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Abstract
Many emerging applications for the Internet are characterized by highly variable
traffic behavior over time that is difficult to predict. Classical approaches to network
design rely on a model in which a single traffic matrix is estimated. When actual
traffic does not conform to such assumptions, desired bandwidth guarantees cannot
be provided to the carried traffic. Currently, Internet Service Providers (ISPs) use
gross capacity over-provisioning and manual routing adaptation to avoid network con-
gestion caused by unpredictable traffic. These lead to increased network equipment
and operational costs. Development of routing infrastructures that optimize network
resources while accommodating extreme traffic unpredictability in a robust and effi-
cient manner will be one of the defining themes in the next phase of expansion of the
Internet.

This thesis proposes two-phase routing as a capacity efficient and robust strategy
for handling highly variable traffic. The scheme allows preconfiguration of the network
such that all traffic patterns permissible within the network's natural ingress-egress
capacity constraints can be routed with bandwidth guarantees without requiring de-
tectiona of traffic changes in real-time or reconfiguring the network in response to it.
The schelme routes traffic in two phases -- traffic entering the network is sent from
the source to a set of intermediate nodes in predetermined split ratios that depend
on the intermediate nodes, and then from the intermediate nodes to the final des-
tination. The scheme has the desirable properties of supporting static optical layer
provisioning in IP-over-Optical networks and indirection in specialized service overlay
models unlike previous approaches -- like direct source-destination path routing - for
handling variable traffic.

This thesis represents the first comprehensive study, problem formulation, and
algorithm design for many aspects of two-phase routing. Our contributions can be
grouped into three broad parts. First, we consider the problems of minimum cost
network design and maximum throughput network routing for the scheme. We give
a simple solution for miinimum cost network design. For nmaxinmmI throughput net-
work roltilng. we design linear programming based and combinatorial algorithms. Wce



show how the algorithms can handle a total cost constraint for maxinum through-
put two-phase routing. This can be used to solve the link capacitated version of
minimum cost two-phase routing. WVe establish theoretical bounds on the resource
requirements of two-phase routing under throughput and cost models with respect to
the optimal scheme that is allowed to make the routing dynamically dependent on
the current traffic matrix. We also generalize the traffic split ratios to depend not
only on the intermediate nodes but also on source and destination of traffic and solve
the corresponding optimization problems.

Second, we consider making two-phase routing resilient to network failures. Two-
phase routing in IP-over-Optical networks can be protected against router node fail-
ures through redistribution of traffic split ratio for the failed router node to other
intermediate nodes. We propose two different schemes for provisioning the optical
layer to handle router node failures. We develop linear programming formulations
for both schemes and a fast combinatorial algorithm for the second scheme so as to
maximize network throughput. Two-phase routing can be made resilient against link
failures by protecting the first and second phase paths using pre-provisioned restora-
tion mechanisms. We consider three such restoration mechanisms - local (link/span)
restoration, K-route path restoration, and shared backup path restoration. We pro-
vide linear programming formulations and combinatorial algorithms for maximum
throughput two-phase routing with local restoration and K-route path restoration.
We show that the problem of maximum throughput two-phase routing with shared
backup path restoration is JVP-hard. Assuming an approximation oracle for a certain
disjoint paths problem (which we also show to be AP-hard), we design a combina-
torial algorithm with provable guarantees.

Third, we consider the application of two-phase routing to multi-hop Wireless
Mesh Networks (WMNs). These networks have recently been of much research inter-
est due to their lowered need for wired infrastructure support and due to envisaged
new applications like community wireless networks. We extend our optimization
framework for maximum throughput two-phase routing in wired networks to handle
routing and scheduling constraints that are peculiar to WMNs and arise from the re-
quirement to handle radio transmit/receive diversity and the phenomenon of wireless
link interference.

We evaluate various aspects of two-phase routing on actual ISP topologies using
the developed algorithms. For the WIN application, we use randomly generated
WMN topologies for the evaluations.

Thesis Supervisor: James B. Orlin
Title: Edward Pennell Brooks Professor of Operations Research
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Chapter 1

Introduction

With the rapid rise in new networking applications and the increasing use of the

Internet for carrying real-time traffic such as Voice-over-IP (VoIP) and peer-to-peer

applications, it has become increasingly important to accommodate widely varying

traffic patterns in networks. This requires Internet Service Providers (ISPs) to ac-

curately monitor (or, forecast) traffic and to deploy mechanisms for quickly and re-

peatedly adapting their (intra-domain) network routing to changing traffic patterns

so as to avoid network congestion. Tracking network traffic changes in real-time or

making accurate traffic predictions are both difficult problems. Moreover, ISPs prefer

to avoid frequent routing changes due to operational complexity and costs, and due

to the risk of network instability if such changes are not implemented correctly.

An alternative is to have sufficient capacity set aside a priori to accommodate the

different traffic patterns that can occur without resorting to routing changes. This

is how traffic variation is mostly handled in current ISP networks and comes at the

expense of significant capacity overprovisioning. Ideally, ISPs would like to use a

fixed routing scheme that does not require traffic dependent dynamic adaptation and

which, at the same time, is efficient in its use of network capacity.

This thesis proposes two-phase routing as a capacity efficient and robust scheme

for handling highly variable traffic. The scheme routes traffic in two phases. In the
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CHAPTER 1. INTRODUCTION

first phase. traffic entering the network is sent from the source to a set of interme-

diate nodes and then. in the second phase, from the intermediate nodes to the final

destination. The traffic in the first phase is distributed to the intermediate nodes

in predetermined proportions that depend on the intermediate nodes. The scheme

provides bandwidth guarantees for traffic that can vary arbitrarily subject to the net-

work's natural ingress-egress capacity constraints. Under the scheme, the network is

preconfigured so that neither the paths nor their bandwidth need to be changed in

response to changes in the traffic matrix.

The remainder of this introductory chapter is structured as follows. We begin by

reviewing some causes for traffic variation in the current Internet in Section 1.1 so

as to motivate the need to handle traffic variation in network routing. In order to

get some idea of the real-world constraints imposed on the design of routing schemes

for handling variable traffic, it is important to understand, from an ISP perspective,

the difficulty of deploying and operating a dynamic routing architecture that requires

the measurement of possibly changing traffic in real-time as well as reconfiguring the

network in response to such changes in order to provide bandwidth guarantees. We

address these aspects in Section 1.2.

VWe introduce basic notation used throughout this thesis in Section 1.3. The traffic

variation model is described in Section 1.4. In Section 1.5, we describe some moti-

vating networking applications and identify their requirements. In Section 1.6, we

show why an earlier approach for routing variable traffic - direct source-destination

routing along fixed paths - does not meet some requirements of the motivating ap-

plications. In Section 1.7, we describe the optimization models considered in this

thesis and for each model, identify the optimal scheme among the class of all schemes

that are allowed to dynamically change the routing in response to changes in network

traffic. We will compare the performance of two-phase routing with that of the opti-

mal scheme both in terms of theoretical worst case bounds and a posteriori bounds

through computation on actual ISP topologies. The contributions and organization
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CHAPTER 1. INTRODUCTION

of the thesis are summarized in Section 1.8.

1.1 Some Causes for Traffic Variation

Traffic variation may be caused by a variety of reasons. We discuss some of these

below.

1.1.1 Host Mobility and Dynamic Communication

Mobile hosts can attach to different network nodes over time and use services over an

overlay network. Applications like audio/video conferencing require dynamic mem-

bership of multicast groups. These cause changes in the point-to-point traffic demands

seen by an overlay network providing services like the above.

1.1.2 IP Traffic Variation

Traffic variation can arise from the communication pattern of the application and

its changing bandwidth needs over time. With an increasing number of services

migrating to or new ones being deployed over IP (e.g., voice-over-IP, storage services,

peer-to-peer networks, multi-user games), data traffic may be varying over shorter

periods of time, e.g., intra-day instead of weeks or months. The sudden appearance

of flash crowds responding to special events on the Internet may cause drastic changes

in traffic to and from web sites hosting the events.

1.1.3 BGP Induced Traffic Variation

Internet traffic is routed fromn a source to a destination across different Autonomous

System (AS) domains using the Border Gateway Protocol (BGP) to determine the

sequence of AS domains traversed by a packet. Within an ISP domain, the packet is

routed from the ingress to the egress using policies that are local to and controlled by
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CHAPTER 1. INTRODUCTION

the ISP that owns the domain. Extreme network traffic fluctuations within an AS can

happen due to external factors like BGP route changes across AS domains. Consider

a large ISP exchanging traffic with several other providers. Typically, the traffic

exchange between ISPs is specified by total traffic volumes over long time periods

and possibly a peak rate limit (usually just determined by physical link capacities)

[N01]. The actual distribution of traffic entering at an ingress to the various network

egresses is not known and can change over time. This is because the distribution is

determined by many factors such as intrinsic changes of traffic to different destination

prefixes and by routing changes either made locally by the carrier or due to changes

made in other ASes over which the carrier has no control.

An example of local routing changes that can affect the traffic distribution is

IGP (Interior Gateway Protocol) weight changes combined with hot-potato routing

that can change the network egress that traffic destined to a set of prefixes would

choose. While local routing changes are under an ISP's control and hence change

traffic patterns only at planned instants, unpredictable traffic shifts can happen when

routing changes in other ASes affect downstream ASes. A recent study of the effects

of the prevalent hot-potato routing [TSGR04] shows that IGP weight changes (which

can be due to new links being added, maintenance, traffic engineering, etc.) in an AS

can cause significant shifts in traffic patterns across ASes -- examples are shown where

changes in IGP costs can affect the BGP route for 40% of the prefixes, and Netflow

measurements are shown to indicate that the affected prefixes can account for up to

35% of the traffic. This indicates that significant shifts in traffic may happen at a

carrier due to changes elsewhere in the network.

The causes for traffic variation discussed above involve scenarios that share the

following important aspect: the tragffic matrix is unknown and can vary unpredictably

over timne. At any given point of time, the total amount of traffic that enters (leaves)

an ingress (egress) node in the network is bounded by the total capacity of all external

ingress links at that node. These are the only constraints imposed on the variability
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of the traffic matrix and is captured by the traffic variation model that we consider

in this thesis. We introduce the traffic variation model in Section 1.4.

1.2 Traffic Measurement and Dynamic Network

Reconfiguration

In an utopian network deployment scenario where complete traffic information is

known and does not change over time, we can optimize the routing for that sin-

gle traffic matrix - a large volume of research has addressed this problem. The

contribution of this thesis is the development of a routing scheme that can handle

traffic variability in a capacity efficient manner through static preconfiguration of the

network and without requiring either (i) measurement of traffic in real-time or (ii)

reconfiguration of the network in response to changes in it. We address the difficulties

associated with (i) and (ii) so as to further bring out the importance of these imposed

constraints on the routing.

1.2.1 Difficulties in Measuring Traffic

Network traffic is not only hard to measure in real-time but even harder to predict

based on past measurements. Direct measurement methods do not scale with network

size as the number of entries in a traffic matrix is quadratic in the number of nodes.

Moreover, such direct real-time monitoring methods lead to unacceptable degradation

in router performance. In reality, only aggregate link traffic counts are available for

traffic matrix estimation. SNMP (Simple Network Management Protocol) [CFSD90]

provides this data via incoming and outgoing byte counts computed per link every

5 minutes. To estimate the traffic matrix from such link traffic measurements, the

best techniques today give errors of 20% or more [TSBD02, ZRLD03, ZRDG03].

Moreover, mnany of these methods are not suitable for measuring traffic in real-time
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due to their computation intensive nature.

The emergence of new applications on the Internet, like P2P (peer-to-peer), VoIP

(voice-over-IP), and video-on-demand has reduced the time-scales at which traffic

changes dynamically, making it impossible to extrapolate past traffic patterns to the

future. Currently, ISPs handle such unpredictability in network traffic by gross over-

provisioning of capacity. This has led to ISP networks being under-utilized to levels

below 30% [IBTM03].

1.2.2 Difficulties in Dynamic Network Reconfiguration

Even if it were possible to track changes in the traffic matrix in real-time, dynamic

changes in routing in the network may be difficult or prohibitively expensive from a

network management and operations perspective. In spite of the continuing research

on network control plane and IP-Optical integration, network deployments are far

away from utilizing the optical control plane to provide bandwidth provisioning in

real-time to the IP layer. The unavailability of network control plane mechanisms for

reconfiguring the network in response to and at time-scales of changing traffic further

amplifies the necessity of the static preconfiguration property of a routing scheme in

handling traffic variability.

1.3 Basic Notation

Throughout this thesis, we will work with a directed graph G = (N, E) with node

set N and (directed) link (edge) set E that models the network topology. Each node

in the network can be a source or destination of traffic. The graph is assumed to

be connecte( i a directed sense. i.e., there is directed path between every pair of

nodes. In order to protect against link failures (as in Chapter 7). we require that the

network be bi-connected. i.e., the removal of any single link (and its reverse) does not

disconnect the graph.
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Let NI = n and E = m. The nodes in N are labeled {1, 2,..., n}. The sets of

incoming and outgoing links at node i are denoted by E-(i) and E+(i) respectively.

We let (i, j) represent a directed link in the network from node i to node j. To simplify

the notation, we will also refer to a link by e instead of (i, j). The capacity of link

(i, j) will be denoted by uij and its cost by cij. The utilization of a link is defined

as the maximum traffic usage on the link divided by its capacity. When considering

network protection against a link (or, node) failure, the traffic on a link is the sum of

working traffic and maximum restoration traffic due to any failure. We will introduce

additional notation in several places in the thesis when dealing with the respective

topics.

1.4 Traffic Variation Model

We consider a traffic variation model where the total amount of traffic that enters

(leaves) an ingress (egress) node in the network is bounded by the total capacity

of all external ingress (egress) links at that node. This is known as the hose model

and was proposed by Fingerhut et al . [FST97] and subsequently used by Duffield

et al. [DGGMR99] as a method for specifying the bandwidth requirements of a

Virtual Private Network (VPN). Note that the hose model naturally accommodates

the network's ingress-egress capacity constraints.

We denote the upper bounds on the total amount of traffic entering and leaving

the network at node i by Ri and Ci respectively. This is illustrated in Figure 1-1.

The point-to-point matrix for the traffic in the network could vary over time but is

constrained by these aggregate ingress-egress capacity bounds. These constraints are

the only known aspects of the traffic to be carried by the network, and knowing these

is equivalent to knowing the row and column sum bounds on the traffic matrix. That
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R
1

C.1

Figure 1-1: 'fraffic Variation Model.

is, any allowable traffic matrix T = [tij] for the network must obey

L tij ~ Ri'
jEN,jf.i

L tji ~ Ci \;f i E N
jEN,jf.i

For given ~ and Ci values, denote the set of all such matrices that are partially

specified by their row and column sums by T(R, C), that is

T(R, C) = {[tij] I L tij ~ ~ and L tji ~ Ci \;f i E N}
jEN,jf.i jEN,jf.i

At any point in time, the point-to-point traffic distribution could be any matrix in

T(R, C).

We will use A . T(R, C) to denote the set of all traffic matrices in T(R, C) with

their entries multiplied by A. Note that the traffic distribution T could be any ma-

trix in T(R, C) and could change over time. We will say that ingress-egress capac-

ities are symmetric when ~ = Ci for all node i and that ingress-egress capacities

are balanced when the total ingress capacity equals the total egress capacity, l.e.,

LiEN Ri = LjEN Cj.
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Conformance of network traffic to the ingress constraints is naturally enforced if

the capacities Ri correspond to the total capacity of ingress links at each node i.

Alternatively, it can be monitored in real-time using SNMP aggregate traffic mea-

surements for the traffic originating at a node. The egress constraints, on the other

hand, are more difficult to enforce, since traffic entering the network from different

ingress nodes i and destined to the same egress node j could together violate the

egress constraints at node j. In this case, separate local monitoring at each ingress

node of the traffic to each egress node is not sufficient and may require, for example,

cooperation among the ingress nodes in a distributed manner or through a centralized

network management system. A routing scheme that provides bandwidth guarantees

for the hose traffic model may not be able to avoid congestion within the network if

the egress links are over-subscribed. However, this aspect may be moot, since there

will be congestion for exiting traffic on the egress links anyways if egress link capacity

bounds are violated.

1.5 Motivating Networking Applications and Their

Requirements

We discuss some motivating networking architectures and applications that need to

handle traffic variation and identify the requirements of a suitable routing scheme

for each scenario. In the next section, we argue why such requirements are not met

by existing routing methodologies. We will return to these networking scenarios in

Chapter 2 when we describe the potential applications of our proposed scheme.

1.5.1 Internet Backbones

Core (long-haul) networks of ISPs form the backbone of the Internet and span vast

geographical areas (countries and continents). Each node in such a network, also
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Figure 1-2: Core (long-haul) network interconnecting access networks.

called a Point-of-Presence (PoP), connects an access network (or, regional/metro

network) to the core network, as shown in Figure 1-2. Internet backbones are often

deployed by interconnecting routers over a switched optical backbone, also called

IP-over-OTN (Optical Transport Network). This is illustrated in Figure 1-3.

Because a router line card is typically 3-4 times more expensive than an opti-

cal switch card, an IP-over-OTN architecture reduces network cost by keeping traffic

mostly in the optical layer [SSK03]. Moreover, the ability of router technology to scale

to port counts consistent with multi-terabit capacities without compromising perfor-

mance, reliability, restoration speed, and software stability is questionable [RS99]. By

removing transit traffic from the routers to the optical switches, the requirement to

upgrade router PoP configurations with increasing traffic is minimized (since optical

switches are more scalable with increasing port count than routers). Also, since op-

tical switches are known to be much more reliable compared to routers [LAJ98], this

makes the architecture more robust and reliable.

Routing in IP-over-OTN needs to make a compromise between keeping traffic at
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Figure 1-3: Routers interconnected over a switched optical backbone In IP-over-
Optical networks.

the optical layer (for the above reasons) and using intermediate routers for packet

grooming in order to achieve efficient statistical multiplexing of data traffic. In addi-

tion, the routing must be able to handle traffic variability. For reasons explained in

Section 1.2, the (current) traffic matrix is not only difficult to estimate but changes in

the same may not be detectable in real time. Moreover, dynamic changes in routing

in the network may be difficult or prohibitively expensive from a network operations

perspective. In spite of the continuing research on IP-Optical integration, network

deployments are far away from utilizing the optical control plane to provide band-

width provisioning in real-time to the IP layer. These translate to the following

requirements on the routing methodology:

• IP traffic must be routed "mostly" at the optical layer from source to destination

routers. Intermediate IP layer transit may be required for grooming purposes .

• The optical layer (circuits and their bandwidth) must be statically provisioned

a priori to provide bandwidth guarantees for end-to-end IP traffic. Routing at

the IP layer cannot also be adaptive to traffic changes .

• Bandwidth guarantees must be provided for routing all traffic matrices.
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Figure 1-4: Operation of Rendezvous Based Communication (i3).

1.5.2 Specialized Service Overlay Networks

Specialized service overlay architectures like the Internet Indirection Infrastructure

(i3) proposed by Stoica et al. [SAZSS02] can be used to ease the deployment of services

- like mobility, multicast and anycast - on the Internet. i3 provides a rendezvous-

based communication abstraction through indirection - sources send packets to a

logical identifier, and receivers express interest in packets sent to a specific identifier.

The rendezvous points are provided by i3 servers that forward packets to all receivers

that express interest in a particular identifier. This is illustrated in Figure 1-4. The

communication between senders and receivers is through these rendezvous points over

an overlay network.

As shown in [SAZSS02], it is easy and natural to deploy multicasting, anycasting

and mobility services on this rendezvous based infrastructure. Multicasting is illus-

trated in Figure 1-5 and is achieved by multiple receivers subscribing to the same

logical identifier.

The i3 infrastructure does not store packets but only forwards them. It is impor-

tant to note that i3 provides only a best-effort service like today's Internet - it neither

implements reliability nor guarantees ordered delivery on top of IP. It might be de-

sirable to support rendezvous based services withl bandwidth guarantees in intra-ISP

deploynments of specialized service overlays like i3. A unique aspect of such service
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Receiver

Figure 1-5: Multicasting in Rendezvous Based Communication (i3).

overlays arising from the indirection property is that unlike traditional networks, the

final destination of a packet is not known at the network ingress. Hence, methods

that set up pre-provisioned paths from a network's ingress to its egress nodes for

providing bandwidth guarantees are not usable.

To support rendezvous based communication for variable traffic with bandwidth

guarantees, we need the following:

* The routing from the source node(s) to the rendezvous nodes cannot depend on

the final destination(s) of the packet, since this is unknown at the source.

* The traffic from the source node to the rendezvous nodes and from the latter

to the destination nodes must be routed along bandwidth-guaranteed paths.

* To avoid reconfiguration, these paths cannot be re-routed in response to changes

in traffic patterns, and must have sufficient bandwidth to handle all possible

traffic patterns subject to network ingress-egress constraints.

1.5.3 Routing via Middleboxes

Intermediate network elements (so called middleboxes), such as firewalls and trans-

parent caches, are now commonlplace. They provide important services like caching,
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load-balancing, and content filtering (for network security). To be effective, the ser-

vices provided by such middleboxes are required to be comprehensive i the sense

that every packet routed through the network must pass through at least one middle-

box providing the service. In order to support a middlebox routing architecture, the

routing scheme needs to not only provide bandwidth guarantees for variable traffic

but also handle the additional constraint that all network traffic must pass through

at least one intermediate network element node.

1.5.4 Other Applications of Interest

Another example application where the traffic matrix is unknown is the provisioning of

network-based VPN services [BK03] to enterprise customers. VPNs typically provide

network connectivity among different sites of an enterprise. The traffic distribution

between the sites is not known a priori - it may also change depending on time-of-day,

day-of-week, special activities, etc. The enterprise customer specifies to the ISP only

the total traffic volume and the peak rate out of a given site (e.g., if a site is connected

to the ISP through a T1 link, this peak rate is about 1.5 Mbps). It is the ISP's task

to transport all of the offered VPN traffic to the network and carry the traffic in

accordance with the bandwidth guarantees provided in the Service Level Agreement

(SLA). The traffic originating from or destined to a VPN node is limited only by the

aggregate bandwidth connection of that node to the VPN.

Networks for grid computing also need to handle highly variable traffic patterns. In

grid computing, a complex computational task is partitioned amongst different com-

puting nodes that can be geographically distributed and are connected by a network.

The communication patterns amongst grid computing nodes are highly unpredictable

and also can require high burst rates. Since the traffic matrix is not known. one op-

tion is to dynamically reserve capacity over an underlying network but this approach

will be too slow for grid computing applications.
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1.6 Direct Source-Destination Routing Along Fixed

Paths

We briefly review related work on routing with traffic variability and point out why

such existing methods cannot meet the requirements outlined in Section 1.5 for the

various application scenarios.

Direct routing from source to destination along fixed paths for the hose traf-

fic model has been considered by Duffield et al. [DGGMR99] and Kumar et al.

[KRSY01]. In related work, Azar et al. [ACFKR03] consider direct source-destination

routing along fixed paths and show how to compute relative guarantees for routing

an arbitrary traffic matrix with respect to the best routing for that matrix. However,

they do not provide absolute bandwidth guarantees for routing variable traffic under

the hose model.

In all of the above, direct source-destination paths are fixed a priori for routing

the traffic between each source-destination pair. Thus, the source needs to know the

destination of a packet for routing it, without which the source cannot determine the

path along which the packet should be forwarded. In service overlay models like i3

that support indirection, the final destination of a packet is not known at the source.

Thus, any of the above approaches cannot be used for routing in service overlay

networks.

Another important property of direct source-destination routing renders it unsuit-

able for use in IP-over-Optical networks. Note that even though the paths are fixed a

priori and do not depend on the traffic matrix, their bandwidth requirements change

with variations in the traffic matrix. Thus, bandwidth needs to be deallocated from

some paths and assigned to other paths as the traffic matrix changes. (Alternatively,

paths between every source-destination pair can be provisioned a priori to handle the

maximumn traffic between them, but this leads to gross overprovisioning of capacity,

since all source-destination pairs cannot simultaneously reach their peak traffic limit
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in the hose traffic model.) Direct source-destination routing, when applied to IP-

over-Optical networks. routes packets from source to destination along direct paths

in the optical layer. This necessitates dynamic reconfiguration of the provisioned op-

tical layer circuits (i.e., change in bandwidth) in response to traffic variations, which

as explained earlier, is not possible in current ISP networks.

To illustrate this last point, consider the scenario in Figure 1-3 for direct source-

destination routing in IP-over-Optical networks. Here, router A is connected to router

C using 3 OC-48 connections and to Router D using 1 OC-12 connection. so as to

meet the traffic demand from node A to nodes C and D of 7.5 Gbps and 600 Mbps

respectively. Suppose that at a later time, traffic from A to C decreases to 5 Gbps,

while traffic from A to D increases to 1200 Mbps. Then, the optical layer must be

reconfigured so as to delete one OC-48 connection between A and C and creating a new

OC-12 connection between A and D. As such, the requirement of static provisioning

at the optical layer is not met.

In contrast, the routing scheme we propose in this thesis addresses both of the

above issues and has the following properties:

* The source routes packets independent of their intended (or, unknown) desti-

nation, and

* Both the paths and their bandwidth are fixed a priori and do not need to be

reconfigured as traffic patterns change over time.

1.7 Optimization Models

We introduce the optimization metrics that we consider in this thesis. These include

network cost and network throughput. A routing scheme specifies the way each

matrix in T(R. C) is routed. The general problem is as follows: Given a class of

routing schemes for routing all matrices in T(R. (C). find a scheme that (i) minimizes

netw"ork cost. or (ii) inaxinizes network througlhpult. For the majority of this. we will
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be concerned with the class of schemes that we propose in Chapter 2. In order to

evaluate the resource overhead of our proposed scheme, we will compare it with all

(the) optimal scheme among the class of all schemes that are allowed to even make

the routing dynamically dependent on the current traffic matrix. In this section, we

define the metrics of network cost and network throughput and the optimal scheme

in each case. For any routing scheme A, let A(e, T) be the traffic on link e when

matrix T is routed by A.

1.7.1 Minimum Cost Network Design

Minimum cost network design is an optimization model that may be suitable when a

network is designed from scratch, also called greenfield design. In such scenarios, there

is no a priori limit on the capacity that can be installed on a link. The maximum

traffic usage on link e is xe = maxTET(,C) A(e, T), hence this amount of capacity

needs to be installed on link e. In other words, a set of link capacity allocations Xe

is feasible if for any traffic matrix T E T(R, C), there exists a multicommodity flow

for the demands in T that respects link capacities Xe. Assuming a cost of Ce per unit

traffic on every link e, the total network cost CA of scheme A4 is given by

C4= ce max A(e,T)
eEE TET(RC)

The optimal scheme is the one that achieves minimum cost COPT among all

schemes. This is given by

COPT = min CA
A

1.7.2 Maximum Throughput Network Routing

Throughput, which is the reciprocal of maximum link utilization, is another important

optimization metric for network routing. It is one of the most common metrics used in

the literature, it is used in capacity planning decisions by ISPs, it is directly related to
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other metrics like link congestion. and is useful for multi-period traffic planning when

the traffic patterns scale (roughly) uniformly over time. When considering feasibility

of a traffic matrix on (various what-if) capacitated network deployment scenarios,

throughput is probably the most suitable metric to consider (feasibility is indicated

by a throughput greater than or equal to 1).

In this case, the capacity of each link in the network is given. The maximum

traffic usage on link e is maxTT(R/,c) A(e, T), hence this is the portion of the installed

capacity u on link e that is used. Then, the throughput AA of scheme A is given by

Ue
A = min Ue

eEE maxTET(RCd) A(e, T)

Thus, all matrices in AA T(R, C) can be feasibly routed by scheme A. In other

words, for any traffic matrix T T(R, C), there exists a multicommodity flow for

the demnands in AT that respects link capacity constraints ue.

The optimal scheme is the one that achieves the maximunl throughput AOPT

among all schemes. This is given by

AOPT = max AA
A

1.7.3 Hardness Results for Traffic Dependent Routing

The problems of minimum cost network design and maximum throughput network

routing are computationally intractable when the routing is allowed to be dependent

on the traffic matrix. The problem of computing COPT for minimum cost network

design is known to be cofP-hard -- the result is stated without proof in Gupta et

al. [GKKRYO1]. When the graph is undirected and the ingress-egress capacities are

symmetric (and only syminietric matrices are considered), the problem is shown to be

co.AP-hard in Chekuri et al. [COSS05].

Given the graph G and link capacities t,:. and ingress-cegress traffic capacities
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Ri, Cj, the decision version of the problem of determining the throughput AOPT of

the optimal scheme can be stated as: For a given A > 0, determine whether AOPT > A.

This is equivalent to determining whether the link capacities x are feasible for routing

all matrices in T(R, C). If the answer to this problem is "No", then there exists a

matrix T E T(R, C) which cannot be feasibly routed under the link capacities I

We will show that the associated feasibility problem stated below is coKrP-hard.

Given the graph G and link capacities xe and ingress-egress traffic capac-

ities Ri, Cj, determine whether all matrices in T(R, C) can be feasibly

routed and if not, identify a matrix T E T(R, C) which cannot be routed.

For a given graph G and ingress-egress capacities Ri, Cj, let X be the set of link

capacity vectors (e) that are feasible for routing all matrices in T(R, C). We first

show that X is a polyhedron.

Lemma 1.7.1 The set X of link capacity vectors (Xe) that are feasible for routing

all matrices in T(R, C) is a polyhedron.

Proof: For a given matrix T, the set of feasible link capacities (x,) and associated

multicommodity flow variables for routing the demands in T can be expressed as a

linear program and is, hence, a polyhedron. By projecting this polyhedron onto the

dimensions representing the link capacities, we obtain a polyhedron of feasible link

capacity vectors (x,) for routing the single matrix T.

Let us consider each traffic matrix as an n2-dimensional vector formed by its

entries. Since the traffic matrices in T(R, C) are specified by bounds on their row

and column sums, the corresponding vectors form a bounded polyhedron. A given

link capacity vector is feasible for all matrices in T(R, C) if and only if it is feasible for

each traffic matrix corresponding to the vertices of the polyhedron T(R, C). Since the

number of vertices of T(R, C) is finite, we obtain the result in the lemma by taking

the intersection of the polyhedra of feasible link capacity vectors for each vertex of

T(R, C). 
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To prove the coA/fP-hardness of the feasibility problem. we use the equivalence

of polynomial timne optimization and polynomial time separation for a convex poly-

hedron established by Gr6tschel, LovAsz, and Schrijver [GLS88]. The problem of

separation consists of determining whether a given point is inside the polyhedron,

and if not, identifying a hyperplane separating the point and the polyhedron. Such a

procedure is also called a separation oracle for the convex polyhedron.

Theorem 1.7.2 Given a link capacity vector (ue), the problem of determining whether

all matrices in T(R, C) can be feasibly routed, and if not, identifying a matrix T E

T(R, C) which cannot be routed, is coAP-hard.

Proof: The problem of finding a minimum cost link capacity vector in X is the

minimum cost network design problem and is, hence, coArP-hard. Since X is a convex

polyhedron (Lemma 1.7.1), we use the equivalence of polynomial time optimization

and polynomnial time separation for X to obtain that the separation problem for X is

co/VP-hard. To prove the theorem, it suffices to show that we can obtain a separating

hyperplane for (ue) in polynomial time if we are given a matrix T E T(R, C) that

cannot be feasibly routed under link capacities ue

Assume that we are given a matrix T [tij] E T(R, C) that cannot be feasibly

routed under link capacities ue. The routing problem for this matrix can be expressed

as the following linear program where the variables y?' represent the flow on link e

for routing demand of value tj from node i to node j:

maximize 0

subject to

et(j if k = i

Y - , Ye.= -tj if =j Vi.j.AEN (1.1)
.c-E+(0) eEE (A-)

0 otherwise
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Y .e -YZ < u Ve : EijEN

y? > 0 VeEE, Vi,jEN

(1.2)

(1.3)

The dual of this linear program assigns variables 7r(k, i, j) with each constraint in

(1.1) and non-negative variables w(e) with each constraint in (1.2). The dual program

can be written as:

minimize Ei,jeN tij(r(i, i,j) - 7(j, i, j)) + EeEE UeW(e)

subject to

7r(a, i, j) -7r(b, i, j) + w(e)

w(e)

> 0 Ve=(a,b) E, Vi, jEN

> 0 VeEE

Since the primal linear program is infeasible, the dual linear program has a feasible

solution with objective function value less than zero and this solution is computable

in polynomial time. Let the values of the dual variables in this solution be r(k, i, j) 

7r (k,i,j) for all k,i,j E N, and w(e) = wl (e) > 0 for all e E E. Then, we have

tij(rl (i, ij) - 7rl(j,i, j)) + E 'tuewI (e) < 0
i,jEN e EE

If the link capacities ue were feasible for routing the matrix T, then the dual objective

function value would have been at least zero for any feasible solution. Thus, the

following constraint in the variables xe is violated by the given link capacities xe = ue:

E e XeI (e) > tij(r(j, i) - ri(i. i j))
eEE i.jEN
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This is the hyperplane separating the link capacity vector (ue) and the polyhedron

X. U

In Section 4.5. we give a characterization of (an) the optimal scheme for maximum

throughput network routing that allows us to simulate the optimal scheme in poly-

nomial time, i.e., the routing for any given matrix T T(R, C) under the optimal

scheme can be computed in polynomial time. The optimal scheme for minimum cost

network design does not appear to have a similar characterization for polynomial time

simulation.

1.8 Contributions and Organization of Thesis

This thesis proposes two-phase routing as a capacity efficient and robust strategy for

handling highly variable traffic. The scheme allows preconfiguration of the network

such that all traffic patterns permissible within the network's natural ingress-egress

capacity constraints can be routed with bandwidth guarantees without requiring de-

tection of traffic changes in real-time or reconfiguring the network in response to it.

The scheme routes traffic in two phases. In the first phase, traffic entering the network

is sent from the source to a set of intermediate nodes and then, in the second phase,

from the intermediate nodes to the final destination. The traffic in the first phase

is distributed to the intermediate nodes in predetermined proportions that depend

on the intermediate nodes. The traffic split ratios can be generalized to depend on

source and destination of traffic also. We now outline the three main parts of the

thesis.

Part I

In the first part of the thesis, we develop the two-phase routing scheme and consider

the problenls of minimum cost network design and maximunl throughput network

routing. We establish theoretical b)oun(ls on the resource requirements of the scheme
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under throughput and cost models with respect to the optimal scheme. We evaluate

various aspects of two-phase routing on actual ISP topologies. We also generalize the

traffic split ratios to depend not only on the intermediate nodes but also on source

and destination of traffic.

In Chapter 2, we develop the two-phase routing scheme and show how it can

handle traffic variability without requiring any detection of traffic changes or recon-

figuration of the routing in response to it. We show how the routing scheme meets

the additional requirements of the networking applications described in Section 1.5.

In particular, the scheme supports static optical layer provisioning in IP-over-Optical

networks and indirection in specialized service overlay models unlike previous ap-

proaches -- like direct source-destination path routing - for handling variable traffic.

We address some aspects of two-phase routing related to packet reordering and end-

to-end delay. We also discuss how the scheme can be extended to handle network

failures. These extensions are considered in detail in the second part of the thesis.

In Chapter 3, we consider the problem of minimum cost network design for two-

phase routing. We use a link cost model where the cost associated with usage of a link

is the capacity allocated on the link multiplied by a cost (per unit capacity) for the

link. The total network cost is the sum of cost of usage of all links in the network. We

prove that the cost of two-phase routing is at most twice that of the optimal routing

scheme when ingress-egress capacities are symmetric, i.e., Ri = Ci for all nodes i. The

symmetry of the ingress-egress capacities is not a restrictive assumption in practice

because network routers and switches have bidirectional ports (line cards), hence the

ingress and egress capacities are equal. We also point out connections of the optimal

solution for two-phase routing with that of tree solutions for direct source-destination

path routing. This leads to a general bound for arbitrary ingress-egress capacities

when the underlying graph is undirected.

In Chapter 4, we consider the problem of maximum throughput two-phase rout-

ing. We provide link flow based and path flow based linealr programming formulations
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for determining the intermediate node traffic split ratios and routing of Phase 1 and

Phase 2 paths so as to maximize throughput. We show how additional capacity con-

straints for router-to-OXC links can be incorporated for an IP-over-Optical network

architecture. We develop three fast combinatorial algorithms with performance guar-

antees for the problem using a primal-dual approach on the path indexed linear pro-

gram - the second and third algorithms improve the running time of the first through

two different modifications. We show how the combinatorial algorithms can handle a

total cost constraint for maximum throughput two-phase routing. This can be used to

solve the capacitated version of minimum cost two-phase routing. The combinatorial

algorithms developed are Fully Polynomial Time Approximation Schemes (FPTAS)

and find a solution with objective function value within (1 + c)-factor of the optimal

solution for any given > 0. The running time is a polynomial function of the input

parameters and ~.

We show that when ingress-egress capacities are symmetric, the throughput of

the optimal scheme is at most twice that of two-phase routing. Since computing the

throughput of the optimal scheme is a hard optimization problem, we develop heuris-

tics for upper bounding the throughput of the optimal scheme. This will be useful

in obtaining a posteriori bounds on the throughput of two-phase routing relative to

that of the optimal scheme on actual problem instances. We evaluate various aspects

of two-phase routing on actual ISP network topologies collected for the Rocketfuiel

project [SMWH]. For the evaluated topologies, the throughput of two-phase routing

is within 6% of that of the optimal scheme. This is significantly better than our

theoretical result which says that two-phase routing is 2-optimal (hence within 50%

of optimal scheme).

In Chapter 5, we generalize the traffic split ratios to depend on source and

destination of traffic. This is conceivably the most general form of two-phase routing.

It is motivated by the fact that source nodes should not be required to split traffic

through internlediate nodes that are distant from them or the destination nodes of
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traffic. This generalization has the potential of reducing network cost or increasing

network throughput.

For each of the optimization models of minimum cost network design and maxi-

mum throughput network routing, we first provide a linear programming formulation

with an infinite number of constraints and a polynomial time separation oracle (an-

other linear program) that is suitable for solution using the ellipsoid method for

linear programming. By taking the dual of the separation oracle and combining it

with the main linear program, we reduce the number of constraints to polynomial size,

thus significantly reducing the running time. For the minimum cost network design

problem, we use an upper bound on the demand values to obtain a simplified linear

programming formulation that can be interpreted as a fraction Steiner forest problem

(this problem admits combinatorial algorithms). Using a technique similar to that

used for two-phase routing, we give a polynomial size linear programming formula-

tion for maximum throughput direct source-destination routing of variable traffic -

this serves to compare the throughput requirement of two-phase routing with that of

direct source-destination path routing on the Rocketfuel ISP topologies.

Part II

In the second part of the thesis, we consider making two-phase routing resilient to

network failures.

In Chapter 6, we consider how two-phase routing in IP-over-Optical networks

can be made resilient against router node failures. In such networks, the first and

second phase paths are realized at the optical layer with the routers at intermediate

nodes being responsible for (de)multiplexing traffic to its final destination. Routers

are known to be much more unreliable than circuit switching based optical switches

[LAJ98]. If the router at a node goes down, the node ceases to perform its intermediate

node functionality. Thus, the traffic split ratio corresponding to this node has to be

redistributed to other intermediate nodes.
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We propose two different schemes for provisioning the optical layer to handle

router node failures -- one that is failure node independent and static (called failure

independent provisioning), and the other that is failure node dependent and dynamic

(called failure dependent provisioning). For both mechanisms, we consider sharing

bandwidth across single router failure scenarios. For failure independent provisioning.

the optical layer is statically provisioned a priori so as to handle any single router

failure scenario. For failure independent provisioning, the paths in the optical layer

along which traffic is redistributed to other intermediate nodes are provisioned after

failure -- this allows sharing of optical layer bandwidth at the link level and may lead

to lower restoration capacity overhead compared to the first scheme.

We explain why a simple choice of redistribution ratios proportional to the original

traffic split ratios does not lead to optimal throughput. Hence, our problem formu-

lations must accommodate arbitrary redistribution of traffic split ratios after failure.

We develop linear programming formulations for both schemes and a fast combina-

torial algorithm for the second scheme so as to maximize network throughput. In

each case, we determine (i) the optimal distribution of traffic to various intermediate

routers for both normal (no-failure) and failure conditions, and (ii) provisioning of

optical layer circuits to provide the needed inter-router links.

For failure independent provisioning, we prove that the throughput is at most

n1 times that for the unprotected case, where n is the number of nodes. For the

Rocketfuel topologies, the achieved throughput is within 2% of this theoretical upper

bound. Also. the throughput for failure dependent provisioning is less than 1% more

than that for failure independent provisioning on the evaluated topologies. Hence,

given the static optical layer provisioning property of failure independent provisioning,

it might be the preferred scheme for protecting against router node failures in IP-over-

Optical networks.

In Chapter 7, we consider making two-phase routing resilient to link failures

through three different restoration mechanisms-- (i) local (link/span) restoration
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(LR), (ii) K-route path restoration (KPR), and (iii) shared backup path restoration

(SBPR). In two-phase routing, the first and second phase paths can be protected us-

ing any of the above three restoration mechanisms so as to provide resiliency against

link failures. The first mechanism reroutes traffic locally around a failure and con-

tinues to use the portion of the primary path unaffected by failure. The last two

mechanisms are end-to-end (path) based and switch traffic to a diverse backup path

after a failure on the primary path. In all of the three restoration models that we

consider, backup bandwidth is shared across single link failure events so as to reduce

restoration capacity overhead.

We provide linear programming formulations and fast combinatorial algorithms

with performance guarantees for maximum throughput two-phase routing with local

restoration and K-route path restoration against link failures. We show that the op-

timization problem for maximum throughput two-phase routing with shared backup

path restoration is JVAP-hard. Assuming an approximation oracle for a certain disjoint

paths problem (called SBPR-DISJOINT-PATHS, which is also JV'P-hard) involving

the dual variables of a path indexed linear programming formulation for the prob-

lem, we design a combinatorial algorithm with provable guarantees. We also provide

heuristics for finding approximating solutions to the SBPR-DISJOINT-PATHS prob-

lem. We evaluate some aspects of two-phase routing with the above three restoration

mechanisms on the Rocketfuel ISP topologies.

Part III

In the third part of the thesis, we consider the application of two-phase routing to

Wireless Mesh Networks (WMNs). This application imposes significant additional

constraints on the optimization model so as to merit separate investigation.

Multi-hop wireless mesh networks have recently been of much research interest

due to their lowered need for wired infrastructure support and due to envisaged new

applications like commnnunity wireless networks. In such networks; most of the nodes
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are either stationary or mininmally mobile and do not rely on batteries. It is difficult to

provide (theoretical) bandwidth guarantees for variable traffic in VI\JNs. The main

reason for this is that the dynamic MAC and routing protocols in such networks are

limited by local knowledge to do link transmission scheduling and packet forwarding

- this leads to inefficient use of physical layer resources. We propose application of

the two-phase routing scheme to WMNs so as to avoid this difficulty of distributed

routing and scheduling while providing throughput guarantees for variable ingress-

egress traffic at each WMN node.

In Chapter 8, we extend our optimization framework for maximum throughput

two-phase routing in wired networks to handle routing and scheduling constraints

that are peculiar to WMNs and arise from the requirement to handle (i) radio trans-

mit/receive diversity, and (ii) the phenomenon of wireless link interference. Link

transmission scheduling is equivalent to a graph edge coloring problem which is JgTP-

hard. We use the linear relaxation of the scheduling constraints associated with (i)

and (ii) above and incorporate them as link utilization constraints ito our earlier lin-

ear programming formulations for two-phase routing in wired networks. Our overall

approach is to first solve the routing problem after incorporating scheduling con-

straints into it and then schedule the link transmissions for the obtained link data

rates.

For the case of narrow beam forming (directional) antennae in which link inter-

ference can be ignored, we design a combinatorial algorithm with performance guar-

antees. For the case of omnidirectional antennae, we model link interference using

link utilization constraints corresponding to cliques and independent sets in the con-

flict graph. Clique constraints provide an upper bound on the maximum throughput

(which may not always be achievable), while independent set constraints provide an

achievable lower bound. Our combinatorial algorithm for the narrow beam antenna

case can accomnmodate clique constraints and hence be used to provide upper bounds

on throughput for the onidirectional antenna case. e show how our optimliza-
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tion framework can be generalized to handle multiple wireless channels and multiple

radios.

We investigate the performance of two-phase routing in WMNs under variability

of many of the parameters involved, e.g., transmission power, introduction of relay

nodes, and link interference. We also compare the throughput performance of two-

phase routing in WMNS with that of the optimal scheme that can change the routing

with changes in the traffic.

Summary

In summary, this thesis represents the first comprehensive study, problem formulation,

and algorithm design for many aspects of two-phase routing, including:

* Minimum cost network design,

* Maximum throughput network routing,

* Generalization of traffic split ratios to depend on intermediate node and source/

destination of traffic,

* Comparison of the resource requirements of two-phase routing with that of (i)

the optimal scheme, and (ii) direct source-destination routing along fixed paths,

* Resiliency against router node failures in IP-over-Optical networks through traf-

fic redistribution to other intermediate nodes,

* Protection against link failures through three different restoration mechanisms -

local restoration, K-route path restoration, and shared backup path restoration,

and

* Application of two-phase routing in wireless mesh networks for handling traffic

variation without dynamnic routing and scheduling. Additional aspects like link
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interference and transmit/receive diversity of communication need to be handled

in this case.
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Chapter 2

Two-Phase Routing

In this chapter, we develop the routing scheme that is investigated in the thesis and

develop some of its properties. We call the scheme two-phase routing due to its nature

of sending traffic from the source to destination via some intermediate node. We

show how the routing scheme meets the requirements of the networking applications

described in Section 1.5. We address some aspects of two-phase routing related to

packet reordering and end-to-end delay. We discuss how the scheme can be extended

to handle network failures. These extensions are considered in detail in Chapters 6

and 7. We also review related work.

2.1 Two-Phase Routing Scheme

The routing scheme that we develop in this section allows the network to accommo-

date arbitrary (and possibly rapidly changing) traffic demands without sophisticated

traffic engineering mechanisms or additional network signaling. I fact, the scheme

does not even require the network to detect changes in the traffic distribution. The

only assumption about the traffic is the limits on the aggregate traffic originating or

terminating at a node, in accordance with the traffic variation model discussed in

Section 1.4.
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The routing scheme operates in two phases:

* Phase 1: A predetermined fraction aj of the traffic entering the network at

any node is distributed to every node j independent of the final destination of

the traffic.

* Phase 2: As a result of the routing in Phase 1, each node receives traffic

destined for different destinations that it routes to their respective destinations

in this phase.

This is illustrated in Figure 2-1. Note that the traffic split ratios al, 2,... , an in

Phase of the scheme are such that Ein=1 ai 1. A simple method of implementing

this routing scheme in the network is to form fixed bandwidth paths between the nodes.

In order to differentiate between the paths carrying Phase and Phase 2 traffic, we

will refer to them as Phase 1 and Phase 2 paths respectively. The critical reason

the two-phase routing strategy works is that the bandwidth required for these tunnels

depends on the ingress-egress capacities Ri, Ci and the traffic split ratios aj but not on

the (unknowun) individual entries in the traffic matrix. Depending on the underlying

routing architecture, the Phase 1 and Phase 2 paths can be implemented as IP tunnels,

optical layer circuits, or Label Switched Paths in Multi-Protocol Label Switching

(MPLS) [RVCO1].

It is important to observe a subtle aspect of the scheme that may not be apparent

from its above description. Notwithstanding the two-phase nature of the scheme, some

fraction of the traffic is actually routed to its destination in one phase, i.e., directly

from source to destination (this may not be necessarily on a single-hop path). To

see this, consider the traffic originating from node i and destined to node j. The

fraction ai of this traffic that should go to (intermediate) node i in Phase does not

appear on the network because it originates at node i. Hence, this traffic is routed

directly to its destination in Phase 2. Similarly. a fraction ac of the traffic that goes

to (intermed(liate) node j in Phase 1 actually rea(:hes its final destination after Phase
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Phase 1 Routing

Phase 2 Routing

Destination Node

Physical View

Intermediate Node

Logical View

Figure 2-1: Two-Phase Routing Scheme.

1. Hence, this traffic does not appear on the network in Phase 2. Thus, for each

source-destination pair (i, j), a fraction ai+aj of the traffic between them is directly

routed to its destination using only one of the phases (either Phase 1 or Phase 2).

We now derive the bandwidth requirement for the Phase 1 and Phase 2 paths.

Consider a node i with maximum incoming traffic Ri. Node i sends aj~ amount of

this traffic to node j during the first phase for each j E N. Thus, the traffic demand

from node i to node j as a result of Phase 1 routing is ajRi. At the end of Phase

1, node i has received aiRk traffic from any other node k. Out of this, the traffic

destined for node j is aitkj since all traffic is initially split without regard to the final

destination. The traffic that needs to be routed from node i to node j during Phase

2 is LkEN aitkj ~ aiCj. Thus, the traffic demand from node i to node j as a result

of Phase 2 routing is aiCj. The Phase 1 and Phase 2 demands from node i to node

j are illustrated in Figure 2-2.

Hence, the maxin1um demand from node i to node j as a result of routing in Phases
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Figure 2-2: Routed demands on Phase 1 and Phase 2 paths.

1 and 2 is Qj~ + QiCj. Note that this does not depend on the matrix T E T(R, C).

Two important properties of the scheme become clear from the above discussion.

These are as follows:

Property 1 (Routing Oblivious to Traffic Variations): The routing of source-

destination traffic is along fixed paths with predetermined traffic split ratios and does

not depend on the current traffic matrix T E T (R, C) .

Property 2 (Provisioned Capacity is TrafficMatrix Independent): The total

demand from node i to node j as a result of routing in Phases 1 and 2 is Qj~ + QiCj

and does not depend on the traffic matrix T E 7(11., C) but only on the aggregate

ingress-egress capacities. The bandwidth of the Phase 1 and Phase 2 paths are fixed.

Property 2 implies that the schelne handles variability In traffic matrix T E
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T(R, C) by effectively routing the fixed matrix D = [dij] = [ajRi+aOiCj] that depends

only on aggregate ingress-egress capacities and the traffic split ratios al, 2,..., n,

and not on the specific matrix T E T(R, C). This is what makes the routing scheme

oblivious to changes in the traffic distribution.

We highlight below the main aspects of the novelty of the proposed scheme:

1. Routing decisions at each source node during Phase 1 are local and do not

require any network-wide state information (e.g., how the traffic at other ingress-

egress points is varying). Routing decisions during Phase 2 are based on the

packet destination only as with current IP network routing.

2. The network can meet any traffic distribution as long as the ingress-egress points

are not over-subscribed.

3. The routing scheme is oblivious of and robust to any changes in the traffic

distribution. Providing end-to-end bandwidth guarantees does not require any

reconfiguration of the network in real-time.

From a network operations perspective, we outline below the stages involved in

the implementation of two-phase routing:

A. Determine ingress-egress capacities Ri, Ci at each node (using, for example, inter-

AS peering agreements, or aggregate rates of network ingress-egress line cards

at each node).

B. Determine traffic split ratios al, a2,..., an and routing of Phase and Phase

2 paths. (Computing these so as to optimize metrics like network cost and

network throughput as well as to cope with network failures is considered in

subsequent chapters in the thesis.)

C. For each node pair i j, provision the fixed bandwidth connections from node i to

node j for routing Phase 1 and Phase 2 traffic.
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An instance of the scheme requires specification of the traffic split ratios al, 2 . an

and routing of the Phase 1 and Phase 2 paths. In Chapter 3, we consider computing

these so as to minimize network cost. In Chapter 4, we consider maximum through-

put network routing. (The Phase 1 and Phase 2 paths may need to be implemented

through multi-path routing in order to maximize throughput.) In Chapter 5, we

generalize the traffic split ratios to depend on source and/or destination nodes of

the traffic and consider the problems of minimum cost network design and maximum

throughput network routing for this general case.

2.2 Potential Applications of Two-Phase Routing

We now return to the networking architectures and applications described in Section

1.5 and discuss how two-phase routing can meet the requirements we identified for

them.

2.2.1 IP-over-Optical Networks

Two-phase routing, as envisaged for IP-over-Optical networks, establishes the fixed

bandwidth Phase 1 and Phase 2 paths at the optical layer. Thus, the optical layer

is statically provisioned and does not need to be reconfigured in response to traffic

changes. IP packets are routed end-to-end with IP layer processing at a single inter-

mediate node only. While in transit at the optical layer inside either Phase 1 or Phase

2 paths, packets do enter the router but appear as transit traffic at the Optical Cross-

Connect (OXC) only. The IP layer packet processing at an intermediate node works

as follows. The optical layer circuit is dropped at the IP router at the node (through

OXC-to-router links), wherein the packets are multiplexed back to the OXC (through

router-to-OXC links) to be routed through direct optical layer circuits to their final

destinations. Figure 2-3 illustrates optical layer transit traffic and intermediate node

packet processing functionality at a node for two-phase routing.
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Figure 2-3: Intermediate node packet processing for Two-Phase Routing in IP-over-
Optical networks.

This architecture provides the desirable statistical multiplexing properties of packet

switching for handling highly variable traffic without significantly increasing IP layer

transit traffic. Compare this with the high levels of IP layer transit traffic in IP-over-

WDM architecture where routers are directly connected to WDM systems and need

to process packets at each hop.

In summary, two-phase routing when applied to IP-over-Optical networks leads

to an architecture with the following salient features:

• IP traffic is routed "mostly" at the optical layer from source to destination

routers with packet grooming at one intermediate router only.

• The optical layer (circuits and their bandwidth) are statically provisioned a

priori to provide bandwidth guarantees for end-to-end IP traffic. Routing at

the IP layer is static - there is no need to detect changes in traffic or reconfigure

the routing in response to it .

• Bandwidth guarantees are provided for routing all traffic matrices within the

network's natural ingress-egress capacity constraints.
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An IP layer (logical) link between node i and node j is realized by a circuit in

the optical layer. If the IP layer logical topology is a full mesh complete graph, then

the optical layer needs to be provisioned for (n2) circuits. Such an architecture

does not scale well with increasing network size from an ISP deployment and network

operations and management perspective. Hence, it is generally desirable that the IP

layer topology have sparse connectivity, so that the number of circuits in the optical

layer scales linearly (or, at most sub-quadratically) with network size. In two-phase

routing, if the number of intermediate nodes i with traffic split ratios ai > 0 is k,

then the number of IP layer links is

k(n-k) + k(k-1) kin- k2 _ l k
2 2 2

The first term k(n - k) corresponds to the number of IP links for splitting traffic

originating from the n - k non-intermediate nodes to the k intermediate nodes. The

second term k(k-1) corresponds to the number of IP links for splitting traffic originat-2

ing from each intermediate node to the other k - 1 intermediate nodes. Thus, if the

number of intermediate nodes k is small compared to the number of network nodes

n, then the number of IP layer links scales linearly with n. Experiments on actual

ISP topologies collected for the Rocketfuel project [SMWH] for maximum through-

put two-phase routing in Chapter 4 indicate that the number of intermediate nodes

in two-phase routing is indeed small compared to the total number of nodes in the

network.

2.2.2 Specialized Service Overlay Networks

Two-phase routing can be used to provide Quality-of-Service (QoS) guarantees for

variable traffic and support indirection in intra-ISP deployments of specialized service

overlays like i3. (Note that we are not considering Internet-wide deployment here.)

The intermnled(liate nodes in the two-p)hase routing scheme are ideal candidates for lo-
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cating i3 servers. Because we are considering a network whose topology is known, the

two-phase routing scheme can be used to not only pick the i3 server locations (inter-

mediate nodes) but also traffic engineer paths for routing with bandwidth guarantees

between sender and receiver through i3 server nodes. Because the two-phase rout-

ing scheme can route the Phase 1 and Phase 2 paths with protection (as discussed in

Chapters 6 and 7), it can also provide network level reliability of the services provided.

In service overlay models like i3, the final destination of a packet is not known at

the source but only at the i3 infrastructure nodes. Because the final destination of a

packet needs to be known only at the intermediate nodes in two-phase routing, it is

well-suited for providing indirection in service overlay models. In contrast, for direct

source-destination path routing, the source needs to know the destination of a packet

for routing it, thus rendering it unsuitable for such service overlay networks.

The ingress-egress traffic constraints Ri, Cj in the two-phase routing scheme now

apply to network nodes to which hosts attach for using the services provided. For

example, the host could be a laptop and a node could be an enterprise site or an

ISP PoP. Mobility of the hosts manifests itself as changes in traffic originating from

or destined to the network points of attachment (nodes), since mobile hosts will

attach themselves to different nodes over time. The Phase 1 and Phase 2 paths of

the specified bandwidth will provide bandwidth guarantees across all i3 applications

described in [SAZSS02], including mobility, multicast, and anycast. This is because

the traffic arising from such applications must obey, by definition, the aggregate

ingress-egress constraints at each node.

In adapting the two-phase routing scheme for providing i3-like functionality, there

remains the issue of routing a packet within the i3 infrastructure that we address

next. Recall that this is handled in the original i3 scheme through a peer-to-peer

routing protocol like Chord [SAZSS02]. We obviate the need for routing within the

i3 infrastructure (in our case, the intermediate nodes) in a intra-ISP deployment in

either of two ways.
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In the first method, a trigger is replicated at all intermediate nodes. This is easy

to implement since the network node to which the receiver host attaches partici-

pates in the two-phase routing scheme and is, hence, aware of all intermediate nodes.

Trigger replication at intermediate nodes also provides the added functionality of ro-

bustness against i3 server failures at intermediate nodes, and, in this case, guarantees

fast recovery of sender-receiver connectivity through traffic redistribution to other i3

server (intermediate) nodes (this mechanism is considered in Chapter 6). This as-

pect is handled in the original scheme through either (i) receiver-initiated soft-state

refresh (reinsertion) of triggers, (ii) backup triggers, or (iii) trigger replication across

i3 servers. Because the failure of intermediate nodes is handled by two-phase routing

(and, hence at the network layer), the restoration latency is expected to be smaller.

Also, to the extent that the number of intermediate nodes is configurable in two-phase

routing, trigger replication across (a relatively small number of) intermediate nodes

may not pose a scalability problem.

In the second method, there is no trigger replication -- triggers with the same

id are assigned to a single intermediate node. In order to preserve the bandwidth

guarantees of the two-phase routing scheme, it must be ensured that assignment

of triggers to intermediate nodes splits the resulting traffic for each sender to the

intermediate nodes in (approximately) the predetermined traffic split ratios.

2.2.3 Routing via Middleboxes

Two-phase routing can naturally accommodate a middlebox routing architecture in

ISP networks and also provide QoS guarantees for variable traffic. The intermediate

nodes in two-phase routing are ideal locations for deploying middleboxes that provide

functionalities like caching and content filtering. Because all traffic passes through one

of the intermediate nodes in the scheme, the requirement of the middleware service

to be comprehensive (in the sense that every packet routed through the network

must )be exalnined(l at least once) is also met. The routing can now p)rovide end-to-
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end bandwidth guarantees for variable traffic patterns. Experiments on actual ISP

topologies collected for the Rocketfuel project [SMWH] for maximum throughput

two-phase routing in Chapter 4 indicate that the number of intermediate nodes in

two-phase routing is small compared to the total number of nodes in the network.

Given that the deployment of services like content filtering are expensive (from a

hardware perspective), a smaller number of intermediate nodes can lead to cost-

effective deployment of such services.

2.3 Addressing Some Aspects of Two-Phase Rout-

ing

We address some practical aspects of two-phase routing related to packet reorder-

ing and end-to-end delay and explain why they should not pose any hurdles in the

deployment of the routing scheme in ISP networks.

2.3.1 Packet Reordering

In two-phase routing, as described in Section 2.1, the source node splits traffic to dif-

ferent intermediate nodes regardless of the final destination. Thus, packets belonging

to the same end-to-end connection can arrive out of order at the destination node

if the traffic is split within the same connection. The question arises whether this

packet reordering is an issue that needs to be addressed.

The Internet standard for IP router requirements, RFC 1812, does not prohibit

packet reordering in routers [B95]. In fact, parallelism in router/OXC components

and links causes packet reordering under normal operation and has been observed

in the Internet [BPS99, JIDKT03]. Packet reordering can affect the performance of

TCP (Transmission Control Protocol) [DOO] and other traffic that relies on packet

ordering. In its current version, TCP, which is used to carry most of the traffic in
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today's Internet, interprets packet reordering as a loss indicator. This triggers unnec-

essary retranslnissions and TCP timeouts that cause a decrease in TCP throughput

and increase in packet delay. Proposals have been made to make TCP more robust

to packet reordering [BA02]. However, any new TCP feature requires protocol stan-

dardization and modification/upgrade of TCP software implementations running on

hundreds of millions of client devices. Hence, it might be desirable to avoid packet

reordering.

Packet reordering can be avoided in two-phase routing by splitting traffic at the

application flow level at the source node (rather than at the packet level). An appli-

cation level flow corresponds to a single end-to-end session of communication between

two users on different machines and is commonly identified by a 5-tuple consisting

of source IP address, destination IP address, source port number, destination port

number, and protocol id [DOO]. In order to prevent congestion along the Phase 2

paths in two-phase routing, it is necessary to split the set of flows corresponding to

each destination node among intermediate nodes in accordance with the traffic split

ratios al, a2 an .

The question then is whether two-phase routing with per-flow splitting can provide

bandwidth guarantees to all traffic matrices within the network's natural ingress-

egress capacity constraints. The answer, as we explain below, is in the affirmative.

We are advocating this routing scheme for core networks where recent advances in

DWDMI\ (Dense Wavelength Division Multiplexing) transmission technologies [RS02]

have resulted in link bandwidths of 10 Gbps and heading higher. Individual flows at

best are in the Mbps range and hence small compared to link rates -- tens of thousands

of flows share a single 10 Gbps link. Moreover, TCP is not really good for gigabit

flows -- the throughput goes down as 1/(RTT * /random loss probability) [DOO] and so

very low random loss (due to bursty cross traffic) is needed to get gigabit throughputs

for any reasonable RTT (round-trip time).
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2.3.2 Increase in End-to-End Delay

Because of the two-phase nature of the routing scheme, packets might incur about

twice the delay in end-to-end routing compared to direct source-destination path

routing along shortest paths. However, for the portion of traffic that is routed directly

to its destination (as explained in Section 2.1, or when the intermediate node already

lies on the shortest source-destination path, no additional delay is encountered, thus

suggesting that the average delay may be less than a factor of two compared to that in

direct source-destination path routing. In fact, experiments on actual ISP topologies

collected for the Rocketfuel project [SMWH] for maximum throughput two-phase

routing indicate that the end-to-end hop count as a result of two-phase routing is

about 1.4-1.6 times that of shortest path routing.

More importantly, this increase in delay may be tolerable for most applications.

Consider an Internet backbone spanning the transcontinental US. A ping from MIT

(US east coast) to UC Berkeley (US west coast) gives a round-trip time of about 90

msec. This round trip time includes two traversals of the long-haul network and two

traversals each of Boston and Oakland metro access networks. Thus, the one-way

end-to-end traversal time with two-phase routing deployed in the long-haul network

can be expected to be much less than 90 msec. An end-to-end delay of up to 100

msec is acceptable for most applications.

Moreover, the bandwidth guarantees provided by two-phase routing under highly

variable traffic reduce the delay variance (jitter). This reduction in jitter and the

guarantee of predictable performance to unpredictable traffic provides a reasonable

trade-off for the fixed increase in propagation delay. The effect of bursty traffic on

jitter is mitigated by the source splitting of traffic to multiple intermediate nodes in

two-phase routing.

Delay-sensitive traffic that cannot tolerate traversal of the core backbone twice

can be routed along shortest paths in a hybrid architecture that accommodates both

two-phase routing and direct source-destination path routing.
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2.4 Extensions for Handling Network Failures

We provide an overview of extensions to two-phase routing that can make the scheme

resilient to network failures. Detailed descriptions and the associated optimization

problelns are considered in Chapters 6 and 7.

2.4.1 Router Node Failures in IP-over-Optical Networks

Studies like [LAJ98] indicate that IP routers are 200 times more unreliable than

traditional carrier-grade switches and average 1219 minutes of down time per year.

Given this unreliability of routers, it is worthwhile to consider how two-phase routing

in IP-over-OTN can be made resilient against router node failures. In the term "router

node failure", node refers to a PoP, hence it includes the failure of all routers i a

PoP. When a router at a node f fails, any other node i cannot split any portion of its

originating traffic to intermediate node f. Hence, it must redistribute the traffic split

ratio c.f among other nodes j # f. In Chapter 6, we propose two different schemes

for provisioning the optical layer to handle this redistribution of traffic - one that is

failure node independent and static, and the other that is failure node dependent and

dynamic.

Note that since only the router (and not the OXC) at node f fails, this node can

continue to be on the Phase and Phase 2 paths for optical layer switching. However,

the total traffic that was supposed to originate at that node, i.e., Rf, no longer enters

the network.

2.4.2 Link Failures

Link failures can be caused by events like fiber cuts and malfunctioning of router/switch

line cards. In Chapter 7, we extend two-phase routing by providing resiliency against

link failures through three different pre-provisioned restoration mechanisms. By pre-

provisioned. we mean that the backllup )paths are computed and "soft-reserved" a priori
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- the main action after failure is the rerouting of affected traffic on backup paths.

The pre-provisioned nature of these mechanisms increases the reliability of the net-

work by guaranteeing availability of backup resources after failure. It also allows fast

restoration of traffic in an attempt to provide failure transparency to upper network

layers. In two-phase routing, each of the Phase and Phase 2 paths can be protected

against link failures by any of the three restoration mechanisms.

The first restoration mechanism we consider is local (or, link based) and consists

of rerouting traffic around the failed link through pre-provisioned backup paths (link

detours). The routing of traffic on portions of the primary path unaffected by the fail-

ure remains unchanged. Backup paths protecting different links can share bandwidth

on their links so as to guarantee complete recovery against any single link failure.

The other two mechanisms are end-to-end (or, path based) and different in the

way backup bandwidth is shared across different link failure scenarios. In K-route

path restoration, a connection consists of K > 2 link disjoint paths from source to

destination. One of these paths is designated as the backup path and the others as

primary paths. The backup path carries traffic when any one of the primary paths

fail due to a link failure.

In shared backup path restoration, a primary path is protected by a link disjoint

backup path. Different backup paths can share bandwidth on common links so long

as their primary paths are link disjoint. Thus, backup bandwidth is shared to provide

completely recovery against single link failures. Shared backup path restoration has

been shown to have lower restoration capacity overhead compared to the other two

mechanisms described above [G03].

2.4.3 Complete Node Failures

We discussed how to make two-phase routing resilient to router node failures in IP-

over-Optical networks. Failure of OXC switches at a node in an IP-over-Optical

network or of routers at a node in a pure IP router architecture (IP routers directly
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connected to WDM systems) leads to failure of the node for routing Phase 1 and

Phase 2 paths also (in addition to loss of intermediate node functionality). The han-

dling of such complete node failures in two-phase routing poses additional challenges.

Failure of non-intermediate nodes lying on Phase or Phase 2 paths can be restored

by extending the mechanisms for protecting against link failures - we use detours

around nodes in local restoration or node-disjoint paths in path restoration. The

failure of intermediate nodes can be handled through redistribution of traffic to other

intermediate nodes. Because a complete node failure can lead to both of the above

scenarios, a combination of the corresponding mechanisms can be used to protect

against such failures.

2.5 Related Work

In Section 1.6, we reviewed related work [DGGMR99, KRSY01, ACFKR03] for rout-

ing variable traffic that uses direct paths from source to destination. We pointed out

two aspects of these approaches that do not meet the requirements of application

scenarios discussed in Section 1.5, namely (i) the source needs to know the final des-

tination of a packet for routing it, and (ii) the bandwidth requirements of the (fixed)

paths change with traffic variations.

Because of (i), these methods cannot be used to provide indirection in specialized

service overlay models like i3 where the final destination of a packet is not known at the

source. Because of (ii), the adaptation of these methods for IP-over-Optical networks

necessitates detection of changes in traffic patterns and dynamic reconfiguration of

the provisioned optical layer circuits in response to it, a functionality that is not

present in current IP-over-Optical network deployments.

Valiant [V82] introduced a routing scheme in the context of communication be-

tween parallel processors interconnected in an N = 2'" node hypercube topology.

The nodes of this hypercube can be represented as n-dimnensional binary vectors. A
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packet can move in the k-th dimension from node i to node j if vectors i and j differ

in dimension k only. Valiant's scheme operates in two steps. In a first step, a node

forwards its packet to a random intermediate node irrespective of the packet's final

destination. This is done by considering the n dimensions in sequential order and

deciding at random whether to move in that dimension or not. In a second step,

each node determines the final destination nodes of the packets it has received in the

first step, and routes it directly to the destination nodes. This is done by considering

the n dimensions in sequential order and moving in a dimension if it is closer to the

destination. Valiant showed that when each node initially contains one packet ad-

dressed to distinct nodes of the cube (permutation demand matrix), then under the

restriction that no two packets can pass down the same wire at any one time, this

strategy can route every packet to its destination and finishes in O(log N) time with

overwhelming probability.

Chang et al. [CLJ02] proposed a Valiant-type approach as an effective scheme

for avoiding scheduling bottlenecks in high-speed input-buffered network switches. In

this work, packets are initially routed to a randomly chosen intermediate port in a

switch and then subsequently to the true output port.

The origins of the routing scheme proposed in this thesis can be traced back

to the two-step nature of Valiant's scheme, where routing is through a randomly

and uniformly chosen intermediate node. We propose a deterministic scheme with

possibly unequal traffic split ratios, show how it can accommodate all traffic matrices

within the network's natural ingress-egress capacity constraints, and consider many

new aspects arising from its potential application to routing Internet traffic in ISP

backbone networks and wireless mesh networks.

We describe two-phase routing, as presented in this chapter, in Kodialam, Lak-

shman, and Sengupta [KLS04a, KLS04b]. Zhang and McKeown [ZM04] consider a

restricted version of the scheme with equal traffic split ratios of and equal ingress-

egress capacities (Ri = Ci = c for all i). They further assume that the IP layer
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topology is a full-mesh (fully connected complete graph), so that the Phase 1 and

Phase 2 paths are one hop in length. These paths need to be routed (via multi-hop

paths) on the physical WDM topology (which is a sparse graph), an important aspect

which they do not consider. Also, if the IP topology is not full-mesh, the Phase 1

and Phase 2 paths will be multi-hop at the IP layer itself. Our problem formulation

for two-phase routing in [KLS04a, KLS04b] (and in this thesis) mnodels the multi-

hop routing of Phase 1 and Phase 2 paths and can be applied to a general IP layer

topology and a physical WDM topology.

67



Chapter 3

Minimum Cost Network Design

In this chapter, we consider the problem of minimum cost network design for two-

phase routing. We use a link cost model where the cost associated with usage of a

link is the capacity allocated on the link multiplied by a unit capacity cost for the

link. The total network cost is the sum of cost of usage of all links in the network.

We show that the optimal solution sends all traffic through one intermediate node

along shortest cost paths.

We prove that the cost of two-phase routing is at most twice that of the optimal

routing scheme when ingress-egress capacities are symmetric, i.e., Ri = Ci for all

nodes i. The proof actually establishes the bound for an instance of two-phase routing

where the traffic split ratios to each intermediate node is proportional to the ingress

(egress) capacity of that node. We also point out connections of the optimal solution

for two-phase routing with that of tree solutions for direct source-destination path

routing. This leads to a general bound for arbitrary ingress-egress capacities when

the underlying graph is undirected.
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3.1 Optimal Solution for Minimum Cost Two-Phase

Routing

In this section, we consider the problem of mininmm cost network design for two-

phase routing. We need to choose the traffic split ratios ai and route jRi + a.iCj

amount of demand from node i to node j, for all i, j E N, such that the resulting

capacity allocation xe on each link e minimizes the total network cost eEEcexe.

We begin by a simple characterization the structure of any feasible solution for the

problem.

Lemma 3.1.1 Any feasible solution for two-phase routing can be expressed as a con-

vex combination of solutions that route through a single intermediate node. The

weights in the convex comnbination are the traffic split ratios cai for associated in-

termnediate node i.

Proof: Consider an intermediate node k with traffic split ratio ak in a feasible solution

of two-phase routing. Since the demand routed from any node i k to node k in

the solution is akRi + aiCk, it can be decomposed into two sets of flows from node

i to node k of values akRi and aiCk respectively. From the first flow, we obtain

the routing of Phase paths from node i to intermediate node k. (The second flow

gives us the routing of Phase 2 paths from intermediate node i to node k.) Similarly,

by considering the demand routed from intermediate node k to any node j # k, we

obtain the routing of the Phase 2 paths from intermediate node k to node j. If we

divide the demands along the obtained Phase 1 and Phase 2 paths associated with

intermediate node k by o., we get a solution for two-phase routing in which node k

is the only intermediate node.

The given solution for two-phase routing can thus be decomposed into demands

along Phase 1 and Phase 2 paths associated with each intermediate node k. Since

the traffic split ratios aA. sum to 1, this gives us a convex combination of solutions

that route through a single intermediate node. 
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Because we are considering the network design problem where no a priori link

capacities are given, the Phase 1 and Phase 2 paths will be routed along shortest cost

paths in an optimal solution. Let dij denote the cost of the shortest path from node i

to node j under link costs ce. Then, the minimum cost C(k) of a solution that sends

all traffic through a single intermediate node k is given by

C(k)= E dikRi + E dkjC
iEN,i4k jEN,j:k

Consider an optimal solution for two-phase routing in which the traffic split ratios

are al, a2,.. , an - Using the above decomposition lemma, the cost of this optimal

solution can be written as

E akC(k)
kEN

Let k = k be the node for which C(k) is minimum. Since the traffic split ratios aQk

sum to 1, the above cost is a minimum when ak = 1 and cik = 0 for all k k. Thus,

all traffic is sent through a single intermediate node k. The structure of this solution

is illustrated in Figure 3-1. The result is summarized in the following theorem.

Theorem 3.1.2 Let k = k be the node for which

C(k)= E dikRi + E dkjCj
iEN,iok jEN,jok

is minimum. Then, the minimum cost solution for two-phase routing sends all traffic

through the single intermediate node k along Phase 1 and Phase 2 paths that are

shortest paths with respect to the given link costs ce.

3.2 How Optimal is Two-Phase Routing?

In Section 1.7.1, we defined the optimal scheme for minimum cost network design

from a general class of schemes that canl make the routing dependent on the (current)
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Figure 3-1: Structure of a Minimum Cost Solution for Two-Phase Routing.

traffic matrix. The optimal scheme minimizes 2::eEE CeXe where Xe is a set of valid

link capacities for routing all matrices in T(R, C). A set of link capacities Xe is valid

if for every traffic matrix T E T(R, C), there exists a multicommodity flow for the

demands in T that respects link capacities Xe. In this section, we show that the cost

of two-phase routing is at most twice that of the optimal scheme.

We assume that Ri = Ci for all nodes i. Note that this is not a restrictive

assumption in practice because network routers and switches have bidirectional ports

(line cards), hence the ingress and egress capacities are equal.

Theorem 3.2.1 Let ~ = Ci for all nodes i, and R = L.iEN ~. For minimum cost

network design, the cost of two-phase routing is at most

2 (1- ~min~)R iEN

times that of the optimal scheme.
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Proof: Let ai be the traffic split ratios associated with each intermediate node i in

two-phase routing. Set ai = for all i E N. Clearly, the cost of this solution is atR

least that of the minimum cost solution. The demand matrix D = [dij] as a result of

two-phase routing for the above traffic split ratios is given by

dij = ajRi + eiCj

a ojRi + aiRj

- 2RiRj
R

for i j and dii = 0 for all i.

Now consider the traffic matrix T = [tij] where

RiRjtij - R

for all i y# j and tii = 0 for all i. Let

3T E T(R, C). Then, we must have

0 E" tij <
jEN,jyi

d E RRj <
jEN,ji 
,Ri(R-Ri) <

R

d be the maximum multiplier such that

R% ViEN

Ri V i E N

Ri ViCN
R V N

R-Ri

whence,
= R

R - miniEN Ri

Since D = 2T, hence 3T = D. Since the optimal scheme must route the matrix

OT c T(R, C), its cost is at least the minimum cost for routing matrix /3T = D.

Since D is the demand matrix for two-phase routing, we conclude that the cost of
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1

c

1

Figure 3-2: 6-node network to illustrate gap between cost of Two-Phase Routing
with Qi split ratios and that of optimal scheme when ingress-egress capacities are not
symmetric.

two-phase routing is at most

~ = 2 (1 - ~ min ~)
(3 R iEN

times that of the optimal scheme . •
If ingress-egress capacities are not symmetric, then the gap between cost of two-

phase routing with intermediate node dependent split ratios Qi and that of optimal

scheme can be made arbitrarily large, as shown by the following example. Consider

the 6-node network shown in Figure 3-2. Here RI = R2 = 1 and C5 = C6 = 1. All

other Ri, Cj values are zero. The costs of links (5,3) and (5,4) are each equal to

some large quantity c. All other links shown have unit cost.

Observe that node 1 has a unit cost path to node 3 but the cost of the path to

node 4 is large (= c+ 2). Similarly, node 2 has a unit cost path to node 4 but the cost

of the path to node 3 is large (= c + 2). Thus, when minimizing cost, node 4 is not

a good choice for serving as intermediate node for the traffic originating at node 1.
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Similarly, node 3 is not a good choice for serving as intermediate node for the traffic

originating at node 2. Since our split ratios can be made dependent on intermediate

nodes only (and not on source or destination of traffic), the cost of two-phase routing

will be large. The optimal scheme, on the other hand, can completely avoid routing

along the links with large costs. In fact, the gap between the cost of two-phase routing

and that of optimal scheme can be made arbitrarily large by making the value of L

arbitrarily large.

The arbitrarily large gap in the above example between the cost of two-phase

routing with intermediate node dependent traffic split ratios and the cost of optimal

scheme can be mitigated by generalizing the split ratios to depend on source and/or

destination of traffic. We consider this in Chapter 5. The rationale behind this gen-

eralization is that it might be expensive to route traffic through a given intermediate

node for certain source-destination pairs while relatively cheap for others.

The optimal solution for minimum cost two-phase routing in Section 3.1 sends all

traffic through a single intermediate node. This is not desirable in practice because

of at least two reasons. First, the single intermediate node in an optimal solution

becomes a single point of failure in the network. Secondly, it requires huge routing

capacity to handle all of the network traffic - it may not be feasible in practice to

scale router capacity at a single node to required levels. The instance of two-phase

routing in the proof of Theorem 3.2.1 splits traffic to intermediate nodes in ratios

proportional to their respective ingress (egress) capacities - this solution does not

suffer from the above drawback of the optimal solution for two-phase routing and its

cost is still within a factor of two of that of the optimal scheme.
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3.3 Connections with Tree Solutions for Direct Source-

Destination Path Routing

WAe briefly discussed direct source-destination path routing for the hose traffic model

in Section 1.6. Tree solutions for the minimum cost network design version of the

problem on an undirected graph were first considered in [KRSY01]. By a tree solution,

we mean that the links on which bandwidth is reserved, i.e., all links e for which

xe > 0, form a tree. The traffic from node i to node j is routed along the unique path

from i to j in the tree. The link capacities xe must be consistent for the routing of

all matrices T E T(R. C).

Consider the following simple algorithm for a tree solution for direct source-

destination path routing in an undirected graph. Fix some node k E N and form the

shortest path tree rooted at node k and reaching all other nodes. For each node i # k,

reserve Ri + Ci units of capacity on the shortest path between node i and node k.

The effect of reserving capacities on links for different shortest paths is cumulative.

The cost of the solution is eEE Ce,Xe where xe is the total capacity allocation on link

e as a result of the above procedure. Repeat this procedure for each initial fixed node

k E N and choose the solution that has the lowest cost.

It is shown in [GKKRY01] that the above procedure produces an optimum tree

solution in undirected graphs when the ingress-egress capacities are symmetric, i.e.,

R = C for all i. The solution is an optimum tree solution even when the ingress-

egress capacities are balanced, i.e., ZiEN Ri =: EjeN Cj, as shown in [ILO02].

Fractional solutions for direct source-destination routing along fixed paths are al-

lowed to split the traffic between a source-destination pair into multiple paths. The

paths and the ratios in which traffic is split among themn must be fixed a priori and

cannot depend on the traffic matrix to be routed. Let R = iCN Ri and C = EjeN Cj.

It is shown in [EGOS05] that for undirected graphs and general ingress-egress capaci-

ties (not necessarily slymmetri(c or alanced), the cost of the tree solution obtained by
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the above procedure is within a factor of (1 + max(g, C)) of the optimum fractional

solution for direct source-destination routing along fixed paths. The arguments in

[EGOS05] can be used to establish the same bound for the above tree solution with

respect to the optimal scheme that is allowed to change the routing with changes in

the traffic matrix.

In our problem formulation for minimum cost two-phase routing, we assumed a

directed graph. However, the arguments for optimality of the two-phase routing solu-

tion obtained in Section 3.1 continue to hold when the underlying graph is undirected

(since the allocated capacity on an undirected link can be used to send traffic in either

direction). When the graph is undirected, it should be easy to see that the minimum

cost solution for two-phase routing in Theorem 3.1.2 is the shortest path tree rooted

at node k and it is identical in structure, link capacity allocation, and total cost to

that obtained by the above procedure for the optimum tree solution for direct source-

destination path routing. (Note that even though the solutions are identical, the path

along which traffic is routed for a given source-destination pair could be different for

two-phase routing and direct source-destination path routing.)

From the above, we conclude that for undirected graphs, the cost of two-phase

routing is within a factor of (1 + max(R, C)) of that of the optimal scheme. As a

corollary, we obtain a 2-optimality bound for two-phase routing on undirected graphs

when ingress-egress capacities are balanced. Moreover, the optimality bound degrades

linearly with the gap between the total ingress and egress capacities.
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Maximum Throughput Network

Routing

In this chapter, we consider the problem of maximum throughput two-phase routing.

The throughput is the maximum multiplier A such that all matrices in A T(R, C)

can be feasibly routed. The reciprocal of throughput is the maximum link utilization

in the network, so this problem is equivalent to computing an instance of two-phase

routing for all matrices in T(R, C) so as to minimize the maximum link utilization.

Given a network with link capacities ue and constraints Ri, Ci on the ingress-egress

traffic at each node, the problem consists of computing the traffic split ratios as and

routing of Phase and Phase 2 paths so as to maximize the throughput.

Throughput is among the most common and important optimization metric for

network routing. It is used in capacity planning decisions by ISPs, is directly related

to other mnetrics like link congestion, and is useful for multi-period traffic planning

when the traffic patterns scale (roughly) uniformly over time. When considering

feasibility of a traffic matrix on (various what-if) capacitated network deployment

scenarios, throughput is probably the most suitable metric to consider (feasibility is

indicated by a throughput greater than or equal to 1).

\,Ve begin with a link flow based linear prograinmmiing (LP) formulation for the
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problem. We show how additional capacity constraints for router-to-OXC links can

be incorporated for an IP-over-Optical network architecture. We bring out the need

for and develop three combinatorial algorithms for the problem - the second and third

algorithms improve the running time of the first through two different modifications.

We also show how the combinatorial algorithms can handle a total cost constraint for

maximum throughput two-phase routing. This can be used to solve the problem of

minimum cost two-phase routing under given link capacities.

The combinatorial algorithms developed are Fully Polynomial Time Approxima-

tion Schemes (FPTAS). An FPTAS is an algorithm that finds a solution with objective

function value within (1 + c)-factor of the optimal solution and runs in time that is

a polynomial function of the input parameters and 1. The input parameters in our

problem are the number of nodes n and links mr in the network, and the size (number

of bits) of the input numbers (link capacities and ingress-egress traffic capacities). The

value of e can be chosen to provide the desired degree of optimality for the solution.

An FPTAS is said to be strongly polynomial when its running time does not depend

on the size of the input numbers. The third combinatorial algorithm developed for

the problem is strongly polynomial.

We compare the throughput of two-phase routing with that of the optimal scheme

that is allowed to make the routing dependent on the traffic matrix. We show that

when ingress-egress capacities are symmetric, the throughput of the optimal scheme

is at most twice that of two-phase routing. The symmetry of the ingress-egress

capacities is not a restrictive assumption in practice because network routers and

switches have bidirectional ports (line cards), hence the ingress and egress capacities

are equal. Computing the throughput of the optimal scheme was shown to be a hard

optimization problem in Section 1.7.3. We develop heuristics for upper bounding

the throughput of the optimal scheme. This will be useful in obtaining a posteriori

bounds on the throughput of two-phase routing relative to that of the optimal scheme

on actual problem instances.
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Finally, we evaluate various aspects of two-phase routing on actual ISP network

topologies collected for the Rocketfuel project [SMAWH, SMW02, IMSWVA02]. For the

evaluated topologies, the throughput of two-phase routing is within 6% of that of the

optimal scheme. Thus, the throughput performance of two-phase routing is much

better in practice than indicated by the theoretical result that it is within 50% of the

optimal scheme.

4.1 Linear Programming Formulations

In this section, we describe linear programming formulations for throughput maxi-

1mization in two-phase routing. Note that for the case of equal split ratios, i.e., ci = -

for all i E N, the demand between nodes i and j is R+cj, and the problem reducesn

to the maximum concurrent flow problem [SM90].

4.1.1 Link Flow Based LP Formulation

For routing all matrices in A T(R, C) using two-phase routing, the traffic demand

from node i to node j is

A(ajRi + aiCj) = (Aaj)Ri + (Aai)Cj

Notice that this introduces bilinear terms Aj and Aci in the expression for the

demand values, since A is also a variable in the problem formulation. To tackle this,

we use the transformation di = Aai for all i. Then, the demand from node i to node

j can e written as &jRi + &iCj, which is linear in the di variables. To obtain the

throughput in terms of the di variables, we have

iE A E Ni = A
iEN iEN
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since ZieN i = 1. Thus, when the traffic split ratios a' are not constrained to sum

to 1, the throughput A is equal to the sum of the oe' values. To simplify notation, we

will drop the bars in the transformed split ratios i. Thus, in our modified problem,

the traffic split ratios oi sum to the throughput A and can be divided by A to obtain

the normalized traffic split ratios that sum to 1.

Another way to look at this transformation is that if the traffic split ratios ozi

sum to a quantity q #~ 1, then they can be divided by q (normalized) so that they

sum to 1, in which case all matrices in q T(R, C) can be feasibly routed. Thus, the

appropriate measure of throughput A is the quantity q which is the sum of the traffic

split ratios ozi.

We adopt the standard network flow terminology from Ahuja, Magnanti, and Orlin

[AM093]. Let x' denote the flow value on link e for routing ajRi + aoiCj amount

of flow from source node i to destination node j. Then, the problem of two-phase

routing so as to maximize throughput can be expressed as the following link indexed

linear program:

maximize EN ai

subject to

ojRi + ciCj if k = i

E i xe- E iej= -%gRi - iCj if k =j V , k N (4. 1)
eeE+(k) eE (k)I

eEE+(k) eEE-(k) 0 otherwise

xi < ue V e E E (4.2)
i.jEN

i > 0 V iE N (4.3)

X > 0 V e E, Vi, jCN (4.4)
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Constraints (4.1) corresponding to the routing of ajRi + aiCj amount of flow from

node i to node j. Constraints (4.2) are the link capacity constraints.

By using per-source flow variables xi instead of per source-destination variables

xJ, the number of flow variables in the above linear program can be reduced by a

factor of n.

Let be the ci values in an optimal solution of the above linear program and

let A* denote the optimum objective function value (throughput), i.e., A* -: ac. If

A* > 1, then the problem is feasible for the network. The a* values can be reduced by

a factor of A* to get the actual split ratios and the explicit paths along which demands

are routed can be determined from the solution of the above linear program using

flow decomposition along paths [AM093]. If the value A* < 1, then the problem is

infeasible. Under such circumstances, one of two things can be done:

* The ingress-egress capacities Ri, Cj have to be scaled down by X and will then

be feasible for routing under the given link capacities, or

* The link capacities can be scaled up by x and will then be feasible for routing

all matrices in T(R, C).

The above linear program is of polynomial size and can be solved in polynomial

time using a general linear programming algorithm [S86]. It is amenable for solution

with LP solvers like CPLEX [CPLEX].

4.1.2 Incorporating Node Capacity Constraints in IP-over-

Optical Networks

Consider the deployment of our routing scheme in IP-over-Optical networks as dis-

cussed in Section 2.2.1. The end-to-end IP traffic traverses router-to-OXC (Optical

Cross-connect) links not only at the source and destination nodes but also at the in-

termediate nodes. This router-to-OXC traffic at a node is bounded by the aggregate
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connectivity of the IP router to the OXC at that node. Thus, we need to model such

node capacity constraints in our problem formulation.

This is done by transforming the graph representation of the network as follows.

Split each node into two sub-nodes, one representing the IP router and another the

OXC at that node. All links incident at each node in the original graph are now

incident at the corresponding OXC sub-node. Add links in either direction connecting

the router and OXC sub-nodes with capacity equal to the given connectivity between

router and OXC (in each direction) at that node. Traffic originates and terminates

at the router sub-nodes in this transformed graph. Transit traffic traverses the OXC

sub-nodes only, except at the intermediates nodes where it uses the router-to-OXC

links to enter and leave the router sub-nodes. With this graph transformation, we can

use the linear programming formulation in Section 4.1.1 as well as the combinatorial

algorithms in Section 4.3 in the context of IP-over-Optical networks.

For the linear programming formulation, a somewhat simpler approach models the

node capacities as additional constraints involving the traffic splits ratios ai. (These

constraints cannot be handled by the combinatorial algorithms though). Let u and

ui2 denote the router-to-OXC and OXC-to-router link capacities respectively at node

i. (These are equal in practice due to the bi-directional nature of router and OXC

ports.) The traffic from the OXC to the router at node k can be divided into two

categories:

* Traffic as a result of node k being an intermediate node in two-phase routing,

which is cak Ei5k RP.

* Traffic that exits the network at node k, which is ACk = (iEN ai)Ck

Thus, the router-to-OXC link capacity constraint at node k is

ak Ri + ( ai)Ck < uk V k E N
ifk iEN

82



CHAPTER 4. MAXIIUM THROUGHPUT NETWORK ROUTING

which can be written as

Ck E Zi + (Ck + E Ri)Ok < 'lt' V k c N
i.:k ik

Similarly, the constraint for the OXC-to-router link capacity at each node can be

written as:

RkE ,oa + (Rk + Ci)ak < V k N
i~ki k i54k

4.2 Need for Combinatorial Algorithms

In the previous section, we developed a polynomial size linear programming formu-

lation for maximum throughput two-phase routing. We now motivate the need for

developing combinatorial algorithms for the problem through consideration of the

following aspects:

* Faster Algorithms: It is well known that running times of general linear pro-

gramming based algorithms for network problems do not scale well with increas-

ing network size (the complexity of the linear program also affects this). The

combinatorial algorithms that we develop use iterative shortest path computa-

tions, have fast running times, and can provide performance guarantees that

are arbitrarily close to optimality.

* Routing with Restoration: In order to make two-phase routing resilient to net-

work failures, we consider three restoration mechanisms in Chapter 7. The

optimization problems for two of these schemes do not admit polynomial size

linear programming formulations. However, they admit fast combinatorial algo-

rithms that extend the approach used for the unprotected case in this chapter.

* Handling Path Constraints: The link flow bsed linear programming formula-

tion developed does not deal explicitly with paths (link flows in a solution may
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be converted to flows along paths using flow decomposition [AM093]). Hence,

it cannot accommodate constraints like bounding path delay or constraining the

available paths between any two nodes to some subset (e.g., as may be required

by ISP policy and administrative constraints). Because our combinatorial algo-

rithms work explicitly with paths, both types of constraints can be efficiently

handled within the optimization framework. We explain this in Section 4.3.6.

4.3 Combinatorial Algorithms

In this section, we develop fast combinatorial algorithms that compute the traffic split

ratios and routing of Phase 1 and Phase 2 paths up to (1 + e)-factor of the optimal

objective function value (maximum throughput) for any > 0. The combinatorial

algorithms developed are Fully Polynomial Time Approximation Schemes (FPTAS).

An FPTAS is an algorithm that finds a solution with objective function value within

(1 + e)-factor of the optimal solution and runs in time that is a polynomial function

of the input parameters and . The input parameters in our problem are the number

of nodes n and links m in the network, and the size (number of bits) of the input

numbers (link capacities and ingress-egress traffic capacities). The value of can be

chosen to provide the desired degree of optimality for the solution. We also develop

strongly polynomial time FPTAS where the running time does not depend on the

size of the input numbers.

Our algorithms use a primal-dual approach that is adapted from the technique in

Garg and K6nemann [GK98] for solving the maximum multicommodity flow problem,

where flows are augmented in the primal solution and dual variables are updated in

an iterative manner.

We begin with a path flow based version of the linear programming formulation

in Section 4.1.1. This (primal) program and its dual will be used to develop the

combinatorial algorithms in this section.
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4.3.1 Path Flow Based LP Formulation

Let P9ij denote the set of all (simple) paths from node i to node j. Let x(P) denote

the traffic on path P. Then, the problem of two-phase routing so as to maximize

throughput can be expressed as the following path indexed linear program:

maximize iEN ai

subject to

Z x(P) = ojRi +coiCj Vi,j E N (4.5)
PEPij

Zx(P) < ue VeEE (4.6)
Pge

ai > 0 VicN (4.7)

x(P) > 0 V P E Pi, Vi, j E N (4.8)

In the next section, we state the dual of the linear program. In general, a network

can have an exponential number of paths (in the size of the network). Hence, this

(primal) linear program can have possibly exponential number of variables and its

dual can have an exponential number of constraints - they are both not suitable for

solving the problem on medium to large sized networks. The usefulness of the primal

and dual formulation is in designing a fast combinatorial algorithm for the problem.

4.3.2 Dual of Path Flow Based LP Formulation

The dual formulation of the linear program in Section 4.3.1 associates a variable 7rij

with each demand constraint in (4.5) and a non-negative variable w(e) with each link

capacity constraint in (4.6). The dual program can be written as:
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minimize EE uew(e)

subject to

E w(e)
eEP

E N, iik jE CN, kiEN,iisk jEN,$k

> 7rij VPEPij, Vi, jN

> 1 VkEN

w(e) > 0 V e E E (4.11)

Because of the nature of constraints (4.10), we can assume that the variables 7rij

attain the maximum possible value given by constraints (4.9) in any optimal solution.

Then, we have

7rij = mn w(e) V i, j N
PE ''j·E eEP

This allows us to eliminate the dual variables 7rij. Thus, we can remove constraints

(4.9) and write constraints (4.10) as

E Ri min E w(e) + Cj min - w(e) > V k E N
iEN,iAk PEPik eP jEN,jsk P'k eEP

The simplified dual problem can be written as:

minimize eEE uew(e)

subject to

S Ri min w(e)+ S Cj min w(e)
iEN,i5k PEPik eEP jEN,jok PEkJ eEP

w(e)

> 1 VkcN

> 0 VeEE
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000

Shortest Paths w.r.t
link costs w( e)

o 0 000

Figure 4-1: One Step in the Primal-Dual Computation for Maximum Throughput
Two-Phase Routing.

4.3.3 Primal-Dual Scheme (FPTAS)

In this section, we use the primal and dual formulations of the path flow based linear

program to develop a combinatorial algorithm for the problem.

For a given node k and weights w(e), let V(k) denote the left-hand-side (LHS) of

constraint (4.12). Given the weights w( e), note that minpEPij LeEP w( e) is the cost of

the shortest path from node i to node j under link costs w(e). Thus, the values V(k)

for all kEN can be computed in polynomial time using a single all-pairs shortest

path computation.

Given a set of weights w(e), it is a feasible solution for the dual program if and

only if

min V(k) ~ 1
kEN

The algorithm works as follows. Start with equal initial weights w( e) = 8 (the

quantity 8 depends on E and is derived later). Repeat the following until the dual

feasibility constraints (4.12) are satisfied:
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1. Compute the node k for which V(k) is minimum. This identifies a node k as

well as paths Pi from node i to node k for all i # k and paths Qj from node

k to node j for all j # k (These are the corresponding shortest paths used in

evaluating V(k) as described above.) This is illustrated in Figure 4-1.

2. For a traffic split ratio of 1 for intermediate node k, the traffic on path Pi is Ri

for all i # k and the traffic on path Qj is Cj for all j # k. Using this, compute

the traffic f(e) on link e per unit split ratio aok for intermediate node k as

f(e) = a Ri + a Cj e E E (4.14)
iok,Pioe jik,Qjpe

3. Compute the maximum value a for the traffic split ratio for intermediate node

k that is consistent with (original) link capacity constraints for sending flow

along paths Pi, Qj as

c = min uf(e) (4.15)
,eE f (e)

4. For this value ca of the split ratio for intermediate node k, send oaRi amount of

flow from node i to node k along path Pi for all i # k and aCj amount of flow

from node k to node j along path Qj for all j = k. Compute the total flow on

link e is A(e) = of(e) for all e E E.

5. Update the weights w(e) as

w(e)- w(e) (1 + A(e)) e EE
Ue

6. Increment the split ratio ajk associated with node k by a.

When the above procedure terminates, dual feasibility constraints will be satisfied.

However, primal capacity constraints on each link will be violated, since we were
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working with the original (and not residual) link capacities at each stage. To remedy

this. we scale down the flows and traffic split ratios ai uniformly so that capacity

constraints are obeyed.

Note that since the algorithm maintains primal and dual solutions at each step,

the optimality gap can be estimated by computing the ratio of the primal and dual

objective function values. The computation can be terminated immediately after the

desired closeness to optimality is achieved.

The pseudo-code for the above procedure, called Algorithm MAX-THROUGHPUT-

1, is provided below. Array flow(e) keeps track of the flow sent on link e as the algo-

rithm progresses. The variable G is initialized to 0 and remains less than 1 as long as

the dual constraints are unsatisfied. After the while loop terminates, the maximum

factor by which the capacity constraint on each link gets violated is computed into

scale-fact. Finally, the ai values are divided by this factor and the resulting values

are output.

Algorithm MAX-THROUGHPUT-1:

ak -- 0 VkE N;
w(e) - VeEE;
flow(e) +- 0 V e E;

G +-0 ;

while G < 1 do

For each i, j E N. compute shortest path from i to j under link costs w(e)

(Denote cost of shortest path from i to j by SP(i, j).)

V(k) Eik RiSP(i, k) + Ejok CjSP(k,j) V k E N

G minkeN V(k)

k - arg inkEN V(k)

if G > 1 break;

(Denote shortest path from i to by Pi for all i 
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and shortest path from k to j by Qj for all j # k.)

f(e) Ei#k,Pe Ri + EjZ41,Qjpe C V e E E;

ce-- mineCE u c mine ~f(e)
A(e) -af(e) V e E E;

flow(e) - flow(e) + A(e) V e E E

w(e)4- w(e)(1 + a(e)) V e EE;
ue

ak- ak + ca;

end while

scalef act 4- maxeEE flow(e)
Ue

k sale for all k E N;scale-fact

Output traffic split ratios cak for all k E N;

We next analyze the approximation guarantee and running time of Algorithm

MAX-THROUGHPUT-1.

Analysis of Approximation Guarantee

We begin with some notation, then state some useful lemmas, and finally establish

the main theorem for the approximation guarantee.

Let M maxkeN(Ei$k Ri + Ej$k Cj) and let M' denote the minimum non-zero

value of the Ri's and Cj's.

Given a set of dual weights w(e), let D(w) denote the dual objective function value

and let F(w) denote the minimum value of the LHS of dual program constraint (4.12)

over all nodes k E N. Consider the dual problem. If F(w) < 1, then the weights w(e)

can be divided by r(w) to make them feasible in which case the objective function

value becomes Dr() If r(w) > 1, then the weights w(e) remain feasible when they are

divided by r(w), but the objective function value decreases to D(). Thus, solving

the dual program is equivalent to finding a set of weights w(e) such that D(w) is
iniize (without the constraint (w) > 1). Denote the optimal objective fction(w)

ilfinnmlzedl (without the constraint 17(w) > 1). Denote the optimal objective function
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D(w)value of the latter by 0, i.e., 0 = minw (uw)

Let wt-1 denote the weight function at the beginning of iteration t of the while

loop, and let At-1 be the value of EjeN aCj (primal objective function) up to the end

of iteration t - 1. Suppose the algorithm terminates after iteration L. The following

lemma upper bounds the value of F(w) at the end of every iteration.

Lemma 4.3.1 At the end of every iteration t, 1 < t < L, of Algorithm MAX-

THROUGHPUT-1. the following holds

t
F(wt) < nM H [1 + (Aj -Aj)]

j=l

Proof: During iteration t, let k = k be the node for which V(k) is minimum, let

Pi, Qj be the corresponding paths (as defined earlier) along which flow is augmented,

and let a be the associated increment in ak. Recall that the weights are updated as

wt(e) = Wti(e) 1 + - V e E E
Ue 

where A(e) is the total flow sent on link e during iteration t. Using this, we have

D(wt) = : Uet(e)
eE

E UeWt-i (e) +e E Wt- (e)A(e)
eEE eEE

= D(wt-l) +E E wt-(e)[ cRi + 5 aCj]
eeE iok,PiDe j k,QjDe

D(wt_i) + ,e wt_1(e)[ 5 Ri + E Cj]
eEE ikPi3e jk,Qj3e

Interchanging the summations on the right-hand-side (RHS) of the above equation

and first summing along links on paths Pi, Qj, and then over i, j respectively, we can
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rewrite the RHS of the above equation to obtain

D(wt) = D(wt-1) + coa[ Ri E Wtl (e) + A Cj E wt-il(e)]
i$k eEPi jok eEQj

= D(wt-1) + oa[ Ri min Z wt-i (e) + Cj PEp wti(e)
ik- ' eEP jok eEP

(4.16)

D(wt=) ± Eal(wt_- )

D(wti) + e(At - At-)F(wt-j)

The step leading to (4.16) follows from the fact that Pi, Qj are shortest paths under

link costs wt_ 1(e). The next step follows from the choice of node k = k for minimizing

V(k).

Using this last equation for each iteration down to the first one, we have

t

D(wt) = D(wo) + e E(Aj - Aj-i)F(wj-i) (4.17)
j=l

Now consider the weight function wt - wo. Note that IF(wt - wo) can be written as

F(wt- wo) = F(wt) - F(wo) (4.18)

where the function F(w) is of the form of LHS of dual constraint (4.12), but not

necessarily evaluated along shortest paths. Because any (simple) path in the network

is at most n - 1 hops in length, it follows that the quantity ZeEp w(e) is a sum of at

most (n- 1) weights w(e). Thus,

F(wo) < max[E(n - 1)6Ri + Z(n - 1)6Cj] < n max(i Ri + a Cj) = n6M
kEN kEN i"k kE Ni~k j~k.j k
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Also, F(wt) > F(wt). Using these in equation (4.18), we have

F(wt - Wo) _> F(wt) - nMAI (4.19)

Since D(w) = ZeEuew(e), we have D(wt-wo) = D(wt) - D(wo). Since 0 is

D(w,-wo)Usntheadthe optimal dual objective function value, we have 0 < r(wt-wo). Using these and

inequality (4.19), we have

D(wt) - D(wo) > 0(r(wt) - n6M)

Using this in equation (4.17), we have

t
F(wt) < nM + (Aj - Aj_)F(wji) (4.20)

0j=l

The property claimed in the lemma can now be proved using inequality (4.20) and

mathematical induction on the iteration number t. For the induction basis case

(iteration t = 1), we have wo(e) = for all e E E, hence

F(wo) < max[(n- 1)6Ri + Z(n- )Cj] = (n- 1)6M < nM
i~k jik

For the inductive step, suppose that the property is true for all iterations earlier than

t. Then, we have

t j-1
(wt) < ?6M + (Aj -A j_- )n6 /I [ + (A i-Ai -l) ]

j=l i -(1)
t je 

nS- i (iM I+E (Aj - Ay1)f [ + -(Ai - AiI)] (4.21)
i=1
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We now use the algebraic identity

t t j-1

fI(1 + aj) = + aj II(1 + ai)
j=l j=l i=1

Setting a, = (Aj-Aj_ 1 ) in inequality (4.21) and using the above identity, we obtain

t

rF(wt) < n6M I [l + (Aj - Aj_) ]
j=l1

This completes the inductive step. U

We now estimate the factor by which the objective function value value AL in the

primal solution needs to be scaled when the algorithm terminates so as to ensure that

link capacity constraints are not violated.

Lemma 4.3.2 When Algorithm MAX-THROUGHPUT-1 terminates, the primal so-

lution needs to be scaled by a factor of at most logl+, " to ensure primal feasibility.

Proof: We need to show that for every link e, the total flow on it is at most ue when

the primal solution is scaled by the above amount.

Consider any link e and associated weight w(e). The value of w(e) is updated

when flow is augmented on link e. Let the sequence of positive flow augmentations

(per iteration) on link e be A1 , A2, A, where r < L. Let Er' At = IUe, i.e., the

total flow routed on link e exceeds its capacity by a factor of {.

Because of the way in which a is chosen in accordance with equations (4.14)-

(4.15), we have Ai < u for all i. Hence, the dual weight w(e) is updated by a factor

of at most 1 + e after each iteration. Since the algorithm terminates when F(w) > 1,

and since dual weights are updated by a factor of at most 1 + e after each iteration,

we have F(wL) < + e. Note that just before each augmentation mentioned above,

the weight w(e), with coefficient at least AM', is one of the sumnming components of
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F(w). Hence, M'wL(e) < + e. Also, the value of wL(e) is given by

ZVL(e) 6H(1 + -e)
t=l ile

Using the inequality (1 + cx) > (1 + x)c for all x > 0 and any 0 < c < and setting

x and c = A, < 1, we have

l+
M' > WL(e) > 6 Fl( + )t/Ue

t=1

- 6(1 + ±c)t= A±/t

=dl+ E)EC

whence,
l±e

r < log,+, +ME

The values of e and are related, in the following theorem, to the approximation

factor guarantee of Algorithm MAX-THROUGHPUT-1.

Theorem 4.3.3 For any given 0 < ' < 0.5, Algorithm MAX-THROUGHPUT-1

computes a solution with objective function value within ( +e')-factor of the optimum

for

6 I[(1+)]/ and 
AP'[ +0 C)~//1/e

Proof: Using Lemma 4.3.1 and the inequality 1 + x < e for all x > 0, we have

t

F(wt) < n6M 1i e(Aj-A-l)
j=l

= n6Me 4t/O

The simplification in the above step uses telescopic cancellation of the sumn (Aj-Aj_1)

over j. Since the algorithm termilnates after iteration L. we must have F(U1 L) > 1.
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Thus,

1 _< F(wL) < n6Aile4 L/°

whence,

9 e

AL < n (4.22)A-- In ~~

From Lemnma 4.3.2, the objective function value of the feasible primal solution after

scaling is at least
AL

l+elog,+, 6,'

The approximation factor for the primal solution is at most the gap (ratio) between

the dual and primal solutions. Using the lower bound on the primal solution and

inequality (4.22), this is at most

l+e09 e log+ 1+ M'<
AL In 

1°gl+. ;;7 n6MAI

In f +3M'
ln(l + e) ln nn6M

The quantity n '+-/In equals 1 for = /[(1 + e)nM]l/e. Using this valueWI~~~~- n¥F 1-FJ ·
of 6, the approximation factor is upper bounded by (1-e) l+±)' This quantity is at

most 1 + 2e for < 0.25. Setting e = ¥, we get the desired approximation ratio of

1+e'. 

Analysis of Running Time

We now analyze the running time of Algorithm MAX-THROUGHPUT-1.

Theorem 4.3.4 For any given e > 0 chosen to provide the desired approximation fac-

tor guarantee in accordance with Theorem 4.3.3, Algorithm MAX-THROUGHPUT-1

runs in time

Q (i2n (i + '7 log ii) log A

96



CHAPTER 4. MAXIMUM THROUGHPUT NETWORK ROUTING

which is polynomial in the network size. the number of bits used to represent the Ri,

Cj values, and .

Proof: We first consider the running time of each iteration of the algorithm during

which a node k and associated paths Pi, Qj are chosen to augment flow. Selection of

this node and the paths involves an all-pairs shortest path computation which can be

implemented in O(nm + n2 log n) time using Dijkstra's shortest path algorithm with

Fibonacci heaps [AM093]. All other operations within an iteration are absorbed (up

to a constant factor) by the time taken for this all-pairs shortest path computation,

leading to a total of O(n(m + n log n)) time per iteration.

We next estimate the number of iterations before the algorithm terminates. Recall

that in each iteration, flow is augmented along paths Pi, Qj corresponding to the

maximum value of intermediate node split ratio c such that the total flow A(e) sent

on link e during that iteration is at most ue. Thus, for at least one link e, A(e) = e

and the weight w(e) increases by a factor of 1 + e. Accordingly, with each iteration,

we can associate a weight w(e) which increases by a factor of 1 + e.

Consider the weight w(e) for fixed e E E. Since w0(e) = 6 and wL(e) < +E (as

deduced in the proof of Lemma 4.3.2), the maximum number of times that this weight

can be associated with any iteration is

+ I n M nM
log,+ ,yM' = -(1 + log,+e,-') = °( Ogl+M)1Ol+ M' E E

Since there are a total of m weights w(e), hence the total number of iterations is

upper bounded by (M log,+, ""). Multiplying this by the running time per iteration,

we obtain the overall algorithm running time as O(lnm(m + nlog n) log,+, ¥F)

Now, for anyO < < 1, ln(1 + ) E2> _ e- = E. Aso, ln(1 + ) < e.

This implies ln(1 + e) = (e), whence log,+, n _ 0(1 log ). Substituting this

back into the earlier expression for running time, we obtain the running time in the

theoreml. Note that log n! is polynomial in log'i andl the numblner of bits used to
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represent the Ri and Cj values. 

4.3.4 Speedup of Factor of n

We can reduce the running time of the Algorithm MAX-THROUGHPUT-1 by a fac-

tor of n by using a technique similar to that used by Fleischer [F00] for speeding

up the maximum multicommodity flow algorithm in [GK98]. In Algorithm MAX-

THROUGHPUT-i, the time for augmenting flow in each iteration is dominated by

an all-pairs shortest path computation. We use this computation to identify an in-

termediate node k (and associated shortest paths Pi, Qj) for which the LHS of dual

constraint (4.12) is minimum.

The basic idea in the speedup is to keep augmenting flow associated with one

intermediate node k so long as the value of LHS of (4.12) for that intermediate node

is within a factor of (1 + e) of the minimum value of the same over all intermediate

nodes. We then cycle through all intermediate nodes and repeat all over again until

termination. Computing the value of LHS of (4.12) for one intermediate node k

involves two single-source shortest path computations - one for the shortest path tree

directed out of k, and the other for the shortest path tree directed towards k. Thus,

each flow augmentation requires two single-source shortest path computations instead

of an all-pairs shortest path computation - this is how the speedup is achieved. We

now develop the details.

To check that the value of LHS of (4.12) for an intermediate node is within a factor

of (1 + e) of the minimum value of the same over all intermediate nodes, we need to

maintain a lower bound estimate y(wt) of the latter, where t refers to the value of dual

weights wt(e) after augmentation number t. Let M" = minkEN(Zisk Ri + Ejk Cj).

The initial lower bound estimate is y(w0) = minA.keN(Zk Ri + Ej$k Cj) = 6",

since the shortest paths from intermediate node k to all other nodes and from all

other nodes to node k are at least one hop in length.

The strategy for mnaintaining and updating the lower bound estimate 'y(w) is as
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follows. We keep augmenting flow associated with intermediate node k and updating

weights w(e) in a multiplicative fashion as before so long as the value of LHS of (4.12)

for node k is less than min(l, (1 + e)(uw)). We repeat this for all other intermediate

nodes. At this point, we know that the minimum value of LHS of (4.12) over all

intermediate nodes is at least (1+e)-y(w). Accordingly, we update y(w) - (1+e)-Y(w).

We will use the term phase to mean the sequence of flow augmentations between

successive updates to -y(w) (i.e., during cycling once through all intermediate nodes).

Each flow augmentation will be called an iteration.

In order to terminate the algorithm after dual constraint (4.12) is satisfied, it is

sufficient to stop after phase p when 6i"(1 + c)P < 1 + e. Hence, the total number

of phases is p = logl+ il+E I

The pseudo-code for the above procedure, called Algorithm MAX-THROUGHPUT

2, is provided below. Array flow(e) keeps track of the traffic on link e as the algorithm

progresses. The variable G is initialized to 0 and remains less than 1 as long as the

dual constraints remain unsatisfied. After the while loop terminates, the factor by

which the capacity constraint on each link e gets violated is computed into array

scale(e). Finally, the ai values are divided by the maximum capacity violation factor

and the resulting values are output.

Algorithm MAX-THROUGHPUT-2:

ak 0 k Vk N;

w(e) - V e E;

flow(e) - 0 V e E;

for i = 1 to Llog1+~ '+E, do

fork= 1 tondo
while true do

Compute shortest paths from i to k for all i #k and fronm k: to j

fo'()r all $ k u(nder link costs w (e)
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(Denote by SP(i, j) the cost of the shortest path from i to j.)

V(k) - Zi$k RSP(i, k) + Ej4k CjSP(k, j)

if V(k) > min(1, SM"(1 + e)i) break;

(Denote shortest path from i to k by Pi for all i / k

and shortest path from k to j by Qj for all j 4 k.)

f(e) Z- EkPi3e, Ri + k,Qje Cj V e E E;
o~ - mineE ue .f(e)'

A(e) -af (e) V EE;

flow(e) - flow(e) + A(e) V e E

w(e) w(e) (1i +eEE;

k - ak + a;

end while

end for

end for

sca le(e) -flow(e) for all e E;
?Le

scalermax - maxeEE scale(e);
k - a -k for all k E N;

scale-max

Output traffic split ratios ak for all k E N;

We next establish the approximation guarantee and running time of Algorithm

MAX-THROUGHPUT-2. The approach is similar to that for Algorithm MAX-

THROUGHPUT-1.

Analysis of Approximation Guarantee

We use the same notation as in Section 4.3.3. Let L be the total number of flow

augmentations (or, iterations). Recall that the number of phases is p = log, l+ l I 

The following lemma upper bounds the value of D(w) at the end of every iteration.
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Lemma 4.3.5 At the end of flow augmentation (or, iteration) number t 1 < t < L,

of Algorithm MAX-THROUGHPUT-2, the following holds

F~w~) n63' 6(1±+E
~~r(t) < neJ |J[1 + ) (Aj -Aj-)]

j=l

Proof: For the flow augmented during iteration t, let k be the intermediate node, let

Pi, Qj be the corresponding paths along which flow is augmented, and let ae be the

associated increment in ak. Starting as in the proof of Lemma 4.3.1, we first establish

equation (4.16) which is

D(wt) = D(wtl)+ec[ R min E wt-l(e)+ Z C mn E wt-l(e)] (4.23)
i~ PE'Pk eEP j~k PEPkj ei -6k P7ieEP j~k e EP

Because the value of LHS of dual constraint (4.12) for intermediate node k is

(1 + e) of the minimum value F(wt_1) of LHS of (4.12) over all intermediate

we have

within

nodes,

E Ri min E wtl(e) + E Cj min E Wt-l(e) < (1 +e)F(wt-l)
i&k PEP,k kP jok k eEP

Using this in (4.23), we have

D(u.t) < D(Wtl)

-= D(wtl)

+ e(1 + e)ar(Wt-l)

+ e(1 + E)(At - At-l)F(wt-_)

Using this for each iteration down to the first one, we have

D(wt) < D(wo) + e(1

This is of the same form as equation

there is inequality instead of equality.

t

+ e) y~(Aj - Aj-l)r(wj-l)
j=l

(4.24)

(4.17) except that e is replaced by (1 + e) and

By following the same steps fom here owards
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as in Lemma 4.3.1, we obtain the property claimed in this lemma. ·

We now estimate the factor by which the objective function value value AL in

the primal solution needs to be scaled when the algorithm terminates so as to ensure

that link capacity constraints are not violated. Because this algorithm augments

flows and updates dual weights in a manner similar to that of Algorithm MAX-

THROUGHPUT-1 and also terminates when dual feasibility constraints are satisfied,

the proof of the lemma below is identical to that for Lemma 4.3.2.

Lemma 4.3.6 When Algorithm MAX-THROUGHPUT-2 terminates, the primal so-

lution needs to be scaled by a factor of at most log,+, 5- to ensure primal feasibility.

The values of e and are related, in the following theorem, to the approximation

factor guarantee of Algorithm MAX-THROUGHPUT-2.

Theorem 4.3.7 For any given 0 < ' < 0.42, Algorithm MAX-THROUGHPUT-2

computes a solution with objective function value within ( +e') -factor of the optimum

for
1+e nd5 -- ~~ and e -

=Af'[(1 + E) M I/, 3

Proof: The main difference from the proof of Theorem 4.3.3 is that we use the two

lemmas established in this section. Using Lemma 4.3.5 and the inequality 1 + x ex

for all x > 0, we have

F(wt) n6MII e' f" Aj-A )
j=1

= nJMe(l+E)At/0

Since the algorithm terminates after iteration L, we must have r(WL) > 1. Thus,

1 < (uW.) < nAIe'(l +E)AL/O
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whence,

0 e(1 +ef)< (1f)(4.25)
A;- In1AL n6in

From Lemma 4.3.6, the objective function value of the feasible primal solution after

scaling is at least
AL

l+e
log,+, 1°gl+ 6M,

The approximation factor for the primal solution is at most the gap (ratio) between

the dual and primal solutions. Using the lower bound on the primal solution and

inequality (4.25), this is at most

0 < e(1 + e) logl ,M
L - In 1

1°g1~e l-e n6M

e(1 + e) In 1+,
nJAIln(1+e) ln n1M

The quantity n +' / in l/ equals 1 for = /[( +) nM]l/. Using this value of

6, the approximation factor is upper bounded by (1+e) . This is at most 1 + 3e

for e < 0.14. Setting e = 5, we get the desired approximation ratio of 1 + e'. e

Analysis of Running Time

We now establish the speedup of factor of n for the running time of Algorithm MAX-

THROUGHPUT-2.

Theorem 4.3.8 For any > 0 chosen to provide the desired approximation fac-

tor guarantee in accordance with Theorem 4.3. 7, Algorithm MAX-THROUGHPUT-2

runs in time

o( m(n + n log n) log,+ )

which is a speedup of factor of n compared to Algorithm MAX-THROUGHPUT-1.
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Proof: We first consider the time taken for each flow augmentation. For a given

intermediate node Ak, computation of shortest paths Pi, Qj that minimize the LHS of

dual constraint (4.12) for node k involves two single-source shortest path computa-

tions - one for the shortest path tree directed out of k, and the other for the shortest

path tree directed towards k. This can be implemented in O(m + n log n) time using

Dijkstra's shortest path algorithm with Fibonacci heaps [AM093]. All other opera-

tions associated with a flow augmentation are absorbed (up to a constant factor) by

the time taken for two single-source shortest path computations, leading to a total of

O(m + n log n) time per flow augmentation.

The number of flow augmentations before the algorithm terminates is the same as

that for Algorithm MAX-THROUGHPUT-1 and was shown in the proof of Theorem

4.3.4 to be upper bounded by O(lmlogl+, nmf). Multiplying this by the time per

flow augmentation, we obtain the total time for all flow augmentations as O(½m(m +

rlogrn) log,+, .M). Since ln(1 + e) = (e), this is O(9 m(m + nlogn) log 7h).

It remains to account for the single-source shortest path computations that do

not lead to flow augmentations. This happens once per intermediate node per phase

right before we move on to the next intermediate node in that phase. Thus, the total

time spent on such single-source shortest path computations is of the order of

14-e
pn(m + n log n) = n(m + n log n) logl+, 6M"

M' (I + E)nM)/
n(rn + n log n) log1+ /5( ---

M' 1 rnM
= n(m + nlogn) log+ M' + e(1 + logl+ M )

= n(m+ n logn)logl+ Mit + (n(m + n log n) lg+ M

Since the quantity M" contains at least one non-zero value of Ri, Cj, we have M" >

M'. Hence, logl+, ¥// < 0. Hence, the total time spent on single-source shortest path

computations that do not lead to flow augmentations is 0 (en(m + n log n) log,+ n).
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This is subsumed by the total time for flow augmentations. This completes the proof.

4.3.5 Strongly Polynomial Time FPTAS

A strongly polynomial time algorithm is a polynomial time algorithm that has no

dependence on the size of the input numbers of the problem. In our case, the input

numbers are the link capacities and ingress-egress traffic capacities. The primal dual

scheme of Section 4.3.3 can be made strongly polynomial time by terminating when

the dual objective funimction value becomes greater than or equal to 1 (instead of

when the dual solution becomes feasible). This is used as a terminating condition for

primal-dual schemes for some multicommodity flow and fractional packing problems

in [GK98]. The modifications to Algorithm MAX-THROUGHPUT-1 for making its

running time strongly polynomial are as follows:

* Terminate when the dual objective function value becomes greater than or equal

to 1 (instead of when the dual solution becomes feasible),

* Use = + and

* Initialize dual weights w(e) = for all e E E.

The analysis of the approximation guarantee and running time follows the same

approach as that for Algorithm MAX-THROUGHPUT-1.

Analysis of Approximation Guarantee

We use the same notation as in Section 4.3.3. Let the total number of iterations be L.

The following lemma utipper bounds the value of D(w) at the end of every iteration.
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Lemma 4.3.9 At the end of every iteration t, 1 t L, of Algorithm MAX-

THROUGHPUT-3, the following holds

t
D(wt) < m6 [1 + (Aj - Aj-1)]

Proof: Starting as in the proof of Lemma 4.3.1, we first establish equation (4.17)

which is

t
D(wt) = D(wo) + e y(Aj - Aj-1)Fr(wjl) (4.26)

j=1

From the definition of 0, we have 0 < D(wj_) whence F(wjl) < D(wjl). Also,- r(w _1)' w A

D(wo) = m6. Using these in equation (4.26), we have

D(wt) < m6 + H y(Aj - Aj)D(wjl) (4.27)
j=

The property claimed in the lemma can now be proved using inequality (4.27) and

mathematical induction on the iteration number t. The method is similar to that

used in the proof of Lemma 4.3.1. ·

We now estimate the factor by which the objective function value value AL in the

primal solution needs to be scaled when the algorithm terminates so as to ensure that

link capacity constraints are not violated.

Lemma 4.3.10 When Algorithm MAX-THROUGHPUT-3 terminates, the primal

solution needs to be scaled by a factor of at most logl+, to ensure primal feasibility.

Proof: We need to show that for every link e, the total flow on it is at most ue when

the primal solution is scaled by the above amount.

Consider any link e and let the sequence of flow augmentations (per iteration) on

link e be A1,A 2 ... AL. Let EL 1 At = K'l e, i.e., the total flow routed on link e

exceeds its capacity by a factor of ,.
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Since the algorithm terminates when D(w) > 1, and since dual weights are up-

dated by a factor of at most 1 + e after each iteration, we have D(WL) < 1 + . Since

the weight w(e), with coefficient Iue, is one of the summing components of D(w), we

have UewL(e) < + . Also, the value of wL(e) is given by

6 L 
WL(e) = e(I + -,)

Ue ti Ue

With the above changes, we

4.3.2. Using the inequality

setting x = e and c <

1+e

complete the proof using the same argument as in Lemma

(1 + cx) > (1 + x)C for all x > 0 and any 0 < c 1 and

1, we have

L

> WL(e) > -1|( + )A ,/ ueUe tl

= -(1 + e)Zt=iAt/u,
Ue

- X,_(1+ e)Ue

whence,
1 < log+

<~ log 1 +e6

E

The values of e and 6 are related, in the following theorem, to the approximation

factor guarantee of Algorithm MAX-THROUGHPUT-3.

Theorem 4.3.11 For any given 0 < ' < 0.5, Algorithm MAX-THROUGHPUT-3

computes a solution with objective function value within (+e')-factor of the optimum

for
l+e'6- 1±= and e=-

[(1 + c)m3 1]/e 2

Proof: The main difference from the proof of Theorem 4.3.3 is the use of the two

lelnmas proved in this section. Using Lemma 4.3.9 and the inequality 1 + x < for
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all x > 0, we have

D(wt) < m6 I| e(AJ-AJ)
j=l

- meeAt/0

Since the algorithm terminates after iteration L, we must have D(WL) > 1. Thus,

1 < D(WL) < m6eEAL/O

whence,

9 _ _0 < l (4.28)
AL - In

From Lemma 4.3.10, the objective function value of the feasible primal solution after

scaling is at least
AL

1°gl + e ---

The approximation factor for the primal solution is at most the gap (ratio) between

the dual and primal solutions. Using the lower bound on the primal solution and

inequality (4.28), this is at most

0 e logl+,
<A~r+A ^ In 

l~~~e m5 l~
In1+_e

ln(1 + ) n m

The quantity n +'/ ln equals 1- for = (1 + e)/[(1 + e)m]l/E. Using this value

of 6, the approximation factor is upper bounded by (1E)(+) This quantity is at

most + 2 for < 0.25. Setting e = , we get the desired approximation ratio of

1+e'. 2
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Analysis of Running Time

We now show that the running time of Algorithm MAX-THROUGHPUT-3 is strongly

polynomial.

Theorem 4.3.12 For any given e > 0 chosen to provide the desired approximation

factorguarantee in accordance with Theorem 4.3.11, Algorithm MAX-THROUGHPUT-

3 runs in time

(nm(?n + n log n) log m)

which is strongly polynomial.

Proof: The proof is similar to that for Theorem 4.3.4. As before, the running time

of each iteration of the algorithm during which a node k and associated paths Pi, Qj

are chosen to augment flow is O(n(m + nlogn)). Also, with each iteration, we can

associate a weight w(e) which increases by a factor of 1 + e.

Consider the weight w(e) for fixed e E. Since wo(e) = u and wL(e) < +E

(as deduced in the proof of Lemma 4.3.10), the maximum number of times that this

weight can be associated with any iteration is

log+e1 -e (1 + logl+e m) = log1 +e m)

Since there are a total of m weights w(e), hence the total number of iterations is

upper bounded by O(lm logl+, m). Multiplying this by the running time per itera-

tion, we obtain the overall algorithm running time as O( nm(m+n logn) logl+ m) n)

O( nm(m + nlogn) log m). e

4.3.6 Handling Path Constraints

We addressed the issue of increase i end-to-end path delay in two-phase routing

compared to shortest path routing in Section 2.3.2. For delay sensitive applications

that need to meet strict delay bounds. routing with end-to-end delay guarantees
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needs to be accommodated within the optimization framework. An end-to-end delay

guarantee of at most d in two-phase routing call be enforced by constraining the Phase

1 and Phase 2 paths to each have delays of at most . This can be accommodated in

our primal dual framework as follows.

We are given the delay associated with each link in the network. The delay

associated with a path is the sum of the delay values on all its links. In our primal

dual framework, we replace the shortest path computation from node i to node j by

a delay constrained shortest path computation with delay at most d. While this is an

JfP-hard problem in general [GJ79], it can be solved exactly in pseudo-polynomial

time (for example, using dynamic programming). We can also obtain approximate

solutions in polynomial time by either (i) relaxing the optimality of the path cost

by computing a delay constrained path with cost at most (1 + e)-times that of the

optimum, or (ii) relaxing the delay constraint and computing a shortest cost path with

delay at most (1 + ) times the allowed delay, for any given e > 0. Fully polynomial

time approximation schemes for (i) appear in [H92, P93] and for (ii) in [GRKL01].

Our combinatorial algorithms can also handle other types of constraints on the

selection of Phase and Phase 2 paths. For example, ISPs can restrict the available

paths between any two nodes in the network based on administrative and policy

constraints. These constraints could be dictated by Service Level Agreements (SLAs)

of the ISP with its customers. These constraints can be easily incorporated into our

combinatorial algorithms by making the set Pij contain only the allowed paths from

node to i to j.

4.4 Maximum Throughput Routing with Cost Bound

In this section, we consider adding a cost constraint to the maximum throughput

routing problem for two-phase routing. We are given link costs Ce per unit traffic on

each link e and a total cost bound C. The problem consists of computing a maximum
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throughput solution for two-phase routing that has cost at most C. Once we have

an efficient algorithm for this problem, we can use binary search on the cost bound

C to obtain a minimum cost solution for two-phase routing that has a throughput

of (at least.) 1. (Because of the use of binary search on the cost bound C, a trade-

off needs to be made between the computation time and the degree of precision of

the obtained minimum cost.) This solves the capacitated version of minimum cost

two-phase routing.

We begin with a linear programming formulation for the problem by adding an

additional cost constraint to the linear program of Section 4.1.1. We then extend

the primal-dual approach for the strongly polynomial time combinatorial algorithm

in Section 4.3.5 to handle this additional cost constraint.

4.4.1 Link Flow Based LP Formulation

Let Xe'3 denote the flow value on link e for routing aOjRi + oiCj amount of flow from

source node i to destination node j. As before, the appropriate measure of throughput

is the quantity A = iEN ai when the traffic split ratios aj are not constrained to

sum to 1. The problem of maximum throughput two-phase routing subject to the

constraint that the total cost of the solution is C can be expressed as the following

link indexed linear program:

maximize iEN ai

subject to

ojRi + oaiCj if k =- i

x i x = - ajRi-aiCj ifk=j V i,j, kCN (4.29)
eEE-4-(k) eEE-(k)

0 otherwise

E _• < ,te V e e E (4.30)
i,jE N
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Ece xii < C (4.31)
eEE ijEN

ai > 0 V i N (4.32)

xi > 0 VeEE, Vi,jEN (4.33)

Constraints (4.29) corresponding to the routing of ojRi +aoiCj amount of flow from

node i to node j. Constraints (4.30) are the link capacity constraints. Constraint

(4.31) requires that the total cost of the solution is at most C.

By using per-source flow variables xe instead of per source-destination variables

e i, the number of flow variables in the above linear program can be reduced by a

factor of n.

4.4.2 Path Flow Based LP Formulation

We convert the above link flow based linear program into a path flow based linear pro-

gram. This program and its dual will be used to develop the combinatorial algorithm

for the problem.

Let 'Pij denote the set of all (simple) paths from node i to node j. Let x(P) denote

the traffic on path P. Then, the problem of maximum throughput two-phase routing

with a total cost of at most C can be expressed as the following path indexed linear

program:

maximize ieN ai

subject to

x(P) = ajRi + iCj V i,j E N (4.34)
PE'Pij

5x(P) < uie V e E E (4.35)
P3e
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: Ce E (P) < C
eEE P3e

ai

x(P)

> 0 ViEN

> 0 VPE>Pij, Vi,jEN

(4.36)

(4.37)

(4.38)

4.4.3 Dual of Path Flow Based LP Formulation

The dual formulation of the path indexed linear program associates a variable 7rij

with each demand constraint in (4.34), a non-negative variable w(e) with each link

capacity constraint in (4.35), and a non-negative variable y with constraint (4.36).

The dual program can be written as:

minimize EeEE UeW(e) + Cy

subject to

E w(e) + y c,
eEP eEP

E Ririk + E Cjkj
iEN,i$k jEN,$k

> 7rij V P E 7Pj, Vi, j E N

> 1 VkEN

w(e) > 0 V e E E

y> O

(4.39)

(4.40)

(4.41)

(4.42)

Because of the nature of constraints (4.40), we can assume that the variables

7rij attain the maximum possible value given by constraints (4.39) in any optimal

solution. Then, we have

mm (Mn w(e)+ Y C)
P E P:i j ' E P eE P1
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- min (w(e) +yce) Vi,j EN
PE'Pj eEP

This allows us to eliminate the dual variables 7rij. The simplified dual problem can

be written as:

minimize eEE uew(e) + Cy

subject to

E Ri min (w(e) + yc) + C min (w(e) + yce) > 1 V k E N (4.43)
PE'Pik e~ PE~kji~k eEP jok eEP

w(e) >0 V e E E (4.44)

4.4.4 Combinatorial Algorithm

In this section, we use the primal and dual formulations of the path flow based linear

program to develop a combinatorial algorithm for the problem.

For a given node k and weights w(e),y, let V(k) denote the LHS of constraint

(4.43). Given the weights w(e), y, note that minpepij ZeEp(w(e) + YCe) is the cost of

the shortest path from node i to node j under link costs c(e) w(e) + yce for all

e E E. Thus, the values V(k) for all k E N can be computed in polynomial time

using a single all-pairs shortest path computation.

The algorithm works as follows. Start with initial weights y and w(e) 

for all e E E (the quantity 6 depends on e and is derived later). Repeat the following

until the dual objective function value is greater than or equal to 1:

1. Compute the node k for which V(k) is minimum. This identifies a node k as

well as paths Pi fronm node i to node k for all i ~ k and paths Qj from node
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o 0 0

Shortest Paths W.f.t
link costs [wee) + YCe]

~

o 0 o 0

Figure 4-2: One Step in the Primal-Dual Computation for Maximum Throughput
Two-Phase Routing with Cost Bound.

k to node j for all j i= k (These are the corresponding shortest paths used in

evaluating V(k) as described above.) This is illustrated in Figure 4-2.

2. For a traffic split ratio of 1 for intermediate node k, the traffic on path Pi is ~

for all i i= k and the traffic on path Qj is Cj for all j i= k. Using this, compute

the traffic f (e) on link e per unit split ratio exk for intermediate node k as

f(e) = L ~ + L Cj \if e E E
i=;fk,Pi3e j#k,Qj3e

(4.45)

3. Compute the maximum value ex for the traffic split ratio for intermediate node

k subject to (i) original link capacity constraints for sending flow along paths

~, Qj are obeyed, and (ii) cost of the flow is at most C. This is given by

. (. Ue C )ex - mIn mIn -- -----
- eEE f(e)' LeEE cef(e)
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4. For this value ca of the traffic split ratio for intermediate node k, send Ri

amount of flow from node i to node k along path Pi for all i k and Cj

amount of flow from node k to node j along path Qj for all j # k. Compute

the total flow on link e is A(e) = f(e) for all e c E.

5. Update the weights w(e) as

(e) W() 1 + e/\V() E E

6. Update the weight y as

y -y 1+ C ZeEECeA(e)

7. Increment the split ratio a k associated with node k by a.

When the above procedure terminates, link capacity constraints and the total

cost constraint in the primal program will be violated, since we were working with

the original link capacities and total cost bound at each stage. To remedy this, we

scale down the flows traffic split ratios cti uniformly so that these primal constraints

are obeyed.

Note that since the algorithm maintains primal and dual solutions at each step,

the optimality gap can be estimated by computing the ratio of the primal and dual

objective function values. The computation can be terminated immediately after the

desired closeness to optimality is achieved.

The pseudo-code for the above procedure, called Algorithm COST-BOUND-MAX-

THROUGHPUT, is provided below. Array flow(e) keeps track of the flow sent on

link e as the algorithm progresses. The variable D is initialized to 0 and remains less

than 1 as long as the dual objective function value is less than 1. After the while

loop terminates, the factor by which the primal solution needs to be scaled down to
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make it feasible is computed into scale fact. Finally, the ai values are divided by

this factor and the resulting values are output.

Algorithm COST-BOUND-MAX-THROUGHPUT:

ak*-O VkE N:
w(e) -- - V e E;

Y* U,

flow(e) -O V e E E ;

D -0 ;

while D < 1 do

For each i, j E N, compute shortest path from i to j under link costs w(e) + yce;

(Denote cost of shortest path from i to j by SP(i,j).)

V(k) - Eik RiSP(i, k) + Ejsk CjSP(k, j) V k c N;

k - arg minkeN V(k)

(Denote shortest path from i to k by Pi for all i #f k
and shortest path from k to j by Qj for all j k.)

f(e) - i.kPie Ri + Ej#k,Qj3e Cj V e E

a -- mnin mineeE f(e)' e eEcef(e))

A(e)-eaf(e) V e E;

flow(e) *- flow(e) + A(e) e · E;

L(e) - w(e) (I + (e)) V e E 

y -y(1 + eE"'ec (4)· )y -y ( + ;c
ak - ak/ + a;

D - E>EE Uew(e) + Cy;

end while

scalefact - max inaxe(E l , c low(e))

"~' for all k NC m~ *. cale-fac:t
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Output traffic split ratios ak for all k E N;

The analysis of the approximation guarantee and running time follows the same

approach as that for Algorithm MAX-THROUGHPUT-3 in Section 4.3.5.

Analysis of Approximation Guarantee

Given a set of dual weights w(e), y, let D(w, y) denote the dual objective function

value and let r(w, y) denote the minimum value of the LHS of dual program constraint

(4.43) over all nodes k E N. Then, solving the dual program is equivalent to finding

a set of weights w(e) y such that (wy) is minimized. Denote the optimal objective
D(w,Y) Let wt 1 and yt-i denote the

function value of the latter by 0, i.e., 0 = min,y () Let wt and yt-1 denote the

weight function w and weight value y respectively at the beginning of iteration t of

the while loop, and let At- 1 be the value of EjeN cj (primal objective function) up

to the end of iteration t - 1. Suppose the algorithm terminates after iteration L. The

following lemma upper bounds the value of D(w, y) at the end of every iteration.

Lemma 4.4.1 At the end of every iteration t, 1 t L, of Algorithm COST-

BOUND-MAX-THROUGHPUT, the following holds

t

D(wt, yt) < (m + 1)6 11 [1 + (Aj -Aj)]
j=i

Proof: During iteration t, let k = k be the node for which V(k) is minimum, let

Pi, Qj be the corresponding paths (as defined earlier) along which flow is augmented,

and let ca be the associated increment in ac. Recall that the weights are updated as

wt(e) = wt-i(e) + e E E

Yt = Yt-1 + e EIE CA (e)C
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where A(e) is the total flow sent on link e during iteration t. Using this, we have

D(wt, Yt) = 5 utett(e) + Cyt
eEE

- lletl(e) + c 5 wt-i(e)A(e) + Cyt-l + Eyt- 5 CeŽ(e)
eEE eEE eEE+ (Wt-l(e) + Yt-lce)/A(e)

eEE

+ (wt-l(e) + Yt-lCe)[ S
eEE ik Pi3e

aoRi+ E
jok,Qj 3e

= D(wt-i) + o E(wt-l(e) +yt-le)[ 3 Ri + E Cj]
eEE i5k.Pi9e j4k,Qjpe

Interchanging the summations on the RHS of the above equation and first summing

along links on paths Pi, Qj, and then over i, j respectively, we can rewrite the RHS

of the above equation to obtain

- D(wt-1)+ea[5

= D(wt-1) +ea[E
i54k

Ri E (wt-l(e) + Yt-lCe) + S Ci

Ri min E (wt-(e)+ t-ce)+
PE7ik eEP

5 (Wt-l(e) + Yt-1 Ce)]
eEQj

(4.47)S Cjp min 5(wt-l(e) + yt-ice)]jk CPE'P eP
= D(wt1 ) + EaF(wtj, Yt-i)

= D(wt-1 ) + e(At - At-1)F(wt-, Yt-1)

The step leading to (4.47) follows from the fact that Pi, Qj are shortest paths under

link costs (t_ (e) + yt-ice). The next step follows from the choice of node k = k for

minimizing V(k).

Using this last equation for each iteration down to the first one, we have

D(wt, ) D(wo, yo) + (A -
j=l

(4.48)
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From the definition of 0, we have < D(j,yj),y,) D(w-i, yj-l).- F(-.j-l~yj-1), -

Also, D(wo, yo) = (m + 1)6. Using these in equation (4.48), we have

C t
D(wt, yt) < (m + 1)6 + -(Aj - Ajl)D(wjl, yj-i) (4.49)

j=l

The property claimed in the lemma can now be proved using inequality (4.49) and

mathematical induction on the iteration number t. The method is similar to that

used in the proof of Lemma 4.3.1. ·

We now estimate the factor by which the objective function value value AL in the

primal solution needs to be scaled when the algorithm terminates so as to ensure that

link capacity constraints are not violated.

Lemma 4.4.2 When Algorithm COST-BOUND-MAX-THROUGHPUT terminates,

the primal solution needs to be scaled by a factor of at most logl+, -3- to ensure primal

feasibility.

Proof: We need to show that link capacity constraints (4.35) and cost constraint

(4.36) in the primal linear program are obeyed after the primal solution is scaled by

the above factor. The link capacity constraints can be shown to be obeyed as in the

proof of Lemma 4.3.10. We show here that the cost of the solution is at most C after

scaling by the above factor.

Let the cost of the flow sent during iteration t be Bt for t = 1, 2,...,L. Let

ELEt=1 Bt = C, i.e., the cost of the unscaled solution exceeds the cost bound C by a

factor of ,.

Because of the way in which ca is chosen in accordance with equations (4.45)-

(4.46), the flow sent on each link e during an iteration is at most ue and the cost of

this flow is at most C. Hence, dual weights w(e), y are updated by a factor of at most

1 + e after each iteration. Since the algorithm terminates when D(w, y) > 1, and

since dual weights are updated by a factor of at most 1 + e after each iteration, we

120



CHAPTER 4. MIAXIMUM THROUGHPUT NETWORK ROUTING

have D(wVL. YL) < 1 + E. Since the weight y, with coefficient C, is one of the summing

components of D(w, y), we have CYL < 1 + e. Also, the value of YL is given by

Bt
YL= 5 H (1+ Ce)

t=l I

Using the inequality (1 + cx) > (1 + x)c for all x > 0 and any 0 < c < 1 and setting

x =e and c Bt < 1,wehaveC

1lFe L 
> YL > - (l+)Bt/Cc C t=l

--= C- (+t=l Bt/C

= ~( +e)L

whence,
1-Fe

K < logl+, 6

The approximation guarantee for Algorithm COST-BOUND-MAX-THROUGHPUT

is established in the following theorem. The proof is similar to that for Theorem

4.3.11. The main difference is in the use of the two lemmas established in this sec-

tion.

Theorem 4.4.3 For any given 0 < ' < 0.5, Algorithm COST-BOUND-MAX-

THROUGHPUT computes a solution with objective function value within (1 + e')-

factor of the optimum for

I+e e'
6=[(1 = 6)(m+l)]l/e and = -

[ + )(I + )] 1/e 2
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Analysis of Running Time

We now show that the running time of Algorithm COST-BOUND-MAX-THROUGHPUT

is strongly polynomial.

Theorem 4.4.4 For any given e > 0 chosen to provide the desired approximation fac-

tor guarantee in accordance with Theorem 4.3.11, Algorithm COST-BOUND-MAX-

THROUGHPUT runs in time

0 (i2nm(m + n log n) log m)

which is strongly polynomial.

Proof: The proof is similar to that for Theorem 4.3.12. As before, the running time

of each iteration of the algorithm during which a node k and associated paths Pi, Qj

are chosen to augment flow is O(n(m + n log n)).

We next estimate the number of iterations before the algorithm terminates. Recall

that in each iteration, traffic is sent along primary-backup path pairs Pi, Qj corre-

sponding to the maximum value of intermediate node split ratio o such that the flow

on link e is at most ue and the cost of the flow sent is at most C. Thus, either (or

both) of the following is true: (i) the flow sent on some link e is exactly ue, or (ii)

the cost of the flow sent is exactly C. For (i), the weight w(e) increases by a factor

of 1 + e, and for (ii), the weight y increases by a factor of 1 + e. Accordingly, with

each iteration, we can associate a dual weight which increases by a factor of 1 + e.

As shown in the proof of Theorem 4.3.12, the maximum number of times that the

weight w(e) (for a given link e) can be associated with any iteration is O(½ log,+, m).

Using the same reasoning, it follows that the maximum number of times that the

weight y can be associated with any iteration is the same quantity.

Since there are a total of m+1 weights w(e), y, hence the total number of iterations

is upper bounded by O( (m + 1) log+, in). Multiplying this by the running time
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per iteration, we obtain the overall algorithm running time as O(1n(m + 1)(mn +

n log n) log+ m) = O( nm(m + n log n) log m). X

4.5 How Optimal is Two-Phase Routing?

Two-phase routing specifies ratios for splitting traffic among intermediate nodes and

Phase 1 and Phase 2 paths for routing them. Thus, two-phase routing is one form of

fixed path routing. However, as explained in Section 2.2, it has the desirable property

of static provisioning that a general solution of fixed path routing (e.g., direct source-

destination path routing) may not have. Moreover, the scheme does not require a

packet's final destination to be known as the source, an indirection property that is

required of specialized service overlays like i3.

With reference to the above, we would like to investigate the following question:

Do the desirable properties of two-phase routing come with any resource (through-

put) overhead compared to (i) direct source-destination path routing, and (ii) optimal

scheme among the class of all schemes that are allowed to make the routing dynam-

ically dependent on the traffic matrix? We address this question in the following

ways.

First, using the algorithms developed for two-phase routing in this chapter, we

compare the throughput of two-phase routing with that of the optimal scheme on ac-

tual ISP topologies in Section 4.6. As we discussed in Section 1.7.3, the throughput of

the optimal scheme is coAJ'P-hard to compute. In Section 4.5.3, we discuss heuristics

to upper bound the throughput of the optimal scheme. This enables us to obtain a

posteriori lower bounds on the performance of two-phase routing with respect to the

optimal scheme.

Secondly using the algorithms developed for a generalized version of two-phase

routing and for direct source-destination path routing scheme in Chapter 5 we com-

pare the throughput of two-phase routing with that of direct source-destinatioll path
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routing on actual ISP topologies in Section 5.5.

Thirdly, we analyze the throughput requirements of two-phase routing from a

theoretical perspective and establish a 2-optimal bound in this section. That is, the

throughput of two-phase routing is at least that of the best possible scheme in which

the routing can be dependent on the traffic matrix. We would like to emphasize the

generality of this result - it compares two-phase routing with the most general class

of schemes for routing hose traffic.

4.5.1 Characterization of Optimal Scheme

Consider the class of schemes for routing all matrices in T(R, C) where the routing

can be made dependent on the traffic matrix. For any scheme A, let A(e, T) be the

traffic on link e when matrix T is routed by A. Then, the throughput AA of scheme

A is given by
Ue

AA =- min
eEE maxTET(f,) A(e, T)

The optimal scheme is the one that achieves the maximum throughput AOPT

among all schemes. This is given by

AOPT = max A
A

In the following lemma, the throughput of the optimal scheme is expressed in

another way. For each T E T(R, C), let A(T) be the maximum throughput achievable

for routing the single matrix T.

Lemma 4.5.1 The throughput of the optimal scheme is given by

AOPT= min A(T)
TET(R,C)

Proof: For any matrix T E T(R, C), since the optimal scheme has to route it, the

quantity A0op is upper bounded by A(T). Thus APT < minTcT(c )A(T). This
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minimum throughput can indeed be achieved by routing every matrix in a way that

maximizes its throughput. Hence equality holds in the above upper bound. ·

At first glance, the optimal scheme that maximizes throughput appears to be

hard to specify because it can route each traffic matrix differently, of which there are

infinitely many in T(R, C). However, because the link capacities are given in our

throughput maximization model, (an) the optimal scheme can be characterized in a

simple way from the proof of Lemma 4.5.1. Given a traffic matrix as input, route it in

a mnanner that maximizes its throughput. Routing a single matrix so as to maximize

its throughput is also known as the maximum concurrent flow problem [SM90] and is

solvable in polynomial time. Clearly, the routing is dependent on the traffic matrix

and can be different for different matrices. (An) The optimal scheme for minimum

cost network design does not appear to have a simple characterization like the above

for maximum throughput network routing.

4.5.2 2-Optimality of Two-Phase Routing

The 2-optimral bound for two-phase routing that we prove next establishes that

two-phase routing provides a 2-approximation to the optimal scheme for maximum

throughput network routing. Even though this theoretical result shows that the

throughput of two-phase routing, in the worst case, can be as low as that of the opti-

mal scheme, the experiments in Section 4.6 indicate that two-phase routing performs

much better in practice - for the evaluated topologies, the throughput of two-phase

routing is within 6% of that of the optimal scheme and matches that of the optimal

scheme in some cases.

We assume that Ri = Ci for all nodes i. Note that this is not a restrictive

assumption in practice because network routers and switches have bidirectional ports

(line cards), hence the ingress and egress capacities are equal.

Theorem 4.5.2 Let Ri = Cj for all nodes i, and R = ie Ri. Then,. the throughput
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of the optimal scheme is at most

2 (i - n nRi)21R iN

times that of two-phase routing.

Proof: Let aei be the traffic split ratios associated with each intermediate node i in

two-phase routing. Set ai = Ri for all i E N. Then, the demand matrix D = [dij] asR

a result of two phase routing is given by

dij = ctjRi + oiCj

= ajRi + iR

= 2RiRj
R

for all i $ j and dii = 0 for all i.

Now consider the traffic matrix T = [tij] where

tij- R

for all i j and tii = 0 for all i. Let

/3T E T(R, C). Then, we must have

d3 E tij <
jeN,jsi

0 E RiRj <
R -3jEN,j$i R

3Ri(R- Ri) <
R

fi be the maximum multiplier such that

Ri V i c N

Ri V ic N

Ri Vi cN

R ViEN
R - Ri
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whence,
R

R - miniEN Ri

Since D = 2T, hence 3T = D. Since the optimal scheme must route the matrix

O3T T(R. C), its throughput AOPT is at most the throughput A(ST) for routing

matrix /3T (using Lemma 4.5.1). Hence,

/3 2
AOPT < A(03T)= A(D) = A(D)

2 3

The last step uses the property that the throughput of c times a given matrix is equal

to 1 times the throughput of the original matrix. Since D is the demand matrix for
C

two-phase routing, we conclude that the throughput of the optimal scheme is at most

-= 2 (1- min Ri
1-R iEN

times that of two-phase routing. i

4.5.3 Upper Bounding Throughput of Optimal Scheme

In this section, we discuss some methods for upper bounding the throughput of the

optimal scheme that can possibly reconfigure the routing with changes in the traffic

matrix. Because computing the throughput of the optimal scheme is a hard opti-

mization problem (see Section 1.7.3), an upper bound will be useful in comparing the

throughput of two-phase routing with that of the optimal scheme.

Lemma 4.5.1 states that AOPT = minTeT(RC) A(T). Thus, we would a like to

identify a matrix T E T(R, C) for which A(T) is minimum. We know that this

problem is hard. Suppose that we take any single matrix T E 'T(R, C) and compute its

throughput A(T) - the maximum throughput for routing a single matrix under given

link capacities can be solved using the maximum concurrent flow problem [SM90].

This certainly gives an uppier bound onl AOPT, since \op7 < A(T). WVe describe
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heuristic approaches to find a matrix T c T(], C) that gives tight upper bounds.

WVe first consider general ingress-egress capacities and then the special case of equal

ingress-egress capacities.

General Ingress-Egress Capacities

Consider a matrix T with throughput A(T) whose maximum throughput routing uses

xe capacity on link e. Since A(T)xe _< Ue for all e, we have EeEE (T)Xe < EeEE Ue,

whence

AOPT < A(T) < ZeEE Ue
- EeEE Xe

Let B(T) be the minimum bandwidth required to route matrix T. Then, EeEE Xe >

B(T), whence AOPT < E-E u. Thus, the least upper bound obtained in this manner' -- ~~B(T)
is given by

AOPT < eEE (450)
maxTEr(RC) B(T)

The matrix T E T(R, C) that takes the highest bandwidth to route can be com-

puted in polynomial time as follows. The minimum bandwidth routing must route

all demands along shortest hop paths. Let dij denote the hop count of a shortest path

from node i to j for all i, j E N. Then, the problem of determining the traffic matrix

T = [tij] C T(R, C) that takes the maximum bandwidth to route can be formulated

as the following linear program:

maximize i,jeN dijtij

subject to

tij < Ri ViE N (4.51)
jfiN,jsi

tij < Cj Vj EN (4.52)
iE Nij
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ti > 0 Vi, j N (4.53)

The required bandwidth B(T) is the objective function of the linear program and

the ingress-egress traffic capacities that define T(R, C) form the constraints.

Let the optimum solution to this linear program be the matrix T*. The value of

B(T*) = maxTT(Rfi.) B(T) thus obtained gives us an upper bound on AOPT using

inequality (4.50) above. Note that maximum throughput routing does not necessarily

route along shortest paths. Hence, we can actually compute the throughput A(T*)

of the matrix T* and check if that gives a better (lower) upper bound (since AOPT <

A(T*)). In all experiments, the latter gave a better upper bound.

In some experiments, the above bound improved when we approximated T* using

a greedy heuristic as follows: Initialize all tij values to zero. Compute the source-

destination pair (i, j) for which dijmin(Ri, Cj) is maximum. Increment tj by t =

min(Ri, Cj), decrement both Ri and Cj by t, and recurse.

Equal Ingress-Egress Capacities

Consider the special case when all ingress-egress capacities are equal. Without any

loss of generality, we can assume that Ri = Ci = for all i c N. We can characterize

the structure of the polytope T(R, C) in this case in a simple manner.

It is well known that the set of non-negative matrices with unit row and column

sums (also called doubly stochastic) can be expressed as convex combinations of

permutation matrices, i.e., the vertices of the polytope formed by such matrices,

also known as the Birkhoff polytope, are precisely the permutation matrices [Z95].

Since the nmatrices in T(R, C) have zero diagonal entries, it follows, by an argument

similar to that for the Birkhoff polytope, that the vertices of T(R, C) are precisely the

matrices corresponding to derangement permutations. (A derangement permnutation

is one in which no element maps to itself.)

129



CHAPTER 4. MAXIMUM THROUGHPUT NETWORK ROUTING

The maximum throughput routing for any matrix T leads to a routing in which

all links have utilization of at most (with the upper bound reached by at least

one link). Thus, if (T) is the minimum value of the maximum link utilization for

routing matrix T, then 1(T) = .(T) We next establish the convex nature of the

minimum link utilization function p(T).

Lemma 4.5.3 Consider any two matrices T1 and T2. For any scalar x E 0,1], let

T = xT1 + (1 - x)T2. Then,

1 (T) < xp(Ti) + (1-x)(T2)

Proof: Let p = (T1) and ,u2 = /u(T2). The matrix xT1 can be routed with link

utilization at most xl. The matrix (1 - x)TI can be routed with link utilization at

most (1 - x)/ 2. Taking the sum of the routing for the two cases, we obtain a routing

for matrix T = xT + (1 -x)T 2 with link utilization at most X/il + (1 - x)A 2. Thus,

the routing for matrix T that minimizes the maximum link utilization must have a

link utilization of at most this quantity. ·

Using Lemma 4.5.1 and the reciprocal relation of throughput and minimum link

utilization, we have

1 1
AOPT = min

TeT(R,C) p(T) maxTET(RC,) (T)

Since the function g(T) is convex, its maximum value must occur at one of the vertices

of the polytope T(R, C). Thus, it suffices to consider the derangement permutation

matrices. We can generate these matrices at random and compute the throughput in

an effort to improve the upper bound on AOPT obtained using the previous methods

when the ingress-egress capacities are all equal.
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Best possible throughput X*
for two-phase routing

4-*

I I I -

0 * o

Throughput greater than XOPT

is infeasible for any routing scheme

Throughput Efficiency of Two-Phase Routing = */XopT

Figure 4-3: Schematic Illustrating Throughput Efficiency of Two-Phase Routing.

4.6 Evaluation on ISP Topologies

In this section, we evaluate the performance of two-phase routing. We first define a

quantity called throughput efficiency that will be used to measure the effectiveness of

two-phase routing with respect to the optimal scheme.

4.6.1 Throughput Efficiency

Given a network with link capacities and bounds Ri, Cj on ingress-egress traffic, an

output A* of the problem formulation for two-phase routing in Section 4.1 provides

a guarantee that all matrices in A* T(R, C) can be routed by two-phase routing.

The highest possible throughput AOPT is admitted by the optimal scheme. This is

illustrated in Figure 4-3. We use the ratio APT to define the throughput efficiency of

two-phase routing.

Definition (Throughput Efficiency): Under given link capacities and

ingress-egress bounds on the traffic matrix, the throughput efficiency of

two-phase routing is given by the quantity A- (< 1).

From Theorem 4.5.2, it follows that the throughput efficiency of two-phase roult-

ing is at least 0.5 (or, 50%) when the ingress-egress capacities are symmetric, i.e.,

R~ = Ci for all i. The latter assmpI)tiol holds for all the ISP topologies we uise
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in our experiments because network routers and switches have bidirectional ports

(line cards). We will see that the throughput efficiency of two-phase routing on the

evaluated topologies is significantly better than the theoretical lower bound of 50%.

The value AOPT was shown to be coiVP-hard to compute in Section 1.7.3. We use

the methods discussed in Section 4.5.3 to compute a "good" upper bound AOPT for

AOPT. Since AOPT < AOPT, we have

<-<1
AiOPT AoPT -

Thus, the quantity S-A is a lower bound on the throughput efficiency of two-phase

routing. We will use this lower bound as a conservative estimate of throughput

efficiency of two-phase routing in all the experiments.

4.6.2 Topologies and Link/Ingress-Egress Capacities

We use the six ISP maps from the Rocketfuel dataset which had accompanying (de-

duced) OSPF/IS-IS weights [SMWH, SMW02, MSWA02]. These topologies list mul-

tiple intra-PoP (Point of Presence) routers and/or multiple intra-city PoPs as indi-

vidual nodes. We coalesced such nodes so that nodes correspond to cities and the

topology represents geographical PoP-to-PoP ISP topologies. Some data about the

original topologies and their coalesced versions is listed in Table 4.1.

The Rocketfuel topologies are router-level (IP layer) topologies. The PoP-to-PoP

topologies we obtained as above all have average node degrees less than 4. Physical

WDM topologies of ISPs are characterized by small average node degrees (typically

less than 4). Assuming that all physical WDM links appear in the IP topology,

it is conceivable that "most" of the links in the PoP-to-PoP Rocketfuel topologies

correspond to physical WDM links (instead of multi-hop physical layer paths). We

make this assumption for our experiments with IP-over-Optical networks. ISPs regard

their topologies as proprietary information - we are not aware of other credible sources
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Topology Routers Links PoPs Links
|_________ _ (original) (inter-router) (coalesced) (inter-PoP)

Telstra (Australia) 1221 108 306 57 59
Sprintlink (US) 1239 315 1944 44 83
Ebone (Europe) 1755 87 322 23 38
Tiscali (Europe) 3257 161 656 50 88
Exodus (Europe) 3967 79 294 22 37
Abovenet (US) 6461 141 748 22 42

Table 4.1: Rocketfuel topologies with AS number and name. The table lists the
original number of routers and inter-router links, and the number of coalesced PoPs
and inter-PoP links.

for information about actual ISP topologies.

The topologies provided by Rocketfuel did not include the capacities of the links,

which were needed for our study. The Rocketfuel maps did include derived OSPF/ISIS

weights of links, which were computed to match observed routes. In the absence of

any other information on capacities, we need a way to deduce the link capacities from

the weights. For this purpose, we assumed that the given link weights are the Cisco

default setting for OSPF weights, i.e., inversely-proportional to the link capacities

[Cisco97]. The link capacities obtained in this manner turned out to be symmetric,

i.e., u.ij = ui for all (i,j) E.

There is also no available information on the ingress-egress traffic capacities at

each node. Because ISPs commonly engineer their PoPs to keep the ratio of add/drop

and transit traffic approximately fixed, we assumed that the ingress-egress capacity

at a node is proportional to the total capacity of network links incident at that node.

We also assume that R = C for all nodes i - since network routers and switches

have bidirectional ports (line cards), hence the ingress and egress capacities are equal.

Thus, we have Ri(= Ci) C EEE+(i) 'Ie
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Topology Throughput Efficiency Throughput Efficiency of
of Two-Phase Routing Point-to-Point Pipe Model

(Lower Bound) (Lower Bound)

Telstra (Australia) 1221 100% 5.39%

Sprintlink (US) 1239 97.71% 3.76%

Ebone (Europe) 1755 98.90% 7.33%
Tiscali (Europe) 3257 95.65% 5.97%
Exodus (Europe) 3967 100% 13.15%

Abovenet (US) 6461 94.82% 10.44%

Table 4.2: Throughput Efficiency (lower bound) of Two-Phase Routing and Point-
to-Point Pipe model.

4.6.3 Experiments and Results

To obtain the maximum throughput for two-phase routing for purposes of comparison

with that of the optimal scheme, we used the exact linear programming formulation

from Section 4.1. The linear program size was reduced by a factor of n by using per

source flow variables instead of per source-destination flow variables.

Throughput Efficiency

In Table 4.2, we give the throughput efficiency of two-phase routing for the six Rocket-

fuel topologies. We compare this with the throughput efficiency of the point-to-point

pipe provisioning model in which a fixed demand of min(Ri, Cj) is provisioned from

node i to node j for all i, j E N to handle the maximum possible traffic from i and

j under the given ingress-egress capacities. Similar to that for two-phase routing,

the throughput efficiency of the point-to-point pipe model is measured relative to the

throughput of the optimal scheme.

Table 4.2 clearly shows that the throughput of two-phase routing is very close to

that of the best possible scheme for routing with traffic variability on all six Rocketfuel

topologies. Thus, two-phase routing, surprisingly, is able to meet the requirements of

Section 1.5 without any appreciable decrease in throughput compared to the optimal

scheme. Table 4.2 also brings out the poor throughput performance of the point-to-
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Topology Number of
l___________Intermediate Nodes

Telstra (Australia) 1221 1
Sprintlink (US) 1239 5
Ebone (Europe) 1755 4
Tiscali (Europe) 3257 7
Exodus (Europe) 3967 3
Abovenet (US) 6461 7

Table 4.3: Number of Intermediate nodes in Two-Phase Routing.

point pipe model, the throughput efficiency of which is in the range of 3-14%.

Number of Intermediate Nodes

In Table 4.3, we list the number of intermediate nodes i with c > 0 for maximum

throughput two-phase routing on the six Rocketfuel topologies. Interestingly, the

number of such intermediate nodes, especially for the larger topologies, is small com-

pared to the total number of nodes. This may have favorable implications in the

adaptation of the scheme to specialized service overlays and middlebox routing as

explained in Section 2.2. In these two application scenarios, the intermediate nodes

are sites for locating overlay routing servers and middleboxes respectively.

As explained in Section 2.2.1, a small number of intermediate nodes (compared

to the total number of network nodes) is desirable for IP-over-Optical networks also,

since that makes the number of IP layer links linear in the number of network nodes

- this leads to a more scalable network architecture from an ISP deployment perspec-

tive.

Equal vs. Unequal Traffic Split Ratios

For the two-phase routing scheme, we denote the throughput for equal traffic split

ratios by Aequal and the throughput for our general problem formulation that allows

unequal traffic split ratios by At/,,qel. It is easy to see that Ac1equal _> equ.al. In
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Topology /unequal eq Azunequal-Aeqal
I A~~/equ

Telstra (Australia) 1221 1.0 0.7756 28.93%
Sprintlink (US) 1239 1.0 0.3978 151.38%

Ebone (Europe) 1755 1.0 0.6137 62.95%
Tiscali (Europe) 3257 1.0 0.6625 50.95%

Exodus (Europe) 3967 1.0 0.8908 12.26%

Abovenet (US) 6461 1.0 0.7098 40.89%

Table 4.4: Throughput of Two-Phase Routing with unequal and equal traffic split
ratios.

Table 4.4, we give the throughput of two-phase routing with equal and unequal split

ratios. The percentage increase in throughput Aurequal-Aequa when we go from equalA equal

to unequal split ratios is also shown. When either the link capacities or ingress-egress

capacities are scaled by a constant, the throughput values are scaled by the same

constant. Hence, for comparison purposes, we have normalized the values so that the

throughput for the unequal traffic split ratios case is Aunequal 1.0.

The results clearly bring out the increase in network throughput when the split

ratios ai are allowed to be unequal. The average savings for the six Rocketfuel

topologies is 57.89% and the range is from 12% to as high as 152%. We conclude that

by allowing the traffic split ratios to be unequal, network throughput for two-phase

routing can be increased significantly over the equal traffic split ratios case.

Router-to-OXC Link Capacity Constraints in IP-over-Optical Networks

We investigate the effect of router-to-OXC link capacity constraints in IP-over-Optical

networks on the throughput and number of intermediate nodes for the two-phase

routing scheme. For this purpose, we set the router-to-OXC link capacity at every

node to be a fixed fraction of the total capacity of all network links incident at that

node and vary this fraction for the experiments, starting from 0.05 and increasing to

1.0.
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Figure 4-4: Throughput for Two-Phase Routing in IP-over-Optical networks with
varying router-to-OXC capacity. Rocketfuel topology number is indicated in legend.

The throughput values for two Rocketfuel topologies, Exodus 3967 and Abovenet

6461, are plotted in Figure 4-4. As before, we have normalized the throughput values

so that the throughput when the router-to-OXC link capacities are sufficiently large is

1.0. (When the router-to-OXC link capacities are sufficiently large, the throughput is

determined by the capacities of the network links.) In Figure 4-5, we plot the number

of intermediate nodes i with ai > 0.

Because intermediate node processing requires packets to traverse router-to-OXC

links at that node, it can be expected that limiting this capacity will lead to traffic

being split across more intermediate nodes. This is consistent with our experimental

observation. As the router-to-OXC link capacity fraction is increased, the throughput

increases and ultimately flattens to the (normalized) value of 1.0 - this happens

at router-to-OXC link capacity fraction values of 0.1 and 0.3 for the Exodus 3967

and Abovenet 6461 topologies respectively. Similarly, the number of intermediate

nodes decreases and ultimately flattens to the values consistent with Table 4.3 for

the corres)ponding topologies - this happens at router-to-OXC link capacity fraction
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Chapter 5

Generalized Traffic Split Ratios

In our description and problem formulation for two-phase routing so far in this thesis,

the traffic split ratios ai are dependent on the respective intermediate nodes only. In

this chapter, we generalize the traffic split ratios to depend on source and destination

of traffic. This is conceivably the most general form of two-phase routing. It is

motivated by the fact that source nodes should not be required to split traffic through

intermediate nodes that are distant from them or the destination nodes of traffic.

This generalization has the potential of reducing network cost or increasing network

throughput.

We first derive an expression for the demand between any two nodes as a result of

two-phase routing with generalized traffic split ratios. For each of the optimization

models of minimum cost network design and maximum throughput network routing,

we first provide a linear programming formulation with an infinite number of con-

straints and a polynomial time separation oracle (another linear program) that is

suitable for solution using the ellipsoid method. By taking the dual of the separa-

tion oracle and combining it with the main linear program, we reduce the number

of constraints to polynomial size, thus significantly reducing the running time. For

the minimum cost network design problem, we use an upper bound on the demand

valhes to obtain a simplified linear programming fornulation that can be interpreted
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as a fraction Steiner forest problem (this problem admits combinatorial algorithms).

Using a technique similar to that used for two-phase routing, we give a polynomial

size linear programming formulation for maximizing throughput for direct source-

destination routing of variable traffic along fixed paths. Using this, we compare the

throughput requirement of two-phase routing (with generalized traffic split ratios)

with that of direct source-destination path routing on actual ISP topologies collected

for the Rocketfuel project [SMWH].

5.1 Generalized Traffic Split Ratios and Demand

Values

The traffic split ratios ai can be generalized to depend on source or destination nodes

of the traffic, or both. We consider the latter version here. While this generalization

does not meet the indirection requirement of specialized service overlays like i3, it

can potentially decrease the resource requirements of the two-phase routing scheme

for other application scenarios like IP-over-Optical networks.

Suppose that a fraction cWj of the traffic that originates at node i whose destination

is node j is routed to node k in Phase 1. The traffic split ratios associated with any

source-destination pair must sum to unity, i.e., EkEN Cak = 1 for all i, j N. Let

us compute the total demand that is needed between nodes a and b to route Phase

1 and Phase 2 paths. Let the current traffic matrix be T = [tij] E T(I, C). In the

first phase, a fraction cak of the traffic tak originating at node a and destined for

node k is sent to intermediate node b. Thus, the demand from node a to node b for

Phase traffic is EkEN bk tak. A fraction ob of the traffic tkb originating at node

k and destined for node b is sent to intermediate node a in Phase 1 and needs to

be routed to node b in the second phase. Thus, the demand from node a to node b

for Phase 2 traffic is EEN aC tkb. Therefore, the total demand Tab that needs to be

statically provisioned from node a to node b is the nmaximum value, taken over all
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1

1

Figure 5-1: 6-node network to illustrate throughput improvement with generalized
traffic split ratios for Two-Phase Routing.

traffic matrices T E T(R, C), of the sum of the above two quantities, that is,

(5.1)

The quantity above appears to involve bilinear terms but can be nicely accommo-

dated into a linear program for the problems of both minimum cost network design

and maximum throughput network routing as we show in the next two sections.

Before proceeding further, we give an example to illustrate the improvement in

throughput when we generalize the traffic split ratios as above. Consider the 6-node

network shown in Figure 5-1. Here Rl = R2 = 1 and C5 = C6 = 1. All other ~, Cj

values are zero. The capacities of links (5,3) and (5,4) are each equal to some small

quantity € > o. All other links shown have unit capacity.

Observe that node 1 has a unit capacity path to node 3 but the capacity of

the path to node 4 is small (= €). Similarly, node 2 has a unit capacity path to

node 4 but the capacity of the path to node 3 is small (= f). Thus, when maximizing

141



CHAPTER 5. GENERALIZED TRAFFIC SPLIT RATIOS

throughput, node 4 is not a good choice for serving as intermediate node for the traffic

originating at node 1. Similarly, node 3 is not a good choice for serving as intermediate

node for the traffic originating at node 2. If the traffic split ratios are dependent on

intermediate nodes only (and not on source or destination of traffic), the throughput

of two-phase routing will be small. By making the traffic split ratios dependent on the

source of traffic also, two-phase routing can completely avoid routing along the links

with small capacities. In fact, the gap between the throughputs of two-phase routing

with intermediate node dependent traffic split ratios ak and generalized traffic split

ratios ac4 can be made arbitrarily large by making the value of e arbitrarily small.

For network cost, a similar example where the links (5,3) and (5,4) have large

costs can be used to show that the gap between the costs of two-phase routing with

intermediate node dependent traffic split ratios and generalized traffic split ratios can

be arbitrarily large.

However, in view of the 2-optimality results for two-phase routing with respect

to both network cost and network throughput (in Sections 3.2 and 4.5) that use

only intermediate node dependent traffic split ratios and assume Ri = Ci for all i, it

follows that such pathological examples where the cost or throughput improvement

with generalized split ratios is arbitrarily large (or, even greater than 2) do not exist

when ingress-egress capacities are symmetric.

5.2 Minimum Cost Network Design for Two-Phase

Routing

Given a network with link costs ce and constraints Ri, Cj on the ingress-egress traffic,

we consider the problem of two-phase routing with generalized traffic split ratios so

as to minimize the network cost.

We begin with a linear programming formulation with an infinite number of con-

straints and a polynonlial size separation oracle linear program for it, and then coni-
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bine the two into a polynomial size linear program that can be solved in polynomial

time using a general linear programming algorithm [S86].

5.2.1 LP with Infinite Constraints and Separation Oracle

The routing of Tab amount of traffic, as given by equation (5.1). for each source-

destination pair (a, b) must be along the shortest cost path in an optimal solution.

Let dij be the cost of the shortest path from node i to node j under link costs c. Then,

the network cost is given by EijeN dijTij The linear programming for minimizing

network cost is as follows:

minimize i,jeN dij-ij

subject to

Tab > E ta ± V [tij] T(R, C), V a, b e N (5.2)
kEN kEN

ab = 1 Va,bEN (5.3)
kEN

ab > 0 Vk,a,bEN (5.4)Ok - 5 4

Constraints (5.2) correspond to the value of the demand Tab from node a to node

b as given in equation (5.1). Constraints (5.3) correspond to the traffic split ratios

summing to 1 for each source-destination pair. The quantities tij in the RHS of (5.2)

are constants and hence the constraints are linear. Note that there are an infinite set

of constraints in (5.2), since there are n(n- 1) constraints for each [tij] c T(R, C).

The above linear program can be solved in polynomial time by the ellipsoid al-

gorithlln [S86] provided we can find a polynomial time separation oracle for the coin-

straints (5.2). Given a set of values for the variables in the above linear program, the
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separation oracle needs to identify at least one constraint that is violated (if any), or

indicate otherwise. Clearly, constraint (5.3) can be verified in polynomial time.

To determine if the constraints in (5.3) are violated for any link, we need to either

identify a source-destination pair (a, b) and a traffic matrix [tij] E T(Ri, C) such that

the corresponding constraint is violated, or determine that all such constraints are

satisfied. This can be done by verifying that for each source-destination pair (a, b),

the linear program below, with variables tij for all i, j N, has optimum objective

function value at most ab. If not, the traffic matrix [tij] obtained in the optimal

solution of the linear program identifies the corresponding violating constraint in

(5.2).

maximize EkeN ak tak + EkeN atkb

subject to

tij < Ri Vi EN (5.5)
jeN,j4i

E tij < C3 VjN (5.6)
iEN,i$j

tij > 0 V i, j E N (5.7)

The ellipsoid method is primarily a theoretical tool for proving polynomial-time

solvability - its running time is not feasible for practical implementations. Hence,

the motivation for designing a polynomial size linear program for the above problem.

Such an LP can be directly fed into LP solvers like CPLEX [CPLEX] for solution.

5.2.2 Polynomial Size LP

In developing the polynomial size LP, we first take the dual of the separation oracle

linear program above. For a given source-destination pair (ab), the dual linear
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program has non-negative variables r(i, a, b) corresponding to each constraint in (5.5)

and non-negative variables c(j, a, b) corresponding to each constraint in (5.6).

minimize iEN Rir(i, a, b) + EjEN Cjc(j, a, b)

subject to

r(a,a,b) +c(b,a,b)

r(a, a, b) + c(k, a, b)

r(k, a, b) + c(b, a, b)

r(i,a,b), c(i, a,b)

> Ofab + ab

> Cak VkEN, k b

> akb VkEN, k a
> 0ieN
> 0 VEN

It follows directly from strong duality of linear programming [S86] that for each

source-destination pair (a, b), the primal (separation oracle) linear program has an

optimum objective function value of at most Tab if and only if the dual linear program

has a feasible solution with objective function value at most Tab. The requirement

that the dual linear programs, for all a, b C N, have feasible solutions with objective

function value at most Tab can be modeled as the following constraint:

Rir(i,a,b) + Cjc(j,a,b) < Tab V a,b N
iEN jEN

This allows us to remove the infinite set of constraints in (5.2) and add the above

constraint and constraints (5.8)-(5.11) from the dual linear programs to obtain the

following polynomial size linear program for our problem:

minimize i.JEN dijTij
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subject to

Cab = Va, b·N (5.12)
kEN

5Rir(i,a, b)±51:Cc(j, a, b) • Tab V a,b N (5.13)
iEN jEN

r(a, a, b) + c(b, a, b) > a b + aab V a,b N (5.14)

r(a,a,b) + c(k,a,b) > a k V k,a,b E N,k b (5.15)

r(k, a, b)±+ c(b, a, b) Ž a kb V k, a, b N, k a16)

Zb > 0 Vk,a,b·N (5.17)

r(i, , b), c(i, a, b) > 0 Vi,a,b·N (5.18)

This linear program has n(n- 1) constraints each in (5.12)-(5.14), n(n- 1)(n- 2)

constraints each in (5.15)-(5.16), n 2(n - 1) constraints in (5.17), and 2n2(n - 1)

constraints in (5.18), for a total of 0(n 3 ) constraints. The number of variables is

n( - ) + n2(n- 1) + 2 2 (n- 1) = (n3 ).

5.2.3 Simplification Using an Upper Bound on the Demands

In this section, we derive an upper bound on the demand from node a to node b for

two-phase routing with generalized traffic split ratios, as given by equation (5.1). We

then use this upper bound as the demand value and obtain two different formulations

for the problem that can give faster running times. The first is a linear programming

formulation with about 2n3 fewer variables. The second is a fractional Steiner forest

formulation that admits a combinatorial algorithm. It should be noted that the only

approximation involved in the problem formulations is in the use of the derived upper

bound on the demand values as the actual demand values - the formulations are exact

for these demand values.

For a. traffic matrix T = [tij] · T(R, C), the demand from node a to node b for
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Phase 1 traffic is

kEN

< max Oak E tak < miax ak R,
kEN

and the demand from node a to node b for Phase 2 traffic is

<max k'ba t b

k'EN
k'bb

-- k'N

Using the above two inequalities, the upper bound on the total demand Tab from node

a to node b as a result of two-phase routing is

Tab < max ak Ra + max ak' Cb V a, b E N
kEN b k'EN

(5.19)

Let rTb denote the upper bound on Tab given by the RHS of (5.19). We will use this

upper bound Tab instead of the exact value Tab given by (5.1).

-ab = Ra m ak b aX C 8Q. ek'bTab = Ramaxob + Cbmaxa V a E N
kEN 'EN a

(5.20)

Linear Programming Formulation

The quantity Tab is equal to the minimum value that satisfies the following linear

constraints:
I Cak + k'b

Tab > Rak + Cb a k, k' E N

We replace the infinite set of constraints (5.2) in the linear programming formulation

in Section 5.2.1 to obtain the following polynomial size linear program:

minimize i,jEN dijr.ij

subject to

,b Ž R ak + Cba b 'b Nb ~ ~ k abE
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Zab = 1 Va, bcEN (5.22)
keN

a' > 0 Vk,a,bEN (5.23)

Compared to the polynomial size linear program in Section 5.2.2, the above linear

program has 2n2 (n- 1) fewer variables. However, the number of constraints increases

from O(n 3) to O(n 4 ) because of the n3 (n- 1) constraints in (5.21). The above linear

program has a much simpler structure than the one in Section 5.2.2 and can be

interpreted in terms of fractional solutions to a well-studied problem in combinatorial

optimization. We discuss this next.

Fractional Steiner Forest Formulation

We show that the linear programming formulation that we just developed is equivalent

to the fractional Steiner forest problem with certain restrictions on the choice of paths.

In the Steiner forest problem problem, we are given a graph with non-negative edge

costs and a set of source-destination node pairs. The objective is to select a minimum

cost set of edges such that the induced subgraph contains a path connecting each

source-destination pair. For the undirected version of the problem, the subgraph

formed by the selected edges in an optimal solution is a forest, since otherwise we

can remove a link from a cycle without increasing the cost of the solution. However,

this is not true in general for the directed version of the problem. Because we use a

directed graph in our problem for two-phase routing, we will be concerned with the

directed version of the Steiner forest problem.

The fractional version of the Steiner forest problem can be obtained by considering

it in terms of network flow as follows - the path connecting a source-destination

pair corresponds to sending integer flow of unit value and the usage on a link is the

maximum flow it carries for any source-destination path (which, in the integer version,

is 0 or 1). The fractional relaxation is obtained by allow the unit flow between every
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source-destination pair to be splittable. The total cost is obtained by multiplying the

cost of a link by its usage and summing over all links. Thus, the main difference from

the standard multicommodity flow problem is that the flow on a link is the maximum

(and, not the sunm) of the usage associated with all source-destination pairs.

Coming back to our minimum cost network design problem for two-phase routing,

recall that the Phase and Phase 2 paths are routed along shortest cost paths in

an optimal solution. Hence, it is helpful to work on a complete graph whose links

represent shortest paths in the given topology graph G. Accordingly, let G' = (N, E')

be the complete graph on n nodes where the link (i, j) corresponds to a shortest path

(of cost dij) from node i to node j. (Recall that dij is the cost of the shortest path

from node i to node j under link costs ce.)

For Phase paths, the capacity that needs to be allocated on the logical link

(i, j) in G' is Ri maxkCN OTk, incurring a cost of dijRi maxkEN aok. Likewise, for Phase

2 paths, the capacity that needs to be allocated on the logical link (i, j) in G' is
kjk

Cj maxkeN ai, incurring a cost of dijCj maxkeN akj

To develop the Steiner forest formulation, we actually need to make two copies of

the each link (i, j) in G'. Denote the resulting graph by G" = (N, E"). The first copy

of a link is used for carrying Phase traffic, and the second copy is used for carrying

Phase 2 traffic. Thus, in G", each link carries either Phase 1 traffic or Phase 2 traffic

but not both.

We now interpret the traffic split ratios oikj as flow variables for sending unit

amount of flow from node i to node j in graph G". This flow is split across paths

of (at most) two hops that pass through any intermediate node k. The flow on the

path i-k -j is k . The first hop corresponds to Phase 1 traffic and the second hop

corresponds to Phase 2 traffic. This is illustrated in Figure 5-2. When k = i, this is

a one hop path corresponding to Phase 2 traffic. When k = j, this is a two hop path

corresponding to Phase traffic. For all other values of k, this is a two hop path.

The total flow sent from node i to node j is unity since EkEN i& = 1.
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Phase 1 link
cost = R.d'kI I

Phase 2 link
cost = C .dk.

J J

Figure 5-2: Fractional Steiner forest formulation for minin1um cost Two-Phase Rout-
ing with generalized traffic split ratios.

Using this interpretation of flow variables, the maximum flow for any source-

destination pair on the first copy of link (i, j) (for Phase 1 traffic) in G" is IDaxkEN ajk.

Thus, the value of Phase 1 traffic on a link is consistent with the capacity allocated

on a link in the fractional Steiner forest problem. By making the cost of the first

copy of link (i, j) (for Phase 1 traffic) equal to dijRi, we obtain the cost associated

with Phase 1 traffic on this link as (dijRi) maXkEN ajk. Similarly, the flow on the

second copy of link (i,j) (for Phase 2 traffic) is maxkEN a;j. By making the cost of

the second copy of link (i,j) (for Phase 2 traffic) equal to dijCj, we obtain the cost

associated with Phase 2 traffic on this link as (dijCj) maXkEN a;j. The link costs are

shown in Figure 5-2. Thus, the cost of the solution for the fractional Steiner forest

formulation is equal to

~ d (R ik C kj)L.., ij i Inax a], + j max ai.. kEN kENt,]EN
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= E dijri'j (using (5.20))
i.jEN

which is equal to the objective function of our linear programming problem formula-

tion using the upper bound r'j on the demand values. This establishes the fractional

Steiner forest formulation for our problem. Note that in our formulation, there are ex-

actly n paths along which flow can be (splittably) routed for each source-destination

pair (two of these paths have a single hop and the remaining have two hops).

Garg and Khandekar [GK02] give a fast combinatorial algorithm for computing a

solution to the fractional Steiner forest problem up to (1 + e)-factor of the optimum

for any given e > 0. They develop a primal-dual scheme using a path indexed linear

programming formulation for the problem. Hence, their formulation allows the set of

paths for each source-destination pair to be restricted, which meets the requirement of

our formulation. On an instance of our problem, where the graph G" has n nodes and

2n(n - 1) links and a set of n available paths (of at most two hops) for each source-

destination pair, their combinatorial algorithm runs in O( n5 log2 n) time. Since

our linear programming formulation has O(n3 ) variables and O(n 4 ) constraints, the

combinatorial algorithm is asymptotically faster than a general linear programming

algorithm for the problem.

5.2.4 Note about Undirected Graphs with Symmetric Ingress-

Egress Capacities

In Section 3.3, we showed that for undirected graphs and symmetric ingress-egress ca-

pacities, the optimum solution for minimum cost two-phase routing with ai split ratios

is identical in structure and cost to that for the mininmum cost tree solution for direct

source-destination path routing. It is conjectured that for direct source-destinlation

path routing along fixed paths in undirected graphs, the cost of the optinmum tree

solution is identical to that for the optimum nmulti-path routing (fractional) solution

when ingress-egress capacities are symmetric. Exlperimental evidence for this is re-
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ported in [ER04]. Recently, the conjecture was shown to be true when the graph

is a cycle [HKS05]. If the conjecture is true for general graphs, then it follows that

for undirected graphs and symmetric ingress-egress capacities, the cost of optimal

two-phase routing with ci split ratios, as obtained in Section 3.1, is identical to that

for optimum multi-path routing when ingress-egress capacities are symmetric - in

which case it suffices to use ei split ratios for two-phase routing (using generalized

split ratios ajk does not help in reducing cost).

5.3 Maximum Throughput Two-Phase Routing

Given a network with link capacities ue and constraints Ri, Cj on the ingress-egress

traffic, we consider the problem of two-phase routing with generalized traffic split

ratios so as to maximize network throughput. The throughput is the maximum

multiplier A such that all matrices in A T(R, C) can be routed under given link

capacities.

We use the same approach as for minimum cost network design in Section 5.2

to obtain a polynomial size linear program for the problem. We begin with a linear

programming formulation with an infinite number of constraints and a polynomial size

separation oracle linear program for it, and then combine the two into a polynomial

size linear program.

5.3.1 LP with Infinite Constraints and Separation Oracle

The routing of Tab amount of traffic, as given by equation (5.1), for each source-

destination pair (a, b) can be specified by a set of flow variables Xab, where xab denotesXee

the amount of traffic from node a to node b that traverses link e in the network. Let

denote the maximum utilization of any link in the network. Then, all matrices in

1T(R, C) can also be feasibly routed. Thus, the throughput A is the reciprocal of

the maxin-lum link utilization - mnaxinizing A is equivalent to minimizing p. The
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linealr programming formulations is as follows:

minimize ,

subject to

Tab Z tak ± kb tkb V [ti] c T(R,C), V a,b e N (5.24)Ta~~~~~~~~~~~~~~~~~~~a bk ¥_ [tj a 
kEN kEN

+zij if k = i

xe - T = -ij if k =j V i, j, k E N (5.25)
eEE+(k) eEE -(k)

0 otherwise

Z x < pt, V e E E (5.26)
ijEN

E a = 1 a,bEN (5.27)
kEN

a b > 0 Vk,a, bEN (5.28)

x~i > 0 VeEE, Vi,j eN (5.29)

Constraints (5.24) correspond to the value of the demand Tab from node a to

node b as given in equation (5.1). Constraints (5.25) correspond to routing of flows

between each source-destination pair of the required value. Constraints (5.26) are the

maximum utilization constraints for each link. Constraints (5.27) correspond to the

traffic split ratios summing to 1 for each source-destination pair. The quantities tij

in the RHS of (5.24) are constants and hence the constraints are linear. Note that

there are an infinite set of constraints in (5.24), since there are n(n- 1) constraints

for each [tij] E T(R. C).

The above linear program can be solved in polynomial time by the ellipsoid al-

gorithm [S86] provided we can find a polynomial time separation oracle for the con-

straints (5.24). Given a set of values for the variables in the above linear program,

the separation oracle needs to idenltify at least one constraint that is violated (if any),
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or indicate otherwise. Clearly, constraints (5.25)-(5.27) can be verified in polynomial

time.

To determine if the constraints in (5.24) are violated for any link, we need to either

identify a source-destination pair (a, b) and a traffic matrix [tij] T(R, C) such that

the corresponding constraint is violated, or determine that all such constraints are

satisfied. This can be done by verifying that for each source-destination pair (a, b),

the linear program below, with variables tij for all i, j G N, has optimum objective

function value at most Tab. If not, the traffic matrix [tij] obtained in the optimal

solution of the linear program identifies the corresponding violating constraint in

(5.24).

maximize EkeN b tak + EkeN a tkb

subject to

ti < Ri V i N (5.30)
jEN,jsi

tij < Cj V j G N (5.31)
iEN,i$j

tij > 0 V i,j E N (5.32)

5.3.2 Polynomial Size LP

In developing the polynomial size linear program, we first take the dual of the sep-

aration oracle linear program above. For a given source-destination pair (a, b), the

dual linear program has non-negative variables r(i, a, b) corresponding to each con-

straint in (5.30) and non-negative variables c(j, a, b) corresponding to each constraint

in (5.31).
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minimize EiCN Rir(i, a, b) + EjEN CjC(j, a. b)

subject to

r(a,a,b) + c(b, a b)

r(a,a,b) +c(k,a,b)

r(k,a,b) +c(b,a,b)

r(ia, b), c(i, a, b)

> Cab +ab

> amk VkEN, kjb

> cab VkEN, k a
> Oa iN

> 0 VCEN

It follows directly from strong duality of linear programming [S86] that for each

source-destination pair (a, b), the primal (separation oracle) linear program has an

optimum objective function value of at most -Tab if and only if the dual linear program

has a feasible solution with objective function value at most ab. The requirement

that the dual linear program, for all a, b E N, have feasible solutions with objective

function value at most Tab can be modeled as the following constraint:

Rir(i,a,b) + C(ja,b) < Tab V a,b N
iEN jEN

This allows us to remove the infinite set of constraints in (5.24) and add the above

constraint and constraints (5.33)-(5.36) from the dual linear programs to obtain the

following polynomial size linear program for our problem:

minimize 

subject to

cC ei - E xij
E- (A.) ecE- (A)

=1
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+Tij

-Tij

if = i

if A =j

otherwise

i, j, k N (5.37)

(5.33)

(5.34)

(5.35)

(5.36)
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ij
e

i,jEN
e aab

k
kEN

E Rir(i,a,b) + E Cjc(j,a,b)
iEN jEN

r(a, a, b) + c(b, a, b)

r(a,a,b) +c(k,a,b)

r(k,a,b) +c(b,a,b)

ab
X..

xi
e

r(i, a, b), c(i, a, b)

<_ lue V e E E

= 1 Va,bEN

< tab Va,bEN

> Cab + Va, b N

> cak Vk, a, b N, k b

> kb V k,a,b E N,k a_a

> 0 Vk,a,bEN

> 0 VeEE, Vi, jEN

> 0 Vi,a,bGN

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

This linear program has n2 ( n- 1) constraints in (5.37), m constraints in (5.38),

n(n- 1) constraints each in (5.39)-(5.41), n(n- 1)(n- 2) constraints each in (5.42)-

(5.43), n2 (n- 1) constraints in (5.44), mn(n- 1) constraints in (5.45), and 2n2( n - 1)

constraints in (5.46), for a total of O(mn 2) constraints. The number of variables is

n2(n - 1) + n(n - 1) + mn(n - 1) + 2n2(n- 1) + 1 = O(mn2).

By using per-source flow variables x instead of per source-destination variables

x j , the number of variables and constraints in the above linear program can be

reduced to O(n3 ).

5.4 Maximum Throughput Direct Source-Destination

Path Routing

As discussed in Section 1.6, direct routing from source to destination (instead of in two

phases) along fixed paths for the hose traffic model has been considered by Duffield

et al. [DGGMR99] and Kumar et al. [KRSYO1]. In order to make throughput
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comparisons with two-phase routing, we consider the multi-path version of direct

source-destination routing where the traffic from a source to a destination can be

split along multiple paths-- both the paths and the ratios in which traffic is split

among them is fixed a priori. An instance of this scheme is completely described by

specifying how a unit flow is (splittably) routed between each source-destination pair

in the network.

Erlebach and Riiegg [ER041 consider the problem of minimum cost direct source-

destination (multi-)path routing of hose traffic under given link costs. They give a

linear program with an infinite number of constraints (and, a polynomial size sepa-

ration oracle linear program) that is suitable for solving using the ellipsoid method

[S86]. Because the ellipsoid method gives running times that are not feasible for

practical implementations, the authors in [ER04] also give a cutting-plane heuristic

for solving the infinite size linear program and obtain reasonable running times for

the experiments reported. However, this cutting-plane heuristic can have exponential

running times in the worst case.

In this section, we develop a polynomial size linear program for maximum through-

put multi-path routing of hose traffic under given link capacities. Our technique can

be used to obtain a polynomial size linear program for the minimum cost version of

the problem also, thus improving the result in [ER04].

Given a network with link capacities ue and constraints Ri, Cj on the ingress-

egress traffic, we consider the problem of direct source-destination path routing so

as to maximize the network throughput. We use the same approach used earlier in

this chapter for the minimum cost network design and maximum throughput network

routing problems for two-phase routing with generalized traffic split ratios. We begin

with a linear programming formulation with an infinite number of constraints and

a polynomial size separation oracle linear program for it, and then combine the two

into a polynomial size linear program.
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5.4.1 LP with Infinite Constraints and Separation Oracle

The fixed path routing for each source-destination pair (i, j) can be specified by a set

of unit flow variables f, where fi denotes the fraction of traffic from i to j that

traverses link e in the network. Let denote the maximum utilization of any link

in the network. As explained earlier, maximizing the throughput A is equivalent to

minimizing the maximum link utilization u. The linear programming formulation is

as follows:

minimize L

subject to

+1 if k =i

f/J - E fI= -1 if k = j Vi, j, k E N (5.47)
eEE+(k) eEE-(k) 

O otherwise

E tijfe' < uue V e E E, V [tij E T(R,) (5.48)
i,jEN

fe > 0 VeEE, Vi, jEN (5.49)

Constraints (5.47) correspond to routing of unit flows between each source-destination

pair for determining the fixed paths. Constraints (5.48) are the maximum utilization

constraints for each link. The quantities tij in the LHS of (5.48) are constants and

hence the constraints are linear. Note that there is an infinite set of constraints in

(5.48), since there are m constraints for each [tij] E T(/, C).

The above linear program can be solved in polynomial time by the ellipsoid al-

gorithm [S86] provided we can find a polynomial time separation oracle for the con-

straints (5.48). Given a set of values for the variables in the above linear program,

the separation oracle needs to identify at least one constraint that is violated (if any),

or indicate otherwise. Clearly, constraint (5.47) can be verified in polynonmial time.
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To determine if the constraints in (5.48) are violated for any link, we need to

either identify a link e and a traffic matrix [tij] T(R. C) such that the corresponding

constraint is violated, or determine that all such constraints are satisfied. This can be

done by verifying that for each link e E E, the linear program below, with variables

tij for all i,j E N, has optimum objective function value at most /. If not, the

traffic matrix [tij] obtained in the optimal solution of the linear program identifies

the corresponding violating constraint in (5.48).

maximize 'i,jEN 

subject to

Z <NViEiE tij <•R If ViE N (5.50)jEN,jsi

E tj < Cj Vj E N (5.51)
iEN,ioj

tij > 0 V ij N (5.52)

5.4.2 Polynomial Size LP

In developing the polynomial size linear program, we first take the dual of the sep-

aration oracle linear program above. For a given link , the dual linear program

has non-negative variables r(i, f) corresponding to each constraint in (5.50) and non-

negative variables c(j, e) corresponding to each constraint in (5.51).

minimize EieN Rir(i, () + EjEN Cjc(j, e)

subject to

r(i. e) + c(j. C) V i,j C N (5.53)
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r(i, ),c(i, e) > 0 i E N (5.54)

It follows directly from strong duality of linear programming [S86] that for each

link e E E, the primal (separation oracle) linear program has an optimum objective

function value of at most ,u if and only if the dual LP has a feasible solution with

objective function value at most .

The requirement that the dual linear programs, for all e E E, have feasible so-

lutions with objective function value at most /u can be modeled as the following

constraint:

ERir(i,e)+ Cjc(j, e) < I fe E
iEN jEN

This allows us to remove the infinite set of constraints in (5.48) and add the above

constraint and constraints (5.53)-(5.54) from the dual LPs to obtain the following

polynomial size LP for our problem:

minimize 

subject to

I E fj - E Aej
eEE+(k) eEE-(k)

r(i, e) + c(j, e)
Z Rir(i, ) + A: Cjc(j, e)
iEN jEN

r(i, e), c(i, e)

feij

+1

-1
0

> fe V
Ue

< Ve

if k = i

if k= j
otherwise

fe E, Vi,jE N

E

> 0 ViEN, VEE

> 0 VeCEE, Vij C N
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This linear program has n2(n- 1) constraints in (5.55), mnn(n- 1) constraints in

(5.56). mn constraints in (5.57), 2mn constraints in (5.58), and mn(n- 1) constraints

in (5.59), for a total of O(m7n2 ) constraints. The number of variables is mn(n- 1) +

2mn + 1 = O(mn2 ).

5.5 Throughput Comparisons on ISP Topologies

In this section, we compare the throughput performance of three schemes for routing

hose traffic, namely, (i) two-phase routing with intermediate node dependent traffic

split ratios k, (ii) two-phase routing with generalized traffic split ratios k,i and

(iii) direct source-destination path routing, For (i), we use the linear programming

formulation from Section 4.1.1. For (ii) and (iii), we use the linear programming

formulations developed in this chapter. We use CPLEX [CPLEX] to solve all linear

programs.

5.5.1 Topologies and Link/Ingress-Egress Capacities

We use the six ISP maps from the Rocketfuel dataset which had accompanying (de-

duced) OSPF/IS-IS weights [SMWH, SMW02, MSWA02]. These topologies list mul-

tiple intra-PoP (Point of Presence) routers and/or multiple intra-city PoPs as indi-

vidual nodes. We coalesced such nodes so that nodes correspond to cities and the

topology represents geographical PoP-to-PoP ISP topologies. Some data about the

original topologies and their coalesced versions is listed in Table 5.1.

The topologies provided by Rocketfuel did not include the capacities of the links,

which were needed for our study. The Rocketfuel maps did include derived OSPF/ISIS

weights of links, which were computed to match observed routes. In the absence of

any other information on capacities, we need a way to deduce the link capacities from

the weights. For this purpose, we assumed that the given link weights are the Cisco

dlefault setting for OSPF weights, i.e., inversely-proportionral to the link capacities
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Topology Routers Links PoPs Links 
|________ _ (original) (inter-router) (coalesced) (inter-PoP)

Telstra (Australia) 1221 108 306 57 59
Sprintlink (US) 1239 315 1944 44 83
Ebone (Europe) 1755 87 322 23 38

Tiscali (Europe) 3257 161 656 50 88
Exodus (Europe) 3967 79 294 22 37
Abovenet (US) 6461 141 748 22 42

Table 5.1: Rocketfuel topologies with AS number and name. The table lists the
original number of routers and inter-router links, and the number of coalesced PoPs
and inter-PoP links.

[Cisco97]. The link capacities obtained in this manner turned out to be symmetric,

i.e., uij = uji for all (i, j) E E.

There is also no available information on the ingress-egress traffic capacities at

each node. Because ISPs commonly engineer their PoPs to keep the ratio of add/drop

and transit traffic approximately fixed, we assumed that the ingress-egress capacity

at a node is proportional to the total capacity of network links incident at that node.

We also assume that Ri = Ci for all nodes i - since network routers and switches

have bidirectional ports (line cards), hence the ingress and egress capacities are equal.

Thus, we have Ri(= Ci) c( EeE+(i) Ue.

5.5.2 Experiments and Results

We denote the throughput values for the three different schemes as follows: (i) ATPR

for two-phase routing with intermediate node dependent traffic split ratios, (ii) AGTPR

for two-phase routing with generalized traffic split ratios, and (iii) AFPR for direct

source-destination routing along fixed paths. Clearly, ATPR AGTPR < )ADPR 

AOPT, where AOPT is the throughput of the optimal scheme.

Experiments on the six Rocketfuel topologies for maximum throughput two-phase

routing in Section 4.6 showed that the throughput performance of two-phase routing

with intermediate node dependent split ratios ai is within 6% of that of the optimal
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scheme. (For two of the topologies, it actually matches that of the optimal scheme.)

Hence, for these topologies, there is clearly not much room for throughput improve-

ment when we generalize the traffic split ratios in two-phase routing or even consider

arbitrary fixed path routing solutions.

For the Tiscali 3257 topology, the CPLEX processes for solving the linear programs

for AGTPR and AFPR ran out of memory and were killed on a 2.4GHz Dual Xeon

machine with 1GB of RAM and running Linux. This was the fastest machine with

the highest RAM that we had access to for running CPLEX. For the Exodus 3967

and Telstra 1221 topologies, the throughput of two-phase routing with traffic split

ratios czi matches that of the optimal scheme (as reported in Section 4.6), hence

ATPR = AGTPR = ADPR. The latter was observed to be the case with the remaining

three Rocketfuel topologies also.

Thus, on five of the six Rocketfuel topologies, the throughput of two-phase routing

with (ai traffic split ratios equals that with generalized traffic split ratios and matches

the throughput of direct source-destination routing along fixed paths. (Recall that the

pathological example for the improvement in throughput of two-phase routing with

generalized traffic split ratios in Section 5.1 exploited Ri # Ci for some nodes i and

asymmetric link capacities - both of these are not present in the Rocketfuel topolo-

gies.) Given the identical throughput performance of the two versions of two-phase

routing, the simpler version with intermediate node-dependent traffic split ratios ai

is preferred because of its ability to support indirection in specialized service overlay

models like i3.

These experiments on actual ISP topologies indicate that two-phase routing achieves

its robustness to traffic variation without compromising throughput performance com-

pared to previous approaches like direct source-destination path routing. Its through-

put performance is within 6% of that of the optimal scheme on the evaluated topolo-

gies. Thus, two-phase routing is able to handle highly variable traffic in a capacity

efficient nimanner and provide the desirable properties of (i) static provisioning at the

163



CHAPTER 5. GENERALIZED TRAFFIC SPLIT RATIOS

optical layer in IP-over-Optical networks, and (ii) supporting indirection i special-

ized service overlay networks. Direct source-destination routing does not meet these

requirements.
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Chapter 6

Protecting Against Router Failures

in IP-over-Optical Networks

In this chapter, we focus on two-phase routing in IP-over-Optical networks where

routers are interconnected over a switched optical backbone, also called IP-over-OTN

(Optical Transport Network). In this architecture, the first and second phase paths

are realized at the optical layer with the routers at intermediate nodes being re-

sponsible for (de)multiplexing traffic to its final destination. Studies like Labovitz et

al. [LAJ98] indicate that IP routers are 200 times more unreliable than traditional

carrier-grade switches and average 1219 minutes of down time per year. Given this

unreliabilitv of routers, we consider how two-phase routing in IP-over-OTN can be

made resilient against router node failures. If the router at a node goes down, the

node ceases to perform its intermediate node functionality. Thus, the traffic split

ratio corresponding to this node has to be redistributed to other intermediate nodes.

We propose two different schemes for provisioning the optical layer to handle

router node failures - one that is failure node independent and static (called failure

independent provisioning), and another that is failure node dependent and dynamic

(called failure dependent provisioning). For both mechanisms, we consider sharing

bandwidth across single router failure scenarios. For failure independent provisioning,
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the optical layer is statically provisioned a priori so as to handle any single router

failure scenario. For failure independent provisioning, the paths in the optical layer

along which traffic is redistributed to other intermediate nodes are provisioned after

failure - this allows sharing of optical layer bandwidth at the link level and may lead

to lower restoration capacity overhead compared to the first scheme.

We explain why a simple choice of redistribution ratios proportional to the original

traffic split ratios does not lead to optimal throughput. Hence, our problem formu-

lations must accommodate arbitrary redistribution of traffic split ratios after failure.

We develop linear programming formulations for both schemes and a fast combina-

torial algorithm for the second scheme so as to maximize network throughput. In

each case, we determine (i) the optimal distribution of traffic to various intermediate

routers for both normal (no-failure) and failure conditions, and (ii) provisioning of

optical layer circuits to provide the needed inter-router links.

For failure independent provisioning, we prove that the throughput is at most

times that for the unprotected case, where n is the number of nodes. For the
n

six Rocketfuel topologies, the achieved throughput is within 2% of this theoretical

upper bound. Also, the throughput for failure dependent provisioning is less than

1% more than that for failure independent provisioning on the evaluated topologies.

Hence, given the static optical layer provisioning property of failure independent

provisioning, it might be the preferred scheme for protecting against router node

failures in IP-over-Optical networks.

We assume a single router failure model under which bandwidth can be shared

across different router node failure scenarios. The focus on shared backup band-

width allocation is because of its reduced cost and the increased complexity of the

optimization problems that arises from sharing backup bandwidth.
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6.1 Two-Phase Routing in IP-over-OTN

Core IP networks are often deployed by interconnecting routers over a switched optical

backbone, also called IP-over-OTN (Optical Transport Network). Some aspects of

this architecture were discussed in Section 1.5.1.

The application of two-phase routing to IP-over-OTN was described in Section

2.2.1. Two-phase routing, as envisaged for IP-over-OTN, establishes the fixed band-

width Phase and Phase 2 tunnels at the optical layer. Thus, the optical layer

is statically provisioned and does not need to be reconfigured in response to traffic

changes. IP packets are routed end-to-end with IP layer processing at a single in-

termediate node only. While in transit at the optical layer inside either Phase or

Phase 2 paths, packets do enter the router but appear as transit traffic at the Optical

Cross-Connect (OXC) only.

The IP layer packet processing at an intermediate node works as follows. The

optical layer circuit is dropped at the IP router at the node (through OXC-to-router

links), wherein the packets are multiplexed back to the OXC (through router-to-OXC

links) to be routed through direct optical layer circuits to their final destinations. This

is illustrated in Figure 2-3. Thus, if the route at a node fails, then that node ceases to

perform the functionality of an intermediate node in two-phase routing. We consider

how to make two-phase routing resilient to such IP router failures.

6.2 Making Two-Phase Routing Resilient to Router

Failures

We consider extending the two-phase routing scheme for protecting against router

node failures. In the term "router node failure", node refers to a PoP, hence it

includes the failure of all routers in a PoP. When a router at a node f fails, any

other node i cannot split any portion of its originating traffic to intermediate node
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f. Hence, it must redistribute the traffic split ratio af among other nodes j f.

Accordingly, let /3jf denote the portion of af that is redistributed to node j when

router node f fails. Then, we must have

E 3jif=cxf VfEN (6.1)
jeN,jof

Note that since only the router (and not the OXC) at node f fails, this node can

continue to be on the Phase 1 and Phase 2 paths for optical layer switching. However,

no traffic enters or leaves the network at node f.

We propose two different schemes for provisioning the optical layer in IP-over-

OTN in order to handle the redistribution of traffic split ratios after router node

failures. We discuss these next. Algorithms for computing the traffic split ratios and

their redistribution after failure and the routing of Phase and Phase 2 paths so as

to maximize throughput under the two protection schemes are presented in Sections

6.3 and 6.4 respectively.

6.2.1 Failure Independent Provisioning

In the first scheme, called "Failure Independent Provisioning", the restoration demand

from node i to node j at the optical layer, for each i, j N, is provisioned a priori so

as to handle the "worst case" router node failure scenario. The maximum additional

traffic split ratio that node j needs to handle is maxfyj Ojf. Thus, the modified split

ratio 'j associated with each node j is

aj= mj + max /3jf V j N (6.2)
JeN,fEj

The demand that needs to be statically provisioned at the optical between nodes

i and j so as to protect against any single router node failure is a'jRi + o'C j. Since

this does not depend on which router node fails, hence the name of the scheme.
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In equation (6.2), the value of the traffic split ratio a' for intermediate node j

is determined by the node f that achieves the maximum value of ,3jf. For different

nodes j, the maximum value of (jf could be achieved by different (failure) nodes f.

Thus, for a given router node failure, all the split ratios a' may not be required to be

as high as the maximum value given by RHS of (6.2). Also, in this scheme, optical

layer bandwidth is shared at the connection/path level (Phase 1 and Phase 2 demands

between node pairs) and not at the link level across different failure scenarios. Because

of these reasons, failure independent provisioning may not achieve the most capacity

efficient sharing of restoration bandwidth across different router node failure scenarios.

However, the advantage of the scheme is that it preserves the static nature of the

original two-phase routing scheme.

6.2.2 Failure Dependent Provisioning

In the second scheme, called "Failure Dependent Provisioning", the restoration de-

mand from node i to node j at the optical layer depends on the node f which failed

and is provisioned in a reactive manner after the node f fails, the value of the de-

mand being jfRi + 3ifCj, which could be different for different failed nodes f. By

"reactive", we mean that cross-connects need to be setup for redistributing traffic to

other intermediate nodes after failure - this is because backup bandwidth is shared at

the link level in the optical layer. The scheme allows increased sharing of restoration

bandwidth across different router node failure scenarios and may lead to increased

throughput. As we shall show in Section 6.4.4, the maximum throughput routing

problem for this scheme also admits a fast combinatorial algorithm (FPTAS).

The cross-connects on the Phase 1 and Phase 2 paths that originate or terminate at

the failed router node are kept intact (after failure) even though they carry no traffic

during the duration of failure of the respective router node. This has the advantage

that when the failed router node comes back up, traffic can be immediately reverted

back to that interlnediate node without waiting for the Phase 1 and Phase 2 paths
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to/from this node to be reprovisioned. This is also consistent with how IP layer

failures are handled in practice in IP-over-Optical networks - optical layer circuits

that carry traffic under normal (no-failure) conditions but are not needed after an IP

layer failure are kept in place for use when the IP layer failure is repaired.

6.3 Maximizing Throughput for Failure Indepen-

dent Provisioning

Given a network with link capacities ue and constraints Ri, Cj on the ingress-egress

traffic, we consider the problem of routing with protection against router node fail-

ures through failure independent provisioning so as to maximize throughput. The

throughput is the maximum multiplier A such that all matrices in A T(R, C) can be

feasibly routed with protection against router node failures under the scheme.

We first consider the straightforward approach of redistributing traffic for the

failed intermediate router node to other intermediate nodes in proportion to that of

the original traffic split ratios obtained by solving the maximum throughput routing

problem for the unprotected case. We explain why this approach does not lead

to the best throughput. Next, we consider a linear programming formulation that

accommodates arbitrary redistribution of traffic split ratios after failure.

6.3.1 Redistributing Traffic in Proportion to Split Ratios for

the Unprotected Case

Under this approach, we would solve the maximum throughput routing problem for

the unprotected case and then make the failure redistribution ratios jfj oc cj. Using

equation (6.1), this gives

c_ J 3- V f aj
j- iOf li - Oj'
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Substituting this back into equation (6.2), we have

c = j + max =aj 1+ maxfjaf_ V j E Ni feN.f~j - Of 1 - maxfoj f

Thus, the maximum relative increase in split ratio compared to the unprotected case

is determined by the intermediate node f with the largest split ratio af for the

unprotected case, i.e., the node f whose failure affects the largest fraction of traffic

in the network. If A'NP denotes the throughput for the unprotected case, then the

throughput obtained for failure independent provisioning using this method will be

approximately
A\UNP

1I+ max/V7j (X]1 -- 1-maxf$j af

Thus, to achieve higher throughputs for two-phase routing with protection against

router node failures, it is not desirable for any intermediate node to carry a large

proportion of traffic compared to the average of . Otherwise, in the event of a

route node failure at any of these intermediate nodes, a relatively large fraction of

the traffic needs to be restored, thus increasing the resources reserved for restoration

(and decreasing the throughput).

However, as we observed in the experiments in Section 4.6, a small number of

intermediate nodes is preferred for the unprotected case-- these nodes are presumably

located at geographical center(s) of the network and provide the best opportunities

for serving as intermediate nodes without increasing the length of end-to-end paths

or decreasing throughput significantly. A small number of intermediates nodes is

associated with a relatively large traffic split ratio for each such node - hence the

above method will not lead to the maximum throughput in such cases.

This points to the need for anl optimization approach that takes router node failure

explicitly into account rather than redistributing traffic for the failed intermediate

node to other nodes in ratios proportional to the original traffic split ratios obtained

by solving the unprotected version of the problem.
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6.3.2 Linear Programming Formulation

In this section, we develop a linear programming formulation for failure independent

provisioning that accommodates arbitrary redistribution of traffic split ratios after

failure. We first derive an expression for throughput in terms of the modified traffic

split ratios 'j.

Because other intermediate nodes should be able to take up the traffic split ratios

of the failed node f, a necessary and sufficient condition for the a' values to be feasible

is

Z 'j_> 1 V f N (6.3)
jEN,jof

It suffices to have the minimum of these n sums exactly equal to 1. Thus, in the case

that this is not so, the traffic split ratios can be divided by

A = min E (6.4)
fen jEN,j#f

(normalized) to achieve the desired result - in which case all traffic matrices in A-

T(R, C) can be feasibly routed. Thus, the appropriate measure of throughput in this

case is the quantity A as defined above.

We adopt the standard network flow terminology from [AM093]. Let xj denote

the flow value on link e for routing the demand of ojRi + oa'iCj from node i to node

j. Then, the problem of two-phase routing with failure independent provisioning so

as to maximize the network throughput can be formulated as the following linear

program:

maximize A
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subject to

A < a ' V fEN (6.5)
jeN,j-f

a'jRi + 'Cj if k = i

S X'- X S = o-z'Ri - 'Cj if k j V i,j,k E N (6.6)
eeE+ (k) ee E- (k) 

eEE-(A) e~EE(k) {0 otherwise

E X < ue V e e E (6.7)
i,jEN

a. > O Vj EN (6.8)

x47 > 0 e E E Vi,j EN (6.9)

Constraints (6.5) correspond to the definition of throughput in equation (6.4).

Constraints (6.6) correspond to the routing of oRi + oz'iCj amout of flow from node

i to node j. The link capacity constraints are in (6.7).

By using per-source flow variables i instead of per source-destination variables

x'i, the number of variables in the above LP can be reduced to O(nm).

This linear program can be solved in polynomial time using a general linear pro-

gramming algorithm [S86]. The traffic specified by the network ingress-egress capaci-

ties is feasible for the network if the throughput A in the optimal solution is at least 1.

Assuming this is so and given the values a'i in an optimal solution of the above linear

program, the (normalized) traffic split ratios ai under normal (no-failure) conditions

can be chosen to satisfy (i) ZiEN a = 1, and (ii) k 5 c a for all i, but they may not

be determined uniquely. One solution is to make the ai's proportional to the a's, i.e.,

a 'i = .The failure redistribution ratios 3if are also not determined uniquely,

but can be chosen in a feasible manner so as to satisfy equation (6.1) because if the

optimal throughput is at least 1, then constraints (6.5) imply necessary and sufficient

condition (6.3).
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6.3.3 An Upper Bound on the Throughput Relative to the

Unprotected Case

Let AUNP and AFIP denote the maximum throughputs respectively for two-phase

routing for the unprotected case and for router node failure protection using failure

independent provisioning. The following theorem establishes an upper bound on AFIP

relative to AUNP.

Theorem 6.3.1 The throughput AFIP of two-phase routing with failure independent

provisioning to protect against router node failures is at most - times the throughputn

AUNP for the unprotected case.

Proof: Let ai be the traffic split ratios in an optimal solution for the linear program

for maximizing throughput in failure independent provisioning. Summing constraints

(6.5) for all f E N, we have

n-FI < (n-1) Ei (6.10)
iEN

Now recall that in the linear programming formulation in Section 4.1.1 for maximizing

throughput for the unprotected case, the throughput is the sum of the traffic split

ratios (when they are not constrained to sum to 1). Also, the linear program for

failure independent provisioning differs from that for the unprotected case only in the

definition of throughput (in the former case, the throughput is the minimum value of

the n possible sums of any n - 1 of the traffic split ratios). Thus, we must have

Z a < AUNP
ieN

Using this in (6.10), we obtain the upper bound claimed in the theorem. 

As we will see in Section 6.5, the ratio AXEP for all evaluated Rocketfuel topologies

is within 2% to this theoretical upper bound.
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We provide an intuitive explanation that gives the quantity "- as a rough the-n

oretical estimate of the ratio A-. The average split ratio per node under normal

(no-failure) conditions is . When a router node fails, each of the other n - nodesn

takes up on the average an additional split ratio of n(1-l) Thus, the estimate for the
n(n-1) Tuteetmt o h

ratio -\- is
A~ U . P

1+ n
n n(n-1) 1

6.4 Maximizing Throughput for Failure Dependent

Provisioning

Given a network with link capacities u, and constraints Ri, Cj on the ingress-egress

traffic, we consider the problem of routing with protecting against router node failures

through failure dependent provisioning so as to maximize throughput. The through-

put is the maximum multiplier such that all matrices in A T(R, C) can be feasibly

routed with protection against router node failures under the scheme.

For failure dependent provisioning, we work explicitly with both normal (no-

failure) traffic split ratios oj and failure redistribution ratios /3jf. Suppose we relax

the requirement that the traffic split ratios ca sum to 1 in a feasible solution of the

problem. Consider the sum

A= EZi
iEN

The traffic split ratios aj can be divided by (normalized) so that they sum to

1, in which case all matrices in A T(R,C) can be feasibly routed. (The failure

redistribution ratios ,jf values are scaled by the same amount.) Thus, the appropriate

measure of throughput in this case is the quantity A above when the traffic split ratios

oj are not constrained to sum to 1.
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6.4.1 Link Flow Based LP Formulation

Let xi denote the flow value on link e for routing the demand of ajRi + oiCj from

node i to node j under normal (no-failure) conditions. Let yf be the restoration

flow that appears on link e for routing the demand of jfRi + i/3fCj from node i to

node j after failure of node f. Then, the problem of two-phase routing with failure

dependent provisioning so as to maximize the network throughput can be formulated

as the following link-indexed linear program:

maximize ZiEN ai

subject to

E e - E xe
eEE+(k) eEE-(k)

"j ij
3 Yef E Yef

eEE+(k) eEE-(k)

E /3jf
jEN,j$f

"j ijX'- + E Yef
i,jEN ijEN

ei, /3 if

ije efXe Yef

%R aR + aiCj

= -ajRi -aiC3

0

3jf Ri + /if Cj

= af V f EN

if k - i

if k= j
otherwise

if k= i

if k =j

otherwise

\V1i, j, kGE N (6.11)

V i, j, f, k E N (6.12)

(6.13)

< u VeEE, Vf EN

> 0 Vi,f EN

> 0 VeEE, Vi,j,f EN

Constraints (6.11) corresponds to the routing of ajRi + aiCj amount of flow from

node i to node j under normal (no-failure) conditions. Constraints (6.12) correspond

to the routing of restoration flow of value 3jfRi + ifCj from node i to node j after

failure of node f. Constraints (6.13) state that for a given router node failure, the
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sum of the traffic redistribution ratios should sum to the traffic split ratio (under

no-failure conditions) of the failed node. Constraints (6.14) are the link capacity con-

straints - the sum of working flow under normal (no-failure) conditions and maximum

restoration flow under any router node failure is at most the capacity of the link.

By using per-source flow variables and Yif instead of per source-destination

variables xj and ye respectively, the number of variables in the above linear program

can be reduced to O(n 2 m). This is still a factor of n more variables than the linear

program for failure independent provisioning. It is well known that running times

of general linear programming based algorithms for network problems do not scale

well with increasing network size. Fortunately, our problem formulation for failure

dependent provisioning accommodates a fast combinatorial algorithm. Moreover,

because the combinatorial algorithm we develop works explicitly with paths, delay

constraints on the paths can be efficiently handled within the optimization framework,

as explained for the unprotected case in Section 4.3.6. In contrast, the link flow based

linear program formulation above does not deal explicitly with paths, and hence,

cannot accommodate constraints like bounding path delay.

6.4.2 Path Flow Based LP Formulation

In this section, we develop a path flow based linear programming formulation for this

problem. This will be subsequently used to develop the fast combinatorial algorithm

(FPTAS) in Section 6.4.4.

Let x(P) denote the flow on path P under normal (no-failure) conditions. Let

yf(P) be the restoration flow that appears on path P after failure of node f. Let Pij

denote the set of all paths from node i to node j. Then, the problem of two-phase

routing with failure dependent provisioning so as to maximize the network throughput

carl be formulated as the following path-indexed linear program:

maximize ieN ai
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subject to

x(P) = aRi +iCj V i,j E N (6.17)
PEPij

yf(P) = /3jfRi +i/3 fCj V i, jf EN(6.18)
PEPij

E /3jf = af f E N (6.19)
jEN,j7f

E E x(P) + E yf(P) < ue Ve E E, f EN (6.20)
i,jEN PEPij,PE3e i,jEN PEPij,Pge

O&i,3if >_ 0 Vi,f EN (6.21)

x(P),yf(P) > 0 V P E Pij, V ij, f E N (6.22)

In Section 6.4.3, we state the dual of the above path-indexed linear program.

In general, a network can have an exponential number of paths (in the size of the

network). Hence, this (primal) linear program can have possibly exponential number

of variables and its dual can have an exponential number of constraints - they are

both not suitable for solving the problem on medium to large sized networks. The

usefulness of the primal and dual formulation is in designing a fast combinatorial

algorithm for the problem.

6.4.3 Dual of Path Flow Based LP Formulation

We will use a primal-dual approach to develop a fast combinatorial algorithm (FP-

TAS) for failure dependent provisioning that computes the traffic split ratios and

routing of Phase 1 and Phase 2 paths up to (1 + e)-factor of the optimal objective

function value (maximum throughput) for any E > 0. The primal-dual scheme extends

the approach used for maximizing throughput for the unprotected case in Section 4.3.

We begin with the dual formulation of the linear program in Section 6.4.2. The

dual formulation associates a variable rij with each demand constraint in (6.17), a

variable 'ijf with each demand constraint in (6.18), a variable o.f with each traffic
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split ratio redistribution constraint in (6.19), and a non-negative variable w(e, f) with

each link capacity constraint in (6.20). The dual program can be written as:

minimize eEE feN uew(e, f)

subject to

E w(e, f)
eEP fEN

E w(e, f)
eEP

E Riikf + E Cj'Vjf
E Ri1rq + E Cjrf, + f
iff i+Af

> rij3 V P E Pj, V i,j E N

-/ijf V P E Pij, Vi,j, f N

> af Vk, f EN

> Vf EN

w(e,f) > 0 VeEE, V f EN

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)

Because of the nature of constraints (6.26), we can assume that the variables

rij attain the maximum possible value given by constraints (6.23) in an optimal

solution. Similarly, the variables jIf and af attain the maximum possible values

given by constraints (6.24) and (6.25) respectively in an optimal solution. Then, we

have

7rij : min w(e, f ) Vi, jE N
PEP eEP fEN

ij = min w(e,f) V i,j,f E N
PE'PIj eEP

Uf nin ( 5 RiOikf + Cj!kjf
kEN,kjf .ij{ kf} V f EN

(6.28)

(6.29)

(6.30)

After removal of the dual variables 7rij, ijf, and f using equations (6.28)-(6.30),

thle dlual problenl Call be writteln as:
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minimize Z E uew(e, f)
eEE fEN

subject to

Ri min w(e,f') + 5 Cj min E w(e,f')+
iEN,iof PE7'f eEP f'eN jEN,j7f PEPJeEP f'EN

5 Ri min E w(e,f) + E Cj min w(e,f) > 1
PE'Pik eP~kiEN,i{k,f} ek eEP jEN,j{k,f} PE'kj eEP

V k,f E N,k f (6.31)

w(e,f) > 0 V e E E, V f N (6.32)

6.4.4 Combinatorial Algorithm

In this section, we use the primal and dual formulations of the path flow based linear

program to develop a fast combinatorial algorithm for the problem.

For given k,f N,k $ f and weights w(e,f), let U(k,f) denote the LHS of

dual constraint (6.31). Given any set of weights w(e, f), we show how U(k, f) can

be computed in polynomial time for all k, f E N, k f using simple shortest path

computations. Note that minpEpj EeEp Ef'EN w(e, f') is the cost of the shortest path

from node i to node j under link costs c(e) = Ef'EN w(e, f) for all e E E. Hence,

the quantities minpEpij EeEp EfeN w(e, f') for all i, j E N can be computed using

a single all-pairs shortest path computation. Similarly, minpEpij EeEP w(e, f) is the

cost of the shortest path from node i to node j under link costs c(e) = w(e, f) for all

e E E. Hence, the quantity minpepij Zeep w(e, f) for all i, j, f E N can be computed

using n all-pairs shortest path computation, one associated with each node f E N.

Using these computed values, the LHS of (6.31), U(k. f), for all k, f E N, k f, can

be computed in polynomial1 time.
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Figure 6-1: One Step in the Primal-Dual Computation for Failure Dependent Provi-
sIOnIng.

The algorithm works as follows. Start with initial weights w( e, f) = 1- V e E
Ue

E, V fEN (the quantity 8 depends on E and is derived later). Repeat the following

until the dual objective function value becomes greater than 1:

1. Compute nodes f = ] and k = k for which U(k, f) is minimum. This also

identifies (i) paths Pi from node i to node 1 for all i f= 1, (ii) paths Qj from

node ] to node j for all j =F ], (iii) paths P: from node i to node k for all

i f/: {k, I}, and (iv) paths Qj from node k to node j for all j f/: {k, I}. (These

are the corresponding shortest paths used in evaluating U(k,]) as described

above.) This is illustrated in Figure 6-1.

2. For a traffic split ratio of 1 for intermediate node ], the traffic on path Pi is ~

for all i f= 1and the traffic on path Qj is Cj for all j =F]. Using this, compute
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the traffic s(e) on link e under normal (no-failure) conditions per unit split ratio

ca for intermediate node f as

s(e) = R + Cj Ve E E (6.33)
iff,Pi3e jf,Qjie

3. For every unit of traffic split ratio for intermediate node f that is redistributed

to intermediate node k when router node f fails, the traffic on path Pi' is Ri

for all i ¢ {k, f} and the traffic on path Qj is Cj for all j ~ {k, f}. Using

this, compute the traffic s'(e, f) that appears on link e after failure of router

node f per unit split ratio clf of intermediate node f that is redistributed to

intermediate node k as

s'(e) = E Ri + Cj V e E (6.34)
iV{kf},Pi'3e j{kf},Q73e

4. Compute the maximum value a for the traffic split ratio for intermediate node

f that is redistributed to intermediate node k after failure of router node f such

that for every link e, the sum of working flow and restoration flow due to failure

of router node f sent during this iteration is at most the link capacity ue. The

working flow uses intermediate node f and is sent along paths Pi, Qj and the

restoration flow uses intermediate node kc and is sent along paths P', Q. The

maximum value of a is given by

Uea~ - min U,(6.35)
eEE s(e) + s'(e) (6.35)

5. For this value of the traffic split ratio for intermediate node f, send oaRi

amount of working flow on path Pi for all i f and aCj amount of working

flow on path Qj for all j f. Compute the total working flow on link e as

A(e) = cas(e) for all e E.
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6. The traffic split ratio a for intermediate node f is redistributed to intermediate

node after failure of router node . Send aRi amount of restoration flow on

path Pi' for all i ~ {k, f} and acCj amount of restoration flow on path Qi for

all j ~ {k, f}. Compute the total restoration flow that appears on link e after

failure of router node f as A'(e, f) = as'(e) for all e C E.

7. For each e E E, update weights w(e, f) as

w( f) (e wef) (1 + E[A(e) + A'(e, A))

8. For each e E E, f E N, f # f, update weights w(e, f) as

w(e, f) - w(e, f) ( + - )

9. Increment by a both the traffic split ratio ac associated with intermediate node

f and the redistribution ratio k.i to intermediate node k after failure of router

node f.

When the above procedure terminates, primal link capacity constraints will be

violated, since we were working with the original (and not residual) link capacities

at each stage. To remedy this, we scale down the working and restoration flows and

traffic split ratios ai, 3jf uniformly so that capacity constraints are obeyed.

Note that since the algorithm maintains primal and dual solutions at each step,

the optimality gap can be estimated by computing the ratio of the primal and dual

objective function values. The computation can be terminated immediately after the

desired closeness to optimality is achieved.

The pseudo-code for the above procedure, called Algorithm FDP (for Failure

Dependent Provisioning), is provided below. Arrays work(e) and bkp(e, f) keep track

respectively of the working traffic on link e and the restoration traffic that appears

on link e due to failure of router node f as the algorithm progresses. Te variable
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D is initialized to 0 and remains less than 1 as long as the dual objective function

value is less than 1. After the while loop terminates (through a jump out of it), the

factor by which the capacity constraint on each link e gets violated is computed into

array scale(e). Finally, the ai and 3jf values are divided by the maximum capacity

violation factor and the resulting values are output.

Algorithm FDP:

ak+-O VkEN;

/kf -0 Vk,f N, k f;
w(e,f)*- 6 V e E E,f N;

Ue

work(e) - 0 e E;

bkp(e,f)O 0 VeeE, f E N;
D 0 ;0

while D < do

For each i, j N, compute shortest path from i to j under link costs

c(e) = EfEN w(e, f) and denote its cost by SP(i,j);

For each i, j E N, compute shortest path from i to j under link costs

c(e) = w(e, f) for each f E N and denote its cost by SPf(i, j);

U(k, f) - Eik RiSP(i, k) + Zjok CjSP(k, j)+
Ei {k,f} RiSPf (i, k) + Ejf{k,f} CjSPf(k, j) V k, f N, k f;

(k, f) arg mink,fEN,kf U(k, f);

(This identifies paths Pi, Qj, Pi', and Q as defined earlier.)

s(e) = iqf,Pie Ri + Ejsf,Qj3e Cj V e E E;

s'(e) iV{k f} Pe Ri + Ej{kf} ,Q'e Ci V e EE;

Uea - mineEE s(e)+s'(e)

A(e) - as(e) Vee E;
A'(e, f) - as'(e) V E E;

work(e) 4- work(e) + A(e) V e E 
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bkp(e, f) - bkp(e, f) + A'(e, ) V e E;

w(e,f) - w(e,f)(1 + (e)) V e E, V f N, f f;

w(e, f) - w(e, f)(1 + c[,(e)+A'(ef)I) V e C E
Ule

a f-- a, + a;
;43k!- + a;

D - ZeEE EfEN uew(e, f);
end while

bkp-max(e) - maxfEN bkp(e, f) V e E E;
scale(e) - work(e)+bkp_max(e) V e E

Ue~

scalermax 4- maxeEE scale(e)

k -scalena for all k C N;O ,3-- cale-max

3kf scaea for all k, f E N, k f;
]~~ -- scale-max·'

Output traffic split ratios ak and failure redistribution ratios /3kf

We next analyze the approximation guarantee and running time of Algorithm

MAX-LAMBDA.

Analysis of Approximation Guarantee

The analysis follows the same approach as that of the strongly polynomial time algo-

rithm for maximum throughput two-phase routing for the unprotected case in Section

4.3.5.

Given a set of dual weights w(e, f), let D(w) denote the dual objective function

value and let (w) denote the minimum value of the LHS of dual program constraint

(6.31) over all nodes k, f N, k # f. Then, solving the dual program is equivalent

to finding a set of weights w(e, f) such that D(w) is minimized. Denote the optimalF(w)

objective function value of the latter by 0, i.e., = min, D(). Let wut-l denote the

weight function at the beginning of iteration t of the while loop, and let At- be the

value of EjJAN kj (primal objective function) up to the end of iteration t - 1. Suppose
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the algorithm terminates after iteration L.

Lemma 6.4.1 At the end of every iteration t, 1 t < L, of Algorithm FDP, the

following holds

D(wt) < mn6 iI + (Aj - Aji)]
j=1

Proof: Let f, k E N

and let Pi, Qj, P', Q
is augmented during

is augmented during

be the nodes for which LHS of dual constraint (6.31) is minimum

be the corresponding paths (as defined earlier) along which flow

iteration t. Recall that the weights are updated as:

- t-i (e, f) (1

Wt-l(e, f) (1

+ ()VeEE, Vf EN, f f
Ue

+ E[A (e) +/ (e, f)]) Ve E
Ue

where A(e) is the

flow on link e due

this, we have

D(wt)

total working flow on link e, and A'(e, f) is the total restoration

to failure of router node f (both sent during iteration t). Using

- E uewt(e, f)
eEE,fEN

- E uewt-i(e, f) + e Wt_1 (e, f)A(e) +
eEEfEN eEE,ff

e E wt -(e, f)[A(e) + A'(e,f)]
eEE

-= D(wt-1) + e S wt-i(e, f)A(e) + E Wt-l(e,f)
eEE,fEN eEE

= D(wti) Se E Wt-l(e,f)[ 5 R/±i +-
eeE,f EN i f,Pi3e jf,Qjpe

E wti (e,f)[ a ogRi + aCj ]
eEE ij{k,f},Pfe j }QeeEE jv~~~~~~3{k-,f},QjDe

= D(wt_1) + Se a t-(e,f)[ 5 R+ 
eEE,fEN i.f.PiDe jIf,Qj 3De

,a wt-i(e,f)[ 5 Ri+ 5 Cj]
eEE iN{k,f},P9e { kf}.Q'eI~{.fj~

A'(e, f)

%cj] +

186

wt(e,f)

wt(e, f)



CHAPTER 6. PROTECTING AGAINST ROUTER FAILURES IN IP-OVER-OTN

We interchange the order of summation in the second and third terms on RHS of

the above equation and first sum along links on paths Pi, Qj, and then over i.j

respectively. Similarly, for the third term, we interchange the order of summation

and first sum along links on paths P,', Q', and then over i, j respectively. This gives

D(wt) = D(wt-l) + 6a[ Ri Z wt-l(e, f) + Cj Wt-l(e, f) +
iif eEPi,fEN jf eEQj,fEN

E Ri E wti(e,f)+ 5 Cj i wti(ef)]
if{k,f} eEP' j~{k,f} eEQ'

= D(wt-1 ) + eaU(k, f) (6.36)

D(wil) + 1F(wil)

= D(wi-1) + e(At -Atl)r(wil)

The step leading to (6.36) follows from the choice of nodes k, f and associated paths

Pi,, Qj, Pi', Qj that minimize U(k, f) for the set of weights wt-Il(e, f) at the beginning

of iteration t.

Using this for each iteration down to the first one, we have

t
D(wt) = D(wo) +e (Aj - Aj)F(wjl) (6.37)

j=l

From the definition of , we have 0 < If) whence (wj_) < D(wj 1). Also,

D(wo) = mnS. Using these in equation (6.37), we have

t
D(wt) < mn5 + - (Aj - Ajl)D(wjl) (6.38)

j=1

The property claimed in the lemma can now be proved using inequality (6.38) and

mathematical induction on the iteration number t. The method is similar to that

used in the proof of Lemma 4.3.1. ·

We now estimate the factor by which the objective function value value AL in the

primal solution needs to be scaled when the algorithm terminates so as to ensure that
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link capacity constraints are not violated.

Lemma 6.4.2 When Algorithm FDP terminates, the primal solution needs to be

scaled by a factor of at most logl+, to ensure primal feasibility.

Proof: Consider any link e and router failure at some node f E N. We will show

that the working flow on link e plus the restoration flow on link e due to failure of

router node f is at most ue when the primal solution is scaled by the above factor.

The value of w(e, f) changes (due to an update) when flow is augmented on edge

e under either or both of the following circumstances:

* Link e appears on any of the paths Pi, Qj, in which case the flow is working

traffic on this link, or

* Link e appears on any of the paths Pi', Qj, in which case the flow appears as

restoration traffic on link e after failure of router node f.

Let the sequence of flow augmentations (working plus restoration) on link e that

require update of weight w(e, f) be A1 , A2,.-. .,, , where r < L. Let EtZ l At = sue,

i.e., the total flow (working traffic plus restoration traffic after failure of router node

f) routed on link e exceeds its capacity by a factor of K.

Because of the way in which is chosen in accordance with equations (6.33)-(6.35),

we have Ai u for all i. Hence, dual weights are updated by a factor of at most

1 + after each iteration. Since the algorithm terminates when D(w) > 1, and since

dual weights are updated by a factor of at most 1 + after each iteration, we have

D(WL) < 1 + e. Since the weight w(e, f), with coefficient u, is one of the summing

components of D(w), we have uewL(e, f) < 1 + e. Also, the value of WL(e, f) is given

by
r / ktWL(e, f) - U-(I + -

u ti
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Using the inequality (1 + cx) > (1 + x)c

and c= "a < 1 we have
It - ,

> WL(e, f)
Ue

V x > 0 and any 0 < c < 1 and setting x =e

5 r
> - II(l + )At/11'

Ue t=l

(1+6 Et.-1 A~t/ue

Ue 6

-(1 +
Ue

whence,
K < log+E 6

U

The values of e and are related, in the following theorem, to the approximation

factor guarantee of Algorithm FDP.

Theorem 6.4.3 For any given 0 < ' < 0.5, Algorithm FDP computes a solution

with objective function value within (1 + Et)-factor of the optimum for

l+e d6- 1+= and e = -
[(1 + )ml]/e 2

Proof: Using Lemma 6.4.1 and the inequality 1 + x < e for all x > 0, we have

t

D(wt) < r< n nI e~(AJ-A-l)
j=l

= Trln6ee4t/o

The simplification in the above step uses telescopic cancellation of the sum (Aj -A -)

over j. Since the algorithm terminates after iteration L, we must have D(wL) > 1.

Thus,

1 < D(WItL) < mnn6e' A L/O
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whence,

0 e
AL < n (6.39)AL- In(,'an

From Lemma 6.4.2, the objective function value of the feasible primal solution after

scaling is at least
AL

l°gl+e log,+, i
The approximation factor for the primal solution is at most the gap (ratio) between

the dual and primal solutions. Using the lower bound on the primal solution and

inequality (6.39), this is at most

0 < elog1 + l+e

- In 

In

ln(1 + E) In mn5

The quantity In I/n equals 1 for 6= (1 +e)/[(1+e)nm 1/E. Using this value

of 6, the approximation factor is upper bounded by (1-) (l+) This is at most 1 + 2e

for e < 0.25. Setting e = ¥E, we get the desired approximation ratio of 1 + e'. 

Analysis of Running Time

We show that the running time of Algorithm FDP is strongly polynomial.

Theorem 6.4.4 For any given e > 0 chosen to provide the desired approximation

factor guarantee in accordance with Theorem 6.4.3, Algorithm FDP runs in time

O ( n3m(m + n log n) log nm)

which is strongly polynomial.
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Proof: We first consider the running time of each iteration of the algorithm during

which nodes f, k and associated paths P, Qj, P', Q, are chosen to augment flow.

Computation of the minimum value of U(k, f) over all k, f C N, k # f involves n all-

pairs shortest path computations which can be implemented in O(n 2 m+n 3 log n) time

using Dijkstra's shortest path algorithm with Fibonacci heaps [AM093]. It can be

verified that all other operations within an iteration are absorbed by the time taken for

these n all-pairs shortest path computations, leading to a total of O(n2 (m + n logn))

time per iteration.

We next estimate the number of iterations before the algorithm terminates. Recall

that in each iteration, flow is augmented along paths Pi, Qj, Pi', Qj corresponding to

the maximum value of intermediate node split ratio oa such that the working flow

A(e) plus the restoration flow A'(e, f) sent on link e during that iteration is at most

ue. Thus, for at least one link e, the total flow sent equals ue and the weight w(e, f)

increases by a factor of 1 + e. Accordingly, with each iteration, we can associate a

weight w(e, f) which increases by a factor of 1 + e.

Consider the weight w(e,f) for fixed e E E,f N. Since wo(e,f) = and
Ue

wL(e, f) < l+e (as deduced in the proof of Lemma 6.4.2), the maximum number of

times that this weight can be associated with any iteration is

log,+ -e (1 +- log1 + nrm) - 0(- log,+, nm)
e e

Since there are a total of nm weights w(e, f), hence the total number of iterations

is upper bounded by O(n log+, rim). Multiplying this by the running time per itera-

tion, we obtain the overall algorithm running time as O(en 3m(m+n log n) log1+, nm).

Since ln(1 + e) = @(e), this is O( n3m(m + n log n) log nm). 
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Topology Routers Links PoPs Links
l________ _ l(original) (inter-router) (coalesced) (inter-PoP)

Telstra (Australia) 1221 108 306 57 59
Sprintlink (US) 1239 315 1944 44 83
Ebone (Europe) 1755 87 322 23 38
Tiscali (Europe) 3257 161 656 50 88
Exodus (Europe) 3967 79 294 22 37
Abovenet (US) 6461 141 748 22 42

Table 6.1: Rocketfuel topologies with AS number and name. The table lists the
original number of routers and inter-router links, and the number of coalesced PoPs
and inter-PoP links.

6.5 Evaluation on ISP Topologies

In this section, we evaluate the throughput performance of the two schemes for pro-

tecting against router node failures in two-phase routing. In order to make exact

comparisons with the throughput for the unprotected case, we compute the through-

put for both the schemes using the link flow based linear programming formulations

developed in this chapter. For the throughput of the unprotected scheme, we use

the linear programming formulation from Section 4.1.1. We use CPLEX [CPLEX] to

solve all linear programs.

6.5.1 Topologies and Link/Ingress-Egress Capacities

We use the six ISP maps from the Rocketfuel dataset which had accompanying (de-

duced) OSPF/IS-IS weights [SMWH, SMW02, MSWA02]. These topologies list mul-

tiple intra-PoP (Point of Presence) routers and/or multiple intra-city PoPs as indi-

vidual nodes. We coalesced such nodes so that nodes correspond to cities and the

topology represents geographical PoP-to-PoP ISP topologies. Some data about the

original topologies and their coalesced versions is listed in Table 6.1.

The Rocketfuel topologies are router-level (IP layer) topologies. The PoP-to-PoP

topologies we obtained as above all have average node degrees less than 4. Physical
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WDM topologies of ISPs are characterized by small average node degrees (typically

less than 4). Assuming that all physical WDM links appear in the IP topology,

it is conceivable that "most" of the links in the PoP-to-PoP Rocketfuel topologies

correspond to physical WDMI links (instead of multi-hop physical layer paths). We

make this assumption for our experiments with IP-over-Optical networks. ISPs regard

their topologies as proprietary information - we are not aware of other credible sources

for information about actual ISP topologies.

The topologies provided by Rocketfuel did not include the capacities of the links,

which were needed for our study. The Rocketfuel maps did include derived OSPF/ISIS

weights of links, which were computed to match observed routes. In the absence of

any other information on capacities, we need a way to deduce the link capacities from

the weights. For this purpose, we assumed that the given link weights are the Cisco

default setting for OSPF weights, i.e., inversely-proportional to the link capacities

[Cisco97]. The link capacities obtained in this manner turned out to be symmetric,

i.e., uij =-- uji for all (i,j) C E.

There is also no available information on the ingress-egress traffic capacities at

each node. Because ISPs commonly engineer their PoPs to keep the ratio of add/drop

and transit traffic approximately fixed, we assumed that the ingress-egress capacity

at a node is proportional to the total capacity of network links incident at that node.

We also assume that Ri = Ci for all nodes i - since network routers and switches

have bidirectional ports (line cards), hence the ingress and egress capacities are equal.

Thus, we have Ri(= C) oc EEE+(i) Ue.

6.5.2 Experiments and Results

We denote the throughput values for the unprotected and router node failure pro-

tectecd versions of two-phase routing as follows: (i) AUNP for unprotected, (ii) AFjp

for protecting router node failures with failure independent provisioning, and (iii)

\FDP for protecting router node failures with failure dependent provisioning. Clearly,
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|Topology ADP n- Closeness of ,'
,UNP AUNP nt AFIP

AUNP n

Telstra (Australia) 1221 0.9744 0.9750 0.9825 0.82% 1.0006

Sprintlink (US) 1239 0.9683 0.9294* 0.9773 0.92% 0.9598*

Ebone (Europe) 1755 0.9500 0.9524 0.9565 0.68% 1.0025
Tiscali (Europe) 3257 0.9677 0.9293* 0.9800 1.26% 0.9603*
Exodus (Europe) 3967 0.9375 0.9412 0.9545 1.79% 1.0039

Abovenet (US) 6461 0.9369 0.9448 0.9545 1.85% 1.0084

Table 6.2: Throughput of Two-Phase Routing for failure independent (AFIp) and
failure dependent (AFDP) provisioning schemes for protecting against router node
failures compared to unprotected case (AUNP).

AUNP > AFDP AFIP (the last inequality follows from the nature of failure de-

pendent provisioning as explained in Section 6.2.2). We are also interested in the

number of intermediate nodes i with non-zero traffic split ratios ai (under normal no-

failure conditions), which we denote for the three cases by NUNP, NFIp, and NFDP

respectively.

For the Sprintlink 1239 and Tiscali 3257 topologies, the CPLEX processes for

solving the linear program for failure dependent provisioning ran out of memory

and were killed on a 2.4GHz Dual Xeon machine with 1GB of RAM and running

Linux. This was the fastest machine with the highest RAM that we had access

to for running CPLEX. Hence, for these two topologies, we used the combinatorial

algorithm to obtain solutions within 5% of optimality. The corresponding entries for

the two topologies are marked with an asterisk (*) in Tables 6.2 and 6.3. For these two

topologies, the value of AFDP, computed approximately as described above, turned

out to be less than AFIP-

Throughput

In Table 6.2, we list the relative increase in throughput of two-phase routing, com-

pared to the unprotected case, for the two schemes for protecting against router

node failures for the six Rocketfuel topologies. We also list the closeness of the ratio
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Topology OFIP I OFDP

Telstra (Australia) 1221 2.56% 2.50%
Sprintlink (US) 1239 3.17% 7.06%*
Ebone (Europe) 1755 5.00% 4.76%
Tiscali (Europe) 3257 3.23% 7.07%*
Exodus (Europe) 3967 6.25% 5.88%
Abovenet (US) 6461 6.31% 5.52%

Table 6.3: Overhead of failure independent (OFJP) and failure dependent (OFDP) pro-
visioning schemes for protecting against router node failures compared to unprotected
case for Two-Phase Routing.

AFIP to the theoretical upper bound of n- _ in all cases, this is less than 2%. The
kU N P n

throughput of failure dependent provisioning (AFDP) is higher than that of failure

independent provisioning (FIP) by less than 1% for the four topologies for which we

could compute AFDP exactly by solving the corresponding linear programs in CPLEX.

The overhead of protecting against router node failures can be measured by the

percentage decrease in network throughput over that for the unprotected case. For

failure independent provisioning, this is OFIP = AUNP-,FIP For failure dependent
,PUN P

provisioning, this is OFDP = AUNP--XFDP. These values are listed in Table 6.3. For
· )~~~~UNP

both failure independent and failure dependent provisioning schemes, the overhead

range is about 2-7% for the six topologies. Thus, it is relatively inexpensive to provide

resiliency against router node failures in two-phase routing.

We also observe that the overhead of failure dependent provisioning is only marginally

lower than that for failure independent provisioning (less than a percentage point) for

the four topologies for which we could compute AFDP exactly. Hence, given the static

optical layer provisioning property of failure independent provisioning in handling

router node failures, it might be the preferred one among the two schemes.

Number of Intermediate Nodes

In Table 6.4, we list the number of intermediate nodes i with non-zero traffic split

ratios (under norimal no-failure conditions) for the three cases for the six Rocketfuel
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Topology I NUNP I NFIP NFDP I
Telstra (Australia) 1221 1 38 38

Sprintlink (US) 1239 5 30 24

Ebone (Europe) 1755 4 19 19

Tiscali (Europe) 3257 7 30 29

Exodus (Europe) 3967 3 16 16
Abovenet (US) 6461 7 17 18

Table 6.4: Number of Intermediate Nodes in Two-Phase Routing for unprotected
(NUNp), and failure independent (NFIp), failure dependent (NFDP) provisioning
schemes for protecting against router node failures.

topologies. In our experiments with both the schemes for protecting against router

node failures, we observed that some intermediate nodes have quite small ai values

- they carry less than a percentage point of total network traffic. In practice, the

traffic split ratios associated with these intermediate nodes can be redistributed to

other nodes without any significant decrease in throughput. Hence, in Table 6.4,

for the NFIP and NFDP values, we plot the number of intermediate nodes with the

largest ai values (normalized) that sum to at least 0.95, i.e., the nodes with largest

traffic split ratios that together carry at least 95% of total network traffic.

Interestingly, the number of intermediate nodes increases when we provide pro-

tection against router node failures (it is almost always the same for the failure in-

dependent and failure dependent schemes). This behavior can be attributed to the

same reason for which the straightforward approach of redistributing traffic for the

failed intermediate router node to other intermediate nodes in proportion to that of

the traffic split ratios for the unprotected case does not lead to the best throughput.

For the unprotected case, a small number of intermediate nodes is preferred - these

nodes are presumably located at geographical center(s) of the network and provide

the best opportunities for serving as intermediate nodes without increasing the length

of end-to-end paths or decreasing throughput significantly. However, a small number

of intermediates nodes is associated with a relatively large traffic split ratio for each

such node. Thus. i the event of a route node failure at any of these intermediate
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nodes, a relatively large fraction of the traffic needs to be restored, thus increasing

the resources reserved for restoration. Hence, in an effort to maximize the through-

put, the algorithms developed in this chapter intelligently spread the traffic to many

intermediate nodes so as to prevent any single traffic split ratio from becoming too

large.
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Chapter 7

Protecting Against Link Failures

In this chapter, we consider making two-phase routing resilient to link failures through

three different pre-provisioned restoration mechanisms - (i) local (link/span) restora-

tion (LR), (ii) K-route path restoration (KPR), and (iii) shared backup path restora-

tion (SBPR). In two-phase routing, the first and second phase paths can be protected

using any of the above three restoration mechanisms so as to provide resiliency against

link failures. The first mechanism reroutes traffic locally around a failure and con-

tinues to use the portion of the primary path unaffected by failure. The last two

mechanisms are end-to-end (path) based and switch traffic to a diverse backup path

after a failure on the primary path.

We assume that a single link failure brings down the link in both directions. This

is motivated by the fact that ports (line cards) of network routers/switches are bidi-

rectional, hence a port failure can affect traffic in both direction son the link. In all

of the three restoration models that we consider, backup bandwidth is shared across

single link failure events so as to reduce restoration capacity overhead. Backup band-

width can also be allocated in a dedicated manner. The focus on shared allocation

in this chapter is because of its reduced cost, the rarity of concurrent multiple link

failures i networks, and the increased complexity of the optimization problems that

arises from sharing backup bandwidth. (The dedicated backup bandwidth versions of
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the optimization problems are simpler but lead to large restoration capacity usage.)

In local restoration, upon failure of a link, traffic is rerouted along a backup path

(detour) joining the two nodes adjacent to the failed link. Detours for different links

can share bandwidth on their common links. In K-route path restoration, upon

failure of a link, traffic is rerouted to a backup path that is disjoint with the primary

path and serves to protect against failure of any link on the primary path. Multiple

disjoint primary paths between the same source-destination pair can share a disjoint

backup path. In shared backup path restoration, each connection consists of a link-

disjoint primary and backup path pair - two backup paths can share bandwidth on

their common links if their primary paths are link disjoint.

We provide linear programming formulations and fast combinatorial algorithms

with performance guarantees for maximum throughput two-phase routing with local

restoration and K-route path restoration against link failures. We show that the op-

timization problem for maximum throughput two-phase routing with shared backup

path restoration is JHP-hard. Assuming an approximation oracle for a certain disjoint

paths problem (called SBPR-DISJOINT-PATHS, which is also JfP-hard) involving

the dual variables of a path indexed linear programming formulation for the prob-

lem, we design a combinatorial algorithm with provable guarantees. We also provide

heuristics for finding approximating solutions to the SBPR-DISJOINT-PATHS prob-

lem. We evaluate the throughput performance and number of intermediate nodes

in two-phase routing with the above three restoration mechanisms on actual ISP

topologies collected for the Rocketfuel project [SMWH].

7.1 Restoration Mechanisms

We introduce the three restoration models considered in this chapter, namely local

restoration, K-route path restoration, and shared backup path restoration. The first

two mnechanismns have been classified under fast restoration i the literature because
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Backup path (detour) for
link s-a
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Figure 7-1: Link backup detours protecting links on primary path.

of their (relatively) low restoration latency. The explanation for this is provided in

the respective description of the mechanisms.

In the two-phase routing scheme, the Phase 1 and Phase 2 paths can be protected

against link failures by any of the three restoration mechanisms. In this chapter,

we develop algorithms for maximum throughput two-phase routing with resiliency

against link failures provided by the described restoration mechanisms.

7.1.1 Local Restoration

For protecting against link failures with local restoration, a path P consists of a

primary (working) path, denoted by W (P), and a link backup detour, denoted by

Be(P), for each link e on W(P). A link backup detour for a link e is a (simple) path

joining the two nodes adjacent to link e that does not include this link and is used

to reroute the working traffic on link e when it fails. This is illustrated in Figure

7-1. Thus, a primary path with h hops is associated with h link detours for local

restoration against link failures. When we refer to a path P in the context of local

restoration, it will consist of the primary path and the link backup detours for each

link on the primary path. For notational convenience, in the case that link e is not

on the primary path W(P), the quantity Be(P) will denote the empty path (with no

links).
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Figure 7-2: Backup bandwidth sharing across link backup detours.

Under the single link failure model, backup paths for different links both within the

same as well as across different connection(s) can share bandwidth on their common

links. As illustrated in Figure 7-2, backup detour a-3-4-b for link (a, b) and backup

detour b-3-4-5-t for link (b, t) can share bandwidth on their common link 3-4.

The fast nature of link restoration arises from two aspects: (i) fast failure detection

by the nodes adjacent to the failed link, and (ii) fast signaling after failure along short

link detour paths, in case such signaling is required, as in optical mesh networks in

order to setup cross-connects on the link detours [RS02].

7.1.2 K-Route Path Restoration

For K-route path restoration, each connection consists of K (~ 2) link-disjoint paths

from source to destination (hence the name K-route). For the special case K = 2,

also called 1:I-protection, a connection P consists of a primary (working) path, and

a link-disjoint backup path. Traffic is sent on the primary path during normal (no-

failure) conditions and switched to the backup path after any failure that affects the

primary path.
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Figure 7-3: Diverse primary paths PI, P2 and backup path B for K-Route Path
Restoration.

The I:I-protection scheme can be extended to a more general scheme with the

objective of reducing the protection capacity overhead of the network. We allow a

connection P to consist of K(~ 2) link-disjoint paths from source to destination.

If the working traffic associated with this connection is ~, then an amount KC:1
of working traffic is sent on each of K - 1 disjoint paths. The remaining path is

designated as the backup path. This is illustrated in Figure 7-3. Under a single link

failure model, only one of the K - 1 (disjoint) primary paths can fail, in which event

the backup path carries KC:1 portion of the working traffic. One can designate any

K - 1 of the paths (usually the K - 1 shortest ones) as primary and the remaining

as backup. Clearly, for K = 2, the scheme reduces to 1:I-protection.

The backup path bandwidth for K-route path restoration is shared across the

primary paths for the same connection but not with other connections. Thus, for

purposes of computing bandwidth usage on a link, the bandwidth allocated for the

backup path in a K-route path restored connection can be considered to be dedicated

to that connection in the same manner as the bandwidth on the primary paths.

The fast nature of the K-route path restoration mechanism arises from the fact

that the source needs to just switch traffic to the backup path after one of the primary
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paths fails and the destination needs to select traffic from the backup path. (The

source needs to receive failure notification from the destination or the nodes adjacent

to the failed link before switching.) For optical mesh networks, cross-connects are

already setup on the backup path during provisioning, hence no signaling on the

backup path is required after failure.

For K-route path restoration, we will use the term "path" to collectively denote

the (multiple) primary path(s) and the backup path and refer to it as a "link-disjoint

path set". For such a path set P, the summation over all links that belong to any

individual path in P will be conveniently written as ZeeP.

7.1.3 Shared Backup Path Restoration

Under shared backup path restoration, a connection consists of a primary path and

a link-disjoint backup path. Traffic is sent on the primary path during normal (no-

failure) conditions and switched to the backup path after the primary is affected by

a link failure. In this respect, it is similar to K-route restoration for K = 2. The

main difference lies i the sharing of backup bandwidth across different connections

in two possible ways as we explain below. Both ways of sharing backup bandwidth

guarantee that all connections affected by the failure of a single link have sufficient

bandwidth on their backup paths to be completely restored.

First, two backup paths can share bandwidth on their common links provided

their corresponding primary paths are link-disjoint (and, hence cannot be affected

simultaneously by a single link failure). This sharing of bandwidth occurs across two

backup paths for all possible single link failure scenarios. This method of sharing

is illustrated in Figure 7-4, where two connections, one from s to t and the other

from s2 to t2. have primary paths P1, P2 and backup paths B1, B2 respectively. Since

primary path P1 and P2 are link-disjoint, hence their backup paths B1 and B2 can

share bandwidth on link a-b.

Second. if the primlary paths of two connections lhave a link f in conmmon, then
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Primary Path PI

Primary Path P 2

Figure 7-4: Bandwidth sharing between backup paths In Shared Backup Path
Restoration.

the primary path of one connection and the backup path of another (and, vice versa)

can share bandwidth (on common links) under failure of link f. This is because

after failure of link f, there will be no traffic on the primary path of either of the

connections. This sharing of bandwidth occurs across a primary path and a backup

path (of two different connections) for specific single link failure scenarios (i.e., those

links common to both primary paths).

7.2 Additional Notation

vVeassume that a single link failure brings down the link in both directions. This is

lnotivated by the fact that ports (line cards) of network routers/switches are bidirec-

tional, hence a port failure can affect traffic in both direction son the link. Hence,

we will refer to link failures in the undirected sense. To simplify the notation, we
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use f to denote the undirected link corresponding to link f. Let E denote the set of

undirected links e for all e E E, i.e., = {~ le EG E}.

Let denote the reverse of link e(if it exists). Thus, the failure of links f and

f will be referred to by the failure of the undirected link f. A working path W(P)

is affected by the failure of link f if f E W(P) or f E W(P). We will denote

the latter condition by f E W(P) and consider the (non-)containment of undirected

links in directed paths in the undirected sense. Also, we will use By(P) to denote

the detour corresponding to link f or nf on W(P). Since a primary path W(P)

will not contain both a link and its reverse, this notation can be interpreted in an

unambiguous manner. It can also be written as Bf(P) B (P) U Bi(P).

Because we are considering link failures in both directions, we need to define link

diversity of two paths to reflect this. Throughput this chapter, two paths are said to

be link-disjoint if they do not have any common link in the undirected sense, i.e., for

any link e on one path, the other path cannot contain link e or its reverse.

We assume without any loss of generality that whenever there is a link (i, j) in G,

there is also the link (j, i) (we can add links with zero capacity if required to satisfy

this).

7.3 Adding Local Restoration to Two-Phase Rout-

ing

In order to make two-phase routing resilient to link failures using local restoration,

we add link backup detours protecting the Phase 1 and Phase 2 paths as discussed

in Section 7.1.1. Given a network with link capacities e and constraints Ri, Cj

on the ingress-egress traffic, we consider the problem of two-phase routing with local

restoration so as to maximize throughput. The throughput is the maximum multiplier

A such that all matrices in A T(R C) can be feasibly routed with local restoration

nd(ler given link capacities.
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We can express throughput in terms of the traffic split ratios in a manner similar

to that for the unprotected case. Suppose we relax the requirement that the traffic

split ratios aj sum to in a feasible solution of the problem. Consider the sum

A = >Zci
iEN

The traffic split ratios aj can be divided by A (normalized) so that they sum to 1, in

which case all matrices in A T(1, C) can be feasibly routed. Thus, the appropriate

measure of throughput is the quantity A above when the traffic split ratios aj are not

constrained to sum to 1.

7.3.1 Link Flow Based LP Formulation

Let x j denote the flow value on link e for routing the demand of ajRi + aiCj from

node i to node j under normal (no-failure) conditions. The total traffic on link e

under normal (no-failure) conditions is Ei,jEN x?. Let yf be the flow on link e for

sending restoration flow of value Ei,jeN xi along link detours for link f after it fails.

Then, the problem of two-phase routing with local restoration so as to maximize

the network throughput can be formulated as the following link flow based linear

program:

maximize ieN ai

subject to

aOjRi + aoiCj if k = i

x 4- E x -ajRi- aiCj if k = j V i,j,k E N (7.1)
eEE+(k) eeE- (k) 

0 e otherwise
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Ei.jeN xe if k = i

y e- ye f -1-EijEN Xi if k = j V k E N. (7.2)
eEE+(k),e7f eCE-(k),ef

0 otherwise V f (i, j) E

xi + yf +y < ue Ve, f E E, f (7.3)
i,jEN

ai > 0 Vi N (74)

xeyf > 0 Ve, f E E, Vi, j N (7.5)

Constraints (7.1) correspond to the routing of ajRi + oiCj amount of flow from

node i to node j under normal (no-failure) conditions. Constraints (7.2) correspond to

the routing of restoration flow along link detours for link f after it fails. Constraints

(7.3) state that that the sum of working traffic on a link and the restoration traffic

that appears on that link after failure of any other link (and its reverse) is at most

the capacity of the link. Recall that the reverse of link f is denoted by f.

By using per-source flow variables xi instead of per source-destination variables

xi, the number of x variables in the above linear program can be reduced to nm.Xe ,

However, the same reduction cannot be done for the yf variables because of the link

diversity requirement for link detours - link f cannot be used for the restoration flow

for failure of link f while it can be used for the restoration flow for failure of other

links emanating out of the same node. Hence, the number of variables in the above

linear program is O(m 2).

It is well known that running times of general linear programming based algo-

rithms for network problems do not scale well with increasing network size. For-

tunately, our problem formulation for two-phase routing with local restoration ac-

comnmodates a fast combinatorial algorithm. Moreover, because the combinatorial

algorithm we develop works explicitly with paths, delay constraints on the paths

(both primary and link detours) can be efficiently handled within the optimization

framework, as explained fr the unprotected case in Section 4.3.6. In contrast, the
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link flow based linear program formulation above does not deal explicitly with paths,

and hence, cannot accommodate constraints like bounding path delay.

7.3.2 Path Flow Based Linear Programming Formulation

In this section, we develop a path indexed linear programming formulation for this

problem. This will be subsequently used to develop the fast combinatorial algorithm

in Section 7.3.4.

Let PLij denote the set of all paths from node i to node j, consisting of a primary

path as well as link backup detours protecting each link on the primary. Let x(P)

denote the traffic associated with path P. Then, the problem of two-phase routing

with local restoration so as to maximize the network throughput can be formulated

as the following path flow based linear program:

maximize E-ieN ai

subject to

E x(P) = Ri +aiCj V i,j E N (7.6)
PE'Pij

£ E X(P) + 5 A X(P) <•Ue Ve, f E, -f (7.7)
i,jEN PEPLij,W(P)3e i,jEN PEPICij,Bf(P)3e

ai > 0 V i E N (7.8)

x(P) > 0 V P E PLi,V i,j E N (7.9)

In Section 7.3.3, we consider the dual of the above linear programs. In general,

a network can have an exponential number of paths (in the size of the network).

Hence, the primal program can have possibly exponential number of variables and

its dual can have an exponential number of constraints, and are both not suitable for

fast iniplemrnentation on large sized networks. The usefulness of the primal and dual
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fornmlation is in designing a fast (polynomial time) combinatorial algorithm for the

problem.

7.3.3 Dual of Path Flow Based LP Formulation

We will use a primal-dual approach to develop a fast combinatorial algorithm (FP-

TAS) for two-phase routing with link restoration that computes the traffic split ratios

and routing of Phase 1 and Phase 2 paths (with link detours) up to (1 + e)-factor

of the optimal objective function value (maximum throughput) for any > 0. The

primal-dual scheme extends the approach used for maximizing throughput for the

unprotected case in Section 4.3.

We begin with the dual formulation of the linear program in Section 7.3.2. The

dual formulation of the linear program associates a variable a variable 7rij with each

demand constraint in (7.6), and a non-negative variable w(e, f) with each link capacity

constraint in (7.7). The dual program can be written as:

minimize eEE Zj~egjo uew(e, f)

subject to

E E w(e, f) + 5 5 w(e, f) > ij
eCW(P) fEEfj fEW(P) eEBI(P)

V P E P4ij, V i, j E N(7.10)

E Riik + Y Cjirkj > 1 V k N (7.11)
iEN.i5k jEN,j/k

w(e,f) > 0 V e,f E E, # f (7.12)

2()09

Because of the nature of constraints (7.11), we can assume that the variables

7ij attain the maximuni possible value given by constraints (7.10) in any optimal
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solution. Then, we have

wij= m ( E E w(e,f)+ E E w(ef)) Vi,j EN (7.13)
PE 1 e'eW(PP) feEAj$' fEW(P) eEBf(P)

This allows us to eliminate the dual variables 7rij.

For a path P (with link detours) and given weights w(e, f), denote the value of

the quantity inside the min on the RHS of (7.13) by 1((w, P), that is,

(w, P) = E E w(e, ) + E E w(e,
eEW(P) fej,s]- fEW(P) eEBi(P)

With the removal of the dual variables ri and use of the new notation, the dual

problem can be written as:

minimize eEE Etfee,I. uew(e, f)

subject to

N R~i min ~(wP ) N Cj min 4I(w,P) > 1 V k E N (7.14)
iEN,iok PEPik jEN,j4k EPCk3

w(e,f) > 0 V e,f E,a f (7.15)

7.3.4 Combinatorial Algorithm

In this section, we use the primal and dual formulations of the path flow based linear

program to develop a combinatorial algorithm for the problem.

For a given node k · N and weights w(e, tildef), let V(k) denote the LHS of

dual constraint (7.14). Given the weights w(e, f), note that V(k) can be computed

in polynomial time for all k c N if we can compute ilnipep£ i (w, P) in polynomial
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time for all i, j E N. We show how, for given i,j e N, the path P E PLij that

minimizes ((w, P) can be obtained using simple shortest path computations.

For each link f = (i, j) E E, let Df denote the set of all possible simple paths

from node i to node j that do not contain link f, i.e., Df is the set of all possible link

detours for link f. For each link f E E, denote by g(f) the cost of the shortest path

in D.f under link costs c(e) = w(e, f) for all e E E. e # f. That is,

g(f)= min E w(e,f) V f EE
PEDf eEP

Let di denote the cost of the shortest simple path Pij from node i to node j under

links costs

c(e) = g(e) + E w(e, f) V e E E
fEE,f~&

Essentially the definition of dij corresponds to a minimum cost path P E PCij whose

links e on working path W(P) have cost Elf w(e, f) and backup detours Be(P)

protecting each primary link e have cost g(e).

Now form the path P E PLij by making its primary W(P) equal to Pij and for

each e E W(P), the link detour Be(P) equal to the simple path in De whose cost is

equal to g(e). It is easy to see that this is the path that minimizes I(w, P) over all

P E Pij and that dij = minp, EPLj I(w, P').

We summarize the above efficient method for computing minpepcij 4(w, P) for

all i j C N. As we shall see, this is required in each iteration of the combinatorial

algorithm for maximizing throughput.

A. For each link f = (i,j) E E, compute the cost g(f) of the shortest link detour

from node i to nodej under link costs c(e) = (e, f) V e E E, e ~ f and

c(f) = o, using Dijkstra's algorithm [AMN093].

B. Using an all-pairs shortest paths computation, compute the cost dij of the short-

est path fron i to j .unI(ler link costs c(e) = (e) + --fE:,f wt(e, f) V e E.
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The complete path (primary plus link detours) P E Pij with cost dij =

minpepLij 4(w, P') is identified as follows. The primary path W(P) is given by the

path computed in Step B. The link backup detours for each f E W(P) are obtained

from Step A.

Step A involves m single shortest path computations. Step B involves n single

shortest path computations. Hence, the above procedure involves m + n Dijkstra

shortest path computations. All other operations are subsumed by the time taken

for these shortest path computations. Dijkstra's shortest path algorithm can be

implemented in O(m + n log n) time using Fibonacci heaps [AM093]. Hence, this

procedure can be implemented in O(m 2 + nm log n) time.

The overall algorithm works as follows. Start with initial weights w(e, f) = -- for
Ue

all e, f E E, 7 f (the quantity depends on and is derived later). Repeat the

following until the dual objective function value is greater than 1:

1. Compute the node k for which V(k) is minimum. This identifies a node k as

well as paths (with link detours) Pi from node i to node k for all i and paths

(with link detours) Qj from node k to node j for all j. (These are the paths

with link detours between respective node pairs obtained during computation

of V(k) as described above.) This is illustrated in Figure 7-5.

2. For a traffic split ratio of 1 for intermediate node k, the traffic on path Pi is Ri

for all i # k and the traffic on path Qj is Cj for all j ~ k. Using this, compute

the working traffic s(e) on link e under normal (no-failure) conditions per unit

split ratio ak for intermediate node k as

s(e) = A: Ri + A Cj V e E E (7.16)
iEN.i5k,W(Pi)De jeN,jsk,W(Qj)3e

3. For the above working traffic and given link detours in paths Pi, Qj, compute
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o
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Phase 1 and Phase 2
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/

Figure 7-5: One Step in the Primal-Dual Computation for Local Restoration in Two-
Phase Routing.

the restoration traffic s'(e, j) that appears on link e after failure of link j as

s'(e, j) = L R +
i=lk, W(Pi)3j,B j(Pi )3e

L Cj
j=lk, W(Qj )3j,B j(Qj )3e

Ve,!EE,e=l-! (7.17)

The maximum possible traffic on link e is thus

s(e) + _lI!~ s'(e, j)
JEE,f=le

4. Compute the maximum value (l' for the traffic split ratio for intern1ediate k that

does not lead to violation of (original) link capacity constraints for the above
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traffic as

a = min Ue(7.18)
eEE s(e) + maxflE f,, s'(e,) )

5. For this value a of the split ratio for intermediate node k, send oaRi amount of

traffic from node i to node k along path Pi for all i k and Cj amount of

traffic from node k to node j along path Qj for all j 5Z k. Compute the working

traffic A(e) on link e under normal (no-failure) conditions as

A(e) = s(e) e E E

and the traffic A'(e, f) that appears on link e after failure of any other link f

as

A'(e, ) = s'(e, f) V e,f E E,e7 f

6. Update the weights w(e, f) as follows:

w(e, f) - w(e, f) + [A ( ) A(e' )]A ), V e, f E E,e f
Ue

7. Increment the split ratio ck associated with node k by a.

When the above procedure terminates, primal capacity constraints will be vio-

lated, since we were working with the original (and not residual) link capacities at

each stage. To remedy this, we scale down the traffic and split ratios ai uniformly so

that capacity constraints are obeyed.

Note that since the algorithm maintains primal and dual solutions at each step,

the optimality gap can be estimated by computing the ratio of the primal and dual

objective function values. The computation can be terminated immediately after the

desired closeness to optimality is achieved.
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In the context of optical mesh networks [RS02], cross-connects need to be setup

on the link backup detour(s) after failure for restoration. This involves end-to-end

signaling on the link detour. Hence, in order to bound restoration latency in optical

networks, it may be necessary to impose a hop constraint (say, at most h hops) on each

link detour. This is easily incorporated into our algorithm by restricting link backup

detours to have at most h hops and using the Bellman-Ford algorithm [AM093] in

Step A of the procedure discussed at the beginning of this section to compute shortest

cost paths bounded by a hop count of h.

The pseudo-code for the above procedure, called Algorithm LR, is provided below.

Arrays work(e) and bkp(e, f) keep track respectively of the working traffic on link e

and the restoration traffic that appears on link e after failure of link f as the algorithm

progresses. The variable D is initialized to 0 and remains less than as long as the

dual objective function value is less than 1. After the while loop terminates (through

a jump out of it), the factor by which the capacity constraint on each link e gets

violated is computed into array scale(e). Finally, the ai values are divided by the

maximum capacity violation factor and the resulting values are output.

Algorithm LR:

ak Vk E N;

w(e.f) la Ve,f EEe f'
work(e) 0-O V e E E;

bkp(e, f) 0-O V e,f E E, zA ;

D -0;

while D < 1 do

For each f = (i, j) E, compute shortest path from i to j that excludes link f

under link costs c(e) = w(e: f) and denote its cost by g(f)

For each i,j E N, compute shortest path from i to j under link costs

c(e) = g(e) + Efs w(e, f) and denote its cost by dij
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(This identifies primary path with link detours from i to j for all i, j E N.)

V(k) - ZiEN,iAk Ridik + EjEN,j$A Cjdkj;

k arg minkeN V(k)

(Denote the primary path with link detours from i to k by Pi for all i ~ k and

primary path with link detours from k to j by Qj for all j $ k.)

s(e) i-- 7k,w(P)9e Ri + EjAk,W(Q.j)3e Cj V e E;

s'(e,) ) Eikw(P.)DfB1(P.)3e Ri + ZkW(Qj)DfBf (Qj)3e C3 Ve, f E E 7 f;

oa -- mineeE s(e)+maxfiE,]fas'(e,f)

A(e) as(e) V e E E;

A'(e, f )as'(e,f) V e,f E, f;
work(e) - work(e) + A/(e) V e E;

bkp(e, f) -bkp(e, f) + '(e, f) V e, f E E, f;
w(e, f) - w(e, f)(1 + [A(e)+'(e,f)]) V e f E -7 f;

k- aok + a;

D Ze- E ZfE,1#9 ueW(e, f)

end while

bkp-max(e) - max]. bkp(e, f) V e E E;

scale(e) - work(e)+bkp-max(e) V e E E 
Ue

scale-max - maxeEE scale(e) 

k - scae ma for all k N;Ok-- scale-max

Output traffic split ratios ak

We next analyze the approximation guarantee and running time of Algorithm LR.

Analysis of Approximation Guarantee

The analysis follows the same approach as that of the strongly polynomial time algo-

rithm for maximum throughput two-phase routing for the unprotected case in Section

4.3.5.
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Given a set of dual weights w(e, f), let D(w) denote the dual objective function

value and let F(w) denote the nminimum value of the LHS of dual program constraint

(7.14) over all nodes k E N. Then, solving the dual program is equivalent to finding

a set of weights w(e, f) such that D(W) is minimized. Denote the optimal objective

function value of the latter by 0, i.e., 0 = min D(w) Let wt-1 denote the respective

weight functions at the beginning of iteration t of the while loop, and let At- 1 be the

value of EjEN aj (primal objective function) up to the end of iteration t - 1. Suppose

the algorithm terminates after iteration L.

Lemma 7.3.1 At the end of every iteration t, 1 < t < L, of Algorithm LR, the

following holds

D(wt) < n(m - 1)) I)[1 + (Aj -Aj-1)]
j=1

Proof: Let k E N be the node for which LHS of dual constraint (7.14) is minimum

and let Pi, Q3 be the corresponding paths (as defined earlier) along which traffic is

sent during iteration t. Recall that the weights w(e, f) are updated as:

w(e, ) w(e, ) 1 + U[e \(, A]

where A(e) is the total working flow on link e, and A'(e, f) is the total restoration

flow on link e after failure of link f (both sent during iteration t). Using this, we have

D(wt) = E uewt(e,f)
eEEE f7& f

=- S uewt-l(ef)+--- 5 wt_l(ef)[A(e)+A'(e,f)]
eE1EFAI eEE fEke$j
D(wt_1) E wt-1(e,f)[ 5 oaRi 5+ a oCj +

eEE fEEesf i$-k,W(Pi)e jk1v(Qj)3e

5 aRi + 5 aCj]
i$k,Bf(Pi )3e jk.B (Qj)3e

Interchanging the summations on the RHS of the above equation and first summing
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along paths Pi, Qj, and then over i,j respectively, we can rewrite the RHS of the

above equation to obtain

D(wt) = D(wti) +ea[ Ri{ > Ewt-i(ef)+
i$k eEW(Pi) jf

E E wtl(ef)}+ECj{ E 5wti(ef)+
fEW(pi) eEBf(Pi) jsk eeW(Qj) 1

S E Wti(e, )}]
fEW(Qj) eeBi(Qj)

= D(wt-1) + oa[E Ri(4(wti, Pi) + E Cj( (Wt- 1, QJ)]
isk jAk

D(wt-1) + ea[ Ri pmin 4(wt_-, P) + Cj mPin (wt1, P)]
i EP~k EPkj

= D(wt-1) + ear(wt_1 ) (7.19)

= D(wt-i) + e(At -At-)r(wt-)

The step leading to (7.19) follows from the choice of intermediate node k and associ-

ated paths Pi, Qj that minimize V(k) for the set of weights wt- (e, f) at the beginning

of iteration t.

Using this for each iteration down to the first one, we have

t

D(wt) = D(wo) + e (Aj - A_)r(wj_x) (7.20)
j=l

From the definition of 0, we have 0 < D(wj,) whence r(w _) < D(wj_). Since
- (wj-1) 3

a failure brings down both a link and its reverse, the number of possible failures is

Thus, the inner summation over f in the dual objective function runs over - 1~~~~~~~~~~~~~~~~~~~~~~~~~~~~2'
values of possible link failures f, and hence, D(wo) = m(m - 1)6. Using these in

equation (7.20), we have

t
D(w,) < m(" - 1)6 + 1 (Aj - Aji)D(wj-) (7.21)

j=1
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The property claimed in the lemma can now be proved using inequality (7.21) and

mathematical induction on the iteration number t. The method is similar to that

used in the proof of Lemma 4.3.1. 

We now estimate the factor by which the objective function value value AL in the

primal solution needs to be scaled when the algorithm terminates so as to ensure that

link capacity constraints are not violated.

Lemma 7.3.2 When Algorithm LR terminates, the primal solution needs to be scaled

by a factor of at most logl+, -^ to ensure primal feasibility.

Proof: We will show that the working traffic on link e plus the restoration traffic on

link e due to failure of any other link f is at most ue when the primal solution is

scaled by the above factor.

Consider any link e and the failure of some other link f for e, f E E, f # e. Recall

that the associated weight w(e, f) is updated as:

tJ )we,/ ) (1 + A (e, f
Ue

The term (A(e)+ A'(e, f)) corresponds to the traffic on link e sent during an iteration

under either (or both) of the following circumstances:

* Link e appears on any of the primary paths of Pi, Qj, in which case the working

traffic on this link totals to A(e), or

* Link e appears on any of the link detours of Pi, Qj protecting (primary) link

f (i.e., either f or its reverse f) in which case the restoration traffic on link e

after failure of link f totals to A'(e, f).

Let the sequence of (A(e) + A'(e, f)) values corresponding to working plus restoration

traffic (due to failure of link f) on link e over all iterations be A1, A 2 ... AL. Let

ZL= A t = -ite, i.e.. the sum of working traffic plus restoration traffic after failure of

link .f routed on link excee(ls its capacity by a factor of K.
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Because of the way in which is chosen in accordance with equations (7.16)-

(7.18), we have A, < te for all i. Hence, dual weights w(e, f) are updated by a factor

of at most 1 + e after each iteration. Since the algorithm terminates when D(w) > 1,

and since dual weights are updated by a factor of at most 1 + e after each iteration,

we have D(WL) < 1 + e. Since the weight w(e, f), with coefficient ue, is one of the

summing components of D(w), we have UewL(e, f) < 1+e. Also, the value of WL(e, f)

is given by
L At

wL(e, ) - (1 + -e)
Ue t=i Ue

Using the inequality (1 + cx) > (1 +x)c V x > 0 and any 0 < c < 1 and setting x = e

and c= < 1, we have

> I-(1 + elUe Ue t=- (1 ±+E)Zt'LAt/Ue

Ue

whence,

/C < log 1+e 6

The values of e and 6 are related, in the following theorem, to the approximation

factor guarantee of Algorithm LR.

Theorem 7.3.3 For any given 0 < e' < 0.5, Algorithm LR computes a solution with

objective function value within (1 + e')-factor of the optimum for

+e + e'
[(1 + e) 2 / 2
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Proof: Using Lemma 7.3.1 and the inequality 1 + x < ex for all x > 0, we have

tm _ 1)5 H e(Aj -Aj-~D(wt) < m(- 1) 11 e(Aj 4 j)
j=l

< 2 nEAt/O
2

The simplification in the above step uses telescopic cancellation of the sum (Aj -Aj_ 1 )

over j. Since the algorithm terminates after iteration L, we must have D(wL) > 1.

Thus,

1 < D(wL) < M2eeAL/O
2

whence,

0 e

A < ln (7.22)AL - n2

From Lemma 7.3.2, the objective function value of the feasible primal solution after

scaling is at least
AL

1+E
logl+e 5

The approximation factor for the primal solution is at most the gap (ratio) between

the dual and primal solutions. Using the lower bound on the primal solution and

inequality (7.22), this is at most

0 < clog + I~
< e lgl+ e 6

AL In22
Inm2 21g+e - n ~ e Inly

ln(1 +e) n 2

2n2

The quantity n l+/ln equals 1 for 6 = (1 + e)/[(1 ) /e. Using this value

of 6, the approximation factor is upper bounded by (1 -+) This quantity is at

most 1 + 2e for e < 0.25. Setting = , we get the desired approximation ratio of

1+ ('. U
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Analysis of Running Time

We show that the running time of Algorithm LR is strongly polynomial.

Theorem 7.3.4 For any given e > 0 chosen to provide the desired approximation

factor guarantee in accordance with Theorem 7.3.3, Algorithm LR runs in time

0 (1 m3(m + n log n) log m)

which is strongly polynomial.

Proof: We first consider the running time of each iteration of the algorithm during

which node k and associated paths Pi, Qj are chosen to send traffic. Computation

of V(k) for all kinN using the procedure described at the beginning of Section 7.3.4

takes a total of O(m 2 + nm log n) time. All other operations within an iteration are

absorbed by this, leading to a total of O(m(m + n log n)) time per iteration.

We next estimate the number of iterations before the algorithm terminates. Recall

that in each iteration, traffic is sent along paths Pi, Qj corresponding to the maximum

value of intermediate node split ratio oa such that for any link e, the working traffic

A(e) plus the restoration traffic A'(e, f) that appears on link e after failure of some

other link i corresponding to that iteration is at most ue. Thus, for at least one

link e and some link failure f # e, the value of (A(e) + A'(e, f)) equals ue and the

weight w(e, f), increases by a factor of 1 + e. Accordingly, with each iteration, we

can associate a weight w(e, f) which increases by a factor of 1 + e.

Consider the weight w(e, f) for fixed e, f E E, e 7. Since wo(e, f) = and

wL(e, f) < + (as deduced in the proof of Lemma 7.3.2), the maximum number of
'Le

times that this weight can be associated with any iteration is

1±c + E 1 + ioTrn2 1 2log,+, 6 -(1 log1+ -) = O(- log1+ -"-)
1°gl+~ ~~ 2 E =
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Since there are a total of m(' - 1) weights w(e, f), hence the total number

of iterations is upper bounded by O(ln(Q - 1) log,+, m2). Multiplying this byE 2 ~~2

the running time per iteration, we obtain the overall algorithm running time as

O(lmr3(m+nlogn)logl+, M2) = O(m 3(m+nlogn) gl+, m). Since ln(1+e) =O(e),

this is O( 'm3 (m + nlogn)logm). e

7.4 Adding K-Route Path Restoration to Two-Phase

Routing

In order to make two-phase routing resilient to link failures using K-route path

restoration. Phase 1 and Phase 2 traffic is routed along link-disjoint K-route paths

as discussed in Section 7.1.2. Given a network with link capacities ue and constraints

Ri, Cj on the ingress-egress traffic, we consider the problem of two-phase routing

with K-route path restoration so as to maximize throughput. The throughput is the

maximum multiplier A such that all matrices in A T(R, C) can be feasibly routed

with K-route path restoration under given link capacities.

We do not have a polynomial size linear programming formulation for the problem.

We develop a combinatorial algorithm by extending the primal-dual approach used

for maximizing throughput for the unprotected case in Section 4.3. The algorithm

computes the traffic split ratios and routing of Phase and Phase 2 paths (with K-

route path restoration) up to (1 + e)-factor of the optimal objective function value

(maximum throughput) for any > 0. It uses a path flow based linear programming

formulation for the problem which we describe next.

We will see that there is a polynomial time separation oracle for the constraints

in the dual of the path flow based linear program. The dual problem (and hence the

primal) is thus solvable in polynomial time using the ellipsoid algorithm for linear

programming [S86]. The running time of the ellipsoid algorithm, however, is not

feasible for practical implementations - hence the usefulness of the combinatorial
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algorithm we develop.

7.4.1 Path Flow Based LP Formulation

Let DPij denote the set of all path sets consisting of two or more link-disjoint paths

from node i to node j. Let x(P) denote the traffic associated with each (link-disjoint)

path in the set P. Let X(P) denote the number of link-disjoint paths in P. Then,

the working traffic that is carried on P is (X(P)- 1)x(P). The problem of maximum

throughput two-phase routing with K-route path restoration can be formulated as

the following path flow based linear program:

maximize EiEN Oai

subject to

(X(P) - 1)x(P) = jRi + aiCj V i,j E N (7.23)
PEEPij

S S x(P) < u, VeEE (7.24)
i,jEN PEDPij,P:e

ai > 0 V i N (7.25)

x(P) > 0 V P G 7DPj, V i, j E N (7.26)

Constraints (7.23) correspond to the routing of ajRi + aiCj amount of demand

from node i to node j along K-route paths. Constraints (7.24) are the link capacity

constraints. Similarly to the formulation for the unprotected case, the throughput is

the sum of the traffic split ratios ai when these ratios are not constrained to sum to

1.

In Section 7.4.2, we consider the dual of the above linear program. In general,

a network can have an exponential number of paths (in the size of the network).

Hence. the primal program can have possibly exponential number of variables and
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its dual can have an exponential number of constraints, and are both not suitable for

fast implementation on large sized networks. The usefulness of the primal and dual

fornmlation is in designing a fast (polynomial time) combinatorial algorithm for the

problem.

7.4.2 Dual of Path Flow Based LP Formulation

The dual formulation of the above linear program associates a variable 7rij with each

demand constraint in (7.23) and a non-negative variable w(e) with each link capacity

constraint in (7.24). The dual program can be written as:

minimize ,eEE uew(e)

subject to

w(e) > (X(P) - )7rij V P E DPij, V i,j c N (7.27)
eEP

Ririk + E Cjlkj > 1 V k E N (7.28)
iEN.iE k jEN,Ak

w(e) > 0 V e E E (7.29)

Because of the nature of constraints (7.28), we can assume that the variables

7rij attain the maximum possible value given by constraints (7.27) in any optimal

solution. Then, we have

1
irij = min 1 w(e) V i, j E N

PE:'DPij x()- eEP

This allows us to eliminate the dual variables 7rij. The dual problem can now be

written as:
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minimize eCe uew(e)

subject to

Ri nwin 1 ) w(e) > 1
iEN.ik PEDPik X(P)- 1 EP ENJk ')'j +(P) - eEPiE ~ ~ ~ ~~eP;N,~ eVkkxP 1eP

V k N (7.30)

w(e) > 0 V e E E (7.31)

In the next section, we show how minpEVpij x(P)-I EeeP w(e) can be evaluated

in polynomial time for any given i,j E N. This gives us a separation oracle for the

constraints (7.27) in the original dual program. The constraints (7.28) can clearly

be verified in polynomial time. This implies that the dual problem (and, hence the

primal problem) can be solved in polynomial time using the ellipsoid algorithm for

linear programming [S86]. As mentioned earlier, the running time of the ellipsoid

algorithm is not feasible for practical implementations.

7.4.3 Combinatorial Algorithm

For any node k E N and weights w(e), let V(k) denote the LHS of constraint

(7.30). The combinatorial algorithm we develop is iterative and needs to compute

minkeN V(k) for given weights w(e) in every iteration. To compute V(k) for all k E N,

we need to know the values minpEvpD x(P)-I eEP w(e) for all i, j E N.

1Given the weights w(e), the quantity minpEvpij x(P)- EEP w(e), for each i, j 

N, can be computed in polynomial time as follows. For a fixed K, the problem of

finding K disjoint paths of minimum cost from node i to node j is equivalent to

finding a minimum cost network flow of value K from node i to node j on graph G

with link costs equal to w(e) and link capacities equal to 1. Because the minimum

cost flow problem has an integer optimal solution [ANIO93], the unit link capacities

ensure that the paths in the obtained flow are link-disjoint. Note that these paths are
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also link-disjoint in the undirected sense, since if a link and its reverse are contained

in two different paths, the unit flow in each direction of that link would cancel each

other.

However, the value of K is not fixed and we need to find a K > 2 and associated

set P of K link-disjoint paths that minimizes K1 Eeep w(e). For this purpose, we use

the successive shortest paths algorithm [AM093] for the minimum cost flow problem.

This algorithm, when applied to the graph G with unit link capacities, sends an unit

flow from i to j in each iteration along shortest cost paths i the residual network.

Thus, the value of K increases by between successive iterations and the algorithm

finds K disjoint paths of minimum cost incrementally. The algorithm stops when no

path exists from i to j in the residual network. The final value of K is the maximum

number of link-disjoint paths from i to j in the graph G. We can compute the

value K- 1 eEP w(e) after every iteration and select the value of K and associated K

disjoint paths that minimize it.

The overall algorithm works as follows. Start with initial weights w(e) = (the
Ue

quantity depends on e and is derived later). Repeat the following until the dual

objective function value is greater than or equal to 1:

1. Compute the node k for which V(k) is minimum. This identifies a node k as well

as link-disjoint path set Pi from node i to node k for all i y k and link-disjoint

path set Qj from node k to node j for all j # k. (These are the link-disjoint

path sets between respective node pairs obtained during computation of V(k)

as described above.) This is illustrated in Figure 7-6.

2. For a traffic split ratio of 1 for intermediate node k, the traffic associated with

path set Pi is Ri for all i ~ f and the traffic associated with path set Qj is Cj

for all j ~ f. Using this, compute the bandwidth s(e) required on link e per
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Figure 7-6: One Step in the Primal-Dual Computation for K-Route Path Restoration
in Two-Phase Routing.

unit split ratio aJ.; for intermediate node k as

(7.32)

3. Compute the maximum value a for the traffic split ratio for intermediate k that

does not lead to violation of (original) link capacity constraints for the above

required bandwidth as

. Uea=mm-
eEE s(e) (7.33)

4. For this value a of the traffic split ratio for intermediate node k, send aRi

amount of traffic from node i to node k along path set ~ for all i =1= k and

aCj amount of traffic from node k to node j along path set Qj for all j =1= k.
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(Sending traffic of d units on path set P means sending traffic of d unitsx(p)-l

on each of the (P) paths in the set P.) Compute the bandwidth usage A(e)

on link e as

A(e) = as(e) V e E E

5. Update the weights w(e) as follows:

w (e) -w (e) 1 + ( ) V e E E

6. Increment the split ratio ak associated with node k by a.

When the above procedure terminates, primal capacity constraints will be vio-

lated, since we were working with the original (and not residual) link capacities at

each stage. To remedy this, we scale down the traffic and split ratios cei uniformly so

that capacity constraints are obeyed.

The pseudo-code for the above procedure, called Algorithm KPR, is provided

in the box below. Array flow(e) keeps track of the bandwidth usage on link e as

the algorithm progresses. The variable D is initialized to 0 and remains less than

1 as long as the dual objective function value is less than 1. After the while loop

terminates, the factor by which the capacity constraint on each link e gets violated

is computed into array scale(e). Finally, the ai values are divided by the maximum

capacity violation factor and the resulting values are output.

Algorithm KPR:

ak*-0 Vk N;

al(e) -- V e E;

flow(e) -O Ve C E;

D - 0

while D < 1 do
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For all i, j E N, compute link-disjoint path set P from i to j such that

1
x(P)-I eEP w(e) is minimized and denote this value by 7rij

V(k) - iEN,i4k Ri1rik + EjEN,j4k Cjlrkj;

k - arg minkEN V(k);

(Denote the link-disjoint path set from i to k by Pi for all i # k and

link disjoint path set from k to j by Qj for all j # k.)

s~~e) Ri + Cj V eE E's(e) -ik,Pe x(pxi)_ 1-+ jk, X(Qj)-1

a +- minEE" S mineeE (e)

A(e) - aS(e) e E E;

flow(e) - flow(e) + A(e) for all e E E

w(e) - w(e)(1 + )) for all e E E

k -- ck + ;

D eE UeW(e);

end while

scale(e) flow(e) for all e E E
Ue 

scale-max -- maxeE scale(e)

scaiek for all k E N;Ok -- scale-max

Output traffic split ratios k;

We next analyze the approximation guarantee and running time of Algorithm

KPR.

Analysis of Approximation Guarantee

The analysis follows the same approach as that of the strongly polynomial time algo-

rithm for maximum throughput two-phase routing for the unprotected case in Section

4.3.5.

Given a set of dual weights w(e), let D(wu) denote the dual objective function value

and let F(w) denote the minimum value of the LHS of dual program constraint (7.30)
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over all nodes k E N. Then, solving the dual program is equivalent to finding a set

of weights w(e) such that D()) is minimized. Denote the optimal objective function
F(~~w)

value of the latter by 0, i.e., 0 = rin, D(w). Let wt-1 denote the weight function at

the beginning of iteration t of the while loop, and let At-1 be the value of EeN j

(primal objective function) up to the end of iteration t - 1. Suppose the algorithm

terminates after iteration L. The following lemma upper bounds the value of D(w)

at the end of every iteration.

Lemma 7.4.1 At the end of every iteration t, 1 < t < L, of Algorithm KPR, the

following holds

D(wt) < m6 I [i + (Aj - Aj_ 1 )]
j=l 

Proof: Let k E N be the node for which LHS of dual constraint (7.30) is minimum

and let Pi, Qj be the corresponding link-disjoint path sets (as defined earlier) along

which traffic is sent during iteration t. Recall that the weights w(e) are updated as:

w(e) - w(e) 1 + V e E EUeE
where A (e) is the total bandwidth usage on link e as a result of the traffic sent during

iteration t. Using this, we have

D(wt)= E uewt(e)
eEE

= Z uewtl(e) + e E wtl(e)A(e)
eEE eEE

=~wt~i)+c~ivt~i~e) E aRi ± z aC
e=E Dui$,P.e X(Pi) - 1 '[ x (Q3) -

Interchanging the summations on the RHS of the above equation and first summing

along links on paths Pi, Qj, and then over i, j respectively, we can rewrite the RHS
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of the above equation to obtain

D(wt) = D(wt1)+Fa[RZ wt- (e)+ E C
ijk eEPi x(Pi) - 1 jk

= D(Wt1) +a[Ri min Ep Wt_ (e) +
~= iPk eEP (P) -

= D(wt-1) ± eaF(wt_i)

= D(wt-1)

,E Wt l(e) 
eEQj x(Qj) -1

E-C il E wt- (e) Ijok PED~kieEP X(P)- 1

+ e(At - At-l)r(wt-l)

The step leading to (7.34) follows from the choice of intermediate node k and associ-

ated path sets Pi, Qj that minimize V(k) for the weights Wt-i (e) at the beginning of

iteration t.

Using this for each iteration down to the first one, we have

D(wt) = D(wo) + e Z(Aj -Aj_)r(wj_)
j=l

(7.34)

From the definition of 0, we have 0 < D(w)) whence Fr(wj_)

D(wo) = m6. Using these in equation (7.34), we have

< •D(wj-). Also,

t
D(wt) < m6 + 1 Z(Aj - Al)D(w;_l)

j=1
(7.35)

The property claimed in the lemma can now be proved using inequality (7.35) and

mathematical induction on the iteration number t. The method is similar to that

used in the proof of Lemma 4.3.1. 

We now estimate the factor by which the objective function value value AL in the

primal solution needs to be scaled when the algorithm terminates so as to ensure that

link capacity constraints are not violated.

Lemma 7.4.2 When Algorithm KPR terminates. the primal solution needs to be

scaled by a factor of at mnost log,+, ' to ensure pri+al feasibility.-y oesr rmlfaiiiy
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Proof: We need to show that the bandwidth usage on any link e is at most ue when

the primal solution is scaled by the above factor. Consider any link e and associated

weight w(e). The value of w(e) is updated by multiplying with the quantity (1+ E(e))
Ue,

where A(e) is the bandwidth usage on this link corresponding to the traffic sent

during an iteration. Let the sequence of such values A(e) associated with link e over

all iterations be A1, A2,.., AL. Let Et=l At = ue, i.e., the total bandwidth usage

on link e exceeds its capacity by a factor of K.

Since a is chosen so that link capacity constraints are obeyed for the traffic sent

during an iteration (see equations (7.32)-(7.33)), we have Ai < ue for all . Hence,

dual weights w(e) are updated by a factor of at most 1 + e after each iteration. Since

the algorithm terminates when D(w) > 1, and since dual weights are updated by

a factor of at most 1 + after each iteration, we have D(wL) < + . Since the

weight w(e), with coefficient ue, is one of the summing components of D(w), we have

UeWL(e) < 1 + e. Also, the value of wL(e) is given by

L

WL(e) = - ( ± -1)
Ue I Ue

Using the fact that (1 + cx) > (1 + x)c for all x > 0 and any 0 < c < 1 and setting

x=eand c I < 1, we have

l+e 5 L

> L(e) > - (1 +e)t/UUe Ue t=l

(1 + )t= At/ut,
Ue

: --(1+ e)'

whence,

K < lg+, s <log 1 l 6e
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The values of and 6 are related, in the following theorem, to the approximation

factor guarantee of Algorithm KPR.

Theorem 7.4.3 For any given 0 < c' < 0.5, Algorithm KPR computes a solution

with objective function value within (1 + e')-factor of the optimum for

l+e e'56= and =-
[( 1 ± C)m]l/E 2

Proof: Using Lemma 7.4.1 and the inequality 1 + x < e for all x > 0, we have

t
D(wt) < m6 H e(Ai-Ai-1)

j=l
= m6eeAt/O

The simplification in the above step uses telescopic cancellation of the sum (Aj-Aj-1)

over j. Since the algorithm terminates after iteration L, we must have D(wL) > 1.

Thus,

1 < D(wL) < m6e'AL/O

whence,

6 e
AL -< n (7.36)A-- Inm

From Lemma 7.4.2, the objective function value of the feasible primal solution after

scaling is at least
AL

1+elog,+ ,e 

The approximation factor for the primal solution is at most the gap (ratio) between

the dual and primal solutions. Using the lower bound on the primal solution and
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inequality (7.36), this is at most

0 < e log,+ e
AL -- In

in l 1 +e6
ln( + ) n 

The quantity n l+/ln I equals 1 for = (1+ e)/[(1 + e)m]l/E. Using this value

of 6, the approximation factor is upper bounded by In(l+)() This quantity is at

most + 2e for e < 0.25. Setting e = ¥, we get the desired approximation ratio of

1+e'. e

Analysis of Running Time

We show that the running time of Algorithm LR is strongly polynomial. Let Kmax

be the maximum number of link-disjoint paths between any pair of nodes in G. Since

either a link or its reverse (but not both) appears on at most one of the paths in a

link-disjoint path set, we have Kma < m

Theorem 7.4.4 For any given > 0 chosen to provide the desired approximation

factor guarantee in accordance with Theorem 7.4.3, Algorithm KPR runs in time

(2 Kman2m(m + nlogn) logm)

which is strongly polynomial.

Proof: We first consider the running time of each iteration of the algorithm during

which node k and associated path sets Pi, Qj are chosen to send traffic. As de-

scribed at the beginning of this section, computation of minpez-pj x(P)- 1 eEP w(e)

for each i, j E N uses the successive shortest paths algorithm for minimum cost flow

[AM1093]. Since the shortest path computation in this algorithm operates on non-

negativc costs, we call use Dijkstra's shortest path algorithm with Fibonacci heaps
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[AMO93] that takes O(m + nlogn) time. Since the number of link-disjoint paths

between any two nodes is at most Knax, the maximum number of shortest path

computations to compute the above for given i,j E N is Kmax. Thus, the time for

computing minPEDP- 7 x( 1 eepw(e) for all i,j N is O(n2 Kmax(m + n logn)).computingminpev~,j (P)-I

All other operations within an iteration are absorbed by this, leading to a total of

O(Kmaxn2 (m + n log n)) time per iteration.

We next estimate the number of iterations before the algorithm terminates. Recall

that in each iteration, traffic is sent along paths Pi, Qj corresponding to the maximum

value of intermediate node split ratio oz such that for any link e, the bandwidth usage

A(e) on link e corresponding to traffic sent during that iteration is at most ue. Thus,

for at least one link e, the value of A(e) equals u, and the weight w(e) increases by

a factor of 1 + . Accordingly, with each iteration, we can associate a weight w(e)

which increases by a factor of 1 + e.

Consider the weight w(e) for fixed e E. Since wo(e) = and wL(e) < +
Ue

(as deduced in the proof of Lemma 7.4.2), the maximum number of times that this

weight can be associated with any iteration is

log1+ e I = (1 + logl+, m) = O(- logl+, m)
E

Since there are a total of m weights w(e), hence the total number of iterations is up-

per bounded by O(lmlogl+ m). Multiplying this by the running time per iteration,

we obtain the overall algorithm running time as O(1Kmax,,n2m(m + n log n) log1+, m).

Since ln(1 + e) = (e), this is O(, Krnaxn 2 mn(m + nlog n)log m). .
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7.5 Adding Shared Backup Path Restoration to

Two-Phase Routing

In order to make two-phase routing resilient to link failures using shared backup path

restoration, Phase 1 and Phase 2 traffic is routed along link-disjoint primary-backup

path pairs as discussed in Section 7.1.3. Given a network with link capacities ue and

constraints Ri, Cj on the ingress-egress traffic, we consider the problem of two-phase

routing with shared backup path restoration so as to maximize throughput. The

throughput is the maximum multiplier A such that all matrices in A T(R, C) can be

feasibly routed with shared backup path restoration under given link capacities.

We will show that this problem in AP-hard. Hence, there is no polynomial size

linear programming formulation for the problem. We develop a primal-dual scheme

by considering a path flow based linear programming formulation and extending the

primal-dual approach used for maximizing throughput for the unprotected case in

Section 4.3. Checking feasibility for the dual linear program reduces to finding a link-

disjoint path pair between every pair of nodes that minimizes a certain cost metric

involving the dual program variables. We show that this problem is strongly JA(P-

hard and not approximable within any constant factor even in pseudo-polynomial time

unless P = AlP. The approximation guarantee of the overall primal-dual method for

our problem depends on how closely this disjoint path pair problem can be solved to

optimality.

7.5.1 Path Flow Based LP Formulation

We begin with the path flow based linear programming formulation for this problem.

Let PBij denote the set of all link-disjoint primary-backup path pairs from node i

to node j. Let x(P) denote the traffic associated with path pair P. The primary

(working) path carrying traffic under normal (no-failure) conditions in P will be

denoted by IV(P) and the backup path to which traffic is rerouted after failure by
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B(P). The problem of two-phase routing with shared backup path restoration so as

to maximize the network throughput can be formulated as the following path flow

based linear program:

maximize EieN ai

subject to

E x(P) = jR + oiCj V i,j N (7.37)
PEPBij

E x(P) < ue Ve E E (7.38)
i,jEN PEPBij,W(P)De

E E x(P) + E E X(P) < Ue
i,jEN PEPB3ij,W(P)ge,W(P)0f i,jEN pEPB3ij,B(P)3e,W(P)3f

V e, f E E, e f (7.39)

a > 0 ViEN (7.40)

x(P) > 0 V P E PTPBij, V i,j E N (7.41)

Constraints (7.37) correspond to the routing of ajRi + aiCj amount of demand

from node i to node j along primary paths that are protected by link-disjoint backup

paths. Constraints (7.38) are the link capacity constraints under normal (no-failure)

conditions. Constraints (7.38) state that after failure of any link f (i.e., link f and its

reverse f), the sum of working traffic (not affected by the failure of link f) on a link

and the restoration traffic that appears on the link after failure of link f is at most the

capacity of the link. These constraints model the two ways of sharing backup capacity

described in Section 7.1.3. Note that the (non-)containment f E W(P) of failure links

in primary paths for the summation in these constraints are in the undirected sense.

Similarly to the formulation for the unprotected case, the throughput is the sum of

the traffic split ratios ai when these ratios are not constrained to sum to 1.
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7.5.2 Dual of Path Flow Based LP Formulation

The dual formulation of the above linear program associates a variable 7ria with each

demand constraint in (7.37), a non-negative variable z(e) with each link capacity

constraint in (7.38), and a non-negative variable w(e, f) with each link capacity con-

straint in (7.39). The dual program can be written as:

minimize EueE Uez(e) + ZeEE EfEE,Sf uew(e, f)

subject to

E w(e, )
eEW(P),JfW(P)

E RiTrik+ E CjTrkj
iEN,iok jEN,$k

z(e), w(e, f)

+ E w(e,) > ij
eEB(P),feW(P)

V P E PBij, Vi, j E N

> 1 VkEN

> 0 Ve,fEE,j#f

Because of the nature of constraints (7.43), we can assume that the variables

7rij attain the maximum possible value given by constraints (7.42) in any optimal

solution. Then, we have

PuJn z(e) +
PEPJ eEW'(P) eEW(P),fJW(P)

w(e, ) + E
eEB(P),fEW(P)

This allows us to eliminate the dual variables 7rij. Let (z, w, P) denote the quantity

on the LHS of (7.42) (or, inside the min on RHS of above equation) for a primary-

backup path pair P and given weights z(e), w(e, ). That is,

I(,. PP) = ,z(e) + w,(e, f) + w(e, f) (7.45)
eEB(P),fEV(P)
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After removal of constraints (7.42), the dual problem can be written as:

minimize eEE uez(e) + -eEE EeE,e UeW(e, f)

subject to

Ri min (z,w, ) + E Cj min (z,w,P) > 1 k N (7.46)
iEN,iyk PEPBih. jEN,j4k PEPBk

z(e),w(e,f) > 0 Ve,f EE,y f (7.47)

In order to check feasibility for the dual problem for given set of weights z(e), w(e, f),

we need to compute minpEpB 3j I(z, w, P) for all node pairs i,j E N and verify in-

equality (7.46) for all k E N. For given i,j E N and weights z(e),w(e,f), let

SBPR-DISJOINT-PATHS denote the problem of computing a link-disjoint primary

backup path pair from node i to node j that minimizes T(z, w, P). We show next

that this problem is strongly APP-hard and not approximable within any constant

factor even in pseudo-polynomial time unless P = JVP.

7.5.3 Hardness of SBPR-DISJOINT-PATHS Problem for Check-

ing Dual Feasibility

To show that the problem SBPR-DISJOINT-PATHS is APP-hard, we exhibit a re-

duction from the another disjoint paths problem which we call SIMPLE-DISJOINT-

PATHS:

Problem SIMPLE-DISJOINT-PATHS: Given a graph G = (V, E) with

two sets of non-negative link costs ae and be for all e E and source,

destination nodes i, j E V, find a minimum cost link-disjoint path pair

from node i to node j where the link costs on one of the paths is a and

on the other path is be.
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e 4

(7>~
\C2

Figure 7-7: Reduction to show ArP-hardness of SBPR-DISJOINT-PATHS.

This problem is known to be strongly A/P-hard and not approximable within any

constant factor even in pseudo-polynomial time unless P = A/rP [LMS92]. Without

any loss of generality, we can assume that one of the path pairs in this problem is

designated as primary and has link costs ae, while the other path is designated as

backup and has link costs b.

Theorem 7.5.1 The problem SBPR-DISJOINT-PATHS is strongly A/P-hard and

not approximable within any constant factor even in pseudo-polynomial time unless

P= A/P.

Proof: We construct an approximation preserving reduction from the A/VP-hard prob-

lem SIMPLE-DISJOINT-PATHS. Consider an instance of this problem on a graph

G (V, E) with link costs ae and be and source, destination nodes s, t V. We

construct a graph G' = (V', E') by adding a few nodes and links to G as follows:

V' = VU{vI, 2,v3 ,v4 } and E' = EU{eI = (l,s),e 2 = (,v 2),e3 = (v2,s),e4 =

(v 3, v4 )}. This is illustrated in Figure 7-7.

Now consider an instance of the SBPR-DISJOINT-PATHS problem on graph G'

with source, destination nodes v1, t and weights z(e) and w(e, f) as follows:

* z(c) 0 for all e E E'.
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* w(e2, e4) is sufficiently large.

* w(e, e4) = ae for all e E E.

* w(e, l) =be for all e E E.

* All other w(e, f) values for e, f E E', e 4 f are zero.

The problem SBPR-DISJOINT-PATHS consists of computing a primary-backup

path pair P from node v1 to node t so as to minimize (z, w, P) as given by equation

(7.45). Since e4 is an isolated link, it does not appear on any of the paths from v to

t. Since there are exactly two links emanating out of node v1 in G', one of these must

be on the primary path and the other on the backup path. If link e2 is on the primary

path in an optimal primary-backup path pair P for SBPR-DISJOINT-PATHS, then

the weight w(e2, 4) will appear in 'i(w, z, P) and lead to a large value. Thus, we can

assume that link e1 appears on the primary path.

Given a link-disjoint primary-backup path pair (P, B) from s to t in G, these

naturally map to link-disjoint primary-backup path pairs (P', B') from v to t in G'

as follows: P' = {el} U P and B' = {e 2, e3 } U B. The inverse mapping is also obvious.

Because of the choice of the weights z(e) and w(e, f) in G', we can simplify the

expression for I(z, w, (P', B')) on RHS of (7.45) as follows:

E z(e) = o
eEP'

Z w(e,f) = w(e,e4)= ae
eEP',fJP' eEP' eEP

Z w(e,f) = w(e, el) E be
eEB',fEP' eEB' eEB

Adding the above three equations, we have

-z(e)+ y w(e,f)+ 3 w(e,f) = Zae + be (7.48)
eEP' eEP'..f P' eEB',fEP' eEP eEB
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Thus, minimizing the RHS of (7.48) in an instance of SIMPLE-DISJOINT-PATHS is

equivalent to minimizing the LHS of (7.48) in the above defined instance of SBPR-

DISJOINT-PATHS. This completes the approximation preserving reduction and proves

the theorem. 

7.5.4 Hardness of Two-Phase Routing with Shared Backup

Path Restoration

In this section, we use the VP-hardness of the SBPR-DISJOINT-PATHS problem

to show that the problem of maximum throughput two-phase routing with shared

backup path restoration is A'P-hard. We use the equivalence of polynomial time

optimization and polynomial time separation for linear programming established by

Gr6tschel, Lovasz, and Schrijver [GLS88]. The problem of separation consists of

determining whether a given set of values for the variables of the linear program

is feasible and if not, identifying at least one constraint that is violated. Such a

procedure is also called a separation oracle for the linear program.

Theorem 7.5.2 The problem of computing the maximum throughput for two-phase

routing with shared backup path restoration under given link capacities and ingress-

egress traffic capacities is AP-hard.

Proof: The problem SBPR-DISJOINT-PATHS consists of computing a link-disjoint

primary-backup path pair P from node i to node j so as to minimize (z, w, P) as

given by equation (7.45). Since T(z, w, P) is linear in the variables z(e), w(e, f), this

problem can be expressed as the following linear program:

maximize x

subject to

( w, P) > X V P E PBij (7.49)
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z(e),w(e,f) 0 e, f E E, 4 f (7.50)

Because this problem was shown to he A/P-hard (Theorem 7.5.1) and because

of the equivalence of polynomial time optimization and polynomial time separation

for linear programming, it follows that the problem of separation for the constraints

(7.49) is fl/P-hard.

Now consider the first dual linear program in Section 7.5.2 for the problem of

maximum throughput two-phase routing with shared backup path restoration. In this

linear program, the constraints (7.42) for each i, j E N are identical to constraints

(7.49) in the above linear program for SBPR-DISJOINT-PATHS (since the LHS of

constraints (7.42) is simply I(z, w, P)). Hence, the separation problem for constraints

(7.42) is JP-hard. (The constraints (7.43) can easily be verified in polynomial time.)

Again using the equivalence of polynomial time optimization and polynomial time

separation for linear programming, it follows that the dual and hence the primal

optimization problem is JVP-hard. This completes the proof. U

We will show that having access to an approximation oracle for the SBPR-DISJOINT-

PATHS problem that outputs a solution within (1 )-factor of the optimum value al-

lows us to compute a solution for two-phase routing with shared backup path restora-

tion whose throughput is guaranteed to be arbitrarily close to (1 + ()-factor of the

optimum. The combinatorial algorithm we develop makes a polynomial number of

calls to the oracle for SBPR-DISJOINT-PATHS (the rest of the computation is also

polynomial time).

Before we proceed with the development of this algorithm, we give a heuristic

for the SBPR-DISJOINT-PATHS problem. By using the combinatorial algorithm

together with this heuristic as the oracle for SBPR-DISJOINT-PATHS, we obtained

solutions within 5% of optimality for maximum throughput two-phase routing with

shared backup path restoration, as reported in Section 7.6.
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7.5.5 Heuristics for SBPR-DISJOINT-PATHS Problem

Since the problem SBPR-DISJOINT-PATHS is strongly JVP-hard and not approx-

imable within any constant factor even in pseudo-polynomial time, we must depend

on heuristics to obtain near-optimal solutions. The approach we consider is to gener-

ate candidate primary paths in a greedy manner, then compute the best backup path

for each such primary path, and choose the least cost solution. By generating more

candidate primary paths, the obtained solution can be made closer to the optimal

one.

In an optimal solution, it is reasonable to expect that the primary path will have

a small number of hops. Thus, we can approximate the sum EeEW(P) fW(P) w(e, f) by

adding terms for links f that are in W(P). This sum then becomes EeEW(P) Eoe w(e, f).

Now define link costs

c(e) = z(e) + E w(e, f) V e E E
file

Then, we have

z(e)+ 5 iw(e,f)= E c(e)
eEW(P) eEW(P) f$e eEW(P)

Using the link costs c(e), we generate a suitably large number of candidate primary

paths in increasing order of cost, using a K-shortest paths algorithm [Y71, La72].

The SBPR-DISJOINT-PATHS problem is easy if the primary path is known.

Given a candidate primary path P = W(P), we need to generate a link-disjoint

backup path B = B(P) that minimizes eEB(P),fEW(P) w(e, ). This also involves a

shortest path computation as follows. We set the costs of each link (and its reverse)

in P to infinity to model the link diversity requirement of the backup path. The

costs of the other links are d(e) = EfEW(P) w(e, ). This gives

E w(e, ) = E ({(e)
eCB(P).JEW(P) eEB(P)
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Thus, a shortest path computation with link costs d(e) will give the best link-disjoint

backup path B1 for the given primary path P1.

We choose the primary-backup path pair that gives the lowest cost solution to

SBPR-DISJOINT-PATHS. By generating more candidate primary paths, we can at-

tempt to improve the cost of the solution. By choosing a K-shortest paths algorithm

that generates the paths in increasing order of cost through incremental shortest

path computations [Y71, La72], more candidate primary paths can be generated in

an efficient manner without starting the procedure from the beginning.

7.5.6 Combinatorial Algorithm using Oracle for SBPR-DISJOINT-

PATHS

In this section, we use the primal and dual formulations of the path flow based linear

program to develop a combinatorial algorithm for the problem. We assume that there

is an oracle that outputs a solution to the SBPR-DISJOINT-PATHS problem that

is guaranteed to be within (1 + )-factor of the optimum value and runs in time

TDp(n, m) on a graph with n nodes and m links.

For a given node k and weights z(e), w(e, f), let V(k) denote the LHS of constraint

(7.46). The combinatorial algorithm we develop is iterative and needs to compute

minkeN V(k) approximately in every iteration. This can be done as follows. Given the

weights z(e) and w(e, f), we compute minpep3ij I(z, w, P) for each i,j E N within

(1 +()-factor of its actual value using the approximation oracle for SBPR-DISJOINT-

PATHS. We then use these values to compute V(k) and then take the minimum over

all k E N. This gives us minkEN V(k) within (1 + ()-factor of its actual value.

The overall algorithm works as follows. Start with initial weights z(e) = - V e E

E and w(e, f) = _ V e, f C E, e 7 f (the quantity 6 depends on e and is derived

later). Repeat the following until the dual objective function value is greater than or

equal to 1:
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Disjoint primary
and backup paths

/

Figure 7-8: One Step in the Primal-Dual Computation for Shared Backup Path
Restoration in Two-Phase Routing.

1. Compute node k = k for which V(k) is minimum as described above. This

identifies a node k as well as primary-backup path pairs ~ from node i to

node k for all i I- k and primary-backup path pairs Qj from node k to node j

for all j =1= k. (These are the link-disjoint primary-backup path pairs between

respective nodes obtained from the oracle for SBPR-DISJOINT-PATHS.) This

is illustrated in Figure 7-8.

2. For a traffic split ratio of 1 for intermediate node k, the traffic on path Pi is Ri

for all i =1= k and the traffic on path Qj is Cj for all j =1= k. Using this, compute

the working traffic s(e) under normal (no-failure) conditions on link e per unit

split ratio Qk for intern1ediate node k as

s(e) = L Ri + L Cj V e E E
ifk,W(Pd3e jfk,W(Qj)3e
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3. For the above working traffic and primary-backup path pairs Pi, Qj, compute

the traffic s'(e, I) on link e after failure of link f. The quantity s'(e, f) is the

sum of working traffic on link e that is not affected by the failure of link f

and the restoration traffic that appears on the link after failure of link f and is

computed as

s'(e,f) Ri+ Cj+
i$k,W(Pi)3e,W(Pi)0f jk,W(Qj)3e,W(Qj)Of

E R + E Cj
isk,B(P)3e,W(Pi)3f j$k,B(Qj)3e,W(Qj)3f

Ve, f E E, f (7.52)

The maximum possible traffic on link e is thus

max(s(e), maxs'(e, f)) e E E
fog

4. Compute the maximum value a for the traffic split ratio for intermediate k that

does not lead to violation of (original) link capacity constraints for the above

traffic as

a = min ue (7.53)
eEE max(s(e), maxf s'(e, f))

5. For this value a of the traffic split ratio for intermediate node k, send aRi

amount of traffic from node i to node k along primary-backup path pair Pi for

all i 4 k and aCj amount of traffic from node k to node j along primary-backup

path pair Qj for all j # k. Compute the working traffic A(e) on link e under

normal (no-failure) conditions as

A(e) = s(e) V e C E
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and the traffic A'(e, f) on link e after failure of any other link f as

A'(e,f) = as'(e,f) Ve, f EE, f

6. Update the weights z(e) and w(e, f) as follows:

z(e) (e) (1 + () V e E
Ue 

W ~~~~~cA'(e, f)\w(e, f) - w(e, ) (1 + e V e, f e E, E f

7. Increment the split ratio ak associated with node k by o.

When the above procedure terminates, primal capacity constraints will be vio-

lated, since we were working with the original (and not residual) link capacities at

each stage. To remedy this, we scale down the traffic and split ratios ai uniformly so

that capacity constraints are obeyed.

Note that since the algorithm maintains primal and dual solutions at each step,

the optimality gap can be estimated by computing the ratio of the primal and dual

objective function values. The computation can be terminated immediately after the

desired closeness to optimality is achieved.

The pseudo-code for the above procedure, called Algorithm SBPR, is provided

below. Arrays work(e) and fail(e, f) keep track respectively of the working traffic

on link e under normal (no-failure) conditions and the traffic on link e after failure of

any other link f. The variable D is initialized to 0 and remains less than as long

as the dual objective function value is less than 1. After the while loop terminates

(through a jump out of it), the factor by which the capacity constraint on each link

e gets violated is computed into array scale(e). Finally, the ai values are divided by

the maximumi capacity violation factor and the resulting values are output.

Algorithm SBPR:
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a,-O 0 VkEN;

z(e) - V- VcE
w(e,f) ) e, f V e E,e#f;

work(e) *-O V e E;

fail(e,f), 0- Ve,f E, 5f;
D -- 0;

while D < 1 do

For each i, j N, compute primary-backup path pair P from i to j that

minimizes (z, w, P) using oracle for SBPR-DISJOINT-PATHS;

(Denote value of \I(z, w, P) for computed path pair P from i to j by DP(i,j)

for all i, j N.)

V(k) EiEN,iok RiDP(i, k) + ZjEEN,jk CjDP(k, j) k N;

k -arg minkeN V(k)

(Denote primary-backup path pair from to k by Pi for all i V k and

primary-backup path pair from k to j by Qj for all j $ k.)

s(e) Eiik,W(Pi)3e Ri + Ej~i,u,'(Qj)3e Cj V e E;

s'(c, f) - Zi$k,W(Pi)3e,,W(P,)f Ri + Ejk,W(Qj)3e,(Qj)0f Cj+

Zi5k,B ()eV(P 2 )Df Ri + Zj7k,B(Qj)DeW(Q,)Df C V c, f C F, e 7 f

oV 6- MineE E ma c - '
max(s(e),maxf~ s'(e,f))

A(e) a-s(e) V e E;

A'(e,f) - as'(e, f) V e,f E, f
work(e) - work(c) + A(e) e E;

fail(e,f) - fail(e,f) + /A'(e,f) V e, f C E,e f;

Z(e) Z(C I +) ( V e C E ;
w~e, ) u~e f) + VA (6c)' , f E E, e + f

k k + a

D -eF bez(e) + ZeCE Z.fE k.?¢ U~tL(em )

end while

250



CHAPTER 7. PROTECTING AGAINST LINK FAILURES

failrmax(e) - max]# fail(e, f) V e E E;

scale(e) - max(work(e),fail-max(e)) V e c E
'U,e

scale-max - maxceE scale(e)

k s a ma for all k E N;Ok -- scale-max

Output traffic split ratios ak;

We next show that this combinatorial algorithm provides an approximation guar-

antee within (1+--+e)-factor of the optimum for any given e > 0. (Recall that (1+() is

the approximation factor guaranteed by the oracle for the SBPR-DISJOINT-PATHS

problem.)

Analysis of Approximation Guarantee

The analysis follows the same approach as that of the strongly polynomial time algo-

rithm for maximum throughput two-phase routing for the unprotected case in Section

4.3.5.

Given a set of dual weights z(e) and w(e, f), let D(z, w) denote the dual objective

function value and let '(z, w) denote the minimum value of the LHS of dual program

constraint (7.46) over all nodes k E N. Then, solving the dual program is equivalent

to finding a set of weights z(e) and w(e, f) such that D(z,w) is minimized. Denote theF(z,w)

optimal objective function value of the latter by 0, i.e., -= min,w D(z,w) Let t-izwr(z,w) 

and wt-1 denote the respective weight functions at the beginning of iteration t of the

while loop, and let At,_l be the value of ZjeN aj (primal objective function) up to

the end of iteration t - 1. Suppose the algorithm terminates after iteration L. The

following lemma upper bounds the value of D(z, w) at the end of every iteration.

Lemma 7.5.3 At the end of every iteration t, 1 < t < L, of Algorithm SBPR, the

following holds

D(zt, wt) <M2 i t I+( + ) (Aj -Ajl) ]-=i--F-
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Proof: Let k = k E N be the node for which V(k) is minimum and let Pi, Q be

the corresponding primary-backup path pairs (as defined earlier) along which traffic

is sent during iteration t. (Note that V(k) for all k E N is not computed exactly but

within (1 + )-factor of its actual value using the approximation oracle for SBPR-

DISJOINT-PATHS.) Recall that the weights z(e), w(e, f) are updated as:

zt(e)

wt(e, f)

4- zt-i(e) (1+ e Ve E
Ue ,

±cA(e,))\
+- wt1i(e,) 1[A(e) ) Ve,f eE,E f

Ue

where A(e) is the total working traffic on link e under normal (no-failure) conditions,

and A'(e, f) is the total traffic on link e after failure of some other link f (both sent

during iteration t). Using this, we have

= Euezt(e) + E E uewt(ef)
eEE eE !fEE,#j

= i: UeZt I(e) + c E zt-(e)A(e) +
eEE eEE

E E uewt-1(ejf)+EE E wti(ef)&(e,f)
eEE eEEeEo E,ef f eeE f EEfeai

= D(zt_1,wt_1) +e- t-l(e)( E oRi 5+ E oCj) 
eEE ik,W(Pi)3e j4k,W(Qj)?e

e E 5 wti(e6f)( E ,Ri + E
eEE f EE,E5f i5k,W(Pi)3e,W(Pi)0f jyk,W(Qj)3e,W(Qj)0f

E aRi + E aCj)
i5k,B(P1 )3e,W(Pi)3f jik,B(Qj)3e,W(Qj)Df

Interchanging the summations on the RHS of the above equation and first summing

along paths Pi, Qj, and then over i, j respectively, we can rewrite the RHS of the

above equation to obtain

D(zt,wt) = D(zt_1, Wt_,) + ea[5Ri E tl(e) + Cj E3 t(e)] +
i#$ eeW(Pi) jok eEW(Qj)
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E[ Ri E Wt_(e,) + E j E wt-1 (e,f) +
isk eE I(Pi),f W(Pi) j: eEW(Qj).fjI'(Qj)

ER i E Wtl(e, ) + E Cj t-li(e,f)]
i~k eEB(Pi),fEW(P,) jk eEB(Q.j),fEW(Qj)

D(Zt-l, Wtl) + o[- R i'(ztl, Wtl, Pi) + E Cj(zt- 1, Wt-i, Qj)]
isk joki#~~~~~~j#

(7.54)

Recall that we obtained the primary-backup path pairs Pi, Qj by using the approx-

imation oracle for SBPR-DISJOINT-PATHS. This oracle computes mine 'J(z, w, P)

over all primary-backup path pairs P between a given pair of nodes within (1 + ~)-

factor of its actual value. We then used these values to compute V(k) and then took

the minimum over all k N to identify node k. The value of V(k) thus obtained

must be within (1 + ()-factor of F(ztl 1, wti). Hence, we have

E RiI(ztl, Wt-l, Pi) + E Cj(zt-l, Wt-l', Qj) < (1 + )r(zt-l, Wti)
i Ak jok

Using this in (7.54), we have

D(zt,wt) D(zt-l,Wt-1) + Ec(1 + )r(Zt-l,Wt-1)

= D(zt, Wtl) + E(1+ -)(At-At-)'(zt-, Wt-l)

Using this for each iteration down to the first one, we have

t

D(zt, wt) < D(wo) + e(1 + ) E(Aj - Aji-l)r(zj-, wj-) (7.55)
j=l

From the definition of 0, we have 6 < D(zjl,Wji) whence (zjl, wj-) < D(zj_, wj)- F(zj-lWj-l)' ~ -

The number of weights z(e) is m. Since a failure brings down both a link and its

reverse, the number of possible failures is . The number of weights w(e, f) is thus

253



CHAPTER 7. PROTECTING AGAINST LINK FAILURES

m( - 1). Hence, D(wo) = (m + m( m - 1)) = m26. Using these in (7.55), we have-- 2 2'

D(zt w m26 e(1 ) (Aj - Aji)D(zj-, wj-i) (7.56)
2 O j=l

The property claimed in the lemma can now be proved using inequality (7.56) and

mathematical induction on the iteration number t. The method is similar to that

used in the proof of Lemma 4.3.1. ·

We now estimate the factor by which the objective function value value AL in the

primal solution needs to be scaled when the algorithm terminates so as to ensure that

link capacity constraints are not violated.

Lemma 7.5.4 When Algorithm SBPR terminates, the primal solution needs to be

scaled by a factor of at most log1+e to ensure primal feasibility.

Proof: We need to show two things here after the primal solution is scaled by the

above factor. First, the working traffic on every link e under normal (no-failure)

conditions is at most the capacity of the link. Second, after failure of any link f,

the sum of working traffic (not affected by the failure of link f) on each link e and

the restoration traffic that appears on the link after failure of link f is at most the

capacity of the link.

First, consider any link e and associated weight z(e). The value of z(e) is updated

by multiplying with the quantity (1 + (e)) where A(e) is working traffic on this linkUe

under normal (no-failure) conditions corresponding to an iteration. Let the sequence

of such traffic values A(e) associated with link e over all iterations be A1, A2,.. , AL.

Let _t=l At = KUe, i.e., the total working traffic routed on link e exceeds its capacity

by a factor of .

Because of the way in which is chosen in accordance with equations (7.51)-

(7.53), it follows that all dual weights are updated by a factor of at most 1 + 

after each iteration. Since the algorithm terminates when D(z, w) > 1 and since

dual weights are updated by a factor of at most 1 + after each iteration. we have
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D(ZL, WL) < 1 + . Since the weight z(e), with coefficient ue, is one of the summing

components of D(z, w), we have uezL(e) < 1 + . Also, the value of zL(e) is given by

6 L A
zL(e, f) = - l( ± A

Ue t= Ue

Using the inequality (1 + cx) > (1 + x)c V x > 0 and any 0 < c < and setting x e

and c= < 1, we have
Ue -

> ZL(e) > - (1 + E)At/Ue
Ue Ue t1

= _-(1 + 6) Et.=l At/ue

-- ...5 ( e)
Ue

whence,

/ < logl+, 6

Second, consider any link e after failure of some other link f and associated weight

EA'(ej) w(e, f). The value of w(e, f) is updated by multiplying with the quantity (1 + --- ,) 

where A'(e, f) is the traffic on this link after failure of link f corresponding to an

iteration. Let the sequence of such traffic values A'(e, f) for a given link e and failure

link f over all iterations be A', A . .., A. Let _t A' = 4/Ue, i.e., the total traffic, .. Lt=l t- 'e ~. h oa rfi

routed on link e after failure of link f exceeds its capacity by a factor of '.

As established in the first part of the proof, we have D(ZL, WL) < 1 + . Since the

weight w(e, f), with coefficient u, is one of the summing components of D(z, w), we

have uewL(e. f) < 1 + . Also, the value of wL(e, f) is given by

6 L5 1-[( 1 + At E)WL(e, f) --fJ( -)
Ue t=i Ue
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Using the same inequality as for the first argument, we have

l+e 6 L
> WL(e, f) > - (1 + ) t/~

Ue U t =l

= 5(1 + )Ue
Ue

whence,

f < logl+E I +

The values of e and 6 are related, in the following theorem, to the approximation

factor guarantee of Algorithm SBPR.

Theorem 7.5.5 For any given 0 < e' < 0.5(1 + ~), Algorithm SBPR computes a

solution with objective function value within (1 + ~ + e')-factor of the optimum for

1+e '
6 =( +) ]/and -

1]I/ 2(1 + ~

Proof: Using Lemma 7.5.3 and the inequality 1 + x < e for all x > 0, we have

mri2j tie %-f - (A j - Aj - 1)
D(zt, wt) < - le (AA1)

j=1

= m 2 ee(l+)At/o
2

The simplification in the above step uses telescopic cancellation of the sum (Aj -Aj_ 1 )

over j. Since the algorithm terminates after iteration L, we must have D(ZL, WL) > 1.

Thus,

1 < D(zL, IwL) < -M6e (l+ ~)AL/°
2
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whence,

0 < __ _ (757)
AL -In 2

From Lemma 7.5.4, the objective function value of the feasible primal solution after

scaling is at least
AL

lo°gl+, 

The approximation factor for the primal solution is at most the gap (ratio) between

the dual and primal solutions. Using the lower bound on the primal solution and

inequality (7.57), this is at most

0 e(1 + ) logl+ 

og 1 +~In 26

e(1 + ) In l+e

ln(1+e) ln 2

Thequantity ln i+/In equals 1l for 6= (l+e)/[(l+)m2/e. Using this value of

6, the approximation factor is upper bounded by (lE)ll+e) . The quantity (1 -,E) In (1 + E)(1 -c) n(l +f)
is at most 1 + 2e for < 0.25. Setting e 2(1+) we get the desired approximation

ratio of 1 + e'. 

Analysis of Running Time

We show that the running time of Algorithm SBPR is a polynomial (in the network

size and ) times the time taken per call for the oracle for SBPR-DISJOINT-PATHS.

Theorem 7.5.6 For any given e > 0 chosen to provide the desired approximation

factor guarantee in accordance with Theorem 7.5.5, Algorithm SBPR runs in time

0 ( n2m2TDp(n, rn) log m)
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Proof: We first consider the running time of each iteration of the algorithm dur-

ing which node k and associated primary-backup paths pairs Pi,, Qj are chosen to

send traffic. Computation of minpEp 3,j (z, w, P) for all i, j E N requires n(n- 1)

calls to the oracle for the SBPR-DISJOINT-PATHS problem. This takes a total of

n(n- 1)TDp(n,m) = O(n2TDp(n,m)) time. It can be verified that the time taken

for all other computations is O(n 2m). This is subsumed by the time taken for the

computation by the oracle, since we can assume that TDp(n, m) = Q(m). Thus, the

running time per iteration is O(n2TDp(n, m))

We next estimate the number of iterations before the algorithm terminates. Recall

that in each iteration, traffic is sent along primary-backup path pairs Pi, Qj corre-

sponding to the maximum value of intermediate node split ratio a such that both

the working traffic A(e) for link e under normal (no-failure) conditions and the traffic

A'(e, f) on link e after failure of some other link f corresponding to that iteration

are at most Ue.

Thus, for at least one link e, either the value A(e) or the value A'(e, f) equals ue

and the weight z(e) or w(e, f) respectively increases by a factor of 1 + e. Accordingly,

with each iteration, we can associate a weight z(e) or w(e, f) which increases by a

factor of 1 + e.

Consider the weight z(e) for fixed e E E. Since zo(e) = u and L(e) < + (as
Ue Ue

deduced in the proof of Lemma 7.5.4), the maximum number of times that this weight

can be associated with any iteration is

I1+E I IM21 mi2
log1 +, -(1 + gl+ e ) = ( lgl+ e )

Using the same reasoning, it follows that the maximum number of times that the

weight w(e, f) (for fixed e, f E E, e # f) can be associated with any iteration is the

same quantity.
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Since there are a total of m + rn(' - 1) weights (e) and w(e, f), hence the total

number of iterations is upper bounded by

((n+m( -1))iogl+ ) =O(!m2 logl+ )

Multiplying this by the running time per iteration, we obtain the overall algorithm

running time as O(1rn2m2TDp(n, m) log,+~-,) = O( n2m2TDp(n, m) logl+, m). Since

ln(1 + e) = (e), this is (1n 2m 2TDp(n, m)logim). 

7.6 Evaluation on ISP Topologies

In this section, we compare the throughput performance of the three mechanisms

for protecting against link failures - local restoration, K-route path restoration, and

shared backup path restoration - with that of the unprotected case for two-phase rout-

ing. Because two of the three restoration mechanisms do not have polynomial size

linear programming formulations for maximizing throughput for two-phase routing,

we use the combinatorial algorithms in all cases in order to make fair comparisons. We

run the algorithms so as to provide solutions up to 5% of optimality. For maximum

throughput two-phase routing with shared backup path restoration, we obtained so-

lutions within 5% of optimality by using the combinatorial algorithm together with

the heuristic in Section 7.5.5 as the oracle for SBPR-DISJOINT-PATHS. For the

throughput of the unprotected scheme, we use the numbers reported in Chapter 4.

7.6.1 Topologies and Link/Ingress-Egress Capacities

We use the six ISP maps from the Rocketfuel dataset which had accompanying (de-

duced) OSPF/IS-IS weights [SMWH, SMW02, MSWA02]. These topologies list mul-

tiple intra-PoP (Point of Presence) routers and/or multiple intra-city PoPs as indi-

vidlal nodes. We coalesced such nodes so that nodes correspond to cities and the
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Topology Routers Links PoPs Links
(original) (inter-router) (coalesced) (inter-PoP)

Telstra (Australia) 1221 108 306 57 59

Sprintlink (US) 1239 315 1944 44 83

Ebone (Europe) 1755 87 . 322 23 38

Tiscali (Europe) 3257 161 656 50 88

Exodus (Europe) 3967 79 294 22 37

Abovenet (US) 6461 141 748 22 42

Table 7.1: Rocketfuel topologies with AS number and name. The table lists the
original number of routers and inter-router links, and the number of coalesced PoPs
and inter-PoP links.

topology represents geographical PoP-to-PoP ISP topologies. Some data about the

original topologies and their coalesced versions is listed in Table 7.1.

The topologies provided by Rocketfuel did not include the capacities of the links,

which were needed for our study. The Rocketfuel maps did include derived OSPF/ISIS

weights of links, which were computed to match observed routes. In the absence of

any other information on capacities, we need a way to deduce the link capacities from

the weights. For this purpose, we assumed that the given link weights are the Cisco

default setting for OSPF weights, i.e., inversely-proportional to the link capacities

[Cisco97]. The link capacities obtained in this manner turned out to be symmetric,

i.e., uij uji for all (i, j) E E.

There is also no available information on the ingress-egress traffic capacities at

each node. Because ISPs commonly engineer their PoPs to keep the ratio of add/drop

and transit traffic approximately fixed, we assumed that the ingress-egress capacity

at a node is proportional to the total capacity of network links incident at that node.

We also assume that Ri = Ci for all nodes i - since network routers and switches

have bidirectional ports (line cards), hence the ingress and egress capacities are equal.

Thus, we have Ri(= Ci) c ZeEE+(i) Ue.

The coalesced Rocketfuel topologies are not bi-connected and hence do not al-

low diverse link detours for some links and link-disjoint paths between some source-
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destination pairs. Any graph that is not bi-connected has one or more bridge links

whose removal disconnects the graph into two connected components. We overcome

this limited connectivity of the topologies by splitting bridge links into two diverse

links, each of half the capacity as the original link. Because the original Rocketfuel

topologies contained many parallel links that were coalesced, this bridge splitting

transformation preserves the essential ISP-like topological properties of the networks.

Also, the throughput of unprotected routing remains unchanged as a result of this

transformation.

7.6.2 Experiments and Results

We denote the throughput values for the unprotected and link failure protected ver-

sions of two-phase routing as follows: (i) AUNP for unprotected, (ii) ALR for local

restoration, (iii) AKPR for K-route path restoration, and (iv) ASBPR for shared backup

path restoration. We are also interested in the number of intermediate nodes i with

ai > 0, which we denote for the four cases by NUNP, NLR, NKPR and NSBPR respec-

tively.

Throughput

In Table 7.2, we list the throughput values for the three protection schemes with

respect to that for unprotected two-phase routing for the six Rocketfuel topologies.

The overhead of protecting against link failures can be measured by the percent-

age decrease in network throughput over that for the unprotected case. For local

restoration, this is OLR = AUNP-ALR For K-route path restoration, this is OKPR 
A\UNP

AUNP--KPR For shared backup path restoration, this is OSBPR UN-BPR These
AL/NP AUNP

values are listed in Table 7.3.

For local restoration and shared backup path restoration, the overhead ranges

from 35-60% for the six topologies. For K-route path restoration, the overhead ranges

from 45-60% for the six topologies. All three overheads are relatively high because
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Topology |L- -h K-pgI AsB-P
A U,¥P I A/Np I A/,¥p

Telstra (Australia) 1221 0.4422 0.4415 0.4554
Sprintlink (US) 1239 0.6214 0.5600 0.6182
Ebone (Europe) 1755 0.3855 0.3763 0.3894
Tiscali (Europe) 3257 0.6294 0.5328 0.6459
Exodus (Europe) 3967 0.5461 0.5390 0.5592
Abovenet (US) 6461 0.4319 0.4184 0.4492

Table 7.2: Throughput of Two-Phase Routing with Local Restoration (ALR), K-Route
Path Restoration (AKPR), and Shared Backup Path Restoration (SBPR) compared
to unprotected case (AUNP).

Topology I OLR [ OKPR OSBPR 

Telstra (Australia) 1221 55.78% 55.85% 54.46%

Sprintlink (US) 1239 37.86% 44.00% 38.18%

Ebone (Europe) 1755 61.45% 62.37% 61.06%
Tiscali (Europe) 3257 37.06% 46.72% 35.41%
Exodus (Europe) 3967 45.39% 46.10% 44.08%
Abovenet (US) 6461 56.81% 58.16% 55.08%

Table 7.3: Overhead of Local Restoration (OLR), K-Route Path Restoration (OKPR),

and Shared Backup Path Restoration (OSBPR) compared to unprotected case for Two-
Phase Routing.

of the limited diversity available in these six topologies. The general trend for the

six topologies is that OLR is comparable to OSBPR. For some of the topologies, both

of these are appreciably lower than OKPR (while comparable in other cases). K-

route path restoration is more constrained by the physical diversity of the network

than the other two restoration mechanisms because of the following two reasons: (a)

sharing of backup capacity increases with more link-disjoint paths between a given

pair of nodes, and (b) backup capacity is shared only among paths within the same

connection and not with paths belonging to other connections. Hence, the increased

overhead of K-route path restoration.

262



CHAPTER 7. PROTECTING AGAINST LINK FAILURES

Topology NUNP NLR I NKPR NSBPR
Telstra (Australia) 1221 1 1 1 1

Sprintlink (US) 1239 5 6 4 7
Ebone (Europe) 1755 4 5 3 5

Tiscali (Europe) 3257 7 6 2 7

Exodus (Europe) 3967 3 7 3 9
Abovenet (US) 6461 7 6 1 6

Table 7.4: Number of Intermediate Nodes in Two-Phase Routing for unprotected case
(NUNp), and with Local Restoration (NLR), K-Route Path Restoration (NKPR), and
Shared Backup Path Restoration (NSBPR).

Number of Intermediate Nodes

In Table 7.4, we list the number of intermediate nodes with non-zero traffic split ratios

for the four cases for the six Rocketfuel topologies. In our experiments for the three

restoration schemes, we observed that some intermediate nodes have quite small i

values - they carry less than a percentage point of total network traffic. In practice,

the traffic split ratios associated with these intermediate nodes can be redistributed

to other nodes without any significant decrease in throughput. Hence, in Table 7.4,

for the NLR, NKPR, and NSBPR values, we list the number of intermediate nodes

with the largest ai values (normalized) that sum to at least 0.95, i.e., the nodes with

largest traffic split ratios that together carry at least 95% of total network traffic.

Similar to that for the unprotected case, the number of intermediate nodes with each

restoration mechanism is a small fraction of the total number of nodes.

The number of intermediate nodes for local restoration and shared backup path

restoration is about the same as that for the unprotected case for all the topologies.

However, we observe a marked decrease in the number of intermediate node for K-

route path restoration. This is again because of the limited diversity available in the

six topologies. For K-route path restoration, the algorithm intelligently selects only

those intermediate nodes that have sufficient path diversity to many other nodes in

the network, since sharing of backup bandwidth is only across paths belonging to the
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same connection and can be increased only by having more mutually diverse paths

between a given pair of nodes. In contrast, local restoration involves the restora-

tion of working traffic on a link in a local manner- it is much less constrained by

global diversity in the selection of intermediate nodes. Similarly, for shared backup

path restoration, higher levels of diversity are not required because every connec-

tion consists of exactly two mutually diverse paths. For both local restoration and

shared backup path restoration, sharing of backup bandwidth occurs across different

connections, hence more opportunities exist for such sharing.
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Chapter 8

Two-Phase Routing in Wireless

Mesh Networks

In this chapter, we consider the potential applicability of two-phase routing in han-

dling variable traffic in wireless mesh networks (WMNs) and avoiding the difficulty

of distributed dynamic routing and resource allocation in such networks. This ap-

plication imposes significant additional constraints on two-phase routing so as to

merit separate investigation. We extend our optimization framework for maximum

throughput two-phase routing in wired networks to handle routing and scheduling

constraints that are peculiar to WMNs and arise from the requirement to handle

radio transmit/receive diversity and the phenomenon of wireless link interference.

It is difficult to provide (theoretical) bandwidth guarantees for variable traffic in

WMNs. The main reason for this is that the dynamic MAC and routing protocols in

such networks are limited by local knowledge to do link transmission scheduling and

packet forwarding - this leads to inefficient use of physical layer resources. We propose

application of the two-phase routing scheme to WMNs so as to avoid this difficulty

of distributed routing and scheduling while providing throughput guarantees for vari-

able traffic subject to ingress-egress capacity constraints at each WMN node. The

routing scheme is also well-suited for providing throughput guaranteed rendezvous
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based services in specialized service overlay models where the final destination of the

traffic is not known at the source.

The optimization framework for two-phase routing needs to handle two aspects in

WMNs related to link transmission scheduling, namely (i) mutually exclusive trans-

mit/receive nature of communication (for a single radio), also called transmit/receive

diversity, and (ii) link interference for omnidirectional antenna. Link transmission

scheduling is equivalent to a graph edge coloring problem which is ArP-hard. We use

the linear relaxation of the scheduling constraints associated with (i) and (ii) above

and incorporate them as link utilization constraints into our earlier linear program-

ming formulations for two-phase routing in wired networks. Our overall approach is

to first solve the routing problem after incorporating scheduling constraints into it

and then schedule the link transmissions for the obtained link data rates.

For the case of narrow beam forming (directional) antennae in which link inter-

ference can be ignored, we design a combinatorial algorithm with performance guar-

antees. For the case of omnidirectional antennae, we model link interference using

link utilization constraints corresponding to cliques and independent sets in the con-

flict graph. Clique constraints provide an upper bound on the maximum throughput

(which may not always be achievable), while independent set constraints provide an

achievable lower bound. Our combinatorial algorithm for the narrow beam antenna

case can accommodate clique constraints and hence be used to provide upper bounds

on throughput for the omnidirectional antenna case. We show how our optimiza-

tion framework can be generalized to handle multiple wireless channels and multiple

radios.

We investigate the performance of two-phase routing in WMNs under variability

of many of the parameters involved, e.g., transmission power, introduction of relay

nodes, and link interference. We also compare the throughput performance of two-

phase routing in WMNS with that of the optimal scheme that can change the routing

with changes in the traffic.
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Figure 8-1: Wireless Mesh Network.

8.1 Wireless Mesh Networks

The widespread deployment of WiFi networks and the falling price of wireless compo-

nents has lead to increased interest in multihop wireless networks [MNS04, BCG05].

These wireless mesh networks comprise of a set of nodes that transmit and receive

packets, and also perform the tasks of routing, scheduling, and channel assignment

(See Figure 8-1). These nodes are static (or minimally mobile) and have a power

source unlike ad-hoc networks. End users (who may be mobile) are homed to one of

these mesh network nodes via a wireless link through end-user devices like laptops

and PDAs. If two end users want to communicate, then packets are sent from the

originating end user to a node in the WMN where it is currently homed. This packet

is subsequently routed through the network using multiple hops until it reaches the

homing node of the destination. This node then transmits the packet to the destina-

tion end user.

Multi-hop wireless mesh networks have recently been of much research interest

due to their lowered need for wired infrastructure support and due to envisaged new

applications like community wireless networks and in networks that require rapid

deployability. There are several proposals to use WAIN to increase the capacity and
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coverage of traditional cellular networks. Though operationally a WMN is similar

to a wired backbone network, the presence of wireless links present several unique

challenges.

Most important among these is the phenomenon of link interference. In a wired

network, every link may be utilized simultaneously up to its maximum capacity.

In wireless networks, geographically proximal links interfere with each other, thus

allowing only one of every mutually interfering link pair to be active at any one time.

Moreover, the interference range is typically much larger than the transmission range.

This reduces the achievable throughput of the network.

The research challenges currently being addressed for WMNs include generating

sufficient throughput from the system, guaranteeing some quality of service for the

end users, and scaling the network to a large number of nodes. There has been activity

across the different layers in the communication stack to modify existing protocols

to make them more suited for WMNs. Some examples of the work at the different

layers are as follows:

* Improved Physical Layer Design: One way to improve the throughput of WMNs

is to have a better physical layer, including using multiple channels, multiple

radios, multiple antennae [FG98] with space-time coding [A98], as well as using

directional antennae [SR03] to minimize interference.

* Redesigned MAC: Standard single hop MAC like CSMA-CA (IEEE 802.11

MAC) does not work well in multi-hop networks. There have been efforts to

redesign the MAC layer for multi-hop networks. An alternate approach that

has been attempted is to design a MAC that is appropriate and tuned to the

underlying physical layer. For example, the design of a MAC that accounts for

directional antennae in [KSV00].

* New Routing Protocols: Routing protocols for adhoc networks have been an ac-

tive area of research for more than a decade. A lot of the mechanisms developed
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for these routing algorithms have been to cope with mobility. Since the nodes

in WMN are stationary, there has been more recent work on paring down these

protocols to make them suitable for WMNs. In addition, there has also been

increased interest in developing link quality based routing [DPZ04] as well new

routing metrics [DABM03] that are appropriate for WMNs.

* New Transport Layer Protocols: There is a large body of literature on the perfor-

mance problems faced by TCP on wireless links [BPSK97, XPMS01] since TCP

does not differentiate between congestion and non-congestion losses. This has

lead to the design of new TCP variants like ATP [SAHS03] for adhoc networks.

In spite of the tremendous amount of progress at getting increased data rates at

the physical layer, this has not translated into increased throughput at the application

layer in multihop wireless networks. A significant reason is that the MAC and routing

protocols have to be dynamic to adapt to different traffic patterns that arise in the

network. These dynamic MAC and routing protocols use limited local knowledge

to do conflict resolution and packet forwarding which leads to inefficient use of the

physical layer resources.

If the traffic between the nodes in the network is known and fixed, then there

is no need for dynamic routing and link transmission scheduling. The routing can

be pre-computed and a link transmission schedule can be determined to meet the

bandwidth requirements of the routing protocol. This link transmission schedule can

be fixed and downloaded to the nodes. Since the computation is done offline, we can

use a centralized, optimal algorithm to maximize the throughput of the network.

However, the traffic between the nodes in the network is variable and mostly

unknown. The MAC and routing protocols have to adapt to changing traffic patterns.

The inefficiencies in the MAC and routing protocols hve meant that WMNs still

cannot meet even basic end-to-end Quality-of-Service (QoS) guarantee for unicast

connections. This is especially true in moderate sized networks where the connection

has to traverse a few hops on the way to the destination.
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Two-phase routing can be adapted to handle variable traffic in WMNs and avoid

the difficulty of distributed dynamic resource allocation. Because the Phase 1 and

Phase 2 paths and their bandwidths are fixed in two-phase routing, their routing and

the resulting link transmission schedule can be computed a priori and uploaded to

the WMN nodes. Two-phase routing, when applied to WMNs, provides a routing

architecture for WMNs that can meet the following requirements:

* Eliminate the need for a dynamic MAC and routing protocol but instead rely

on a static, optimized routing and link scheduling to handle variable traffic in

the network efficiently.

* Provide source-destination oblivious throughput guarantees to ingress-egress

traffic at each WMN node for both unicast and multicast traffic permissible

within the network's end-user spectrum bandwidth constraints. This can then

be used by higher layers to provide QoS guarantees to applications.

* Support indirection to provide rendezvous based services in specialized overlay

models like i3.

To our knowledge, our approach is the first to provide throughput guarantees in

a WMN that handles variable traffic and meets the above requirements. In the next

section, we describe basic services that are desirable on a WMN along with associated

QoS guarantees.

8.2 Basic Services on WMNs

We describe some basic services on which more advanced WMN applications can

be built. All the basic services that we outline below have (end-to-end) bandwidth

guarantees associated with them. Applications built on top of these basic services

can use these bandwidth guarantees to provide end-to-end QoS guarantees to the

applications. There are two classes of basic services that we provide on the WMNs.
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The first class is end-to-end bandwidth guaranteed services where the destination is

known at the source, and the second class is bandwidth guaranteed rendezvous based

communication services where the destination is not known to the source. Two-phase

routing permits the implementation of both these classes either independently or

concurrently in a single WMN.

8.2.1 End-to-end Bandwidth Guaranteed Services

The end-to-end bandwidth guaranteed services provide basic primitives over which

more complex applications can implemented. By making assumptions about the size

of the buffers at the nodes in the network, it is possible to translate this bandwidth

requirement into delay or loss requirements. We would like to provide the following

two bandwidth guaranteed services.

* Bandwidth Guaranteed Unicast: We would like the WMN to support bandwidth

guaranteed point to point traffic. In the rest of the chapter, we assume that all

connections are unidirectional. The algorithms developed can be extended to

handle bi-directional connections.

* Bandwidth Guaranteed Multicast: In addition to bandwidth guarantees on uni-

cast traffic, we would like the WMN to support bandwidth guaranteed multicast

services.

The total amount of bandwidth guaranteed connections that can originate or ter-

minate at any WMN node in the network is naturally constrained by the end-user

spectrum capacity available at that node.

8.2.2 Bandwidth Guaranteed Rendezvous Based Services

In rendezvous based communication, the source and the destination of the traffic are

decoupled. This eases the deployment of services like mobility, multicast, and anycast
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on WMNs. This rendezvous-based communication abstraction through indirection is

inspired by the Internet indirection infrastructure (i3) [SAZSS02] which we described

in Section 1.5.2. Sources send packets to rendezvous nodes using a logical identifier.

Receivers express interest in packets sent to a specific identifier. The rendezvous

nodes forward packets to all receivers that express interest in a particular identifier.

This is illustrated in Figure 1-4.

The communication between senders and receivers is through these rendezvous

points over the WMN. Since the scope of implementation of this service is only on a

single WMN and not Internet wide, we do not need a peer-to-peer routing protocol

to route packets to and from the rendezvous points. Two-phase routing locates these

rendezvous points optimally at the intermediate nodes and also gives the paths to

and from all nodes in the WMN to these rendezvous points to maximize network

throughput. Unlike i3 which is a best effort service, two-phase routing can support

rendezvous based services with bandwidth guarantees in a manner analogous to that

for wired networks as described in Section 2.2.2.

8.3 Modeling Assumptions

In this section, we outline the modeling assumptions which are made in this chapter

and their implications on the problem formulation and solution. We first introduce

some notation and interpret the traffic variation model from Section 1.4 in the context

of WMNs. We then give details of the communication model and describe the resource

sharing model.

8.3.1 Notation

The WMN topology, given by the nodes and the links corresponding to pairs of nodes

within direct communication range, is modeled as the topology graph G = (N, E)

with node set N and (directed) link set E. Each node in the network can be a source
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or destination of traffic. Let IN = n and E = m. The nodes in N are labeled

{1,2,..., n}. The sets of incoming and outgoing edges at node i are denoted by

E-(i) and E+(i) respectively. Given any node i in the network, let N(i) denote the

set of links whose transmitter or receiver is node i, i.e., N(i) = E+(i) U E-(i). We let

(i, j) represent a directed link in the network from node i to node j. To simplify the

notation, we will also refer to a link by e instead of (i, j). Let ue be the maximum

data rate achievable on link e. The utilization of a link is defined as the traffic on the

link divided by its capacity.

Because of the bi-directional nature of wireless links, the graph G is actually bi-

directed, i.e., whenever there is a link (i,j) E, there is also the link (j,i) E E.

Each forward and reverse link also has the same capacity. However, we do not need

to make use of the bi-directionality of links in our optimization framework.

8.3.2 Traffic Variation Model

The total amount of traffic that enters (leaves) an ingress (egress) node in the WMN

is bounded by the total end-user spectrum capacity available at that node. These

form the natural ingress-egress constraints for traffic between end-user devices that

need to be routed by the WMN. Using the same notation as before, we denote the

upper bounds on the total amount of traffic entering and leaving at WMN node i by

Ri and Ci respectively. In the case that one or more WMN nodes connect to Internet

access points, the ingress-egress capacity refers to the aggregate wired connectivity

to external networks.

The point-to-point matrix for the traffic carried by the WMN is thus constrained

by these ingress-egress link capacity bounds. These constraints are the only known

aspects of the traffic to be carried by the WMN, and knowing these is equivalent to

knowing the row and column sum bounds on the traffic matrix. That is, any allowable
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traffic matrix T = [tij] for the network must obey

n n

E tij < Ri, E tji Ci Vi E N
jiEN,ji jeN.jsi

As before, for given Ri and Ci values, we will denote the set of all such matrices

that are partially specified by their row and column sums by T(R, C), that is

T(R, C)= {[ti] tij < Ri and E tji < Ci V i}
jeN,j5i jeN,joi

We will use A T(R, C) to denote the set of all traffic matrices in T(R, C) with their

entries multiplied by A.

8.3.3 Communication Model

We make a distinction between the links that form the WMN and provide connectivity

between adjacent WMN nodes and the links that connect the end-user to a node in the

WMN. This distinction is similar to the distinction made between the core network

links and ingress-egress links in a wired network. We call the links between WMN

nodes the network links and the links to and from the end-user to a WMN node as

the user links. The user links comprise the uplink from the end-user to the WMN

node and the downlink from the WMN node to the end-user.

We assume that the WMN is a time-slotted system where all nodes share the same

frequency spectrum. Therefore, one can view the WMN as a hybrid CDMA-TDMA

system. In addition, we assume that the system is synchronous. In each time slot,

a subset of the links are active. The rate that can be achieved on a given link in

any given time slot is a function of the signal to interference and noise ratio (SINR)

at the receiver. The objective of the MiAC layer, or the link transmission scheduling

algorithm, is to get a high rate on the active links by ensuring that active links do not

have too much interference. The set of transmissions that interfere with a given link

274



CHAPTER 8. TWO-PHASE ROUTING IN WIRELESS MESH NETWORKS

depends on the physical layer characteristics and transmission power. In particular,

it depends on the type of transmission antennae used.

* Narrow Beam Forming (Directional) Antennae: If the links are realized by a

narrow beam antenna, then the interference caused by any active link on any

other link can be assumed to be negligible. In this case, the only requirement

that is imposed on the system is that a node cannot simultaneously send and/or

receive data from multiple nodes in the same time slot. (This is in an ideal beam

forming system. In practical systems, it is typically not easy to form beams less

than 5-10 degrees, so there will be some interference from neighboring links).

* Omnidirectional Antennae: If the transmission is omnidirectional, then all the

transmissions in the vicinity of the receiver of link e interfere with transmissions

on link e. If there is no effort to avoid this interference, then the data rate that

can be achieved will be quite poor. Therefore, we need a MAC to quieten the

transmitters which can interfere strongly with link e. This MAC ensures that

all nodes in the vicinity of the receiver of the link cannot be transmitting when

the link is active. If this condition is met, then the rate that can be achieved on

the link is primarily a function of the power and the channel gain of the link.

The applicability of two-phase routing to WMNs does not depend on the partic-

ular type of antennae used for wireless communication. The phenomenon of interfer-

ence for omnidirectional antennae needs to be effectively handled in the optimization

framework so that a priori throughput guarantees can be computed and guaranteed.

The routing optimization methodology needs to be aware of and model the constraints

imposed on link transmission scheduling by the link interference phenomenon.

For developing our methods for maximum throughput two-phase routing in WMNs,

we first assume, for simplicity, that narrow beam forming antennae are used for com-

munication so that we need to handle only the mutually exclusive transmit/receive

nature of communication at a node. Subsequently we consider the more conpli-
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cated omnidirectional antenna case and discuss how to handle link interference in our

optimization framework. We assume a non-fading channel with a distance related

channel attenuation, and that all nodes transmit at some fixed power (that can vary

from node to node). This implies that the maximum achievable data rate Ue on each

link e is fixed a priori.

8.3.4 Resource Sharing Model

A node in the WMN shares spectrum and radio resources between the end-users and

the network links. To deliver packets in WMNs, each node has to commit some of

its radio and spectrum resources to creating network links. The remainder of the

resources are made available for use by end-users who are attached to the WMN

node. Of the resources that are made available to the end users, some fraction of it

is used for uplink transmission from the end-users to the network node and the rest

of the resource is used for downlink transmission from the node to end users. The

ingress-egress bounds on traffic between end-users at a WMN node depends only the

aggregate capacity of user links at that node. Thus, it is essential to decouple the user

links and the network links. This decoupling is done via the utilization commitment

vector.

Node Commitment to the Network

We assume that a WMN node i commits a fraction of at most 77i of its utilization

to support network links. In other words, node i spends a fraction at most mi of its

time to transmitting on the network links. We refer to the vector 7 as the utilization

commitment vector.

* We assume that the network links get precedence in the sense that the network

link scheduling is done prior to the end user scheduling. However, the network

links will not use more than a fraction r, of the radio spectrum at node i.
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* In case the spectrum and radio resources for the network links at node i are not

shared with the spectrum and radio resources for the end-users, then r7i = 1 for

that node.

Network Guarantee to the Nodes

In exchange for routing traffic on the WMN, the network guarantees node i the

transport of an ingress data rate of Ri from this node and an egress data rate of Ci

to this node. This data rate guarantee is independent of destination of the outgoing

traffic and the source of the incoming traffic. We refer to the vector (R, C) as the

data rate guarantee vector. Given a particular network configuration and utilization

commitment vector, a given data rate guarantee vector may or may not be achievable.

We formulate the throughput maximization problem as one of determining the largest

scalar A such that the data rates AR, C) are achievable (equivalently, all traffic

matrices in T(IR, C) can be feasibly routed by the network). The given data rate

vector is achievable if and only if the maximum achievable throughput A is at least 1.

8.4 Two-Phase Routing in Wireless Mesh Networks

In this section, we consider the adaptation of two-phase routing to WMNs so as

to meet the requirements of both bandwidth guaranteed and rendezvous-based ser-

vices while also enabling the network to accommodate arbitrary (and possibly rapidly

changing) traffic demands without dynamic adaptation of network routing and link

transmission scheduling. We are given the ingress-egress traffic bounds Ri, Ci and

utilization commitment qi for all WMN nodes. Whether these rates are achievable

or not will be determined by the optimization methods developed in the rest of the

chapter. The description of the scheme is similar to that in Section 2.1 for the wired

network case. We summarize the main aspects and then discuss some implementation

issues for WMNs.
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Figure 8-2: Two-Phase Routing in Wireless Mesh Networks.

The two-phase routing scheme works in a WMN as follows:

• Phase 1: A predetermined fraction O'.jof the traffic entering the WMN at any

node is distributed to every node j independent of the final destination of the

traffic .

• Phase 2: As a result of the routing in Phase 1, each WMN node receives traffic

destined for different destinations that it routes to their respective destinations

in this phase.

This is illustrated in Figure 8-2. The maximum demand from node i to node j

as a result of routing in Phases 1 and 2 is O'.jRi + O'.iCj and does not depend on the

matrix T E T(R, C).

An instance of the scheme requires specification of the traffic split ratios 0'.1, 0'.2, ... , O'.n

and routing of the Phase 1 and Phase 2 paths subject to additional scheduling con-

straints imposed by wireless communication, namely, (i) mutually exclusive trans-
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mit/receive nature of communication at a node, and (ii) link interference for the

omnidirectional antenna case. In Sections 8.5 and 8.6, we consider computing these

so as to maximize network throughput. Similar to the wired network case, the Phase

1 and Phase 2 paths may need to be implemented through multi-path routing in order

to maximize throughput.

Implementing the Routing

We consider how to implement the routing in a WMN. Using the throughput maxi-

mization methods of Sections 8.5 and 8.6, assume that we have computed the locations

of the intermediate nodes, the fraction of traffic that is routed from a source node to

each of these intermediate nodes, and the routing of Phase 1 and Phase 2 paths to

and from each ingress-egress node to the intermediate nodes along with the associated

bandwidths. In order to ensure that maximum throughput is attained by the WMN,

traffic has to be routed along these paths respecting the bandwidths that have been

computed.

The routing is implemented as follows: When a packet arrives at a source node,

it determines which intermediate node has to receive this packet. Intermediate node

i receives a fraction ai of the packets. The intermediate node i for the current packet

is chosen with probability ai either randomly or in a weighted round robin fashion.

The paths and the bandwidths to intermediate node i are known. The source node

now picks the path of this packet respecting the bandwidth for the path. It then

appends the path to the packet and the packet is source-routed to the intermediate

node. This process is repeated by the intermediate node in order to route the packet

to the ultimate destination. The intermediate node is also responsible for replicating

the packet if the packet has to be multicast to several destinations.

A suitable protocol for source-routing in wireless networks can be adapted for

this purpose. Once such protocol that is being standardized in the IETF is Dynamic

Source Routing Protocol (DSR) [JMB01, JMH04]. The DSR protocol allows multiple

279



CHAPTER 8. TWO-PHASE ROUTING IN WIRELESS MESH NETWORKS

routes to any destination and allows each sender to select and control the routes used

in routing its packets.

8.5 Maximizing Throughput

Given the maximum achievable link rates ue, the desired ingress-egress data rate

guarantee vector (R, C), and the node commitment vector ii, the objective now is

to determine the largest A (throughput) such that the data rate vector A(R, C) is

achievable. For this value of A, node i is guaranteed an ingress data rate of ARi

and an egress data rate of ACi to and from end-user devices. We first consider

the directional antenna case where their is no link interference - we need to handle

only the mutually exclusive transmit/receive nature of communication at a WMN

node. Subsequently, we extend the approach so as to handle link interference for

omnidirectional antennae.

As for the wired network case, we relax the requirement that the traffic split ratios

ai sum to 1 in a feasible solution of the problem. Recall that the demand from i to

j is cajRi + aiCj. Consider the sum

A = E ai
iEN

The traffic split ratios can be divided by A (normalized) so that they sum to 1, in

which case all matrices in A T(i, C) can be feasibly routed. Thus, the appropriate

measure of throughput is the quantity A as defined above when the traffic split ratios

are not constrained to sum to 1.

8.5.1 Link Flow Based LP Formulation

Our overall approach is to first solve the routing problem after incorporating schedul-

ing constraints into it and then schedule the link transmissions for the obtained link
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data rates. Link transmission scheduling onto discrete time slots is equivalent to a

graph edge coloring problem which is AJrP-hard (this is discussed in Section 8.7). We

use the linear relaxation of the scheduling constraints and incorporate them as link

utilization constraints into our earlier linear programming formulations for two-phase

routing in wired networks.

Let xte denote the data rate on link e for routing ajRi + aiCj amount of flow from

node i to node j. Then, the total data rate on link e is

Xe= e E E
i,jEN

Then, the fraction of time link e has to be active is e. For any node i, since any two
Ue

links in N(i) cannot be simultaneously active and since the total utilization of the

network links for node i must be at most ri, it is easy to see that

xZ < i V i EN
eEN(i) ue

is a necessary condition for the link rates to be schedulable. For the directional

antenna case, it can be shown using Shannon's coloring theorem that

X l 2
x- < -i V i E N

eEN(i) ue N

is a sufficient condition for the data rates Xe to be achievable after scheduling [HS88,

KN03].

Our basic approach is to use the necessary condition and solve the routing problem.

We then use edge coloring as described in Section 8.7 to schedule the links in the

network. If the edge coloring indicates that the data rates obtained after solving the

routing problem are not achievable, then we scale down the throughput accordingly

so that the scaled down data rates are achievable.

In order to derive mnore complex (but linear) necessary conditions for handling link

281



CHAPTER 8. TWO-PHASE ROUTING IN WIRELESS MESH NETWORKS

interference in the case of omnidirectional antennae, we will write the above necessary

conditions in the following general form:

xe < (S)
eES Ue

where S is some arbitrary subset of links in E and v(S) is a "total utilization" value

associated with link set S. Let S denote the collection of such subsets S C E for

which the above utilization constraints exist. If every link e belongs to some set S in

the collection S with v(S) < 1, then the link capacity constraint Xe _< ue is subsumed

by link utilization constraints for S. Otherwise, we can add the set S = {e} with

v(S) = to S. Thus, we need not consider explicit link capacity constraints.

Then, the problem of two-phase routing so as to maximize throughput for the

directional antenna case can be written as the following link flow based linear program:

maximize iEN oai

subject to

oacjRi + oaiCj if k = i

E S e- E xS j = A7 -ojRi -. Cj if k = j V i, j,k EN (8.1)
esEE+ (k) eE-(k)

eEE+(k) eEE(k) 0 otherwise

- xi < .(S) VS E S (8.2)
eES e ijEN

ai > 0 V i E N (8.3)
x.

x41 > 0 VeEE, Vi, j EcN (8.4)

Constraints (8.1) correspond to the routing of cajRi + oaiCj amount of flow from

node i to node j. For constraints (8.2), the collection S of link subsets for the direc-

tional antenna case is S = {N(i) i E N} so that SI = . Also, v(N(i)) = ,ir V i C N.
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These model the mutually exclusive transmit/receive nature of communication at a

node and the commitment at each WMN node to transmit at most ri of the time on

network links.

By using per-source flow variables instead of per source-destination variables

xe3 . the number of x variables in the above linear program can be reduced to nm. The

number of link utilization constraints is equal to SI = n for the directional antenna

case and hence the linear program can be solved in polynomial time using a general

linear programming algorithm [S86].

However, as we will see for the omnidirectional antenna case in Section 8.6, ISI

is large and could be exponential in the network size in the worst case. Moreover,

in practice, the running time of general linear programming based algorithms do

not scale well with increase in number of constraints (and, number of variables).

The primal-dual combinatorial algorithm that we now develop for solving the above

linear program has running times that scale well to handle the large number of link

utilization constraints for the omnidirectional antenna case.

8.5.2 Path Flow Based LP Formulation

In this section, we develop a path indexed linear programming formulation for the

above problem. This will be subsequently used to develop the fast combinatorial

algorithm in Section 8.5.4.

Let Pij denote the set of all paths from node i to node j. Let x(P) denote the

traffic on path P. Then, the problem of two-phase routing in WMNs so as to maximize

throughput for the directional antenna case can be expressed as the following path

indexed linear program:

maximize EieN &i
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subject to

x(P) = ajRi + aiCj V i,j E N (8.5)
PEPi.j

E Ex(P) v(S) VS c S (8.6)
eES Ue Pse

o > 0 ViEN (8.7)

x(P) > 0 V P E Pij, Vi, j e N (8.8)

In Section 8.5.3, we state the dual of the linear program. In general, a network can

have an exponential number of paths (in the size of the network). Hence, the primal

linear program can have possibly exponential number of variables and its dual can

have an exponential number of constraints - they are both not suitable for solving

the problem on medium to large sized networks. The usefulness of the primal and

dual formulation is in designing a fast (polynomial time) combinatorial algorithm for

the problem.

8.5.3 Dual of Path Flow Based LP Formulation

We will use a primal-dual approach to develop a fast combinatorial algorithm (FP-

TAS) for two-phase routing in WMN for the directional antena case that computes

the traffic split ratios and routing Phase 1 and Phase 2 paths up to (+e)-factor of the

optimal objective function value (maximum throughput) for any e > 0. The primal-

dual scheme extends the approach used for maximizing throughput for two-phase

routing in wired networks in Section 4.3.

The dual formulation of the linear program in Section 8.5.2 associates a variable a

variable rij with each demand constraint in (8.5), and a non-negative variable w(S)

with each link utilization constraint for link set S in (8.6). The dual program can be

written as:
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minimize ses v(S)w(S)

subject to

1E -Zw(S)
eEP Ue Se

Ri,rik + E Cj7kj
jEN,j$k

> 7rij P E ij,

> VkEN

V i,j E N (8.9)

(8.10)

(8.11)w(S) > 0 VSeS

Because of the nature of constraints (8.10), we can assume that the variables rij

attain the maximum possible value given by constraints (8.9) in any optimal solution.

Then, we have

V i,j E N

This allows us to eliminate the dual variables 7rij. The simplified dual problem can

be written as:

minimize ESES v(S)w(S)

subject to

Ri min w(S) Cmin w(S)+ C min, 1w(S) > 
PPk U eiEN,ik PEPik Ue S3e ENjk k P U S

wN(S),jk SES e
W(S)>o VSES

V k E N(8.12)

(8.13)
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Figure 8-3: One Step in the Primal-Dual Computation for Two- Phase Routing in
vVlVINs.

8.5.4 Combinatorial Algorithm

In this section, we use the primal and dual formulations of the path flow based linear

program to develop a fast combinatorial algorithm for the problem.

For a given node k and weights w(S), let V(k) denote the LHS of constraint (8.12).

Given the weights w(S), the path P E Pij that minimizes LeEP tL LS3e w(S) is

actually the shortest path from node i to node j under link costs c(e) = .l. LS~e w(S)
Ue ::;1

for all e E E. Thus, the quantities V(k), for all kEN, can be computed in polynomial

time using a single all-pairs shortest path computation.

The overall algorithm works as follows. Start with initial weights w(S) v(~)

(the quantity b depends on f and is derived later). Repeat the following until the

dual objective function value is greater than or equal to 1:

1. Con1pute the node k = k for which V(k) is minimum. This identifies a node

k as well as paths ~ from node i to node k~for all i =1= k and paths Qj from
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node k to node j for all j k. (These are the shortest paths between respective

nodes obtained during the computation of V(k) as described above.) This is

illustrated in Figure 8-3.

2. For a split ratio of for intermediate node k, the traffic on path Pi is Ri for all

i y k and the traffic on path Qj is Cj for all j # k. Using this, compute the

traffic A(e) on link e per unit split ratio ak for intermediate node k as

A(e) = E R + E Cj e E E (8.14)
iqk,Pi3e ijk,Qj3 e

3. For this traffic, compute the total utilization for link set S as

U(S) = E () VS E S (8.15)
eES Ue

4. Compute the maximum value a for the traffic split ratio for intermediate node

k that is consistent with the total link utilization constraints for each link set

S as

= min (S) (8.16)
sEs U(S)

5. For this value ca of the traffic split ratio for intermediate node k, send aRj

amount of traffic from node i to node k along path Pi for all i # k and Cj

amount of traffic from node k to node j along path Qj for all j / k. For this

traffic, the total link utilization for link set S is aU(S).

6. Update the weights w(S) as

w(S) (S) (1+ (S) S S

7. Increment the split ratio x associated with node k by a .
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When the above procedure terminates, total link utilization constraints (8.6) il

the primal program will be violated, since we were working with the original v(S)

values at each stage. To remedy this, we scale down the flow and traffic split ratios

ai uniformly so that these constraints are obeyed.

The pseudo-code for the above procedure, called Algorithm WMN, is provided in

the box below. Variables util(S) keep track of the total utilization of link set S as

the algorithm progresses. The variable D is initialized to 0 and remains less than

1 as long as the dual objective function value is less than 1. After the while loop

terminates, the maximum factor by which the utilization constraint for each link set

S gets violated is computed into scale-fact. Finally, the ai values are divided by the

maximum utilization violation factor and the resulting values are output.

Algorithm WMN:

ak+-O VkEN;

W(S) - se VSE$;
util(S) 0 V S E S;

D +- ;

while D < do

For each i, j E N, compute SP(i, j) minpEPij EeEP U Es:e w(S) using

shortest path computation with link costs c(e) = _53s w(S) for all e E E
U,

V(k) - ZiEN,i7k RiSP(i, k) + EJeNj$k CjSP(k, j)
k - argminkeN V(k);

(Denote the shortest path from i to k by Pi for all i # k and

the shortest path from k to j by Qj for all j # k.)

A(e) i7Pi;e Ri + j $k,Q p3e C ' e E E;
~k~IZ- ~eES VSES;U(S) = ;es u ¥ S E 8'

. u(S)
= minses U(s)

util(S) - util(S) + caU(S) for all S E S
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wt(S) w(S)(1 + )) for all S e S

ak a~ + a;

D Zss u(S)w(S)

end while

scalef act -- maxses ti(s) u(S)

(ok sa fk for all k E N;scale_/act

Output traffic split ratios ak;

We next analyze the approximation guarantee and running time of Algorithm

WMN.

Analysis of Approximation Guarantee

The analysis follows the same approach as that of the strongly polynomial time al-

gorithm for maximum throughput two-phase routing in wired networks in Section

4.3.5.

Given a set of dual weights w(S), let D(w) denote the dual objective function

value and let 17(w) denote the minimum value of the LHS of dual program constraint

(8.12) over all nodes k E N. Then, solving the dual program is equivalent to finding

a set of weights w(S) such that D(t) is minimized. Denote the optimal objectiveD( w)

function value of the latter by 0, i.e., 0 = min rD(w) Let wt-1 denote the weight

function at the beginning of iteration t of the while loop, and let At- 1 be the value

of EjeN aj (primal objective function) up to the end of iteration t - 1. Suppose the

algorithm terminates after iteration L. The following lemma upper bounds the value

of D(w) at the end of every iteration.

Lemma 8.5.1 At the end of every iteration t, 1 < t < L, of Algorithm WMN, the

following holds

D(wt) < IS1l r [ + (Aj -Aj)]
j---1
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Proof: Let k = k be the node for which V(k) is minimum and let Pi, Qj be the

corresponding paths (as defined earlier) along which traffic is sent during iteration t.

Recall that the weights are updated as

Wt(S) = wt-(S) (1 + (S) V S E S

where is the amount by which the traffic split ratio for intermediate node k is

incremented and U(S) is the total link utilization of link set S per unit split ratio of

intermediate node k during iteration t. Using this, we have

D(wt) = E v(S)wt(S)
SES

- E v(S)wtI(S) + Eo E wt-l(S)U(S)
SES

- D(wt-1) +a E: wt-(S)E-[ E Ri + E Cj]
SES eES Ue i$k,Pje jsk,Qj3e

Interchanging the summations on the RHS of the above equation and first summing

over links along paths Pi, Qj, and then over i, j respectively, we can rewrite the RHS

of the above equation to obtain

D(wt) = D(wt-1) + CE[E Ri E- Wt-l (S) +
i$k eEPi e S~e

ECj E 1 Wt-(S)l
jk- eEQj Ue e

= D(Wt-1) + ea[E Ri min e- E wt-(S) +
i~k PEPik eEP US~e

Cj min -e i wt-l(S)] (8.17)PE -E Wt ~~~~~~~~(8.17)j Pk kj eEP Ue Se

= D(Wtl) + Eor(wt-l)

= D(u!t-l) + e(At - At-,)(wt- )
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The step leading to (8.17) is due to the fact that the paths Pi, Qj are shortest paths

between respective nodes under link costs c(e) = - e w(S). The next step follows

from the choice of intermediate node k = kto minimize V(k) for the weights wti(e)

at the beginning of iteration t.

Using this for each iteration down to the first one, we have

t

D(wt) = D(wo) + e y j(Aj - A_)F(w-l) (8.18)
j=1

o(wjl) wec (3l DW~) loFrom the definition of 0, we have < I) whence F(wj_) < D(wj-). Also,

D(wo) = 1IS5. Using these in equation (8.18), we have

t

D(wt) < Sl6 + Z(A - Ajl)D(wjl) (8.19)
j~1

The property claimed in the lemma can now be proved using inequality (8.19) and

mathematical induction on the iteration number t. The method is similar to that

used in the proof of Lemma 4.3.1. ·

We now estimate the factor by which the objective function value value AL in the

primal solution needs to be scaled when the algorithm terminates so as to ensure that

link capacity constraints are not violated.

Lemma 8.5.2 When Algorithm WMN terminates, the primal solution needs to be

scaled by a factor of at most logl+ l to ensure primal feasibility.

Proof: We need to show that for every link set S, the total utilization of all its links

is at most v(S) when the primal solution is scaled by the above amount.

Consider any link set S and associated weight w(S). Recall that in every iteration,

the weight w(S) is updated as

wT(S) - w(S) (1 + ()
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The quantity alU(S) is equal to the total utilization of all links in S corresponding

to the flow sent during iteration t. Let the sequence of such total utilization values

values for set S over all iterations be U1, U2,..., UL. Let EL
1 Ut = iv(S), i.e., the

total utilization over all iterations for set S exceeds its upper bound zv(S) by a factor

of s.

Because of the way in which is chosen in accordance with equations (8.14)-

(8.16), we have U < v(S) for all i. Hence, dual weights w(S) are updated by a factor

of at most 1 + e after each iteration. Since the algorithm terminates when D(w) > 1,

and since dual weights are updated by a factor of at most 1 + e after each iteration,

we have D(WL) < + e. Since the weight w(S), with coefficient v(S), is one of the

summing components of D(w), we have v(S)wL(S) < 1 + e. Also, the value of WL(S)

is given by

WL(S) = ( + Ut
t=l V--)

Using the inequality (1 + cx) > (1 + x)c for all x > 0 and any 0 < c < 1 and setting

x = and c= Ut, < 1, we haveu(S)

l+e 6 L
> WL(S) > ( e)Ut/()

(1 + e)EZ= Ut/(S)

= (S)1 +6 

u(S)

whence,
1+e

K; < logl+ e a

The values of e and 6 are related, in the following theorem, to the approximation

factor guarantee of Algorithm WMN.

Theorem 8.5.3 For any given 0 < ' < 0.5. Algorithm WMAN computes a solution
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with objective function value within (1 + ')-factor of the optimum for

+~~~~~~~1+e ad ,
[(1 + )IS]l/e 2

Proof: Using Lemma 8.5.1 and the inequality 1 + x < ex for all x > 0, we have

D(wt) < SI 1 es(Aj-Aji)

j=l

< IS16e At/O

The simplification in the above step uses telescopic cancellation of the sum (Aj -Aj-1)

over j. Since the algorithm terminates after iteration L, we must have D(wL) > 1.

Thus,

1 < D(wL) < IS16eEAL/ °

whence,

9 e
A < (8.20)

AL - In 11S16

From Lemma 8.5.2, the objective function value of the feasible primal solution after

scaling is at least
AL l +e

log1 + ,

The approximation factor for the primal solution is at most the gap (ratio) between

the dual and primal solutions. Using the lower bound on the primal solution and

inequality (8.20), this is at most

0 elog 1 +e l+
<

6-- In 
In 1+_

ln(l+e) ln 1
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The quantity in l+/ in equals I
-- for (1 + e)/[(1 + e)lS]l/E. Using this valueT/ Is~ -/¢ lf=

of 6, the approximation factor is upper bounded by (l-e)(l+) This quantity is at

most 1 + 2 for e < 0.25. Setting e = 7, we get the desired approximation ratio of

1+ e'. E

Analysis of Running Time

We now analyze the running time of Algorithm WMN.

Theorem 8.5.4 For any given e > 0 chosen to provide the desired approximation

factor guarantee in accordance with Theorem 8.5.3, Algorithm WMN runs in time

o ( (n(m+nlogn) + ESt)IS log IS)
SES

Proof: We first consider the running time of each iteration of the algorithm during

which a node k and associated paths Pi, Qj are chosen to augment flow. Selection of

this node and the paths involves an all-pairs shortest path computation. The com-

putation of the links costs c(e) = E Zs 9e w(S) for all e E E can be implemented in

O(Eses S) time by going through the sets once and updating the link costs c(e). The

all-pairs shortest path computation itself can be implemented in O(nm+n 2 log n) time

using Dijkstra's shortest path algorithm with Fibonacci heaps [AMO93]. All other

operations within an iteration, including computation of the value of a and updat-

ing weights w(S), are absorbed by the time taken for the above two computations,

leading to a total of O(n(m + n log n) + ESES IS) time per iteration.

We next estimate the number of iterations before the algorithm terminates. Recall

that in each iteration, traffic is sent along paths Pi, Qj corresponding to the maximum

value of intermediate node split ratio a such that the total link utilization a U(S)

for set S during that iteration is at most v(S). Thus, for at least one link set S,

aU(S) = (S) and the weight w(S) increases by a factor of 1 + e. Accordingly, with

each iteration, we can associate a weight w(S) which increases by a factor of 1 + e.
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Consider the weight w(S) for fixed S S. Since o(S) = 6 and WL(S) < 1+e

(as deduced in the proof of Lemma 8.5.2), the maximum number of times that this

weight can be associated with any iteration is

l°gl+e = - (1 + lOgl+, SI) = O(- log1+~ S)

Since there are a total of ISI weights w(S), hence the total number of iter-

ations is upper bounded by O(l SI logl+ ISi). Multiplying this by the running

time per iteration, we obtain the overall algorithm running time as O(l(n(m +

log n) + ESES IS)S log+> ISt). Since ln(1+e) = e(e), this is (e (n(m+nlogn)+

EsES ISD)ISI log Sl). 

For the directional antenna case, we have S = {N(i) i E N} so that IS1 = n.

Also, ESEs 1S = E&EN IN(i)l = 2m. Hence, the running time of Algorithm WMN

for the directional antenna case is O( 1n2 (m + n log n) log n).

8.6 Handling Link Interference

In this section, we discuss how to accommodate link interference for omnidirectional

antenna transmission in our optimization framework. We use the protocol model of

interference introduced in Gupta and Kumar [GKOO] which we describe shortly.

The problem of computing the optimal throughput under the protocol model of

interference, even for fixed traffic and a single source-destination pair, is shown to

be A/P-hard in Jain et al. [JPPQ03]. The reduction in the hardness proof is from

the problem of finding the independence number of a graph and is an approximation

preserving one. Hence, this rules out the existence of Polynomial Time Approximation

Schemes (PTAS) for this problem. A PTAS is a family of algorithms that, for any

given > 0, computes a solution that is within (1 + e)-factor of the optimum and has

running time that is polynomial in the problem size (e is treated as a constant in the

expressioll for ruinning time and hence the dependence of running timne on it could be
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arbitrary).

Given this result, it follows that it is JAFP-hard to even approximate the optimal

throughput for two-phase routing in WMNs under the protocol model of interference.

We consider how to obtain near-optimal solutions by adding either of two types of

constraints - clique constraints and independent set constraints - to our linear pro-

gram for the directional antenna case. These constraints have been used in [JPPQ03]

to model link interference within a linear programming based optimization frame-

work when the traffic matrix is fixed. Either of these approaches can be used to

obtain near-optimal solutions with sufficient computational effort. In practice, one

has to settle for a trade-off between the closeness to optimality of the solution and

the computational resources required to achieve it.

8.6.1 Model of Interference

Let dij denote the distance between nodes i and j. Let the radio at node i have

a communication range of i and potentially larger interference range e. Under

the protocol model of interference [GKOO], if there is a single wireless channel, a

transmission from node i to node j is successful if

(i) dj < fi (receiver is within communication range of sender), and

(ii) any node k, such that dkj < k, is not transmitting (receiver is free of interference

from any other possible sender).

We have already modeled requirement (i) through links in the topology graph. We

will model requirement (ii) using the conflict graph as described in the next section.

Note that (ii) includes as a special case the constraint that a node may not send and

receive at the same time nor transmit to more than one other node at the same time

- this aspect was modeled in constraint (8.2) of the linear programming formulation

in Section 8.5.1 for the directional antenna case.
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The definition of a successful transmission under the protocol model of interfer-

ence can be made more restrictive in order to accommodate the MAC protocol in

the IEEE 802.11 wireless networking standard [G02] that performs virtual sensing

through exchange of RTS/CTS (Request to Send/Clear to Send) messages and re-

quires the receiver to send an acknowledgement after successful transmission. In this

case, the sending node i should also be free from interference from nodes other than

the receiving node j, since the receiver will be sending acknowledgements or a CTS

message that should be received successfully by the sender. This is modeled by adding

a third constraint for a successful transmission from node i to node j:

(iii) any node k, such that dki 4k, is not transmitting (sender is also free of

interference from any other possible sender).

For the rest of this chapter, we assume the first (less restrictive) model of in-

terference where there are no RTS/CTS or acknowledgement messages. Adding the

additional constraint to model the latter merely introduces additional edges in the

conflict graph - the overall method works for any given conflict graph and hence does

not change.

8.6.2 Conflict Graph

Following the approach in [JPPQ03], we construct the conflict graph to model the

phenomenon of link interference under the protocol model of interference. Denote this

graph by F (Nc, Ac). The vertices of F correspond to links in the topology graph

G, i.e., NC = A. There is an (undirected) edge between two nodes in the conflict

graph corresponding to topology links (i, j) and (i', j') if dij, < e, or di,j < et. This

corresponds to the fact that the two links cannot be active simultaneously, i.e., they

interfere and violate requirement (ii) in the protocol model of interference described

above. In Figure 8-4, the conflict graph corresponding to a topology graph is shown.

(The dotted arcs in the topology graph join interfering link pairs.)
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Topology Graph Conflict Graph

Figure 8-4: A W1VIN topology graph and its conflict graph. Dotted arcs In the
topology graph join interfering link pairs.

8.6.3 Clique Constraints

Consider a clique in the conflict graph. Let S be the set of topology links that

correspond to nodes of this clique in the conflict graph. Since the links in S mutually

conflict with each other, their total utilization cannot exceed 1. This can be modeled

by the constraint

'"" 1 '"" ..~- ~ xi < 1
eES Ue i,jEN

(8.21 )

vVecan add constraints of this type for each clique in the conflict graph. l\tloreover,

it is sufficient to add just constraints corresponding to maximal cliques, since the

constraints corresponding to cliques contained inside maximal cliques are redundant.

Since these clique constraints have the same structure as constraint (8.2), they can
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be easily incorporated into the combinatorial algorithm of Section 8.5.4.

The number of such maximal clique constraints is exponential in the worst case.

The running time of the linear program will not be feasible for practical implemen-

tations because of the large number of clique constraints. Herein lies the usefulness

of the combinatorial algorithm - it can be expected to run faster in practice because

of two aspects, namely (i) it uses simple iterative shortest path computations, and

(ii) for a WMN deployment whose geographical span area is large compared to the

interference range, the number of maximal cliques in the conflict graph is not likely

to be very large, since link interference is a localized phenomenon.

Unfortunately, the clique constraints provide only necessary conditions for the link

rates to have a realizable schedule - these conditions may not be sufficient. Thus,

the throughput obtained by adding all maximal clique constraints may be a strict

upper bound on the maximum achievable throughput. As observed in [JPPQ03],

utilization constraints for other types of subgraphs in the conflict graph may need to

be added, e.g., an odd length cycle with no chords, called an odd hole. The sum of

the utilizations of the links corresponding to the vertices of an odd hole of length a

in the conflict graph can be at most [a2J. Constraints corresponding to other types

of subgraph in the conflict graph may also need to be added.

The throughput upper bound based only on maximal clique constraints is tight

only for a special class of conflict graphs called perfect graphs [Lo72]. Perfect graphs

are characterized by the following property: for all induced subgraphs, the chromatic

number is equal to the clique number (size of largest clique).

8.6.4 Independent Set Constraints

Consider an independent set of vertices in the conflict graph. These correspond to

links in the topology graph that can be active simultaneously. An independent set

is said to be active at any given time if some subset of the corresponding links are

active. Let II, 12, · ,Ip denote all the maximal independent sets in the conflict graph
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(let each set consist of corresponding links in the topology graph). Let independent

set Ij be active for yj fraction of the time. Any set of actively transmitting links are

contained in some independent set (in case there are multiple such independent sets,

we can choose one arbitrarily). Then, we should have

p

E y3 < 1 (8.22)
j=l

For an individual link, its utilization is at most the sum of the fraction of time that

each independent set it belongs to is active. This can be written as

1 P
- E x < y (8.23)
Ue i,jEN j:Ij De

It is east to see that constraints (8.22)-(8.22) provide a set of necessary and suffi-

cient conditions for link rates to be schedulable in the protocol model of interference.

Hence, these constraints, together with constraint (8.1) of the linear program in Sec-

tion 8.5.1, give an exact formulation for maximizing throughput for two-phase routing

in WMNs under the protocol model of interference.

Since the number of maximal independent sets in the conflict graph can be expo-

nential in the worst case, this does not lead to a polynomial time algorithm. Moreover,

the number of maximal independent sets in the conflict graph could be larger than the

number of maximal cliques, since links do not interfere if they are not geographically

proximal.

In practice, one can choose a small number of maximal independent sets in the

conflict graph (dictated by the available computational resources) and add constraints

corresponding to them in the linear program. (The set of maximal independent sets

chosen should be such that their union contains all nodes in the conflict graph.) The

obtained solution would produce link rates that are schedulable and hence give lower

bounds on the optimal throughput. The lower bound can be improved by considering

more maximal independent sets - the obtained solutions would ultimate converge
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to the optimal throughput. We investigate this behavior on a medium sized WMN

topology in Section 8.9.

8.7 Link Transmission Scheduling

Given the maximum achievable link rates t, ingress-egress bounds Ri, Cj on end-user

traffic, and the node commitment vector 40, we use the algorithms in Sections 8.5 and

8.6 to obtain the traffic split ratios and routing of Phase 1 and Phase 2 paths for two-

phase routing. Our optimization framework explicitly models constraints imposed on

scheduling as a result of link interference. It now remains to compute the static link

transmission schedule that will realize the Phase 1 and Phase paths obtained from

the routing algorithm.

The routing of the Phase 1 and Phase 2 paths of fixed bandwidth give us data

rates e -Zi jE:N Xj that need to be achieved on each link e of the network. These

data rates can be translated into a periodic link transmission schedule that obeys

interference constraints. Suppose that the schedule has a period of Ml slots. If link e

transmits during Ml/e of these slots, then we must have l > for the data rates xe

to be achievable, whence Ale = [Ale 1.
The schedule can be constructed using an edge coloring algorithm as follows. We

begin with a sufficiently large initial guess for Al. Since time slot lengths are small

(order of milliseconds or smaller), we can choose Al to be the number of time slots per

second. We make AIe copies of link e in the topology graph. The scheduling problem

is now equivalent to edge coloring this multi-graph with at most MA colors subject to

the following constraints:

* The Ale copies of link e must be assigned distinct colors, and

* If two links (i.e., their copies) interfere, then they must be assigned different

colors.
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Each color in the edge coloring problem represents a time slot. An edge is assumed

to be active in the time slot which corresponds to its assigned color. Thus, all links

that have the same color transmit simultaneously in that time slot (these links do not

interfere with each other because of the second coloring constraint).

If the coloring requires M' > M colors, then the computed schedule has a reduced

throughput equal to at least M (< 1) times that obtained by the optimization methods

for maximum throughput routing. One can try larger values of M in an attempt to

increase the value of the ratio M. Experiments show that simple greedy edge coloring

algorithms work very well in practice and that for large values of M, the number of

required colors M' is only a few more than M, i.e., the fraction M i of the order of

1
M,

The coloring problem to determine the link transmission schedule is AfP-hard

even for the directional antenna case - in this case, the problem reduces to standard

edge coloring where two edges incident on the same node must be assigned different

colors [GJ79]. However, it is important to note that this hard scheduling problem can

be solved in a centralized manner and the static schedule can be pre-computed and

uploaded to the WMN nodes.

8.8 Generalization to Multiple Channels and Mul-

tiple Radios

Our optimization framework for two-phase routing in WMNs can be extended to

handle multiple wireless channels and multiple radios at each node. We discuss these

extensions in this section.

For multiple wireless channels, the radio at each node can tune to any one of

W > 1 available channels at a given time. We can model this by replacing each link

(i, j) in the topology graph by W parallel links from node i to node j. Each such link

corresponds to the use of a specific channel for communication from node i to node
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j. In the conflict graph, links corresponding to different channels do not interfere.

Since a single radio can tune to exactly one channel at a time, the links that have an

end-node in common will mutually conflict with each other as before.

Now consider R multiple radios per node where each radio can transmit on a fixed

(but different) channel. We can model this replacing each link (i, j) in the topology

graph by R parallel links from node to node j. Each such link corresponds to the

use of the radio for that channel for communication from node i to node j. As before,

links corresponding to different channels do not interfere. Since the channel for a

given radio is fixed, the links that have an end-node in common and correspond to

the same channel will mutually conflict with each other.

The above modifications naturally extend to the procedure for link transmission

scheduling discussed in Section 8.7.

8.9 Performance Evaluation

In this section, we evaluate the performance of two-phase routing in WMNs. In

a manner analogous to that for the wired network case in Section 4.6.1, we will use

throughput efficiency to measure the effectiveness of two-phase routing in WMvINs with

respect to the optimal scheme. We define this first.

Throughout this section, we will consider the throughput obtained by solving the

routing problem (which also models the link transmission scheduling constraints). We

will, however, not be concerned with the actual scheduling of the link transmissions

and hence ignore any decrease in the achievable throughput resulting from this. In

practice, this decrease is small, given the small duration (order of milliseconds or

smaller) of the transmission time slots (see note in Section 8.7).
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8.9.1 Throughput Efficiency

Given a WMN network with maximum achievable link rates ue, bounds Ri, Ci on the

ingress-egress traffic, and the node commitment vector ri, an output A* of the problem

formulation for two-phase routing in Sections 8.5 and 8.6 provides a guarantee that

all matrices in A* T(R, C) can be routed by two-phase routing. The optimal routing

scheme in the context of WMNs is defined in a manner similar to that for the wired

network case. That is, the optimal scheme has the flexibility of changing the routing

with changes in the traffic matrix. For routing any matrix, it must also enforce addi-

tional constraints peculiar to WMNs, namely (i) mutually exclusive transmit/receive

nature of wireless communication at a node, and (ii) link interference for omnidi-

rectional antenna case. The optimal scheme admits the highest possible throughput

AOPT. We use the ratio A* to define the throughput efficiency of two-phase routingAOPT

in WMNs.

Definition (Throughput Efficiency): Under given maximum achiev-

able link rates and ingress-egress bounds on the traffic matrix in an WMN,

the throughput efficiency of two-phase routing is given by the quantity

A (< 1).
A~OPT

Similar to that for the wired network case, we define the throughput A(T) for any

traffic matrix T to be the maximum multiplier such that A(T) T can be feasibly

routed subject to the additional constraints for (i) and (ii) above. For a given matrix

T, the quantity A(T) can be computed by solving the maximum concurrent flow

problem [SM90] with additional constraints corresponding to (i) and (ii) above.

With the above definitions for AOPT and A(T) that are similar to that for the

wired network case, it should be easy to see that Lemma 4.5.1 and Theorem 4.5.2

continue to hold in the context of WMNs (the proofs are essentially the same). It

follows that the throughput efficiency of two-phase routing in WMNs is at least 0.5

(or, 50%) when the ingress-egress capacities are symmetric. i.e., Ri = Ci for all i. The
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latter assumption holds for all the WMN topologies we use in our experiments. We

will see that the throughput efficiency of two-phase routing on the evaluated WVIN

topologies is significantly better than the theoretical lower bound of 50%.

We use the methods discussed in Section 4.5.3 to compute a good" upper bound

-OPT for AOPT. The general approach in that section is to identify a matrix T 

T(R, C) such that A(T) gives a good upper bound AOPT. The main difference is that

the computation of A(T) for a given T involves additional constraints for WMNs as

explained above. For the case of equal ingress-ingress capacities, the argument in the

proof of Lemma 4.5.3 can be extended for WMNs, since the additional constraints are

linear. Thus, we can use traffic matrices corresponding to derangement permutations

to upper bound OPT in the case of WMNs also.

Since (oPT <_ OPT, we have

A* A*< - <1
AOPT - AOPT -

Thus, the quantity A' is a lower bound on the throughput efficiency of two-phase
AOPT

routing in WMNs. We will use this lower bound as a conservative estimate of through-

put efficiency of two-phase routing in all the experiments.

8.9.2 Topologies and Link Rates

The operating range of the model corresponds roughly to the ETSI standards for

UMTS [UMTS98]. The main assumptions for our experiments are as follows:

* The system is operating in the 2.4000 - 2.4835 GHz ISM band.

* All transmitters share the full W = 83.5 MIHz band.

* Different power levels starting from about 100 mW to 200 mW are considered.

The transmitter has limited power in real systems so as to reduce the link

interference range.
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* A deterministic fading model is used for link capacities. For link (i, j) with

transmitter node i and receiver node j, the maximum achievable link rate is

given by

ij =Wlog 2 1+ PGtaGr)

where P is the transmit power of node i, W = 83.5 MHz is the frequency

band, Gt and Gr are the transmit and receiver antenna gains respectively, and

L = 2 x 10
- 4 is the path loss at unit distance (1 m) from the transmitter.

We assume unit antenna gains, i.e., Gr = Gt = 1. The distance between the

transmitter and the receiver is d, and the path loss exponent a = 3. The

background noise can be approximated by a = fkTW, where f is the receiver

noise figure, k is the Boltzmann's constant, and T is the absolute temperature of

the receiver circuitry. Assuming a receiver noise figure of 10 and a temperature

of T = 290K, we get a = 3.34 x 10-12 as the background noise.

We generated random (connected) topologies by picking points at random on a a x a

grid where a = 500 m. The communication range was assumed to be 100 m at a

node transmission power of P = 100 mW. We used the corresponding link rate as the

cutoff point for adding new links to the WMN topology when transmission power was

increased. For the first four sets of experiments, we assume a narrow beam forming

antenna so that there is no link interference. In the fifth set of experiments, we

investigate the impact of link interference for omnidirectional antenna on throughput

and the convergence of the throughput bounds obtained by the clique and independent

set constraints. For this set of experiments, we assume that the interference range

is twice the communication range, that is, 200 m at P = 100 mW. Using the cutoff

link rate as explained earlier, we obtain a communication range of 126 m at P = 200

mW, and hence, a corresponding interference range of 252 m.
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8.9.3 Experiments and Results

In the absence of any modeling information for varying the ingress-egress data rates

across WMN nodes, we assumed the Ri, Cj values to be equal and normalized them

to Mbps, i.e., Ri = Ci = 1 Mbps for all i. In many envisaged applications for

WMNs, the available end-user spectrum at each WMN node is comparable, hence

this assumption is not unrealistic. We also fixed the 77i values to unity - this assumes

that the spectrum for connectivity between the WMN nodes and the end-user devices

(user links) is not shared with the spectrum providing interconnection among the

WMN nodes (network links).

In all the experiments, we use the linear programming formulations and solve

the problems using CPLEX [CPLEX] so as to obtain exact answers for comparison

purposes. Solving the linear programming problems on 50-node WMN topologies for

the directional antenna case and for up to an order of thousand clique/independent set

constraints for the omnidirectional antenna case turned out to be feasible in CPLEX

for the CPU clock speed and available RAM on the machines that we had access to

(2.4GHz Dual Xeon, 1GB RAM).

Throughput and Throughput Efficiency

We consider ten randomly generated 50-node WMN topologies in a 500 m x 500 m

square area. Each node transmits with a power of 200 mW. The throughput values

are plotted in Figure 8-5 and the throughput efficiency values in Figure 8-6. Note

that throughput is also the ingress-egress data rate guarantee for each WMN node

since Ri = Ci = 1 bps for all i. The guaranteed data rate for each node ranges

from about 10 Mbps to 18 Mbps for the WMN topologies. The throughput efficiency

of two-phase routing ranges from about 0.92 to slightly less than 1.0. This implies

that, for these WMN topologies, an optimal algorithm that provides traffic matrix

independent bandwidth guarantee with the flexibility of changing the routing with

changes in the traffic matrix cannot give more than about 1.09 times the throughput
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guaranteed by two-phase routing.

Number of Intermediate Nodes

The number of intermediate nodes i with ai > 0 for each topology is shown in Figure

8-7. Interestingly, as was observed for the wired network case, the number of inter-

mediate nodes in each case is a small fraction of the total number of nodes. This may

have favorable implications in the adaptation of the scheme to the applications men-

tioned in Section 8.2, particularly for providing rendezvous based services in WMNs.

In the latter application, the intermediate nodes are sites for locating the rendezvous

points.

Increasing Transmission Power

In Figure 8-8, we investigate the effect of increasing transmission power on the

throughput. For one of the randonly generate(l .50-node topologies above. we in-
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vs. Transmission power for Two-Phase Routing in WMNs:

creased the transmission power P from 100 mW to 200 mW in steps of 20 mW.

As the transmission power is increased, three effects come into play, namely, (i) the

achievable rate of each existing link increases, (ii) new links appear in the topology

(these had rates below the cutoff point at lower power values), and (iii) the link in-

terference range increases (since it is assumed to be twice the communication range).

The first two effects have a favorable effect on the throughput, while the third has

an opposite effect. However, because we assumed a narrow barrow beam forming an-

tenna for this set of experiments, the third effect is absent. The throughput increases

as a result of the first two effects, as shown in Figure 8-8. The third effect comes into

play when we consider link interference in the fifth set of experiments - in that case

also, the throughput increases with increase in transmission power.
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Figure 8-9: Throughput vs. Number of relay nodes for Two-Phase
50-node base topology, Transmission Power 100 mW.

Routing in WMNs:

Effect of Relay Nodes

The throughput of the network can also be increased by introducing relay nodes

that participate in network routing but do not provide connectivity to end-user de-

vices. This effect is plotted in Figure 8-9 for one of the randomly generated 50-node

topologies above, where the number of relay nodes is increased from 0 to 20. The

transmission power was fixed at 100 mW. Thus, relay nodes can naturally augment

the topology of WMINs and increase throughput as the number of users increases.

Impact of Link Interference for Omnidirectional Antenna

We investigate the impact of link interference for omnidirectional antenna on the

throughput of two-phase routing in WMINs. Because the routing problem with the

link scheduling constraints is A/'P-hard in this case, we designed our experiments

to show the convergence of the upper and lower bounds on throughput using clique

and in(lep)end(lent set constraints respectively. Te number of cliques and independent
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sets in the conflict graph could be exponential in the graph size in the worst case -

generating all of them could also require exponential amount of time in the worst case.

Hence, we use a iterative heuristic described below to generate these and plot the

convergence of the upper and lower bounds as a function of the number of iterations

the heuristic is executed.

The heuristic runs iteratively and attempts to generate a new clique (or, indepen-

dent set) in each iteration in a greedy manner. During each iteration, the nodes in

the conflict graph are considered in some random (permutation) order. The clique

set (or, independent set) is initialized to consist of the first node in this order. There-

after, the remaining nodes are considered in this order and each node is added to the

set if it forms a clique (or, independent set) with the nodes already in the set. If the

resulting clique (or, independent set) has not been generated in earlier iterations, it

is added to the collection of cliques (or, independent sets) generated.

This procedure may not produce a new clique (or, independent set) after each

iteration. We plot the convergence of the upper and lower bounds as a function of

the number of iterations this heuristic is run, i.e., the number of attempts to generate

cliques (or, independent sets) i the conflict graph.

The collection of cliques and the collection of independent sets are initialized as

follows before running the above iterative heuristic. We initialize the collection of

cliques to contain cliques that correspond to transmit/receive diversity constraints

for the directional antenna case - each such clique consists of the set of links that are

incident at a given WMN node (incoming or outgoing). The total number of such

cliques is n. The collection of independent sets must be initialized so that their union

contains all the links i order to give a valid lower bound. For this, we consider the

links in some arbitrary order. For each link, if it is not already included in some

independent set, we form a singleton independent set consisting of this link and grow

it in a manner similar to an iteration of the above heuristic. Note that the number

of attenll)ts to generate cliques (or, indep)endent sets), as plotted in the experiments
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Figure 8-10: Upper and Lower Bounds for Throughput of Two-Phase Routing in
WMN: 50-node topology, 100 mW Transmission Power.

below, does not include the described initialization above.

In Figure 8-10, we plot the upper and lower bounds for the throughput of two-

phase routing as a function of the number of attempts to generate maximal cliques and

independent sets respectively up to 1000 such attempts. The WMN has a randomly

generated 50-node topology with a node transmission power P = 100 mW. The upper

bound flattens quickly to a value of about 3.63 corresponding to 400 attempts to

generate maximal cliques in the conflict graph. The lower bound flattens less rapidly

- with 1000 attempts to generate maximal independent sets in the conflict graph,

the value is about 2.97. We were able to improve the lower bound further to 3.36

using 10000 attempts. The gap between the upper and lower bounds thus obtained

is about 8%. There is no way to verify whether the gap will get significantly smaller

with more attempts to generate cliques and independent sets other than carrying out

the computation. Since the independent set constraints produce a lower bound for
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the maximum throughput that is achieved by a feasible solution, we can use this as

an estimate of the throughput for the omnidirectional antenna case (we know that

it is within 8% of the maximum throughput). Using this estimate, the throughput

reduction as result of link interference is by a factor of 2.7 compared to the directional

antenna case.

We repeat the experiment on the same 50-node topology but with a node trans-

mission power P = 200 mW. The results are plotted in Figure 8-11. In this example

also, the upper bound flattens quickly - the value is about 3.75 corresponding to

400 attempts to generate maximal cliques in the conflict graph. The lower bound is

about 3.12 corresponding to 1000 attempts to generate maximal independent sets in

the conflict graph. We were able to improve the lower bound further to 3.53 using

10000 attempts. The gap between the upper and lower bounds thus obtained is about

6%. Using the lower bound as an estimate, the throughput reduction as result of link

interference in this case is by a factor of 4.8 compared to the directional antenna case.
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Thus, the impact of interference on reducing throughput is greater when the node

transmission power (and, hence interference range) is higher.
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