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Abstract

The classical control paradigm addressed problems where communication between
one plant and one controller is essentially perfect, and both have either discrete or
continuous dynamics. Today, new problems in control over networks are emerging. A
complex network involves an interconnection of numerous computational components
where the controllers may be decentralized, and the components can have discrete
or continuous dynamics. Communication links can be very noisy, induce delays, and
have finite-rate constraints. Applications include remote navigation systems over the
internet (eg. telesurgery) or in constrained environments (eg. deep sea/Mars explo-
ration). These complexities demand that control be integrated with the protocols of
communication to ensure stability and performance.

Control over networks is recent and continues to receive growing interest. Initial
work has focused on asymptotic stability under finite-rate feedback control, where
the only excitation to the system is an unknown (but bounded) finite-dimensional
initial condition vector. Such problems reduce to state-estimation under finite-rate
constraints. More recently, disturbance rejection limitations were derived for the same
setting, assuming stochastic exogenous signals entering the system. Although these
studies have contributed greatly to our understanding of such systems, input-output
stability, performance analysis, and synthesis of coding schemes and controllers under
finite-rate constraints remains largely untapped. In this thesis we address how finite-
rate control impacts input-output stability and performance, and we also construct
computable methods for synthesizing controllers and coding schemes to meet control
objectives.

We first investigate how finite-rate feedback limits input-output stability and
closed-loop performance. We assume that exogenous inputs belong to rich deter-
ministic classes of signals, and perform analyses in a worst case setting. Since our
results are derived using a robust control perspective, we are able to translate perfor-
mance demands into optimization problems that can be solved to obtain quantization
strategies and controllers in a streamlined manner. We then study how finite-rate
feedforward control impacts finite-horizon tracking and navigation. We derive per-
formance limitations for each case, and illustrate time and performance tradeoffs.
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Finally, we investigate feedforward control over noisy discrete channels, and solve
a decentralized distributed design problem involving the simultaneous synthesis of a

block coding strategy and a single-input single-output linear time-invariant controller.

We also illustrate delay versus accuracy tradeoffs.

Thesis Supervisor: Munther A. Dahleh
Title: Full Professor
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Chapter 1

Introduction

1.1 Network Systems

In the early to mid-1900s, stability and performance of the classical control system

were extensively studied. This classic loop consists of one plant and one centralized

controller. The communication links between the plant and controller are either

assumed to be perfect or have little noise, and the clocks in both the plant and

controller are assumed to be synchronized. Finally, both plant and controller either

have discrete dynamics or continuous dynamics.

Figure 1-1: Classical Control System

In today's "information-rich world", computation, communication and sensing are

cheaper and ubiquitous, and opportunities in control are exploding. We now face the

problem of control in network systems. A typical network is much more complex than

the classic control system. It may involve an interconnection of numerous computa-

tional components as opposed to just two. The controllers may be decentralized, and

12



the links can be very noisy, induce delays, and have finite-rate constraints. The clocks

inside the computational components may not be synchronized, and the components

can have either discrete or continuous dynamics. These complexities demand that

control be integrated with the protocols of communication to ensure stability and

performance. Thus, a revolution in this area would be to generate a unifying theory

for communication, computing, and control.

Figure 1-2: Network System

An example of such a complex system is a network in a future car (see Figure 1-3).

Today, cars have multiple control systems that roughly can be classified as follows:

1. Powertrain Control: includes systems that basically are involved in powering

the wheels (engine, transmission, differential, axles, etc)

2. Multi-Media Control: radio, DVD, GPS etc.

3. Safety Control: anti-lock breaks, traction control, stability control, airbags,

seatbelts, etc.

4. Emmisions Control: fuel consumption

5. Body Control: windows, windshield wipers, automatic door locks, etc.

Today many or all of these systems communicate with each other, but in the

near future, we anticipate that these systems will become much more complicated

13
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Figure 1-3: Network System in Future Car

and will require a network, i.e., an interconnection of computers, to coordinate their

functions within the car, and to coordinate information outside of the car. In the

presence of such a network, stability, performance, and most importantly safety, are

real concerns.

1.2 Two Simple Networks

In most complicated networks, a basic core loop can be extracted. This basic net-

work consists of two computational components and two communication links (see

Figure 1-4). A communication link is made up of three components, a channel en-

coder, channel, and channel decoder, which are briefly described below.

* Channel (C): A channel is an operator that takes in a string of symbols and

outputs a string of symbols. It's bandwidth is defined by its transmission rate,

RC, which indicates the number of symbols per second that the channel can

transmit with each use. This corresponds to a delay of l/Rc seconds if the

input string of symbols has length 1. If the channel is assumed to have infinite

14



Communication Link

C

Figure 1-4: Basic Network Loop

bandwidth, then it can transmit any input with no delay. A channel may

also corrupt its input by adding noise, which may either be independent of its

input or dependent on its input. Typically, a communication channel is modeled

probabilistically with a conditional distribution of producing an output sequence

of symbols given an input sequence of symbols.

* Channel Encoder & Decoder (E, D): The channel encoder and decoder are oper-

ators designed to reduce the deleterious effects of the channel via a cooperative

strategy. To minimize the effects of the noise added by the channel, the encoder

may first pre-process its input. In addition, to adhere to the bandwidth limits

of the channel, the encoder maps its input, which in general may require an

infinite number of symbols to describe, to a finite set of symbols or codeword

via some quantization scheme. The decoder typically knows the operations

of the encoder and decodes appropriately. An example of a primitive coding

15



strategy is when the channel encoder makes copies of the codeword it produces

from its input, and then sends these copies through an infinite-bandwidth noisy

channel. The channel decoder then uses knowledge of this repetition to decode

the link input via a majority-rule algorithm, i.e., it guesses that the input is

the symbol 'A' if it observed that 3 out of the 5 times that the input symbol

was sent resulted in an 'A' at the decoder end. The disadvantage of such a

primitive scheme is that sending copies of symbols over the channel results in

more channel uses and hence more transmission delays.

From the basic core loop, we extract a simple feedback network and a simple

feedforward network, as shown in Figure 1-5.

%$%/$

Plant

CP I ~t

Simple Feedback Network Simple Feed-Forward Network

Figure 1-5: Basic Network and Two Simple Networks

In the feedback setting, the plant and feedback controller are separated by a com-

munication link. Here, both stability and performance are impacted by the location of

the communication link. A second link connecting the controller output to the plant

16



input is excluded in our set up for simplicity of analysis. In the feedforward setting,

the plant and controller are both local to each other, and are driven by a remote ref-

erence command that must travel through a communication link before exciting the

plant. Here, only performance is impacted by the location of the communication link.

Much work has been done regarding these two simple networks, and some important

results are discussed next.

1.3 Literature Review

In this section, we review previous studies that are most relevant to each of the two

set ups that we consider in this thesis. In doing so, we highlight differences between

our work and others.

1.3.1 Simple Feedback Network

The simple feedback network, shown in Figure 1-6, has been extensively studied over

the past 10 years. Researchers have considered both stochastic and deterministic

frameworks, a variety of stability notions, and different types channels in the com-

munication link. Most studies, however, either consider the case in which no external

inputs are applied to the control system, and derive conditions on the channel rate

required for various notions of asymptotic stability, or allow exogenous inputs to be

bounded, and derive conditions on the channel rate that guarantee that the system's

state or output is bounded. In this thesis, we consider two deterministic classes of

exogenous inputs, and focus on finite-gain stability (defined in section 1.3.1), which

requires the plant output to scale with the input, as opposed to just being bounded.

We restrict our attention to finite-rate noiseless channels, with rate R, in this review

and in this thesis.

Another important difference between our work and most previous works, is the

class of encoders we consider. To clearly distinguish between the encoder constructed

in this thesis from those designed in previous investigations, we classify all encoders

into 4 types of operators, defined by 2 features: memory and control access. The

17
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Figure 1-6: Simple Feedback Network

memory property divides all encoders into mnemoryless and not memoryless; and the

control access property separates encoders that either have access to the plant input,

u, or can compute u exactly, from those that have no knowledge of u. Being able to

compute u assumes that the encoder knows the control law and has enough memory

to compute what the controller, K, generates at any time t; and that there is no

noise between the feedback signal and the reference command, r. In our work and in

others, the encoder and decoder know bounds on the plant's initial condition, and on

all exogenous signals described in the set up (reference or disturbance), and the plant

dynamics. We discuss the 4 encoder classes below, and reference relevant work.

1. Has Memory and Has Control Access:

When the encoder is either physically local to the plant or if the encoder knows

the controller it must communicate with, then it can be modeled as belonging to

this class. This class of encoders enables derivations of a necessary and sufficient

conditions on the channel rate required to guarantee asymptotic stability and

finite-gain input-output stability (defined and discussed in section 1.3.1). The

well-known condition that guarantees both notions of stability, for G having

state-space description ss(A, B, C, 0), is R > E max(0, log2 (IAj(A)|), where

Ai(A) denotes the ith eigenvalue of A. Note that the rate condition is indepen-

dent of the controller, K, which makes sense as the encoder and decoder both

18



have access to u (r = 0), and thus the controller's effects on the plant output

can be subtracted off in both the encoder and decoder. Tatikonda's encoder

class I from [29] is equivalent to this class. Other works that consider encoders

from this class include [2, 22, 23, 25, 26, 31].

2. Has Memory and Has No Control Access:

If the encoder is not local to the plant and if it does not know what controller

will receive the signal it sends through the channel, then it can be modeled as

belonging to this class. This class of encoders is considered in this thesis. We

derive sufficient conditions for finite-gain stability as a function of the encoder

and controller for a family of reference inputs (Theorem 2.2.1). Since there

is no control access, the information describing the plant output, that must

be conveyed through the channel, is characterized by an infinite number of

parameters. Therefore errors due to the channel do not converge to zero, which

makes deriving the minimal rate required for stability a difficult search over all

possible encoders, decoders and controllers. This is discussed in more detail at

the end of this section. We set out to achieve finite-gain stability, which relates

y to r, since our ultimate objective is to obtain desired properties from the

plant output y, given that r comes from some class of signals. Other works that

consider encoders that fall into this class include [7, 8, 10, 13, 14], however all of

these consider an initial condition exciting the system (r = 0), and study some

notion of asymptotic stability or bounded state stability (eg. containability [8]).

Some also allow the rate to be countable as opposed to finite [13].

3. Memoryless and has Control Access:

This is identical to Tatikonda's encoder class II, and a sufficient condition

for asymptotic stability, as a function of the plant and controller dynamics,

is derived in [29]. For example, if G is first-order with state space description

ss(a, b, 1, 0), and the controller is a gain, K = k, then R > max(0, log( ,bk1-Ia+bk I

is a sufficient condition to ensure asymptotic stability. Since the encoder is mem-

oryless, it cannot send more and more information about any single parameter

19



describing the plant output, and therefore, errors due to the channel do not

converge to zero. This makes deriving necessary conditions on the rate required

for stability a search over all possible encoders, decoders and controllers, which

again is difficult and not pursued in [29].

4. Memoryless and has No Control Access:

To our knowledge, no one has considered this class of encoders, as these opera-

tors cannot do anything more than to allocate R bits to the input it receives at

a given time step. A special case of the encoder constructed in this thesis falls

into this class, and we derive sufficient conditions on the channel rate required

to guarantee finite-gain stability in this case (Corollary 2.2.1).

Stability Results

We now put into perspective results for different notions of stability under finite-

rate feedback for deterministic settings. Since most studies consider encoders that

have memory and control access, we review results for this class only. Our hope is

to not only review important results, but to differentiate our set up, which consider

encoders that have memory but no control access, from the many prior investigations

regarding such systems. First, we discuss asymptotic stability, and then consider

finite-gain input-output stability when the initial condition on the plant's state is

zero. We conclude our review with a theorem that states necessary and sufficient

conditions on the channel rate to guarantee both notions of stability.

We consider the following model of the system shown in Figure 1-6.

xt := Axt + B(vt + rt) Vt > 0,

yt = Cxt,

vt = K(Dt),

20



where t c Z+, xt E R', and rt, yt, vt E R.

When possible, we present simple analyses and reference generalizations to avoid

having technical details distract the reader from the objectives of this section.

* Asymptotic Stability: When only an initial condition excites the system,

stability is defined with respect to an equilibrium point. A vector xo E 1R' is

an equilibrium point of the system, if Vt > 0, Xt = xO. That is, if the system

starts in an equilibrium, it stays there for all time. It is not difficult to see that

system (1.1) only has one equilibrium point at the origin.

The origin of a system is asymptotically stable (AS) if the following hold.

1. Lyapunov Stability: For each e > 0, there exist a 6(E) > 0 such that

I1XoII10 < (c) =* IIxtio < E, Vt > 0.

2. Attractivity: There is an 7 > 0, such that

IIxo11oo < ,=:> xt -+ 0 as t -* oo.

Lyapunov stability forces all trajectories to remain within c-balls, when the

initial state vector lies in 6-balls, where 3 is a function of c. Attractivity forces

all trajectories near the origin to actually approach the origin as t grows. Note

that trajectories can approach the origin in very strange ways, without staying

within an E-ball for all time. Thus, there exist systems for which the origin is

attractive but not Lyapunov stable.

* Finite-Gain (FG) Stability: Assume now that the initial state vector xO = 0,

while r is nonzero. Finite-gain stability requires the norm of the output to

scale linearly with the norm of the input (as opposed to just being bounded).

Formally, a system with input r and output y is FG-stable if there exists a finite

positive constant a, and a finite constant 3 such that

I|yIK < a||r||1 + 3, Vr s.t |r|IOn < T.
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Note that if a = 0, then we get bounded-imput implies bounded-output (BIBO)

stability. It turns out that FG stability is impossible under finite-rate feedback

for 0 = 0, and a general proof of this limitation for arbitrary memoryless chan-

nels and using an information theoretic viewpoint, can be found in [24]. As

discussed in section 3.3, one of our control objectives is to design the controller

to minimize 3.

Theorem 1.3.1. Consider encoders that have memory and control access. Assume

l|r||nK < ;. Then, system (1.1) is

1. asymptotically stable,

2. and FG stable

if and only if R > Ei max(O,log(|iX(A)|).

Proof.

Our proof here follows from those given in [29].

* (Necessity): Assume that the state is the output of the system (C = I), and that

the A matrix is diagonal with all eigenvalues being unstable. The general case

is treated in /29]. Without loss of generality, we can assume that for a finite

positive constant vector L E B?', Qo = {x E R' : x < L}.

1. For a given control sequence {uo, u1 , ... , ut_1}, we know that xt Axo +

Zi=- AtliBu. If the system is AS, then Ve > 0 and Vxo E Q0 , there

exists a T(e, L) such that Vt > T(E, L) we have l|xtil < . In particular this

holds for E < L. For this value of e, define the sets IF, parameterized by

control sequences uo = {uo, ui, ... , ut-1}, to be

It-1 = {xo E Q : |ixtl C}.
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Note that xt depends linearly on uo, u1 , ... , ut1, hence all the r sets are

linear translations of each other with the same volume, Idet(A-t)KdEd. A

lower bound on the channel rate is then computed by counting how many

1 sets it takes to cover Q0 at time t.

R > llog vol(Lr)

- log K~{lo jdet(AI)jKdEd

= Zi max(O, log(IAj(A)j) + 4log(L).

Since e < L, the second term approaches 0, as t -+ oo.

2. The set of points that xt can take contains the following:

Qt = {xlx = Atxo + '- AtiBri + Et-1 At'-'-Bvi, Vxo C

Qo,IIrlco ; r}.

Let Q"ero = {xjx = Atxo +( E- At-iBvi, VxO = Q0 }, be the set of all

points xj E Qt where r is set to zero. Suppose the system is FG-stable,

then there exists an encoder and decoder such that the estimation error

et = xt - :e, is bounded, i.e., ||et||o < - (every signal in the loop is

bounded, so Xt, sI, and their difference are all bounded). A lower bound

on the rate can be computed by counting the number of regions of diameter

less than 2 it takes to cover Qt for any t > 0. Therefore, we require a rate

of at least

vol (t)

t Kd ( +

-~max(,log(Aj(A)j) + 4o()
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where the second inequality follows from Q 1T E Qt, and the third inequality

follows from our proof above for asymptotic stability. Note that 4log({) is

bounded and becomes negligible as t -+ oo.

(Sufficiency): To prove sufficiency, we first fix the controller to be any stabi-

lizing state-feedback controller, K, and choose the encoder to be a "primitive

quantizer" as defined in [29]. At time t, this encoder receives xt and outputs

a channel symbol o-t. For simplicity, we assume that n = 1, i.e., the plant G

is first-order. The general case is shown in [29]. In the first-order case, the

primitive quantizer has 2 states:

1. ct: centroid of quantizer support region at time t,

2. Lt: defines the boundaries of quantizer support region at time t, i.e., {ct -

Lt, ct + Lt},

which have the following evolution equations for t > 0:

ct+1 =a.t + but co = 0,

Lt+ 1 = 2 Lt + b Lo = L.

The state estimate is the output of the encoder, i.e., :1 = ot. Figure 1-7 illus-

trates the support region of the quantizer at time t. The state xt lands somewhere

in the support region which is divided into 2 R partitions. The state then gets

encoded into at, which is the center of the the partition in which xt lands. The

decoder then uses ot, as the state estimate at time t, and sends this to the con-

troller K. It is guaranteed that xt lands somewhere in the support region for all

t > 0, because x0 automatically lands in the support region by definition of LO,

and the evolution of Lt captures the evolution of xt. Specifically, the partition

in which xt lands will grow by a factor of (a) in one time step, but will then

shrink by a factor of (2 R), to form new partitions at time t + 1.

Assume that R > log(a), then the following shows that the state-estimation

error is bounded, where the bound is proportional to T.
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x-t GT

A i l- - - I -

ct-Lt cit c-t + L-t

Figure 1-7: Quantizer Support Region defined by ct and Lt.

Ietj = Ixt - : tj = I Lt

= 2-R( )L +E- al-1ibi|

< 2--RI()L + IbVZ7I2 IaIt-i}
2-RIbIf A

1--1a -

Next, we show that xt is bounded for all t > 0. To do so, we apply the certainty

equivalent controller, and get that the control input at time t is ut = KIt + rt.

Then, xt+1 = (a + bk)xt - bket + brt, which gives us the following.

Ixt| I - E'i4(a + bk) t --'bkei + Z~I1(a + bk)t-l-ibri|

I ZtI(a + bk) 1 -bk eiI + I Etii (a + bk)t- 1 -- bril

jbkj ] Zt2(a + bk) t-' + |bII rII, _$-1 (a + bklItL 1 2

kI(la+bkt - 1) + bi(Ia + bklt - 1)

1-a+bkl

Thus, the system is asymptotically stable (lir| = I = 0 -+, Ixt| -+ 0), and FG

stable.
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There are some important comments to make at this point. If the encoder did not

have access to the control input, then the primitive quantizer state evolution equation

for the centroid ct cannot involve ut exactly. Rather, it would have to involve some

known bound on the control input. In addition, if the encoder did not have memory,

the notion of "states" disappears, and the quantization support region cannot, in

general, shrink over time. The ability to derive necessary and sufficient conditions for

stability, regardless of which type, becomes more complicated.

In chapter 2, we show that FG stability is also possible for encoders that have

memory but no control access, and derives sufficient conditions on the required chan-

nel rate. The encoder constructed to prove sufficiency belongs to a parameterized

family of time-varying quantizers, which is defined and discussed in more detail in

section 2.1.1.

Control Access vs. No Control Access

When encoders have access to the control signal or can compute the control signal

exactly, the plant output signal that must be communicated down to the decoder,

can be described by a finite number of parameters. More concretely, yt = CAxo +

C E-' A t-iBui. Therefore, the only quantity unknown to E and D is xO, which is

just a vector of n numbers that belong to a bounded set in 1Rn. Therefore, assuming G

is observable, the encoder can compute xO after n time steps and start transmitting xO

through the channel down to the decoder, at a rate of R bits per time step. Consider

an encoder that allocates Ri bits to the ith component of xO, such that Ei Ri = R,

while the decoder continues to update its approximation of xO and xt. The error vector

then evolves as follows:

et = xt - Xt = At(xo - :0,t),

where ,o,t is the estimate of xO at time t. If we assume that A is diagonal, 1 we get

the following upper bound on the magnitude of each error component:

'All results hold for general A matrices as shown in [29].
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let(i)| < L{ JA }' = 1, 2, ..., n,

where Ixo(i)I L, for i = 1, 2, ... ,n. It is easy to see that if Ri > max(O, log(I A(A) ),

for i = 1, ... ,n, which implies that R > Ejmax(0,log(Aj(A)I), then the system is

AS, since K is assumed to be stabilizing.

On the other hand, when the encoder does not have access to any signal in the

loop except for the plant output, the unknown quantities characterizing yt are x0

and uo, U1, u2 ..., which are an infinite number of parameters. From the encoder and

decoder's perspective, the output of the plant is suddenly very "rich." For any fixed

t, the decoder must approximate Yo, yi, ..., yt. These approximations cannot converge

to their actual values, and the best strategy that E and D can employ is to improve

the approximations over time by allowing E to allocate more and more bits to them

(this motivates our construction of the quantizer presented in section 2.1.1). The

system boils down to a quantized feedback system, which is difficult to analyze, and

where the usual tradeoff of delay versus accuracy holds.

1.3.2 Simple Feedforward Network

In the simple feedforward network (Figure 1-8), the plant and controller are local to

each other, but are together driven by a remote reference signal that is transmitted

through a communication channel. In this set up, the longer one spends coding the

input signal before it enters the channel, the more accurate the signal is that drives

the remote control system. However, delays in receiving commands at the remote site

negatively affect performance. Since there is no outer feedback loop, only performance

is affected by the location of the communication channel.

r 1r U
E -- C --- D + K -G y

Figure 1-8: Simple Feed-Forward Network
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There is much work that focuses on the reconstruction of the reference command

at the remote site (see [34 and references therein). However, here we are interested

in navigating a remote system with the reconstructed command. Most teleoperation

systems, which often involve hazardous and unstructured tasks, can be addressed

under this framework. Examples of such tasks include nuclear reactors, space appli-

cations, medical operations, and deep-sea and MARS explorations [213. Such systems

typically incorporate feedback as shown in Figure 1-9, and stability is impacted by

the location of the communication channel.

r Local ' __Remote
10Operator Cae Operator A

- K G --

Figure 1-9: Remote Navigation with Feedback

Previous work involving communication constraints in remote navigation systems

mainly consider noiseless channels that simply add delays. When the delays are

assumed to be constant, then the local and remote operators compute wave-variable

transformations [27] and/or are delay compensators [1], which transform the channel

into a passive connection, thereby ensuring stability under any delay.

- FdT > 0.(.21 (1.2)

Note that the transformation of variables is such that

U 2= = f (1.3)

where b is an arbitrary positive constant. This enables the passivity condition in
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equation (1) to be rewritten in terms of the magnitudes of the wave variables u and

v as

S(Jul2 - v 2)dr 0 (1.4)

for all t > 0. Now consider the teleoperation system shown in Figure 1-10, consisting

of a 2-port communication link connected to an arbitrary slave system. The commu-

nication link has an input vector i (im, -is)T and output vector F =(F, FS)T,

and is passive if for all t > 0

I t'Fdr= >(mFm - ±.Fs)dT > 0. (1.5)

Commnication Link

m urm v-s F-s
Master T SlaveW vV W Sse
System Fm V_m U Syste

Figure 1-10: Wave Variable Teleoperation System

If in particular, the communication link consists of two wave variable (WV) trans-

formers cascaded via a pure delay T, as shown in Figure 1-10, then condition (4) can

be rewritten in terms of only the wave variables um and u, (note that v, = um(t - T)

and vm = u,(t - T)) as follows

f (±mFm - k8 Fe )dT =[(f uidT - f u (t - T d] - [(f u2(t - T)dT - fo usdr.

0.

The inequality can be reduced to

fttT(AUmt2 + Us|2 )dr > 0,
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which holds for all t > 0 irrespective of the delay T. In this case the communication

link is always passive. It is easily shown that if the link is connected to a slave system

via a negative feedback configuration as in Figure 1, the overall system, when viewed

as a 1-port system with input im and output Fm (i.e., from the master), is also

passive if the slave is passive [27].

Although wave-variables account for stability under any delay, performance still

degrades with delays. One design augments the wave-variable method with Smith

predictors to reduce tracking errors [171. When the delays are assumed to be time-

varying but bounded from above, then buffering techniques [19] can be applied. Fi-

nally, if the channel also erases some signals (eg. packet losses), then one can develop

a model of the channel using second-order statistics [5], or build an observer at the

remote operator to reconstruct the data stream at the channel output [20 to maintain

stability and performance.

Our approach uses the local operator as a channel encoder, and the remote oper-

ator as a channel decoder (as defined in information theory [16]) to minimize errors

between the actual and reconstructed command. Our work combines information

theory and robust control tools. We ignore feedback to focus on performance issues

as the communication channel only impacts performance in such a setting. We ana-

lyze performance of the simple feedforward network for finite horizon objectives, and

also construct methods to simultaneously design a controller, encoder and decoder to

meet a specific infinite-horizon performance objective.
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Chapter 2

Finite-Rate Feedback Control:

Stability

In this chapter, we consider a system in which the plant and feedback controller are

separated by a noiseless finite-rate communication channel. Previous work derive con-

ditions on the channel rate that guarantee some notion of asymptotic stability when

the system is excited by an initial condition, and when the encoder has memory, and

more importantly, either has access to the control input or can compute it perfectly.

These types of encoders enable derivations of necessary and sufficient conditions that

are independent of the controller. Here, we allow for two deterministic classes of

reference inputs to excite the system, and derive sufficient conditions for finite-gain

stability as a function of the encoding strategy and controller. We consider a scenario

in which the encoder does not have access to (and cannot compute) any signal in the

system except for the plant output.

2.1 Problem Formulation

Consider the system shown in Figure 2-1, with the following dynamics.
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y

Figure 2-1: Simple Feedback Network

xt+l = Axt + B(v + rt) Vt > 0, (2.1)

Yt = CXt,

vt = K( t),

where t C Z+, xt C 1R, and rt, yt, vt C R. E is a limited-rate (R, M)-quantizer,

E = Q(R, M), which has infinite memory, and is time-varying in that the strategy it

follows in allocating a total of R bits to all of the inputs up to time t, is a function

of t (see section 2.1.1 for details). We assume that the channel can transmit R bits

instantaneously with each use. The channel decoder, D, receives more information

on the current and past values of y and sends these updates to the controller. Finally,

K is a causal discrete-time time-varying linear system. Our goal is to ultimately

design E, D and K to maintain finite-gain stability and to achieve multiple control

objectives, such as tracking reference commands.

We define the closed-loop system to be FG-stable if for all r E Cr, there exists a

finite positive constant a and a finite constant 3 such that IIyIo <; a| r |I I + . Here,

we investigate FG stability for a bounded class of reference inputs, C, = 1o,, where

, is the class of all signals r such that IrIIo < T.
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2.1.1 Limited-Rate Time-Varying (R, M)-Quantizers

Before stating the problems that we are interested in solving, we first define and

model the parameterized class of time-varying infinite-memory (1Z, M)-quantizers.

We view the quantizer as a module that approximates its input, which in general

requires an infinite number of bits, with a finite number of bits. Formally speaking,

an (1?, M)-quantizer with bit-rate R, is a sequence of causal time-varying operators,

parameterized by an infinite-dimensional rate matrix, R, which, in general looks like

Roo 0 0 ... ...

Ro1 Ril 0 0 ...

R 0 2 R 1 2 R 22  0 ...

such that 1 + Ej Rij = R Vi, and an infinite-dimensional positive-definite diagonal

scale matrix, M = diag(Moo, Ml, M 22 ,...,). The (7Z, M)-quantizer saturates to out-

put Mkk, the (k + 1)" diagonal of M, when its input, Yk, has magnitude greater than

or equal to Mkk, i.e., when IYkI > Mkk. However, we denote the quantizer "valid"

only when yAI Mkk for all k > 0, and define what the quantizer does in this case

below.

Let Qi(j) be the quantized estimate of yj at time j. Then, R determines that at

time t = 0, 1 bit is used to denote the sign of yo, and Roo bits are used to quantize

the magnitude of yo to produce yo(0). At time t = 1, an additional Rol bits are used

to quantize the magnitude of yo to produce 0(1); 1 bit is used to denote the sign of

yi, and Rn bits are used to quantize the magnitude of yi to produce y1(1), and so

on. The accuracy of gj(j) is within ±Mij 2-i=i Rk of y, for all i > 0.

More concretely, at any time t, the quantizer, channel, and decoder can be broken

down into the five steps shown in Figure 2-2 when Iyki Mkk for 0 < k < t. First, the

ith component of the vector yt is scaled by -- for i = 1, 2..., t, to produce z', where

y= yo yi ... yt ]' , and Mt = diag (Moo, Mli, ... , Mt). The scaling by MA-1 ensures

that Izt|l 1 < 1. Then, each element of z' is converted into its binary representation,

i.e., a string of 'O's and 'I's in the Decimal-to-Binary (D2B) converter. Next, each
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binary string is truncated according to the bit-allocation strategy induced by 1?.

Specifically, the binary string representing z'(i) =l is truncated to contain only its

first (E> Rj3 ) bits. Note that this truncation induces an error of at most 2 -j Rj 3

in magnitude for z'(i), i.e., Izt(i) - t(i) 2~;=iPi.

M R

y t z t zt tt 
At 

At

D2B T B2D
A (Ot)

y(0) 0111000... 01... y

y(I) 1101000... 1101... y(1,t)
0100011... 010...

y(t) 1111000... 1111... - y(t,t) .

Figure 2-2: Quantizer-Channel-Decoder Operator at Time t

As shown in Figure 2-2, the truncated binary string is converted back into its dec-

imal representation, via the Binary-to-Decimal module (B2D), to produce s. Finally,

V is scaled by Mt to produce y', where y* = [ yo(t) y1 (t) D2 (t) ... pt(t) ]

An upper bound on the error between each input component and its approximate

output is:

IYk - yk(t)I Mkk2-i=k Rki,

Vk < t. Stated differently, if jYkI Mkk for 0 < k < t, then there exists a Wk(t) with

sign(wk(t)) = sign(yk) and Iwk(t)I < 1 Vt > 0, such that

Y(t) = yk + Mkk2(- i=k Rki )wk(t),

for all k < t.

For analysis, we augment the output of the quantizer at time t to be the vector

of all estimates of yt from time 0 to time t. We denote the augmented vector as yta
as shown below.
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a =

90(o)
90(1)
91(1)

9o(t)
91(t)
92(t)

yt(t) 

We can then model the quantizer in its "valid" region as the following sequence

of time-varying operators:

(t+ 1) (t+2)
Q(7z, M) = {Qt : I+1 -+ R 2 I Qt(yt) = gI= Iyt + F(R)It(M)wt, t > 0}

where

It =

1 0

0 1

ItX t

and

foo

foi

fil

fot

ftt

with fk, = 2- is=k Ri for s = 0, 1, ... , t, and k = 0, 1, ... , s.

Also,
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wt =

wo(O)

wo(1)

wi(1)

wo(t)

wi(t)

w2 (t)

. t(t) .

where Wa E 0,l, such that liwallo < 1.

2.1.2 Plant and Controller

We represent the LTI causal system G and the causal linear time varying controller

K as the following matrix multiplication operators at any time instance t:

90 
ko

91 go k1 ko
Gt= 92 91 90 K k2 k1

gt ... ... 91 go

We note that KtIt = KTI, where KLTI is a LTI controller

for j > 0, characterize the time-varying controller Kt, and

ko

k1

Kf = k2T

Lkt

whose parameters, kj

ko

ki ko

... ... k1 ko

If G and KLTI are finite-dimensional, with state-space descriptions (Ag, B,, Cg, Dg)

and (Ak, Bk, Ck, Dk), respectively, then go = Dg, gj = CgAj 1 Bg for j > 1, and

ko = Dk, and kj = CkAfBk for j > 1.

Figure 2-3 illustrates the closed-loop system at time t when the quantizer is mod-

eled as an endogenous disturbance as described in section 2.1.1, with

r(O) u(O)
r(1) u(1)

rt= & ut=

-r(t) - (t)
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+ FtRa

Kt
A

Figure 2-3: Control System at Time t

From here onwards, we refer to Ft(R) as F and Mt(M) = Mt for an easier read.

2.1.3 Problem Statement

We are interested in solving the following problems for each class of reference inputs,

Cr, defined earlier.

1. Given G, K, C, and a rate matrix, R, determine whether there exists a set of

scale matrices, M, that maintain FG stability and quantizer validity.

2. Given G, K, and Cr, characterize the set of all rate matrices, R, such that the

system is FG-stable and the quantizer is valid.

3. Within the set of stabilizing rate matrices, find the minimum transmission rate,

R, of the channel.

2.2 Stability Analysis

In this section, we derive sufficient conditions for FG stability when C, = loo,.

Let T A (I - GtKiTI)lGt, then it is straightforward to show that yt = Tert +

TK twt. The following theorem then gives sufficient conditions for FG stability

and quantizer validity 1. Note that for a matrix A, |tAllI = maxi E ajj.

'One can add an exogenous input, d, at the input of the controller and derive sufficient conditions

for external stability by computing transfer functions from r and d to y and v (output of the

controller). We omit the details here as the analysis is straightforward.
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Theorem 2.2.1. Consider system (1) with x 0 = 0. Let E = Q(1Z, M), for a given

rate matrix R, and let r E lx. If

1. ||T|| 1 < oo,

2. \\TKFIII < 1,

then there exists a constant scale matrix M = ml, such that

* (FG stability) Iy|| 0  IITI\\1|r|I + m|ITKFIII,

" (quantizer validity) IylI <in.

Proof. Choose m > T1I0ir > 0, which is possible given the norm bounds on r,

T, and TKF. Then,

|Iy tIkc)= supt{|Ttr + TtKtFtMtwtIIO}

< supt \iTt|1||r'\\x + supt ||TKtFM t||I

||IT|11||Ir| + ml|ITKFI|11

< m.

The last inequality comes from our choice of m.

U

The stability condition in Theorem 2.2.1 is sufficient as we have not yet proven

that IyI > m, for any k > 0, renders the system unstable. Proving necessity is more

difficult using this class of encoders, as it entails searching over all possible encoders,

decoders and controllers, to find the triple that minimizes the rate required for FG

stability.

We note that memoryless, time-invariant quantizers are represented by an identity

rate matrix multiplied by the value of the fixed rate R -1, which leads to the following

corollary.
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Corollary 2.2.1. Consider system (1) with xo = 0. Let E = Q(7Z, M), for a diagonal

rate matrix R = (R - 1)I, and let r E l,. If

1. |IT1, < oo,

2. 1||TK LTIJI R-1,

then there exists a constant scale matrix M = mI such that

* (FG stability) Iy| I|ITI1||1Ir|| + m2(1-R)ITK LTI I

* (quantizer validity) ||y||I Io m.
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Chapter 3

Finite-Rate Feedback Control:

Performance

In this chapter, we show how our construction of the quantizer leads to the result

that the set of allocation strategies that maintains stability for each class of reference

signals is convex, allowing the search for the most efficient strategy to ensure stabil-

ity to be formulated as a convex optimization problem. We then synthesize optimal

bit-allocation strategies for a class of finite-memory quantizers for various plant and

controller pairs, and observe that strategies that minimize the rate required for sta-

bility do not reduce to trivial memoryless bit-allocation strategies. Finally, we show

how our framework enables synthesis of controllers to achieve multiple performance

objectives under finite-rate feedback.

3.1 Characterization of Stable Rate Matrices

In chapter 2, we showed that if ||TKF||1 < 1, then the system is FG-stable for

bounded reference inputs. This inequality can be written as a set convex constraints

on the rate matrix parameters. The following theorem shows this result.

Theorem 3.1.1. Let X = {vec(R)} 1 = [ Roo Rol R 0 2 ... R1i R12 ... ', then

1 The "vec" operator on a matrix simply concatenates all the column to form one large column
vector.
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for any infinite dimensional matrix, P, the condition IIPF(X)11 <71 is convex in X

for any q > 0.

Proof.

IIPF(X)I|1 <7 j Z> fj(X)PjIj <ij i = 0,1,...

where fj(X) = 2- r'i R11 . We now show that f 3 (X) is convex in X, and thus any

non-negative combination of fj(X) is convex. First, we recall that 2 -a is a convex

function of a. Let 2 -Z R i - 2 -cjX , where c is a row vector for j = 0,1,...

--A(C-X)-(l-A)(cjX2) = 2-Aal-(1-A)a 2

; A2-ai + (1 - A)2-a 2

C.X 2= A2-c3'x + (1 - A)2-cX2

If we let P = TK, then we get that the stability condition, jITKF1 < 1, is a set

of convex constraints on the infinite dimensional vector vec(R). This result enables

the search for the most efficient quantizer to be formulated as a convex optimization

problem. We solve for efficient bit-allocation strategies for finite-memory quantizers

in section 3.2.

3.2 Synthesis of Bit-Allocation Strategies

In this section, we synthesize rate matrices for a class of finite-memory quantizers

that minimize the channel rate required for FG stability.

3.2.1 Finite-Memory (R, M)-Quantizers

We introduce a special class of practical quantizers that have finite memory and are

periodic. Specifically, each value of y gets approximated by the quantizer for at most
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N consecutive time steps. In fact, for any t _ 0, YtN+j gets approximated for N - j

time steps, for j = 0, 1, ... , N - 1. Moreover, the bit-allocation strategy repeats every

N time steps. We call this class of quantizers, "repeated-block" (RB) quantizers

because the structure of the rate matrix is block diagonal as shown below.

Each block is the following N x N matrix:

Rbl oc k

Roo

B01

BO,N--1

B11

R1,N-1 RN-1,N-1

"lifted" coordinates, where each

time steps in original coordinates.

YtN

YtN+1

#(t+1)N-1 _

RB quantizers are time-invariant operators in

time step in the lifted coordinates is equivalent to N

We define the following lifted signals for t > 0:

rtN

rtN+1

- r(t+1)N-1 j -

Wt =

L

The model for a repeated-block quantizer, QRB, in the lifted coordinates, denoted

QRB, is:

QRB(R, M) = {QRB : IRN _RN I QRB(Y) = =y mFNw},
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Figure 3-1: Lifted Closed-Loop System

where, written as a matrix multiplication operator, FN = diag(FN-1, FN-1, ---).

The closed-loop system in lifted coordinates is shown in Figure 3-1.

The system and controller in Figure 3-1 are defined as follows:

51 #O

92 91 90

where

g0

g1  go

- (N-1) go9 _

and for j ;> 1,

-N -N- --- 9(j-1)N+1

gjN+1 giN -- 9(i-1)N+2

- 9( j+1)N--1 -- iN

AZ is defined similarly and is an LTI controller in lifted coordinates!

We are now ready to state sufficient conditions for FG stability in the lifted coor-

dinate space, but first state the following Lemma whose proof is straightforward and

left to the reader.
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Lemma 3.2.1. Let P be any causal LTI SISO system, and P is a lifted version of P

with lift factor N. Then, for any N > 1, IIPI|1 11P|11.

Theorem 3.2.1. Consider system (1) lifted by a factor of N, with xo = 0. Let E =

QRB(R-, M), for a given repeated-block rate matrix R, and let r C l . If

1. 11(1 - 0k)-1011 < oo, and

2. 11 (I - Ok) -15Ok.NII1 < 1,

then the system is FG-stable.

Proof. If condition (1) and (2) hold, then by invoking Lemma 3.2.1, we get that

I|(I - GK)-'G|1 < oo, and ||(I - GK)-1 GKFII1 < 1. From Theorem 2.2.1, we

then get that the original system (un-lifted) is FG stable, which implies that the lifted

system is FG stable.

3.2.2 Examples

To find the minimum channel rate required for FG stability and the corresponding bit-

allocation strategy, for a given plant and stabilizing controller, we solve the following

convex optimization problem,

minR

s.t. R = 1 + R i = 0, 2,.., N - 1, (3.1)

(I - Ok)-1OkPNjj1 < 1, (3.2)

Ry;>O j:<i=0,2,..,N-1, (3.3)

which is readily computable for the class of finite-memory quantizers with N x N

repeated-block rate matrices.
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For a given G and K, we lift the system by a factor of N, and denote the state-

space description of (I - Gk)~1Gk by (A,,, ,1c, O , c). Let X A vec(Rblock) and

rewrite the above optimization problem as

minX1

s.t. AeqX = Beg,

P(X) < 0,

X > 0,

where AeqX = Beq captures the equality constraints (2),

straints (3) and X > 0 are equivalent to constraints (4).

then

Roo

Rblock =Ro1l

R02

R03

P(X) < 0 captures con-

For example, if N = 4,

Rn

R12

R13

R 2 2

R23

X = [Roo R01 R 02 R 03 Ril R 1 2 R 13 R 2 2

Aeq=

1

0

0

0

1

0

0

0

1

1

0

0

0

1

0

0

0

1

0

1

0

0

0

1

0

0

1

R 2 3 R 3 3 ]

1,
Beq = [ 0 0 ]

and

P(X) = IIDiF4(X)I| + E'=l1|U IIcAc- 1,iF 4 (X)II - 1,

with
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c'1= 1 1 1 1 0 0 0 0 0 0

c'2.= 0 0 0 0 1 1 1 0 0 0

c'3 = 0 0 0 0 0 0 0 1 1 0

c4= 0 0 0 0 0 0 0 0 0 1 ]

and

-cc'X

F4 (X)

2-c'X

Note that we approximate the 1-norm of (I - Ok)-1GkFN, to guarantee that

we can numerically compute the solution to the constrained minimization problem. 2

We now set N = 4, and solve for the most efficient quantizers that maintain FG

stability for a variety of plant and controller pairs. As previously mentioned, when

dealing with RB quantizers in the loop, the stability results derived hold when G

and K are periodic with period N. We first assume that the plant and controller

to be periodic systems with period N, to conduct preliminary sanity checks. We

then construct examples for LTI plants and time-varying controllers generated from

LTI controllers (as described in section 2.1.2). To solve for optimal bit-allocation

strategies, we used MATLAB's function 'fmincon.m'.

Table 3.1 shows the resulting optimal R*lOek for different Aci. We fix Bc, = -I,

cl = I, and Dcl = 0. The minimum channel rate, RmIn, required for stability for

each corresponding closed-loop system is R*bk (1,1).

There are many observations that one can gleam from Table 3.1.

2 To guarantee that the approximate 1-norm satisfies our stability condition, we require a finite-

sum upper bound on the 1-norm of (I - GK)'GKFkN, to satisfy the condition. See [9] for details

on such an upper bound.
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Table 3.1: Optimal Bit-Allocation Strategies For Various Closed-Loop Periodic Sys-

tems
Aci Rblock

0.9 4.32
0.9 4.32

0.9 4.32
0.9 4.32

0.3 1.51
0.3 1.51

0.3 1.51
[ 0.3 1.51

0.9 3.47
0.7 1.25 2.22

0.5 0.60 0.66 2.21
0.3 0.09 0.43 0.37 2.58

If A,, = pI, then the optimal Rbl,,k is diagonal. This is due to the fact that

all components in the vector Q will be identical under zero initial conditions

(since Bcd = -I). One may believe that a more intelligent strategy, in the case

where all the components are identical, is to allocate all the bits to one of the

components and have the decoder understand that all the components of take

on the same value. However, this induces a delay of N time steps in the loop,

which may impact stability.

* The larger the spectral radius of Aci, the larger Rmi must be for stability.

Again, the component of that decays most slowly forces the channel to have

larger rates for stability.

* If Aci is diagonal, with different diagonal components, then Rb10 ,k is not neces-

sarily diagonal. In particular, the optimal strategy tries to allocate more bits to

the output components of that decay at slower rates, i.e., those components

that are functions of states that have eigenvalues with larger magnitudes. This

is intuitive as the signals that decay more slowly are larger in magnitude over
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Table 3.2: Optimal Bit-Allocation Strategies For Various Closed-Loop LTI Systems:

Rmin denotes the minimum rate required for stability when a TI memoryless Q(R, M)-

quantizer is in the loop.

Aci RIOCk Rmin

0.9 9.19
0.9 0.33 8.86 9.2500.9 0.15 9.04

0.9 9.19

0.3 6.99
0.3 0.13 6.86 7.0800.3 0.06 0.23 6.70

0.3 6.99

0.9 7.63
0.7 0.22 7.41 10.98

0.5 0.16 0.33 7.141.9

0.3 7.63

time and hence the quantizer is more likely to generate more errors on these

signals if it fails to allocate sufficient bits to them.

Next, we consider examples where G is LTI and K is time-varying generated from

KLTI. In these cases, it is not as easy to see how certain inputs affect certain outputs

during each time step.

Table 3.2 shows the resulting optimal R*IOCk for different closed-loop systems.

Again we allow A,, to vary, and fix Bci = - [ 1 2 1 10 ]', C = [1 5 3 1 ], and

Dej = 0. We also consider memoryless quantizers (N = 1), i.e., R bits are allocated

to every input of the quantizer, for the same plants and controllers. In this case,

Rmin > 10g2(1 ITKLTI Iii). The last column of Table 3.2 shows the minimum rate

required for stability for memoryless quantizers.

When we compare the minimum rates for the finite-memory RB quantizers and

memoryless quantizers, we see that forcing the quantizer to be memoryless requires

the channel to have larger transmission rates to maintain FG stability. Therefore,

stability may be achieved for channels with low rates by allowing the quantizer to

have more memory.
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3.3 Synthesizing Controllers

In this section, we show how one can synthesize a controller to track a family of

sinusoidal commands, while minimizing the effects of the quantizer. Again we fix

E = QRB(7Z, M) having block size N, and consider a family of reference inputs

that consist of sinusoids with frequency-dependent amplitudes, i.e., Cr = {rlr =

Wrpf,| 1rpIo < 1}, where rpf is any pre-filtered sinusoid input of amplitude < 1,

and W is a given real-rational stable transfer function.

If r E Cr, then r has an energy spectrum weighted by W(e). For example, if W

is a low-pass filter, then the energy spectrum of r is confined to low frequencies. In

general, W "shapes" the energy spectrum of r. Recall, that if the conditions stated

in Theorem 2.2.1 are satisfied, we get FG stability, i.e.,

Hly|l00  IT|1|iir|loo + mJ|TKF|I1,

which becomes

| yI I|o ITW1111r|o + JJTWJJ1 ITKFI1,

for this example. We call the second term, f = IW JITKFf, the quantizer "bias."

Suppose our performance objectives are as follows,

" Maintain FG stability: IITWII 1 < oo and IITKF(Z)1 1 < 1.

" Minimize bias due to quantizer: minimize |ITKF(R)111.

" Track r: minimize |II - TW| 1 ,

Then, since the encoder is a repeated-block quantizer, we can redefine the system

in lifted coordinates to obtain an LTI description of the closed-loop system, and

translate achieving these goals by solving the following optimization problem.
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min (I-T )(3.4)

s.t. |twI1I < 00,

ItkftNlZ)iI < 1.

A method for solving the above problem can be found in [9], and once the optimal

k is computed, one must check if the corresponding K is still LTI.

To simultaneously solve for the optimal bit-allocation strategy that will minimize

the channel rate required for FG stability (and track r), and design a controller to

minimize the bias, one can perform an "R-K", iteratation procedure. The algorithm

starts with an initial controller, ICO, and then solves the following problem to construct

RO:

minR

s.t. R =1+ERij i-=0,2,.., N- 1, (3.5)

1(I - GKo)~1GKoFN Ii < 1, (3.6)

Rey > 0O j<;i = 0, 2,.., N- 1, (3.7)

Then once RO is computed, it is fixed and K 1 is computed by solving

mn (I - W) (3.8)
KTKFN(1Z

s.t. |IW||1 < oo,

ITatN(to) s < 1.

The algorithm continues to iterate between the two optimization problems until both
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costs fail to change much. This of course does not necessarily lead to the global

optimal controller and rate matrix, as the solutions depend on the initial condition

of the iteration process.

3.4 Dynamic Quantization

The (1Z, M)-quantizer studied in this thesis is static in that it is an operator that

cannot be described by states and state-evolution equations that depend on its inputs.

We define a quantizer to be dynamic if it has states that evolve as a function of the

inputs. In this section, we show how linear dynamic quantization does not improve

over static R-M quantization, for the class of encoders considered in this thesis.

Specifically, we analyze the quantizer, shown in Figure 3-2, where H is a linear,

stable, dynamic, invertible, and causal operator with |JH-1|1i = 1, and Q is an

(1Z, M)-quantizer with a diagonal rate matrix, R = (R - 1)I, and a scale matrix

M = mI. Since H is a linear dynamic operator, we call this encoder a linear dynamic

quantizer.

R M R M

H Q D H

Figure 3-2: Linear Dynamic Quantizer

The closed loop model with a linear dynamic quantizer in the loop is shown in

Figure 3-3.

From Figure 3-3, we see that YDQ = Tr + 2R+1mTKHe, where IelI, < 1, and

z = H--T+2-R+1mTKe. It is easy to verify that the sufficient conditions for stability

for the closed-loop system with a dynamic quantizer in the loop are not impacted by

H. However H does impact the bias term due to the quantization error. Specifically,

IIYDQIK llT1hilrk + m2(1-R) ITKH1i. If we choose m> H1T 0, which
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Figure 3-3: Closed Loop Model with Dynamic Quantizer

is possible given the norm bounds on r, T, and TK, then the quantizer is valid. i.e.,

I zI, < m. Therefore, the minimum possible bias, /3mj, for any H is obtained by

solving the following minimization problem.

21-R||T KH H|l||H -- T||11T
Min H -1-21- R||TK||1

s.t. H is a linear, stable, dynamic, invertible, causal, and 1H-1|H1 = 1.

We disregard terms independent of H, and compute a lower bound for |ITKH1| H-1 T1 I1.

It is easy to show that |H-1 T11  9 , and |ITKHI1 > 2 = |ITKII1 . This

implies that ITKHIIiIH-1TIl1 MLI. The minimum bias term with dynamic quan-

tization is the minimum bias term without quantization divided by IIH11. Since

||H--1|1 = 1, we get that 11H11 1  1, which indicates that dynamic quantizers may

give rise to smaller biases. This will be further explored in future work.

3.5 Summary

In summary, for the simple feedback network, we studied a new class of encoders that

have memory but do not have access to the control input to the plant. If the encoder

is not local to the plant and if it does not know what controller will receive the sig-

nal it sends through the channel, then it can be modeled as belonging to this class.

We constructed a parameterization of time-varying quantizers that belong to this

52



encoder class, and that leads to a convex characterization of bit-allocation strategies

that maintain finite-gain stability. For finite memory quantizers, the convex charac-

terization of stabilizing quantizers allows for efficient and non-trivial bit-allocation

strategies to be synthesized for a given plant and controller. Finally, we showed how

our simple use of input-output theory leads to computable formulations of controller

synthesis problems under finite-rate feedback.
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Chapter 4

Finite-Rate Feedforward Control:

Performance Limitations

In this chapter, we consider a simple feed-forward network and two finite horizon

performance objectives. The first objective is to minimize a weighted tracking error

between the remote system output and the reference command over a finite number

of time steps. The second objective is to navigate the state of the remote system from

a nonzero initial condition to as close to the origin as possible in minimum number

of time steps. We derive performance limitations for both objectives by computing

lower bounds on each metric. We also construct coding schemes to compute upper

bounds. Finally, we compare our set up and results for the navigation problem to

similar previous work.

4.1 Finite-Horizon Tracking

In this section, we are interested in tracking a class of reference commands over a

finite-horizon and under finite-rate constraints. We consider the cascade of SISO

discrete-time systems shown in Figure 4-1.

Specifically,

Sw E IRT s.t. 1|w1|2 < 1,
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wr R Uy
L - E c D so H

Figure 4-1: Finite Horizon Tracking Set Up

" L: lRT ] RT is an invertible linear operator,

" E : RT -+ {0, 1}RT is an arbitrary operator (encoder) that maps a real vector

to a sequence of 2' binary symbols,

" R is the channel rate for the finite-rate noiseless channel that maps {0, 1 }RT 4

{o, 1}RT,

" D : {0, 1}RT -+ RT is an arbitrary operator (decoder) that maps a sequence of

2 RT binary symbols to a real vector, and

" H : RT -+ RT is an invertible linear operator.

Note that L defines a class of signals, Cr, that is generated from a unit ball in RT

Since L is linear, it maps the unit ball to a bounded ellipsoid (see Theorem 4.1.1 for

details). We set out to minimize a tracking error over all signals in this class (worst-

case analysis). Since the input and output signals have finite length, the following

performance metric is computed over a finite-horizon:

|IW(y _ r)112,

where W E RT X IRT is a given weight matrix. Since L and H are both invertible

operators, in the ideal case of perfect communication (R = oo), it is possible to

construct an encoder and decoder such that I IW(y - r) 1 = 0 Vr E Cr. However,

with a finite-rate constraint, the control, u, can only take 2'T values over a horizon

of T time steps. Therefore, it is not clear what level of performance is achievable.

To understand the limitations of finite-rate feedforward control, we are interested

computing YLB and -YUB, such that
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-YLB SUPrECr |W(y - r)II < 7UB.

Knowledge of YLB tells us that regardless of the encoder and decoder that we

select, we can do no better than this lower bound. Therefore, we expect it to be

a function of R, T, L, and W (independent of E and D). The upper bound tells

us that there exists a coding scheme (and encoder an decoder) such that the worst

case performance is always less than or equal to _YUB. Therefore, to compute YUB, we

need to construct an encoder and decoder and compute the corresponding worst-case

performance. We compute YLB and YUB in the following two sections.

4.1.1 A Lower Bound

In this section we derive the lower bound on worst-case performance.

Theorem 4.1.1. Assume that det(W) / 0, det(L) f 0, 1 and H is a one-to-one

mapping. Then,

'YLB = -2 R{Idet(L)I Idet(W)I}#.

Proof.

The set of all possible commands, C, A {r = RT - Lw w'w < 1} = {r E

I (L- 1 r)'(L-1 r) < 1}. C, is a bounded ellipsoid in BiT centered at the origin with

volume 77 det{((L- 1 )'(L- 1))-0-5} = rdet(L)I, where i7 is the volume of a unit ball in

Over a horizon T, the channel sends a total of RT bits which limits the control

signal to take on no more than 2 T values; and, since H is a one-to-one mapping,

the channel limits the output to take on no more than 2 'T values.

Consider a selection of outputs Y1, Y2, .--,Y 2 RT, which correspond to inputs u 1 , u 2 , ... , u 2 RT,

respectively. We must then map each r E Cr to exactly one y, i = 1, 2, ... , 2 T Such

a mapping induces a partition on Cr. In particular, define P = {r E Cr1 r -* yi}

for i = 1, 2, ... , 2K1. Now, suppose that the selection y1, y2, ... , y 2RT were chosen such

1 The lower bound can still be computed if one or both of these assumptions are not true. The

proof is identical to the one given here, but is performed in a smaller dimensional space.
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that I|W(yj - r)II < y for all r E P, and for all i. Then necessarily Pi C SJ =

{r E RT I (r - yi)'W'W(r - y ) y}. Note that S is a bounded ellipsoid in RT

centered at point yi with volume 7(Vr/)Tdet{(W'W)-- 5} = '9 See Figure 4-2Idet(W)

for an illustration.

Cr L

(Omax(L)

KjSY
Sy

Figure 4-2: Bounded Ellipsoids C, and S;

Since Pi g S for each i = 1, 2, ..., 2 R, it is necessary that 2" bounded ellipsoids

(SJ) cover the set Cr. This implies that 2RT x volume(SJ) > volume(C,). Equivalently,

2 RT > volume(Cr) Idet(L)I Idet(W)|
-R volume(S'Y ) - ( _, )'r T

After rearranging terms, we get that -y 2- 2R{Idet(L)| Idet(W)I}.

Since we often consider classes of inputs generated from LTI systems, i.e., L is

LTI, we compute the lower bound for this case in the following corollary.

Corollary 4.1.1. Assume that det(W) j 0, det(L) =L 0, and H is a one-to-one map-

ping. If L is a causal SISO LTI system with state-space description L = ss (A,, BI, C1, DI),

then

||W(y - r)112 2 -2R(Di)2{Idet(W)|}I .

Proof. If L is a SISO causal LTI with state-space description L = ss(Ai, B 1, C1, D1),

then for T time steps, it can be represented as a T x T lower triangular Toeplitz matrix
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operator, with all T eigenvalues equal to Di. This implies that the {det(L)} = (Di) 2

We now make some comments about YLB-

" -YLB depends on L (class of reference commands), W (performance weights), T

(performance horizon), and R (channel rate).

" If det(W) and/or if det(L) = 0, then the counting argument shown in Theo-

rem 4.1.1 has to be done in R', where s = min{rank(L), rank(W)}. Consider

a case where W = diag(Ao, A, ... , _AT1), and det(W) = 0 because Ako = 0, for

some 0 < ko T - 1. Then, 0 bits can be allocated to rko and performance will

not be impacted. Therefore, the problem reduces to allocated bits to rk for all

k $ ko. On the other hand, if det(L) = 0 then one or more of the rk's are linear

combinations of each other, and bits only need to be allocated to one of these

rk's, and the decoder can reconstruct the others knowing L.

" If L is LTI and if W = I, then YLB, is independent of T.

" It is helpful (as we will see when we compute upper bounds) to rewrite the lower

bound in terms of the singular and eigenvalues of the matrix WL as follows:

YLB - -2R T 1 } = 2-2R{II-1

4.1.2 Causality

In this section, we discuss how the structure of each operator in the tracking system

is impacted by assuming causality.

" L: Since L is linear, it can be represented as a matrix operator of size T x T. If

we further assume that it is also causal, then its matrix representation will be

lower triangular. This implies that rk only depends on wj for j < k.

" E: At time step k, E has received ro, ri, ..., rk, and transmits R bits which

represent information only about ro, ri, ..., rk. Note that at time step k a total

of kR bits have been sent to the decoder.

58



" Finite-Rate Channel: The channel always send R bits per time step regard-

less of whether the surrounding operators are causal or noncausal.

" D: At time step k, the decoder processes the kR bits it has received since time

0 to produce control value Uk.

" H: Since H is linear, it can be represented as a matrix operator of size T x T.

If we further assume that it is also causal, then its matrix representation will

be lower triangular. This implies that Yk only depends on uj for j < k.

We highlight causality, because in practice we deal with causal systems. In the

previous section, we derived a lower bound that did not assume causality of any

component in the cascaded system. Therefore, the lower bound may be far from

what is achievable in practice. Nevertheless, it shows us that one cannot design an

encoder and decoder that will do better than YLB. The lower bound also allows us to

compare to noncausal and causal upper bounds, which we compute in the following

two sections.

4.1.3 Noncausal Upper Bound

In this section, we derive an upper bound on worst-case performance assuming that

the operators may be noncausal. The upper bound is derived using a coding scheme

that transmits information about the vector r in terms of a basis derived from the

singular value decomposition (SVD) of the matrix WL. Consider Figure 4-3 below.

The encoder first uses the SVD of WL = UEV* to write Wr = jo= !aauj, where

-i is the ith singular value of WL, ai = v~w where v* is the ith row vector of V*,

and ui is the ith column vector of U. The ai's are then each converted into their

binary representations and truncated according to the bit-allocation strategy denoted

in R = (Ro, R1, ... , RT_1). In particular, a total of Rk bits are allocated to ak, for

k = 0, 1, ..., T, and the only restriction is that EkO R = TR.

The decoder uses the bit-allocation strategy R to reconstruct a and then uses the

SVD of WL to compute f from &. Finally, the decoder applies H 1 to f to generate

u. We call this E - D construction the "SVD Coding Scheme."
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Encoder -- Decoder

WL R R WL

S SVD D2B T r Re. B2D SVD H

-------------- ---------------------------

Figure 4-3: SVD Coding Scheme

Note that with the above SVD coding scheme, |IW(y - r)Ii' = IIW(r - r)I'

IWL() -- w)112 = T - z ( - )(- a)O-aGra(u'Uj) ZT- 1 Iai 2 2- 2Ri <

T-1 2 -2Rj 0 .2

To derive the upper bound using the above SVD coding scheme, we construct

R = (Ro, R 1 , ... , RT_1) to solve the following optimization problem:

m T-jj1J 2-2RjOamin 2~2R=

s.t. E=o Ri =TR.

We allow the rates to take on non-integer values to solve for an optimal bit-allocation

strategy. The resulting non-integer valued rates can be interpreted as average rates

over time. The above problem is computable and it is easy to verify (using Lagrange

multipliers) that the optimal solution is R* = (R - I ET- 1 log2(Or))+log2(a)-). There-

fore, the larger the singular value a-, the larger Ri, i.e., the more bits are allocated

to aj. The resulting upper bound is >=1e 2 2R Z=1 22(T Ti-' 1o92 (7-)+R) --

T2-2R HIj1 (.i)_. Recall that Idet(WL)I = -(O-) Idet(L)! Idet(W)|. This give

US TUB = T -2R{Idet(L)I |det(W)}|} = TYLB.

Therefore, if the operators are, in general, noncausal we get that

YLB supreC, I|W(y - r)2-< TYLB-

It is interesting that two different approaches for computing the lower and upper

bounds led to worst-case performance that are related to each other by a factor of

T! In section 4.1.5, we see how the lower and the noncausal upper bound compare to
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each other for different performance weights and L matrices, i.e., different classes of

commands.

Finally, it is also interesting to note that the minimization problem above that

gives rise to the noncausal upper bound is very similar to that of finding the optimal

prefix code with minimum expected length in information theory [16]. In information

theory, each codeword ci of a codebook has integer length 1i and is generated with

probability pi. Thus, the expected length is E> ip=. For a code to be a "prefix" code

(no codeword is a prefix of any other codeword and is therefore uniquely decodable),

Kraft's inequality must be satisfied, which states that Ei 2z < 1. A simple analysis

by calculus gives a the optimal non-integer code lengths l* = -1092(pi). Here the more

probable a codeword, the shorter the length should be. The analogy is that the inverse

of the singular values, a;-1, play the role of the probabilities of codewords, pi.

4.1.4 Causal Upper Bound

In this section, we derive a coarse upper bound assuming that the encoder and decoder

are both causal and implement a coding scheme illustrated in Figure 4-4. Causality

forces the encoder to receive rk at time step k for all k = 0, 1, ..., T - 1. The encoder

first divides rk by cmax(L(k,:)), where amax(L(k, :)) is the maximum singular value of

the kth row vector of L. This ensures that Izk I < 1. Then, the encoder allocates R bits

to the binary representation of zk and transmits it across the channel. The decoder

construct 4k and multiplies it by crax(L(k,:)) to produce ik at time k. Finally, the

decoder applies H- 1 to f to generate control u. For simplicity, we consider W =

diag(Ao, A,, ... , AT-1) where without loss of generality IAij I 1, Vi. We then get that

IIW(y - r)11' = IIW( - r)II1 < 2-2R ZT 1 AUmax(L(i, :))2.

4.1.5 Comparison of Lower and Upper Bounds

We now compare the noncausal and causal upper bounds to each other and to the

lower bound from section 4.1.1 for different LTI causal systems L = ss(Al, B1 , C, D1 ),

and for different time horizons T. We consider diagonal weight matrices W = diag(A, A, ... , AT-1)
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Encoder ---------------- Decoder - - -

----- - - - - - - - - - - - - - ---

L(k,:) R R L(k,:)

r~ a- D2B Trn Re. B2D mxH

Figure 4-4: Causal Coding Scheme

with IA I < 1, Vi, and fix the rate R = 10. Under such conditions, we note that

'YLB = 2-2R(D)2{[§ 0
1 -AjI}2.

Figures 4-5 and 4-6 illustrate the bounds for the 2-norm or energy of the weighted

tracking error (IIW(y - r)112) and the bounds for the power (1 jW(y - r)I2) of the

weighted tracking error for the following scenarios.

1. L = ss(0.9, 0.9, 1, 1), and Ai for i = 0, 1, ..., T - 1, are experimental outcomes of

i.i.d. random variables generated by taking experimental outcome from normal

Gaussian distributions and then dividing each by its norm.

2. L = ss(0.5, 0.5, 1, 1), and Ai for i = 0,1, ..., T - 1, are experimental outcomes of

i.i.d. random variables generated by taking experimental outcome from normal

Gaussian distributions and then dividing each by its norm.

3. L = ss(0.9, 0.9, 1, 1), and Ai = (0.5)' for i = 0, 1, ... , T - 1.

4. L is noncausal and generated by taking the LTI system ss(0.9, 0.9, 1, 1), and

adding it to its transpose, Ai for i = 0, 1, ... , T - 1, are experimental outcomes of

i.i.d. random variables generated by taking experimental outcome from normal

Gaussian distributions and then dividing each by its norm.

We make a few observations from Figures 4-5 and 4-6.

* When the eigenvalues of W are chosen randomly from an i.i.d. process, then

we see that the lower bound plateaus for large T. To see why this makes sense,
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Figure 4-5: Top Left: Bounds for L = ss(0.9, 0.9, 1, 1) and random weights, Top

Right: Bounds for L = ss(0.5, 0.5, 1, 1) and random weights, Bottom Left: Bounds

for L = ss(0.9, 0.9, 1, 1) and decaying weights, Bottom Right: Bounds for L noncausal

generated from ss(0.9, 0.9, 1, 1) and random weights

we compute the expected value and variance of 'YLB with L = ss(0.9, 0.9, 1, 1)

and observe their behaviour for large T.

E{YLB} 2~g-2RE{Hj~jT 1Ai 2 }.

Since the Ai's are all independent, we get that the expectation of the product

is the product of the expectations. In addition, since the Ai's are identically

distributed their expectations are all equal, and we get the following.

E{LB} = 
2RH l E{IAI#} = 2-2RET{1A1\.
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Now, as T -+ oo, we get that E{YLB} -2R since Ai < 1. Next, we compute

the variance of -YLB by first computing E{'B}.

E{YB} - 24RE{ i_- IAiI'} = 24ET{ AI-'}.

We see that as T -+ oo, we get that E{yLB} - 4R, which implies that

var(-yLB) = E{Y}2B - E2{ LB} -+ 0. Therefore, for large T, we expect that the

lower bound approaches 2-2R

9 When the eigenvalues of W are exponentially decaying, i.e., Ai = (0. 5 )' for

i = 0, 1, ..., T - 1, then the lower bound and therefore noncausal upper bound
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approach 0 as T -+ oo. This can be verified by showing that the ratio between

the lower bound at time T + 1 and at time T is less than 1, which shows that

the lower bound is strictly decreasing as a function of T.

2

YLB(T+1) _{T 0o/3}T+1

'YLB(T) {11- I eiyr

" The noncausal and causal upper bounds are closer to each other when the pole

of the LTI system of L or that which generates a noncausal L is close to the

origin than if the pole is close to the unit disk.

" When L is noncausal and the pole of the LTI system that generates L ap-

proaches the unit disk, the noncausal upper bound approaches the lower bound

as T increases. In fact, if WL has one dominant singular value, o, then the

performance of this upper bound approaches _YLB. In this case, we essentially

only have one none zero value ao to send through the channel as the rest of the

ai's correspond to singular values that are close to 0. This implies that both

bounds decay like 2 -RT and approach 0 as T gets large.

4.2 Finite-Horizon Navigation

In this section we assume that the remote system has some unknown initial condition

xo which lies in a known set in R". We want to steer the state of the remote system

as close to the origin as possible under the constraint that the control input can take

on at most 2RT values after T time steps. For analysis, we consider the discrete-time

system shown in Figure 4-7.

W x 0 R U x
L - E 0! - D H Ho

Figure 4-7: Finite Horizon Navigation Set Up

This is essentially the same set up as that introduced in section 4.1 with
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0 w E R' s.t. ||wI12 < 1,

" L: R' -+ R' is a linear operator,

" xo E R' is the initial state vector of system H,

" E: 1R -+ {0, 1}RT is an arbitrary operator (encoder) that maps a real vector

to a sequence of 2 RT binary symbols,

" R is the channel rate for the finite-rate noiseless channel that maps {0, 1}RT 4

{o, 1}RT,

" D : {0, 1}RT _+ RT is an arbitrary operator (decoder) that maps a sequence of

2 RT binary symbols to a real vector, and

" H is a causal SISO LTI system with state-space representation H = ss(A, B, I, 0).

Our goal is to minimize the time it takes for the state vector to reach an ellip-

soid bounded by -y. Therefore, we fix y and then look for the smallest T to meet

performance, which is measured as

We get the following equivalent representation of performance.

IIMu + AT--o1II < ,

where AT-1 is the (T-1)h power of the matrix A, and M [ AT~2B AT-3B ... AB B

is the reachability matrix of system H. Assume that the system is reachable, there-

fore, for T > n, M has full rank is a one-to-many mapping in general. We now

compute Tmin such that IIMu + AT-1XoII1 < y, for any given y > 0.

4.2.1 A Lower Bound

In this section we derive a lower bound for T as a function of -Y. We note that the metric

|iMu+AT-1xo 11 -y is identical to our previous tracking metric of IIHu - Lw12 < -y,
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where H -+ M and L -* -AT- L. However, it is important to note that w and L

are independent of T! After making these substitutions and applying Theorem 4.1.1,

we get that

T > 2(log2 (Idet(L)|)-1og 2 (Idet(A)|)
9og2 ()+2R-21og(|det(A)|)

Note that the lower bound depends on R, L, y, and the system dynamics A.

4.2.2 Previous Work on Finite Horizon Navigation

In this section, we describe a similar navigation problem solved by Fagnani and

Zampieri [14, 15] and then extended by Delvenne [11]. Another navigation set up

that explores the tradeoffs between performance and control complexity for finite

automata systems is given in [4].

In [15], Fagnani etal. consider the closed-loop system shown in Figure 4-8.

X 0
xox

U X

G

K

Figure 4-8: Closed-Loop System

The model of the closed-loop system (using the same notation as in [15]) is

G xt+1 = Axt + But

K: st+1 f(st, Xt)

ut =k(st, xt),

where xt E R', ut E IR, A E 1Rn n, and B E Rnxl, s E S where S is a finite set of

size M, f : S x R" -+ S, and k: S x --_R.
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Furthermore, the controller is quantized in that there exists a finite family /C, -

{K',, K2,..., KN} of disjoint subsets of R" that cover Rn, and such that the map k(s,.)

is constant on each K,. Note that since S is finite, then the map f(s,.) will also be

quantized. That is, for each s E S, there exists a finite family IF = {F 5 , F2, ..., FM}

of disjoint subsets of Rn that cover R", and such that the map f(s, .) is constant on

each F. Finally the initial state Xo E W, where W is some known bounded set in

R".

Fagnani etal. show that the above system is equivalent to that shown in Figure 4-

9, where the encoder, E, and the decoder, D, are separated by a finite-rate noiseless

channel that transmits R bits per time step, where 2R = N.

X0

U y
17 G

D E

R

Figure 4-9: Equivalent Closed-Loop System

The encoder and decoder are described below.

" E: R" -+ Z+ x Z+ is the following dynamic operator:

E: st+1 = f(st,xt)

(it, jt) = q (st, xt)

We note that s is a L x 1 vector, and defines the "complexity" of the encoder.

The map q is defined as q : S x R' -+ Z+ x Z+ such that q(s, x) = (i, j) if and

only if x E F x Kj.

" D : Z+ x Z-+ IR is the following dynamic operator:

St+1 = f(st, itjt)

Iut = k (st, it, jt),
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such that f =foq, andk =koq.

With the above set up, Fagnani etal. ask the following question:

Given a subset V of W, and given that x 0 is a random vector that is uniformly dis-

tributed over W, find the minimum expected time, E{T(w,v)} that "traps" the state xt

in V for all t > T.

Fagnani etal. show that for a fixed value of M (the size of the set S), and any given

3 > 0,

E{T(wv)} <,3 > LN <}(}3)
In(C) - ln(C) -

where C = 1 (p is the Lebesgue measure in IRn.) is a contraction rate that describes

how small the target set is with respect to the starting set. Also 6(O) = H1ow0, for

some w > 1 and constant H 1, which depends on the plant dynamics. See [15] for

details. This result shows a clear tradeoff between the complexity of the controller

(L) and performance E{T(wv)}.

We now highlight the differences between our tracking problem discussed in sec-

tion 4.1 and the problem described in this section [15].

" In [15], the objective is to not only reach V in minimum number of time steps,

but the state must stay in V thereafter. Whereas, in our tracking problem, we

want the state to reach a set (say V) in the minimum number of time steps,

and do not specify what happens after time t > T.

" Another important distinction, is that the control u in [15] is a function of the

system state x (feedback is used). Whereas, in our set up, the control input u

only depends on xO and the set in which it lies.

" To compute our lower bound, we do not make any assumptions of the encoder

and decoder, and the bound depends on the channel rate, the initial condition

set, the final set, and the plant dynamics. In [15] the encoder and decoder

are assumed to have equimemory, i.e., both E and D can compute the state
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st for all t, and their bound depends on the plant dynamics, channel rate, the

initial condition set, the final set, and the complexity of the coding scheme (the

number of states in encoder and decoder).

e Finally, our set up is deterministic and finds performance limitations in the

worst case setting (over all xO in some bounded ellipsoid), whereas the formu-

lation in [15] assumes that xO is a random vector in a bounded set and finds

performance limitations in the average setting.
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Chapter 5

Finite Capacity Feedforward

Control: Performance Synthesis

In this chapter, we consider a simple network, in which the plant and controller

are local to each other, but are together driven by a remote reference signal that is

transmitted through a noisy discrete channel with finite capacity. We first construct

an infinite-horizon performance metric that illustrates the tradeoffs between sending

the remote control system an accurate reference command, and designing a controller

such that the remote system matches a given ideal transfer function. The longer

one spends coding the input signal before it enters the channel, the more accurate

the signal is that drives the remote control system. However, delays in receiving

commands at the remote site negatively affect performance. We then simultaneously

synthesize the controller and encoder lengths that meet specified model matching

objectives in the case where the encoder generates block codes [16], and the plant

and ideal model are both first-order SISO systems. In general, synthesis of each

cannot be done separately due to the tight interplay between the communication link

and control system. Finally, we illustrate performance sensitivity to the poles of the

plant and model, and to the channel noise.
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5.1 Problem Formulation

We consider the simple feed-forward network, shown in Figure 5-1, in which a plant

and controller are both remote and separated from the reference command by a

discrete communication channel.

M N P(XN,p (WIx), WN
-- - --- - -.------ ----- - - -- - - -

r r x w r ^
R SE CE C -CD -- SD -+ K --- G

Figure 5-1: Problem Set Up

Specifically,

" r E Cr = {ri, r 2 , .--, rL} is a given finite set of reference signals that may be

transmitted,

" R :C -+ Ir, where Ir = {1, 2, ..., L} is an index set, where index j represents

rj, for j= 1, 2, ... , L,

* SE : {1, 2, ..., L} -+ {O, 1}10 9 2 (M) is a source encoder that compresses informa-

tion about the input signals (M < L),

* CE: {0, 11o 9 2 (M) - {O, 1, ... , k}N is a block channel encoder [16],

" C: is a discrete memoryless channel with input domain XN E {0, 1, ... , k}N,

range WN E {0, 1, ***, }N, and corresponding conditional probability distribu-

tion PN(wix),

" CD: is a channel decoder that maps WN g

{0, 1 }l 0 2 (M) to minimize the probability of decoding error, P(O # 6),
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" SD : {0, 1}o 9 2 (M) -+ C, maps the estimate 6 to one of the L reference signals

" K is a causal, discrete-time, SISO controller, and

* G is an unstable causal, discrete-time, SISO plant.

Note that G and C, are fixed, while SE, CE, and K are left for design. Both decoders

are functions of the encoding schemes and are fixed once SE and CE are determined.

Before constructing a performance metric, we define two parameters that depend

on the source encoding scheme and the set C,.

1. Imax(Cr) = maxijE{1,2,...,L} IIr - rill, (diameter of C,)

2. /min(Cr, SE) = maxiE{1,2,...,} maX(kj)E3(i) IIrk - rj I,

where {B(1), B(2), ..., B(M)} is a covering of Cr, defined by SE, that satisfies the

following properties:

*UIBA(i) = Cr,

" B(i) n B(j) - # for all i # j, i, j E {1, 2,..., M}.

See Figure 5-2 for an illustration of a covering of C,, defined by a source encoder,

and the corresponding /max and fmim.

If the channel is ideal with no noise, then source coding is not necessary, which

is equivalent to M = L and SE = I. In this case, 3mim = 0. If, on the other hand,

the source encoder compresses all L signals into 1 "ball" or cover, i.e., M=1, then

#3 min = /max. In general, fmin(Cr, SE) is a function that monotonically decreases

as M increases, and its shape depends entirely on the source encoder compression

algorithm and the set of signals, rk, for k = 1, 2, ..., L. See Figure 5-3 for an example.

Going forward, we suppress fmin's dependence on Cr, and SE and /#max's depen-

dence on C, for an easier read.

'We assume that the source decoder carries in its memory a bank of all possible reference signals
in Cr, and that it activates one of them when it receives 6.
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Cr

B(2)mi

Figure 5-2: Source Encoder Compression and 3s

Imin (M)

Max Compression by SE

i max-

No coding (SE=I)

1 2 L

Figure 5-3: !3min vs. M

5.1.1 An Equivalent Set Up

In this section, we present a simpler equivalent representation of the detailed set up

described above (see Figure 5-4).

In Figure 5-4, we see that the reconstructed command, f, is just a noisy delayed

version of r. However, the noise and the delay are not independent of each other.

The noise depends on the channel noise, the source resolution M, and the channel

block encoding length N, and the delay depends on M and N. Note also that H =

(I + GK)-1 GK.

In this simple set up, we characterize the noise as follows. For a given channel,

V < 9, where T is a random variable that takes on the value Imax with probability
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A A

r a r H

Figure 5-4: Simpler Equivalent Set Up

P(O # 0) and 0,mi, with probability P(O = 0). The delay a = log2 (M)+N. We proceed

with constructing our performance objective using this simpler representation.

5.1.2 Model Matching Performance Metric

In classical synthesis problems, we may be interested in designing K such that H =

(I + GK)-1 GK is "close" to some given ideal model transfer function T. That is, we

solve the following problem:

minK |1H - TI|p-ind

s.t. H is stable.

Here, we consider the following modified problem that takes into account the

communication link in our set up.

minK maXrEc, E{IIHr^ - TrIp} (*)

s.t. H is stable.

If we let a = log2(M) + N and Ha = z~0 H (a delayed version of H), we then get

that

d(Q, yideal ) I ||H T r||p

= |H(r + v) - TrI||p

= I (Ha - T)r + Hav|p,
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where v is the noise signal. We now take the expectation of the distance function d

with respect to the noise upper bound -, and get

E-(d) = P(O = ()|(Ha - T)r + Hav 7J/ 3mj|| +

P(9 # ()Ho(Ha - T)r + Hv-=,3 !I|

< P(9= ){||(Ha - T)r||+ \|Ha||3min} +

P(9 , 9){||I(Ha - T)r| + I|HaI||3max}

||Ha|l{3min + (Imax - 3min)P(G $ O)} +

I(Ha - T)JII,

(1)

where f maxj=1,...,LIIrnIlP.

From Information Theory [16], we recall that an upper bound on the probability

of decoding error, P(O # 9), given any discrete memoryless channel is

P(O # ) _ (M - 1)P{ k 1[Em=Zp(ljm)-+P}N

where 0 < p < 1. Going forward, we pick p that minimizes this upper bound for our

example. It is important to note that the upper bound decays quickly as N increases

when the channel has less noise. For example, we compute the bound for the binary

symmetric channel (BSC) [16 in Figure 5-5 for different noise levels, where p is the

probability of an error.

Finally, we plug in the upper bound, Zf, into inequality (1) and get

Ev(d) < I| I Ha - T) I| -f +|| Hcj||r7,
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Figure 5-5: Upper Bound on Probability of Decoding Error: BSC

where 7 A {/min + (/max - fmin)i}-

5.1.3 Tradeoffs Between Communication and Control Objec-

tives

We now make some high-level observations on components of the upper-bound of

Ei-(d) computed above as the code lengths vary.

I II(Ha - T) I - T: increases if N or M increases.

SI|Ha117: generally increases if M increases, and decreases if N increases.

Overall, if M is fixed and N increases, the estimate of the reference signal improves

(U decreases 2), but the delay of the control system receiving i increases, which

negatively impacts performance. If M increases and N is fixed, the source encoder

more accurately represents the input signals (less compression), but the probability of

decoding error increases as there are more possible messages that can be sent through

We note that 17 decreases as N increases only if the channel encoder rate, g ,M) is less than

the Shannon Capacity of the Channel, C [16]. The channel encoder rate is defined as the number

of input symbols entering CE divided by the number of output symbols leaving CE.
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the channel. In addition, delay of the control system receiving r again increases, which

negatively impacts performance. We set out to quantify these tradeoffs.

5.1.4 Problem Statement

In this section, we state questions that we are interested in answering for the above set

up. We assume that the reference signals in C, lie in 12, and the output signals lie in 1".

Thus, the induced norm between the input, r C Cr, and output, y, is upper-bounded

by the 7-2 norm of the network.

We observe that

E-ud) ! I| I Ha - T)||I I- +\|lHa|I|I2 - 7

I v3 |{H T)||I 1-f2 +11 Ha|| I n2

=V2| (H., - T )i H11,77 R2

To get the 2nd inequality above, we let 1g, I I(Ha - T)I|W2 -T, 1921 1 IHOIIcI 2  ,

and then use the fact that 1911 + 1921 ; V/ 1F2 + 1922.

Now, instead of solving (*), which, in general, is not easily computable for broad

classes of encoders and channels, we seek to minimize the above upper bound by

solving the following problem.

minK(M,N) V 2[ (H. - T)T Ha ] II2 (**)

s.t. H is stable.

Note that if the channel is ideal (T = 0), then no coding is necessary, which makes

f#min = 0, and therefore q = 0. The above cost function then reduces to the traditional

model matching cost function.
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Questions of Interest

Given a causal, unstable, DT, SISO plant, G, a causal, stable, DT, SISO ideal model,

T, a discrete memoryless channel, C, and a decreasing function .min(M),

1. Solve (**) to synthesize a SISO LTI controller, K', as a function of (M, N).

2. Plug K 0 (M, N) back into the performance metric and find the code lengths, M

and N, that minimize the cost function.

3. Describe the sensitivity of the optimal cost to the poles of the plant and ideal

model, and to the channel noise.

5.2 First-Order Example

In this section, we consider the special case where:

" G(z) =-a jal > 1,

" T(z) =- x AJ < 1,

* C is a binary symmetric channel (BSC), with bit-flip probability p,

i-p

i-p

* /max 1,

1 M =1
* /min(M) =

10g2(M)
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5.2.1 Synthesis of Controller

To synthesize the controller as a function of the code lengths, we first parameterize

the set of all stabilizing controllers of the remote system H = (I + GK)-GK [12].

To do so, we first construct one observer-based controller by finding scalars f and 1

such that a + af and a +1 are both stable (have magnitude inside the unit disk). We

choose f = -1 and 1 = -a. Then, using the method and notation described in [12],

we get the following coprime factorization over all stable proper rational functions of

the plant, G:

N(z) = 1 M(z) = 'a f(z) = I Z((z) =i

where

G(z) = N & N(z)X(z) + M(z)P(z) = 1.

Then, the set of all stabilizing controllers are of the form ,(z)+M(z)Q(z) for Q(z) being
Y(z)-N(z)Q(z)

any proper rational stable function. This gives us the following closed-loop transfer

function,

H(z) = N(z)X(z) + N(z)M(z)Q(z)

= P(z) - U(z)Q(z),

where

P ) -N(z)Z(z), U -) -N(z)M(z).

The optimization problem (**), using the parameterization of all stabilizing con-

trollers, is then equivalent to solving

minQ(M,N) V"2 P - S1III 2,

s.t. {S c (UQ)VlQ is a stable proper rational function},
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where

= [T(z~P - T) z-"P],

U = z-0U,

v=[ IT ].
Note that we supress the z-dependence on z-transforms for a more compact notation

(eg. U = U(z)).

Before solving for the optimal SO, we recall that any stable proper rational function

can be written as the product of an all-pass filter and a minimum-phase filter (see [12]

for details). We can then factor U as follows:

U Uapm= - z

Finally, we define So = UQ 0V, and for all stable rational proper functions Q, the

following statements hold (in 2 norm).

JIG - S11 = JG - QVI

= 110 - apiimpQVif

= luap(Up 1G - -mpQV)II

1 l TipUmpQVI I

II [ 7']Yu + [UapG] - 16 pQVI I
U [TPG + 11 [TiaG] W2- MPQVI I

From the last equality it is easy to see that UmpQ"V = [UP _G] 2 . The optimal pa-

rameter function is then

Q 0 - _______ L1
-V v [LUap~Jt
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Recall that [f]- 2 is the projection of a function f onto the 'W2 subspace, and g*

denotes the complex-conjugate transpose of a complex-valued vector function g.

Note that U and V are functions of M and N, therefore, Q' is also a function of

M and N. Finally, the optimal controller, K' = 1 iQis a function of M and N.

For our first-order example,

HO(M, N) = _' + 2,

where

C1 = (a - a7 ~s + 0

C = -y(A-)
2 k(aX-1)'

k = T 2 + 772

,Y = Aa[(a 2-1)
2 + ay;2]

5.2.2 Synthesis of Code Lengths

Now that we have the optimal closed-loop transfer function as a function of code

lengths, we look for the optimal (M', N') pair that minimizes the cost function

V/2I|I - Sl IH2, and the corresponding optimal closed-loop transfer function H0 . We

set a = 1.2, A = 0.95,p = 0.01, and T = 0.2 and find that the minimum cost is 0.6194

and occurs when M" = 32, and N' = 13. The corresponding optimal control system

is

Ho = 0.0687z + 0.1693z
1.2z-1 z-0.95

5.2.3 Performance Sensitivity

In this section, we investigate the sensitivity of the optimal cost to the poles of the

plant and model, and to the channel noise.
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Figure 5-6 illustrates how the channel code length, N, impacts the optimal cost

for different unstable plant poles, when A = 0.95 and the bit-flip probabilities of the

BSC are 0.01, 0.2, and 0.4. Figure 5-7 illustrates the optimal cost for different levels

of channel noise when A = 0.12. For these experiments, T = 0.2, and M = 1, while

N and a varied.

OpiMal Cost vs. Chanl Code Leng(t(lmda=O.9a=1

2 4 6 B 10 12 14

0.7 I I

0.65-

0.6. 40 
=.

5 10 15 20 25 30 20 40 45

.55

0

O.61

5 10 15 20 25 30 35 40 45
ChaCodenti(N

Figure 5-6: Optimal Cost vs. Channel Code Length (N): (A = 0.95)

From Figures 5-6 and 5-7, we make the following observations.

* Sensitivity to plant pole: The optimal code length increases as the magnitude

of the unstable pole increases.

* Sensitivity to channel noise: As the channel noise increases, more coding is

necessary to reach a minimum cost. However, for very noisy channels, the

optimal code length is too long to be of use when implemented as the delay is

too large. In such situations, recall that our upper bound on the cost, which was
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Figure 5-7: Optimal Cost vs. Channel Code Length (N): (A 0.02)

obtained using the upper bound on the probability of decoding error described

in section 5.1.2, is not useful.

9 Sensitivity to ideal model pole: The closer the model pole is to the unit disk,

the more coding improves performance. That is, we see the tradeoffs between

sending the remote system an accurate reference command and meeting perfor-

mance.

5.2.4 Ideal Solution

In this section, we look at performance sensitivity of the ideal model matching problem

(no channel or coding) by setting qr = a = 0. Figure 5-8 illustrates how the optimal

cost behaves as the plant pole becomes more unstable (as a ranges from 1.01 to 4.1)

for different ideal model poles (A = 0.95 and 0.02). As shown in Figure 5-8, we

see that when the ideal model pole is close to the unit disk, the ideal optimal cost
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(|IH - TII) is lowest when a 4.1. This is consistent with what we see in Figure 5-6

for very low channel noise (p 0.01), which shows that the optimal cost for a = 4.1

is lowest. However, when the ideal model pole is close to the origin, the ideal optimal

cost is lowest when a = 1.01, which is also consistent with what we see in Figure 5-7

for very low channel noise.

Ideal OplimaJ Cost s.PlanA Pole

06-
lwba=095

04-

0,3-
0 0 2-

01-
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P141t Pol4: a

Figure 5-8: Ideal Optimal Cost vs. Plant Pole

5.3 Summary

In this chapter, we simultaneously synthesized the controller and encoder block

lengths that meet specified model matching objectives for a first-order plant and

model case. We also illustrated performance sensitivity to the poles of the plant and

ideal model, and to the channel noise. In short, the tradeoffs between sending an

accurate reference command (by implementing some channel coding) and matching

an ideal model are most prominent when the channel is not too noisy, the plant pole

is more unstable, and when the dynamics of the ideal model are "slow" (ideal model

pole is close to the unit disk).
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Chapter 6

Future Work

In the future we would like to expand our results for both the simple feedback and

feedforward networks, as outlined below.

1. Simple Feedback Network

9 (Necessity Condition): In this thesis, we do not derive necessary conditions

for finite-gain stability. We discuss why proving necessity is a very difficult

problem in section 1.3, and plan to address it in the near future.

e (Integer Rates): We also do not impose integer constraints on the rates.

This adds more technical detail to our framework, which can adapt to

integer constraints. This is therefore left for future work.

2. Simple Feedforward Network:

" (Causal Lower Bound): Our lower bounds for the two finite-horizon set

ups are obtained for noncausal systems. Deriving a lower bound imposing

causality is a more difficult counting problem and we leave it for future

work.

" (Other Communication Channels): We only considered finite-rate noiseless

channels in the finite-horizon tracking problems. We would like to extend

the results for situations where the channels can be finite-rate noiseless
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but with the rate being a random variable. In addition, we would like

to explore how finite-capacity discrete memoryless channels impact finite-

horizon performance.
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