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requirements for the degree of
Doctor of Philosophy in Mechanical Engineering

Abstract

Light exhibits dramatically different properties when it propagates in or interacts
with 3D structured media. Comparing to 2D optical elements where the light interacts
with a sequence of surfaces separated by free space, 3D optical elements provides more
degrees of freedom to perform imaging and optical information processing functions.

With sufficient dielectric contrast, a periodically structured medium may be ca-
pable of forbidding propagation of light in certain frequency range, called band gap;
the medium is then called a photonic crystal. Various "defects", i.e. deviations from
perfect periodicity, in photonic crystals are designed and widely used as waveguides
and microcavities in integrated optical circuits without appreciable loss. However,
many of the proposed waveguide structures suffer from large group velocity disper-
sion (GVD) and exhibit relatively small guiding bandwidth because of the distributed
Bragg reflection (DBR) along the guiding direction. As optical communications and
optical computing progress, more challenging demands have also been proposed, such
as tunable guiding bandwidth, dramatically slowing down group velocity and active
control of group velocity. We propose and analyze shear discontinuities as a new type
of defect in photonic crystals. We demonstrate that this defect can support guided
modes with very low GVD and maximum guiding bandwidth, provided that the shear
shift equals half the lattice constant. A mode gap emerges when the shear shift is
different than half the lattice constant, and the mode gap can be tuned by changing
the amount of the shear shift. This property can be used to design photonic crystal
waveguides with tunable guiding bandwidth and group velocity, and induce bound
states. The necessary condition for the existence of guiding modes is discussed. By
changing the shape of circular rods at the shear interface, we further optimize our
sheared photonic crystals to achieve minimum GVD. Based on a coupled resonator
optical waveguide (CROW) with a mechanically adjustable shear discontinuity, we
also design a tunable slow light device to realize active control of the group velocity of
light. Tuning ranges from arbitrarily small group velocity to approximately the value
of group velocity in the bulk material with the same average refractive index. The
properties of eigenstates of tunable CROWs: symmetry and field distribution, and
the dependence of the group velocity on the shear shift are also investigated. Using
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the finite-difference time-domain (FDTD) simulation, we demonstrate the process of

tuning group velocity of light in CROWs by only changing the shear shift.

A weakly modulated 3D medium diffracts light in the Bragg regime (in contrast

to Raman-Nath regime for 2D optical elements), called volume hologram. Because of

Bragg selectivity, volume holograms have been widely used in data storage and 3D

imaging. In data storage, the limited diffraction efficiency will affect the signal-noise-

ratio (SNR), thus the memory capacity of volume holograms. Resonant holography

can enhance the diffraction efficiency from a volume hologram by enclosing it in a

Fabry-Perot cavity with the light multiple passes through the volume hologram. We

analyze crosstalk in resonant holographic memories and derive the conditions where

resonance improves storage quality. We also carry out the analysis for both plane wave

and apodized Gaussian reference beams. By utilizing Hermite Gaussian references

(higher order modes of Gaussian beams), a new holographic multiplexing method is

proposed - mode multiplexing. We derive and analyze the diffraction pattern from

mode multiplexing with Hermite Gaussian references, and predict its capability to

eliminate the inter-page crosstalk due to the independence of Hermite Gaussian's

orthogonality on the direction of signal beam as well as decrease intra-page crosstalk

to lower level through apodization.
When using volume holograms for imaging, the third dimension of volume holo-

grams provided more degrees of freedom to shape the optical response correspond-

ing to more demanding requirements than traditional optical systems. Based on

Bragg diffraction, we propose a new technique - 3D measurement of deformation

using volume holography. We derive the response of a volume grating to arbitrary

deformations, using a perturbative approach. This result will be interesting for two

applications: (a) when a deformation is undesirable and one seeks to minimize the

diffracted field's sensitivity to it and (b) when the deformation itself is the quantity of

interest, and the diffracted field is used as a probe into the deformed volume where the

hologram was originally recorded. We show that our result is consistent with previous

derivations motivated by the phenomenon of shrinkage in photopolymer holographic

materials. We also present the analysis of the grating's response to deformation due

to a point indenter and present experimental results consistent with theory.

Thesis Supervisor: George Barbastathis
Title: Associate Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Three dimensional (3D) optical information pro-

cessing

We live in a three dimensional (3D) world, and 3D optical information processing,

such as communication, data storage, imaging, sensing, etc., is the inevitable chal-

lenge and goal for engineers and scientists. Though we can simplify and approximate

our systems to 2D in many cases, the third dimension provides us more freedom in

addition to the challenge. Here, "3D" means 3D structured medium. The light inside

the medium interacts with the whole volume not a sequence of surfaces between which

is free space. So lenses, prisms, mirrors, thin diffractive optical elements (e.g. thin

gratings and holograms) and bulk uniform materials are not 3D in our definition.

Optical information processing has been extensively developed since the last cen-

tury [1]. Fourier optics [1} is one of the main systematic approaches for optical

information processing. 3D optical information processing becomes a more and more

important branch of optical information processing since fabrication techniques and

computational power have recently been developed to meet the precision requirements

and complexities. 3D optical information processing is different with the typical sys-

tems in Fourier optics where 2D signal are mainly considered and processed as well

as 2D optical elements are mainly used. In order to be capable of processing 3D
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signal, the system may lose some basic properties, such as invariance and linearity, in

some dimension. Some intuitions we build for traditional signal processing systems

may not be applicable. Even more, the effects of coherence may also differs within

traditional 2D optical information processing systems.

1.2 Optical waves in 3D media

Light exhibits dramatically different properties when it propagates in or interacts

with 3D structured media. In this thesis, we will mainly explore the light behavior in

two typical 3D media: photonic crystals and volume holograms. Although these two

materials are both formed by periodic dielectric modulations in thick media and their

basic physical phenomena are both based on diffraction, there are also significant

differences between them: e.g., photonic crystals have much higher dielectric contrast

than volume holograms, the periodicity of photonic crystals is usually in the order

of half the wavelength of light while in volume hologram the periodicity is usually

between half wavelength to several wavelengths, and volume holograms can have much

more complicated modulation patterns than photonic crystals.

Therefore, the fundamental theory, research methods and fabrication for photonic

crystals and volume holograms are also different. Light behavior in both materials is

governed by Maxwell's equations. Because the index modulation is weak in volume

holograms, the first order Born approximation (perturbation) [2] or coupled mode

theory [3] can be applied. Analytical solutions can be achieved and a systematic

approach to volume holographic systems has been developed based on Fourier optics.

On the other hand, due to the high dielectric contrast of photonic crystals, Maxwell's

equations need to be solved numerically either in frequency domain or in time domain.

Fabrication of volume holograms is also relatively easier and more controllable. To

record two coherent beams interfering on a photosensitive thick holographic material

can result in sufficient dielectric modulation. This recording process determines that

the fabrication of volume holograms is much more flexible than that of photonic

crystals. In order to have band gaps, high enough dielectric contrast is necessary for
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2D and 3D photonic crystals (see Section 2.1.3 for more discussion). This requirement,

in addition to subwavelength feature size, make the use of new lithography technique,

rather than holographic recording, necessary for photonic crystals.

1.2.1 Photonic crystals

Photonic crystals are dielectric materials in which the refractive index is periodic in

one, two or three dimensions. The validity of Bloch's theorem [4] for Maxwell equa-

tions implies the existence of photonic bands yielding allowed and forbidden frequency

regions for light propagation, in analogy to electrons in crystalline solids. A photonic

band gap may allow spontaneous emission to be suppressed as well as localization of

light, as first proposed by E. Yablonovitch [5] and S. John [6]. The absence of allowed

propagating electromagnetic modes inside the structures within the band gap gives

rise to distinct optical phenomena such as high-reflecting omnidirectional mirrors and

low-loss waveguiding among others. For example, a bulk crystal with a complete gap

serves as a ideal mirror for lights along all directions; a patrial gap, on the other hand,

allows light propagation only along certain directions and could serve as a substrate

for a directional emitter; a point defect acts as a solid-state microcavity with confine-

ment of the electromagnetic field in all directions [7, 8]; a linear defect in a photonic

crystal acts as a channel waveguide for light propagation [7] and may also contain

sharp bends [9]. The ability to tailor photonic bands for specific applications provides

a systematic approach in controlling the properties of electromagnetic waves.

Research in the field of photonic crystals has undergone a rapid evolution in the

last few years, due to the interest in basic physics and engineering as well as in

prospective applications to photonic devices. The most immediate application of

photonic crystal devices is in optical communications. Sharp-bend waveguides [9],

channel-drop filters [10], waveguide crossings [11], and other devices for Wavelength-

Division Multiplexing (WDM) systems are among the devices already realized and

fabricated. Design and production of micro lasers, extremely bright LEDs, optical

delay lines and next generation high-speed computers, as well as a variety of other

optical circuits are among the goals of photonic crystals research.
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To fabricate photonic crystals, materials with a periodic refractive index on the

order of half a wavelength are needed. The most common way to accomplish this

is to use two materials of different refractive index as building blocks for a periodic

lattice. In the microwave region, the typical length scale is from millimeter to centime-

ter and photonic crystals can be fabricated easily. Because of the scaling properties

of photonic crystals (following from the scaling properties of Maxwell's equations),

experiments on such crystals were used to verify the photonic band structure cal-

culations and also find applications to Terahertz devices [12, 13]. To scale down

these ideas to visible and near-infrared wavelengths requires fabrication techniques

that assemble structures on the order of several hundred of nanometers. This makes

the fabrication cumbersome and complex. But in nature, one prominent example

of a photonic crystal is the naturally occurring gemstone opal [14]. Its opalescence

is essentially a photonic crystal phenomenon based on Bragg diffraction of light on

the crystal's lattice planes. Another well-known photonic crystal is found on the

wings of some butterflies such as the blue Morpho (Morpho granadensis) [15]. In

laboratory, the nanofabrication problem has proven to be a main research direction

and so far the fabrication of large size, high quality crystals still is a major chal-

lenge. Two fundamentally different approaches have been developed, based on either

self-assembly of colloidal particles, or lithography combined with etching techniques.

The self-assembly approach utilizes colloidal spheres that can self-organize in sev-

eral different colloidal crystal symmetries if their size polydispersity (i.e. the relative

width of the size distribution) is low enough [16, 17]. The main difficulties of this

method are inflexibility in terms of structures with different lattice symmetries and

inevitable random defects in photonic crystals. The other main method to fabricate

photonic crystals is to use etching techniques. This approach requires the fabrication

of lithographic masks with feature sizes down to 100nm. The mask is then used in

an anisotropic etching process in high index materials. This technique is most suited

for 2-D structures while 3D fabrication need to repeat the etching process layer by

layer. Recently, more and more fabrication methods have been proposed for 3D pho-

tonic crystals, such as holographic lithography, inverse opal and other layer-by-layer
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methods [18, 19, 20]. It is worth noting that holographic lithography utilizes the

"recording" idea from holograms. Four coherent, noncoplanar beams interfere with

each order to determine the three primitive lattice vectors of 3D photonic crystals.

1.2.2 Volume holograms

Holography was invented by D. Gabor [21] in 1948. He recognized that when a suitable

coherent reference is present simultaneously with the signal beam, the information

about both amplitude and phase of the signal beam can be recorded even though

the recording media respond only to light intensity. In the 1950's, E. N. Leith,

who recognized the similarity of Gabor's holography to the synthetic-aperture-radar

problem, suggested a modification of Gabor's original in-line holography that greatly

improved the process. Both Gabor's and Leith's holograms are working in the Raman-

Nath regime, generally diffracting the probe field that illuminates the holograms into

multiple orders and in response to any probe field. Thus, they are actually "thin"

holograms or 2D media.

Volume holography was first introduced by Van Heerden [22]. A volume hologram

is created by recording the interference pattern of the reference and signal beams

within the entire volume of a "thick" photosensitive material. Therefore, a volume

hologram is essentially a 3D grating, or a superposition of 3D grating in a "thick"

holographic material. A volume hologram diffracts in the Bragg regime, which means

that only one order, the +1st, is diffracted, and the properties of the diffracted field de-

pend strongly on the probe field. For example, if the wavelength or angle of incidence

of the probe field are different than the reference beam, then the diffracted beam may

become very weak or even absent, called "Bragg selectivity". Because of these two key

properties, volume holography has been been studied extensively [23, 3]. It is attrac-

tive for numerous coherent information processing [24] applications, including data

storage '25, 26], optical interconnects [27], telecommunications [24], artificial neural

networks [28], and imaging [29, 30]. Bragg selectivity in holographic data storage

enables the multiplexing of thousands of data pages in one 3D medium. Similarly, in

interconnects, the Bragg selectivity is used to create large numbers of non-interacting
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"data paths" [27]. In optical communications, the dispersion properties of volume

diffraction are used instead as filter banks for spectral multiplexers or demultiplexers.

The use of volume holograms as field transforming elements for imaging systems was

proposed recently [29, 30]. This new imaging method is called volume holographic

imaging (VHI). In this case, Bragg selectivity is designed to result in extreme position

or color sensitivity, which in turn enables 3D imaging at long working distances with

high resolution, minimal scanning and hyperspectral capability.

Several different kinds of materials have been investigated as volume holographic

media. These include a number of photorefractive materials, such as iron-doped

lithium niobate (Fe:LiNbO 3 ), organic materials and photopolymers [2]. The key point

of departure between different holographic materials is the nature of the physical

recording process, which largely determines most of the other properties of the stor-

age medium. For instance, in an impurity-doped electro-optic oxide like Fe:LiNbO 3,

an inhomogeneous space-charge distribution is created inside the medium via the

diffusion of electron-hole pairs excited by the illuminating intensity, and the asso-

ciated electric field then locally modulates the refractive index of the medium via

the linear electro-optic effect. This mechanism determines this type of material op-

tically erasable and hence suitable for reconfigurable applications while it also leads

to volatility. On the other hand, refractive-index change in photopolymers is induced

by polymerizing a monomer with visible illumination. Therefore, photopolymers are

very promising due to their high sensitivity and dynamic range.

1.3 Outline of the thesis

We start by exploring the light propagation in photonic crystals. A shear discon-

tinuity is proposed as a new type of defect in photonic crystals in Chapter 2. A

brief introduction to photonic crystals and photonic crystal waveguides is given in

Section 2.1 and 2.2, respectively. Detailed analysis of localized propagation modes

guided by shear discontinuities is presented in Section 2.4. In Section 2.5, we inves-

tigate the dependence of guiding bandwidth and group velocity on shear shift. The
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bound states (localized resonance) are also discussed in detail. In Section 2.6, we dis-

cuss the necessary condition for the existence of guided modes and further optimize

sheared photonic crystals by changing the shape of circular rods at the interface.

In Chapter 3, we design a tunable slow light device based on a coupled-resonator

optical waveguide (CROW) with a mechanically adjustable shear discontinuity to

realize active control of the group velocity of light. In Section 3.1, we give a brief

introduction on CROWs. The modification of band structure and group velocity

by introducing a shear discontinuity in a CROW is analyzed and discussed in Sec-

tion 3.2. In Section 3.3, active control of group velocity is realized in a CROW with

mechanically tunable shear discontinuity.

In Chapter 4, we continue exploring the light diffraction in volume holograms.

Crosstalk in resonant holography and mode multiplexing are discussed in Chapter 4.

First, we introduce the fundamental theory of volume hologram in Section 4.1. We

also calculate and compare crosstalk in angle- and shift- multiplexed holographic

memories. Resonant holography is discussed in Section 4.3. In Section 4.4, we carry

out the calculation for the case of unapodized plane wave reference, and find out

the condition where resonance is favorable. In Section 4.5, we show that further

improvement is achieVed by apodization with Gaussian references, which is well known

for non-resonant memories. In Section 4.6, we discuss a new multiplexing method -

mode multiplexing with Hermite-Gaussian references. The diffraction response is

derived and simulated in this section, and the crosstalk in mode multiplexing is also

analyzed.

In Chapter 5, based on our VHI system, we propose a new technique for 3D

deformation measurement using volume holograms. First, we introduce the principles

and properties of VHI systems and derive the optical response of VHI in Section 5.1.

We provide general expressions that are applicable to arbitrary deformations under

a set of mildly restrictive assumptions, such as preservation of the average index

of refraction and validity of the 1st--order Born approximation. The derivation is

carried out in Section 5.3 for small deformations for which a perturbative approach

is adequate, and in a more general (but also more algebraically complex) form in
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Sections 5.6 and 5.7. In Section 5.4, we confirm that the general theory matches with

the well known predictions and observations of shrinkage effects from the literature. In

Section 5.5, we carry out the modeling of the diffracted field and report experimental

results in the case of a deformation produced by an indenter tip applied against the

surface of a semi-infinite slab. The experiments match very well with the theory.

We conclude in Chapter 6 by summarizing the main advantages and challenges

of 3D optical information processing. We discuss some promising directions of future

work in this field.
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Chapter 2

Localized propagation modes

guided by shear discontinuities in

photonic crystals

2.1 Photonic crystals

Photonic crystals are periodically structured eletromagnetic media, generally possess-

ing photonic band gaps: ranges of frequency in which light can not propagate through

the structure [31, 32, 33, 34, 35]. The length scale of the periodicity is proportional

to the wavelength of light in the band gap. The periodicity of photonic crystals is the

electromagnetic analogue of a crystalline atomic lattice, which acts on the electron

to produce the energy band gaps in semiconductors. The study of photonic crystals

is likewise governed by Maxwell's Equations and the Bloch theorem.

2.1.1 Maxwell's equations for photonic crystals

All of macroscopic electromagnetism including the propagation of light in a photonic

crystal is governed by Maxwell's equations (in MKS units):

V . D (r, t) = p, (2.1)
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V -B (r,t) =0, (2.2)

V x E(r,t) = B(r, t), (2.3)
at

V x H(r,t) = -D (r, t) + J, (2.4)
at

where E and H are the electric and magnetic fields, D and B are the electric dis-

placement and magnetic induction, and p and J are the free charges and currents.

In the absence of free charges and currents, we can set p = 0 and J = 0. In order

to solve Maxwell's Equations, we need to relate B to H and D to E by constitutive

equations. Considering that photonic crystals, normally, are not realized in magnetic

materials, we can assume the magnetic permeability equal to that in free space, p0,

so that

B (r, t) = poH (r, t). (2.5)

As for D and E, quite generally the components Di of the displacement field are

related to electric field components Ej by the following power series [36]:

Di= C cijE + xijkEjEk + O(E 3 ). (2.6)

For most cases, we can simplify 2.6 using the following assumptions. First, we assume

that the field strengths are small enough so that we are in the linear regime. Therefore,

X and all higher order terms can be dropped. Second, we assume that the material

is macroscopic and isotropic so that the dielectric constant can be approximated by

a scalar E(r, w). Third, we ignore any explicit frequency dependence of the dielectric

constant. Instead, we simply choose a value of the dielectric constant appropriate to

the frequency range of the physical system we are considering. Fourth, we focus only

on low-loss materials, which means that the imaginary part of c(r) is negligible. The

electric displacement is thus given by

D (r, t) = EoE(r)E (r, t) , (2.7)
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where co is the free space dielectric constant and c(r) denotes the spatially varying

relative dielectric constant of the photonic crystal. Since Maxwell's equations are

linear, it is convenient to solve the field distribution in the form of harmonic fields

and obtain the general solution as a superposition of harmonic modes. The electric

and magnetic fields E and H are expanded into a set of harmonic modes. Each mode

has the following temporal characteristics:

E(r, t) = E(r)e", H(r, t) = H(r)e"' t . (2.8)

By substituting constitutive relations 2.5 and 2.7 into Maxwell's Equations 2.1- 2.4

as well as using the harmonic mode representations 2.8, we can obtain a closed form

equation for the magnetic field:

V x V x H(r) =-H (r), (2.9)
E (r) C2

where c stands for the light velocity in free space:

c2 1 . (2.10)

It is worth noting that Eq. 2.9 is a Hermitian eigenvalue problem whose solutions are

determined entirely by the properties of the dielectric function 1/E (r). V x -- Vx ise(r)

a Hermitian eigen-operator, and H (r) and w2 /c 2 are the eigenmode and eigenvalue,

respectively.

2.1.2 Bloch theorem

The study of wave propagation in 3D periodic media was pioneered by Felix Bloch

in 1928, unknowingly exending an 1883 theorem in one dimension by G. Floquet.

Bloch proved that waves in such a medium can propagate without scattering. Their

behavior is governed by a periodic function unk(r) (Bloch envelope) multiplied by a

plane wave eik.r

V)nk(r) = e ik-r Unk (r), (2.11)
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where k is the plane wave vector (Bloch wavevector) which is unique up to a reciprocal

lattice vector, and n is the index of the solutions (there are a number of solutions

for a given k). Although Bloch studied quantum mechanics, the same techniques

can be applied to electromagnetism by casting Maxwell's equations in the form of an

eigenproblem in analogy with Schr6dinger's equation, as we derived in Section 2.1.1:

the two curls in Eq. 2.9 correspond roughly to the "kinetic energy" and 1/6 to the

"potential".

A photonic crystal corresponds a periodic dielectric function 6(r) = E(r + Rq) for

some primitive lattice vectors Ri (i = 1, 2, 3 for a crystal periodic in three dimensions.)

In this case, Bloch's theorem for electromagnetism states that the solutions to Eq. 2.9

can be chosen of the form

H(r) = e kr Hnk(r). (2.12)

The eigenvalues are w,(k), where Hnk(r) is a periodic envelope function satisfying

(V + ik) x 1 (V + ik) x Hnk (r) = Wn (k)H (r) . (2.13)
c (r) c

Eq. 2.13 yields a Hermitian eigenproblem over the primitive cell at each Bloch wavevec-

tor k. When the primitive cell is finite, the eigenvalues are discrete, labeled by

n = 1, 2,3.... These eigenvalues wn(k) are continuous functions of k, forming discrete

bands in a dispersion diagram. Note also that k is not required to be real; complex k

gives evanescent modes that will exponentially decay from the boundaries of a finite

crystal, but cannot exist in bulk.

2.1.3 Photonic band gap

The easiest way to understand the origin of photonic band gaps is to compare it

to the energy gap in a semiconductor. In a silicon crystal, for example, the atoms

are arranged in a diamond lattice structure, and electrons moving through this lattice

experience a periodic potential as they interact with the silicon nuclei via the Coulomb

force. This interaction results in the formation of allowed and forbidden energy states.
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For pure and perfect silicon crystals, no electrons are to be found in an energy range

called the forbidden energy gap or simply the band gap.

Now consider photons moving through a block of transparent dielectric that con-

tains periodically arranged high and low refractive index materials. The photons

pass through regions of high refractive index interspersed with regions of low refrac-

tive index. To a photon, this contrast in refractive index looks just like the periodic

potential that an electron experiences traveling through a silicon crystal. Indeed, if

there is large contrast in refractive index between the two regions, then most of the

light will be confined either within the high refractive index material or the low re-

fractive index material. This confinement results in the formation of allowed energy

regions separated by a forbidden region - the so-called photonic band gap. This result

follows from the properties of the Hermitian eigensystem (Eq. 2.13), namely that the

eigenvalues minimize the variational problem

2 f I |(V + 2k) x Enk 1 2w2(k) = min f 2 C2  (2.14)
Enk E EnkI

In Eq. 2.14, Enk is the periodic electric field envelope which can be obtained from

the periodic envelope function of the magnetic field. The numerator minimizes the

"kinetic energy" and the denominator minimizes the "potential energy." Furthermore,

the bands n > 1 are additionally constrained to be orthogonal to the lower bands m:

Hmk H = JEk - = 0. (2.15)

Therefore, at each k, there will be a gap between the lower bands concentrated in

the high dielectric (low potential) and the upper bands that are less concentrated in

the high dielectric because they are forced out by the orthogonality condition or must

have fast oscillation that increase their kinetic energy. By this argument, it follows

that any periodic dielectric variation in one dimension will lead to a band gap while

in order to obtain a complete band gap in 2D or 3D, two additional conditions need

to be satisfied. First, although in each symmetry direction of the the crystal and each

k there will be a band gap by the ID argument, these band gaps will not necessarily
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overlap in frequency. For the gaps to overlap, the gaps must be sufficiently large,

which implies a minimum dielectric contrast to each geometry. Second, following

the vectorial boundary conditions on the electric field, moving across a dielectric

boundary from c to c' < e, E El2 will decrease discontinuously if E is parallel to the

interface (Ell is continuous) and will increase discontinuously if E is perpendicular

to the interface (E± is continuous). This means that it is much harder to strongly

contain the field energy in the high dielectric whenever the electric field has component

perpendicular to the dielectric boundary, and vice versa. Thus, the band gaps exist for

the polarization direction where the electric field lines do not need to cross a dielectric

boundary. In order words, to obtain a large band gap, a dielectric structure should

consist of thin, continuous veins or membranes along the electric field polarization

direction.

Usually a bulk photonic crystal is of less interest than the existence of a defect in

it. This is because defects can support localized states whose properties are dictated

by the nature of the defect. A point defect could act as a mircocavity and a line defect

as a waveguide. The design of defects enables us to tailor the band structures for

specific applications and model the flow of light corresponding to different demands.

Therein lies the potential of photonic crystals.

2.2 Photonic crystal waveguides

Certain defects in photonic crystals can lead to localized states in the defect's vicinity.

For example, by introducing a line defect, we can induce a guided mode along the

defect axis for a band of frequencies inside the band gap (7]. Such a waveguide

does not rely on the total internal reflection as regular dielectric waveguides do.

Because of that, the evanescent region is virtually zero. Light can be guided without

appreciable losses for a wide range of frequencies and transmitted efficiently around

sharp corners [9], even if the radius of curvature of the bend is on the order of one

wavelength. Conventional photonic crystal waveguides consist of a missing row of

rods or holes in a two-dimensional (2-D) array of dielectric rods or air holes. These
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structures have been studied extensively in both theory [7, 9, 37] and experiments [38,

39]. However, many of the proposed waveguide structures suffer from a large group

velocity dispersion (GVD) and exhibit relatively small guiding bandwidth because of

the distributed Bragg reflection (DBR) along the guiding direction. Techniques that

have been proposed to mitigate guided mode dispersion have been either successful

for relatively small bandwidth or involve a combination of slab mode and photonic

crystal confinement [40, 41, 42].

In this chapter, we propose a new type of defect, consisting of a shear discontinuity

in an otherwise periodic photonic crystal lattice, as shown in Fig. 2-1. Such a defect

can confine optical waves to propagate along the shear plane. Such guided waves are

sometimes referred to as zero mode [43] or surface waves. The confined propagation

mode is effective over the entire band gap, provided that the shear shift equals half

the lattice constant. The guided modes avoid large GVD due to flattening of the

dispersion curve. This is because the local period is half the lattice constant and thus

breaks the DBR condition. The low GVD makes this structure very promising for

high speed transmission, high speed optical signal processing and highly integrated

optical circuits. Alternatively, the shear shift can be adjusted as a parameter to

tailor a particular dispersion response. If the shear shift is not equal to half the

lattice constant, a mode gap [44] emerges inside the band gap. This property can

be used to implement a tunable optical filter or optical switch. We also investigate

the coupling efficiency between a guided mode external to the photonic crystal and

the shear mode, with the shear shift as a parameter. The group velocity can also

be tuned by changing the shear shift. This enables us to realize tunable, slow light

devices. We find that the existence of surface waves for each half of the sheared

photonic crystals is a necessary condition for the existence of guided modes. The

mode gap introduced by the shear shift can also be used to induce bound states [44].

By changing the shape of circular rods at the interface (height h in Fig. 2-1(b)), we

can further optimize the design of our sheared photonic crystals to achieve minimum

GVD or other requirements.

We will continue this chapter with a brief introduction of computational methods
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Figure 2-1: Two dimensional photonic crystals: (a) square lattice of dielectric rods
in air, with lattice constant a and radius r =O.2a (b) photonic crystal lattice with
shear discontinuity (sheared photonic crystals) with shear shift s =a/2 and cylinder
section height at the interface h r.

that we will use to investigate a photonic crystal and its defect states. Detailed

analysis of localized propagation modes guided by shear discontinuities is presented

in Section 2.4. In Section 2.5, we investigate the dependence of the guiding bandwidth

and group velocity on the shear shift. The bound states (localized resonance) are also

discussed in detail. In Section 2.6, we discuss the necessary condition for the existence

of guided modes and further optimize sheared photonic crystals by changing the shape

of circular rods at the interface.

2.3 Computational methods

To investigate the properties of a photonic crystal and its defect states, two different

computational approaches are used. The first solves Maxwell's equations in the fre-

quency domain, while the second solves the equations in the time domain. These two

methods reveal different information about photonic crystals and their defects. The

frequency-domain method yields the dispersion relationship, polarization, symmetry,

and the field distributions of its eigenstates, while the time-domain method allows us

to determine the temporal behavior of the modes. By exploiting the evolution of the
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fields in time, we will be able to determine the coupling efficiency, the steady state,

the scattering and the quality factor of cavities.

2.3.1 Frequency domain

In the first method, one concentrates on solving the field distribution of the harmonic

state of electromagnetic field from Maxwell's equations. The fields are expanded into

a set of harmonic modes representations 2.8 and solved by using the wave equation 2.9

for the magnetic field. Eq. 2.9 is an eigenvalue problem which can be rewritten as

OHn = AnHn (2.16)

where e is a Hermitian differential operator and An is the nth eigenvalue, proportional

to the squared frequency of the mode. The Hermitian eigenvalue problem ( 2.9) can be

solved by using a variational approach where each eigenvalue is computed separately

by minimizing the functional < Hn2 E|Hn >. This method is described in more detail

in Ref. [45] and implemented by the MIT Photonic-Bands (MPB) package. Briefly,

to find the minimum, we use the conjugate gradient method with preconditions. The

gradient method has the advantage of being more efficient than the traditional method

of steepest descent, in that it requires fewer iterations to reach convergence. In order

to minimize the functional, we need to calculate

EH, (r) = V x Vx Hn (r). (2.17)

Since the curl is a diagonal operator in reciprocal space and 1/E (r) is a diagonal

operator in real space, each of these operators is computed in the space where it is

diagonal by going back and forth between real and reciprocal space using fast Fourier

transforms (FFT's). This allows the operator E to be diagonalized without storing

every element of the N x N matrix; instead, only the N elements of Hn need to be

stored. Therefore, we will be able to consider structures of very large dimensions.

Because of piecewise continuity of the true dielectric function in many systems of
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interest, the main source of inaccuracy is the coarseness of the FFT grid along the

boundary between dielectrics. This is compensated for by smoothing the dielectric

constant along the boundaries. To calculate the band structure of a periodic system,

the computational cell is chosen to be one unit cell of the periodicity. To study

eigenstates of systems that are intrinsically non-periodic, such as cavities, surfaces

and waveguides, one could employ the supercell approximation in which the non-

periodic system is periodically repeated in space. The spurious effects introduced by

the artificial periodicity can be either minimized or estimated by the use of supercells

of increasingly larger size.

2.3.2 Time domain

The second method solves Maxwell's equations in real space, where the explicit time

dependency of the equations is maintained. The equations for the electric and mag-

netic fields can be written as

a
/-o H (r, t) = -V x E (r, t) (2.18)

a
Ec (r) -E (r, t) = V x H (r, t) (2.19)

at

These equations can be solved by using the Finite-Difference Time-Domain (FDTD)

method. Eqs. 2.18 and 2.19 are discretized on a simple cubic lattice, where space-

time points are separated by fixed units of time and distance. The derivatives are

approximated at each lattice point by a corresponding centered difference, which

gives rise to finite-difference equations. By solving these equations, the temporal

response of the structures can be determined. In solving Eqs. 2.18 and 2.19, special

attention must be given to the fields at the boundary of the finite-sized computational

cells. Since information outside the cell is not available, the fields at the edges must

be updated using boundary conditions. In our simulations, perfectly matched layer

(PML) boundary conditions are used to minimize back reflections into cells.
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2.4 Localized propagation modes guided by shear

discontinuities

We start with a conventional 2-D photonic crystal consisting of dielectric rods in air

on a square array with lattice constant a, as shown in Fig. 2-1(a). Just as the regular

arrangement of atoms in a crystal gives rise to band gaps, here the spatial periodicity

of the dielectric index may prevent electromagnetic waves of certain frequencies from

propagating inside the photonic crystal. As a numerical example, we assume that the

refractive index of the rods is 3.0 and the radius is r = 0.2a. The crystal has a TM

(magnetic field in-plane) band gap which extends from frequency w = 0.323 x 27rc/a to

w = 0.443 x 27rc/a. The gap range corresponds to the canonical free-space wavelength

for light between 451nm and 619nm when a = 0.2pm. Subsequent simulations use

this value of a and center wavelength A0 = 550nm. Here we restrict our analysis to

TM modes.

We introduce a shear discontinuity in the middle row, as shown in Fig. 2-1(b).

The circular dielectric rods in the middle row are cut in half (the height h = r).

In this section, we will restrict our analysis to shear shift s = a/2, i.e. exactly one

half the lattice constant. General shear shifts will be discussed in Section 2.5. When

light of frequency within the band gap enters the photonic crystal along the shear

plane, we can expect that the light will be well confined near the shear plane. This is

because the upper and lower halves are still perfect photonic crystals and there are

no extended modes into which the propagating wave can couple. Unlike other guided

mode structures, the transverse confinement is induced by a zero thickness entity:

the shear plane. The computational setup is shown in Fig. 2-2. A slab waveguide

with core index 1.5 and core thickness 0.4pm sandwiched by clading of index 1.0 is

used to couple the light source into the sheared photonic crystal with lattice constant

a = 0.2pm and radius of rods r = 40nm. Using the FDTD method, we simulated a

10fs pulse with center wavelength of 550nm being injected by an external waveguide

near the tip of the shear plane. All the FDTD simulations in this chapter are 2-D.

Because the spectrum of the pulse is mostly inside the band gap of the photonic
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Figure 2-2: (Color) A pulse is coupled in by a slab waveguide and propagates inside

the sheared photonic crystal. The pulse duration is 10fs and the center wavelength

is 550nm. Plane A is at the end of the slab waveguide and Plane B is located 5.5pm

away from Plane A.

crystal, we can see from Fig. 2-2 that the entire pulse is well confined to the shear

plane.

The dispersion diagrams for the sheared photonic crystals in this chapter are

calculated by solving Maxwell's equations in the frequency domain for the given

dielectric configurations as described in Section 2.3.1. A supercell of size 15a x a

with periodic boundary conditions is used as the computational domain. Because the

guided modes are sufficiently localized and the width of the supercell is large enough,

the introduction of the supercell has a negligible effect on the results. When the

shear shift equals half the lattice constant and the shear discontinuity is formed by

half circular dielectric rods, the dispersion relation is illustrated as the solid line in

Fig. 2-3, indicating the existence of two guided modes inside the band gap.

Two important features of the dispersion diagram are worth pointing out. First,

no flattening occurs at the edge of Brillouin zone X (k = r/a), unlike in conventional

photonic crystal waveguides. The flattening is very undesirable for optical signal

transmission, since it makes guided modes suffer from large GVD. The primary phys-

ical reason for the flattening in conventional photonic crystal waveguides is the DBR
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Figure 2-3: Dispersion relation for the sheared photonic crystals when s a/2. Solid
line: half circular rods at the interface h = r; dash-dot line: entire circular rods at
the interface h = r + a/2.

effect or the constructive backward coupling [46] since the spatial periodicity of the

photonic crystal waveguides is exactly half of the Bloch wavelength at the edge of

the first Brillouin zone. In the sheared photonic crystal, the local period along the

shear plane is actually a/2 instead of a, although the period of the entire structure

still equals a. Therefore, the condition for strong backward DBR coupling is bro-

ken. Since the local period is decreased to one half of the lattice period, the actual

Brillouin zone of guided modes doubles. The mode outside the first Brillouin zone

of the entire sheared photonic crystal folds back to form a second mode inside the

band gap. Second, as an additional benefit of the absence of flattening, no mode gap

exists [44]; guided modes span the entire band gab. Without the problems of limited

bandwidth and a large GVD, the sheared photonic crystals are very promising for

applications such as high speed transmission, high speed optical signal processing and

highly integrated optical circuits.

The very low dispersion of sheared photonic crystals also results in uniform cou-

pling efficiency over the entire width of the band gap. In the FDTD simulation,
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Figure 2-4: Incident power spectrum at Plane A and coupled-in power calculated at
Plane B, and coupling efficiency when a 10fs pulse with center wavelength of 550nm

is input into the sheared photonic crystal.

we calculated the power coupled into the sheared photonic crystals at Plane B, as

shown in Fig. 2-2, which is 5.5pm away from the end of slab waveguide, Plane A.

Then we calculated the coupling efficiency as the ratio of the coupled-in power and

incident power at Plane A. Fig. 2-4 shows the spectrum of coupling efficiency when

a 10fs pulse is coupled into the shear photonic crystal in Fig. 2-2. The profile of

normalized power of incident and coupled-in pulse almost overlap with each other

and the coupling efficiency is equal to 1 uniformly for the entire pulse spectrum. In

order to obtain the coupling efficiency for the full band gap, we use a 3fs pulse with

center wavelength 550nm. The pulse spectrum covers the entire width of the band

gap. As shown in Fig. 2-5, the coupling efficiency is uniformly equal to 1 inside the

band gap, while some oscillations emerge at the edge of the band gap. The rapid

fluctuations of coupling efficiency at the edge of the band gap are not real features

of the system and likely to be numerical artifacts [8, 47]. These artifacts arise from

the small signal-to-noise ratio outside the band gap and from Gibbs effect inside the

band gap.
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Figure 2-5: Incident power spectrum at Plane A and coupled-in power calculated at
Plane B, and coupling efficiency when a 3fs pulse with center wavelength of 550nm is

input into the sheared photonic crystal.

2.5 The effect of shear shifts on GVD and group

velocity

It can be expected that guiding by shear discontinuities in photonic crystals will

depend strongly on the shear shift s between the upper and lower halves of the

lattice. The dispersion diagram for shifts other than half lattice constant is shown in

Fig. 2-6. We can see that a mode gap opens up progressively towards the band gap

edges as the shear shift decreases from half lattice constant to zero. At this point,

the presence of the mode gap is also because of DBR. So the dispersion curves are

flattened and the mode gap re-emerges. This can also be explained from the symmetry

in the Fourier domain as follows. The band diagram must continue symmetrically

beyond X. Therefore, when there is no crossing point at X, as in the case of half the

lattice constant shear shift, all bands must have zero group velocity (i.e. zero slope)

at X in order to be analytic functions of the wave vector. Note that sheared photonic
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Figure 2-6: Dispersion relation for the sheared photonic crystal with different shear
shifts. Half circular rods are at the interface h = r.

crystals with shear shift s are actually the same as with shear shift a - s because of

the periodicity of the whole structure. So we only consider the case s < 0.5a here.

Because no guided modes exist within the frequency range of the mode gap, light

of wavelength inside the mode gap can not propagate in sheared photonic crystals.

Thus, tunable sheared photonic crystals can be used to implement optical filtering

or optical switching. The relationship between the mode gap and shear shift follows

Fig. 2-7. Using FDTD simulations, we obtain the spectra of coupling efficiency for

different shear shifts, as shown in Fig. 2-8. For wavelengths inside the mode gap,

the coupling efficiency decreases to zero. Wavelengths outside the mode gap but

inside the band gap retain very high coupling efficiency. The small coupling efficiency

near the band edge and outside the band gap result from numerical artifacts in this

calculation. Within the band gap, however, the FDTD calculation is very accurate,

as can be seen by the excellent match between the mode gap calculated by FDTD

and by the dispersion relation(Fig. 2-7).

These phenomenon can also be explained intuitively by the argument of surface

waves as follows. The fields in the lower and upper halves of the sheared photonic
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crystal can be thought of as surface waves localized at the shear surface. Half lattice

constant shear shift will phase match the two Bloch surface waves. They can then

strongly couple into each other, resulting in a guided mode that is well confined along

the shear plane. When the shear shift is between half lattice constant and zero, the

two surface waves are partially phase matched, and so coupling efficiency decreases

while mode gaps emerge. When the shear shift is equal to zero (perfect photonic

crystal without defect), the two surface waves are totally phase mismatched, and so

no wavelengths can propagate within the band gap.

From Fig. 2-6, the slope of the dispersion curves (i.e., the group velocity) also

depend on the shear shift. The flattened dispersion curves at the edge of the Brillouin

zone result in small group velocities. Thus, the shear photonic crystal structure with

mechanically controlled shear shift can be used for active control of the group velocity.

Fig. 2-9 shows the group velocity spectra for different shear shifts. The group velocity

can be tuned from zero to approximately its value in bulk material with the same

averaged index as the sheared photonic crystal, as the shear shift increases. The

flattened dispersion curves in Fig. 2-6 are well inside the band gap and isolated from

the continuum of modes that lie outside the band gap. This is in contrast with some

photonic crystal waveguides which achieve low group velocity near the band edge

at the cost of poor field confinement. Our proposed approach is unique in that it

utilizes structure to control the group velocity. Tuning via shear does not require

special media like cold atomic gases, electronic transitions in crystalline solids or

other nonlinear optical effects and electrical heating process [48, 49, 50, 511. Thus, our

approach is applicable at any wavelength range, particularly in the low loss window

of optical devices, and independent of operation temperature. Our approach also

provides high flexibility because it is decoupled from nonlinear, electro-optic or other

effects that are best reserved for other purposes in optical systems.

Fig. 2-6 shows that not only wider mode gaps exist for smaller shear shifts, but

also that part of the guided modes for larger shear shifts always fall into the mode

gap for smaller shear shifts. This means that bound states can exist [44] whenever

a slice of sheared photonic crystal with larger shear shift is sandwiched by two semi-

44



0.45
Band Gap

0.4
sx6.5a

0.35-
s= .45a

0.25- s=0. 4 0.4a

00.2 . 0. s=0.35a

- s=i.3a
0.15

Ss= .25a
0.1 - -

0.05 --

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46
Normalized frequency (2nc/a) or a/X

Figure 2-9: Group velocity spectra for different values of shear shift s of the sheared
photonic crystals.

infinite sheared photonic crystals with smaller shear shifts. We indeed find a bound

state at w = 0.334 x 27r/a by choosing a configuration such that a slice of sheared

photonic crystal with half lattice constant shift had length 2a and was sandwiched by

two semi-infinite sheared photonic crystals with quarter lattice constant shift. The

electric field for this case is shown in Fig. 2-10. The shear discontinuity is a totally

new method to induce bound states instead of changing the width of guiding region

in conventional photonic crystal waveguides or metallic waveguides. Actually, in our

case, the width of the guiding region does not change at all and also it is easier to

find bound states than in conventional waveguides.

2.6 The effect of truncated rod shapes near the

interface

The shape of dielectric rods at the interface is also crucial to the presence and prop-

erties of the guided modes. The shape of dielectric rods in this thesis is defined by
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Figure 2-10: (a) Geometry of a slice of sheared photonic crystal with shear shift

s = a/2 and thickness 2a sandwiched between tow semi-infinite sheared photonic

crsytals of s = a/4. (b) (Color) Electric field for the bound state at w = 0.334 x 27r/a

in the geometry shown in (a).
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Figure 2-11: Dispersion relations for sheared photonic crystals with different values
of h when s = a/2. Truncating rods at the interface creates guided modes originated
from dielectric band.

the height h: the distance from the top of the circular rods to the shear plane as

shown in Fig. 2-1(b). For example, h =r means half circular rods at the interface,

while h =r + a/2 means that entire circular rods are at the interface and the distance

between the centers of circular rods of lower and upper halves near the interface is a.

As the dashed line in Fig. 2-3, no guided modes exist inside the band gap when whole

rods (h = r + a/2) are at the shear interface. The disappearance of guided modes for

this case can also be explained by the lack of a surface mode in this geometry [52].

The existence of surface waves for each half of the sheared photonic crystals is a

necessary condition for guided modes.

Removing dielectric material resembles adding acceptor atoms in semiconduc-

tors [53]. This gives rise to acceptor modes which have their origin at the top of the

dielectric (valence) band. So by gradually truncating the rods near the shear plane,

we can "pull" the dispersion curves into the band gap, thus creating guided modes

that were originally in the dielectric band, as shown in Fig. 2-11.

Fronm Fig. 2-3, we see that point C is actually below the center of the band gap
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Figure 2-12: Optimization for the dispersion relations with s = a/2 and h as opti-
mization parameter.

when h = r. So half circular rods at the interface may not fully utilize the advantages

of half lattice constant shear shift, and may not achieve the minimum GVD. By

truncating the rods at the interface by more than half, we can "pull" the dispersion

curves further till the center of the band gap. As shown in Fig. 2-12, when 42% of

rods (s = 0.84r) left at the interface, point C moves to the center of the band gap. It

is worth noting that when only 20% of rods (s = 0.4r) is left, guided modes may still

have relatively small GVD even though the point C moves out of the band gap. This

is understood as follows: the first guided mode occupies the entire band gap although

the second guided mode is "pulled" out of the band gap. We calculated the average

GVD parameter 02 = d2 k/dw2 of the guided modes inside the band gap for different

heights h, as shown in Fig. 2-13. We can see that guided modes have minimum GVD

when the height h is around 0.8r and relatively smaller GVD when h = 0.4r than

when h = 0.5r. The shape of dielectric rods at the interface provides us with another

degree of freedom to design and optimize photonic crystal waveguides corresponding

to different requirements.

In summary, we have described a new type of waveguide that consists of a shear
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discontinuity in a photonic crystal. The shear shift was shown to be a design param-

eter that can be varied to achieve dispersion properties. For example, we can achieve

guiding over the entire band gap with minimal GVD by selecting shear shift of half

the lattice constant. Alternatively, by changing the shear shift we can tune the mode

gap and the group velocity. This type of tuning can be implemented mechanically for

dynamic reconfiguration by shearing two plates containing the half lattices relative

to each other; or the shear shift may be lithographically defined and fixed to satisfy

specific device requirement. In both cases, such devices can be useful for telecommu-

nication and other information processing operations involving large bandwidths. In

Chapter 3, we will also present a periodic modification of the shear photonic crystal

that can be used as a coupled-resonator optical waveguide (CROW) [54] with tunable

group velocity.
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Chapter 3

Tunable group velocity in a

coupled-resonator optical

waveguide (CROW) formed by

shear discontinuities in a photonic

crystal

3.1 Coupled-resonator optical waveguide (CROW)

In Chapter 2, we discussed photonic crystal waveguides which guide light through

Bragg reflection from a periodic structure. Recently a new type of waveguide based

on the weak coupling of optical resonators, the coupled-resonator optical waveguides

(CROW), was proposed [54]. The CROW consists of a periodic array of defects in a

photonic crystal as shown in Fig. 3-1(a). If the resonators' quality factor Q is suffi-

ciently high and the coupling between resonators is sufficiently weak, the photons are

well confined in the resonators. Therefore, photons can propagate only by hopping

from one resonator to its nearest neighbor. In direct correspondence with the descrip-

tion of electrons in a strong periodic potential in solid state physics, the guided modes
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of a CROW can be described using the tight binding approximation. A CROW is

characterized by a nearly flat sinusoid dispersion relationship and can achieve group

velocity smaller by several orders of magnitude than bulk material of the same av-

erage refractive index. The guided modes of a CROW are well inside the band gap

and isolated from the continuum of modes that lie outside the band gap. This is

in contrast with some photonic crystal waveguides which achieve low group velocity

at the edge of Brillouin zone or band edge but at the cost of a large group velocity

dispersion (GVD) and poor confinement of the fields. The dispersion curve of CROW

can be simply characterized by the coupling coefficient r, between nearest resonators

(Eq.(5) in Ref. [54]). Similarly, the group velocity is actually linearly proportional

to the coupling coefficient r,. The coupling coefficient K is defined as the overlap of

the eigenmodes of two adjacent resonators, so the coupling strength depends on the

exponential decay of evanescent waves in the coupling region between resonators. We

called this coupling region the evanescent coupling region (ECR). In Fig. 3-1(a), the

space between cavities is occupied by a perfect photonic crystal. Because of the pe-

riodicity of photonic crystals, the modes of the electromagnetic waves inside can be

expanded in Bloch functions defined by their wave vector k, as Eq. 2.12. Inside the

band gap, there are no solutions to Maxwell's equations for an infinite crystal for any

real wave vector k. One can only obtain solutions with complex k. The imaginary

part of complex wave vector k is proportional to the difference between the mode

frequency and the edge of the band gap [35, 44]. The imaginary part of k determines

how fast the evanescent waves decay exponentially in ECR.

In Chapter 2, we showed that the shear-type defect supports localized modes.

The shear amount controls the mode shape and, hence, a number of mode properties,

including mode localization and dispersion. In this chapter, we exploit this property

further in a shear-type defect waveguide with additional periodic point defects acting

as resonators, as shown in Fig. 3-1(b). We show that by changing the amount of

shear shift we can control the coupling between adjacent resonators and, hence, the

group velocity. Thus, the shear-type defect provides a means of designing a tunable

slow light device. Active control of the speed of a light signal is very important
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Figure 3-1: (a) Schematic of a CROW with periodicity R consisting of defect cavities
embedded in a 2-D photonic crystals with square lattice of dielectric rods in air of
lattice constant a and radius r =O.2a. (b) Sheared CROW, with shear shift s and

height at the interface h.
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to the development of fast access optical memories and optically controlled delay

lines in optical communication systems and optical computing. For example, delay-

based computing has received attention recently. Our proposed approach is unique

in that it utilizes structure to control the group velocity. As in Chapter 2, tuning

via shear does not require special media like cold atomic gases [48, 49], electronic

transitions in crystalline solids [50] or other nonlinear optical effects. Thus, our

approach is applicable at any wavelength range, particularly in the low loss window

of optical devices. Our approach also provides high flexibility, e.g. it is decoupled

from nonlinear, electro-optic or other effects that could be used in optical systems

for other purposes. Because of strong resonant field concentrations and slow group

velocity, nonlinear effects can be realized within much lower power and much smaller

scale by using CROWs. These enhancements can be further actively controlled by

integrating them with the tunable CROWs since nonlinear optical effects usually are

proportional to (1/vg) 2 [55]. Thus, active control of harmonic generation, soliton

propagation, and stimulated scattering becomes possible. Active control of nonlinear

optical processes will have wide applications in many areas, such as lasers, optical

communications, and biomedical optics.

3.2 CROW formed by shear discontinuities in pho-

tonic crystals

Photonic crystals and photonic crystal waveguides resemble the nearly-free-electron

approximation in solid state physics while in the other extreme, a CROW is exactly

the optical analog of the tight binding approximation. From Eq.(5) in Ref. [54], the

group velocity of a CROW is linearly proportional to the coupling coefficient K which

is defined as the overlap of the eigenmodes of two adjacent resonators,

S= fd3r [co (r - Rez) - F (r - Re)] x En (r) - EQ (r - Re) (3.1)
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where EQ (r) is the eigenmode with mode frequency Q of individual resonators along

a straight line parallel to the e, axis and the coordinate of the center of the n-th

resonator is z = nR. co (r) is the dielectric constant of a single resonator while E (r) is

the dielectric constant of the whole CROW. The imaginary part of the wave vector,

Q{k}, (I{k}) plays a very important role in this integral. The amplitude of EQ (r)

at z = R (the center of En (r - Rez)) decays as exp [-Q{k} - (R - a)], where R - a

is the length of ECR. Therefore, s is proportional to exp [- {k} - (R - a)]. In turn,

the group velocity v9 is proportional to r,, as we mentioned earlier. This implies

that v9 in a CROW can be tuned in one of two possible methods. The first method

is to adjust the intercavity distance R. The group velocity will decrease (increase)

with more (less) spacing between two adjacent resonators [56]. But this adjustment

is not continuous: the intercavity distance must be an integer multiple of the lattice

constant a. It is also very difficult to change the intercavity spacing once the structure

of a CROW is chosen. The second method to control vg is to adjust the imaginary

part of wave vector k, i.e. to change the coupling strength within the ECR. In this

section, we will investigate how to use shear discontinuities to change the imaginary

part of k, which can give continuous tuning with very simple actuation.

In Chapter 2, we showed that by introducing a shear discontinuity we can modify

the band structure of a photonic crystal. When the shear shift is zero (a perfect pho-

tonic crystal), the frequency gap equals the band gap. As the shear shift increases,

the gap starts to shrink as shown in Fig. 2-7. Because the imaginary part of k is

proportional to the difference from mode frequency to the edge of the gap, we can

expect smaller imaginary part of k with larger shear shift. Therefore, we obtain larger

coupling coefficient and larger group velocity, though still much slower than that in

bulk material with the same average refractive index. Furthermore, for different shear

shifts we have different frequency gaps, resulting in different coupling coefficients and,

hence different group velocities. The dependence of frequency gap, coupling coeffi-

cient, and group velocity on shear shift constitutes the principle of tunable CROWs

presented herein.

First, we compare a CROW using as ECR a perfect photonic crystal (s = 0,
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Figure 3-2: (a) Dispersion relations and frequency gaps for CROWs. The intercavity

spacing is R = 5a and half circular rods at the interface h = r. Thicker lines are

frequency gaps while symbols and thinner lines are the data of dispersion relations
and their spline fitting. Solid line: s = 0, perfect photonic crystal as ECR; dashdot
line: s = 0.25a, sheared photonic crystal as ECR. (b) Dispersion relations for CROWs
with s 0 and s = 0.25a. The least-squares fitting are w = 0.395 [1 - 0.0026 cos(kR)]
and w = 0.393 [1 - 0.0083 cos(kR)], respectively, for s = 0 and s = 0.25a.
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Fig. 3-1(a)) with a sheared lattice ECR of s = 0.25a. In the simulations, we assumed

intercavity spacing of 4 rods, R = 5a, and half circular rods at the interface, h = r.

In Fig. 3-2(a), we show the frequency gaps and dispersion curves for the two cases.

We can see that the frequency gap is smaller for s = 0.25a and the dispersion curve

has larger slope, indicating larger group velocity. Fig. 3-2(b) shows more detail on

these dispersion curves. The symbols (circle and star) and the thinner lines (solid

and dashdot) show the exact data and a spline fit for each case, respectively. Using

the least-squares method, we fit the data to Eq. (5) of Ref.[54] as thicker lines in

Fig. 3-2(b), and obtain the coupling coefficient ,. We can see that least-squares fit

matches the data and spline fit very well. This indicates that our CROW operates

well at the weakly coupled region under the tight binding approximation. For s = 0

and s = 0.25a, K. is 2.6 x 10- and 8.3 x 10- 3, respectively. The corresponding group

velocities are 0.0304c and 0.103c, respectively, at k = 0.5 x 27r/R where the CROW

systems have zero dispersion and maximum group velocity. CROWs operating at

this point have far larger bandwidths than most other slow light devices. (Here, c

is the speed of light in the vacuum.) Note that the group velocities were calculated

from the direct difference of the data here while least-squares fit also gives very close

results, 0.0317c and 0.102c, for s = 0 and s = 0.25a, respectively. The y-components

of the electric field for the eigenstates at k = 0.5 x 27r/R in Fig. 3-3(a) and 3-3(b)

illustrate strong confinement in the resonators and evanescent decay in the ECR. To

quantify this argument, we calculate the fraction of the electric field energy inside the

resonators as 59.5% and 50.5%, respectively, for s = 0 and 0.25a. We can see that

the guided field exists primarily inside the resonators, although they have much lower

average dielectric constants. The main difference between Fig. 3-3(a) and 3-3(b) is

that the mirror symmetry to z-axis in the case of s = 0 is broken when s = 0.25a.

At zero shear shift, the eigenstate is four-fold symmetric and has four symmetry axes

(mirror planes) e,, ez, 1/v/2(e; + e,) and 1/v'2(e, - e,) while at s = 0.25a it is only

two-fold symmetric and has no mirror symmetry, as expected.
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Figure 3-3: (Color) The electric field y-component for the guided mode of the CROW
(a) with s =0 at k =0.5 x 27i/R, (b) with s =0.25a at k =0.5 x 27F/R

3.3 Thnable group velocity in sheared CROW

When changing the shear shift between the lower and upper halves, we can realize

tunable slow light devices. We simulated the dispersion diagram for s =0.1a, 0.15a,

0.2a and 0.25a in Fig. 3-4. Circles and thinner lines are the exact data and spline fit

while thicker lines are least-squares cosinusoid fit. We can see that smaller shift has

better least-squares fit. That is because with smaller shift the evanescent waves decay

faster within the ECR. In other words, photons are more tightly confined within each

individual resonator, and thus the tight binding approximation holds better. The

coupling coefficients and group velocities at k =0.5 x 27r/R are listed in Table 3.1.

The group velocities are calculated from direct difference of the data and least-squares

fit. Both methods give very close results. In order to obtain the dependence of the

group velocity on the shear shift, we calculated dispersion diagrams for shear shifts

ranging from zero to half lattice constant and their corresponding group velocities at

k 0.5 x 2oF/R. Fig. 3-5 shows quartic dependence of group velocity on shear shift as

Vg (7-6 199S4 + 0.7188S2 + 0.0304)c. We can see that the group velocities obtained

from direct difference and least-square fit are very close, and the polynomial fit of

the dependence curve also matches very well. The group velocity can be tuned from
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Figure 3-4: The dispersion relations for sheared CROWs with different shear shift s.

Table 3.1: Coupling coefficients and group velocities
ent shear shifts. The dispersion curves are shown in

for sheared CROWs
Fig. 3-4

Shear shift Coupling coefficient Group velocity Group velocity Group velocity
s K (least-squares fit) (difference) (FDTD)

0.1a 3.0 x 10- 3  0.0367c 0.0367c 0.0338c
0.15a 3.7 x 10-3 0.0466c 0.0454c 0.0448c
0.2a 5.4 x 10-3 0.0661c 0.0672c 0.0659c

0.25a 8.3 x 10- 3 0.102c 0.103c 0.0998c
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Figure 3-5: Group velocity of guided mode in sheared CROWs versus shear shift s in

Fig. 3-1(b).

0.0304c with s = 0 to 0.336c with s = 0.4a. It is worth noting that this range is not

the limit of our tunable CROWs. We can achieve tunable range from arbitrarily small

group velocity to around that in the bulk material with the same average refractive

index when we increase the intercavity distance [56]. Another way is to place one or

more side cavities in the neighborhood of each individual resonator in the CROW, as

in Fig. 1 in Ref. [57]. The discrepancy at shear shift larger than 0.4a is because of the

failure of evanescent coupling in ECR. When the shear shift is larger than 0.4a, the

mode gap becomes too small. For sufficiently small gap, the wave vector k attains real

solutions at the mode frequency. There the resonators are coupled by propagating

rather than evanescent waves. The light is not well confined in the resonators and

coupling among them becomes strong, invalidating the tight binding approximation.

This situation looks more like a photonic crystal waveguide than a CROW. This is

verified in Fig. 3-6, which depicts the y-component of the electric field corresponding

to the eigenstate of the sheared CROW with s = 0.5a at k = 0.5 x 27r/R. The lack of

light confinement becomes clear upon camparison with Fig. 3-3(a) and 3-3(b). The

fraction of the electric field energy in the resonators in Fig. 3-6 is only 28.2%.
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of time in the first cavity (Plane A in Fig. 3-7) and the twelfth cavity (Plane B in

Fig. 3-7) for CROWs with different shear shifts, s = 0.1a, 0.15a, 0.2a and 0.25a,

are plotted in Fig. 3-8, where the pulses propagate through the CROWs at different

speeds according to the shear shifts. The group velocities can be calculated from
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Figure 3-7: (Color) Snapshots of the electric field in tunable CROWs at t = 3850a/c.

Gaussian pulses propagate inside tunable CROWs (a) with s - O.la and (b) with

s 0.2a. The duration time of the pulses is 750a/c.
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Figure 3-8: The pulse intensities as a function of time recorded in the first cavity
(Plane A in Fig. 3-7) and the twelfth cavity (Plane B in Fig. 3-7) for CROWs with
different shear shifts.

the propagation of the peaks of these pulses. The results are listed in Table 3.1 and

labeled as Crossing symbols in Figure 3-5. They match very well with the dependence

curve of group velocity on the shear shift. Thus, our FDTD simulations demonstrate

the ability to tune group velocity using CROWs with shear discontinuities in good

agreement with the earlier prediction from dispersion diagrams.

In summary, we have designed a tunable slow light device based on a CROW with

a mechanically adjustable shear discontinuity to realize active control of the group

velocity of light. Tuning ranges from arbitrarily small group velocity to approximately

the value of group velocity in the bulk material with the same average refractive index.

By combining the ideas of tunable CROW and bound states in sheared photonic

crystals that we discussed in Chapter 2, we can furthermore stop and store the light

coherently by engineering only the structure. The group velocity tuning capability

holds promise for optical communications and quantum information processing. We

can even optimize the group velocity, GVD and other properties of tunable CROWs

by changing the shape of circular rods (height h in Fig. 3-1(b)) at the shear interface,
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as in Chapter 2.
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Chapter 4

Crosstalk in resonant holographic

memories and mode multiplexing

with Hermite-Gaussian references

4.1 Fundamental theory of volume holography

Volume holograms are recorded by exposing thick photosensitive media to the inter-

ference between two mutually coherent beams, the signal and the reference (Fig. 4-1).

The signal carries the information that we want to store and usually has a compli-

cated wavefront, while the reference wavefront is relatively simple, usually a plane

wave or spherical wave, carrying the index of the stored information. During the

readout process, when the probe beam is the same as the reference beam, strong

reconstructed diffraction can be obtained from the hologram (Bragg match). If, how-

ever, the plane-wave probe beam deviates in angle or the spherical-wave probe beam

shifts in position or the wavelength is different in both plane-wave and spherical wave

cases, then diffraction from different parts of the hologram becomes phase mismatched

causing the diffraction efficiency to drop (Bragg mismatch). The amount by which the

angle or shift or wavelength need to change before the reconstruction power drops to

zero is Bragg selectivity and depends on the geometry and thickness of the material.
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Figure 4-1: Volume holography

We use the plane-wave transmission geometry of Fig. 4-1, a very common setup

for holographic storage, as an example to introduce the fundamental theory of volume

holography. The plane-wave reference ER(r) is incident at angle OR and the signal

beam Es(r) at Os on the thick volume hologram. They are both at wavelength AR.

The hologram is recorded as modulation of the material dielectric constant, resulting

from exposure to the interference pattern between the signal and reference beams.

We assume the modulation AE is weak compared to the material dielectric constant

c and proportional to the intensity (interference pattern). In the example of Fig. 4-1,

we have a plane-wave object so that

2wr
ER(r) = exp {ikR - r, -(-sinOR, 0, cOS OR) , (4.1)

A

Es (r) = exp {iks - r}, ks = 7 (sin Os, 0, cos Os), (4.2)

Here, r = (x, y, z) is the position vector with respect to a coordinate system centered

at the hologram and we assume that reference and signal beams have the same po-

larization. Without loss of generality, we have assumed that the reference and signal

beams are in the x-z plane. Thus, the modulation can be expressed as

Ac (r) = 61 ER(r) + Es(r) 2 = 2e, {1 + cos (Kg - r)}, (4.3)

where K9 = ks - kR is the grating vector of the volume hologram and cl denotes the
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strength of the hologram. Further, Eq. 4.3 can be written as

E = 2E{ 1 + cos (sin Os + cos OR) 27rx + (CoS Os - COS }R - (4-4)

Eq. 4.4 can be divided into three terms as follows:

AE (r) = AEo(r) + A (r) + AE*(r), (4.5)

A6a(r) = 261, (4.6)

AE(r) = ei exp {iKg * r} . (4.7)

In Eqs. 4.3- 4.5, Aco(r) is the constant term and much smaller than E; AE(r) leads to

forward diffraction, and A*(r) leads to the phase-conjugate diffraction. Since AEo(r)

and AE*(r) do not contribute significantly to the forward diffracted field, we only

maintain AE(r) and simplify the notation as AE(r):

AE(r)= exp i (sin Os + sin OR) 2 + (cos Os - cos OR) ] (4.8)

Furthermore, Eq. 4.8 can also be expressed as

Ac(r) = ElER(r)*Es(r). (4.9)

where * denotes complex conjugate.

The reconstruction of the recorded hologram is posed as the problem of diffraction

from the modulation AE(r) upon illumination by a probe beam Ep(r) (possibly dif-

ferent than ER(r)). This problem admits analytical solution under the Born and

paraxial approximations. The diffracted field Ed(r") just after the hologram is given

approximately by the first order Born approximation as

Ed(r") = J Ep(r)Ac(r)V(r)G(r" - r)d'r, (4.10)

where G(r) is Green's function for free space, r" = (x", y") is the position vector on
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the exit face of the volume hologram and V(r) is the index function of the holographic

material, defined as

V(r) = 1 inside volume hologram

0 outside volume hologram

The integral 4.10 can be interpreted as follows: each infinitesimal region inside the

hologram acts as a point source while the diffracted field is obtained as the coherent

superposition of all the fields emitted by these the infinitesimal point-sources. Under

the paraxial approximation, the Green's function can be simplified as

1 ep 2 z"- z (x" -x) 2 +(y" -y) 2  (.2G(r" - r) = I exp i27"- + i~r ( X2+ y _y2 (4.12)
iA(z" - z) t A A(z" - z)

Substituting Eqs. 4.8, 4.12 and the expression of the probe beam

Ep (r) = exp i (- sin px + cos OPz), (4.13)

into Eq. 4.10, assuming that the dimensions of the volume hologram are infinite in

the x- and y-directions and the thickness of the volume hologram is L as well as

neglecting the constant El and 1/A(z" - z) term which is slowly varying comparing

to the exponential terms, we finally obtain

Ed(r") = lrect( )exp i (-sin9px+cosOpz)

27rx 27rz
exp i (sin Os + sin OR) + (COS Os - COS OR)

exp i27r z + i7r ( z" - z(y) _ y dxdydz, (4.14)

The x any y integrals are readily obtained using the following lemma from complex

analysis:

exp[i(ax2 + bx)]dx = sgn(a)i exp (4.15)

for a and b real, and a / 0. Then by neglecting the constants, the resulting z integral
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yields

Ed(r") = exp {i21 (sin Os + sin OR - sin Op) X"+

i27z" 1 - (sin Os + sin R- sin 9p)2

exp {-i 27z [1 - (sin Os + sin OR - sin Op)2 dz

= exp ii (sin 6s + sin 6R - sin 0p) Xi"+

i2z" [1 - 1 (sin 6s + sinR - sin O)2

sinc { [(cos Os - COS OR + cOS Op) +

1 - (sin Os + sin OR - sin (4.16)
2

Expressing Eq. 4.16 with K9 and kP and retrieving the paraxial approximation, we

can obtain a more simplified form:

Ed(r") = exp i [(Kgx + kpx) x" + k2 - (Kgx + kpx]

sinc { [Kgz + kpz - k2- (Kgx + kpx)] . (4.17)

From Eq. 4.17, we can find that the diffracted wave-vector kd is determined by the

following conditions:

kd x i = (kp + Kg) x i, (4.18)

|k | 2 (4.19)

where i is the unit vector in the z-direction. The diffraction efficiency is proportional

the sinc-function in Eqs. 4.16 and 4.17,

E2 (Lokd -z)Ed = rj1sinc2 2kr (4.20)
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where T1 is Bragg-matched single pass diffraction efficiency and proportional to the

strength of hologram el. The quantity

6kd= K9 + kp - kd (4.21)

is referred to as "Bragg-mismatch." If kd = 0, the hologram is "Bragg-matched,"

and the diffraction efficiency is maximum. When kd = 0, the diffraction efficiency

drops according to the sinc-function of Eq. 4.16 and 4.17. The amount that kP needs

to change from its "Bragg-match" condition before the sinc-function reaches its first

null is called "Bragg selectivity". For example, the Bragg selectivity for angle change

of the probe beam, or "angular Bragg selectivity", can be obtained from Eq. 4.16 as

A cos 9s
(AO)B = rnL. oO )' m = 1, 2, ... (4.22)

L sin(OR ~+ OS)'

This means that the crosstalk between the two holograms is minimal when AOP equals

the Bragg selectivity.

If the probe beam has different wavelength than the recording signal and reference,

we obtain the wavelength selectivity. In this case, the expression for the probe beam

is

Ep (r) = exp {i 27 (- sin 6px + cos pz)}, (4.23)

The integral for diffracted field can be obtained as

Ef(r) rect(±) exp ii (- sin Qx + cos 0Pz)

exp i [(sin Os + sin OR) 2x+ (cOS Os - cos OR) Az

z i" - z (XI" - X)2 + (y" -- y)2
exp i27r A + z(7rxx)(Y"-Y) dxdydz, (4.24)

By assuming that the dimensions of the volume hologram are infinite in the x- and
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y-directions and using lemma 4.15, we obtain the explicit expression

sin 6s + -sin OR - sin 0 x"i-
A A /P
1 LP(i sin Os + LPSin OR - Sin 0 P) 2]}

rect exp i( Le Py

exp
27

1

1
1

z ( A Cos Os - COS R + COS P

(sin 6s + Ak sin R - sin P) 2]

= exp { 2 sin Os + Lsin6R - sin 0p X"I-

.27"

sinc

cs 6s + osin R - sin 6P) 2

LPCos Os - Los CO R + COS 0p +

1 AP sin Os +

}
sin OR - sin 0p) 2)]

Eq. 4.24 can be expressed in the same form as Eq. 4.17 only by replacing k with kp:

Ed(r") = exp i [(Kgx + kpx) x" + k2 - (Kgx + kpx)]

sinc{ [Kgz + kpz - k - (Kgx+ kpx)]

The more general condition for diffracted wave-vector kd is, therefore:

kd x Z = (kp +Kg) x i

Ikdt p 2

}
(4.26)

(4.27)

(4.28)

Thus, from Eqs. 4.17 and 4.26, an equivalent expression for the Bragg matching

condition (bkd = 0) can be obtained as

JKg + kpI = kp =
27r

(4.29)
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The K-sphere interpretation of this condition is shown in Fig. 4-2 : the ending point

of the vector Kg +kp is on the surface of the K-sphere with radius kp. From Eq. 4.24,

we can obtain the wavelength Bragg selectivity as

A2 cos O
(AA)B = m 2  OO m = 1, 2,... (4.30)

2L sin 2 1 (OR + Os)I

In volume holography, the Bragg selectivity effect is used to record multiple over-

lapping holograms sharing the same material volume. This process is referred as

"hologram multiplexing." In this section, multiplexing is achieved by changing the

angle and wavelength of the reference beam by an amount equal to the respective

selectivities. When the reference beam is spherical wave, shift multiplexing [58, 59]

is achieved by changing the position of the focal point of the spherical wave.

4.2 Crosstalk in volume holographic storage

Holographic memories are particularly suitable for applications that demand high

data capacity, high transfer rate and the presence of both direct and associative

recall. In volume holographic storage, a large number of holograms are stored in the

same material volume. Therefore, crosstalk is an important issue for data retrieval.

Here we derive the diffraction efficiency of crosstalk noise with angle multiplexing.

We consider the Fourier-plane geometry of Fig. 4-3: an object beam containing a

page of information is recorded holographically in association with a uniquely oriented

reference beam (as the index of the page of information) in the recording medium.

The procedure is repeated with different sets of object and reference beams to yield

a volume holographic memory in which any particular page of information can be

uniquely accessed by reading out the hologram with the corresponding reference beam.

Even though the recorded data share the same volume, each page can be retrieved

independently with reasonable fidelity because of the Bragg selectivity of readout.

A unique benefit of such a system is the parallel nature of the readout, where a

given reference beam can retrieve the whole page of information simultaneously to be
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Figure 4-2: Illustration of Bragg-diffraction on the K-sphere: (a) recording of the
hologram K9 by plane waves with wave vectors ks and kR; (b) Bragg match condition,
kP = kR; (c) the probe beam is different than the reference beam in angle; (d) the
probe beam is different than the reference beam in wavelength.
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Figure 4-3: Fourier-plane geometry with angle multiplexing

imaged onto a CCD. In the readout process, an image is reconstructed by illuminating

the volume with the corresponding reference beam. In an ideal case, no other stored

images should be read out by this beam. However, in reality, portions of other stored

pages are partially Bragg-matched resulting in crosstalk.

Considering the Fourier-plane geometry in Fig. 4-3, if we use a displaced reference

beam with the direction of OR + AO to probe the hologram, the selectivity response

can be obtained from Eq. 4.20:

7 =: isinc 2 (LSin(OR+ O )
A cos Os

(4.31)

and the angluar Bragg selectivity is given by Eq. 4.30 which depends on directions

of both signal beam and reference beam. In practice, we always choose an initial

reference beam, called Oi, with which the angle Bragg selectivity is calculated, and

also serves as the reference beam for the mi-th hologram.

In the Fourier-plane geometry of Fig. 4-3, pixels with x' 4 0, have different spatial

frequencies than the carrier Os of the signal beam. The difference 60s can be written
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as

60s = arctan . (4.32)

So when the m'-th hologram (whose reference beam direction is 0m') is reconstructed,

the crosstalk noise from the m-th hologram (whose reference beam direction is Om)

can be obtained as

X 1 2~~~~ L sin ( O n + Os - 60s) P M - M ) A )
T/fm(X') = rg1sinc2 {Li(O+s- ms - m')(AO)B}-.
where two adacn h rA cos( s - s )

where, two adjacent holograms are separated by p shift Bragg nulls. Using

sin (OM+Os - 6os) sin (OM+Os) X'
cos 0 -

cos(s - 60s) cos Os F'

(4.33)

(4.34)

we find

7 /1(X ) = nisinc P(m - M')

By adding crosstalk noise from all

ciency of crosstalk noise as

771 ~ S sinc p(m - in')

sin (Om + Os) _ cos Om cos 0 s x'
.(4.35)sin (Oi + Os) sin (Oi + Os) F (4.35

pages, we obtain the single-pass diffraction effi-

sin (Om + Os) Cos Om Cos Os ' (3
sin (0i + Os) sin (9% + Os) F

The single-pass crosstalk noise in angle multiplexing is different than the crosstalk

noise in shift multiplexing [59], Eq. 4.40, but the difference is very small as shown in

Fig. 4-4. Here we assumed that, the same in angle multiplexing and shift multiplexing,

1000 holograms are stored in 1001 shift-multiplexed positions, leaving position 501

blank and the shift separation between two adjacent holograms was equal to 2 angle

or shift Bragg nulls. In order to make angle multiplexing and shift multiplexing

comparable, we also use the same 0 s, and set 9% = 0 and mi = 501.

In practice, Oi + Os >> (n - Mi)(AO)B and (m - mi)(AO)B < Oi < 900 , so the
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Figure 4-4: The single-pass crosstalk noise comparison: angle multiplexing and shift
multiplexing. The parameters used for simulation were hologram thickness L =

10mm, wavelength A = 488nm, focal length F = 50mm, angle of incidence of the

signal 6 s = 20', angle of the initial reference beam Oi = 0' and mi = 501.

single-pass diffraction efficiency of crosstalk noise can be approximated as

x M - 1) X Cos Oi Cos Os
M ~?1 E sinc2 [p(m Fm') ( - . (4.37)

4.3 Resonant holography

The idea of enclosing holograms in optical cavities has been proposed in several infor-

mation processing contexts. The first references, to our knowledge, utilized re-entrant

diffraction from holograms into ring cavities for associative memory [60, 61]. In these

experiments, a van der Lugt correlator with a given stored pattern was probed by a

partially distorted version of the same pattern and the autocorrelation signal was en-

hanced by successive passes through the cavity. Subsequently, a new idea emerged for

high-efficiency optical interconnects [62, 63] implemented by two Fabry-Perot optical

cavities crossed and coupled via a hologram located at the intersection of the cavities.
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One of the two crossed cavities was oriented along the reference beam direction, and

the other along the signal beam direction. The hologram was recorded so that the

beam from the reference cavity was diffracted into the signal cavity, and vice versa.

It was found that resonance requires the reflectivity of the partially reflecting mirrors

and the cavity path lengths to satisfy certain matching conditions.

Even though the idea of combining two elements with powerful optical proper-

ties, holograms and optical resonators, is very appealing, these early ideas were left

somewhat dormant for over a decade. Recently, interest in resonant holograms was

revived [64, 65]. In Ref. [64], it was shown experimentally that the diffraction effi-

ciency of a weakly diffracting hologram can approach 100% if the hologram is enclosed

in a Fabry-Perot optical cavity which satisfies reflectivity and path length conditions

similar to those of Ref. [631. The main difference in Ref. [64] was that the authors

chose to resonate the reference beam only. Therefore, it was possible to diffract com-

plex patterns out of the cavity, whereas with the crossed resonators of Ref. [63] the

diffracted beam can only be a plane wave oriented along the direction of the signal

cavity. A simple holographic memory was experimentally demonstrated where each

stored hologram was individually retrievable with high diffraction efficiency due to

resonance. In Ref. [65], the case of a strong hologram enclosed in an optical cavity

was analyzed using coupled mode theory. It was found that reference depletion in the

strong hologram decreases the resonator's potential for efficiency improvement. From

Ref. [64] and [65], the conclusion is that resonant holography makes most sense with

weak holograms, provided that absorption and scattering losses are small enough.

These new directions for resonant holography are promising for traditional holo-

graphic applications, such as memories, interconnects and imaging applications [66,

29]. In all three types of applications the simplest use of resonance is to increase the

diffraction efficiency. In memories and interconnects, efficiency leads to smaller error

rates, whereas in imaging applications improved photon utilization is equivalent to

better resolution [67].

In the following, we analyze crosstalk in the resonant holographic memories, both

angle- and shift- multiplexed. In Section 4.4, we carry out the calculation for the case
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of unapodized plane wave reference, and find out the condition where resonance is fa-

vorable. In Section 4.5, we show that further improvement is achieved by apodization,

which is well known for non-resonant memories. In the specific case of resonant mem-

ories, Gaussian apodization turns out to be the most practical, because the Gaussian

beam is an eigenmode of spherical mirror cavities. Also, this type of cavity tends to

be more stable than flat-mirror, Fabry-Perot type cavities [68]. Therefore we carry

out the analysis for holograms, recorded and readout with a Gaussian reference beam.

In Section 4.6, we extend our discussion to Hermite-Gaussian beams. Mode multi-

plexing with Hermite-Gaussian references is proposed. We derive and simulate the

diffraction response of mode multiplexing, and finally analyze its crosstalk .

4.4 Crosstalk in resonant holographic memories

In volume holographic storage systems, a large number of pages of information are

stored within the volume of the recording medium. Because of the finite bandwidth

of the stored pages, we can not get perfect selectivity when reading out a desired

page. In the reconstruction process of the desired page, all other undesired pages are

also partially reconstructed. The superposition of these undesired reconstructions is

crosstalk noise [69].

Here, we discuss the crosstalk noise in resonant holographic storage systems. We

find that memory capacity can be improved when resonant holography is used in

holographic storage applications. First, we define the signal to noise ratio

Ps(SNR) = PN (4.38)
Px + PN

as one metric to assess memory quality. In Eq. 4.38, Ps is the signal power, which is

proportional to the diffraction efficiency. Px is the crosstalk noise, which is predictable

from the geometry of the optical systems and the content of the memory, whereas

PN includes other types of noise, such as thermal and shot noise, which are truly

random. Even though Px is predictable, its removal would require a rather difficult
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deconvolution operation involving all the stored data pages. For large-capacity holo-

graphic memories, the computational burden required for that deconvolution would

be unmanageable because each page would have to be read out and participate in the

calculation. For this reason, in holographic memories literature it has been customary

to treat Px as random (precluding deconvolution between pages).

Returning to 4.38, SNR is a useful metric because it is related to memory capacity

in the sense that higher SNR results in lower error rate. The exact relationship can

be quantified for cases when crosstalk and electrical noise are both Gaussian [70].

For non-Gaussian noise (e.g. Poisson) the analysis is prohibitively difficult, so in this

thesis we simply restrict the calculations to the SNR itself. We can see that two

methods are available for improving the SNR: increase the diffraction efficiency, or

decrease either source of noise.

From Ref. [64], the diffraction efficiency can be greatly enhanced when the holo-

gram is embedded in a resonant Fabry-Perot type cavity, as shown in Fig. 4-5. Both

forward and backward-propagating probe beams are diffracted to amplify the signal

beam as they pass through the volume hologram. Moreover, forward and phase-

conjugate reconstructions are obtained simultaneously. Therefore, the reconstruction

quality can be expected to improve by the resonator through signal amplification, but

the possible simultaneous resonant amplification of crosstalk noise remains a concern.

This issue is the focus of this section.

We will consider simultaneously the angle and shift multiplexing geometries, whose

resonant implementations are shown respectively in Fig. 4-6(a) and 4-6(b). As in

Ref. [64], 71 is the single-pass diffraction efficiency of the hologram (which is obtained

from the stand-alone hologram, without an optical cavity). Let qx denote the single-

pass diffraction efficiency of the crosstalk noise,

sM COscos os(3
77, ~ 77 1 sinc2 P(m - M') F -- n ,+Os' (4.39)

M=1 --

where 0 and Os denote the directions of the initial reference and signal beams, as

derived in Section 4.2. If 0 = 0 and the paraxial condition for signal carrier are
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Figure 4-5: Geometry for resonant holography

satisfied, then 4.39 reduces to

M/

%" ~ Z sinc2 [p(m - in') (7 - .~)J (4.40)

which is identical to the crosstalk equation for shift multiplexing [59]. Here, M

denotes the number of pages that are multiplexed in the memory, page m' is being

reconstructed and the pages are separated by p shift Bragg nulls [59]; F is the focal

length of the Fourier lens after the hologram, and x' is the coordinate of pixel location

on the detector plane. Thus, Eqs. 4.39 and 4.40 can be used for both in shift and

angle multiplexing by exchanging sin(0 + Os)/(cos 9 cos Os) and Os. So although our

results with resonance are calculated in the geometry of shift multiplexing, they are

also applicable in angle multiplexing.

Following the notation of Ref. [64], let r denote the amplitude reflectivity of the

partially reflecting mirror, A the wavelength, b the single-pass intensity loss coefficient

inside the cavity, and 1 the optical path length of the cavity. In ref. [64], the resonance

conditions are obtained as

r = I - 77 - b, (4.41)
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and

l = (2m + 1)-. (4.42)
4

Because we want to have the largest amplification of diffraction efficiency of the

Bragg-matched page, these two resonance conditions must be satisfied. The total

resonant diffraction efficiency is then

r7= . (4.43)
m + b

Since r77 + b < 1, the resonant gain G = q/l/l is always greater than 1. Bragg-

mismatched pages do not satisfy the resonance condition 4.41. From [64] and 4.40,

we can readily find the non-resonant forward, phase-conjugate and overall crosstalk

are, respectively,

x 7 (1 - r2 )
a =d(4.44)1 + r2(1 - 77X - b)2 + 2r(1 - r7X - b)'

x x x x%Cg = rUfw(1 -- l/ - b), and (4.45)

7Q= 7 fw + ?7Pc. (4.46)

Using 4.38, we obtain the resonant SNR as

(SNR)0Q = 1  (4.47)

where '/N PN/Ptotal is the ratio of the power of other types of noise and the total

incident power.

From Eqs. 4.44- 4.46, we can see that the diffraction efficiency of crosstalk noise is

also increased by the resonator. In fact, the crosstalk amplification r/i7/r7 is greater

than the resonant amplification of the signal r// 1 . So it is only when the increased

diffraction efficiency overcomes the increase of the total noise contribution that the

retrieval quality of resonant holograms improves. In order to quantify the occurrence

of this favorable condition in terms of the parameters ql and T/N, we use the figure of
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FM_(SNR)~FM = (4.48)
(SNR),

where (SNR)1 = q1 /(q + TN) is the single-pass SNR. When FM > 1, resonance is

favorable; when FM < 1, the resonator actually degrades noise performance so we

call it the "forbidden" region. Simulations were carried out to estimate the resonance

effect in the case of shift multiplexing. Here we assumed that 1000 holograms were

stored in 1001 shift-multiplexed positions, leaving position 501 blank. Then the power

in position #501 is due to cross-talk noise alone. In the simulation, the shift separation

between two adjacent holograms was equal to 2 shift Bragg nulls. The results are

shown in Fig. 4-7, where we can see that memory quality improves when q1 is small

and ?7N is large. In this region, the crosstalk noise is relatively smaller than other

types of noise. So its amplification according Eqs. 4.44- 4.46 is not sufficient to offset

the resonant amplification of the signal.
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4.5 Apodization

Because crosstalk noise comes from the sidelobes of the Bragg selectivity response

curve, the method of apodization suggests itself as a possible remedy [71, 72]. Apodiza-

tion is implemented by using a reference beam which is nonuniform in either amplitude

or phase, e.g. a low aperture Gaussian beam. For the geometry illustrated in Fig. 4-8

and recorded by references with nonuniform beam profile Ef(z), the analytical expres-

sion of the readout intensity with probing references having nonuniform beam profile

Ep(z) can be derived with an approach similar to that used in Ref. [2]. The result is

I(AO) oc ] rect (z) (z)t(z) exp(idz)dz , (4.49)

where ( = (27r/A)[AO sin(O + 6s)/ cos Os] is the Bragg mismatch factor due to the

angle difference between the recording and probing references and L is the thickness

of the hologram. In deriving Eq. 4.49, we assumed that the angle multiplexing is used

and the signal beam is a plane wave without loss of generality. We do not discuss

apodization for shift multiplexed memories in this thesis. Note also that the cavity

must be formed by spherical mirrors so as to support a Gaussian beam mode in this

case.

From Eq. 4.49, we can see that the diffraction efficiency as a function of probe

rotation (AO) is the Fourier transform of the beam profile function convolved with

a sinc function determined by the thickness of the hologram. Comparing to the

sinc function without apodization (Ef(z) =1 and Ep(z) = 1), if each hologram

is recorded and reconstructed with the same reference beam profile, the resulting

selectivity response has a lower sidelobe level. However, the main lobe becomes

wider [72]. The selectivity response in that case is

22
I(A6) Oc rect () (z)2 exp(idz)dz . (4.50)

Consider a Gaussian reference exp[-x 2/W 2 ] at the hologram for both recording

and probing, where w is the width of the Gaussian beam at the position of the
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hologram. Because the angle between the references and the z axis is not 90', the

actual width of the Gaussian beam along the z direction is w/ sin 0. By substituting

it into Eq. 4.50, the selectivity response function is obtained as

zsin20 2 sin 2 (0±+AO) 2
I(A j) OC rect -- ) exp(- 2 z 2) exp(- 2 z 2) exp(i*z)dz , (4.51)

_-O L W2 W2

Using the convolution property of Fourier transforms and neglecting the divergence

of the beam, 4.51 can be written in more simplified form as

2 2

I(A0) Dc sinc ( exp(- 8 sin2  (sinc & Gauss)() 2 . (4.52)

The selectivity response according to relation 4.52 is shown in Fig. 4-9. We can see

that Gaussian references result in a very low sidelobe level (defined as the ratio of the

largest sidelobe amplitude to the main lobe amplitude.)

For the Fourier-plane geometry of Fig. 4-8, the expression of the crosstalk noise
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with Gaussian references is obtained along the line of Section 4.2 as

M 2, Cos 0 Cos Os 2

77 ~ 71 (sinc & Gauss) -p(m - n') I - . (4.53)
L F sin(O + Os )

We simulated the crosstalk noise with Gaussian references and compare it with the

crosstalk noise with plane references, as shown in Fig. 4-10. Here, in the comparison

we stored 1000 holograms in 1001 angle-multiplexed positions, leaving position 501

blank. The angle separation of the adjacent separation of the adjacent holograms was

2 angle Bragg separations with plane references but 1 angle Bragg separation with

Gaussian references because these two Bragg nulls are almost at the same place in

Fig. 4-9.

From Fig. 4-10, we can see the crosstalk is decreased greatly, almost by 2 orders

of magnitude compared to the unapodized case. The additional prominent difference

between the unapodized and apodized cases are observed in Fig. 4-10: the crosstalk

never reaches zero in the apodized case. This is because the Bragg selectivity curve

has minimum but not nulls in apodized case.

From section 4.4, we know that the memory quality can be improved by use of

resonance when the crosstalk noise is small. With Gaussian references which decrease

the crosstalk greatly, the resonator can be more efficient to improve the memory

quality. This is shown in Fig. 4-11, where the favorable region is extended to almost

all values of m1 and 77N except those with very large ql (where use of the resonant

technique is uninteresting anyway) and very small qN (less than about 10-).

4.6 Mode multiplexing with Hermite-Gaussian ref-

erences

In Section 4.5, we discussed the apodization effect of Gaussian references on reso-

nant holograms. The Gaussian beam is the lowest order solution to the paraxial

wave equation. In this section, we will extend our discussion to higher-order modes,

known as Hermite-Gaussian beams. In addition to the apodization effect, Hermite-
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Gaussian beams have another important property, orthogonality, which can result

in perfect selectivity (zero inter-page crosstalk) when one mode of Hermite-Gaussian

beam is used to read out a volume hologram recorded by a different mode of Hermite-

Gaussian beam and signal beam. Furthermore, the Hermite-Gaussian beams are also

eigenmodes of resonators with finite rectangular aperture. The orthogonality property

suggests a new multiplexing method, which we refer to as mode multiplexing.

The geometry for mode multiplexing with Hermite-Gaussian references is shown

in Fig. 4-12. Assume that a thick hologram is recorded by a plane wave signal and

a Hermite-Gaussian reference, denoted as lImn(x, y, z). m and n are the order of

the Hermite-Gaussian in x- and y-direction, respectively. The waist of the Hermite-

Gaussian reference is located at z = zo. The waist is determined by the confocal

parameter b with wo = 2b/k = VAb/-r, where k = 27r/A. The expression for the

Hermite-Gaussian reference in the coordinate system centered in the volume hologram
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is

= inn Hm

1 + (z o )2

exp j
(--A R(

(w(z)Hn ( c~)Wy ( exp 2)
W 2(Z)

where

2(_) 2b (1+ (z zo)2 )
S(z - zo) 2 , (4.55)

1 z -zo
R(z) (z --zo)2 + b2 '

tan # = z - zo

Crnn = (woir2m+"m!n! ./

(4.56)

(4.57)

(4.58)

In Eq. 4.54, Hm() is the Hermite Polynomial of order m; w(z), R(z) and 0 de-
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note the radius of the beam, the wavefront curvature and the phase shift of the

Hermite-Gaussian at position z, respectively; and Cmn is the normalization factor.

The amplitude patterns of different modes of Hermite-Gaussian beams are shown in

Fig. 4-13. The plane wave signal is incident on the x - z plane with angle 0, with the

z axis, and its electric field is expressed as

Es(x, z) = exp j27rus exp [-j27r (I - u) .] (4.59)

where us -- sin Os ~ s < 1. Note that here we represent phase delay as exp(-jkz)

along the wave propagation direction in agreement with accepted conventions for

Hermite-Gaussian beams [46]. By assuming low-bandwidth modulation and using

Eq. 4.9, the dielectric modulation of the volume hologram can be expressed as

(4.60)

90

.4

A E (r) = E6 1 mn (X, Y, z) Es (x, z),



We now calculate the expression for the field diffracted by the volume hologram

when probed by another Hermite-Gaussian mode 'Tmin'(X, y, z) (m $ m' or n f n').

Xrnl,'(x, y, z) has same waist as the reference 'Pmn, and their waists are located at the

same position as well as they propagate in the same direction. But they may have

different mode, i.e. m / m' or n , n'. Using Eq. 4.10, we obtain

Ed(r") -- f Mn, m n(r)'In(r)Es(r)V(r)G(r" - r)d'r, (4.61)

where the constant term el is neglected, V(r) and G(r) are the index function Eq. 4.11

and free space Green's function, respectively. Under the paraxial approximation, we

substitute Eq. 4.12 as well as Eqs. 4.54 and 4.60 into Eq. 4.61:

Ed (x", y", z")
ff[ CmnCmn' 2x ) Hm ( v'2x )y / y

Hm Hm, HMn H'.,

1 + b2 W(z) w(z) W (Z) w(z)

exp (-2 e[-m')+(n-')1 exp (-j27rus )
1 2s z1 ()

exp -j21r - V(x, y, z) 1A xp 127r_

("-)2 + (y -y)

exp -j7r (I - + ( y)2 dxdydz. (4.62)
A (z" - z)

Instead of the actual diffracted field just after the volume hologram, it is most

informative to calculate its Fourier transform which is incident on the detector after

passing a Fourier lens of focal length F, as shown in Fig. 4-12. From Fourier optics,

we find

Ld (x', y') = Ed(x", y", 0) exp -j27r)dx"dy". (4.63)

Here, we assume that the effective aperture of the system is determined by the trans-

verse size of the volume hologram rather than the lens. So the limits of integration

in equation 4.63 are taken to be infinite. By substituting equation 4.62 into equa-

tion 4.63 and performing the x" and y" integrations analytically using the lemma 4.15,
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we can obtain the diffracted field on the CCD plane as

Ed(4 Y', Z')

= N Cmn mn's Hm 1- Hm( 2x) H H
+I b z-o2 mW (Z)) W i\w(z)) , w(z)) w(Z)J

exp -2 2( [(m-m')+(n-n')]OV(x, y, z) exp { 27r ( + us) x

exp{ -I2r y exp -- (X 2 +1 2 - u z dxdydz. (4.64)

Here, we have neglected amplitude term 1/jA(z" - z) since it contributes little to the

integral, in comparison with fast varying exponential terms. We also assume that the

dimensions of the volume hologram are infinite in the transverse x- and y-directions

and the thickness of the volume hologram is L in the z direction. Eq. 4.64 can be

organized as

Ed(x', y', z')

' f lC n 2 
2 rect ( exp - ( 7r 2  -u s) z } e m ')+(nn')Ie

00 (,2x ) 2x ) x 2 27r x'
Hm (Vz) Hm' (c ) exp (22() exp ( + US x dx

H.Hn exp (2 2 (Z)) exp Yy dy dz,(4.65)

where the x and y integrals are independent with each other and can be calculated

analytically from the formulae of Hermite integrals in Section 4.A,

Imm, (z)

r ( Vx'x x ( x2 .2w x' Ni
Hm]Hm z) Hm' k ) exp 2

1 2(z) exp y- +US x dx

w(z) 2"e-az) (ja1 (z)'"~'"' Pmm' (-2ax(z)), (4.66)
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Inn, (W

W ( y )y ) 2 - .)27r y'Y dy

0 ) (Z) W(z) x2(Z) A F

- ) VFr2ne-a( [jaY(z)]nn' Pn' (-2a (z)) , (4.67)

where

a7(z) = - +us) ) (4.68)

a7(z) = - . (4.69)

For later convenience, we define the distance of one point on the CCD plane away

from the center of the signal beam as

6x' = '+ usF, (4.70)

6y' = y. (4.71)

Substituting Eqs. 4.66 and 4.67 as well as Cmn (Eq. 4.58) and w(z) (Eq. 4.55) into

Eq. 4.65, we can obtain the diffraction pattern on the CCD plane as

Ed(x', y', z')

)1 1 2 [-2a(z)] [-2a (z)]
- (m!n!m'ln'!)

Pmm, (-2a () Pn, (-2a Y(z)) e ""'4-'rect

exp - + s + y (z-z) + b

exp - I 2  - U z dz. (4.72)

One way to understand Eq. 4.72 is that the diffracted pattern is the Fourier trans-

form of the product of the slow varying polynomial terms which is determined by

the orders of Hermite-Gaussian reference and probe beam, the rectangular function

which is defined by the thickness of the volume hologram, and the Gaussian func-
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tion which is determined by the radius of the Hermite-Gaussian beam at the location

of the volume hologram. Therefore, mode multiplexing by Hermite-Gaussian refer-

ences has two major differences compared to angle or shift multiplexing with plane

or spherical references: (i) when a,(z) = 0 and m 4 m' or ay(z) = 0 and n / n', then

Ed(x', y', z') = 0 for any value of us. It means that the zero inter-page crosstalk due

to the independence of the orthogonality of Hermite-Gaussian beams on the direction

of the signal beam, in contrast with the angular Bragg selectivity (Eq. 4.30) and shift

Bragg selectivity (Eq.5 in Ref. (59]) which explicitly depend on Os; (ii) the apodiza-

tion effect due to the Gaussian characteristic of Hermite-Gaussian beams, which will

attain similar benefits as we discussed in Section 4.5. So mode multiplexing not

only eliminates the inter-page crosstalk, but also decreases intra-page crosstalk to

lower level through apodization. This statement has been verified by performing the

simulation with Eq. 4.72, as shown in Fig. 4-14. In the simulation, the volume holo-

gram was recorded by a plane-wave signal and a Hermite-Gaussian reference of order

m = 3, n = 3. When the volume hologram is probed by the same order of Hermite-

Gaussian beam (in' = 3, n' = 3), the Bragg matched reconstruction is obtained on

the CCD plane (Fig. 4-14(a)). When the volume hologram is probed by a different

order of Hermite-Gaussian beam, e.g. m' = 1, n' = 1, the intensity is equal to zero

at the center point (6x', 6y') = (0, 0) and the crosstalk at other points are also very

small, on the order of 10 3 .

In summary, resonant holography can conditionally improve the memory quality

without apodization when the increase of diffraction efficiency overcomes the increase

of crosstalk noise. The benefit is derived despite simultaneous quasi-resonant ampli-

fication of crosstalk noise. Further gain is attained by apodizing the reference beam.

We found that Gaussian apodization the most convenient since the Gaussian beam

happens to be an eigenstate of spherical mirror cavities, yields at least one order

of magnitude improvement in both the attainable SNR and favorable , values for

resonant systems. By utilizing Hermite-Gaussian beams, we proposed a new multi-

plexing method -- mode multiplexing. Mode multiplexing has perfect selectivity (zero
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Figure 4-14: The volume hologram is recorded by a plane wave and a Hermite-

Gaussian reference of order m = 3, n = 3. (a) Bragg matched diffraction pattern:

intensity of the diffracted field when the volume hologram is probed by the Hermite-

Gaussian beam with the order of m' = 3, n' = 3; (b) Bragg mismatched diffraction

pattern: the intensity of the diffracted field when the volume hologram is probed by

the Hermite-Gaussian beam with the order of m' = 1, n' = 1. The parameters used

here were L = 1mm, 6s = 200, A = 488nm, F = 50mm, and b = 1mm.
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inter-page crosstalk) because the orthogonality of Hermite-Gaussian beams does not

depend on the direction of signal beam.

4.A Derivation of Hermite integral

In Eq. 4.65, there are two independent integrals on x and y, respectively:

Hm' (W(Z2)

H00 W(z)
H ( /y )

Ha w(z)

exp (2 
))

exp [

exp (-2()) - 27r y' dy
IA F d,

These two integrals can be written as a uniform form, so called Hermite integral,

- o_00

(4.75)

Hermite integral is the generalization of the orthogonality of Hermite-Gaussian func-

tions,

j0 Hm ( ) Hn ( ) exp(-(
2 )d =

-Z"n! m= n

0 min
(4.76)

with a = 0. In this section, the Hermite integral will be calculated analytically.

Let's start with the generating function of Hermite-Gaussians

F(s, () exp (-s2 + 2s -

00n

E -Hn ( ) exp (-2/2),
n=O

(4.77)

The Hermite polynomials are the "coefficients" of the Taylor expansion in s of F(s, ().

Multiply two generating functions together and integrate both sides from -oo to 00.
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The result is

exp (-s2 + 2s - exp (-P2 + 2 p - exp (j2a) d

00 So M n 00
- E 3j Hm ( ) H. ( ) exp (-2) exp (j2a<) d, (4.78)

m=0 n=O

The right hand side is the sum of all the Hermite integrals from (in, n) = (0, 0) to

(o, oc) while the left hand side can be calculated analytically by using the lemma 4.15,

L.H.S. = j e--+2s+p+ja)-( 2 +p2 )d( =/Wes+ja)(p+ja),a 2  (479)

The L.H.S. can be further expressed by Taylor expansion as

e2(+a)(P+Ja)ea2  ea 2  (S + ja)'(p + ja), (4-80)
1=0 !

Expand the term (p + ja)' (s + ja)'

L.H.S. = /ea02's- ([ a) + 2 (ja)2 +
1=0 2

+1 +K J - p")s1(ja + p (ja)

+ 1 2 2(ja)2 + ... + (l)pl(ja)-l + (1) (]a)', (4.81)

Reorganize Eq. 4.81 by terms of s mp" as follows: (i) sm p" appears only for 1 >

max(m, n); (ii) add all the coefficients of sm p" for 1 > max(m, n) together. Thus, the

total coefficient of s'p" can be obtained for n > m

C(m, n) = ( 2n+k n + (ja n + (ja)"-m~k

k=O

E 2n+k (n + k)! (n + k)! (ja)n-m+2k

k=- (n+k)! n!k! m!(n+k-m)!

1 00 2n+k (n + k)! (ja)n-m+2k, (4.82)
m!n! k k! (n - m + k) !
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where k = 1 - n. Similarly, the total coefficient for m > n can be obtained as

(4.83)C(m, n) = 1 E 2m+k (m + k) ! (ja)nm+2 k

m!n! __ k! (m - n + k)!

Thus, the left hand side of Eq. 4.78 can be expressed as series of smpn

where

L.H.S. = 9eZm g(m, n)
n=O m=O

0( 2 n+k(n+k)l (ja)n-m+2 k

g(m, n) k!(n-m+k)! J
( no 2 n1+k(m+k)! (ja)"-m+2 k
I k=O k!(m-n+k)!J

(4.84)

n > m

m > n
(4.85)

Because Eq. 4.78 need to be satisfied by any value of s and p, the coefficient of smpn

on the left and right hand side must be equal. Compare the left hand side and the

right hand side of Eq. 4.78 term by term,

IC: Hm (C) Hn ( ) exp (-2) exp (j2a) d =,e 2 g(m, n). (4.86)

Because of the symmetry of the integral on n and m, we can assume n > m without

loss of generality. Finally, the Hermite integral can be obtained as

Hm ( ) Hn ( ) exp (()I CCO
exp (j2a<) d

-00

= i de a2 E 2n+k (n + k) ! (]a )n-mn+2k

k k! (n - mn + k)!
= Wea 2 2(ja)-m 0 (n + k)! (- 2 a2)k

k=2J (n - mi +k) k! (4.87)

from which the orthogonality of Hermite-Gaussian functions (Eq. 4.85) can be easily

deduced by setting a = 0.

simplified as

When n = m (Bragg match), the Hermite integral is

H,2 (g) (_ 2 ) x ( d = ne22 (n + k)! 2)kexp exp (j2<j ds 7,a2 2 O (k!) 2
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With Eqs. 4.87 and 4.88, we can already perform the calculation of the diffraction

pattern numerically. But in order to gain more insight into the physical meaning

of diffracted field, more concise expression of Hermite integral is essential. In what

follows, we will discuss further simplification of the sum series in Eq. 4.87

(4.89)00O (n + k) Xk
T(X) = -.

k=O (n + )Ik

By using the Taylor expansion of exponential functions, T(x) can be written as

T(x) Xmnd" cc k+n
=x " dk!'

k=-

d"m

(4.90)

(4.91)

By using the Rodrigues representation for the associated Laguerre polynomials [73]

1 d
L"(x) = -ex xdO - +a

0 0! dx 3 eX

we can obtain

1da
1 - (- ) m (e(-x)")

m. d(-x))

= e-X X"'-"d (ex X")m! dx"m

Thus, the function T(x) can be expressed by Laguerre polynomials as

T(x) = m!exL-mn(-x)

Furthermore, by using the series representation for the Laguerre polynomials [73]

Lj(x) =

Y=O

99

(4.92)

L~mm ( -x)

(4.93)

(4.94)

(4.95)+ , Ce



Table 4.1: The Pm(x) polynomials in the Hermite integral

the function T(x) can also be expressed in a finite series as

T(x) = em!E n
k=O (M-

Xk

k k!

As a summary, we simplify the sum series in Eq. 4.87 as

T(x) = exPjm(x),

where the m-th order polynomial Pm(x) is

P,,m,(x) =m!L'm-m(-x),

m -m k k!

The first few Pm(x) polynomials are shown in Table 4.1.

Finally, by substituting Eqs. 4.97 into Eq. 4.87, the Hermite integral is obtained

analytically as

j Hm () H () exp(2) exp (j2a ) d = /W2"(ja)n-me-a 2 Pm(-2a2).
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Pnm(X) n=O n=1 n=2 n=3 n=4
m =0 1 1 1 1 1
m=1 x+1 x +2 x + 3 x+4
m=2 x 2 +4x+2 x2 +6x+6 x 2 + 8x+12
m3 x3 +9x 2 +18x+6 x 3 +12x 2 +36x+24
m =4 X 4 + 16x3 + 72x2 + 96x + 24
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(4.98)
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Chapter 5

Diffraction from deformed volume

holograms: perturbation theory

approach

5.1 Volume holographic imaging systems

It has been proposed to use volume (3D) optical elements as optical imaging elements

for various imaging applications [74]. Here, 3D refers to the light interacting with

the whole volume, instead of a sequence of surfaces. The latter is the case in lenses,

prisms, mirrors and other conventional diffractive optical elements, that we refer to

as 2D optical elements. The most general 3D optical element is a volume V with a

three dimensional modulation of the dielectric constant Ac(x, y, z). we refer to these

elements as 3D diffractive optical elements (A volume hologram is a 3D modulation

of the dielectric constant with a carrier exp{iKg - r}). As described in Section 4.1,

volume holograms can be thought of as self-aligned 3D stacks of diffractive elements

operating on the incident field coherently as the field propagates through.

Volume holograms are chosen as optical imaging elements because they provide a

larger number of degrees of freedom in defining the optical response, compared to 2D

optical elements of the same aperture. This is intuitively obvious from dimensional
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arguments and was proven formally in Ref. [28, 75] using the modal properties of

electromagnetic fields. One interesting consequence of the degrees of freedom afforded

by volume holograms is that the shift invariance of these elements can be limited in at

least one dimension. This is especially a useful property for 3D imaging systems, e.g.

the optical sectioning ability of confocal microscopes can be thought of as resulting

from the shift variance of the pinhole response [76].

5.1.1 Volume holographic imaging (VHI)

Gabor originally proposed the use of holography as an imaging method to recover

both amplitude and phase of light coming from an object [21] with the intent of using

the phase to store and reconstruct 3D information about the object. A Gabor or

Leith-Upatnieks [77] hologram is recorded in a thin photosensitive material as the

interference pattern between a reference beam and the light scattered by the object.

In these applications, the hologram does not function as a fixed imaging element, but

rather as a sophisticated detector that captures phase properties of the object.

A different imaging principle, volume holographic imaging (VHI), was proposed

in Ref. [74] for 3D imaging. VHI is different from traditional holographic imaging

because:

1. A VHI system incorporates at least one thick holographic element, the volume

hologram. The volume hologram (which is also referred to as the volume holo-

graphic lens) acts as depth selective imaging element to achieve 3D imaging.

2. A single volume holographic lens can be used to image arbitray objects on a

CCD camera. Thus, there is no need to record a new hologram for each object

as in the case of conventional holographic imaging.

We now describe more specifically how VHI can be used for 3D imaging. The

first step is to construct the volume holographic lens. The typical recording process

is a sequence of exposures of a photosensitive thick holographic medium, such as a

photorefractive crystal or photopolymer. Each exposure is the result of interfering two

mutually coherent beams inside the holographic medium. Once recorded, the volume
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Figure 5-1: Volume holographic imaging system.

hologram is fixed. Light emitted or scattered by the object of interest acts as the

probe field on the hologram. Corresponding different demands, such as long working

distance [30], the possible "objective optics" may be added between the object and

the volume hologram in order to shape the probe field to a more convenient form.

For example, in Fig. 5-1 a Fourier lens is used as objective optics.

VHI operates by forming projections of the object on the camera. For example, a

useful form of projection that has been used extensively in VHI systems is the so-called

"optical slicing," as shown in Fig. 5-1, which can provide similar sectioning ability

as do confocal microscopes. The volume hologram in this case can be particularly

simple, such as a volume hologram recorded as the interference between two plane

waves or a plane wave and a spherical wave. The volume hologram and the objective

optics are arranged so as to define a "focal plane", denoted as Plane B in Fig.5-1.

Unlike traditional optical systems, in the VHI system only a slit-shaped portion of the

object which intersects the focal plane is visible at the image plane; the remainder of

the object is invisible. In the VHI system depicted in Fig. 5-1, setting the focal plane

at Plane B would results in a slice along Plane B becoming visible while the slices of

the object along Plane A and Plane C would be invisible. The optical slicing principle

was first implemented with a confocal microscope [78]. In VHI or confocal microscopy,

the system rejects light originating away from the focal plane. At the same time, the

field of view is limited to a point (confocal microscope with pinhole at detector plane)
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Figure 5-2: The illustration of the multiplex method used in VHI systems.

or a slice (VHI system or confocal microscope with slit-shaped pinhole.) The rest of

the object is recovered by scanning in three and two dimensions, respectively.

In the confocal microscope, extensive scanning is the only option to recover the

object in its entirety while VHI provides alternatives that reduce or eliminate scanning

altogether:

1. Multiplex method: the volume hologram is multiplexed so that multiple slices

from the object are simultaneously imaged on non-overlapping segments of a

large camera. This unusual imaging mode is to project Plane A, B and C in

Fig. 5-2 onto the same image plane, but on non-overlapping segments. It has

been implemented experimentally for fluorescent objects [66]. Provided that

the dynamic range of the hologram and the photon count are sufficiently high,

and that the camera has enough pixels available, the entire 3D object shape

can be mapped onto the 2D camera without scanning.

2. Rainbow method: the object is illuminated with a rainbow and each color acts

as its own slit and forms independently a depth-selective image on the camera.

As shown in Fig. 5-3, different colors form different slits on Plane B while the

image of plane B is obtained in one shot on the imaging plane. Scanning in the

depth direction only is required to recover the object in its entirety.

In the following section, we will present a derivation of the optical response of
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Figure 5-4: The geometry of a VHI system.

VHI that explains how volume holograms operate as imaging elements.

5.1.2 Optical response of VHI

The basic geometry of a VHI system is shown in Fig. 5-4. It consists of a 4F system

formed by two ideal thin lens as Li and L2 of focal lengths f, and f2, respectively. At

the front focal plane of L1, the light distribution is assumed to be monochromatic and

spatially coherent, with wavelength A and amplitude p(x, y). Our goal is to determine

the light amplitude distribution q(x', y') at the back focal plane of L2.

If a thin transparency (amplitude or phase) is placed at the shared focal plane of

the lenes in Fig. 5-4, it is well known that the transparency acts as a Fourier-plane
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filter, called "pupil function." The significant difference in the VHI system is that the

Fourier filter is 3D. As a result, the filter behavior changes qualitatively: for example,

we will see that the shift invariance property is destroyed. The loss of shift invariance

is especially useful in the sectioning of 3D imaging. Furthermore, the 3D nature of

the pupil permits more degrees of freedom in determining the optical response.

Let AE(x", y", z") denote the 3D modulation of dielectric constant in the vicinity

of the shared focal plane. If the modulation has a spatial carrier, it can be written in

analytic form as

A6(x", y", z") AEb(X, y", z") x exp{iK -r"}. (5.1)

where r" = (x", y", z") is the position vector with respect to a coordinate system

centered at the hologram, K = (Kx, Ky, K.) is a grating vector, and AC(", y", z")

is a baseband (low-frequency) modulation. We will call AE(x", y", z") a "volume

hologram." In this chapter, we will only be considering modulations of the volume

holographic type.

The field generated by propagating p(x, y) through Li to the vicinity of the shared

focal plane is given by

P(x", y", z") exp i27r p(x, y) exp -i27r
f Af1

x exp{-ir(X 2 +±Y2)Z" dxdy. (5.2)

Here we neglect the amplitude terms 1/iAz" from the expressions for spherical waves.

These terms contribute little to the diffraction integrals, in comparison with the fast

varying exponentials.

It is clear from Eq. 5.2 that P(x", y", 0) reduces to the 2D Fourier transform of

p(x, y). According to the first order Born approximation, the modulated 3D dielectric

material responds to illumination by P(x", y", z") as a superposition of secondary
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point sources of amplitude

g(x" , yz") = P(x", y", z") x AE(x", y", z") (5.3)

at each point (x", y", z") inside the volume hologram.

By using Eq. 4.10, we can calculate the diffracted field after the back surface of the

hologram at observation coordinates (Xb, Yb, Zb). Under the paraxial approximation

(Eq. 4.12), the diffracted field due to the superposition of secondary point sources is

e(xb, Yb, Zb) = g(x", y", z") exp i27r Zb Z"

x< exp ir(Xb - (Yb -z") dx"dy"dz". (5.4)
A(Zb - Z")

The most natural selection for Zb in the above equation is zb = f2, to the left of and

immediately adjacent to L2. This selection, as long as the hologram is confined near

the shared focal plane, as shown in Fig. 5-4, enures that the paraxial approximation

of Eq. 4.12 used in Eq. 5.4 for the free space Green function remains valid. We have

also avoided the potential singularity that would occur if Zb were allowed to be inside

the volume hologram.

The system output is the field generated by L2 at its back focal plane when the

illumination immediately to the left of L2 is e(xb, Yb, f2), according to Eq. 5.4. From

Fourier optics, we find

q(x, y') = exp {ir X /j+Y } exp - A27r }xp Af2 fA f2

x e(xb, Yb, f2)dXbdYb. (5.5)

Combining integrals Eqs. 5.4 and 5.5 and performing the Ab and Yb integrations first,

the result is

f X/ + Y'IY"
q(x', y') = g(x y z") exp -- 27

( Af22 5/
xexp -i27r I - -- dx"dy"dz". (5.6)

2f22
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which can be written in a simplified form as

q(x', y') = G 1 - (5.7)
'_Af2 ' Af2' A 2f2

where G(u, v, w) is the 3D spatial Fourier transform of g(x", y", z"). Eq. 5.7 is general,

within the limits of validity of our approximations. As with any linear system, of

particular interest is the special case p(x, y) = 6(x - xo)6(y - yo), which gives us

the impulse response h(x', y'; xo, yo) of the VHI system. By direct substitution to

Eqs. 5.2, 5.3 and 5.7, we obtain

1 1 x2 + y0  X'2 + y'2
h(x',y';xo,yo) =. ++ (5.8)

f, / f2 A f1 f2 A 2f2 2f22 _]

where E(u, v, w) denotes the 3D spatial Fourier transform of the dielectric modulation

E(x", y", z"). Therefore, the system input-output relation can also be written as

q(x', y') = Jfp(x, y)h(x', y'; x, y)dxdy. (5.9)

It is evident from the impulse response Eq. 5.8 that the VHI system is not shift

invariant. It should also be noted that the 3D pupil does not lead to three degrees

of freedom in determining the impulse response. Instead, the impulse response at

any given field point (x', y') remains limited to two degrees of freedom, but the shift

variance introduced by the 3D pupil provides a means of controlling the impulse

response as function of field coordinates (x', y'). Another way to understand Eq. 5.7

is that the impulse response is defined on a 2D manifold in the space of the Fourier

transform of 3D pupil. As is evident from Eq. 5.7, the manifold shape is specified by

the field coordinates (x', y').

From Eq. 5.8, we know that the Fourier transform of the dielectric modulation

can obtained by using simple point source at the probe plane. This provides a way to

inspect the change of the dielectric modulation, for example, through determining the

change of the dielectric modulation we can know the deformation which causes the

change. Since the dielectric modulation is in a 3D volume, this method can be used
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to detect arbitrary 3D deformations inside a transparent material with a pre-recorded

hologram. This is the topic of the rest of this chapter.

5.2 3D deformation measurement

Deformation of volume holograms, such as shrinkage during processing [79, 80], or

elastic deformation due to the action of a force can cause deviation in the angle

or wavelength for Bragg matching condition [81, 82], and aberrations in the recon-

structed image [83]. This problem, usually associated with the investigation of holo-

graphic materials, has received much attention since holography was invented [84, 85].

It is a significant source of concern in application areas such as holographic memo-

ries [86, 87], information processing [88], interconnects [89], and imaging applica-

tions [30]. For example, researchers have investigated polymer materials with min-

imal shrinkage [23, 90, 91, 92] and how to compensate the deviation due to shrink-

age [93, 94]. Based on shrinkage only, the models used in the literature are relatively

simple, treating linear deformation only. In this paper, we present a generalized

theory which can deal with arbitrary deformations.

Deformation can be thought of as a two sided problem: one side is how to avoid

it, the other is how to measure it. Deformation measurement has been intensively

investigated during the past thirty years [95, 96, 97, 98, 99], but it has been exclusively

limited to two dimensional (2D) measurements of surface deformation. The universal

principle applied to this problem consists of first producing an interferogram, i.e.

modulating a signature of the surface before deformation as a phase modulation

on an optical carrier. When the interferogram is mixed with the signature of the

deformed surface, the beat term corresponds to the difference, i. e. the deformation.

The mixing can be performed optically or digitally. Optical mixing is usually referred

to as "holographic interferometry" [95, 96] if the beating is with an interferogram

recorded on photographic film, and "moir6 interferometry" [98, 99] if the beating is

between two sets of intensity fringes recorded on a digital camera. Digital mixing

is called "speckle interferometry," [97] where the speckle is interpreted as a random
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phase mask; then the beating is the crosscorrelation function of the mask before and

after deformation. Digital holography [100, 101] can also be thought of in similar

terms, especially in the context of holographic particle image velocimetry [102, 103],

where instead of deformation one measures displacement of particles in a thin sheet

of moving fluid.

Three dimensional (3D) deformation measurement is more challenging because

mixing and beating must occur throughout an entire volume as the optical fields

propagate through. This eliminates both film and digital cameras as possible media

for recording the interferograms. In this chapter, we propose instead the use of Bragg

diffraction for 3D deformation measurement. The mixing step is the recording of a

volume hologram in a transparent 3D medium before it is deformed. The hologram is

then reconstructed in the presence of an unknown 3D deformation and the diffracted

intensity is captured on a digital camera. Examples are shrinkage, shear, compression,

indentation, crack propagation, etc. Assuming the deformation is not severe enough

to destroy the optical quality of the medium, the diffracted field is, in effect, the 3D

beat between the deformed and undeformed versions.

Since the diffracted intensity is measured on a digital camera, which is a 2D

medium, the beating signature is captured as a projection rather than a direct image.

This implies that, in general, more than one measurement is required to capture

the complete 3D deformation field. Nevertheless, our proposed technique is the first

measurement method, to our knowledge, that is explicitly designed to handle 3D

deformations in optically transparent media.

In this chapter, we deal exclusively with the "forward" problem of establishing

the beat field when the volume hologram and the 3D deformation are both known.

Surprisingly, there have been no efforts to that end in the literature to date, except

for the special case of linear shrinkage. Here we provide general expressions that are

applicable to arbitrary deformations under a set of mildly restrictive assumptions,

such as preservation of the average index of refraction and validity of the 1st-order

Born approximation. The derivation is carried out in section 5.3 for small deforma-

tions for which a perturbative approach is adequate, and in a more general (but also
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more algebraically complex) form in sections 5.6 and 5.7. In section 5.4, we confirm

that the general theory matches with the well known predictions and observations of

shrinkage effects from the literature. In section 5.5, we carry out the modeling of the

diffracted field and report experimental results in the case of a deformation produced

by an indenter tip applied against the surface of a semi-infinite slab. The experiments

match very well with the theory.

The solution to the forward problem, which we are presenting here, is always the

first step before the "inverse" problem, i.e. the measurement of arbitrary deforma-

tions from a set of diffracted intensity measurements in our case, can be attacked.

The inverse problem usually poses additional challenges involving the efficacy of the

measurement and the well-posedness of the solution. This will very clearly be the case

in our approach, since the measurement is that of a projection, as we already noted.

Fortunately, in many cases of interest, including the indentation problem, existing

analytical or numerical models of 3D deformation can be used to extract deformation

parameters even from a single measurement. In these cases, the formulation presented

in this chapter is adequate.

5.3 Perturbation Theory on the Deformation of

Volume Holograms

Consider a volume hologram with dielectric modulation Ae(x, y, z) which changes to

Ae'(x', y', z') after deformation, as shown in Fig. 5-5. Our goal is to derive an expres-

sion for the diffracted field when the deformed hologram is probed by an arbitrary

light field. With the assumption that the dielectric constant of each point inside the

hologram does not change when that point moves due to the deformation, we can

express AE'(x', y', z') as

AE'(x', y', z') = AE(f (x', y'z'), fy(x', y', z'), fz(x', y', z')), (5.10)
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Figure 5-5: Deformation of holograms

where f(r') = Rfx(x', y', z') +Sfy(x', y', z') +fz(x', y', z') is the former position of the

point at r' = ix' + yy' + iz', and it can be obtained from the strain or displacement

functions. This assumption is valid when the deformation is not large enough to

affect the material properties of the hologram. We refer to these weak deformations

as "conformal." The conformality condition is satisfied for most cases. An expression

for the diffracted field for general non-conformal deformations is given in Section 5.6.

Returning to the case of conformal deformation, we write Equation 5.10 in vector

form as

AE'(r') = AE(f(r')), (5.11)

When the displacement is analytic, we can approximate Equation 5.11 by N-th order

Taylor expansion as

[(f(r') - r') .~
AE(f(r')) Ac(r') + (5.12)

=1

Without loss of generality, we can restrict Le(r') to a set of planar, parallel grating

fringes recorded by two intersecting plane waves: reference beam Ef(r) = exp (ikf - r)

and signal beam Es(r) = exp (iks - r). This is because any hologram can be regarded

as a linear superposition of infinite plane-wave holograms[1]. In most cases, the

superposition is straightforward and numerically stable. We prefer the development
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of the perturbation theory using the plane-wave holograms because it leads to simpler,

more intuitive expressions. The perturbation theory for non-plane-wave holograms

is discussed in Section 5.7. For a plane-wave hologram, the undeformed dielectric

modulation can be written in analytic form as

Ae(r') = Ej exp (iKg -r'), (5.13)

where c1 is the amplitude of the spatial modulation expressing the hologram strength

and Kg = ks - kf is the wave vector of the grating. Its j-th order derivative can be

obtained as

ViALE(r') = (iKg)j LE(r'), (5.14)

V -+ iKg. (5.15)

Substituting Equation 5.15 into Equation 5.12, we obtain

N[Af (r') -iKg]s
AE(f(r')) ~ AE(r') + ., A e(r'), (5.16)

j=1

where Af(r') = f(r') - r' is the displacement due to the deformation. The displace-

ment can be expressed as

Af (x'y, y' z') all a 12 a 13  x'

Af(r') = Af(x', y', z') = a 2 1 a 2 2 a 23  y A - r', (5.17)

AL f(x', y', z') a31 a32 a33  z'

where, in general, aki is a function of (x', y', z') for all k, 1 1, 2, 3. The matrix

A is referred to as "strain matrix" or "deformation matrix." In special cases, e.g.

uniform shrinkage of a volume hologram, A is constant and very simple expressions

of the diffracted field can be derived. Our analysis remains valid for constant as well

as non-constant deformation matrices. Using Equation 5.17, Equation 5.16 can be

written as

N [K g . A . -i r]A(f (r')) ~ Ae(r') + 1 AE(r'). (5.18)
=1 3
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Using relation 5.13, we can see that the dielectric modulation is a function not only

of r' but also of Kg Therefore, we can swap derivatives and write the conjugate of

equations 5.14 and 5.15 as

Vg Ae(r') (ir')' AE(r'), (5.19)

ir' - VKg - (5.20)

By substituting equation 5.20 into equation 5.18, we can obtain the deformed dielec-

tric modulation as

N[Kg - A -V
AE(f(r')) ~ Ac(r') + A._ AE(r'). (5.21)

j=1 3.

With the knowledge of the deformed dielectric modulation, we can calculate the

diffracted field change in the Fourier geometry as shown in Fig. 5-6. Before deforma-

tion, when an arbitrary probe beam Ep(r) is used to read out the volume hologram,

the diffracted field incident on the detector is [2]

Ed(r") = JEp(r)AE(r)V(r)exp(z27 xx"-

exp - (7 - /2 + y1/2 z d3r, (5.22)

where the index function V(r) is defined as

V(r)= 1 inside the volume hologram (5.23)
0 outside the volume hologram

F is the focal length of the Fourier lens between the hologram and the detector, and

r"1 = cx" + yy" is the coordinate on the camera plane. In fact, Equation 5.22 is the

3-D Fourier transform of Ep(r)AE(r)V(r) computed at spatial frequency coordinates

x"/(AF), f, = y"/(AF), f= (1/A)[1 - (x" 2 + y"2 )/(2F2 )]
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Figure 5-6: Fourier geometry with plane wave reference and plane wave signal

After deformation, the diffracted field changes to

Ed~")= Ep(r')AE'(r')V(r') exp -i ± F I

exp [- 27 ( - 112 FY t2 z ' d3 r', (5.24)

Since the hologram shape should remain approximately constant, except under very

severe deformation, and in any case changes in index function affect only the bound-

ary of the volume integral, we approximate V(r') ~~ V(r). Thus by substituting

Equations 5.11 and 5.21, we can obtain

Ed(r) (r")+ Ep(r') [Kg -A. V-g] '
j=1

V(r') exp 27r x'x" + Y'Y")
V~') exp (-A i F d

ep 27r X"/2 + y"12 'd3r,
ex A- 2F2 'd', (5.25)

Inside the integral, Kg and VKg do not depend on r'. Therefore, if the displacement

can be linearized (in which case A is a constant matrix), we can take [Kg - A - VKg] (j!)

out of the integral and obtain the final result in a very simple form as

N[K 1A K
Ed(r") ~ Ed(r") + >1 E (r").

j=1

(5.26)
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Especially, for the first order approximation in the Taylor series,

Ed(r"). Ed (r/) + Kg ' A -VKg Ed(r"). (5.27)

The final expression is very similar to the standard form of the perturbation theory

on electromagnetism [104].

With Equation 5.25 or 5.26, we can already perform the calculation of diffracted

field change due to deformation. Before doing so, it is worthwhile to look at these

equations qualitatively in some detail. First interesting result is that Kg -A -VKg has

null space when AT -Kg is perpendicular to VKg or AT -Kg is equal to 0, meaning that

there exist holograms which have zero response for a given deformation. For example,

if there is a hologram with its grating fringes along the z-direction (the wave vector

of the grating Kg is in the x-y plane), the deformation along the z-direction will have

no effect on it. This is intuitively obvious, and it is useful if we desire to minimize the

effect of an anticipated deformation (e.g. shrinkage) on the hologram. Second, if our

goal is to measure a certain deformation, then we can find some optimal holograms

which have maximum sensitivity to that deformation. The condition is

AT - Kg 1 VKg (5.28)

Condition 5.28 also has an intuitive interpretation with the help of the K-sphere, as

shown in Fig. 5-7. Usually when the probe beam is Bragg matched before deformation,

Ep(r) = exp (ikf -r), the strongest dependence of Ed on Kg is when a change in Kg

leads to Bragg mismatch fastest. The mismatch AKg is fastest when the tip of the

grating vector after deformation moves as fast as possible away from the K-sphere,

which is along the direction connecting the center of the K-sphere to the tip of the

grating vector on the K-sphere. This is actually the same as the direction of the signal

beam ks. The locus of the maximum Bragg mismatch as function of deformation 6

is calculated in Section 5.8, where it is shown that the maximum Bragg mismatch
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Kg

Figure 5-7: K-sphere explanation of Condition 5.28

direction angle 6 is
k sin 0s

sin 6 = k , (5.29)

where k = 27r/A is the wave number and Os is the direction angle of signal beam. The

sketch of the locus of the maximum Bragg mismatch is shown in Fig. 5-8.

From another point of view, VKgEd(r") means the gradient of Ed(r") with respect

to Kg. If the plane-wave hologram with grating vector Kg is probed by Ep(r) =

exp (ikp -r), without deformation the diffracted field just after the hologram before

the Fourier lens can be obtained from the generalization of Eq. 4.17 as

E(r") = sinc{ [I[gz+kpz - k2 - (Kgx + kPZ)2 - (Kgy + ky)]

exp {i [(Kgx + kpx) x" + (Kgy + kpy) y"+

+ k2 - (Kgx + kpx) 2 - (Kgy + kpy)2z" , (5.30)

which is a plane wave with amplitude modulated by Bragg mismatch. Here, we

assumed that the dimensions of the hologram are infinite in the x- and y- directions,

and the thickness of the hologram is L . We can calculate the diffracted field gradient
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Figure 5-8: The locus of maximum Bragg mismatch

as

VKg Ed (r") oc (Kgx + kpx) + (Kgy + kpy) 9 +

+ - (Kgx + kp) 2  (Kgy + k (5.31)

which is also along the direction connecting the center of K-sphere to the tip of the

grating vector, consistent with our earlier K-sphere analysis. According to Condi-

tion 5.28, the deformed grating vector AT -Kg must point in this direction to achieve

maximum change. Or if we want to measure certain deformation A, the hologram

whose grating vector Kg satisfies condition 5.28 will have maximum sensitivity to

this deformation A.

5.4 Application to Linear Deformation (Shrinkage)

Equations 5.26 and 5.27 can be applied to linear deformation directly, e.g. the shrink-

age of holograms, or compression by uniform pressure on the surface of holograms.

The diffracted field after deformation can be calculated without complicated and

time-consuming numerical integrations.
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The shrinkage of holograms has been observed to cause angular deviation and/or

wavelength shift for maximum diffraction-efficiency reconstruction [82, 81, 93] and

to cause aberrations[83]. Using the perturbation theory from section 5.3, it can be

investigated very conveniently. Here, it is assumed that the shrinkage occurs only

along the direction of the normal to the hologram's surface. A hologram of original

thickness L shrinks to thickness L' such that

L = (1 - s)L, (5.32)

where s is the coefficient of shrinkage. Thus, the displacement matrix is

0 0 0

A = 0 o o] (5.33)

0 0 S

If the plane-wave hologram with grating vector Kg is probed by Ep(r) = exp (ik, - r),

without shrinkage the diffracted field just after the hologram is given by Equation 5.30.

By substituting 5.33 and 5.30 into the perturbation formulae 5.26, the result after

shrinkage can be simplified as

N [K9 s
Ed(r) Ed(r") + [ z Ed(r

=1

L 2=sine 2rI(I + S) Kgz + kgz - k2- (Kgx + kpx)2 -(Kgy + ky)

exp { [(Kgx + kpx) x" + (Kgy + kpy) y"+

+ k2 -- (Kgx + kpx) 2 - (Kgy + kpy)2z" (5.34)

which means that the shrinkage along z-direction affects only the efficiency but not

the direction of the diffracted plane wave. This is consistent with the discussions in

Ref. [81, 93]. Beyond this simple calculation, equation 5.26 can be used to predict the

response of holograms deformed under any kind of affine transformations, including

rotations, anisotropic shrinkage, etc.
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5.5 Application to Nonlinear Deformation

For holograms which undergo nonlinear deformation, we have to use the full 3-D

integral or Fourier transform in Equation 5.25 to predict the diffracted field. In

order to verify the validity of the perturbation theory on nonlinear deformation, we

simulated the change in the diffracted field due to a point load exerted normally on

the surface of a hologram. We also carried out an experiment and compared the

results with the simulation.

When a concentrated point force P is acting normally to the surface of an elastic

solid, as shown in Fig. 5-9(a), the elastic displacements at any point in the half space

are given by [105]

_P [xz( 2 xl
Ux = -X - (I - 2v) x

47rG p3 p( p+ z)]'

U = - (1 -2v)
Y 4,rG p3 p( p + Z )'

P ~z2 2(1 - v)
U = - +( , (5.35)47rG p3 P

where G and v are the shear modulus and Poisson ratio, respectively; and p =

x2 + y2 + z2 is the distance of the point to the origin (loading position). The

resulting deformation is shown in Fig. 5-9(b). The singularity at p = 0 is due to the

6-function nature of the point load. We can obtain the displacement matrix for each

point in the deformed solid. Note that the displacement matrix elements are now

position-dependent, unlike the example in the previous section.

We constructed an experimental setup to verify the validity of the approach pre-

sented above. The holographic material was provided by Ondax, Inc. It had thick-

ness L = 2mm and measured shear modulus G = 44GPa, Poisson ratio v = 0.22.

The hologram was of the transmission type with reference and signal beam angles

Of = -7.5' and 6s = 200, respectively, at wavelength of 488nm. The geometry of the

experiment is shown in Fig. 5-10 with F = 400mm. The hologram was illuminated

at the Bragg matched angle. A PULNiX TM-7EX CCD with 768 x 494 pixels, pixel

size 8.4ptm x 9.8pnm was used to observe the diffracted intensity. The hologram was
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Figure 5-9: Illumination of the deformation when a point load is exerted on half
space: (a) the geometry of point load, (b) the resulting deformation.
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Y Indenter Tip Fourier Lens Y z

L F

Figure 5-10: Experiment geometry when a point load is exerted on a transmission
hologram

deformed using a diamond indenter tip applied normally against the back surface of

the hologram. The deformation due to the indenter tip is in good agreement with the

point-load described by Equation 5.35, except near the singularity point p = 0. Our

experimental approach did not require force measurement; we estimated the force

using the displacement reading in the indenter carrier. During the experiment, we

used the same probe beam which is Bragg matched before deformation to illuminate

the hologram.

First we simulated the expected change in diffracted field according to Equa-

tions 5.25 and 5.35. The results are shown in Fig. 5-11. An interesting observation is

that the diffracted spot splits into "twin peaks" due to the point load deformation.

This can be explained intuitively based on the deformed fringe patterns of Fig. 5-

12 and the K-sphere of Fig. 5-13 as follows. From Fig. 5-12, we see that deformed

grating is composed of two quasi-periodic fringe patterns, symmetric with respect

to the original grating fringes. The fringes are also curved, which is indication of

spatial chirp. If for the moment we neglect the spatial chirp, we obtain two gratings

which are tilted with respect to the original grating, and also have smaller period

because of the pressure applied by the indenter. Accordingly, we represent the twin
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Figure 5-11: Simulated and experimental results when a point load is exerted on a
transmission hologram. Parameters are wavelength A = 488nm, the angle of reference
beam 6 = -7.5', the angle of signal beam 6, = 20', the thickness of the hologram
L = 2mm, estimated force P = 700N and the focal length of Fourier lens F = 400mm.
The intensities before and after deformation were normalized by their own maximum,
respectively. The maximum intensity after deformation is 19.65% of the maximum
intensity before deformation.
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Figure 5-12: Fringe patterns of a transmission hologram due to point-load, and pa-
rameters are the same as in Fig. 5-11.

gratings with wave vectors K' and K" that are tilted and elongated with respect to

the original wave vector K9. Since we are reading out the hologram with the orig-

inal reference kf, the twin peaks are expected to be Bragg-mismatched. However,

for small deformation, i.e. small deviations of the twin grating vector tips K' and

K" from the K-sphere, we can still obtain diffraction from the partially mismatched

gratings. The directions of the twin diffracted beams are denoted as k' and k'U in

Fig. 5-13; they give rise to our observed twin peak on the CCD camera after Fourier

transformation by the lens. Because the Bragg mismatch amounts AK' and AK"

for the twin gratings are in general different, the twin diffracted beams have different

efficiencies. The elevated side lobes observed in Fig. 5-11 are due to the spatial chirp,

which was neglected from the approximate explanation based on Fig. 5-13.

We performed our experiments using an indenter tip moved by a micropositioner

to exert the point load on the hologram. The load position was exactly at the center

of the aperture (the illumination area on the hologram.) The experimental result

obtained on the CCD Camera is shown as the dash-dot line in Fig. 5-11 and is in

agreement with the simulation. At the same time, we also observed some minor
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Figure 5-13: K-sphere explanation for the "twin peaks"

apodization effect mixed in our experiment result: the side lobes were suppressed

and the main lobes were a little wider. Because the apodization effect of volume

holograms has been accounted for in the perturbation theory inherently, the additional

apodization could be due to nonuniformity of holograms and probe beams in the

experiment.

We also performed simulations and experiments on a reflection type hologram.

The experimental geometry is shown in Fig. 5-14. The holographic material was also

from Ondax Inc., with the same shear modulus and Poisson ratio as the transmission

hologram. The thickness of the reflection type hologram was L = 1.5mm. The an-

gles of reference beam and signal beam were Of = 172' and Os = 8', respectively, at

wavelength of 632nm. The focal length of the Fourier lens was F = 400mm and the

hologram was also illuminated at the undeformed Bragg angle. The simulated and

experimental results are shown in Fig. 5-15 and match very well. In this case, the dif-

fracted field presents an almost symmetric pattern due to the point-load deformation.

This can also be explained intuitively by the deformed fringe patterns of Fig. 5-16 and
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Figure 5-14: Experiment geome
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N
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Figure 5-15: Simulated and experimental results when a point load is exerted on a
reflection hologram. Parameters are wavelength A = 632nm, the angle of reference
beam Of = 172', the angle of signal beam 6, = 8', the thickness of the hologram
L = 1.5mm, estimated force P = 19N and the focal length of Fourier lens F =
400mm. The intensities before and after deformation were also normalized by their
own maximum, respectively. The maximum intensity after deformation is 34.55% of
the maximum intensity before deformation.
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Figure 5-16: Fringe patterns of a reflection hologram due to point-load, and parame-
ters are the same as in Fig. 5-15.

the K-sphere of Figure 5-17 as follows. In this case, the original grating vector Kg

is split into three gratings Kgi, K' and K" after deformation. Kg1 remains parallel

to Kg, but is longer because of the applied pressure. The other two, K' and K",

are tilted and elongated as in the transmission case and have almost the same Bragg

mismatch amount AK' and AK". The result is a triplet peak, with a main lobe

corresponding to the partially mismatched Kgi, and two side lobes corresponding to

the partially mismatched K' and K". The side lobes are weaker than the main lobe

while the amount of Bragg mismatch for K' and K" is larger than it is for Kgi.

In Fig. 5-15, we can also observe minor apodization effects mixed in the experiment

result, which is due to the same reasons as in the transmission geometry.

It needs to be mentioned here that success in the two experiments (transmission

type and reflection type) is extremely delicate because of the difficulty to achieve

the exact deformation of ideal point loading. First, we need to adjust the point load

exactly at the center of the aperture. Second, the force must be normally exerted on

the surface of the hologram. Third, we need the supporting and holding systems to be

sufficiently stiff. The deformation is very sensitive to these factors. So in order to get
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Figure 5-17: K-sphere explanation for the "triplet peak"

the deformation as close to the ideal as possible, the adjustment in the experiments

must be very precise.

5.6 Perturbation Theory Considering Dielectric Con-

stant Change during Deformation

The conformality assumption that the dielectric constant does not change during

deformation is valid when the deformation is not large enough to change the material

properties of holograms. Although in some conditions the dielectric constant may

change, we still can include this effect in our theory by modifying Equation 5.11 as

Ae'(r') = a(r')Ac(f(r')), (5.36)

where a(r') is the amplitude change of dielectric modulation. Following the same

derivation steps, we can easily find the diffracted field considering the dielectric con-
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stant change during deformation as

Ed(r") E E(r

where,

d(r" =

exp

ff1 Ep(r')a(r') [K -AVK]E(r)
j=1

V(r') exp - 2x'x" +

[27r X"2 + Y"f2 3

exp LA - 2F 2  z' d

Ep(r')a(r')AE(r')V(r ) exp - t r ' f(2 -A F

-i 2F2 z a'

If the displacement is linear, then

N[Kg-A - ).Rd(r) ~E(r) + E .A kdr").
=1 I

(5.39)

5.7 Generalized Perturbation Theory to Arbitrary

Holograms

We can generalize Equation 5.25 and 5.26 for arbitrary holograms which can be

written as a linear superposition of many plane-wave-holograms,

AE(r) = Emni exp i27r ( + +

Emn, exp (iKmnl) . r), (5.40)
M,,n,l

where L,, Ly, L2 are the dimensions of the hologram in the x, y, z direction respec-

tively, En-ma is the constant expressing the hologram strength of each component, and

K (?~nis the wave vector of the grating of each component. Therefore, along the

same derivation path in section 5.3 we can obtain the deformed dielectric modulation
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as

Ac(f(r')) ~ A(r') + E E K] AEmni (r'), (5.41)
m,n,l j=1

where

AEmni (r') = Emni exp (iK mnl) -r') . (5.42)

The diffracted field after deformation will render the form

Ed(r") ~~ Ed(r") + Ep(r') N 9 AEm(r')V(r')EN1m,n, j=1

27r x'x" + y'Iy"i 27r X"/2 + Y"12 Zd3r.(.3exp A F ) exp -A F 2F 2  )z dar'. (5.43)

In the case of linear displacement, Equation 5.43 can be further simplified to

N K("')U -A - V gaa

Ed(r") Ed(r") + [ A. K El"l (r"), (5.44)
m,n,1 j=1

where

Emnl) (r") J Ep(r')AEmni(r')V(r') exp ( -- x'x" Y Y

exp - (i - /"2 F+Y' 2  z' d3r'. (5.45)

and

Ed(r") E(mnl)(r/) (5.46)
m,nj

Equations 5.43 and 5.44 are the counterparts of equations 5.25 and 5.26, respectively.

5.8 Locus of Maximum Bragg Mismatch

In this section we calculate the locus of maximum Bragg mismatch as function of the

deformation amount 6. As shown in Fig. 5-18, we want to find the point on the circle

with center at O and radius 3 which has the maximum horizontal distance to the
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Figure 5-18: Calculation of the locus of maximum Bragg mismatch

circle of K-sphere. The horizontal distance represents the amount of Bragg mismatch

AKg. We can express the point on the circle of K-sphere as

z2 + X2 = k2, (5.47)

where k = 27r/A, and the point on the circle 06 as

(z - k cos s) 2 + (x - k sin OS) 2 = 62, (5.48)

The amount of Bragg mismatch is the horizontal distance between two points which

have the same x-coordinate and are on these two circles respectively. This distance

can be calculated as a function of x,

AKg(x) = k cos -s 62 _ (x k sinOs)2 - k 2. (5.49)
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In order to get the maximum, we calculate the first order derivative of Equation 5.49

and set it equal to zero,

AKg (X) - -ksin0s + X = 0. (5.50)
Ox 62 -(x-k sinOs)2  k 2 _x 2

Solving Equation 5.50, we obtain the x coordinate of the point, which has the maxi-

mum amount of Bragg mismatch, as

Xmax = sins (5.51)

The result indicates that two points have the maximum amount of Bragg mismatch.

One is in the interior of the K-sphere, the other is outside. Thus, the maximum Bragg

mismatch direction angle can be obtained as

xmax - k sin0s kk sin 0s
sin6 6 kT6 (5.52)

After knowing the maximum Bragg mismatch direction angle to different deformation

amount 6, we can sketch the locus of maximum Bragg mismatch as Fig. 5-8. When

6 approaches zero, the maximum Bragg mismatch angle can be obtained as

lim sin 6O = ± sin Os. (5.53)
6-+0

This means that the fastest Bragg mismatch is obtained along the direction of the

signal beam, which is consistent with the discussion in Section 5.3.

5.9 Conclusions

In summary, we have derived a general solution to the problem of diffraction from a

volume hologram that has been arbitrarily deformed compared to its recorded shape.

We have shown that in many cases of interest, including shrinkage and indentation

due to application of a point tip, a perturbation approach can predict accurately the
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diffracted field, and can be used to establish deformation parameters by matching

the experimental measurements to analytical or numerical models. Our approach is

unique in that it projects the deformation from the entire 3D volume onto the mea-

surement, and thus it has potential for measuring even more arbitrary deformations

for which analytical or numerical predictions do not exist.

Our analysis in this chapter is cast as a "forward problem," where the deformation

is given and we seek the diffracted field. The future work will be the "inverse prob-

lem" which is to determine the deformation itself based on a set of observations of

the field diffracted from a known (pre-deformation) volume hologram. Our ab-initio

model and perturbation theory make it possible to calculate the complicated patterns

analytically or numerically. This development will have high utility for the inverse

problem.
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Chapter 6

Conclusion

In this thesis, we have seen that photonic crystals and volume holograms acting as 3D

optical elements present tremendous potential in information processing. Unlike other

2D optical elements like lenses, prisms and mirrors, 3D optical elements provide more

freedom to perform better corresponding to different demands. The results presented

in this thesis and in earlier work [30, 74, 106, 107, 108, 109, 110] demonstrate the

enormous advantage and potential of 3D optical elements in information processing.

The target applications of 3D optical information processing are broad, encompassing

optical communications, optical computing, optical data storage, optical sensing and

imaging. In this chapter, we recapitulate the fundamental aspects of 3D optics used

in information processing and presented some directions for future research.

6.1 3D optics summary

3D optics use 3D structured media as key elements to implement information process-

ing, such as communication, data storage, imaging and sensing. For communication,

waveguiding by shear discontinuities in photonic crystals provides a new method to

modify or even dynamically control the properties of the flow of the light, such as

dispersion, guiding bandwidth and group velocity. Diffraction from volume holo-

grams results in Bragg selectivity. This powerful optical property has been used in

3D imaging and sensing, as well as holographic data storage.
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The shear discontinuity is introduced as a new type of defect in photonic crystals

to construct a waveguide. We have demonstrated that the new type of waveguide

possesses very low group velocity dispersion and maximum guiding bandwidth. It

is very promising in highly integrated optical circuits that require high speed trans-

mission and signal processing. By changing the shear shift, the mode gap and the

group velocity can be tuned. This type of tuning can be implemented mechanically

for dynamic reconfiguration by shearing two plates containing the half lattices rela-

tive to each other. By choosing and fixing the shear shift, the mode gap, dispersion

and group velocity can be tailored for different requirements. This can be realized

by lithography fabrication with very high precision. CROWs can dramatically slow

down the speed of the light. By combining a CROW with shear discontinuity, we

realize the active control of very slow group velocity which holds the key to the de-

velopment of fast access memories and optically controlled delay lines (buffers) in

optical communication systems and optical computing.

Resonant holography is developed to enhance the diffraction efficiency of vol-

ume holograms and overcome the material limitations. The crosstalk in resonant

holographic systems is investigated. Through apodization using Gaussian references,

the crosstalk is decreased by 2 orders. A new multiplexing method using Hermite

Gaussian references (higher order modes of Gaussian beams) is proposed - mode

multiplexing. Mode multiplexing eliminates the inter-pager crosstalk due to the in-

dependence of Hermite Gaussian's orthogonality on the direction of signal beam as

well as decreases intra-page crosstalk to lower level through apodization. Volume

holograms are used to shape the optical response of imaging systems corresponding

different requirements. Based on VHI system, we proposed a technique to measure

3D deformation using volume holography. We derived the diffraction from arbitrarily

deformed volume holograms using perturbation theory approach. We constructed

experiments, on both transmission and reflection type of volume holograms, to verify

our perturbation theory. The experimental results match our theoretical simulations

very well. Based on the perturbation theory, we found the null space and maximum

sensitivity. The null space can be used to avoid the effect of deformation on volume
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holograms while the maximum sensitivity can be used to detect the deformation using

volume holography. We discussed the effect of shrinkage of volume holograms as a

simple deduction from the perturbation theory.

6.2 Future work

This thesis represents a preliminary step in the direction of understanding and design-

ing 3D optical information processing systems. There are several interesting issues

that need to be addressed in utilizing further the advantages of 3D optical elements

and building a systematic approach to 3D optical information processing systems.

Some of these issues are:

1. Design defects capable of managing and actively controlling group velocity,

group velocity dispersion (GVD), guiding bandwidth, polarization, bound states

and other properties of light in integrated optical circuits. In this thesis, we have

designed photonic crystal waveguides with shear discontinuities which have min-

imum GVD and maximum guiding bandwidth (the bandwidth is also tunable

by the amount of shear shifts.) By only engineering the STRUCTURE con-

figuration, we have also designed a novel tunable slow light device based on

a CROW with a mechanically adjustable shear discontinuity to realize active

control of group velocity of light. The future work will further investigate how

light evolves in the vicinity of defects, study the dependence of properties of

localized modes on various defects parameters, and find a set of general rules in

developing optimized nanophotonic devices for different demands. In order to

optimize the design of defect structures in such a huge parameter space, such

as arrangements, types and sizes of defects, and various dielectric materials, we

need to combine my current simulation tools and recent advances for defect cal-

culations in solid state physics to nanophotonic device designs. These include

highly localized Wannier functions as an optimal basis as well as the develop-

ment of Green's function techniques and slowly varying envelope approximation

(SVEA) based on Bloch waves as carriers.
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2. Study defect modes in imperfect photonic crystals, such as random disloca-

tions from original periodic or quasi-periodic lattice points, geometric distortion

from the idea shape of each cell, index variation and absorption of materials.

Such a study will have significant implications in the design and fabrication of

nanophotonic devices. Due to the high precision and complexity requirements

in nanostructure fabrication, the nanophotonic devices' tolerance to fabrica-

tion imperfections will become a serious issue. To design nanophotonic devices

that are less sensitive to fabrication variances will improve the yield and de-

crease the cost. It would be of great importance as nanophotonic devices move

towards greater commercialization. The tolerance of nanophotonic devices to

dislocations is also a two-sided problem. Devices with high sensitivity can be

utilized in 3-D deformation measurements. This area is also mathematically

very intriguing since many current calculation methods based on fundamental

results in solid state physics (e.g. Bloch theorem) no longer apply. Therefore,

approximation methods, such as WKB approximation, perturbation theory and

variational theorem, will play important roles, and more general mathematical

models need to be developed.

3. Nonlinear and quantum effects in 3-D nanophotonics represent another new

frontier just beginning to be explored. Because of possible strong resonant field

concentrations and available slow group velocity in nanophotonic devices, non-

linear and quantum effects can be realized within much lower power and much

smaller scale than traditional nonlinear optical devices. These enhancements

can be further actively controlled by integrating them with the tunable slow

light devices, e.g., tunable CROWs, since nonlinear optical effects usually are

inversely proportional to the square of group velocity. Thus, active control of

harmonic generation, Kerr effect (solitons), and stimulated scattering, becomes

possible. Active control of nonlinear optical processes will have wide applica-

tions in many areas, such as lasers, optical communications, and biomedical

optics. Another fascinating area in nonlinear 3-D nanophotonics is to achieve

active modification of the band structure of photonic crystals, resulting in an-
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other way to design tunable nanophotonic devices. By combining Wannier

function and SVEA using Bloch waves, we can extend the research of defects

design to nonlinear optical regime in order to describe and predict the nonlinear

properties of nanophotonic devices and compare these results with experiments.

4. As the further development of hyperspectral VHI systems [], we are going to use

a supercontinuum laser instead of a regular white light source. The high spatial

coherence and low temporal coherence of the supercontinuum laser will improve

resolution of VHI systems and extend working distance much further. The

abundance of spectral channels will also bring unprecedented parallelism and

versatility to VHI systems. The 3D deformation contains 3D information that

need to be processed while the diffraction pattern measured on CCD, which is a

2D medium, is only a 2D projection rather than a direct image. Thus, more than

one measurements are required or another dimension of information need to be

obtained through another channel. One choice is to use wavelength/spectrum

as the channel. Therefore, combining the new hyperspectral VHI systems using

supercontinuum lasers with the technique we discussed in Chapter 5 is very

promising to obtain real-time 3-D deformation measurements.

5. The diffraction from deformed volume holograms under illumination of ran-

domly varying optical fields must be understood and well characterized. Coher-

ence properties will be critical to estimate the performance of 3D deformation

measurement and explore various possibilities in searching new channels to ob-

tain information from. Some preliminary research on the coherence of 3D optical

information processing system 107] are underway to understand and exploit the

phenomenon better.

6. Experiment characterizing the performance of mode multiplexing system with

Hermite-Gaussian reference. The generation of Hermite-Gaussian beams is the

key point of the implementation of mode multiplexing. By utilizing diffractive

optical elements (DOE) [111} or diode-pumped lasers [112], different Hermite-

Gaussian modes can be obtained.
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