. In the time constant w(8), multiplying

X and p by the same constant c yields

W () = Xc + ic - 2Vv-ipc cose = cw(0)

Therefore, since (a) the reduction of the transient component, with

time, is governed by e-m (0)t', (b) the constant coefficients of e-m(O)t do

not change with p for constant p, and (c) the equilibrium state probabil-

ities Pi are independent of p for constant p, it is clear that the following

is true:



148

(a) changing p to a new value ac changes the time required to reduce the

transient component by --, or equivalently (b) two identical M/M/k systems

(with arbitrary initial conditions, number of servers k, and value of p)

which differ only in their values of vp, -p and PI2 , will have the same queue

length distribution at times t1 and t 2 which will be related by ct = t 2 if

l1 = 112'

We apply this in a test to see if the same behavior holds for M/D/k

queues. Table 4.15 shows the behavior of the M/D/k queue when p = .8,

1 = .5/minute, or the same case as Table 4.14 with only the service rate

halved. It turns out that, exactly as we know is true for an M/M/k queue,

the relaxation time to each value of f in Table 4.15 is virtually exactly

double that of the corresponding value in Table 4.14, for all values of k.

All the ratios are likewise, obviously, very close.

Another statistic which we desire to investigate is one assumed by

Gupta in Model 7. There he postulated that the relationship between

relaxation times that holds between single server queues as the service

process varies, holds also for the multiserver case. Table 4.12 shows

in fact that opposite changes are observed. The steady state E[W] decreases

as k increases, but the spread remains small. On the other hand, the ratio

of the relaxation times increases substantially with k at f = 0.6 and some-

what less at f = 0.9. In the modeling of time dependent M/G/k queues the

arrival rate is changing often and the transient component is often less than

60% dissipated. The great spread in the ratios at the small values of f are
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therefore quite significant.

minutes- Steady state E[W] Relaxation Time to f=.6 Relaxation Time to f=.9

M/M/k M/M/k M/M/k
servers M/M/k M/D/k M/D/k M/M/k M/D/k M/D/k M/M/k M/D/k M/D/k

1 4.000 2.000 2.000 15.2 6.7 2.269 67.7 31.7 2.136

2 3.556 1.796 1.980 18.9 7.9 2.392 73.5 33.7 2.181

3 3.236 1.646 1.966 22.2 8.8 2.523 78.5 35.4 2.218

E[W] and the relaxation times to 60% and 90% of E[W] for the multi-
server queue, k = 1,2,3, under the conditions p = .8, p = I/minute,

E[W(O)] = 0. The ratios of the M/M/k and M/D/k system values are
also provided.

Table 4.17

We have seen therefore that for at least small values of k, for the par-

ticular inital condition of no waiting time, the transient behaviour of multi-

server queues as k increases is less and less like the theoretical behaviour

and nondimensional form given for the behaviour of the M/G/l queue. It does

seem though that the transient behaviour of the 2 server queue differs some-

what less from the 3 server queue than does that 2 server queue from the single

server one. We have also shown one result that parellels the result hypothe-

sized for the M/G/1 queue. From analytic results the M/M/k queue preserves, for

all k,the change in relaxation time for changes in the service rate P. Numeri-

cal results with M/D/k duplicate this behaviour with almost undetectable differ-

ence.
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Chapter 5

5.1 Summary and Conclusions

It became apparent in Chapter 2 that a variety of techniques for

modeling the time dependent M/G/k queue exist, although many of these have

severe limitations either computationally or because of the assumptions made

in their formulation. The most acceptable among them is the exact solution

of the C-K equations, Model 5, which has the advantage of returning exact

results of upper and lower bounds on the true delay with only moderate compu-

tational requirements. Two basic questions were answered in the two chapters

that followed:

(1) What is the explanation for the satisfactory performance of Model 5? and

(2) Can this explanation be used to simplify further or reduce computational

requirements for the study of the time dependent M/G/k queue.

Based on evidence from the models of Chapter 2 to the effect that the

transient behavior of the expected waiting time is important, we investigated

the closed form expressions for the transient state probabilities of the M/M/1

queue (Model 6). We obtained from this the time constant of the M/M/l system

and showed that it was valid for all values of p > 0.

Obtaining analytical expressions for the transient behavior of the

expected waiting time of the M/M/l queue had substantial impact on our under-

standing of that of the M/G/l queue. We were able to show that the time

constant for M/M/l from Model 6 and from the approximate Model 4 coincided.

In addition, Model 4 leads to the conclusion that there exists an approximate

dimensionless form for the expected waiting time of an M/G/l queue in
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transient state (when there is an initial waiting time of 0). Based on this

result, we obtain a relationship between the relaxation times of the M/G/l

queue - similar to the Pollaczek-Khintchine formula for their E[W]'s. Also,

dimensionless analysis leads to the conclusion that, whereas the values of

E[W] increase as (1-p) - , the relaxation time increases as (1-p) -2

Knowledge of these two properties of the relaxation time is extremely

useful in explaining the success of Model 5 and in aiding the interpretation

of the results of Model 3 (equilibrium analysis). We previously knew that

E[W]M/D/l 2 E[W]M/M/ From Model 4, we now know that the relaxation time

of the M/D/l system is very close to of that of the M/M/l system. It is

clear, therefore, that in the transient state E[W(t)]M/D/1 E[W(t)> /M/1

and, in fact, they will be very close to each other. This closeness is the

basis for the success of Model 5. Furthermore, the larger p becomes, the

closer the E[W(t)] of the M/D/l and M/M/l systems get, for the same value of

t, because the relaxation time increases so rapidly. For the same reason,

the results of Model 3 are very satisfactory for demand profiles with small

p (p < 0.7), but become unreliable (generally too high) when the demand

profile contains periods with p close to 1.

While investigating Model 6, it became apparent that an equivalent form

(given as Model 8) was amenable to efficient numerical evaluation. Model 8

is a method for computing the E[W(t)] based on the solution of the exact

transient state probabilities for the M/M/1/o queue, appropriately modified

so as to yield results even when p > 1. In certain cases, it may be advan-

tageous to use Model 8 over Model 5. The advantages of Model 8 are derived

from the following two properties:
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(1) Starting with an arbitrary initial queue length distribution, Model 8

gives the state probabilities of the system (for constant p) at an arbi-

trary period of time thereafter.

(2) Once the system of equations has been solved for one set of initial

conditions, the state probabilities for any other arbitrary set of

initial conditions are trivially easy to obtain.

Property 1 is important because it eliminates the need for intermediate

computations in obtaining the delay at some point of time in the future.

This is not the case with Model 5, which must solve the equations at many

intermediate points. This property was exploited when Model 8 was programmed

to compute the delays for time dependent demand profiles with resultant sub-

stantial savings in computer time. Should the delay at more intermediate

points be required, the numerical analysis of the transient behavior under

varying initial conditions given in Chapter 4 suggests the way interpolation

should proceed.

Property 2 is extremely useful for sensitivity analysis. It is clear

that the delays during peak periods dominate the total daily delay. In a

number of instances, it may be desirable to know how the peak period delay

varies when the conditions prior to the peak are varied. Property 2 makes

this very simple to do by allowing the delay for additional initial distrib-

utions to be calculated with little computational penalty.

Chapter 4 provides many numerical results for various M/G/l queues and

compares these to the behavior hypothesized in earlier chapters. Some

(incomplete) extensions of Model 6 to the M/M/k case are also presented and

numerical comparisons made.
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Further research is needed on predicting the relaxation time as the

system parameters vary. We were able to show that the observed behavior of

the relaxation time is exactly as predicted by theoretical results when i

varies, regardless of the transient component. However, the numerical results

we present for the relaxation time as p varies show significant variability,

especially when the system is far from equilibrium. The completion of the

derivation of the closed form M/M/k state probabilities, and the computation

of its autocorrelation functions would be useful for identifying more precise-

ly the time behavior of these queues.

Also, we have yet to determine a method that provides the time dependent

state probabilities for systems other than the M/M/I. The dimensionless

equation for M/G/1 systems, and the success of Harris in modeling the time

dependent M/G/l system with Model 4 suggest perhaps that the results of the

M/M/l queue in transient state could be used to predict the transient waiting

time distribution of the M/D/I or M/Ec/1 queues.
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