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Abstract

I describe a semi-supervised regression algorithm that learns to transform one time
series into another time series given examples of the transformation. I apply this al-
gorithm to tracking, where one transforms a time series of observations from sensors
to a time series describing the pose of a target. Instead of defining and implementing
such transformations for each tracking task separately, I suggest learning a memory-
less transformations of time series from a few example input-output mappings. The

algorithm searches for a smooth function that fits the training examples and, when

applied to the input time series, produces a time series that evolves according to
assumed dynamics. The learning procedure is fast and lends itself to a closed-form
solution. I relate this algorithm and its unsupervised extension to nonlinear system

identification and manifold learning techniques. I demonstrate it on the tasks of
tracking RFID tags from signal strength measurements, recovering the pose of rigid
objects, deformable bodies, and articulated bodies from video sequences, and tracking
a target in a completely uncalibrated network of sensors. For these tasks, this algo-
rithm requires significantly fewer examples compared to fully-supervised regression
algorithms or semi-supervised learning algorithms that do not take the dynamics of
the output time series into account.

Thesis Supervisor: Trevor J. Darrell
Title: Associate Professor
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Embedding of a path via the lifting F(x, y) = (x, jyl, sin(7ry)(y 2 +
1)-2 + 0.3y). (left-bottom) Recovered low-dimensional representation
using our algorithm. The original data in (top-left) is correctly re-
covered. (right-top) Even sampling of the rectangle [0, 5] x [-3, 3].
(right-middle) Lifting of this rectangle via F. (right-bottom) Projec-
tion of (right-middle) via the learned function g. The mapping from
3D to 2D is learned accurately. . . . . . . . . . . . . . . . . . . . . . 41
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labeled. (bottom-left) Projection with BNR, a semi-supervised regres-
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Chapter 1

Introduction

Many problems in machine perception, computer graphics, and controls can be framed

as mapping one time series to another time series. For example, in tracking, one trans-
forms observations from sensors to the pose of a target; by transforming a time series
representing the motions of an animator to vectorized graphics, one can generate

computer animation; and fundamentally, a controller maps a time series of measure-
ments from a plant to a time series of control signals. Typically, all of these time

series transformations are expressed programmatically, and by devising a different

algorithm for each application. If instead, we could teach a machine to perform these
transformations by supplying examples of the transformation, there could be signif-
icant savings in the time required to develop such tools, and it would become easier
to customize them at a later time. As a step in this direction, I derive an algorithm

that learns how to transform time series from examples. If focus on applying the ab-

straction of transforming time series to learning trackers from examples. I explore an
unsupervised version of this algorithm that can perform these transformations given

no examples at all, relying only on aggregate a priori knowledge about the structure

of the output time series.
The time series transformation algorithm takes as input a time series to transform,

and some examples of how to perform the requested transformation. It then returns a

function generalizes these input-output examples, and as a side-effect, also transforms

the input time series. The time series are multivariate functions of a discrete time
index, and the examples are expressed as pairs of input samples and their correspond-
ing output samples. The algorithm returns a memoryless and time-invariant mapping

from samples of the input time series to samples of an output time series. In learn-

ing this mapping, the algorithm takes advantage of both the input-output examples

and the input time series. The algorithm fits in the framework of semi-supervised

learning because it takes advantage of both labeled data (the input-output examples)

and unlabeled data (the input time series) to learn this memoryless mapping. I also

discuss a fully unsupervised version of the algorithm that replaces the input-output
examples with a description of the aggregate behavior of the output time series. This

unsupervised algorithm often recovers the low-dimensional process underlying the in-

put time series. It can be used a as a knowledge discovery tool. It can learn how to

track a moving object in a field of networked sensors when almost nothing is known

14



about the sensor a priori (I will only assume that the transduction from the position
of the target to measurement signals is smooth. The algorithm is supplied with no
other information about the measurement model, and will recover the observation
function automatically).

I apply the semi-supervised learning algorithm to learning visual trackers, since
a video sequence is a very high-dimensional time series of pixel values. I focus on
applications where a user is given a video sequence and asked to annotate all of
its frames with a low-dimensional representation of the scene. This desired low-
dimensional representation is specific to each tracking application, and can vary from
task to task. For example, it could refer to the image-plane position of a target, or
its 3D position, to the contour of a moving shape, or the articulated pose of a human
body. A tool allows user to annotate a few frames of a video sequence, and invokes the
semi-supervised algorithm to automatically annotate the other frames in the video
sequence. For example, from a video of a moving person and the annotations of a few
frames of the video with the position of the person's limbs, the algorithm can learn a
nonlinear function that maps images of the person to the pose of the person's limbs.
This function can be applied to the rest of the video sequence to recover poses for the
unlabeled frames. The specified example outputs can be any vector representation,
as long as the values of the representation change smoothly over time. The very same
algorithm can be used to learn to track deformable contours like the contour of lips

(represented with a spline curve), or to transform videos of an animator to the control
points of an animated character.

These trackers work well despite their simplistic representation of video as a time
series of pixel values. There need not be any explicit reasoning about occlusion, or
edges, or many other issues traditionally associated with visual tracking. The time
series representation, along with the supplied examples and the various smoothness
assumptions that are explicitly made in the algorithm seem to convey enough in-
formation to build trackers in many cases. Of course, many caveats apply for this
algorithm to work well in computer vision settings. First, the motion being tracked
must be the dominant source of differences between the images: there may be no
large distractors that are not governed by the underlying representation. Such dis-
tractors include other moving objects in the scene, significant lighting variations, and
motions of the camera. But occlusions due to stationary objects, or even self occlu-
sions are allowed. This is because the algorithm represents mappings from images to
poses with radial basis functions, with a kernel centered on each image of the video
sequence. In this thesis, I use Gaussian kernels, which ultimately result in sum-of-
squared comparisons between image pairs. Thus, the algorithm is also invariant to
orthonormal operators applied to images, such as permutations of the pixels, as these
operations do not effect the result of the comparison. If distractors do exist in the
scene, they may be removed by preprocessing the images. The tracker can also be
made to ignore these distractors by providing additional labeled data. Second, the al-
gorithm assumes that the mapping from images to labels is smooth: a small change in
the input image should result in a small change in the output example. In practice,
this smoothness requirement is not a problem, even when dealing with occlusions.
Third, the algorithm assumes that the output time series evolves smoothly over time.
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If this is not the case, the algorithm cannot take advantage of unlabeled data, and
will perform only as well as fully-supervised nonlinear regression algorithms. A more
detailed description of the intuition and requirements behind the performance of this
algorithm are given in Chapter 3.

Videos are perhaps the most challenging time series to process, exhibiting high-
dimensional observations, complex nonlinear relationships between the input and
output representations, observation noise, and distractors and occlusions. The semi-
supervised algorithm isn't limited to computer vision applications. We have used it
to learn to track a radio frequency ID tag by mapping the voltages it induces in elec-
tromagnetic coils to the tag's position. Chapter 4 documents some of our computer
vision and non-computer vision experiments.

1.1 The Value of Examples

In Chapter 4, I show that a generic algorithm can solve some complex computer vision
tasks with a raw pixel representation, a handful of examples, and some smoothness
assumptions. In the second half of the thesis, I present an unsupervised algorithm that
learns how to track without requiring any input-output examples. This shows that
in certain cases, a few smoothness assumptions about the raw pixel values capture
all the necessary structure of the scene to perform tracking.

The unsupervised algorithm is based on the premise that the appearance of a
dynamic scene is governed by a low-dimensional dynamical process, and that tracking
often seeks to recover that process. The algorithm assumes that the dynamics of this

process are known a priori, and searches for a function that transforms the input
time series so its dynamics adhere to those of the underlying process. The algorithm
is an extension of the semi-supervised algorithm, with a few terms modified, and like
its semi-supervised counterpart, it relies only on fast matrix operations.

Both the semi-supervised and unsupervised function learning algorithms are closely
related to the problems of nonlinear dimensionality reduction using manifold learn-
ing, and to nonlinear system identification. Manifold learning algorithms map high-

dimensional observations to low-dimensional coordinates on a manifold embedded in
a high-dimensional space. These low-dimensional coordinates are chosen so as to
preserve various geometric properties observed in the high-dimensional observations.
Instead of enforcing a geometric property, the algorithms in this thesis learn a smooth
mapping between two spaces that force the output coordinates to obey given dynam-
ics. As far as I am aware, these are the only manifold learning algorithms that that

explicitly model dynamics in the low-dimensional space.
Nonlinear system identification seeks to recover the parameters of a generatic

model for observed data. The model is a continuous-valued hidden Markov chain,
where the state transitions are governed by an unknown nonlinear state transition
function, and states are mapped to observations by a nonlinear observation functions.

Learning an observation function is difficult, and requires optimiziation procedures

that are prone to local minima, and signficant storage requirements. As in condi-
tional random fields [44], the algorithms in this thesis learn a mapping in the reverse
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directions, from observations to states. This alleviates both the storage and the lo-
cal minimum problem, making it possible to characterize the pseudo inverse of the
observation function for very high dimensional observations, such as video frames.

1.2 Basics of the Approach

We wish to learn a memoryless mapping that transform a sample of the input time
series at any time point to a sample of an output time series. One way to learn such
a transformation from examples is to apply standard nonlinear regression techniques
to find a function that fits specified input-output examples. Such functions can typ-
ically represent any smooth mapping, and take the form of multilayer perceptrons,
radial basis functions, or any other sufficiently general family of functions. But for
the applications I tackle, nonlinear regression techniques require too many examples
to be of practical use. To accommodate the dearth of available examples, the semi-
supervised regression algorithm in this thesis utilizes easy-to-obtain side information
such as unlabeled examples and a prior distribution on the output. A prior on the
output time series allows our algorithm to automatically take advantage of any avail-
able unlabeled data. Although the final learned mapping does not have memory,
finding such a mapping is a batch process that takes advantage of the entire data set.

In tracking applications, the output time series represents the motion of physical
mass, so we expect that this time series will exhibit physical dynamics. This a pri-
ori knowledge can be approximately captured using a linear-Gaussian autoregressive
model, a dynamics model commonly used in tracking applications. Like nonlinear
regression methods, this semi-supervised algorithm searches for a smooth function
that fits the example input-output pairs. But it also simultaneously estimates miss-
ing output labels. The missing output labels are made to agree with the dynamics
model, as well as the output of the function. As such, the function is required to
produce a time series that behaves according to the given dynamics when applied to
the input time series. The search is expressed as a joint optimization over missing
labels and a set of functions in a Reproducing Kernel Hilbert Space (RKHS) [84].

The unsupervised learning algorithm derived in this thesis operates without the
benefit of input-output examples. It searches for a mapping that results in an output
sequence that evolves according to the given dynamics and whose moments match
those of the prior on the dynamics. It reduces to an eigenvalue problem reminiscent
of various manifold learning algorithms.

The cost functional for the unsupervised and semi-supervised algorithms are com-
putationally easy to optimize, so that the algorithms can be executed at interactive
rates on modern computers. The cost functions are crafted so as to not require expen-
sive inference algorithms such as MCMC methods, or slow-converging optimization
procedures such as EM, or even Newton iterations. Because all the penalty terms in
our cost function are quadratic, after applying the Representer Theorem [84], all of
the optimizations reduce to least-squares or eigenvalue problems.

It is important to note that in this thesis, I assume that these dynamics models
are fully known a priori. I do not attempt to estimate their parameters from data.
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A lot is usually known about the motion of objects before applying our algorithm, so
it is convenient to specify these dynamics by hand. This is why in much of the work
on tracking, these dynamics are also specified manually when building filtering algo-
rithms. Further, it is not essential that the dynamics be known exactly, because the
algorithm is empirically not very sensitive to the parameter settings of the dynamics
model.

1.3 Contributions

This thesis draws from the areas of semi-supervised and unsupervised learning, com-
puter vision, and system identification. Its contributions also lie across these areas.
It contributes the following developments:

" A tool for quickly annotating video sequences, and for rapidly prototyping vision
and signal processing applications.

" Enhancing manifold learning algorithms by explicitly representing temporal dy-
namics in the low-dimensional space.

" Showing that Kernel PCA learns a function in a Reproducing Kernel Hilbert
space that projects high-dimensional points to uncorrelated low-dimensional
coordinates.

* Kernelizing on observations instead of latent states to efficiently learn an approx-
imation of the pseudo-inverse of the observation function in nonlinear system
identification, when the dynamics are known.
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Chapter 2

Background

This chapter introduces some of the prior work upon which this work is built. The
relationship to existing algorithms will be clarified in subsequent chapters.

2.1 Notation

In this thesis, scalars are denoted by Greek letters, as in A, or in upper case, as in
N. When it is not confusing to do so, scalar indices that appear in subscripts and
superscripts are written in lower case letters, as in xt. Vectors are denoted by lower
case letters, such as c, and are column vectors unless transposed with the ' mark, as
in c'. Matrices are bold and upper case, as in A. The vector 1 is a column vector
consisting of all ones, and I is the identity matrix. Sets of indices are written in a
calligraphic font, as in L = {1 ... T}, which describes the set of integers from 1 to
T, inclusive. A set consisting of vectors xt with t E L is written as X = {xt}L, and

also acts as a matrix consisting of the xt's stacked horizontally. When such a set is
indexed by a set of increasing integers, it describes a time series.

2.2 Time Series Model and State Estimation

The time series abstraction provides a convenient notation for taking the temporal
correlation of data sets into account. There are many auto-regressive models for time
series that model this temporal correlation. I focus on state-space models because they
provide both a physically plausible, and a compact generative model for many time
series. Common operations with time series models include estimating the parameters
of the model from time series data, attenuating observation noise, predicting future
samples, or inferring a latent state underlying each sample of the time series. The
book by Shumway and Stoffer [78] offers a thorough review of time series analysis
methods.

Methods for estimating the parameters of a linear autoregressive model driven
by Gaussian noise find a model whose second order output statistics agree with the
observed second order statistics of the observed time series data [49]. This results in
the Yule-Walker equations, a set of linear equations in the parameters of the model,
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which can be solved efficiently. For linear state-space models, subspace methods

[91, 49] have proved to be the most effective way of fitting these second order statistics,
as they are consistent and do not suffer from local minima.

Matching second order moments is not adequate for identifying nonlinear sys-
tems since the nonlinearities in the system make the distribution over the outputs
non-Gaussian. When a training data set consisting of states, their corresponding ob-
servations, and subsequent states is available, a straightforward solution is to learn
a pair of nonlinear functions representing the state transition function and the ob-

servation function, usually represented with radial basis functions or neural networks
[59, 22, 50]. When the states are not available in the training data set, a common
approach is to learn a 1-step-ahead predictor that maps a short history of past ob-

servations to a predicted output. Such a function is again represented using radial
basis functions or neural networks [66, 17]. Such techniques are useful for building
controllers, but do not learn state-space models, so state estimation, dimensionality
reduction, and smoothing are not possible. The only unsupervised methods for learn-
ing the parameters of nonlinear state-space models use the EM algorithm to estimate
the model parameters while marginalizing over the latent states [26, 90]. Unfortu-
nately, these methods are computationally intensive, subject to local minima, and
do not scale well to very high-dimensional observations. See Section 5.5.2 for more
detail.

In Chapter 5, we devise an approximate method for estimating the inverse of the
observation function of a state-space model with nonlinear observations. Estimat-
ing the inverse of the observation function instead of the observation function itself
reduces the estimation problem to a quadratic optimization problem that circumnav-
igates the problems introduced by the EM algorithm.

2.3 Function Fitting

Function fitting is the process of learning an input-output mapping given L training
example pairs {xi, Yi}i=1..L of example inputs xi G ]ZM and their corresponding labels

yi E RN. Regression is a fully-supervised learning problem because both inputs {xi}
and outputs {yi} of a function are given. The mapping itself is a function f, and
can take any form, such as linear, polynomial, Radial Basis Function (RBF), neural

networks, or the nearest neighbors rule. The function f may have a fixed number
of parameters 0, in which case we refer to the function learning problem as being
parameteric, or the number of parameters of f may grow with L, in which case
the problem is called non-parameteric. We use the notation fo(x) to denote label
predicted by the mapping given an input x.

To find the best mapping, one defines a loss V(y, z) between output labels, and
one minimizes a cost of the form

L

min [ V(fo(xi), Y2) (2.1)
i=1
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Additionally, one may place a reguarlizer on f or on its parameters to provide shrink-
age towards a prior, or to improve stability [13].

L

min V(fo(xi), yi) + P(0). (2.2)

When V(y, z) = ||y - z1| 2 is the quadratic loss, and fo, we obtain the standard
linear linear squares problem, with 0 denoting the slops and intercept of a hyperplane.
When the reguarlizer P(0) is also quadratic, we get ridge regression. When 0 are the
coefficients of a polynomial in the components of x, we get polynomial regression. All
of these fitting problems can be solved with straightforward least-squares.

The Radial Basis Functions (RBF) form consists of a weighted sum of radial basis
functions centered at prespecified centers {c 3 }1...c.

C

fo(x) = Z 5k(x, cj). (2.3)
j=1

Here, 0 consists of vectors 64 E RN, and k maps RM x RM _ RN. Estimating 0
with a quadratic loss still reduces to a least-squares problems, since the output of f
is linear in the parameters of f.

The nearest neighbor rule provides a simple way to learn mappings without much
training. A function f with the nearest neighbors form returns the label corresponding
to the training point with the closes xi to the queried x:

fo(x) = Yarg mini k(xi,x), (2.4)

for some distance measure k between points in RM. The k-nearest neighbors form or
the e-neighbors form are similar in that they return the average of the labels within
a neighborhood of the query point:

fo(x) I Kyi, (2.5)
|N'(x)|Ij /

where M are the indices of the training input examples x which are close to x in
some sense, usually either the k nearest neighbors of x in {Xi}1...L, or the elements of

{Xi}1...L whose distance to x is less than some e. Note that the parameters 0 of this
model constist of the entire collection of training examples. Also, since the neighbor
hood around x changes in discrete steps, f is a piecewise constant function. We will
use the nearest neighbors form to derive alternatives to our algortihms, which are
based on the RBF representation for the mapping.

2.3.1 Reproducing Kernel Hilbert Spaces

Rather than chosing a class of functions first, we can search for a mapping directly
in an infinite Hilbert Space of functions. This approach requires us only to define an
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inner product in a Reproducing Kernel Hilbert Space (RKHS) by specifying a kernel
function. The choice of an inner product specifies a norm in the Hilbert space, which
can be used as a regularizer. The optimal mapping according to this technique takes
a specific finite RBF form, allowing the function fitting to be carried out efficiently.
Like the nearest neighbors form, this approach can generalize any mapping if given
enough data. But unlike nearest neighbors function, even when the sample size is
small, it learns a smooth differential mapping, more closely capturing the physical
mapping that underlies the training data.

Every positive definite kernel k : M x JZM -+ 7? defines a Hilbert space on

bounded functions whose domains is a compact subset of 7ZN and whose range is R

[841. This function space is called a Reproducing Kernel Hilbert Space because the
inner product in this space is defined so that it satisfies the so-called reproducing
property (k(x, .), f(.)) = f(x). That is, in the RKHS, taking the inner product of a
function with k(x, -) evaluates that function at x. The norm in this Hilbert space
is defined in terms of this inner product in the usual way.

According to Mercer's theorem [84], every positive definite kernel k has a countable
representation on a compact domain: k(xi, X2) = -1 Ai~i(zi)#i(X2), with #i:
Rm -+ 1. Combining this with the reproducing property reveals that the set of #
are a countable basis for the RKHS:

f (x) = (f(-), k(x, -)) (2.6)
00 00

= (f(-), ~ A#(-)#iO(x)) = #i(x)Ai(f(-), #i(-)) (2.7)
i=1 i=1

00

= #i(x)ci, (2.8)
i=1

where ci = Ai(f(-), #i(.)) are the coefficients of f in the basis set defined by the #2.
A similar argument shows that #4 form an orthogonal basis under this inner prod-

uct:
00

#j(x) = (#j(-), k(x, -)) = #q(x)Ai(#5(-), #5(-)). (2.9)

Since the #'s are linearly independent, (#i, #j) = Jij/Ai.
An analog to Parsevals' theorem shows that the norm in the RKHS can be ex-

pressed in terms of these coefficients:

00 00

IIfIk= (f, f) = (1 #ici, #ici) = 1 cic(#A, #j) (2.10)
i=1 i=1 ij

= cl/Ai. (2.11)

A kernel that satisfies the stationarity condition k(x, x') = k(x - x') has sinusoidal
bases # [93, 84]. Since the norm If 1| penalizes the coefficients the projection of f on

sinusoids, the norm effeictively penalizes the amplitude of different frequency bands
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according to A2. A common choice for the kernel k are Gaussian kernels k(x', x) =

exp(-|IX - X'l|2/o-), whose Mercer expansion has has decaying A2. Thus If Ik under

this kernel penalizes the high frequency content in f more than the low-frequency
content, favoring smoother f's [93, 84].

2.3.2 Nonlinear Regression with Tikhonov Regularization on
an RKHS

Tikhonov regularization learns a function f :RM R + 1ZN that can determine good y's
for as-yet-unseen inputs x [84, 92]. To learn a multivariate function f = [fl(X) . . .fN

Tikhonov regularization can be applied to each component of f independently. De-
noting the dth component of each yj by y', the Tikhonov problem for each component

gd is:
L

min V(f d(X), yd) + Ak l d|. (2.12)
fd 

ik

The minimization is over the RKHS defined by k. The loss V penalizes deviations
between gd(Xi) and its corresponding label yi, so the first term favors functions that
fit the training examples. The RKHS norm, || - Ilk, serves as a stabilizer, akin to the
norm penalty in ridge regression, and favors smoothness in g

Although the optimization (2.12) is a search over a function space, it can be
shown that regardless of the form of V, the minimizer of (2.12) can be represented as
a weighted sum of kernels placed at each x: [73]

L

f d(x) = cik(x, xi). (2.13)
i=1

To prove that the optimum of (2.12) has this form, we show that any solution contain-
ing a component that is orthogonal to this form must have a greater cost according to
(2.12), and therefore cannot be optimal. Specifically, suppose the optimal solution has
the form g = f +h, with f and h in the RKHS, with f having the form (2.13), and h
non zero and not representable with this form so that for all ci, (EZs cik(., xi), h) =
0. By the reproducing property, we have E ci(h(.), k(-, xi)) = 0 for all c. Thus
(h(.), k(-, xi)) = 0 = h(xi). Therefore, g(xi) = f(xi). But IlgI = If||1 +2 - 0 + I|hI11,
so IlgII is strictly greater than If 1|, even though the data term is equal. Therefore,
g cannot be optimal.

When V(y, z) is quadratic, Equation (2.12) reduces to familiar forms. In spatial
statistics, the resulting problem is known as Krigging [32], it finds the MAP estimate
of data points under a Gaussian process prior with Gaussian observation noise [75],
and it amounts to finding the best RBF coefficients under a quadratic prior. The
optimal solution given by Equation (2.13) can be written in vector form as K'cd,
where the ith component of the column vector K, is k(x, xi), and cd is a column
vector of coefficients. The column vector consisting of fd evaluated at every x can
be written as Kcd, where Kij = k(xi, xz). Using the reproducing property of the
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inner product, it can be seen that the RKHS norm of a functions of the form (2.13) is

||gall2 = Cd'Kcd. Substituting these into (2.12) yields a finite dimensional quadratic
problem:

min||Kcd - yd1 2 + Acd' Kc. (2.14)
cd

This optimization problem can be solved using least squares. We have shown that
Tikhonov regularization on an RKHS guides the choice of RBF centers as and the
regularizer when fitting RBFs.

The cost function (2.12) generalizes a variety of other learning algorithms. When
the output labels are binary, f : R.M -+ R> , and V(z, y) is set to the hinge loss
V(y, z) = max(O, 1 - yz), the cost function (2.12) becomes the Support Vector Ma-
chine's loss function with slack, and searches for an f with maximum margin to the
training data [84]. The optimization (2.12) is equivalent to

min ||f||12 + C (;(2.15)
f E F, C

s.t. yjf(xi) 1 -( (2.16)

(i > 0, (2.17)

since the concavity of C E (i ensures that each optmal (i lies on a vertex of the

constraint set [12], so that (i is either 0 or 1 - yi(xi), so that the optimal (i satisfies

(i = max(0, 1 - yif(xi)). This optimization searches for a signed distance function
f in an RKHS F so that the signed distance between each point xi and the implicit
surface {zxf(x) = 0} is made to agree in sign with yi, and made to be greater than
the margin 1. The slack variable (i allows each point to venture within this margin,
but this slack is penalized in the cost function by C(j. Substituting the RBF form
for f gives the quadratic cost functional for the SVM [92].

The optimization of Equation (2.12) also has a Bayesian interpretation [84]. The
RKHS norm serves as a the negative log prior, - log p(gIx), over the space of functions,
and the data term serves as a negative likelihood, - log p({y }Ig, x) over the space of
functions. Thus the optimum gd is the maximum a posteriori g d given the training
data.

There are useful guarantees on the performance of Tikhonov regularization. Bous-
quet and Elisseff [13] showed that in order to find functions that generalize to as-yet-
unseen x's, a learning algorithm must be stable under perturbations of the training
data and must return a function that fits the given data set well. The norm penalty
in Tikhonov regularization provides the stability, while the data term provides fidelity
to the training data. Tikhonov regularization has also been used as an approximation
to Structural Risk Minimization by Vapnik [92].

2.4 Manifold Learning

Manifold learning algorithms reduce the dimensionality of a high-dimensional data
sets. The high-dimensional data set {xi} is assumed to lie on a manifold. Low-
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dimensional coordinates {yiJ} corresponding to each high-dimensional point are found
so that the low-dimensional coordinates preserve some desired neighborhood attribute
of the manifold [86, 70, 8, 19, 94, 14]. Manifold learning is an unsupervised problem
because only inputs {xi} are given, a function that maps these to unspecified low-
dimensional outputs {yij} is to be estimated.

Isomap [86] finds low-dimensional coordinates that preserve the geodesic distance
between high-dimensional points. It assumes that the high-dimensional data are gen-
erated by lifting low-dimensional points that lie in a convex set through an isometric
lifting. Donoho and Grimes [19] pointed out that due to foreshortening effects, imag-
ing processes are are more accurately represented by local isometry, and the location
of multiple objects in a scene cannot be represented by a convex low-dimensional set.
They presented Hessian LLE to handle these conditions. LLE [70] finds a conformal
mapping that preserves the affine relationship between high-dimensional points in lo-
cal neighborhoods. Like LLE, Laplacian Eigenmaps [8] and Semidefinite Embedding
[94] attempt to preserve some notion of local geometry observed in the high dimen-
sional data set (local isometry in the case of Semidefinite Embedding and proximity
weighted by a local distance metric in the case of Laplacian Eigenmaps). If the high-
dimensional data points do not densely sample the manifold, the local neighborhood
structure of the manifold becomes difficult to estimate, and these algorithms recover
low-dimensional points that do not exhibit the desired neighborhood attribute [6].

In the manifold learning literature, only the algorithm of Jenkins and Mataric
[36] takes advantage of the temporal coherence between adjacent samples of the in-
put time series. Their algorithm extends Isomap by grouping temporally adjacent
samples and favoring temporally adjacent groups to have similar low-dimensional co-
ordinates. While it does not model dynamics, this algorithm does take advantage of
the time ordering of points. In Chapter 5, we introduce a manifold learning algorithm
that incorporates knowledge about the temporal dynamics of the low-dimensional
points, allowing it to implicitly estimate a velocity for each data point in the low-
dimensional space. This estimate implicitly provides a distance measurement between
temporally adjacent points in the low-dimensional space, obviating the need for the
brittle neighborhood relationships estimated from high-dimensional data points, and
favors low-dimensional coordinates to agree with the latent process that generated the
high-dimensional data set. The proposed algorithm is closest to Principal Manifolds
[80], a function estimation framework for learning a function that lifts low-dimensional
coordinates to the observed high-dimensional points.

Some manifold learning algorithms have been extended to allow the low-dimensional
coordinates for certain points to be specified by hand [31, 63]. This allows the low-
dimensional coordinate system to be fixed, and improves the estimated coordinates.
Similarly, the algorithm of Chapter 3 allows labeled points to be supplied, making it
a semi-supervised version of the algorithm of Chapter 5.
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2.5 Manifold Structure for Semi-supervised Learn-

ing

The semi-supervised regression approaches of [96] and [7] take advantage of the man-
ifold structure of the data to estimate missing outputs when only inputs {xi} and
some of the outputs {yi} are given.

Input points with missing outputs aid in estimating the manifold structure of the

input space. Knowledge of this structure can in turn be used to improves the estimate
of the missing outputs if we assume that these must preserve the manifold structure
in some way. However, these algorithms can suffer from the same brittleness as
unsupervised manifold learning algorithms, because they estimate the local manifold
structure from the neighborhood structure of the inputs {xi}. These semi-supervised
methods are similar to the algorithms derived in Chapter 3 thesis in that they impose
a random field on the output labels. In Chapter 3, we augment these techniques by
introducing the temporal dependency between output samples in the random field.

The semi-supervised learning algorithm of Belkin and Niyogi [7, 9] attempts to

preserve the neighborhood structure of the input points by ensuring that the pairwise
distance between neighboring output points is similar to the distance between corre-
sponding input points. Let wij denote the distance between the input point x and a

point xz in the neighborhood of xi. If xj is not in the neighborhood of xi, wij = 0.
For each xi, let y2 be the corresponding scalar output to be estimated, and let the set

{zdjc denote the set of given outputs. The Belkin and Niyogi algorithm finds scalar
output labels by solving

min (yj - yj) 2 wij + A (yj - zj)2 (2.18)

s. t. yj = 0, (2.19)

The first term in the cost function ensures that the distance between two outputs is
weighted according to the distance of their corresponding inputs. The second term

favors a match between estimated outputs and given outputs. The constraint makes

it possible to prove that the algorithm is stable.
Taking advantage of prior information about missing outputs is crucial in semi-

supervised learning. Consider, for example, an attempt at converting the fully-
supervised Tikhonov regularization algorithm of Section 2.3.2 into a semi-supervised
learning algorithm without any prior over the missing outputs. Searching for f and

the outputs y gives the following problem:

L

n Zn (f (xj) - y) 2 + (f (Xi) - z)2 + Ak||f 11. (2.20)
f i=1 iEL

Since there are no constraints on y, we may set it to yj = f(xi) to minimize (f(xi) -

Yi) 2 , effectively eliminating this term from the optimization. Hence the optimization
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reduces to the original, fully-supervised cost functional

min (f (xi) - zi)2 + AkI (

The need for a prior over missing data is discussed further in Chapter 3.

2.6 Linear Gaussian Markov Chains

Our semi-supervised learning algorithm takes advantage of a prior on outputs to
improve its estimates of the missing outputs and of the regressor. Since we are
mainly interested in learning to track objects, we have chosen a prior that is suitable
for modeling the physical dynamics of moving objects. In this section, I define this
prior and introduce some useful operations on this prior.

Suppose the state st of an object at time t evolves with linear Gaussian Markovian
dynamics:

st = Ast_ 1 + wt. (2.22)

The Gaussian random variable wt has zero mean and covariance A,. Premultiplying
the state vector st by A deterministically evolves it to the state at time t + 1. The
Gaussian random variable w models nondeterministic effects not captured by A.
The random variables wt are iid over time, have zero mean, and have covariance A,.
We will let the initial state so be a zero-mean Gaussian with a very large covariance

o I, so that its influence on the chain is small.
When describing the motion of an object, we will consider Markov chains where

A, is diagonal, and where A has the special form

1 aOz 0
A 0 1a . (2.23)

0 0 1

In this case, the components of se have intuitive physical analogs: the first compo-
nent corresponds to a position, the second to velocity, and the third to acceleration.
The dot product of each st with the vector h = [1 0 0 ]' extracts the position
component from each st.

The sequence of states from time t = 1 to t = T, denoted by S = {sdlt=1..r
is a zero-mean Gaussian random variable, since each of its components is a sum of
zero-mean Gaussian random variables. Thus a distribution over it can be written as

p(S) = NA(vec (S) 0, Q) oc exp ( vec (S)' Qvec (S) , (2.24)

where the vec (.) operator stacks the elements of S vertically into a column vector.
The covariance matrix Q is generally dense, but its inverse is block-tri-diagonal. This
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can be seen by regrouping the terms in the prior:

T

p(S) = p(s 0 ) Jp(stIst_1) (2.25)
t=1

c exp (IS0112/0,)2 ex - ls Ast- 111) (2.26)

T

c exp +- soll2/o- + Exp - |st- 1 |2
t=1

Since the exponent is a sum of quadratics involving adjacent entries of S, it can be
written as the vectorized quadratic (2.24) after some manipulation.

To provide a prior over the position of an object, we will need a distribution
over the position components s' = h'S of S. This distribution can be obtained by
marginalizing over all other components of S. Since S is a zero-mean Gaussian random
variable, the position components S will also form a zero-mean Gaussian random
variable. To find the inverse covariance of this Gaussian, write h'S in terms of vec (S)
using the identity vec (ABC) = (C' O A) vec (B), where 0 is the Kronecker product
[55]. We get s , = (I 0 h') vec (S) = Hvec (S). Thus the covariance of s, is HQ 1-H',
and its inverse covariance is (HQ-1H'). Note that although the inverse covariance
of vec (S) is block tri-diagonal, the inverse covariance of the position components is
dense, which means the position components are conditionally fully dependent on
each other when the other components of the state are marginalized out.

2.7 Easy to Solve Quadratic Problems

The optimization problems in this thesis are crafted to be solvable by fast linear
algebraic methods. We will encounter equality constrained quadratic optimizations
of the form

min I x'Ax (2.28)

s.t. Bx = c. (2.29)

This optimization can be performed in closed form, without invoking the heavy ma-
chinery of quadratic programming. In general, both A and B are rank deficient. The
feasible set is the affine subspace B'u + xo, where xo is any feasible point, and B'
is a basis set that spans the nullspace of B. Then the optimization becomes a simple
quadratic minimization over u: minu(Zu + xo)'A(Zu + xo), which is solved by least
squares. The optimal x can then be obtained via x* = Bh-u* + xo.

Computing B' explicitly may be both computationally and storageally expensive.
At various points in the thesis, we have situations where A is symmetric positive-
semidefinite, and span(B') C span(A), or equivalently, null(B) ; null(A). In these
cases, another solution is available.
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The dual of (2.28) is max, min, !x'Ax + l'(c - Bx), where 1 is the vector of dual
variables. There is no duality gap in this problem because the problem is closed,
convex and smooth [12]. For a fixed value of 1, an optimal x must satisfy Ax =

B'l. Therefore, given 1, we know that x* E {AYB'i + 616 E null(A)}, where At
is the pseudo-inverse of A. Plugging back into the Lagrangian yields the problem
max, min6Enull(A) -1 'BAtB'l + l'c - l'B6. By assumption, 6 is also in the nullspace
of B, so the last term is zero, which results in the minimization min, l'BAt B'l - l'c.

Thus 1* = (BAtB') t c is a feasible dual variable at the optimum. Using Ax = B'l,
we get that the smallest norm optimal solution to (2.28) is

x* = AtB'(BAtB') t c. (2.30)

This provides an alternative way to solve (2.28) without explicitly finding the null
space of the constraint set.

The following matrix sphere optimization problem reduces to a Rayleigh quotient:

min trXHX' (2.31)
x
s.t. XX' = I, (2.32)

where H is positive semi-definite. First, observe that there is not a unique optimum.
If X* is optimal, due to the cyclic property of the trace [55), so is QX*, where Q is
square and orthonormal. One optimal solution is obtained by setting the rows of X
to the eigenvectors of H with the smallest corresponding eigenvalues [27].

We will also encounter cylinder programming problems of the following form:

min trXHX' (2.33)
x
s.t. XX' = I (2.34)

X1 = 0. (2.35)

These also reduce to eigenvalue problems. Let X be Rn m. Define a lZn-lxm matrix
Z with rows that span the nullspace of 1. So the rows of Z span the space of solutions
to the mean constraint (2.35), and X must take the form UZ for some matrix U.
Then we may rewrite the optimization problem as

min trUZHZ'U (2.36)
U

s.t. UZZ'U = I. (2.37)

This problem has the form (2.28), and its optimal U can be found by the method
described at the beginning of this section, and X can be set to UZ.

A sparse matrix Z can be found to make computing ZHZ', ZZ', and UZ fast.
Simply set Z to a bi-diagonal matrix with 1 on the diagonal, and -1 on the upper
diagonal. The product Z1 is 0 because Z simply subtracts adjacent entries of 1.
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Chapter 3

Semi-supervised Nonlinear
Regression with Dynamics

We wish to learn a memoryless and time-invariant function that transforms each

sample xt of an input time series X = {xt} to a sample y of the output time
series Y = {yt}L 1 . Each sample of the input time series is an M-dimensional column
vector, and each sample of the output time series is an N-dimensional column. To

illustrate the setup, in a visual tracking application, each xt represents the pixels of

an image, with M 106, yt could be the joint angles of the limbs of a person in
the scene, with N 20, and we seek a transformation from images to joint angles.
To learn the transformation, we are given a set of input-output examples {xi, zi}r: of
how to map an input sample xi E RM to an output zi E RN. The index set L can

refer to samples within X or outside of X. The learning problem is to find a function
g : RM -- RN that generalizes these examples, and can be used to map each sample

of the input time series X to the elements of Y.
It is appealing to use a fully-supervised nonlinear regression algorithm to learn the

mapping g (see Section 2.3). But for many of the applications I consider in Chapter 4,
obtaining adequate performance with nonlinear regression has required supplying so

many input-output examples that straightforward temporal interpolation between the

examples yields adequate performance as well. This is not surprising, since a priori

most nonlinear regression algorithms take into account very little of the structure of

the problem at hand. In addition, in learning g, they ignore the unlabeled portions

of X.
Taking advantage of even seemingly trivial additional information about the struc-

ture of the problem can significantly improve the quality of the regressor. For exam-

ple, explicitly enforcing the constraint unlabeled data points must be binary, as in a

transductive SVM [92, 18, 37, 11], results in performance gain over RLSC [69], which

does not impose a priori constraints on missing labels. Such additional information
in conjunction with the requirement that g be smooth can not only improve regres-

sion from supervised points, but also renders unlabeled points informative, which in

turn provides a significant boost in the quality of the regressor. See Figure 3-1 for an

illustration.
In the applications I consider, output time series represent the motion of physical
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Figure 3-1: Imposing constraints on missing labels renders unsupervised points infor-
mative. Crosses represent labeled points with known x and y-values. Circles represent
unlabeled points with only known x-values. The black step function represents the
true mapping used to generate y-values from x-values. When the regressor is allowed
to assign arbitrary y-values to the unsupervised points, supervised points will com-
pletely guide the fit and unsupervised points will be assigned whatever y-values make
the function the smoothest (dashed blue line). But when y-values are required to be
binary, the function may no longer assign arbitrary values to the unlabeled points.
These constrained y-values in turn tug the function towards -1 or +1. The resulting
function (thick solid blue line) identifies the decision boundary more accurately than
the alternative of not constraining the missing labels.
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objects. Since variations over time in the output time series represent the displace-
ment of mass over time, and since physical systems have finite energy, these displace-
ments must be smooth over time. This a priori knowledge about the output time
series is the domain knowledge that allows us to take advantage of unlabeled data.
We encode it in the form of a penalty function that favors output time series that
exhibit such temporal regularity.

The semi-supervised regression algorithms I present in this chapter couple this
penalty function with a functional for nonlinear regression. The interaction between
these two functions not only regularizes the quality of the regressor, but also allows
us to take advantage of unlabeled examples. This way, a dearth of input-output
examples can be compensated for by a plethora of unsupervised points.

Even though the learning algorithm processes the entire training data set (input-
output examples as well as unlabeled inputs) in batch, the resulting regressor it learns
is memoryless, mapping a single input vector x to a single output vector y without
internal state. Once the regressor g is learned, it can be used to map individual
input samples to individual output samples memorylessly, or we may insert g in a
conditional random field that provides it access to the rest of the sequence, allowing
us to transform time series with memory.

3.1 Semi-Supervised Function Learning

We obtain a cost functional for semi-supervised learning by augmenting the cost
functional for Tikhonov regularized least squares regressions with a penalty term
that favors regular outputs. Recall from Section 2.3 that a nonlinear regressor can be
found by minimizing the following cost functional over a space of functions:

N

min E V(g(xi), zi) + A E ||gd||. (3.1)
iEL d=1

This minimization searches for a regressor g : ZM _ 7 ZN that, according to the first
term, fits the given example pairs {xi, zi}, and according to the second term, is
smooth.

To account for missing labels, we augment this cost functional with a penalizer
S : 7ZM x ... x RM -+ R over missing labels. The function S maps a sequence Y

of output vectors to a scalar penalty, favoring a label sequence that adheres to our
a priori knowledge about the output sequence. It may, for example, favor binary
output sequences over others, or as suggested below, sequences that exhibit plausible
temporal dynamics. Under this setting, semi-supervised learning becomes a joint
optimization over a function g and an output sequence Y. Let I = L U {1 ... T}

denote the index set of labeled as well as unlabeled data.
The following optimization problem searches for an assignment to missing labels
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that is consistent with S, and a smooth function g that fits the labeled data:

T N

m E V(g(xi), yi) + A, S V(g (xi), zi) + AS(Y) + Ak 5 11gd2 (3.2)
i=1 iEE d=1

This cost function adds two terms to the one in Equation (3.1). As before, the second
term ensures that g fits the given input-output examples, and the term weighted
by Ak favors smoothness of g. The first term ensures that g also fits the estimated
missing labels, and the term weighted by A, favors regular sequences Y. The scalar
A, allows points with known labels to have more influence than unlabeled points. The
appendix provides a probabilistic interpretation for this cost functional.

Later, we also consider variants of this optimization that constrain some of these
terms to be zero instead of penalizing their deviation from zero as is done in this cost
function:

T N

mn 5 V(g(xi), yi) + A, E V(g(xi), zi) + AsS(Y) + Ak 5 11gdJ (3.3)
i=1 iEE d=1

s.t. CY(Y) = 0 (3.4)

C9 (g) = 0. (3.5)

Because this is an optimization over g, nested within an optimization over Y, the
Representer Theorem still applies, so the optimum gd still has the representer form:

gd(x) = 5cik(x, xi). (3.6)

Note that the kernels are centered on the labeled as well as the unlabeled points. This
is in contrast to fully-supervised nonlinear regression, where kernels are only centered
on labeled points. Placing kernels on unlabeled points allows the function g to have
larger support in the input data space without making it overly smooth. Unlike the
trivial augmentation of nonlinear regression with Tikhonov regression presented in
Section 2.5, the coefficients of this expansion are tied together by S, and so are not
trivial.

3.2 Algorithm: Semi-supervised Learning of Time
Series Transformation

In our applications, the output time series Y is known to be smooth over time because
it obeys physical dynamics. In many cases, a reasonable model for these dynamics
is a linear-Gaussian random walk process, and the negative log likelihood of such a
process provides the desired penalty function. The side information provided by this
penalizer, along with the training data, provides the necessary information to apply
the semi-supervised learning framework of the previous section.
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The evolution of many physical systems can be approximated with a linear Gaus-
sian Markov process (see Section 2.6 for an introduction). Such models are de-
fined by a stochastic recurrence equation that produces a sequence of state vectors

S ={st}t1...T. In certain applications, the dynamics of the output time series are

well-known a priori, and the full model described in Section 2.6 may be used. But,
throughout this thesis, to reduce the number of parameters required to specify the
dynamics, we assume that the components of the output time series evolve indepen-
dently according to a chain of the form

St Ast-1 + wt (3.7)

1 a, 0
A 0 1 a, (3.8)

-0 0 1

where the Gaussian random variable wt has zero mean and diagonal covariance A,.
These parameters, along with the scalars a, and a, specify the desired dynamics of
the output time series. When describing the motion of an object, each component
of st has an intuitive physical analog: the first component corresponds to a position,
the second to velocity, and the third to acceleration. We expect a priori that each
component of the output time series Y adheres to such a dynamical model.

We would like to define S so that it favors output time series Y that could plausibly
have been generated by extracting the position component of the process defined
by Equation (3.7). Equation (3.7) defines a zero-mean Gaussian distribution, p(S),
over a state sequence S. Clearly, p(S) assigns a higher probability to sequences
S that adhere to this model, and a low probability to those that don't. Letting
s = [si -.. -- 1' denote the column vector consisting of the first component of each

st, the joint distribution p(s1 ) similarly defines a penalty that favors sequences of
position that adhere to these dynamics. Letting yd = [yd ... yd] denote a column

vector consisting of the dth component of the elements of the series Y, the negative
log of p(sl) can be used to regularize each yd. Since p(S) is Gaussian with mean zero,
p(sl) is also a zero-mean Gaussian. Denoting its inverse covariance by Q1, the penalty
on each component of Y becomes the quadratic form (yd)' Q 1 yd. This quadratic form
favors sequences yd that evolve according to the sequence of positions produced by

the dynamics model (3.7).
Defining zd = [yd ... yj as a column vector consisting of the dth component of the

labeled outputs, we can substitute this quadratic form into the semi-supervised learn-

ing framework summarized by Equation (3.2). Letting V be the quadratic penalty

function, we get:

N T

m E E(gd(Xi) - yd) 2 + A, Y(gd(Xj) - 4)2 + Ak 1gdjj2 + As (yd)' Qlyd. (3.9)
d=1 i=1 iEL

The index set L may overlap with the time index set 1 ... T, and may refer to labeled

examples that do not appear in the input time series.

Because S decouples over each dimension of Y, the terms in the summation over
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d are decoupled, so each term over d can be optimized separately:

T

n (gd(Xi) - yi') 2 + A1 ((gd(xj) - z') 2 + Ak Igd + A. (yd)' Qyd. (3.10)
i=1Y iEE

Substituting the RBF form (3.6) for the optimal g, this optimization becomes a

quadratic problem in terms of the coefficients of the representer form and the missing

labels yd:

min lKTcd - yd112 + A,|IIKcd - zd1|2 + Akcd'Kcd + A, (yd)'Q1Y d (3.11)
Cd yd

where, if we denote by K the kernel matrix corresponding to labeled and unlabeled
data, the matrix KT is the matrix consisting of the rows of K that correspond to
the missing labels, and KC is the kernel matrix consisting of the rows of K that
correspond to the labeled examples.

A simple way to perform this minimization is to rewrite the cost function (3.11)
as a quadratic form plus a linear termi:

. cd~' [K' TKT + AkK + AK' K -KT cd~ -2AK'z1 [cdl
min d L -K ] [cd] + L Ud (3.12)
ca da Y -KT I + AG1 y 0 y

For convenience of notation, we denote by A the matrix that appears in the

quadratic form, and partition it according to A = A "] Taking derivatives of
ACC AY Cd [A

the cost and setting to zero yields [ "] 1= Kzd1

Because the right hand side of this inversion problem has a zero block, we can

reduce the complexity of solving this equation by solving for c only. Using the matrix

inversion lemma yields a solution for the optimal cd:

cd* = A, (Acc - Ac A-A'y)_1 K'ezd. (3.13)

Once the coefficients of g are recovered, labels can be estimated by evaluating g at

various x's by plugging cd* into the Representer Form (3.6). Since g is only a function
of x, it does not take the history of x's seen so far into account. For many of the

experiments in the next chapter, this memoryless mapping provides good results. But
g can be enhanced with memory by smoothing or filtering its output over time. For

example, once g is learned, to transform a new time series X"'e, we can transform it

with the following smoothing cost functional:

N T

muin 13 E(gd(Xflew) _ d)2 + A8 (yd)' Q1 Y d. (3.14)
d=1 i=1

This optimization can be efficiently implemented using Rauch-Tung-Striebel smooth-

'The presence of the regularizer Q, ensures that disregarding the potentially helpful least-squares
form of Equation (3.11) does not significantly harm the conditioning of the problem.
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ing [41]. A Kalman filter can also be used to implement the analogous filtering
operation. Smoothing and filtering are most helpful when the observation noise is
large, or when a sequence over observations are necessary to infer the labels. How-
ever, in the applications we have considered, transforming the samples individually
with g provides qualitatively similar results to smoothing or filtering. This is because
the observation noise is typically small, and because we usually seek a one-to-one
mapping between states and observations, so that states can be inferred from a single
observation.

The parameters of the algorithm are Ak, A1, A8, ao, aa, Aw, and the parameters
required to define the kernel k(-, .). Since A, merely scales Aw, it is subsumed by
the parameters of A,. We let A, be diagonal, which leaves us with a total of seven
parameters, plus the parameters of k (which is usually just a scalar). The algorithm
usually works with default parameter settings, and its parameters need to be changed
only when its results are incorrect. In that case usually only one or two parameters
need to be modified in practice. Sections 3.5 and 4.5 provide some intuition and
guideline to help tune these. Also, the variations presented in the next two sections
require fewer parameters.

3.3 Algorithm Variation: Noise-free Examples

The learning functional in the previous section does not require g to fit the the
given input-output examples exactly, allowing some noise to be present in the given
output labels. But if the given labels are accurate, we may require that g fit them
exactly. This has the advantage of eliminating the free parameter A,, which weights
the influence of the labeled points.

We can enforce an exact fit by making A, very large, but this makes the cost
functional poorly conditioned. A better solution is to turn the second term into a set
of constraints, resulting in the following alternative to (3.2):

T N

min 1 V(g(xi), yi) + AS(Y) + Ak Z 1gj 1  (3.15)
i=1 d=1

s.t. g(xi) = zi, Vi C L (3.16)

When V is quadratic, this reduces to minimizing a quadratic form subject to linear
constraints

Scd]' [K'KT - AkK+ -K' d 3.17
cd, yd -KT I -+ A 1 y

s.t. K cd =zd. (3.18)

For convenience of notation, label the blocks of the matrix that appears in the

quadratic form as A = [A . Solving for the optimal yd and plugging back

in yields a quadratic form in terms of the Schur complement of A, which we denote
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by H = Acc - AcyA7jA'c:

min (cd)'Hcd (3.19)
cd

s.t. Kc zd. (3.20)

I showed in Section 2.7 how to find the minimum of such a linearly constrained
quadratic cost function in closed form. Applying that result, we obtain the optimal
coefficients:

cd* = H-1K' (K' H-1KL) z. (3.21)

Compared the optimum (3.13) that accounted for noise in the labels, this solution is
computationally somewhat more costly, but requires fewer parameters to evaluate.

3.4 Algorithm Variation: Nearest Neighbors Func-
tions

The RBF representation for g is particularly attractive because it reduces our opti-
mizations a straightforward least squares problems. Other representations, such as
MLP, where the output of the function is not linear with respect to the parameters will
require a more costly nonlinear optimization procedures. However, there is another
class of functions g that yields a simple optimization procedure: nearest neighbor in-
terpolators. In addition we can define optimizations over this class of functions with
fewer free parameters.

Suppose we are given a set of input-output pairs {xi, yi}, with scalar outputs yi.
To evaluate a nearest neighbors function g at a given x, we first identify the index
set of the nearby neighbors AN(x, {xi}) of x, and compute their average labeling:

g(x) = X}) Y (3.22)
g WeNA/(x,{xi}) 1

These neighbors could be x's k-nearest neighbors in {xi} according to some distance
metric, or all xi that fall within an epsilon-ball around x (called the e-ball neighbors
of x). Since the {xj} are observed points in the input space, the only parameters
of these functions are the labels {yi}. In addition, a function that performs nearest
neighbors interpolation depends linearly on these labels.

We can search for functions in this family, instead of an RKHS. This function
family is inherently smooth because the averaging that occurs in a neighborhood
smooths g(x) as a function of x, with the size of the neighborhood acting as an
implicit smoothness parameter. Hence, we will not need to explicitly penalize the
smoothness of g. To plug a function of this form into (3.2), we first express it in
vector form as

g(x) = ge y = w' y, (3.23)

where the vector gx is x's neighborhood indicator in {xi}, with its ith element set to
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1 if i E Af(x, {xi}), and to zero otherwise. The column vector e consists of all ones.
For convenience, we have defined the column vector wx = gx/g'/e.

Substituting into (3.9) yields:

N T

iZE(i [yd] - ) + A, Z (w, [yd] _ Zfl 2 +I As (Yd) I QJYd. (3.24)
d=1 i=1 iEL

Note that we have dropped the RKHS norm penalty and eliminated the optimization
over g, since the only parameters of g are Y, over which we are already optimizing.

Rewriting (3.24) in matrix form yields

min Wx -d y + A, W - z1 + As (yd) 1yy, (3.25)HI dd + [ 8 ZydQ

where the matrices Wx and WC are derived from the adjacency matrix G of the
nearest neighbors graph of {xi}. If we normalize each row of G by the sum of
its entries, Wx contains the rows corresponding to the unlabeled points, and WL
contains the rows corresponding to the labeled points.

Equation (3.25) is a quadratic cost function in the missing labels, and so can be
solved using least squares again. The term ||Wxyd - y || = yd'(I - Wx)'(I - Wx)yd

is reminiscent of the term that appears in the LLE algorithm. Section 5.2.2 relates
the unsupervised version of this cost functional to the LLE algorithm.

This optimization has seven parameters: A,, a, a, the three variance parameters
for the driving noise of the dynamical model, and a scalar parameter that governs
the neighborhood size, either e in case of e-neighborhoods or k in case of k-nearest
neighbors.

3.5 Intuitive Interpretation

Gaining an informal understanding of these algorithms will be helpful in understand-
ing when they will work, and how to tune their parameters. The optimization (3.2)
fits g with Tikhonov regularization to given as well as estimated labels, and simulta-
neously interpolates the missing labels using S. The interaction between these two
operations imputes missing labels where there were no given examples, and improves
the imputation with function fitting. This interaction can be better understood by
regrouping the terms of (3.2):

Function fitting: The data penalty terms fit g to to given and estimated labels. To
see this, rewrite (3.2) as:

T N~

min AS(Y) + min V(g(xi), yi) + A, 1 V(g(xi), zi) + Ak g 2
9i=1 iEL d=1 -

(3.26)
The inner optimization is Tikhonov regularization and assigns a different weight
to known labels and imputed labels.
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Interpolation: The optimization over Y implements a smoother over label trajec-
tories that uses g(xi) as observations and S as a prior. To see this, rewrite (3.2)
as:

N T

min Ak Agd Y + V(g(xi), zi) + [ V(g(xi), yi) + AsS(Y) (3.27)
d=1 iEL i=1

This nested smoothing operation corrects the output of g at unlabeled points.
This in turn guiding the function fitting step.

The coupling between these two operations allows the algorithm to learn the correct
mapping in regions where labeled data is scarce. In those regions, the labels can be
hallucinated by interpolating them from temporally adjacent known outputs. This
effect is starkly illustrated with the Sensetable data set in the next chapter.

Due to our choice of dynamics model and smoothness penalty in the cost (3.9),
removing labeled points causes the optima of the functional to collapse to zero. This
observation will become significant in Chapter 5 when we devise an unsupervised
extension of this algorithm. Our choice of the RKHS norm favors functions with a
small magnitude, because ||agIlk = a1jgIk. So ag is considered to be smoother than
g if the magnitude of a is small. Similarly, the regularizer S on Y is quadratic in Y,
and favors a label sequence aY over Y if the magnitude of a is small. But because
g is required to fit the given input-output examples, it is not allowed to collapse to
zero. In turn, this does no allow Y to collapse to zero.
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Chapter 4

Learning to Track from Examples
with Semi-supervised Learning

This chapter exhibits various applications of the semi-supervised technique I described
in Chapter 3. It demonstrates that nonlinear regression techniques, when augmented
with a prior on the temporal dynamics of their output, can solve difficult tracking
problems with surprisingly few labeled data points. For example, we can learn to track
objects using signal strength measurements from an RFID tag reader with only four
labeled data points. We can learn to track the arms of person from a video sequence
with only twelve examples. A fully-supervised nonlinear regression algorithm would
require significantly more examples to learn these operations.

In the applications I consider here, it is reasonable to require that the output time
series fit the specified examples exactly, so I use the semi-supervised learning algo-
rithm of Section 3.3. In these experiments, the RKHS is defined by a Gaussian kernel
k(xi, X2) = exp(-Ilxi - x 2|| 2/U2). The bandwidth parameter - is a free parameter

of the algorithm. Section 4.5 provides some guidance in tuning the algorithm's free
parameters.

4.1 Synthetic Manifold Learning Problems

I first demonstrate the effectiveness of the semi-supervised learning algorithm on a
synthetic dimensionality reduction problem where the task is to recover low-dimensional
coordinates on a smooth 2D manifold embedded in R 3 . The data set considered
here proves challenging for existing manifold learning techniques, which estimate the
neighborhood structure of the manifold based on the proximity of high-dimensional
points. Taking advantage of temporal dynamics, and a few points labeled with their
low-dimensional coordinates, makes the problem tractable using our algorithm.

The manifold is constructed by lifting a random walk on a 2D euclidean patch
to R'3 via a diffeomorphism (a diffeomorphism is a map that is differentiable and

has a differentiable inverse). A few examples of how to map points in R 3 to their
coordinates in R 2 are supplied. See Figure 4-1(left-middle,left-top). The task is to
recover the projection function g : R3 _ R 2 to invert this lifting.
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Figure 4-1: (left-top) The true 2D parameter trajectory. Semi-supervised points are
marked with big blue triangles. The trajectory has 1500 points. In all these plots,
the color of each trajectory point is based on its y-value, with higher intensities
corresponding to higher y-values. (left-middle) Embedding of a path via the lifting
F(x, y) = (x, 1y1, sin(7ry)(y 2 + 1)-2 + 0.3y). (left-bottom) Recovered low-dimensional
representation using our algorithm. The original data in (top-left) is correctly recov-
ered. (right-top) Even sampling of the rectangle [0, 5] x [-3, 3]. (right-middle) Lifting
of this rectangle via F. (right-bottom) Projection of (right-middle) via the learned
function g. The mapping from 3D to 2D is learned accurately.
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isomap nn=10

Figure 4-2: (top-left) Isomap's recovered 2D coordinates for the dataset of Figure

4-1(top-middle). Errors in estimating the neighborhood relations at the neck of the
manifold cause the projection to fold over itself in the center. The neighborhood size

was 10, but smaller neighborhoods produce similar results. (top-right) Without taking
advantage of unlabeled points, the the coordinates of unlabeled points cannot be
recovered correctly, since only points at the edges of the shape are labeled. (bottom-
left) Projection with BNR, a semi-supervised regression algorithm, with neighborhood
size of 10. Although the structure is recovered more accurately, all the points behind
the neck are folded into one thin strip. (bottom-right) BNR with neighborhood size

of 3 prevents most of the folding, but not all of it. Further, the points are still shrunk

to the center, so the low-dimensional values are not recovered accurately.
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Recall that as a first step, manifold learning algorithms such as LLE [70], Isomap

[86], and Laplacian Eigenmaps [8], and some semi-supervised learning algorithms [7],
construct a nearest-neighbor graph based on the proximity of the data points to each
other in R3. They seek to maintain this proximity structure in the low-dimensional
representation they recover. In this data set, the neighborhood structure is difficult

to estimate from high-dimensional data, because the manifold almost intersects itself,
and it is sparsely sampled. As a result, the nearest neighbors in R3 of points near
the region of near-self-intersection (the "neck") will straddle the neck, and the recov-

ered neighborhood structure will not reflect the proximity of points on the manifold.
As a result, existing manifold learning algorithms will assign similar coordinates to

points that are in fact very far from each other on the manifold. We applied LLE,
Laplacian Eigenmaps, and Isomap to the data set of Figure 4-1 (left-middle). Isomap
produced the result shown in Figure 4-2(top-left). Due to the difficulty in estimating
the neighborhood structure near the neck, Isomap creates folds in the projection.
Neither LLE nor Laplacian Eigenmaps produced sensible results, projecting the data
to a straight line, even at higher sampling rates (up to 7000 samples) and with a

variety of neighborhood sizes (from 3 neighbors to 30 neighbors).
These manifold learning algorithms ignore labeled points, but the presence of la-

beled points does not make the recovery of low-dimensional coordinate trivial. To

show this, we also compare against Belkin and Nyogi's graph Laplacian-based semi-

supervised regression algorithm [7], which I refer to as BNR (see Section 2.5 for a de-
scription). Six points on the boundary of the manifold were labeled with their ground
truth low-dimensional coordinates. Figures 4-2(bottom-left,bottom-right) show the
results of BNR on this data set when it operates on large neighborhoods. There is

a fold in the resulting low-dimensional coordinates because BNR assigns the same
value to all points behind the neck. Also, the recovered coordinates are shrunk to-
wards the center, because the Laplacian regularizer favors coordinates with smaller
magnitudes. For smaller settings of the neighborhood size, the folding disappears, but
the shrinking remains. Finally, Figure 4-2(top-right) shows the result of Tikhonov
regularization on an RKHS with quadratic loss (the solution of (3.1) applied to the
high-dimensional points). This algorithm use only labeled points, and ignores unla-
beled data. Because all the labeled points have the same y coordinates, Tikhonov
reguarlization cannot generalize the mapping to the rest of the 3D shape.

Taking into account the temporal coherence between data points alleviates these
problems. First, folding problems are alleviated because our algorithm does not need
to explicitly estimate the neighborhood structure of points based on their proximity
in RI3. Instead, it takes advantage of the time ordering of data points. Figure 4-1(left-
bottom) shows the low-dimensional coordinates recovered by our algorithm. These
values are close to the true low-dimensional coordinates.

We can also assess the quality of the learned function g on as-yet unseen points.
Figure 4-1(right-top and right-middle) shows a lifting of a 2D grid spanning [0, 5] x
[-3,3] by the same mapping used to generate the training data. Each of these points
in R3 is passed through g to obtain the 2D representation shown in Figure 4-1(right-
bottom). These projections fall close to the true 2D location of these samples, im-
plying that g has correctly generalized an inverse for the true lifting.
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In comparing the algorithm with Isomap, LLE and Laplacian Eigenmaps, I relied
on source code available from the respective authors' web sites. To compute eigenval-
ues and eigenvectors, I tried both MATLAB's EIGS routine and JDQR [25], a drop-in
replacement for EIGS. I used my own implementation of BNR, but relied on the code
supplied by the authors to compute the Laplacian.

This synthetic experiment illustrates three features that will recur in subsequent
experiments:

" Explicitly taking into account the dynamics of the low-dimensional process ob-
viates the need to build the brittle neighborhood graph that is common in
manifold learning and semi-supervised learning algorithms. This renders our
algorithm less sensitive to errors in estimates of neighborhoods [6].

" The assumed dynamics model does not need to be very accurate. The the true
low-dimensional random walk used to generate the data set bounced off the
boundaries of the rectangle [0, 5] x [-3, 3], an effect not modeled by a linear-
Gaussian Markov chain. Nevertheless, the assumed dynamics of Equation (3.7)
are sufficient for recovering the true location of unlabeled points.

" The labeled examples do not need to capture all the modes of variation of the
data. Despite that fact that the examples only showed how to map points whose
y coordinate is 2.5 to their low-dimensional coordinate, our semi-supervised
learning algorithm learned the low-dimensional coordinate of points with any
y-coordinate.

4.2 Learning to Track: Tracking with the Sensetable

The Sensetable is a hardware platform for tracking the position of radio frequency
identification (RFID) tags. It consists of 10 antennae woven into a flat surface that
is 30 cm on a side. As an RFID tag moves along the flat surface, analog-to-digital
conversion circuitry reports the strength of the RF signal from the RFID tag as
measured by each antenna, producing a time series of 10 numbers. See Figure 4-3.
We wish to learn to map these 10 values to the 2D position of the RFID tag. Such a
mapping can be recovered by hand through an arduous analysis process that involves
building a physical model of the inner-workings of the Sensetable, and resorting to
trial and error to refine the resulting mappings [61] 1. Rather than reverse-engineering

'The Sensetable has a story worth telling. In 2000, James Patten of the Media Lab extracted the

core components of the Sensetable from a toy developed by a company called Zowie (incidentally,
Zowie was a spin-off company of Interval Research Corporation, my employer before I entered

graduate school). James and Jason Alonzo, his then-UROP, reverse-engineered the inner-workings

of the Zowie hardware. After a few weeks, they figured out how to control the board via RS232 to

extract the 10 signal strength measurements from it. Once they had these numbers, they spend a

few months trying to convert them to positions. They overlayed the Sensetable on a Wacom tablet,
and attached the RFID tag to the Wacom pen to obtain ground truth tag locations. James's initial

attempt at learning a mapping from positions to the coordinates reported by the the Wacom board

by neural nets failed. I briefly had a hand in one of these reverse-engineering sessions, pouring
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Figure 4-3: A top view of the Sensetable, an interactive environment that consists
of an RFID tag tracker and a projector for providing user feedback. To track tags,
it measures the signal strength between each tag and the antennae embedded in the
table. These measurements must then be mapped to the tag's position.

this device by hand, we show that it is possible to recover these mappings semi-
automatically, with only 4 labeled examples and some unlabeled data points. This is
a challenging task because the relationship between the tag's position an the observed
measurements is highly oscillatory. Once it is learned, we can use the mapping to
track RFID tags. Of course, this procedure is quite general, and can be applied to a
variety of other hardware.

To collect labeled examples, we placed the tag on each of the four corners of
the Sensetableand recorded the Sensetable's output. We collected unlabeled data
by sweeping the tag on the Sensetable's surface for about 400 seconds, and down-
sampled the result by a factor of 3 to obtain about 3600 unlabeled data points. The
four labeled points, along with the few minutes of recorded data were passed to the
semi-supervised learning algorithm to recover the mapping. Figure 4-4(left) shows
the ground truth trajectory of the RFID tag, as recovered by the manually reverse-
engineered Sensetablemappings. The four triangles in the corners of the figure depict

with James over packet sniffs of the board using MATLAB. The only upshot of that sessions was
that I had managed to indoctrinate James into using MATLAB as a data analysis tool. James
eventually recovered the mapping by trial and error (most likely without ever using MATLAB). A
part of James' Master's thesis at the Media Lab involved an interactive setup where this hardware
tracked RFID tags as they were moved about on a table, and a projector that overlayed on the table
a display that was aware of the location of these tags. He dubbed this setup the Sensetable, and
developed various applications for it, including a program for visualizing supply chains. In 2003,
James and our now-mutual collaborator, Ben Recht, integrated the Sensetable into the Audiopad
(http: //www. jamespatten. com/audiopad/), an interactive disc jockey system, where the DJ can
visualize and browse music clips with two hands by manipulating RFID tags. James and Ben have
exhibited the Audiopad at various high profile venues around the world, where it has been received
with critical acclaim. It was Ben's idea to re-calibrate the Sensetable using semi-supervised learning.
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Figure 4-4: (left) The ground truth trajectory of the tag. The tag was moved around
smoothly on the surface of the Sensetable for about 400 seconds, producing about
3600 samples after downsampling. Triangles indicate the four locations where the
true location of the tag was provided to the algorithm. The color of each point is
based on its y-value, with higher intensities corresponding to higher y-values. (right)
Samples from the output of the Sensetable over a six second period, taken over tra-
jectory marked by large circles in the left panel. After downsampling, there are 10
measurements, updating at about 10 Hz.

the location of the labeled examples. The rest of the 2D trajectory was not made
available to the algorithm. Figure 4-4(right) shows an example of the output from the
Sensetable. Contrary to what one might hope, each trace of the output does not have
a straightforward one-to-one relationship to a component of the 2D position. Rather,
this relationship is smooth but sinusoidal. For example, when the tag is moved in a
straight line from left to right, it generates sinusoidal traces similar to those shown
in Figure 4-4(right).

The algorithm took 90 seconds to process this data set on a 3.2 Ghz Xeon machine.
The trajectory is recovered accurately despite the complicated relationship between
the 10 outputs and the tag position. See Figure 4-5. Its RMS distance to the ground
truth trajectory is about 1.3 cm, though we do not know how accurate the ground
truth itself is. Figure 4-5(right) shows the regions that are most prone to errors. The
errors are greatest outside the bounding box of the labeled points, but points in the
center of the board are recovered very accurately, despite the lack of labeled points
there. This phenomenon is discussed in Section 3.5.

Once the mapping from measurements to positions is learned, we can use it to
track tags. Individual samples of 10 measurements can be passed to g to recover the
corresponding tag position, but because the Sensetable's output is noisy, the results

must be filtered. Figure 4-6 shows the output of a few test paths after smoothing

(see Equation (3.14) in Section 3.2). The recovered trajectories match the patterns
traced by the tag.

The mapping cannot be learned from the four labeled examples alone using
Tikhonov regularization, demonstrating that access to unlabeled data and prior knowl-
edge about dynamics is very helpful in real-world applications. See Figure 4-7(left).
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Figure 4-5: (left) The recovered missing labels match the original trajectory depicted
in Figure 4-4. (right) Errors in recovering the ground truth trajectory. The ground
locations are plotted, with the intensity and size of each circle proportional to the
Euclidean distance between a point's true position and its recovered position. The
largest errors are outside the bounding box of the labeled data, and points in the
center are recovered accurately, despite the lack of labeled points there.

Figure 4-6: Once g is learned, we can use it to track tags. Each panel shows a ground
truth trajectory (blue crosses) and the estimated trajectory (red dots). The recovered

trajectories match the intended shapes.
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Figure 4-7: (left) Tikhonov regularization with labeled examples only. The trajectory
is not recovered. (right) BNR with a neighborhood size of three. There is folding at
the bottom of the plot, where black points appear under the red points, and severe
shrinking towards the mean.

Figure 4-7(right) shows the trajectory recovered by BNR with its most favorable
parameter setting for this data set. As with the synthetic data set, there is severe
shrinkage toward the mean of the labeled points, and some folding at the bottom.

The features of the Sensetable are present in many other tracking applications,
like outdoor localization using GSM signal measurements [57], and indoor localiza-
tion with 802.11 signal measurements [5, 45]. Current approaches to wireless local-
ization rely on a large corpus of signal strength measurements for a large variety
node locations. A context-sensitive table lookup of signal strength measurements
then recovers the position of the node. An alternative that requires a less arduous
data collection step relies on analytical models that relate position to signal strengths
[85], but these models are violated in practice, resulting in poor localization. General
Semi-supervised learning algorithms may provide a hybrid solution, where a model is
learned from dense measurements of the signal strength throughout the environment,
but where only a few of these measurements would need to be labeled with the posi-
tion of the node. Because radio strength measurements display some of the properties
of the measurements reported by the Sensetable, I believe it will be possible to apply
semi-supervision to the problem of wireless localization.

4.3 Learning to Track: Visual Tracking

With semi-supervised learning, we can learn visual trackers with very few examples.
I focus on applications where a user is given a video sequence and asked to annotate
all of its frames with a low-dimensional representation of the scene. I demonstrate
the algorithm with an interactive tool that allows the user to provide examples by
graphically labeling a few key frames of a video sequence. This labeling takes the

form of a collection of vectorized drawing primitives, such as splines and polylines.
The output representation consists of the control points of these drawing primitives.
The semi-supervised learning algorithm recovers the control points for the unlabeled
portions of the video sequence. If the user is not satisfied with the rendering of these
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control points, he can modify the labeling and rerun the algorithm at interactive
rates. This system is reminiscent of rotoscoping tools [3, 2], which allow the user to
interactively adjust the output of contour trackers by annotating key frames. The
difference is that our algorithm is not limited to tracking contours. Since the algorithm
does not rely explicitly on edges or the spatial coherence of pixels in images, it can
learn arbitrary smooth mappings from images to vectorized representations that do
need to correspond to contours. For this reason, it is robust to occlusions, though
changing backgrounds that are not removed with preprocessing are still detrimental.
The tool is demonstrated on three kinds of videos: 1) a video of a rotating synthetic
object, where the pose of the rigid object is specified for a few key frames, 2) a lip
tracking video where the user specifies the shape of the lips of a subject, and 3)
two articulated body tracking experiments where the user specifies positions of the
subject's limbs.

The idea of learning to track from examples is not new. Various researchers have
applied nonlinear regression to image patches, though they rely on fully-supervised
regression algorithms, typically based on the nearest neighbors. For example, Efros
et al. used thousands of labeled images of soccer players to recover the articulated
pose players in new images [21], El Gammal [23] recovered small rigid deformations
using RBFs, and Shaknarovich et al. [76] used a fast nearest-neighbors algorithm to
recover the pose of hands. Agarwal and Triggs [1] used a fully-supervised nonlinear
regression algorithm similar to the one described in Section 2.3.2 to learn a mapping
from features of an image to the pose of the body. When the labeled images are
frames of a video sequence, not all of them need to be labeled if we take advatnage of
their time ordering. Throughout this chapter, I compare our semi-supervised learn-
ing algorithm, which does take advatnage of this ordering, against fully-supervised
nonlinear regression to demonstrate this point.

When the input time series is a video sequence, each of its samples xt represents
an image or an image patch. The most straightforward representation of an image or
an image patch is the concatenation of its pixel values into a column vector. Thus,
a 640x480 gray scale image would be represented as a vector in RZ3 07 00. All of the
results in this thesis use this simple representation, without applying any preprocess-
ing to the images. The functions learned by our algorithm are thus represented using
radial basis kernels centered each frame of the video sequence. Other example-based
tracking systems preprocess the images to facilitate finding similar images by selecting
a relevant patch in the image [21, 23], and optionally extracting silhouettes [76, 28].
This allows them to rely on far fewer examples. In our case, the reduction in the
number of required labeled images comes from taking into account the dynamics of
the output representation. Though we do not do it here, we could further reduce
the number of required examples and make the learned mapping applicable to inputs
that are significantly different from the training images by preprocessing the input
images.
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Frames from the sequence

Labeled frames

Figure 4-8: (top) A few frames of a synthetically-generated 1500 frame sequence of

a rotating cube. (bottom) The six frames labeled with the true rotation of the cube.
The rotation for each frame in the sequence was recovered with an average deviation
of 40 from ground truth.

4.3.1 Synthetic Images

We quantitatively evaluated the performance of the algorithm on images by running
it on a synthetic image sequence where the ground truth was readily available. Figure

4-8 shows frames in a synthetically generated sequence of 50 x 50 pixel images of a
rigidly rotating object. Six images were chosen for supervision by providing the true

elevation and azimuth of the object to the algorithm.
The recovered azimuth and elevation of the object in the unlabeled images deviate

from the ground truth by an average of 3.50. We evaluated BNR on the same data set,
with the same labeled frames, and obtained average errors of 170 in elevation and 70
in azimuth for the most favorable settings of BNR. To test the learned function g, we

generated a video sequence that swept through the range of azimuths and elevations
in 40 increments. These images were passed through g to estimate their azimuth and

elevation. The mean squared error of the resulting rotations was about 40 in each

axis.

4.3.2 Interactive Tracking

To demonstrate the algorithm's ability to track deformable shapes, the interactive
tool was used to annotate the contour of a subject's lip in a 2000 frame video se-

quence. Figure 4-9(top) shows a few frames of this sequence. The contour of lips are

represented with cubic splines with four control points. Two of the control points

were placed on the corners of the mouth, and the other two were placed above and

below the lips. Only seven labeled frames were necessary to obtain good lip tracking

performance for the rest of the sequence. See Figure 4-9(bottom). The tracker is

robust to all the artifacts manifest in this video sequence, including blinking, facial

expressions, small movements of the head, and the appearance and disappearance

of teeth. Applying fully-supervised Tikhonov regularization on these seven examples

yields identical results. But this is not the case with the following video sequences,
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Figure 4-9: (top) The contour of the lips was annotated in 7 frames of a 2000 frame
video. The contour is represented using cubic splines, controlled by four control
points. The desired output time series is the position of the control points over
time. These labeled points and first 1500 frames were used to train our algorithm.
(bottom) The recovered mouth contours for various frames. The first three images
show the labeling recovered for to unlabeled frames in the training set, and the next
two show the labeling for frames that did not appear in the training set at all. The
tracker is robust to natural changes in lighting (ie, the flicker of fluorescent lights),
blinking, facial expressions, small movements of the head, and the appearance and
disappearance of teeth.
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where fully-supervised nonlinear regression does not perform well with the given ex-
amples.

Figure 4-10(top) shows some of the labeled images of a 2300 frame sequence of a

subject moving his arms. Thirteen frames were manually labeled with line segments
denoting the upper and lower arms. The middle portion of Figure 4-10 shows that the
limb positions were recovered accurately for the unlabeled portions of the sequence.
The bottom portion of the figure shows that limb positions are recovered accurately
for novel frames that were not in the training sequence. Because the raw pixel repre-
sentation is used, the mapping between observations and pose is nearly one-to-one, so
there is no ambiguity between poses. For the same reason, the mapping is robust to
self-occlusions when the subject's arms cross themselves. Fully-supervised nonlinear
regression produced the limb locations shown in black in Figure 4-10. In contrast to
the semi-supervised case, the resulting recovered positions are often wrong.

A researcher who was investigating didactics in expository discourse wanted to
recover the position of the hand of subjects in a video database 2. He provided us with
a sequence that posed an infeasible challenge for the color blob-based hand tracker at
his disposal. Figure 4-11(top) shows 12 labeled images in this 2000 frame sequence.
These labeled frames were sufficient for recovering the outline of the subject's right
arm throughout the sequence. See the rest of Figure 4-11. The resulting tracker
misses the fine motions of the hand (for example, when the subject moves his hand
in a small circle, the annotation remains stationary), but captures the gross motion
of the arm. Tracking is robust to the motion of the subject's torso and the subject
turning his head, because some of the 12 examples explicitly annotate these cases.

To numerically assess the quality of our algorithm, we corrected its output by
hand and use the amount of correction required as a measure of quality. Table 4.1
shows the magnitude of that correction. The recovered label for every fifth frame
in the sequence was adjusted to match the subjective contour of the arm. These
corrections were not supplied to the algorithm and serve only to numerically assess
the quality of the output from the 12 labeled images. The table shows the average
distance (in pixels) between the recovered and corrected location for each corner
of the outline. To evaluate magnitude of these distances, the largest distance each

corner traveled from its average position is also shown. Our algorithm outperforms
temporal linear interpolation between the 13 labeled frames, and fully-supervised
regression using Tikhonov regularization with the 13 labeled frames using its best

parameter setting. The output of each algorithm was corrected separately to avoid
unintentionally favoring any one algorithm.

In these experiments, we sought to recover the dominant factors affecting the

appearance of the scene. The algorithm can naturally handle occlusions in these case.
There are several ways of handling more pernicious distractors such as background
effects and other motions not accounted for by the annotations:

e Preprocess the images. To handle distracting background effects, one could
explicitly remove the background as has been done in previous example-based

2I thank Jacob Eisenstein for suggesting this experiment and providing me with this data set.
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Figure 4-10: (top) Twelve frames were annotated with the joint positions of the
subject in a 1500 frame video sequence. (middle) The recovered positions of the
hands and elbows for the unlabeled frames are plotted in white. The output of fully-
supervised nonlinear regression using only the 12 labeled frames and no unlabeled
frames is plotted in black. Using unlabeled data improves tracking significantly.
(bottom) Recovered joint positions for frames that were not in the training set. The
resulting mapping generalizes to as-yet unseen images.
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Labeled frames

Recovered annotations

Figure 4-11: (top) 12 of the 13 annotated frames for the arm tracking experiment. The
labeling is a closed polygin with six corners. The corners are placed at the shoulder,
elbow and hand. Each of these body parts is associated with two corners. To handle
the subject turning his head, we annotate a few frames with the subject's head turned
towards the camera. (bottom) A few recovered annotations. Tracking is robust to

head rotations and small motions of the torso because we explicitly annotated the
arm position in frames exhibiting these distractors.
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Semi-supervised Tikhonov Temporal Travel
regression interpolation

Shoulders (no correction) (no correction) (no correction) 10,10
Elbows .4, .6 4, 5 8,8 30,34
Hands 3.5, 4.8 10, 11 14,14 56, 59

Table 4.1: Comparison between output and hand-labeled ground truth for the data
set of Figure 4-11. The recovered labeling for every fifth frame in the sequence was
corrected by hand to assess the quality of the output of our algorithm. The first
column gives the average distance (in pixels) between the position of each corner as
recovered by our algorithm and its hand-labeled location. Since there are two corners
for each body part (shoulder, elbow, and hand), the error for the two corners asso-
ciated with each body part is reported separately. For comparison, the last column
gives the maximum divation between each corner's position and its average position
in the sequence. The hand moves the farthest, and its position is recovered with the
least accuracy. The second and third columns report the errors for temporally inter-
polating between the 13 labels, and applying fully-supervised Tikhonov regularization
on the 13 labels. These perform worse than our algorithm.

trackers. To be robust to further effects, such as lighting variations, one could
operate on silhouettes instead of pixel intensities.

* Annotate frames exhibiting anomalies. In the lip tracking experiments, we
annotated two frames where the mouth was open because the pose of the head
is different between these two frames (similarly for and the neutral mouth pose in
this sequence). In the second arm tracking example, the subject turned his head
on several occasions. To account for this head motion, we explicitly annotated
the pose of the subject's arm with the subject's head at various orientations.
The same strategy can be applied to many other kinds of distractors.

9 Automatically select relevant features. As part of learning the function, we
could learn the set of pixels that are relevant to the tracking task. This cannot
be achieved economically by adapting the weights of g, but can be represented
economically by tuning the covariance matrix of the kernel k. We leave the
problem of selecting a subset of relevant feature for future work.

4.4 Video Synthesis

The recovered mapping g, which transforms images to a low-dimensional representa-
tion, can be inverted to give a convenient way to control video. With this inverse in
hand, we could reshape the control points of a spline to manipulate the shape of a
mouth, or drag the control points in Figure 4-10 to manipulate articulated bodies.
Because g is defined on all of RM, and not just on an N-dimensional manifold in RM,
it is not strictly one-to-one so we must define its pseudo-inverse. There are two ways
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Figure 4-12: Synthesized frames using radial basis functions. The two rows show the
output of the pseudo-inverse of g as the mouth is closed by pulling the control points
together vertically (top) and as the mouth is widened by pulling the control points

apart horizontally (bottom). Because the pseudo-inverse performs interpolation be-
tween the frames in the training set, there is some blurring in the output.

to do this, each resulting in a different algorithm for computing the pseudo-inverse of

g.
We can define a pseudo-inverse for g as a minimizer of

min ||x - f(g(x))|| 2d p(x), (4.1)

where there minimization is over a space of function f : RN , M, and p is a
measure on the space of images. This cost function favors functions f so that f(g(x))
is as close to x as possible. As shown in Section 2.3.2, the cost functional can be
approximated by an empirical risk E Ix - f(g(Xz)) 112, and the minimization can be

performed with a suitable stabilizer on f to yield the minimization

min ||xi - f(g(xi))112 + Allf| I. (4.2)

Once g is learned, we have a collection of pairs {xi, g(xj)} 1 . Equation (4.2) suggests
simply using fully-supervised nonlinear regression on these pairs to learn a mapping
f from g(xi) to xi.

Figure 4-12 shows how to use this technique to map the control points of lip

contours to images of a person whose lips exhibit that shape. The learned pseudo-
inverse takes as input a contour, represented as four control points (the same as the

output of g in the lip tracking experiment) and returns the pixels of an image. This

function is represented using RBFs, so the output interpolates between the examples
in the training set (labeled as well as unlabeled). Hence, there is some blurring in

some of these images.
Alternatively, we can define the pseudo-inverse of g as

f(y) = arg min |g(x) - yIl. (4.3)
X
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Figure 4-13: Synthesized video using nearest neighbors. (top) The left hand moves
straight up while keeping the right hand fixed. (middle) The same motion, but with
the hands switched. (bottom) Both arms moving in opposite directions at the same
time.

For a given y, this pseudo-inverse returns the input to g that produces y. Whereas
the the inverse defined by Equation (4.1) searched for an f so that f(g(x)) e x, this
inverse insures that g(f(x)) e y. When the training set is large, this optimization
admits an efficient approximation. Instead of searching over all images, we may search
over the set of training images:

f(y) = arg min |g(xi) - y||. (4.4)

This approximation searches for the image whose assigned label is as close as possible
to the given label y. This reduces the task of computer an inverse to that of identifying
the nearest neighbor of y in the set of given and estimated labels in the training set.

Figure 4-13 shows the result of inverting the mapping learned in Figure 4-10. It
shows the result of manipulating the coordinate of the hand, and searching for an
image in the training sequence whose estimated hand coordinate is closest to the
specified hand coordinate.

These two approaches have complementary properties. The first approach rep-
resents the pseudo-inverse with RBFs, and thus interpolates between the training
images to generate the desired image. This interpolation can cause the output image
to be blurred, but in exchange, the resulting video sequence will be smooth. The sec-
ond approach avoids blurring by returning a frame from the training set. Although
it avoids blurring, the resulting video sequence will be jittery if the training set does
not sample the space of images densely.
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4.5 Choosing Examples and Tuning Parameters

The parameters and the choice of labeled points supplied to the semi-supervised
learning algorithm developed in the previous chapter can be tuned interactively. This
section provides guidelines for selecting which data points to label, and how to set
the parameters. We find that the algorithm returns similar results for a wide setting
of parameters, but that the choice of labeled examples has a strong effect on the
accuracy of the result.

Typically, it is only necessary to label samples that lie on the boundary of the
output space. For example, in the Sensetable experiment, we labeled the corners of
the table, and in the arm tracking example of Figure 4-10, we labeled extreme arm
positions. As is shown in Figure 4-5(right), the labels of points in the interior of
the labeled examples can usually be recovered very accurately, so it is not necessary
to label them. This is because there is often a direct path through the interior
between two labeled points , and the label of the interior points can be recovered with
temporal interpolation. However, if such direct paths through the interior between
the boundary examples do not exist, interior points may need to be labeled as well.
For example, in Figure 4-11, frames where the subject pointed to the 'X' in the middle
of the board had to be labeled, even though the appropriate parameters of the shape
of the arm for these frames lie in the interior of the other labeled frames. The problem
with these frames is that in this video sequence, to reach the 'X' from a boundary
point, the subject's arm followed a circuitous path through previously unexplored
interior regions of the board. Because this path wasn't very likely according to the
dynamics model, we had to explicitly label some points along it. The unsupervised
learning algorithm presented in the following chapter can be used to identify such
boundary points in a first pass, if these points cannot be easily identified by inspection.

Typically, only the parameters of the kernel need to be tuned. The algorithm
is insensitive to settings of the other parameters up to several orders of magnitude.
To tune the parameters, we initially set the kernel bandwidth parameter so that the
kernel matrix K captures both similarities and discrepancies between pairs of points.
When using a Gaussian kernel, if the bandwidth parameter is too small, K becomes
diagonal and all points are considered to be dissimilar. If the bandwidth parameter
is too large, K has 1 in each entry and all points are considered to be identical.
We initially set the kernel bandwidth parameter so that the minimum entry in K is
approximately 0.1. Other parameters, including the scalar weights and the parameters
of dynamics are initially set to 1. After labeling a few boundary examples, we run the
algorithm with this default set of parameters and adjust them or add new examples
depending on the way in which the output falls short of the desired result. Some of
the symptoms and possible adjustments are:

Boundary points are not correctly mapped: Like BNR, the algorithm may have
shrinkage to the center. One way to fix this issue is to provide more labels on
the boundary. Another solution is to increase a, and aa to under-damp the
dynamics. This creates the necessary overshoot at the boundary to correct the
shrinkage.
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The output is static, except for abrupt jumps at example points: This hap-
pens when the kernel bandwidth parameter is too small, forcing K to become
diagonal. Increasing this bandwidth fixes the problem.

Jittery outputs: If the recovered labels are not smooth over time, one can either
force g to become smoother as a function of x, or force the label sequence to
become smoother over time. The first fix is achieved by increasing A,, and the
second by decreasing the variance of the driving noise in the dynamics.

It takes two or three iterations of applying these rules before one converges on a good
set of parameters and labeled examples.

One can also search for the parameters of the model automatically. If there are
enough labeled examples, we can search for the parameter settings that minimize
the leave-one-out cross validation error on these these example points. To compute
this error, we withhold one of the labeled examples from the learning algorithm, and
estimate its label based on all the other examples. The error in this estimate, av-
eraged over several left-out examples provides a measure of performance for a given
setting of the algorithm. We use the simplex method to find the parameter settings
that minimize this cross validation error. This procedure can take many hours to con-
verge, because evaluating the leave-one-out error requires running the semi-supervised
learning algorithm once for each left-out point. Though it is possible to speed it up
by devising a recursive version of the learning algorithm that can quickly update its
solution when new labeled examples are added or removed, the experiments above
show that applying the rules of thumb above is sufficient for obtaining adequate per-
formance since the output of the algorithm is not strongly influenced by the settings
of the parameters.

Such fine-tuning is not usually necessary because the output of the algorithm does
not vary much with the parameter settings. Figure 4-14 shows the performance of the
algorithm on the expository discourse sequence of Figure 4-11 as the kernel width of
the kernel and regularization weight are varied by several orders of magnitude. The
other parameters were fixed to values we used to generate the results of Figure 4-11
and Table 4.1. The figure of merit is the average distance to the corrected sequence
used in the evaluation of Table 4.1. Wider kernels product better results, until nu-
merical problems are encountered. The algorithm produces the same result over a
large range of settings for this parameter. When the kernel bandwidth becomes very
small, K becomes diagonal, and the algorithm simply temporally smooths between
the labeled data. The algorithm also reports the same result for a large range of
settings for Ak, which governs the smoothness of g. The algorithm is also resilient to
a wide range of settings for the dynamics model. We drew 400 random joint sam-
ples of a, and aa, restricting both parameters in the ranges 10-4 to 103, and fixing
all other parameters to the settings used to generate the results of figure 4-11 and
Table 4.1. All the trajectories recovered with these parameter settings had similar
performance, with the average location error ranging from 3.528 to 3.53 pixels for one
corner associated with the hand, 4.77 to 4.78 pixels for the other corner associated
with the hand. The algorithm is similarly resilient to different settings of the driving
noise. We varied the diagonal elements of A, in a similar fashion, restricting all three
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Figure 4-14: (left) Average error in the position of each recovered corner in the data set

of Figure 4-11 as the kernel width parameter is varied over several orders of magnitude.
The parameter controls k(x, x') = exp (-g Ix - x'1I'). (right) Performance as the

weight Ak, which favors the smoothness of g, is varied. The algorithm has the same
performance over a wide range of settings for these two parameters.

parameters to lie between 10-7 and 106. All the trajectories recovered with these
parameter settings had similar performance, with the average location error ranging
from 3.528 to 3.53 pixels for one corner associated with the hand, 4.781 to 4.783 pixels
for the other corner associated with the hand.

On the other hand, the number and choice of labels has a strong influence on

the quality of the recovered trajectory. We ran our algorithm on randomly selected
subsets of the 13 labeled points used to generate the results of Figure 4-11 and Table

4.1. The parameters of the algorithm were fixed. Figure 4-15 shows the accuracy
with which the algorithm recovered one of the corners corresponding to the hand 200

of these subsets. The accuracy of the algorithm drops with the number of labeled
examples. Also note that given a fixed number of labeled examples, the choice of

the examples to label can affect the accuracy by as much as 16 pixels when only 3
examples are labeled.

We have used the guidelines of this section in selecting the parameters and labeled
points for all of the experiments in this chapter.
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Figure 4-15: Average error in the position of one of the corners corresponding to
the hand, as a function of the number of labeled examples used. Labeled examples
were chosen randomly from a fixed set of 13 labeled examples. Reducing the number
of labels reduces accuracy. Also, the choice of labels has a strong influence on the
performance, as demonstrated by the vertical spread of each column.
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Chapter 5

Uncovering Intrinsic Dynamical
Processes without Labeled
Examples

In the previous chapter, the combination of labeled data points and a prior that
enforced temporal coherency on the output allowed us to learn a transformation from
an input time series to a desired smooth time series. When this desired time series
represents a dynamical process that underlies the input time series, labeled points are
not necessary. In these cases, labeled points serve mainly to fix a coordinate system.

In this chapter, I devise an unsupervised algorithm based on the learning frame-
work of Chapter 3. This unsupervised learning algorithm is a fast way to uncover
a low-dimensional dynamical process underlying a high-dimensional time series, and
the inverse of the observation function from a hidden markov chain. Like the algo-
rithm of Chapter 3, this algorithm favors outputs that exhibit temporal dynamics,
but in contrast to the algorithm of Chapter 3, it requires no labeled input. Instead,
it replaces labeled points with aggregate constraints on the output time series, and
searches for a mapping that transforms observations to low-dimensional vectors that
evolve according to the specified temporal dynamics. These low-dimensional coordi-
nates are often recovered up to a rotation and scaling of the coordinates of the true
underlying dynamical process. When applied to the data sets in this chapter, other
learning algorithms that not take advantage of temporal coherence either completely
fail to recover the intrinsic process, or recover it with severe distortion.

The unsupervised learning algorithm in this chapter illuminates the relationship
between its semi-supervised counterpart described in Chapter 3 and various unsuper-
vised learning algorithms. I show that by removing terms in the cost function we
use for unsupervised learning, we obtain a cost functional whose optimum coincides
to the output of Kernel PCA on the unlabeled data set. By adopting a functional
representation based on nearest neighbors, and again removing some terms from our
cost functional, we obtain the embedding step of LLE. Thus, the semi-supervised
learning algorithms of the previous chapters are a supervised version of KPCA and
LLE's embedding step that take temporal coherence into account. Our algorithm's
cost functional is also very similar to a cost functional for nonlinear system identifi-
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cation. We show that our unsupervised learning algorithm approximately finds the
inverse of the observation function in a hidden Markov chain when the dynamics of
the chain are known and the observation function is invertible.

In addition to demonstrating the importance of dynamics in unsupervised learn-
ing, our algorithm has applications in many domains. Existing nonlinear identification
techniques [26, 90] are computationally expensive and susceptible to local minima,
and do not scale well with the dimensionality of the observations. By contrast, our
unsupervised learning algorithm is fast, does not get stuck in local minima, and be-
cause observations are used only through pairwise kernel evaluations, does not grow
in complexity with the dimension of the observed data, except to compute pairwise
similarities. This makes it particularly well suited for applications involving large,
high-dimensional data sets, such as video sequences or measurements from large-
scale sensor networks. Given a video sequence of a rotating object, we can recover
the parameterization of its pose up to a scale and rotation, with no training data.
This points to way to learning how to track without examples. Using our algorithm
as a practical nonlinear system identification method, we show how to track a target
moving in a large field of sensors when it is not known how the sensors map the
target's position to the measurements they provide. The algorithm uses only the raw
output of the sensors to recover the position of the target. To demonstrate this idea
on a real-world example, we apply it to the Sensetable data set of the previous chap-
ter, and recover, up to a scale, the mapping from its measurements to the position of
an RFID tag.

5.1 Algorithm: Unsupervised Recovery of Intrin-
sic Dynamical Processes

As explained in Section 3.5, simply removing observations from the quadratic cost
function (3.9) does not result in an unsupervised learning algorithm, because the
optima of the resulting functional collapse to zero. To apply the learning framework
of Equation (3.3) to unsupervised situations, we replace terms involving labeled data
with constraints that capture a priori knowledge about the aggregate statistics of
the intrinsic process, and prevent it from collapsing to zero, to obtain the following
optimization:

T N

minE 1g(xi) - yi||2 + AsS(Y) + Ak S :gd|| (5.1)
i=1 d=1

S.t. (5.2)
t=1
T

t = 0 (5.3)
t=1
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The first term ensures that g fits the estimated missing labels. The term weighted by
A, favors regular sequences Y, and the term weighted by Ak favors smoothness of g.
The first constraint is common in manifold learning algorithms like LLE, Laplacian
Eigenmaps, and even Isomap (since it uses MDS). It ensures that each dimension of
Y has unit variance and is orthogonal to all other directions. This captures a belief

that the coordinates of the intrinsic process consist of independently evolving Markov
chains with known dynamics. The second constraint sets the origin of the coordinate
system to the mean of the output samples. It prevents the possibility of Y collapsing
into a thin shape far from the origin, as we have observed in the output of LLE (see
Chapter 4 and Section 5.5).

As in Section 3.2, applying the Representer theorem, adopting the penalty function

S for linear Gaussian dynamics, and vectorizing, the optimization becomes:

N

min( | Kcd - y 1112 + Akcd'KCd + A, (yd)' Qyd (5.4)
CY d=1

s.t. -YY' = I (5.5)
T
Y1 = 0, (5.6)

where the kernel matrix K has k(x, xt) in its stth entry, and C are the coefficients
of the RBF representation for g(y) = jT ctk(x, xt). The column vectors cd and yd

collect the dth component of the vectors ct and yt respectively.
Rewriting Equation (5.4) in matrix form, we get

N -cd' '[~ 2 + AkK -K ~ ~cd]

miC Y d -K I + A, j1 _yd (5.7)
d=1 -(.

s.t. -YY' = I(58)
T
Y1 = 0. (5.9)

This cost is in the form of Equation (2.31), whose solution reduces to an eigenvalue
problem. We can reduce the size of the problem before applying the result of Section

2.7 by eliminating C. The optimal coefficients can be found by least squares as a

function of Y:

C* = Y(K + AkI)-l (5.10)
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Plugging this value back into the cost function yields a minimization only over Y:

N

min (yd)' (I + AsQ1 - K(K + AkI)-') yd (5.11)
d=1

s.t. -YY' = 1 (5.12)T
Y1 = 0. (5.13)

The optimal Y can be found by applying the result of Section 2.7:

Z (I + AQ 1 - K(K + AkIf 1) Z = UDU' (5.14)

Y = U1...dZ (5.15)

C*= Y*(K + AkI)-' (5.16)

The UDU' is the eigen decomposition of the matrix on the left of Equation (5.14),
where as explained in Section 2.7 The columns of Z span the null space of 1, so they
span the space of solutions of the mean constraint Y1 = 0. The eigenvalue problem
(5.14) is of size (dT - 1) x (dT - 1), and can be solved quickly since we only require
the top d eigenvectors by a variety of eigenvalue solvers such as the power, Lancosz,
or Nystrom methods [27].

5.2 Relationship to Manifold Learning

The algorithm of the previous section is closely related to manifold learning and
dimensionality reduction methods such as LLE [70] and Kernel PCA (KPCA) [74]. A
variant of KPCA [74] is obtained by dropping some of the terms in the cost functional
(5.1). By further adopting a nearest-neighbors form for the mapping instead of the
RBF form, we obtain an algorithm that is similar to LLE. The modifications of
the algorithm of Chapter 3 to an unsupervised algorithm, and the modification of
the unsupervised algorithm to manifold learning sheds light on the effect of adding
labeled points and dynamics to unsupervised manifold learning algorithms. As we
will see in Section 5.5, incorporating knowledge about dynamics is often sufficient for
obtaining coordinates on the manifold that capture the physical process that underlies
the high-dimensional data.

5.2.1 Relationship to Kernel PCA

The unsupervised algorithm of the previous section is a variant of Kernel PCA. By
removing the dynamics prior S and the zero-mean constraint on the output, we ob-
tain a an algorithm that, like KPCA [74], recovers the eigenvectors of the kernel
matrix. This derivation also is a new insight on KPCA, showing that it finds a non-
linear function that projects high-dimensional points to uncorrelated low-dimensional
representations.

65



To see this, set A, to zero in the learning cost functional (5.1) to remove the
influence of the dynamics prior, and remove the zero-mean constraint to obtain the
following optimization:

T N

min Z |g(xi) - y l1' + A |gd||| (5.17)
t=1 d=1

1
s.t. -yyT = 1. (5.18)

T

Applying the representer theorem, writing in matrix form and solving for C, as in

the previous section, results in this optimization problem:

N

m n (yd)' K(K + AI) -lyd (5.19)
d=1

s.t. -YY' = I. (5.20)
T

Factoring K as K = USU', with U'U =I, and S diagonal, this becomes a Rayleigh
quotient:

N

min (yd)'U (S(S + AI)~1) U'yd (5.21)
d=1

1
s.t. -YY' = I. (5.22)

T

The optimum of this problem is achieved by assigning the N largest eigenvectors of
K to Y, so that Y* = U'.N. Accordingly, the optimal coefficients are given by
Equation (5.10) to be C* = (S1...N + AI U1U...'N

The original KPCA algorithm as derived in [74], on the other hand, learns a
function whose coefficients are given by Ckpca = U1...N. This discrepancy between

Ckpca and C* only influences the scale of the output coordinate system, so that

g*(x) = (S1...N + AI 9'gkpca(x). KPCA is usually described as performing linear PCA
in a high-dimensional feature space in which the inner product < -, - > is evaluated
using the kernel k(., .). This interpretation does not provide any insight about its
recovered low-dimensional coordinates, because principal components in feature space
need not correspond to sensible directions of variation in low-dimensional space. The

Gaussian kernel maps points to the surface of a high-dimensional sphere 1, so the

subsequent application of linear PCA on points that lie on this curved surface is not

well-motivated. Bengio et al. [10] showed that KPCA searches for a sequence of

functions whose empirical outer-product best reconstruct the kernel matrix K.

An analysis similar to the above shows that a simpler derivation of KPCA can

'This is easy to see because every point in feature space has norm < x, x >= k(x, x) = 1. The

inner product between every pair of point is positive because k(x, x') > 0, so that the angle between

every point on the surface of the sphere is acute. Hence, all points in the feature space lie on the

same orthant of the hypersphere.
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be obtained by solving the optimization ming EN I1dg|, subject to the constraint

_ T1 g(xt)g(xt)' = I. The resulting low-dimensional coordinates yt = g(xt) are ex-
actly the coordinates recovered by KPCA. Whereas in standard PCA, g is forced to
be linear, KPCA allows for nonlinear projections.

We have shown that our algorithm extends KPCA to time series data by placing
additional priors on the hidden sequence Y. Based on this interpretation, we also pro-
vided a simple derivation of KPCA as learning a nonlinear function that decorrelates
high-dimensional observations.

5.2.2 LLE

Adopting the nearest-neighbors function representation of Section 3.4 and ignoring
temporal coherency reduces our unsupervised learning algorithm to an algorithm
that is very similar to the embedding step of the Locally Linear Embedding (LLE)
algorithm [70].

To find a low-dimensional representation for a high-dimensional data set, LLE
first captures the local neighborhood relationship between high-dimensional points.
It does this by tuning the entries of an adjacency matrix W that reconstructs each
observed high-dimensional point using its neighbors. Since reconstruction from neigh-
bors can be expressed as a linear operation, the reconstruction matrix can can be
found by minimizing reconstruction error ||XW - X||F over W using least squares.
The low-dimensional coordinates Y are assumed to preserve this neighborhood struc-
ture. Once W is learned, LLE embeds the high-dimensional data by searching for
low-dimensional coordinates that are best reconstructed using these weights. To find
these, LLE solves

N

min | |WYd - yd112  (5.23)
d=1

s.t. YY' = I (5.24)

The constraint ensures the the solution does not trivially collapse to Y = 0. Our
algortihm performs this embedding step if we adopt a nearest neighbors form for the
nonlinear mapping.

As in Section 3.4, let g take the nearest neighbors form. Each component of g can
be written as gd(x) = W'yd, with w., a weighted indicator vector for the neighbors
of x. Applying gd to each high-dimensional point and stacking the results vertically,
results in a linear relationship between gd and the output sequence:

L-dXT J [= --- y = Wyd. (5.25)

Substituting this form into (5.1), with S enforcing temporal coherency, and ig-
noring the smoothness penalty on g (since the neighborhood size already serves as a
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smoothness penalty), we get

N T

min ||Wyd - ydI2 + As (yd)' Q d (5.26)
d=1 i=1

s.t. --YY' = I (5.27)
T
Y1 = 0. (5.28)

Compared to the LLE embedding step, this cost function adds a zero-mean con-
straint Y to fix the coordinate axis, and a penalty to favor temporal smoothness. We
have chosen W to be the re-weighted adjacency matrix of the neighborhood graph
in the input space, but it could be trained, as it is in LLE, for optimal linear re-
construction in input space. We have shown that our unsupervised algorithm, and
therefore the semi-supervised algorithm of Chapter 3, are versions of LLE's embedding
step that are enhanced with a prior on dynamics and use RBFs instead of nearest
neighbor functions to represent the mapping between high-dimensional inputs and
low-dimensional outputs.

5.3 Relationship to System Identification

The unsupervised learning algorithm of this chapter approximately estimates the pa-

rameters of a generative model for the observations, even though we derived it as

searching for a projection from observations to low-dimensional trajectories. Esti-
mating the parameters of a generative model allows us to perform a variety of useful

operations such as predicting, smoothing or filtering the observed sequence. Our
algorithm finds the inverse of the observation function in a hidden Markov chain
whose latent states evolve according to known linear-Gaussian dynamics. The ob-

servations correspond to the samples of the the input time series X, and the states
are the samples of the output time series Y. A nonlinear observation function f,
whose inverse the algorithm estimates, maps latent states to observations. Exact

parameter estimation in such a generative models is computationally expensive. Cur-

rent approximate techniques [26, 90] are susceptible to local minima, and do not

scale to very high-dimensional data sets such as video sequences and measurements
from sensor networks. Rather than applying approximate inference methods to the

exact estimation problem, by searching for the inverse of the observation function
instead of the function itself, our approach modifies the generative model slightly

and estimates the parameters in this approximate model exactly. When applied to

very high-dimensional data sets, this allows our algorithm to overcome the signifi-

cant computational and storage burdens of current nonlinear system identification
techniques.

Nonlinear system identification is the process of estimating the parameters of a

nonlinear dynamical system given only observations. Consider the following genera-
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Figure 5-1: A generative model for time series. Each state yt is an underlying rep-
resentations of the observed samples xz. The observations are obtained by applying
the observation function f to yt and corrupting the result with noise.

tive model for the observed time series X:

Y ~ p(Y) (5.29)

Xt = f (Y) + Vt, (5.30)

where f : JZN -* 7M is a nonlinear observation function, and the Vt are iid observation
noise. We will assume that the dynamics of the latent process Y is known, and is

captured by a zero-mean Gaussian distribution p(Y) x exp (_ N d(y)' QJYd) 2.

These equations define a generative model p(X, Yjf) over states and observations,
with Equation (5.30) defining the observation model p(xtlyt, f) and Equation (5.29)
defining a prior over states. The RKHS norm of f may also inform a prior distribution
p(f) on f. Figure 5-1 depicts the independence relationships in this generative model.
Given a generative model, one can perform smoothing by evaluating p(Y|X), evaluate
evidence by computing p(X), generate fantasies from p(X), or predict output frames
with p(X|X).

In this thesis, I use the term "nonlinear system identification" to mean the problem
of inferring f and Y only, whereas typically, the term refers to estimating all the
parameters of the model, including those of the observation noise and the parameters
of the dynamics. In this setting, all the parameters of the model (5.29)-(5.30) are
known except for the observation function f. Finding the maximum a posteriori
states and the observation function requires a joint maximization over f and Y on the
distribution p(Y, X, f). Assuming zero-mean spherical Gaussian observation noise,
taking logs, and removing constant terms and factors, this amounts to the following
optimization:

T M N

mn E |f (yt) - Xt||2 + Ak E 11fdI + As E (yd)' yd. (5.31)
fYt=1 d=1 d=1

2In the dynamical system literature, latent variables are denoted by X and observations by Y.
In order to remain consistent with the rest of the thesis, I have denoted the quantities we wish to
estimate by Y, and the input of the algorithm by X.
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The first term favors a fit between observations and latent variables, the second term
favors a smooth observation function, and the third term favors state sequences that
evolve according to the given dynamics. A similar cost function is obtained if we

treat Y as a nuisance variable by solving maxf fy p(Y, X, f). By Expectation Maxi-
mization [54], we get the optimization maxf,q fy q(Y) logp(Y, X, f) + '(q), where q
is a probability distribution over Y. As shown in Section 5.5.2, the difficulties in the
joint optimization remain, and are amplified by the integration.

Existing techniques for identifying hidden Markov models with nonlinear observa-
tion functions [26, 90, 67] are based on the coordinate ascent optimization strategy.
Our experiments show that they require many iterations to converge even when ini-
tialized near the true answer, and they tend to get stuck in local minima despite the
simplifying approximations they make. For example, [26] uses EM to find the maxi-
mum likelihood parameters of the model while marginalizing out the state sequence

Y, and [90] uses Variational Bayes to find the posterior over Y and the parameters
of the model. Both of these algorithms are approximate learning algorithms: the

Variational Bayes formulation of [90] assumes a convenient functional form for the

posteriors, and the E-step of both algorithms relies on approximate state estimation.
Despite these approximations, these algorithms are subject to local minima because
f is a nonlinear function of y with no other guarantees beyond smoothness.

When the observations are high-dimensional, as is the case with video frames,
these methods run into another difficulty. Traditional representations of nonlinear
functions, such as multilayer perceptrons (MLP) [90] and radial basis functions (RBF)
[26], require many parameters to represent a mapping to a high-dimensional space,
resulting in an optimization over a large number of variables. For example, in analyz-
ing a sequence of observed images, if we adopt the RBF form f(y) = ,L ctk(y, yt),
each ct must have as many elements as there are pixels in each image. If T is the

length of a video sequence, estimating the parameters of the function would require
performing an optimization over as many coefficients as there are pixels in the video
sequence. This storage requirement may not be acceptable for large sequences, and

operating on such a representation may be too computationally intensive. The MLP
representation has a similar requirement. The most common system identification
approach is to directly model an autoregressive k-step-ahead predictor that predicts
future measurements given a history of measurements [38]. These predictor models

also requires a large number of parameters to represent high-dimensional outputs.
Further, because there are no latent variables in these models, they cannot support

many of the tasks we mentioned earlier. Hence, as far as we are aware, only linear

system identification techniques have been used to learn state-space models of video

[20, 83].
The unsupervised learning algorithm presented earlier in this Chapter circumnav-

igates the problems that arise when searching for f by assuming that f is smooth

and invertible, and by approximately searching for its inverse. It approximates the

functional of Equation (5.31) with a quadratic cost function, so that when adopting

an RBF representation for g, this search reduces to an eigenvalue problem in which

high-dimensional observations are summarized by entries of a kernel matrix. Hence
finding g is not subject to local minima, and the dimensionality of the data set does
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not factor into the computational or storage complexity of the algorithm, except to
compute the kernel matrix. The inverse of this projection can later be implicitly
plugged back into the generative model without explicitly computing and storing f.

One strength of the cost function for nonlinear system identification problem posed
in Equation (5.31) is that it does not require the observation function to be one-to-
one. When f is not invertible, a given x may correspond to many ys, and observing a
particular y may make multiple values of x feasible. In our model the mapping g trans-
forms noisy observations to states, and so cannot entertain the possibility of multiple
xs that are very different from each other. Our model can only maintain the possibil-
ity of nearby xs generating the same observation. The invertibility requirement means
that every observation must be uniquely mappable to its underlying representation.
This is the case in many applications of interest. For example, in visual tracking, as
long as an object remains visible, its pose corresponds uniquely to its appearance, so
its instantaneous appearance can be mapped to its pose. This invertibility require-
ment means that the manifold of noiseless observations may not cross itself. This
assumption is implicit in some manifold learning algorithms. For example, Isomap
requires that the manifold must be an isometric embedding of a convex compact ball.
The isometry requirement is that V IIy - Y'12 = dG(f(y), f(X')) , where f(y) is the
lifting of a coordinate y, and dG is the geodesic distance along the manifold in the
embedding space. This formula implies that f(y) = f(y') <-> y = y', which is

exactly the one-to-one requirement on f. If f is not invertible, the interpretation in
this section is no longer applicable, though the algorithm still produces results, and
the manifold learning interpretations of the previous section are still valid.

The objective function for nonlinear system identification, Equation (5.31), is
similar to the objective function for our unsupervised learning algorithm, Equation
(5.1), with two differences. First, our learning cost functional has constraints. These
constraints can be added to Equation (5.31) to fix a coordinate system. Second,
the data terms involve functions that map in opposite directions. Despite these
discrepancies, under certain conditions, the optimum function according to Equation
(5.1) closely approximates the inverse of the optimum function according to Equation
(5.31).

If we force f to be a locally area-preserving one-to-one function with a small
curvature compared to the observation noise, Equation (5.31) can be recast as an op-
timization that looks similar to (5.1). If f is isometric, it is locally area-preserving, so
this requirement is less restrictive than Isomap's requirement. Since f is a diffeomor-
phism, it has a unique inverse, g, so that f(g(x)) = x. The following approximation
for the data fitting term holds:

1f (yi) - XiIl 2 = ff(y, + g(x) - g(zu)) - XI|2 (5.32)

Of (Y X) 12
~f(g(xi)) -x + (yj - g(zi))|| (5.33)

- ||yi - g(Xj)||2 g ) )- (5.34)

= yi - g(X)|| 2 . (5.35)
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In the second line, the first order Taylor expansion of f about g(xi) becomes more

accurate as the curvature of f becomes smaller compared to the excursion g(xi) - yi,
whose magnitude is determined by the amount of observation noise. The final step
utilizes the local area-preserving property of f.

This approximation can be substituted into (5.31) to yield an optimization that

is identical to (5.1), after imposing a suitable smoothness penalty on g, and adding

the constraints of (5.1) to fix a coordinate system

5.3.1 Substituting into the Generative Model

Once the function g and the latent states Y* have been estimated, the inverse f of
g can be evaluated. This in turn allows us to perform a variety of inference tasks on

the generative model (5.29)-(5.30). Because the output of f(y) is a high-dimensional
quantity, representing f in an explicit non-parametric form such as MLP or RBF
would be unwieldy, as argued before. Instead, we can approximately evaluate f at

a particular y without requiring additional storage. We do this by searching for the

k nearest neighbors of y in Y*, and interpolating between their corresponding x's
to obtain : - f(y). Filtering, smoothing, and calculating the evidence under the

generative model can then be performed by standard techniques that do not require
the derivatives of g, such as the Unscented Kalman Filter [39].

5.4 Relationship to other Methods

In addition to our use of dynamics, a notable difference between our algorithm and the

general manifold learning framework laid out in [80], the nonlinear ICA algorithm of

[89], or [46] is that instead of learning a mapping from states to observations, we learn
mappings from observations to states, which reduces the storage and computational
requirements when processing high-dimensional data.

Independent Component Analysis algorithms (ICA) [65] find mappings from ob-

servations to low-dimensional representations that exhibit various information theo-

retic properties. Instead, our algorithm requires that each low-dimensional coordinate
exhibit temporal coherency, and be uncorrelated from the other coordinates.

As far as I am aware, in the manifold learning literature, only Jenkins and Mataric

[36] explicitly take temporal coherency into account. They have extended Isomap [86]
by explicitly assigning similar low-dimensional coordinates to temporally adjacent
samples.

5.5 Experiments

The small storage requirement and the fast and local-minimum-free computations of

the unsupervised learning algorithm make it well-suited for analysing high-dimensional
data sets. These experiments show that the recovered latent states are close to the

true states of the process that underlies the high-dimensional observations, and that

when the observation function is invertible, the mapping recovered by this algorithm
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is close to the inverse of the true observation function. All of our experiments use a
spherical Gaussian kernel.

5.5.1 Recovering the Inverse Observation Function in Low-
dimensional Datasets

I first show that the recovered mapping is empirically close to the inverse of the true
measurement function in low-dimensional settings. Because in these experiments the
observation function maps scalars to scalars, visualizing the results will be easier
than subsequent experiments that deal with higher-dimensional data. Section 5.5.2
shows that our algorithm compares favorably to the nonlinear system identification
procedure of [26] on these data sets.

Figure 5-2(left) depicts a segment of a 1500 sample 1D signal X generated by
observing a latent signal Y through an invertible nonlinearity. The latent process
was produced using a linear-Gaussian autoregressive model st+1 = Ast + Wt with A =
[.9 .20 11-5 15

10 5 .*1, and wt zero-mean with covariance A, = diag([2 x 10- 2 x 10-5 20]).
.0 0 .1

The samples yt of Y consisted of the first component (the position component) of
each st. Y is shown in Figure 5-2(middle). To generate the observations X shown in
the left panel, each yt was passed through the observation function f(y) = tan-1 (10y),
whose inverse is shown in Figure 5-2(right).

The observed sequence shown in Figure 5-2(left) was processed by the algorithm
of Section 5.1 with parameters A, = 1, Ak = 1, kernel variance o2 = 1, and with A
and A, set to their ground truth values. To recover the correct scale, the constraint
l'YY' = I was changed to yY = o2,I, where a2 is the steady-state variance of
T chne to 1 Y ' cr we
the position component of the Markov chain. This ensures that the second moments
of the recovered Y match the second moments of the true latent variable sequence.

Figure 5-2(middle) compares the recovered latent process to the true latent pro-
cess. Note that its scale is recovered correctly because a correct generative model
of the latent process was available. Usually, we only know this model very approx-
imately, and the scale of the recovered signal will not be recovered accurately. The
recovered coefficients define the function g depicted in Figure 5-2(right) along with
the inverse of the true observation function. Figure 5-3 shows the recovered func-
tions g and the recovered states for a variety of other nonlinear observation functions.
These recovered functions coincide with the inverse of the true function.

Figure 5-4 shows the embedding of a 1500 step 2D random walk into 7' by the
function f (x, y) = (x, y cos(2y), y sin(2y)). The 2D walk was limited to a rectangular
areas and reflected off the boundaries of the rectangle. In addition to this behavior,
the dynamics model used to generate the walk was different from the one specified
in our algorithm, to demonstrate resilience to errors in the dynamics model. Using
the recovered g, the figure plots g(x) where x are generated by lifting a 2D grid using
f. The result is a flat surface that preserves the global characteristics of the true
low-dimensional coordinates up to a scale and some shrinking in the lower left corner.
Therefore the recovered g is close the inverse of the original mapping, up to a scale
change. Varying the dynamics up to an order of magnitude on the parameters of the
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Figure 5-2: (top) Observed 1D signal. (bottom-left) Latent process underlying the
observations in the left panel (solid line), and recovered latent process (dotted line).
(bottom-right) The inverse of true observation function f(y) = tan'(10y) (solid

line) and its recovered inverse (dotted line) The latent states and the inverse of the

observation function are recovered accurately.
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(solid) and the recovered inverse (dotted). (bottom-right) The true latent states

(solid) and the recovered latent states (dotted). The inverse of the true observation
function and the states are recovered accurately.
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dynamics model yields similar results, but changes the scale of the mapping. Isomap
performs poorly on this data set due to the low sampling rate on the manifold and the

fact that the true mapping g is not isometric. KPCA chooses a linear projection that

simply eliminates the first coordinate axis because this projection is smooth and the
symmetry of the roll about the origin satisfies KPCA's constraint (5.18). ST-Isomap
produced the best results when it was run in a mode where it emulated Isomap.
In this mode, the only difference between Isomap and ST-Isomap is that the latter

always includes temporal neighbors in the neighborhood of each point. There is some

folding in the output of ST-Isomap, and the true underlying walk is not recovered.
We found the optimal parameter settings for Isomap, KPCA, and ST-Isomap by grid
search over the parameter space of each algorithm.

On a 1 Ghz Pentium III, each of these examples took about 3 minutes of CPU
time. These low-dimensional examples show that when the true observation function
is smooth and invertible, our algorithm recovers it accurately and quickly.

5.5.2 Comparison with the Algorithm of Roweis and Ghahra-
mani

We evaluated the nonlinear system identification algorithm of Roweis and Ghahra-
mani [26] on the data set of the previous section. Because it learns a mapping a from
low-dimensional space to a high-dimensional space, its memory requirements prevent

us from running it on higher dimensional data sets. Because it performs nonlinear
state estimation in a hidden Markov chain with arbitrary smooth observation func-

tions, the algorithm converges only when started at solutions that are sufficiently close
to the true solution, and may become unstable. We also found that the algorithm,
as described in [26] is significantly slower than our unsupervised learning algorithm.

Our implementation of this algorithm seems to work well when the observations are
low-dimensional, and the observation function is smooth and one-to-one.

Since in our setting, the dynamics of the latent states are known a priori, our
implementations of this algorithm estimate only the most likely observation function
in the generative model (5.29)-(5.30), with the latent states marginalized out. The

algorithm of Roweis and Ghahramani takes approximate EM steps to perform the
optimization arg maxf fy p(X~f, Y)p(Y)dY. In the ith iteration of the algorithm,
the M-step finds fi) = arg maxf Eq(i) [log p(X, Y If)], where q(') is a Gaussian approx-

imation to p(Yf (-1), X), and is calculated in the E-step of the iteration. The E-step
finds the Gaussian approximation q by applying a nonlinear RTS smoother [41] to

the observations X, with the observation function f(- 1 ) estimated by the M-step of

the previous iteration. The M-step finds f () by fitting a function to the observed X's

and the estimated q('). This step reduces to finding arg minf Eq(i) [ET 1 I|f(yt) - Xt |9.
When adopting the RBF form f(y) = Z3 cjk(y, pj) with Gaussian kernels centered
at fixed locations pj, this operation can be performed in closed form. Define Ky as a

kernel matrix whose jtth element is k(pj, yt). The optimization of the M-step becomes

arg minc Eq(i) [ICKy -X12], which is optimized by C* = XE(i) [Ky]'Eq(i[KyK'y] 1 .
Expectations of a product of Gaussians under a Gaussian distribution can be calcu-
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Figure 5-4: (top-left) Low-dimensional ground truth trajectory. Points are colored
according to their distance from the origin in the low-dimensional space. (top-middle)
Embedding of the trajectory. (top-right) Recovered low-dimensional representation
using our algorithm. The original data in (top-left) is correctly recovered. To further
test the recovered function g, we uniformly sampled a 2D rectangle (middle-left),
lifted it using the true f (middle-middle), and projected the result to 2D using the
recovered g (middle-right). g has correctly mapped the points near their original
2D location. Given only high-dimensional data, neither Isomap (bottom-left), KPCA
(bottom-middle), nor ST-Isomap (bottom-right) find low-dimensional representations
that resemble the ground truth. These figures are best viewed in color.
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lated efficiently [26], yielding a closed form solution for C in the M-step.
Roweis and Ghahramani's algorithm requires that the RBF centers be placed man-

ually, whereas our unsupervised learning algorithm simply places the RBF centers at

the observed data points. Although the authors describe a way to automatically mod-
ify these centers by taking gradient steps, they show no experiments demonstrating
the success of this technique. Computing these gradients involves evaluating expec-
tations of Gaussians up to fourth order, which proves to be tedious. We therefore did

not implement this feature.
We also experimented with a joint-max version of Roweis and Ghahramani's al-

gorithm that found MAP estimates of the states as well as the observation function.
Our joint-max algorithm uses a smoother to estimate the mode of p(YIf, X), and

fits an RBF f to the resulting mode Y, iterating to a joint mode of p(Y, f IX) using
coordinate ascent.

To ensure that our implementation of this algorithm was free of bugs, the smoother
of the E-step and the function estimator of the M-step were tested separately. We

compared our implementation of the M-step to a brute-force solution that calculated
the expectations by monte carlo sampling. The comparison consisted of defining an
arbitrary Gaussian q, choosing an arbitrary nonlinear function, and passing the mode

of q through this function to generate observations. The results of the two algorithm
matched when applied to this data, and looked similar to the ground truth functions
that were used to generate the observations.

We compared various smoothers against each other to find the best smoother
for the E-step and to ensure that our implementations were free of bugs. Four of
the smoothers we tested were based on the RTS smoother, performing a forward
filtering pass followed by a backward smoothing pass. Of these, two used an Unscented
Kalman Filter [39] for the forward pass, and the other two used an Extended Kalman
Filter. The backward pass of all the smoothers used an extended backward filter, and

differed in whether they linearized about the states recovered by the backward pass,
as is suggested in [26], or linearized about the smoothed estimate. The fifth smoother
we tested used Newton-Raphson to estimate the mode of p(YIf, X), and fitted a

Gaussian at this mode using Laplace's method to obtain a Gaussian approximation
to p. We tested these smoothers on a variety of observation functions, and found
that they yielded similar results for very smooth, one-to-one observation functions.
They all failed to recover the latent states accurately when the observation function

was not one-to-one because such observation functions induce local optima in the

state posterior p(Y f, X). Only the smoother based on Newton-Raphson returned
sensible results in regions where the derivative of the observation function was close

to zero, so we used it in our implementation of the E-step. Our implementation of

this smoother employs efficient linear algebra routines, and runs faster than Kalman

filter-based smoothers by about 40 percent.
The RBF representation used 600 1-dimensional kernels with variance 0.5 with

centers placed uniformly from y = -3 to y = +3. The parameters of the dynamical

model were set to their ground truth values. The variance of the observation noise was

set to a very small value (104), since the data set is generated without observation
noise. This effectively multiplies the driving noise of the dynamics model by 104.
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Figure 5-5 plots the recovered functions for the data sets of the previous section.
The figure also displays the most likely latent states given the estimated observation
function. The joint-max version of the algorithm took about an hour to converge on
a 1Ghz Pentium III, whereas our algorithm took only a few minutes. The version of
the algorithm that marginalizes over states took three days to converge on a 3.2 Ghz
P4, and returned similar results as the joint-max version.

The recovered functions are shrunk horizontally, and the function recovered for
f(y) = tan1 (10y) is curved the wrong way. Reducing the number of RBF centers
results in linear estimates for f that exhibit no curvature at all, even though as few
as 8 RBF centers are sufficient for representing the true f with high fidelity. Finally,
the EM iterations were initialized with an RBF fit to the ground truth function.
Randomly initializing the function, or initialing it at zero resulted in the smoother of
the E-step to fail as explained above.

Figure 5-6 shows states recovered by this algorithm when applied to the swiss roll
data set of Figure 5-4. The true observation function f(x, y) = (x, y cos(2y), y sin(2y))
is not recovered, because smoothing with the recovered function simply projects the
observations without unrolling the roll.

The algorithm of Roweis and Ghahramani is framed as a MAP estimation of the
parameters of the generative model. However its function representation requires
too many parameters for us to apply it to subsequent data sets in this thesis. Our
implementation of the M-step can solve for about 8000 parameters with 1 Gigabyte
of RAM within 10 minutes per iteration on a 1Ghz PIII, whereas as explained earlier,
we would require upwards of 1 million parameters to learn a mapping from states to
100 x 100 pixel frames of a 100 frame video. In addition, due to shortcomings in the
smoothing operation of the E-step, it suffers from instabilities when the current iterate
of the observation function is not one-to-one. This problem could be remedied by
using a more sophisticated smoother based on monte carlo sampling, and performing
an exact M-step, though this would further increase the computational complexity
of the algorithm. Instead of performing approximate EM steps, Section 5.3 shows
that our algorithm optimizes an approximation of the likelihood function and obtains
reliable mappings.

The algorithm of Valpola et al. [90] is similar to that of Roweis and Ghahramani,
with two differences. First, it uses an MLP representation for f rather than RBFs.
This does not alleviate the requirement for the number of parameters to solve when
learning a mapping to a high-dimensional space. Second, instead of searching for a
point estimate for f, it uses EM to approximate a posterior over f by variational
Bayes. Its M-step still relies on a smoother, so it will surfer from the same instability
as Roweis and Ghahramani's algorithm.

5.5.3 Recovering Inverse Observation Functions for Image
Sequences

Video is a very high-dimensional signal, yet a few smoothly varying degrees of freedom
govern the appearance of many dynamic scenes. These latent degrees of freedom may
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Figure 5-6: Low-dimensional states recovered for the swiss roll data set of Figure
5-4 by the algorithm of Roweis and Ghahramani [26]. The recovered function simply
projects the 3-dimensional observations to 2 low-dimensional space without unrolling
the roll.

correspond to the pose of objects, illumination conditions, or other physical states of
the scene. Given a video sequence, we would like to learn a generative model of the
appearance of the scene that takes into account these low-dimensional processes, to
enable traditional time series operations on video sequences, such as predicting future
frames, denoising, classification, anomaly detection, and dimensionality reduction.
Our unsupervised learning algorithm can be applied to a video sequence of a rotating
object to recover a function that maps the pixels of an image of the object to the the
parameters that govern its appearance.

We generated a video sequence of a cube rotating along two axes. Figure 5-7 shows
a few frames of this 2000 frame sequence. The goal in this experiment is to learn a
function that maps an image of a cube to its 2-dimensional pose parameters. To
show resilience to mismatch between the true dynamics and the assumed dynamics,
different dynamics were used to generate the path of rotations than those specified
to our algorithm, including reflections off of the boundary in the space of rotations.

We used stable third order dynamics, with A = 00.9 0.2 , and E a diagonal matrix
0 0 0.9

with a few orders of magnitude more noise in the acceleration components than the
velocity or position components.

Figure 5-7 plots the low-dimensional coordinates recovered by our algorithm and
various other unsupervised learning algorithms. The coordinates recovered by our
algorithm are close to the true low-dimensional coordinates that were used to generate
the sequence, so the recovered g is close to the inverse of the true observation function
f. Note that the mapping between rotations and appearances is not isometric, since
infinitesimal rotations produce different amounts of change in the appearance of the
cube depending on its instantaneous rotation. This violation of Isomap's isometric
assumption explains why its recovered poses are stretched in places. Both Isomap and
KPCA pull together rotations that make the top face of the cube face the camera,
because the appearance of the face is similar under all such poses. Use of dynamics
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(a) (b) (c) (d)

Figure 5-7: (top row) A few frames from the synthetically generated rotating cube
sequence. Only the azimuth and elevation of the cube are modified. (a) Shows the
true elevation-azimuth trajectory, (b) the trajectory Y* recovered by our algorithm,
(c) by KPCA, and (d) by Isomap. Our algorithm recovers the true rotation up to a
flip, but with very little distortion. Because appearance is not an isometric function
of rotation, Isomap's trajectory is unevenly stretched.

allows our algorithm to disambiguate between these situations. KPCA also exhibits
folding, which is absent from Isomap and our algorithm's output.

For this 2000 frame sequence, the algorithm runs in about 5 minutes on a 3 Ghz
P4. In setting the parameters, we followed the guidelines of Section 4.5. Given only
a video sequence of the rotating cube, a description of the dynamics of the latent

states, and no labeled examples, our algorithm was able to recover a function that
maps images of the cube under rotation to scaled versions of the underlying rotation.
Note that the observations were raw 100 x 100 pixels, so this is a nonlinear system

identification problem with 10000-dimensional observations.

5.5.4 Learning to Track in a Large Sensor Network

We consider an artificial distributed sensor network where many sensor nodes are

deployed randomly in a field in order to track a moving target. The location of the
sensor nodes is unknown, and the sensors are uncalibrated, meaning that it is not
known a priori how they map the position of the target to the measurements they
report. We will only assume that they maps the position of the moving to their

reported measurement smoothly. Given only the measurements from the sensing
nodes, we wish to track a target as it moves about in the sensing range of this sensor
network. This situation arises when it is not feasible to calibrate each sensor prior

to deployment, or when variations in environmental conditions affect each sensor

differently. Assuming only that each sensor's observation function is smooth and

memoryless, and that the target follows given dynamics, our unsupervised learning

algorithm finds a transformation that maps observations from the sensor network to

the position of the target. In our simulations, this transformation recovers the true

position of the target with minor distortion, up to a scaling and flip, without the

benefit of any labeled data.
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The generative model described by Equations (5.29)-(5.30) can be used to model
this situation. In this situation, a latent state yt is the unknown position of the target
at time t, f' is the measurement function for the dth sensor, and xt is the collection of
measurements from the entire network at time t. To apply our unsupervised learning
algorithm, we will assume that f is invertible. This assumption does not require the
observation function of each sensor to be invertible, only that each pose of the target
generate a unique set of observations from the ensemble of sensors. The individual
measurement functions can be arbitrary as long as they are smooth. In general, we
expect to be able to triangulate the position of the target from measurements when f
is known. This implies that f is invertible in most places. The invertibility restriction
may pose a minor practical problem if the target is allowed to exit the sensing range
of the network, where all nodes produce quiescent observations. In such cases, many
out-of-range positions result in the same quiescent observations. One could handle
such ambiguities by ignoring quiescent measurements.

Figure 5-9(left) depicts the setup of the simulation. The network consists of 100
nodes spread randomly in a 2D field. To generate observations, we set the true
observation function for each sensor to a decreasing function of its distance to the
target:

xt = fo'(yt) = ad exp(-#d||yt - c 1 2 ), (5.36)

where cd is the true location of the node, and ad and 3d are scalar calibration param-
eters for each sensor. In these experiments, the sensor locations cd were uniformly
drawn from a 2x2 area. The calibration parameters were set to the absolute value of
iid Gaussian random variables. The target was made to follow a smooth trajectory
that reflected from the boundaries of the sensor network. A 1500 sample time series
of 100 measurements was generated under this setup. Figure 5-8 shows some the
response functions of some of the nodes. Figure 5-9(middle) shows example mea-
surements from the nodes as the target moves about the field. The only information
supplied to the algorithm were

* 1500 time step of the 100-dimensional observations from the network.

* The parameters describing the dynamics of the target.

No functional form for fd was supplied.
On a 1Ghz Pentium III, the unsupervised learning algorithm took 5.5 minutes

to process this data. The recovered function implicitly performs all the triangula-
tion necessary for recovering the position of the target, even though the position or
characteristics of the sensors were not known a priori. Figure 5-9(right) shows the
recovered trajectory for the unlabeled training data. To test the mapping further, we
ran the target in a boustrophedonic (zigzag) pattern through the field, and passed
the samples of the resulting measurements through g. Figure 5-10 shows the true
trajectory of the target and the recovered trajectory. The position of the target is
recovered with minor distortion, and up to a scale and 90 degree rotation. To show
that the problem is not trivial, the figure also displays the output of KPCA when
applied to the raw observations. KPCA displays significantly more distortion at the
edges.
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distance to sensor

Figure 5-8: The response of some of the nodes in the network as a function of the
euclidean distance of the target to the node.

As the variation in the sensor parameters is reduced, the identification improves.

Figure 5-11 shows the trajectory recovered by our algorithm when the data is gener-
ated by sensors whose calibration parameters are equal, with ad = #d = 1.

This setup is related to the ones explored by [62] and [77]. The method of [62]
assigns to each node a high-dimensional coordinate consisting of all the measurements
it has gathered. The authors show empirically that simply reducing the dimensional-

ity of this data with Isomap, LLE, or HLLE recovers the 2D position of each sensor.

Although not stated explicitly, under noise-free conditions, one can reverse-engineer
the measurement model to be xd = fyd), where xd is the collection of measurements
made by the dth sensor, and yd is the 2D location of the sensor. A manifold learn-

ing algorithm will therefore successfully recover the position from measurement data

if its assumption about the lifting from low-dimensional to high-dimensional space

matches the true measurement model. A more limited approach by [77] assumes that

distances between nodes are observed, and uses MDS to recover the low-dimensional
locations. Since the measurements in our experiments are governed by the position

of the sensors as well as that of the target, these approaches are not applicable.
These experiments demonstrated the utility of a practical nonlinear system identi-

fication algorithm in a sensor network setting. Because it scales well with the number

of dimensions, our algorithm can process the output of many sensor nodes. Further-

more, we have shown shown that restricting the observation function to be one-to-one

can be an appropriate restriction. To show our algorithm works on real data, the fol-

lowing section applies it to the Sensetable's outputs. The Sensetable setup is very

similar to the setup of this section, in that each antenna acts as an uncalibrated

sensor with a sinusoidal, smooth measurement function.

5.5.5 Learning to Track with the Sensetable

In Section 4.2, we recovered the inverse of the observation function of the Sensetable with

only four labeled points. In this section, we show that this function can be recovered

84



0.04

0.03

0.02

0.01

-0.01

--0.02-

-0.03

-0.04

-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

Figure 5-9: (top) A target followed a smooth trajectory (dotted line) in a field of
100 sensors (circle). The location and observation function of each sensor is unknown
to the algorithm. (middle) Some measurements produced by the sensor network in
response to the target's motion. Measurements were recorded for 1500 time steps.
This plot shows time steps 1000 to 1100. (bottom) Target trajectory recovered by the
unsupervised learning algorithm. The recovered trajectory is rotated by 90 degrees
with respect to the true trajectory, but otherwise similar to it. See Figure 5-10 for
an assessment.
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Figure 5-10: (top-left) To test the recovered mapping from measurements to positions,
the target was made to follow a zigzag pattern over 300 time steps. (top-right) The

measurements produced by the network in response to the target's zigzag motion,
over 50 time steps. (bottom-left) The location of the target recovered by applying
the estimated g to each sample of the measured time series. The resulting trajectory
is similar to the ground truth zig-zag trajectory, up to scale, a 90 degree rotation,
and some minor distortion. (bottom-right) The trajectory obtained by applying the

mapping recovered by KPCA.
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Figure 5-11: Recovered trajectory for an experiment where all sensor calibration pa-
rameters are the same. As the variation in these parameters is reduced, the recovered
trajectory resembles the true trajectory more and more.

up to an affine transformation using only unlabeled data, so that labeled points only
help to fix a coordinate system. This experiment also serves as a real-world instan-
tiation of the sensor network setup of the previous section, where measurements are
produced from the uncalibrated antennae of the Sensetable instead of the uncalibrated
nodes of a sensor network. Recall from Section 4.2 that the true observation func-
tions for the antennae of the Sensetable are sinusoidal, so this real-world experiment
is more challenging than the simulated sensor network setup of the previous section.

The unsupervised learning algorithm was run on the unlabeled high-dimensional
data set of the semi-supervised Sensetable experiment of Section 4.2. The param-
eter settings used in the semi-supervised experiment were used in this unsupervised
experiment. Figure 5-12 shows the ground truth tag trajectory that generated this
data set, and the trajectory recovered by our unsupervised algorithm given only the
measurement time series from the Sensetable. Compared to the ground truth coordi-
nates, these recovered coordinates are scaled down, and are flipped about both axes.
There is also some additional shrinkage in the upper right corner, but the coordinates
are otherwise recovered accurately. Note that there is no folding. By applying an
affine transformation to the recovered trajectory, we can register it with the ground
truth trajectory with a residual error of 2.1 cm per pixel. Registering the trajectory
recovered by the semi-supervised algorithm on this data set against the ground truth
results in 1.1 cm of residual error. Therefore, unlabeled data points are sufficient for
recovering the latent process up to an affine transformation, and labeled points are
needed only to fix an affine coordinate system, and to provide minor refinements that
yield an additional 1 cm of accuracy.

Figure 5-13 shows the the result of KPCA, Isomap, ST-Isomap, and LLE on this
data set. None of these algorithms recover low-dimensional coordinates that resem-
ble the ground truth. For all the neighborhood sizes we tested LLE collapses the
coordinates to one dimension (we tested all neighborhood sizes between 2 and 50 in
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Figure 5-12: (left) The ground truth trajectory of the RFID tag. (right) The trajec-

tory recovered by our algorithm is close to the ground truth trajectory: it is correct

up to flips about both axes, a scale change, and some shrinkage along the edge. We

showed in Chapter 3 that labeling the four corners was enough to fix these distortions.

increments of 5). Magnifying one of the coordinate axes by a factor of 108 reveals that

this is not just an issue of scaling, but that there is severe folding in the recovered
coordinates as well. From left to right, the affine registration errors were 8.5 cm, 10.4
cm, and 11.0 cm, for neighborhood sizes of 15, 30, and 50 respectively. KPCA also

performed poorly, exhibiting folding and large gaps. Its affine registration error was

7.2 cm for the best setting of the kernel variance. Of these, Isomap performed the

best, though it exhibited some folding and a large hole in the center. For the small

neighborhood sizes shown in the figures, its affine residual error was 3.6 cm, 3.9 cm,
and 3.4 cm, respectively. Larger neighborhood sizes up to 30 yielded registration er-
rors as large as 4.5 cm. ST-Isomap performed similarly, with a best affine registration
error of 3.1 cm. As before, ST-Isomap was run with every possible combination of

the following parameter settings: temporal window size (1, 2, 3, 4, 8, 10, 15, 20, 30,
40), catn (1, 10, 50, 100, 200, 500, 1000, 5000, 10000), and k (2, 3, 4, 5, 10, 15, 20,
25, 30, 35) (see [36] for details). Larger window sizes produce worse results (varying

from 8 cm to 14 cm of affine registration error for window sizes of 15 and up), as do

larger neighborhood sizes (neighborhood sizes larger than 3 produced affine registra-

tion errors from 4 cm to 7cm). As in the synthetic experiments, a neighborhood size

of 2 two 3, with a window size of 1 to 2 appears to provide the best performance.
Using the prior on dynamics to smooth the output of these algorithms sometimes im-

proves their accuracy by a few milimiters, but more often diminishes their accuracy
by causing overshoots.

Because the mapping recovered by our algorithm is close to the ground truth, it

can be used it to track RFID tags without any additional labeled data, and without

the affine correction. Figure 5-14 shows the output of the algorithm on the data set

of Figure 4-6. The recovered shapes are similar to the ground truth shapes shown in

Figure 4-6. Unlike the shapes of Figure 4-6, to allow for a fair comparison against

KPCA, the output was not smoothed. Figure 5-15 shows the trajectories obtained

by applying the mapping recovered by KPCA to the testing data set. The recovered

trajectories do not at all resemble the true trajectories.
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Figure 5-13: (top row) Tag trajectories recovered by LLE for a neighborhood sizes
of 15, 30, and 50. The results are representation of all neighborhood sizes. (second
row) Trajectory recovered by Isomap for a neighborhood sizes of 5, 7, and 10, also
representative. (third row) ST-Isomap performed best with small window and neigh-
borhood sizes. Shown from left to right are its output with its best setting, another
similar good setting, and a typical bad setting with large window and neighborhood
size. (bottom row) Trajectory recovered by the best setting for KPCA. All of these
trajectories exhibit folding and severe distortions.
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Figure 5-14: The mapping recovered by the unsupervised learning algorithm can
be used to track RFID tags by applying it to each measurement sample from the
Sensetable. Here, the mapping is applied to the data set of Figure 4-6. The recovered
trajectories match the shapes traced by the tag.
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not recover the true trajectory of the RFID tag. The recovered trajectories do not
match the shapes traced in Figure 4-6.

5.6 Conclusions and Future Work

The algorithm presented in this chapter is an unsupervised counterpart to the semi-

supervised learning algorithm of Chapter 3. Given a time series, and the approximate
dynamics of a latent representation of the time series, this algorithm learns a nonlinear

transformation from the observed time series to the latent representation. The cost

function of this unsupervised learning algorithm is similar to that of various manifold

learning (LLE and KPCA) and nonlinear system identification algorithms. In turn,
this shows that the algorithms of Chapter 3 are semi-supervised nonlinear system
identification and manifold learning algorithms.

Our algorithm circumvents the storage and computational problems of state-of-
the-art nonlinear system identification procedures, which learn an observation func-

tion that maps states to observations, by learning a nonlinear function that maps
observations to states. When the true underlying mapping from states to observa-

tions is smooth and one-to-one, the mapping recovered by our algorithm is close to

the inverse of the true observation function.
The storage and computational efficiency of our algorithm makes it a practical

system identification procedure for high-dimensional data. I showed, for example,
that in an uncalibrated sensor network setting where the measurement function is

completely unknown, we can still learn to track if we take advantage of the knowledge
about the dynamics of the target. In some cases, this unsupervised learning algorithm
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can serve as a first pass before running a semi-supervised learning algorithm. Since
in many tasks, the latent variables can be recovered up to a small distortion without
labeled data, the output of the unsupervised algorithm can guide a user's selection of
labeled points to refine its output. Finally, these algorithms may serve as knowledge
discovery algorithms that uncover the underlying structure of high-dimensional data
sets such as video sequences.

The cost functional behind this algorithm is very versatile. We have required that
the output time series obey temporal dynamics, p(Y) can enforce any Gaussian prior
that factors over the dimensions of the latent states without any modifications to the

algorithm. For example, one could capture a priori spatial dynamics between the
latents states this way. It would be interesting to explore this direction.
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Chapter 6

Localizing a Network of
Non-Overlapping Cameras

Chapter 3 showed that dynamics can compensate for a dearth of labeled examples in
regression problems. Chapter 5 showed that dynamics can compensate for a complete
lack of labeled examples when uncovering the dynamical process underlying high-
dimensional time series. In this chapter, we assume a more restricted functional form
for the input-output mapping. Whereas in the previous chapters, an observation was
available at every time step, this additional prior on the mapping provides enough
structure to allow some of the unlabeled samples to be missing.

From observing a moving calibration target, we recover the position of cameras
in a network of cameras whose fields of view do not overlap. Due to the lack of
overlap, at any given time, the target appears in the field of view of at most one
camera. That we can recover the position of the cameras from these observations
may be a surprising result. Without making assumptions about the motion of the
target, observing the target confers no information about the relative positions of
the cameras. The gap between the cameras can be bridge by utilizing a prior on the
physical dynamics of the target. This camera calibration problem is very similar to
the unsupervised learning situation of the previous chapter. The camera calibration
problem amounts to learning a function that maps a target's position on the ground
plane to a pixel location on the camera's image plane. The only observations available
in this setting are the pixel coordinates of the target when it appears in the field of
view of each camera, and the objective is to estimate the projection function as well
as the ground plane trajectory of the target.

There are two main differences between these experiments and those of the previ-
ous chapter. First, unlike the previous chapter, we do not use RBFs to represent the
projection function. Instead, we assume that the mapping takes the form of a pro-
jective mapping, and search for the parameters of a pinhole camera model. Second,
observations are only available when the target passes through the field of view of a
camera, so for most time steps, observations are missing. This chapter shows that
when enough structure is imposed on the function to be estimated, it is acceptable
to have very few unlabeled data points.

This work was originally published at CVPR 2005 [68] and researched in collabo-
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ration with Brian Dunagan, who helped with collecting data.

6.1 Introduction

Non-overlapping camera networks can cover a much wider area than overlapping
configurations, but calibrating them is more challenging. We describe a method
for recovering the extrinsic calibration parameters of non-overlapping cameras in a

multi-camera network. To compensate for the lack of overlap, our approach assumes
that the calibration target follows a smooth trajectory over time, as described by a

stochastic dynamics model. Our algorithm then tracks the calibration target when it

comes in the field of view of each camera, and searches for calibration parameters and

target trajectories that are consistent with the observed tracks. To make calibration

easier, we allow the calibration target to simply be a moving person. We demonstrate
the algorithm with a network of indoor wireless cameras.

Many security-critical areas such as airports and casinos are instrumented with

thousands of non-overlapping cameras that remain uncalibrated. To track people in

these environments and to visualize their trajectory in a globally consistent coordinate
system, the location of these cameras must first be determined. In certain visual

surveillance settings, the field of view of the cameras are made to overlap at least

slightly, making it easier to track people as they move from the field of view of one

camera to another, and in turn to recover the pose the cameras. We examine the
problem of calibrating a camera network where the field of views of the cameras to
not overlap, permitting a wider area to be instrumented using fewer cameras.

Various algorithms exist for recovering the topology of non-overlapping camera
networks [53, 52, 40, 51]. By contrast, we wish to recover the relative location and

orientation of non-overlapping cameras in order to provide a globally consistent coor-

dinate system for tracking. After a single-camera calibration step involving a standard

calibration target, our procedure requires a point calibration source to move along

the ground plane in smooth paths between the field of view of the cameras. This

path is not required to be straight, or to have constant velocity: we only assume

that its evolution is consistent with a known stochastic dynamical model. Our main

contribution is to show that a model of dynamics for the motion of the calibration
target can compensate for the lack of overlap between the cameras.

When there is overlap between the fields of view of cameras, the appearance of

the calibration target in a region of overlap provides information about the relative

pose of the cameras. With enough such appearances, the relative orientation of the

cameras can be recovered by taking advantage of stereopsis. Without information

about the dynamics of the target, observing the calibration target where the cameras

do not overlap only provides information about its pose relative to the camera that

observed it, but not between the pose of two cameras.
For each camera, our algorithm recovers the two translation parameters and the

rotation parameter in the ground plane. We rely on existing single-camera calibration

techniques to recover the remaining extrinsic and intrinsic parameters before our algo-

rithm is applied. The calibration task can be separated into these two tasks because
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single-camera calibration procedures can recover the pose of the camera relative to a
local patch on the ground plane, up to a rotation and translation in the ground plane,
in addition to recovering the intrinsic camera parameters. After such a procedure,
our algorithm can be applied to globally align the coordinate system of the patches
corresponding to each camera.

To perform this global alignment step, on could require that the target moves at
constant velocity and in a straight line when it leaves the field of view of a camera. An
intuitive approach would then be to have each camera track the target when the target
passes through the camera's field of view, and estimate the target's velocity as it leaves
the field of view. The travel time between the fields of view of two cameras, along
with the target's estimated velocity can be used to estimate the distance between
the two fields of views. When enough such distances are obtained between pairs of
cameras, they can be combined to recover the relative location and orientation of all
the cameras in the network [34].

Our algorithm relaxes the assumption that the target moves in straight lines and
at constant velocity. This allows the calibration target to be more casually carried
by a person moving along curved paths. Our algorithm searches for camera calibra-
tion parameters and a smooth target trajectory that are consistent with the tracks
observed by each camera while the target was in its field of view. This search is
framed as finding the maximum a posteriori (MAP) camera calibration parameters
and target trajectory, with a prior that prefers smooth target trajectories.

We have implemented our algorithm on a network of wireless PDAs equipped with
cameras (see Figure 6-1). A real-time person tracker runs on each PDA which report
trajectories to a central server that implements our algorithm.

6.2 Related Work

Many methods explicitly designed for calibrating networks of cameras rely on over-
lapping fields of view [81, 82, 43, 33]. Our method is most closely related to metric
calibration algorithms proposed by [34], [24] and [40]. Javed et al. [34] employ an
idea similar to velocity extrapolation to find the projection of the field of view lines
of one camera onto the field of view of cameras. Knowledge of these projections is
tantamount to recovering calibration parameters, but their method requires people to
walk in a straight line and at constant velocity outside camera fields of view. Fisher
[24] shows how to calibrate a network of non-overlapping cameras using distant ob-
jects (stars) to recover orientation, and nearby objects (airplanes) to recover relative
position. Strong assumptions are made on the motion of these objects (the motion
of stars is parabolic, nearby targets must move in a line with constant velocity). The
metric calibration extension presented in [40] also requires targets to move in linear
constant velocity paths outside the fields of view. By contrast, we allow our targets
to move much more freely, as long as they exhibit smoothly varying acceleration

Various researchers have addressed the problem of maintaining consistent identity
between multiple targets as they exit one field of view and enter another [42, 60, 35, 64]
in non-overlapping multi-camera systems. Using such techniques, others have shown

95

m-%



Figure 6-1: We use Compaq IPAQs as wireless camera nodes in our network. The
IPAQs are mounted on the ceiling, with their camera image plane parallel to the

ground plane.

how to recover a topological representation of the network of cameras, represented as

the probability of the target transitioning from one field of view to another [53, 52,
40, 51]. These algorithms allows calibration to occur passively by observing moving

crowds. By contrast, we use a point calibration target (in practice, a person walking

about), and our technique attempts to recover a metric calibration for the network,
where the distances and orientations of the cameras are recovered.

6.3 Single-Camera Calibration

Before running our algorithm, each camera is calibrated so that it can map the image

coordinate of the target to a local coordinate system laid on the ground-plane. The

homography required to perform this mapping can be estimated for each camera

individually [88]. For example, by laying a calibration object of known size on the

ground plane, the focal length, height, pitch, and yaw of the camera can be estimated.

This local homography can be used to rectify the image location of the target in each

camera so that the camera appears to be virtually fronto-parallel to the ground plane.

This leaves a translation and roll in the ground plane to be estimated by our algorithm.

In the remainder of this paper, we presume that the homography for each camera

has been recovered up to a rotation and a translation in the ground plane, and focus

on aligning the local ground-plane coordinate system of each camera to the global
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ground plane coordinate system. In our experiments, we used overhead cameras, so
that only the height and the focal length of the cameras needed to be estimated
during the single-camera calibration phase.

6.4 Global Alignment

To globally calibrate the network, we jointly find the maximum a posteriori (MAP)
estimate of the remaining calibration parameters and the trajectory of a point cal-
ibration target that moves smoothly in the network. Each camera tracks the point
calibration target as it passes through its field of view. MAP estimation amounts
to searching for calibration parameters and a trajectory that are consistent with the
observations made by each camera and a dynamics model for the motion of the tar-
get. Since these can only be recovered up to a global rotation and translation in the
ground plane, we fix the parameters of one of the cameras.

We assume that the state evolves according to linear Gaussian Markov dynamics.
Define xt to be the state of the target at time t. This state contains information
about the location, velocity, or any other dynamic state of the target, and evolves
with:

Xt+1 = Axt + vt, (6.1)

where vt is a zero-mean Gaussian random variable with covariance E,.
In our experiments, we let xt [ut; u1t; Vt; Vt], where (ut, Vt) is the ground-plane

location of the target and (uti, Vt) is its ground-plane velocity. We use the model
parameters

1 1 0 0
0 1 0 01

A =, (6.2)0 0 1 1
0 0 0 1

so that each xt+1 adds the velocities in Xt to the positions in xt, and corrupts the old
velocities by Gaussian noise. We use a diagonal E, whose position components have
much smaller value than its velocity components (by a few orders of magnitude), so
that the velocities follow Brownian dynamics, and the resulting poses are corrupted
only by a small amount of Gaussian noise. Equation (6.1) defines a prior p(x) over a
state trajectory x = {Xt}_1=.

To extract the location components in Xt, we can multiply xt by C:

=[0 0 1 0

After taking into account the homography discussed in the previous section, camera i
reports the location of the target in its own ground-plane coordinate system whenever
the target is in its field of view. Let 0? and p denote the unknown rotation and
translation of camera i with respect to the global ground-plane coordinate system.
Let the index set of observations Z = {(t, i)} be a collection of time index and camera
pairs, where (t, i) E Z iff camera i sees the target at time t. Let p' = [p'; 02] be the
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parameters of camera i, and define p = [pl; - ; pN] to be the collection of all the

camera parameters. Letting R'(0) denote the rotation matrix corresponding to a
rotation of O', the location reported by a camera when the target is in its field of view
is:

yt= (xt; p7 ) + Wt = R'(Cxt - p') + Wt, (6.3)

where r is the mapping between global and local camera coordinate systems. We

assume wt, the observation noise corrupting each measurement, is iid zero-mean and
Gaussian with covariance uI. Equation (6.3) defines a likelihood p(yIx, p) over tra-
jectories and camera calibration parameters.

Any configuration of x and p will produce the same tracking measurements as

the same configuration arbitrarily rotated and translated [87]. This ambiguity can be

fixed by setting the parameters of one of the cameras to some arbitrary value. We

use a prior that favors configurations where the parameters of the first camera are 0.
Using the likelihood defined by Equation (6.3) and the prior over x defined by

Equation (6.1) and the gauge-fixing prior for the first camera, the most a posteri-

ori probable trajectory and calibration parameters can be obtained by performing a
nonlinear least squares optimization over y and x:

(x*, A*) = arg min S yi - (Xt; P)||2

T Y(6.4)

+ ||Jxt - Axt1||1 + |lAt12

t=1

The first term in the cost function favors trajectories and parameters that would

have generated the observed trajectory snippets. The second term favors trajectories
that are consistent with the given dynamics by favoring trajectories where xt can be
predicted from xt_1 using the transition matrix of the dynamics model, and penalizing
the prediction error by with a mahalanobis distance defined by the covariance of the

driving noise. The third term fixes the gauge by setting the parameters of the first
camera to zero.

To find the optimal y and x, we use Newton-Raphson with a first order approxi-
mation to the Hessian. This involves it iteratively linearizing the nonlinearity inside

the first term of Equation (6.4), transforming it to a a linear least squares problem.
This least squares problem involves a minimization over 3 * N + 4 * T variables with

|Z| rows, where N is the number of cameras and T is the number of time steps in
the trajectory to be estimated. It is also sparse, with O(IZI) nonzero elements, and
so can be solved efficiently using standard sparse least squares solvers. The appendix
derives the quantities needed in each Newton-Raphson step.

6.5 Synthetic Results

Our goal with this synthetic experiment was to see if a disparity between the dynamics
model and actual target behavior had adverse effects on trajectory estimation and
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calibration. We simulated a point target traveling in a square environment with elastic
walls. The target's trajectory was generated by Brownian motion that deflected off
of walls. The resulting trajectory was smoothed to yield the setup shown in Figure
6-2(a). The synthetic cameras were front-parallel to the ground plane, and measured
the location of the target without noise within their coordinate system (i.e. up to a
rotation and translation of the true location of the target).

To define the dynamics model, we used the A matrix of equation (6.2), and set
E = [ 104 1 10-4 1 ]. Notice that this dynamics model is different from the
model used for generating the synthetic trajectory, as it does not model the bouncing
behavior near walls, the final smoothing step, or the underlying Brownian motion.

The Newton-Raphson iterations were initialized with all trajectory points and
camera parameters at the origin, pointing to the right. Figures 6-2(b-c) show an
intermediate iteration and the converged estimate.

The estimated locations are wrong by an average of 0.03 size units, or 1.4% of the
size of the environment. These experiments show that when there is no observation
noise, the sensor parameters and trajectories are recovered very accurately, even if
the target's true dynamics don't match those used in estimation.

6.6 Real Data

We implemented our algorithm on a network of wireless PDAs equipped with cameras.
The PDAs were mounted on the ceiling in an indoor lab environment. The camera
image planes are approximately parallel to the ground-plane so that computing the
local ground-plane location of the person does not require any calibration beyond
finding the focal length of the cameras. A real-time person tracker runs on each PDA
and reports to a base station the time-stamped location of a person with respect
to the camera's ground plane coordinate system every 250 ms. The person tracker
uses background subtraction to extract the target and clusters the foreground pixels
to compute the person's location. The individual trackers do not need to filter or
smooth the data, as the dynamics model automatically regularizes trajectories during
the optimization procedure.

In our first experiment, we installed 4 cameras in an open area in our building.
The fields of view of the cameras were about 1.5 meters on each side, and the cameras
were 3-4 meters apart. One person walked between the cameras at varying velocities
and served as the calibration target. Figure 6-3(a) illustrates the setup. The ground
truth camera parameters were found by measuring the location and orientation of
every camera by hand. To render the trajectory of the target in this figure, we set p
to these ground truth camera parameters and optimized (6.4) for the trajectory only.

We used the same parameters for the dynamics model as in the synthetic case.
The initial iterate for the optimizer was also the same as in the synthetic case. We set
the observation noise o to be very small, a factor of 10' smaller than the driving noise
of the velocity. Figures 6-3(b-c) show the recovered trajectory and sensor locations.
On average, the sensor were misplaced by 28 cm from the locations measured by
hand. Cameras ipaq3 and ipaq10 are off by 50 cm. The rotation of ipaq3 is off by
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Figure 6-2: (a) 2,000 steps of a synthetic trajectory. True camera fields of view are

depicted as dashed squares. Circles along the trajectories indicate time steps in which

a synthetic camera observes the target's location relative to its coordinate system. (b)
After 9 iterations of the optimization procedure. The gauge is fixed by fixing sensor

1 at its true location and orientation. The blue (dark) path denotes the recovered

trajectory. Gray squares are the recovered sensor fields of view. (c) Convergence after

about 65 iterations. The sensor locations are estimated correctly.
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80. That of ipaq8 by 9' degrees. Ipaq10's rotation is off by 0.70.
In the second experiment, we instrumented the hallway to the left of the open area

with 2 additional cameras. The setup and results appear in Figure 6-4(a). The only
way to reach ipaq5 and ipaq6 was to take a sharp right below ipaq7, outside its FOV.
Because no camera ever witnessed this sharp right, and because straight trajectories
are slightly favored by our dynamics model over turns, the estimated configuration
did not recover the turn. Adding ipaq9 (Figure 6-4(b)) provided enough information
to recover the turn. This is because ipaqs 7,9, and 5 form a triangle, and the angle
5-7-9 becomes constrained.

In contrast to the velocity extrapolation idea discussed earlier, our dynamics model
allows curved trajectories. Figure 6-5 shows that our method works even when people
take a sharp turn when entering the FOV of ipaq3. Using velocity extrapolation, the
distance between ipaq7 and ipaq3 was found to be 518 cm, whereas in reality, it was
only 423 cm. Our method recovered this distance more accurately to be 415 cm.

6.7 Optimization Procedure

This section derives the Newton-Raphson steps required to solve (6.4). We rewrite
Equation (6.4) in nonlinear least squares form, linearize the nonlinearity, and describe
one Newton-Raphson iteration.

The dynamics prior term 1 I|xt - Ax_ 1 ||2, can be written as a quadratic form

in terms of x, the column vector of stacked states. Denote the Cholesky factor of the

inverse covariance E of the driving noise in the dynamics model by E,'. '. Define
the matrix G whose tth row is:

[G]t = 0... - A, E2 0 -.. (6.5)

where the zeros pad the matrix to align its non-zero components with xt and xt+1.
Then the dynamics prior term can be rewritten as E ||xt - Axt_ 1 |2, = xTGTGx.

Equation (6.4) can now be rewritten as

(x* p*) = arg min r(x, p) T r(x, p),
x,I

with
. . o- -1 (R(Cxt - pi) - y)

r(p, x)= rx =X Gx

~ (p J - po)

The column vector r(p, x) is partitioned into three sections, corresponding to the

'The Cholesky factor of a positive semidefinite matrix A is an upper triangular matrix C such
that A = CTC.
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Figure 6-3: (a) The trajectory for the first experiment. Axes are labeled in cen-
timeters. The coordinate system is fixed on ipaq7. (b) After 22 iterations. (c)

Convergence after about 50 iterations.
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Figure 6-4: (a) A wall forces people to take a sharp turn outside the FOV of ipaq7.
This turn is never witnessed by any camera, so the algorithm does not deduce its
existence. (b) Although ipaq9 doesn't observe the turn directly, its presence provides
enough information to determine that ipaq7 and 6 cannot be below ipaq7.
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Figure 6-5: Recovering curved trajectories.
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three terms in (6.4). Each measurement (t, i) E Z introduces two elements into ry.
To optimize a nonlinear least squares cost function such as rTr, Newton-Raphson

requires the Jacobian J of r. Newton-Raphson maps an iterate x(t) = [(); x(t)] to

the next iterate by solving a linear least-squares problem:

x(t+l) - ( - arg min ||J6 - r||2 . (6.6)

The process of computing r, J, and applying equation (6.6) is repeated until until X
converges to a fixed point.

For completeness, we derive J here. It is block structured and very sparse:

JA J/1X

J = Vr(p, x) = 0 Jx . (6.7)

I 0 0 _

The left block column of J corresponds to differentiating r with respect to y, and its
right block column corresponds to differentiating it with respect to x.

If the zth measurement in ry came from camera i, the derivative of ry with respect
to parameters pT and 0' of this camera introduces a block row into J, at location (z, i).

[J]2,Z0= - 1 y Ri, ((Cxt - pi)T ® I) d , (6.8)

where we have used the identity XY = (yT 0 I)X [55], where 0 is the Kronecker
product, ~stacks elements of a matrix into a column, and I is the 2 x 2 identity matrix.

Differentiating the zth element of ry with respect to the observed trajectory ele-
ment Xt introduces a block into Jx at location (z, t):

[JPx1z't = ~y 7R2C, (6.9)

where i is the number of the camera that made the zth observation.
Differentiating r, with respect to y yields 0. Differentiating it with respect to x

yields J. = G.
r,, is only a function of the parameters of the first sensor. Its derivative with

respect to p1 is I, where I is the 3 x 3 identity matrix.

6.8 Conclusion

In this chapter, we have shown how to calibrate a network of non-overlapping cameras

by learning the parameters of a function that maps the ground plane position of a

target to its pixel coordinates on the image plane of a camera. Because the form
of the projection function is known a priori, no overlap was necessary between the

fields of view of the cameras, allowing the target to remain invisible during much
of its trajectory. Our solution is framed as a joint MAP estimation camera pose
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parameters and the trajectory of a calibration target. The prior on the trajectory
is a linear Gaussian Markov chain, which allows for both nonlinear paths and speed
changes when the target is outside the field of view of the cameras. Information about
the target's dynamics allows the system to reason about the behavior of the target
when it is not visible, compensating for the lack of overlap between the cameras. We
demonstrated our system with a network of battery-operated cameras that are easy
to deploy.
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Chapter 7

Conclusion

I have presented an algorithm that can learn a mapping between two time series.

The algorithm takes as input examples of how to map individual samples of the input

time series to corresponding samples of the output time series. Because it assumes

that the output time series follows known dynamics, it can also take advantage of

unlabeled input samples. Our algorithm searches for a smooth memoryless function

that fits the training examples and, when applied to the input time series, produces

a time series that evolves according to assumed dynamics. The learning procedure is

fast and lends itself to a closed-form solution. I showed its effectiveness by using it

to learn trackers.
This work augments previous work on example-based tracking with a prior on

the dynamics of the output. Utilizing this prior can significantly reduce the number

of examples required to learn trackers by making it possible to leverage unlabeled

data. When learning visual trackers, we were able to recover the pose of articulated

bodies, and the contour of deformable shapes with very few labeled frames. The

algorithm was also able to learn the complicated mapping between signal strength
measurements induced by an RFID tag in a set of antennae to the position of an

RFID tag. For these tasks, this algorithm required significantly fewer examples than

fully-supervised regression algorithms or semi-supervised learning algorithms that do

not take the dynamics of the output time series into account.
An unsupervised version of this algorithm elucidated its relationship with various

nonlinear system identification and manifold learning techniques. This unsupervised

learning algorithm approximately learns the inverse of the observation function in a

hidden Markov model with known linear-Gaussian dynamics when the observation

function is invertible. Adopting a nearest-neighbors representation for the mapping

learned by the algorithm reveals that our algorithm is similar to the LLE algorithm,
minus the initial fitting step of LLE, and with the addition of a prior that favors

low-dimensional coordinates that exhibit temporal coherency.
The unsupervised version of the algorithm can learn to track in some cases without

recourse to labeled data. We were able to recover the rotation of a rigidly rotating

object in a synthetically generated video sequence. The algorithm assumes only that

the mapping between the appearance of the object and its pose was smooth, and that

the pose of the object evolved smoothly over time. We also recovered the mapping
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between signal strength measurements and the position of the RFID tag using only
these smoothness assumptions, without recourse to any labeled points. Finally, we
showed how to track a smoothly moving target in a network of sensors where the
measurement function of the nodes were unknown arbitrary smooth functions of the
position of the target.

The success of our algorithms on these tracking problems points out some features
of these problems:

1. The relationship between poses and observations can be approximated well by
a smooth function.

2. The domain-specific knowledge required to track can be captured by a few
labeled examples, and some unlabeled examples.

3. Linear-Gaussian dynamics and unlabeled data convey the domain-specific knowl-
edge about the tracking problem. Sometimes, labeled examples are not neces-
sary at all.

It would be interesting to take a more comprehensive inventory of the field and identify
tracking problems beyond those presented in this thesis that adhere to these traits, as
these are tracking problems can be solved with little effort by supplying a few labeled
examples.

7.1 Future Work

Several interesting directions remain to be explored. I would like to apply the semi-
supervised learning algorithm to more application areas, and to extend this work by
exploring various kernels that could potentially provide invariance to more distractors,
more sophisticated dynamical models, and an automatic way of selecting data points
to label.

In this work, the pose of the target were the only factors governing the appearance
of the target. This allowed us to use a simple Gaussian kernel to compare observa-
tions. To address the complications which arise in video sequences with dynamic
backgrounds or other distractors, Agarwal and Triggs [1] summarized images by a
list of salient features and their descriptors. It would be interesting to pursue a sim-
ilar path with our algorithm. Along these lines, I would like to use the algorithms
of Grauman et al. [29] and those referenced within to compute the similarity ma-
trix. These may provide more invariance to distractors than afforded by the Gaussian
kernel.

We have also assumed that a priori the components of the output evolve in-
dependently of each other. This was an adequate approximation in the cases we
explored, but in some settings, such as when tracking articulated objects in 3D with
a weak-perspective camera, the a priori correlation between the outputs becomes an
important cue. It would be interesting to examine the benefits of correlated priors
on the output.
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Section 4.5 showed that although the semi-supervised learning algorithm is stable
under large variations of its parameters, its output is very sensitive to the choice of
labeled examples. We provided some guidelines for choosing these labeled examples,
but it would be interesting to treat this as a pool-based active learning problem
[71, 72, 95]. Given an initial set of labeled data points, these algorithms prompt a

teacher to label points that would lower an expected loss over the remaining unlabeled
data. The techniques used in [71, 72, 95] show that this loss can be approximated
using the current learner. The appendix defines a probability distribution whose
peak is found by our semi-supervised learning algorithm. The active learning loss in

our case could be defined by the probability or marginal variances assigned to the
recovered labels. Further empirical studies are needed to determine if selecting points
to label according to this loss would indeed improve results on our data sets.

In the future, I hope to explore many other application areas. For example, we can

learn to transform images to cartoon sequences, add special effects to image sequences,
extract audio from muted video sequences, and drive video with audio signals. The
semi-supervised learning algorithm can be used as a rapid-prototyping environment
for building signal processing applications. This would allow designers and engineers
to quickly evaluate the difficulty or feasibility of a problem by first attempting to solve
it with this tool. It would also let end-users who do not have advanced engineering
know-how to easily build and customize their own signal processing applications.
Some of these possibilities are described in more detail here.

The arm tracking experiments showed that it is possible to learn mappings from
images to graphical primitives. Extending this idea, one could learn a mapping from
a video sequence of the gestures of an animator to a graphical representation of a

cartoon puppet. This would allow, for example, an animator to animate the face of
a cartoon character by performing hand gestures that are evocative of various emo-

tional states. Defining such natural mappings programmatically is very difficult [56],
but I hope that allowing an animator to specify them with examples will prove to be

much more intuitive. Along the same lines, one can also cartoonify video sequences,
converting frames of arbitrary scenes to cartoons drawings. Existing tooning tech-
niques [2, 3] base their transformation on the contours of objects in the scene. I hope

that the semi-supervised learning algorithm will allow animators to define almost ar-
bitrary mappings from video sequences to cartoons, allowing for tooning that is not
tied to object contours.

We could also learn mappings from images to images, or from images to deforma-
tions of images. For example, we might be able to learn a function that maps images
of someone's face to a vector field that transforms these faces to the face of another
character. The input to the algorithm would be an input video sequence, and a few
frames labeled with the parameters of an active appearance model [16] or some other

image transformation.
Semi-supervised learning can also be used to learn appearance models of large

environments. The problem of Simultaneous Localization and Mapping (SLAM) is

to build a map of the environment from images acquired from a roving robot [15,
79, 4, 48, 47, 30]. This map can be used to localize the robot at a later time from
only a few snapshots of the scene. Given a video sequence of the robot roaming the
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environment, and a few ground truth poses for some of these locations, it may be
possible to learn a function that maps images of the environment to the robot's pose.

Semi-supervised learning is a promising approach for learning how to track, espe-
cially when combined with existing methods for preprocessing images. It may provide
a similar contribution to computer animation and robotics.
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Appendix A

Probabilistic Interpretations

There are two Bayesian interpretations for the optimization (3.2). In the general
case, we can say that the optimization finds joint MAP estimates of g and Y in
a conditional random field that directly specifies the distribution p({yi}z, g|{xi}1 ).
If certain conditions hold, the optimization (3.2) can also be interpreted as MAP
estimates in a generative model for the observed inputs.

The conditional random field interpretation is obtained by directly modeling the
joint conditional distribution over the variables of interest, and letting it factorize
according to:

1 T

p({yi}1...T, {zi}, g|{xi}1 ) = 0(9)#({Yil1...) JJi(yi, 9; Xi) JJ i(zi, g; Xi), (A.1)
i=1 iEL

with the identification

0i(yi, g; xi) = J exp (-wiV(g(xi), yi)) (A.2)
d

# (g) = f exp(- Ak lgdHl) (A.3)
d

#({yi} 1 ...T) = exp (-AsS({yi}1...T)) , (A.4)

where wi = A, for i C L, and wi = 1 otherwise. The normalizing constant Z de-
pends only on {xi} 1 , and on the parameters of the model. Figure A-1 depicts the
independence relations in the random field corresponding to this cost function.

For our application, the interesting quantity is the mode of p({yi}{1...TI, g 1 Xi}z, {zi}),
which can be found by optimizing over the missing labels and g in Equations (A.1-
A.4). Taking logs and eliminating constants reveals that this is the operation being
performed by (3.2).

This random field model may be useful for defining error bars on estimates, or for
justifying various Bayesian operations, such as maximizing over one of the variables
and marginalizing over the other. For example, if we are only interested in the
parameters of the mapping g, we should seek the MAP g while marginalizing over

Y. On the other hand, if we are only interested in labeling this a particular sequence
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Figure A-1: A conditional random field interpretation of the cost functional in (3.2).
A function g forces agreement between the input samples xt and the outputs yt. The
output must evolve according to known dynamics. Some yt's are labeled.

and g is of no further interest, we should optimize over Y with g marginalized out.
When the loss V is quadratic, as is the case throughout this thesis, g and Y are
jointly Gaussian a posteriori under the conditional random field interpretation, so
the joint maxima we obtain in (3.2) will be identical to the maxima we would obtain
by marginalizing over one of the variables and maximizing over the other. When the
loss V is not quadratic, the joint maxima will will in general differ from from the
maximum over one variable when the other is marginalized.

While it provides justification for certain operations, the random field model pro-
vides no insight into the process that generated the observations. The potential
#(y, g; x) favors compatibility between y and g, but it cannot be interpreted as a
model for how x's are generated from y's, or even vice-versa. Generative models, on
the other hand, make explicit assumptions about the way observations are generated,
thus exposing falsifiable assumptions about the model, which in turn allows us to
fine-tune the mode if these assumptions turn out to be unreasonable. Furthermore,
generative models permit a wider set of operations, such drawing samples from the
input time series X if we so desired.

In some cases, we may interpret the optimization (3.2) as computing a joint MAP
estimate of Y and g in a generative model. The joint distribution over Y, g, and X
factorizes according to

T

P({yi}1...T, {zi}, {xi}x, g) = J7p(xilg, yi) 7Jp(xilg, zi)p(g)p({yi}z). (A.5)
i=1 iEr

The peak of p(Y, g|{xi}1 , {zi}C) can then be obtained by optimizing (A.5) over Y
and g. One might suspect that the following identification results in the optimization
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(3.2):

p(xilyi,g) oc exp(-wjV(g(xz),yj)), (A.6)

p(g) oc Flexp(-1Agd|2) (A.7)
d

p({yi}1...T) cc exp (-AsS({yi}1...T)) (A.8)

where w = A, for i c L, and wi = 1 otherwise. But this factorization is problematic

because in general p(xijg, y2 ) has a normalization constant that depends on g and

yi. When estimating the MAP of g and Y, this normalization term does not vanish,
introducing terms that do not appear in (3.2).

The MAP estimate under this model and the optimum of (3.2) can be made to

coincide by suitably modifying both models. For example, Let be V be quadratic, and

constrain g to be a diffeomorphism (a differentiable and one-to-one mapping, with a

differentiable inverse) and locally volume preserving, so that the determinant of its

partial, |9|, is constant for all x. This is true, for example, if g is constrained to be

isometric [19], with g : ZN -+ 1ZN, or mapping an N-dimensional manifold embedded

in RM to jZN. The normalization constant for distribution of the form p(zilyi)

K exp(-willzi-y| 2 ) is , = (w,/r)2, which is independent of z. A change of variable

via the map zi = g(xi) results in p(xilyj, g) = , exp (-willg(xi) - y,1| 2 ) [58].

Because g is locally volume-preserving, we get p(xijyj, g) = ,'exp(-willg(xi) - y,1|2),
where r' is again constant with respect to g and xi. Thus, under the quadratic

penalty, when g is a volume-preserving diffeomorphism, finding the MAP Y and g

in the generative model (A.5), with the identification (A.6-A.8), is equivalent to the

optimization (3.2).
After inferring Y and g, the Bayesian interpretations provide guidance towards

transforming a new sequence X"' to an output sequence Y"e. Ideally, to trans-

form X"e, we would find the peak of p(YIX", {xi}_, {zi}zc) according to either the

random field model or the generative model. If we assume that the posterior over

g obtained from the training phase is sharp and not perturbed by the addition of

new unlabeled data (i.e. p(g|Xnew, {xi} 1 , {z}L) ~ J(g - g*)), this peak coincides

with arg maxy p(Y, g*|X"e"), which is exactly the operation implemented by the

smoother of Equation (3.14).
In summary, we can always describe the optimization in (3.2) as finding a MAP

estimate of Y and g in a conditional random field defined by Equation (A.1). Under

certain conditions, we can also interpret (3.2) as finding MAP estimates in a generative

model.
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