View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by DSpace@MIT

Efficient Model Learning for Dialog Management
by
Finale Doshi

Submitted to the Department of Electrical Engineering anth@uter Science
in partial fulfilment of the requirements for the degree of

Master of Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 2007
(© Massachusetts Institute of Technology 2007. All righteresd.

AUTNOT . L e e
Department of Electrical Engineering and Computer Science

May 21, 2007

Certified DY . ..o

Nicholas Roy

Assistant Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by
Arthur C. Smith
Chairman, Department Committee on Graduate Students

https://core.ac.uk/display/4405171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Efficient Model Learning for Dialog Management

by
Finale Doshi

Submitted to the Department of Electrical Engineering anth@uter Science
on May 21, 2007, in partial fulfillment of the
requirements for the degree of
Master of Science

Abstract

Partially Observable Markov Decision Processes (POMDRsg Isucceeded in many planning
domains because they can optimally trade between actiahwithincrease an agent’s knowledge
about its environment and actions that will increase an tgesward. However, POMDPs are
defined with a large number of parameters which are difficuigecify from domain knowledge,
and gathering enough data to specify the parameters aprayrbe expensive. This work develops
several efficient algorithms for learning the POMDP pararseonline and demonstrates them on
a dialog manager for a robotic wheelchair. In particularsivew how a combination of specialized
gueries (“meta-actions”) can enable us to create a robaktgimanager that avoids the pitfalls in
other POMDP-learning approaches. The dialog managetisyabireason about its uncertainty—
and take advantage of low-risk opportunities to reduce timaertainty—leads to more robust
policy learning.

Thesis Supervisor: Nicholas Roy
Title: Assistant Professor of Aeronautics and Astronautic

Acknowledgments

| would like to thank my advisor Nicholas Roy for his suppaerggestions, and sense of humor. |
also would like to thank my friends and labmates for theiphdldiscussions, contributions to our
robotic wheelchair, and patience as subjects and listehast but not least, | would like to thank

my parents, for their moral support, and the NDSEG Fellopdioir its financial support.

Contents

1 Introduction

2 Related Work and Technical Background
2.1 Technical Background
2.2 The Dialog Management POMDP
2.3 RelatedWork

3 Special POMDP Approximations
3.1 SamplingHeuristics e e
3.1.1 Sampling for the Static Problem
3.1.2 Smart Sampling for the Dynamic Problem
3.2 Fast Solutionsto Symmetric POMDPs

4 Maximizing Expected Performance

4.1 Model Definition

4.2 Approach e
4.2.1 Solving for the Dialog Policy using Expected Values
4.2.2 Updating the Parameters after an Interaction.
4.2.3 Updatingthedialogpolicy

4.3 Performance
4.3.1 Simulation Performance

4.3.2 Wheelchair Performance

11

17
18
24
26

30
30
31
32
33

A8

4.4 DISCUSSION o o e e 57
Decision-Theoretic Approach 61
5.1 Discrete Approach e e 61
5.1.1 Model Definition 26
5.1.2 Approach e 63
5.1.3 Simulation Performance 65
5.2 ContinuousModel 66
5.2.1 Model Definition L 66
5.2.2 Approach e 67
5.2.3 Simulation Performance 70
5.3 DISCUSSION o o e e 74
Meta-Action Queries 76
6.1 Discrete Approach: Learning Preference Models 77
6.1.1 ModelDefinition 87
6.1.2 Approach e 80
6.1.3 Performance 81
6.2 Discrete Approach: Learning NewWords 86
6.2.1 Model Definitions 78
6.2.2 Approach e 88
6.2.3 Simulation Performance 89
6.3 ContinuousModel 91
6.3.1 Model Definition 19
6.3.2 Approach 92
6.3.3 Simulation Performance 95
6.4 DISCUSSION o e 96
User Validation on a Complex Model 99
7.1 Model Definition 99

7.2 ExperimentalSetup e

7.3 Resultsand DiSCUSSION i
8 Conclusions and Future Work

A Hardware

List of Figures

1-1

2-1

3-1

A Comparison of Model-Free and Model-Based Learning 14
An Example Dialog POMDP 25

Performance of Permuted approach solution comparddrdard PBVI sampling 38

An Example of a Dirichlet Prior, 42
Error in the HMM estimation of thestate. 46
Performance of the Expected Value Approach in Simutatio. 50
Interquartile Ranges of the rewards using the ExpecédadeMPOMDP. 51
Overall Performance of Expected Value POMDP ina Uset.Tes 55

Performance of Expected Value POMDP in User Test, In&tion Desk Requests. 56

Performance of Expected Value POMDP in User Test, Paikit Requests. . . . 57
Factored Model for the Parameter POMDP 63
Comparison of Parameter POMDP and Expected Value POMBimulation . . 66
Effect of Different Priors on Simulation PerformancePaframeter POMDP. 67
Performance Comparison of Medusa and Parameter POMBimulation 72
Error Rate Comparison of Medusa and Parameter POMDHRrinl&iion 73
Diagram of Varying Policies for Different Preferencatgés 79

Boxplot of Discrete Reward Learning with Meta-ActionsSimulation, Scenario

ONe . . . 83

6-3

6-10

7-1
7-2
7-3
7-4
7-5
7-6

A-1
A-2

Boxplot of Discrete Reward Learning with Meta-ActionsSimulation, Scenario

Three 84
Performance Comparison with and without Meta-ActionSimulation 90
Error Rate Comparison with and without Meta-Actionsim@ation 90
A Cartoon of How Meta-Actions Prune the Reward Space 93

Performance of Meta-Actions under a Continuous ModgedrObservation Model 96
Performance using Meta-Actions for Learning Contirai@bservation and Re-
ward Models. 97

Error-Rate using Meta-Actions for Learning Contins@bservation and Reward

Models. e 97
Initial Dialog Window 102
Dialog Window Waiting for Feedback. 102
Dialog Window Processing Feedback. 102
Policy Query DialogWindow e 103
Dialog Window Completes Task. uu... 104
Dialog Window RetrainsModel. 104
Photograph of Robotic Wheelchair 115
Screenshot of UserInterfaceo 117

List of Tables

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8

4.9

5.1
5.2
5.3

6.1
6.2
6.3
6.4
6.5

Algorithm for Dynamic Resampling

Algorithm for Expected Value POMDP
Model Parameters for Simulation and User Tests with EbgueValue POMDP
Initial and True Parameters for Simulation Tests, Eigue¥alue POMDP
Mean Update Times for Expected Value POMDP
Initial and True Parameters for User Tests, Expectede@OMDP
Mean Overall Expected Value POMDP Performance for User, Oy State
Sample Dialog from User Study using Expected Value POMBRrning a New
Word. . . .
Sample Dialog from User Study using Expected Value POMB&ing an Am-
biguousWord.
Mean Overall Expected Value POMDP Performance for User, Dy State

Reward Parameters for the Discrete Parameter POMDP
Algorithm for the Discrete Parameter POMDP
Algorithm for the Continuous Parameter POMDP

Algorithm for Meta-Actions, Discrete Rewards
Sample Dialog with Meta-Actions, Discrete Case, UseeOn.
Sample Dialog with Meta-Actions, Discrete Case, Useo Tw.
Algorithm for Meta-Actions, Discrete Observations

Algorithm for Meta-Actions, ContinuousCase

7.1
7.2
7.3
7.4
7.5

States and Observations forUserTest 100

User Test: System Learns BasicDialog oo 105
User Test: System LearnsNewWord0o... 106
User Test: System Learns User Preferences110
User Test: System Learns Complex Observation Model 111

10

Chapter 1

Introduction

Spoken language interfaces provide a natural way for hurmaiméeract with robots. In an ideal
setting, people would not be burdened by having to recalliip&eywords, nor would they have to
drop whatever they were doing to type into keyboard: theyld/be able to use natural phrases to
command systems. Over time, the system would adapt to its sgeaking style and preferences.
Such a system could be especially useful for people unahlsdaa keyboard interface, such as
those with limited mobility. However, even if we ignore netlilanguage processing and voice
recognition—separate fields unto themselves—we still hheefundamental question of dialog
management, that is, how the system should behave given seinoé user inputs. In this work,
we develop and explore several approaches for adaptalbbg direanagement targeted to a robotic

wheelchair.

Uncertainty in Dialog Management. One challenge for a dialog management system is noisy
voice recognition. Depending on the person, the system mafyse similar sounding words (such
as “copy machine” and “coffee machine”), especially if theggon speaks naturally and without
clear enunciation. Errors are compounded by loud envirersnar simple microphones that may
catch surrounding noise. It is often difficult and laboreim$ive to produce large enough corpa of
relevant phrases to train grammars; not only must we obtkrga number of sample dialogs, but
we must also transcribe them all into text. The problem dfigang sufficient data to train a model

is more severe in specialized applications, such as outicolvbeelchair.

11

Even with perfect speech recognition, we would still hawe phoblem of linguistic ambigui-
ties. With a new user or a new environment, we may encountasph that we do not expect or are
difficult to interpret. For example, different people maydebe the same location as a “kiosk,” a
“booth,” or a “desk,” and, until the user clarifies what thegan by a certain phrase, we may not
know to where they are referring. Another example is thatuber may ask the dialog manager
about “the elevator,” but there may be multiple elevatoth@building. Again, the dialog manager
must be able to resolve this ambiguity. No matter how much Bpeech recognition and natural
language processing improve, there will always be unceggtathumans hardly understand each
other perfectly!'—due to non-ideal recording conditionsiovel situations. A good dialog man-
agement system must therefore consider the uncertaintiiamice of error, when making decisions
on how to interact with the user.

There are several approaches to making decisions in unteaitaations, and in this work
we will focus on a planning technique known as a Partially €sble Markov Decision Pro-
cess (POMDP). Chapter 2 provides a technical overview of BOS) but for now we note that
POMDPs are probabalistic models in which the agent—in théecthe dialog manager—interacts
with the world through a series of actions and receives faeklin the form of noisy observations.
In the context of our robotic wheelchair, the actions arenprily queries about the user’s objec-
tives and the physical movements of the wheelchair to pdaiidocations. The actions can have
unknown effects: for example, if the system asks a user winesgishes to go, it cannot know the
answer without hearing his response. Similarly, the olsems—processed utterances from the
user—may not reflect the user’s true intent: the voice reitimgnsystem may confuse the similar
sounding words. The uncertainties encoded in the POMDP hapeeincertainties inherent in the
environment; no amount of tuning can make them disappearoldtisn to a POMDP tells the

agent how it should behave even when these uncertaintigsesent.

Learning User Models. While some forms of uncertainty are inherent to the systethtae
environment—such as a noisy microphone—other forms of i@iogy stem from having an in-
complete understanding of the user. For example, the sysi@ymot know initially that a partic-

ular person uses the word “kiosk” to refer to a particulaatomn, and thus it may be confused the

12

first time it hears the new word. However, if it interacts witle user over and extended period of
time (which is likely, if the system is part of a robotic wheledir), it should ideally adapt to the
speech patterns and vocabulary choices of its user. Sughicdida will allow the system to make
faster (correct) decisions about the user’s true intenedas noisy information. Adaptation can
also allow the system to learn the user’s preferences. Fampbe, some users may be tolerant
of mistakes, while others may prefer that the system askdbe for clarification if it is in doubt
about the correct choice of action.

Another form of uncertainty to which the system should be abkdapt is uncertainty about its
model of the world. A POMDP model is specified using a large benof parameters, and creating
a quantitative user model would be impossible without esitenuser tests. As the user interacts
with the system, however, it should be able to discover haenofertain words are mistaken for
other words or the probability of getting a completely spus output from the voice recognition
software. As it learns the true levels of noise in the enviment, the dialog manager should be able
to make smarter decisions on when to seek additional clatibic given a potentially confusing
user input.

The ability of the dialog manager to learn dialog strategadsistly online is the core of this
work. Just as our dialog model considers uncertainty oveuser’s true intent, we can also con-
sider uncertainty over possible dialog models. We begi whe basic premise that although
specifying the correct model of the user is difficult, spgicif) a reasonable model of the user is
easy. For example, we can guess what words a user will likedyta refer to a particular place
or that a user will be extremely frustrated if the robot dsite the wrong location. By taking a
Bayesian approach, which allows us to place probabilityriigtions orpriors over models, we
can put higher probability on models that we believe are rnikety. These probability distribu-
tions can be updated as we gain more information about teeradel through user interactions.

Compared to an alternative, where the system starts withialesy no knowledge of the user,
starting with a good initial guess over possible modelsnaithe system to start with a baseline
strategy that will make relatively few mistakes as it leaabsut the user. In Figure 1-1, we plot

the performance of an optimal simulated dialog system, gesyshat learns how to behave with

13

Model Based vs. Model Free Learning
500

-500

—-1000 -

median reward

—-1500

— — —optimal
—©— model-based learning

—2000 - — g-learning

_2500 Il Il Il
0 5 10 15 20 25 30

iteration

Figure 1-1: A comparison of model-free (Q-learning) and model-basedring approaches for our dialog problem.
The model-based approach used here is further describdubipt€ 6. The model-based learning approach does start
;s;?glgfcantly worse than the optimal, but the differencenia$l compared to how much worse the model-free approach
no prior knowledge (using Q-learning, a standard reinforeet learning technique [38]), and
model-learning approach described in Chapter 6. As we edlis later chapters, the model-based
approach is actually imperfect; however, here we see that awnaive model initialization starts
the learning process at a stage much better than the madeflearning approach. We review
various model learning approaches, as well as prior workiaddg management, in Chapter 2.
Even if we constrain ourselves to Bayesian approaches toitgpgPOMDP models for dialog
management, we still must decide how we will express modeddainty, how we will use inter-
actions to resolve this uncertainty, and how we will act kimgthat the model is uncertain. These
decisions involve a series of trade-offs: for example, sspghat we assume that the true model is
one of three possible user models. With so few models, datergwhich of the three best fits the
user may be simple, but it is likely that the true user modebisa member of this set of models.
Conversely, we may allow each of the POMDP parameters todakal possible (valid) values.
Undoubtedly the true model is a member of this class, but satmany possibilites, choosing the
right action may be computationally difficult. It may also téficult to learn effectively when

there are a large number of coupled parameters, and the mggritave to make several mistakes

14

along the way to help it discover the true values of certanapeters.

Our Contributions. In the context of dialog management, we develop a set of tquba that
allows us to learn robustly in real-time or near real-timénw a rich class of possible user mod-
els. Specifically, we develop and demonstrate technigueguiiokly approximating policies given
a particular user model and for choosing actions when thsilplesuser models disagree. We also
introduce “meta-actions,” or queries about what the syshould have done, as a means to ro-
bustly discover the values of certain model parameters. abiléy of the agent to reason about
its uncertainty—and take advantage of low-risk opportagito reduce that uncertainty—Ilead to
more robust policy learning.

After review of technical concepts and prior work in Chaftewe catalog some insights and
algorithms for efficiently solving POMDPs in Chapter 3. Thisludes sampling approaches that
focus solutions to the most relevant aspects of the probigenalso gain significant speed-ups by
noting that the symmetries in certain dialog managemertilenos can allow us to exponentially
decrease the number of samples required for given qualgyoapmation.

As a starting point into the model-learning problem, Chagteonsiders only the expected
values of the unknown POMDP parameters when planning tHegd@olicy. We demonstrate a
heuristic that allows the dialog manager to intelligen#plan its policy given data from recent
interactions. While this algorithm is fast and providesasmnable baseline, we show that this ap-
proach suffers because itis unaware of parameter undgréaid thus can get caught in suboptimal
solutions.

In Chapter 5, we fold the unknown parameters into a larger BBNhat jointly considers
uncertainty in the user’s intent and uncertainty in the maael. First, we focus on learning the
user’s preferences from a discrete set of options; and eitbras@mall set of options, the resulting
POMDP consists of over 300 states. We show that by startitiy avsuitably conservative prior
over models and applying the ideas from Chapter 3, the dialagager could learn the user’s
preference model without making many mistakes. Next, weatestnate similar learning results
from a class of continuous models.

The approaches in Chapters 4 and 5 require explicit rewadbieck from the user—at least

15

during a training period, the user has to enter a reward a#ieh action for the planner to learn
about the user’s preferences. Because it can only learn dicest feedback, the agent is also
forced to experience pitfalls in order to learn from them. Ohapter 6, we propose the use of
“meta-actions”—queries about what the agent should hawe @o ought to do—as a means of
giving the dialog manager feedback about the user’s preteeand speaking style. We show
that “meta-actions” allow the system to robustly learn teerunodel in a rich class of continuous
models; in Chapter 7, we support our simulation results witlet of user tests.

We state our conclusions directions for future work in Cagt

16

Chapter 2

Related Work and Technical Background

Partially Observable Markov Decision Processes (POMDRs)aamodel used for planning in
stochastic domains where an agent does not have accessdbidiormation about its state. In-
stead, the agent must make decisions given only noisy orgarabs observations. If the agent
has a probabilistic model of how the world behaves, it canitsskeelief—a probability distribu-
tion over its current state—to reason about what actionatikhtake next. By explicitly tracking
this state uncertainty, the POMDP framework allows the agetrade optimally between infor-
mation gathering actions (which reduce state uncertasnyg) exploitation actions (which gather
immediate rewards).

The ability to make robust decisions under the resultintestacertainty make POMDPs de-
sirable in many areas, including dialog management. Heragant must infer the needs of a user
(the hidden state) from the noisy and ambiguous utterahegstthears. In this chapter, we begin
with a technical introduction to POMDPs in Section 2.1. Tihisoduction presents the standard
POMDP model—with no parameter uncertainty—and value fonebased solution techniqués.
Next we describe the basic structure of the dialog POMDP cti&@e 2.2 before surveying prior
approaches to POMDP model learning and dialog managem&etcition 2.3.

1Chapter 4 shows how we incorporate parameter uncertaitttytie model

17

2.1 Technical Background

The POMDP Model. A POMDP consists of the n-tupleS,A,0,7,Q,R,v}:

e S represents a set of possible states of the world. In the xooteobot navigation, states may
be physical locations. In the case of dialog managemengsstaay represent the user’s true

desires. In the POMDP model, the true state of the world iddndrom the agent.
e A represents the set of actions that an agent may take.
e O represents the set of observations that the agent receives.

e The transition functioff’(s|s, a) places a probability distribution over possible statabat the
agent may find itself in if it takes actiom in states. For example, if a robot operating in a
POMDP world takes the action “move forward” from its curr@ossition, it may expect to find
itself straight forward or slightly to the left or right, depding on the precision in its movement.

Thus, transition function encodes the agent’s uncertamtiye effects of its actions.

e The observation functiof(o|s, a) places a probability distribution over the possible obaerv
tions that an agent might receive if it is in statand takes action. For example, imprecision
in a robot’s laser scans may cause it to believe a wall is nearfarther away than it truly is.

Thus, the observation function encodes noise the agentisumements of the world.
e The reward functior(s, a) states what reward the agent receives for taking actiorstates.

e The discount factory € [0, 1] allows us to bias the POMDP planner to satisfying goals more
quickly. The discount factor weighs how much we value futtewards to current rewards: a
discount factor of 0 means that we only value current rewamtide v = 1 implies that future
rewards are just as valuable as current rewards. Thus, ahagk a small discount factor may
overlook policies that require multiple steps to achievarge reward in the end, but an agent

with a large discount factor may dally in achieving the goal.

During each step, the agent first takes an action. This actianges the state of the world as

described by the transition functicR. The action also produces an observation based on the

18

observation functiof. The agent uses the observation to reason about the possiblistates of
the world and determine what action to take next. Outsidel@f@aning context, where the agent is
trying to discover the values of the rewards, the rewardsiseel only to initially train the agent.
The agent does not receive explicit rewards while it is gcitinthe real-world.

In general, an agent’s estimate of the current state, anefftive the best next action to take, will
depend on the entire history of actions and observationgtibadialog manager has experienced.
Since defining a policy in terms of the history can get quitenbarsome, we generally maintain
a probability distribution over states, calledbelief, which is a sufficient statistic for the previous
history of actions and observations. No matter how the agathes a particular belief, the belief
is all that is required to optimally choose the next actioive@ a new action and observation, we

can update the beliéfusing Bayes rule:

bu(s) = nQols’,a) Y _T(s'|s,a)bu_1(s) (2.1)

ses

wheren is a normalizing constant. To solve a POMDP, we must speqiyligy: a mapping from
each belieb to an actioru. We define the optimal policy to be one that maximizes the ebgue

discounted reward’ [y, 7" R(s,, a,)].?

Solving POMDPs. There are several approaches to finding the optimal polieyR®MDP. We
begin our discussion with value-iteration, the approachusein our work, and summarize other
approaches at the end of this section. Value iteration assigitility, or value}/ (b) to each belief.
Through a series of refinements, value iteration takes soitie function;(b) and adjusts it until
it until V' (b) equals the reward that we expect to get if we begin in bélaefd then act optimally.
For POMDPs, one can show that the value function is both piase linear and convex [36].
Intuitively, the fact that the value function is convex mgdhat state uncertainty never helps us:
we can always expect higher rewards if we know our true state.

Any value function—optimal or not—implicitly encodes a pewlar policy. Note that given a

starting beliefb and an actiom, there are exactlyO| possible belief$? we could transition to in

°There are other ways to define optimal policy—for examplesimiing the average reward over a finite number
of steps in the future. We use the infinite discounted horizsion of the POMDP largely for convenience.

19

the next step, one for each observation we may see aftegtakiiona. We can also compute the
probability of transitioning to any particulag, which is equal to the probability of seeing action

after taking actior from beliefb:

Q(olb,a) = > Q(ols, a)b(s)

where we usé(s) to mean the probability of being in stateaccording to belieb. Thus, the
expected reward from taking actiann belief is given by the sum of the immediate reward we
expect to get and the our (discounted) expected future tewdfe give this quantity a special
name,Q (b, a):

Q(b,a) = R(b,a) +7 > _ Q(olb,a)V (2). (2.2)

00
whereR(b,a) = >, Rs,a)b(s), the immediate reward we expect to get in beliéfwe perform
actiona. Now that we know the value of each action, we can simply cadbs action with the
maximum expected value. Moreover, the value of taking theva action inb must be the value
V' (b) of being in belief:
V(b) = maxQ(b, a).

a€A
Substituting Equation 2.2 into the expressionifab) we get the Bellman equation for the optimal

policy:
V(b) = max[R(b,a) +~v > _ Q(o|b,a)V (b2)]

acA 0e0

We will solve the Bellman iteratively using dynamic programg. Suppose that we only had
one action left to do; clearly, we would choose the action thaximized the expected immediate
reward. LetR, represent the vector of rewards for each state if we takeracti Then optimal
final action isarg max, R(-,a) - b. Note that this function is piecewise linear in the belieNow,
suppose that at some later stage, the value function ip&dewise linear. In particular, we will
represent the value function at thé iteration a as collection of alpha vectdrs = {a;, as, ...as }.

These vectors represent hyper-planes ihsdimensional space; the value of a belief is given by

20

Vo (b) = max,b - o If we rewrite the Bellman equation in vector form, we find:

Vn+1(b) - Igeaj([Ra b+ g Z(Z TS’,GQ(O|S,7 a)) ’ 043 ’ b]

ocO s

wherea? is whatever alpha vector ivi, that maximized the value @f. Note that we can factor

the beliefb from the expression to get a linear expressiott in

Vn-l—l(b) = rgg}HRa +7 Z(Z Ts’,aQ(0|S/v CL))) Ozg]']b (2.3)

0e0 s

Thus, by induction, the value function is piecewise lin&de also have an expression for an alpha
vector in the revised solution. We note that the alpha vealsy has an associated action: if the
a is the action that is therg max of the expression above, then it is the optimal action aasedi
with that alpha vector.

Each iteration, obackup represents planning one more step into the past and bhegatue
function closer to its optimal value[10]. Unfortunatelyhen we do a backup, we must apply
Equation 2.3 to every belief in an infinite belief space. A®sult, the number of alpha vectors
grow exponentially with the number of iterations. For thinite horizon, the exact solution may
consist of an infinite number of vectors! Even with a finiteihon, however, we may quickly run
into trouble: if there are: alpha vectors in one iteration, the next iteration may haveoyA|n'©!
alpha vectors. State of the art algorithms for solving PO BRactly limit the size of the solution
with linear programming and other techniques to prune rddohalpha vectors [1]. However,
even the best exact approaches may take hours to solve lyrsfaill problems; they typically do
not scale over tens of states.

Since the exact solution to equation 2.3 using an iterato&bp approach is exponentially ex-
pensive, we approximate the true backup operation by bgclprat only a small set of beliefs[26],[27].
The approximation approach and the choice of beliefs detertte quality of the solution and
thus the performance of the dialog manager. By approximgdiath the value at a particular belief
and its derivative, several approaches, including “PBiated Value Iteration” (PBVI) [26] and

“Perseus” [37], are able to produce approximations thaég®izes well to other parts of the belief

21

space. Note that since the solution to the value functionegsepvise linear, the derivative of the
value function at a particular point is exactly the alphateoeéor that point. Therefore, one way
to think about the point-based approximations is that asta collecting all the alpha vectors, we
only look for alpha vectors for certain beliefs that we thixik represent the entire space well.

A point-based backup consists of the following steps:
1. First, we project the alpha vectors forward for each gadesiction, observation pair:

' ={ala(s) = R(s,a)} (2.4)
' = {ala(s) 72T ‘|s,a)Q(o|s’, a)d’(s)}, Vo' € V4 (2.5)

TheTI'* andI'*° sets represent thB(-,a) and~y Y o (>, T(s'|-, a)Q(o|s’, a)). - a2(-) parts of
Equation 2.3, respectively. So far, we have not limited @lutson based on our limited belief

set.

2. Next, we find the best combination of the the gamma setsdon eelief. These are our Q-
vectors:
={ala=T"+ onargarglgfo(a -b)} (2.6)

At this point, we have simplified our computations becausgead of computing the Q-vector

for all of the beliefs, we have found the Q-vector for our lkieal set of beliefs.

3. Finally, we take the dominating Q-vectors be part of owv set of alpha vectors:
Vo, ={ala =arg mlz}xb(oz -b)}, VbinB (2.7)
acl'®

This step is exactly what we would have done in a standardtapda

Choosing an appropriate belief set is an active area of rese®BVI recommends starting
with some belieb, (such as being in a ‘dialog-start’ state). Then for eachoacti we sample a
user response from the observation distribution and compute the updatdbstateb? (simu-

lating the effect of one exchange between the user and thegdi@anager). We add the farthest

22

new beliefs to our set and repeat the process until we acatentiie desired number of beliefs.
Since the beliefs represent confusions over the user'stinpgcking beliefs reachable from the
starting belief focuses our computation in situations tteod manager is likely to experience.
PBVI backs up all beliefs in each iteration. Other belief ping approaches use more complex
heuristics to iteratively add points that are most likelgémse a change in the current value func-
tion. Regardless of how the belief set is chosen, one can #evgiven sufficient iterations, the
final error in the value function will be bounded by the latgdistance between some reachable
belief and a member of the belief set.

Perseus takes a somewhat opposite view: instead of tryidgtermine which belief points
will be the most important, and backing those up, it first teeaa very large set of reachable
beliefs. However, instead of trying to backup every one ekthbeliefs, Perseus only backs up
enough beliefs in each iteration to uniformly improve th&eaunction. Although more updates
are needed to each a full backup, each update can be veryPEseus also avoids the dilemma
of how to choose an small support belief set. The randomizettups still provide monotonic
improvement in the value function, although it is more diffido determine how long one must
run the algorithm to achieve a particular level of perforcean

Finally, we note that many optimizations have been made poonre upon these (now standard)
approaches to value iteration. In particular, “Heuristeafh Value Iteration” [35] speeds up
convergence to the value function by maintaining both a tdweeind (using alpha vectors) and
an upper bound (using linear programming). It chooses taugathe value function in regions
that will minimize the maximum difference between the upped lower bounds on the value
function. We chose not to use HSVI primarily for reasonsteglao the ease of implementation,
but if we continue to value iteration in our future work, HSdtles provide an alternative to PBVI
and Perseus that comes with stronger performance guasantee

Point-based approximations to value functions are anciitteaway to solve POMDPs because
they offer a simple dynamic programming approach that caefbie@ently implemented using
matrix operations. However, there do exist other appraatihsolving POMDPs. The main other

approach is policy iteration. Instead of representing é&pamplicitly through a value function,

23

some policy based approaches typically represent theypwimre explicitly using a finite state
controller (FSC). FSCs are graphs which consist of a settadranodes. Observations transition
the agent from one action node to the next. The advantage@$ Ehat they can often represent
policies compactly and converge to near-optimal poliaefewer steps than using value iteration
[17], [11]. FSCs can also be used to find patterns and higeeéh the POMDP structure that
further reduce the size of the policy [2]. However, solvingds for a representation of a given
size can be quite difficult, and in general FSC optimizatitgliire more complex computations
(such as semi-definite programming).

Other policy iteration methods [23], [16] use a tree-bassgulesentation. Given a current
starting beliefby, they first consider the sd8, of the |A||O| beliefs they may encounter after
taking one action and receiving one observation. Next tlomsicler all the beliefs3, that they
may encounter if they take an additional step from each thiefsen the setB;. In this way,
they construct a tree of beliefs that are reachable in a fixecher of steps. Each node in the tree
represents a belief, and we can compute the expected immegliegard for each belief. Given these
values and the probability of encountering each belief ftbenstarting poinb,, we can compute
the value ob, (the discount factor allows us to ignore beliefs beyond gagedepth.) The benefit
of tree based approaches is that the size of the state spaseger matters; we only plan ahead
from our current point. The primary drawback is that the dreey have to be fairly deep to get
a reasonable approximation of the value function, and tHasge amount of computation may be

required at each step.

2.2 The Dialog Management POMDP

There are many ways of expressing POMDPs for dialog manageued here we describe one
simple model that we will use throughout this work. Since weeiaterested in an application for a
robotic wheelchair, our states are the set (hidden) usemtioins—in particular, the locations where
the user may wish the robotic wheelchair to go. Actions idelqueries to the user and physical
movement. In our basic model, the agent can choose from taaslof queries: it can choose to

ask a general question (such as, “Where would you like to)goftonfirm a specific goal (such

24

as, “Did you want to go to the elevator?”). Based on the matneaction and the user’s (hidden)
state, the agent has a model of what observations it mayeed@ur dialog manager searches the
output of the voice recognition software [9] for predetared keywords to use as its observations.
We will assume that the state, action and observation se@llatiscrete and finite (although work
has extended dialog managers to large state spaces [39atdunus observation spaces [40]).
The transition functior?’(s'|s, a) states what the user is likely to want next, given the state
they were just in and the action the system just took. In atbwfdialog models (see Figure 2-
1), we assume that the user is unlikely to change their intedtdialog. Thus, the most likely
user state sequence is (1) initiating dialog, (2) seekinga lpcation, and (3) completed dialog.
The transition probabilities between goal states is farhall. The observation functidn(o|s, a)
encodes both the set of words that a user is likely to use tritbesa particular goal state and the
speech recognition errors that are likely to occur. Findahe rewardR(s,a) gives us a way to
specify what the “right” actions are in different states &ogv much the user is willing to tolerate

clarification questions before becoming frustrated.

/"\’\.%\\\\\
Go to '
(o) (el 7= Coone)
|1

v 7 (
3 \ A
. ANEN Y

\‘ 7
GQ to
Begroom

_____ .-~ Teset
Figure 2-1: A toy example of a dialog POMDP. Solid lines represent mikedy transitions; we assume that the user
is unlikely to change their intent before their original vegt is fulfilled (dashed lines). The system automatically
resets once we enter the ‘done’ state.

3Since repeated questions can also be frustrating, we ditlybeixplore extending the basic state model to include
a counter for how often a query has been asked and impose fagalties for repeated questions. However, we found
that effects of the frustration model to be relatively smatus, we opted to use the more computationally tractable
basic model in our tests.

25

2.3 Related Work

In this section, we review literature from fields most rethte our work. First, we survey work
in learning POMDPs with parameter uncertainty. Next, weaw\prior applications of POMDPs
for dialog management. We conclude our review with exampfesther approaches to dialog

management.

Learning in POMDPs with parameter uncertainty =~ Several works have considered the prob-
lem of planning with uncertain parameters in the POMDP or MB#nework. Closest to this
work are the Bayesian approaches of [15] and [30]. Both cfelapproaches place priors over the
model parameters and update them as observations areegceiv

The Medusa algorithm[15] extends the observations of [4lq\suggests sampling MDPs and
updating their value functions as new data received). Tp&iparticle-filter approach to the prob-
lem, Jaulmes et. al. sample a set of POMDPs from an initidtiligion over models. As the
prior distribution is updated, each POMDP is reweightedatiog to its likelihood; occasionally
low-weight POMDPs are discarded and new models are sampadthe current model distri-
bution. Actions are chosen stochastically: each POMDPieppk weight toward the action that
its policy recommends. The advantage of Medusa’s appraatiat the small POMDPs can be
solved quickly. In fact, with so many POMDPs, the overallipplill often be correct even if
each POMDP’s solution is not fully converged. The disadagatto the Medusa is that the action
selection does not consider how an action may change thel maale in this sense Medusa is still
blind to the uncertainty in the parameters.

The Beetle algorithm[30] takes a decision-theoretic appihado solving MDPs with uncertain
parameters. Using recent advances in continuous-POMDiE@otechniques[12], Poupart et. al.
treat the unknown MDP parameters as hidden state in a laf@®HHP. Since the state is always
known, the transition statistics for the MDP can be readipglated; these updates change the
agent’s belief over possible MDP models. While it may be pmsgo extend such an approach to
POMDPs, planning over a high-dimensional, doubly-cordimistate space—that is, continuous

in both the POMDP parameters and in the belief state—woulgliite computationally difficult,

26

and likely to yield poor solutions without additional workPOMDP value function approximation
techniques.

Others take non-Bayesian approaches to solving MDPs witertein transition matrices ([24],[42]).
Aimed toward industrial applications, where each machiag mave different parameters within
a given tolerance, these approaches consider the spacecin e MDP may reside and find the
policy with the best worst-case performance over the searrirg is not incorporated into the
model, but in some cases, the user can trade-off betweestrass (worst-case performance) and
maximizing performance with respect to a nominal model[4&hile not directly related to our
approach (and currently limited to MDPs) these approachgsavide a means of ensuring robust
behavior for applications where the user may be willing teeree lower average-case performance
in order to ensure that large errors occur with very low pbulits.

Finally, we note that there do exist model-free approacbeteairning in partially observable
environments. Early work applied various heuristics [20Q-learning [38], originally a method
for learning in fully-observable environments (that isse&a where the agent can determine its
state exactly through observations). These heuristidaded using an initial model to seed the
value function and then constraining the value functiomtdude a fixed number of alpha vectors.
More recent work has shown that it is possible to learn ther@tpolicy both without a model
and without the ability for the agent to reset itself and tgaia [7]. Lastly, other works discard
the notion of an underlying POMDP model entirely and cretitectures that learn and plan based
only on previous action-observation histories and expkititeire action-observation histories [14].
While these works improve upon the Q-learning plot in Figlu®, we note that all of them require
a large amount of data to produce reasonable results evanahmoblems, and, without a prior

notion of possible pitfalls, they are likely to make many takes during the learning process.

POMDPs for Dialog Management. The ability to manage the information gathering trade-off
have made POMDP-based planners particularly useful imglimanagement, including in health-
care domains ([33], [13],[8]). These range from a nursebbbt, designed to interact with the
elderly in nursing homes[33] to a vision-based system thdst Alzheimer’s patients with basic

tasks such as hand-washing [13]. Others [8] note that in magsgs, the aiding agent’s policy can

27

be simplified if one assumes that just waiting—that is, dawothing and simply observing the
user—will resolve the system’s current uncertainties.

Indeed, much POMDP dialog-management research has foons#el/eloping factored mod-
els and other specialized structures to improve perforemamzl algorithmic complexity ([40],
[28], [39]). To improve performance, [40] incorporate arpksit confidence output from the
voice recognition system as an additional measurements,thay can reason more effectively
about the quality of the observations they receive. In sibtna where only certain actions are
relevant to certain states, the POMDP can be factored irgmituhies that reduce the overall
amount of computation required [28]. These approachesdilpiassume a reasonably accurate
user model. In domains where large amounts of data are bie#dor example, automated tele-
phone operators—the user model may be relatively easy srobFor human-robot interaction,
however, collecting sufficient user data to learn a staaiii accurate model is usually expensive:
trials take a lot of time from human volunteers.

While none of these dialog-management works discuss legumser models, insights to de-
creasing computational load will be crucial to our work @splly since we propose to incorporate
the unknown parameters into a larger POMDP). The Summary PBR&Igorithm [39], designed
for slot-filling dialogs for automated telephone operataggproximates a policy by assuming that
the only important feature of the belief is the probabilifytiee most likely state. This probability
can be used to determine whether the system should make i@bguery, confirm (the most likely
state), or submit (the most likely state), and in practige #fiows Summary POMDP to handle
large dialogs. In follow on work, the authors describe houtther streamline the solution proce-
dure to handle even larger dialogs [41]. We will make simadhservations about the symmetries

present on our dialog POMDPs in Chapter 3.

Other Approaches to Dialog Management. While POMDP-based systems are the focus of our
work, there are many other approaches to dialog managenigpically, these involve a set of
rules that the dialog manager will follow given particulartputs from a voice recognition system
(or equivalently, a finite-state machine). For example Mieecury system [34] builds a network in

which a flight reservation system keeps track of what infdaromehas already been provided and

28

for what the user needs to be prompted. In the context of fligb¢rvations, it must also guide
the user to choose a valid (that is, available) flight. Sons¢esys use a rule-based model, but add
a predictive layer that senses when the conversation iy ltkehave degraded (based on pauses
from the user, low confidence scores from the voice recagniiystem, etc.) [25]. If the dialog
degrades below a certain threshold, then the system wilipah a human operator for assistance.

Just because a system is based on rules does not imply tlzinidtcadapt to its users. The
TOOT system [19] classifies training dialogs as successfuhsuccessful using various thresh-
olds, and then adapts its rules, which are based on vari@srés of the dialog, to improve
performance. Another learning approach first trains an AdaB classifier based on a large set
of training data [3]. Thus, given a variety of inputs, theteys provides the response that the
user most likely needed (based on the output of the clagsifibese systems may need complex
procedures to handle uncertain inputs robustly, or mayrggnocertainty all together. Ignoring
uncertainty may be acceptable in automated telephonegdsgtstems, where repeating a request
is easy and the consequences of servicing a request inttpaee relatively small.

Other systems come closer to the POMDP model, for exampmd\dfun system [18] is de-
signed to learn over time. NJFun learns parameters fromcécduring a training period. The
actions are specifically designed so that reasonable diah@y be maintained during this period.
The execution of this model is facilitated by an MDP model ihaludes ‘buckets’ for different
levels of uncertainty (effectively a highly-discretize@ MDP). However, like all of the approaches
above, the NJFun system is not aware of the uncertainty pariameter and thus cannot take ac-

tions to reduce that uncertainty. It also only learns dudrspecified training period.

29

Chapter 3

Special POMDP Approximations

Despite the advances in POMDP approximation techniquesrided in Chapter 2, solving a
POMDP—even when all the parameters are known—is still alhigbn-trivial task. In this chap-
ter, we describe a collection of insights to improve the d@e®l accuracy of our solutions. Section
3.1 contains suggestions on heuristics for choosing bediefples. Section 3.2 shows how, if the
POMDP contains certain symmetries, we can solve it with aeptially fewer belief points by

mirroring sections of the belief space.

3.1 Sampling Heuristics

As we saw at the end of Chapter 2, state-of-the-art POMDRisaltechniques approximate the
entire value function by finding its gradient at a limited sébelief points. Different algorithms
have different ways of choosing these points: PBVI [26] catep all one-step trajectories from
each point in the belief set and adds the belief that wasdarthway from the set. Perseus [37]
creates a very large set of all reachable points. In thisseate discuss what sampling techniques
worked best for our problem. In particular, solving a dynaffODMDP—that is, one where the
parameters are changing as we learn more about the envinbrradds several considerations

when choosing belief points.

30

3.1.1 Sampling for the Static Problem

The dialog problem is interesting because unlike robotagpion, we are not trying to rapidly
expand to certain corners of the belief space: there aractnd very limited number of states and
we know exactly how to get to them. The dialog managementi@nobas we have formulated it
in Chapter 2 is trivial in the absence of noise; no complekgatust be planned from the start to
the goal. A rapid expansion to far away states is less critin collecting beliefs that express
confusions we are likely to see due to noisy utterance obtens.

One pitfall that we wish to avoid is making sure that the POMd&Rution is not too afraid
to act. Since we are initially unsure of the user’s intent #relobservations are noisy, we will
never be a hundred percent sure about the user’s intent. diowet sample deeply enough, and
the severity of making a mistake is large enough, we may @ao@der to risk making a mistake.
(For example, if our most certain belief is 99% certain of ¢fual state, a penalty of -1000 for
acting will mean that the optimal action in that belief idlgt confirm that location.) We can
avoid this problem by including all the corners of the bedighplex—that is, all beliefs where the
state is certain—in our initial belief sample. The effectluése points is to make our policy less
conservative (necessarily, since they add hyper-planesich we choose to act rather than gain
information).

We generally want our POMDP to eventually commit to some fglay snovement, but in Chap-
ter 5, we will see a situation where this effect is not necélysdesirable. There, we have a large
POMDP with 336 states. Solving the POMDP takes a long timelse we need many more
beliefs to span the space. With 336 states, we can no loniged &b sample belief points densely
enough to meet any kind of useful performance criteria, aadnust consider carefully how we
should pick our belief points. For the simple case abovedus€hapter 4), we seeded our initial
belief set with corner points and common confusions that weted our POMDP to handle. If we
follow the same approach here, we find that the resultingcpadi too aggressive. In the simple
POMDP, the seven corner points made up only a small fracidd?4) of the 500 total beliefs.
However, even if we use 1500 samples now (a limit we chose fkimg the simulations run in

a reasonable amount of time), including all 336 corner keheeans that corner beliefs make up

31

more than 20% of the total beliefs. The remaining beliefdate sparsely scattered throughout
the simplex, and therefore, the most influential sampleigbkel a particular point is often a corner

belief. We will resolve this issue in the next section usiggamic sampling techniques.

3.1.2 Smart Sampling for the Dynamic Problem

Given that our knowledge about the POMDP parameters aregairit is only natural that the
changes to the model will impact what beliefs are needed teeraagood approximation: beliefs
that we had never encountered before may suddenly becomm@omnder a new set of obser-
vation parameters. For example, with symmetric and unirhololservations, the belief is usually
peaked around a particular state. If the true observatiometrie bimodal, then we will find our
solution quality is poor not due to the number of backups,dattause bimodal beliefs were un-
derrepresented in our original sample set. There are tws waycan attack the problem of what
belief points we should use in our sample: either we can findnapse that will do well in all
situations, or we can adapt our sample as we get more infamxmalbout the unknown parameters.

For small problems, we work around this issue by seedingrtitiali belief set with not just
the starting belief, but a set of beliefs that include sitreg—such as bi-modal and tri-modal
beliefs—that we would like our dialog manager to be able todt@well, regardless of the true
model parameters are. When the problem is small, handrgjdiey beliefs efficiently improves
the quality of the solution.

For large problems, resampling beliefs is key. Given a dpsee with 336 states, we really
cannot hope to do it justice with only 1500 belief samplespafrwe try to pick the points wisely—
we used 500 samples for the basic problem before. We needuatrsblutions that can still
be solved quickly. In our particular case, the state spapdosion occurs because we will be
considering joint uncertainty in the model parameters &eduser state. As we learn about the
true model, our belief converges to smaller parts of theebslmplex. Therefore, we really do not
need to know how to behave in every possible parameter séte dieginning, we only need to
know how to behave in our start state, and as we learn mord dimparameters, we can refine our

policy for the relevant part of the state space. By resarg@swe go, even though our POMDP

32

never changes, our policy still ‘adapts’ in the sense thatefi@e the policy around parts of the
belief space that are actually relevant. Table 3.1.2 sumesour approach.

Table 3.1 Algorithm for dynamic resampling for iterative solutiottslarge POMDPs. While generally applicable,
this technique works particularly well if the reachableibietpace becomes smaller over time.

DYNAMIC RESAMPLING

e Sample a fixed number of belief points from the starting helising
PBVI or any other sampling approach).

e Solve the POMDP.
e Loop:

— Interact with the user.

— Resample a new belief set given new starting belief.

— Perform additional backups on the POMDP solution to refinge it
around the new region of interest.

3.2 Fast Solutions to Symmetric POMDPs

One reasonable starting point for the dialog POMDP is to bay dbservations and rewards are
symmetric and unimodal. For rewards, this means that tharde¥or going to the right location
is the same in every state, as is the penalty for doing an riecoaction. There are certainly
situations where this is not true—for example, the user mayebs annoyed if the wheelchair
seems to mistake similar sounding words—nbut it is a readersafrting point.

Likewise, symmetric observations imply that the prob&piif hearing noise is the same in all
states. Unimodality means that the distributions have @ad pround the most likely observation
and all other observations are equally unlikely. Again,estaation symmetry is definitely not true
in the real world, where similar sounding words are much midedy to be confused that dis-
similar words. However, it is a reasonable approximatidarofised in practice [39], [33]. We will
not try to further justify the symmetric, unimodal obsergatmodel, but we show that within such

a model, the POMDP can be much simpler to solve.

33

Finally, we note that our dialog POMDP has a very speciabacsitructure. There are three
kinds of actions, some of which take a state as a predicake(aageneral question), confirm (a
specific state), and act (go to a specific location). Thuspansgtry also exist in the actions.

More formally, we consider the class of POMDPs with the feilog properties. Let the true
state of the user be called the target statelLet o(s,a) the most likely observation in state
after taking actioru. Leta(s) denote taking action with predicate state (for examplea might
be “confirm” ands might be “cafe”). For each action in the symmetric POMDP, itbwards,

observations, and transitions are given by:
e R(s,a(s)) =R} if s=s andR; otherwise.
e O(o|s,a) =pf if o =0(s,a) andp, otherwise.

e T'(s"|s,a(s")) = qf if s =5" andq, otherwise (an information gathering action probably does
not change the statey ¢* if s = s’ (a correct “act” action may reset the probabilties overdarg

states).

Note that both rewards and observation probabilities dalepend on the state.

If we ignore the “start” and “done” states in our dialog mqdeén the remaining target states
follow the properties described above. For example, censfte following two beliefs over three
possible target states; = (0.5,0.3,0.2) andb, = (0.3,0.5,0.2). If the correct action in the first
belief is to confirm the first state, then the correct actiaim@second belief must be also to confirm
(in this case, the second state). The ordering of the bedieles do not matter when choosing the
action type, only the values themselves. The predicaténtoacttion type is always the most likely
state. It should therefore be clear that in these special BRdithe identity of the state does not
affect the correct action type (although it may affect itsgycate).

This observation has profound implications for solving B@MDP. What we have just said
is that given a beliep;...p,,, any permutation of that belief has the same action type.e it
permutations are exponential in size; thus, knowing theecbiaction for one belief tells us about

how we should behave in exponentially many other beliefedpkfor the predicate, which is easy

34

to attach later). Without loss of generality, we will shownhwe can solve for the entire value
function using only beliefs that whose probabilities argesin non-decreasing order.

Before we describe our solution procedure, we note that weatasimply take a small set
of sorted beliefs, compute value-backups on them, and &xpeayet the correct value function.
Consider a simple two state situation, where the action$Gwenmit to State One,” “Commit to
State Two,” and “Query for Correct State.” Suppose that veeirathe beliefh) = (0.5,0.5). From
the problem symmetry, it should be clear that the values béfseé., andb’?, should be equal.
However, suppose that we only include beliefs that placatgrgrobability on the second state.
The action “Commit to State One” will never be chosen in tleisg, and without knowing that
positive rewards are available in the first state, the valuetion will place lower value on’.,
thanb?2,. More generally)/ (b) < V,,:(b) since for any belief that prefers state two, there is some
probability that we may transition to a ‘bad belief’ that éas state one.

We now describe our procedure for computing the optimales&mction using only the sorted
set of beliefsB,. Suppose first that if some alpha vectoiis part of the solution to the value
function at iterationn, then all permutationg=(a)} are also part of the solution to the value
function at then'" iteration (we will prove this statement shortly). Sincedflthe beliefs in our
sample have non-decreasing values, the permutati@n) that sortsy in non-decreasing order will
maximize the dot produchax, (. « - b. Let the value functiorV,, be the union of all permutations
of a set of alpha-vectors;..a;:V,, = U, {r(a;)}. Then, to find the alpha-vector that maximizes
the dot product with some sorted beligit is sufficient to consider the (exponentially smaller) se
of alpha vector$/,, = U*_, 7*(o;). This observation immediately suggests the following prthoe

for computingV,, . for our sorted set of beliefs:

1. Propagate each alpha-vectorlin forward to create thé®° sets. Note the number of alpha-

vectors inV,, for the sample seB; is at most B;|.

2. Within eachI'*° sets, sort the vectors in non-decreasing order. Note that we have note in-
creased the size of the sets. (We will show that if all pertnuta of the alpha-vectors are
present in the solutiofr,,, then all permutations of the vectors are present in tH&° sets;

recall that only the permutation of thevector that has non-decreasing values may maximize

35

the dot product” - b.)
3. Choose the combinations of thé° to construct the new alpha-vectors 19y, ;.

Note that once we can compute the correct valig) for b € B, we can compute the value of
any other beliet’ by first sorting it and then evaluating it through our valuedtion.

It remains to be shown that for any alpha-vector in the sofuy,, all permutations of that
alpha-vector are also part of the solutighand all permutations of the vectors are part of the
setsI'»°. We provide the following sketch of the argument. In the fiestation, let us set the alpha
vectors to be reward vectofg,. By the problem symmetry, if the reward vect®y = (v, r, ,r;)

for some action, then the reward vectéis = (r,,, r},r.,) andR,» = (r,, v},) also existin
the set, that is, if a vectar is present, all permutation @t are also present.
For the inductive step of the argument, suppose that at smationn, we have a collection

of alpha vectors;..a;, and a corresponding solutidfy = UY_, {m(;)}. To compute thé*° sets:

= {glg(s) va 'Is,a)Qo|s',a)d’(s)}, Vo' € V, 4 (3.1)

Suppose that someg was used to compute a vectgt’ € I'“°. By the symmetry in the problem
note thatgf"o is a permutation of;;"° if a is of the same type as. Also by problem symmetry,
note that a permutation af; will produce a permuation af;"°. In this way, we can argue that all
perumtations ofj;"° are present among th&° sets.

The remaining steps are simple: consider forming thels&ts
"={gly' =T+ > arg max(g- b)} (3.2)

Note that although we are only considering sorted belidifpeaumations of those beliefs are valid
beliefs. Thus, suppose thiatc B, picks out a vectoy as the argmax. Then, a permutationhof
will pick out a permutation ofy as the argmax. Thus, if is the optimal vector for some belief,
then all permutation of will also be part of the optimal set. An identical argumenidsavhen we

choose the bedt** vectors to be included in the value functibp, ;.

36

Thus, we can conclude that all permutations of any particallgha vector exist in the set.
Therefore, we can plan using only sorted beliefs and sofpddharectors. While this is only useful
if the problem contains certain symmetries, in practicenyndialog problems can be modeled
this way (even if they are not exactly symmetric). Indeeds tramework should apply to many
preference elicitation problems, and other problems wtiexerimary uncertainty is to discover
what (static) state we are in, and where we have actions #hatus to sense generally, probe for
a particular state specifically, or commit to a particulatest For example, problems of trying to
detect the presence of a particular trace element or théityleha material may also fall into this
category.

As a validation of the performance of this approach, FigutesBows the performance of using
the permuted approach on the dialog problem with 48 differkaices of parameters. In the PBVI
case, 500 belief points were selected and backed up 25 tidwgs.that the solution does poorly,
although adding additional backups (up to 200) improvesginity of the policy significantly.
The permuted case only had 24 belief points and was also tagkenly 25 times. Even with
such little computation, it performs much better than thé pOint sample set and almost as well

as the set with 8 times as many backups.

37

Mean Reward for Various Sampling Techniques

100

50687

o
T
*
.
.

-50F

mean reward

PBVI
O PBVl,extra backups

-150 - * Permuted Beliefs

-200 . . ¢ .

-250 I I I I I I)
0 10 20 30 40 50 60 70

test index

Figure 3-1: Performance of Permuted Approach compared to standard 88Wpling. The permuted approach had
only 24 sample points, compared to 500 for the PBVI set, ariesed good performance with 8 times as little
backups.

38

Chapter 4

Maximizing Expected Performance

In Chapters 2 and 3, we argued that POMDPs provided a gooctivark for decision-making in
stochastic environments and described how, given a POMD&yant should solve that POMDP
to determine a policy of optimal behavior. We now turn to theamfocus of this work: how should
an agent behave if it does not know all of the parameters inrP@&DP? Taking a Bayesian
approach, we begin by placing priors over the unknown patersie These priors allow us to
encode knowledge and intuition we may have about the pralfemexample, while we may not
know the exact reward parameters of the true POMDP, we cassghat an incorrect movement
will have a higher penalty than a clarification question.ciig priors over the parameters induces
a distribution over possible models. Section 4.1 descnibere precisely the prior distributions
that we place over the parameters.

In this chaptef, we begin an exploration of two issues surrounding plannihgmwe have a
distribution over models instead of one known model. The f&sue is one of action selection.
In Section 4.2.1, we show that, in the absence of learnirggagent should plan its policy using
the expected values of the uncertain parameters if it wishasaximize its expected reward. The
second issue relates to improving the agent’'s knowledgéefriodel: as it learns more about
the model parameters, its distribution over possible nssdlebuld peak around the true POMDP

model. In Section 4.2.2, we describe more precisely how weaupaate our belief about the model

IWork in this chapter was previously presented in [5].

39

parameters given data from an interaction. We conclude pproach in Section 4.2.3, where we
present efficient update heuristics to adjust policy thafowad in Section 4.2.1 after another user
interaction.

We note that the idea of having a distribution over possibbel@ts is very similar to having
belief over possible states. Indeed, we will see these twcegts merge in Chapter 5. For the
present, however, we will consider state uncertainty andehencertainty separately—planningin
an uncertain state space is already challenging, and pl@ima joint uncertain state-model space
poses additional computational challenges. We also natesthce our planning step in Section
4.2.1 uses only the expected values of the uncertain pagasneiur agent’s policy is unaware of
any parameter uncertainty. In Section 4.3, we show that #nebasic form of learning and policy

refinement produces a more adaptable dialog manager.

4.1 Model Definition

We use the simple POMDP dialog model described in Sectiani2 2articular, our model consists
of five goal locations on the first floor of our building: the @afTower, the Dreyfoos Tower, the
parking lot, the information desk, and the Forbes cafe. rfigaki Bayesian approach, we place
priors over the reward, observation, and transition patareeWe describe the form of the priors
in this section, and in Section 4.2, we describe how we uptifetse priors as new data arrives
(and how we adapt our dialog manager’s policy to the changistgibutions). We assume that the

discount factor was fixed and known.

Rewards. We place a Gaussian distribution over each reward paramfiétet.). The Gaussian is
initialized with a mean, a variance, and “pre-observationnt.” The pre-observation count mea-
sures our confidence in our estimate of the mean: it correlsplmhow many “faux-observations”
from which the data was obtained. For example, if we are quotdident that the penalty for
asking a question, is -1, we may set the pre-observation count to 100, that isawweas sure
thatr,,. = —1 as if we had seen the user entef,;, = —1” a hundred times. Conversely, if we

are unsure of the value of,;, we may set its pre-observation count to 10 (or even 1 if theeva

40

was really just a guess).

Since our current approach uses only the expected valube giarameters, the rewards may
be either stochastic or deterministic. For our purposesgkier, the initial choice of the reward
variance does not reflect the inherent stochasticity of yfs¢esn (that is, an inconsistent user).
Rather, the variance reflects our certainty our currenteegevalue of the reward. A high variance
suggests that that we are not very sure about our reward,wahereas a low variance suggests
that we are confident about our reward value. While partlyineldnt with the pre-observation
count, we note that observation counts alone are not a goadureof parameter certainty. A new
measurement will always increase the observation countielder, our updated variance will differ
based on how closely the new measurement matches the penmasurements. In particular, if
a new measurement does not match new values, we would likeystem to become less certain

about the true value.

Observations and Transitions. We capture the uncertainty in the transition and obsematio
parameters using Dirichlet distributions. Recall thatdcrete states and observatiohsand(?
are multinomial distribution§’(s'|s, a) andQ(o|s, a). Figure 4-1 shows an example of a simplex
for a discrete random variable that can take on three difter@ues. Every distribution over those
three variables is a point on this simplex: for example, tbiat(0,.5,.5) represents a distribution
where the first value never occurs and the second two valgesaarally likely. The Dirichlet
distribution is a natural choice because it places a prdibabieasure over all valid multinomial
distributions. As the conjugate prior for the multinomigatdbution, we will see that the Dirichlet
distribution is also easy to update given new observatioa.da

Given a set of parametefs...0,,, the likelihood of the discrete probability distributipq..p,,

is given by

wherern, the normalizing constant, is the multinomial beta funeti®he Dirac delta function(-)

ensures that the probability pfis zero ifp does not represent a valid probability distribution, that

41

Figure 4-1: An example simplex for a multinomial that can take thrededént values (a,b,c). Each point on the
simplex corresponds to a valid multinomial distributiohe tDirichlet distribution places a probability measurerove
this simplex. The second figure shows a probability distidvuplaced over this simplex.

is, if -7 p; does not equal one. The expected values of the Dirichletlaision are given by

9,
Elpill) = <, (4.1)
765
and the mode is
0, —1

As the conjugate distribution to the multinomial, Dirichiistributions have the additional
property that they are easy to update. For example, suppesaavgiven a set of observation
parameters; ...0,o corresponding to a particulaja. If we observe observatian, then a Bayesian
update produces new parametgts ... ,0; +1,...,0,0). Thus, we can think of quantity, — 1
as a count of how many times observatigrhas been seen for the,{) pair. Initially, we can
specify an educated guess of the multinomial distributieovhieh we take to be the mode of the
distribution—and a pre-observation total that representsconfidence. Given a total number
of pre-observations, we set the beta parameters of thehBatidistribution in proportion to the

expected probability values for each state.

42

4.2 Approach

Table 4.2 describes our general approach. We have alreatyiloksd how we may put priors
over the parameters; here we discuss how to solve for a pgileyy uncertain parameters, how to

update the parameters, and how to update the policy.

Table 4.1 Expected Value approach to solving an uncertain POMDP. & with distributions over uncertain
parameters and refine them over time.

ExXPECTED VALUE POMDP

e Put priors over all of the parameters
e Solve for an initial dialog manager policy
e Loop:

— Interact with the user.
— Update the distribution over parameter.
— Update the dialog policy.

4.2.1 Solving for the Dialog Policy using Expected Values

The Q-functions in the Bellman equations described in Girapitan be written in the following

form:

Q(b7a) = maxqz‘bu
7.(s) = R(s,a +72 ZT "|s,a)Qo]s’, a)an_1.(s).

0€0 s'eS

The first equation is an expectation over our uncertainth@ttue state (in our case, the user’s
intent). The second equation averages over the stochasticthe model: the reward we expect to
get in a certain state is the current reward plus an averagieadithe future rewards we may get
depending on which belief state we may transition to.

Computing the vectog,—which is an average over the stochasticity in the user rmedelv

requires an additional expectation over our uncertainthéuser model. Le® represent collec-

43

tively all of the hyper-parameters of the distributions otree rewards, observations, and transi-

tions. Then we can write the additional expectation as:

Ga(s) = Eo[R(s,a +VZ ZT "|s,a)2o]s’, a)an—1.i(s)]

0€0 s'eS

= FEolR(s,a) +72 Z Eo[T(s'|s,a)Q(0s, a)an—14(s)]
0€0 s'eS

= FEo[R(s,a) +vz Z Eo[T(s'|s,a)|Ee[(0|Slva')]a7L—17i(S)7
00 s'eS

whereEg[R(s, a)], Eo[T(s'|s,a]) and Eg[2(o|s’, a)] are the means of the Dirichlet distributions
as given by equation 4.1. The second line follows from thediity of expectations, and the third
line follows from the fact that the uncertainty in the traimsi and observation distributions—at
least, in how we choose to model them—is independent. athe; is a fixed value from the
previous iteration and does not require averaging.

Note that learning does not appear in this derivation. Wheahave shown is that if the param-
eters are uncertain, for the optimal dialog policy—thahis policy that maximizes the expected
discounted reward—it is sufficient to solve the POMDP with #xpected values of the model
parameters. This policy is not optimal if we can gain addiglanformation about the parameters

through our interactions. We will explore this issue in fetehapters.

4.2.2 Updating the Parameters after an Interaction

Given a history of states, actions, observations, and asyatris very straightforward to update

the priors over the parameters. For the rewards, which haus$&tan priors, we simply compute:

/ HR(s,a) TV R(s,a) +r

- 7 7 4.3

HR(s,a) M) T 1 (4.3)

o2 _ DR(sa) (0R(sa) T (HR(sa) = HR(sa)?) . (r = Higgoa)’ s
R(s,a) NR(s,a) T 1 N R(s.a) + 1 .

an(s,a) = nR(S,a) -+ 1, (45)

44

wherenpgs) is the previous observation count, amgl; . andag(s,a) are the previous mean and
variance for the rewar®(s, a).

For the Dirichlet priors over the transition and observatioobabilities, we simply increment
8,5 OF thef, , , as appropriate. Recall that the initial beta values can baght of as pre-
observation counts of a particular event; as we get truereagens of the event, we simply add
these observations in. As the beta values get higher, thespver the observation and transition
distributions will get more sharply peaked. In the casewWeateceive not a single observation, but
a distribution over observations (such as normalized worghts from an n-best list of possible
phrases), we simply update each beta value with the protyalwhich we can think of as a partial
count) that it was observed; , , = 0, . , + P(ols, a).

While the updates above are simple, a key assumption thatawe fmade is that we know
what state the system was in when a particular reward, osiseny or transition occurred. (Note
that our history, in a POMDP, consists of only actions andeolations.) In general, this issue
can be a very tricky problem. One approach—and the approathve use—is to note that once
we have a history of observations and actions, we have reduaePOMDP to a Hidden Markov
Model (HMM) in which the observations and transitions araditioned on the (known) sequence
of actions. We used the Viterbi algorithm (see [31] for a gtuddrial) to determine the most likely
sequence of states for that HMM, and thus for that obsenvéiistory.

We have glossed over one more point: when using the Vitedairghm, the system expects
transition and observation distributions for each statewéler, we do not know the true obser-
vation and transition distributions! We use the expectddesof these distribution in our algo-
rithm. In general, updating the distribution parameterghvhe HMM output could have fairly
poor performance, since we may update the wrong paramételsed, as seen in Figure 4-2, we
see that in our basic dialog model, the number of misprediistates grows steadily over time.
However, most of the time, the error is that we fail to notideew a user changed their mind in
mid-conversation. As a result, the values of the transstibecome close to deterministic—that
is, we begin to think that the user never changes their mimdichconversation, and we attribute

the inconsistent phrases as additional noise in the olis@mga The resulting policy may be sub-

45

Fraction of Errors in HMM State Estimation
0.14

0.12

0.1

0.08 -

0.06 -

Fraction of Misidentified States

0.04

0.02

.
0 20 40 60 80 100 120
Iteration

Figure 4-2: Error in the HMM estimation of the state.

optimal, but not critically, since we assume that the usgergerally unlikely to change their mind
in mid-dialog to begin with; we get approximately the sanmutes by determining the user’s true
goal state by the motion action that successfully ended ilegl Note that we use the cue that

the dialog has ended as a very important cue for training.

4.2.3 Updating the dialog policy

The policy that we found in Section 4.2.1 gave the optimalrsewf action for a POMDP with
certain parameters—the expected values of the distribsibtwer parameters. Once we have com-
pleted a dialog and updated the parameter distributionshave a new set of expected values.
Clearly, we should consider changing the policy to refleetrtew parameters (note this is a simple
form of learning: although the system is not aware that it®as will result in greater knowledge
about its environment, once that knowledge is obtained wadagt to our new conditions).

One option would be simply to recompute the solution to thpeeked value POMDP each time
the parameters are updated. This is undesirable, howeaeaube solving the basic POMDP (in
Matlab) can require several minutes of computing. Insteedse the fact that the value function

has probably not changed very much in the span of one interacthus, we can use our current

46

solution as a starting point and compute additional backigesill Equation 2.3). Since the backup
operation is a contraction ([10]), the additional backuplé always bring the old solution closer
to the new solution.

The question remains of how many backups to perform, andignwbrk we consider three

different update heuristics:

1. Backup to convergence. After each completed dialog, wi®me enough backups for the new
value function to convergéThis should lead to the best expected performance givenrberu
tainty in the user model. However, the current model statishay come from a few unrepresen-
tative dialogs so that the computed policy is wrong. Heresentearning must be done before the
policy’s performance can improve, and careful planning rtieeyefore be wasted effort. Com-
puting a POMDP policy to convergence is also a slow processlithg to long latencies in dialog

manager responses.

2. Backupk times. Performk backups, regardless of how the parameters change. Thisabpr
may prevent latencies in the dialog manager performandeldas not give the dialog manager

time to compute better plans once we have confidence in thelmod

3. Backup proportionally to model confidence. The sum of tuieances on each parameter is a
rough measure of the overall uncertainty in our user modean lupdate reduces the overall
variance, we backupk * dvar| times, wherelvar = 32,y max(0, 07, ; — o7, ;) where M
is the set of all model parameters anfi; ando?, ; are the initial and final variance for model
parametern. Thus,dvar measures the total reduction in variance. The intuitiorh& tve
wish to expend the most computational effort when the usetehioecomes more certain. For

simulation purposes, we also capped the number of backupggdate at 50.

The first heuristic, backing up to convergence, is the mascimled, but it fails to capture the
fact that if the parameters have changed only slightly,damounts of computation may be a
wasted effort. On the opposite end of the spectrum, backing fixed number of times is clearly

suboptimal since there may be times when we really wish to

2To complete our simulations, we capped the number of bagkepspdate step to 50.

a7

We suggest the use of the final heuristic, at least in thealptanning stages, since it expends
more computational effort when there is a large decreasariance (note thévar is the sum of
the change in variance for all the parameters). In laterestagghen the parameters are already
certain, it may be prudent to simply solve the new POMDP toveagence. That way, we avoid
the issue of never applying backups because the varianceases very gradually; although we

never had this issue in practice.

4.3 Performance

We tested our approach in an artificial simulation and withleotic wheelchair (see Table 4.2 for

a summary of the key parameters).

Table 4.2 Model Parameters for Simulation and User Tests.

Parameter | Simulation| User Test
States 7 7
Actions 12 12
Observations 11 19

4.3.1 Simulation Performance

Table 4.3 shows initial parameter guesses and true valogglly, the expert prior believed that
the voice recognition system was more accurate, and thatstiewas more forgiving, than the
true values. The (slightly strange, obviously construdtedhis experiment) user also preferred
automated telephone-style interactions where the syswtedla bunch of options as opposed
to open questions about where they wished to go. (Granteljsthnexplicably odd behavior,
but reasonable if the voice recognition was generally poat thus able to distinguish yes/no
commands much better than place locations.)

The model began with symmetric observation and transitrobailities, that is, we specified
the probability of the most likely option, and the remainemions were uniformly distributed with

the remaining probability. While not necessarily true ialr@orld scenarios, it was a reasonable

48

Table 4.3 Initial and True Parameter Values for Simulation Tests.e Tiitial model parameters assume a higher
speech recognition higher accuracy and a user unforgivirgpofirmation actions. This is an example of a very
demanding user relative to the initial model specification.

Initial | True
P(self-transition) .95 .95
P(correct obs if ask-which) 0.7 0.5
P(correct obs if confirm) | 0.9 0.7

R(complete task) 100 | 100
R(ask-which) -1 -10
R(correct confirm) -1 -1
R(incorrect confirm) -10 -2

R(incorrect destination) | -50 -500

Table 4.4 Mean update times for each of the four approaches. Noteufigdtes take place only after a dialog has

been completed; when the dialog policy does not require aadpates the dialog manager’s average response time is
0.019 seconds.

Approach Time (sec)
Convergence 135.80
1-backup 13.91
0.10-var 42.55
0.01-var 18.99

starting point and a model used in other dialog managemstemss ([39]). We attributed two pre-
observations to each event to express a relatively low cemdiel in the initial parameter estimates.

To isolate the effect of our approach, we first ran the testis an oracle that, once the dialog
was complete, provided a complete state history to the glialanager, eliminating the need to
use an HMM to derive this history during learning. We notet tie state oracle was not used
during policy execution; during a user interaction the allaimanager chose actions solely from
its POMDP model. Figure 4-3 shows the results averaged d@@trials. All of the approaches
performed similarly, but planning proportionally to thei@ce reduction achieved that result with
almost as little computation (see Table 4.4) as replanniug @er update. The variance reduction
approach allowed us to focus our replanning near the baggynwii the tests, when the parameters
were most in flux.

What is also interesting is that the additional backups laasignificant change in the variability

of the solutions. Figure 4-4 shows box-plots of the interglgaranges (IQRs) of the solutions. An

49

Median Reward per Iteration for Learner vs. Non-Learner

© 100
IS
=
]
@ 8ot
8
° No Learning
5 60 Optimal
3 Learner (Convergence)
2 40 1 1 1 1 1 J
0 10 20 30 40 50 60
Iteration
Median Reward per Iteration for Various Learning Strategies
T 100
S
% 80 _ e S
& £ WENERAD VNN -
[- S VARS YTy No Learning
o 60f "/ v .
= N Optimal
c S
.%S 401 7 1-backup
Q ! — — —dvar0.10
= 20 1 1 1 1 — - —-dvar 0.01
0 10 20 30 40 :
Iteration Convergence
Mean Backups per Iteration for Various Learning Strategies
0w 20
Qo
2
S 15r
m
S 101
(o)
= .
§ 5r //\\\4_\,\v_\(_/\f’\/v/v\\/b'\”“'
0 10 20 30 40 50 60

Iteration

Figure 4-3: Performance and computation graphs. The learner outpesfthe non-learner (top graph), and all of the
replanning approaches have roughly the same increaseforipance (middle graph), but replanning proportionally
to the confidence of the model achieves that performance megslcomputation (and therefore faster response) than
replanning to convergence (bottom graph).

50

Ranges of Interquartile Reward for Various Learning Strategies

120 + 120 ‘ 120
+ —
+ 1
100 1 100t 1 100f
+ \
[
¢ " ¥
'g 801 | 801 1 80f +
Q
= I +
3 | ||
S 60f ! 60} 1 eof
o |
(%]
9] [
=]
E
x 40r 1 40t 1 401
o L
\
[
201 1 20t n 201
[
s
0 : 0 : 0 :
1 1 1
Convergence dvar 0.01 1-backup

Figure 4-4. Interquartile Ranges (IQR) of the rewards. All of the repllng approaches have roughly the same
median performance, but additional planning results in aenstable solution. Note that an IQR of 0 corresponds to
zero variation around the median solution.
IQR of 0 would mean that the policy always resulted in the raedialue solution. As expected,
iterating to convergence improves the stability of the 8ohy of the learners it has the smallest
IQR range. However, it is interesting to note that even wit p few more backups, we can still
get a policy with a lot less variation.

Finally, we did the same tests using the HMM instead of thelert® determine the state history
for the purpose of learning. For the reasons described ipr#ndous section—with higher per-
ceived observation noise, we followed a more conservatlieyp—the HMM performed slightly

worse than the system with the oracle, but the differencensasignificant given the noise in the

system.

4.3.2 Wheelchair Performance

The next set of tests were performed on the wheelchair ig#ifthe author as the user. To allow

the experiments to run in real time, only one backup was caeapafter each dialog; the goal was

51

Table 4.5 Initial and True Parameter Values for User Trial.

Initial Value | True Value
P(correct obs if ask-which)) 0.6 see graphs
P(correct obs if confirm) | 0.8 1.0
R(complete task) 100 100
R(ask-which action) 1 -30
R(correct confirm) 10 -1
R(incorrect confirm) -10 -10
R(incorrect destination) | -200 -500
R(incorrect no-action) -1000 -100

not to show speed of different planning techniques but tevsheneral dialog improvement with
model parameter learning. Although the wheelchair waslapaf driving the various locations,
we did not execute the motion commands for the purposes détlie Table 4.5 shows the initial
and true parameters for the user test.

At the time of the tests, we were using the Sphinx-2 voicegaitmn system [32]. The recog-
nition quality was incredibly poor (in what seems to be a canmomplaint among Sphinx users;
apparently one has to tune many internal parameters in threesgode to get reasonable perfor-
mance): in many cases the system failed to recognize amgyiththe utterance. In order to expedite
the tests, we first spent a long time talking to the speechgrézer and collected the mistakes that
it generally made. Next, we entered dialogs as text into talg manager. These dialogs con-
tained common errors that we had observed in the voice réomgsoftware as well as words and

situations that we particularly wished to test for. In pautar, the system contained:

e Speech Recognition Errors. Sphinx often mistook similamsting words; for example, the
software tended to mistake the work ‘desk’ with ‘deck.’ Irethbsence of this knowledge,
however, we had assumed that we would observe the word ‘aeeské often if the user was
inquiring about the information desk and ‘deck’ more oftérthie user was inquiring about
the parking deck. We also made difficult to recognize wordseniiely to be dropped (for
example, ‘parking’ and ‘information” were harder words faur software to recognize). Note
that the speech recognition errors the system encountezeslfiltered to eliminate interactions

where the recognition failed to produce any recognizedanizes, and so these results do not

52

precisely capture all speech recognition errors of ourenirsystem.

e Mapping New Keywords. General keywords, such as ‘tower,etevator, were not initially
mapped to any particular state. Some unmapped keywordsmame likely in one particular
state (such as ‘parking deck’ or ‘the deck’ for ‘parking |dthe elevator’ for ‘the Gates eleva-
tor’), while others occurred in several states (‘I'd likego to the information desk a lot’ uses

the word ‘lot’ outside the context of ‘parking lot).

e Spurious Keywords. Especially in a spatial context, userddcrefer to other locations when
describing the desired state. For example, they might s&yetevator by the information desk’
or ‘the Gates side booth.” Our simple bag-of-words apprdadpeech analysis precluded com-
plex language understanding; the dialog manager had teiasstigher noise with keywords

that occurred in many states.

For the user tests, we expanded our observation model talaofdt9 allowed keywords. Five
of those keywords were pre-mapped to particular goal st&msexample, we guessed that if the
user wished to go to the Gates Tower, then the probabilityeafing the keyword “Gates” would
be relatively high (60%). Similarly, if the user wished to gothe Dreyfoos tower, we guessed
that the probability of hearing the word “Dreyfoos” was alsgh (again, 60% in our tests). The
remaining key words were not mapped to any particular stede.example, we initially guessed
that the word “tower” was equally likely in any of the five gahtes. Our goal was to have the
system learn the mappings—if any—for these keywords dapgrah the vocabulary choices of
the user. In the case of the “tower” example, if the user afissed the word “tower” when referring
to the “Gates Tower,” then we would learn that associatiooweler, if the user never used the
word “tower,” then that keyword would remain unmapped.

there was no longer one word associated with each goal statead, we initialized the priors
with a goal word per location—for example, ‘Gates,’ for Gal@wer. Other key words, such as
‘Tower’ or ‘Elevator,” were left unmapped. There were a tah19 possible observations. Our
goal was to learn the vocabulary that the user tended to aymy in a particular state. We began
by thinking that we would hear the keyword we had associatéiul @ach state about 60% of the

time if we were in that state.

53

The observations were analyzed in several steps. Firstoweted the presence of each key
word in the output of the speech recognition system. If nonkargs were present, we ignored the
input and awaited another user response. The reason foseatghing for keywords was to first to
simplify the analysis; however, it also protected us fromctang to noise and other partial inputs
to the system. Note that utterances rejected at this stage made it to the POMDP planner, and
thus our planner was not burdened with having to learn sirgpignore the significant fraction of
supposed utterances that were actually noise. This alteqgbed the planner from ‘learning’ that
noise was the predominant quality of a particular state.

A normalized vector of counts was submitted to the dialog agan and incorporated into the
POMDP as probability distribution over observations. @itbtat in this case, it is not a probability
distribution over what observations may have occurrederatit provided us a way to fold in
multiple observations into the belief update step accgrdintheir weight.) If given a vector of

observation probabilitie® (o), we simply extend the belief update equation to be:

s)=n>_ P)Qol|s',a)> T(s'|s,a)b,_1(s) (4.6)

0o€0 seS

Since POMDPs deal only with maximizing the expected rewtrid,additional expectation does
not change the behavior or validity of the planning process.

For the purposes of a fair test, the states were requestkd Batne pattern to the learning and
the non-learner. The same set of phrases were also used egpamding to the system when asked
the open question “where do you want to go?” Also, the useemngvanged her mind about where
she wished to go in the middle of a dialog, which meant thatikiV-based state prediction was
exact.

Figure 4-5 shows that the learner generally performed b#tte the non-learner. The first
dip in the plot, near interaction 10, is where the learnet @countered misused keywords, the
hardest situation for it to deal with. The plot, which showsirgle user test, also highlights a
trade-off that was not immediately apparent in the aggezfplots from the simulation results. In
the simulation results, we could happily initialize ourjmigservation count to a very small number

to indicate our uncertainty, and as a result, our learnitgywas very fast. The aggregated rewards

54

smoothed over pitfalls in any particular run.

As we see by the dips in the plot (and this is after tuning tleegirservation count up from two
to five, a number that yielded a slower but more robust legrrate), our learner makes mistakes.
Often the mistakes, especially the mistakes made in the si@gdes, occur because the system gets
too sure about certain distributions while others are Bighly variable. For example, suppose
that the system hears the word ‘Forbes’ during an initialodjavhen the user wants to go to the
Forbes cafe. If the initial pre-observation count is lone gystem will suddenly become very
confident that the word ‘Forbes’ is extremely likely if theemsvants to go to the Forbes cafe.
If system hears the word ‘Forbes’ a second time, it may chéoggoceed directly to the cafe
without even confirming the location with the user. Such akjpesponse may be fine if the user
truly wants to go to the cafe, but suppose that the word “F&riags recognized in error in the
second dialog. Without time to calibrate to the observatioise, the system will rush the unhappy
user to the cafe! For more graceful learning, we must ineréfas pre-observation count; this way,
the distributions do not peak too quickly during the inifiddase. However, this means that more

observations will be required to overcome biases in ourprio

Total reward received over one user trial

100

-100

-200 -

Total Reward

=300 -

Learning Dialog Managet

—400 Non-learner

_500 1 1 1 1 1 1 J
0 5 10 15 20 25 30 35 40

Iteration

Figure 4-5: Policy-refinement based on expected values for a dialdg fivie goal locations from a single trial. The
user was much less forgiving of mistakes than the dialog gemniaitially expected, and often used keywords that
were not mapped to goal locations in the initial model. Tharder (solid) generally outperforms the non-learner
(dashed), only making one serious mistake (far right).

Despite these issues, the planner does reasonably wellp@fams very quickly). To see

how it handles various types of problems, we show its perémorce by state. Table 4.6 shows the

55

Table 4.6 Mean overall and per state results for the user test camgist 36 dialogs. The learning dialog manager
improves over the initial, hand-crafted policy in most egatThe exception (State 3) is due to a single outlier.

Overall| S1 | S2 | S3 S4 | S5
Non-learner| -16.9 46 |10.7| 39.0 | 49.2| -187.7
Learner 37.2 54.6| 50.4| -35.8| 67.3| 49.1

200

ok -

-200

Total Reward

Learning Dialog Manage!|
Non-Learner

_600 1 1 1 1 1 1 1 1 1 J
1 15 2 25 3 3.5 4 4.5 5 55 6

. . . Iteration: State 3 — Information Desk) . o
Figure 4-6: This plotincludes only Information Desk requests. Obagons in this state were 31% original keywords,

46% new words, and 23% misused keywords. Unmapped words strarggly associated with other states made it
tough for the learner to improve the dialog policy.

-400

average reward per state for the learner and the non-lednrgeneral, the learner did an excellent
job of mapping keywords to states (regardless of how martgstae new word was associated
with). In these situations (see Figure4-7), the dialog ganavas able to shorten interactions (and
thus increase overall reward) by learning how to handlectinesv observations.

The dialog manager had the most difficulty when a state oféehtlhe occurrence of keywords
that were highly likely in other states (see Figure 4-6).saas similar to the issue that occurred
when the distributions initially became too certain—if atae observation, such as ‘Gates’ was
very likely to be see if the user wished to go the Gates Tovier siystem was confused when it
heard a phrase like ‘go to that booth near Gates.” Since theragation distributions did reflect the
true observation distributions, we believe that the cérgsaie may have been not enough backups;
one backup might have not been enough to learn the new pdligiiat to do when one has a very
clean state and a very noisy state.

As a qualitative measure, Tables 4.7 and 4.8 shows how sothe dfalogs changed due to the
learning process. In the first pair, the user often uses thid tdeck, which is unmapped, to refer
to the parking lot. The system must wait until the word ‘patkiis heard, but in the meantime,
the user uses several keywords, such as Gates and Dreyfablate already been mapped. This
results in a rather painful learning experience. Howevaceothe system adapts, it is able to

handle the use of other words, such as elevator or tower wiaeh since been mapped to other

56

100
ol
-100
-200

Total Reward

-300

-400 I I I I I I . I)
1 2 3 4 5 6 7 8 9

. . . . Iteration: State 5 - Parking Lot .))
Figure 4-7: This plot includes only Parking Lot requests (and is repnéstive of the other states). Observations in

this state were 9% original keywords, 73% new words, and 18%tsed keywords. The learner soon realizes that
the user often refers to the parking lot with the unmappedkvaeck.” Since the user is forgiving to confirmation
guestions, the dialog policy applies them aggressivelygardbiguate misused keywords.

locations, and the newly mapped word deck. The second dadagpnstrates two things. First,
the system again learns a new keyword, elevator. It has@dsoed that although the building has
several elevators, the user usually wants to go the Gateateie Therefore, it tries to confirm that
location first.

Finally, as a second demonstration, we did another sinatdr €xcept this time we used phrases
based on data from a different user speaking into the vommgration system. This user was not
trying to create particular obstacles, and as a result, wethsd the effects of learning, while still

evident, are less pronounced than before.

4.4 Discussion

The benefit of the expected-value approach is that it regwieey little computational effort; we
can easily learn both reward and observation parameters.babkups are fast enough that the
dialog can be performed in real time. Also, this approacbvadlus to consider the parameters
as continuous-valued numbers (as they should be): we doe®at to discretized the parameter
space. We also make no assumptions on what the final set ahpems may be: although the
initial priors are symmetric, as we saw in the user testgtieeno additional work required to learn
distributions that are bi-modal (for example, if the wordi&w occurs with two locations, the Gates
and Dreyfoos Towers).

The drawback to our approach essentially spends all ohits &xploiting and none of its time

exploring. Thus, even with an infinite number of trials, weamat guarantee that the parameters

57

Table 4.7: Parts of dialogs between the user and the wheelchair. Bhegispecification has failed to specify how to
handle the words ‘deck’ and ‘elevator.’ In the first dialoge thon-learner is so confused when it first hears the word
‘parking’ that it takes a second utterance for it to selecappropriate action.

Without learning

USER Take me to the deck between the two towers.

The user says “deck” to refer to the parking lot. The system
does not know this yet.

RoBoT: Where did you want to go?

USER Yes, | want to go to central elevator that goes to the deck
RoBoT: Where did you want to go?

User The middle deck, between Gates and Dreyfoos
RosoT: Do you want to go to the Gates Tower?

USER No.

RoBoOT: Going to the Dreyfoos Tower.

UsSer No! | want to go to the deck!

The system still cannot associate “deck” with any destioati
RosoT: Doing nothing.

UsSeRrR Take me to the deck.

RoBoT: Where did you want to go?

USeR The parking lot.

RoBOT: Where did you want to go?

USER | said the deck.

RoBOT:. Where did you want to go?

USER Yes, the parking deck.

RoBoOT: Going to the parking lot.

After learning:

UsSeRrR Take me to the deck between the two towers.
RoBOT:. Where did you want to go?

USER Yes, | want to go to central elevator that goes to the deck
RoBoT: Do you want to go to parking lot?

USER Yes.

RoBoOT: Going to parking lot.

58

Table 4.8 In the second dialog, the learner realizes that while ébevafers to multiple locations, the user most often
uses in the context of the Gates Tower.
Without learning

USeRrR Take me to the elevator.

The system does not know what ‘elevator’ means.
RoBOT:. Where did you want to go?

UsSeEr The Gates elevator please.

RoBoT: Do you want to go to the Gates Tower?
USER Yes.

RoBoT: Going to the Gates Tower.

After learning:

USeRrR Take me to the elevator.

RosoT: Do you want to go to the Gates Tower?
USER Yes.

RoBoT: Going to the Gates Tower.

Table 4.9 Mean overall and per state results for a single end-to-sedtgst consisting of 36 dialogs. In general the

learning dialog manager showed slight improvements, éslhem mapping unmapped keywords (in this case, State
3).

Overall| S1 | S2 | S3 S4 | S5
Non-learner| 45.0 69.0| 59.0| -11.0| 59.0| 49.0
Learner 55.9 72.41 66.3| 32.5 | 52.6| 55.9

59

will eventually converge to their true values. In fact, iteigsy to construct an initialization of a
prior that will result in a policy that will never convergetioe true optimal. For example, consider
a scenario in which there are only two actioaskandconfirm Suppose that under some prior
belief p over reward parameters, we have the following relationbkigveen the true rewards and

their expected values under the prior:

Rask > Rconf - Ep[Rconf] > Ep[Rask]a (47)

whereR,;, is the reward for asking a general query dyg, is the reward for asking a confirma-
tion question. If the dialog manager attempted actek it would discover that its belief about
R.s, Was incorrect. However, if the dialog manager only makessitats based on the rewards
it expects to receivel,|R..,s| and E,[R,], it will never try the actionask Thus, the dialog
manager will be stuck with a suboptimal policy. This sitoatwill occur if the domain expert
estimates the reward means incorrectly, even if the expasrssthat he is very unsure about some
of the values he chose.

In the next chapters we take steps to resolve this issue bygacating the unknown parameters
into the hidden state of the POMDP.

60

Chapter 5

Decision-Theoretic Approach

One of the primary concerns with the expected value apprivaChapter 4 is that it was not aware
of the uncertainty in the model, and this made it possiblettier system to get caught in local
optima. Unaware of the risk, it also acted too aggressivethi@beginning, when the parameters
were not certain. In this chapter, we take the first step tolveyy this issue by incorporating the
unknown parameters as additional hidden state in the mdeedt (Section 5.1), we attack the
problem assuming that the parameters are discrete. Im&ec®, we show how we may consider

continuous models.

5.1 Discrete Approach

While there exist extensions of the value-function basqu@rh described in Section 2 for solv-
ing POMDPs with continuous state [29], they are fairly coirgtied. Thus, we begin by limiting
the parameters to have a discrete set of values. In thi®agute also restrict ourselves to learning
only the reward parameters. We further assume that the deveae symmetric and oblivious with
respect to the states—that is, a penalty for taking an ircbomovement is the same regardless of
what state the user is currently in and whatever state we wyive to. Finally, we assume that the
user will provide explicit reward feedback at each stepifabe standard model of reinforcement

learning).

61

Table 5.1 Discrete reward values considered for the hidden rewarahpeters. The reward for a correct confirmation
was -1 and the reward for a correct movement was 100.

R(general query) -10, -5,-2, -1
R(incorrect confirmation) -20, -10, -5, -2
R(incorrect movement) | -300,-200,-100

5.1.1 Model Definition

As before, this section will work with the simple five-goal ded that we introduced in Section 2.
If we assume symmetric rewards, there are five unknown resnarthe model: (1) the reward for
asking a general query (ie, where do you want to go?), (2)eéhand for a correct confirmation
(ie, asking do you want to go to the cafe when the user wants to the cafe), (3) the reward for
an incorrect confirmation (ie, confirming the cafe when ther wgants to go somewhere else), (4)
the reward for a correct movement (ie, driving to the cortecation), and (5) the reward for an
incorrect movement (ie, driving to the wrong location).

Without any loss of generality, we can set two of these valadix the absolute and relative
scales of the reward values. For our tests, we set the rewamari@ct confirmation to -1 and a
correct action to 100. This left three more reward valuesaorl. For each of these, we considered
four possible discrete values for the parameters. Tableskotvs the values we considered for
each of the remaining parameters. The observation paresngtge assumed to be known and
symmetric, withp,,, = 0.7 andp..,; = 0.9. Since the policies are fairly robust to the actual re-
ward parameter values, we felt that even this coarse dizatiein spanned a number of reasonable
policies.

Figure 5-1 shows how adding the reward parameters as adalittodden state change our
POMDP. Now, the state consists of a vecfsy, s, }, wheres, is the user state (where they wish to
go, same as before) anflis the preference state (what reward values satisfy thésyseference
model). We assume that the reward values are stationaryimerthus the only state that changes
is the user state. The preference state is fixed but hidddrtoAibinations of reward values and
user states are possible, for a total of 336 states.

We require the user to give a reward feedback at every ste@séleme that this is not terribly

noisy, as it is likely to be a button press; for our simulatiave let the confidence in the reward

62

value be equal t@.,,r. We extend our observation space to{lsg, o, }, whereo, is the speech
to the dialog manager angl is a reward entered by the user. Considering all the discestard
values that we could observe, this model has a total of 72reditsens (8 keywords and 9 reward

values).

time t ‘ time t+1

Figure 5-1: Arrows in the POMDP influence diagram connect elementsafiatt other elements. The robot’s action
a and the previous user state affect the current user staterhile the user’s preferences never changes. The
observed reward, depends on the user’s state and his preferences and the@dskalogo,; depends only on the
user’s state.

Unlike in the basic model, in which the POMDP was not awarehefreset (to speed conver-
gence), in this parameter POMDRP it is important to include féct while we return to the start
state once the dialog is done, we do not completely resetbelief in the preference state does

not go back to some initial prior once a dialog is completeustwe retain the learning about

preference states that occurred during previous dialogs.

5.1.2 Approach

In theory, since we have reduced our original problem of hmbethave with uncertain parameters
to a larger POMDP, all we need to do now is solve the resulti@yPP using the techniques
that we have already discussed. In the new POMDP (the “paeastiROMDP), we have a belief
b(s., s;) that represents the probability that the user is in standthe rewards are given hy.
Unfortunately, even though we started with a very simple ehedive goal locations, three or four

possible reward values for three parameters—we have a POMIDRB36 states, 12 actions, and

63

72 observations. Large POMDPs are difficult to solve, so wstitake some care in how we create
the dialog policy.

One reason why solving a large POMDP takes more time thamngpd/small one is simply
a matter of computation. In each Bellman backup, we are piyitig matrices that have at least
one dimension the size of the state space. Matrix multipbioas close to cubic in the size of
the matrix, so increasing the size of the state space by arfatabout 50 increases the matrix
multiplication time by 125,000. The factored nature of thedel, however, can help us avoid some
of those computations. For example, consider the prolabiliobserving a particulafoy, o, } in
a state{s,, s, }. The observed speech input does not depend on the usersiraveael, so the

observation probability factors as:

P(04,0:|Su, 57) = P(04|54) - P(0r|Su, Sr)

Now, when computing a belief update, we can updatg)bdfdependently of b{). In the end,
b(s., s,) is the tensor product of k() and b¢;.). We can compute parts of the backup operation
with similar tensor products since identical factorizas@xist for the other transition and observa-
tion probabilities. Note that we can factor only becausestieh observation part gives information
only about one part of belief. Also, note this is not the sama tactored POMDP, in which differ-
ent parts of the state space have different actions (whialmsich more powerful concept). Table
5.2 gives the flow of our approach; as described in Chaptee3antinually resample beliefs to
refine the accuracy of our solution around the regions tleatrarst relevant.

One question we have not addressed yet is the initial chdipgar over the preference states
(which is our initial b6;.)). One option is to simply put a uniform prior over all of theeference
states. However, note that given the properties of the POMBRong as we start §() with
full support over all of the preference states—that is, trabability of each preference state is
nonzero—we will eventually converge to the correct prafeeestate. Thus, if we wish to be
more robust at the beginning of the learning process, we k&an sur initial prior toward harsher
penalties. The resulting initial policy will be more congsive and make fewer mistakes while

the prior converges (this is one way to get robustness wtalgrgy within the POMDP’s expected

64

Table 5.2 Parameter POMDP approach to solving an uncertain POMDRisseme that the set of possible rewards
is discrete and rewards are observed at each step.

PARAMETER POMDP

e Choose a starting belief and sample an initial belief set.
e Solve the Parameter POMDP on that belief set.
e LooOp:

— Interact with the user.

— Update starting belief set.
— Sample a new belief set.
— Update the dialog policy.

value approach).

5.1.3 Simulation Performance

Figure 5-2, mostly a sanity check, shows how the paramet®iPR) if initialized to the correct
prior, performs just as well as a well initialized expectedue POMDP. The goal was simply
to show that our resampling approach does in fact do reatomiaings, whereas with a poor
initialization, we actually do unreasonable things if we aising the expected value approach.
(Note: the expected value approach was initialized to medmeg included the discrete set of
rewards, but it tried to learn the rewards over a continugases. This does not affect the issue
with the algorithm, however.

In Figure 5-3, we show the results for the parameter POMDR feairiety of priors. In each
case, the overall performance is about the same, showinge(espect) that the parameter POMDP
approach is robust to the initialization. What is most iagting, however, is that if we start out
with a conservative prior, that is, a prior that puts most®fneight on a tough set of rewards, we
do not see the initial dip in the learning process. Initialhe system is robust because it is very
cautious of doing the wrong thing. In the end, it is robustahse it has focused its samples on the

important part of the belief space.

65

Parameter POMDP performance matches expected value POMDP optims
80

60

40

mean reward, 100 trials

—40} - = = = expected value pomdp - good initialization
E ++ expected value pomdp — poor initialization
parameter pomdp - correctly initialized

T

5 10 15
iteration

Figure 5-2. The figure shows the performance of parameter POMDP iizéidlwith a good prior compared to dif-
ferent initializations of the expected value POMDP, aggted over 100 simulated trials. The parameter POMDP,
considering 48 possible user preference states, achieedsgher (correct) level of performance without senditivi

to initialization. The parameter POMDP seems to do slightyse than the well-initialized expected value POMDP,
but the difference is not statistically significant: on theafitrial, the expected value POMDP has median 85 and IQR
16.5, and the parameter POMDP has median 86 and IQR 11. Thiyoitialized expected value POMDP reaches a
median of 26.5 and IQR of 207 after 120 trials.

5.2 Continuous Model

In the previous section, computational power limited usdonsider a few discrete reward values,
and we were unable to do any learning on the observation mbdtfis section, we consider the
case of only learning a continuous observation model. (Were@turn to learning both the reward
and the observation model in Chapter 6.) As before, we wilktaer the unknown parameters as
hidden state in the model, however, since those parametertake on continuous values, we will

use a sampling based approach to solving the parameter POMDP

5.2.1 Model Definition

We continue to use the simple 5-goal model for the dialog,dw@r we now consider all of the
observation parameters as additional hidden state. THesen@tion parameters are fixed but
unknown. We will consider two cases: in the first case, werassiinat the observation model is

symmetric, only that we do not know the true valuesygy, andp..,s. In the second case, there

66

Parameter POMDRP is robust to initial prior

. .)
0 5 10 15

mean reward, 100 trials
o

mean backups for parameter pomdp

parameter pomdp-correctly initialized
’ SRR parameter pomdp-uniform prior
a4k o parameter pomdp—conservative prior

N
T

mean backups

o

10 15

o
(9]

iteration

Figure 5-3: The three different priors—a uniform prior, a correct priand a conservative prior—converge to the
same steady-state performance, but choosing a conserpaitiv allows us to do as well as if we had known the user’s
preference state initially. All solutions were backed updovergence.

is no parameter tying and the observation distributions takg on any form. Because we use
a sampling-based approach to solving the parameter POMBRrly difference between these
two cases is the form of our priors, the algorithm is otheewdentical. (Note that learning a full

distribution will, of course, take longer than learning asyetric distribution.)

5.2.2 Approach

Solving continuous state POMDPs is extremely difficult, sowge a sampling based approach to
the problem (somewhat similar to [15]. We begin by samplisgtof POMDPs (between 15 and
50) from an initial distribution of parameters. Each onetefde POMDPs is relatively small and
therefore quick to solve; to further speed up backups, webeakup only a small fraction of the
belief points and a small fraction of the alpha vectors irhdgtaration. Each POMDP begins with
equal weightw;. The discrete sample set of POMDPs approximates our canigdistribution
over POMDPs. Each POMDP carries its own belief, approxingatiur distribution over states
that we may be in.

One way to think of our small POMDPs is that each small POMDRBev&unction represents a

“slice” of the underlying continuous state POMDP value fiimre where a set of parameter values

67

are fixed. While it is tempting to interpolate the value fuotat unsampled points based on
combinations of the known slices, this approach does ndttea good estimate of the underlying
continuous state value function. Interpolating betweengad POMDPSs is equivalent to giving
a belief over those POMDPs. We know that the value of a beigt weighted average of the
values of being in each state (which is t9g;pp heuristic), rather, we pay an additional price for
the uncertainty.

Without a convenient way to approximate the value functise,turn to other approaches to

choose the appropriate action. We apply a Bayes risk @iteri
a = argmin " w;(Qi(a,b) — Vi(b)) (5.1)

wherew; is the weight of model, Q;(a, b) is the value of taking actioa in modeli, andV;(b) is
the value of being in beligf according to model. Note thatl;(b) = arg max, Q;(a, b), S0 the risk

is always never positive. For each model, the term insidestine measures how much we expect
to lose if we take a particular action instead of the optinetibsm. Overall, the Bayes risk criterion
states that we should take the action the minimizes the égéxss over all models.

By considering the potential loss, the Bayes risk critexidhprefer “safer” actions rather that
actions that maximize the expected immediate reward. Ehiti@n is a desirable property because
we are no longer solving the underlying continuous state BBMnd can only afford to do this
one-step lookahead computation (the lookahead occursrisaunputation of@; from V;). Our
actions are only looking one step ahead instead of many, larselwe choose a safer selection
approach. We note that our action selection differs from ied15]; Medusa chooses actions
stochastically based on the weights of the POMDPs.

The second question we must answer is how we should updaffQMDP set as we gain
more information. As in the expected value case in Chaptaredcan update the prior over the
observation distribution after a dialog is completed. Etrevugh we have the explicit distribution
available, we can view our POMDP sample set as a set of pegigproximating this distribution
(which they do for the purposes of determining a policy). §hwe can update the weight on

each distribution based on the updated likelihood of tha¥lP® based on our prior. Suppose we

68

update our Dirichlet priors on distributiods . . . a; }. Then the new weight for each model is:
k
w; = w; || f(pj; @) (5.2)
j

where f(-; @) is the probability density function for the Dirichlet diftation parametricized by
a andp'is the sample POMDP’s particular observation distributidfe normalize the weights to
ensure that they always represent a valid distribution theesamples.

After each dialog, we also resample new POMDPs from the epdator. For the present, we
set the weight threshold to i€ sqrtn, wheren is the number of POMDP samples. Replacing the
POMDPs can take a significant amount of time, so we find quigksi@approximate the solution
(note that since there are many POMDPs in our sample, we duawetto solve them all perfectly;
the uncertainty in the parameter space makes it unnecesshgy/able to draw fine distinctions
based on a belief). In Chapter 3, we mentioned how we can expatly decrease the number of
beliefs required for problems with certain symmetries. \We that approach here for our first set
of simulations.

Using ideas from Perseus as well as PBVI, another approaalse/¢o decrease the time re-
quired to approximately solve the POMDP is to update only alk(y/n) random fraction of the
beliefs with only a small{/m) random fraction of the alpha vectors. Since the beliefavaui-
plied by the alpha vectors several times, our overall coatprt time is reduced by a significant
factor, which makes it possible to do the update several PEBMID quasi-realtime (about 0.40
seconds per POMDP, instead of several minutes). The iotultehind sampling from the belief
set is identical to Perseus: improving one belief may imprasveral beliefs around it. Moreover,
nearby beliefs often produce similar alpha vectors withlsinpolicies. Since our alpha vector set
tends to be redundant, sampling from the alpha vectors pesdeasonable results. We only need
one of the redundant copies to be randomly selected for aikupeto be approximately correct.

Since we are sampling such a small set, both from beliefs i@md &lpha vectors, we cannot
just keep the set of updated alpha vectors as our new sethémees are too high that we did not
use one of the key support beliefs in a particular iteratasrthat we did not select the particular

alpha vector that matches a particular belief. As Persees aith beliefs, we now keep around a

69

large set of potential alpha vectors. On each iteration,ovead remove the previous alpha vectors,
we just keep adding more of them. If we exceed a desired nuaflspha vectors, we can prune
those from the initial set as those were the most likely teehzeen backed up and improved upon
already. Note that checking several alpha vectors agangsbelief is still fast, however, so action

selection can still be computed in realtime. Table 5.2.2raanizes our approach.

Table 5.3 Sampling POMDP approach to solving an uncertain POMDP. dliservations parameters are now con-
tinuous valued.

SAMPLING POMDP

e Sample a set of POMDPs from an initial prior.
e Approximately solve that set of POMDPs.
e Loop:

— Choose the action that minimizes Bayes Risk.

— Wait for an observation.

— At the end of a dialog, update observation priors, reweighti®P
samples based on weights, and resample POMDPs with low tveigh

5.2.3 Simulation Performance

There are several differences between our sampling-bagedach and Medusa’s approach. First,
we replace all POMDPs with a weight below a certain threshodd just the one POMDP with
low weight. (We do not resample all of the POMDPs for compatsdl efficiency; if a POMDP
is performing well, there is no reason to replace it.) Secareluse Bayes risk to sample actions
instead of picking actions stochastically. Finally, sirmeer problem has natural breaks—the end
of a dialog—after which it is easy to infer the previous stdquence, we do not have to specify a
procedure for making oracle-queries. In this section, wevsimulation results that demonstrate
the effect of each of these factors.

We tested our approach using our basic five-state model twigetunmapped observations.
The prior distribution over POMDPs was initialized to bebethat the probability of hearing a

correct confirmation was 0.8 and the probability of hearingoarect state on a general query

70

was 0.6. The transition and observation probabilities vem®umed to be symmetric, with the
unmapped observations being extremely unlikely. We weigjlour initial Dirichlet parameters to
reflect approximately 10 total observations per statesagiair. We assumed that the user did not
change their mind in mid-dialog.

The true POMDP had a -300 penalty for incorrect actions, aefiajty for questions, and -10
penalty for incorrect confirmations. At the initial traneit, the probabilities of the goal states were
{.32,.22,.16,.15,.15 The observation probabilities for an “ask”-action wergoshsymmetric: in
the first state, we were as likely to hear the first unmapped asmwe were the original keyword.
In the second and third states, we were almost as likely todreaof the neighboring states as we
were the keyword for that state. The final two goal states asgtikely to here their keyword as the
second unmapped keyword. The final unmapped keyword rechaim@mapped. The probability
of getting a confirmation answered correctly was 0.8. We tiwdéthe asymmetric nature of the
true transition and observation distributions is closextat we saw in the initial wheelchair user
studies and more realistic than a basic symmetric model.

Figure 5-4 shows the mean and median performance of theugaaipproaches, all of which
used the same set of beliefs. The solid gray line shows tHerpsnce of the “optimal” policy,
which was found by doing PBVI-backups until the value fuasthad converged. The dashed
gray line shows the performance of the approximated polityere 25 backups were performed
using only a square-root fraction of the beliefs and alpbetars during each backup. Note that
the approximation technique is fairly close to the optimaligy. The remaining curves show the
performance of our sampling approach, our sampling appraatg stochastic action selection
(instead of Bayes risk), and the (basic) Medusa algoriththofithe POMDP samples for these
approaches were solved using approximate backups. Tlh&tistaare computed over 100 trials.

We see that after some initial noise, all of the learning apphes improve; however, using
Bayes risk for action selection learns faster and appeaaierge to close to the optimal solution.
Our same strategy for resampling POMDPs but with stochastion selection, shown by the
dashed black line, performs about as well as the MedusaithigorThus, the difference between

Medusa’s performance and our approach is not simply becaeisee more liberal with replacing

71

POMDPs with low weight. When we look at median performance,see that using Bayes risk
actually out-performs the optimal solution (recall thag¢ tptimal policy is trying to maximize
mean performance). This indicates that our policy genedales well and suffers due to occasional

large mistakes.

mean reward, 100 trials

=

o

o
1

o
T

| |
N =
o o
o o

mean reward
I
w
o
o

|
B
o
o

-500

I I N I I I I)
10 15 20 25 30 35 40 45

o
(&)

median reward, 100 trials
100

95
90
85
80

median reward

751

A opt
70 - approx opt

sampling, bayes action
------- sampling, stochastic action
medusa

65
0 5 10 15 20 25 30
iteration

Figure 5-4: The top graph shows the mean reward (from 100 trials) aehliaveach stage in the dialog. Neither of the
learning approaches quite reach the optimum, but the asgil@ttion using Bayes risk has overall better performance.
In the bottom graph, we see that our approach actually hasampdrformance greater than the optimal, however, as
we see in Figure 5-5, this performance in achieved at theafasbre severe errors.

Figure 5-5 shows the fraction of the 100 trials that failedamy particular dialog iteration.
Here, failure means that the dialog manager decided to tekader to the wrong location at least
once before taking them to the right location (the dialog aggn rarely failed to eventually take
the user the the right location). As expected, the appratxaméao the optimal policy fares slightly
worse than the optimal, but the difference is not large. Bé#idusa’s and our proportion of errors
decrease with time, and while neither reach the optimal |lewe error rates are consistently lower
than Medusa’s. Thus, our approach not only achieves goodgeease performance, but we also
are reasonably robust.

Finally, we note that using Bayes risk does require more egain that stochastic action

72

fraction of runs with mistakes, 100 trials

0.45
0.4r
0.35
031

025k [¢

0.2 1 ,:

0.15-

fraction of runs with mistakes

0.1r opt
approx opt

sampling, bayes action
------- sampling, stochastic action
medusa

0.05

. . " Vs
0 5 10 15 20 25 30 35 40 45
iteration

Figure 5-5: None of the learning approaches achieve the optimal eater although risk-based action selection does
make fewer mistakes. Here, mistakes are going to the wraragitm.

selection (essentially, the difference is between a zetbaaone step look-ahead), but as it can
be computed quickly, it seems like a clear win for the problédme reason why we must be a
little careful in supporting action selection using Bayisk is that one of the benefits of Medusa’s
approach is that it guarantees convergence to the trueggnophrameters. While the Bayes risk
criterion does well in our simple problem, we note that simeewill visit all the states over the
course of the experiments and experience the obervatitibdisons because of the simple queries
available to use, we do not have to worry about parameteretgamce. However, there may be
situations where it does not perform as well; for exampléhefPOMDP believed a particular state
or action’s observation was so noisy that, given the costag not worth visiting, it may always
choose a more conservative alternative and never disdogénie observation distribution for that
probably useless state. (Note that since we do not have aagehead, we may not realize the

usefulness of exploration; Medusa forces exploration bgtsistic action selection.)

73

5.3 Discussion

In this chapter we have discussed two approaches to inairpgmparameter uncertainty into our
model. In the first case, we choose a discrete set of possipseneter values and build a large
parameter POMDP that treats the parameter value as additimiden state. The result is a more
cautious and robust learner: we find that as long as we iagialur prior over the possible models
to have full support, the prior will converge to the correctdel. Moreover, while the system is
uncertain about which model it is in, it will behave more ¢ausly; we found that by setting a
conservative prior we can make the system learn with fewersr

The main trade-off with using a discrete set of models is dhatrue POMDP must be one of
the enumerated models, otherwise, we will be unable to egeve the true POMDP. In order to
ensure that our true POMDP is part of the set, we may need a &agof models, especially if
there are several parameters about which we have veryitiitial information. However, the size
of our parameter POMDP fisn, wherek is the number of models andis the number of states in
the model; for large values &f solving the POMDP quickly becomes intractable. The pnobie
made even worse if we include the rewards as part of the odis@ny now we have increased the
size of our observation set {0'| = |O||R|. Recall that solving a POMDP is doubly exponential
in the number of observations, in our approximations, ti@sglates into the long loops over large
matrices. To some extent, we alleviated the problem by sglthe POMDP incrementally, and
resampling beliefs reachable from the current belief.

The second part of this chapter we considered a continuckrsomm observation parameter
space. Thus we avoided the problem of trying to enumerafmaliible models, but at the expense
of no longer being able to approximate the value functionllat lastead, we sample a set of
POMDPs from our prior over observation functions. Althowgé cannot do a deep look-ahead
to determine what action to take, we show that by taking thmmathat minimizes the Bayes
risk, we can behave robustly—our risk criterion makes ugicas—while still learning the true
parameters.

We note that the best approach may lie somewhere betweensoueteé model approach and

our sampling approach. In the discrete approach, a centestipn was how many models to use,

74

and we risked not including the true model. In the sampliqgagach, on the other hand, our model
class was probably too expressive: in our particular prablee are not really interested in fine
distinctions; if we ask a general question instead of a cowtfiiton when the expected rewards are
approximately equal, it does not really matter if we chosesiightly suboptimal action. In reality,
there are many fewer interesting policies than there a@pater initializations. Ideally we would
like to sample from some set efdifferent policies instead of from the parameter or mogeice,

however, this is beyond the scope of this work.

75

Chapter 6

Meta-Action Queries

In this chapter, we develop this work’s final contributiomveod more robust parameter learning.
So far, our system’s learning has been limited to its expege it tries an action, experiences a
negative reward, and learns not to do that action again. a\éxplicit reward feedback is a stan-
dard aspect of reinforcement learning, this approach cambatisfactory for dialog management
because the agent is forced to make a mistake to learn abaarisequences. A similar problem
can occur if a user repeatedly uses a foreign word to refeipertecular goal. Without the ability
to ask about the meaning of the word, the system must waifused, until the user provides an
explanation that it understands. Here we explore metatastor actions that will help determine
future actions, that the system can use to actively learntdhe user’s preferences and vocabulary
choices.

Ouir first kind of meta-action query, the policy query, is asfien about what the agent should
do given its knowledge. For example, the agent might say,'fif90 percent sure that | know
where you want to go, should | just go instead of confirmindwibu first?” If the user says no,
then the agent knows that the user places a high penalty orr@ot actions without experiencing
its effects. Similarly, by asking a question such as “Whemudncertain, should | list all the options
| know (instead of asking you to repeat an option)?” we can @intlwhat kinds of interactions
the user prefers. The user’s response to the meta-actamsalis to prune inconsistent preference

states from the belief space.

76

A secondary benefit of policy queries is that the agent is argd of the learning process. The
user does not have to repeatedly enter rewards to train ghersyit is the agent that decides to ask
for clarification when it is not sure about how to behave. A feeta-actions can quickly reduce
the uncertainty in the user’s preference state, so ovéallser has to provide the system with less
training-type input.

Another kind of meta-action query, the observation quesksahe user about the meaning of
a new word. For example, the agent might ask an open-endesdiguesuch as “I know how to
go to the following placesxlist places-. Which one do you mean when you say kiosk?” It may
also ask more specific questions such as “When you say thk, klosyou mean the information
desk?” Unlike policy queries, where no amount of listenint provide information about the
user’s reward preferences, one could always learn thesgagsociations simply by observing the
user for a period of time. An observation query only helpsesipgp the learning process. As we
will see in Section 6.2, fast learning can be critical foress in dynamic, noisy situations.

Paralleling Chapter 5, this chapter will first consider thsecof learning from a discrete set of
models and then extend the analysis to a continuous spa@&sechions 6.1 and 6.2, we consider
policy and observation meta-action queries separatelgebition 6.3, we learn continuous reward

and observation parameters using policy queries.

6.1 Discrete Approach: Learning Preference Models

In this section’, we will begin by studying the situation where the observatizodel is known.
Just as in Section 5.1, we assume that there is a discretengiedsgt of possible user preference
models to be learned. However, the user no longer providesxgiicit reward feedback; the only
way the agent may learn about the user’s preferences is tthagsolicy meta-actions. We note
that although the agent’s policy depends on both reward bsérgation parameters, policy queries
can only provide information about the user’s internal relvaodel because the user is not aware
of the observation noise in the system. We will address theei®f reward-observation coupling

due to policy queries in Section 6.3.

1This work was previously presented in [6].

77

6.1.1 Model Definition

As before, we start with our basic five-goal model. We cons&dscenario where there are four
possible user types: the user may attribute either a -500X0@penalty for incorrect movements
and either -10 or -5 penalty for incorrect confirmations. Elbuser types, general queries cost
-5, correct confirmations cost -1, and correct movementsve@ +100. We chose these values to
ensure that there were large qualitative differences irptiiey, since in general the policy tends
to be fairly robust to different reward values.

Figure 6-1 gives a qualitative feel for how the policies frime four different preference states
differed. Along the x-axis are the indices for the four prefece statesr{,ove, r'con firm) = { (-500,-
10), (-100,-10), (-500,-5), and (-100,-5) Along the y-axis are indices for specific user beliefs
(not listed). The dots represent what type of action the tagkeould take in the corresponding
preference state and user belief. Red dots indicate thagéet should ask a general question,
yellow dots indicate that the agent should make some kindwficnation, and green dots indicate
that the agent should complete some kind of movement. Blatk ithdicate the robot should
do nothing. As we expect, there are more green dots in preferstates two and four, where the
penalty for movement mistakes is low, and there are moreatgid preference states one and two,
where the penalty for incorrect confirmations is high. Byrstag across rows, we can discover
what user beliefs are the most discriminative of the undleglpreference state and therefore most
useful for developing meta-action queries.

With only a small number of user types and a set of distingnghser beliefs, we can finely
tune the nature of the policy queries. From the perspecfivamipsystem, our goal is to find a
user beliefb(s,) where the policy giveni(s,), s;) depends or(sr). Then, if we ask the user
what we should do irb(s,), we can discover information about the user’s preferenate st.
Unfortunately, this kind of question may be non-intuitiee & non-expert user. If the number of
possible preference states is small, we can phrase theatiba-query in ways that may make it
easier for the user to understand and interpret. For exathgl@olicy queries used in this scenario

were:

1. If 1 am 90% certain of where you want to go, should I still ion with you before going there?

78

Policy for Combinations of User Beliefs, Preference States

25;

2
1
1

0

User Belief State Index

1 15 2 25 3 35 4
User Preference State

Figure 6-1. The dots indicate what action the robot should take if itkitiee user’s preference state (indexed on the
x-axis) and had a belief over the user state (indexed on #r€s): Roughly, the user states increase in uncertainty
as one scans down vertically except for the bottom three,rasugch, top to bottom, correspond to the agent being
sure that the user is in done-state, a specific goal stateg atadt state. Red dots indicate that the agent should ask a
general question, yellow dots indicate that the agent shanake some kind of confirmation, and green dots indicate
that the agent should complete some kind of movement. Blatkiddicate the robot should do nothing. By scanning
across a row, we can see which user beliefs are most disatingrof the underlying preference state.

79

2. If 1 don’t know where you want to go, should | list all the p&s | know (instead of asking you

where you want to go)?

3. If 'm only 40% sure that you want to go to a certain locatiehould I still try confirming that

location with you?

A side benefit of asking hypothetical questions with the fdéifi am... should 1...?" is that
the query depends only on the user’s preference state, @iotctirrent belief. Thus, the param-
eter POMDP remains a POMDP over our original discretgsf) state space instead of being a
POMDP over a continuou$(s,),s,) State space.

Since the meta-actions are hypothetical, we may be conténaéthe agent will ask them dur-
ing random times and frustrate the user. A small penalty $&imay the policy queries ensures that
they will be used only when they are relevant. For exampléhebeginning of the conversation,
the dialog manager may first ask the user, “Where do you wagdb® Suppose the robot then
receives a noisy response that is probably “copy machinefrbght also be “coffee machine.”
The robot may follow up with a query to determine how tolethltuser is to mistakes. If the user
is fairly tolerant, the robot will continue to the copy maoiwithout further questions; if the user
is not tolerant, it may ask a confirmation question next. Tig@bh points in the robot’s conversa-
tion are likely to make sense to, if not match, branches inue’s conversation (especially since

humans are good at placing themselves in others’ shoesaoaéze their behavior).

6.1.2 Approach

Table 6.1.2 summarizes our approach. As before, the reguiiodel is another POMDP. The only
change to the POMDP in Chapter 5 is the presence of the polieyiep as additional actions.
We know that the user’s response to a policy query will be rdateed by their preference state
s,, however, without doing any computations, we cannot ptesliat the user’s response will be
(if we could, we would already know the optimal policy for anger!). To specify the expected
response to a policy query, we must solve the new parametgfCHOn two stages.

In the first step, we fix the value of the preference stateThe resulting POMDP only has

uncertainty about the user’s current intent, and we caresibiwith relative ease. For improved

80

accuracy on policy queries, we seed the sample of user belidi the beliefs that we plan to use
in our policy queries. For example, if we plan to ask the goestIf | am 90% sure of where you
want to go, should I just go?” we would include a belief thatqals 90% of its probability mass
on one state in our belief set. The expected response to@/mplery given a preference stafe
is the policy of the POMDP induced by fixing the preferencéestas;..

Once we determine the appropriate responses to the médasaess a function of the user’s
true preference state, we have a fully-specified param@&tPP. In Chapter 5, we alluded to the
difficulties of solving the large parameter POMDP; now thelgem becomes even tougher. With
explicit rewards, we could assume that space of reachalikfdeould quickly become small
since we only had to observe a few rewards to determine oferprece state. Thus, we started
with a rough solution and refined it as we narrowed in on oné @fathe belief space. Without
explicit rewards to quickly prune the space, our solutiorstiimow the correct actions even with
large amounts of state uncertainty; in fact, with policy e if the choice for the next action is
clear regardless of which preference state we are in, thersyshould simply choose to take that
action instead of trying to get more information about itsfprence state. While beneficial with
respect to the dialog—since less feedback is required—weraquire a much better solution to
our large parameter POMDP. We note that all of the computat@an be done off-line, before
user interactions begin, but the complexity of solving tagé POMDP still limits the number of

discrete preference states that we can consider.

6.1.3 Performance

Figure 6-2 shows compares simulation performance with atiebwt meta-actions. Computational
constraints limited us to having only four discrete usefgrence states, but we can see that by
asking meta-questions,the dialog manager was able taietwhat types of queries and actions
would increase the overall reward. In this scenario, thaikted user had fairly harsh penalties—

a penalty of -10 for incorrect confirmations and -500 for imeot movements—corresponding to

2Equivalently, we could have found the expected responseadh policy query by first solving the parameter
POMDP without meta-actions; however, since the matrix cataons involved in solving a POMDP scale as:@)(
in the size of the state space, it is more efficient to solveynsamaller POMDPs for each value &f.

81

Table 6.1 An approach to incorporating policy queries into the paeenPOMDP. Rewards are assumed to take on
discrete values.
META-ACTION POMDP (ISCRETE REWARDS

Solve the POMDP that corresponds to each preference statpfbed.

Use the policies from those solutions to determine the erpeabservas
tions as answers to each meta-action.

Solve the large parameter POMDP (which includes meta{ag}io
Loop:

— Interact with the user.
— Wait for an observation.
— Update belief.

the first user state in Figure 6-1. When no meta-actions weagahle, the robot had no way
of inferring the user’s preference state, that is, its heher the preference state stayed uniform
through the entire dialog. While it made more mistakes tih@ndialog manager that used meta-
actions, we see that the dialog manager without any rewaabteck still performed reasonably
well because it was aware of it uncertainty in the user’s pneéerence state and therefore followed
a fairly conservative policy.

Meta-actions not only helped us detect harsh users, butitéed us discover when user is
tolerant to mistakes. In Figure 6-3, the user had a -5 pefattincorrect confirmations and a
-100 penalty for incorrect movements (corresponding téepeaice state four in Figure 6-1). Both
policies had similar performance, but in this case, theggalhat used meta-actions did slightly
better because it realizes that it can actually be less caaisee than it initially was. By making
quicker decisions, it decreases the total dialog lengtheandls asking unnecessary questions.

Finally, we note that as the reward values become more spiteadffects of the meta-actions
become more pronounced. For example, if the penalty ch@ocas incorrect movement are either
-500 or -50, then the gap between the learner and the nomelearuch larger (see Figure 6-4. In
this scenario, the non-learner does poorly because iwsfliekplit between thinking that incorrect

movements are as inconsequential as incorrect confirngatiod thinking that incorrect move-

82

Effect of Meta—Actions on Total Reward,

Harsh User
100 T I
—
90 L N
80 b
1
1
1
70F . | 1
° 1 !
© 60r ' i
qg_, —r—
X 50r * i
g $
=
O 401 i
- .
30 H b
+
20 + 1
5 +
10 F b
+
0 L |
without meta—actions with meta—actions

Figure 6-2: Box-plot of total rewards for the scenario where the “read&r has reward -50 for incorrect confirmations
and -500 for incorrect movements. By asking about the upeeterences, the dialog manager with meta-actions is
able to avoid actions that will frustrate the user. Each $tn had 100 trials of 30 dialogs.

Effect of Meta—Actions on Total Reward,
Forgiving User

100 T _L

80 1

T
: H
f i
+
+

60
50

Total Reward

20 1

10 1

0 L .
without meta—actions with meta—actions

Figure 6-3. Box-plot of total rewards for the scenario where the “raaeér has reward -5 for incorrect confirmations

and -100 for incorrect movements. The agent still takes +aet@ns, but the information is less useful since there
reward for an incorrect confirmation, which has a larger iotpa the policy, does not contain a major pitfall to avoid.

Each test had 100 trials of 30 dialogs.

83

ments bear a significant penalty. While not very realistics example does again demonstrate the
utility of meta-actions in resolving aspects of the user&f@rence state.

effect of meta-actions on total reward
100 simulated trials of 30 dialogs each
T

a5 | _I_ g
T —

a0 | I g
a5 | % g

a0

100

Tar

tatal reveard

70r

65 -

60 -

551

+

1
no meta-actions with meta-actions

50

Figure 6-4: Box-plot of total rewards for the scenario where the “raader has reward -50 for incorrect confirma-
tions and -500 for incorrect movements. In this case, thamater POMDP had choices -500 and -50 for incorrect
movements, and thus the difference in performance is morggunced than in Figure 6-3. By asking about the user’s
preferences, the dialog manager with meta-actions is ataledid actions that will frustrate the user. Each simutatio
had 100 trials of 30 dialogs.

Next, we tested this initial meta-action model on the aciuadelchair. We provide anecdotal
results from a student volunteer talking to the wheelchaifable 6.2. In the first dialog, the
user prefers to be given a list of options rather than opeeddestions. We realize that this is
somewhat unrealistic scenario, but in some noisy situafiaruser may realize that open-ended
guestions are harder for the robot to interpret than yesaswars. Once the dialog manager
realizes the user’s preference, it lists all of five locasitimat it can drive to around the lab, looping
until it is sure that it has heard a confirmation from the ugdter the second confirmation, it is
sure enough about the user’s desire that it does not aslefurtata-action queries.

In the second conversation, Table 6.3, the user stategtbatrefers open-ended queries. Once
the user provides the desired location, the robot is faieitacn that the user wants to go to the
coffee machine, but does not wish to make a mistake. Thusk# the user whether it should

confirm when it fairly certain. The user responds to the afiiiwe, and the robot follows with

84

Table 6.2 The following dialog (collected from a volunteer in our Jaldemonstrates how a typical conversation
changes as meta-actions are introduced; in this case thpnae$ers less open-ended conversations.
With Meta-Actions: Conversation One

This user preferred to be asked confirmation questions.

USER Hello.

RoBoOT: If I don't know where you want to go, should | list options?

The system uses this query to determine if the user is tdléwancorrect confirmation
guestions.

USER Yes.

RoBoT: Do you want to go to Seth’s office?
USER No, | want to go to Nick’s office.
RoBoT: Do you want to go to Nick’s office?
UsSerR No, | mean yes.

Unfortunately, the user’s response is ambivalent enougtitie system does not recognize
the user’s intent.

RoBoT: Do you want to go to Bryt's desk?

USER No.

RosoT: Do you want to go to the group meeting?
USER No.

RoBoT: Do you want to go to coffee machine?
USER No.

RoBoT: Do you want to go to Nick’s office?

The robot continues to operate by listing locations, butdkp the most likely one to repeat.
USER Yes.

RoBoOT: Going to Nick’s office.

—

85

another open-ended question (in line with the user’s peefe@s as indicated at the start of the
dialog) before executing the action. In completing thidalawe note that the user was initially
surprised by the robot’s queries; to be a deployable sydtemquestions should be made easier to
understand. Finally, we also note that the two converssti@scribed here are initial conversations
with the user—once the robot has determined the user’'snerefe state, it will not ask meta-action

gueries in further interactions.

Table 6.3 The following dialog (collected from a volunteer in our Jaldemonstrates how a typical conversation
changes as meta-actions are introduced; in this case thpne$ers open-ended dialogs.

With Meta-Actions: Conversation Two

This user preferred to be asked more general questions.

USER Hello.

RoBoT: If | don’'t know where you want to go, should I list options?

UseRr No, now take me to the coffee machine.

RoBoOT: If I'm 95% sure about where you want to go, should I still comfiwith you first?
Knowing the user’s tolerance to going to the wrong place didratter in the previous
context, but now it does affect how the conversation praxzeed
USER Yes.

RoBoT: Where do you want to go?

The robot has some idea of where the user wishes to go fromghetferance, but it needs
additional information. It also knows that the user is ndetant to incorrect confirma
tions.

USeRrR The coffee machine.

RoBoOT: Going to the coffee machine.

6.2 Discrete Approach: Learning New Words

In this section, we assume that the reward model is known.|¥desssume there are a discrete set
of possible observation models. Our primary goal is not aoriebout how noisy the observations
are—as we mentioned before, observation noise must bes@#rrough experience, not queries—
but to learn the mappings for new words. We have not discusseld a model explicitly before,
but the resulting parameter POMDP is similar to that of ®#c6.1: instead of states being pairs
(su,Sy), States are nows(,s,) wheres, encodes the true mapping for all unmapped observations.

Queries about the policy are now replaced by queries abeuhtranings of new words.

86

In a relatively static, noise-free environment, we can klyiglean the meaning of a new word
from context. For example, if the user first asks to go to thesk’ and then follows up by asking
for the “information desk,” we can infer that the word “kidgirobably means “information desk”
without asking the user a question. In preliminary testsfouad that learning new words simply
by listening was generally effective (consider the plotséarning observation models in Section
5.2), and observation queries—which carried a small armmg/aenalty—were almost never used
(even in cases where repeated general queries were pehalize

In this section, we focus on a particular situation whereeoletion queries can be of use:
consider a situation where the user is likely to change tménd about a request. If we do not
satisfy the request quickly, the user may change their nmigldige may have to discover the user’s
intent anew. We cannot wait for the user to use a particulgwked. Even worse, if the user
changes his or her mind several times in one dialog, it besame&h more difficult to infer the
user’s true user state at any point in time. Increased umogytin the user state makes it tougher
to infer the meaning of a new word. Thus, not only can we nairdffo wait for the user to use
a keyword we already know, but it will take us a long time tartethe meanings of the keywords

we should know.

6.2.1 Model Definitions

We continue to use our basic five-goal model as a startingt jpmid set the rewards for general
gueries, incorrect confirmations, and incorrect movemere -5, -10, and -200 respectively.
For our simple example, we add two more unmapped obsergatothe model. Our discrete
observation models consist of fourteen scenarios whete @abese observations maps to one or
zero goal states. Our new underlying state space consigte 88 combinations of the seven user
statess,, and the fourteen observation states

Next we defined our observation model. Lgt, be the probability of hearing the correct

observation when making a general query (0.7 in our examfBieppose); is the mapped obser-

3Although similar, we note that the problem of inferring thederlying user state is not quite the same as the
growing state estimation error in Section 4.2.2 becauseawve finite, discrete set of possible mappings. In theory,
our parameter POMDP should still converge to the correctslagion state.

87

vation to state one and the user also uses the unmapped atiiz@n« to refer to state one. In
our (somewhat extreme) model, we $&b,|s,, ask) = P(o*|s1, ask)/10 with the constraint that
P(01]s1,ask)+ P(ox|s1,ask) = pask. Thatis, the probability of seeing the unmapped obsematio
was 10 times more likely than seeing the mapped observdiidrihe total probability of seeing
one of the two “correct” observations was still;..
We set thep,, the probability that the user does not change goal statddrconversation to

0.75 (instead of the 0.99 in previous experiments). As dt,dbe mean time for the user to change
his mind was only four exchanges instead of 100 before. Thesyhad to act quickly to catch

the user before he changed his mind.

6.2.2 Approach

The user’s observation state defines the expected answee tibservation query, so we did not
require a two stage procedure as we did in Section 6.1. Welsdri@p00 initial belief points and
used them to solve our POMDP. While iterative resampling imaye been beneficial, the initial
solution still provided reasonable results. We solved tO&PPs using the approximate backups
described in Section 5.2.2; the (straight-forward) praceds described in Table 6.2.2. We used
100-150 of these backups to ensure that the lookahead wagdeagh that the value of knowing

the correct observation state became apparent to the agent.

Table 6.4 An approach to incorporating meta-actions into the POMB#&y observations are assumed to take on
specific mappings.
META-ACTION POMDP (DISCRETE OBSERVATIONS

e Solve the large parameter POMDP (which includes meta{ag}fio
e Loop:

— Interact with the user.
— Wait for an observation.
— Update belief.

88

6.2.3 Simulation Performance

We tested our toy example in which the dialog manager had piieroof asking observation
gueries of the form, “Which goal (if any) does this word reti@?” In the simulated ground truth,
the first unmapped observation was likely to be seen in thestiesse and the second unmapped
observation did not correspond to any of the goal states.

Figure 6-5 shows the mean performance of the policy that osstd-actions compared to a
policy that did not. Both policies were trained using the eammber of belief samples, based
on there respective dynamics, and approximately the sammdeuof backups. The policy with
meta-actions approaches the optimal value, and, morengfiyjk we see that the policy without
meta-actions actually does worse over time. Figure 6-6sskenhe light on why the performance
of the system without meta-action queries degrades. Atttariteraction, the probability mass on
the correct observation state begins at the same value floislgstems. The observation queries—
which typically occurred in the first to dialogs—helped justart the learning process, and over
the course of several dialogs, all of the probability masgeatrated in the correct state. Without
meta-observation queries, however, the probability metssfly degraded to zero—it is no wonder
that the policy does so poorly in Figure 6-5!

In these tests, the probability mass for the dialog managéout meta-actions settled on the
observation state where neither unmapped observatiomgasglavance (not shown). Essentially,
the system could not pin down what state the user was in whenrimapped observation was
observed and decided that it could rely on the unmappeddtsans for additional information. In
general, we know that even with noisy data, any belief withsupport over the observation states
should converge to the true observation state. Moreovegpiproximate policy chose actions that
both failed to illuminate the user’s underlying observatitate and failed to satisfy the user’s goal.
Regardless of whether additional sampling or backups wbaleé improved the performance of
the dialog manager without meta-actions, the resultstititis that by allowing the system more
avenues of gaining information in a noisy and dynamic emritent, we reduce the complexity of

the solution.

89

Mean Reward for Learning Observations through Meta—Actions

50
ol
_50 |-
B
IS
z
= -100F
c
I
Q
£
-150
-200F optimal
no meta-actions
meta—actions
_250)
0 5 10 15 20 25 30 35 40 45 50

iteration

Figure 6-5: Mean performance of a dialog manager with and without oladiem meta-action queries. The means are
aggregated over 200 trials of 50 simulated dialogs.

Confidence in Correct Observation State vs. Iterations

no meta-actions
with meta—actions

probability assigned to correct observation state

0 5 10 15 20 25 30 35 40 45 50
iteration

Figure 6-6: Mean probability associated with the correct observasiate.

90

6.3 Continuous Model

Since the meta-actions often require us to have good sokifmr large parts of the state space,
the approaches in previous two sections, where we assunsei@t@ set of underlying models,
do not scale well to large numbers of models. As in Chapter &ing to a continuous model

representation trades the ability to (potentially) do dplemning for model richness. We restrict
ourselves to case of relatively static environments—thahie user is not likely to change his mind
in mid-dialog—and policy queries. We first demonstrate melAlaarning when the observation
model is known. In the final part of this section, we consida&rhing both continuous reward

models and continuous (asymmetric) observation models.

6.3.1 Model Definition

As before, we continue to use are basic five-goal model. Wenasshat the rewards for a correct
action (+100) and a correct confirmation (-1) is known, wtsgets the scaling and translation factor
for the reward model (just we did in Chapter 4). We furtherstaain our reward for incorrect
movements to be on [-1000,-20], our reward for incorrecficorations to be on [-20,-1], and our
reward for general queries to be on [-10,-1]. For simplijoitg will use a uniform prior over this
three dimensional joint reward space. As in all our modeltasove assume that the symmetric
rewards. In the second set of results, when the observatadehis also uncertain, we place
Dirichlet priors on the observations just as we did in Chapte

Paralleling Section 5.2, we sample a set of POMDPs from tisemation and reward priors.
At each time step in the dialog, each POMDP updates its bHadisdd on previous observation and
action. The actions are chosen by the Bayes risk actiontsmlecriterion described in Section
5.2; each POMDP sample contributes to the risk accordintstweight. (Initially, each POMDP
receives equal weight.) Using a set of POMDPs allows us t@a@einse of the spread of policies
given the uncertainty in parameters; we reweight and rekathpm as the priors over the param-
eters change. Before, we relied only on observations totepti@ priors over the parameters.

Meta-actions will also allow us to learn continuous rewaiabiels.

91

6.3.2 Approach

Without a deep look-ahead, policy queries do not change hewsaive” the POMDP. We solve
each sampled POMDP and choose an action based on the Badgebdmigke in Section 6.1, we
do not have a fixed set of policy queries determined at thenbéty. Instead, we allow the robot
to query a policy oracle—that is, the user—at any point wheis confused. Each sampled
POMDP will have a different belief based on its observatianameters, but all POMDPs will
have a recommended action based on the same sequence @ghivos and observations. If the
sampled POMDP recommends an action that differs from thderae know that it is unlikely to
be valid.

There are two questions about how these meta-actions sheulded. The first is when we
should ask a meta-action query. We choose to take a metaakcthe Bayes risk is greater than
(that is, more negative than) a certain threshold and ihtaki meta-action might reduce that risk.
In our tests, we set the threshold to be -1. The number of metan queries asked was relatively
small, so we did not attempt to tune this hyper-parameter.

The larger question is how to incorporate the informatianfra policy query. If both the
reward space and the observation space are uncertain, thearwot know if a given POMDP
disagreed with the oracle because its reward values wene ipoobservation values were poor,
or both. There is also a chance that both the reward and tleew@b®n models were fine, but our
approximate solver handled that particular history podklyelated issue is if we down-weight all
of the POMDPs that suggest an incorrect action, we quicktlywgmwith a sample set where one
POMDP has a majority of the weight. The dialog manager is nalweamercy of the best sampled
POMDP, whose performance is often much worse than the emusictions dictated by the Bayes
risk criterion.

Since incorporating the results of a policy query is diffiowrhen both the observation and
reward models are unknown, we first describe a reasonabtyegifiapproach if only the reward

model is unknown. Recall that each sample POMDP is a poirttenréward parameter space.

“We realize that asking a question of the form “Given our cosaton so far, what should | be doing now?” is
vague and difficult to answer even for an experienced usdrimaproving the usability of policy queries is an area for
future work.

92

Figure 6-7 shows two POMDPs (circles) for a two dimensioealard space. Suppose that after
a particular history, our user tells us that the correctoacts to ask a general question. Presum-
ably, there is some boundary (dashed line) which separatesrd instantiations whose policies
will agree with the user and those which will not, but we do kiwdw where that boundary lies.
However, we do know that if “ask” is the correct action, ther anly is the POMDP in the top
left corner wrong, any POMDP in the top left hashed regionrisng—decreasing the reward on

confirming or increasing the reward on asking will certainbt tip the policy towards asking.

S confirm ,
region //
...... O) ////
£ .°7 " askregion
) /
S [O
.
—____
. —
-~ T
rAsk

Figure 6-7: This figure shows how policy queries can be used to prune atmensional continuous reward space.
Each circle represents a POMDP. POMDPs that suggest imt@tgons can be used to prune or down-weight large
sections of the reward space.

The policy of any of the POMDP samples at any point may not loeect especially since we
use so many approximations in our computing our policieausTinstead of completely pruning
away or removing regions from the reward space, we reducelitkedihood. This is yet another
parameter that needs to be tuned: set too high, the systémepalatedly ask meta-action queries
just to reduce the weights in some areas. Set too low, validne marked as invalid may take a
long time to recover. We found that reducing the likelihoddbad regions by 0.1 provided good
performance.

As the number of meta-action queries increases, the sizeedikely region can become very
small, and basic rejection sampling will take a long timehoase a new random instantiation. For

more efficient sampling, we re-discretize the reward spatmea 3-array. Each block in that array

93

is assigned a weight. To sample from the array, we samplgaoa dimension at at time. Using
a binary search, this takésg(n) steps to sample one dimension if there arpartitions along
that dimension. For each step, we need to sum over the unassiimensions to compute their
relative weights. There are probably faster sampling aggres (quad-trees, range trees), but we
found this sped up our search enough to make it run in real tdmee we choose a fine enough
cell in the reward space, we can sample uniformly from thit @&us, if only the reward model

is unknown, we can efficiently prune and sample from the réwspace.

Unfortunately, when both the reward and observation madefte unknown, we cannot reason
about the reward space as we did above. The POMDP’s acti@mdson both the observation and
reward model, and the high-dimensional observation spaceat even be discretized efficiently
to create a joint-space with a reward model for each obdervamodel. Without an efficient
representation for the joint observation-reward prioraneforced to sample from it using rejection
sampling. Given a sef(H,a)} of histories and oracle results from all policy queries ttedave

took the following steps to resample a new set of POMDPs:

1. Evaluate how many policy queries that each of the POMDHMsdrturrent sample provided an

incorrect action.

2. Sample and solve new POMDPs from the observation priatgiga as we get more observa-
tions) and a uniform reward prior. If the new POMDP errs onaqu fewer policy queries than

the worst POMDP in the current sample, replace the old POMiPthe new POMDP.

3. Continue sampling until either (1) all POMDPs have eresslthan or equal to the best POMDP

in the original sample or (2) we exceed a certain threshokhofples.

By trying the match the best sample in the current set—idstéaatisfying all previous policy
queries—the system is tolerant toward variations in apprate solutions. In our actual im-

plementation, we also found it useful to sample a minimum lpemof POMDPs—even if the
POMDPs had the same number of incorrect responses to palayes, replacing all or most of

the POMDPs with equally poor performance in the sample seth&fpful since the new POMDPs

SWe also investigated other stopping conditions, such >y only improve the sample set by a fixed proportion
of new samples, but these did not perform as well as the appmalined above.

94

were more likely to have the correct observation model. §&l8.2 summarizes our approach.

Table 6.5 Sampling POMDP approach to solving an uncertain POMDP widlia-actions. The observation and
reward parameters are now continuous valued.

META-ACTION POMDP (CONTINUOUYS)

e Sample a set of POMDPs from an initial prior.
e Approximately solve that set of POMDPs.
e Loop:

— Choose the action that minimizes Bayes Risk, or, if risk isagy
decide to take a policy query.

— Wait for an observation.

— If we did a meta-action, reweight the POMDP samples accghdin
Update the reward prior if we assume that the observatioretisd
known.

— At the end of a dialog, update observation priors and resampl
POMDPs.

6.3.3 Simulation Performance

Figure 6-8 shows the simulation performance of meta-astiorder the continuous reward model
in the case where the observation parameters are known amdetyic. Meta-actions prune the
space of the user’s preferences and as the POMDPs are resham reweighted, we quickly
reach close to the optimal level of performance. Since tlseofations do not provide any infor-
mation about the rewards, simply reweighting and resamgpghe POMDPs, as we did in Chapter
5, does not help us learn the user’s preferences. Policyegusithout resampling also performed
poorly because we need to be able to get POMDPs with appreedynthe correct reward pa-
rameters; reweighting without resampling hurts perforogabecause all of the probability mass
quickly converges to the least-wrong POMDP in the samplea Assult, we neither have the cor-
rect POMDP (which would require resampling), nor do we hacersservative buffer created by
several samples (due to the reweighting).

Finally, we tested the approach above against the sameatioruimodel as in the previous

95

Median Reward Aggregated Over 100 trials

opt
““““““ no learning

= = = = reweight only

reweight and meta—action

1 - z B \
IRy U NP NIRRT YRR
' TR EY

Iteration

Figure 6-8 Performance of Meta-Actions under the continuous rewaodleh The observation model is fixed.
Without any opportunities to learn about the rewards, rghting by itself is not useful, but meta-action queries
quickly bring us to close to the optimal reward.

chapter when both the observation and the reward model wdaeown. Figure 6-9 shows the
mean performance of the learning approach. This is the noosplex scenario we have consider
so far, and as a result, the learning is significantly morsynd\nother factor that makes it difficult
to see the effects of the policy queries is that the Bayesattion-selection criterion, with its
conservative choice of actions, also prevents relativesittesred sets of POMDP samples from
making poor decisions. We see that the policy-query approaaches the closer to the optimal
faster than simply relying on observations. In Figure 646 see that the policy-query approach

also is also less likely to make major mistakes.

6.4 Discussion

We have seen that meta-action queries provide a useful walgdagent to learn about the user’s
preferences (and, if needed, vocabulary). Especially éntlie continuous case, learning from
meta-actions is not nearly as clean as the expected valueatpin Chapter 4, where the system
received clear and explicit reward feedback at every stéipsvever, we show that we can learn
enough of the user model to achieve near-optimal simulgteformance without the annoyance

of explicit feedback. Asking about actions that we oughtaket—along with the conservative

96

Mean rewards for learning both observation and reward spaces

100
80
60
©
5 401
2
<
c
g
e 20
0 |
no learning
optimal
-20 P) .
observation learning
policy query learning
_40 1 1 1 1 1 1 1 1 1 J
0 5 10 15 20 25 30 35 40 45 50
iteration

Figure 6-9: Mean performance for learning continuous reward and ebsien models. The data is noisy, but we can
see that the meta-action approach (red) quickly improves tipe nominal performance.

Fraction of trials with errors when learning both observation and reward spaces

0.09
no learning
optimal
0.081 observation learning
policy query learning
0.07
(2
s 0.06 -
5]
s
'S 0.05F
0
8
S 0.04F
c
§e]
3]
£ 003F
0.02
0.01r-
0 1 1 1 1 1 1 1 1 J
0 5 10 15 20 25 30 35 40 45 50

iteration

Figure 6-10 Fraction of runs with major errors while learning continismbservation and reward parameters. Again,
the policy-learning approach seems to make relatively femajor errors per run.

97

Bayes risk action selection criterion—prevents the diai@mager from making serious mistakes.

To improve the meta-action queries, work must still be domaake them more intuitive to the
normal user. Even expert users may lack a intuitive grasglid¢fstates, and they may not provide
the answer that matches their true preference model. InahiEncious case, we could also benefit
from more efficient ways to sample POMDPs from the joint realpservation prior.

Finally, an even more subtle form of policy learning woulae usies such as ‘good work’ or
‘that’s wrong’ from the user to learn both observation andarel models. It is unlikely we could
rely solely on such cues because different users may be mdessotalkative, but for users who
do supply such information, this may be a further approaatedoice the amount of information

for which the robot needs to actively prompt the user.

98

Chapter 7

User Validation on a Complex Model

In this chapter, we present anecdotal observations fronilection of four user tests. Our goal is
to show that not only do the policy meta-action approache&sldped in Section 6.3 work in the
aggregate sense, but they can also help a system adapt wlawsser in a single trial. We first
present the model and the parameters used to initialize tiemWe continue with a description

of the system and a qualitative summary of the system’s peence.

7.1 Model Definition

The model and the solution approach is identical to thatgmtes! in Section 6.3. However, instead
of five goal states and eleven observations, we included dahgjates and thirty-eight observa-
tions. The first seven goal states were locations to whichvtieelchair could drive, while the re-
maining goal states encoded information goals, such agstgjtor email, the time, or the weather.
Table 7.1 lists all of the goals and keywords used in the exygatt. The starred observations were
the observations that were initially mapped to the goalse l#maining observations began with
no initial mapping.

We included 15 sample POMDPs in our sample set. Our priomasdiuthat the probability
of hearing the expected (starred) observation in that @htien’s goal state to be 0.6, and the

probability of hearing a confirmation correctly to be 0.8. Weour prior be very uncertain, with

99

Table 7.1 States and Observations for User Test. i
States Nick’s office , Bryt's desk, printer, meeting, coffee maahji

copy machine, home, email, time, weather

Observationg Nick's*, Bryt's*, print*, meeting*, coffee*, copy*, home}
email*, time*, weather*, done, yup, no, desk, door, office,
paper, printer, seminar, group, presentation, waternmek,
kitchen, microwave, inbox, message, forecast, machirme, wi
dow, food, lunch, date, copier, conference, nick, confirm

—

a pre-observation count of three per state, action pait {$htaree observations over 38 possible
observations!). Recall that in expected parameter casepi€h4), setting the initial confidence
to be too low had caused problems because the system quistdyrie sure of not-yet-converged
probability distributions and therefore started to makenynaistakes. Keeping a sample set of
POMDPs, which indicated a sense of variance in the parameted using the Bayes risk action-
selection criterion allowed us to learn robustly and quickith a very uncertain model. We also
assumed that the user was very unlikely to change their mime-itialized the prior with the
probability of the user changing his mind to 0.01, and duthmgactual tests, we assumed that the
user was in the same state throughout the dialog.

As before, we began with a uniform reward prior over the p@esgfor asking a general query,
confirming an incorrect goal state, and executing an incoaetion. We did not distinguish be-
tween penalties for incorrect movements (which should beersevere) and penalties for incorrect
information retrievals (which should be less severe),aitfh that is an aspect we plan to include
in future work. The reason for limiting the number of rewavess primarily computational: the
higher the state space in which we had to sample, the longeoktus to find samples that we
would accept. One change we did make, however, was to incrteime penalty for a policy query
by -1.5 (starting at -1) after each meta-action. Graduaklyeasing the meta-action penalty sped
up the transition from the system’s reliance on policy qegeto applying its new-found information

and made for less frustrating user experience.

100

7.2 Experimental Setup

Even with our fast sampling approaches to solving the POMB&®ns still took approximately 7
seconds to compute the wheelchair’'s on-board computer @uIHP resampling required several
minutes. Therefore, we completed our tests on a fast (2.6) @elzktop, where actions took 1
second to compute and POMDP resampling required about 8hdsc We realize that speed is
critical for a real-time system, and making our approactefas an area we will study in the future.

After a short introduction, which included a summary of thekis that the wheelchair could
provide and a description of the user interface, each ussttdgetween 15 and 20 minutes inter-
acting with the system (about 14-16 dialogs). The useracted with the system primary through
the microphone, and the system responded with through egir@hdow on the computer screen
(it could also respond with synthesized voice, but we didhave the users wear the audio headset
during our tests). Users were encouraged to use differaqabedary when referring to goals and
to repeat goals so that the effects of the learning wouldrinecapparent in a relatively short set of
dialogs, but they were not coached to show any particulat &frpreference model when respond-
ing to a policy query. All four users (one of which was the aujhwere graduate students in the
lab.

We now describe our simple user interface. Figure 7-1 shopistare of the initial dialog
window. The background color of the window is purple to iradecthat the system is currently
inactive. The window consists of four parts. First, the éadack text indicates the system’s dialog
to the user. The row of four buttons allows the user to cleatdyt, stop, and reset the system
if necessary. The task-success button, in conjunction thighradio buttons at the bottom of the
window, are used to determine whether the wheelchair sramiiclly execute a motion command.
While not strictly necessary, they are a useful safety featiinally, the space below the large text
(blank) is reserved for feedback regarding the system.state

Figure 7-2 shows the system in an active state—the screebrigld yellow, to get the user’s
attention, and a question is presented in the main text. Miader feedback window indicates that
the system is currently busy synthesizing the question @scsp Once a response is received, the

window turns cyan (Figure 7-3) to indicate that it is busyqassing. The feedback window tells

101

tk _OX

Qf
Begin Dialog | Task Success | Reset Dialog | End Dialoy

Figure 7-1: Initial dialog window.

the user the system’s best estimate for what it heard as s#ksfact that it is busy processing. In
this particular situation, the system is unsure of whaoaadti should take next—it does not have a
strong sense of the user’s reward model—and pops up a palenygvindow (Figure 7-4). Here,
the user must use a mouse to choose the most appropriate. adti® users were coached to select

the action that they would want the system to perform if theyenn the system’s position.

Q| tk -0OX

Do you want to go to the printer?

playing audio now

Begin Dialog | Task Success | Reset Dialog | End Dialoy |

Should the robot execute motion commands ¥
~ Yes % HNo

Figure 7-2: Dialog window waiting for user feedback after receivingo@sch input.

Ol tie —ox

Do you want to go to the printer?
heard: yup; processing now

Begin Dialog | Task Success | Reset Dialog | End Dialog |

Should the robot execute motion commands ?
o Yes # HNo

Figure 7-3: Dialog window processing user feedback.

Once an action is chosen, the dialog window again turns byigllow (Figure 7-5 to indicate

that it is taking an action and is ready for user feedbackhimdase, the user does indeed wish to

102

L] thk - 0O X
Below are all the actions that | knows how to execute,
Given our current dialog, what would you do if you were me?

.. going to Mick's office

.. foing to Bryt's desk

.. joing to the printer

.. going to the meeting room

.. foing to the coffee machine area

.. gjoing to the copy machine area

.. going home

.. fetched your email

.. time to get a watch!

.. showers

Do you want to go to Nick's office?

Do you want to go to Bryt's desk?

Do you want to go to the printer?

Do you want to go to the meeting room?
Do you want to go to the coffee machine area?
Do you want to go to the copy machine area?
Do you want me to go home?

Do you want your email ?

Do you want the time?

Do you want the weather?

Hows may | help you?

e ZIIT ...

0K

Figure 7-4: The dialog manager is confused and presents policy quergom.

103

go to the printer and clicks the task success button. Theawrtdrns inactive (Figure 7-6) as it

updates the observation model and resamples POMDPs.

Q| tk -0OX

... going to the printer

playing audio now

Begin Dialog | Task Success | Reset Dialog | End Dialoy |

Should the robot execute motion commands ¥
~ Yes % HNo

Figure 7-5: The dialog manager completes its task.

tk _0Ox

]
Begin Dialog | Task Success | Reset Dialog | End Dialog

Figure 7-6. The dialog manager retrains its model.

7.3 Results and Discussion

The users were not asked to provide explicit reward feedbathke system, and the goal of our
tests were to exhibit the system’s basic functionality eatinan quantitative improvement along
some objective performance metric. Here we summarize thestgf adaptation that we observed
and highlight the changes through samples from user dialbgsh of the dialogs is taken from a
different user, but the different types of learning thatehdere were common across all users. At

the end of this section, we include the suggestions we redetvimprove the user interface.

Learning Basic Dialog. The first pair of example dialogs we present in Table 7.2 aliengle

example of policy learning. Because we had set such low cemdigl levels in our initial obser-

104

vation model, and we had a very broad reward model, the lisiéiample of POMDPs contained a
large variety of policy options even when the conversatieensed relatively straight-forward. In
the first dialog, which occurred early in the conversatibe,gystem is uncertain of what it should
do when it hears the word “printer,” even though “printer"aisvord that already has a specific
mapping in its vocabulary and no speech recognition erroesimmed. Part of the system’s confu-
sion comes from not knowing the reward model—it does not kmtwether the user would prefer
that system asked a confirmation question before taking tonadnother part of the confusion
comes from a very imprecise observation model. Since theikeglihood of hearing the correct
observation in a particular state was only 0.6, several isadethe initial sample include even
smaller probabilities of hearing the correct observatitimus, the samples are also divided in their
belief over the user’s intentions. At a later point in theansation, the system follows the user’s

recommended course of action when referring to that sane!sta

Table 7.2 In the following pair of dialogs, the system learns thahibsld ask a confirmation question after hearing a
definitive response to a general query.

Early Conversation

RoBoT: How can | help you?

UsSeRrR Take me to the printer.

RoBoOT: I'm confused. What action should | take now?

The system pops up the policy query window, and the usesditKconfirm printer”
RoBoT: Do you want to go to the printer?

USER Yup.

RoBoOT: Going to the printer.

Later Conversation (with the same user)

RoBoT: How can | help you?

UsSeRrR Go to the printer.

RoBoT: Do you want to go to the printer?

The system has learned that it should confirm a state befdiegac

USER Yup.

RoBoOT: Going to the printer.

Learning New Words. We initially designed the policy queries to be used for legsgrreward

models, but they proved to be quite helpful in learning newdsas well. When faced with a

1The voice recognition system had trouble with the “s” sowsmwe coached the users to use the word “yup”
instead of “yes.” “Yes” was often confused with “you” or “de’s

105

new word, the system would often be confused and use a paliegydo determine next course
of action. Usually, the user would suggest that the systemfiroo the state that corresponded to
their desire. Since confirmation questions were not noipgsitive confirmation at that stage was
generally enough for the system to commit to the correct goabn. Within one or two dialogs,
the observation prior would have changed enough so that aidee newly sampled POMDPs
would contain the correct mapping for the new word. Thushwiite aid of a meta-action, the
dialog could be completed quickly, correctly, and in wayttk@ll allowed the system to learn
without having to wait until a mapped keyword was heard (caraghis initial conversation to the
initial conversation in Table 4.7).

Table 7.3 shows an example of such a conversation. The m&pyeard for the weather goal
is “weather,” but the user is using the word “forecast” iasteln the first dialog, the system uses
a policy query to discover what action it should take next] endoing so, successfully completes
the dialog (with the user’s help). In the later dialog, ittid sot completely sure about the meaning
of the new word, but it is able to resolve its uncertainty tlgio a confirmation question instead of

a policy query.

Table 7.3 In the following pair of dialogs, the system learns the miegiof a new word through a meta-action query.
Early Conversation

RoBoT: How can | help you?

USeRrR Give me the forecast.

RoBOT: I'm confused. What action should | take now?

The system pops up the policy query window, and the usesditkshow weather”
RoBOT: Showers.

Later Conversation (with the same user)

RoBoT: How can | help you?

UserR What's the forecast for today?

RosoT: Do you want the weather?

The system has partially learned the mapping for the wordetast,” and confirms it
before continuing.
USER Yup.
RoBoOT: Showers.

106

Learning Preferences. In Table 7.3, we saw an example where the user did not wany#ters

to confirm a goal; he wanted the system immediately undetsdad execute the command. In
Table 7.4, we see a set of dialogs where the user always dr#ieesystem to respond immedi-

ately. As a result, the system gradually moved from askirigypqueries to asking confirmations

to immediately executing actions. In the second-to-laslogj, we see that sometimes, noise in
the observations caused the dialog manager to execute tmgolicy. The system was able to
recover using a policy query, but the user was not pleasduthis result (especially since obser-
vation noise is opaque to the user; he felt as if he had stadedduest very clearly). This example
shows that while the learning process functioned corrgtitly result was not one that the user

desired.

Learning Complex Observation Models. Over time, the system was also able to learn much
more complex combinations of observation models that ageoufor both the user’s vocabulary
choices and the noise in the voice recognition system. IfeTab, we present a situation where the
user often referred to the coffee machine area with the wkitdifen” or by asking for “tea.” The
situation was complicated by the fact that the voice redommsystem generally misinterpreted the
word “coffee” as “copy,” and that the word “machine,” (as toffee machine” or “copy machine”)
was also an unmapped word. Initially, the dialog manageairs/fconfused, and it takes it twenty
exchanges to complete the first diadodn the later dialogs, however, we see that the system has
adapted to the complex observation model. In particularsétond example shows a scenario very
much like the early conversation. The system is able to cetaphe dialog even though new words
are used and “coffee” and “copy” are confused with each othbe final example demonstrates
that although the system has learned that the word “copghaftcurs in the “coffee” state, it still

is able to handle requests for the “copy” state without assgitihat the utterance is necessarily a
mistake. We note that the system uses confirmation querdisambiguate the confusion between
these two often-confused states.

In general, all users agreed that the system did adapt over and the conversations high-

2In the interest of full disclosure: these dialogs come frtwa $et completed by the author, and to some extent,
initial dialog was purposefully made unforgiving and difficto confuse the system.

107

lighted above show how the system was able to learn new woadse models, and user prefer-
ences at once through the use of policy queries. In the setaat dialogs from the user tests, only
two of them had failures where the system actually executeid@rrect movement or informa-

tion task. While the system was careful, many did expresdriation in that sometimes it adapted
too slowly. For example, they were generally glad when tletesy stopped asking policy queries
and switched to asking confirmation questions when it wasesdrat unsure of the user’s intent.
However, most of them wanted to know how long it would takesystem to forego confirmations

and react immediately to their commands.

As the penalty on meta-actions increased, sometimes thensygould also take unintuitive
courses of action to resolve uncertainty. For example, | situation, several of the POMDP
samples believed that the user wished to go to the printeg few confused POMDPs believed
that the user wanted the time. The dialog manager chose foraomhether the user wanted the
time—which was not the most likely state in a majority of tt@N*DPs—before proceeding to the
printer. These kinds of actions make sense mathematigalisn the reward parameters on those
POMDPs, but are unsatisfying to the user.

We also received several suggestions regarding the useface. Some of these suggestions,
such as the color scheme to make the POMDP’s internal state atwious, were incorporated
into the user tests. We also adapted the vocabulary set basgtat kinds of words the previous
user used. One general comment was that the users wantednfomeation about the system
state, and they wanted the dialog manager to seem moragetall Some changes were purely
aesthetic: even if it was repeating a general query or coafion, users said that they would prefer
that the system rephrased the question to make it seem moaenily and responsive.

Other suggestions focused on the policy queries. For exgntipéy wanted more detailed
system information on the small feedback window. Often tlesprted to a side debug window,
which included the n-best lists from the voice recognizedetermine why the system seemed to
be misbehaving. While this is may be the first instinct of iested computer science students,
their point—that based on the dialog window, it was diffidolinfer the system’s confusion and

determine the correct response to the policy query—is \a&n. Along similar lines, users sug-

108

gested displaying only the top ranked policy options whetkintpa policy query, instead of all
of them, to both reduce the number of options and to demdedtrahe user that the system was
actually debating between a few reasonable options. Wetplacorporate this feature into future

tests.

109

Table 7.4 In the following set of dialogs, the system learns that theryrefers that the system immediately execute
actions without confirmation questions.

Conversation Two:

RoBoT: How can | help you?

USER Take me to Bryt’s desk.

The system knows the keyword “Bryt” but not the word “desk’dddition, some of thg
voice recognition system’s outputs confuse “me to” with &tieg.”

RoBoT: How can | help you?

USER | want to go Bryt.

RoBOT: I'm confused. What action should | take now?

The system pops up the policy query window, and the usesditkGo to Bryt's desk”
RoBoOT: Going to Bryt’s desk.

Conversation Ten

RoBoT: How can | help you?

USErR What time is it?

RoBoT: Do you want the time?

The system has stopped asking meta-actions, but it stdlasknfirmation before acting
USER Yup.

RoBoOT: Time to get a watch!

Conversation Fourteen

RoBoT: How can | help you?

UsSeR Take me to Nick’s office.

Most of the speech recognition outputs hear “meeting” iastef “me to Nick”

RoBoOT: Going to the meeting room.

UsSeRrR No, go to Nick’s office.

This time, the speech recognition outputs hear a combinatidoffice” and “meeting” in
addition to “no.” Hearing both “no” and “meeting,” the statat thought the user wanteq
to go to, makes it confused.

RoBOT: I'm confused. What action should | take now?

The system pops up the policy query window, and the usersabiock'Go to Nick’s of-
fice” Notice that the user still recommends the system towdrea movement instead off a
confirmation.RoBOT: Going to Nick’s office.
Conversation Fifteen

RoBoT: How can | help you?

UsSer Go to the conference room.

We note that conference was a previously unmapped keywdarthdsystem has begun o
learn its mapping by this point in the dialog.

RoBoT: How can | help you?

User Go to the conference room.

The system has learned not to ask confirmation questionkifouser.
RoBoOT: Going to the meeting room.

D

110

Table 7.5 In the following set of dialogs, the system learns seveeal words for a particularly noisy pair of states.
Early Conversation

RoBoT: How can | help you?

USER | want some tea from the kitchen.

RoBoT: How can | help you?

USeER The teais in the kitchen near the coffee machine.
The system sometimes hears “copy” instead of “coffee”; mwes, it's heard so many new
words it doesn’t know what to do.

RoBoT: How can | help you?

UsSeER Go to the kitchen.

RoBoOT: I'm confused. What action should | take now?

The system pops up the policy query window, and the useisabick'‘Go to the coffee
machine area”

RosoT: Do you want to go to the coffee machine area?

USER Yup.

The system asks a few more general queries before re-camdjrtmé coffee machine
state because it has heard such a varied collection of newisvdie note that it does not
ask any more meta-actions nor does it prematurely executecanrect action.
RosoT: Do you want to go to the coffee machine area?

USER Yup.

RoBoOT: Going to the coffee machine area.

Later Conversation

RoBoT: How can | help you?

USeRrR Take me to the kitchen.

The system hears a noisy combination of “nick” and “kitchgnfiostly “kitchen”).
RoBoT: How can | help you?

USER | want some coffee.

Very unlucky, the system heamsly the word “copy” instead of “coffee.” However, givep
its noise model and the prior observation “kitchen,” it $tbnfirms the correct state.
RoBoT: Do you want to go to the coffee machine area?

USER Yup.

RoBoOT: Going to the coffee machine area.

Later Conversation

RoBoT: How can | help you?

USER | need to make a copy.

As before, the system heassly the word “copy” However, without other evidence,
confirms the “copy” state.

RosoT: Do you want to go to the copy machine area?

USER Yup.

RoBoOT: Going to the copy machine area.

it

111

Chapter 8

Conclusions and Future Work

In this work, we developed and explored a variety of appreat¢t learn models for dialog manage-
ment. In the context of controlling robotic wheelchair, wasidered the specific scenario where
the dialog manager had to determine where to drive the usih tWé voice recognition system
noisy and the frustrating consequences of driving to thengyfocation, we used a POMDP model
to trade between information gathering actions (confiramej general clarifications) and physical
movements. Learning the parameters for this POMDP onliretivafocus of this work.

In Chapter 4, we began with a fast approach that adapted tes#rdout ignored the uncertainty
in the parameters. Since we ignored parameter uncertametyould handle relatively complex
models—including continuous reward and observation spad®rit the system was sensitive to the
initial choice of parameters and sometimes too aggres#ivaso required that the user provide
explicit reward feedback to train the system.

The remainder of the work built toward handling a continuobservation and action space
more robustly. In Chapter 5, we introduced the idea of angaéi meta “parameter” POMDP in
which the parameters were considered additional hiddée. sthe large POMDP was difficult to
solve, and we used techniques from Chapter 3 to approxinoagans. We also introduced the
idea of sampling POMDPs from a prior over the parametersuamd) the set of POMDPs to make
robust decisions (using a Bayes risk action selectionraritg

Finally, in Chapter 6, we furthered improved robustness @ecreased user load using the

112

concept of meta-actions, or queries about what the systemdhave done. Meta-action queries
allowed us to learn about a user’s preferences without akpgron the user for feedback. We
showed the utility of meta-actions in simulation, and fertdemonstrated their use in Chapter 7.

All of the approaches in this work used a Bayesian framewodce priors over the parame-
ters and proceeded to solve POMDPs using value-functioasefn in Chapter 2, value function
approximations for POMDPs can be relatively straight fadydnowever, these techniques force
us to either ignore symmetries in the problem (which quickigke the problems intractable) or
hand-code the symmetries (which, in addition to requirirgegt input, runs the risk of coding
incorrect assumptions into the solver). For the ideas ptedehere to scale to larger systems and
more varied problems, future work should consider altéraatpresentations for POMDPs.

One alternative, proto-value function approximation, basn used to find suitable eigenfunc-
tions to approximate the value function in large MDPs[21he$e functions are formed solely
from the dynamics of the model, and the underlying assumpgithat functions representative of
the model dynamics will also be representative of the valmetion. Whether that assumption is
true in the dialog management domain is unclear, but as we $een already in our current work,
some approach to taking advantage of the state and actiomsignin our problem will be crucial
to making any value-function based approach efficient aaxtdble.

Another alternative we would like to consider in our futurerwis to plan in the policy space,
eliminating value functions completely. For example, wandanaintain a particle-filter of policy
trees or finite-state controllers. We note that despitegitgelnumber of parameters we had to learn
in this work and the computational difficulties involvedetproblems what we considered really
had very simple policies. Moreover, in Chapter 6, we encen@a significant difficulties in trying
to sample from a complicated parameter space just to findaf parameters that were consistent
with information provided from policy queries. Especialty dialog management problems—
where polices are simple and policy advice is easy to giveseains that the policy space may be
the right space to view these problems.

In particular, since small POMDPs are quick to solve, it maybssible to construct a policy-

tree online that considers only how meta-actions may hedpdinlog manager branch to more

113

certain parts of the belief space (this is approach wouldrb#as to the various online policy tree
approaches inspired by [23]). On the other hand, while itfficdlt to map the effects of meta-
actions to sections of the belief space, a finite-state otbatrapproach (based on the ideas of [17]
or [2]) may have more direct interpretations in the policacsp

Finally, we plan to conduct more sophisticated user studi#is the robotic wheelchair. By
measuring how long it takes the system to fulfill a user’s seset surveying users on their satis-
faction, we hope to determine if there exists a significaffiéince between a hand-crafted dialog
manager and the kinds of learning POMDP dialog managersdzmesl in this work. The difficul-
ties that users have operating the wheelchair with eithetelhmay provide additional insight into

what dialog management research questions would add thtevaios for wheelchair users.

114

Appendix A

Hardware

Here we provide a brief description of the robotic wheelchiaat was designed and built as the
target application of this work (see Figure A-1). Our goaiaprovide the reader with a general
sense our hardware configuration and user interface; awfalo technical report will contain

detailed information for those who are interested in regiiey our hardware.

Figure A-1: A robotic wheelchair was the target application of this kvor

115

Modifying a commercial chair seemed to be the right costkvib@lance between buying a pre-
roboticized wheelchair and machining our own wheelchaimfiscratch. We chose a Jazzy 1103
power chair from Pride Mobility because of its center-whdréle (for ease of control) and reason-
able cost. The Jazzy 1103 also had an adjustable seat thabeoaised to create room for custom
parts and wiring, including the on-board computer and pdwe: To control the wheelchair, we
intercepted the joystick signals and replaced them witloawr translation and rotation commands.
While somewhat indirect, this approach allowed us to condrtae wheelchair using low power
signals as well as create a simple override circuit that reastihat the user would be able to take
control if the computer failed.

Used for both obstacle avoidance and localization, the lgha#’s primary mode of sensing is
through the laser range finder mounted in the front of the Veche&. We found that the one scanner
was effective for most tasks; however, given the heighteftheelchair, the user occasionally had
to provide their own obstacle avoidance for taller prowasi(such as tables) that were invisible
to the scanner. Shaft encoders mounted to the motor shditslofirive wheels supplemented the
laser range measurements with odometry information.

The Carmen Robotics Toolkit [22] (with some modifications fbe new hardware set-up)
provided basic localization, navigation, and mapping bdpees. The dialog manager itself was
implemented in Python and Matlab, and interfaced with Carnia the pyCarmen. All compu-
tation was completed on-board except for the voice recmgnitvhich occurred remotely with
a system developed by the MIT Spoken Language Systems G8ugThe voice recognition
was computed off-board for convenience: as research s@hilee voice recognition system was
not yet an easy to install package. There was no computdtfo@amaer to computing the voice
recognition on board the wheelchair.)

Several steps needed to be taken before any user inteactooarred. First, we drove the
wheelchair around an area to collect laser data and buildpa Mext, the map was hand-labelled
with locations of interest, such as elevators or offices ti{gnfuture, we hope to make it possible
to easily add new locations online). The interface to théodiananager received a list of key-

words that corresponded the each location or task (the ndadqgyavords) as well as a larger set of

116

keywords to listen for (the unmapped keywords).

The user interacted with the system primarily with a micrmpé. Once in listening mode,
the system continuously monitored the microphone for sustiinputs over a pre-specified power
threshold. This simple approach to detecting and end-ipgispeech inputs proved to be sufficient
for indoor office environments, although more sophistidagproaches may be needed for noisier
situations. Once the voice recognition system processedpkech input, the dialog manager
scanned the returned n-best list for occurrences of keysvovde did not make any attempts at
natural language understanding. At the end of a dialog, #e oonfirmed the system’s final
action with a mouse-click. While not strictly necessarg #uditional confirmation step prevented
the wheelchair from moving prematurely during tests; wehedsto avoid safety issues where the

user might be trying to talk to the wheelchair and monitomtsvement at the same time.

Begin Dialog | Task Success | Reset Dialog |

S1dalt nere

Figure A-2: The user interface. This screen shot shows the window inetgmode, just after the system has
been reset. The buttons allow the user to manually resetyiters as well as regulate the execution of movement
commands.

Finally, a window displayed on a monitor attached to one ef &hms was the main form
of feedback (see Figure A-2 for a screen-shot). We kept thmeloww small to allow for easy
viewing of other navigation related windows as well as lagvihe user the opportunity to run
programs if desired. The larger window text displayed theteay’s queries, while the smaller text
displayed information about the system'’s internal statg (8'm thinking...”). To show attention,
the window also changed color—from purple to yellow—whesrehhe microphone power went
over the pre-specified threshold. For experiments wheréogx@ward feedback was required,

the window also included several buttons for each rewardtinp

117

Bibliography

[1] Anthony Cassandra, Michael L. Littman, and Nevin L. Zbaincremental Pruning: A sim-

[2]

[3]

[4]

[5]

[6]

[7]

[8]

ple, fast, exact method for partially observable Markousiea processes. In Dan Geiger and
Prakash Pundalik Shenoy, editoPspceedings of the Thirteenth Annual Conference on Un-
certainty in Artificial Intelligence (UAI-97)pages 54-61, San Francisco, CA, 1997. Morgan

Kaufmann Publishers.

L. Charlin, P.Poupart, and R.Shioda. Automated hidrantiscovery for planning in partially
observable environments. In B. Scholkopf, J.C. Platt, Bridofmann, editorsJo appear in

Advances in Neural Information Processing System<aanbridge, MA, 2007. MIT Press.
Mercan Karahan Computer. Combining classifiers for gpolknguage understanding.

Richard Dearden, Nir Friedman, and David Andre. Modeddzhbayesian exploration. pages
150-159, 1999.

Finale Doshi and Nicholas Roy. Efficient model learnimmg flialog management. IRro-
ceedings of Human-Robot Interaction (HRI 200&pshington, DC, March 2007.

Finale Doshi and Nicholas Roy. Efficient model learningdialog management. Fechnical

Report SS-07-QPalo Alto, CA, March 2007. AAAI Press.

Eyal Even-Dar, Sham M. Kakade, and Yishay Mansour. Regdgment learning in pomdps
without resets. INJCAI, pages 690-695, 2005.

A. Fern, S. Natarajan, K. Judah, and P. Tedepalli. A denisheoretic model of assistance.
I[JCAI, 2007.

118

[9] J. Glass. A probabilistic framework for segment-bagegesh recognitionComputer Speech
and Languagg(17):137-152, 2003.

[10] Geoffrey J. Gordon. Stable function approximationymamic programming. IRroceedings
of the Twelfth International Conference on Machine LeagniS8an Francisco, CA, 1995.

Morgan Kaufmann.

[11] Eric A. Hansen. An improved policy iteration algorithfor partially observable MDPs.
In Michael I. Jordan, Michael J. Kearns, and Sara A. Sollatoes| Advances in Neural

Information Processing Systepwwlume 10. The MIT Press, 1998.

[12] J. Hoey and P. Poupart. Solving pomdps with continuauarge discrete observation spaces,
2005.

[13] J. Hoey, P. Poupart, C. Boutilier, and A. Mihailidis. /dp models for assistive technology,
2005.

[14] Michael R. James, Satinder Singh, and Michael LittmRlanning with predictive state rep-

resentations. 2004.

[15] Robin Jaulmes, Joelle Pineau, and Doina Precup. Legininon-stationary partially observ-
able markov decision processes. Workshop on Non-StattgnaReinforcement Learning
at the ECML, 2005.

[16] M. Kearns, Y. Mansour, and A. Ng. Approximate plannimglarge pomdps via reusable

trajectories, 1999.

[17] Kee-Eung Kim, Thomas Dean, and Nicolas Meuleau. Apjnate solutions to factored
markov decision processes via greedy search in the spacetefdiate controllers. IArtifi-

cial Intelligence Planning Systensages 323—-330, 2000.

[18] Diane Litman, Satinder Singh, Michael Kearns, and WariWWalker. NJFun: a reinforcement
learning spoken dialogue system. Pnoceedings of the ANLP/NAACL 2000 Workshop on
Conversational SystemSeattle, 2000.

119

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Diane J. Litman and Shimei Pan. Designing and evalgatin adaptive spoken dialogue
system.User Modeling and User-Adapted Interactidr?(2-3):111-137, 2002.

Michael L. Littman, Anthony R. Cassandra, and LeslielPKaelbling. Learning policies
for partially observable environments: Scaling up. In And&rieditis and Stuart Russell,
editors, Proceedings of the Twelfth International Conference on hiae Learning pages
362-370, San Francisco, CA, USA, 1995. Morgan Kaufmannigils Inc.: San Mateo,
CA, USA.

Sridhar Mahadevan and Mauro Maggioni. Value functigpraximation with diffusion

wavelets and laplacian eigenfunctions.NHPS 2005.

Michael Montemerlo, Nicholas Roy, and Sebastian ThRerspectives on standardization in
mobile robot programming: The carnegie mellon navigataarfien) toolkit. IrProceedings
of the IEEE/RSJ International Conference on Intelligenb&s and Systems (IROS 2003)
volume 3, pages 24362441, Las Vegas, NV, October 2003.

Andrew Y. Ng and Michael Jordan. PEGASUS:A policy séamethod for large MDPs and
POMDPs. pages 406—415.

A. Nilim and L. Ghaoui. Robustness in markov decisionlgems with uncertain transition

matrices, 2004.

Tim Paek and Eric Horvitz. Optimizing automated calliting by integrating spoken dialog

models with queuing models. HLT-NAACL, pages 41-48, 2004.

J. Pineau, G. Gordon, and S. Thrun. Point-based vadmation: An anytime algorithm for
pomdps, 2003.

J. Pineau, G. Gordon, and S. Thrun. Point-based apmations for fast pomdp solving.
(SOCS-TR-2005.4), 2005.

120

[28] Joelle Pineau, Nicholas Roy, and Sebastian Thrun. Aahsiical approach to pomdp plan-
ning and execution. IWorkshop on Hierarchy and Memory in Reinforcement Learning
(ICML), June 2001.

[29] Josep M. Porta, Nikos Vlassis, Matthijs Spaan, and &aRaupart. An point-based value

iteration for continuous pomdp. 2006.

[30] Pascal Poupart, Nikos Vlassis, Jesse Hoey, and KewyaiRe An analytic solution to dis-
crete bayesian reinforcement learning.I@ML '06: Proceedings of the 23rd international
conference on Machine learningages 697—704, New York, NY, USA, 2006. ACM Press.

[31] L. R. Rabiner. A tutorial on hidden markov models andestdd applications in speech

recognition.Proceedings of the IEEEF7(2):257—-286, 1989.

[32] M. RavishankarEfficient Algorithms for Speech Recognitid?hD thesis, Carnegie Mellon,
1996.

[33] N. Roy, J. Pineau, and S. Thrun. Spoken dialogue managensing probabilistic reasoning.
In Proceedings of the 38th Annual Meeting of the ABong Kong, 2000.

[34] Stephanie Seneff and Joseph Polifroni. Dialogue memamt in the mercury flight reser-
vation system. IMPANLP/NAACL 2000 Workshop on Conversational systgrages 11-16,
Morristown, NJ, USA, 2000. Association for Computationatduistics.

[35] Trey Smith and Reid Simmons. Heuristic search valuaiten for pomdps. IfProc. of UAI
2004 Banff, Alberta, 2004.

[36] E. J. Sondik.The Optimial Control of Partially Observable Markov Proses PhD thesis,
Stanford University, 1971.

[37] Matthijs T. J. Spaan and Nikos Vlassis. Perseus: Raimzihpoint-based value iteration for
POMDPs.Journal of Artificial Intelligence ResearcB4:195-220, 2005.

[38] Christopher WatkinsLearning from Delayed Reward$hD thesis, Cambridge University,
1989.

121

[39] J. Williams and S. Young. Scaling up pomdps for dialogu@nagement: The "summary
pomdp” method. IrProceedings of the IEEE ASRU Worksh2005.

[40] Jason D. Williams, Pascal Poupart, and Steve Youngtialgrobservable markov decision
processes with continuous observations for dialogue neanagt. InProceedings of SiGdial

Workshop on Discourse and Dialogue 20@9505.

[41] Jason D. Williams and Steve Young. Partially obsergailarkov decision processes for

spoken dialog system&omput. Speech Lan@1(2):393-422, 2007.

[42] Huan Xu and Shie Mannor. The robustness-performaradketff in markov decision pro-
cesses. In B. Scholkopf, J. Platt, and T. Hoffman, editAdsjances in Neural Information

Processing Systems.1DIT Press, Cambridge, MA, 2007.

122

