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Abstract  

This thesis proposes a practical approach to defining flexible design and development strategies 
for maximizing the expected value of engineering systems. Specifically, the approach deals with 
the fact that it is generally computationally impractical to explore all the possible ways a system 
might be developed and operated, given the large number of possible scenarios in which the 
system might evolve. To make the analysis tractable within the computational resources 
available, it proposes that designers and program managers use a catalog of representative 
operating plans built from combinations of design elements and management decision rules. 
These are associated with a range of possible scenarios of uncertain variables that might affect 
the system’s expected value and performance. 
 
This work develops the novel methodology introduced by (de Neufville, 2006) to guide the 
search for catalogs of operating plans while aiming at minimizing computational effort. It 
assumes a model of the engineering system is available, together with several value/performance 
metrics such as Expected Net Present Value (ENPV) and Value At Risk and Gain (VARG). It 
uses an algorithm based on statistical experiment design, Adaptive One-Factor-At-a-Time 
(OFAT) (Frey and Wang, 2006; Wang, 2007), to search the combinatorial space in light of 
system’s responses to a limited set of uncertain variable scenarios. Two case studies demonstrate 
the benefits of the analysis methodology. One is inspired from the development of a parking 
garage near the Bluewater commercial center in the United Kingdom. The other relates to the 
development of a real estate project in the United States. 
 
Results from case studies show improvement compared to inflexible design of engineering 
systems while still requiring minimal computational effort. This, together with appropriate policy 
recommendations, provides incentives for dissemination of the analysis methodology in industry 
and government. The simplicity of the methodology and use of tools already familiar to the firm 
and government agency alleviate political barriers to implementation. It allows designers and 
program managers to remain within established framework, rules, and management constraints. 
It favors transparent presentation and efficient application to design and management of 
engineering systems, thus allowing program managers to present the natural evolution of 
decisions to senior decision-makers. 
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Chapter 1 – Introduction 

 

Designers of engineering systems always seek for better approaches to improve the value and 

performance of a system. They seek the best combinations of design elements and management 

decision rules before selecting a particular design. In doing so, they assume one particular 

evolution of the uncertain variable(s) affecting their system over its intended useful life. For 

instance, they may assume that prices for a given product will increase at a constant rate over the 

intended lifetime of the system, evaluate which combination of design elements and management 

decision rules extracts most value from this particular future, and work to satisfy design 

requirements accordingly. 

 

One problem with this approach is that the future is uncertain. The uncertain variables affecting 

the value and performance of the system may turn out completely different than originally 

assumed. Therefore, it is possible that designers choose a design configuration that performs 

extremely well under the scenario originally assumed, if it occurs, but very poorly if reality turns 

out otherwise. 

 

If designers consider several scenarios of the uncertain variables before committing to a 

particular design, another problem emerges. In addition to considering several possible 

combinations of design and management decision rules under a particular scenario, they need to 

find the best combination for each possible scenario of the uncertain variables. This is because 

design choices can differ depending on the scenario under consideration. 

 

The number of possible combinations of design elements, management decision rules, and 

uncertain variable scenarios can become intractable very rapidly. If flexibility is considered as a 

way to adapt the system to take even more advantage of unexpected upside opportunities, or to 

reduce losses in case of downside events, the problem becomes even larger and harder to tackle. 
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A Real Life Example 

 

A real situation experienced recently by a colleague who visited Codelco, Chile’s national 

copper extraction company, exemplifies the above issues with more realism. The Chuquicamata 

and Rio Tumic mines in Chile’s north region are well known for their copper deposits. The 

mining systems are good examples of the complexity inherent to the design and management of 

primary resource extraction systems. Operations require various sizes of truck fleets and 

crushing mills, complex networks of transportation routes, different extraction plans to reach the 

ore, etc. Mining companies are also very vulnerable to large fluctuations in prices, which is the 

uncertain variable affecting value and performance of their system. This makes flexibility an 

attractive feature to increase profits when prices are high and in the opposite case, to reduce 

losses. 

 

The visitor to Codelco noticed that over years of operation, the company had been constantly 

developing new and creative ways to operate the mine. One thing they had not fully exploited 

was the use of this portfolio of operations in the preliminary analysis stage to determine better 

investment strategies at any given time and given certain copper price scenarios. The reason for 

this were large costs in terms of time, human, and computer resources necessary for the analysis 

compared to a small budget dedicated to preliminary project analysis. Hence, the cost and burden 

of the analysis precluded the search for potentially more profitable ways to exploit the mine. In 

addition, great sources of flexibility that could have added even more value were being left aside. 

 

Proposed Solution 

 

This thesis addresses the issues presented above to insert more realism in design of engineering 

systems. It suggests an analysis methodology that creates a limited set of relevant future 

scenarios for the uncertain variables affecting the system, and a structured approach for 

exploring the possible combinations of flexible designs and management decision rules under 

each particular scenario. This approach leads to a design choice that is more suited to different 

future scenarios, which clearly improves overall value and performance of the system. It also 
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allows program managers to operate the system in different ways, depending on the behavior of 

the uncertain variable observed at any given time. 

 

The analysis methodology is proposed in the context where computational power has 

tremendously increased in recent years. It recognizes that it is impossible to explore exhaustively 

all possible combinations of design elements and management decision rules. It suggests 

however that given recent progresses in computer technology, designers now have the 

opportunity to explore more design and management possibilities at a minimal and affordable 

increase in analytical cost. 

 

Excel® is the software used in this thesis to demonstrate applications of the analysis 

methodology. This software is very simple to manipulate, understand, and is widely used in the 

engineering and management communities. Monte Carlo simulations are used to illustrate the 

benefits of the approach on two realistic case studies of engineering system design and 

management. The first one is inspired from the development of a parking garage near the 

Bluewater commercial center in the United Kingdom. The second is based on the development 

of a real estate site in the United States. 

 

This thesis also has a policy component that considers three main barriers to implementation of 

the methodology in industry and government. The stakeholder analysis proposes 

recommendations to alleviate these barriers, with most solutions being inherent parts of the 

methodology. The first barrier is the typical difficulty to implement new methodologies in firms 

and government agencies, especially when existing rules have been used for a long time. 

Methodological “lock-in” creates inertia that is difficult to surmount. The second barrier is 

because the methodology imposes more analytical burden, although it is largely compensated by 

improved computer technology. The third barrier is the lack of incentives for program managers 

to implement the analysis methodology. 

 

The document is structured as follows. Chapter 2 introduces the concept of catalog of operating 

plans, one of the most important concepts in this thesis, in the context of designing and 

managing flexible engineering systems. Chapter 3 describes the analysis methodology that is at 
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the heart of the thesis. It also describes a method for finding representative scenarios of uncertain 

variables relevant to the analysis, the search algorithm adaptive One-Factor-At-a-Time (OFAT) 

used to create the catalog, and an analytical method used to assess the value of the catalog of 

operating plans. Chapter 4 applies the methodology to two realistic case studies, and develops 

results that support the proposed methodology. Chapter 5 presents the policy component of the 

thesis, which deals with the main barriers to implementation in real world practice. Chapter 6 

offers potential avenues for future research. 
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Chapter 2  – Design and Management of Engineering Systems 

 

2.1 Reality Meets Practice 

 

2.1.1 The Reality 

 

Figure 2.1 describes the reality facing designers and program managers in developing and 

managing complex systems. In the initial design phase, designers may consider many possible 

combinations of design elements and management decision rules to accomplish the system’s 

goal. Design elements are the constituent parts that create the system as a whole, while 

management decision rules represent possible behaviors to manage and operate the system. In 

the Codelco case presented above, examples of design elements can be the choice of crushing 

mills sizes and number of truck fleets necessary to operate the mine. Examples of management 

decision rules can be to use a particular set of crushing mills and truck fleets more suited to the 

exploitation of a particular area of the mine. 

 

The Figure 2.1 section on uncertain variables represents the fact that uncertainty can affect 

system performance in many ways. In this thesis, an uncertain variable is a variable outside of 

designers and program managers’ control that can affect the value and performance of the 

system. Price and demand are good example of uncertain variables.  

 

Such variables can take on different behaviors over the course of a project’s useful life. Each 

manifestation of the variable over the project’s useful life creates one uncertain variable 

scenario. Figure 2.2 shows an example of uncertain variable scenario relevant to the Codelco 

example where the evolution of copper price per metric ton is depicted over a certain period of 

six years. This scenario represents one of many price behaviors that could have occurred over the 

same period. 
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Initial Design Uncertain Variables Managers Adjust Lifetime 

Performance 

Physical 

infrastructure 

 

(Many possibilities) 

Price, demand for 

services 

 

(Many possibilities) 

Best use of existing 

facilities; development 

of additional facilities 

(Many possibilities) 

Realized net 

present value, rate 

of return, etc.  

(Many possibilities) 

Figure 2.1: Reality faced by designers and program managers in the development and 

operations of complex systems. (Source: de Neufville, 2006). 

 

$US per
metric ton

 

Figure 2.2: Example of uncertain variable scenario. In this case, the uncertain variable is 

price of copper per metric ton in U.S. dollar. This is one price scenario among many that 

could have occurred over the same time period. (Source: London Metal Exchange, 2007). 

 

Once a good combination of design elements and management decision rules is found, a design 

is selected and developed. Operations of the system by program managers follow as seen on 

Figure 2.1 in the section on managers’ adjustments. Given the system design at hand, program 

managers choose between a large number of possible operating plans to operate the system. 

They also adjust operations depending on observed conditions in the uncertain variables. 
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Because the concept of operating plan is very important in this thesis, the analysis of Figure 2.1 

is paused here to explain this concept in greater detail. An operating plan is a way to manage and 

operate a system that combines a particular set of design elements and management decision 

rules under a particular uncertain variable scenario. For example, in the mining industry, given a 

scenario where prices are increasing, the goal of an operating plan may be to extract the ore from 

an area of the mine where copper is easily accessible so that revenues can be generated easily. 

This operating plan combines design elements such as large truck fleets to carry the ore, and 

large size crushing mills to extract as much as possible of the desired metal. These design 

elements are combined with management decisions that favor mining in a particular sequence to 

maximize copper extraction while minimizing the distance between the site and the crushing 

mills. This operating plan is chosen because it maximizes value when prices are high. It may 

however be suboptimal when prices are decreasing because mine operations for large production 

might be more costly, and not sustainable when prices are low.  

 

Since mining sites can be exploited in different sequences, with different numbers of trucks, 

possible routes between the site and crushing mills, and available sizes of crushing mills, a large 

number of operating plans can be created. Each operating plan is ideally tailored to a specific 

price scenario. Since a large number of price scenarios exist, there is a large number of possible 

operating plans program managers can select to operate the mine. All of these possibilities are 

represented in the section on managers’ adjustment in Figure 2.1. 

 

Another example of operating plan is in the airline industry. In this case, given a scenario where 

fuel prices are increasing, the airline managers might decide to service destinations where 

demand is high, and where locations are concentrated near a central “hub” (or central airport) to 

minimize long flights. In this case the airline may choose smaller aircraft types to minimize fuel 

expenditures. Again, program managers may select from a wide array of destinations and aircraft 

types to create operating plans that are suited to particular price scenarios, and extract as much 

value as possible uncertain conditions. 

 

Now coming back to the analysis of Figure 2.1 in the section on lifetime performance, the 

operating plan adopted by the program manager gives rise to a certain value or realized 
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performance of the system for the project’s lifetime, and given uncertain conditions. This can be 

measured, for instance, in financial terms like Net Present Value (NPV), internal rate of return, 

or through other non-financial metrics such as number of lives saved, etc. In the case of Codelco, 

this is measured as realized profit in any given year. Again, since many operating plans exist 

under a large number of uncertain variable scenarios, many different measures of lifetime 

performance can arise. 

 

2.1.2 In Practice 

 

Unfortunately in practice, value assessments rarely correspond to lifetime performance measures 

as projected in the last section of Figure 2.1. Value and performance of the system depend on its 

technical reliability, and on how well managers adjust to uncertain variable conditions. 

 

If enough computational, financial, and time resources were available, designers would like to 

consider all possible combinations of design elements, uncertain variable scenarios, and 

management decision rules before deciding on a final design that permits a large array of 

operating plans. They would do so in order to find a design that can suit most uncertain 

conditions. In reality however, it is difficult and time consuming, if not at all impossible 

computationally, to explore this combinatorial space for all possible combinations.  

 

In this thesis, the concept of combinatorial space represents the spectrum of all possible 

combinations of design elements, management decision rules, and uncertain variable scenarios 

that designers can investigate to find the best design under all possible manifestation of 

uncertainty. Even if only a few possibilities exist for each element, the space can become 

intractable analytically quite rapidly. For instance, assuming Codelco designers represent the 

uncertain price variable with five possible values over the course of a twenty years project (low, 

mid-low, medium, mid-high, high), this means 520 ≈ 95 trillions scenarios need to be considered 

for the price variable only. If designers consider combinations of design elements and 

management decision rules best suited for each price scenario, the design problem becomes 

completely intractable. 
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To address this problem, current practice for the design and management of engineering systems 

often assumes inflexible design requirements, one uncertain variable scenario, and one particular 

operating plan in order to choose a system’s design (Figure 2.3). Even though this choice may 

provide a good cash flow to assess value and performance, it may not be the best one available. 

 

Initial Design Uncertain Variables Managers Adjust Lifetime 

Performance 

Physical 

infrastructure   

 

(Many possibilities) 

Price, demand for 

services   

 

(1 scenario for each) 

Best use of existing 

facilities; development 

of additional facilities  

(1 operating plan) 

Realized net present 

value, rate of return, 

etc.  

(1 cash flow) 

Figure 2.3: Schema of current practice for the design and management of a complex 

system. (Source: de Neufville, 2006). 

 

2.2 Introducing the Concept of Catalog of Operating Plans 

 

In order to move to a more complete analysis, designers may explore the effect of a limited set of 

uncertain variable scenarios on their choice of design elements and management decision rules. 

They wish to do so without having to find the optimal combination for each possible 

manifestation of the uncertain variable. 

 

That is, considering that a very large number of possible uncertain variables scenarios exist (95 

trillions in the previous example), designers would like to select a limited set of representative 

scenarios to guide their search for the best combination of design elements and management 

decision rules. 

 

By studying the effect of this limited set of uncertain variable scenarios on the choice of design 

elements and management decision rules, designers may now find solutions that are more 
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realistic and adaptable to uncertainty. For instance, by selecting three copper price scenarios – 

increasing, constant, and decreasing – among the 95 trillions available, Codelco may decide to 

incorporate sizes of crushing mills and truck fleets in the design of the extraction system that are 

more suited to adapt towards these price scenarios. Even though the case of three scenarios is 

fairly limited, the resulting design is already more realistic and suited to uncertainty than if only 

one scenario is selected. 

 

Choosing particular combinations of design elements and management decision rules suited to 

this collection of uncertain variable scenarios creates a limited set of operating plans suited for 

each scenario under study. This limited set of operating plans forms a catalog of operating plans, 

where each operating plan is suited to a particular scenario of the uncertain variables. Program 

managers may then use the catalog of operating plans to adjust the system more efficiently 

depending on observed uncertain conditions. Even if each design is not perfectly tailored to each 

price scenario in the Codelco example, operations of this mining system may be more profitable 

than one that is only suited for one particular manifestation of copper price. 

 

The following examples clarify these concepts. For instance, if observed copper prices are found 

to be on the rise as in the example on operating plans of Section 2.1.2, program managers may 

decide to operate the mine by focusing on ore that is readily available so it can be sold quickly 

and at a high price. In effect, they may “pick” an operating plan combining design elements and 

management decision rules to accomplish this particular goal. If prices are decreasing, a different 

operating plan focusing on getting rid of the overburden can be used so that ore can be easily 

extracted when prices are back on the rise. These ideas are shown in Figure 2.4. 
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Figure 2.4: Use of a catalog of operating plans for managing a mine depending on observed 

trends in copper prices (London Metal Exchange, 2007). The NPV achieved using a limited 

number of operating plans compares to the ideal situation where managers can adapt in a 

perfectly tailored fashion to each uncertain variable scenarios. 

 

 

Figure 2.5: Perfectly tailored operating plans represent an upper bound on the highest 

achievable NPV for a given system. A catalog of operating plans tries to approximate this 

ideal situation with fewer operating plans. 
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This catalog of operating plans compares with the ideal situation when management can adapt 

perfectly to all possible uncertain variable scenarios. In this ideal situation, shown in Figure 2.5, 

there are as many operating plans as the number of possible fluctuations in the uncertain 

variables. The design and management rules chosen extracts maximum value from each 

situation. In other words, the ideal situation provides operating plans that are perfectly tailored to 

the uncertainty affecting system’s output and performance. 

 

The goal of this thesis is to introduce an analysis methodology that helps finding the catalog of 

operating plans that gets as close as possible to the ideal situation above, given that limited time 

and computational resources are available. In other words, it aims at being as effective as 

possible in the search for the best catalog given these limitations. This analysis methodology is 

presented in Chapter 3.  

 

It is important to note however that the catalog of operating plans does not aim at describing the 

entire set of possible ways in which the system can be designed and operated. Rather, it 

represents a crude short-cut measure that enables designers to conduct a more realistic analysis 

within feasible computational means, compared to assuming a single fixed scenario of the 

uncertain variables. This approach increases chances of finding the most valuable design by 

exploring the combinatorial space further. It does so recognizing the impossibility of assessing 

exhaustively the value of all possible solutions in the combinatorial space. Figure 2.6 

summarizes the role of the catalog of operating plans in current practice for the design and 

management of engineering systems. 

 

Initial Design Uncertain Variables Managers Adjust Lifetime 

Performance 

Physical infrastructure 

 

 

(Many possibilities) 

Price, demand for 

services 

 

(Many possibilities) 

A Catalog of a major 

possible responses 

 

(Some possibilities) 

Realized Net 

Present Value, Rate 

of Return, etc.  

(Many possibilities) 

Figure 2.6: Role of catalog of operating plans in the design and management of complex 

systems (de Neufville, 2006). 
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2.3 The Role of Flexibility 

 

As briefly mentioned in the Introduction section, flexibility allows program managers to adapt 

their system towards uncertain conditions so that additional value and performance can be 

extracted. Since it plays a very important role in this thesis, the concept is presented in further 

details here.  

 

As outlined in the two historical examples below, flexibility inherent to a system allows 

adaptation to unexpected circumstances in a relatively efficient manner. In other cases, 

adjustments or a lack thereof may be more costly. The Boeing B-52 Stratofortress is an excellent 

example of a system flexibly designed (Figure 2.7). Developed in the 1950s, it was able to adapt 

to unexpected changing conditions a number of years later in several occasions. The aircraft was 

originally designed to carry heavy and cumbersome nuclear warheads at high altitude (Montulli, 

1986). The aircraft’s large-scale belly was one of the main design features to accomplish this. A 

few years later, the Soviet air defense incorporated surface-air missiles, which forced the aircraft 

to fly at lower altitude. The belly was then reconfigured to carry air-launched cruise missiles to 

defend the aircraft through such mission (Boyne, 2001; Dorr and Peacock, 1995). This low-

altitude capability was used later on during the Vietnam War to assist ground troop operations. 

 

 

Figure 2.7: The flexible design of the Boeing B-52 Stratofortress’s allowed adaptation to 

changing warfare environments. (Source: Dorr and Peacock, 1995). 
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On the other hand, the Navstar Global Positioning System (GPS) (Figure 2.8a) is an example of a 

lack of flexibility that turned out costly in terms of missed opportunities for the U.S. Department 

of Defense (DoD) and U.S. Government. No flexibility was built in the system to possibly 

collect user fees at a later time. Considering today the vast array of commercial applications that 

make use of GPS, this represents a huge missed opportunity the Europeans are trying to avoid in 

designing their GALILEO system (Figure 2.8b). In effect, the European positioning system is 

planned to collect user fees for greater accuracy and precision, depending on geographic 

location. 

 

   
a)      b) 

Figure 2.8: a) GPS represents a system designed inflexibly, and a considerable missed 

commercial opportunity. (Source: Boeing, 2007) b) The European GALILEO system will 

charge user fees for higher precision and accuracy. (Source: Directorate General European 

Commission, 2007). 

 

There are typically two types of flexibilities in engineering systems. Those can be classified as 

sources of flexibility “in” projects and “on” projects (de Neufville, 2005). The former exploits 

technical aspects of the design to build flexibility “in” the system. It requires input from 

technical people and designers to produce a design that is different than an original, inflexible 

one. For example, (de Weck et al., 2004) argue that a staged deployment of satellites and the 

flexibility to redeploy them in different orbits would have helped the Globalstar and Iridium 

satellite phone systems to reduce losses when demand for satellite phones turned out lower than 

expected. The technical flexibility required in each satellite to redeploy in different orbits is an 

example of flexibility “in” the system. 
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Flexibility “on” projects relates to all management decisions that can be made to affect the 

system as a whole without necessarily modifying technical design components. As summarized 

by (Kalligeros, 2006), there are several sources of flexibility at this level. For instance, program 

managers may decide to defer investments altogether to obtain more information about market 

conditions. When several projects are available, this may also involve deferring initial choice of 

investment project. Abandoning a project altogether if exogenous conditions are unfavorable is 

also an important flexibility “on” projects. It is also possible to expand or reduce production to 

accommodate demand and price, and finally, combine all or some of the above options to create 

a compound real option. Flexibility “on” projects also includes the flexibility in the operations of 

the system. For example, an airline may decide to operate different routes in a flexible manner so 

it concentrates inbound and outbound flights where demand is higher. 

 

In this thesis and the analysis methodology presented in Chapter 3, flexibility plays a very 

important role. In considering the best combinations of design elements and management 

decision rules suited to uncertain variable scenarios, designers may introduce flexibility to adapt 

even more effectively towards uncertainty and increase overall value and performance of the 

system. This allows program managers to adapt even more efficiently to uncertainty in the 

section on manager’s adjustments of Figure 2.1. In order to do this, analytical tools are needed to 

screen the engineering system for sources of flexibility. This is necessary to determine which set 

of flexibility is worth including in the system’s design, and to justify to program managers and 

senior management the additional cost required for implementation. 

 

2.4 Screening the Engineering System for Sources of Flexibility 

 

While several methodologies exist to deal with flexibility “on” projects, such as those presented 

by (Brennan and Trigeorgis, 2000; Dixit and Pindyck, 1994; Luenberger, 1997; Schwartz and 

Trigeorgis, 2001; Trigeorgis, 1996 & 1995), there is a community devoted to the finding of 

sources of flexibility “in” project design. Important contributions and approaches are described 

below. 
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Kalligeros (2006) used Design Structure Matrices (DSM) to represent the engineering system 

and the interaction between its different components. An algorithm known as Invariant Design 

Rule (IDR) is developed to find standard components in the system, also known as platform 

components. Those are components of the system that do not change when the system evolves or 

is adapted to suit a slightly different purpose. In this method, the basic assumption is that non-

standard components in the system, or those that vary when applying the IDR, are potential 

sources of flexibility. A method to assess the value of non-standard components is also suggested 

and based on real options analysis. A case application to oil platform development is used to 

demonstrate the benefits of the approach. 

 

Bartolomei (2007) presented the Engineering System Matrix (ESM) to represent the engineering 

system and its socio-technical components and intricacies (Figure 2.9). The ESM is an 

improvement to existing system-level modeling frameworks like DSM because it provides a 

dynamic, end-to-end representation of an engineering system. From a matrix perspective, an 

ESM is made of traditional DSMs with the addition of system drivers and stakeholders DSMs. 

The system drivers component of the ESM represents the set of uncertain variables affecting the 

system that are out of managers’ control. The stakeholders component represents the different 

stakeholders involved in operating and managing the system, as well as those that benefit (or 

pay) for its use.  
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Figure 2.9: The Engineering System Matrix (ESM), which is a combination of standard 

DSMs with system drivers and stakeholders DSMs. (Source: Bartolomei et al., 2006). 

 

Once the system is adequately represented by an ESM, Bartolomei suggested that “hot” and 

“cold” spots can be used as sources of flexibility “in” the system. Those are elements that are 

respectively crucial and less crucial to make the system function well. One qualitative method 

for finding a hot spot in an ESM is to focus on the number of links and interactions between it 

and other components of the matrix. The more connections, the more a change in that particular 

component of the system will affect the entire system’s well functioning.  

 

Bartolomei’s suggestion is that since a “hot” spot greatly affects the well-functioning of the 

system, acquiring flexibility to smooth out a possible change in such component will add value 

to the system. For example, suppose it is found in a particular ESM that the managing director of 

the system in the stakeholder DSM has many links to it. It is found however that the managing 

director will take an indeterminate leave-of-absence within two weeks, greatly affecting the final 

outcome of the project. Therefore, acquiring flexibility in that area by hiring a temporary director 

or training another employee can enhance the value of the project as compared to functioning 

without a managing director. 
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Silver and de Weck (2006) introduced an algorithm based on switching cost minimization and a 

reaching algorithm optimization technique to find potential platforms across various initial 

system designs. Switching cost is defined as the cost of switching from one system design to 

another through flexibility to adapt to changing conditions in uncertain variables. It is included in 

life cycle cost together with design cost, operating cost, and fixed cost. For example, if demand 

is the uncertain variable, switching cost is the cost of switching from a lower production supply 

chain to higher production. It may include technical costs as well as the cost of training new 

personnel and managers to get acquainted with the new production line. 

 

The methodology introduces a few possible initial designs for the system and produces several 

scenarios of the uncertain variable (e.g. demand) under which the system could perform. The 

algorithm then seeks the design or set of designs that minimizes life cycle cost over the project 

duration and across the scenarios. The lower the switching cost, the more often a switch occurs 

between designs depending on the set of uncertain variables modeled as scenarios. The authors 

suggest that identifying the elements in design that need to be changed to switch from one design 

to the other represent non-standard components that can be further exploited as potential sources 

of flexibility. They therefore suggest finding technical means to implement this flexibility so that 

switching can be done in the cheapest possible way. A case study to Lunar-Mars exploration 

missions is used as an example to demonstrate the benefit of the approach, and for the choice of 

initial design between four different launch vehicle designs. 

 

Cardin et al. (2007) proposed a methodology based on historical case studies of engineering 

systems and Kalligeros’ IDR method to help program managers and designers screen their 

system for flexibility. It also proposes tools for assessing their value prior to incorporation in the 

system design and operations based on Monte Carlo simulations (see Section 3.4 below). The 

goal is to structure managers’ thinking in how they can approach the search for new sources of 

flexibility. The method is based on five flexible design attributes, or engineering lessons, 

extracted from historical studies of the Boeing B-52 Stratofortress, Navstar Global Positioning 

System (GPS), Convair B-58 Hustler, as well as the U.S. Air Force/NASA Inertial Upper Stage 

(IUS) program. These attributes are platform-like initial design, adaptability for changing 

missions, adaptability for changing purpose of the system, technological evolvability and 
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maintainability, as well as design modularity. 

 

Finally, de Neufville (2006) indicated that flexibility can be found in existing facilities by 

changing and adapting operations of the system. This is another source of flexibility in systems 

not investigated explicitly by the above authors, who concentrate on flexibility acquired 

upstream “in” the system design. 

 

2.5 Considering Designers’ Reality 

 

One last important issue to consider in laying grounds for the analysis methodology of Chapter 3 

is designers’ reality. Either in industry or in government, their goal is to explore the 

combinatorial space for design elements and management decision rules that provide best value 

and performance given uncertain conditions. Meanwhile, they have to do so spending a limited 

amount of time, computational resources, and financial resources. In other words, they cannot 

spend too much time doing simulations and reviewing models before presenting their design or 

recommendations to program managers and senior decision-makers. 

 

The catalog approach accounts for this by reducing the size of the combinatorial space to 

interesting design elements and management decision rules, and by structuring the search more 

efficiently given one particular uncertain variable scenario. This structured approach helps 

designers sending a clear message to decision-makers by using analytical tools and software 

familiar to the firm or government agency. This transparency makes it much easier to assess a 

project’s financial value, and for it to be accepted. 

 

In addition, when presenting a particular solution to senior decision-makers, program managers 

need to deliver a clear, efficient, and easily understandable message. This reality prevents use of 

several methods described in Sections 2.4 to screen the system for sources of flexibility, and of 

methods to assess the value of flexibility. For instance, valuation methods such as real options 

analysis based on binomial trees have a hard time making it to real world technical practice (e.g. 

engineering, real estate, architecture) because they involve understanding new methods and 
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quantitative concepts a firm is probably not familiar with (Geltner, 2007). Screening methods 

based on DSM (Kalligeros, 2006; Bartolomei, 2007; Bartolomei et al. 2006) are complex and 

demanding to apply in reality, especially when large engineering teams need to agree on every 

part of the analysis. Techniques based on optimization such as the one presented by (Silver and 

de Weck, 2006) may lack transparency and appear as a “black box answer” based on 

optimization results. 

 

Because clarity is important when communicating ideas, especially to higher management levels, 

the method introduced in the next chapter promotes exploration of the combinatorial space that is 

both efficient and transparent. Valuation methods based on Monte Carlo simulations are 

suggested for use in this methodology. This is because they show transparently the evolution of 

design and management decisions with financial instruments and software already familiar to the 

firm. This should encourage further exploration of the combinatorial space for solutions that 

potentially lead to increased value and performance compared to current design practice, which 

does not necessarily account in advance for flexibility. 
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Chapter 3 – Enabling Practical Search for the Catalog of Operating 

Plans 

 

This thesis proposes an analysis methodology to explore efficiently the combinatorial space of 

operating plans that improves value and performance of engineering systems compared to 

inflexible design and management practice. It structures the search for the best design and 

management decision rules around catalogs of standard operating rules, which act as short cuts 

for the analysis. The use of these catalogs minimizes the cost, time, and computer resources 

devoted to upfront modeling, simulations, and financial assessments.  

 

The proposed method uses intuitive analytical tools that can be understood easily by the firm or 

government agency’s program managers and senior decision-makers. To demonstrate the value 

of the method, Chapter 4 applies it to two real world case studies. 

 

3.1 Analysis methodology 

 

The methodology uses analytical tools already present in a firm, industry, or government sector 

to analyze and value new engineering system designs. It works with models and concepts 

familiar to management to favor adoption. In this thesis, design analysis is done in Excel®, 

which is widely used both in government and industry. It is important to note however that the 

methodology applies independently of the analytical tools used. It also structures thinking about 

flexibility in design and management of the system. This should contribute in adopting the most 

valuable catalog of operating plans to improve value and performance of the system. The 

methodology consists of five steps: 

 

Step 1: Build an initial model of the engineering system to measure value and performance. 

Designers need to identify the main design elements and management decision rules related to 

their system, as well as a metric for assessing its value and performance under different 
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combinations of those. They also need to identify the main sources of uncertainty, or uncertain 

variables, affecting value and performance.  

 

An initial model of the system is developed here from a series of fixed requirements on design 

elements, uncertain variables, and management decision rules. A preliminary analysis of the 

value and performance of the system is made using deterministic projections of the uncertain 

variables. 

 

Step 2: For each source of uncertainty, propose a limited set of uncertain variable scenarios 

and review initial model. A limited set of uncertain variable scenarios is introduced in the 

model as a way to recognize how uncertainty may affect the value and performance of the 

system. An example of uncertain variable scenario in the Codelco case can be a particular price 

pattern over the lifetime of a mining project.  

 

This limited set of scenarios consists of relevant scenarios to designers who want to find how 

initial design elements and management decision rules can change depending on the scenario 

under consideration. Relevant scenarios can be found using the method suggested in Section 3.2. 

Brainstorming, judgment, and practitioners’ expertise are also necessary to determine those 

relevant scenarios. If need be, designers review their model in light of new information brought 

by the use of those scenarios. 

 

Step 3: Determine the main sources of flexibility in the system and incorporate in the 

model. Sources of flexibility to adapt to the limited set of uncertain variable scenarios are 

identified here using any of the screening methodologies of Section 2.4, together with experts’ 

brainstorming sessions, judgment, and expertise. The benefit of introducing flexibility at this 

stage is to adapt the system even more effectively to changes in uncertain conditions, and 

therefore capitalize on upside opportunities while reducing potential losses due to downside 

events. Valuable flexibilities are incorporated in the model representation of the system. 

 

Step 4: Search the combinatorial space and create the catalog of operating plans. The goal 

here is to find the combination of design elements and management decision rules that provides 
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best value and performance of the system for each relevant uncertain variable scenario 

considered in step 2. All sources of flexibility from step 3 are used in this analysis to measure 

performance given a particular scenario. For each scenario, the best combination of design 

elements and management decision rules forms an operating plan, and the collection of operating 

plans arising from the analysis of each scenario forms the catalog of operating plans.  

 

For each uncertain variable scenario from step 2, the search for the best combination of design 

elements and management decision rules is structured by applying the experiment design 

algorithm adaptive OFAT (Frey and Wang, 2006; Wang, 2007). This algorithm is described in 

greater detail in Section 3.3.1.2. 

 

Step 5: Assess the Value of the Catalog of Operating Plans. Designers assess here the 

expected value and performance achieved using the catalog of operating plans of step 4. The 

method for doing this is described in Section 3.4.  

 

This analysis determines how much value the catalog of operating plans adds compared to a 

system that recognizes uncertainty but is inflexibly designed and managed. This information is 

useful to program managers wishing to use this catalog of operating plans to manage their 

system. They may find how much value, on an expected value basis, can be added compared to 

using only one inflexible operating plan. Since only a few scenarios of uncertain variables are 

used in exploring the combinatorial space, they can identify, using historical data, which trend is 

currently occurring in the uncertain variable, and “pick” the most relevant plan for a particular 

trend observation. 

 

3.2 Finding Relevant Uncertain Variable Scenarios 

 

In step 2 of the analysis methodology, designers need a method to find uncertain variable 

scenarios that are most relevant to their analysis. To tackle this issue, this thesis suggests creating 

several simulations of possible uncertain variable scenarios, and analyzing them to uncover 

particular characteristics that can be used to classify them in a small number of categories. These 
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categories should be chosen to represent most uncertain variable scenarios that can arise in 

reality. Simulations of uncertain variable scenarios can be done in Excel®.  

 

An example involving the development of a parking garage is used to illustrate these ideas. In 

this example, inspired from (de Neufville et al., 2006), the service provided is parking space for 

cars near a commercial center. Demand for parking space is the uncertain variable providing 

revenues to the owner of the garage. For the purpose of this brief example, readers need not 

consider the costs of the project. 

 

The proposed approach has three parts. The first part uses deterministic projections of the 

uncertain variables used in step 1 of the analysis methodology. It determines how fluctuations 

can be incorporated around deterministic projections based on the analyst’s assumptions of 

relevant probability distributions. An example of simulated demand scenario for the parking 

garage example is shown in Figure 3.1. It is assumed that demand is the only uncertain variable 

in this example. 

 

 

Figure 3.1: Example of simulation of the uncertain demand variable around projected 

trend for the parking garage example. 
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The second part involves simulations of several scenarios, and visualization of them for further 

analysis. Depending on designer’s need, ten or fifty simulations might be necessary for the next 

part. Simulations can be laid out as shown in Figure 3.2. 

 

 

Figure 3.2: Examples of simulated demand scenarios in the parking garage example. 

Designers analyze these scenarios in part three to find characteristics that enable 

classification in categories representing the diversity of possible demand scenarios. Only 

four scenarios are shown here, but designers are free to choose as many as necessary to 

uncover representative categories. 

 

The third part analyzes the scenarios to discover particular characteristics useful for 

categorization. These characteristics should ideally allow categorization of the entire set of 

possible uncertain variable scenarios that can emerge in reality. For example, designers may 

classify scenarios in Figure 3.2 by looking at the percentage growth between the first and final 

years, and by looking at the initial value of the scenario. Four categories could be created: low 

initial value and low growth, low initial value and high growth, high initial value and low 

growth, and high initial value and high growth. These characteristics are also used to classify 

simulated uncertain variable scenarios in step 5 of the analysis methodology to assess the overall 
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expected value of the catalog of operating plans. A simple algorithm can be implemented in 

Excel® to classify each pattern in this part of the analysis. 

 

3.3 Searching the Combinatorial Space 

 

The search algorithm for exploring the combinatorial space for the most relevant catalog of 

operating plans was originally developed in the context of statistical experiment design (Frey and 

Wang, 2006; Wang, 2007). It is appropriate therefore to present it in this context and draw 

analogies with the thesis. 

 

In statistical experiment design, a factor is an independent variable that influences the response 

of a particular system. To draw analogy with the design of engineering systems, a factor can be 

regarded as a particular design element or management decision rule with several possible 

values, known as levels. Taking the example of an electric-powered aircraft from (Frey and 

Wang, 2006), a factor influencing duration of flight, which is the measured system’s response, 

can be wing surface area. As shown in Table 3.1, this factor is assumed to take on two level 

values according to this particular design requirement: 450 in2 and 600 in2. Table 3.1 also shows 

other examples of factors influencing the aircraft’s duration of flight. 

 

Table 3.1: Examples of factors involving design elements in the case of an electric-powered 

aircraft (Frey and Wang, 2006). For example, the factor “wing area” is assumed to have 

two levels: 450 in2 (denoted as –) and 600 in2 (denoted as +). 

Factors

– +

Propeller diameter 7 in. 8 in.

Propeller pitch 4 in. 5 in.

Gear ratio 1:1 1:1.85

Wing area 450 in.
2

600 in.
2

Cells in battery 7 8

Motor type SP400 7.2V SP480 7.2V

Number of motors 1 2

Level
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Factors can contribute in two ways to the response of a given system: through main factor effects 

and interaction effects between the factors. A factor that affects the response of the system 

consistently throughout all experimental measurements is said to contribute a main factor effect 

to the response. A factor whose contribution to the measured signal changes when it is used in 

combination with other factors is said to contribute interaction effects to the measured signal. 

 

This reality is depicted in the equation below. In this equation, y is the measured system output, 

which is a function of the different factors xi influencing the response. The coefficients βi 

represent the contribution from each factor’s main effect on the measured response, βij represent 

contributions from the interaction effect between factors xi and xj, and εk is the measured 

experimental error. For two-level factors, xi can take values two values {+1, –1}. 
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Therefore, the measured response of a system can be characterized by the sum of the effects of 

the main and interacting factors. What needs to be done to describe such response fully in the 

form of this equation is to determine a set of possible factors, and run several experiments 

measuring the response under all possible combination of factor levels. In the statistical 

experiment design jargon, this is known as performing a full factorial analysis of the system. 

Ideally, this is what designers would hope to achieve in step 4 of the analysis methodology to 

find the combination of design elements and management decision rules that provides the best 

response of the system. 

 

In reality however, designers seldom have time to perform a full factorial analysis to get a 

statistically significant description of the response of the system. This is precisely the kind of 

situation addressed in this thesis. Here, searching the combinatorial space amounts to finding a 

good combination of design elements and management decision rules affecting the value and 

performance of the system. The goal is to find the most relevant catalog of operating plans while 

avoiding a complete factorial analysis. 
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3.3.1 Reducing the Number of Experiments 

 

Several methods exist in the statistical experiment design literature to reduce the number of 

experiments necessary for factorial analysis. Two of them are presented in this section: fractional 

factorial analysis and adaptive OFAT. The section starts from a hypothetical example of 

statistical experiment design for full factorial analysis. It follows with concrete examples of 

application of fractional factorial analysis and the search algorithm adaptive OFAT to find the 

best response of the hypothetical system. These search methods both require fewer experiments 

than full factorial analysis. 

 

Figure 3.3 shows graphically an example of statistical experiment design for full factorial 

analysis. This particular design has three factors A, B, and C with two levels for each factor (+ 

and –). Table 3.2 shows measurements obtained from a set of eight hypothetical experiments. 

Each experiment represents one measurement of the response on the hypothetical system given a 

particular combination of factor levels. 

 

 

Figure 3.3: Representation of a statistical experiment design for full factorial analysis. This 

design involves three factors (A, B, and C) with two levels each (+, –), as inspired from 

example in (NIST/SEMATECH, 2006). 
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Table 3.2: Hypothetical measurements obtained by performing the experiments presented 

in the design of Figure 3.3, as inspired from (NIST/SEMATECH, 2006). 

Experiment number A B C System’s response 

1 – – – 33 

2 – + – 41 

3 + – – 63 

4 + + – 57 

5 – – + 57 

6 – + + 59 

7 + – + 51 

8 + + + 53 

 

3.3.1.1 Fractional Factorial Analysis 

 

In the case of fractional factorial analysis, all possible combinations of factor levels are listed as 

in Table 3.2, but only a subset of combinations is selected to perform experiments and measure 

the system’s response.  

 

In this kind of analysis, the selected subsets of experiments should ideally be both balanced and 

orthogonal (NIST/SEMATECH, 2006). A balanced experimental design is one where the 

number of experiments is the same for each combination of factor levels. Assuming the response 

of the system from which measurements are taken can be modeled using the linear equation 

above, an experiment design is orthogonal if estimates of all parameters are uncorrelated 

(Kuhfeld et al., 1994). This means each parameter estimate has to be independent from other 

estimates in the model. In practice however, it is very difficult to find perfectly orthogonal 

designs, and most practitioners rely on non-orthogonal experiment designs (Kuhfeld et al., 1994). 

 

In this design, all factor level combinations are depicted by experiments 1 to 8. Since one 

measurement is made for each combination, the design is balanced. For simplicity and 
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illustrative purpose only, it is assumed that the correlation between the model parameters is 0. 

Therefore the design can be considered orthogonal. 

 

Given this, the dark and light dots on Figure 3.3 represent two balanced and orthogonal subsets 

of four experiments that can be used for fractional analysis. The “white” subset consists of 

experiments 1, 4, 6, and 7, while the “black” subset consists of experiments 2, 3, 5, and 8. 

 

If designers are interested in finding the maximum response of the system using fractional 

factorial analysis, they can perform “white” experiments 1, 4, 6, and 7, and retain the 

combination of factor levels that provides the highest response of the system. In this case, the 

highest system’s response is 59, provided by the combination (A: –, B: +, C: +). Alternatively, 

they can perform the “black” experiments 2, 3, 5, and 8, and obtain a best response of 63 with a 

combination of factor levels (A: +, B: –, C: –). 

 

The advantage of using fractional factorial analysis is that instead of performing eight 

experiments, designers only need to perform four, which in this case represents 50% of the total 

number of experiments. The disadvantage is that depending on the subset selected, the 

combinations of factor levels (equivalent to a certain design choice in analogy with engineering 

system design) may not be the same. 

 

3.3.1.2 Adaptive OFAT 

 

Another search algorithm introduced by Frey and Wang (2006) reduces the number of 

experiments in factorial analysis. This algorithm, known as adaptive OFAT, has two versions: 

one for cases where factor levels are discrete and one where they are continuous. The discrete 

case is presented first. 

 

In a space where n is the number of factors and where each factor has two levels, adaptive OFAT 

reduces the number of experiments from 2n to n + 1. The adaptive OFAT search algorithm is 

useful in this methodology because it reduces both computational efforts and time devoted to 
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searching the combinatorial space. It also guides the search for factors that most influence the 

response of the system. 

 

The search algorithm is presented in Figure 3.4. The same three factors as above (A, B, and C) 

have influence on the response of the system, and each factor has two levels (+ and –). The 

algorithm starts with a baseline combination of factor levels (A: –, B: +, C: +) as shown on 

Figure 3.4), an experiment is done, and a measurement is taken given that particular 

combination. This initial combination, called baseline experiment, is either selected randomly to 

offer greater generality or through a preferred choice from designers. The sequence in which 

factors are investigated subsequently should also be generated randomly (Wang, 2007).  

 

 

Figure 3.4: Adaptive OFAT as applied to a system with three two-level factors (A, B, and 

C). (Source: Frey and Wang, 2006). 

 

One factor level is then modified. If the system’s response is improved, the change is kept. If not, 

designers go back to the previous combination of factor levels. The process is repeated until all 

factors are changed at least once, which means n + 1 experiments are performed, including the 

baseline experiment. Hence, only a fraction (n + 1) / 2n of the combinatorial space is explored. 

For instance, if three factors are responsible for the response of the system as in the previous 

example, n = 3 and 23 = 8 possible combinations exist. The search algorithm therefore explores 

4/8 = 50% of the combinatorial space, similar to the fractional case. As n increases, the 
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percentage of combinatorial space explored by the algorithm steadily decreases, which is the 

interesting feature of adaptive OFAT.  

 

The adaptive OFAT algorithm is applied to the experimental design shown in Figure 3.3 using 

experimental data from Table 3.2. For more generality, the baseline experiment is selected 

randomly, together with the sequence in which the factors are investigated. The randomly 

generated baseline experiment is (A: –, B: –, C: –), and the sequence is A followed by B followed 

by C.  

 

The measured response of the system for the baseline experiment is 33. Changing factor A to its 

positive level (+), the measured response for the combination of factor levels (A: +, B: –, C: –) is 

63. The change is retained because there is clear improvement over the previous response of the 

system. Factor B level is then changed to positive (+), and the measured response for the 

combination of factor levels (A: +, B: +, C: –) is 57. This combination is not retained because it 

gives a lower response than the previous one, and so the previous combination (A: +, B: –, C: –) 

is retained. The final experiment changes factor C level to positive (+), and the measured 

response for the combination (A: +, B: –, C: +) is 51, which again is lower than the response of 

63 obtained with (A: +, B: –, C: –). Therefore, the best combination of factor levels for the 

system using adaptive OFAT is (A: +, B: –, C: –) with a corresponding response of 63. 

 

In this particular case, the adaptive OFAT algorithm performs as well as the fractional factorial 

method if designers correctly select the “black” subset of experiments. This result is however 

greatly dependent on the choice of baseline experiment, and on the sequence in which the factors 

are investigated. For example, the interested reader can check that if the baseline experiment is 

(A: –, B: +, C: +) with the same sequence of investigation (A followed by B followed by C), the 

measured output is 59, and the best combination of factor levels is that of the baseline 

experiment (A: –, B: +, C: +). This is equivalent to selecting the “white” subset of experiments in 

fractional factorial analysis. 
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3.3.1.3 Continuous Version of Adaptive OFAT 

 

Another version of adaptive OFAT exists for factors and levels that are continuous (Wang, 

2007). This method provides better assurance that no local maximum is selected when applying 

the algorithm at the expense of a global maximum. The approach however works with a 

representation of the system’s response in the form of the equation above describing a system’s 

output. It aims at updating one step at a time the coefficients βi, described as continuous 

probability distributions, and based on the maximum system’s response obtained through each 

experiment. 

 

3.3.2 Choosing to Use Adaptive OFAT 

 

Frey and Wang (2006) as well as Wang (2007) suggest using adaptive OFAT for guiding the 

search for the best elements in engineering system design, but not necessarily in a manner that 

considers flexibility nor managerial issues. In this thesis, the application of adaptive OFAT is 

extended to searching the combinatorial space while considering flexibility as part of the 

evolution of both design and management processes. 

 

As illustrated before, one problem with adaptive OFAT is that no guarantee exists that a global 

maximum will be found. Depending on the baseline experiment selected and the sequence in 

which combinations of design elements and management decision rules are investigated, it is 

possible that a local maximum is found instead of a global one. This is why for greater 

generality, it is recommended to generate randomly the sequence of investigated factors and 

baseline experiment (Wang, 2007). 

 

Regarding the choice between discrete and continuous adaptive OFAT, this thesis argues that the 

continuous version makes the analysis overly complex for engineering system design and 

management. Briefly stated, this complexity is introduced by the fact that factors xi and 

coefficients β need to be described and considered as probability distributions with means and 

standard deviations being updated by the continuous version of the algorithm.  
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It is unlikely that designers and program managers will be interested in adding an extra layer of 

complexity introduced by the continuous version of adaptive OFAT, even though it is 

theoretically more appealing. It is a basic premise of this work that they have very little time, 

financial, and computational resources to devote to modeling and simulations. In addition, 

project valuation and assessment of flexibility needs to be done in a clear, understandable, and 

transparent manner. This is why the discrete version of adaptive OFAT is recommended. 

 

Considering the above, using discrete adaptive OFAT is recommended in this thesis because it is 

easy to use, implement, and because it structures the search for the best combination of design 

elements and management decision rules to build the catalog of operating plans. Its effectiveness 

over fractional factorial analysis is demonstrated in (Frey and Wang, 2006; Wang, 2007), and it 

has the conceptual advantage of being Bayesian and thus easily responsive to a priori knowledge 

about the system. The choice for which experiments and combination of factors should be kept is 

made intrinsically part of the algorithm, thus simplifying this task for designers. This is 

especially useful when designers have limited intuition on which combination produces best 

results. Considering this, if good intuition is available on which combinations should be explored 

and those that should not, designers should obviously integrate this knowledge as part of the 

analysis methodology. 

 

3.4 Assessing the Value of the Catalog of Operating Plans 

 

Once sources of flexibility are identified in step 3 and the catalog of operating plans is created in 

step 4, it is interesting to determine how much value the catalog approach adds compared to an 

inflexible design that uses only one inflexible operating plan. 

 

The analytical tool recommended in this thesis to assess the value of the catalog of operating 

plans uses Monte Carlo simulations. The advantage of the method is to use tools and software 

(like Excel®) familiar to most designers, which does not require the introduction of new 

software and optimization techniques. The method is transparent and depicts reality in a financial 
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language familiar to most managers and financial officers (e.g. pro forma income statement). It 

can simulate as many uncertain variables as computational power allows and as relevant for the 

search for the best catalog of operating plans. It is also possible to implement different 

management decision rules that are inherent part of the catalog.  

 

To the contrary of the method based on binomial trees pioneered by (Cox et al., 1979) to assess 

the value of real options, simulations do not make use of the concept of arbitrage enforced 

pricing to justify the use of a risk-free discount rate. Therefore, some analysts may complain 

about the theoretical validity of Monte Carlo simulations. On the other hand, simulations are 

much easier to understand and implement than binomial trees because they do not require a 

detailed understanding of many options-related concepts like arbitrage enforced pricing. They 

are also a lot more intuitive. 

 

The method to value the catalog of operating plans is derived from the one de Neufville et al. 

(2006) presented to assess the value of flexibility in engineering systems. It uses the same 

example of development of a parking garage introduced in Section 3.2, where demand for 

parking space is the uncertain variable giving rise to uncertain revenues. 

 

The general process for valuing the catalog involves three parts. The first requires the model 

built in step 1 of the analysis methodology that is inflexible both in terms of design and 

management decision rules. This model therefore shows only one operating plan. It can take the 

form of a pro forma income statement as shown in Figure 3.5, typical of financial analyses 

performed in the industrial world.  

 

Uncertainty is then recognized in the model by simulating many scenarios of the uncertain 

variable (e.g. two thousand) to see how they each affect the project valuation metric, in this case 

NPV. This step incorporates many fluctuations around the analyst’s original deterministic 

projections of demand from step 1. These fluctuations reproduce assumed probability 

distributions around the analyst’s demand projection for each year. One simulation depicting one 

demand scenario for the entire project duration is shown in Figure 3.1. 
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Figure 3.5: Example of pro forma income statement based on deterministic projections of 

demand for a parking garage.  

 

 

Figure 3.6: Example of histogram distribution resulting from Monte Carlo simulations. 

 

The results of the Monte Carlo simulation can be represented through a histogram (Figure 3.6). 

Statistical measures then describe the distribution of outcomes, such as mean or Expected NPV 

(ENPV), standard deviation, minimum and maximum NPV, etc. 
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In such paradigm, managers now deal with a distribution of possible NPV outcomes instead of 

one based on deterministic projections. Because of this, it is interesting to introduce another 

graphical tool helpful for managerial decisions. This is the cumulative distribution function 

(CDF), or Value At Risk and Gain (VARG) curve, which depicts the cumulative probability of 

having NPVs below a certain value (Figure 3.7). For instance, this VARG curve shows there is a 

10% chance of having NPV values below -$5M, and a 30% chance of having NPV above $7.5M. 

 

 

Figure 3.7: Example of VARG curve depicting the range of possible NPV outcome for a 

particular project. An example of possible ENPV is also shown. 

 

The second part consists of assessing the value of the catalog of operating plans using similar 

mechanisms. For each simulation of uncertain variable scenarios, an operating plan is selected 

that is best suited for that particular scenario. In other word, the simulated scenario is assigned to 

a particular category as discussed in Section 3.2. This simulates program manager’s decision to 

use a particular operating plan given observations of a particular trend in the uncertain demand 

variable. 

 

For instance, a simulated scenario with low initial value and high percentage growth between 

first and final years can be associated to one of the few scenarios in step 2 of the methodology 
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because it exhibits a similar behavior. Since the scenario of step 2 is associated to one particular 

operating plan in step 4, the simulated scenario can be associated by extension to this particular 

operating plan. Simulations are run once again to find the histogram, VARG curve, and ENPV 

results from following such managerial behavior. 

 

The third part computes the additional value provided by the catalog of operating plans as 

follows: 

 

E[VCatalog] = ENPVCase with catalog. – ENPVInflexible case 

 

That is, the expected value of a particular catalog of operating plans is found as the difference 

between the ENPV of the design with a catalog of operating plans and ENPV of the inflexible 

case. 

 

Following this, Chapter 4 applies the analysis methodology and adaptive OFAT algorithm to two 

realistic case studies. These demonstrate concretely how the approach suggested in this thesis 

can be useful in designing and managing engineering systems. 
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Chapter 4 – Case Studies 

 

This chapter applies the proposed methodology and concepts to two realistic case studies. The 

goal is to demonstrate by example how this methodology can be applied in reality. The first case 

study is inspired from the development of a parking garage near the Bluewater commercial 

center in the United Kingdom. The second relates to the development of a real estate project in 

the United States. The purpose of using two different case studies is to explore the generality of 

the approach and highlight some differences in application. 

 

4.1 Bluewater Commercial Center Parking Garage 

 

As presented in (de Neufville et al., 2006), this first case study relates to the construction of a 

multi-level parking garage to suit the needs of customers at the nearby Bluewater commercial 

center. Several design questions arise, such as the number of levels that should be built to 

accommodate demand in parking space. The authors use the case as a pedagogical tool to 

demonstrate how uncertainty and flexibility can affect design decisions and maximum ENPV 

when complex systems are designed and managed in the computational way described in Figure 

2.3. 

 

 

Figure 4.1: Example of parking garage. (Source: SARAA, 2007).  



 

  54 

 

The original case makes three important points. First, the value of an investment assuming 

deterministic projections of the uncertain variable, in this case demand for parking space, 

typically does not correspond to the realized value of a project. One needs to shift from 

deterministic “NPV perspective”, where one measurement of the value of the system is made, to 

the perspective of ENPV. Second, design analyses assuming deterministic exogenous effects 

may provide wrong design decisions. Third, flexibility in design may increase value by 

capitalizing on unexpected upside opportunities and reducing losses in case of downside events. 

 

In this original case, analysis considering standard pro forma cash flow based on a single future 

scenario suggests an initial design of six floors with maximum NPV = $6.2M (Figure 4.2). This 

measure however is necessarily unrealistic because it does not recognize uncertainty. It is not 

used as a basis for comparison in the analysis that follows in the remainder of Chapter 4.  

 

Recognizing that demand is uncertain (through two thousand Monte Carlo simulations of 

demand scenarios) changes conclusions to a design with five initial floors as seen on Figure 4.2, 

and reduces the ENPV by more than half the amount of the deterministic case. The authors then 

show that incorporating flexibility improves ENPV. This ability to adapt to uncertainty in 

parking space demand brings the initial number of floors down to four, and nearly doubles the 

maximum ENPV obtained compared to the inflexible case. 

 

This flexibility takes advantage of possible high demand through the ability to expand the 

number of floors while limiting this number initially to guard against the possibility of losses. 

Expansion is possible by incorporating stronger columns in the initial design. This latter design 

improves the ENPV of the project by reducing initial capital expenditures, and by providing the 

ability to expand floors and generate more profits. 
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Figure 4.2: Results from varying the number of initial floors in the static case with 

deterministic projections and recognizing uncertainty through two thousand Monte Carlo 

simulations. 

 

The authors however consider only one management decision rule, which is to expand by one 

additional floor after observing demand higher than capacity for two consecutive years. They 

recognize that flexibility through expansion can add value, but do not focus on the richness of 

possible combinations of design elements and management decision rules. How would a decision 

to expand after one or three years affect the value of the system, depending on a certain number 

of initial floors? 

 

This observation translates into several design elements and management decision rules being 

ignored that may potentially improve value. Examples can be the number of floors added in each 

expansion phase, or the number of consecutive years for which demand needs to be higher than 

capacity in order to expand. Therefore, this thesis proposes to explore the combinatorial space 

and construct a catalog of operating plans that takes advantage of good combinations of design 

and management decision rules depending on a limited set of demand scenarios. This approach 



 

  56 

also limits the amount of computational effort that is required. This is done below through 

application of the analysis methodology introduced in Chapter 3. 

  

4.1.1 Step 1: Build an initial model of the engineering system to measure value and 

performance. 

 

In the original case, design is guided by the prospect of making money, and therefore design 

decisions are driven by NPV (and ENPV when simulations are used). This is the financial metric 

measuring performance for this particular system. The main uncertain variable is demand for 

parking space.  

 

The initial model consists of a traditional pro forma discounted cash flow (DCF) Excel® 

spreadsheet using deterministic projections of parking space demand. The model is developed 

from the following assumptions (de Neufville et al., 2006): 

 

- The deterministic point forecast is that demand on opening day is for 750 spaces, and 

rises exponentially at the rate of 750 spaces per decade up to a limit of 1750 spaces; 

- The project has duration of twenty years; 

- Average annual revenue for each space used is $10,000, and the average annual operating 

cost for each space available (often more than the spaces used) is $2,000; 

- The lease of the land costs $3.6M annually; 

- Construction costs $16,000 per space for pre-cast construction, with a 10% increase for 

every level above ground level; 

- The site is large enough to accommodate 200 cars per level; and  

- The discount rate is taken to be 12% for the entire project duration. 

 

Figure 4.3 shows an example of pro forma statement for a design with six initial floors while 

Figure 4.4 shows initial demand projections leading to this assessment. Note in Figure 4.3 that all 

financial values are given at the end of each year. For example, decision to build occurs at year 0 

(now) and requires land leasing and fixed costs of $3.6M, as well as construction costs of 
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$22.8M. The first 750 parking spaces are ready one year after. Realized demand, revenues, 

operating costs, land leasing and fixed costs in year 1 and subsequent years are given at the end 

of each year. Since the duration of the project is twenty years, demand is given twenty times 

starting at year 1 and finishing at year 20, as shown in Figure 4.4.  

 

 

Figure 4.3: Example of pro forma statement and DCF model using deterministic 

projections for parking space demand. Note that only 3 years are shown here out of 20 for 

the project’s duration. 

 

 

Figure 4.4: Deterministic projection of demand for parking space for the 20-year project 

duration. 
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An initial analysis is done based on the assumptions above. The maximum NPV obtained by 

varying the number of initial floors is $6.2M, which corresponds to the design with six initial 

floors. This analysis is referred to as the static case. It corresponds to engineering and 

management practice when uncertainty is not recognized. 

 

The results from this static analysis however cannot be relied upon because they do not 

recognize that uncertainty in demand affects the value of the system. They are unrealistic and 

most likely wrong. The basis for determining whether the analysis methodology improves value 

is therefore to measure how much value the catalog of operating plans adds to the ENPV of an 

inflexible design that recognizes uncertainty. In this case, the inflexible design is the one 

producing the highest ENPV under Monte Carlo simulations. This performance value is 

measured in step 5. It is the benchmark against which any improvement brought by the analysis 

methodology is measured. 

 

4.1.2 Step 2: For each source of uncertainty, propose a limited set of uncertain variable 

scenarios and review initial model. 

 

In this case study, only demand in parking space is considered as a source of uncertainty. In 

order to find relevant demand scenarios that adequately represent the reality, the method 

proposed in Section 3.2 should be used. 

 

For simplicity here, the characteristic chosen to produce and categorize scenarios is the 

percentage growth between the first and fifth years. The motivation for choosing this simple 

characteristic is to study the effect on the value of the system of rapid demand growth in early 

years, and to simplify the demonstration of the analysis methodology. 

 

As mentioned in Section 3.2, a more precise way to categorize scenarios can be to look at 

combinations of low and high initial value and low and high percentage growth between first and 

final years to create four categories of demand scenarios. This categorization algorithm was not 
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implemented in this thesis. It is left for future work to determine how results would change using 

this type of categorization characteristics. 

 

The five categories of demand scenarios are listed in Table 4.1. The mid-value on the table is the 

middle value between two subsequent percentage growth rates. It is used to categorize demand 

scenarios in step 5. For example, a scenario having percentage growth below 38% in step 5 will 

be classified as similar to scenario 1, between 68% and 38% as similar to scenario 2, etc. 

 

Figure 4.5 shows the set of five demand scenarios chosen to represent the reality of uncertainty 

in parking space demand, and to represent each category of scenario described in Table 4.1. 

These five scenarios are used to create the catalog of operating plans in step 4. As mentioned, an 

algorithm based on these five categories is implemented in step 5 to classify simulated demand 

scenarios and assess the ENPV of the catalog of operating plans.  

 

Table 4.1: Percentage growth between first and fifth years for each of the five demand 

scenarios. The midway mark, or the percentage value between two scenarios, is used in step 

5 as a criterion to classify new demand scenarios. 

Demand scenario Percentage increase Mid-value

category from first to fifth year

1 131% 123%

2 115% 100%

3 84% 68%

4 52% 38%

5 24%  
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Figure 4.5: Set of five demand scenarios used to build the catalog of operating plans. The 

original deterministic demand projection is also shown. 

 

4.1.3 Step 3: Determine the main sources of flexibility in the system and incorporate in the 

model. 

 

As mentioned in Section 2.4, there are typically two areas where program managers can adjust to 

uncertain variables through flexibility: “in” the system, which includes in the upstream design 

and system’s operations, and “on” the system. In this particular case study, screening for 

flexibility is done at a relatively superficial level, and only brainstorming sessions are used. For 

more detailed screening methodologies, the reader is referred to Section 2.4. The following 

subsections show the output of the brainstorming sessions. 
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4.1.3.1 Flexibility “In” Design 

 

In the parking garage case, two technical adjustments are done “in” the system to adapt to 

uncertain demand scenarios presented in step 2. Designers can initially build fewer parking 

floors, reduce upfront capital investment, and therefore reduce losses if uncertain demand is 

unfavorable. They can also acquire stronger columns to allow capacity expansion as demand 

increases to capture additional profits. The real cost of acquiring this flexibility is approximated 

as 5% of total initial construction costs. 

 

The flexibility to expand takes advantage of demand that is higher than expected in the 

deterministic projections. The five scenarios showing different demand growth rate will be used 

to create five operating plans in step 5 that use this flexibility at different levels of intensity. For 

a scenario where demand increases rapidly, like scenario 1 in Figure 4.5, the emerging operating 

plan will use the flexibility to capitalize quickly on this good opportunity. For a scenario where 

demand increases more slowly, like for scenario 5 in Figure 4.5, this flexibility might be 

exploited less. 

 

Since the flexibility to expand is extremely useful in light of the uncertain demand scenarios 

selected in step 2, it is incorporated in the Excel® model of the system. 

 

4.1.3.2 Flexibility “In” Operations 

 

At the operations level a parking garage is fairly straightforward. This contrasts with an airline 

where aircraft routes and destinations can be modified to accommodate fluctuating regional 

demand. Here, the parking garage is in a fixed location, and it is assumed that clients always use 

the same parking spot for the entire contract duration. Nevertheless, there are sources of 

flexibility that can be exploited. For instance, managers may decide to operate the garage 

annually only ten months out of twelve or vary opening hours. 
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To incorporate this kind of flexibility in the model, it would be useful to have separate demand 

scenarios for customers interested in using the garage for a period of ten months instead of 

twelve, or to use it assuming different opening hours. 

 

Since in this case the only uncertain variable scenarios are demand for parking space, 

irrespective of time and opening hours, this flexibility is difficult to incorporate in the model. For 

brevity it is left aside from this analysis, but could be considered as part of a more detailed study. 

 

4.1.3.3 Flexibility “On” Project 

 

For adjustments “on” project, program managers have the ability to close the project if demand is 

lower than capacity for a certain number of years, thus reducing the maximum amount of losses. 

It is also possible to delay initial capital investment to gather information about market demand. 

 

The last set of flexibility “on” project is to adjust parking space price. In commodity industries 

with no monopoly like the copper industry, firms are price takers due to free market pressures. 

Therefore, commodity price patterns need to be considered as an uncertain variable 

uncontrollable by managers.  

 

In the parking garage case, the annual leasing price for parking space does not fluctuate as 

copper price does on the London Metal Exchange. Managers have control over the price they set, 

which depends on location, luxury level, quality of service, etc. In this case, management sets 

annual price per parking space. It is possible however to change this price depending on demand 

and market conditions, which is another potential source of flexibility. 

 

In light of the demand scenarios selected in step 2, the above sources of flexibility “on” project 

could be incorporated in the Excel® model. To simplify the analysis however, the only 

flexibility considered is the ability to expand. 
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4.1.3.4 Modifying the Model to Incorporate Flexibility 

 

A large number of design and management decision rules can be incorporated in the Excel® 

model to simulate flexibility in face of uncertain demand. Only the flexibility to expand is 

considered here, and only a subset of possible values is chosen for each design element and 

management decision rules to facilitate the adaptive OFAT search in the next step. Nevertheless, 

the same analysis can be performed with all sources of flexibility mentioned in the previous 

section.  

 

The number of initial floors is the first design element incorporated in the model to 

accommodate a flexible design with stronger columns. It is already implemented in the model 

since it is used in the deterministic valuation to determine the highest NPV. The number of initial 

floors is limited to four, five, and six floors for the OFAT search, and because analysis of the 

static case as done in (de Neufville et al., 2006) shows that the highest NPVs are generated 

among these values.  

 

At the managerial level, the model allows decisions to expand after two, three, and four 

consecutive years of demand higher than capacity. Another management decision rule is the 

number of floors by which to expand, set to one, two, and three floors at a time. Finally, program 

managers may decide on purpose not to expand in certain parts of the 20-year project duration to 

study market conditions or avoid useless expansion phases. Hence, decision not to expand in 

years 1-4 is allowed in the model to study market demand, years 9-12 to study midlife market 

conditions, and in years 17-20 to avoid useless expansion before the end of the project’s 

lifecycle. 

 

These design and management decision rules are summarized in Figure 4.6. For each design and 

management decision rule, the possible values, or levels, are described by the signs “–“, “o”, and 

“+”. In the next step, the adaptive OFAT algorithm is applied to find the best combination of 

design and management decision rules under each of the five demand scenarios found in step 2. 
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Design Elements and

Management Decision Rules Description - o +

A Expansion allowed in years 1-4 No N/A Yes

B Expansion allowed in years 9-12 No N/A Yes

C Expansion allowed in years 17-20 No N/A Yes

D Expansion decision rule (years) 2 3 4

E Number of floors expanded by 1 2 3

F Number of initial floors 4 5 6

Levels

 

Figure 4.6: Design elements and management decision rules implemented in the model to 

represent the flexibility to expand the number of floors. The levels represent the different 

values that can be taken by each design element or management decision rule. 

 

4.1.4 Step 4: Search the combinatorial space and create the catalog of operating plans. 

 

In this case, an operating plan is chosen as the combination of levels, under one of the five 

demand scenarios, that produces the highest NPV. Adaptive OFAT is used to explore the 

combinatorial space in search for that particular combination. For each demand scenario, a 

baseline experiment is chosen and the exploration sequence is determined randomly. One 

example application of the complete adaptive OFAT to the first demand scenario is shown here. 

This determines the first operating plan in the catalog of five. The demand scenario under study 

is shown in Figure 4.7 together with initial deterministic demand projection to get a feel for this 

proposed growth rate. The same analysis for the remaining four scenarios is shown in the 

Appendix section. 

 

In this case study, the baseline experiment is chosen by designers to be the same for all demand 

scenarios under study. It could have been generated randomly for each demand scenario to offer 

greater generality as suggested by (Wang, 2007). The reason for using the same baseline 

experiment here is to illustrate the possibility that designers may want to choose it based on their 

own judgment. The same analysis is performed using randomly generated baseline experiments 

and OFAT sequences, with results shown in the Appendix section. The next case study on real 

estate development also generates the baseline experiment randomly for each scenario.  

 



 

  65 

 

Figure 4.7: Demand scenario 1 is used in this example application of the adaptive OFAT 

process. 

 

Here, designers want a baseline experiment that exploits well the benefit of the flexibility to 

expand. They choose it so expansion is allowed in all years (management decision rules A, B, 

and C all set to “Yes”). Their choice is also to expand when demand is higher than capacity for 

two consecutive years, to do it one floor at a time, and to start with an initial design with five 

floors. The sequence in which each design elements and management decision rules are 

investigated is generated randomly. This information is summarized in Table 4.2. Examples of 

results obtained with different baseline experiments and OFAT sequences are shown in the 

Appendix section. 
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Table 4.2: Baseline experiment and OFAT sequence used to explore the combinatorial 

space for demand scenario 1. “DE” is the acronym for design element, while “DR” is the 

acronym for decision rule.  

DEs and Management DRs Description Baseline Experiment OFAT Sequence

A Expansion allowed in years 1-4 Yes F

B Expansion allowed in years 9-12 Yes C

C Expansion allowed in years 17-20 Yes E

D Expansion decision rule (years) 2 D

E Number of floors expanded by 1 B

F Number of initial floors 5 A  
 

The adaptive OFAT process is applied as shown in Figure 4.8. Each experiment is performed in 

order, and the resulting information is shown in each row. The column “DE and Management 

DR changed” represents the design element or management decision that is investigated for that 

particular experiment. The column “Level changed to:” refers to the level that is explored in this 

particular experiment since it is changed from the previous step. For example, in Figure 4.8, 

experiment 1 starts with the baseline experiment described in Table 4.2. In experiment 2, the first 

design element explored is F (number of initial floors), and the level is changed from 5 initial 

floors in the baseline experiment to 4 initial floors in experiment 2. In experiment 3, it is further 

changed to 6 initial floors. 

 

For each experiment, the measured NPV output is shown, the best overall output is shown in the 

column “Best output before step”, and designers keep the change if there is improvement in the 

measured response of the system. 

 
Experiment DE and Management DR changed Level changed to: Output = NPV Best output before step Keep change?

1 (baseline) $ 13.4
2 F 4 $ 10.9 $ 13.4 No
3 F 6 $ 15.1 $ 13.4 Yes
4 C No $ 15.1 $ 15.1 No
5 E 2 $ 15.8 $ 15.1 Yes
6 E 3 $ 15.7 $ 15.8 No
7 D 3 $ 14.6 $ 15.8 No
8 D 4 $ 13.5 $ 15.8 No
9 B No $ 15.8 $ 15.8 No
10 A No $ 13.5 $ 15.8 No  

Figure 4.8: Adaptive OFAT process exploring the combinatorial space for the best 

combination of levels under demand scenario 1. Dollar figures are in millions. 
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The first operating plan of the catalog is shown in Table 4.3. This is the one that produces the 

highest NPV under demand scenario 1. 

 

Table 4.3: Best operating plan selected for demand scenario 1. 

DEs and Management DRs Description Best Operating Plan for Scenario 1

A Expansion allowed in years 1-4 Yes

B Expansion allowed in years 9-12 Yes

C Expansion allowed in years 17-20 Yes

D Expansion decision rule (years) 2

E Number of floors expanded by 2

F Number of initial floors 6  
 

The same search algorithm is applied to the four remaining demand scenarios in Figure 4.5. This 

analysis leads to the catalog of five operating plans summarized in Table 4.4 and used in step 5. 

 

Table 4.4: Catalog of operating plans obtained from the analysis of five demand scenarios 

under the adaptive OFAT algorithm. Each plan is associated to its corresponding demand 

scenario in Figure 4.5. “DE” means design element, and “DR” means decision rule. 

DEs and Management DRs Description Op. Plan 1 Op. Plan 2 Op. Plan 3 Op. Plan 4 Op. Plan 5

A Expansion allowed in years 1-4 Yes Yes Yes Yes Yes

B Expansion allowed in years 9-12 Yes Yes No Yes Yes

C Expansion allowed in years 17-20 Yes Yes Yes Yes Yes

D Expansion decision rule (years) 2 2 2 2 4

E Number of floors expanded by 2 3 3 1 1

F Number of initial floors 6 5 5 4 4  
 

4.1.5 Step 5: Assess the Value of the Catalog of Operating Plans 

 

The catalog of operating plans is now tested under a large set of demand scenarios to determine 

whether it brings improvement compared to an inflexible design. This initial design can be 

interpreted as using only one inflexible operating plan, and therefore does not explore the 

additional richness provided by a catalog of five operating plans. This inflexible design is also 

tested under the same scenarios to find an ENPV as the basis for comparison. 
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Two thousand Monte Carlo simulations are created where each simulation produces one demand 

scenario over the 20 years project duration. Figure 4.9 shows an example of simulated demand 

scenario compared to deterministic demand projection. Volatility around annual demand growth 

is 15% and uncertainty around initial demand can be 50% off-projections. Annual demand 

growth for each year is sampled here from a uniform probability distribution. 

 

 

Figure 4.9: Example of simulation of the uncertain demand variable around projected 

trend for the parking garage example. 

 

Each of the two thousand simulations is associated with one of the five demand scenarios of 

Figure 4.5, and assigned the corresponding operating plan of Table 4.4. The criterion used to 

classify each demand scenario is the mid-value percentage growth between two subsequent years 

for the period between years one and five. Looking at Table 4.1, if demand growth between 

years one and five is higher than 123% for a particular demand scenario, it is assigned operating 

plan 1. If it is between 100% and 123%, it is assigned operating plan 2, and so on for all five 

categories of demand scenarios.  

 

Doing this for two thousand Monte Carlo simulations provides an ENPV for the catalog of 

operating plans. It also provides other interesting valuation attributes that can be compared to 
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those obtained with the inflexible design. Figure 4.10 shows how many simulated demand 

scenarios are assigned to each operating plan. 

 

 

Figure 4.10: Percentage of simulated demand scenarios categorized as one of the five 

operating plans for the two thousand scenario simulations. Each simulated demand 

scenario is associated to one operating plan. 

 

Table 4.5 summarizes the results from these experiments. An inflexible parking garage design 

with five initial floors produces the highest ENPV of $2.9M when uncertainty is recognized as 

shown in Figure 4.2. This is similar to the results published by (de Neufville et al., 2006). When 

each of the simulated demand scenarios is assigned one of the five operating plans described in 

Table 4.4, the ENPV is $4.2M. 

 

This latter figure considers the possibility to change the number of initial floors, expansion 

decision rules, and other management rules by selecting a particular operating plan within the 

first five years of project life. The operating plan is chosen by observation of demand, and by 

associating this observation to a particular operating plan. The expected value obtained by 

considering a catalog of five flexible operating plans over an inflexible design is estimated as 

$4.2M – $2.9M = $1.3M. It accounts for flexibility in both design and management of the 
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system, and in the fact that program managers can “pick” an operating plan depending on 

observed demand. The best design decision now depends on observed demand at the time of 

investment and on the operating plan that is chosen. 

 

As seen on Table 4.5 and the VARG curve on Figure 4.11, many attributes of the distribution of 

NPV outcomes are improved when the catalog of operating plans is used. The expected initial 

investment at time zero is lower by about $1.8M, the minimum NPV is higher by $0.7M, and the 

maximum NPV is higher by $12.2M. Note that the VARG curve shown on Figure 4.11 for the 

inflexible case provides similar results as published by (de Neufville et al., 2006). 

 

Table 4.5: Summary of results comparing valuation attributes between an inflexible 

parking garage design with five initial floors, and a flexible design with a catalog of five 

operating plans. In the latter case, each of the two thousand Monte Carlo simulations are 

categorized and assigned one of five operating plans. 

Inflexible Design Flexible Design with Which is Better?

Catalog of Operating Plans

Expected initial investment $ 18.1 $ 16.3 Flex. and Catalog Better
Expected NPV $ 2.9 $ 4.9 Flex. and Catalog Better
Expected NPV minus expected cost of flexibility $ 2.9 $ 4.2 Flex. and Catalog Better
Minimum NPV $ -19.5 $ -18.8 Flex. and Catalog Better
Maximum NPV $ 8.3 $ 20.5 Flex. and Catalog Better
Value of catalog of flexible operating plans $ 0.0 $ 1.3  
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Figure 4.11: VARG curves resulting from Monte Carlo simulations for both the inflexible 

parking garage design with five initial floors, and flexible design using a catalog of five 

operating plans. ENPVs for both cases are also shown. The close up on the lower left 

portion of the figure shows improvement in minimum NPV obtained when a catalog of 

operating plans is used. The light line finishes just slightly to the left of the dark line, 

showing a minimum NPV lower for the inflexible case than with the catalog of operating 

plans. 

 

4.2 Apartment Development Project in the United States 

 

This case is about the development of five phases of apartment units inspired from a real estate 

development project in the United States by Jones Lang Lasalle (2007). It consists of 430,000 

square feet (SF) of apartment units accompanied by relevant infrastructure (site grading, paving, 

utilities, and landscaping). Each apartment unit has a surface area of 1,000 SF. An interesting 

feature of this project is that phases are developed around a park having an area of 200,000 SF 

(about 4.6 acres). Project developers count on this particular feature to attract more potential 

buyers and increase market value. 
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Figure 4.12: Artistic view of the proposed apartment development project. (Source: Jones 

Lang Lasalle, 2007).  

 

The proposal is to develop all five phases, infrastructures, and park in a row between 2007 and 

2013 to benefit from economies of scale and reduce costs. Each construction phase takes up to 

24 months, and may start one year after the other. The park and infrastructure are constructed 

along with each phase. Phase II starts one year after the beginning of phase I, and so on for 

subsequent phases. Table 4.6 summarizes the timing of the development project. 

 

Table 4.6: Summary and timing of the real estate development project. APT stands for 

apartment building. 

Phase Type SF Units Net Acreage Start Completion

I APT 50,000 50 1.15 1/07 1/09

II APT 80,000 80 1.84 1/08 1/10

III APT 90,000 90 2.07 1/09 1/11

IV APT 110,000 110 2.53 1/10 1/12

V APT 100,000 100 2.30 1/11 1/13

Total 430,000 430 9.87  
 

The market value of built property, measured in dollars per square foot, is projected to be higher 

than development costs for the first few years of the project. This assumption implies that 

developing phases in a row generates the highest NPV, and is therefore adopted as the best 
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strategy for the static case based on deterministic projections of market value and development 

costs. 

 

The analysis methodology is applied to this case study to search for a catalog of operating plans 

that improves value compared to the development plan shown in Table 4.6 that recognizes 

uncertainty. Uncertainty is recognized and incorporated in the model under two thousand Monte 

Carlo simulations in step 5.  

 

4.2.1 Step 1: Build an initial model of the engineering system to measure value and 

performance.  

 

In this case study, the metric for assessing value and performance is NPV. The main uncertain 

variables are the market value and the development cost of built apartment property per square 

foot. When an apartment building is completed, developers get its total value as revenue. This is 

determined by total apartment unit surface area multiplied by market value of built property per 

square foot. The same applies to development costs. 

 

The initial model consists of a DCF Excel® spreadsheet using standard projections of market 

value of built property and development costs. For simplicity, the model assumes that only one 

phase can begin each year. Therefore, developers wait a year before beginning a new phase, even 

if the previous one is half completed. The model is developed from the following assumptions, 

which are partially inspired from the case described by Ariizumi (2006): 

 

- The deterministic forecast is that market value of built property is currently evaluated at 

$350/SF and increases linearly at a rate of 2.5% per year; 

- Development costs are currently evaluated at $220/SF and increase linearly with inflation 

at a rate of 2.5% per year; 

- The project can be developed over twenty years, starting in 2007 until the end of 2027; 

- Land acquisition cost is $15M to be paid as soon as phase I begins; 
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- The park has a surface area of about 200,000 SF (about 4.6 acres) and costs $1M to 

develop along with the five development phases. The cost is distributed among each 

phase as $200,000 per phase; 

- Infrastructure development, which includes site grading, paving, utilities, and 

landscaping are estimated at $29/SF of apartment unit; 

- The discount rate for market value of built apartment property (rV) is 9%. The discount 

rate for construction costs (rC) is 6%, close to currently prevailing risk-free rates. 

- Development of all phases in a row benefit from cost reductions of 2.5% due to 

economies of scale. 

 

To measure the static NPV, two different discount rates are used as proposed by Geltner and 

Miller (2006). It is difficult for developers to evaluate the “unified” opportunity cost of capital 

(OCC), denoted as rU, that takes into account both market value risks and construction cost risks. 

The OCC for discounting future revenues used by the developer, denoted as rV, is different from 

the OCC used to discount potential construction costs (rC). Developers give construction costs a 

relatively large weight in the project’s expected value calculation because they may turn out 

greater than originally projected. Therefore, a smaller discount rate rC, around the prevailing 

risk-free rate, is used to discount future construction costs in the pro forma cash flow projections. 

The discount rate for revenues, rV, is typically higher, and here is 9%. 

 

In other words, since it is difficult for developers to know rU, Geltner and Miller (2006) suggest 

using two different discount rates for real estate development projects such that 

 

T T T T

T T

U V C

V - K V K
= -

(1+E[r ]) (1+E[r ]) (1+E[r ])
 

 

where VT and KT are the market value and construction cost of built property at time T. 

 

Table 4.7 summarizes the initial estimated value (V0) and construction costs (K0) breakdown per 

square foot for the development project. Figure 4.13 shows the initial DCF model used to 
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compute the project’s NPV under deterministic market value of built property and development 

cost projections (Figure 4.14). 

 

Table 4.7: Summary of market value (V0) and construction cost (K0) figures for the 

apartment development project (in $millions). 

Phase SF V0 V0/SF Infrastructure Costs Dev. Costs K0 K0/SF

I 50,000     $17.5 $350 $1.5 $11.0 $12.5 $249

II 80,000     $28.0 $350 $2.3 $17.6 $19.9 $249

III 90,000     $31.5 $350 $2.6 $19.8 $22.4 $249

IV 110,000   $38.5 $350 $3.2 $24.2 $27.4 $249

V 100,000   $35.0 $350 $2.9 $22.0 $24.9 $249

Total 430,000   $150.5 $12.6 $94.6 $107.2  
 
Year 2007 2008 2009 2010 2011 2012 2013
Period 0 1 2 3 4 5 6

Built property value per SF ($) $350 $359 $368 $377 $386 $396 $406

Dev't cost per SF ($) $220 $226 $231 $237 $243 $249 $255

Phase I value $0 $0 $18,385,938 $0 $0 $0 $0

Phase I dev't cost $10,725,000 $0 $0 $0 $0 $0 $0

Phase II value $0 $0 $0 $30,152,938 $0 $0 $0

Phase II dev't cost $0 $17,589,000 $0 $0 $0 $0 $0

Phase III value $0 $0 $0 $0 $34,770,106 $0 $0

Phase III dev't cost $0 $0 $20,282,316 $0 $0 $0 $0

Phase IV value $0 $0 $0 $0 $0 $43,559,216 $0

Phase IV dev't cost $0 $0 $0 $25,409,234 $0 $0 $0

Phase V value $0 $0 $0 $0 $0 $0 $40,589,270

Phase V dev't cost $0 $0 $0 $0 $23,676,787 $0 $0

Acquisition cost $15,000,000 $0 $0 $0 $0 $0 $0

Infrastructure cost $1,426,911 $2,340,134 $2,698,467 $3,380,580 $3,150,086 $0 $0

Park development cost $195,000 $199,875 $204,872 $209,994 $215,244 $0 $0

Value of built property $0 $0 $18,385,938 $30,152,938 $34,770,106 $43,559,216 $40,589,270

Total cost $27,346,911 $20,129,009 $23,185,655 $28,999,808 $27,042,116 $0 $0

Net value -$27,346,911 -$20,129,009 -$4,799,717 $1,153,130 $7,727,990 $43,559,216 $40,589,270

PV of built property $115,903,253

PV total cost $112,740,379

NPV $3,162,873  

Figure 4.13: Pro forma statement and DCF model based on deterministic projections for 

future revenues and costs of the apartment development project. 
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Figure 4.14: Deterministic projections of market value of built apartment property and 

development cost per square foot. 

 

This initial analysis, based on the above assumptions, shows that the maximum NPV is obtained 

by building all phases in a row. This provides a NPV of $3.2M. This static case analysis 

corresponds to engineering and management practice where uncertainty is not recognized in the 

model and flexibility is not used to adapt towards it. 

 

4.2.2 Step 2: For each source of uncertainty, propose a limited set of uncertain variable 

scenarios and review initial model. 

 

For simplicity, market value of built property is the only source of uncertainty considered in this 

case study. Development cost is assumed to increase at the same constant rate as inflation, 

assumed to be 2.5% annually. 
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A set of three market value scenarios is created to support the creation of a catalog of operating 

plans. The method that should be used to find relevant scenarios is explained in Section 3.2. In 

order to simplify the demonstration, the method is not applied fully here. The market value 

scenarios are chosen to represent simple situations program managers might have to deal with in 

reality. 

 

Scenario 1 is chosen to represent an excellent evolution of market value through the lifecycle of 

the project with a high initial value and 3.5% annual growth. Scenario 2 is chosen to represent a 

situation where market allows construction at first, and then is unfavorable to development 

around 2013. Scenario 3 represents the case where no development should occur at all. The three 

market value scenarios are categorized by their initial values, as shown in Table 4.8. These 

categories are used to classify simulated market value scenarios in step 5 of the analysis. 

 

 

Figure 4.15: Selected market value scenarios for application of the adaptive OFAT search 

algorithm and creation of the catalog of operating plans. Initial projections of market value 

of built property and development cost are also shown for reference. 
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Table 4.8: Initial value for the three market value scenarios. This value is used to 

categorize the different scenarios and classify simulated market value scenarios in step 5 of 

the analysis methodology.  

Market Value Scenario Category Initial Value

1 $350

2 $260

3 $220  
 

4.2.3 Step 3: Determine the main sources of flexibility in the system and incorporate in the 

model. 

 

The following sources of flexibility are incorporated in the model to benefit from upside 

opportunities in uncertain market value of built property. This situation is best represented by 

scenario 1 in step 2. Flexibility is also acquired to guard against potential losses when market 

value is unfavorable, which is best represented by scenario 3. 

 

4.2.3.1 Flexibility “In” Design 

 

The first source of flexibility to acquire “in” design is to develop a park with the initial phase to 

attract more buyers and increase market value of the development site. Since the park is built all 

at once instead of in sync with the five phases, it is similar to a call option. The strike price of 

$1M is paid to exercise the option (developing the park), and a percentage increase in value 

above simulated market value is provided as the benefit of exercising the option. Here, 10% 

increase above simulated market value is suggested. This increase in market value however 

occurs only when the market value of built property is on the rise, or growing from the previous 

year. This reflects the fact that buyers are not necessarily willing to pay more for this extra 

feature if the market is depressed and prices are low anyway. Hence, when market value is 

depressed, this extra feature provides no additional benefit. On the other hand, this flexibility 

contributes in increasing NPV in subsequent years when markets go well. 
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4.2.3.2 Flexibility “In” Operations 

 

The second source of flexibility exploits the flexibility to expand the different phases of the 

project at strategic times. It consists of the ability for program managers to wait until market 

conditions are favorable for a subsequent phase. The criteria for deciding on expansion to a 

subsequent phase is based on market value of built property being greater than a certain 

threshold percentage above development costs at a given time. Decision to develop at time T 

results in construction costs being incurred at T, and the phase being completed at T + 2 years. 

Since development is broken down according to the timing of the different phases, there is no 

economy of scale and therefore no construction cost reduction associated with this flexible case. 

 

4.2.3.3 Flexibility “On” Project 

 

The third source of flexibility is to abandon the project and sell undeveloped land at the end of 

the 20-year project lifecycle, or if profit generated by selling the land is higher than profit made 

by developing it. This case assumes a starting price of undeveloped land of $3M that evolves at 

the same rate as market value of built property, and no rezoning cost. 

 

4.2.3.4 Modifying the Model to Incorporate Flexibility 

 

The first source of flexibility consists of building a park upfront to attract potential buyers and 

improve market value. Designers investigate the effect of building the park along with different 

apartment phases or with the initial phase only. The benefit upon additional market value is 

reduced the more phases it takes to build the park because new buyers are not attracted by the 

beauty of the completed site, and are not necessarily willing to pay more because of it. Building 

the park in phases however reduces upfront capital expenditures in the first year and distributes 

them over subsequent phases.  

 

The first management decision rules consists of building the park upfront in phase I for $1M 

along with a 10% increase in market value over simulated market value when market value is on 
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the rise from the previous year. The second possibility is to build the park in phases I and II for 

$500,000 in both phases, together with a 5% increase in market value when market value is on 

the rise from the previous year. The third possibility is to build the park across all phases I to V 

with no increase in market value. 

 

The second source of flexibility exploits the ability to expand in phases at strategic times. 

Program managers decide to wait for the next phase development until market value of built 

property attains a certain percentage over development costs. The following three percentage 

criteria over development cost are suggested for deciding to expand: 10%, 50%, and 100%. For 

example, if at a given time development cost for a phase is $10M and a 10% percentage criterion 

is selected, market value of built property needs to be at least $11M for development to occur. 

Merely being above $10M is not sufficient. 

 

The source of flexibility to abandon development and sell remaining land is exploited through 

three different decision rules. Rule 1 is based on a decision to abandon if development profit is 

lower than abandonment profit, development value is above the percentage criteria for 

expansion, and at least one phase is built (because payment is made to acquire the land only 

when phase I is launched). If program managers do not acquire the land, they cannot abandon it 

and get sales value from it, which is the reason for the last criterion. Rule 2 is based on having 

development profit higher than abandonment profit without the need to fulfill the percentage 

criteria for expansion. It is expected that abandonment will occur more frequently with this latter 

decision rule. Rule 3 does not allow abandonment throughout years 0 to 19. It is only allowed in 

the final year and for land remaining from undeveloped phase(s). Figure 4.16 summarizes these 

design and management decision rules. 
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DEs and Management DRs Description - o +

A Abandonment option Rule 1 Rule 2 Rule 3

B Value over cost criterion for expanding 10% 50% 100%

C Number of phases for developing the park 1 2 5

Levels

 

Figure 4.16: Design elements and management decision rules for the creation of the catalog 

of operating plans in the real estate development project. “DE” means design element, and 

“DR” means decision rule. The possible values for each design element or management 

decision rule is known as a level. 

 

4.2.4 Step 4: Search the combinatorial space and create the catalog of operating plans. 

 

Adaptive OFAT was used to explore the combination of design elements and management 

decision rules producing the highest NPV for all three market value scenarios introduced in 

Figure 4.15. Like in the parking garage case study, demonstration of the search process is shown 

only for the first market value scenario, which gives rise to the first operating plan in the catalog. 

This demand scenario is shown in Figure 4.17. The remainder of the analysis is shown in the 

Appendix section. 
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Figure 4.17: Market value scenario 1 is used in this demonstration of the adaptive OFAT 

process for the real estate development project. 

 

The baseline experiment and the OFAT sequence are determined randomly for each market 

value scenario, and those for scenario 1 are shown in Table 4.9. Results from this analysis are 

also shown in the Appendix section for different baseline experiments and OFAT sequences, also 

generated randomly. 

 

Table 4.9: Baseline experiment and OFAT sequence used to explore the combinatorial 

space for market value scenario 1. 

DEs and Management DRs Description Baseline Experiment OFAT Sequence

A Abandonment option Rule 2 A

B Value over cost criterion for expanding 10% C

C Number of phases for developing the park 5 B  
 

The adaptive OFAT process is applied as shown in Figure 4.18, and the first operating plan 

emerging from this analysis is shown in Table 4.10. In the table, the operating plan is 
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accompanied by a development plan to form a complete operating plan. This demonstrates 

another way to conceive an operating plan, which in this case is a combination of design and 

management decision rules accompanied by a development plan. 

 
Experiment DE and Management DR changed Level changed to: Output = NPV Best output before step Keep change?

1 (baseline) $ 5.5
2 A Rule 1 $ 5.5 $ 5.5 No
3 A Rule 3 $ 5.5 $ 5.5 No
4 C 1 $ 17.5 $ 5.5 Yes
5 C 2 $ 11.5 $ 17.5 No
6 B 50% $ 17.5 $ 17.5 No
7 B 100% $ - 7.7 $ 17.5 No  

Figure 4.18: Adaptive OFAT process exploring the combinatorial space for the best 

combinations of levels under market value scenario 1. 

 

Table 4.10: Best operating plan selected for market value scenario 1. In this case, expansion 

occurs in a row starting in the first year. Management decision rules (a) are associated with 

a development plan (b) to form a complete operating plan. 

DEs and Management DRs Description Best Operating Plan for Scenario 1

A Abandonment option Rule 2

B Value over cost criterion for expanding 10.00%

C Number of phases for developing the park 1  
(a) 

Op. Plan Year 2007 2008 2009 2010 2011 2012 2013 2014 2015

1   Phase I Develop? Abandon? Wait? Develop

  Phase II Develop? Abandon? Wait? Develop

  Phase III Develop? Abandon? Wait? Develop

  Phase IV Develop? Abandon? Wait? Develop

  Phase V Develop? Abandon? Wait? Develop

2

  Phase I Develop? Abandon? Wait? Develop

  Phase II Develop? Abandon? Wait? Develop

  Phase III Develop? Abandon? Wait? Develop

  Phase IV Develop? Abandon? Wait? Wait Wait Abandon

  Phase V Develop? Abandon? Wait? Wait Abandon

3

  Phase I Develop? Abandon? Wait? Wait Wait Wait Wait Wait Wait Wait Wait Wait

  Phase II Develop? Abandon? Wait? Wait Wait Wait Wait Wait Wait Wait Wait

  Phase III Develop? Abandon? Wait? Wait Wait Wait Wait Wait Wait Wait

  Phase IV Develop? Abandon? Wait? Wait Wait Wait Wait Wait Wait

  Phase V Develop? Abandon? Wait? Wait Wait Wait Wait Wait

 
(b) 

 

The same search algorithm is applied to the two remaining market value scenarios so that a 

catalog of three operating plans is created and shown in Table 4.11. 
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Table 4.11: Catalog of operating plans obtained from the analysis of three market value 

scenarios under the adaptive OFAT algorithm. Management decision rules for each 

operating plan (a) are associated with a development plan (b) to form a complete operating 

plan. 

DEs and Management DRs Description Op. Plan 1 Op. Plan 2 Op. Plan 3

A Abandonment option Rule 2 Rule 2 Rule 2

B Value over cost criterion for expanding 10% 10% 10%

C Number of phases for developing the park 1 5 5  
(a) 

Op. Plan Year 2007 2008 2009 2010 2011 2012 2013 2014 2015

1   Phase I Develop? Abandon? Wait? Develop

  Phase II Develop? Abandon? Wait? Develop

  Phase III Develop? Abandon? Wait? Develop

  Phase IV Develop? Abandon? Wait? Develop

  Phase V Develop? Abandon? Wait? Develop

2

  Phase I Develop? Abandon? Wait? Develop

  Phase II Develop? Abandon? Wait? Develop

  Phase III Develop? Abandon? Wait? Develop

  Phase IV Develop? Abandon? Wait? Wait Wait Abandon

  Phase V Develop? Abandon? Wait? Wait Abandon

3

  Phase I Develop? Abandon? Wait? Wait Wait Wait Wait Wait Wait Wait Wait Wait

  Phase II Develop? Abandon? Wait? Wait Wait Wait Wait Wait Wait Wait Wait

  Phase III Develop? Abandon? Wait? Wait Wait Wait Wait Wait Wait Wait

  Phase IV Develop? Abandon? Wait? Wait Wait Wait Wait Wait Wait

  Phase V Develop? Abandon? Wait? Wait Wait Wait Wait Wait  
(b) 

 

One should note that in order to find the second operating plan, it is necessary to skip decision 

rule B in the adaptive OFAT process, which is the expansion decision criterion. This is because 

the NPV values generated during the OFAT search are all negative, as shown in the Appendix 

section. Therefore increasing the expansion decision criteria to 50% and 100% generates an 

operating plan similar to plan 3 in Table 4.11 where investment never occurs.  

 

Since program managers have an operating plan that suggests complete expansion in a row with 

operating plan 1, and a plan suggesting no investment at all in operating plan 3, it is interesting to 

have an operating plan that handles intermediate situations. Even if the adaptive OFAT process 

generates negative NPV values using scenario 2 (with an initial and constant market value of 

$260 per square foot), this intermediate operating plan can still generate positive NPV values in 

step 5 for simulated market value scenarios having an initial value between $260 and $350 per 

square foot. It might therefore be interesting to keep this operating plan in the catalog. 
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This situation is an example where designers’ judgment can be used in the adaptive OFAT 

process to suit their design and management needs. In this case, this shows that designers can 

apply the adaptive OFAT process in a flexible manner to find intermediate solutions. 

 

4.2.5 Step 5: Assess the Value of the Catalog of Operating Plans 

 

The catalog of operating plans is tested under a set of two thousand Monte Carlo simulations of 

market value of built property. It is compared to the inflexible case where are all phases are 

developed in a row, with the park developed in sync with the five phases. This development 

strategy is the one producing the highest NPV based on assumptions about market value and 

development cost.  

 

The model incorporates uncertainty around market value of built property through random 

variations around the overall growth rate and initial value of the scenario projected initially. The 

growth rate can be 50% off the 2.5% annual projection. Initial value can also vary by 50% off the 

$350 projection. A volatility of 15% is introduced around each annual growth value, and samples 

are taken from a uniform probability distribution. An example of simulated market value pattern 

is shown in Figure 4.19. 

 

Each of the two thousand simulations is categorized as one of the three market value scenarios 

shown in Figure 4.15, and associated to the corresponding operating plan. The criterion for 

classifying simulated market value patterns is the initial value. Looking at Table 4.8 for instance, 

a market value pattern with initial value beyond $350/SF will be associated to operating plan 1. 

A pattern with an initial value between $260/SF and $350/SF is associated with operating plan 2, 

and below $260 is associated to operating plan 3. Figure 4.20 shows how many simulated market 

value scenarios are classified in each of the three categories. 
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Figure 4.19: Example of one market value fluctuation from the two thousand Monte Carlo 

simulations used to incorporate uncertainty in the model. 

 

 

Figure 4.20: Percentage of simulated demand scenarios categorized as one of the three 

operating plans for the two thousand scenario simulations. Each simulated market value 

scenario is associated to one operating plan. 
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Table 4.12 summarizes the results from Monte Carlo simulations. Recognizing uncertainty and 

developing all phases in a row with no flexibility provides an ENPV of $3.3M. A flexible design 

with a catalog of three operating plans generates an ENPV of $16.9M. The expected 

improvement provided by the analysis methodology and the catalog of operating plan is worth 

$16.9M – $3.3M = $13.6M. 

 

Table 4.12: Summary of results comparing valuation attributes between an inflexible real 

estate development project with all phases developed in a row, and a flexible design with a 

catalog of three operating plans. In the latter case, each of the two thousand Monte Carlo 

simulations are categorized and assigned one of three operating plans. All values are in 

$millions. 

Inflexible Design Flexible Design with Which is Better?

Catalog of Operating Plans

Initial investment $ 27.3 $ 21.4 Flex. and Catalog Better
Expected NPV $ 3.3 $ 16.9 Flex. and Catalog Better
Minimum NPV $ -59.2 $ -25.5 Flex. and Catalog Better
Maximum NPV $ 77.9 $ 90.0 Flex. and Catalog Better
Value of Flexibility $ 0.0 $ 13.6  

 

Table 4.12 and the VARG curve on Figure 4.21 show that using a catalog of operating plans 

reduces the expected initial investment by approximately $5.9M, increases the minimum NPV by 

about $33.7M, and the maximum NPV by $12.1M. Both upsides and downsides are clearly 

improved by the introduction of flexibility and a catalog of operating plans. 
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Figure 4.21: VARG curves resulting from Monte Carlo simulations for both the inflexible 

real estate development with all phases developed in a row, and flexible design using a 

catalog of three operating plans. ENPVs for both cases are also shown. 

 

4.3 Thesis Support 

 

As seen in the final part of Sections 4.1.5 and 4.2.5, the analysis methodology proposed in this 

thesis improves the design and management of engineering systems while requiring minimal 

computational effort. Numerical analyses from both the parking garage and real estate 

development cases support this thesis. This improvement is due to incorporation of flexibility in 

design and management of both systems in order to take advantage of uncertainty. It is also due 

to more realistic value assessments that consider a limited set of uncertain variable scenarios as 

part of the design analysis. Not only is the ENPV compared to an inflexible system improved in 

both cases, but so are other attributes like minimum NPV, maximum NPV, and expected initial 

investment. 
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The remainder of this section discusses issues encountered while developing and applying the 

analysis methodology. The first point of discussion is whether the adaptive OFAT process finds 

the optimal combination of design elements and management decision rules. It almost certainly 

does not find an “optimal” combination because it is not a process that aims at optimizing 

performance measure in this mathematical connotation. It is a practical way to improve design 

and management decision choices within limited time. 

 

Furthermore, the process does not necessarily generate the same catalog of operating plans 

depending on the baseline experiment and sequence of exploration selected. This is shown using 

results from the Appendix section. In the parking garage case, performing another series of 

adaptive OFAT experiments with different baseline experiments and OFAT sequences, under the 

same demand scenarios used in Section 4.1.4, produces a different catalog of operating plans 

(Table A.7) than the one obtained in the first analysis of Section 4.1.4 (Table 4.4). The ENPV of 

this new catalog and other valuation attributes (minimum and maximum NPV, expected initial 

investment) are however relatively similar to those obtained in the first analysis (see Table 4.5 

and Table A.8). For the reader’s convenience, both catalogs of operating plans are shown in 

Table 4.13, together with the results from the two thousand Monte Carlo simulations in Table 

4.14. 
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Table 4.13: Catalogs of operating plans obtained from the analysis of five demand 

scenarios under the adaptive OFAT algorithm for the parking garage case. a) Results are 

shown for the analysis presented in Section 4.1.4 where the same baseline experiment is 

used for all application of the adaptive OFAT algorithm, and OFAT sequences are 

generated randomly. b) Results are shown when different baseline experiments and OFAT 

sequences are used, both being generated randomly. “DE” means design element, and 

“DR” means decision rule. 

DEs and Management DRs Description Op. Plan 1 Op. Plan 2 Op. Plan 3 Op. Plan 4 Op. Plan 5

A Expansion allowed in years 0-4 Yes Yes Yes Yes Yes

B Expansion allowed in years 9-12 Yes Yes No Yes Yes

C Expansion allowed in years 17-20 Yes Yes Yes Yes Yes

D Expansion decision rule (years) 2 2 2 2 4

E Number of floors expanded by 2 3 3 1 1

F Number of initial floors 6 5 5 4 4  
(a) 

DEs and Management DRs Description Op. Plan 1 Op. Plan 2 Op. Plan 3 Op. Plan 4 Op. Plan 5

A Expansion allowed in years 0-4 Yes Yes Yes Yes No

B Expansion allowed in years 9-12 No Yes Yes Yes Yes

C Expansion allowed in years 17-20 No No No No Yes

D Expansion decision rule (years) 3 2 2 2 4

E Number of floors expanded by 2 2 2 1 1

F Number of initial floors 6 6 4 4 4  
(b) 

 

In the real estate case however, repeating the OFAT search algorithm using different baseline 

experiments and OFAT sequences produces the same catalogs of operating plans, and also 

similar values under the two thousand Monte Carlo simulations of market value scenarios. The 

catalogs are shown in Table 4.11 and Table A.13, while the results from Monte Carlo 

simulations are shown in Table 4.14 and Table A.14. The resulting VARG curves are also 

similar, as seen on Figure 4.21 and Figure A.8. 
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Table 4.14: Summary of results comparing valuation attributes between an inflexible 

parking garage design with five initial floors, and a flexible design with a catalog of five 

operating plans. a) Results are shown for the analysis presented in Section 4.1.4 where the 

same baseline experiment is used for all application of the adaptive OFAT algorithm, and 

OFAT sequences are varied randomly. b) Results are shown when different baseline 

experiments and OFAT sequences are used, both being generated randomly. In both cases, 

each of the two thousand Monte Carlo simulations of demand scenarios are categorized 

and assigned one of five operating plans. 

Inflexible Design Flexible Design with Which is Better?

Catalog of Operating Plans

Expected initial investment $ 18.1 $ 16.3 Flex. and Catalog Better
Expected NPV $ 2.9 $ 4.9 Flex. and Catalog Better
Expected NPV minus expected cost of flexibility $ 2.9 $ 4.2 Flex. and Catalog Better
Minimum NPV $ -19.5 $ -18.8 Flex. and Catalog Better
Maximum NPV $ 8.3 $ 20.5 Flex. and Catalog Better
Value of catalog of flexible operating plans $ 0.0 $ 1.3  

(a) 
Inflexible Design Flexible Design with Which is Better?

Catalog of Operating Plans

Expected initial investment $ 18.1 $ 15.5 Flex. and Catalog Better
Expected NPV $ 2.9 $ 5.1 Flex. and Catalog Better
Expected NPV minus expected cost of flexibility $ 2.9 $ 4.3 Flex. and Catalog Better
Minimum NPV $ -19.5 $ -15.6 Flex. and Catalog Better
Maximum NPV $ 8.3 $ 17.3 Flex. and Catalog Better
Value of catalog of flexible operating plans $ 0.0 $ 1.4  

(b) 

 

There is an interesting feature on Figure A.8, reproduced here at the reader’s convenience, worth 

discussing here. The discussion about the fact that adaptive OFAT does not always generate 

same results is continued a few paragraphs below. 

 

On Figure 4.22, one sees around a cumulative probability of 50% that the NPV values obtained 

with the catalog of operating plans are lower than with an inflexible design. This is due to the 

flexibility to abandon the project right at the beginning if market conditions are unfavorable for 

development of the real estate project, and to weak positive NPVs produced when market 

conditions are barely favorable for development. If the flexibility to abandon the project is 

exercised, it creates a scenario with zero NPV because developers never acquire the land, and do 

not develop any building. The frequency of occurrence of this abandonment scenario is shown in 

Figure 4.23. 
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Figure 4.22: VARG curves and ENPVs resulting from Monte Carlo simulations for both 

the inflexible real estate development with all phases developed in a row, and flexible 

design using a catalog of three operating plans. This is the case where new experiments are 

done, as compared to the first set of experiments presented in Section 4.2.4, as shown on 

Figure A.8. The arrow points out an interesting feature of the VARG curves, where NPVs 

for the case with the catalog of operating plans are lower than those produced by the 

inflexible case (around 50% cumulative probability). This is due to the flexibility of 

abandoning the project if market conditions are unfavorable right at the outset, and to the 

cost of acquiring the flexibility when market conditions are barely favorable for 

development. 
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Figure 4.23: NPV distribution for the real estate development case study when different 

baseline experiments and OFAT sequences than those presented in Section 4.2.4are used, 

as shown in the Appendix section. The spike around NPV = $0 shows the number of 

scenarios where the flexibility to abandon the project is exercised.  

 

This type of abandonment scenario explains the sudden jump near NPV = $0 for the case with a 

catalog of operating plans. Then, just to the right of these zero-NPV scenarios on Figure 4.22 are 

a few scenarios with small positive NPVs that are created when market conditions are barely 

favorable to development. In the flexible case with operating plans, development is slightly more 

expensive to developers because they have to pay a premium to acquire the flexibility compared 

to the inflexible case. Because market conditions are barely favorable to development, 

developers can hardly recoup their investment, which creates positive but small NPVs. This is 

why in those few cases a flexible design using a catalog of operating plans produces NPVs 

slightly lower than in the inflexible case. Therefore, combining the sudden jump near zero-NPV 

scenarios, and the fact that weak positive NPVs are produced when market conditions are barely 

favorable to development, explain why the catalog of operating plans produce lower NPV values 

around the 50% cumulative probability mark on Figure 4.22. 

Zero NPV scenarios due to 

exercise of the flexibility to 

abandon the development 

project. 
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Coming back to the discussion about the fact that adaptive OFAT does not always generate the 

same answer, this thesis argues that this fact is relevant but not central to the purpose of the 

analysis methodology presented here. The goal here is to develop an approach that improves 

design and management of complex systems compared to the case where an inflexible design 

and management plan is considered. By investigating the combinatorial space further, chances 

are increased of finding a better solution even if the optimal solution is not found. Also, since the 

goal is also to improve analysis while minimizing additional computational effort, the current 

methodology represents a good tradeoff between time devoted to the analysis and the quality of 

achieved solution. 

 

The second point of discussion is related to the flexible application of the adaptive OFAT 

algorithm made in this thesis. First, the process is not applied in the context of statistical 

experiment design where many experiments are run to find the best combination of design 

elements and management decision rules. The process is applied here to find the best 

combination of design and management decision rules under only one particular uncertain 

variable scenario instead of many, as typically done in statistical experiment design. Also, 

designers who are aware of more efficient design and management combinations are free to 

incorporate this knowledge and skip some combinations while applying the adaptive OFAT 

process. This is done for scenario 2 of the real estate case study, as explained at the end of step 4 

of the analysis methodology in Section 4.2.4. 

 

This aspect is important in the analysis methodology. The purpose of introducing the search 

algorithm is to have a structured approach to explore the combinatorial space specifically when it 

is not obvious for designers to do so. The search process can however be replaced by any 

approach designers feel relevant in order to find useful operating plans under a given set of 

uncertain variable scenarios. 

 

The third point is related to the percentage of each operating plan that is selected in the 

simulations, as shown in Figure 4.10 and Figure 4.20. As observed on Figure 4.10 for the 

parking garage case, operating plans 1 and 5 should not occur as frequently as other intermediate 
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operating plans because they represent infrequent boundary situations. Operating plan 1 

corresponds to the ideal and infrequent situation of very fast demand growth in early years, while 

operating plan 5 corresponds to the equivalently infrequent situation of slow and nearly constant 

growth during that time. It makes sense for this case study to see operating plans 2, 3, and 4 take 

the majority of counts. For the real estate development project (Figure 4.20), it is reasonable that 

operating plans 2 and 3 are not used as often as operating plan 1. This is because these two 

operating plans should be used when market conditions are unfavorable, which does not occur 

very frequently. 

 

The fourth point of discussion relates to the value assessment of the catalog of operating plans in 

the case of the parking garage. In step 5 of the analysis methodology and as shown in Table 

4.14a, the ENPV of the catalog of operating plans is $4.2M compared to $2.9M for the inflexible 

case with one operating plan. In (de Neufville et al., 2006), under two thousand similar Monte 

Carlo simulations, the authors find an ENPV of $5.1M using a flexible design with four initial 

floors, and a decision rule to expand by one floor when demand is higher than capacity for two 

consecutive years. 

 

One explanation for the lower ENPV obtained with the catalog approach is that the operating 

plans are not assigned properly to simulated demand scenarios in the value assessment part of the 

analysis methodology (step 5). Using a criterion that only looks at growth between years one and 

five may not be sufficient to characterize demand scenarios adequately. Future work will apply 

the suggested method of Section 3.2 for finding uncertain variable scenarios that are more 

representative of reality, and implement a better classification algorithm in Excel® to classify 

simulated scenarios more appropriately. Considering initial value of demand as well as growth 

rate between first and final years might bring improvement to this categorization phase. 

 

The final point of discussion is whether the number of steps proposed in the analysis 

methodology is appropriate for its intended purpose. Even though the current proposal is for five 

distinct steps, a lot is accomplished in each step so that the structure could be broken down 

further into more steps if necessary. Also, the order can be manipulated to be more flexible 

depending on designers need. For instance, instead of assessing the value of the inflexible design 
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that recognizes uncertainty in step 5, this could be done in step 2 as part of selecting a limited set 

of uncertain variable scenarios. Moreover, determining how much value is added by the analysis 

methodology compared to an inflexible design is not necessary. In this thesis, this is done for 

pedagogical reasons. This sub-step can be skipped altogether if designers acknowledge that the 

methodology proposed here brings more realism to their analysis by considering explicitly 

uncertain variable scenarios as part of the creation of the catalog of operating plans. 
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Chapter 5 – Barriers to Implementation and Policy Considerations 

 

We live in a world where human, financial, and material resources are becoming increasingly 

scarce to emerging and developed nations. In the next few decades, the rising of China and India 

as economical superpowers, accompanied by a rising of the Earth’s population and living 

standards, will continue to exacerbate pressures on the environment and between social groups 

for more efficient use and distribution of resources. Flexibility can play a very important role in 

sustaining this economic growth worldwide since it favors efficient use of human, financial, and 

material resources. 

 

Flexibility can be very important as well for industry and government leaders since it increases 

value and performance of innovative technologies and complex systems. The analysis 

methodology introduced in this thesis, together with tools to find useful sources of flexibility 

(Sections 2.4), contributes in easier dissemination of ideas related to the implementation of 

flexibility. It proposes a simple and structured approach to consider and incorporate flexibility in 

a way that extracts additional value from uncertainty. 

 

Concepts presented in this thesis however face a considerable burden, which is to reach their 

intended audience in the engineering and management communities. Even if flexibility is shown 

in several academic works to improve value and performance (de Neufville et al., 2006; de Weck 

et al., 2004; Faulkner, 1996; Kalligeros, 2006; Nichols, 1994;), the benefits will diffuse in 

practice only if decision-makers can understand them, and if flexibility can be shown to bring 

additional value and performance to their program. Another burden can be due to methodological 

“lock-in” that occurs when analytical methods for investment and management decisions have 

been used for several years, if not decades. When a firm has been using a method for analyzing 

investment projects for years, it is not willing to give it up easily even if another is shown to 

provide more realistic results. 

 

This means the concepts presented here involve a paradigm change compared to current 

engineering and management practice. This change however needs to be done with pragmatism. 



 

  98 

This is because industry and government agencies are not necessarily ready or interested in 1) 

implementing new ideas that involve changing already existing rules and mandates 2) 

implementing analysis methodologies that require more work than current methods 3) having to 

do so if the incentives are not clearly defined and demonstrated. 

 

The policy component of this thesis analyzes in turn these three main barriers to implementation 

of the analysis methodology in real practice. In showing how the methodology can help 

alleviating them, the chapter also considers the reality of industry and government stakeholders 

involved in the design and management of engineering systems. 

 

5.1 Existing Rules and Mandates 

 

One barrier to implementation of a new methodology in industry and government is due to 

methodologies that are already in use. A methodology for assessing cost of new investment 

projects needs to be shown to fail before a new one can be considered. This phenomenon is 

analogous to Max Planck’s famous quote that “science progresses funeral by funeral”. 

 

This phenomenon is normal since most firms and government agencies try to accomplish their 

mission the best they can, with the technical tools that are available at any given time. This 

reality however creates great inertia and barriers to the implementation of more efficient 

methodologies that involve new technology. The process for adoption may be quite arduous and 

long, especially if several new concepts need to be understood by the many stakeholders 

involved. 

 

To illustrate this point, federal agencies in the United States are statutorily required to follow 

legislated Benefit-Cost Analysis (BCA) mandates as determined by the U.S. Office of 

Management and Budget (OMB) (Rivey, 2007). The BCA approach makes use of standard DCF 

techniques. Even though some agencies, like the Federal Aviation Agency (FAA), show 

openness in adopting new decision-making methodologies, the process can be very long before 

any substantial difference is noticed. In 1999, the FAA publicly stated that airport sponsors – 
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those who manage and operate the airport – are encouraged “to make use of innovative methods 

for quantifying benefits and costs where these methods can be shown to yield superior measures 

of project merit” (U.S. Federal Aviation Administration, 1999). (Rivey, 2007) however noticed 

little progress in implementation of real option-based approaches in government agencies, 

despite OMB’s recognition that these can be used for policy mandate valuation (U.S. Office of 

Management and Budget, 2003). He suggested four years after OMB’s statement a methodology 

that facilitates using these analytical tools as part of OMB’s BCA mandates. This demonstrates 

that new methodologies, like those involving real options analysis, can take a long time before 

coming to use.  

 

5.1.1 Proposed Solution: Remain in the Framework Already in Place 

 

One possible approach to alleviate this barrier is to promote changes in the methodologies in use 

while continuing to work within the framework, rules, and constraints already present in the firm 

or government agency. This also implies using value assessment methods and analytical tools 

that are already in use, and presenting concepts that are intuitive to the target audience. The 

analysis methodology is designed to follow this approach. 

 

5.1.1.1 Use Familiar Analytical Tools 

 

Rivey (2007) suggested using a simple approach based on spreadsheets and Monte Carlo 

simulations to implement new methodologies of BCA to lower the barrier to implementation in 

U.S. government agencies. He also proposed specific applications of his methodology to airport 

development under FAA’s authority.  

 

In this thesis, the analysis methodology also promotes using analytical tools familiar to the firm 

or agency to avoid large learning curves. It suggests similar spreadsheet tools to ease the 

transition to value assessment tools that incorporate notions of flexibility and catalog of 

operating plans. The targeted audience is however free to choose the tools most suited for its 

purpose. 
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5.1.1.2 Present Useful Concepts in a Clear and Efficient Manner 

 

Another aspect is that the methodology needs to be easily grasped by the targeted audience. 

Concepts in use should be presented in a way that is both natural and intuitive. In this context, 

the analysis methodology can be presented as a “short cut” that explicitly lists out and values a 

limited set of the most meaningful design and management solutions for operating the 

engineering system. The concept of catalog is useful when it is impossible to assess upfront all 

possibilities of managing the system due to computer intractability. It recognizes that industry 

and government has been doing very well given available analytical methods such as cost-benefit 

analysis and DCF. Now that computational power has significantly increased in recent years, it is 

time to take program analysis to the next level to benefit from such technological development. 

 

5.1.1.3 Tailor Presentation to Targeted Audience 

 

In order to send a clear message, the presentation needs to be tailored to the audience, and 

appropriate language needs to be used. If the targeted audience consists of program managers 

that focus on enhancing financial value, the methodology should be introduced first for what it 

can do before getting into technical details. As a way to capture the audience’s attention, it 

should be introduced as a method that increases financial value of a system. Concepts of catalog 

can be presented afterwards, together with value assessment methods, preferably through a case 

application relevant to the targeted industry.  

 

If the audience consists of engineers and designers interested in increasing performance, the 

methodology can also be introduced as achieving this ultimate goal. More technical details can 

however be presented to this kind of audience as compared to program managers. 

 

Presentation of those concepts must also account for the kind of knowledge and language 

commonly used by the audience. It is possible in some cases that words like “flexibility” and 

“real options analysis” get mixed receptions because practitioners consider them too complex. 
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Therefore, words such as “alternative designs” can be used to refer to a flexible system design 

that compares to another inflexible one. The words “real option” and “flexibility” need not be 

used to present the analysis methodology, even though the methodology exploits those concepts 

to improve value and performance of the system. 

 

5.2 New Concepts Introduce Additional Burden 

 

Designers recognize the need to explore upfront the combinatorial space for design and 

management decision rules that increase value and performance. They may however not have 

time, financial, and computational resources to do so in an exhaustive manner. Furthermore, they 

need to present the results of their analyses to program managers in a clear and efficient manner. 

 

Hence, another barrier to implementation of the analysis methodology is that it increases the 

amount of analysis to be performed before any investment decision is made. Instead of 

considering only one or a few design and management decision rules, the analysis methodology 

promotes exploring the combinatorial space more, while at the same time not devoting huge 

amounts of resources to do so. It also requires the understanding of a few new concepts, such as 

catalogs of operating plans, which necessitate some time for assimilation. 

 

The resistance to recognizing uncertainty is also another potential barrier to implementation 

because it necessitates the extra analytical burden of introducing Monte Carlo simulations in the 

model. Because flexibility only makes sense when one recognizes uncertainty, it might be 

difficult for program managers to recognize the usefulness of flexibility, and therefore the 

potential increase in value and performance, if uncertainty is not recognized in the first place. 

 

Even when program managers recognize uncertainty and the benefits of flexibility, it might be 

difficult to justify to management upfront payments to acquire it. The reason for this barrier to 

implementation is because flexibility may or may not be used in the future since it provides the 

“right, but not the obligation” to take a specific action at a later time. 
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5.2.1 Proposed Solutions: Promote Efficiency and Transparency 

 

5.2.1.1 Efficiency 

 

While the analysis methodology increases the analytical burden for all reasons mentioned above, 

it also provides short cuts to avoid searching the combinatorial space in an exhaustive manner. It 

provides tools like adaptive OFAT to guide the search and therefore explore this space more 

efficiently. It also benefits from increased computational power that is nowadays readily 

available, and uses analytical tools that are familiar to the firm. All these elements should 

contribute in alleviating the additional analytical burden, while providing program managers 

with a good opportunity to increase value and performance. The methodology allows them to do 

so while devoting minimal time, financial, and computational resources in searching efficiently 

for best design and management decision rules. 

 

5.2.1.2 Transparency of the Overall Approach 

 

The key to facilitate dissemination of the analysis methodology in the engineering and 

management communities is once again to promote transparency. Not only does the introduction 

of the methodology need to be clear and transparent (as detailed in Section 5.1.1), the 

methodology itself has to be transparent when applied by practitioners. Transparency allows 

program managers to show easily the evolution of design and management decisions and how 

these affect valuation. 

 

As an example where a lack of transparency hinders dissemination of useful concepts, consider 

the sector of real estate development. Geltner and Miller (2006) explain that when pricing land 

for real estate sites development, the market often overlooks additional value derived from the 

flexibility to make strategic expansion decisions in a timely manner. Therefore, this often leads 

the market to undervalue lands and properties.  
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To solve this problem, the authors suggest using real options analysis implemented with a 

binomial tree approach to recognize the additional value to wait, expand, and abandon the project 

at strategic times. (Geltner, 2007) however recognizes that the complexity of the method and of 

concepts introduced in this approach hinders dissemination in industry practice. Approaches to 

assessing value of land still appear to not consider these sources of flexibility in real estate 

project development. 

 

5.2.1.3 Transparency in Recognizing Practitioners’ Expertise 

 

The analysis methodology is most useful when it is not clear how designers and program 

managers should combine different design and management decision rules to improve value over 

current practice. This is the case where using the search algorithm adaptive OFAT is most 

appropriate.  

 

While this algorithm structures the search in the combinatorial space, it does not mean that 

practitioners’ expertise should be left aside when improving design and management decisions. 

If designers and program managers already have an idea of some powerful combinations to start 

the adaptive OFAT search, or in reverse are aware of combinations that do not make sense 

throughout the search, these should be incorporated in the process. If they have another good 

approach for searching the space, they are also encouraged to do so.  

 

The idea promoted in this thesis is that the combinatorial space should be investigated further 

prior to investment decisions even if its size is large. This increases chances of not leaving out 

solutions that may improve value over current practice. It is perfectly appropriate for a firm or 

government agency to use a different exploration method. As long as more exploration occurs, 

there are more chances of improving value. 

 

In that regard, one way to abstract adaptive OFAT and present it in a way that does not look like 

a “black-box” algorithm to practitioners is to consider that it is in fact a heuristic that says: “Try 

a slightly different combination, measure the system’s response in your model, if it is good keep 
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the change, if not, try another combination”. Therefore, there is no reason why managers should 

feel obligated to rigorously stick to adaptive OFAT in searching the combinatorial space. Rather, 

what is promoted behind adaptive OFAT is a Bayesian exploration method, abstracted in the 

words above, that structures the search for better design and management decision rules. 

 

5.3 Incentives for Considering this New Approach 

 

If a new methodology is considered in design and management practice, it has to clearly 

demonstrate that the benefits outweigh the potential costs. One way to do this is to apply the 

analysis methodology to realistic case studies and show how much value can be gained by 

considering uncertainty, flexibility, and further exploration of the combinatorial space compared 

to using one inflexible operating plan.  

 

Chapter 4 of this thesis intends to do just this. It clearly demonstrates that the methodology can 

improve value compared to an inflexible design in a few simple and transparent steps. One must 

notice that such value assessment departs from the idea of only one NPV measure per project 

assessment scenario. It provides multi-dimensional value attributes for comparing distributions 

of outcomes, represented as VARG curves, such as expected initial investment, ENPV, 

maximum NPV, and minimum NPV. 

 

It is true however that quantifying costs associated to increased analytical burden as presented 

above can be challenging. It might however be feasible to assess the costs for training current 

personnel, and for implementing analytical methods that do not necessitate installation of new 

software components. 
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Chapter 6 – Conclusion 

 

This thesis starts from the premise that current practice for designing engineering systems makes 

simple assumptions about the environment in which the system might evolve, and fails to 

explore design elements and management decision rules that could provide better value and 

performance. It recognizes that full analysis of all possible permutations of design elements and 

management decision rules is impossible to accomplish, which creates a need for the heuristic 

“short-cut” methodology introduced in this thesis. With the rise of computational power, 

designers can now afford further exploration of the combinatorial space in search for flexible 

solutions that improve value and performance.  

 

The catalog of operating plans proposed here inserts more realism in design analysis because it 

considers explicitly the effect of uncertainty on the system. The introduction of flexibility 

extracts additional value from uncertainty, thus allowing designers and program managers to do 

a better job. It also makes more efficient of material, financial, and human resources. While 

industry and government have been doing fairly well with traditional project analysis tools based 

on benefit-cost and discounted cash flow analyses, it is now time to consider an intelligent guide 

to interesting range of NPV analyses based on those tools 

 

An analysis methodology is suggested to explore further the combinatorial space of complex 

systems and find a catalog of operating plans that improves value and performance. This is done 

through a search algorithm called adaptive OFAT that is typically used in statistical experiment 

design. A limited set of uncertain variable scenarios affecting system’s performance is 

considered while investigating the combinatorial space at minimal extra computational cost. The 

methodology suggests using relatively simple analytical tools, such as Excel® spreadsheets and 

Monte Carlo simulations, to assess the value of flexible design and management decision rules 

through methods based on real options analysis. Other tools found in the literature are suggested 

to screen systems for sources of flexibility. 
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Through application to two case studies, the thesis demonstrates in financial terms that the 

methodology indeed improves value over inflexible design and management practice. The first 

case study relates to the development of a parking garage in the United Kingdom. The second 

case study relates to the development of a real estate project in the United States. Both cases 

exploit ideas of flexibility to further enhance value compared to inflexible approaches, which 

involve pro forma deterministic projections of uncertain variables and discounted cash flow 

analysis. 

 

The reason for promoting simple analytical tools is to suit the reality of program managers who 

have may have relatively little time, financial, and computational resources to devote to upfront 

project analysis. They also have to transmit the results of their analysis in a clear and efficient 

way to program managers and decision-makers. 

 

Thus, the policy component of the thesis addresses three main barriers to implementation of the 

analysis methodology in real-world practice: 1) existing rules and mandates in firms and 

government agencies create inertia and barriers to implementation of new methods 2) the 

analysis methodology requires somewhat more analytical work than current practice and 3) good 

incentives need to be provided before the methodology, or any new approach, can be seriously 

considered. 

 

The following solutions are suggested to help surmounting these potential barriers. Many of 

them are part of the methodology itself, which is intended by construction. First, ensure that the 

methodology is implemented within the firm or government agency’s current framework, rules, 

and management constraints. This is favored using familiar analytical tools, presenting new 

concepts in a clear manner, and tailoring presentation and language to targeted audience. Second, 

favor transparent presentation when introducing the methodology and promote transparency of 

the methodology itself, which allow program managers to follow clearly the evolution of the 

design and management decision process. Third, promote efficiency when searching the 

combinatorial space for new design and management decision rules, which is done by providing 

short cuts and a structured approach to guide the search. Fourth, present concrete examples that 

show value improvement over current practice through case studies as done in Chapter 4. 
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6.1 Opportunities for Future Research 

 

One aspect of the analysis methodology that needs further improvement is the development of a 

structured approach to determine the most relevant design and management decision rules in the 

adaptive OFAT search. As it stands now, the approach is mostly based on intuition and 

brainstorming sessions from designers. 

 

An interesting approach relies on future scenarios thinking as presented by (Lagarde, 2007). The 

author presented examples of how such methodology can be applied to supply chain 

management in the year 2020. It might be helpful to structure the determination of the most 

interesting design elements and management decision rules before starting exploration of the 

combinatorial space. 

 

It might be interesting as well to provide a structured approach for finding sources of flexibility 

in operations of engineering systems. As presented in Section 2.4, there is good literature 

available for finding sources “in” design and “on” engineering systems, but not so much in that 

latter operational area. 

 

One hopes that ideas and concepts presented in this thesis are useful and will benefit the 

engineering and management communities in the very near future. 
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Appendix 

 

Adaptive OFAT Results for the Parking Garage Case 

 

Creating the Catalog of Operating Plans 

 

This section presents the remainder of the adaptive OFAT analysis performed in step 4 of the 

analysis methodology to create the catalog of operating plans presented in Table 4.4. All demand 

scenarios used for this analysis are shown in Figure 4.5. 

 

The chosen baseline experiment and OFAT sequence for each scenario is shown in Table A.1. 

For each operating plan, application of the adaptive OFAT process is shown, as well as the best 

operating plan emerging from this process. 

 

Table A.1: Baseline experiments and OFAT sequences used to explore the combinatorial 

space for demand scenarios 1 to 5, as presented in the first experiments of Section 4.1.4. 

Baseline Exp. OFAT Seq. Baseline Exp. OFAT Seq. Baseline Exp. OFAT Seq. Baseline Exp. OFAT Seq. Baseline Exp. OFAT Seq.

Yes F Yes E Yes B Yes C Yes C

Yes C Yes A Yes E Yes E Yes B

Yes E Yes F Yes D Yes A Yes D

2 D 2 B 2 A 2 B 2 F

1 B 1 C 1 F 1 D 1 E

5 A 5 D 5 C 5 F 5 A

Scenario 4 Scenario 5

FIRST EXPERIMENTS

Scenario 1 Scenario 2 Scenario 3
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Creating Operating Plan 2 

 
Experiment DE and Management DR changed Level changed to: Output = NPV Best output before step Keep change?

1 (baseline) $ 12.9
2 E 2 $ 13.2 $ 12.9 Yes
3 E 3 $ 14.8 $ 13.2 Yes
4 A No $ 11.8 $ 14.8 No
5 F 4 $ 11.7 $ 14.8 No
6 F 6 $ 12.6 $ 14.8 No
7 B No $ 14.8 $ 14.8 No
8 C No $ 14.8 $ 14.8 No
9 D 3 $ 13.4 $ 14.8 No
10 D 4 $ 11.8 $ 14.8 No  

Figure A.1: Adaptive OFAT process exploring the combinatorial space for the best 

combination of design elements and management decision rules under demand scenario 2. 

The dollar figures are in millions. 

 

Table A.2: Best operating plan selected for demand scenario 2. 

DEs and Management DRs Description Best Operating Plan for Scenario 2

A Expansion allowed in years 1-4 Yes

B Expansion allowed in years 9-12 Yes

C Expansion allowed in years 17-20 Yes

D Expansion decision rule (years) 2

E Number of floors expanded by 3

F Number of initial floors 5  
 

Creating Operating Plan 3 

 
Experiment DE and Management DR changed Level changed to: Output = NPV Best output before step Keep change?

1 (baseline) $ 9.9
2 B No $ 10.1 $ 9.9 Yes
3 E 2 $ 9.2 $ 10.1 No
4 E 3 $ 10.8 $ 10.1 Yes
5 D 3 $ 10.4 $ 10.8 No
6 D 4 $ 9.6 $ 10.8 No
7 A No $ 10.4 $ 10.8 No
8 F 4 $ 10.8 $ 10.8 No
9 F 6 $ 6.6 $ 10.8 No
10 C No $ 10.8 $ 10.8 No  

Figure A.2: Adaptive OFAT process exploring the combinatorial space for the best 

combination of design elements and management decision rules under demand scenario 3. 

The dollar figures are in millions. 
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Table A.3: Best operating plan selected for demand scenario 3. 

DEs and Management DRs Description Best Operating Plan for Scenario 3

A Expansion allowed in years 1-4 Yes

B Expansion allowed in years 9-12 No

C Expansion allowed in years 17-20 Yes

D Expansion decision rule (years) 2

E Number of floors expanded by 3

F Number of initial floors 5  
 

Creating Operating Plan 4 

 
Experiment DE and Management DR changed Level changed to: Output = NPV Best output before step Keep change?

1 (baseline) $ 6.4
2 C No $ 6.4 $ 6.4 No
3 E 2 $ 3.8 $ 6.4 No
4 E 3 $ 3.7 $ 6.4 No
5 A No $ 6.4 $ 6.4 No
6 B No $ 6.4 $ 6.4 No
7 D 3 $ 6.0 $ 6.4 No
8 D 4 $ 5.4 $ 6.4 No
9 F 4 $ 7.4 $ 6.4 Yes
10 F 6 $ 4.0 $ 7.4 No  

Figure A.3: Adaptive OFAT process exploring the combinatorial space for the best 

combination of design elements and management decision rules under demand scenario 4. 

The dollar figures are in millions. 

 

Table A.4: Best operating plan selected for demand scenario 4. 

DEs and Management DRs Description Best Operating Plan for Scenario 4

A Expansion allowed in years 1-4 Yes

B Expansion allowed in years 9-12 Yes

C Expansion allowed in years 17-20 Yes

D Expansion decision rule (years) 2

E Number of floors expanded by 1

F Number of initial floors 4  
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Creating Operating Plan 5 

 
Experiment DE and Management DR changed Level changed to: Output = NPV Best output before step Keep change?

1 (baseline) $ 0.3
2 C No $ 0.3 $ 0.3 No
3 B No $ 0.3 $ 0.3 No
4 D 3 $ 0.5 $ 0.3 Yes
5 D 4 $ 1.3 $ 0.5 Yes
6 F 4 $ 2.6 $ 1.3 Yes
7 F 6 $ - 3.5 $ 2.6 No
8 E 2 $ 2.2 $ 2.6 No
9 E 3 $ - 1.3 $ 2.6 No
10 A No $ 2.6 $ 2.6 No  

Figure A.4: Adaptive OFAT process exploring the combinatorial space for the best 

combination of design elements and management decision rules under demand scenario 5. 

The dollar figures are in millions. 

 

Table A.5: Best operating plan selected for demand scenario 5. 

DEs and Management DRs Description Best Operating Plan for Scenario 5

A Expansion allowed in years 1-4 Yes

B Expansion allowed in years 9-12 Yes

C Expansion allowed in years 17-20 Yes

D Expansion decision rule (years) 4

E Number of floors expanded by 1

F Number of initial floors 4  
 

Catalog Obtained with Different Baseline Experiments and OFAT Sequences 

 

Results from the adaptive OFAT analysis are shown in this section in the case where different 

baseline experiments and OFAT sequences are chosen. The baseline experiments and OFAT 

sequences for the first experiments of Section 4.1.4 are shown in Table A.1. Those for the new 

experiments are presented in Table A.6. The catalog of operating plan resulting from this 

analysis is shown in Table A.7. 
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Table A.6: Summary of the baseline experiments and OFAT sequences used in the new set 

of adaptive OFAT experiments presented here. 

Baseline Exp. OFAT Seq. Baseline Exp. OFAT Seq. Baseline Exp. OFAT Seq. Baseline Exp. OFAT Seq. Baseline Exp. OFAT Seq.

No E No D Yes F Yes C No B

No F Yes C Yes B Yes B Yes A

No B No F No D No F Yes D

3 D 2 B 2 C 3 A 4 C

3 C 3 A 2 E 1 D 3 F

6 A 4 E 4 A 6 E 4 E

Scenario 5Scenario 1 Scenario 2 Scenario 3 Scenario 4

NEW EXPERIMENTS

 
 

Table A.7: Catalog of operating plans obtained from the analysis of five demand scenarios 

under the adaptive OFAT algorithm in the case where baseline experiments and OFAT 

sequences are chosen randomly. Each plan is associated to its corresponding demand 

scenario in Figure 4.5. “DE” means design element, and “DR” means decision rule. 

DEs and Management DRs Description Op. Plan 1 Op. Plan 2 Op. Plan 3 Op. Plan 4 Op. Plan 5

A Expansion allowed in years 1-4 Yes Yes Yes Yes No

B Expansion allowed in years 9-12 No Yes Yes Yes Yes

C Expansion allowed in years 17-20 No No No No Yes

D Expansion decision rule (years) 3 2 2 2 4

E Number of floors expanded by 2 2 2 1 1

F Number of initial floors 6 6 4 4 4  
 

Assessing the value of this catalog of operating plan using two thousand Monte Carlo 

simulations of demand scenarios, as done in step 5 of the analysis methodology, produces results 

shown in Table A.8. The corresponding VARG curve is shown in Figure A.5.   

 

Table A.8: Summary of results comparing valuation attributes between an inflexible 

parking garage design with five initial floors, and a flexible design with a catalog of five 

operating plans. In the latter case, each of the two thousand Monte Carlo simulations are 

categorized and assigned one of five operating plans. Also, the catalog of operating plans in 

this case is found by generating baseline experiments and OFAT sequences randomly. 

Inflexible Design Flexible Design with Which is Better?

Catalog of Operating Plans

Expected initial investment $ 18.1 $ 15.5 Flex. and Catalog Better
Expected NPV $ 2.9 $ 5.1 Flex. and Catalog Better
Expected NPV minus expected cost of flexibility $ 2.9 $ 4.3 Flex. and Catalog Better
Minimum NPV $ -19.5 $ -15.6 Flex. and Catalog Better
Maximum NPV $ 8.3 $ 17.3 Flex. and Catalog Better
Value of catalog of flexible operating plans $ 0.0 $ 1.4   
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Figure A.5: VARG curves resulting from Monte Carlo simulations for both the inflexible 

parking garage design with five initial floors, and flexible design using a catalog of five 

operating plans. ENPVs for both cases are also shown. Again, these results are using 

randomly generated baseline experiments and OFAT sequences. 
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Adaptive OFAT Results for the Real Estate Development Case 

 

Creating the Catalog of Operating Plans 

 

This section presents the remainder of the adaptive OFAT analysis performed in step 4 of the 

analysis methodology to create the catalog of operating plans presented in Table 4.11. All 

demand scenarios used for this analysis are shown in Figure 4.15. 

 

The chosen baseline experiment and OFAT sequence for each scenario is shown in Table A.9. 

For each operating plan, application of the adaptive OFAT process is shown, as well as the best 

operating plan emerging from this process. 

 

Table A.9: Baseline experiments and OFAT sequences used to explore the combinatorial 

space for market value scenarios 1, 2, and 3, as presented in the first experiments of Section 

4.2.4. Note that for market value scenario 2 the decision rule B is skipped in the adaptive 

OFAT sequence because it forces an operating plan similar to operating plan 3 (no 

investment at all). Program managers are interested in an operating plan that is an 

intermediate solution between operating plans 1 and 3, which justifies skipping the decision 

rule in the process. 

Baseline Experiment OFAT Sequence Baseline Experiment OFAT Sequence Baseline Experiment OFAT Sequence

Rule 2 A Rule 1 A Rule 2 B

10% C 10% C 10% A

5 B 200% B skipped 5 C

Scenario 3

FIRST EXPERIMENTS

Scenario 1 Scenario 2
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Creating Operating Plan 2 

 
Experiment DE and Management DR changed Level changed to: Output = NPV Best output before step Keep change?

1 (baseline) $ -24.9
2 A Rule 2 $ -24.2 $ -24.9 Yes
3 A Rule 3 $ -24.9 $ -24.2 No
4 C 1 $ -24.2 $ -24.2 No
5 C 5 $ -23.8 $ -24.2 Yes  

Figure A.6: Adaptive OFAT process exploring the combinatorial space for the best 

combinations of levels under market value scenario 2. 

 

Table A.10: Best operating plan selected for market value scenario 2. Management decision 

rules (a) are associated with a development plan (b) to form a complete operating plan. 

DEs and Management DRs Description Best Operating Plan for Pattern 2

A Abandonment option Rule 2

B Value over cost criterion for expanding 10.00%

C Number of phases for developing the park 5  
(a) 

Op. Plan Year 2007 2008 2009 2010 2011 2012 2013 2014 2015

2   Phase I Develop? Abandon? Wait? Develop

  Phase II Develop? Abandon? Wait? Develop

  Phase III Develop? Abandon? Wait? Develop

  Phase IV Develop? Abandon? Wait? Wait Wait Abandon

  Phase V Develop? Abandon? Wait? Wait Abandon  
(b) 

 

Creating Operating Plan 3 

 
Experiment DE and Management DR changed Level changed to: Output = NPV Best output before step Keep change?

1 (baseline) $ 0.0
2 B 50% $ 0.0 $ 0.0 No
3 B 100% $ 0.0 $ 0.0 No
4 A Rule 1 $ 0.0 $ 0.0 No
5 A Rule 3 $ 0.0 $ 0.0 No
6 C 1 $ 0.0 $ 0.0 No
7 C 2 $ 0.0 $ 0.0 No  

Figure A.7: Adaptive OFAT process exploring the combinatorial space for the best 

combinations of levels under market value scenario 3. 
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Table A.11: Best operating plan selected for market value scenario 3. Management decision 

rules (a) are associated with a development plan (b) to form a complete operating plan. In 

this case, the decision rules are not relevant because no investment occurs. 

DEs and Management DRs Description Best Operating Plan for Pattern 3

A Abandonment option Rule 2

B Value over cost criterion for expanding 10.00%

C Number of phases for developing the park 5  
(a) 

Op. Plan Year 2007 2008 2009 2010 2011 2012 2013 2014 2015

3   Phase I Develop? Abandon? Wait? Wait Wait Wait Wait Wait Wait Wait Wait Wait

  Phase II Develop? Abandon? Wait? Wait Wait Wait Wait Wait Wait Wait Wait

  Phase III Develop? Abandon? Wait? Wait Wait Wait Wait Wait Wait Wait

  Phase IV Develop? Abandon? Wait? Wait Wait Wait Wait Wait Wait

  Phase V Develop? Abandon? Wait? Wait Wait Wait Wait Wait  
(b) 

 

Catalog Obtained with Different Baseline Experiments and OFAT Sequences 

 

Results from the adaptive OFAT analysis are shown in this section in the case where different 

baseline experiments and OFAT sequences are chosen. The baseline experiments and OFAT 

sequences for the first experiments of Section 4.2.4 are shown in Table A.9. Those for the new 

experiments are presented in Table A.12. The catalog of operating plan resulting from this 

analysis is shown in Table A.13. 

 

Table A.12: Summary of the baseline experiments and OFAT sequences used in the new set 

of adaptive OFAT experiments presented here. 

Baseline Experiment OFAT Sequence Baseline Experiment OFAT Sequence Baseline Experiment OFAT Sequence

Rule 2 C Rule 3 C Rule 2 A

10% A 10% A 10% B

1 B 5 B skipped 1 C

NEW EXPERIMENTS

Scenario 1 Scenario 2 Scenario 3
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Table A.13: Catalog of operating plans obtained from the analysis of three market value 

scenarios under the adaptive OFAT algorithm with different baseline experiments and 

OFAT sequences than those presented in Section 4.2.4. Management decision rules for each 

operating plan (a) are associated with a development plan (b) to form a complete operating 

plan. 

DEs and Management DRs Description Op. Plan 1 Op. Plan 2 Op. Plan 3

A Abandonment option Rule 2 Rule 2 Rule 2

B Value over cost criterion for expanding 10% 10% 10%

C Number of phases for developing the park 1 5 1  
(a) 

Op. Plan Year 2007 2008 2009 2010 2011 2012 2013 2014 2015

1   Phase I Develop? Abandon? Wait? Develop

  Phase II Develop? Abandon? Wait? Develop

  Phase III Develop? Abandon? Wait? Develop

  Phase IV Develop? Abandon? Wait? Develop

  Phase V Develop? Abandon? Wait? Develop

2

  Phase I Develop? Abandon? Wait? Develop

  Phase II Develop? Abandon? Wait? Develop

  Phase III Develop? Abandon? Wait? Develop

  Phase IV Develop? Abandon? Wait? Wait Wait Abandon

  Phase V Develop? Abandon? Wait? Wait Abandon

3

  Phase I Develop? Abandon? Wait? Wait Wait Wait Wait Wait Wait Wait Wait Wait

  Phase II Develop? Abandon? Wait? Wait Wait Wait Wait Wait Wait Wait Wait

  Phase III Develop? Abandon? Wait? Wait Wait Wait Wait Wait Wait Wait

  Phase IV Develop? Abandon? Wait? Wait Wait Wait Wait Wait Wait

  Phase V Develop? Abandon? Wait? Wait Wait Wait Wait Wait  
(b) 

 

Assessing the value of this catalog of operating plan using two thousand Monte Carlo 

simulations of demand scenarios, as done in step 5 of the analysis methodology, produces results 

shown in Table A.14. The corresponding VARG curve is shown in Figure A.8.   
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Table A.14: Summary of results comparing valuation attributes between an inflexible real 

estate development project with all phases developed in a row, and a flexible design with a 

catalog of three operating plans. In the latter case, each of the two thousand Monte Carlo 

simulations are categorized and assigned one of three operating plans. This is the case 

where new experiments are done, as compared to the first set of experiments presented in 

Section 4.2.4. 

Inflexible Design Flexible Design with Which is Better?

Catalog of Operating Plans

Initial investment $ 27.3 $ 21.4 Flex. and Catalog Better
Expected NPV $ 3.3 $ 16.3 Flex. and Catalog Better
Minimum NPV $ -59.2 $ -25.3 Flex. and Catalog Better
Maximum NPV $ 77.9 $ 100.7 Flex. and Catalog Better
Value of Flexibility $ 0.0 $ 13.0  

 

 

Figure A.8: VARG curves and ENPVs resulting from Monte Carlo simulations for both the 

inflexible real estate development with all phases developed in a row, and flexible design 

using a catalog of three operating plans. This is the case where new experiments are done, 

as compared to the first set of experiments presented in Section 4.2.4. The arrow points out 

an interesting feature of the VARG curves, where NPVs for the case with the catalog of 
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operating plans are lower than those produced by the inflexible case (around 50% 

cumulative probability). This is due to the flexibility of abandoning the project if market 

conditions are unfavorable right at the outset, and to the cost of acquiring the flexibility 

when market conditions are barely favorable for development. 


