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ABSTRACT

Ventricular Tachycardia (VT) is a rapid arrhythmia, most commonly due to reentrant
electrical activity in the heart. A common treatment for VT is Radio-Frequency Ablation
(RFA), which is minimally invasive, but requires maintenance of VT until the target site
for ablation is determined. Most patients with VT cannot tolerate this maintenance phase
due to hemodynamic instability and for those who are hemodynamically stable, the RFA
procedure is successful in permanently terminating the VT in only approximately half of
the cases. Therefore, the need for an RFA procedure that accurately localizes the site for
ablation, or exit site of the reentry circuit, and is safe for unstable patients is evident.

We believe utilization of the Single Equivalent Moving Dipole model and inverse
problem in cardiology will prove to be efficient in localizing the exit site of the reentry
circuit and guiding the ablation catheter to that localized site during the RFA procedure.
In principle, our RFA technique only requires a single beat of VT to localize the exit site
of the reentry circuit. The objective of this thesis is to determine in a simulation model if
one can guide a catheter to the exit site of the reentry circuit using body surface potentials
in order to ablate that site with radio-frequency energy. In our new approach to RFA, we
sought to design a finite element model to simulate VT due to reentry, develop an
algorithm to localize the exit site of the reentry circuit through analysis of body surface
potentials, localize the ablation catheter in both slow and fast VT, and advance the
ablation catheter to the localized exit site of the reentry circuit. The proposed new RFA
procedure promises to provide a new rapid and effective means for treatment of VT.

Thesis Supervisor: Richard J. Cohen
Title: Whitaker Professor in Biomedical Engineering
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Chapter 1

Introduction

1.1 Thesis Motivation

A malfunction of the heart's electrical behavior is the principal cause of sudden

cardiac death, a major health problem in the U.S.' In fact, there were a reported 400,000

to 450,000 sudden cardiac deaths per year from 1989 to 1998, despite major advances in

the prevention and medical treatment of cardiac disease. 2 The vast majority of these

deaths are due to tachyarrhythmias, or fast heart rates. There are two types of

tachyarrhythmias. The first is tachycardia, which consists of a rate greater than 120 beats

per minute. The second is fibrillation, which consists of a rate greater than 350 beats per

minute. 3 Sudden death is attributed mostly to Ventricular Tachycardia (VT) that rapidly

deteriorates to Ventricular Fibrillation (VF). 4' 5 Successful eradication of this potentially

deadly arrhythmia requires knowledge of the causes of VT and identification of patients

who are susceptible to developing VT.

Ventricular tachyarrhythmias are caused by one of three basic mechanisms:

abnormal automaticity, triggered activity, or reentry.6  Automaticity is a property in

which the cardiac cells have the ability to spontaneously generate propagated impulses

and function as pacemaker cells.] Under normal conditions, cardiac cells do not exhibit

spontaneous action potentials, or impulses. Triggered activity is premature activation

caused by one or more preceding impulses. Reentry is the return of the same impulse
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into a zone of heart muscle that it has recently activated. Both automaticity and triggered

activity occur in the presence or absence of structural heart disease. However, most

symptomatic ventricular arrhythmias occur in patients with structural heart disease and

are thought to be mediated by reentry.

Ventricular Tachycardia frequently occurs in the setting of a patient with a prior

myocardial infarction and the tachycardia arises from the reentrant electrical conduction

circling the subsequent scar tissue, thus leading to formation of a reentry circuit. The

reentry circuit entrains the natural pacemaker of the heart, leading to a continuous rapid

heartbeat that impairs normal functioning and prevents the ventricles from filling

properly, thus causing effective pumping to stop. This drastic decrease in cardiac output

and blood pressure can cause collapse and death.7  Another obstacle faced by VT

patients is the existence of multiple reentry circuits. Due to the difficulty in defining

these reentry circuits, 30-40% of patients with scar-related VT undergo unsuccessful

Radio-Frequency Ablation (RFA) attempts.8

Radio-Frequency Ablation involves the localization of a reentry circuit's exit site,

or VT site of origin, via induction of the arrhythmia and delivery of radio-frequency

energy to that site for termination of the arrhythmia. If the patient is hemodynamically

stable during VT, target sites for ablation may be identified in the electrophysiology

laboratory with various mapping techniques.56 ,5 7  One of the most popular mapping

techniques, pace mapping, consists of pacing from a catheter at multiple ventricular sites

during normal sinus rhythm to obtain the ECG morphology identical to that of the VT.

Ventricular Tachycardia may be unstable due to the collapse of blood circulation

mechanics (hemodynamic collapse), frequent changes from one form of VT to another, or
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inability to reproducibly induce the VT.9 Unfortunately, 25% of patients who are

considered safely treatable are hemodynamically unstable and cannot tolerate the

multiple inductions of the arrhythmia necessary in the current catheter ablation

technique.' 0 For those VT patients who are hemodynamically stable, the RFA procedure

is successful in permanently terminating the VT in only approximately half of the cases.

Therefore, the need for an approach to the ablation of VT that accurately localizes

the exit site of the reentry circuit and is safe for unstable patients is evident. We believe

the Single Equivalent Moving Dipole (SEMD) model and inverse problem in cardiology,

both of which will be described later, may be utilized to localize the site for ablation and

guide the ablation catheter during the RFA procedure to that localized site for successful

ablation of VT.

1.2 Thesis Objectives

The current Radio-Frequency Ablation (RFA) procedure involves mapping of the

reentry circuit, which requires the patient to tolerate sustained VT for a prolonged period

of time. This requirement limits the availability of RFA to patients with slow,

hemodynamically stable VT, which in effect excludes most patients with VT. We

developed an approach to RFA that would be more widely applicable than the current

technology because localization of the exit site of the reentry circuit, or VT site of origin,

would be accomplished through analysis of a single beat of VT. The objective of this

thesis is to determine in a simulation model if one can guide a catheter to the VT site of

origin using body surface potentials in order to ablate that site with radio-frequency

energy. We thus sought to design a finite element model to simulate VT resulting from

reentry, develop an algorithm to localize the site of origin of VT through analysis of body
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surface potentials, localize the ablation catheter in both slow and fast VT, and advance

the ablation catheter to the localized VT site of origin.

Our first objective was to develop a finite element model of ventricular electrical

activity in order to simulate various rates of VT resulting from reentry. The model is

simple and deterministic, providing a straightforward method for generating body surface

potentials corresponding to ventricular electrical activity. Because we are interested in the

case of VT resulting from structural heart disease, we superimposed an area of scar tissue

on the ventricular model to accommodate the formation of reentry. Through the

development and application of excitation and conduction rules using a cellular automata

model, we were able to successfully generate electrocardiograms for both slow and fast

rates of VT.

Our second objective was to develop an algorithm to localize the VT site of origin

from a single beat of VT. This algorithm, the Brute Force Inverse Algorithm (BFIA),

estimates the cardiac dipole parameters of a Single Equivalent Moving Dipole (SEMD)

representation of cardiac electrical activity from the body surface potentials at each point

during the cardiac cycle. The SEMD model represents the heart as a bioelectrical source

represented by a single equivalent dipole whose location, magnitude and direction varies

throughout the cardiac cycle. For each point in time, the BFIA estimates the location and

moment of a single equivalent moving dipole resulting in a trajectory in space of cardiac

dipoles. Finally the dipole trajectory is analyzed to determine which point corresponds to

the VT site of origin.

Our third objective was to localize the ablation catheter and advance it to the VT

site of origin. To guide the catheter to the VT site of origin in slow VT, we developed
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the Catheter Dipole Method. In this method we applied sub-threshold current pulses at

the catheter tip. The resulting body surface potentials were used as input to the Brute

Force Inverse Algorithm, which estimated the parameters of the dipole corresponding to

the current pulses, specifically the location of the dipole. By analyzing the SEMD

trajectory from the VT simulation (bioelectrical source), the dipole corresponding to the

VT site of origin can be identified. A catheter advancement algorithm was used to move

the catheter dipole to the VT site of origin dipole. The Catheter Dipole Method was

successful in localizing the VT site of origin in slow VT, but was unsuccessful in fast VT.

This is because in fast VT, remote ventricular electrical activity altered the body surface

potentials generated by the bioelectrical source dipole at the VT site of origin but not the

body surface potentials generated by the catheter source.

To guide the catheter to the VT site of origin in fast VT, we developed the

Trajectory Pace-mapping Method. In this method we applied supra-threshold current

pulses to the catheter tip to stimulate the ventricular myocardium. The resulting body

surface potentials at each point in time were used as input to the Brute Force Inverse

Algorithm to estimate the parameters of the corresponding SEMD, resulting in a

trajectory in space of cardiac dipoles. The resulting catheter dipole trajectory was

compared to the VT site of origin dipole trajectory. Finally, a catheter advancement

algorithm was used to move the catheter towards the VT site of origin until the

trajectories converged. We observed dipole trajectory convergence in both slow and fast

VT with this method because both the bioelectrical source and the catheter source

generate a wave of ventricular depolarization and thus, both sets of localization estimates

should be affected equivalently by the resulting remote ventricular electrical activity.
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Through the simulation of VT due to reentry, development of the Brute Force

Inverse Algorithm for VT site of origin localization through analysis of the SEMD

model, localization of the ablation catheter tip through development of the Catheter

Dipole Method and Trajectory Pace-mapping Method, and guidance of the ablation

catheter to the VT site of origin, we were able to provide a complete simulation of a new

approach to RFA. The proposed new RFA procedure would allow therapy for patients

who cannot tolerate the maintenance phase and frequent inductions of VT, by increasing

the accuracy and speed by which we determine the site for ablation. In principle, our

RFA technique only requires a single beat of VT to localize the VT site of origin. The

proposed new RFA procedure promises to provide a new rapid and effective means for

the treatment of VT. Future animal and human studies are needed to validate the

approach to RFA we have developed.

12



Chapter 2

Background

2.1 Electrical Activity of the Heart

The heart is a hollow chamber whose walls consist of a mechanical syncytium of

cardiac muscle cells called myocytes.1 Myocytes are relatively small, averaging 10-20

pm in diameter and 50-100 pm in length and form extensive connections with one

another as illustrated in Figure 2.1." The electrical potential difference between the

inside of the cell and its surrounding medium is the transmembrane potential.

Lyt1~r8s'

Figure 2.1: Illustration of the cardiac muscle cell."

2.1.1 Cardiac Action Potential

An action potential is the pattern of variation in transmembrane potential when an

electrically excitable cell is activated; such activation may be accomplished, for example,

13
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by delivering an electric current of sufficient into the cell. An increase in the value of

the transmembrane potential is termed depolarization and a decrease in that value is

termed repolarization. The action potential is divided into five distinct phases

corresponding to clearly recognizable landmarks in its contour as shown in Figure 2.2.

The fast depolarization or upstroke refers to phase 0, the fast initial repolarization refers

to phase 1, phase 2 is the plateau, the terminal repolarization refers to phase 3, and phase

4 is the resting phase.

1 2

0 3

4 4

Figure 2.2: Action potential of a ventricular muscle cell denoting the phases of depolarization

and repolarization. Phase 0 is the fast depolarization or upstroke. Phase 1 is the fast initial

repolarization. Phase 2 is the plateau. Phase 3 is the terminal repolarization. Phase 4 is the

resting phase.' 3

Cardiac cells have a semi-permeable cell membrane that allows the passage of

some ions while restricting others. The various phases of the cardiac action potential are

associated with changes in the permeability of the cell membrane, mainly to sodium,

potassium, and calcium ions. Specific ionic currents contribute to each phase of the

action potential. These ionic currents are mediated by changes in the specific ionic

conductances of individual ionic channels resident in the cell membrane. Flows of

positively charged ions (cations) into the cell moves membrane potential in the positive

direction, thus causing depolarization. Flows of cations leaving the cell causes
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repolarization. Changes in membrane potential resulting from flows of anions

(negatively charged ions) are opposite to those just described for cations.14

For phase 0, the inward current carried by sodium is the dominant current.

During phases 1 and 2, an inward calcium current is opposed by an outward potassium

current. An outward potassium current is responsible for repolarization during phase 3.

During phase 4, the net current across the membrane is very small leading to a stable

transmembrane potential. 14 One should note that the spread of depolarization over

myocardial tissue is fundamentally a synchronous process in which activation of one

region of tissue spreads to activate neighboring regions. The process of repolarization,

on the other hand, is fundamentally an asynchronous process in which local clocks

determine the length of time during which a region of tissue remains depolarized and thus

refractory to further stimulation.

2.1.2 Cellular Transmembrane Currents

During the plateau of the action potential, as shown in Figure 2.3, calcium enters

the myocardial cells through calcium channels, which activate and inactivate much more

slowly than do the fast sodium channels. When the myocardial cells rest, calcium is taken

up by the sarcoplasmic reticulum for subsequent release. However, there is a lag of about

500 to 800 msec before the calcium becomes available for release from the sarcoplasmic

reticulum in response to the next depolarization. 15 The resting cell membrane is

relatively permeable to potassium but much less to sodium and calcium. The

concentration of potassium ions inside a cardiac muscle cell is far greater than the

concentration outside the cell. The reverse concentration gradient exists for sodium and

calcium ions. These ionic concentration gradients are maintained over a long time scale
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(compared to the duration of an action potential) by ionic pumps located in the cell

membrane.

0-

mV -0j

-100-

Ion
Conductances

Vuirc War Cell

4 4

200 nr g 9

Figure 2.3: Changes in the conductances of sodium (gN), Calcium (gca) and potassium (gK)

during the various phases of the action potential. 16

The flow of the ih ionic species is determined by the conductivity of its channel,

g, and its equilibrium potential, Vi, which is given by the Nernst equilibrium equation:

RT o,uside
J'- log 10  inside

In Equation (2.1), R is the ideal gas constant, T is the absolute temperature, Z is the

valence of the electron, and q/ is the molar concentration of the ion.

The relation between the (outward) current carried by a specific ion channel, I,,

and membrane potential, V, can be described by the equation,

I, = g, -{(V,, - V ) (2.2)

16
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where V is the Nernst potential of the ith ion and g, is the conductance of the ith ion.14

The resting potential can be calculated from the above equation by setting the sum of all

ionic currents to zero and is given by:

kCa (2.3)

where

9, = gi (2.4)

and V, is the resting potential and g,. is the total membrane conductance for the

potassium (K), sodium (Na), calcium (Ca), and other (0) ions.1 In the resting state the

cell membrane is much more permeable to potassium than to other ions, hence gk/gm ~ I.

As a result, the resting potential is close to Vk: typically -80 to -90 mV in ventricular

myocardial cells. Conversely, at maximum depolarization during the action potential

when sodium conductance dominates total conductance, the membrane potential

increases towards the Nernst potential for sodium of 40 mV.

In addition to the ionic currents, there is a capacitive transmembrane current:

dVm
I =Cd'" (2.5)

dt

where C,, = 1 pF/cm 2 is the specific membrane capacitance and V is the transmembrane

potential.17 In a space clamped cell, in which we ignore the effects of propagation, the

sum of the ionic currents and capacitive current sum to zero as follows:

dV
IM C, ' + g, -(V -v)=0 (2.6)

dt
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where I, is the total membrane current, V, is the Nernst potential of the ith ion, and g, is

the conductance of the ith ion.

The ionic specific conductances are time-dependent functionals of the past history

of the transmembrane potential. This relationship is a consequence of the biophysical

effect of the transmembrane potential on the conformational states of the ion specific

channels responsible for the specific ionic conductances.' The cardiac action potential

results from effects of a change in transmembrane potential on ionic conductances which

in turn lead to changes in transmembrane currents which in turn lead to changes in the

transmembrane potential.

2.1.3 Refractory Period of the Action Potential

For some time after an action potential begins, the membrane will not respond

normally to a second stimulus. This time is called the refractory period and can be

divided into the absolute refractory period and relative refractory period as illustrated in

Figure 2.4. The total duration of an action potential is typically 200-300 msec. In the

absolute refractory period, the membrane cannot respond at all, because the sodium

channels are either already open or closed and inactivated. In a ventricular muscle cell,

the absolute refractory period lasts approximately 200 msec, spanning the duration of the

plateau and the initial period of rapid repolarization. The absolute refractory period is

followed by a shorter (50 msec) relative refractory period. During this period, the

voltage-regulated sodium channels are closed but can open. The membrane will respond

to a stronger-than-normal stimulus by initiating another action potential. A cardiac action

potential, once started in a cell, propagates by local current spread.
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Figure 2.4: Action potential and ion conductance in cardiac muscle.23

2.2 Heart Anatomy

The heart muscle has four chambers as illustrated in Figure 2.5.18 The upper

chambers are called the left and right atria while the lower chambers are called the left

and right ventricles. A wall of muscle called the septum separates the left and right atria

and the left and right ventricles. The left ventricle is the largest and strongest chamber in

the heart. The left ventricle's chamber walls are only about a half-inch thick, but they

have enough force to push blood through the aortic valve and the body's entire

vasculature.
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Figure 2.5: Anatomy of the human heart."'

2.3 Electrical Conduction System of the Heart

The electro-conduction system of the heart is a complicated system that begins in

the right atrium at the sino-atrial (SA) node as illustrated in Figure 2.6. The SA node, a

small bundle of cells located on the back wall of the right atrium, serves as the natural

pacemaker for the heart. The SA node fires an electrical impulse that is spread across the

right atrium and to the left atrium by the Bachman's bundle so that both atria contract

synchronously.' 9 The contraction of the atria forces blood from the atria to the ventricles

through their respective valves.
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SA Node

Lei
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Branch

Bundle
Branch

Pri je
Fibers

Figure 2.6: Electrical conduction system of the heart.

The impulse that begins at the SA node travels to the atrio-ventricular (AV) node,

where the AV node acts as a delay line to slow down the action potential along the

internal electro-conduction system. This is done so that all of the blood from the atria can

be emptied into the ventricles before the ventricles contract. 19 The action potential then

travels from the AV node to the Purkinje fibers. The Purkinje fibers are arranged in two

bundles, one bundle branching to the muscle in the right ventricle and the other branching

to the muscles in the left ventricle. The action potential moves through these fibers very

rapidly and spreads throughout the ventricles at 2 - 4 m/sec. This causes the ventricles to

contract in a synchronous manner and forces the blood through their respective valves out

to the body at an extremely fast rate. The contraction of the ventricles is termed systole

and relaxation of the ventricles is termed diastole.2 1

Because of the electrical activity of the myocardial cells, current flows within the

body and potential differences are established on the surface of the skin. The graphical
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recording of these body surface potentials as a function of time, is represented by the

electrocardiogram (ECG).1 The signals are detected by means of metal electrodes

attached to the extremities and chest wall and are then amplified and recorded.

The electro-conduction of the heart starting at the SA node and traveling through

the AV node to the Purkinje fibers creates a mass electrical signal that is detected by the

ECG. The letters on the ECG represent different functions that occur in the heart. The P-

wave represents atrial contraction, the QRS complex represents ventricular contraction,

and the T-wave represents ventricular repolarization, all of which are illustrated in

Figure 2.7. Examples of normal, fast, slow, and irregular electrocardiograms are also

shown. Disturbances of the heart's electrical activity may cause significant abnormalities

in its mechanical function and are the basis of much cardiac morbidity and mortality. In

fact, a malfunction of the heart's electrical behavior is the principal cause of sudden

cardiac death.'

PMWve QRS Complex T Wave

Adaeof theu Actteabaw n f t. ftCOV4WW8W
veitftihe

Normal Heartbeat

Fast Heartbeat

Slow Heartbeat

Irregular Heartbeat

Figure 2.7: Depolarization and repolarization of the heart along with various ECG rates.2 2

22



The illustration in Figure 2.8 shows the correlation of the ventricular muscle's action

potential and ECG tracing at corresponding times. Ventricular depolarization (phase 0) is

represented in the ECG as the beginning of the QRS complex. The initial rapid

repolarization (phase 1), due to closing of fast sodium channels, is indicated by the large

drop in voltage on the ECG. The plateau (phase 2) during which inflow and outflow

currents are balanced is represented when the ECG returns to baseline. Repolarization,

(phase 3) when potassium channels open and calcium closes, is shown in the ECG by the

T wave. The recovery period (phase 4) is represented in both the muscle tracing and ECG

as the return to baseline levels.23

Figure 2.8: Action potential denoting phases of depolarization and repolarization and the

corresponding ECG.Y

2.4 Sudden Cardiac Death

Sudden cardiac death (SCD) is death resulting from an abrupt loss of heart function

(cardiac arrest). The time and mode of death are unexpected and it occurs within minutes

after symptoms appear. 24 SCD is the most common lethal manifestation of heart disease,
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and in many cases it is the first and only symptom. 25,26,27 The high incidence and sudden,

unexpected nature, combined with the low successful rate of resuscitation, make SCD a

major unsolved problem in clinical cardiology, emergency medicine, and public

health.28,29,30,31  From 1989 to 1998, SCD as the proportion of all cardiac deaths,

increased 12.4% (56.3% to 63.9%), and age-adjusted SCD rates declined 11.7% in men

and 5.8% in women. 32

Clinical and pathologic findings suggest that patients with conditions such as

coronary artery disease (plaque build-up in arteries that deliver blood to the heart),

cardiomyopathy (disease of the heart muscle that causes it to lose pumping strength),

hypertensive heart disease (high blood pressure), or arrhythmias (cardiac rhythm

disturbances) are at high risk of SCD.3 3 In most cases, the mechanism for onset of SCD

is a ventricular tachycardia that rapidly progresses to ventricular fibrillation and

circulatory collapse.31,34 Ventricular fibrillation is a lethal, disorganized tachycardia that

leads to cessation of effective pumping, cardiac output, and can result in death.

2.5 Ventricular Tachyarrhythmias

Ventricular arrhythmias are a result of abnormalities in impulse initiation or

conduction, or both. Tachycardias refer to arrhythmias with three or more complexes at

rates exceeding 100 beats per minute; they occur more often in structurally diseased

hearts than in normal hearts. 47 Ventricular Tachycardia (VT) originates from a ventricular

ectopic focus (prematurely discharging in the ventricle), characterized by a rate typically

greater than 120 beats per minute and wide QRS complexes. No absolute ECG criteria

exist for establishing the presence of VT. However, several factors suggest VT,

including the following: (i) a rate greater than 100 beats per minute (usually 150-200
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bpm); (ii) wide QRS complexes (>120 ms); (iii) presence of atrio-ventricular

dissociation; and (iv) fusion beats, which have a P wave, broad QRS complex and

inverted T wave.35

There are two main types of tachycardias, supraventricular and ventricular

tachycardia. Supraventricular tachycardias originate from above the ventricles - either

from the atria or from the AV node. Generally, supraventricular tachycardias come and

go, so they are also known as paroxysmal supraventricular tachycardias. If they last for a

sustained period, then they are termed sustained paroxysmal supraventricular

tachycardias. In general, ventricular tachycardias carry greater risk to the patient than

supraventricular tachycardias. 36

VT may develop without hemodynamic deterioration (relating to mechanics of

blood circulation), yet it often causes severe hemodynamic compromise and may

deteriorate rapidly into ventricular fibrillation as shown in Figure 2.9. Ventricular

fibrillation must be immediately terminated by electric shock to avoid sudden death.

VV
I I

Normal Heart Rtl VF

Figure 2.9: A schematic representation of the transition from normal heartbeat to

ventricular tachycardia and finally to ventricular fibrillation on an ECG recording.37
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2.5.1 Ventricular Tachycardia

Ventricular Tachycardias may be classified based on morphology, duration, or

underlying mechanisms (substrates).38 Regarding morphology, the two different

morphologies of VT are monomorphic and polymorphic. Monomorphic refers to a

regular rhythm originating from a single focus with identical QRS complexes.

Monomorphic VT, which is illustrated in Figure 2.10, may occur in patients with

structural heart disease such as coronary artery disease or may occur in patients without

obvious heart disease, also known as idiopathic VT. Polymorphic VT refers to an

irregular rhythm and varying QRS complexes and/or axis and is an unstable, malignant

form of VT that often degenerates to VF.

I i 

Figure 2.10: Monomorphic VT.39

Torsade de pointes is a distinctive variant of polymorphic VT, characterized by

spontaneous termination (often mistakenly called self-terminating VF) and a distinct

cyclic fluctuation of the QRS complex morphology and amplitude. It has unusual

shifting-axis QRS complexes that appear on the ECG as if the heart is rotating on an axis

as shown in Figure 2.11. It typically results from anti-arrhythmic drug toxicity or

congenital causes that prolong the QT interval.35 This arrhythmia may occur with or

without either myocardial ischemia (decreased flow of oxygenated blood to heart) or

infarction (tissue death caused by obstruction of blood circulation) and episodes are often

self-terminating, but can be rapidly fatal if they persist.
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Figure 2.11: Torsade de pointes. 39

The duration classification of VT comes in the form of either sustained or non-

sustained VT. Sustained VT is defined as VT that either lasts at least 30 seconds or

results in hemodynamic collapse. It is most often caused by reentry within the

ventricular heart muscle and usually associated with some form of structural heart

disease. Sustained VT can be caused by an accelerated focus in the absence of heart

disease. However, the most common cause is chronic ischemic heart disease associated

with a prior myocardial infarction. Myocardial Infarction (MI) is usually caused by

coronary artery disease (plaque build-up in the arteries that deliver blood to the heart).35

Sustained, monomorphic VT in patients with coronary artery disease is usually generated

by a reentry circuit that incorporates diseased myocardium adjacent to an area of

infarction in the left ventricle. Patients with VT after infarction often have multiple

reentry circuits with an average of 3 to 4 different inducible VTs.40

Non-sustained VT is a run of tachycardia less than 30 seconds duration and does

not lead to hemodynamic collapse.41 Often it is an episode of VT that is short and

spontaneously terminating (hence, the term non-sustained) and irregular. This is because

the arrhythmia is unstable and cannot establish a stable organized reentrant circuit. Non-

sustained VT can cause palpitations, lightheadedness, and even fainting. Non-sustained

VT is also associated with cardiac disease but occurs in its absence more often than

sustained VT.
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Some VTs are caused by underlying mechanisms, which may be due to such

substrates as coronary artery disease or dilated hypertrophy (increase in size of the heart).

VT usually is a consequence of structural heart disease, with a breakdown of normal

conduction patterns, increased automaticity (which tends to favor ectopic foci), and

activation of reentrant pathways in the ventricular conduction system.

2.5.2 Premature Ventricular Contractions

A focus within the ventricles that prematurely begins myocardial depolarization

results in a Premature Ventricular Contraction (PVC). PVCs are among the most

common arrhythmias and occur in patients with and without heart disease. In patients

without heart disease, PVCs have not been shown to be associated with any increased

incidence in mortality or morbidity. PVCs may occur in up to 80% of patients with

previous myocardial infarction, and in this setting, if frequent (>10 per hour) and/or

complex (occurring in couplets), they have been associated with increased mortality.

However, cardiac mortality in such patients usually occurs in association with

significantly impaired ventricular function.4 7

During the PVC, conduction moves more slowly than through the specialized

conduction pathways, resulting in a widened QRS complex (greater than 0.12 seconds).

The wide QRS complex will either have initially a high amplitude negative or positive

deflection as shown in Figure 2.12. The direction of this deflection is dependent upon the

exact location of the focus. 39 The two ventricles depolarize sequentially instead of

simultaneously. PVCs may occur as isolated complexes or may occur in pairs, triplets, or

in a repeating sequence with normal QRS complexes. Three or more PVCs in a row is
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considered a run of VT. If it lasts for more than 30 seconds or causes hemodynamic

collapse, it is termed sustained VT.2 2

Figure 2.12: Premature ventricular contractions.39

VT due to hypoxia (oxygen deficiency) can also cause abnormal conduction and

lead to regional depolarization. The regional depolarization causes both reduced

amplitude action potentials and a decrease in the rate of depolarization, which will slow

down the velocity of impulses or completely stop impulse conduction (conduction

block).42 Conduction block can lead to tachyarrhythmias whose most common

mechanism involves reentry.22

2.6 Reentry

Ventricular Tachycardia is most often caused by reentry within the ventricular

heart muscle and is usually associated with underlying heart disease. Reentry is the

return of the same impulse into a zone of heart muscle that it has recently activated;

sufficiently delayed such that the zone is no longer refractory. 43 Reentrant activity is

thought to underlie a great variety of common clinical rhythm disturbances, ranging from

the more benign, including SA and AV node reentrant tachycardias, to the more

malignant, such as ventricular tachycardia and ventricular fibrillation.44

Reentry can take place within a small local region (as shown in Figure 2.13) or it

can occur globally between the atria and ventricles. This mechanism involves the

presence of a unidirectional block within a conducting pathway (usually caused by partial
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depolarization) and necessitates critical timing between action potentials. The effective

refractory period of the action potentials plays a major role in determining whether or not

a reentry circuit will become established.

SA Node
AV Node

Bypass Tract
(e.g.Bunde ofKen) Local Reentry

Site
Global AV
Reentry

Figure 2.13: Local reentrant circuit.42

In the model of reentry shown in Figure 2.14, if a single Purkinje fiber forms two

branches (1 & 2), the action potential will divide and travel down each branch (top

panel). If these branches then come together into a common branch (3), the action

potentials will block each other's conduction. An electrode (*) in branch 3 would record

single, normal action potentials as they are conducted down the branch. If branch 2

(bottom panel), for example, has a unidirectional block (impulses will travel retrograde

but not orthograde), then the action potential traveling down the right branch 1, and into

the common distal path (branch 3), will then travel in retrograde fashion through the

unidirectional block in branch 2 (blue line). When the block wears off, the impulse may

conduct in a retrograde direction back to the origin and then descend again through

branch 1, establishing a circular movement, or reentry. 45
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Figure 2.14: Theoretical reentry: 1 is the left bundle branch, 2 is the right bundle brunch

and 3 is the common distal path; * represents the electrode placement.42

If the action potential exits the block and finds the tissue refractory, then the

action potential will dissipate. Therefore, timing is critical in that the action potential

exiting the block must find the tissue excitable in order to continue to propagate. If the

tissue is not refractory, the action potential can establish a circular pathway of high

frequency impulses leading to tachyarrhythmia that can spread throughout the ventricles.

Because both timing and refractory state of the tissue are important for reentry to

occur, alterations in timing (related to conduction velocity) and refractoriness can either

precipitate reentry or abolish reentry. For this reason, changes in autonomic nerve
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function can significantly affect reentry mechanisms, either precipitating or terminating

reentry circuits. Many anti-arrhythmic drugs alter the effective refractory period or

conduction velocity and thereby affect reentry mechanisms, but some of the drugs have

proven to be ineffective and sometimes fatal.

2.7 Anti-arrhythmic Drugs

A number of limitations exist for anti-arrhythmic drug treatment for patients with

VT due to infarction. Although the first six months after infarction is thought to be the

period of greatest risk for VT and sudden death, some patients develop VT much later.

Because the arrhythmia substrate for late VT is relatively fixed, this type of VT tends to

be recurrent and difficult to suppress with medications. 46  Anti-arrhythmic drugs were

frequently prescribed because they altered the electrophysiological properties of the

reentrant circuit and suppressed potential triggers for the development of VT. However,

within 2 years, more than 40% of patients treated for sustained VT experienced

recurrences. 47

Suppression of ambient ventricular ectopy by an anti-arrhythmic agent does not

prevent future life threatening arrhythmias. For instance, a remarkable study showed

that patients effectively treated with class IC agents in the Cardiac Arrhythmia

Suppression Trial (CAST) had a greater risk of sudden cardiac death than those who

received placebo, a finding that underlines the pro-arrhythmic potential of these agents. 4 8

The CAST study findings presented a new awareness, prompting medical professionals to

seek alternative methods to anti-arrhythmic drug prescriptions. The Implantable

Cardioverter Defibrillator has proven to be a suitable alternative to anti-arrhythmic

therapy.
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2.8 Implantable Cardioverter Defibrillators

The superiority of the Implantable Cardioverter Defibrillator (ICD) over anti-

arrhythmic drug therapy in prolonging survival and preventing sudden death in survivors

of sustained ventricular arrhythmias has been supported in three trials. 49' 50'' Thus, the

ICD has become first-line therapy for patients with sustained VT. While pacemakers

speed up a slow heart rate, ICDs slow down a fast heart rate. Yet, many ICDs also

contain a built-in full-featured pacemaker. The ICD automatically detects Ventricular

Tachycardia or fibrillation and terminates the arrhythmia by overdrive pacing, high-

energy shocks, or both.

The ICD consists of a mini-computer powered by a battery, all sealed in a

titanium case.5 2 A typical ICD unit is small in size, often four to five ounces in weight,

less than two inches wide and a half-inch thick. An example of an ICD implanted in the

heart is illustrated in Figure 2.15. The battery is connected to a capacitor, which helps

the ICD to charge and store enough energy to deliver therapy when required. The ICD

lead, which connects the ICD to the heart, is a flexible insulated wire that has an

electrode at the tip.

Most ICDs use transvenous leads, which are passed through the vein and carries

electrical impulses from the ICD to the heart and information from the heart back to the

ICD for assessment by a physician. All ICDs require at least one defibrillator lead, which

is placed in the right ventricle. A defibrillator lead has a shocking coil near its tip that

delivers defibrillation therapy to the heart. A single chamber ICD uses one pacing lead,

placed inside or on the surface of the ventricle. The single and dual chamber ICD refers

to the functionality of the built-in pacemaker. A single chamber ICD defibrillates and
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paces the ventricle. A dual chamber ICD defibrillates the ventricle and paces the atrium

and ventricle.

Implantable
Cardioverter
Defibrillator

Pacing Leads

Left Atrium

Rkght Atrium Left Ventricle

Right Ventricle

Figure 2.15: Implantable Cardioverter Defibrillator.s2

To know if, when, and what type of therapy might be needed, the ICD monitors

the heart through its computer. The ability to sort out arrhythmias is called

discrimination, which is done with algorithms that are designed to ensure patients receive

needed therapy, while avoiding unnecessary shocks. The physician can evaluate the

ICD's performance and change settings non-invasively. A telemetry wand is placed on

the chest over the implanted device, enabling the ICD to communicate with the computer

and vice versa. To facilitate programming, the computer software provides high-speed

processing and easy operation. At the touch of a button, the unique "Automated Follow-
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Up" feature delivers customized information on the ICD function and cardiac activity to

help provide therapy specifically tailored to the patient.

The anti-tachycardia pacing therapy actually paces the heart faster than the VT.

This application of overdrive pacing allows the ICD to take control of the heart's

electrical function, returning it to normal. The patient may feel symptoms of VT, such as

dizziness and light-headedness. However, for many patients anti-tachycardia pacing can

be so rapid and painless that they may not be aware that they experienced an episode of

VT. If pacing does not stop VT, the ICD will deliver stronger impulses. Cardioversion is

a low or high-energy shock that is timed to the patient's heart rhythm to stop VT.

Cardioversion is usually used when the VT is too fast for anti-tachycardia pacing to be

used. Patients often describe cardioversion therapy as an uncomfortable feeling (like a

kick in the chest).

Although the ICD is effective in the prevention of death caused by arrhythmias,

the device treats the tachyarrhythmia only after it has occurred and does not alter the

disorder's natural history. In addition, excessive device activation for patients with

incessant VT (frequent episodes) greatly reduces one's quality of life. Thus, utilization

of the ICD as an adjunct to catheter ablation might present the best treatment for VT.

Ablation can be particularly useful for controlling incessant VT terminated by an ICD. In

one series, catheter ablation reduced spontaneous episodes of VT to less than one per

month in a selected group of 21 patients who had an average of 134 episodes per month

prior to ablation. 54
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2.9 Radio-Frequency Ablation

The treatment of individuals who suffer from arrhythmic episodes has undergone

dramatic change. Anti-arrhythmic drugs and implantable devices (pacemakers and

defibrillators) have been part of this process, but among the more dramatic developments

has been the use of Radio-Frequency Ablation (RFA). 55 Radio-Frequency Ablation,

commonly referred to as simply catheter ablation, is applicable to a wide variety of

tachycardias, has an extremely high success rate for most supraventricular tachycardias,

but has a high rate of recurrence in VT. The presence of multiple morphologies,

hemodynamic intolerance, and non-inducible VT has limited the widespread applicability

of radio-frequency ablative therapy. 56' 57' 58 The efficacy of RFA depends on the accurate

identification of the site of origin of the arrhythmia, which coincides with the reentry

circuit's exit site. Once this site has been identified, an electrode catheter is positioned in

direct contact with the exit and radio-frequency energy is delivered through the catheter to

ablate the arrhythmia.

Radio-frequency ablation is performed in an electrophysiology laboratory where

usually both the diagnosis and ablation can be accomplished in a single session. 59 The

procedure can be performed without general anesthesia, but the patient can expect to

experience some discomfort. During the procedure, three or four electrode catheters are

inserted percutaneously into a femoral, internaljugular, or subclavian vein and positioned

within the heart to allow pacing and recording at key sites. 60

The electrode catheter is connected to a radio-frequency (RF) current generator

that delivers an unmodulated sinusoidal RF current between an electrode on an

endocardial catheter and a large skin electrode. The current passing through the high

36



resistance tissue adjacent to the endocardial electrode heats the tissue producing a focal

burn. 61 RF ablation produces heating without causing propagated depolarizations or

ectopic beats. Radio-frequency lesions are created with the ablation catheter's large

distal electrode positioned on the endocardium (inside surface of heart). Up to 50 watts

of 500 kHz of RF energy is applied, directly heating a small rim of tissue (resistive

heating) as illustrated in Figure 2.16. Heat transfer from this region (conductive heating)

creates the larger portion of the lesion. Because the catheter tip and heated tissue are

cooled by surrounding and intra-myocardial blood flow, respectively, lesions are small,

approximately 5mm in diameter.62

Radio-frequency ablation is used to treat the most common regular

supraventricular tachycardia encountered in clinical practice, AV nodal reentrant

tachycardia (AVNRT). Treatment of AVNRT involves a combination of radio-frequency

ablation and diagnostic electrophysiological study in a single session. The diagnostic

electrophysiological study replicates the clinical tachycardia, to define its mechanism,

and to exclude the presence of other arrhythmia mechanisms. Indeed, multiple

arrhythmia mechanisms such as the presence of an accessory AV pathway, atrial

tachycardia, ventricular tachycardia, or atrial flutter may be present in an individual and

the accurate definition and treatment of each tachycardia is important. The results of AV

nodal ablation are excellent, with most experienced laboratories reporting well over 95%

success rates with minimal risk of serious complications. The risk of recurrent AVNRT

is less than 1% for patients with typical slow-fast AVNRT after ablation. The risk of

recurrence is higher in patients with atypical forms of AVNRT.63
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Figure 2.16: How catheter ablation works in different types of tachycardias. Sections of

heart muscle where tachycardia originates are depicted. A, A focus (*) is repeatedly firing to

cause tachycardia by spreading outward to other cells; the ECG below shows SVT at 200

beats/min. A catheter with a large electrode at its tip is in contact with the focus; after

ablation (right), the area of the focus has been damaged and is no longer firing. Arrows show

normal electrical propagation and the ECG below is normal. B, A reentrant circuit is shown

with electrical propagation around a non-conducting barrier to produce VT at a rate of 180

beats/min, as shown in the ECG below. The impulse must pass through a narrow

"bottleneck" to continue. This is an area at which a small amount of damage can eliminate

reentry; after ablation, the bottleneck is sealed off, preventing reentry. The ECG rhythm

below is normal.46

Some ventricular tachycardias contain reentrant circuits that are ill defined, thus

radio-frequency ablation therapy is not trivial. In this case, radio-frequency ablation is

performed in conjunction with mapping techniques that localize the site of origin of the
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arrhythmia. Mapping usually involves multiple inductions of the arrhythmia, which

requires the patient to be hemodynamically stable during VT. This requirement limits the

availability of RFA to patients with slow, hemodynamically stable VT, which in effect

excludes most patients with VT.

Unfortunately, 25% of patients are hemodynamically unstable and cannot tolerate

multiple inductions of the arrhythmia.10 Furthermore, most VT patients never make it to

the operating room or electrophysiology lab and for those who are admitted, the current

RFA procedure is successful in permanently terminating the VT in only approximately

half of the cases. Therefore, increasing the accuracy and speed by which we determine

the exit site will result in a more widely applicable RFA procedure. In fact the RFA

technique we have developed in principle only requires one beat of VT to localize the site

of origin.

2.10 Mapping Techniques

Mapping to identify the origin of ventricular tachycardia is crucial for successful

ablation. The approach to mapping is influenced by the size and configuration of the

arrhythmia substrate and the arrhythmia mechanism. For small, discrete VT foci, such as

those causing idiopathic VT in a structurally normal heart, pace mapping or activation

sequence mapping usually provides adequate localization. VT associated with

ventricular scars, such as myocardial infarction, are often the result of reentry circuits that

can be difficult to define. In this case entrainment mapping is useful along with other

additional mapping techniques. 64,76 Detailed mapping of the arrhythmia and sequential

positioning of the catheter is required for identification of the arrhythmia's site of origin.
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Mapping is attempted and accomplished only when the VT is slow enough not to pose a

threat to the safety of the patient.

The consistent beat-to-beat QRS morphology of monomorphic VT indicates a

relatively stable reentry circuit or focus that can be targeted for ablation. Polymorphic

VT, in which the QRS morphology is continually changing, suggests a wandering

arrhythmia source that would not be susceptible to focal ablation.61 In the case of

polymorphic VT, continuous induction of fast VT is not feasible, resulting in the

exclusion of many patients for the RFA procedure. The procedure requires that the VT is

tolerable to allow localization of the source by mapping during the arrhythmia. We will

describe some of the various mapping techniques currently utilized in RFA.

2.10.1 Surface ECG

The surface ECG is probably the most important initial mapping technique in

determining the site of origin of VT. 65 On the ECG, the QRS complex represents the

spread of the heart's electrical impulse across the right and left ventricles, which contain

the left and right bundle branches, respectively. Bundle branch block is a common

indicator of abnormal conduction. Because with bundle branch block, the ventricles

receive the electrical impulse through the bundle branches sequentially instead of

simultaneously, it takes longer for the QRS complex to form. Since the pattern of the

spreading of the electrical impulse is abnormal in bundle branch block, the pattern of the

QRS complex is also abnormal 66 and is noted by the increase in width from a normal

QRS complex. 76

The QRS morphology during VT is a useful initial guide in identifying the

chamber of origin in idiopathic VT, which is typically monomorphic in nature. For focal
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VTs, the sequence of ventricular activation is determined largely by the arrhythmia focus.

In addition, the ECG can be used to identify the site of origin and diagnosis of VT in

scar-based VT. For VT circuits associated with scars, the QRS morphology tends to

indicate the location of the reentry circuit exit, but is not always reliable. 67

The limitations involved with solely utilizing the ECG in determining the site of

ablation are obvious. The ECG does not indicate the precise location of the target site for

ablation. If solely utilized for catheter guidance, the ECG localization of the ablation site

would be too general and lead to permanent destruction of healthy myocardium. Another

limitation regarding patients both with and without structural heart disease is the

orientation of the heart in the precordium (vertical versus horizontal) can alter the VT

ECG morphology. Also, the ECG can be influenced by the presence of large scar, thus it

is only useful as an initial step in determining the general location of the VT origin.

2.10.2 Activation Sequence Mapping

Activation sequence mapping is recording activation times from electrograms in

an attempt to spatially reconstruct the sequence of myocardial depolarization. The

activation times are referenced to a common point, usually the QRS onset during catheter

mapping.64 Activation sequence mapping involves simultaneous sampling from a large

number of electrode sites to spatially reconstruct the reentry pathways from activation

times and has been used extensively to investigate reentry circuit configuration in

humans. 68,69,70,71 The procedure of activation mapping comprises two principal steps: (1)

identification of the local activation time at each electrode, and (2) generation of the

isochronal map by means of an interpolation algorithm.7 2 The principles of activation
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mapping are illustrated in Figure 2.17 for a theoretical reentry circuit in a structurally

normal ventricle.

ECG
Ventricle

Focal VT
origin

Figure 2.17: The left panel contains a schematic of the left ventricle contains a small reentry

circuit. The top right half of the panel contains an ECG while the lower half shows bipolar

electrograms at various distances from the reentry circuit (A through E). The recording

sites are indicated by arrows extending from the intra-cardiac tracing to the site. The QRS

onset is indicated by the vertical arrow. Electrograms recorded near the VT origin (site C)

precede the QRS onset. At sites more proximal in circuit (site E), activation time may be

similar to that observed at sites distant from the circuit (site A)-represented by dashed

line."

The small focal reentrant circuit or automatic focus may occur in the rare instance

of idiopathic VT.7 The concentric lines that spread out from the focal VT origin

represent isochrones, which indicate the spread of excitation from the focus. Because the

reentry circuit is small, the focal region does not generate enough electrical activity to be

detected in the ECG. Thus, the onset of the QRS complex is not observed until a critical
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mass of myocardium has been depolarized, which corresponds to the propagation of the

reentry wave out of the circuit into myocardium progressively farther from the VT origin.

Wavefronts that are propagating perpendicular to the recording dipole of an ECG lead as

they leave the focus will not generate a deflection until sufficient vector forces are

generated in other directions. This will cause the QRS onset in that lead to occur later

than the onset in other leads.64

As the recording site is moved further from the arrhythmia focus, electrograms

are recorded progressively later during the inscription of the QRS complex, producing a

notable phase shift. Identical electrograms can be produced when activation times are

similar at the following two locations: (i) sites proximal to the reentry circuit exit site

where activation may occur during QRS onset and (ii) sites distant from the circuit as

indicated by the dashed line in Figure 2.17. Therefore, the timing of a single site relative

to the QRS complex may not reliably indicate that the site is in the circuit.

Reentry circuits in abnormal hearts are much more common than the idiopathic

VT that may arise in a normal heart. The reentry circuits that give rise to sustained VT

late after myocardial infarction can be large and are contained within an abnormal

ventricle. A variety of reentry circuit configurations and sizes are possible. Conduction

velocity through regions of scar is often slowed and depolarization generates low

amplitude electrical signals that are not detectable by the ECG.68 69,71,74 In addition, the

entire reentry path is often undefined, despite electrode recordings from multiple sites

throughout the heart. A region of slow conduction through the infarct scar is a common

feature of many reentry circuits that have been mapped intra-operatively.
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Limitations of activation mapping for use in patients with idiopathic VT include

the VT must be sustained, but the majority of idiopathic VTs are non-sustained. The far-

field signals sometimes appear early and are not always in the vicinity of the site of

origin. In addition, the small, focal reentry circuit does not generate enough electrical

activity to be detected in the ECG. Activation mapping alone is not predictive of optimal

ablation targets, especially with scar based reentrant circuits that may incorporate a large

zone (isthmus) of slow conduction. Difficulty in the identification of slow conduction

zones in the reentry circuit may exist due to the small isthmus not manifesting recordable

electrical activity.

Additional limitations of activation mapping for use in patients with scar-based

reentrant VT include the requirement that VT be hemodynamically tolerated, but about

25% of all scar-based reentrant VTs are too fast to be tolerated to allow sampling at

different intra-cardiac sites.68 In addition, precise timing of local activation is often

problematic due to the presence of multiple rapid components, creating a fractionated

appearance in the electrogram.68,69,74 In addition, abnormal electrograms are generated

from some areas adjacent to, but not actually within, the reentry circuit at bystander

areas.7 5

2.10.3 Pace Mapping

Pace mapping is pacing from an ablation catheter at multiple ventricular sites

during sinus rhythm to obtain the ECG morphology identical to that of the clinical

arrhythmia. 59 Because many tachyarrhythmias appear to be due to a reentrant mechanism

with the impulse traveling in a circuit, a properly timed paced impulse can penetrate and

prematurely depolarize part of the circuit, rendering it refractory to the next circulating
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wavefront and thereby interrupting the circus movement.47 It is useful first to compare a

12-lead ECG during the tachycardia with a 12-lead ECG recorded during sinus rhythm

for focal VTs. For focal, non-reentrant tachycardias, pace mapping at the VT focus

produces a QRS complex identical to that of the VT.68

For scar-related reentry circuits, pace mapping can help to focus more precise

mapping on areas of interest, but it provides only a limited indication of the circuit exit

location and areas of abnormal conduction. At many sites in the reentry circuit, pacing

produces a QRS different from that of the VT, particularly if the site is not near the exit.

Abnormal conduction during pace mapping in both focal and scar-based reentrant VT, is

indicated by a delay > 40 msec between the stimulus and QRS onset (S-QRS) in all 12

leads of the ECG as shown in Figure 2.18. However, in scar-based reentrant VT, the

specificity is low for reentry circuits.76
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Figure 2.18: Indication of abnormal conduction resulting from pace-mapping where S

represents the stimulus.7 6

Pace mapping is extremely limited in indicating the precise VT site of origin for

any scar-based VT. Thus, pace mapping for scar-based reentrant VT is usually used in

conjunction with entrainment with concealed fusion (ECF), in which specific sites within

the reentry circuit can be targeted based on a set of pre-defined criteria.

2.10.4 Entrainment Mapping

Entrainment mapping is a technique to identify ablation sites in a reentry circuit.

Reentry circuits associated with scars vary in size, configuration, and location as

illustrated in Figure 2.19, along with the identification of key areas.
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Figure 2.19: Three theoretical reentry circuits are shown. The dark grey areas represent

scar tissue resulting from myocardial infarction and the arrow represent the direction of

wavefront propagation. (A) shows a double loop (figure-eight) circuit consisting of a central

common pathway (CP) and two outer loops. (B) shows a single loop circuit with exit,

central, proximal, and inner loop regions. (C) shows a circuit consisting of a single outer

loop. Note the exit, entrance, central, proximal and bystander (bys) regions 7

Depolarization of the common pathway, (from proximal to central to exit) occurs during

diastole and is not detected in the surface ECG as with many circuits containing a region

of slow conduction or a narrow isthmus, or both. It is assumed that diastolic activity also

is found on other protected myocardial sites such as the inner loop or bystander. 78 The

regions proximal to the exit are central and proximal regions. After leaving the exit, the

reentry wavefront returns to the proximal region by propagating through a loop as shown
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in Figure 2.19B, which shows an inner loop contained within the scar. An outer loop is a

broad sheet of myocardium along the border of the scar as shown in Figure 2.19A and

C. Outer loop wavefront propagation enters the scar through an entrance. Circuits may

be comprised of a single loop or multiple loops.

The majority of scar-related, stable monomorphic VTs are due to reentry with an

excitable gap. An excitable gap is an area of repolarized, excitable tissue that can exist

between the head of an approaching depolarizing wavefront and the tail of the preceding

wavefront as illustrated in Figure 2.20. The excitable gap allows appropriately timed

pacing stimuli to reset the reentry circuit. The revolution time exceeds the refractory

period at all sites, creating at excitable gap between recovery from depolarization and

arrival of the next circulating wavefront.

The post pacing interval, PPI, is the time from the stimulus to the return of the

stimulated orthodromic wavefront to the pacing site. We can measure the PPI when we

pace the ventricle from a site in the region of the reentrant circuit. The VT cycle length

(VTCL) is the time it takes VT to travel through the circuit. When pacing at a site in the

reentry circuit, the PPI approximates the VT cycle length (VTCL) as shown in Figure

2.20B and C. The PPI from the stimulus to the return of the stimulated orthodromic

wavefront to the pacing site is equal to the VTCL. In contrast, at bystander sites the PPI

exceeds the VT cycle length (Figure 2.20D and E). The PPI is the conduction time from

the pacing site, to the circuit, through the circuit, and back to the pacing site, and exceeds

the VTCL. Analysis of the PPI assumes that the electrogram indicates depolarization of

the pacing site by the returning orthodromic wavefront. 76
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Figure 2.20: Reentry with an excitable gap, resetting, and the post-pacing interval (PPI) are

illustrated. The circulating wavefront (solid arrow) propagates around an unexcitable

region (gray). Following depolarization, each site is refractory for a finite time. Boxes in A

show action potentials at various stages of repolarization from different sites [1, 2, 3, 4]

around the circuit. In B, resetting by a stimulus that captures a site in the reentry circuit is

shown. The stimulus (S) produces orthodromic and antidromic wavefronts (gray arrows).

The antidromic wavefront collides with the returning orthodromic wavefront. In C, the

stimulated orthodromic wavefront propagates through the circuit, resetting it. D and E

show resetting of the circuit by pacing at a bystander site. A capturing stimulus produces

wavefronts that propagate to the circuit and begin traveling in antidromic and orthodromic

directions. The antidromic wavefront collides with an orthodromic wavefront and is

extinguished. The stimulated orthodromic wavefront travels through the circuit and then

returns to the pacing site (E)."
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Entrainment is the continuous resetting of the reentry circuit by a series of

stimuli. 79  In entrainment with QRS fusion, or entrainment for brevity, fusion of two

wavefronts, one from reentrant activity in the circuit and one from the stimulus, is

observed in the ECG. This fusion results from stimulated wavefronts that alter

ventricular activation remote from the pacing site. Note in Figure 2.21 that the

stimulated orthodromic wavefronts (gray arrows) generated from the stimulus (S) do not

exit the circuit at the same time as the reentrant activity in the circuit (black arrows).

AVF-

V 1......

V5

LV 2-5

Figure 2.21: Entrainment at remote bystander (A), and outer ioop (B) are shown. To the

right of each tracing, the mechanism is illustrated in the theoretical reentry circuit. From

the top of each tracing are surface ECG leads and a recording from the pacing site (LV). A

and B show entrainment with QRS fusion; pacing produces antidromic wavefronts that alter

ventricular activation remote from the pacing site. A: Pacing from stimulus (S) at a remote

bystander site. B: Pacing within the outer loop of the reentry circuit. All pacing is unipolar

and time is in msec."

In addition, the stimulated antidromic wavefronts are not contained in or near the scar,

but propagate through other areas of the heart. Thus, it is expected that the ECG would
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represent a fusion of the orthodromic wavefront at the exit site fused with the reentrant

activity in the circuit at the same exit site.

2.10.5 Entrainment with Concealed Fusion

Entrainment with concealed fusion (ECF) is entrainment by stimuli that do not

alter the QRS morphology. The lack of QRS fusion is due to failure of the stimulated

wavefronts to alter ventricular activation. As the illustration of ECF shows in Figure

2.22C and D, the stimulated orthodromic wavefront leaves the exit at the same time as

VT, utilizing the same exit.

Figure 2.22: Entrainment at proximal (C) and adjacent bystander sites (D) are shown. To

the right of each tracing, the mechanism is illustrated in the theoretical reentry circuit.

From the top of each tracing are surface ECG leads and a recording from the pacing site

(LV). In C and D, pacing entrains VT with concealed fusion (ECF); the QRS during pacing

is identical to that during VT. In C, an isolated potential is present and the PPI measured to

the isolated potential approximates the VTCL, consistent with a reentry circuit site. All

pacing is unipolar and time is in msec."
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The stimulated antidromic wavefronts are contained in or near the scar by collision with a

returning orthodromic wavefront and by regions of conduction block.57 The term

entrainment with concealed fusion stems from the fact that fusion occurs between

orthodromic and antidromic wavefronts at the electrogram level within the scar.

However, this fusion is concealed, or not apparent on the surface ECG.

During sinus rhythm, potentials that occur after the end of the QRS complex,

designated late potentials, are associated with abnormal conduction and with isolated

potentials during VT. Abnormal sinus rhythm electrograms are usually present at exit,

central, and proximal sites, but they also occur at bystanders. 76  Isolated diastolic

potentials are low-amplitude electrograms that occur during electrical diastole, between

QRS complexes as shown in Figure 2.22C. They often arise from a reentry circuit

isthmus, but can also occur in bystander areas; as indicated by dissociation of the

potential from the VT during entrainment, or initiation of the VT. 80

Because entrainment with concealed fusion can occur during pacing at bystander

sites adjacent to the reentry circuit, additional criteria are needed to distinguish reentry

circuit sites from bystanders. From evaluating the PPI, Stevenson and coworkers found

that at 53 ECF sites, 25% were in bystander areas and 75% were in the reentry circuit.64

ECF use of the PPI to distinguish reentry circuit sites from bystander sites is based on the

assumption that the conduction time through the reentry circuit remains the same during

entrainment as during VT. When conduction velocity slows during pacing,

prolonging the revolution time through the circuit, the PPI lengthens, exceeding the

VTCL. Therefore, if the PPI significantly exceeds VTCL, we know that pacing is

occurring at a bystander site.
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At inner loop and common pathway sites, pacing entrains tachycardia with

concealed fusion and a PPI approximating the VTCL. Pacing in an outer loop entrains or

resets the tachycardia with QRS fusion, but with PPI matching the VTCL. As

confirmation of our earlier discussion of PPI, note that when pacing within the circuit, the

PPI = VTCL (Figure 2.21B and Figure 2.22C), but when pacing outside the circuit, at a

bystander site, PPI > VTCL (Figure 2.21A and Figure 2.22D).

Several measurements for identifying reentry circuit components during

entrainment are critical. The first measurement is to consider the difference between PPI

and VTCL. A minimum PPI-VTCL difference < 30 msec increases the likelihood of VT

termination by five-fold, as compared to longer PPIs.57 However, the PPI should not be

the sole criteria for selecting ablation target sites because it does not distinguish narrow

isthmuses from broad reentry paths (e.g. outer loop sites). 76  As can be seen in Figure

2.23, the PPI-VTCL difference of < 30 msec can inform you if you are pacing at an outer

loop, remote bystander or adjacent bystander sites. However, additional criteria are need

for isthmus and inner loop site information.
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Figure 2.23: The cartoon and adjacent panel represent the criteria for determining different

components in a scar based reentrant VT circuit by entrainment mapping. Highest success

for ablation lesions is in the isthmus followed by exit site. CF represents concealed fusion

and EG represents electrogram.82

A second measurement to observe is the difference between the S-QRS interval

and the interval between the onset of the electrogram deflection and onset of the

corresponding QRS complex, EG-QRS. The S-QRS interval is the time from the

stimulus to the QRS onset and the EG-QRS interval is the time from the electrogram

deflection to the QRS onset. The S-QRS is short at exit, and longer at central, proximal,

and inner loop sites as shown in Figure 2.23. The S-QRS interval also aids in the

identification of bystander sites. At reentry circuit sites, but not bystander sites, the S-

QRS during ECF equals the EG-QRS interval during VT, provided that pacing does not

alter conduction. Stevenson and coworkers found that an S-QRS and EG-QRS difference
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of < 20 msec may indicate a reentry circuit site. 64  They determined that a short S-QRS

and EG-QRS difference may indicate a reentry circuit site, but a long difference may not

reliably indicate that the site is remote from the circuit. The reasons for this are not clear

but may possibly result from the stimulated wavefront taking a slightly different path

than the tachycardia when exiting the reentry circuit. In addition, entrainment with subtle

QRS fusion may not have been detected on the ECG lead used to access the QRS

morphology during pacing.

A third measurement to consider is the ratio, S-QRS/VTCL, which provides

information regarding whether or not the pacing occurs at exit, central, proximal or inner

loop sites. ECF with either an S-QRS interval less than 70% of the VTCL, or with an

isolated diastolic potential, increases the likelihood of VT termination by more than

eight-fold, to as high as 70%.57,86

In order to clarify the measurements discussed, we have depicted an example with

all of the measurements labeled in Figure 2.24. Note that the stimulus is at the proximal

region of the common pathway, or isthmus, inside the reentry circuit. First, we would

expect the PPI and VTCL difference to be less than 30 msec. Secondly, we would also

expect the S-QRS and EG-QRS difference to be less than 20 msec. Finally, we would

expect the S-QRS/VTCL to lie between 51-70%.
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S-QRS PPI VTCL EG-QRS

Figure 2.24: Example of electrogram and ECG with measurement indicators."

The criteria to fulfill are as follows: Is the PPI and VTCL difference 5I 30msec?

Yes, the PPI = 540 msec and VTCL = 540 msec. Is the S-QRS and EG-QRS difference 5

20 msec? Yes, the S-QRS = 285 msec and EG-QRS = 285 msec. Is the S-QRS/VTCL

ratio between 51-70%? Yes, the S-QRS/NTCL = 285/540 = 52.8%. These criteria

indicate that the stimulus is in the common pathway, thus a lesion will be formed at that

site followed by movement of the stimulus toward the exit site to form a lesion where the

S-QRS/VTCL ratio is < 30%.

Multiple morphologies of inducible monomorphic VT are common in patients

with scar-related VTs as shown in Figure 2.25. Typically three to four VTs per patient

are present, increasing the difficulty of mapping and ablation. 57,86 Multiple VTs may

originate from different regions, or from a single region of slow conduction, such that

ablation in one region abolishes more than one VT.76 Patients referred for ablation often

have recurrent episodes of VT. 40,56 Reentry circuits related to inferior wall infarctions

are most commonly located along the basal region of the infarct, near the mitral

annulus.8 4 In some cases, a surviving rim of tissue beneath the mitral annulus is a critical

isthmus where ablation can abolish multiple VTs. Rarely, the successful ablation site is
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in the right ventricle. 83 In 20% to 30% of patients, target sites for one or more VTs are

not identified from the endocardium.
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Figure 2.25: ECG tracings and entrainment of two different VTs in a patient with prior

inferior wall infarction are shown. VT-2 (at left) has a LBBB configuration and dominant R

waves in V3-V6 consistent with an exit at the base of the septum. Pacing at LV site 6,

beneath the mitral annulus on the inferior wall, produces ECF, a PPI indicating that the site

is in the circuit (dashed line), and a relatively long S-QRS (235 msec) consistent with a

proximal; site in the circuit. VT-1 (at right) has a RBBB configuration and pacing at site 6 to

8, produces ECF, the PPI approximates the VTCL, and the relatively short S-QRS of 60

msec is consistent with an exit site. Ablation in this region abolished both VTs.8 4

When all the criteria of an ideal site are met: (i) a perfect ECG match of paced

beats to the VT-ECF, (ii) PPI 30 msec of VTCL and (iii) pacing S-QRS/VTCL 50%

of VT cycle length-within the isthmus, then 70% of the VTs can be terminated by a

limited number of lesions.85'40'86 Termination of VT by a stimulus that does not produce
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a QRS complex is uncommon, but probably indicates the pacing site is in the reentry

circuit.76

Entrainment with QRS or concealed fusion is not well suited for the study of rapid

tachycardias because the techniques require the patient to repeatedly tolerate episodes of

sustained tachycardia. The ability of the stimulus to entrain tachycardia depends on the

existence of a long enough excitable gap in the reentry circuit.57  Entrainment can be

demonstrated for the vast majority of slow monomorphic VT arising from infarct scars.

However, these methods are not suited for polymorphic ventricular arrhythmias. It is

likely that abnormal electrograms serve as a useful guide for selecting regions to

interrogate further during tachycardia, but they have a low specificity for identifying

reentry circuit sites.

2.10.6 Electro-anatomical Mapping

In the past, localization of the mapping catheter electrodes was based on two-

dimensional fluoroscopic images. These images clearly define the location coordinates

of the electrodes, but because they do not reveal endocardial information, they are

insufficient to record the electrode coordinates within the patient's heart. Thus the

electro-anatomical mapping system was introduced, which simultaneously reports the

recording electrode coordinates together with its electrogram. This mapping system

makes use of an intra-body, real-time, high resolution, non-fluoroscopic location and

navigation system. 87

Electro-anatomical mapping is a new, widely used, commercially available

mapping technique. The CARTO System (Biosense, Tirat Hacarmel, Israel) is a non-

fluoroscopic three-dimensional, catheter based mapping system that creates a replica of
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the anatomy of the cardiac chamber at the site of the tachycardia focus or circuit.

Historically, significant research efforts were directed to accurately determine the local

activation time from unipolar and bipolar electrograms, but little effort was given to

achieve a better understanding of the importance of the accurate determination of

location. As catheter ablation procedures became more widespread, the need for

location-accurate maps was needed.

During the mapping procedure, a locatable mapping catheter is introduced under

fluoroscopic guidance and is positioned inside the area of the heart to be mapped. The

mapping system determines the location and orientation of the mapping catheter, which is

gated to a fiducial point (cross location marker) in the cardiac cycle. The catheter tip is

sequentially dragged over the endocardium, acquiring multiple tip locations together with

their respective electrograms. The set of gated catheter tip locations is used to

reconstruct the 3-D endocardial surface using x-irradiation. The system may be used to

identify tag areas where the radio-frequency energy has to be applied, enabling the

operator to move the catheter to contiguous sites around the focal origin of the

tachycardia for more radio-frequency energy applications, in order to ablate the

tachycardia focus.

The system can produce an activation map and a voltage map as demonstrated in

Figure 2.26. The local activation time at each site is color-coded and incorporated into

the endocardial surface reconstruction as a color, in which red represents earliest

activation times and purple represents latest activation times. The activation map

(Figure 2.26A) depicts an entrance to the slow conduction zone (located at the border of

the scar, SCZ) and an exit (EXIT). RF energy was delivered to create a line of block
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transecting the SCZ (brown tags). In the voltage map (Figure 2.26B), red represents scar

(< 0.5 mV) and purple represents healthy tissue (> 2 mV). Blue, green, yellow, and red

indicate progressively lower-amplitude abnormal regions. The pink tags indicate sites

with diastolic electrical activity from the reentrant pathway.

scar

A
ACTIVATION MAP VOLTAGE MAP

Figure 2.26: Activation(A) and substrate (B) maps (AP view) of a patient with ischemic VT.

The substrate (B) map shows, in red, areas of a large low voltage area (corresponding with

scar, SCAR). The activation map (A) depicts an entrance to the slow conduction zone

(located at the border of the scar, SCZ) and an exit (EXIT) 3 cm more posterior into the

normal tissue. The pink tags indicate sites with diastolic electrical activity. This map guided

the ablation procedure in which RF energy was delivered to create a line of block transecting

the SCZ (brown tags). (Map courtesy of Dr. Karl Heinz Kuck, St. George's Clinic,

Hamburg, Germany).

Patient movement is corrected by placing a second locatable catheter on the

patient's back. The mapping system subtracts the location of the mapping catheter from

the simultaneous location of the reference probe, thus compensating for any patient

motion. A correction can also be made for heart movement by placing an internal

reference probe in a secure place in the heart chambers, such as in the coronary sinus.

Once sufficient anatomical data has been acquired, the operator can navigate without
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using fluoroscopy.8 8 Before new data is added to the map, the stability of the catheter-

endocardial contact is tested for location stability and local activation time stability. Data

may also be presented as propagation maps, in which active sites are colored red and

quiescent sites are blue. 46

The CARTO system provides a better understanding of subtleties of pace

mapping, leading to accurate targeting of ablation lesions in idiopathic VT. For scar-

based reentrant VT, CARTO characterizes the true endocardial extent of scar and border

zones. Studies found that repeated electro-anatomical activation and propagation maps

during sinus rhythm and pacing were similar and enabled accurate identification of the

pacing site in all animal studies.8 9 Accuracy was also tested by repeatedly applying

radio-frequency energy to a site on the endocardium that was tagged on the electro-

anatomical map. 90 These studies indicate that the localization is accurate enough to guide

radio-frequency energy to create single, multiple, and long continuous lesions.

Some limitations of the procedure include the fact that only exit sites of the

electrical wavefront can be registered, but not the underlying electrophysiological and

anatomical structure. Furthermore, electro-anatomical mapping is limited by the fact that

it requires a hemodynamically stable tachycardia in order to allow activation sequence

mapping.91 Because the localization methodology is based on recording low-level

magnetic fields, large ferromagnetic objects can affect the magnetic field sensed by the

catheter sensor (usually when large objects are within 1 cm from the catheter tip).

2.10.7 Non-contact Mapping

Conventional mapping prospects are poor for patients who have rapid

hemodynamic deterioration due to rapid rate and depressed ventricular function because
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it is not possible to keep these patients in tachycardia during mapping. The concept of

rapid endocardial activation mapping using a catheter based system that acquires data

simultaneously is attractive and now possible through non-contact mapping. The non-

contact mapping system produces endocardial activation maps based on the electrical

field detected in the blood pool by a catheter-mounted probe deployed free in the cardiac

chamber. 92

The endocardial electrograms are constructed from the low-frequency, low-

amplitude potentials detected in the blood pool 93 by utilizing principles previously

applied to the reconstruction of epicardial maps from skin surface electrograms. 94 The

technique to enhance and resolve the far-field potentials is based on an inverse solution to

Laplace's equation that considers how a signal detected at a remote point (non-contact

electrode) would have appeared at the source. An alternative in such unstable patients-

now feasible with non-contact mapping-is to transect areas of slow conduction and

visualize lines of ablation as they are created and perform the ablation during sinus

rhythm.95

The Non-contact mapping system (EnSite), as shown in Figure 2.27, utilizes a 9

French multi-electrode array (MEA) catheter with 64 electrodes mounted on a 7.5 ml

balloon (filled with a contrast/saline mixture to deploy the MEA) to record intra-cavitary

far-field potentials. A French is the circumference of the tube in mm. The outer

diameter (also in mm) is computed by dividing by n.
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Figure 2.27: Detail from screen of non-contact system workstation. Within the geometric

contour of the computer-generated virtual LV endocardium (top), position of MEA is

represented as a yellow frame. Lateral wall of virtual endocardium has been removed to

reveal endocardial surface. Some anatomic locations, as identified on fluoroscopy, are

labeled in green, having been marked on the map by use of the catheter-location system. Inf

indicates inferior; Infsept, inferoseptal; Ant, anterior; and Ant Sept, anteroseptal. A

reconstructed isopotential map is superimposed onto the virtual LV endocardium. Color

scale for the isopotential map, shown as a horizontal line below the virtual endocardium, has

been set so that white represents endocardial regions where the potential is <-9 mV and

purple represents endocardial regions where the potential is >-8 mV (thus producing an

activation map). Green locator signal line emerging from MEA marks the position of the

mapping catheter tip on the endocardium. Below the virtual endocardium are waveforms

showing surface ECG lead I, contact electrogram from the mapping catheter tip, and

reconstructed electrogram at the same location.96

The system permits simultaneous multi-site intra-cardiac mapping and has the

capability to localize any conventional roving electrode catheter. Using inverse solution

mathematics, distortion of the detected electrograms due to noise, measurement errors, or

inaccuracies in determining the endocardial geometry, may result in large errors in

reconstruction of the electrogram. To compensate for potential distortions in detected
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electrograms, stability is provided by using a mathematical technique known as

regularization, which make it possible to reconstruct and interpolate up to 3300

electrograms simultaneously, covering the entire virtual endocardium of the chamber in

which deployed. 97

Schilling and coworkers conducted a study of non-contact mapping in the left

ventricle during the ablation of ventricular tachycardia, which demonstrated excellent

results of the non-contact mapping technology. 98 Of 24 patients with VT undergoing non-

contact mapping of VT, 21 patients had ischemic heart disease. Of a total of 81

morphologies of left ventricular tachycardia mapped, the exit site from the diastolic

reentrant pathway was demonstrated in 80 (99%). The complete circuit was visualized

in 17 (21%) and the exit alone could be identified in 26 (34%). The non-contact mapping

system was safely used to map and guide ablation with no complications arising directly

from the system.

Limitations include overall decrease in accuracy in reconstructed electrograms as

the distance of mapped area from the MEA increases, thus creating problems in mapping

large cardiac chambers and complications due to aggressive anticoagulation measures

because of MEA deployment in the cardiac chamber expose patients to potential bleeding

complications.99 The MEA catheter has demonstrated limited clinical utility by

providing poor spatial resolution. However, with further development of the accuracy,

rapidity, and possibly, automation of data analysis, this technology has the potential to

not only make the large majority of previously inaccessibly, poorly tolerated VT

amenable to mapping and ablation, but also to reduce procedure and fluoroscopy times,
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and increase the efficacy of ablation through a better appreciation of the arrhythmia

mechanism. 92
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Chapter 3

Electrophysiologic Simulations

3.1 Introduction

The simulation of reentrant arrhythmias was necessary in analyzing the

effectiveness of the Brute Force Inverse Algorithm (BFIA) in eradicating Ventricular

Tachycardia (VT). We present a simulation model to study the abnormal electrical

conduction that arises from ventricular scar tissue, specifically VT that is caused by an

underlying reentry circuit. Thus, it is our objective to develop a model whose elements

have the characteristics of VT due to a reentry circuit substrate. The model is simple and

deterministic, providing a straightforward approach to electrocardiogram (ECG)

simulations.

Prior ECG simulations by Smith'0 4 provided evidence that the spatial dispersion

of refractoriness was a sufficient condition to initiate reentrant arrhythmias. The

refractoriness of tissue refers to the length of time the tissue has been activated and thus

the level of susceptibility for future activation. The "dispersion of refractoriness"

hypothesis is rooted in the concept that the spread of depolarization over myocardial

tissue is fundamentally a synchronous process in which activation of one region of tissue

spreads to activate neighboring regions. The process of repolarization, on the other hand,

is fundamentally an asynchronous process in which local clocks determine the length of
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time during which a region of tissue remains depolarized and thus refractory to further

stimulation.

An alternative approach to testing the dispersion of refractoriness hypothesis in

animals and one that allows for gaining additional insight into basic mechanisms is to

construct a simple computer model of ventricular conduction processes that explicitly

incorporates spatial dispersion of refractoriness. The goal of this approach is not to

develop a model that closely represents the detailed electrophysiology of ventricular

conduction, but rather to develop the simplest model that retains key features of the

problem. The pioneering work of Moe et al.141 represented an initial effort in this

direction. We have developed realistic ECG simulation results with our simple

ventricular model whose elements retained only dynamical parameters such as action

potential duration, autochron and state values, which will be described in the following

sections.

3.2 Ventricular Model

We present a simple finite-element model of ventricular conduction in which a

cylindrical shell model represents a first order approximation to ventricular geometry as

depicted in Figure 3.1. The cylindrical ventricle with a diameter of 4.5 cm and length of

9 cm was placed inside a spherical torso centered at the origin, [0,0,0], with radius 12.5

cm. In our analysis, 45 square elements were generated along the length of the cylinder

and 71 square elements were generated along the circumference of the cylinder, thus

totaling 3,195 elements. The linear dimension of the square elements in our model is 2

mm.
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Figure 3.1: Cylindrical finite element model for ventricular conduction with a radius of 4.5

cm and length of 9 cm. The linear dimension of the square elements in our model is 2 mm.

3.3 Model Time Factor

Due to the fact that our model is discrete, it was important to keep track of most

parameters in terms of machine time units (MTU). To later interpret our ECG's in terms

of physical time units, we computed the following time scale

value,t = TQRs /(m + n /2), where m is the number of rows and n is the number of

columns in the ventricular model and TQRS is the duration of a normal sinus rhythm QRS

complex in the absence of the fast Purkinje system, which is the case in our model. The

+nl2 factor represents the total number of elements that will depolarize the ventricle

during one cardiac cycle. The resultant time scale value with TQRS = 140 msec, m = 45,
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and n = 71 is 1.7391 msec for each element. Therefore, each element will contain an

underlying physical time scale value of t = 1.7391 msec.

3.4 Scar Tissue Description

To simulate Ventricular Tachycardia (VT) due to a localized reentrant loop, we

superimposed on a small region of the ventricular surface a three-layer scar tissue area.

The inner and outer layer consisted of permanently refractory elements. Note that one

element in the outer loop remained excitable and constituted our exit site. The middle

layer consisted of excitable elements, which when appropriately activated, allowed the

depolarization wave to propagate such that reentry developed. In order to simulate this

reentry circuit, the initial state of one element was depolarizing while its neighbor was

initially refractory, thus allowing a unidirectional movement of the depolarization

wavefront. These three levels of elements representing the scar area are shown in Figure

3.2.
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Figure 3.2: Scar tissue in the ventricular model consisting of an inner and outer layer of

permanently refractory elements and a middle layer of excitable elements. An element in

the outer layer of permanently ref-actory elements remains excitable and is considered the

exit site.

One potential problem with a fixed geometry inner loop of excitable elements is

that it limits the number of evenly spaced elements for varying the speed of the

depolarizing wave. To address this problem, we evaluated the excitable loop in 1-D as

shown in Figure 3.3. With this feature, although the perimeter of excitable elements

remains constant, the number of excitable elements inside the scar tissue could vary, thus

altering the conduction velocity and allowing for the generation of various rates of VT.
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I I -

elements (left) and 35 elements (right).

Our model topology consisted of 2-D ventricular elements and I -D excitable loop

elements. In order to link the two dimensions, in addition to considering the elements

adjacent to the exit site in the 2-D ventricular elements as neighbors, we will consider all

the elements in the I -D loop that are in contact with the exit site as additional nearest

neighbors. Note that although the elements in the I-D excitable loop are smaller in size

in the model, they do retain the same time scale value as the larger 2-D elements. This

feature allows us to slow down conduction in the I -D loop relative to the conduction

velocity in the 2-D ventricular elements. Figure 3.4 illustrates 3 elements in the I -D

excitable loop in contact with the exit site. Therefore, when the exit site is excited, we

will have to consider the state of the l-D loop elements and thus create the dynamical

transition from 2-D to c -D excitation rules.

71

.............. ...... . ...... 11 11 '- J



Figure 3.4: Scar tissue indicating the three nearest neighbors of the exit site element inside the

1-D excitable loop.

3.5 Excitation and Conduction Rules

A finite state cellular automata model was used to develop a set of excitation rules

for the spread of depolarization. A cellular automata is an element, usually part of a

collection of many similar elements, which is always in one of a specified number of

internal states and whose internal state evolves in time according to a specified set of

state transition rules.' 0 2 The two most commonly used lattices for two-dimensional finite

element simulations contain square or hexagonal elements as shown in Figure 3.5. The

square lattice is probably most often used because the locations of the centers of each

lattice element form an orthogonal coordinate system and is how we define the eight

nearest neighbors to an element.
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(a) (b) (c)

Figure 3.5: Two simple Bravais lattices (top) and the waves resulting from nearest neighbor

interactions on those lattices (bottom). Figures (a) and (b) show square lattices (each lattice

point is at the center of an individual square). In Figure (a), the "nearest neighbors" are

taken to be those lattice elements that share an edge with the central element. In Figure (b),

"nearest neighbors" are taken to be any element in contact with the central element. Each

system produces square waves from a single element, though the waves are oriented at 450 to

each other. Figure (c) shows a hexagonal lattice. Although this eliminates the problem of

choosing between two different types of neighbors, the resulting wave still has the (discrete)

symmetry of the lattice.1ED

We used our knowledge of the cardiac cell's action potential and refractory period

to model the spread of depolarization in our ventricular model. The action potential

corresponds to the time evolution of the trans-membrane potential of a cardiac cell

following excitation. The refractory period, roughly corresponding to the width of the

action potential as shown in Figure 3.6, indicates the period following excitation of a

myocardial cell during which time the cell cannot be re-excited.
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A finite state cellular automata model was used to simulate ventricular electrical

activity. A cellular automata model is composed of elements that are always in one of a

specified number of internal states, and evolve in time according to a specified set of state

transition rules. We formulated a three state cellular automata model in which the heart

tissue could be resting (state 0), depolarizing (state 1), or refractory (state -1). In addition

to each element having a state value, an autochron value representing the time since the

cell was last activated was also associated with each element. The autochron is set to 1 in

the depolarizing state and increments by one during each following time step as shown in

Figure 3.6. When the element transitions to the resting state, the autochron continues to

increase until the element is re-activated (state 1). To properly simulate the physiology,

the refractory period of each element was dynamically adjusted based on the value of the

preceding diastolic interval.

Figure 3.6: Illustration of the cardiac cell's action potential indicating the behavior of the

autochron and depiction of the action potential duration for one cardiac cycle length (CCL).10
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Now I will provide an example of our excitation and state transition rules for our

ventricular model in Figure 3.7. If an element at time n is resting and at least one of its

neighbors is depolarizing (state 1), at time n+1 that element will go into the depolarizing

state and the neighbor becomes refractory, as shown in the top figure. In our model, an

element stays in the depolarizing state (state 1) for only one time step. If an element is

resting at time n and none of the neighbors is depolarizing, it remains at rest at time n+].

If an element is in the refractory state at time n and the autochron is less than the value of

the refractory period, the state remains refractory while if the autochron is greater than or

equal to the refractory period, the state becomes resting at time n+1 as shown in the

lower figures. A refractory element is not affected by the state of its neighbors.
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State at t = n State at t = n+1

Figure 3.7: Example of Excitation and State Transition Rules. If an element at time n is

resting and at least one of its neighbors is depolarizing (state 1), at time n+1 that element will

go into the depolarizing state and the neighbor becomes refractory, as shown in the top figure

with the depolarizing state indicated by a green 1. If an element is resting at time n and none

of the neighbors is depolarizing, it remains at rest at time n+1. If an element is in the

refractory state at time n and the autochron is less than the value of the refractory period, the

state remains refractory while if the autochron is greater than or equal to the refractory

period, the state becomes resting at time n+1 as shown in the lower figure.

The spread of depolarization was controlled by a simple conduction scheme in

which an element depolarized if two conditions were met: (i) the time since the last

depolarization exceeded the elements refractory period and (ii) one or more of its eight
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nearest neighbors depolarized during the previous time iteration. We excited one element

at the edge of the cylinder at regular intervals to activate the model and represent AV-

node, or atrio-ventricular, pacing. We then allowed an appropriately timed pacing

stimulus to initialize the reentry in the 1-D loop, located at the center of the cylinder,

which eventually overrides the AV-node pacing as shown in Figure 3.8. Views of the

cylinder in 2-D and 3-D are shown in the simulation result.

I I
Figure 3.8: 2-D and corresponding 3-D views of the cylindrical finite element model activated

at a single element at regular intervals along with activation of the scar tissue area. We used a

refractory period of 5 for each of the elements and a pacing period of 35 in this simulation.

Note after some time, as shown in the second figure, the pacing at the scar tissue site overrides

the AV-node pacing.

3.6 Action Potential Simulation

We used our knowledge of the cardiac cell's action potential and refractory period

to model the spread of depolarization in our ventricular model. The action potential

corresponds to the time evolution of the trans-membrane potential of a cardiac cell
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following excitation. The refractory period, roughly corresponding to the width of the

action potential, indicates the period following excitation of a myocardial cell during

which time the cell cannot be re-excited. In order to generate a realistic action potential

for each element, we turned to the Beeler-Reuter Model. 105 Beeler and Reuter described

a mathematical model of membrane action potentials of mammalian ventricular

myocardial fibers. Four individual components of ionic current were formulated

mathematically in terms of Hodgkin-Huxley type equations.

The model incorporated two voltage- and time-dependent inward currents, the

excitatory inward sodium current, iNa, and a secondary or slow inward current, is,

primarily carried by calcium ions. A time-independent outward potassium current, IKI,

exhibiting inward-going rectification, and a voltage- and time-dependent outward current,

ii, primarily carried by potassium ions, are further elements of the model. The iNa is

primarily responsible for the rapid upstroke of the action potential, while the other current

components determine the configuration of the plateau of the action potential and the

repolarization phase. The relative importance of inactivation of is and of activation of i'a

for termination of the plateau was evaluated by the model.

The primary model is a single space-clamped patch of membrane, which consists

of a membrane capacity with four parallel current paths. Eight parameters must be

integrated to produce a solution to this model. These are the membrane potential across

the capacity, the intracellular calcium ion concentration as it is affected by is, and six

activation or inactivation parameters for the various conductances. At each step in time,

the Runge-Kutta-Merson integration algorithm establishes a set of values for the

variables being integrated (initial conditions for the step) and provides these values:
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membrane potential, [Ca]i, and six conductance parameters; to a subprogram which

computes the derivative for each integrated variable. During this process, the individual

ionic currents are determined and summed along with any 'externally applied' current to

arrive at the charging current for the membrane capacity, which then determines the

derivative of the membrane potential. The complete set of equations and constants that

define the model are given in Beeler and Reuter's paper.105

Upon solving the system of eight first-order simultaneous nonlinear differential

equations, we retrieved the voltage values for the action potential duration. Because the

cardiac cycle length (CCL) exceeds the value of the action potential duration (APD), we

used the cubic spline to append the action potential with zeros for all values of the

autochron (T) where T> APD and T < CCL. The simulation result of an APD of 300

msec and cardiac CCL of 560 msec is shown in Figure 3.9.

We later scaled the ordinate axis containing the potential values to the range [0,1],

which will be useful later when generating dipole moments between depolarizing and

repolarizing elements for use in the body surface potential field generation. We assign a

refractory period to each element and compute the individual elements' potentials by

scaling the duration of the simulated action potential with the current refractory period of

the element. This dynamic adjustment of the refractory period will be discussed in the

following section.
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Figure 3.9: Simulated action potential using the Beeler Reuter model.

3.7 Dynamic Refractory Period

Cohen and Smith1 00 showed that the spatial dispersion of refractoriness was a

sufficient condition to initiate reentrant arrhythmias. Spatial variation in refractory times

leads to the appearance of islands of refractory tissues during the repolarization process.

A new wave of depolarization impinging on these islands of refractory tissue will

fractionate. Such fractionation of the depolarization wavefront can lead to eddies and

reentry. While Smith and Cohen's model involved an evolution of islands of refractory

tissue, our model's dynamic refractory periods were generated in real-time based on the

restitution property of cardiac tissue.

3.7.1 Restitution

The heart rhythm originates from the sino-atrial node, which generates a sequence

of electrical stimuli that can trigger excitation waves propagating through the heart.
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These excitation or Action Potential (AP) waves in turn generate electric potentials on the

body surface that can be recorded as a local electrocardiogram (ECG). The shape of the

AP wave in cardiac tissue, characterized primarily by the Action Potential Duration (or

APD, denoted TA), depends on the time the tissue has rested since the end of the

previous excitation (Diastolic Interval, or DI, denoted by TD, ).106 The dependence

T, = f(TDI) is usually referred to as a restitution function or curve. 0 7 In reality, we

always deal with sequences of stimuli, so one must write T" = f(T",), where the

superscript indicates the cardiac cycle number. Within the nth cardiac cycle, the APD and

DI are related by the relation T = TA", + TD, , where T is the nth cardiac cycle length

(CCL). The above two relations combined can be expressed as TD" = T, - f(Tn)

In reality, due to heart rate variability the sino-atrial node generates a stimulus

sequence that is not strictly periodic, so the aforementioned conditions are not strictly

applicable. The input stimulus sequence can be viewed as a signal from a "noisy

metronome" with a random spacing T, between the n1h and (n - 1)th stimuli. In the

corresponding iterative map, TZ+' = T, -f(To",), the first term on the right hand side

represents a random component while the second term is deterministic.

For an illustration of restitution and how the preceding diastolic interval affects

the next action potential duration, observe Figure 3.10 in which a series of stimuli has

been applied to the cardiac tissue.
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Figure 3.10: Restitution illustration where a stimulus, S1, has been applied to the cardiac

tissue. A series of stimuli, S2, follow to illustrate how the length of the preceding diastolic

interval affects the length of the next action potential duration, APD. The first S2 (green) is

applied to the heart tissue just before the resting phase, thus resulting in a short APD. In the

next case, S2 (blue) is applied when the heart tissue has been resting for a very short time

resulting in an APD that is not quite as long as the APD resulting from S. Eventually when

the stimulus is applied after a sufficient length of time during the DI, S2 (white), the APD has

the same duration as the APD resulting from S1.1

3.7.2 Dynamic Action Potential: Elharrar and Surawicz Method

Elharrar and Surawicz studied the steady state behavior of the APD by applying a

sequence of long, periodic conditioning pulses to the cardiac tissue.'07 Upon creation of

this artificial electrical history, a random test pulse was applied and considered the

current APD. The steady-state CCL-APD relationship is described by the equation

CCL
APD = , a = 3.03s', b=1.08 (3.1)

aCCL + b
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where CCL is the cycle length in msec. The constants a and b were determined by linear

regression analysis between 1/z and 1/APD. A general equation describing restitution

curves is given by,

DI, DI,

APD, = APDmax- g(z)- Ij- A~e T -A 2e T
2 (3.2)

where t is the test DI (DI, ); T and A are the time constant and the intercept, respectively,

of the fast (Ti, A1) and slow (T2, A2) exponential components; APDWax is the limit value

of APD at infinitely long cycle length, which is given by 1/a; g(z) is a function of the

CCL having a value of 1 for infinitely long CCL and <1 for shorter CCL.

Although this method proved useful in a controlled experimental setting, the need

for a dynamic model that would suffice when individual elements contain a different

history was apparent. The Elharrar and Surawicz study did not explain the property that

different heart tissue regions will naturally have a different history. Therefore, Yuri

Chernyak of the Cohen Lab extended their equations to include the dynamic evolution of

refractory periods by generating an arbitrary pacing sequence for each element in the

model.

3.7.3 Dynamic Action Potential: Chernyak Method

Yuri Chernyak of the Cohen Lab introduced a simpler notation for the dynamic

evolution of refractory periods. In our analysis T will represent CCL, t will represent DI,

and r will represent APD so,

T = t+-r. (3.3)

The steady state quantities will be marked by 'bar' as follows,
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T=t~r. (3.4)

As aforementioned, according to Elharrar and Surawicz, the steady state quantities are

simply related by the relation

- - T
r = b(T) - a=3.03s', b=1.08. (3.5)

aT +b'

According to Equation (3.4) and Equation (3.5), any two of the quantities t,z, T can be

readily expressed via the third. For example,

- br
T = -,(3.6)

1 - al,
and

_ _(b -l+a-)
t = 1, -a . (3.7)

1- az

The dependence on the preceding DI, t, is presented as a separate factor,

p(t) = I - Ae-"' - Be-'' (3.8)

where the amplitudes are A = 0.3 75 and B = 0.125, and the time constants Ta 1/c =

0.093s and Tp = 1/g= 1.455s so that the first exponent describes much faster kinetics

than the second one. The Elharrar and Surawicz description of the test APD, r, following

a test DI, t, which was preceded by a long periodic conditioning pacing sequence with the

period T , can be written as follows,

- p(t) T 1 - Ae-" - Be--t
r =#(T)-- - -- - - - (3.9)

po(t) aT +b I-- Ae-"' - Be- 8
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In this equation, t is the steady state DI. Interestingly, Elharrar & Surawicz used only

the numerical value of i and specified neither the variable nor the expression through

which t was actually computed. The dependent variable can be either T, r or t since

they all can be expressed via Equation (3.4) and Equation (3.5).

The problem now was to extend Equation (3.9) to the arbitrary pacing sequence.

With this goal in the forefront, we observed that the first factor in Equation (3.9) is

simply the steady-state, or conditioning APD so Equation (3.9) becomes

-p(t )
S=pr -) (3.10)
p(t)

Guided by the idea that most of the information is contained in the preceding APD, r, we

shall express t through r via Equation (3.7) and obtain

- p(t)
(b=r _,.(3.11)

_(b - I+ ar)'
p T -I- ar

Equation (3.11) is equivalent to Equation (3.9), but makes use of two variables v and t

instead of three variables, T, i, and t. Now it can be readily rewritten to incorporate an

arbitrary pacing sequence because the quantities marked by the 'bar' also correspond to

the CCL that immediately precedes the test stimulus, so we can write

T,1+1 = r p(t,+1 ) (3.12)
b-I+ar,

S- ar,,)
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This equation represents the final form of the recurrent relation, thus describing

the current APD as if the preceding APD was the last in the steady sequence, r,' = r. It

was essential that the steady-state information was incorporated in the denominator of

Equation (3.12), which will be equal to the numerator only if steady-state is reached.

Equation (3.12) indeed possesses the correct asymptotic properties, that is, -rn. tends to

the correct new steady-state value determined by the new steady CCL (pacing rate).

Notice if one used the equation,

"na = 7"n , (3.13)
P (tn )

which includes the actual value of tn, the sequence would not have correct asymptotic

properties. Similar to Equation (3.12), all such extensions must have the steady-state

parameters, a and b, incorporated in the denominator in such a way that the algebraic

fraction tends to unity when the equilibrium is reached.

3.8 Dipole Moment Generation

In the following sections, we will develop an analysis for computing the dipole

moment and direction between the individual model elements. The dipole moment will

be proportional to the potential differences between neighboring elements and the dipole

direction will be based on simple unit vector analysis.

3.8.1 Dipole Magnitude

In order to compute the body surface potentials, we first assigned dipole moments

to each of the interfaces between the elements in our finite element model as illustrated in

Figure 3.11. From electrophysiologic theory, we know that each dipole moment is

proportional to the difference in the transmembrane potential values between
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corresponding adjacent elements. We can determine the dipole moment by utilizing the

equation,

pfi, 0C (V - vi) iii

where (V, - Vj) is the potential difference between the element and its neighbor and fi, is

the unit vector for an arbitrarily shaped ventricle. For simplification purposes, we will

generate dipoles between four nearest neighbors, eliminating the diagonal elements; these

are left (L), right (R), up (U), and down (D) elements. To prevent double counting, we

only need to consider all of the up and right elements of an element because one

element's right, is another's left and one element's up is another's down.

Figure 3.11: Potential values of element V and its four nearest neighbors with the

corresponding dipoles of varying magnitudes between adjacent elements (blue arrows).
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3.8.2 Dipole Direction

The use of a general unit vector simplifies computation of the projection of the 1-

D loop elements onto the spherical torso surface. With the use of this unit vector, any

general ventricle shape would produce a correct projection onto the spherical torso

surface, where the ECG is computed from the surface leads. An illustration of the unit

vectors is shown in Figure 3.12. The vector, FB, is the boundary vector which is an

average of the two neighboring position vectors and is shown in Equation (3.15). The

difference between the boundary and the dipole location vectors, F - iB and F2 - B,

followed by one vector shift to the left and another vector shift to the right and

normalization by the magnitude, produces the unit vectors, UL and UR as shown in

Equations (3.16) and (3.17).

uL UR

Figure 3.12: Generalized unit vectors (u) associated with the dipole moment between

adjacent left (L) and right (R) elements. The vector, FB, is the boundary vector which is an

average of the two neighboring position vectors, i and f2 -
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'B =F +F (3.15)
2

2 (3.16)
UL = F

2 - B scy

R - (3.17)
|r2 -'B

3.9 Potential Field Generation

Upon calculating the dipole moments, we then calculated the body surface

potentials on the surface of a sphere of radius 12.5 cm enclosing the ventricular model

that would be generated by this distributed collection of dipoles. We computed the

potentials for each of the N elements, resulting in elements of dimension [4 x # electrodes

x N] as shown in Equation (3.18). We then summed over the four potentials at each

element resulting in a matrix of dimension [1 x # electrodes x N]. Finally, we summed

over the number of elements in the model, N, to generate the potentials for the number of

electrode leads in the model.

#A = # ,#own, eft# , ,ght (3.18)

4

02i = i #(3.19)
=1

N

0i 0i 3.0
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3.10 Electrophysiologic Simulation Results

We placed 60 electrodes on our torso model ran the simulation for 3000 machine

time units (MTU) to produce the lead results shown in Figure 3.13A-D. We then took

the difference between two leads that were far from one another to generate the normal

sinus rhythm. We did not activate the reentry circuit to produce normal sinus rhythm.

The cardiac cycle length was taken to be 750 msec and the pacing stimulus was applied

every 433d time step (corresponding to CCL / t). A simulation of a normal ECG with a

rate of 80 bpm (60,000 msec/minute * 1/1750 msec) is shown in Figure 3.14.
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ECG: Leads 5-60
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Figure 3.13A-D: ECG lead results for leads number 11-15 (A), 16-20 (B), 41-45 (C), and 56-

60 (D) extracted from the total 60 electrodes electrocardiograms.
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Figure 3.14: Simulation of normal heart rhythm with a rate 80 bpm.
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In order to produce Ventricular Tachycardia, we activated the reentry circuit,

which contained one activated element in direct proximity to a refractory element at the

1001 st MTU, meaning the atrio-ventricular node had been initially activated 1000 MTUs

ago. Activating one element while making the preceding element refractory forces the

propagation to proceed in one direction instead of two directions, which would lead to the

waves canceling one another.

To illustrate the wave propagation, we present the following hypothetical example

representing the 3-D and 2-D views of the cylinder in which the refractory period is 5

MTUs. The corresponding voltage values in the range [0:1] were plotted, which

corresponded to autochron matrix values in the range [0:5]. A color gradient showing the

minimum voltage value of 0 (dark blue) to a maximum value of 1 (dark red) was

displayed as shown in Figure 3.15. Note that both the reentry circuit and the atrio-

ventricular node have been excited and after some time, the VT overrides the atrio-

ventricular pacing as shown in Figure 3.16.
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Wavefront Propagabiorr Re*actory Peaod . 5

Figure 3.15: Cylindrical model activated at the atrio-ventricular node and the pacing site in

the scar tissue loop. We used a T value of 5 and T value of 35 in our simulations.

Wavefront Propagation Refractoy Perod - 5

Figure 3.16: Wavefront propagation as pacing within scar tissue overrides the atrio-

ventricular pacing rate.

94



We considered two rates of VT, both slow and fast. Slow VT refers to VT in

which a period of cardiac electrical inactivity exists before the next beat of VT, ensuring

that the dipole exiting the reentry circuit is highly localized. However, in fast VT this

period of inactivity is nonexistent and thus the cardiac electrical activity from preceding

beats may interfere causing less localization of the dipole as it exits the reentry circuit.

Examples of slow (CCL = 500 msec) and fast VT (CCL = 300 msec) are shown in

Figure 3.17A-B. Upon converting machine time units to physical time units, we were

able to compute a slow VT rate of 120 beats per minute and a fast VT rate of 200 beats

per minute.
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Normal Sinus Rhythm that develops into Ventricular Tachycardia
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rate of 120 beats per minute and (B) fast

We can conclude that a number of ventricular arrhythmias can be generated from

the model developed in this section. The following parameters can be altered to produce

a variety of ventricular arrhythmias: the ventricular pacing rate, P, the ventricular cardiac

cycle length, CCL, the time instant for scar tissue pacing, kinr, and the scar tissue cardiac

cycle length, CCLr. One must be careful to time the [P and CCL] and [ki, and CCL]

such that the wavefront from the atrio-ventricular pacing does not extinguish the

wavefront exiting the scar tissue. In addition, the size and location of the scar with

respect to the size of the ventricle should be taken into account. The key to successful

ventricular arrhythmia simulation is that scar tissue pacing overrides the atrio-ventricular

pacing.
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3.11 Discussion of Electrophysiologic Simulation Results

We were successful in our task to develop a simple and deterministic model for a

straightforward approach to electrocardiogram (ECG) simulations. In our approach we

utilized well-established research findings on cardiac tissue behavior. The normal

cardiac depolarization of the ventricle was observed through use of excitation rules we

developed based on knowledge regarding refractoriness of tissue and the spread of the

depolarization wavefront in the ventricle. In addition, superposition of permanently

refractory elements on the ventricular surface to represent scar tissue was sufficient for

providing the proper interruption of normal electrical conduction so that VT could

develop.

The restitution property of cardiac tissue was used to support the development of

dynamic refractory periods for each element as the electrical activity propagated through

the model. The dipole moment magnitude was computed by taking the difference

between neighboring elements' intrinsic potential values, which was derived from an

action potential model assigned to each element, and proved to be simple and accurate.

The incorporation of a loop of 1-D elements on a 2-D cylindrical surface was ingenious

for a simple approach to producing varying rates of VT. We proved that such an

approach provides unlimited access to any particular rate of VT without the restrictions

encountered with a fixed geometry model.

The leads from the 60 electrodes, which were randomly placed on the torso,

displayed a variety of ECG morphologies as would be expected in a clinical setting. In

addition, computing the difference between surface electrodes that were far apart, closely

resembled the normal ECG as seen in a clinical setting when electrodes are placed at a
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distance in which the polarities will differ. This model provides a concise and efficient

methodology for ECG generation, which can simply be utilized in a number of

applications.
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Chapter 4

Brute Force Inverse Algorithm

4.1 Introduction

This chapter focuses on the development of an algorithm that improves the safety,

efficiency, and cost-effectiveness of the medical procedure of radio-frequency ablation

(RFA) for Ventricular Tachycardia (VT) patients. Currently, physicians use an approach

to RFA, which is just short of a trial-and-error technique in localizing the exit site of a

VT reentry circuit. Upon applying a stimulus to the ventricle in hopes of inducing VT,

radio-frequency energy is applied when the physician observes VT on the ECG monitor,

thus indicating the exit site has been localized with the ablation catheter. Drawbacks of

this trial-and-error approach to RFA include that the method is time-consuming due to

difficulty in determining the exit site, which leads to high costs for hospitals and patients.

Most importantly, patients who cannot tolerate multiple inductions of the arrhythmia due

to hemodynamic instability are not candidates for this minimally invasive RFA procedure

due to their low tolerance for induction and maintenance of VT.

Therefore, the need was evident for an accurate and efficient RFA technology that

would address both the difficulty in defining reentry circuits that cause VT and

intolerance to maintenance, or multiple inductions, of VT.108,109 We addressed the

limitations of the current RFA procedure by developing a Brute Force Inverse Algorithm

(BFIA) that utilized the forward and inverse problems of cardiology. For each point in
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time, the BFIA estimates the location and moment of a single equivalent moving dipole

resulting in a trajectory in space of cardiac dipoles. A brute force algorithm in the true

sense of the meaning implies the search space consists of a very large number of possible

fine resolution solutions. Our algorithm is actually intelligent because the solution space

resolution is reduced in iterative steps versus performing a one step search. The BFIA

should increase the accuracy and speed in targeting the ablation site during the RFA

procedure.

Previously, Armoundas developed a simplex inverse algorithm applicable to

RFA, which accurately localized the VT exit site when applied to simulated data.

However, problems of entrapment in local minima and poor dipole trajectory

visualization were apparent when the algorithm was applied to clinical data.'' 0' " Thus,

the simplex method is not optimal for RFA due to these limitations. Alternatively, the

BFIA's exhaustive analysis of the solution space prevents entrapment in local minima

and has proven to produce the anticipated clear dipole trajectories when applied to

clinical data.'"

4.2 Forward Problem

The forward problem is one in which the body surface potentials are determined

given knowledge of the heart generator. The electrical activity of the myocardial cells

causes current to flow within the body and establish potential differences on the surface

of the skin. The graphical recording of these body surface potentials as a function of time

produces the electrocardiogram (ECG).12 For the forward problem formulation, we

considered two models in our analysis: the unbounded infinite homogeneous conductor

(unbounded model) and the bounded spherical model (bounded model).
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4.2.1 Unbounded Model

In the unbounded model, which is the field of the free dipole containing no

boundary effects, the electrode locations, dipole locations, dipole moments and tissue

conductivity are used to determine the theoretical potential values, 0, as shown in

Equation (4.1). As Figure 4.1 illustrates, the electrode locations are F = (x, y, z), the

dipole locations are represented by '=(x',y',z'), the dipole moments are

S= (p,,, p, pz), and the conductivity of the human torso, g, is 1.2 x 10-3 Siemens/cm.

The BFIA dipole solutions are computed using the unbounded model equation.

#= (4.1)

Field Point

Volume where
Sources are Distributed

Arbitrary
X Volume

Figure 4.1: The potential field in an infinite homogeneous medium; r is the vector from the

origin to the field point and r' is the vector from origin to the point dipole."0

4.2.2 Bounded Model

Unlike the unbounded model, the bounded model equation for the potential field

considers boundary effects of the torso. Experiments have shown that boundary effects,
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inhomogeneities in tissue conductivity, imprecise knowledge of the electrode locations,

and non-detailed torso geometry may lead to systematic error. Systematic error exists in

our inverse algorithm analysis when utilizing the bounded model in the forward problem

because the BFIA utilizes the unbounded model. The potentials in the bounded model's

forward problem were computed using the following equation, 113

0 _ 2 2 1
4,rgfR2 K1+ f2 -2fp)3

-_ _ _ _(4.2)

pcosV/ +pysin/ 3f-3f 2p+f 3-- p

41rgfR2 sin 0 L + f2 - 2fp) 3/2

where p = cos0 and 0 and V are the azimuth and latitude angles, respectively. A dipole

is placed along the z-axis at z = fR, where f is a constant in the range between 0 and 1.

We decided to observe the affect of boundary conditions on the performance of

our algorithm. We thus conducted a simulation in which we observed the accuracy in the

difference between the true and estimated dipole locations as the dipole moved closer to

the torso boundary. We placed a dipole at the center of the heart (0,0,5) cm. We then

chose to move the dipole's x-coordinate in increments of 1 cm, thus the (Dx, Dy, Dz)

coordinates became (Dx, 0, 5) cm and consisted of Dx changing during each trial while Dy

and Dz remained the same. The result of boundary effects is shown in Figure 4.2.
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Figure 4.2: Effect of boundary conditions as the cardiac dipole moves from the center of the

torso towards the surface. The Unbounded Model results are shown in red and the Bounded

Model results are shown in blue.

We did not expect boundary effects to be an issue when using the unbounded

model in the simulation and is validated by our results. However, when the bounded

model was used in the forward problem, we saw a decrease in accuracy of the algorithm

results as the dipole moved closer to the torso boundary. Our belief that boundary effects

decrease the accuracy of the Brute Force Inverse Algorithm is confirmed in Figure 4.2.

4.2.3 Electrode Distribution

Prior work by Armoundas suggested that a uniform distribution of the electrodes

in the forward problem is the best option in reducing the spatial error for localization of

the dipole source.110  A grid on a spherical surface is generated with a uniform

distribution of randomly spaced nodes, which corresponds to an electrode site ri and is
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represented by its spherical coordinates, (r',0',#'). Since the differential solid angle is

given by solid angle geometry, dD = sin()dad# = d(cos())d# , we randomize cosO in

the interval [-1,1] to obtain the 0 angle and randomized # in the interval [0,27E]. The

radius of the spherical torso is R = 12.5 cm and the potentials are computed using either

the unbounded or bounded models.

4.2.4 Noise

We utilized the facts that clinical electrocardiograms have a signal on the order of a

few mV and are usually corrupted by tV level noise to model the effect of noise on the

electrodes. Therefore, we added zero mean Gaussian noise to each electrode signal with

a standard deviation, a, ranging from low, moderate, high to very high levels (lpV,

1 OpV, I OOpV, and 1 mV, respectively). The resulting measured potential, ',,,

represented the potential at a specific site i. We observed a total of 60 electrode sites.

4.3 Inverse Problem

The inverse problem consists of determining the dipole parameters, '6 and F',

from the potential field on the body surface. In general, it is not possible to uniquely

specify the characteristics of a current generator from the potentials alone. In other

words, the 3-D distribution of the cardiac electrical sources cannot be constructed from

the 2-D distribution of ECG signals on the body surface. However, if we can assume the

cardiac electrical dipole sources are localized, the relationship between the cardiac

generator and body surface potentials may be studied and solved. Such an assumption

can be made through use of the Single Equivalent Moving Dipole (SEMD) model.
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4.4 Single Equivalent Moving Dipole

The Single Equivalent Moving Dipole (SEMD) model is the simplest mathematical

model for relating the cardiac generator to the body surface potentials and represents the

torso as a linear, isotropic, homogeneous, spherical conductor. The SEMD model

represents the heart as a single bioelectrical dipole source that moves in space during the

cardiac cycle and changes in magnitude and direction. When applying the SEMD model,

the assumption is that the heart is suspended in a homogeneous isotropic conducting

medium and observed from a distance large compared to its size. We can thus assume

that all of the individual current dipoles of the cardiac generator originate at the same

point in space.

The total cardiac electrical activity is represented by a single equivalent dipole

source whose magnitude and direction is the vector summation of all the individual

dipole sources.' As cardiac depolarization spreads, the cardiac dipole changes in

magnitude and direction as a function of time. In our analysis, we apply the SEMD

model, but ignore tissue inhomogeneities in electrical conductivity and boundary effects.

The SEMD model does have some limitations. The first limitation is that the

SEMD represents the heart as a single bioelectrical source while the heart really consists

of distributed dipole sources. The SEMD is strictly valid when the electrical activity is

highly localized, such as when it initially emerges from the VT site of origin. This

happens to be the only point in time of interest to us. The second limitation is that we

ignore tissue inhomogeneities and boundary effects that are present in the heart. The

effect of these inhomogeneities and boundary effects is that they distort the image
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location of the SEMD. But when the SEMDs of the VT exit site and catheter tip are

brought together, their distortions should be equivalent and thus cancel.

4.5 The 3 plus 3 Parameter Optimization Method

In the 3 plus 3 parameter optimization method, originally developed by Antonis

Armoundas," 0 we determine the 3 dipole moment components analytically and the 3

dipole location components numerically. One can conclude from observing the

unbounded and bounded model equations, Equation (4.1) and Equation (4.2), that the

potential field, #, is linear in dipole moment components, p, and the minimization in

terms of the moments can be performed analytically so they become known, explicit

functions of the dipole location and measured body surface potentials.

Now that the moment is expressed through dipole location, it only remains to

minimize the objective function, /, in terms of the three location components, which is

achieved numerically using the Brute Force Inverse Algorithm (BFIA). The equation for

the objective function is as follows,

72 #., 0 ,)(4.3)

where # is the theoretical potential field computed by the BFIA and' are the measured

body surface potentials computed by the forward problem. It is apparent that in the

presence of noise in the electrodes,, 2 will never be zero. However, when # and #, are

of the same order as the noise, c-,, we would expect the signal-to-noise ratio of

the X
2 estimate to approach 1. The system of equations for computing the dipole moment

components, p, for the unbounded model is as follows:
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-oX 0 (4.4)
0pa

and

21 =T70 a 0 (4.5)

which yields,

2[ 3 .- A =0, (4.6)

where I is the number of electrode positions. Using the following components,

.,, -N r.), (4.7)

we write

Nr'- r 'a (4.8)
p,~~IF 

F1,,6 -

For simplification, let

a, r -r)(r' -r,(.9

Mat =F 2F I 4

and
1 r -r

B, = a a (4.10)

Therefore,
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M,, P, = Ba (4.11)

fi-M=B, (4.12)

and

j= BM-1. (4.13)

4.6 Ablation Site

The SEMD is strictly valid when the electrical activity is highly localized, such as

when it initially emerges from the VT site of origin, or the reentry circuit's exit site. This

happens to be the only point in time of interest to us. Reentry is the return of the same

impulse into a zone of heart muscle that it has recently activated. The substrate for

reentry is typically scar tissue left behind from a previous heart attack. The QRS

complex is inscribed when the excitation wavefront emerges from the reentry circuit's

exit site as shown in Figure 4.3.8 Therefore, if we deliver an impulse to the ablation

catheter when it is located at the exit site, the resultant ECG will display VT and thus

indicate the ablation site.
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Figure 4.3: A double loop (figure-eight) reentry circuit consisting of a central common

pathway (CP) and two outer loops. The grey regions represent scar tissue.

4.7 Exit Site Criteria

The ectopic pacing site in the reentry circuit depolarizes the exit site and

propagates to further depolarize the rest of the ventricle. This resulting wave of

depolarization produces body surface potentials represented by the electrocardiogram.

These potentials are used as input to the Brute Force Inverse Algorithm (BFIA) and for

each point in time of the cardiac cycle, a single equivalent dipole is estimated thus

producing a trajectory of cardiac dipoles. We can then apply a set of exit site criteria

developed by Maya Barley"' of the Cohen Lab to determine which dipole location in the

cardiac dipole trajectory corresponds to the exit site.

We understand that the target site for ablation occurs when the excitation

wavefront leaves the reentry circuit from the exit site. The dipole at this exit site is

highly localized before spreading to surrounding tissue or continuing in the circuit where

the dipole vectors are less localized. Barley"' analyzed previously acquired clinical data
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and developed a preliminary set of criteria to determine the ablation site. These criteria

are described below.

4.7.1 Dipole Magnitude

The dipole magnitude should be small when exiting the reentry circuit due to high

localization of the depolarization wavefront as it exits the reentry circuit. Therefore, we

will focus on dipoles that are small in magnitude to represent possible sites for ablation.

4.7.2 Distance Between Consecutive Dipoles

Barley"' found that the dipole locations were highly uncorrelated before and

during the pacing spike. However, after the initial decline of the ECG signal, the dipoles

followed a clear trajectory. At the initial decline point, the dipoles were closely grouped

together since the area of activation was minimal and the speed of depolarization slow.

This is the region in which the exit site dipole should be found. Therefore, we will

compute the distance between consecutive dipoles to locate this dipole cluster of interest.

The dipole chosen as the site of ablation should occur soon after the distance between

consecutive dipoles reaches a minimum.

4.7.3 2 and RNMSE

The BFA computed an error value, X2, for each dipole solution. The X2 is

essentially a comparison between the dipole and noise whose values are in the range

[0,1], where 1 represents the best localization. If the dipole is highly localized, the

measured potentials should be very close to the estimated potentials on the body surface.

As the wave becomes more diffuse, the X2 exceeds one and becomes futile. Therefore, we

can use the fact that the X2 does provide useful feedback for a highly localized region,
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such as the exit site of the reentry circuit. Barley showed that the maximum X lies near

the peak of the QRS, where the voltages are largest and the wavefront is becoming highly

diffuse."' She concluded the ablation site dipole should be characterized by a low X2

value to ensure that the dipole estimation is good.

The Root Normalized Mean Square Error (RNMSE), shown in Equation (4.14),

represents the difference between the estimated and measured electrode potentials due to

the Single Equivalent Moving Dipole (SEMD) model parameters. The RNMSE indicates

how much potential in the measured signal cannot be attributed to the SEMD.

RNMSE= ' (4.14)

In the equation V' is the voltage at the electrode estimated by the forward algorithm, V,,',

is the measured voltage at the same electrode, and I represents the total number of

electrodes under observation.

Because the RNMSE is a normalized measure of error, its value should be

highest, close to one, if the measured potentials and noise are of the same order. If the

RNMSE is close to zero, meaning the signal-to-noise ratio (SNR) is high, it is likely the

dipole solution will be found. Barley"' found high RNMSE values in the low-voltage

period before the start of the QRS complex and concluded that a dipole estimate from

samples in this region would likely be inaccurate. As the SNR increased with increasing

cardiac activity, the dipole estimate initially became more accurate and the RNMSE

decreased. However, because the RNMSE is a ratio of error in the absolute value of the

estimated and measured voltages, it may decrease even though the SEMD approximation
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is less accurate near the peak of the QRS complex where the SNR is highest.

Consequently, the dipole chosen as the ablation site should occur soon after the initial

peaks in the RNMSE (corresponding to the end of the repolarization phase) although not

at an absolute minimum (corresponding to the peak of the QRS complex).

4.8 Brute Force Inverse Algorithm Description

We will begin with a conceptual description of the Brute Force Inverse Algorithm

(BFIA). We discretize the spherical torso into a set of cubic elements as shown in Figure

4.4. We sequentially place a dipole in the center of each cubic element and assign to it the

dipole moments determined analytically by the 3 plus 3 parameter optimization

algorithm. We then compute the body surface potentials generated by that dipole and

calculate the error, x2, when comparing the estimated potentials to the measured body

surface potentials. We then select the element that results in the minimum x2 and this

determines the location and dipole moments of the best dipole solution.

Figure 4.4: Spherical torso of radius 12.5 cm filled with 1.5 cm 3 cubes.
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Although we place a dipole in the center of the cubic element, the best dipole

location after reducing the cube size might exist in the volume of one of the neighbors.

To address this potential discrepancy, upon selecting the cube containing the best dipole

solution, we create a cube triple in dimension around the best dipole solution and fill that

cube with smaller cubes that are a third of the dimension. Then, we sequentially place a

dipole in the center of each cube and begin the process again of computing the dipole

moment and location for each cube and selecting the best dipole parameters after

evaluating the entire cubic volume.

A flowchart illustrating the explicit steps of the BFIA is provided in Figure 4.5.

The spherical torso has a radius of 12.5 cm and is filled with cubes on the order of L cm,

where L = 1.5 cm.. We sequentially placed a dipole source at the center of each of the

cubes. We iteratively reduce the dimensions of the elements until sub-millimeter

resolution is attained as follows. We center a (3L x 3L x 3L) cm cube about the best

dipole solution and fill that cube with cubes on the order of (L/3 x L/3 x L/3) cm. We

repeat the reduction in grid space size until we acquire sub-millimeter resolution, which

is the desired accuracy level for clinical purposes.
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Figure 4.5: Brute Force Inverse Algorithm (BFIA) flow chart outlining the steps by which we

use the Brute Force Inverse Algorithm to localize the site for ablation. The spherical torso has

a radius of 12.5 cm and is filled with cubes on the order of L cm, where L = 1.5 cm.. We

sequentially placed a dipole source at the center of each of the cubes. We iteratively reduce

the dimensions of the elements until sub-millimeter resolution is attained as follows. We

center a (3L x 3L x 3L) cm cube about the best dipole solution and fill that cube with cubes on

the order of (L/3 x L/3 x L/3) cm. We repeat the reduction in grid space size until we acquire

sub-millimeter resolution, which is the desired accuracy level for clinical purposes.

4.9 Research Methods

Upon simulating Ventricular Tachycardia, we will apply the BFIA to a single beat

of VT. We will then apply a set of exit site criteria to determine the VT exit site, or VT

site of origin. The localized dipole solution from the simulated VT will be called the

bioelectrical source solution. Upon randomly placing the catheter in the ventricle, we

will deliver an impulse to its tip and apply the BFIA to localize the catheter tip.
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Theoretically, when the VT exit site and catheter tip are both localized using the BFIA,

any distortions present due to the assumption of tissue homogeneities and lack of

boundary conditions will become equivalent and thus cancel. Random error in the

localization of the dipole is the only limitation involved in the superposition of the

catheter tip and VT exit site.110

4.10 Dipole Trajectories

The ability to perform 3-D mapping and view the arrhythmia in real-time would

be an improvement to the standard fluoroscopic 2-D imaging. In order to do this, we

represented the dipole characteristics by visualizing its trajectory to keep track of dipole

movement throughout the heart. In addition, we developed some characteristics for

representing the dipole in 3-D. First, we utilized the Brute Force Inverse Algorithm to

compute the location and moment parameters of the dipole solution throughout the time

of observation. The resulting dipole location was represented by a color filled circle and

we represented the dipole orientation by a scaled unit vector with an arrow on the tip.

The colors of the dipole parameters were directly related to the time during the dipole

movement. Therefore, a dark blue circle in the trajectory corresponded to the first dipole

location determined by the brute force inverse algorithm, a dark red circle corresponded

to the final solution, and all solutions in between were represented by a color gradient

between dark blue and dark red as shown in Figure 4.8.

4.11 Slow vs. Fast VT

We considered two rates of VT, both slow and fast. Slow VT refers to VT in

which a period of cardiac electrical inactivity exists before the next beat of VT, ensuring

that the dipole exiting the reentry circuit is highly localized. However, in fast VT this
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period of inactivity is nonexistent and thus the cardiac electrical activity from preceding

beats may interfere causing less localization of the dipole as it exits the reentry circuit.

Slow VT is less susceptible to error in the SEMD solution because the electrical activity

from one beat completely dissipates before the onset of the next beat.

4.12 Brute Force Inverse Algorithm Results

We generated results for both slow VT and fast VT in order to evaluate

performance of the Brute Force Inverse Algorithm (BFIA). In slow VT, there is an

absence of remote electrical activity in the ventricle at the time that the new wave of

depolarization emerges from the exit site. This absence of remote electrical activity at

the time the electrical activity emerges from the exit site allows the BFIA to localize the

exit site without additional distortion. However, in fast VT, remote electrical activity in

the ventricle, resulting from previous beats of VT, is present at the time a new wave of

depolarization emerges from the exit site. This presence of remote ventricular electrical

activity at the time that the new wave of depolarization emerges from the exit site will

contribute to the body surface potentials and thus distort the location of the exit site as

calculated by the BFIA.

We tested the BFIA's performance using both the unbounded model, which

considers the torso as an infinite homogeneous volume conductor. In the bounded model,

we assume the torso is a spherical homogeneous conductor immersed in a volume

insulator. Note that we only obtained an undistorted solution for the localized exit site in

the case of slow VT using the Unbounded Model.
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4.12.1 Unbounded Model Results: Slow VT

The measured potentials from a single cardiac cycle length of slow VT were

provided as input to the BFIA as shown in Figure 4.6. We then applied the exit site

criteria for dipole localization to indicate the time instance during the VT cycle length

when the exit site is expected to occur as shown in Figure 4.7. Due to the existence of

the isoelectric period before the onset of the QRS complex in slow VT, localization of the

dipole at the exit site should be straightforward. As Barley predicted, the dipole

magnitude is small when exiting the reentry circuit, the exit site occurs soon after the

distance between consecutive dipoles reached a minimum, the exit occurred at a at a low

x value, and the exit occurred soon after the initial peaks in the RNMSE although not at

an absolute minimum.

ECG
2
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0
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-1 0 10 10 200 25 300 360
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Figure 4.6: Simulation of normal cardiac rhythm, which deteriorates into a slow rate of

Ventricular Tachycardia (120 beats per minute) using the Unbounded Model. The bottom

figure shows a single beat of the slow Ventricular Tachycardia. Note the isoelectric period

that exists before the onset of the QRS complex.
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Unbounded Model Results Slow VT
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Figure 4.7: The electrocardiogram of slow Ventricular Tachycardia using the Unbounded

Model and the exit site criteria (dipole magnitude, distance between consecutive dipoles, 2,
and Root Normalized Mean Square Error). The red line indicates the time instance

corresponding to the occurrence of the exit site.

For each time instance during the VT cycle length, the BFIA computes a dipole

location and moment. We show the cardiac dipole location trajectory for one VT cycle

length of slow VT using the unbounded model in Figure 4.8. In all of the following

dipole trajectory results, the yellow patch represents the exit site on the ventricular

surface and the number in black represents the time instance in the VT cardiac cycle

length at which the exit site is determined. We expect the dipole trajectory to contain a

dipole location estimate close to the physical location of the exit site when applying the

unbounded model in the forward problem due to the lack of systematic error because the

BFIA also uses the unbounded model equation to estimate the body surface potentials.

We also did not expect the lack of boundary conditions to affect our results when using

the unbounded model. In fact, of all the four cases analyzed in the following sections, the
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BFIA determined an undistorted exit site only when applying the unbounded model to

slow VT.

Unbounded Model: Slow VT

C Exit Site

Figure 4.8: Dipole location trajectory for Unbounded Model of Slow VT. The color gradient

from dark blue to dark red represents the initial (blue) localized dipole from the VT Cycle

Length (VTCL) to the last (red) localized cardiac dipole in the VTCL under evaluation. The

yellow patch represents the physical location of the exit site and the number represents the

cardiac dipole location in the range [1:VTCLJ that corresponds to the estimated time

instance of the exit site.

4.12.2 Unbounded Model: Fast VT

Fast VT presents a more challenging environment for the BFIA to work

accurately and effectively. During fast VT, the resting period between beats is

nonexistent as shown in Figure 4.9. Interference from the electrical activity of

consecutive VT beats causes distortion and thus difficulty for the BFIA to accurately

localize the exit site. We applied the exit site criteria to determine the time instant in the

cardiac cycle when the exit site is localized by the BFIA as shown in Figure 4.10. As
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Barley predicted, the dipole magnitude is small when exiting the reentry circuit, the exit

site occurs soon after the distance between consecutive dipoles reached a minimum, the

exit occurred at a at a low X value, and the exit occurred soon after the initial peaks in the

RNMSE although not at an absolute minimum.
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Figure 4.9: Simulation of normal cardiac rhythm, which deteriorates into a fast rate of

Ventricular Tachycardia (200 beats per minute) using the Unbounded Model. The bottom

figure shows a single beat of the fast Ventricular Tachycardia. Note the lack of an isoelectric

period that precedes the onset of the QRS complex.
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Unbounded Model Resut' Fast VT
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Figure 4.10: The electrocardiogram of fast Ventricular Tachycardia using the Unbounded

Model and the exit site criteria (dipole magnitude, distance between consecutive dipoles, X2,

and Root Normalized Mean Square Error). The red line indicates the time instance

corresponding to the occurrence of the exit site.

The BFIA's dipole location trajectory for fast VT using the unbounded model is

shown in Figure 4.11. We did not expect the dipole trajectory to contain a dipole

location estimate close to the physical location of the exit site in the case of fast VT due

to distortion caused by interference from the electrical activity of consecutive VT beats.

This interference in the case of fast VT prevents the BFIA from accurately localizing the

exit site as indicated by lack of correlation between the numbered dipole location in

Figure 4.11 and the physical location of the exit site.
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Unbounded Model: Fast Vr

- . xAt Site

Figure 4.11: Dipole location trajectory for Unbounded Model of Fast VT. The color

gradient from dark blue to dark red represents the initial (blue) localized dipole from the

VT Cycle Length (VTCL) to the last (red) localized cardiac dipole in the VTCL under

evaluation. The yellow patch represents the physical location of the exit site and the number

represents the cardiac dipole location in the range [1:VTCLI that corresponds to the

estimated time instance of the exit site.

4.12.3 Bounded Model: Slow VT

When the bounded model is applied in the forward problem to compute the

measured body surface potentials, we expect a discrepancy in the BFIA's cardiac dipole

estimate because the inverse algorithm uses the unbounded model to estimate the body

surface potentials. The simulation result of slow VT using the bounded model is shown in

Figure 4.12. The exit site criteria provided an estimate of the instance during the VT

cycle length when the exit site should be localized is shown in Figure 4.13.

122



5*

C

a

0

-5.

ECG: Bounded Model

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5a
Machine Time Units

Single Beat of Slow VT

0-

-5-

-101
0 50 100 150 200 250 300 35

U0

Figure 4.12: Simulation of normal cardiac rhythm, which deteriorates into a slow rate of

Ventricular Tachycardia (120 beats per minute) using the Bounded Model. The bottom

figure shows a single beat of the slow Ventricular Tachycardia. Note the presence of an

isoelectric period that precedes the onset of the QRS complex.

Bounded Model Results: Slow VT
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Figure 4.13: The electrocardiogram of fast Ventricular Tachycardia using the bounded

model and the exit site criteria (dipole magnitude, distance between consecutive dipoles, X 2

and Root Normalized Mean Square Error). The red line indicates the time instance

corresponding to the occurrence of the exit site.
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We expect the exit site criteria to determine a dipole location estimate from the

cardiac dipole trajectory that is far away from the physical location of the exit site when

applying the bounded model in the forward problem. The resulting systematic error is due

to the BFIA using the unbounded model equation to estimate the body surface potentials.

The effects of systematic error are shown in Figure 4.14 by the offset in the numbered

dipole location in the cardiac dipole trajectory and the physical location of the exit site.

Bounded Model: Slow VT

xit Site

t4

Figure 4.14: Dipole location trajectory for Bounded Model of slow VT. The color gradient

from dark blue to dark red represents the initial (blue) localized dipole from the VT Cycle

Length (VTCL) to the last (red) localized cardiac dipole in the VTCL under evaluation. The

yellow patch represents the physical location of the exit site and the number represents the

cardiac dipole location in the range [1:VTCLI that corresponds to the estimated time

instance of the exit site.
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4.12.4 Bounded Model: Fast VT

In the case of the bounded model and fast VT we have two barriers to overcome:

(1) distortion due to the interference of consecutive beats of VT and (2) systematic error

due to the consideration of boundary effects in the forward problem and the lack of

consideration in the inverse problem (BFIA). The ECG simulation result of fast VT

using the bounded model is shown in Figure 4.15. We applied the exit site criteria to

determine the time instance at which the exit site is determined as shown in Figure 4.16.

ECG: Bounded Model
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Figure 4.15: Simulation of normal cardiac rhythm, which deteriorates into a fast rate of

Ventricular Tachycardia (200 beats per minute) using the Bounded Model. The bottom

figure shows a single beat of the fast Ventricular Tachycardia. Note the lack of an isoelectric

period that precedes the onset of the QRS complex.
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Figure 4.16: The electrocardiogram of fast Ventricular Tachycardia using the bounded

model and the exit site criteria (dipole magnitude, distance between consecutive dipoles, X2,

and Root Normalized Mean Square Error). The red line indicates the time instance

corresponding to the occurrence of the exit site.

We did not expect the dipole trajectory to contain a dipole location estimate close

to the physical location of the exit site in the case of fast VT due to distortion caused by

interference from the electrical activity of consecutive VT beats. This interference in the

case of fast VT prevents the BFIA from accurately localizing the exit site as indicated by

lack of correlation between the numbered dipole location in Figure 4.17 and the physical

location of the exit site. In addition, the case of the dipole trajectory results using the

bounded model on slow VT, the boundary effects create an offset between the exit site

and dipole location trajectory as evidenced in Figure 4.17.

In addition, we expect the exit site criteria to determine a dipole location estimate

from the cardiac dipole trajectory that is far away from the physical location of the exit

site when applying the bounded model in the forward problem. The resulting systematic
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error is due to the BFIA using the unbounded model equation to estimate the body

surface potentials. The effects of systematic error are also shown in Figure 4.17 by the

offset in the numbered dipole location in the cardiac dipole trajectory and the physical

location of the exit site.

Bounded Model: Fast VT

SExit Site

Figure 4.17: Dipole location trajectory for Bounded Model of fast VT. The color gradient

from dark blue to dark red represents the initial (blue) localized dipole from the VT Cycle

Length (VTCL) to the last (red) localized cardiac dipole in the VTCL under evaluation. The

yellow patch represents the physical location of the exit site and the number represents the

cardiac dipole location in the range [1:VTCLI that corresponds to the estimated time

instance of the exit site.
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Chapter 5

Ablation Site Localization in Slow and Fast VT

5.1 Introduction

In slow VT, there is an absence of remote electrical activity in the ventricle at the

time that the new wave of depolarization emerges from the exit site. This absence of

remote electrical activity at the time the electrical activity emerges from the exit site

allows the Brute Force Inverse Algorithm to localize the exit site without additional

distortion. The method that we have developed for ablation site localization in slow VT

is the Catheter Dipole Method (CDM) and is presented in Figure 5.1. In this method we

applied sub-threshold current pulses at the catheter tip. The resulting body surface

potentials were used as input to the Brute Force Inverse Algorithm, which estimated the

parameters of the dipole corresponding to the current pulses, specifically the location of

the dipole. A catheter advancement algorithm was used to move the catheter dipole to the

VT site of origin dipole.
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Catheter Dipole Method

Sub-threshold
stimulus

Figure 5.1: Outline of steps for guiding the catheter to the Ventricular Tachycardia site of

origin using the Catheter Dipole Method.

In fast VT, remote electrical activity in the ventricle, resulting from previous beats

of VT, is present at the time a new wave of depolarization emerges from the exit site.

This presence of remote ventricular electrical activity at the time that the new wave of

depolarization emerges from the exit site will contribute to the body surface potentials

and thus distort the location of the exit site as calculated by the Brute Force Inverse
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Algorithm. The method that we have developed for ablation site localization in fast VT

is the Trajectory Pace-mapping Method (TPM) and is presented in Figure 5.2.

Trajectory Pace-mapping
Method

'I

Figure 5.2: Outline of steps for guiding the catheter to the Ventricular Tachycardia site of

origin using the Trajectory Pace-mapping Method.
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In the Trajectory Pace-mapping Method we stimulated the ventricular myocardium

through the electrode on the catheter tip using supra-threshold impulses. The resulting

body surface potentials at each point in time were used as input to the Brute Force

Inverse Algorithm, in which we estimated the parameters of the corresponding single

equivalent moving dipole, resulting in a trajectory in space of cardiac dipoles. The

resulting catheter dipole trajectory was compared to the VT site of origin dipole

trajectory. Finally, a catheter advancement algorithm was used to move the catheter

towards the VT site of origin until the trajectories converged. The advantage of this

method is that both the bioelectrical source and the catheter generate a wave of

ventricular depolarization and thus both sets of localization estimates should be affected

equivalently by the resulting remote ventricular electrical activity.

5.2 Catheter Dipole Method

In the Catheter Dipole Method (CDM), we imaged the current pulse at the catheter

tip using sub-threshold stimuli for an instantaneous dipole estimate. I should note that in

our simulations we assume for simplicity that the catheter dipole moment had the same

orientation as the bioelectrical source dipole. Maya Barley in Dr. Cohen's group has

examined the issue of using multiple catheter electrodes to align the catheter and the

bioelectrical source dipole orientations. Note that the results from the Brute Force

Inverse Algorithm are considered image space solutions while the physical location of the

bioelectrical source or catheter tip is defined in real space.

The CDM is essentially a method by which we are attempting to match two dipole

locations, one from the bioelectrical source and one from the catheter tip. A flowchart

describing the steps of catheter advancement using the CDM is presented in Figure 5.3.
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Our analysis begins by selecting the best dipole location in the bioelectrical source dipole

location trajectory, which results from application of the Brute Force Inverse Algorithm

(BFIA). This best dipole location is referred to as the bioelectrical source image location.

Isolate the
catheter tip image

location

Advance the physical
catheter location by

O)Pff , where O<a<1

Yes No

Figure 5.3: Flowchart of catheter advancement algorithm using the Catheter Dipole Method.

We then randomly place the catheter in the ventricle and apply sub-threshold

impulses, which do not stimulate the ventricular muscle, to the catheter tip. The BFIA is

then used to analyze the body surface potentials produced by the dipole on the catheter

tip, which results in a catheter tip image location. After generating the offset vector

between the bioelectrical source and catheter image locations, we generate a parallel
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vector in real space from the physical catheter location. We advance the catheter along

this offset vector by a third. We continue advancing the catheter until the offset vector in

image space is less than 0.5 mm.

In the following graphical illustration, Figure 5.4, the physical bioelectrical source

location (blue closed circle) and resulting image bioelectrical source location (blue open

circle) after application of the Brute Force Inverse Algorithm, are shown at the top of the

figure while the analogous case for the catheter is shown at the bottom of the figure. The

red solid circle represents the physical location of the catheter while the red open circle

represents the image location of the catheter.

BES REAL Location

Catheter REAL Location

O -

BFIA

C

BFIA

'S IMAGE Location

0

atheter IMAGE Location

0
0o

Figure 5.4: Catheter Dipole Method illustration with the physical bioelectrical source location

(blue closed circle) and resulting image bioelectrical source location (blue open circle) after

application of the Brute Force Inverse Algorithm. The red solid circle represents the physical

location of the catheter and the red open circle represents the image location of the catheter.
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Recall that in order to determine the bioelectrical source image dipole shown in

Figure 5.4, we used a set of criteria developed by Maya Barley" 1 in the Cohen Lab to

determine the point in time when the electrical excitation emerges from the exit site. The

criteria involved an analysis of the ECG, and the traces of the following parameters

determined by the Brute Force Inverse Algorithm: dipole magnitude, distance between

consecutive dipoles, the error

error as shown in Figure 5.5.

function, chi-squared, and the root normalized mean square

Unbounded Model Results: Slow VT
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Figure 5.5: Analysis of the exit site criteria for VT site of origin determination from the

bioelectrical source data. The red line represents the time instance in the Ventricular

Tachycardia cycle length at which the exit site is localized.
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The vertical red line at time step 156 denotes the time point in question. Note that the

electrical activity first emerges from the exit site prior to the QRS complex. At the time

of exit, the dipole magnitude should still be small, the distance between consecutive

dipoles reaches a minimum after declining from a peak, the chi squared is small, and the

root normalized mean square begins to rise.

In Figure 5.6, we show the bioelectrical source dipole location trajectory,

represented by circles, inside the cylindrical model corresponding to the beat of

Ventricular Tachycardia under analysis. The red square represents the physical location

of the exit site. We see that in the case of slow VT with no noise that the bioelectrical

source trajectory's dipole number 156 in fact corresponds to the physical exit site

location. Therefore, we conclude that the BFIA is correct in its localization of the

bioelectrical source's VT site of origin in this particular case.
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Unbounded Model:

a

Dipole Location Trajectory

Figure 5.6: Bioelectrical Source dipole location trajectory (circles) and physical location of

the exit site (red) on the ventricular model.

Since we have generated the bioelectrical source image, we next generate the

catheter image, which is accomplished by application of the BFIA on the body surface

potentials produced from the catheter tip dipole. The advancement of the catheter in

image and real space is illustrated in Figure 5.7. We generate the offset vector between

the bioelectrical source and catheter dipole image locations. Afterwards, we assume that

we can incrementally move the catheter from the position in Figure 5.7A to the position

in Figure 5.7B along a parallel vector in real space. The equation we use is as follows,

C = C+ -k ). Here co is a fraction between 0 and 1, typically we used 1/3.

We continue advancement of the catheter until the bioelectrical source and catheter image

are less than 0.5 mm apart.
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e~

A B

Figure 5.7A and B: Illustration of catheter advancement on the cylindrical model where the

red circles represent the catheter dipole location and the blue circles represent the

bioelectrical source dipole location. Filled circles represent the location in physical space and

open circles represent the location in image space.

5.3 Catheter Dipole Method Results

We tested performance of the Catheter Dipole Method with no noise and low to

very high noise levels (I to 100 pV) on slow VT as shown in Figure 5.8. Using the

Catheter Dipole Method we obtained good results for the unbounded model as well as

bounded model even though the Brute Force Inverse Algorithm assumes an unbounded

model. This is because the distorting effect of the bounded model is the same for the

bioelectrical source dipole and catheter dipole in slow VT.
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Unbounded Model with Noise: Slow VT

100 l.V noise(43)
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Figure 5.8: Catheter Dipole Method results for slow VT with no noise to very high noise levels

of 100 pV. The x-axis gives the offset in image space between the bioelectrical source and

catheter source dipoles when the catheter advancement procedure is terminated; the y-axis

provides the corresponding offset in real space between the exit site and the location of the

catheter tip. The number of steps until the Catheter Dipole Method converged is indicated in

parenthesis to the left of the noise level.

In the unbounded and bounded model cases of slow VT, we see that for 0 to 100

pV noise levels, the catheter is successfully advanced to the bioelectrical source in both

image and real space within 2 mm. Note that for 0 to 10 pV noise levels, the Catheter

Dipole Method converges in 15 steps or less while for the very high noise level of 100

pV, the method converges in approximately 40 steps in the unbounded and bounded

model cases. Actual anticipated noise levels are on the order of 10 pV.
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As expected, the Catheter Dipole Method does a poor job of localizing the catheter

and guiding it to the bioelectrical source in real space for fast VT. In fast VT remote

ventricular electrical activity persists at the time that a new wave of electrical activity

emerges from the exit site. This remote ventricular activity alters the body surface

potentials generated by the bioelectrical source dipole at the VT site of origin, but not the

body surface potentials generated by the catheter source. The altered body surface

potentials result in a distorted estimate of the location of the bioelectrical source dipole.

There is no similar distortion of the estimate of the location of the catheter dipole.

Thus although one can achieve convergence of the imaged locations of the VT site of

origin dipole and the catheter dipole, the real locations of the exit site and catheter tip do

not converge as shown in Figure 5.9. In our results, there was an offset of over 4.5

centimeters in the unbounded model case of fast VT and over 3.5 centimeters in the

bounded model case of fast VT. These results inspired us to apply a more sophisticated

approach to address bioelectrical source and catheter dipole convergence in fast VT, thus

the Trajectory Pace-mapping Method.
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Unbounded Model with Noise: Fast VT
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Figure 5.9: Catheter Dipole Method results for fast VT with no noise to very high noise levels

of 100 pV. The x-axis gives the offset in image space between the bioelectrical source and

catheter source dipoles when the catheter advancement procedure is terminated; the y-axis

provides the corresponding offset in real space between the exit site and the location of the

catheter tip. The number of steps until the Catheter Dipole Method converged is indicated in

parenthesis to the left of the noise level.

5.4 Trajectory Pace-Mapping Method

The objective in matching the bioelectrical source and catheter dipole trajectories is

to isolate the initially well-localized dipole locations in the vicinity of the onset of the

QRS complex. Admittedly, we could have manually selected the points to be used in the

trajectory comparisons, but instead we developed a simple algorithm to automatically

select those points for computational convenience. Once we have the bioelectrical source

and catheter trajectories, we compute the offset between the two sets of points. In a
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subsequent version of this algorithm, it may be useful to develop an algorithm containing

evaluation of a smoothness criterion in order to automatically select the optimal points

for a trajectory match since we observed that the distance between consecutive dipoles

monotonically increases in the localized region of interest.

We observed that the sequence of points immediately following the discontinuity in

the distance between consecutive dipoles when the electrical activity starts, coincided

with the highly localized bioelectrical source trajectory in the Trajectory Pace-mapping

Method (TPM). This discontinuity is due to the Brute Force Inverse Algorithm's attempt

to localize the cardiac dipole parameters in the region preceding the onset of VT, but in

fact is only fitting the parameters to noise. The Brute Force Inverse Algorithm (BFIA)

consistently computes an outlier in the region of noise resulting in computation of a

sequence of sporadic distances between consecutive dipoles for the cardiac dipole

solutions. A notable change occurs in the distance between consecutive dipoles when the

electrical activity transitions from noise to meaningful electrical signals, which initially

corresponds to the highly localized region of interest and signals that we should begin

selection of the sequence of points for our bioelectrical source trajectory.

Isolating the catheter dipole location trajectory was particularly straightforward in

that the electrical activity at the catheter tip is highly localized at the ventricle location

when the stimulus is applied, before spreading to depolarize the rest of the ventricle.

Therefore, we automatically selected the initial points after application of the stimulus to

the catheter tip in order to select the catheter trajectory points of interest. In the

following sections we will present the method of localizing the exit site of the reentry
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circuit in both slow and fast VT. We found it necessary to make minor changes to the

Trajectory Pace-mapping Method for fast VT.

5.4.1 Trajectory Pace-mapping Method for Slow VT

A sequential analysis of the Trajectory Pace-mapping Method for slow VT and

corresponding figures are provided in the following steps:

1. Extract one VTCL of the bioelectrical source from the ECG

2. Compute the distance between consecutive dipoles, dcon,

The ECG of slow VT using the Unbounded Model along with corresponding distances

between consecutive dipoles is shown in Figure 5.10. Note that in the middle sub-figure

that the distances between consecutive dipoles are extremely large, exceeding 20 cm

while the ventricle is only 9 cm long. This characteristic is due to the fact that the Brute

Force Inverse Algorithm (BFIA) cannot localize the cardiac dipole in the region

preceding the QRS onset in slow VT because it is essentially fitting the cardiac dipole

parameters to noise. We capitalize on this characteristic to isolate the electrical activity

as it emerges from the exit site of the reentry circuit.
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Figure 5.10: The first figure shows an ECG of Slow Ventricular Tachycardia (VT) using the

Unbounded Model with noise added to the electrodes. The second figure is of the ECG and the

VT's corresponding distance between consecutive dipoles (blue) and the third figure is a

magnified version of the second figure to more closely observe the distance between consecutive

dipoles in our region of interest where the electrical activity emerges from the exit site.

3. Select the sequence of consecutive, well-localized dipole locations following
dcons> 0.

4. Observe the first 5 dipole locations following the discontinuity in the distance
between consecutive dipoles.

Recall that the cardiac tissue rests immediately before initiation of the period of

highly localized electrical activity. We sought to isolate those points immediately

following the period of isoelectric activity as shown in Figure 5.11. During the

isoelectric region, the Brute Fore Inverse Algorithm fits the dipole to noise and
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consistently computes a dipole solution without the presence of cardiac electrical activity.

This explains why the distance between consecutive dipoles is sporadic in the case of

noise and would remain the same in the case of no noise until the BFIA actually reaches

localized activity and the distance between consecutive dipole increases in a smooth,

consistent manner. This feature signals the onset of the VT and we select the first five

points to represent the bioelectrical source dipole trajectory that will be used to compare

to the catheter tip dipole trajectory.

BES: ECG and Distance Between Consecutive Dipoles
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Figure 5.11: Bioelectrical source with the numbered points in the Ventricular Tachycardia cycle

length to be used in the Trajectory Pace-mapping Method. The points are selected by observing

the initial instance when the distance between consecutive dipoles follows a roughly

monotonically increasing pattern (highlighted in blue).
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5. Select a sequence of 5 dipole locations following the paced catheter sequence.

Upon delivery of the pacing impulse to the catheter, the initial cardiac dipole

locations determined by the BFIA indicate those that are appropriate for matching to the

bioelectrical source trajectory. The cardiac dipole locations of interest from the catheter

are shown in Figure 5.12.

Catheter: ECG and Distance Between Consecutive Dipoles
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Figure 5.12: Catheter source with the numbered points in the Ventricular Tachycardia cycle

length to be used in the Trajectory Pace-mapping Method. The points are selected by observing

the initial instance when the distance between consecutive dipoles follows a roughly

monotonically increasing pattern (highlighted in blue).

6. Compute the offset vector between bioelectrical source and Catheter location
N

L(B, -C,)
trajectory points, dff N where N is the number of points in the

trajectory.
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7. Advance the Catheter by a fraction of the offset vector, w*doff where w = %.

8. Project the new catheter position onto the cylindrical surface via a lookup table
of all the model element center locations.

a. If the z-component of doff remains the same and is smaller than scz, we
move the z-component up by 2*scz if the algorithm was initially moving
upwards and down by 2*scz if the algorithm was initially moving
downwards

9. Compute the offset vector between the physical bioelectrical source and Catheter
location points and its corresponding magnitude

10. Run the brute force inverse algorithm, BFIA, on the new physical Catheter
location

11. If the catheter remains at the same location, check the dff results from moving the
catheter to each of the four nearest neighbors 2 *scz, where scz = 2 mm, the linear
dimension of the ventricular model's elements. Choose the neighbor and its
corresponding trajectory that results in the minimum doff

a. If the catheter is pacing in the scar tissue, move the catheter back to its
previous location

12. Repeat steps 7 -12 in an iterative loop until I do11 < 1.5 *scz

An illustration of the method by which we attempt to advance the catheter dipole

to the bioelectrical source dipole is shown in Figure 5.13. In this illustration, the yellow

perforated circle represents the bioelectrical dipole trajectory while the red perforated

square represents the catheter dipole trajectory. The offset between the two trajectories is

measured by computing an average of the sum of differences of all the dipoles in the

respective trajectories. This offset vector is represented by 2 k, whose equation is

N

4 = .C In this equation, k represents the current number is the sequence of
i=1 N

catheter moves until trajectory convergence is attained, N is the number of dipole
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locations in the trajectory, C represents the catheter trajectory, and B represents the

bioelectrical source trajectory.

Figure 5.13: Catheter advancement algorithm for the Trajectory Pace-mapping Method.

The yellow perforated circle represents the bioelectrical dipole trajectory in image space

while the yellow solid circle represents the physical location of the bioelectrical source dipole

when the electrical activity emerges from the exit site. The red perforated shapes represent

the catheter dipole trajectory while the solid red circle represents the physical location of the

catheter on the ventricular surface. The 2 k is the offset vector used in both image and real

space to advance the catheter a third of the distance in sequential steps until the desired

resolution is attained.
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We create a vector parallel to k in real space and advance the catheter along this

offset vector by a fraction of , in this case 1/2. We continue this process and as we

indicate in the illustration, the shape of the catheter trajectory will begin to morph into the

shape of the bioelectrical source trajectory the closer the real locations of the exit site and

catheter tip are to one another. When the trajectories overlap the catheter is pacing at the

same location where the VT site of origin is. We allowed the catheter advancement

algorithm to terminate when the trajectory offset was less than or equal to 3 mm.

In order to analyze the performance of our Trajectory Pace-mapping Method, we

set up experiments in which we initialized the catheter at five initial random locations,

shown in Figure 5.14 and Table 5.1. The real location of the bioelectrical source dipole

is indicated by the blue square. For each of these catheter locations we observed the

results for guiding the catheter dipole to the bioelectrical source dipole with random noise

levels of 0, 1, and 10 pV added to the electrodes produced by the bioelectrical source.

We did not add noise to the body surface potentials generated by the catheter, which

would need to be done to make the simulations more fully realistic. We ran simulations

for slow and fast VT using both the unbounded and bounded models.
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Initial Catheter Locations on the Ventricle Surface

5-,

-5
3

-J--

0

2 1 
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5

Figure 5.14: Initial catheter locations (red and numbered 1-5) and physical location of the

exit site (blue) on the surface of the ventricular finite element model.

Initial Catheter Distance from
Trial Exit Site (cm)

#1 4.9834
#2 4.6384
#3 1.5879

#4 0.9939

#5 5.0088

Table 5.1: Initial catheter distance from the exit site in the five trials under observation.

5.4.2 Results: Trajectory Pace-mapping Method for Slow VT

The bioelectrical source and catheter five point trajectories for trial #1 of slow VT

using the Unbounded model with no noise converged in five steps as shown in Figure

149

72

1z_



5.15. Note that as the catheter is paced closer to the exit site, the bioelectrical source and

catheter trajectory morphologies look more similar and overlap. In physical space, the

catheter converged towards the exit site as shown in Figure 5.16.
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Offset in Image Space is 2.8098 cm
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Figure 5.15: Example of a complete sequence (1-5) of catheter (red) and bioelectrical source

(blue) trajectories extracted from each respective cardiac dipole trajectory for a Ventricular

Tachycardia cycle length. The corresponding offset is indicated at the top of each individual

plot. This is in the example of slow VT using the Unbounded Model.
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Figure 5.16: Catheter advancement (red) towards the exit site (blue) using the Trajectory

Pace-mapping Method. This is in the example of slow VT using the Unbounded Model.

The experimental results for the unbounded and bounded models for slow VT in

which a catheter was randomly placed in the ventricle and guided towards the

bioelectrical source dipole are shown in Figure 5.17 and Figure 5.18. The number of

steps until convergence in image space is indicated in parenthesis left of the labeled noise

level. Note that one experiment was conducted for each noise level in each trial. Recall

that the ventricular model's individual elements had a linear dimension of 2 mm so we

were satisfied when the catheter and bioelectrical source dipoles converged in physical,

or real, space within two elements, or 4 mm. In the case of no noise, we achieved the

desired convergence resolution in the unbounded model. However, the ability to advance
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the catheter to the bioelectrical source dipole progressively worsened as we introduced

more noise to the potentials generated by the bioelectrical source.

With the bounded model in slow VT, we also achieved the desired convergence in

the case of no noise. However, the ability to advance the catheter to the bioelectrical

source dipole progressively worsened as we introduced more noise to the potentials

generated by the bioelectrical source.
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Figure 5.17: Trajectory Pace--mapping Method results for slow VT using the Unbounded

Model with the final displacement of the catheter and bioelectrical source trajectories in

image space (x-axis) and physical space (x-axis) for the 5 initial catheter locations tested.

The number of steps to convergence is indicated in parenthesis next to the noise level.

153

010 V noise(4)

01 sV noise(3)

0.4



1-

S0.5

03

Trial #1: Slow VT with Bounded Model

E

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
IBimage-Cimagel cm

Trial 2: Slow VT with Bounded Model

0.5 - 010 lLV noise(B)

,No Noise(3)
1 pV noise(3)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
IBimage-Cimagel cm

Tria #13: Slow VT with Bounded Model

0.5 - 010 V noise(7)

No Noise(5)
1 l±V noise(5)

0'
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

IBimage-Cimagel cm

E

0

Tral #4: Slow VT with Bounded Model
1

0.5 - @10 pV noise(S)

No Noise(3P 1 RV noise(3)

0,
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

|Binage-Cimagel cm
Trial 6: Slow VT with Bounded Model

1

0.5 -

10 1uV noise(8p No Noise(7)
1 ±V noise(7)

0 0.05 0.1 0.15 0.2 0.25 0.3 035 0.4
IBimage-Cimagel cm

Figure 5.18: Trajectory Pace-mapping Method results for slow VT using the Bounded

Model with the final displacement of the catheter and bioelectrical source trajectories in

image space (x-axis) and physical space (x-axis) for the 5 initial catheter locations tested.

The number of steps to convergence is indicated in parenthesis next to the noise level.

5.4.3 Trajectory Pace-mapping Method for Fast VT

A sequential analysis of the Trajectory Pace-mapping Method for fast VT using the

Unbounded Model and corresponding figures is provided in the following steps. Please

note that the differences between the TPM algorithm for slow and fast VT are noted in

red below.

1. Extract one VTCL of the bioelectrical source, bioelectrical source, from the ECG

2. Compute the distance between consecutive dipoles, deon,
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The ECG along with the corresponding distance between consecutive dipoles is

shown in Figure 5.19. Note that the distance between consecutive dipoles progressively

increases in the vicinity of the QRS onset to the peak in the QRS complex.

Fast VT using the Unbounded Model
A:'1

E
C-,

0

U)

0
L)

C-)

C
0
0t
C

4-

-0.5' ' '
0 200 400

Time (MTU)

7

6

5

4

2-

04

-1 '
0 200 400

Time (MTU)

Ca
a)

.

a)

a)
Co

C
C

C
a)

OD

0
C
Ca,

(C'

-a
C
M'

CD:
0)
Lu

0.5

0i

*

-0.51
0 200 400

Time (MTU)

Figure 5.19: The first figure shows an ECG of Fast VT using the Unbounded Model with noise

added to the electrodes. The second figure is of the ECG and the VT's corresponding distance

between consecutive dipoles (blue) and the third figure is a magnified version of the second

figure to more closely observe the distance between consecutive dipoles in our region of interest

where the electrical activity emerges from the exit site.

3. Select the sequence of consecutive, well-localized dipole locations following
dcons> scz

4. Observe the first 5 dipole locations following the discontinuity in the distance
between consecutive dipoles. This is the bioelectrical source trajectory.

The region in the Ventricular Tachycardia cycle length of fast VT distorted by the

electrical interference from consecutive beats of VT should precede the onset of the QRS
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complex. We found that the distance between consecutive dipoles was initially small

during this period of distortion, but started to monotonically increase in the vicinity of the

exit site of the reentry circuit. We sought to isolate the cardiac dipole locations of

interest by setting a threshold of 2 mm for the points under evaluation as shown in Figure

5.20. This is the region of the bioelectrical source trajectory that will be matched to the

paced catheter trajectory.
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Figure 5.20: Bioelectrical source with the numbered points in the Ventricular Tachycardia cycle

length to be used in the Trajectory Pace-mapping Method. The points are selected by observing

the initial instance when the distance between consecutive dipoles follows a roughly

monotonically increasing pattern (highlighted in blue).

5. Select a sequence of 5 dipole locations following the paced catheter sequence.
This is the catheter trajectory.
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Upon delivery of the pacing impulse to the catheter, the initial cardiac dipole

locations determined by the Brute Force Inverse Algorithm indicate those that are

appropriate for matching to the bioelectrical source trajectory. The cardiac dipole

locations of interest from the catheter are distinguished in Figure 5.21. We used the

same catheter advancement algorithm used in slow VT shown in Figure 5.13 to guide the

catheter to the VT site of origin.

Catheter: ECG and Distance Between Consecutive Dipoles
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Figure 5.21: Catheter source with the numbered points in the Ventricular Tachycardia cycle

length to be used in the Trajectory Pace-mapping Method. The points are selected by observing

the initial instance when the distance between consecutive dipoles follows a roughly

monotonically increasing pattern (highlighted in blue).
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6. Compute the offset vector between bioelectrical source and Catheter location
N

Z (C, -B,)
trajectory points, d '' N , where N is the number of points in the

trajectory

7. Advance the Catheter by afraction of the offset vector, w *doff; where w = 2

8. Project the new catheter position onto the cylindrical surface via a lookup table
of all the model element center locations.

a. If the z-component of doff remains the same and is smaller than scz, we
move the z-component up by 2*scz if the algorithm was initially moving
upwards and down by 2*scz if the algorithm was initially moving
downwards

9. Compute the offset vector between the physical bioelectrical source and Catheter
location points and its corresponding magnitude

10. Run the brute force inverse algorithm, BFIA, on the new physical Catheter
location

11. If the catheter remains at the same location, check the doff results from moving the
catheter to each of the four nearest neighbors 2 *scz, where scz = 2 mm, the linear
dimension of the ventricular model's elements. Choose the neighbor and its
corresponding trajectory that results in the minimum doff

a. If the catheter is pacing in the scar tissue, move the catheter back to its
previous location

12. Repeat steps 7 -12 in an iterative loop until Ido1 < 1.5*scz

5.4.4 Results: Trajectory Pace-mapping Method for Fast VT

The bioelectrical and catheter trajectories for trial #1 with no noise in which

convergence was accomplished in nine steps are shown in Figure 5.22. Note that as the

catheter is paced closer to the exit site, the bioelectrical source and catheter trajectory

morphologies look more similar and overlap. In physical space, the catheter converged

towards the exit site as shown in Figure 5.23.
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Offset in Image Space is 1.2138 cm

2

1 --,.,0 0
0

0 2

Y (cm) -205 X (cm)
Offset in Image Space is 1.2138 cm

21

0 -2 1.5 2
Y (cm) X (cm)

Offset in Image Space is 0.26821 cm

-

9 0
--. 1 1 .5 2

Y (cm) -1.5 0.5 X (cm)

O Image Catheter Location
0 Image Dipole Location

O Image Catheter Location
1 Image Dipole Location

Figure 5.22: Example of a complete sequence (1-9) of catheter (red) and bioelectrical source

(blue) trajectories extracted from each respective cardiac dipole trajectory for a Ventricular

Tachycardia cycle length. The corresponding offset is indicated at the top of each individual

plot. This is in the example of fast VT using the Unbounded Model.
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Figure 5.23: Catheter advancement (red) towards the exit site (blue) using the Trajectory

Pace-mapping Method. This is in the example of fast VT using the Unbounded Model.

The experimental results utilizing the Unbounded and Bounded Models for fast

VT in both image and physical space of the five trials are presented in Figure 5.24 and

Figure 5.25. In the case of fast VT, note that we achieve the desired convergence of less

than 4 mm in real space for the unbounded model for all of the noise levels analyzed. We

observed dipole trajectory convergence with this method because both the bioelectrical

source and the catheter source generate a wave of ventricular depolarization and thus

both sets of localization estimates are affected equivalently by the resulting remote

ventricular electrical activity.
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Trial #1: Fast VT with Unbounded Model
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Figure 5.24: Trajectory Pace--mapping Method results for fast VT using the Unbounded

Model with the final displacement of the catheter and bioelectrical source trajectories in

image space (x-axis) and physical space (x-axis) for the 5 initial catheter locations tested.

The number of steps until convergence is indicated in parenthesis next to the noise level.

In the bounded model case of fast VT, note that we achieve the desired

convergence of less than 4 mm in real space for all noise levels analyzed. We conclude

from the Trajectory Pace-mapping Method results for slow and fast VT that this method

appears to be an effective algorithm for ablation site localization in both slow and fast

VT.
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Tial #1: Fast Vr with Bounded Model
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Figure 5.25: Trajectory Pace--mapping Method results for fast VT using the Bounded

Model with the final displacement of the catheter and bioelectrical source trajectories in

image space (x-axis) and physical space (x-axis) for the 5 initial catheter locations tested.

The number of steps until convergence is indicated in parenthesis next to the noise level.
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Chapter 6

Summary of Results and Future Goals

6.1 Completed Research Objectives

Our research objectives for this thesis were to design a finite element model to

simulate VT, develop an algorithm to localize the exit site of a reentry circuit using body

surface potentials, localize the ablation catheter in both slow and fast VT, and advance

the ablation catheter to the localized exit site of the reentry circuit. We were able to

successfully simulate various rates of Ventricular Tachycardia through development of a

simple finite element model of ventricular conduction.

We also developed the Brute Force Inverse Algorithm to estimate the cardiac

dipole parameters at the localized exit site using the Single Equivalent Moving Dipole

Model. In addition, we designed and tested the Catheter Dipole Method for localizing the

exit site in slow and fast VT. The Catheter Dipole Method was effective in localizing the

exit site in slow VT, but was ineffective in the case of fast VT. Thus, we developed the

Trajectory Pace-mapping Method, in which the exit site was localized for both the

unbounded and bounded model cases of slow and fast VT.

6.2 Detailed Summary of Results

Our first objective was to develop a finite element model of ventricular electrical

activity in order to simulate various rates of VT resulting from reentry. The model was

simple and deterministic, providing a straightforward method for generating body surface
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potentials corresponding to the ventricular electrical activity. Because we were interested

in the case of VT resulting from structural heart disease, we superimposed an area of scar

tissue on the ventricular model to accommodate the formation of reentry. Through the

development and application of excitation and conduction rules using a cellular automata

model, we were able to successfully generate electrocardiograms for both slow and fast

rates of VT.

Our second objective was to develop an algorithm to localize the VT site of origin,

or exit site of the reentry circuit, from a single beat of VT. This algorithm, the Brute

Force Inverse Algorithm (BFIA), estimated the cardiac dipole parameters of a Single

Equivalent Moving Dipole (SEMD) representation of cardiac electrical activity from the

body surface potentials at each point during the cardiac cycle. The SEMD model

represented the heart as a bioelectrical source modeled by a single equivalent dipole

whose location, magnitude and direction varies throughout the cardiac cycle. For each

point in time, the BFIA estimated the location and moment of a single equivalent moving

dipole resulting in a trajectory in space of cardiac dipoles. Finally the dipole trajectory

was analyzed to determine which point corresponded to the exit site of the reentry circuit.

Results from the BFIA in both slow and fast VT using the unbounded and bounded

model results proved to be reliable.

Our third objective was to localize the ablation catheter and advance it to the VT

site of origin. To guide the catheter to the VT site of origin in slow VT, we developed

the Catheter Dipole Method. In this method we applied sub-threshold current pulses at

the catheter tip. The resulting body surface potentials were used as input to the Brute

Force Inverse Algorithm, which estimated the parameters of the dipole corresponding to

165



the current pulses, specifically the location of the dipole. By analyzing the SEMD

trajectory from the VT simulation (bioelectrical source), the dipole corresponding to the

VT site of origin was identified. A catheter advancement algorithm was used to move the

catheter dipole to the VT site of origin dipole. The Catheter Dipole Method was

successful in localizing the VT site of origin in slow VT, but was unsuccessful in fast VT

because in fast VT remote ventricular electrical activity altered the body surface

potentials generated by the bioelectrical source dipole at the VT site of origin but not the

body surface potentials generated by the catheter source.

To guide the catheter to the VT site of origin in fast VT, we developed the

Trajectory Pace-mapping Method. In this method we applied supra-threshold current

pulses to the catheter tip to stimulate the ventricular myocardium. The resulting body

surface potentials at each point in time were used as input to the Brute Force Inverse

Algorithm to estimate the parameters of the corresponding SEMD, resulting in a

trajectory in space of cardiac dipoles. The resulting catheter dipole trajectory was

compared to the VT site of origin dipole trajectory. Finally, a catheter advancement

algorithm was used to move the catheter towards the VT site of origin until the

trajectories converged. We observed dipole trajectory convergence in both slow and fast

VT with this method because both the bioelectrical source and the catheter source

generate a wave of ventricular depolarization and thus both sets of localization estimates

should be affected equivalently by the resulting remote ventricular electrical activity.

Through the simulation of VT due to reentry, development of the Brute Force

Inverse Algorithm for VT site of origin localization through analysis of the SEMD

model, localization of the ablation catheter tip though development of the Catheter
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Dipole Method and Trajectory Pace-mapping Method, and guidance of the ablation

catheter to the VT site of origin, we were able to provide a complete simulation of a new

approach to RFA. The proposed new RFA procedure would allow therapy for patients

who cannot tolerate the maintenance phase and frequent inductions of VT, by increasing

the accuracy and speed by which we determine the site for ablation. In principle, our

RFA technique only requires a single beat of VT to localize the VT site of origin. The

proposed new RFA procedure promises to provide a new rapid and effective means for

treatment of VT. Future animal and human studies are needed to validate the approaches

we have developed.

6.3 Future Direction of Research

In future research, we should validate our approach to Radio-frequency Ablation

of Ventricular Tachycardia via saline tank experiments, which are currently in progress

by Maya Barley. As suggested by Armoundas with his approach, in vitro studies,

conducted in a saline tank using an anatomically and geometrically realistic saline torso

tank and current dipole sources, will prove to be insightful.110 The body surface

potentials will be used to identify the location and moment of the dipoles that were

analyzed to generate those potentials. The ability of the Brute Force Inverse Algorithm

to localize multiple simultaneously active and spatially separated electrical current

sources will be tested. The final step will be to conduct animal and human studies.

Further analysis using the algorithms developed in this thesis can include the

following experiments. In the VT simulation model, we could simulate more complex

forms of VT and we should note that in the case of polymorphic VT, the exit site may

vary widely, constantly changing in shape and size. Thus, there is a need to develop a set
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of exit site criteria in VT when the QRS complex is not well defined. Also, we could

address the case of reentry circuits located in the myocardium by extending our finite

element model to consist of three layers: an epicardium, myocardium, and endocardium.

We could also optimize the Brute Force Inverse Algorithm so that the cardiac

dipole parameters are determined in a clinically acceptable time frame. The catheter

dipole moment alignment can also be incorporated in catheter guidance using methods

developed by Barley.]1" Development of an algorithm to automatically select a subset of

points from the bioelectrical source and catheter dipole trajectories for matching by the

Trajectory Pace-mapping Method will prove useful. Also, we noted in the Trajectory

Pace-mapping Method that noise was not added to the body surface potentials generated

by the catheter in our analysis. Noise must be added to the catheter to obtain fully

realistic results of the Trajectory Pace-mapping Method. Upon completion of all of these

aforementioned experiments, a more robust set of algorithms will be available for clinical

purposes.
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