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Abstract

Partially Observable Markov Decision Processes (POMDPs) have succeeded in many planning
domains because they can optimally trade between actions that will increase an agent’s knowledge
about its environment and actions that will increase an agent’s reward. However, POMDPs are
defined with a large number of parameters which are difficult to specify from domain knowledge,
and gathering enough data to specify the parameters a priorimay be expensive. This work develops
several efficient algorithms for learning the POMDP parameters online and demonstrates them on
a dialog manager for a robotic wheelchair. In particular, weshow how a combination of specialized
queries (“meta-actions”) can enable us to create a robust dialog manager that avoids the pitfalls in
other POMDP-learning approaches. The dialog manager’s ability to reason about its uncertainty—
and take advantage of low-risk opportunities to reduce thatuncertainty—leads to more robust
policy learning.
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Chapter 1

Introduction

Spoken language interfaces provide a natural way for humansto interact with robots. In an ideal

setting, people would not be burdened by having to recall specific keywords, nor would they have to

drop whatever they were doing to type into keyboard: they would be able to use natural phrases to

command systems. Over time, the system would adapt to its user’s speaking style and preferences.

Such a system could be especially useful for people unable touse a keyboard interface, such as

those with limited mobility. However, even if we ignore natural language processing and voice

recognition—separate fields unto themselves—we still havethe fundamental question of dialog

management, that is, how the system should behave given someset of user inputs. In this work,

we develop and explore several approaches for adaptable dialog management targeted to a robotic

wheelchair.

Uncertainty in Dialog Management. One challenge for a dialog management system is noisy

voice recognition. Depending on the person, the system may confuse similar sounding words (such

as “copy machine” and “coffee machine”), especially if the person speaks naturally and without

clear enunciation. Errors are compounded by loud environments or simple microphones that may

catch surrounding noise. It is often difficult and labor-intensive to produce large enough corpa of

relevant phrases to train grammars; not only must we obtain alarge number of sample dialogs, but

we must also transcribe them all into text. The problem of gathering sufficient data to train a model

is more severe in specialized applications, such as our robotic wheelchair.
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Even with perfect speech recognition, we would still have the problem of linguistic ambigui-

ties. With a new user or a new environment, we may encounter phrases that we do not expect or are

difficult to interpret. For example, different people may describe the same location as a “kiosk,” a

“booth,” or a “desk,” and, until the user clarifies what they mean by a certain phrase, we may not

know to where they are referring. Another example is that theuser may ask the dialog manager

about “the elevator,” but there may be multiple elevators inthe building. Again, the dialog manager

must be able to resolve this ambiguity. No matter how much both speech recognition and natural

language processing improve, there will always be uncertainty—humans hardly understand each

other perfectly!—due to non-ideal recording conditions ornovel situations. A good dialog man-

agement system must therefore consider the uncertainty, orchance of error, when making decisions

on how to interact with the user.

There are several approaches to making decisions in uncertain situations, and in this work

we will focus on a planning technique known as a Partially Observable Markov Decision Pro-

cess (POMDP). Chapter 2 provides a technical overview of POMDPs, but for now we note that

POMDPs are probabalistic models in which the agent—in this case, the dialog manager—interacts

with the world through a series of actions and receives feedback in the form of noisy observations.

In the context of our robotic wheelchair, the actions are primarily queries about the user’s objec-

tives and the physical movements of the wheelchair to particular locations. The actions can have

unknown effects: for example, if the system asks a user wherehe wishes to go, it cannot know the

answer without hearing his response. Similarly, the observations—processed utterances from the

user—may not reflect the user’s true intent: the voice recognition system may confuse the similar

sounding words. The uncertainties encoded in the POMDP model are uncertainties inherent in the

environment; no amount of tuning can make them disappear. A solution to a POMDP tells the

agent how it should behave even when these uncertainties arepresent.

Learning User Models. While some forms of uncertainty are inherent to the system and the

environment—such as a noisy microphone—other forms of uncertainty stem from having an in-

complete understanding of the user. For example, the systemmay not know initially that a partic-

ular person uses the word “kiosk” to refer to a particular location, and thus it may be confused the

12



first time it hears the new word. However, if it interacts withthe user over and extended period of

time (which is likely, if the system is part of a robotic wheelchair), it should ideally adapt to the

speech patterns and vocabulary choices of its user. Such adaptation will allow the system to make

faster (correct) decisions about the user’s true intent based on noisy information. Adaptation can

also allow the system to learn the user’s preferences. For example, some users may be tolerant

of mistakes, while others may prefer that the system ask the user for clarification if it is in doubt

about the correct choice of action.

Another form of uncertainty to which the system should be able to adapt is uncertainty about its

model of the world. A POMDP model is specified using a large number of parameters, and creating

a quantitative user model would be impossible without extensive user tests. As the user interacts

with the system, however, it should be able to discover how often certain words are mistaken for

other words or the probability of getting a completely spurious output from the voice recognition

software. As it learns the true levels of noise in the environment, the dialog manager should be able

to make smarter decisions on when to seek additional clarification given a potentially confusing

user input.

The ability of the dialog manager to learn dialog strategiesrobustly online is the core of this

work. Just as our dialog model considers uncertainty over the user’s true intent, we can also con-

sider uncertainty over possible dialog models. We begin with the basic premise that although

specifying the correct model of the user is difficult, specifying a reasonable model of the user is

easy. For example, we can guess what words a user will likely use to refer to a particular place

or that a user will be extremely frustrated if the robot drives to the wrong location. By taking a

Bayesian approach, which allows us to place probability distributions orpriors over models, we

can put higher probability on models that we believe are morelikely. These probability distribu-

tions can be updated as we gain more information about the true model through user interactions.

Compared to an alternative, where the system starts with absolutely no knowledge of the user,

starting with a good initial guess over possible models allows the system to start with a baseline

strategy that will make relatively few mistakes as it learnsabout the user. In Figure 1-1, we plot

the performance of an optimal simulated dialog system, a system that learns how to behave with

13
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Figure 1-1: A comparison of model-free (Q-learning) and model-based learning approaches for our dialog problem.
The model-based approach used here is further described in Chapter 6. The model-based learning approach does start
significantly worse than the optimal, but the difference is small compared to how much worse the model-free approach
fares.

no prior knowledge (using Q-learning, a standard reinforcement learning technique [38]), and

model-learning approach described in Chapter 6. As we will see in later chapters, the model-based

approach is actually imperfect; however, here we see that even a naive model initialization starts

the learning process at a stage much better than the model-free Q-learning approach. We review

various model learning approaches, as well as prior work in Dialog management, in Chapter 2.

Even if we constrain ourselves to Bayesian approaches to learning POMDP models for dialog

management, we still must decide how we will express model uncertainty, how we will use inter-

actions to resolve this uncertainty, and how we will act knowing that the model is uncertain. These

decisions involve a series of trade-offs: for example, suppose that we assume that the true model is

one of three possible user models. With so few models, determining which of the three best fits the

user may be simple, but it is likely that the true user model isnot a member of this set of models.

Conversely, we may allow each of the POMDP parameters to takeon all possible (valid) values.

Undoubtedly the true model is a member of this class, but withso many possibilites, choosing the

right action may be computationally difficult. It may also bedifficult to learn effectively when

there are a large number of coupled parameters, and the agentmay have to make several mistakes

14



along the way to help it discover the true values of certain parameters.

Our Contributions. In the context of dialog management, we develop a set of techniques that

allows us to learn robustly in real-time or near real-time within a rich class of possible user mod-

els. Specifically, we develop and demonstrate techniques for quickly approximating policies given

a particular user model and for choosing actions when the possible user models disagree. We also

introduce “meta-actions,” or queries about what the systemshould have done, as a means to ro-

bustly discover the values of certain model parameters. Theability of the agent to reason about

its uncertainty—and take advantage of low-risk opportunities to reduce that uncertainty—lead to

more robust policy learning.

After review of technical concepts and prior work in Chapter2, we catalog some insights and

algorithms for efficiently solving POMDPs in Chapter 3. Thisincludes sampling approaches that

focus solutions to the most relevant aspects of the problem.We also gain significant speed-ups by

noting that the symmetries in certain dialog management problems can allow us to exponentially

decrease the number of samples required for given quality approximation.

As a starting point into the model-learning problem, Chapter 4 considers only the expected

values of the unknown POMDP parameters when planning the dialog policy. We demonstrate a

heuristic that allows the dialog manager to intelligently replan its policy given data from recent

interactions. While this algorithm is fast and provides a reasonable baseline, we show that this ap-

proach suffers because it is unaware of parameter uncertainty and thus can get caught in suboptimal

solutions.

In Chapter 5, we fold the unknown parameters into a larger POMDP that jointly considers

uncertainty in the user’s intent and uncertainty in the truemodel. First, we focus on learning the

user’s preferences from a discrete set of options; and even with a small set of options, the resulting

POMDP consists of over 300 states. We show that by starting with a suitably conservative prior

over models and applying the ideas from Chapter 3, the dialogmanager could learn the user’s

preference model without making many mistakes. Next, we demonstrate similar learning results

from a class of continuous models.

The approaches in Chapters 4 and 5 require explicit reward feedback from the user—at least

15



during a training period, the user has to enter a reward aftereach action for the planner to learn

about the user’s preferences. Because it can only learn fromdirect feedback, the agent is also

forced to experience pitfalls in order to learn from them. InChapter 6, we propose the use of

“meta-actions”—queries about what the agent should have done or ought to do—as a means of

giving the dialog manager feedback about the user’s preferences and speaking style. We show

that “meta-actions” allow the system to robustly learn the user model in a rich class of continuous

models; in Chapter 7, we support our simulation results witha set of user tests.

We state our conclusions directions for future work in Chapter 8.
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Chapter 2

Related Work and Technical Background

Partially Observable Markov Decision Processes (POMDPs) are a model used for planning in

stochastic domains where an agent does not have access to direct information about its state. In-

stead, the agent must make decisions given only noisy or ambiguous observations. If the agent

has a probabilistic model of how the world behaves, it can useits belief—a probability distribu-

tion over its current state—to reason about what action it should take next. By explicitly tracking

this state uncertainty, the POMDP framework allows the agent to trade optimally between infor-

mation gathering actions (which reduce state uncertainty)and exploitation actions (which gather

immediate rewards).

The ability to make robust decisions under the resulting state uncertainty make POMDPs de-

sirable in many areas, including dialog management. Here, an agent must infer the needs of a user

(the hidden state) from the noisy and ambiguous utterances that it hears. In this chapter, we begin

with a technical introduction to POMDPs in Section 2.1. Thisintroduction presents the standard

POMDP model—with no parameter uncertainty—and value function-based solution techniques.1

Next we describe the basic structure of the dialog POMDP in Section 2.2 before surveying prior

approaches to POMDP model learning and dialog management inSection 2.3.

1Chapter 4 shows how we incorporate parameter uncertainty into the model
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2.1 Technical Background

The POMDP Model. A POMDP consists of the n-tuple{S,A,O,T ,Ω,R,γ}:

• S represents a set of possible states of the world. In the context of robot navigation, states may

be physical locations. In the case of dialog management, states may represent the user’s true

desires. In the POMDP model, the true state of the world is hidden from the agent.

• A represents the set of actions that an agent may take.

• O represents the set of observations that the agent receives.

• The transition functionT (s′|s, a) places a probability distribution over possible statess′ that the

agent may find itself in if it takes actiona in states. For example, if a robot operating in a

POMDP world takes the action “move forward” from its currentposition, it may expect to find

itself straight forward or slightly to the left or right, depending on the precision in its movement.

Thus, transition function encodes the agent’s uncertaintyin the effects of its actions.

• The observation functionΩ(o|s, a) places a probability distribution over the possible observa-

tions that an agent might receive if it is in states and takes actiona. For example, imprecision

in a robot’s laser scans may cause it to believe a wall is nearer or farther away than it truly is.

Thus, the observation function encodes noise the agent’s measurements of the world.

• The reward functionR(s, a) states what reward the agent receives for taking actiona in states.

• The discount factorγ ∈ [0, 1] allows us to bias the POMDP planner to satisfying goals more

quickly. The discount factor weighs how much we value futurerewards to current rewards: a

discount factor of 0 means that we only value current rewards, while γ = 1 implies that future

rewards are just as valuable as current rewards. Thus, an agent with a small discount factor may

overlook policies that require multiple steps to achieve a large reward in the end, but an agent

with a large discount factor may dally in achieving the goal.

During each step, the agent first takes an action. This actionchanges the state of the world as

described by the transition functionT . The action also produces an observation based on the
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observation functionΩ. The agent uses the observation to reason about the possiblenew states of

the world and determine what action to take next. Outside of alearning context, where the agent is

trying to discover the values of the rewards, the rewards areused only to initially train the agent.

The agent does not receive explicit rewards while it is acting in the real-world.

In general, an agent’s estimate of the current state, and therefore the best next action to take, will

depend on the entire history of actions and observations that the dialog manager has experienced.

Since defining a policy in terms of the history can get quite cumbersome, we generally maintain

a probability distribution over states, called abelief, which is a sufficient statistic for the previous

history of actions and observations. No matter how the agentreaches a particular belief, the belief

is all that is required to optimally choose the next action. Given a new action and observation, we

can update the beliefb using Bayes rule:

bn(s) = ηΩ(o|s′, a)
∑

s∈S

T (s′|s, a)bn−1(s) (2.1)

whereη is a normalizing constant. To solve a POMDP, we must specify apolicy: a mapping from

each beliefb to an actiona. We define the optimal policy to be one that maximizes the expected

discounted rewardE[
∑

n γnR(sn, an)].2

Solving POMDPs. There are several approaches to finding the optimal policy ofa POMDP. We

begin our discussion with value-iteration, the approach weuse in our work, and summarize other

approaches at the end of this section. Value iteration assigns a utility, or value,V (b) to each belief.

Through a series of refinements, value iteration takes some initial functionV0(b) and adjusts it until

it until V (b) equals the reward that we expect to get if we begin in beliefb and then act optimally.

For POMDPs, one can show that the value function is both piece-wise linear and convex [36].

Intuitively, the fact that the value function is convex means that state uncertainty never helps us:

we can always expect higher rewards if we know our true state.

Any value function—optimal or not—implicitly encodes a particular policy. Note that given a

starting beliefb and an actiona, there are exactly|O| possible beliefsba
o we could transition to in

2There are other ways to define optimal policy—for example, maximizing the average reward over a finite number
of steps in the future. We use the infinite discounted horizonversion of the POMDP largely for convenience.
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the next step, one for each observation we may see after taking actiona. We can also compute the

probability of transitioning to any particularba
o, which is equal to the probability of seeing actiono

after taking actiona from beliefb:

Ω(o|b, a) =
∑

s

Ω(o|s, a)b(s)

where we useb(s) to mean the probability of being in states according to beliefb. Thus, the

expected reward from taking actiona in belief b is given by the sum of the immediate reward we

expect to get and the our (discounted) expected future reward. We give this quantity a special

name,Q(b, a):

Q(b, a) = R(b, a) + γ
∑

o∈O

Ω(o|b, a)V (bo
a). (2.2)

whereR(b, a) =
∑

s Rs, a)b(s), the immediate reward we expect to get in beliefb if we perform

actiona. Now that we know the value of each action, we can simply choose the action with the

maximum expected value. Moreover, the value of taking the optimal action inb must be the value

V (b) of being in beliefb:

V (b) = max
a∈A

Q(b, a).

Substituting Equation 2.2 into the expression forV (b) we get the Bellman equation for the optimal

policy:

V (b) = max
a∈A

[R(b, a) + γ
∑

o∈O

Ω(o|b, a)V (bo
a)]

We will solve the Bellman iteratively using dynamic programming. Suppose that we only had

one action left to do; clearly, we would choose the action that maximized the expected immediate

reward. LetRa represent the vector of rewards for each state if we take action a. Then optimal

final action isarg maxa R(·, a) · b. Note that this function is piecewise linear in the beliefb. Now,

suppose that at some later stage, the value function is stillpiecewise linear. In particular, we will

represent the value function at the nth iteration a as collection of alpha vectorsVn = {α1, α2, ...αk}.

These vectors represent hyper-planes in an|S|-dimensional space; the value of a belief is given by
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Vn(b) = maxαb · αi. If we rewrite the Bellman equation in vector form, we find:

Vn+1(b) = max
a∈A

[Ra · b + γ
∑

o∈O

(
∑

s

Ts′,aΩ(o|s′, a)). · αo
a · b]

whereαo
a is whatever alpha vector inVn that maximized the value ofbo

a. Note that we can factor

the beliefb from the expression to get a linear expression inb:

Vn+1(b) = max
a∈A

[[Ra + γ
∑

o∈O

(
∑

s

Ts′,aΩ(o|s′, a)). · αo
a]·]b (2.3)

Thus, by induction, the value function is piecewise linear.We also have an expression for an alpha

vector in the revised solution. We note that the alpha vectoralso has an associated action: if the

a is the action that is thearg max of the expression above, then it is the optimal action associated

with that alpha vector.

Each iteration, orbackup, represents planning one more step into the past and brings the value

function closer to its optimal value[10]. Unfortunately, when we do a backup, we must apply

Equation 2.3 to every belief in an infinite belief space. As a result, the number of alpha vectors

grow exponentially with the number of iterations. For the infinite horizon, the exact solution may

consist of an infinite number of vectors! Even with a finite horizon, however, we may quickly run

into trouble: if there aren alpha vectors in one iteration, the next iteration may have up to |A|n|O|

alpha vectors. State of the art algorithms for solving POMDPs exactly limit the size of the solution

with linear programming and other techniques to prune redundant alpha vectors [1]. However,

even the best exact approaches may take hours to solve on fairly small problems; they typically do

not scale over tens of states.

Since the exact solution to equation 2.3 using an iterative backup approach is exponentially ex-

pensive, we approximate the true backup operation by backing up at only a small set of beliefs[26],[27].

The approximation approach and the choice of beliefs determine the quality of the solution and

thus the performance of the dialog manager. By approximating both the value at a particular belief

and its derivative, several approaches, including “Point-Based Value Iteration” (PBVI) [26] and

“Perseus” [37], are able to produce approximations that generalizes well to other parts of the belief
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space. Note that since the solution to the value function is piecewise linear, the derivative of the

value function at a particular point is exactly the alpha vector for that point. Therefore, one way

to think about the point-based approximations is that instead of collecting all the alpha vectors, we

only look for alpha vectors for certain beliefs that we thinkwill represent the entire space well.

A point-based backup consists of the following steps:

1. First, we project the alpha vectors forward for each possible action, observation pair:

Γa = {α|α(s) = R(s, a)} (2.4)

Γa,o = {α|α(s) = γ
∑

s′

T (s′|s, a)Ω(o|s′, a)α′(s)}, ∀α′ ∈ Vn−1 (2.5)

TheΓa andΓa,o sets represent theR(·, a) andγ
∑

o∈O(
∑

s T (s′|·, a)Ω(o|s′, a)). · αo
a(·) parts of

Equation 2.3, respectively. So far, we have not limited our solution based on our limited belief

set.

2. Next, we find the best combination of the the gamma sets for each belief. These are our Q-

vectors:

Γa,b = {α|α = Γa +
∑

o

arg max
α∈Γa,o

(α · b)} (2.6)

At this point, we have simplified our computations because instead of computing the Q-vector

for all of the beliefs, we have found the Q-vector for our limited set of beliefs.

3. Finally, we take the dominating Q-vectors be part of our new set of alpha vectors:

Vn = {α|α = arg max
α∈Γa,b

(α · b)}, ∀binB (2.7)

This step is exactly what we would have done in a standard update.

Choosing an appropriate belief set is an active area of research. PBVI recommends starting

with some beliefb0 (such as being in a ‘dialog-start’ state). Then for each action a, we sample a

user responseo from the observation distribution and compute the updated belief stateba
o (simu-

lating the effect of one exchange between the user and the dialog manager). We add the farthest

22



new beliefs to our set and repeat the process until we accumulate the desired number of beliefs.

Since the beliefs represent confusions over the user’s intent, picking beliefs reachable from the

starting belief focuses our computation in situations the dialog manager is likely to experience.

PBVI backs up all beliefs in each iteration. Other belief sampling approaches use more complex

heuristics to iteratively add points that are most likely tocause a change in the current value func-

tion. Regardless of how the belief set is chosen, one can showthat given sufficient iterations, the

final error in the value function will be bounded by the largest distance between some reachable

belief and a member of the belief set.

Perseus takes a somewhat opposite view: instead of trying todetermine which belief points

will be the most important, and backing those up, it first creates a very large set of reachable

beliefs. However, instead of trying to backup every one of these beliefs, Perseus only backs up

enough beliefs in each iteration to uniformly improve the value function. Although more updates

are needed to each a full backup, each update can be very fast.Perseus also avoids the dilemma

of how to choose an small support belief set. The randomized backups still provide monotonic

improvement in the value function, although it is more difficult to determine how long one must

run the algorithm to achieve a particular level of performance.

Finally, we note that many optimizations have been made to improve upon these (now standard)

approaches to value iteration. In particular, “Heuristic Search Value Iteration” [35] speeds up

convergence to the value function by maintaining both a lower bound (using alpha vectors) and

an upper bound (using linear programming). It chooses to backup the value function in regions

that will minimize the maximum difference between the upperand lower bounds on the value

function. We chose not to use HSVI primarily for reasons related to the ease of implementation,

but if we continue to value iteration in our future work, HSVIdoes provide an alternative to PBVI

and Perseus that comes with stronger performance guarantees.

Point-based approximations to value functions are an attractive way to solve POMDPs because

they offer a simple dynamic programming approach that can beefficiently implemented using

matrix operations. However, there do exist other approaches to solving POMDPs. The main other

approach is policy iteration. Instead of representing a policy implicitly through a value function,
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some policy based approaches typically represent the policy more explicitly using a finite state

controller (FSC). FSCs are graphs which consist of a set of action-nodes. Observations transition

the agent from one action node to the next. The advantage of FSCs is that they can often represent

policies compactly and converge to near-optimal policies in fewer steps than using value iteration

[17], [11]. FSCs can also be used to find patterns and hierarchies in the POMDP structure that

further reduce the size of the policy [2]. However, solving FSCs for a representation of a given

size can be quite difficult, and in general FSC optimizationsrequire more complex computations

(such as semi-definite programming).

Other policy iteration methods [23], [16] use a tree-based representation. Given a current

starting beliefb0, they first consider the setB1 of the |A||O| beliefs they may encounter after

taking one action and receiving one observation. Next they consider all the beliefsB2 that they

may encounter if they take an additional step from each the beliefs in the setB1. In this way,

they construct a tree of beliefs that are reachable in a fixed number of steps. Each node in the tree

represents a belief, and we can compute the expected immediate reward for each belief. Given these

values and the probability of encountering each belief fromthe starting pointb0, we can compute

the value ofb0 (the discount factor allows us to ignore beliefs beyond a certain depth.) The benefit

of tree based approaches is that the size of the state space nolonger matters; we only plan ahead

from our current point. The primary drawback is that the trees may have to be fairly deep to get

a reasonable approximation of the value function, and thus alarge amount of computation may be

required at each step.

2.2 The Dialog Management POMDP

There are many ways of expressing POMDPs for dialog management, and here we describe one

simple model that we will use throughout this work. Since we are interested in an application for a

robotic wheelchair, our states are the set (hidden) user intentions—in particular, the locations where

the user may wish the robotic wheelchair to go. Actions include queries to the user and physical

movement. In our basic model, the agent can choose from two kinds of queries: it can choose to

ask a general question (such as, “Where would you like to go?”) or confirm a specific goal (such
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as, “Did you want to go to the elevator?”). Based on the most recent action and the user’s (hidden)

state, the agent has a model of what observations it may receive. Our dialog manager searches the

output of the voice recognition software [9] for predetermined keywords to use as its observations.

We will assume that the state, action and observation sets are all discrete and finite (although work

has extended dialog managers to large state spaces [39] and continuous observation spaces [40]).

The transition functionT (s′|s, a) states what the user is likely to want next, given the state

they were just in and the action the system just took. In all ofour dialog models (see Figure 2-

1), we assume that the user is unlikely to change their intentmid-dialog. Thus, the most likely

user state sequence is (1) initiating dialog, (2) seeking a goal location, and (3) completed dialog.

The transition probabilities between goal states is fairlysmall. The observation functionΩ(o|s, a)

encodes both the set of words that a user is likely to use to describe a particular goal state and the

speech recognition errors that are likely to occur. Finally, the rewardR(s, a) gives us a way to

specify what the “right” actions are in different states andhow much the user is willing to tolerate

clarification questions before becoming frustrated.3

start

Go to
Kitchen

Go to
Bathroom

Go to
Bedroom

...

done

reset

Figure 2-1: A toy example of a dialog POMDP. Solid lines represent more likely transitions; we assume that the user
is unlikely to change their intent before their original request is fulfilled (dashed lines). The system automatically
resets once we enter the ‘done’ state.

3Since repeated questions can also be frustrating, we did briefly explore extending the basic state model to include
a counter for how often a query has been asked and impose larger penalties for repeated questions. However, we found
that effects of the frustration model to be relatively small. Thus, we opted to use the more computationally tractable
basic model in our tests.
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2.3 Related Work

In this section, we review literature from fields most related to our work. First, we survey work

in learning POMDPs with parameter uncertainty. Next, we review prior applications of POMDPs

for dialog management. We conclude our review with examplesof other approaches to dialog

management.

Learning in POMDPs with parameter uncertainty Several works have considered the prob-

lem of planning with uncertain parameters in the POMDP or MDPframework. Closest to this

work are the Bayesian approaches of [15] and [30]. Both of these approaches place priors over the

model parameters and update them as observations are received.

The Medusa algorithm[15] extends the observations of [4] (who suggests sampling MDPs and

updating their value functions as new data received). Taking a particle-filter approach to the prob-

lem, Jaulmes et. al. sample a set of POMDPs from an initial distribution over models. As the

prior distribution is updated, each POMDP is reweighted according to its likelihood; occasionally

low-weight POMDPs are discarded and new models are sampled from the current model distri-

bution. Actions are chosen stochastically: each POMDP applies its weight toward the action that

its policy recommends. The advantage of Medusa’s approach is that the small POMDPs can be

solved quickly. In fact, with so many POMDPs, the overall policy will often be correct even if

each POMDP’s solution is not fully converged. The disadvantage to the Medusa is that the action

selection does not consider how an action may change the model prior; in this sense Medusa is still

blind to the uncertainty in the parameters.

The Beetle algorithm[30] takes a decision-theoretic approach to solving MDPs with uncertain

parameters. Using recent advances in continuous-POMDP solution techniques[12], Poupart et. al.

treat the unknown MDP parameters as hidden state in a larger POMDP. Since the state is always

known, the transition statistics for the MDP can be readily updated; these updates change the

agent’s belief over possible MDP models. While it may be possible to extend such an approach to

POMDPs, planning over a high-dimensional, doubly-continuous state space—that is, continuous

in both the POMDP parameters and in the belief state—would bequite computationally difficult,
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and likely to yield poor solutions without additional work in POMDP value function approximation

techniques.

Others take non-Bayesian approaches to solving MDPs with uncertain transition matrices ([24],[42]).

Aimed toward industrial applications, where each machine may have different parameters within

a given tolerance, these approaches consider the space in which the MDP may reside and find the

policy with the best worst-case performance over the set. Learning is not incorporated into the

model, but in some cases, the user can trade-off between robustness (worst-case performance) and

maximizing performance with respect to a nominal model[42]. While not directly related to our

approach (and currently limited to MDPs) these approaches do provide a means of ensuring robust

behavior for applications where the user may be willing to receive lower average-case performance

in order to ensure that large errors occur with very low probability.

Finally, we note that there do exist model-free approaches for learning in partially observable

environments. Early work applied various heuristics [20] to Q-learning [38], originally a method

for learning in fully-observable environments (that is, cases where the agent can determine its

state exactly through observations). These heuristics included using an initial model to seed the

value function and then constraining the value function to include a fixed number of alpha vectors.

More recent work has shown that it is possible to learn the optimal policy both without a model

and without the ability for the agent to reset itself and try again [7]. Lastly, other works discard

the notion of an underlying POMDP model entirely and create structures that learn and plan based

only on previous action-observation histories and expected future action-observation histories [14].

While these works improve upon the Q-learning plot in Figure1-1, we note that all of them require

a large amount of data to produce reasonable results even on small problems, and, without a prior

notion of possible pitfalls, they are likely to make many mistakes during the learning process.

POMDPs for Dialog Management. The ability to manage the information gathering trade-off

have made POMDP-based planners particularly useful in dialog management, including in health-

care domains ([33], [13],[8]). These range from a nursebot robot, designed to interact with the

elderly in nursing homes[33] to a vision-based system that aids Alzheimer’s patients with basic

tasks such as hand-washing [13]. Others [8] note that in manycases, the aiding agent’s policy can

27



be simplified if one assumes that just waiting—that is, doingnothing and simply observing the

user—will resolve the system’s current uncertainties.

Indeed, much POMDP dialog-management research has focusedon developing factored mod-

els and other specialized structures to improve performance and algorithmic complexity ([40],

[28], [39]). To improve performance, [40] incorporate an explicit confidence output from the

voice recognition system as an additional measurement. Thus, they can reason more effectively

about the quality of the observations they receive. In situations where only certain actions are

relevant to certain states, the POMDP can be factored into hierarchies that reduce the overall

amount of computation required [28]. These approaches typically assume a reasonably accurate

user model. In domains where large amounts of data are available—for example, automated tele-

phone operators—the user model may be relatively easy to obtain. For human-robot interaction,

however, collecting sufficient user data to learn a statistically accurate model is usually expensive:

trials take a lot of time from human volunteers.

While none of these dialog-management works discuss learning user models, insights to de-

creasing computational load will be crucial to our work (especially since we propose to incorporate

the unknown parameters into a larger POMDP). The Summary POMDP algorithm [39], designed

for slot-filling dialogs for automated telephone operators, approximates a policy by assuming that

the only important feature of the belief is the probability of the most likely state. This probability

can be used to determine whether the system should make a general query, confirm (the most likely

state), or submit (the most likely state), and in practice this allows Summary POMDP to handle

large dialogs. In follow on work, the authors describe how tofurther streamline the solution proce-

dure to handle even larger dialogs [41]. We will make similarobservations about the symmetries

present on our dialog POMDPs in Chapter 3.

Other Approaches to Dialog Management. While POMDP-based systems are the focus of our

work, there are many other approaches to dialog management.Typically, these involve a set of

rules that the dialog manager will follow given particular outputs from a voice recognition system

(or equivalently, a finite-state machine). For example, theMercury system [34] builds a network in

which a flight reservation system keeps track of what information has already been provided and
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for what the user needs to be prompted. In the context of flightreservations, it must also guide

the user to choose a valid (that is, available) flight. Some systems use a rule-based model, but add

a predictive layer that senses when the conversation is likely to have degraded (based on pauses

from the user, low confidence scores from the voice recognition system, etc.) [25]. If the dialog

degrades below a certain threshold, then the system will call upon a human operator for assistance.

Just because a system is based on rules does not imply that it cannot adapt to its users. The

TOOT system [19] classifies training dialogs as successful or unsuccessful using various thresh-

olds, and then adapts its rules, which are based on various features of the dialog, to improve

performance. Another learning approach first trains an AdaBoost classifier based on a large set

of training data [3]. Thus, given a variety of inputs, the system provides the response that the

user most likely needed (based on the output of the classifier). These systems may need complex

procedures to handle uncertain inputs robustly, or may ignore uncertainty all together. Ignoring

uncertainty may be acceptable in automated telephone dialog systems, where repeating a request

is easy and the consequences of servicing a request incorrectly are relatively small.

Other systems come closer to the POMDP model, for example, the NJFun system [18] is de-

signed to learn over time. NJFun learns parameters from scratch during a training period. The

actions are specifically designed so that reasonable dialogs may be maintained during this period.

The execution of this model is facilitated by an MDP model that includes ‘buckets’ for different

levels of uncertainty (effectively a highly-discretized POMDP). However, like all of the approaches

above, the NJFun system is not aware of the uncertainty in itsparameter and thus cannot take ac-

tions to reduce that uncertainty. It also only learns duringa specified training period.
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Chapter 3

Special POMDP Approximations

Despite the advances in POMDP approximation techniques described in Chapter 2, solving a

POMDP—even when all the parameters are known—is still a highly non-trivial task. In this chap-

ter, we describe a collection of insights to improve the speed and accuracy of our solutions. Section

3.1 contains suggestions on heuristics for choosing beliefsamples. Section 3.2 shows how, if the

POMDP contains certain symmetries, we can solve it with exponentially fewer belief points by

mirroring sections of the belief space.

3.1 Sampling Heuristics

As we saw at the end of Chapter 2, state-of-the-art POMDP solution techniques approximate the

entire value function by finding its gradient at a limited setof belief points. Different algorithms

have different ways of choosing these points: PBVI [26] computes all one-step trajectories from

each point in the belief set and adds the belief that was farthest away from the set. Perseus [37]

creates a very large set of all reachable points. In this section, we discuss what sampling techniques

worked best for our problem. In particular, solving a dynamic POMDP—that is, one where the

parameters are changing as we learn more about the environment—adds several considerations

when choosing belief points.
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3.1.1 Sampling for the Static Problem

The dialog problem is interesting because unlike robot exploration, we are not trying to rapidly

expand to certain corners of the belief space: there are, in fact, a very limited number of states and

we know exactly how to get to them. The dialog management problem, as we have formulated it

in Chapter 2 is trivial in the absence of noise; no complex paths must be planned from the start to

the goal. A rapid expansion to far away states is less critical than collecting beliefs that express

confusions we are likely to see due to noisy utterance observations.

One pitfall that we wish to avoid is making sure that the POMDPsolution is not too afraid

to act. Since we are initially unsure of the user’s intent andthe observations are noisy, we will

never be a hundred percent sure about the user’s intent. If wedo not sample deeply enough, and

the severity of making a mistake is large enough, we may decide never to risk making a mistake.

(For example, if our most certain belief is 99% certain of thegoal state, a penalty of -1000 for

acting will mean that the optimal action in that belief is still to confirm that location.) We can

avoid this problem by including all the corners of the beliefsimplex—that is, all beliefs where the

state is certain—in our initial belief sample. The effect ofthese points is to make our policy less

conservative (necessarily, since they add hyper-planes inwhich we choose to act rather than gain

information).

We generally want our POMDP to eventually commit to some physical movement, but in Chap-

ter 5, we will see a situation where this effect is not necessarily desirable. There, we have a large

POMDP with 336 states. Solving the POMDP takes a long time because we need many more

beliefs to span the space. With 336 states, we can no longer afford to sample belief points densely

enough to meet any kind of useful performance criteria, and we must consider carefully how we

should pick our belief points. For the simple case above (used in Chapter 4), we seeded our initial

belief set with corner points and common confusions that we wanted our POMDP to handle. If we

follow the same approach here, we find that the resulting policy is too aggressive. In the simple

POMDP, the seven corner points made up only a small fraction (1.6%) of the 500 total beliefs.

However, even if we use 1500 samples now (a limit we chose for making the simulations run in

a reasonable amount of time), including all 336 corner beliefs means that corner beliefs make up
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more than 20% of the total beliefs. The remaining beliefs could be sparsely scattered throughout

the simplex, and therefore, the most influential sampled belief to a particular point is often a corner

belief. We will resolve this issue in the next section using dynamic sampling techniques.

3.1.2 Smart Sampling for the Dynamic Problem

Given that our knowledge about the POMDP parameters are changing, it is only natural that the

changes to the model will impact what beliefs are needed to make a good approximation: beliefs

that we had never encountered before may suddenly become common under a new set of obser-

vation parameters. For example, with symmetric and unimodal observations, the belief is usually

peaked around a particular state. If the true observation model is bimodal, then we will find our

solution quality is poor not due to the number of backups, butbecause bimodal beliefs were un-

derrepresented in our original sample set. There are two ways we can attack the problem of what

belief points we should use in our sample: either we can find a sample that will do well in all

situations, or we can adapt our sample as we get more information about the unknown parameters.

For small problems, we work around this issue by seeding the initial belief set with not just

the starting belief, but a set of beliefs that include situations—such as bi-modal and tri-modal

beliefs—that we would like our dialog manager to be able to handle well, regardless of the true

model parameters are. When the problem is small, hand-picking key beliefs efficiently improves

the quality of the solution.

For large problems, resampling beliefs is key. Given a statespace with 336 states, we really

cannot hope to do it justice with only 1500 belief samples, even if we try to pick the points wisely—

we used 500 samples for the basic problem before. We need a robust solutions that can still

be solved quickly. In our particular case, the state space explosion occurs because we will be

considering joint uncertainty in the model parameters and the user state. As we learn about the

true model, our belief converges to smaller parts of the belief simplex. Therefore, we really do not

need to know how to behave in every possible parameter set: atthe beginning, we only need to

know how to behave in our start state, and as we learn more about the parameters, we can refine our

policy for the relevant part of the state space. By resampling as we go, even though our POMDP
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never changes, our policy still ‘adapts’ in the sense that werefine the policy around parts of the

belief space that are actually relevant. Table 3.1.2 summarizes our approach.

Table 3.1: Algorithm for dynamic resampling for iterative solutionsto large POMDPs. While generally applicable,
this technique works particularly well if the reachable belief space becomes smaller over time.

DYNAMIC RESAMPLING

• Sample a fixed number of belief points from the starting belief (using
PBVI or any other sampling approach).

• Solve the POMDP.

• Loop:

– Interact with the user.
– Resample a new belief set given new starting belief.
– Perform additional backups on the POMDP solution to refine it

around the new region of interest.

3.2 Fast Solutions to Symmetric POMDPs

One reasonable starting point for the dialog POMDP is to say that observations and rewards are

symmetric and unimodal. For rewards, this means that the reward for going to the right location

is the same in every state, as is the penalty for doing an incorrect action. There are certainly

situations where this is not true—for example, the user may be less annoyed if the wheelchair

seems to mistake similar sounding words—but it is a reasonable starting point.

Likewise, symmetric observations imply that the probability of hearing noise is the same in all

states. Unimodality means that the distributions have one peak around the most likely observation

and all other observations are equally unlikely. Again, observation symmetry is definitely not true

in the real world, where similar sounding words are much morelikely to be confused that dis-

similar words. However, it is a reasonable approximation often used in practice [39], [33]. We will

not try to further justify the symmetric, unimodal observation model, but we show that within such

a model, the POMDP can be much simpler to solve.
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Finally, we note that our dialog POMDP has a very special action structure. There are three

kinds of actions, some of which take a state as a predicate: ask (a general question), confirm (a

specific state), and act (go to a specific location). Thus, a symmetry also exist in the actions.

More formally, we consider the class of POMDPs with the following properties. Let the true

state of the user be called the target statest. Let o(s, a) the most likely observation in states

after taking actiona. Let a(s) denote taking actiona with predicate states (for example,a might

be “confirm” ands might be “cafe”). For each action in the symmetric POMDP, therewards,

observations, and transitions are given by:

• R(s, a(s′)) = R+
a if s = s′ andR−

a otherwise.

• Ω(o|s, a) = p+
a if o = o(s, a) andp−a otherwise.

• T (s′′|s, a(s′)) = q+
a if s = s′′ andq−a otherwise (an information gathering action probably does

not change the state)or q∗ if s = s′ (a correct “act” action may reset the probabilties over target

states).

Note that both rewards and observation probabilities do notdepend on the state.

If we ignore the “start” and “done” states in our dialog model, then the remaining target states

follow the properties described above. For example, consider the following two beliefs over three

possible target states:b1 = (0.5, 0.3, 0.2) andb2 = (0.3, 0.5, 0.2). If the correct action in the first

belief is to confirm the first state, then the correct action inthe second belief must be also to confirm

(in this case, the second state). The ordering of the belief values do not matter when choosing the

action type, only the values themselves. The predicate for the action type is always the most likely

state. It should therefore be clear that in these special POMDPs, the identity of the state does not

affect the correct action type (although it may affect its predicate).

This observation has profound implications for solving thePOMDP. What we have just said

is that given a beliefp1...pn, any permutation of that belief has the same action type. Note that

permutations are exponential in size; thus, knowing the correct action for one belief tells us about

how we should behave in exponentially many other beliefs (except for the predicate, which is easy
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to attach later). Without loss of generality, we will show how we can solve for the entire value

function using only beliefs that whose probabilities are sorted in non-decreasing order.

Before we describe our solution procedure, we note that we cannot simply take a small set

of sorted beliefs, compute value-backups on them, and expect to get the correct value function.

Consider a simple two state situation, where the actions are“Commit to State One,” “Commit to

State Two,” and “Query for Correct State.” Suppose that we are in the beliefb = (0.5, 0.5). From

the problem symmetry, it should be clear that the values of beliefs bo1

ask andbo2

ask should be equal.

However, suppose that we only include beliefs that place greater probability on the second state.

The action “Commit to State One” will never be chosen in this setting, and without knowing that

positive rewards are available in the first state, the value function will place lower value onbo1

ask

thanbo2

ask. More generally,V (b) < Vopt(b) since for any belief that prefers state two, there is some

probability that we may transition to a ‘bad belief’ that favors state one.

We now describe our procedure for computing the optimal value function using only the sorted

set of beliefsBs. Suppose first that if some alpha vectorα is part of the solution to the value

function at iterationn, then all permutations{π(α)} are also part of the solution to the value

function at thenth iteration (we will prove this statement shortly). Since allof the beliefs in our

sample have non-decreasing values, the permutationπ∗(α) that sortsα in non-decreasing order will

maximize the dot productmaxπ(α) α · b. Let the value functionVn be the union of all permutations

of a set of alpha-vectorsα1..αk:Vn = ∪k
i=1{π(αi)}. Then, to find the alpha-vector that maximizes

the dot product with some sorted beliefb, it is sufficient to consider the (exponentially smaller) set

of alpha vectorsVn = ∪k
i=1π

∗(αi). This observation immediately suggests the following procedure

for computingVn+1 for our sorted set of beliefs:

1. Propagate each alpha-vector inVn forward to create theΓa,o sets. Note the number of alpha-

vectors inVn for the sample setBs is at most|Bs|.

2. Within eachΓa,o sets, sort theg vectors in non-decreasing order. Note that we have note in-

creased the size of the sets. (We will show that if all permutations of the alpha-vectors are

present in the solutionVn, then all permutations of theg vectors are present in theΓa,o sets;

recall that only the permutation of theg vector that has non-decreasing values may maximize

35



the dot productΓ · b.)

3. Choose the combinations of theΓa,o to construct the new alpha-vectors forVn+1.

Note that once we can compute the correct valueV (b) for b ∈ Bs, we can compute the value of

any other beliefb′ by first sorting it and then evaluating it through our value function.

It remains to be shown that for any alpha-vector in the solution Vn, all permutations of that

alpha-vector are also part of the solutionVn and all permutations of theg vectors are part of the

setsΓa,o. We provide the following sketch of the argument. In the firstiteration, let us set the alpha

vectors to be reward vectorsRa. By the problem symmetry, if the reward vectorRa = (r+
a , r−a , r−a )

for some action, then the reward vectorsR′
a = (r−a′ , r+

a′, r−a′) andRa′′ = (r−a′′ , r+
a′′ , r−a′′) also exist in

the set, that is, if a vectorR is present, all permutation ofR are also present.

For the inductive step of the argument, suppose that at some iterationn, we have a collection

of alpha vectorsα1..αk and a corresponding solutionVn = ∪k
i=1{π(αi)}. To compute theΓa,o sets:

Γa,o = {g|g(s) = γ
∑

s′

T (s′|s, a)Ω(o|s′, a)α′(s)}, ∀α′ ∈ Vn−1 (3.1)

Suppose that someαi was used to compute a vectorga,o
i ∈ Γa,o. By the symmetry in the problem

note thatga′,o
i is a permutation ofga,o

i if a is of the same type asa′. Also by problem symmetry,

note that a permutation ofαi will produce a permuation ofga,o
i . In this way, we can argue that all

perumtations ofga,o
i are present among theΓa,o sets.

The remaining steps are simple: consider forming the setsΓa,b:

Γa,b = {g′|g′ = Γa +
∑

o

arg max
g∈Γa,o

(g · b)} (3.2)

Note that although we are only considering sorted beliefs, all perumations of those beliefs are valid

beliefs. Thus, suppose thatb ∈ Bs picks out a vectorg as the argmax. Then, a permutation ofb

will pick out a permutation ofg as the argmax. Thus, ifg is the optimal vector for some belief,

then all permutation ofg will also be part of the optimal set. An identical argument holds when we

choose the bestΓa,b vectors to be included in the value functionVn+1.
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Thus, we can conclude that all permutations of any particular alpha vector exist in the set.

Therefore, we can plan using only sorted beliefs and sorted alpha vectors. While this is only useful

if the problem contains certain symmetries, in practice, many dialog problems can be modeled

this way (even if they are not exactly symmetric). Indeed, this framework should apply to many

preference elicitation problems, and other problems wherethe primary uncertainty is to discover

what (static) state we are in, and where we have actions that help us to sense generally, probe for

a particular state specifically, or commit to a particular state. For example, problems of trying to

detect the presence of a particular trace element or the identity of a material may also fall into this

category.

As a validation of the performance of this approach, Figure 3-1 shows the performance of using

the permuted approach on the dialog problem with 48 different choices of parameters. In the PBVI

case, 500 belief points were selected and backed up 25 times.Note that the solution does poorly,

although adding additional backups (up to 200) improves thequality of the policy significantly.

The permuted case only had 24 belief points and was also backed up only 25 times. Even with

such little computation, it performs much better than the 500 point sample set and almost as well

as the set with 8 times as many backups.
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Figure 3-1: Performance of Permuted Approach compared to standard PBVI sampling. The permuted approach had
only 24 sample points, compared to 500 for the PBVI set, and achieved good performance with 8 times as little
backups.
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Chapter 4

Maximizing Expected Performance

In Chapters 2 and 3, we argued that POMDPs provided a good framework for decision-making in

stochastic environments and described how, given a POMDP, an agent should solve that POMDP

to determine a policy of optimal behavior. We now turn to the main focus of this work: how should

an agent behave if it does not know all of the parameters in thePOMDP? Taking a Bayesian

approach, we begin by placing priors over the unknown parameters. These priors allow us to

encode knowledge and intuition we may have about the problem. For example, while we may not

know the exact reward parameters of the true POMDP, we can guess that an incorrect movement

will have a higher penalty than a clarification question. Placing priors over the parameters induces

a distribution over possible models. Section 4.1 describesmore precisely the prior distributions

that we place over the parameters.

In this chapter,1 we begin an exploration of two issues surrounding planning when we have a

distribution over models instead of one known model. The first issue is one of action selection.

In Section 4.2.1, we show that, in the absence of learning, the agent should plan its policy using

the expected values of the uncertain parameters if it wishesto maximize its expected reward. The

second issue relates to improving the agent’s knowledge of the model: as it learns more about

the model parameters, its distribution over possible models should peak around the true POMDP

model. In Section 4.2.2, we describe more precisely how we can update our belief about the model

1Work in this chapter was previously presented in [5].
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parameters given data from an interaction. We conclude our approach in Section 4.2.3, where we

present efficient update heuristics to adjust policy that wefound in Section 4.2.1 after another user

interaction.

We note that the idea of having a distribution over possible models is very similar to having

belief over possible states. Indeed, we will see these two concepts merge in Chapter 5. For the

present, however, we will consider state uncertainty and model uncertainty separately—planning in

an uncertain state space is already challenging, and planning in a joint uncertain state-model space

poses additional computational challenges. We also note that since our planning step in Section

4.2.1 uses only the expected values of the uncertain parameters, our agent’s policy is unaware of

any parameter uncertainty. In Section 4.3, we show that eventhis basic form of learning and policy

refinement produces a more adaptable dialog manager.

4.1 Model Definition

We use the simple POMDP dialog model described in Section 2.2. In particular, our model consists

of five goal locations on the first floor of our building: the Gates Tower, the Dreyfoos Tower, the

parking lot, the information desk, and the Forbes cafe. Taking a Bayesian approach, we place

priors over the reward, observation, and transition parameters. We describe the form of the priors

in this section, and in Section 4.2, we describe how we updatethese priors as new data arrives

(and how we adapt our dialog manager’s policy to the changingdistributions). We assume that the

discount factor was fixed and known.

Rewards. We place a Gaussian distribution over each reward parameterR(s, a). The Gaussian is

initialized with a mean, a variance, and “pre-observation count.” The pre-observation count mea-

sures our confidence in our estimate of the mean: it corresponds to how many “faux-observations”

from which the data was obtained. For example, if we are quiteconfident that the penalty for

asking a questionrask is -1, we may set the pre-observation count to 100, that is, weare as sure

thatrask = −1 as if we had seen the user enter “rask = −1” a hundred times. Conversely, if we

are unsure of the value ofrask, we may set its pre-observation count to 10 (or even 1 if the value
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was really just a guess).

Since our current approach uses only the expected values of the parameters, the rewards may

be either stochastic or deterministic. For our purposes, however, the initial choice of the reward

variance does not reflect the inherent stochasticity of the system (that is, an inconsistent user).

Rather, the variance reflects our certainty our current expected value of the reward. A high variance

suggests that that we are not very sure about our reward value, whereas a low variance suggests

that we are confident about our reward value. While partly redundant with the pre-observation

count, we note that observation counts alone are not a good measure of parameter certainty. A new

measurement will always increase the observation count. However, our updated variance will differ

based on how closely the new measurement matches the previous measurements. In particular, if

a new measurement does not match new values, we would like oursystem to become less certain

about the true value.

Observations and Transitions. We capture the uncertainty in the transition and observation

parameters using Dirichlet distributions. Recall that fordiscrete states and observations,T andΩ

are multinomial distributionsT (s′|s, a) andΩ(o|s, a). Figure 4-1 shows an example of a simplex

for a discrete random variable that can take on three different values. Every distribution over those

three variables is a point on this simplex: for example, the point (0,.5,.5) represents a distribution

where the first value never occurs and the second two values are equally likely. The Dirichlet

distribution is a natural choice because it places a probability measure over all valid multinomial

distributions. As the conjugate prior for the multinomial distribution, we will see that the Dirichlet

distribution is also easy to update given new observation data.

Given a set of parametersθ1...θm, the likelihood of the discrete probability distributionp1...pm

is given by

P (p; θ) = η(θ)
m∏

i

pθi−1
i δ(1 −

m∑

i

pi),

whereη, the normalizing constant, is the multinomial beta function. The Dirac delta functionδ(·)
ensures that the probability ofp is zero ifp does not represent a valid probability distribution, that
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Figure 4-1: An example simplex for a multinomial that can take three different values (a,b,c). Each point on the
simplex corresponds to a valid multinomial distribution; the Dirichlet distribution places a probability measure over
this simplex. The second figure shows a probability distribution placed over this simplex.

is, if
∑m

i pi does not equal one. The expected values of the Dirichlet distribution are given by

E[pi|θ] =
θi∑m
j θj

, (4.1)

and the mode is

E[pi|θ] =
θi − 1

∑m
j θj − m

. (4.2)

As the conjugate distribution to the multinomial, Dirichlet distributions have the additional

property that they are easy to update. For example, suppose we are given a set of observation

parametersθ1...θ|O| corresponding to a particulars,a. If we observe observationoi, then a Bayesian

update produces new parameters(θ1, . . . , θi + 1, . . . , θ|O|). Thus, we can think of quantityθi − 1

as a count of how many times observationoi has been seen for the (s,a) pair. Initially, we can

specify an educated guess of the multinomial distribution—which we take to be the mode of the

distribution—and a pre-observation total that representsour confidence. Given a total number

of pre-observations, we set the beta parameters of the Dirichlet distribution in proportion to the

expected probability values for each state.
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4.2 Approach

Table 4.2 describes our general approach. We have already described how we may put priors

over the parameters; here we discuss how to solve for a policygiven uncertain parameters, how to

update the parameters, and how to update the policy.

Table 4.1: Expected Value approach to solving an uncertain POMDP. We start with distributions over uncertain
parameters and refine them over time.

EXPECTED VALUE POMDP

• Put priors over all of the parameters

• Solve for an initial dialog manager policy

• Loop:

– Interact with the user.
– Update the distribution over parameter.
– Update the dialog policy.

4.2.1 Solving for the Dialog Policy using Expected Values

The Q-functions in the Bellman equations described in Chapter 2 can be written in the following

form:

Q(b, a) = max
i

~qa · b,

qa(s) = R(s, a) + γ
∑

o∈O

∑

s′∈S

T (s′|s, a)Ω(o|s′, a)αn−1,i(s).

The first equation is an expectation over our uncertainty in the true state (in our case, the user’s

intent). The second equation averages over the stochasticity in the model: the reward we expect to

get in a certain state is the current reward plus an average over all the future rewards we may get

depending on which belief state we may transition to.

Computing the vector~qa—which is an average over the stochasticity in the user model—now

requires an additional expectation over our uncertainty inthe user model. LetΘ represent collec-
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tively all of the hyper-parameters of the distributions over the rewards, observations, and transi-

tions. Then we can write the additional expectation as:

qa(s) = EΘ[R(s, a) + γ
∑

o∈O

∑

s′∈S

T (s′|s, a)Ω(o|s′, a)αn−1,i(s)]

= EΘ[R(s, a)] + γ
∑

o∈O

∑

s′∈S

EΘ[T (s′|s, a)Ω(o|s′, a)αn−1,i(s)]

= EΘ[R(s, a)] + γ
∑

o∈O

∑

s′∈S

EΘ[T (s′|s, a)]EΘ[Ω(o|s′, a)]αn−1,i(s),

whereEΘ[R(s, a)], EΘ[T (s′|s, a]) andEΘ[Ω(o|s′, a)] are the means of the Dirichlet distributions

as given by equation 4.1. The second line follows from the linearity of expectations, and the third

line follows from the fact that the uncertainty in the transition and observation distributions—at

least, in how we choose to model them—is independent. Theαn−1,i is a fixed value from the

previous iteration and does not require averaging.

Note that learning does not appear in this derivation. What we have shown is that if the param-

eters are uncertain, for the optimal dialog policy—that is the policy that maximizes the expected

discounted reward—it is sufficient to solve the POMDP with the expected values of the model

parameters. This policy is not optimal if we can gain additional information about the parameters

through our interactions. We will explore this issue in future chapters.

4.2.2 Updating the Parameters after an Interaction

Given a history of states, actions, observations, and rewards, it is very straightforward to update

the priors over the parameters. For the rewards, which have Gaussian priors, we simply compute:

µ′
R(s,a) =

µR(s,a)nR(s,a) + r

nR(s,a) + 1
(4.3)

σ′2
R(s,a) =

nR(s,a)(σ
2
R(s,a) + (µR(s,a) − µ′

R(s,a))
2)

nR(s,a) + 1
+

(r − µ′
R(s,a))

2

nR(s,a) + 1
(4.4)

n′
R(s,a) = nR(s,a) + 1, (4.5)
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wherenR(s,a) is the previous observation count, andµR(s,a) andσ2
R(s,a) are the previous mean and

variance for the rewardR(s, a).

For the Dirichlet priors over the transition and observation probabilities, we simply increment

θo,s,a or the θs′,s,a as appropriate. Recall that the initial beta values can be thought of as pre-

observation counts of a particular event; as we get true observations of the event, we simply add

these observations in. As the beta values get higher, the priors over the observation and transition

distributions will get more sharply peaked. In the case thatwe receive not a single observation, but

a distribution over observations (such as normalized word counts from an n-best list of possible

phrases), we simply update each beta value with the probability (which we can think of as a partial

count) that it was observed:θ′o,s,a = θ′o,s,a + P (o|s, a).

While the updates above are simple, a key assumption that we have made is that we know

what state the system was in when a particular reward, observation, or transition occurred. (Note

that our history, in a POMDP, consists of only actions and observations.) In general, this issue

can be a very tricky problem. One approach—and the approach that we use—is to note that once

we have a history of observations and actions, we have reduced our POMDP to a Hidden Markov

Model (HMM) in which the observations and transitions are conditioned on the (known) sequence

of actions. We used the Viterbi algorithm (see [31] for a goodtutorial) to determine the most likely

sequence of states for that HMM, and thus for that observation history.

We have glossed over one more point: when using the Viterbi algorithm, the system expects

transition and observation distributions for each state. However, we do not know the true obser-

vation and transition distributions! We use the expected values of these distribution in our algo-

rithm. In general, updating the distribution parameters with the HMM output could have fairly

poor performance, since we may update the wrong parameters.Indeed, as seen in Figure 4-2, we

see that in our basic dialog model, the number of mispredicted states grows steadily over time.

However, most of the time, the error is that we fail to notice when a user changed their mind in

mid-conversation. As a result, the values of the transitions become close to deterministic—that

is, we begin to think that the user never changes their mind inmid-conversation, and we attribute

the inconsistent phrases as additional noise in the observations. The resulting policy may be sub-
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Figure 4-2: Error in the HMM estimation of the state.

optimal, but not critically, since we assume that the user isgenerally unlikely to change their mind

in mid-dialog to begin with; we get approximately the same results by determining the user’s true

goal state by the motion action that successfully ended the dialog. Note that we use the cue that

the dialog has ended as a very important cue for training.

4.2.3 Updating the dialog policy

The policy that we found in Section 4.2.1 gave the optimal course of action for a POMDP with

certain parameters—the expected values of the distributions over parameters. Once we have com-

pleted a dialog and updated the parameter distributions, wehave a new set of expected values.

Clearly, we should consider changing the policy to reflect the new parameters (note this is a simple

form of learning: although the system is not aware that its actions will result in greater knowledge

about its environment, once that knowledge is obtained we doadapt to our new conditions).

One option would be simply to recompute the solution to the expected value POMDP each time

the parameters are updated. This is undesirable, however, because solving the basic POMDP (in

Matlab) can require several minutes of computing. Instead,we use the fact that the value function

has probably not changed very much in the span of one interaction. Thus, we can use our current
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solution as a starting point and compute additional backups(recall Equation 2.3). Since the backup

operation is a contraction ([10]), the additional backups will always bring the old solution closer

to the new solution.

The question remains of how many backups to perform, and in this work we consider three

different update heuristics:

1. Backup to convergence. After each completed dialog, we perform enough backups for the new

value function to converge.2 This should lead to the best expected performance given the uncer-

tainty in the user model. However, the current model statistics may come from a few unrepresen-

tative dialogs so that the computed policy is wrong. Here, more learning must be done before the

policy’s performance can improve, and careful planning maytherefore be wasted effort. Com-

puting a POMDP policy to convergence is also a slow process, leading to long latencies in dialog

manager responses.

2. Backupk times. Performk backups, regardless of how the parameters change. This approach

may prevent latencies in the dialog manager performance, but does not give the dialog manager

time to compute better plans once we have confidence in the model.

3. Backup proportionally to model confidence. The sum of the variances on each parameter is a

rough measure of the overall uncertainty in our user model. If an update reduces the overall

variance, we backup⌊k ∗ dvar⌋ times, wheredvar =
∑

minM max(0, σ2
m,i − σ2

m,f ) whereM

is the set of all model parameters andσ2
m,i andσ2

m,f are the initial and final variance for model

parameterm. Thus,dvar measures the total reduction in variance. The intuition is that we

wish to expend the most computational effort when the user model becomes more certain. For

simulation purposes, we also capped the number of backups per update at 50.

The first heuristic, backing up to convergence, is the most principled, but it fails to capture the

fact that if the parameters have changed only slightly, large amounts of computation may be a

wasted effort. On the opposite end of the spectrum, backing up a fixed number of times is clearly

suboptimal since there may be times when we really wish to

2To complete our simulations, we capped the number of backupsper update step to 50.
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We suggest the use of the final heuristic, at least in the initial planning stages, since it expends

more computational effort when there is a large decrease in variance (note thedvar is the sum of

the change in variance for all the parameters). In later stages, when the parameters are already

certain, it may be prudent to simply solve the new POMDP to convergence. That way, we avoid

the issue of never applying backups because the variance increases very gradually; although we

never had this issue in practice.

4.3 Performance

We tested our approach in an artificial simulation and with a robotic wheelchair (see Table 4.2 for

a summary of the key parameters).

Table 4.2: Model Parameters for Simulation and User Tests.
Parameter Simulation User Test
States 7 7
Actions 12 12
Observations 11 19

4.3.1 Simulation Performance

Table 4.3 shows initial parameter guesses and true values. Initially, the expert prior believed that

the voice recognition system was more accurate, and that theuser was more forgiving, than the

true values. The (slightly strange, obviously constructedfor this experiment) user also preferred

automated telephone-style interactions where the system listed a bunch of options as opposed

to open questions about where they wished to go. (Granted, this is inexplicably odd behavior,

but reasonable if the voice recognition was generally poor and thus able to distinguish yes/no

commands much better than place locations.)

The model began with symmetric observation and transition probabilities, that is, we specified

the probability of the most likely option, and the remainingoptions were uniformly distributed with

the remaining probability. While not necessarily true in real world scenarios, it was a reasonable
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Table 4.3: Initial and True Parameter Values for Simulation Tests. The initial model parameters assume a higher
speech recognition higher accuracy and a user unforgiving of confirmation actions. This is an example of a very
demanding user relative to the initial model specification.

Initial True
P(self-transition) .95 .95
P(correct obs if ask-which) 0.7 0.5
P(correct obs if confirm) 0.9 0.7
R(complete task) 100 100
R(ask-which) -1 -10
R(correct confirm) -1 -1
R(incorrect confirm) -10 -2
R(incorrect destination) -50 -500

Table 4.4: Mean update times for each of the four approaches. Note thatupdates take place only after a dialog has
been completed; when the dialog policy does not require any updates the dialog manager’s average response time is
0.019 seconds.

Approach Time (sec)
Convergence 135.80
1-backup 13.91
0.10-var 42.55
0.01-var 18.99

starting point and a model used in other dialog management systems ([39]). We attributed two pre-

observations to each event to express a relatively low confidence in the initial parameter estimates.

To isolate the effect of our approach, we first ran the tests with an oracle that, once the dialog

was complete, provided a complete state history to the dialog manager, eliminating the need to

use an HMM to derive this history during learning. We note that the state oracle was not used

during policy execution; during a user interaction the dialog manager chose actions solely from

its POMDP model. Figure 4-3 shows the results averaged over 100 trials. All of the approaches

performed similarly, but planning proportionally to the variance reduction achieved that result with

almost as little computation (see Table 4.4) as replanning once per update. The variance reduction

approach allowed us to focus our replanning near the beginning of the tests, when the parameters

were most in flux.

What is also interesting is that the additional backups havea significant change in the variability

of the solutions. Figure 4-4 shows box-plots of the interquartile ranges (IQRs) of the solutions. An
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Figure 4-3: Performance and computation graphs. The learner outperforms the non-learner (top graph), and all of the
replanning approaches have roughly the same increase in performance (middle graph), but replanning proportionally
to the confidence of the model achieves that performance muchless computation (and therefore faster response) than
replanning to convergence (bottom graph).
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Figure 4-4: Interquartile Ranges (IQR) of the rewards. All of the replanning approaches have roughly the same
median performance, but additional planning results in a more stable solution. Note that an IQR of 0 corresponds to
zero variation around the median solution.

IQR of 0 would mean that the policy always resulted in the median value solution. As expected,

iterating to convergence improves the stability of the solution; of the learners it has the smallest

IQR range. However, it is interesting to note that even with just a few more backups, we can still

get a policy with a lot less variation.

Finally, we did the same tests using the HMM instead of the oracle to determine the state history

for the purpose of learning. For the reasons described in theprevious section—with higher per-

ceived observation noise, we followed a more conservative policy—the HMM performed slightly

worse than the system with the oracle, but the difference wasnot significant given the noise in the

system.

4.3.2 Wheelchair Performance

The next set of tests were performed on the wheelchair itselfwith the author as the user. To allow

the experiments to run in real time, only one backup was computed after each dialog; the goal was
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Table 4.5: Initial and True Parameter Values for User Trial.
Initial Value True Value

P(correct obs if ask-which) 0.6 see graphs
P(correct obs if confirm) 0.8 1.0
R(complete task) 100 100
R(ask-which action) 1 -30
R(correct confirm) 10 -1
R(incorrect confirm) -10 -10
R(incorrect destination) -200 -500
R(incorrect no-action) -1000 -100

not to show speed of different planning techniques but to show general dialog improvement with

model parameter learning. Although the wheelchair was capable of driving the various locations,

we did not execute the motion commands for the purposes of thetest. Table 4.5 shows the initial

and true parameters for the user test.

At the time of the tests, we were using the Sphinx-2 voice recognition system [32]. The recog-

nition quality was incredibly poor (in what seems to be a common complaint among Sphinx users;

apparently one has to tune many internal parameters in the source code to get reasonable perfor-

mance): in many cases the system failed to recognize anything in the utterance. In order to expedite

the tests, we first spent a long time talking to the speech recognizer and collected the mistakes that

it generally made. Next, we entered dialogs as text into the dialog manager. These dialogs con-

tained common errors that we had observed in the voice recognition software as well as words and

situations that we particularly wished to test for. In particular, the system contained:

• Speech Recognition Errors. Sphinx often mistook similar sounding words; for example, the

software tended to mistake the work ‘desk’ with ‘deck.’ In the absence of this knowledge,

however, we had assumed that we would observe the word ‘desk’more often if the user was

inquiring about the information desk and ‘deck’ more often if the user was inquiring about

the parking deck. We also made difficult to recognize words more likely to be dropped (for

example, ‘parking’ and ‘information’ were harder words forour software to recognize). Note

that the speech recognition errors the system encountered were filtered to eliminate interactions

where the recognition failed to produce any recognized utterances, and so these results do not
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precisely capture all speech recognition errors of our current system.

• Mapping New Keywords. General keywords, such as ‘tower,’ or‘elevator,’ were not initially

mapped to any particular state. Some unmapped keywords weremore likely in one particular

state (such as ‘parking deck’ or ‘the deck’ for ‘parking lot’; ‘the elevator’ for ‘the Gates eleva-

tor’), while others occurred in several states (‘I’d like togo to the information desk a lot’ uses

the word ‘lot’ outside the context of ‘parking lot’).

• Spurious Keywords. Especially in a spatial context, users could refer to other locations when

describing the desired state. For example, they might say ‘the elevator by the information desk’

or ‘the Gates side booth.’ Our simple bag-of-words approachto speech analysis precluded com-

plex language understanding; the dialog manager had to associate higher noise with keywords

that occurred in many states.

For the user tests, we expanded our observation model to a total of 19 allowed keywords. Five

of those keywords were pre-mapped to particular goal states. For example, we guessed that if the

user wished to go to the Gates Tower, then the probability of hearing the keyword “Gates” would

be relatively high (60%). Similarly, if the user wished to goto the Dreyfoos tower, we guessed

that the probability of hearing the word “Dreyfoos” was alsohigh (again, 60% in our tests). The

remaining key words were not mapped to any particular state.For example, we initially guessed

that the word “tower” was equally likely in any of the five goalstates. Our goal was to have the

system learn the mappings—if any—for these keywords depending on the vocabulary choices of

the user. In the case of the “tower” example, if the user oftenused the word “tower” when referring

to the “Gates Tower,” then we would learn that association. However, if the user never used the

word “tower,” then that keyword would remain unmapped.

there was no longer one word associated with each goal state.Instead, we initialized the priors

with a goal word per location—for example, ‘Gates,’ for Gates Tower. Other key words, such as

‘Tower’ or ‘Elevator,’ were left unmapped. There were a total of 19 possible observations. Our

goal was to learn the vocabulary that the user tended to applywhen in a particular state. We began

by thinking that we would hear the keyword we had associated with each state about 60% of the

time if we were in that state.
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The observations were analyzed in several steps. First, we counted the presence of each key

word in the output of the speech recognition system. If no keywords were present, we ignored the

input and awaited another user response. The reason for onlysearching for keywords was to first to

simplify the analysis; however, it also protected us from reacting to noise and other partial inputs

to the system. Note that utterances rejected at this stage never made it to the POMDP planner, and

thus our planner was not burdened with having to learn simplyto ignore the significant fraction of

supposed utterances that were actually noise. This also protected the planner from ‘learning’ that

noise was the predominant quality of a particular state.

A normalized vector of counts was submitted to the dialog manager and incorporated into the

POMDP as probability distribution over observations. (Note that in this case, it is not a probability

distribution over what observations may have occurred, rather, it provided us a way to fold in

multiple observations into the belief update step according to their weight.) If given a vector of

observation probabilitiesP (o), we simply extend the belief update equation to be:

bn(s) = η
∑

o∈O

P (o)Ω(o|s′, a)
∑

s∈S

T (s′|s, a)bn−1(s) (4.6)

Since POMDPs deal only with maximizing the expected reward,this additional expectation does

not change the behavior or validity of the planning process.

For the purposes of a fair test, the states were requested in the same pattern to the learning and

the non-learner. The same set of phrases were also used when responding to the system when asked

the open question “where do you want to go?” Also, the user never changed her mind about where

she wished to go in the middle of a dialog, which meant that theHMM-based state prediction was

exact.

Figure 4-5 shows that the learner generally performed better than the non-learner. The first

dip in the plot, near interaction 10, is where the learner first encountered misused keywords, the

hardest situation for it to deal with. The plot, which shows asingle user test, also highlights a

trade-off that was not immediately apparent in the aggregated plots from the simulation results. In

the simulation results, we could happily initialize our pre-observation count to a very small number

to indicate our uncertainty, and as a result, our learning rate was very fast. The aggregated rewards

54



smoothed over pitfalls in any particular run.

As we see by the dips in the plot (and this is after tuning the pre-observation count up from two

to five, a number that yielded a slower but more robust learning rate), our learner makes mistakes.

Often the mistakes, especially the mistakes made in the early stages, occur because the system gets

too sure about certain distributions while others are stillhighly variable. For example, suppose

that the system hears the word ‘Forbes’ during an initial dialog when the user wants to go to the

Forbes cafe. If the initial pre-observation count is low, the system will suddenly become very

confident that the word ‘Forbes’ is extremely likely if the user wants to go to the Forbes cafe.

If system hears the word ‘Forbes’ a second time, it may chooseto proceed directly to the cafe

without even confirming the location with the user. Such a quick response may be fine if the user

truly wants to go to the cafe, but suppose that the word “Forbes” was recognized in error in the

second dialog. Without time to calibrate to the observationnoise, the system will rush the unhappy

user to the cafe! For more graceful learning, we must increase the pre-observation count; this way,

the distributions do not peak too quickly during the initialphase. However, this means that more

observations will be required to overcome biases in our prior.
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Figure 4-5: Policy-refinement based on expected values for a dialog with five goal locations from a single trial. The
user was much less forgiving of mistakes than the dialog manager initially expected, and often used keywords that
were not mapped to goal locations in the initial model. The learner (solid) generally outperforms the non-learner
(dashed), only making one serious mistake (far right).

Despite these issues, the planner does reasonably well (andperforms very quickly). To see

how it handles various types of problems, we show its performance by state. Table 4.6 shows the
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Table 4.6: Mean overall and per state results for the user test consisting of 36 dialogs. The learning dialog manager
improves over the initial, hand-crafted policy in most states. The exception (State 3) is due to a single outlier.

Overall S1 S2 S3 S4 S5
Non-learner -16.9 4.6 10.7 39.0 49.2 -187.7
Learner 37.2 54.6 50.4 -35.8 67.3 49.1
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Figure 4-6: This plot includes only Information Desk requests. Observations in this state were 31% original keywords,
46% new words, and 23% misused keywords. Unmapped words morestrongly associated with other states made it
tough for the learner to improve the dialog policy.

average reward per state for the learner and the non-learner. In general, the learner did an excellent

job of mapping keywords to states (regardless of how many states the new word was associated

with). In these situations (see Figure4-7), the dialog manager was able to shorten interactions (and

thus increase overall reward) by learning how to handle these new observations.

The dialog manager had the most difficulty when a state often had the occurrence of keywords

that were highly likely in other states (see Figure 4-6). This was similar to the issue that occurred

when the distributions initially became too certain—if a certain observation, such as ‘Gates’ was

very likely to be see if the user wished to go the Gates Tower, the system was confused when it

heard a phrase like ‘go to that booth near Gates.’ Since the observation distributions did reflect the

true observation distributions, we believe that the central issue may have been not enough backups;

one backup might have not been enough to learn the new policy of what to do when one has a very

clean state and a very noisy state.

As a qualitative measure, Tables 4.7 and 4.8 shows how some ofthe dialogs changed due to the

learning process. In the first pair, the user often uses the word ‘deck,’ which is unmapped, to refer

to the parking lot. The system must wait until the word ‘parking’ is heard, but in the meantime,

the user uses several keywords, such as Gates and Dreyfoos, that have already been mapped. This

results in a rather painful learning experience. However, once the system adapts, it is able to

handle the use of other words, such as elevator or tower whichhave since been mapped to other
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Figure 4-7: This plot includes only Parking Lot requests (and is representative of the other states). Observations in
this state were 9% original keywords, 73% new words, and 18% misused keywords. The learner soon realizes that
the user often refers to the parking lot with the unmapped work ‘deck.’ Since the user is forgiving to confirmation
questions, the dialog policy applies them aggressively to disambiguate misused keywords.

locations, and the newly mapped word deck. The second dialogdemonstrates two things. First,

the system again learns a new keyword, elevator. It has also learned that although the building has

several elevators, the user usually wants to go the Gates elevator. Therefore, it tries to confirm that

location first.

Finally, as a second demonstration, we did another similar test, except this time we used phrases

based on data from a different user speaking into the voice recognition system. This user was not

trying to create particular obstacles, and as a result, we see that the effects of learning, while still

evident, are less pronounced than before.

4.4 Discussion

The benefit of the expected-value approach is that it requires very little computational effort; we

can easily learn both reward and observation parameters. The backups are fast enough that the

dialog can be performed in real time. Also, this approach allows us to consider the parameters

as continuous-valued numbers (as they should be): we do not need to discretized the parameter

space. We also make no assumptions on what the final set of parameters may be: although the

initial priors are symmetric, as we saw in the user test, there is no additional work required to learn

distributions that are bi-modal (for example, if the word tower occurs with two locations, the Gates

and Dreyfoos Towers).

The drawback to our approach essentially spends all of its time exploiting and none of its time

exploring. Thus, even with an infinite number of trials, we cannot guarantee that the parameters
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Table 4.7: Parts of dialogs between the user and the wheelchair. The dialog specification has failed to specify how to
handle the words ‘deck’ and ‘elevator.’ In the first dialog, the non-learner is so confused when it first hears the word
‘parking’ that it takes a second utterance for it to select anappropriate action.

Without learning
USER: Take me to the deck between the two towers.
The user says “deck” to refer to the parking lot. The system
does not know this yet.
ROBOT: Where did you want to go?
USER: Yes, I want to go to central elevator that goes to the deck
ROBOT: Where did you want to go?
USER: The middle deck, between Gates and Dreyfoos
ROBOT: Do you want to go to the Gates Tower?
USER: No.
ROBOT: Going to the Dreyfoos Tower.
USER: No! I want to go to the deck!
The system still cannot associate “deck” with any destination.
ROBOT: Doing nothing.
USER: Take me to the deck.
ROBOT: Where did you want to go?
USER: The parking lot.
ROBOT: Where did you want to go?
USER: I said the deck.
ROBOT: Where did you want to go?
USER: Yes, the parking deck.
ROBOT: Going to the parking lot.
After learning:
USER: Take me to the deck between the two towers.
ROBOT: Where did you want to go?
USER: Yes, I want to go to central elevator that goes to the deck
ROBOT: Do you want to go to parking lot?
USER: Yes.
ROBOT: Going to parking lot.
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Table 4.8: In the second dialog, the learner realizes that while elevator refers to multiple locations, the user most often
uses in the context of the Gates Tower.

Without learning
USER: Take me to the elevator.
The system does not know what ‘elevator’ means.
ROBOT: Where did you want to go?
USER: The Gates elevator please.
ROBOT: Do you want to go to the Gates Tower?
USER: Yes.
ROBOT: Going to the Gates Tower.
After learning:
USER: Take me to the elevator.
ROBOT: Do you want to go to the Gates Tower?
USER: Yes.
ROBOT: Going to the Gates Tower.

Table 4.9: Mean overall and per state results for a single end-to-end user test consisting of 36 dialogs. In general the
learning dialog manager showed slight improvements, especially in mapping unmapped keywords (in this case, State
3).

Overall S1 S2 S3 S4 S5
Non-learner 45.0 69.0 59.0 -11.0 59.0 49.0
Learner 55.9 72.4 66.3 32.5 52.6 55.9
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will eventually converge to their true values. In fact, it iseasy to construct an initialization of a

prior that will result in a policy that will never converge tothe true optimal. For example, consider

a scenario in which there are only two actions:askandconfirm. Suppose that under some prior

beliefp over reward parameters, we have the following relationshipbetween the true rewards and

their expected values under the prior:

Rask > Rconf = Ep[Rconf ] > Ep[Rask], (4.7)

whereRask is the reward for asking a general query andRconf is the reward for asking a confirma-

tion question. If the dialog manager attempted actionask, it would discover that its belief about

Rask was incorrect. However, if the dialog manager only makes decisions based on the rewards

it expects to receive,Ep[Rconf ] andEp[Rask], it will never try the actionask. Thus, the dialog

manager will be stuck with a suboptimal policy. This situation will occur if the domain expert

estimates the reward means incorrectly, even if the expert states that he is very unsure about some

of the values he chose.

In the next chapters we take steps to resolve this issue by incorporating the unknown parameters

into the hidden state of the POMDP.
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Chapter 5

Decision-Theoretic Approach

One of the primary concerns with the expected value approachin Chapter 4 is that it was not aware

of the uncertainty in the model, and this made it possible forthe system to get caught in local

optima. Unaware of the risk, it also acted too aggressively at the beginning, when the parameters

were not certain. In this chapter, we take the first step to resolving this issue by incorporating the

unknown parameters as additional hidden state in the model.First (Section 5.1), we attack the

problem assuming that the parameters are discrete. In Section 5.2, we show how we may consider

continuous models.

5.1 Discrete Approach

While there exist extensions of the value-function based approach described in Section 2 for solv-

ing POMDPs with continuous state [29], they are fairly complicated. Thus, we begin by limiting

the parameters to have a discrete set of values. In this section, we also restrict ourselves to learning

only the reward parameters. We further assume that the rewards are symmetric and oblivious with

respect to the states—that is, a penalty for taking an incorrect movement is the same regardless of

what state the user is currently in and whatever state we try to drive to. Finally, we assume that the

user will provide explicit reward feedback at each step (as in the standard model of reinforcement

learning).
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Table 5.1: Discrete reward values considered for the hidden reward parameters. The reward for a correct confirmation
was -1 and the reward for a correct movement was 100.

R(general query) -10, -5, -2, -1
R(incorrect confirmation) -20, -10, -5, -2
R(incorrect movement) -300,-200,-100

5.1.1 Model Definition

As before, this section will work with the simple five-goal model that we introduced in Section 2.

If we assume symmetric rewards, there are five unknown rewards in the model: (1) the reward for

asking a general query (ie, where do you want to go?), (2) the reward for a correct confirmation

(ie, asking do you want to go to the cafe when the user wants to go to the cafe), (3) the reward for

an incorrect confirmation (ie, confirming the cafe when the user wants to go somewhere else), (4)

the reward for a correct movement (ie, driving to the correctlocation), and (5) the reward for an

incorrect movement (ie, driving to the wrong location).

Without any loss of generality, we can set two of these valuesto fix the absolute and relative

scales of the reward values. For our tests, we set the reward of correct confirmation to -1 and a

correct action to 100. This left three more reward values to learn. For each of these, we considered

four possible discrete values for the parameters. Table 5.1shows the values we considered for

each of the remaining parameters. The observation parameters were assumed to be known and

symmetric, withpask = 0.7 andpconf = 0.9. Since the policies are fairly robust to the actual re-

ward parameter values, we felt that even this coarse discretization spanned a number of reasonable

policies.

Figure 5-1 shows how adding the reward parameters as additional hidden state change our

POMDP. Now, the state consists of a vector{su, ~sr}, wheresu is the user state (where they wish to

go, same as before) and~sr is the preference state (what reward values satisfy the user’s preference

model). We assume that the reward values are stationary overtime, thus the only state that changes

is the user state. The preference state is fixed but hidden. All combinations of reward values and

user states are possible, for a total of 336 states.

We require the user to give a reward feedback at every step. Weassume that this is not terribly

noisy, as it is likely to be a button press; for our simulations we let the confidence in the reward
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value be equal topconf . We extend our observation space to be{od, or}, whereod is the speech

to the dialog manager andor is a reward entered by the user. Considering all the discretereward

values that we could observe, this model has a total of 72 observations (8 keywords and 9 reward

values).

sr

o d
o r

a us

sr

o d
o r

a us

time t time t+1

Figure 5-1: Arrows in the POMDP influence diagram connect elements thataffect other elements. The robot’s action
a and the previous user state affect the current user statesu, while the user’s preferencessr never changes. The
observed rewardor depends on the user’s state and his preferences and the observed dialogod depends only on the
user’s state.

Unlike in the basic model, in which the POMDP was not aware of the reset (to speed conver-

gence), in this parameter POMDP it is important to include the fact while we return to the start

state once the dialog is done, we do not completely reset: ourbelief in the preference state does

not go back to some initial prior once a dialog is complete. Thus, we retain the learning about

preference states that occurred during previous dialogs.

5.1.2 Approach

In theory, since we have reduced our original problem of how to behave with uncertain parameters

to a larger POMDP, all we need to do now is solve the resulting POMDP using the techniques

that we have already discussed. In the new POMDP (the “parameter” POMDP), we have a belief

b(su, ~sr) that represents the probability that the user is in statesu and the rewards are given by~sr.

Unfortunately, even though we started with a very simple model—five goal locations, three or four

possible reward values for three parameters—we have a POMDPwith 336 states, 12 actions, and
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72 observations. Large POMDPs are difficult to solve, so we must take some care in how we create

the dialog policy.

One reason why solving a large POMDP takes more time than solving a small one is simply

a matter of computation. In each Bellman backup, we are multiplying matrices that have at least

one dimension the size of the state space. Matrix multiplication is close to cubic in the size of

the matrix, so increasing the size of the state space by a factor of about 50 increases the matrix

multiplication time by 125,000. The factored nature of the model, however, can help us avoid some

of those computations. For example, consider the probability of observing a particular{od, or} in

a state{su, ~sr}. The observed speech input does not depend on the user’s reward model, so the

observation probability factors as:

P (od, or|su, ~sr) = P (od|su) · P (or|su, ~sr)

Now, when computing a belief update, we can update b(su) independently of b(~sr). In the end,

b(su, ~sr) is the tensor product of b(su) and b(~sr). We can compute parts of the backup operation

with similar tensor products since identical factorizations exist for the other transition and observa-

tion probabilities. Note that we can factor only because theeach observation part gives information

only about one part of belief. Also, note this is not the same as a factored POMDP, in which differ-

ent parts of the state space have different actions (which isa much more powerful concept). Table

5.2 gives the flow of our approach; as described in Chapter 3, we continually resample beliefs to

refine the accuracy of our solution around the regions that are most relevant.

One question we have not addressed yet is the initial choice of prior over the preference states

(which is our initial b(~sr)). One option is to simply put a uniform prior over all of the preference

states. However, note that given the properties of the POMDP, as long as we start b(~sr) with

full support over all of the preference states—that is, the probability of each preference state is

nonzero—we will eventually converge to the correct preference state. Thus, if we wish to be

more robust at the beginning of the learning process, we can skew our initial prior toward harsher

penalties. The resulting initial policy will be more conservative and make fewer mistakes while

the prior converges (this is one way to get robustness while staying within the POMDP’s expected
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Table 5.2: Parameter POMDP approach to solving an uncertain POMDP. Weassume that the set of possible rewards
is discrete and rewards are observed at each step.

PARAMETER POMDP

• Choose a starting belief and sample an initial belief set.

• Solve the Parameter POMDP on that belief set.

• Loop:

– Interact with the user.
– Update starting belief set.
– Sample a new belief set.
– Update the dialog policy.

value approach).

5.1.3 Simulation Performance

Figure 5-2, mostly a sanity check, shows how the parameter POMDP, if initialized to the correct

prior, performs just as well as a well initialized expected value POMDP. The goal was simply

to show that our resampling approach does in fact do reasonable things, whereas with a poor

initialization, we actually do unreasonable things if we are using the expected value approach.

(Note: the expected value approach was initialized to mean values included the discrete set of

rewards, but it tried to learn the rewards over a continuous space. This does not affect the issue

with the algorithm, however.

In Figure 5-3, we show the results for the parameter POMDP fora variety of priors. In each

case, the overall performance is about the same, showing (aswe expect) that the parameter POMDP

approach is robust to the initialization. What is most interesting, however, is that if we start out

with a conservative prior, that is, a prior that puts most of its weight on a tough set of rewards, we

do not see the initial dip in the learning process. Initially, the system is robust because it is very

cautious of doing the wrong thing. In the end, it is robust because it has focused its samples on the

important part of the belief space.
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Figure 5-2: The figure shows the performance of parameter POMDP initialized with a good prior compared to dif-
ferent initializations of the expected value POMDP, aggregated over 100 simulated trials. The parameter POMDP,
considering 48 possible user preference states, achieves the higher (correct) level of performance without sensitivity
to initialization. The parameter POMDP seems to do slightlyworse than the well-initialized expected value POMDP,
but the difference is not statistically significant: on the final trial, the expected value POMDP has median 85 and IQR
16.5, and the parameter POMDP has median 86 and IQR 11. The poorly-initialized expected value POMDP reaches a
median of 26.5 and IQR of 207 after 120 trials.

5.2 Continuous Model

In the previous section, computational power limited us to consider a few discrete reward values,

and we were unable to do any learning on the observation model. In this section, we consider the

case of only learning a continuous observation model. (We will return to learning both the reward

and the observation model in Chapter 6.) As before, we will consider the unknown parameters as

hidden state in the model, however, since those parameters now take on continuous values, we will

use a sampling based approach to solving the parameter POMDP.

5.2.1 Model Definition

We continue to use the simple 5-goal model for the dialog, however, we now consider all of the

observation parameters as additional hidden state. These observation parameters are fixed but

unknown. We will consider two cases: in the first case, we assume that the observation model is

symmetric, only that we do not know the true values forpask andpconf . In the second case, there
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Figure 5-3: The three different priors—a uniform prior, a correct prior, and a conservative prior—converge to the
same steady-state performance, but choosing a conservative prior allows us to do as well as if we had known the user’s
preference state initially. All solutions were backed up toconvergence.

is no parameter tying and the observation distributions maytake on any form. Because we use

a sampling-based approach to solving the parameter POMDP, the only difference between these

two cases is the form of our priors, the algorithm is otherwise identical. (Note that learning a full

distribution will, of course, take longer than learning a symmetric distribution.)

5.2.2 Approach

Solving continuous state POMDPs is extremely difficult, so we use a sampling based approach to

the problem (somewhat similar to [15]. We begin by sampling aset of POMDPs (between 15 and

50) from an initial distribution of parameters. Each one of these POMDPs is relatively small and

therefore quick to solve; to further speed up backups, we canbackup only a small fraction of the

belief points and a small fraction of the alpha vectors in each iteration. Each POMDP begins with

equal weightwi. The discrete sample set of POMDPs approximates our continuous distribution

over POMDPs. Each POMDP carries its own belief, approximating our distribution over states

that we may be in.

One way to think of our small POMDPs is that each small POMDP value function represents a

“slice” of the underlying continuous state POMDP value function where a set of parameter values
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are fixed. While it is tempting to interpolate the value function at unsampled points based on

combinations of the known slices, this approach does not lead to a good estimate of the underlying

continuous state value function. Interpolating between sampled POMDPs is equivalent to giving

a belief over those POMDPs. We know that the value of a belief is not weighted average of the

values of being in each state (which is theQMDP heuristic), rather, we pay an additional price for

the uncertainty.

Without a convenient way to approximate the value function,we turn to other approaches to

choose the appropriate action. We apply a Bayes risk criterion:

a = arg min
a

∑

i

wi(Qi(a, b) − Vi(b)) (5.1)

wherewi is the weight of modeli, Qi(a, b) is the value of taking actiona in modeli, andVi(b) is

the value of being in beliefb according to modeli. Note thatVi(b) = arg maxa Qi(a, b), so the risk

is always never positive. For each model, the term inside thesum measures how much we expect

to lose if we take a particular action instead of the optimal action. Overall, the Bayes risk criterion

states that we should take the action the minimizes the expected loss over all models.

By considering the potential loss, the Bayes risk criterionwill prefer “safer” actions rather that

actions that maximize the expected immediate reward. This caution is a desirable property because

we are no longer solving the underlying continuous state POMDP and can only afford to do this

one-step lookahead computation (the lookahead occurs in our computation ofQi from Vi). Our

actions are only looking one step ahead instead of many, and thus we choose a safer selection

approach. We note that our action selection differs from Medusa [15]; Medusa chooses actions

stochastically based on the weights of the POMDPs.

The second question we must answer is how we should update thePOMDP set as we gain

more information. As in the expected value case in Chapter 4,we can update the prior over the

observation distribution after a dialog is completed. Eventhough we have the explicit distribution

available, we can view our POMDP sample set as a set of particles approximating this distribution

(which they do for the purposes of determining a policy). Thus, we can update the weight on

each distribution based on the updated likelihood of that POMDP based on our prior. Suppose we
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update our Dirichlet priors on distributions{ ~α1 . . . ~αk}. Then the new weight for each model is:

wi = wi

k∏

j

f(~pj; ~αj) (5.2)

wheref(·; ~α) is the probability density function for the Dirichlet distribution parametricized by

~α and~p is the sample POMDP’s particular observation distribution. We normalize the weights to

ensure that they always represent a valid distribution overthe samples.

After each dialog, we also resample new POMDPs from the updated prior. For the present, we

set the weight threshold to be1/sqrtn, wheren is the number of POMDP samples. Replacing the

POMDPs can take a significant amount of time, so we find quick ways to approximate the solution

(note that since there are many POMDPs in our sample, we do nothave to solve them all perfectly;

the uncertainty in the parameter space makes it unnecessaryto be able to draw fine distinctions

based on a belief). In Chapter 3, we mentioned how we can exponentially decrease the number of

beliefs required for problems with certain symmetries. We use that approach here for our first set

of simulations.

Using ideas from Perseus as well as PBVI, another approach weuse to decrease the time re-

quired to approximately solve the POMDP is to update only a small (
√

n) random fraction of the

beliefs with only a small (
√

m) random fraction of the alpha vectors. Since the beliefs aremulti-

plied by the alpha vectors several times, our overall computation time is reduced by a significant

factor, which makes it possible to do the update several POMDPs in quasi-realtime (about 0.40

seconds per POMDP, instead of several minutes). The intuition behind sampling from the belief

set is identical to Perseus: improving one belief may improve several beliefs around it. Moreover,

nearby beliefs often produce similar alpha vectors with similar policies. Since our alpha vector set

tends to be redundant, sampling from the alpha vectors produces reasonable results. We only need

one of the redundant copies to be randomly selected for our backup to be approximately correct.

Since we are sampling such a small set, both from beliefs and from alpha vectors, we cannot

just keep the set of updated alpha vectors as our new set; the chances are too high that we did not

use one of the key support beliefs in a particular iteration,or that we did not select the particular

alpha vector that matches a particular belief. As Perseus does with beliefs, we now keep around a
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large set of potential alpha vectors. On each iteration, we do not remove the previous alpha vectors,

we just keep adding more of them. If we exceed a desired numberof alpha vectors, we can prune

those from the initial set as those were the most likely to have been backed up and improved upon

already. Note that checking several alpha vectors against one belief is still fast, however, so action

selection can still be computed in realtime. Table 5.2.2 summarizes our approach.

Table 5.3: Sampling POMDP approach to solving an uncertain POMDP. Theobservations parameters are now con-
tinuous valued.

SAMPLING POMDP

• Sample a set of POMDPs from an initial prior.

• Approximately solve that set of POMDPs.

• Loop:

– Choose the action that minimizes Bayes Risk.
– Wait for an observation.
– At the end of a dialog, update observation priors, reweight POMDP

samples based on weights, and resample POMDPs with low weight.

5.2.3 Simulation Performance

There are several differences between our sampling-based approach and Medusa’s approach. First,

we replace all POMDPs with a weight below a certain threshold, not just the one POMDP with

low weight. (We do not resample all of the POMDPs for computational efficiency; if a POMDP

is performing well, there is no reason to replace it.) Second, we use Bayes risk to sample actions

instead of picking actions stochastically. Finally, sinceour problem has natural breaks—the end

of a dialog—after which it is easy to infer the previous statesequence, we do not have to specify a

procedure for making oracle-queries. In this section, we show simulation results that demonstrate

the effect of each of these factors.

We tested our approach using our basic five-state model with three unmapped observations.

The prior distribution over POMDPs was initialized to believe that the probability of hearing a

correct confirmation was 0.8 and the probability of hearing acorrect state on a general query
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was 0.6. The transition and observation probabilities wereassumed to be symmetric, with the

unmapped observations being extremely unlikely. We weighted our initial Dirichlet parameters to

reflect approximately 10 total observations per state-action pair. We assumed that the user did not

change their mind in mid-dialog.

The true POMDP had a -300 penalty for incorrect actions, a -1 penalty for questions, and -10

penalty for incorrect confirmations. At the initial transition, the probabilities of the goal states were

{.32,.22,.16,.15,.15}. The observation probabilities for an “ask”-action were also asymmetric: in

the first state, we were as likely to hear the first unmapped word as we were the original keyword.

In the second and third states, we were almost as likely to hear one of the neighboring states as we

were the keyword for that state. The final two goal states wereas likely to here their keyword as the

second unmapped keyword. The final unmapped keyword remained unmapped. The probability

of getting a confirmation answered correctly was 0.8. We notethat the asymmetric nature of the

true transition and observation distributions is closer towhat we saw in the initial wheelchair user

studies and more realistic than a basic symmetric model.

Figure 5-4 shows the mean and median performance of the various approaches, all of which

used the same set of beliefs. The solid gray line shows the performance of the “optimal” policy,

which was found by doing PBVI-backups until the value function had converged. The dashed

gray line shows the performance of the approximated policy,where 25 backups were performed

using only a square-root fraction of the beliefs and alpha-vectors during each backup. Note that

the approximation technique is fairly close to the optimal policy. The remaining curves show the

performance of our sampling approach, our sampling approach using stochastic action selection

(instead of Bayes risk), and the (basic) Medusa algorithm. All of the POMDP samples for these

approaches were solved using approximate backups. The statistics are computed over 100 trials.

We see that after some initial noise, all of the learning approaches improve; however, using

Bayes risk for action selection learns faster and appears toconverge to close to the optimal solution.

Our same strategy for resampling POMDPs but with stochasticaction selection, shown by the

dashed black line, performs about as well as the Medusa algorithm. Thus, the difference between

Medusa’s performance and our approach is not simply becausewe are more liberal with replacing

71



POMDPs with low weight. When we look at median performance, we see that using Bayes risk

actually out-performs the optimal solution (recall that the optimal policy is trying to maximize

mean performance). This indicates that our policy generally does well and suffers due to occasional

large mistakes.
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Figure 5-4: The top graph shows the mean reward (from 100 trials) achieved at each stage in the dialog. Neither of the
learning approaches quite reach the optimum, but the actionselection using Bayes risk has overall better performance.
In the bottom graph, we see that our approach actually has median performance greater than the optimal, however, as
we see in Figure 5-5, this performance in achieved at the costof more severe errors.

Figure 5-5 shows the fraction of the 100 trials that failed onany particular dialog iteration.

Here, failure means that the dialog manager decided to take the user to the wrong location at least

once before taking them to the right location (the dialog manager rarely failed to eventually take

the user the the right location). As expected, the approximation to the optimal policy fares slightly

worse than the optimal, but the difference is not large. BothMedusa’s and our proportion of errors

decrease with time, and while neither reach the optimal level, our error rates are consistently lower

than Medusa’s. Thus, our approach not only achieves good average case performance, but we also

are reasonably robust.

Finally, we note that using Bayes risk does require more computation that stochastic action
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Figure 5-5: None of the learning approaches achieve the optimal error rate, although risk-based action selection does
make fewer mistakes. Here, mistakes are going to the wrong location.

selection (essentially, the difference is between a zero and a one step look-ahead), but as it can

be computed quickly, it seems like a clear win for the problem. One reason why we must be a

little careful in supporting action selection using Bayes risk is that one of the benefits of Medusa’s

approach is that it guarantees convergence to the true problem parameters. While the Bayes risk

criterion does well in our simple problem, we note that sincewe will visit all the states over the

course of the experiments and experience the obervation distributions because of the simple queries

available to use, we do not have to worry about parameter convergence. However, there may be

situations where it does not perform as well; for example, ifthe POMDP believed a particular state

or action’s observation was so noisy that, given the cost, itwas not worth visiting, it may always

choose a more conservative alternative and never discover the true observation distribution for that

probably useless state. (Note that since we do not have a deeplookahead, we may not realize the

usefulness of exploration; Medusa forces exploration by stochastic action selection.)
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5.3 Discussion

In this chapter we have discussed two approaches to incorporating parameter uncertainty into our

model. In the first case, we choose a discrete set of possible parameter values and build a large

parameter POMDP that treats the parameter value as additional hidden state. The result is a more

cautious and robust learner: we find that as long as we initialize our prior over the possible models

to have full support, the prior will converge to the correct model. Moreover, while the system is

uncertain about which model it is in, it will behave more cautiously; we found that by setting a

conservative prior we can make the system learn with fewer errors.

The main trade-off with using a discrete set of models is thatour true POMDP must be one of

the enumerated models, otherwise, we will be unable to converge to the true POMDP. In order to

ensure that our true POMDP is part of the set, we may need a large set of models, especially if

there are several parameters about which we have very littleinitial information. However, the size

of our parameter POMDP iskn, wherek is the number of models andn is the number of states in

the model; for large values ofk, solving the POMDP quickly becomes intractable. The problem is

made even worse if we include the rewards as part of the observation; now we have increased the

size of our observation set to|O′| = |O||R|. Recall that solving a POMDP is doubly exponential

in the number of observations, in our approximations, this translates into the long loops over large

matrices. To some extent, we alleviated the problem by solving the POMDP incrementally, and

resampling beliefs reachable from the current belief.

The second part of this chapter we considered a continuous unknown observation parameter

space. Thus we avoided the problem of trying to enumerate allpossible models, but at the expense

of no longer being able to approximate the value function at all. Instead, we sample a set of

POMDPs from our prior over observation functions. Althoughwe cannot do a deep look-ahead

to determine what action to take, we show that by taking the action that minimizes the Bayes

risk, we can behave robustly—our risk criterion makes us cautious—while still learning the true

parameters.

We note that the best approach may lie somewhere between our discrete model approach and

our sampling approach. In the discrete approach, a central question was how many models to use,
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and we risked not including the true model. In the sampling approach, on the other hand, our model

class was probably too expressive: in our particular problem, we are not really interested in fine

distinctions; if we ask a general question instead of a confirmation when the expected rewards are

approximately equal, it does not really matter if we chose the slightly suboptimal action. In reality,

there are many fewer interesting policies than there are parameter initializations. Ideally we would

like to sample from some set ofǫ-different policies instead of from the parameter or model space,

however, this is beyond the scope of this work.
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Chapter 6

Meta-Action Queries

In this chapter, we develop this work’s final contribution toward more robust parameter learning.

So far, our system’s learning has been limited to its experience: it tries an action, experiences a

negative reward, and learns not to do that action again. While explicit reward feedback is a stan-

dard aspect of reinforcement learning, this approach can beunsatisfactory for dialog management

because the agent is forced to make a mistake to learn about its consequences. A similar problem

can occur if a user repeatedly uses a foreign word to refer to aparticular goal. Without the ability

to ask about the meaning of the word, the system must wait, confused, until the user provides an

explanation that it understands. Here we explore meta-actions, or actions that will help determine

future actions, that the system can use to actively learn about the user’s preferences and vocabulary

choices.

Our first kind of meta-action query, the policy query, is a question about what the agent should

do given its knowledge. For example, the agent might say, “IfI’m 90 percent sure that I know

where you want to go, should I just go instead of confirming with you first?” If the user says no,

then the agent knows that the user places a high penalty on incorrect actions without experiencing

its effects. Similarly, by asking a question such as “When I’m uncertain, should I list all the options

I know (instead of asking you to repeat an option)?” we can findout what kinds of interactions

the user prefers. The user’s response to the meta-action allows us to prune inconsistent preference

states from the belief space.
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A secondary benefit of policy queries is that the agent is in charge of the learning process. The

user does not have to repeatedly enter rewards to train the system; it is the agent that decides to ask

for clarification when it is not sure about how to behave. A fewmeta-actions can quickly reduce

the uncertainty in the user’s preference state, so overall the user has to provide the system with less

training-type input.

Another kind of meta-action query, the observation query, asks the user about the meaning of

a new word. For example, the agent might ask an open-ended question such as “I know how to

go to the following places:<list places>. Which one do you mean when you say kiosk?” It may

also ask more specific questions such as “When you say the kiosk, do you mean the information

desk?” Unlike policy queries, where no amount of listening will provide information about the

user’s reward preferences, one could always learn these word associations simply by observing the

user for a period of time. An observation query only helps speed up the learning process. As we

will see in Section 6.2, fast learning can be critical for success in dynamic, noisy situations.

Paralleling Chapter 5, this chapter will first consider the case of learning from a discrete set of

models and then extend the analysis to a continuous space. InSections 6.1 and 6.2, we consider

policy and observation meta-action queries separately. InSection 6.3, we learn continuous reward

and observation parameters using policy queries.

6.1 Discrete Approach: Learning Preference Models

In this section,1 we will begin by studying the situation where the observation model is known.

Just as in Section 5.1, we assume that there is a discrete and finite set of possible user preference

models to be learned. However, the user no longer provides any explicit reward feedback; the only

way the agent may learn about the user’s preferences is to askthe policy meta-actions. We note

that although the agent’s policy depends on both reward and observation parameters, policy queries

can only provide information about the user’s internal reward model because the user is not aware

of the observation noise in the system. We will address the issue of reward-observation coupling

due to policy queries in Section 6.3.

1This work was previously presented in [6].
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6.1.1 Model Definition

As before, we start with our basic five-goal model. We consider a scenario where there are four

possible user types: the user may attribute either a -500 or a-100 penalty for incorrect movements

and either -10 or -5 penalty for incorrect confirmations. Forall user types, general queries cost

-5, correct confirmations cost -1, and correct movements receive a +100. We chose these values to

ensure that there were large qualitative differences in thepolicy, since in general the policy tends

to be fairly robust to different reward values.

Figure 6-1 gives a qualitative feel for how the policies fromthe four different preference states

differed. Along the x-axis are the indices for the four preference states: (rmove, rconfirm) = { (-500,-

10), (-100,-10), (-500,-5), and (-100,-5)}. Along the y-axis are indices for specific user beliefs

(not listed). The dots represent what type of action the agent should take in the corresponding

preference state and user belief. Red dots indicate that theagent should ask a general question,

yellow dots indicate that the agent should make some kind of confirmation, and green dots indicate

that the agent should complete some kind of movement. Black dots indicate the robot should

do nothing. As we expect, there are more green dots in preference states two and four, where the

penalty for movement mistakes is low, and there are more red dots in preference states one and two,

where the penalty for incorrect confirmations is high. By scanning across rows, we can discover

what user beliefs are the most discriminative of the underlying preference state and therefore most

useful for developing meta-action queries.

With only a small number of user types and a set of distinguishing user beliefs, we can finely

tune the nature of the policy queries. From the perspective of our system, our goal is to find a

user beliefb(su) where the policy given (b(su), ~sr) depends on~(sr). Then, if we ask the user

what we should do inb(su), we can discover information about the user’s preference state ~sr.

Unfortunately, this kind of question may be non-intuitive for a non-expert user. If the number of

possible preference states is small, we can phrase the meta-action query in ways that may make it

easier for the user to understand and interpret. For example, the policy queries used in this scenario

were:

1. If I am 90% certain of where you want to go, should I still confirm with you before going there?
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Figure 6-1: The dots indicate what action the robot should take if it knew the user’s preference state (indexed on the
x-axis) and had a belief over the user state (indexed on the y-axis). Roughly, the user states increase in uncertainty
as one scans down vertically except for the bottom three rows, which, top to bottom, correspond to the agent being
sure that the user is in done-state, a specific goal state, anda start state. Red dots indicate that the agent should ask a
general question, yellow dots indicate that the agent should make some kind of confirmation, and green dots indicate
that the agent should complete some kind of movement. Black dots indicate the robot should do nothing. By scanning
across a row, we can see which user beliefs are most discriminative of the underlying preference state.
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2. If I don’t know where you want to go, should I list all the places I know (instead of asking you

where you want to go)?

3. If I’m only 40% sure that you want to go to a certain location, should I still try confirming that

location with you?

A side benefit of asking hypothetical questions with the form“If I am... should I...?” is that

the query depends only on the user’s preference state, not their current belief. Thus, the param-

eter POMDP remains a POMDP over our original discrete (su,~sr) state space instead of being a

POMDP over a continuous (b(su),~sr) state space.

Since the meta-actions are hypothetical, we may be concerned that the agent will ask them dur-

ing random times and frustrate the user. A small penalty for asking the policy queries ensures that

they will be used only when they are relevant. For example, atthe beginning of the conversation,

the dialog manager may first ask the user, “Where do you want togo?” Suppose the robot then

receives a noisy response that is probably “copy machine” but might also be “coffee machine.”

The robot may follow up with a query to determine how tolerantthe user is to mistakes. If the user

is fairly tolerant, the robot will continue to the copy machine without further questions; if the user

is not tolerant, it may ask a confirmation question next. The branch points in the robot’s conversa-

tion are likely to make sense to, if not match, branches in theuser’s conversation (especially since

humans are good at placing themselves in others’ shoes to rationalize their behavior).

6.1.2 Approach

Table 6.1.2 summarizes our approach. As before, the resulting model is another POMDP. The only

change to the POMDP in Chapter 5 is the presence of the policy queries as additional actions.

We know that the user’s response to a policy query will be determined by their preference state

~sr, however, without doing any computations, we cannot predict what the user’s response will be

(if we could, we would already know the optimal policy for anyuser!). To specify the expected

response to a policy query, we must solve the new parameter POMDP in two stages.

In the first step, we fix the value of the preference state~sr. The resulting POMDP only has

uncertainty about the user’s current intent, and we can solve it with relative ease. For improved
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accuracy on policy queries, we seed the sample of user beliefs with the beliefs that we plan to use

in our policy queries. For example, if we plan to ask the question, “If I am 90% sure of where you

want to go, should I just go?” we would include a belief that places 90% of its probability mass

on one state in our belief set. The expected response to a policy query given a preference state~sr

is the policy of the POMDP induced by fixing the preference state to ~sr.2

Once we determine the appropriate responses to the meta-actions as a function of the user’s

true preference state, we have a fully-specified parameter POMDP. In Chapter 5, we alluded to the

difficulties of solving the large parameter POMDP; now the problem becomes even tougher. With

explicit rewards, we could assume that space of reachable beliefs would quickly become small

since we only had to observe a few rewards to determine our preference state. Thus, we started

with a rough solution and refined it as we narrowed in on one part of the belief space. Without

explicit rewards to quickly prune the space, our solution must know the correct actions even with

large amounts of state uncertainty; in fact, with policy queries, if the choice for the next action is

clear regardless of which preference state we are in, the system should simply choose to take that

action instead of trying to get more information about its preference state. While beneficial with

respect to the dialog—since less feedback is required—we now require a much better solution to

our large parameter POMDP. We note that all of the computations can be done off-line, before

user interactions begin, but the complexity of solving the large POMDP still limits the number of

discrete preference states that we can consider.

6.1.3 Performance

Figure 6-2 shows compares simulation performance with and without meta-actions. Computational

constraints limited us to having only four discrete user preference states, but we can see that by

asking meta-questions,the dialog manager was able to determine what types of queries and actions

would increase the overall reward. In this scenario, the simulated user had fairly harsh penalties—

a penalty of -10 for incorrect confirmations and -500 for incorrect movements—corresponding to

2Equivalently, we could have found the expected response to each policy query by first solving the parameter
POMDP without meta-actions; however, since the matrix computations involved in solving a POMDP scale as O(n

3)
in the size of the state space, it is more efficient to solve many smaller POMDPs for each value of~sr.
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Table 6.1: An approach to incorporating policy queries into the parameter POMDP. Rewards are assumed to take on
discrete values.

META-ACTION POMDP (DISCRETE REWARDS)

• Solve the POMDP that corresponds to each preference state being fixed.

• Use the policies from those solutions to determine the expected observa-
tions as answers to each meta-action.

• Solve the large parameter POMDP (which includes meta-actions).

• Loop:

– Interact with the user.
– Wait for an observation.
– Update belief.

the first user state in Figure 6-1. When no meta-actions were available, the robot had no way

of inferring the user’s preference state, that is, its belief over the preference state stayed uniform

through the entire dialog. While it made more mistakes than the dialog manager that used meta-

actions, we see that the dialog manager without any reward feedback still performed reasonably

well because it was aware of it uncertainty in the user’s truepreference state and therefore followed

a fairly conservative policy.

Meta-actions not only helped us detect harsh users, but theyhelped us discover when user is

tolerant to mistakes. In Figure 6-3, the user had a -5 penaltyfor incorrect confirmations and a

-100 penalty for incorrect movements (corresponding to preference state four in Figure 6-1). Both

policies had similar performance, but in this case, the policy that used meta-actions did slightly

better because it realizes that it can actually be less conservative than it initially was. By making

quicker decisions, it decreases the total dialog length andavoids asking unnecessary questions.

Finally, we note that as the reward values become more spread, the effects of the meta-actions

become more pronounced. For example, if the penalty choicesfor an incorrect movement are either

-500 or -50, then the gap between the learner and the non-learner much larger (see Figure 6-4. In

this scenario, the non-learner does poorly because its belief is split between thinking that incorrect

movements are as inconsequential as incorrect confirmations and thinking that incorrect move-
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Figure 6-2: Box-plot of total rewards for the scenario where the “real”user has reward -50 for incorrect confirmations
and -500 for incorrect movements. By asking about the user’spreferences, the dialog manager with meta-actions is
able to avoid actions that will frustrate the user. Each simulation had 100 trials of 30 dialogs.
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Figure 6-3: Box-plot of total rewards for the scenario where the “real”user has reward -5 for incorrect confirmations
and -100 for incorrect movements. The agent still takes meta-actions, but the information is less useful since there
reward for an incorrect confirmation, which has a larger impact on the policy, does not contain a major pitfall to avoid.
Each test had 100 trials of 30 dialogs.
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ments bear a significant penalty. While not very realistic, this example does again demonstrate the

utility of meta-actions in resolving aspects of the user’s preference state.

Figure 6-4: Box-plot of total rewards for the scenario where the “real”user has reward -50 for incorrect confirma-
tions and -500 for incorrect movements. In this case, the parameter POMDP had choices -500 and -50 for incorrect
movements, and thus the difference in performance is more pronounced than in Figure 6-3. By asking about the user’s
preferences, the dialog manager with meta-actions is able to avoid actions that will frustrate the user. Each simulation
had 100 trials of 30 dialogs.

Next, we tested this initial meta-action model on the actualwheelchair. We provide anecdotal

results from a student volunteer talking to the wheelchair in Table 6.2. In the first dialog, the

user prefers to be given a list of options rather than open ended questions. We realize that this is

somewhat unrealistic scenario, but in some noisy situations, a user may realize that open-ended

questions are harder for the robot to interpret than yes-no answers. Once the dialog manager

realizes the user’s preference, it lists all of five locations that it can drive to around the lab, looping

until it is sure that it has heard a confirmation from the user.After the second confirmation, it is

sure enough about the user’s desire that it does not ask further meta-action queries.

In the second conversation, Table 6.3, the user states that she prefers open-ended queries. Once

the user provides the desired location, the robot is fairly certain that the user wants to go to the

coffee machine, but does not wish to make a mistake. Thus, it asks the user whether it should

confirm when it fairly certain. The user responds to the affirmative, and the robot follows with
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Table 6.2: The following dialog (collected from a volunteer in our lab), demonstrates how a typical conversation
changes as meta-actions are introduced; in this case the user prefers less open-ended conversations.

With Meta-Actions: Conversation One
This user preferred to be asked confirmation questions.
USER: Hello.
ROBOT: If I don’t know where you want to go, should I list options?
The system uses this query to determine if the user is tolerant to incorrect confirmation
questions.
USER: Yes.
ROBOT: Do you want to go to Seth’s office?
USER: No, I want to go to Nick’s office.
ROBOT: Do you want to go to Nick’s office?
USER: No, I mean yes.
Unfortunately, the user’s response is ambivalent enough that the system does not recognize
the user’s intent.
ROBOT: Do you want to go to Bryt’s desk?
USER: No.
ROBOT: Do you want to go to the group meeting?
USER: No.
ROBOT: Do you want to go to coffee machine?
USER: No.
ROBOT: Do you want to go to Nick’s office?
The robot continues to operate by listing locations, but it picks the most likely one to repeat.
USER: Yes.
ROBOT: Going to Nick’s office.
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another open-ended question (in line with the user’s preferences as indicated at the start of the

dialog) before executing the action. In completing this dialog, we note that the user was initially

surprised by the robot’s queries; to be a deployable system the questions should be made easier to

understand. Finally, we also note that the two conversations described here are initial conversations

with the user—once the robot has determined the user’s preference state, it will not ask meta-action

queries in further interactions.

Table 6.3: The following dialog (collected from a volunteer in our lab), demonstrates how a typical conversation
changes as meta-actions are introduced; in this case the user prefers open-ended dialogs.

With Meta-Actions: Conversation Two
This user preferred to be asked more general questions.
USER: Hello.
ROBOT: If I don’t know where you want to go, should I list options?
USER: No, now take me to the coffee machine.
ROBOT: If I’m 95% sure about where you want to go, should I still confirm with you first?
Knowing the user’s tolerance to going to the wrong place didn’t matter in the previous
context, but now it does affect how the conversation proceeds.
USER: Yes.
ROBOT: Where do you want to go?
The robot has some idea of where the user wishes to go from the first utterance, but it needs
additional information. It also knows that the user is not tolerant to incorrect confirma-
tions.
USER: The coffee machine.
ROBOT: Going to the coffee machine.

6.2 Discrete Approach: Learning New Words

In this section, we assume that the reward model is known. We also assume there are a discrete set

of possible observation models. Our primary goal is not to learn about how noisy the observations

are—as we mentioned before, observation noise must be learned through experience, not queries—

but to learn the mappings for new words. We have not discussedsuch a model explicitly before,

but the resulting parameter POMDP is similar to that of Section 6.1: instead of states being pairs

(su,~sr), states are now (su,~so) where~so encodes the true mapping for all unmapped observations.

Queries about the policy are now replaced by queries about the meanings of new words.
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In a relatively static, noise-free environment, we can quickly glean the meaning of a new word

from context. For example, if the user first asks to go to the “kiosk” and then follows up by asking

for the “information desk,” we can infer that the word “kiosk” probably means “information desk”

without asking the user a question. In preliminary tests, wefound that learning new words simply

by listening was generally effective (consider the plots for learning observation models in Section

5.2), and observation queries—which carried a small annoyance penalty—were almost never used

(even in cases where repeated general queries were penalized).

In this section, we focus on a particular situation where observation queries can be of use:

consider a situation where the user is likely to change theirmind about a request. If we do not

satisfy the request quickly, the user may change their mind and we may have to discover the user’s

intent anew. We cannot wait for the user to use a particular keyword. Even worse, if the user

changes his or her mind several times in one dialog, it becomes much more difficult to infer the

user’s true user state at any point in time. Increased uncertainty in the user state makes it tougher

to infer the meaning of a new word. Thus, not only can we not afford to wait for the user to use

a keyword we already know, but it will take us a long time to learn the meanings of the keywords

we should know.3

6.2.1 Model Definitions

We continue to use our basic five-goal model as a starting point and set the rewards for general

queries, incorrect confirmations, and incorrect movementswere -5, -10, and -200 respectively.

For our simple example, we add two more unmapped observations to the model. Our discrete

observation models consist of fourteen scenarios where each of these observations maps to one or

zero goal states. Our new underlying state space consists ofthe 98 combinations of the seven user

statessu and the fourteen observation statesso.

Next we defined our observation model. Letpask be the probability of hearing the correct

observation when making a general query (0.7 in our example). Supposeo1 is the mapped obser-

3Although similar, we note that the problem of inferring the underlying user state is not quite the same as the
growing state estimation error in Section 4.2.2 because we have finite, discrete set of possible mappings. In theory,
our parameter POMDP should still converge to the correct observation state.
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vation to state one and the user also uses the unmapped observation o∗ to refer to state one. In

our (somewhat extreme) model, we setP (o1|s1, ask) = P (o∗ |s1, ask)/10 with the constraint that

P (o1|s1, ask)+P (o∗|s1, ask) = pask. That is, the probability of seeing the unmapped observation

was 10 times more likely than seeing the mapped observation,but the total probability of seeing

one of the two “correct” observations was stillpask.

We set thept, the probability that the user does not change goal state in mid-conversation to

0.75 (instead of the 0.99 in previous experiments). As a result, the mean time for the user to change

his mind was only four exchanges instead of 100 before. The system had to act quickly to catch

the user before he changed his mind.

6.2.2 Approach

The user’s observation state defines the expected answer to the observation query, so we did not

require a two stage procedure as we did in Section 6.1. We sampled 7500 initial belief points and

used them to solve our POMDP. While iterative resampling mayhave been beneficial, the initial

solution still provided reasonable results. We solved the POMDPs using the approximate backups

described in Section 5.2.2; the (straight-forward) procedure is described in Table 6.2.2. We used

100-150 of these backups to ensure that the lookahead was deep enough that the value of knowing

the correct observation state became apparent to the agent.

Table 6.4: An approach to incorporating meta-actions into the POMDP.New observations are assumed to take on
specific mappings.

META-ACTION POMDP (DISCRETE OBSERVATIONS)

• Solve the large parameter POMDP (which includes meta-actions).

• Loop:

– Interact with the user.
– Wait for an observation.
– Update belief.
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6.2.3 Simulation Performance

We tested our toy example in which the dialog manager had the option of asking observation

queries of the form, “Which goal (if any) does this word referto?” In the simulated ground truth,

the first unmapped observation was likely to be seen in the first state and the second unmapped

observation did not correspond to any of the goal states.

Figure 6-5 shows the mean performance of the policy that usedmeta-actions compared to a

policy that did not. Both policies were trained using the same number of belief samples, based

on there respective dynamics, and approximately the same number of backups. The policy with

meta-actions approaches the optimal value, and, more strikingly, we see that the policy without

meta-actions actually does worse over time. Figure 6-6 sheds some light on why the performance

of the system without meta-action queries degrades. At the first interaction, the probability mass on

the correct observation state begins at the same value for both systems. The observation queries—

which typically occurred in the first to dialogs—helped jump-start the learning process, and over

the course of several dialogs, all of the probability mass concentrated in the correct state. Without

meta-observation queries, however, the probability mass actually degraded to zero—it is no wonder

that the policy does so poorly in Figure 6-5!

In these tests, the probability mass for the dialog manager without meta-actions settled on the

observation state where neither unmapped observation has any relevance (not shown). Essentially,

the system could not pin down what state the user was in when the unmapped observation was

observed and decided that it could rely on the unmapped observations for additional information. In

general, we know that even with noisy data, any belief with full support over the observation states

should converge to the true observation state. Moreover, the approximate policy chose actions that

both failed to illuminate the user’s underlying observation state and failed to satisfy the user’s goal.

Regardless of whether additional sampling or backups wouldhave improved the performance of

the dialog manager without meta-actions, the results illustrate that by allowing the system more

avenues of gaining information in a noisy and dynamic environment, we reduce the complexity of

the solution.
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Figure 6-5: Mean performance of a dialog manager with and without observation meta-action queries. The means are
aggregated over 200 trials of 50 simulated dialogs.
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6.3 Continuous Model

Since the meta-actions often require us to have good solutions for large parts of the state space,

the approaches in previous two sections, where we assume a discrete set of underlying models,

do not scale well to large numbers of models. As in Chapter 5, moving to a continuous model

representation trades the ability to (potentially) do deepplanning for model richness. We restrict

ourselves to case of relatively static environments—that is, the user is not likely to change his mind

in mid-dialog—and policy queries. We first demonstrate reward-learning when the observation

model is known. In the final part of this section, we consider learning both continuous reward

models and continuous (asymmetric) observation models.

6.3.1 Model Definition

As before, we continue to use are basic five-goal model. We assume that the rewards for a correct

action (+100) and a correct confirmation (-1) is known, whichsets the scaling and translation factor

for the reward model (just we did in Chapter 4). We further constrain our reward for incorrect

movements to be on [-1000,-20], our reward for incorrect confirmations to be on [-20,-1], and our

reward for general queries to be on [-10,-1]. For simplicity, we will use a uniform prior over this

three dimensional joint reward space. As in all our models sofar, we assume that the symmetric

rewards. In the second set of results, when the observation model is also uncertain, we place

Dirichlet priors on the observations just as we did in Chapter 4.

Paralleling Section 5.2, we sample a set of POMDPs from the observation and reward priors.

At each time step in the dialog, each POMDP updates its beliefbased on previous observation and

action. The actions are chosen by the Bayes risk action selection criterion described in Section

5.2; each POMDP sample contributes to the risk according to its weight. (Initially, each POMDP

receives equal weight.) Using a set of POMDPs allows us to geta sense of the spread of policies

given the uncertainty in parameters; we reweight and resample them as the priors over the param-

eters change. Before, we relied only on observations to update the priors over the parameters.

Meta-actions will also allow us to learn continuous reward models.
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6.3.2 Approach

Without a deep look-ahead, policy queries do not change how we “solve” the POMDP. We solve

each sampled POMDP and choose an action based on the Bayes risk. Unlike in Section 6.1, we

do not have a fixed set of policy queries determined at the beginning. Instead, we allow the robot

to query a policy oracle—that is, the user—at any point when it is confused.4 Each sampled

POMDP will have a different belief based on its observation parameters, but all POMDPs will

have a recommended action based on the same sequence of prioractions and observations. If the

sampled POMDP recommends an action that differs from the oracle, we know that it is unlikely to

be valid.

There are two questions about how these meta-actions shouldbe used. The first is when we

should ask a meta-action query. We choose to take a meta-action if the Bayes risk is greater than

(that is, more negative than) a certain threshold and if taking a meta-action might reduce that risk.

In our tests, we set the threshold to be -1. The number of meta-action queries asked was relatively

small, so we did not attempt to tune this hyper-parameter.

The larger question is how to incorporate the information from a policy query. If both the

reward space and the observation space are uncertain, then we cannot know if a given POMDP

disagreed with the oracle because its reward values were poor, its observation values were poor,

or both. There is also a chance that both the reward and the observation models were fine, but our

approximate solver handled that particular history poorly. A related issue is if we down-weight all

of the POMDPs that suggest an incorrect action, we quickly end up with a sample set where one

POMDP has a majority of the weight. The dialog manager is now at the mercy of the best sampled

POMDP, whose performance is often much worse than the cautious actions dictated by the Bayes

risk criterion.

Since incorporating the results of a policy query is difficult when both the observation and

reward models are unknown, we first describe a reasonably efficient approach if only the reward

model is unknown. Recall that each sample POMDP is a point in the reward parameter space.

4We realize that asking a question of the form “Given our conversation so far, what should I be doing now?” is
vague and difficult to answer even for an experienced user, and improving the usability of policy queries is an area for
future work.
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Figure 6-7 shows two POMDPs (circles) for a two dimensional reward space. Suppose that after

a particular history, our user tells us that the correct action is to ask a general question. Presum-

ably, there is some boundary (dashed line) which separates reward instantiations whose policies

will agree with the user and those which will not, but we do notknow where that boundary lies.

However, we do know that if “ask” is the correct action, then not only is the POMDP in the top

left corner wrong, any POMDP in the top left hashed region is wrong—decreasing the reward on

confirming or increasing the reward on asking will certainlynot tip the policy towards asking.
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Figure 6-7: This figure shows how policy queries can be used to prune a two-dimensional continuous reward space.
Each circle represents a POMDP. POMDPs that suggest incorrect actions can be used to prune or down-weight large
sections of the reward space.

The policy of any of the POMDP samples at any point may not be correct, especially since we

use so many approximations in our computing our policies. Thus, instead of completely pruning

away or removing regions from the reward space, we reduce their likelihood. This is yet another

parameter that needs to be tuned: set too high, the system will repeatedly ask meta-action queries

just to reduce the weights in some areas. Set too low, valid regions marked as invalid may take a

long time to recover. We found that reducing the likelihood of bad regions by 0.1 provided good

performance.

As the number of meta-action queries increases, the size of the likely region can become very

small, and basic rejection sampling will take a long time to choose a new random instantiation. For

more efficient sampling, we re-discretize the reward space into a 3-array. Each block in that array
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is assigned a weight. To sample from the array, we sample along one dimension at at time. Using

a binary search, this takeslog(n) steps to sample one dimension if there aren partitions along

that dimension. For each step, we need to sum over the unassigned dimensions to compute their

relative weights. There are probably faster sampling approaches (quad-trees, range trees), but we

found this sped up our search enough to make it run in real time. Once we choose a fine enough

cell in the reward space, we can sample uniformly from that cell. Thus, if only the reward model

is unknown, we can efficiently prune and sample from the reward space.

Unfortunately, when both the reward and observation modelswere unknown, we cannot reason

about the reward space as we did above. The POMDP’s action depends on both the observation and

reward model, and the high-dimensional observation space cannot even be discretized efficiently

to create a joint-space with a reward model for each observation model. Without an efficient

representation for the joint observation-reward prior, weare forced to sample from it using rejection

sampling. Given a set{(H,a)} of histories and oracle results from all policy queries to date, we

took the following steps to resample a new set of POMDPs:

1. Evaluate how many policy queries that each of the POMDPs inthe current sample provided an

incorrect action.

2. Sample and solve new POMDPs from the observation prior (updated as we get more observa-

tions) and a uniform reward prior. If the new POMDP errs on equal or fewer policy queries than

the worst POMDP in the current sample, replace the old POMDP with the new POMDP.

3. Continue sampling until either (1) all POMDPs have error less than or equal to the best POMDP

in the original sample or (2) we exceed a certain threshold ofsamples.

By trying the match the best sample in the current set—instead of satisfying all previous policy

queries—the system is tolerant toward variations in approximate solutions.5 In our actual im-

plementation, we also found it useful to sample a minimum number of POMDPs—even if the

POMDPs had the same number of incorrect responses to policy queries, replacing all or most of

the POMDPs with equally poor performance in the sample set was helpful since the new POMDPs

5We also investigated other stopping conditions, such as trying to only improve the sample set by a fixed proportion
of new samples, but these did not perform as well as the approach outlined above.
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were more likely to have the correct observation model. Table 6.3.2 summarizes our approach.

Table 6.5: Sampling POMDP approach to solving an uncertain POMDP withmeta-actions. The observation and
reward parameters are now continuous valued.

META-ACTION POMDP (CONTINUOUS)

• Sample a set of POMDPs from an initial prior.

• Approximately solve that set of POMDPs.

• Loop:

– Choose the action that minimizes Bayes Risk, or, if risk is great,
decide to take a policy query.

– Wait for an observation.
– If we did a meta-action, reweight the POMDP samples accordingly.

Update the reward prior if we assume that the observation model is
known.

– At the end of a dialog, update observation priors and resample
POMDPs.

6.3.3 Simulation Performance

Figure 6-8 shows the simulation performance of meta-actions under the continuous reward model

in the case where the observation parameters are known and symmetric. Meta-actions prune the

space of the user’s preferences and as the POMDPs are resampled and reweighted, we quickly

reach close to the optimal level of performance. Since the observations do not provide any infor-

mation about the rewards, simply reweighting and resampling the POMDPs, as we did in Chapter

5, does not help us learn the user’s preferences. Policy queries without resampling also performed

poorly because we need to be able to get POMDPs with approximately the correct reward pa-

rameters; reweighting without resampling hurts performance because all of the probability mass

quickly converges to the least-wrong POMDP in the sample. Asa result, we neither have the cor-

rect POMDP (which would require resampling), nor do we have aconservative buffer created by

several samples (due to the reweighting).

Finally, we tested the approach above against the same simulation model as in the previous
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Figure 6-8: Performance of Meta-Actions under the continuous reward model. The observation model is fixed.
Without any opportunities to learn about the rewards, reweighting by itself is not useful, but meta-action queries
quickly bring us to close to the optimal reward.

chapter when both the observation and the reward model were unknown. Figure 6-9 shows the

mean performance of the learning approach. This is the most complex scenario we have consider

so far, and as a result, the learning is significantly more noisy. Another factor that makes it difficult

to see the effects of the policy queries is that the Bayes riskaction-selection criterion, with its

conservative choice of actions, also prevents relatively scattered sets of POMDP samples from

making poor decisions. We see that the policy-query approach reaches the closer to the optimal

faster than simply relying on observations. In Figure 6-10,we see that the policy-query approach

also is also less likely to make major mistakes.

6.4 Discussion

We have seen that meta-action queries provide a useful way for the agent to learn about the user’s

preferences (and, if needed, vocabulary). Especially in the the continuous case, learning from

meta-actions is not nearly as clean as the expected value approach in Chapter 4, where the system

received clear and explicit reward feedback at every stage.However, we show that we can learn

enough of the user model to achieve near-optimal simulationperformance without the annoyance

of explicit feedback. Asking about actions that we ought to take—along with the conservative

96



0 5 10 15 20 25 30 35 40 45 50
−40

−20

0

20

40

60

80

100
Mean rewards for learning both observation and reward spaces

m
ea

n 
re

w
ar

d

iteration

 

 

no learning

optimal

observation learning

policy query learning

Figure 6-9: Mean performance for learning continuous reward and observation models. The data is noisy, but we can
see that the meta-action approach (red) quickly improves upon the nominal performance.

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Fraction of trials with errors when learning both observation and reward spaces

fr
ac

tio
n 

of
 tr

ia
ls

 w
ith

 e
rr

or
s

iteration

 

 
no learning
optimal
observation learning
policy query learning

Figure 6-10: Fraction of runs with major errors while learning continuous observation and reward parameters. Again,
the policy-learning approach seems to make relatively fewer major errors per run.
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Bayes risk action selection criterion—prevents the dialogmanager from making serious mistakes.

To improve the meta-action queries, work must still be done to make them more intuitive to the

normal user. Even expert users may lack a intuitive grasp of belief states, and they may not provide

the answer that matches their true preference model. In the continuous case, we could also benefit

from more efficient ways to sample POMDPs from the joint reward-observation prior.

Finally, an even more subtle form of policy learning would use cues such as ‘good work’ or

‘that’s wrong’ from the user to learn both observation and reward models. It is unlikely we could

rely solely on such cues because different users may be more or less talkative, but for users who

do supply such information, this may be a further approach toreduce the amount of information

for which the robot needs to actively prompt the user.
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Chapter 7

User Validation on a Complex Model

In this chapter, we present anecdotal observations from a collection of four user tests. Our goal is

to show that not only do the policy meta-action approaches developed in Section 6.3 work in the

aggregate sense, but they can also help a system adapt to a single user in a single trial. We first

present the model and the parameters used to initialize the model. We continue with a description

of the system and a qualitative summary of the system’s performance.

7.1 Model Definition

The model and the solution approach is identical to that presented in Section 6.3. However, instead

of five goal states and eleven observations, we included ten goal states and thirty-eight observa-

tions. The first seven goal states were locations to which thewheelchair could drive, while the re-

maining goal states encoded information goals, such as requests for email, the time, or the weather.

Table 7.1 lists all of the goals and keywords used in the experiment. The starred observations were

the observations that were initially mapped to the goals. The remaining observations began with

no initial mapping.

We included 15 sample POMDPs in our sample set. Our prior assumed that the probability

of hearing the expected (starred) observation in that observation’s goal state to be 0.6, and the

probability of hearing a confirmation correctly to be 0.8. Welet our prior be very uncertain, with
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Table 7.1: States and Observations for User Test.
States Nick’s office , Bryt’s desk, printer, meeting, coffee machine,

copy machine, home, email, time, weather
Observations Nick’s*, Bryt’s*, print*, meeting*, coffee*, copy*, home*,

email*, time*, weather*, done, yup, no, desk, door, office,
paper, printer, seminar, group, presentation, water, tea,milk,
kitchen, microwave, inbox, message, forecast, machine, win-
dow, food, lunch, date, copier, conference, nick, confirm

a pre-observation count of three per state, action pair (that is three observations over 38 possible

observations!). Recall that in expected parameter case (Chapter 4), setting the initial confidence

to be too low had caused problems because the system quickly became sure of not-yet-converged

probability distributions and therefore started to make many mistakes. Keeping a sample set of

POMDPs, which indicated a sense of variance in the parameters, and using the Bayes risk action-

selection criterion allowed us to learn robustly and quickly with a very uncertain model. We also

assumed that the user was very unlikely to change their mind—we initialized the prior with the

probability of the user changing his mind to 0.01, and duringthe actual tests, we assumed that the

user was in the same state throughout the dialog.

As before, we began with a uniform reward prior over the penalties for asking a general query,

confirming an incorrect goal state, and executing an incorrect action. We did not distinguish be-

tween penalties for incorrect movements (which should be more severe) and penalties for incorrect

information retrievals (which should be less severe), although that is an aspect we plan to include

in future work. The reason for limiting the number of rewardswas primarily computational: the

higher the state space in which we had to sample, the longer ittook us to find samples that we

would accept. One change we did make, however, was to increment the penalty for a policy query

by -1.5 (starting at -1 ) after each meta-action. Gradually increasing the meta-action penalty sped

up the transition from the system’s reliance on policy queries to applying its new-found information

and made for less frustrating user experience.
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7.2 Experimental Setup

Even with our fast sampling approaches to solving the POMDPs, actions still took approximately 7

seconds to compute the wheelchair’s on-board computer and POMDP resampling required several

minutes. Therefore, we completed our tests on a fast (2.6 GHz) desktop, where actions took 1

second to compute and POMDP resampling required about 30 seconds. We realize that speed is

critical for a real-time system, and making our approach faster is an area we will study in the future.

After a short introduction, which included a summary of the tasks that the wheelchair could

provide and a description of the user interface, each user spent between 15 and 20 minutes inter-

acting with the system (about 14-16 dialogs). The user interacted with the system primary through

the microphone, and the system responded with through a dialog window on the computer screen

(it could also respond with synthesized voice, but we did nothave the users wear the audio headset

during our tests). Users were encouraged to use different vocabulary when referring to goals and

to repeat goals so that the effects of the learning would become apparent in a relatively short set of

dialogs, but they were not coached to show any particular kind of preference model when respond-

ing to a policy query. All four users (one of which was the author) were graduate students in the

lab.

We now describe our simple user interface. Figure 7-1 shows apicture of the initial dialog

window. The background color of the window is purple to indicate that the system is currently

inactive. The window consists of four parts. First, the large black text indicates the system’s dialog

to the user. The row of four buttons allows the user to cleanlystart, stop, and reset the system

if necessary. The task-success button, in conjunction withthe radio buttons at the bottom of the

window, are used to determine whether the wheelchair shouldactually execute a motion command.

While not strictly necessary, they are a useful safety feature. Finally, the space below the large text

(blank) is reserved for feedback regarding the system state.

Figure 7-2 shows the system in an active state—the screen is abright yellow, to get the user’s

attention, and a question is presented in the main text. The smaller feedback window indicates that

the system is currently busy synthesizing the question as speech. Once a response is received, the

window turns cyan (Figure 7-3) to indicate that it is busy processing. The feedback window tells
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Figure 7-1: Initial dialog window.

the user the system’s best estimate for what it heard as well as the fact that it is busy processing. In

this particular situation, the system is unsure of what action it should take next—it does not have a

strong sense of the user’s reward model—and pops up a policy query window (Figure 7-4). Here,

the user must use a mouse to choose the most appropriate action. The users were coached to select

the action that they would want the system to perform if they were in the system’s position.

Figure 7-2: Dialog window waiting for user feedback after receiving a speech input.

Figure 7-3: Dialog window processing user feedback.

Once an action is chosen, the dialog window again turns bright yellow (Figure 7-5 to indicate

that it is taking an action and is ready for user feedback. In this case, the user does indeed wish to
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Figure 7-4: The dialog manager is confused and presents policy query window.
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go to the printer and clicks the task success button. The window turns inactive (Figure 7-6) as it

updates the observation model and resamples POMDPs.

Figure 7-5: The dialog manager completes its task.

Figure 7-6: The dialog manager retrains its model.

7.3 Results and Discussion

The users were not asked to provide explicit reward feedbackto the system, and the goal of our

tests were to exhibit the system’s basic functionality rather than quantitative improvement along

some objective performance metric. Here we summarize the types of adaptation that we observed

and highlight the changes through samples from user dialogs. Each of the dialogs is taken from a

different user, but the different types of learning that shown here were common across all users. At

the end of this section, we include the suggestions we received to improve the user interface.

Learning Basic Dialog. The first pair of example dialogs we present in Table 7.2 are a simple

example of policy learning. Because we had set such low confidence levels in our initial obser-
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vation model, and we had a very broad reward model, the initial sample of POMDPs contained a

large variety of policy options even when the conversation seemed relatively straight-forward. In

the first dialog, which occurred early in the conversation, the system is uncertain of what it should

do when it hears the word “printer,” even though “printer” isa word that already has a specific

mapping in its vocabulary and no speech recognition errors occurred. Part of the system’s confu-

sion comes from not knowing the reward model—it does not knowwhether the user would prefer

that system asked a confirmation question before taking an action. Another part of the confusion

comes from a very imprecise observation model. Since the mean likelihood of hearing the correct

observation in a particular state was only 0.6, several models in the initial sample include even

smaller probabilities of hearing the correct observation.Thus, the samples are also divided in their

belief over the user’s intentions. At a later point in the conversation, the system follows the user’s

recommended course of action when referring to that same state.1

Table 7.2: In the following pair of dialogs, the system learns that it should ask a confirmation question after hearing a
definitive response to a general query.

Early Conversation
ROBOT: How can I help you?
USER: Take me to the printer.
ROBOT: I’m confused. What action should I take now?
The system pops up the policy query window, and the user clicks on “confirm printer.”
ROBOT: Do you want to go to the printer?
USER: Yup.
ROBOT: Going to the printer.
Later Conversation (with the same user)
ROBOT: How can I help you?
USER: Go to the printer.
ROBOT: Do you want to go to the printer?
The system has learned that it should confirm a state before acting.
USER: Yup.
ROBOT: Going to the printer.

Learning New Words. We initially designed the policy queries to be used for learning reward

models, but they proved to be quite helpful in learning new words as well. When faced with a

1The voice recognition system had trouble with the “s” sound,so we coached the users to use the word “yup”
instead of “yes.” “Yes” was often confused with “you” or “desk.”
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new word, the system would often be confused and use a policy query to determine next course

of action. Usually, the user would suggest that the system confirm the state that corresponded to

their desire. Since confirmation questions were not noisy, apositive confirmation at that stage was

generally enough for the system to commit to the correct goalaction. Within one or two dialogs,

the observation prior would have changed enough so that mostof the newly sampled POMDPs

would contain the correct mapping for the new word. Thus, with the aid of a meta-action, the

dialog could be completed quickly, correctly, and in way that still allowed the system to learn

without having to wait until a mapped keyword was heard (compare this initial conversation to the

initial conversation in Table 4.7).

Table 7.3 shows an example of such a conversation. The mappedkeyword for the weather goal

is “weather,” but the user is using the word “forecast” instead. In the first dialog, the system uses

a policy query to discover what action it should take next, and in doing so, successfully completes

the dialog (with the user’s help). In the later dialog, it is still not completely sure about the meaning

of the new word, but it is able to resolve its uncertainty through a confirmation question instead of

a policy query.

Table 7.3: In the following pair of dialogs, the system learns the meaning of a new word through a meta-action query.
Early Conversation
ROBOT: How can I help you?
USER: Give me the forecast.
ROBOT: I’m confused. What action should I take now?
The system pops up the policy query window, and the user clicks on “show weather.”
ROBOT: Showers.
Later Conversation (with the same user)
ROBOT: How can I help you?
USER: What’s the forecast for today?
ROBOT: Do you want the weather?
The system has partially learned the mapping for the word “forecast,” and confirms it
before continuing.
USER: Yup.
ROBOT: Showers.

106



Learning Preferences. In Table 7.3, we saw an example where the user did not want the system

to confirm a goal; he wanted the system immediately understand and execute the command. In

Table 7.4, we see a set of dialogs where the user always trained the system to respond immedi-

ately. As a result, the system gradually moved from asking policy queries to asking confirmations

to immediately executing actions. In the second-to-last dialog, we see that sometimes, noise in

the observations caused the dialog manager to execute the wrong policy. The system was able to

recover using a policy query, but the user was not pleased with this result (especially since obser-

vation noise is opaque to the user; he felt as if he had stated his request very clearly). This example

shows that while the learning process functioned correctly, the result was not one that the user

desired.

Learning Complex Observation Models. Over time, the system was also able to learn much

more complex combinations of observation models that accounted for both the user’s vocabulary

choices and the noise in the voice recognition system. In Table 7.5, we present a situation where the

user often referred to the coffee machine area with the word “kitchen” or by asking for “tea.” The

situation was complicated by the fact that the voice recognition system generally misinterpreted the

word “coffee” as “copy,” and that the word “machine,” (as in “coffee machine” or “copy machine”)

was also an unmapped word. Initially, the dialog manager is fairly confused, and it takes it twenty

exchanges to complete the first dialog2. In the later dialogs, however, we see that the system has

adapted to the complex observation model. In particular, the second example shows a scenario very

much like the early conversation. The system is able to complete the dialog even though new words

are used and “coffee” and “copy” are confused with each other. The final example demonstrates

that although the system has learned that the word “copy” often occurs in the “coffee” state, it still

is able to handle requests for the “copy” state without assuming that the utterance is necessarily a

mistake. We note that the system uses confirmation queries todisambiguate the confusion between

these two often-confused states.

In general, all users agreed that the system did adapt over time, and the conversations high-

2In the interest of full disclosure: these dialogs come from the set completed by the author, and to some extent,
initial dialog was purposefully made unforgiving and difficult to confuse the system.

107



lighted above show how the system was able to learn new words,noise models, and user prefer-

ences at once through the use of policy queries. In the seventy total dialogs from the user tests, only

two of them had failures where the system actually executed an incorrect movement or informa-

tion task. While the system was careful, many did express frustration in that sometimes it adapted

too slowly. For example, they were generally glad when the system stopped asking policy queries

and switched to asking confirmation questions when it was somewhat unsure of the user’s intent.

However, most of them wanted to know how long it would take thesystem to forego confirmations

and react immediately to their commands.

As the penalty on meta-actions increased, sometimes the system would also take unintuitive

courses of action to resolve uncertainty. For example, in one situation, several of the POMDP

samples believed that the user wished to go to the printer, but a few confused POMDPs believed

that the user wanted the time. The dialog manager chose to confirm whether the user wanted the

time—which was not the most likely state in a majority of the POMDPs—before proceeding to the

printer. These kinds of actions make sense mathematically,given the reward parameters on those

POMDPs, but are unsatisfying to the user.

We also received several suggestions regarding the user interface. Some of these suggestions,

such as the color scheme to make the POMDP’s internal state more obvious, were incorporated

into the user tests. We also adapted the vocabulary set basedon what kinds of words the previous

user used. One general comment was that the users wanted moreinformation about the system

state, and they wanted the dialog manager to seem more intelligent. Some changes were purely

aesthetic: even if it was repeating a general query or confirmation, users said that they would prefer

that the system rephrased the question to make it seem more dynamic and responsive.

Other suggestions focused on the policy queries. For example, they wanted more detailed

system information on the small feedback window. Often theyresorted to a side debug window,

which included the n-best lists from the voice recognizer, to determine why the system seemed to

be misbehaving. While this is may be the first instinct of interested computer science students,

their point—that based on the dialog window, it was difficultto infer the system’s confusion and

determine the correct response to the policy query—is well taken. Along similar lines, users sug-
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gested displaying only the top ranked policy options when making a policy query, instead of all

of them, to both reduce the number of options and to demonstrate to the user that the system was

actually debating between a few reasonable options. We planto incorporate this feature into future

tests.
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Table 7.4: In the following set of dialogs, the system learns that the user prefers that the system immediately execute
actions without confirmation questions.

Conversation Two:
ROBOT: How can I help you?
USER: Take me to Bryt’s desk.
The system knows the keyword “Bryt” but not the word “desk.” In addition, some of the
voice recognition system’s outputs confuse “me to” with “meeting.”
ROBOT: How can I help you?
USER: I want to go Bryt.
ROBOT: I’m confused. What action should I take now?
The system pops up the policy query window, and the user clicks on “Go to Bryt’s desk.”
ROBOT: Going to Bryt’s desk.
Conversation Ten
ROBOT: How can I help you?
USER: What time is it?
ROBOT: Do you want the time?
The system has stopped asking meta-actions, but it still asks a confirmation before acting.
USER: Yup.
ROBOT: Time to get a watch!
Conversation Fourteen
ROBOT: How can I help you?
USER: Take me to Nick’s office.
Most of the speech recognition outputs hear “meeting” instead of “me to Nick”
ROBOT: Going to the meeting room.
USER: No, go to Nick’s office.
This time, the speech recognition outputs hear a combination of “office” and “meeting” in
addition to “no.” Hearing both “no” and “meeting,” the stateit thought the user wanted
to go to, makes it confused.
ROBOT: I’m confused. What action should I take now?
The system pops up the policy query window, and the user clicks on “Go to Nick’s of-
fice.” Notice that the user still recommends the system to execute a movement instead of a
confirmation.ROBOT: Going to Nick’s office.
Conversation Fifteen
ROBOT: How can I help you?
USER: Go to the conference room.
We note that conference was a previously unmapped keyword, but the system has begun to
learn its mapping by this point in the dialog.
ROBOT: How can I help you?
USER: Go to the conference room.
The system has learned not to ask confirmation questions for this user.
ROBOT: Going to the meeting room.
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Table 7.5: In the following set of dialogs, the system learns several new words for a particularly noisy pair of states.
Early Conversation
ROBOT: How can I help you?
USER: I want some tea from the kitchen.
ROBOT: How can I help you?
USER: The tea is in the kitchen near the coffee machine.
The system sometimes hears “copy” instead of “coffee”; moreover, it’s heard so many new
words it doesn’t know what to do.
ROBOT: How can I help you?
USER: Go to the kitchen.
ROBOT: I’m confused. What action should I take now?
The system pops up the policy query window, and the user clicks on “Go to the coffee
machine area.”
ROBOT: Do you want to go to the coffee machine area?
USER: Yup.
... The system asks a few more general queries before re-confirming the coffee machine
state because it has heard such a varied collection of new words. We note that it does not
ask any more meta-actions nor does it prematurely execute anincorrect action.
ROBOT: Do you want to go to the coffee machine area?
USER: Yup.
ROBOT: Going to the coffee machine area.
Later Conversation
ROBOT: How can I help you?
USER: Take me to the kitchen.
The system hears a noisy combination of “nick” and “kitchen”(mostly “kitchen”).
ROBOT: How can I help you?
USER: I want some coffee.
Very unlucky, the system hearsonly the word “copy” instead of “coffee.” However, given
its noise model and the prior observation “kitchen,” it still confirms the correct state.
ROBOT: Do you want to go to the coffee machine area?
USER: Yup.
ROBOT: Going to the coffee machine area.
Later Conversation
ROBOT: How can I help you?
USER: I need to make a copy.
As before, the system hearsonly the word “copy.” However, without other evidence, it
confirms the “copy” state.
ROBOT: Do you want to go to the copy machine area?
USER: Yup.
ROBOT: Going to the copy machine area.
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Chapter 8

Conclusions and Future Work

In this work, we developed and explored a variety of approaches to learn models for dialog manage-

ment. In the context of controlling robotic wheelchair, we considered the specific scenario where

the dialog manager had to determine where to drive the user. With the voice recognition system

noisy and the frustrating consequences of driving to the wrong location, we used a POMDP model

to trade between information gathering actions (confirmations, general clarifications) and physical

movements. Learning the parameters for this POMDP online was the focus of this work.

In Chapter 4, we began with a fast approach that adapted to theuser but ignored the uncertainty

in the parameters. Since we ignored parameter uncertainty,we could handle relatively complex

models—including continuous reward and observation spaces—but the system was sensitive to the

initial choice of parameters and sometimes too aggressive.It also required that the user provide

explicit reward feedback to train the system.

The remainder of the work built toward handling a continuousobservation and action space

more robustly. In Chapter 5, we introduced the idea of creating a meta “parameter” POMDP in

which the parameters were considered additional hidden state. The large POMDP was difficult to

solve, and we used techniques from Chapter 3 to approximate solutions. We also introduced the

idea of sampling POMDPs from a prior over the parameters, andusing the set of POMDPs to make

robust decisions (using a Bayes risk action selection criterion).

Finally, in Chapter 6, we furthered improved robustness anddecreased user load using the
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concept of meta-actions, or queries about what the system should have done. Meta-action queries

allowed us to learn about a user’s preferences without depending on the user for feedback. We

showed the utility of meta-actions in simulation, and further demonstrated their use in Chapter 7.

All of the approaches in this work used a Bayesian framework to place priors over the parame-

ters and proceeded to solve POMDPs using value-functions. As seen in Chapter 2, value function

approximations for POMDPs can be relatively straight forward; however, these techniques force

us to either ignore symmetries in the problem (which quicklymake the problems intractable) or

hand-code the symmetries (which, in addition to requiring expert input, runs the risk of coding

incorrect assumptions into the solver). For the ideas presented here to scale to larger systems and

more varied problems, future work should consider alternative representations for POMDPs.

One alternative, proto-value function approximation, hasbeen used to find suitable eigenfunc-

tions to approximate the value function in large MDPs[21]. These functions are formed solely

from the dynamics of the model, and the underlying assumption is that functions representative of

the model dynamics will also be representative of the value function. Whether that assumption is

true in the dialog management domain is unclear, but as we have seen already in our current work,

some approach to taking advantage of the state and action symmetry in our problem will be crucial

to making any value-function based approach efficient and tractable.

Another alternative we would like to consider in our future work is to plan in the policy space,

eliminating value functions completely. For example, we would maintain a particle-filter of policy

trees or finite-state controllers. We note that despite the large number of parameters we had to learn

in this work and the computational difficulties involved, the problems what we considered really

had very simple policies. Moreover, in Chapter 6, we encountered significant difficulties in trying

to sample from a complicated parameter space just to find a setof parameters that were consistent

with information provided from policy queries. Especiallyfor dialog management problems—

where polices are simple and policy advice is easy to give—itseems that the policy space may be

the right space to view these problems.

In particular, since small POMDPs are quick to solve, it may be possible to construct a policy-

tree online that considers only how meta-actions may help the dialog manager branch to more
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certain parts of the belief space (this is approach would be similar to the various online policy tree

approaches inspired by [23]). On the other hand, while it is difficult to map the effects of meta-

actions to sections of the belief space, a finite-state controller approach (based on the ideas of [17]

or [2]) may have more direct interpretations in the policy space.

Finally, we plan to conduct more sophisticated user studieswith the robotic wheelchair. By

measuring how long it takes the system to fulfill a user’s needs and surveying users on their satis-

faction, we hope to determine if there exists a significant difference between a hand-crafted dialog

manager and the kinds of learning POMDP dialog managers considered in this work. The difficul-

ties that users have operating the wheelchair with either model may provide additional insight into

what dialog management research questions would add the most value for wheelchair users.
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Appendix A

Hardware

Here we provide a brief description of the robotic wheelchair that was designed and built as the

target application of this work (see Figure A-1). Our goal isto provide the reader with a general

sense our hardware configuration and user interface; a follow-on technical report will contain

detailed information for those who are interested in replicating our hardware.

Figure A-1: A robotic wheelchair was the target application of this work.
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Modifying a commercial chair seemed to be the right cost-work balance between buying a pre-

roboticized wheelchair and machining our own wheelchair from scratch. We chose a Jazzy 1103

power chair from Pride Mobility because of its center-wheeldrive (for ease of control) and reason-

able cost. The Jazzy 1103 also had an adjustable seat that could be raised to create room for custom

parts and wiring, including the on-board computer and powerbus. To control the wheelchair, we

intercepted the joystick signals and replaced them with ourown translation and rotation commands.

While somewhat indirect, this approach allowed us to command the wheelchair using low power

signals as well as create a simple override circuit that ensured that the user would be able to take

control if the computer failed.

Used for both obstacle avoidance and localization, the wheelchair’s primary mode of sensing is

through the laser range finder mounted in the front of the wheelchair. We found that the one scanner

was effective for most tasks; however, given the height of the wheelchair, the user occasionally had

to provide their own obstacle avoidance for taller protrusions (such as tables) that were invisible

to the scanner. Shaft encoders mounted to the motor shafts ofboth drive wheels supplemented the

laser range measurements with odometry information.

The Carmen Robotics Toolkit [22] (with some modifications for the new hardware set-up)

provided basic localization, navigation, and mapping capabilities. The dialog manager itself was

implemented in Python and Matlab, and interfaced with Carmen via the pyCarmen. All compu-

tation was completed on-board except for the voice recognition, which occurred remotely with

a system developed by the MIT Spoken Language Systems Group [9]. (The voice recognition

was computed off-board for convenience: as research software, the voice recognition system was

not yet an easy to install package. There was no computational barrier to computing the voice

recognition on board the wheelchair.)

Several steps needed to be taken before any user interactions occurred. First, we drove the

wheelchair around an area to collect laser data and build a map. Next, the map was hand-labelled

with locations of interest, such as elevators or offices. (Inthe future, we hope to make it possible

to easily add new locations online). The interface to the dialog manager received a list of key-

words that corresponded the each location or task (the mapped keywords) as well as a larger set of
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keywords to listen for (the unmapped keywords).

The user interacted with the system primarily with a microphone. Once in listening mode,

the system continuously monitored the microphone for sustained inputs over a pre-specified power

threshold. This simple approach to detecting and end-pointing speech inputs proved to be sufficient

for indoor office environments, although more sophisticated approaches may be needed for noisier

situations. Once the voice recognition system processed the speech input, the dialog manager

scanned the returned n-best list for occurrences of keywords. We did not make any attempts at

natural language understanding. At the end of a dialog, the user confirmed the system’s final

action with a mouse-click. While not strictly necessary, the additional confirmation step prevented

the wheelchair from moving prematurely during tests; we wished to avoid safety issues where the

user might be trying to talk to the wheelchair and monitor itsmovement at the same time.

Figure A-2: The user interface. This screen shot shows the window in “quiet” mode, just after the system has
been reset. The buttons allow the user to manually reset the system as well as regulate the execution of movement
commands.

Finally, a window displayed on a monitor attached to one of the arms was the main form

of feedback (see Figure A-2 for a screen-shot). We kept the window small to allow for easy

viewing of other navigation related windows as well as leaving the user the opportunity to run

programs if desired. The larger window text displayed the system’s queries, while the smaller text

displayed information about the system’s internal state (e.g. “I’m thinking...”). To show attention,

the window also changed color—from purple to yellow—whenever the microphone power went

over the pre-specified threshold. For experiments where explicit reward feedback was required,

the window also included several buttons for each reward input.
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