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Abstract

Filters are one of the basic building blocks of analog circuits. For linear operation, the power
consumption is proportional to the dynamic range for a given topology. I have explored
techniques to lower the power consumption below this limit by extending operation beyond the
linear range.

First, I built a power-efficient linear gm-C filter that demonstrates that dynamic range can be
shifted to higher linear ranges using capacitive attenuation. In a standard gm-C filter, the
minimum noise is limited by the discrete charge on the electrons and holes stored on the
capacitor. This noise can only be reduced by collecting more charge on a larger capacitor,
consuming more power. The maximum signal is determined by the linear range of the
transconductor. This work showed that both the noise and the maximum signal can be
amplified by including a capacitive attenuator in the feedback path of filter.

In order to increase the dynamic range, I explored the non-linear operation of the filters,
including jump resonance. Unlike harmonic distortion and gain compression which slowly
increase with the input amplitude, jump resonance is not present in a linear system, but
develops in the presence of strong nonlinearity. It is characterized by a discontinuous jump in
the frequency response near the resonant peak. I have analyzed the behavior using both
describing function and state-space techniques. Then, I developed a novel graphical analysis
technique. Finally, I design, built, and tested a circuit for avoiding jump resonance for audio
filters.

Finally, I took advantage of nonlinearities in a filtering system to build a micropower
companding speech processor. This system implements the companding speech processing
algorithm to improve speech comprehension in moderate noise environments. The sixteen
channel system increases the spectral contrast of speech signals by performing an adjustable
two-tone suppression function, replacing the function of a normally function cochlea for
hearing aid or cochlear implant users. The system runs on less than 60uW of power, a
consumption so low it could run for 6 months on a standard hearing aid battery.
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Chapter 1: Introduction

Filters are one of the basic building blocks of analog circuits. For decades, researchers have

studied electronic filters [1]. So much is understood about filter design that one popular

introductory textbook tells readers, "Filter design is one of the very few areas of engineering for

which a complete design theory exists, starting from specification and ending with a circuit

realization [2]." While this quote may be true for linear filter design, it remains untrue for the

non-linear regime. For small signals, filters can be approximated by linear models, but as signals

grow this approximation weakens. The range of signals for which the approximation holds is

the dynamic range. It is the range, measured in dB, between the smallest signal the system can

process and the largest. Every filter has some signal that is so small that it cannot be

distinguished from noise and some signal so large that the filter does not perform properly.

This thesis is about the second half of that sentence, defining the high end of analog filters for

audio applications.

This thesis is divided into five chapters. The first chapter provides a background of

technologies used in analog filtering in the audio frequency range. The second chapter presents

my work on the capacitive-attenuation technique for increasing the linear range of gm-c filters.

The third chapter explores jump resonance, a non-linear behavior of filters, including my novel

graphical analysis method and adaptive circuit solution. The fourth chapter describes the

application of micropower analog filters to my companding speech processor to improve

speech recognition for the hearing impaired in moderate noise environments.

Section 1. Audio Filter Applications

There are a variety of applications for audio filtering including: automatic speech recognition,

speech enhancement, speech coding, and processing for cochlear implants. In each of these

applications, the filters are not required to be linear, but must demonstrate some of the

properties that are guaranteed by linearity. So, linearity is often used as a proxy for the

properties that are needed. So, I will first analyze the requirements for linearity and then look at

the places where these requirements can be relaxed for the applications of interest.



Automatic speech recognition has been the topic of much research in the last half century. A

general architecture has emerged. Phonemes are extracted and then the sequence of phonemes

is interpreted. Because phonemes are defined by spectral features such as formants, the

phoneme detection stage involves filtering as either an explicit or implied process. In some

designs, the speech is separated into frequency bands by a bank of bandpass filters. Formants

are then extracted by measuring the power in each band. Alternatively, the two processes can

be combined in the digital domain using a Fast Fourier Transform (FFT) or Linear Predictive

Coding (LPC). LPC finds a function that predicts the next sample value based on a series of

previous samples. Because this is equivalent to defining a discrete time filter for the channel,

the LPC is often accomplished by first transforming the samples to the frequency domain,

although some algorithms function solely in the time domain [3]. After the phonemes are

extracted, they are matched to possible words. Then the possible words are weighted based on

sentence level probabilities. In these systems, the phoneme identification may be amenable to

analog signal processing while the later classification steps are probably more appropriate for

digital computation.

One of the most visible areas of research in audio processing has been perceptual coding. The

factor of 10 compression achieved in MP3 encoding is in large part due to these encoding

techniques that perform selective compression based on the ability of humans to hear the

artifacts. The encoding process can be divided into two stages: perceptual modeling and

variable compression. In the perceptual modeling stage, a frequency analysis is performed on a

window of the sound and a masking profile is created. This masking profile is then used to set

the maximum errors when each frequency band is compressed [4-5]. This masking profile can

be developed using special analog filters, while the variable compression is performed with

digital computation.

Speech enhancement is a related area that has shown some success and promises even more.

Speech enhancement is the general term for a variety of techniques used to improve the

intelligibility of speech for either human or computer listeners. The basis of these methods is

amplifying those parts of the signal, as defined in time and frequency, which have a high signal

to noise ratio while attenuating those portions where the noise dominates. One of the simpler

algorithms performs non-linear expansion based on signal amplitude in each frequency band
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[6]. More advanced techniques use adaptive filtering such as Kalman filters to maximize the

signal to noise ratio based on noise estimates measured during pauses in speech signals [7].

Spectral Subtraction lies somewhere between these systems in complexity, with frequency

domain subtraction of the noise signal from the composite signal [8]. The performance of

these systems is often characterized by resulting SNR, but work has also been done comparing

the automatic speech recognition scores on the output of these systems [8]. These systems

have been implemented in both DSP and analog systems.

While the above applications are aimed at a broad audience, the hearing impaired can benefit

even more from audio frequency filters. It is estimated that one million Americans are

sensorineurally deaf. They can only hear with the aid of a cochlear implant, a biomedical device

that directly stimulates the nerves in the cochlea in response to sound [9]. A microphone

captures the sound. Then the dynamic range is decreased using an automatic gain control. The

sound is divided in to frequency bands. The power in those bands is calculated. A second

stage of compression is applied. Finally, the neurons are stimulated [10-11]. Active research on

cochlear implants is aimed at optimizing the compression strategy and minimizing the power

consumption to extend battery life.

Section 2. Analog Filter Topologies

In any of these applications, micropower analog filters are generally built in one of two

technologies: Gm-C and log domain. Both of these technologies include a variety of

topologies. The Gm-C domain is defined as filters built using linear voltage to current

converters, the Gm, and capacitors, the C. These filters are also frequently referred to as OTA-

C filters. Log domain filters differ in that they store state on capacitors which contain a log

representation of the signal and use exponential voltage to current converters. They go by

many names including: Exponential State Space (ESS), Dynamic Translinear (DTL), and

Bernoulli cells.

A: Gm-C

Sanchez-Sinencio and Silva-Martinez provided an excellent overview of Gm-C filters in greater

depth than presented here [12]. Research in Gm-C filters addresses both the transconductor



design and the filter topology. A survey of the options available in each and the tradeoffs

associated with them is presented here.

Single Ended

Practical transconductors are either single transistor input trans conductors or differential pair

transconductors. Single transistor input transconductors can be built using saturation region

MOSFETs, triode region MOSFETs, or forward active region bipolar transistors. The

saturation MOSFETs and active bipolar transistors have the advantage of yielding the simplest

possible circuits. Each transconductor is one transistor. The disadvantage of this design is the

limited linear range. In fact, it is not linear at all as shown in Fig. 1.1. In subthreshold

operation, the transistor curve is exponential. Above threshold, it is a square law. For small

signal swings, it can be approximated by a linear function [13].

12 - Transistor
- Linear Approximation

10

8

..
2

o
0..... 0.46 0..t8 0.5 0.52 0.5.-

Voltage

Figure 1.1: Linear Approximation ofa Single Saturated Transistor

Triode transconductors offer improved linearity. One commonly used approximation for the

current in a MOSFET when the gate-source potential is strong enough to create strong

inversion, but the drain-source voltage is small enough that the device is not is saturation is

given by Eq. 1.1 [14]. IDS ~ : .uC~ [(VGS - V",)Vns - ~ V;"] (1.1)
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If CJ. is small, the drain current is proportional to the drain-source voltage with the

proportionality defineu by the gate voltage. In fact, this technique has been used

extensively [15-17]. Sample curves from simulation are shown in Fig. 1.2. The linear range at

the bottom is limited by the threshold voltage and at the top by the input signal. Because this is

based on above-threshold transistors, the current levels are difficult to achieve below the order

of microAmps. Unlike the saturation mode transconductor, the triode mode transconductor

requires additional circuitry to maintain the operating condition as shown in Fig. 1.3.

Figure 1.2: Triode Region Transconductor Simulations
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Figure 1.3: Triode Transconductor Circuit

Differential

Differential transconductors are the other broad class of transconductor circuits. The simplest

implementation is shown in Fig. 1.4. Transistors M, and M2 split the current, Ibia, , between the

two legs. The current mirror formed by M3 and M 4 performs the current subtraction to create

Iou, . The derivation of Iou, for subthreshold transistors is straightforward.

D
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Figure 1.4: Differential Transconductor Circuit
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The linear range is 2 l/Ki , approximately 75mV.

The advantages of the differential pair are inherent differential operation and programming to

very low transconductance. The differential operation ensures common mode rejection and

cancellation of noise from bias currents. The low transconductance is achieved by

programming the bias current as opposed to a DC gate bias for the single ended designs. Both

of these properties can be compared to a pseudo-differential transconductor built by combining

two singled ended transconductors and subtracting the output current of the inverting input

[18]. This transconductor requires matching of two transconductances and the transconductors

will continue to respond to the common mode requiring increased current.

Linear range is one of the major limitations with any of these saturation mode topologies, either

single ended or differential. A wide variety of techniques have been used to improve this linear

range, but most work has focused on attenuation and degeneration [12, 19].

(a) (b)
Figure 1.5: Attenuation Techniques For Differential Transconductors

Attenuation is the simplest of the techniques; the signal is simply scaled by a factor less than 1

prior to controlling the differential pair. Figure 1.5 shows a simple differential pair (a) and

three attenuation methods (b-d). Resistive attenuation (1.5b) has been used in discrete OTAs,

but is impractical for integrated circuits because of power and space limitations. A capacitive

attenuator (1.5c) can be used for integrated circuits, but a DC path must be provided as

discussed in Chapter 2. The final circuit (1.5d) is also an attenuation scheme, but with intrinsic

attenuation. By using the well as the input to the circuit rather than the gate, the

transconductance of the transistor is decreased. This is classified as an attenuation approach

t

F~i
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because it is a feed-forward approach that is exactly equivalent to supplying a smaller signal.

Physically, the classification of this approach as an attenuation scheme is justified by

recognizing the surface potential of the transistor as the control terminal with capacitances from

gate and well controlling this terminal [19].

D A fr
J) hoC

(a) (b)

Figure 1.6: Degeneration Techniques for Differential Transconductors

Degeneration schemes also lower the voltage across the control terminal, but they do it through

feedback. Figure 1.6 shows three techniques for degeneration. In all three, the current at the

output passes through the degenerating device creating a voltage that subtracts from the input

voltage applied to the transconducting transistors. The circuit in part (a) has diode

degeneration. The voltage across the diode connected transistor lowers the voltage on the

source of the input PMOS, decreasing the current through the device. If the diode and

transconducting devices are the same dimensions, they will split the input voltage evenly,

doubling the linear range. This technique limits the common mode range of the circuit because

the diodes are continually dropping voltage across them.

Because it is only the differential mode where degeneration is required, circuits such as the one

shown in part (b) are often used. No common mode current flows through the degenerating

device, but any imbalance between the two legs is fed through the degenerating device creating

a voltage imbalance that functions as in part (a).



The final example of degeneration presented here (c) is a combination of source and gate

degeneration. The voltage induced across the diode connected transistor lowers the voltage on

both the source and the gate. Both terminals act to lower the current [19].

B: Log-Domain Filters

Unlike transconductance filters, log domain filters do not approximate the transistor as a linear

element. Instead, the transistor is used as an exponential device. This is demonstrated for a

bipolar transistor and a subthreshold MOSFET in Fig. 1.7 and Eq. 1.7 and 1.8.

Id

VI Vgs
OW

(a) (b)
Figure 1.7: Exponential Devices: (a) is described by Eq. 7. (b) is described by Eq. 8.

Vbe

Ic = Iq,e (1.7)

Id= Io.,e 0 (1.8)

As with transconductor filters, there are a variety of design methods that are used to generate

log domain filters. Three of the most published techniques are associated with the keywords

Exponential State Space (ESS), Dynamic Trans Linear (DTL), and Bernoulli Cell.

Exponential State Space

Much of the excitement about log domain filtering began with a series of papers by Frey on

what he termed Exponential State Space filters [20]. The ESS method begins with a state space

description of the desired filter such as the second order system in Eq. 1.9.



S0 2  0 (1.9)

Y = 1/Q 01
x2

Then the exponential mapping, Eq. 1.10, is applied.

f (VI) = x, (1.10)
This transforms the generic state space description to the form in Eq. 1.11.

F'(V) = AF(V)+ BU
(1.11)Y = CF (V)+DU

Using the bipolar equation (Eq. 1.7) to transform the filter equations (Eq. 1.9) gives Eq. 1.12.

L, = 0- I, - O I, + O U
(1.12)

CA -=C t CC ) C° + U

Q I I, (1.13)

2Ic 2 -ý = C 2 0 )00, 1 2
In this form, it can be seen that the two equations define currents onto capacitors C, and C2.

The first term is a constant current source; in general the terms involve division of currents.

Because the currents are derived from an exponential function of voltage, this division can be

accomplished by subtraction of voltage. Some of the building block circuits used by Frey are

shown in Fig. 1.8. The first two use a combination of n-type and p-type transistors while the

third has been proposed for higher frequency applications since it only requires n-type

transistors [19-20].



(b)
Figure 1.8: Frey's ESS Units
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Figure 1.9: ESS Filter
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These blocks are then used to build up the circuit for the filter as shown in Fig. 1.9. In practice,

this circuit will not work because of the DC operating point. C2 is only connected to a current

source with no current sinks. The operating point can be adjusted by adding an additional

input to the state space representation. Because the filter is linear, a DC value applied to this

input will simply shift the output. Equation 1.9 becomes

S -o/Q -o0 x1 + 0 UDC
(1.14)

Y = 1/Q 01 X



Any negative value of UDc will give a viable operating point, but it is straightforward to solve

for the required input current to set x, and x2 to the same value. If the primary input offset is

IDC, then the DC input should be IQ . Adding this to the circuit creates the circuit in Fig.Q+1
1.10.

CIQMOt
Q

Figure 1.10: Improved ESS Filter
Dynamic Trans Linear

The Dynamic Trans Linear (DTL) technique views log domain circuits as a generalization of

translinear circuits. The basic building block is shown in Fig. 1.11 [22]. This block can be

simply analyzed.

V

Iq = Ie4 (1.15)

Icap =CV (1.16)

q Ie= V(1.17)
At At

vdc



Figure 1.11: DTL Building Block

Equation 1.18 is the standard equation used in this method.

Eq. 1.14 can be represented in the current domain as Eq. 19.

I"2 - I i 2 2

The state space description in

0
U + IDC

OO
(1.19)

Y =1/Q 01
The current on to capacitors C, and C2 can be solved by manipulating Eq. 1.19.

IcH = CI = C 2 0 U

S=C2012 12 12

These equations can be implemented using Gilbert multipliers as shown in Fig. 1.12.

(1.20)

cap (1.18)
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Figure 1.12: DTL Filter

The transistor count can be reduced by factoring the multiplications in Eq. 1.20 to write them

as Eq. 1.21

S, c (1.21)

Ic, = C2 t 2 , - I DC
2 0

The two multipliers that feed C, are partially combined, as are the two multipliers that feed C2.

This creates the circuit in Fig. 1.13.



ClQQ

Figure 1.13: Improved DTL Filter

The DTL technique is primarily an analysis technique and applies to any circuit where the linear

state variable is a current stored as a base-emitter voltage, Vbe, on a capacitor. So, other DTL

circuits could also be built to realize this system response. But, this design is a useful example

for comparing the different techniques, as is done following the Bernoulli Cell technique.

Bernoulli Cell

The Bernoulli Cell based transconductors are based on the building block shown in Fig. 1.14.

Quite simply, a capacitor is placed at the emitter of a transistor. This is remarkably similar to

the building block used for DTL circuits, where the capacitor is placed on the base of the

transistor. In fact, practical Bernoulli Cells circuits can be analyzed using the DTL principle.
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The DTL analysis cannot be applied to this building block cell, however, because the voltage

difference between the base and emitter of the transistor are varying. In comparing the building

block to the DTL building block, the two primary differences are the negative sign in the

exponent because of control of the transistor through the emitter, and the inclusion of

transistor current in the capacitor current, Icap

Vb

P

C

Figure 1.14: Bernoulli Cell Building Block

Iq = Ie (1.22)

- (1.23)

CV = Icap (1.25)

-q I = -(1.26)
I Cq

IqC q
IqC , = IIq - I (1.27)

IqC, = If I -I ( 1.28)

Following the same flow of analysis that was used for the DTL system in Eq. 1.15 through 1.20,

it is clear that this system is different. This circuit is called a Bernoulli Cell because this equation

is of the Bernoulli form [23]. Mathematicians suggest that this circuit can be linearized by

making the substitution in Eq. 1.29.



1
T-- (1.29)

Circuit designers should recognize this substitution as the conversion from emitter voltage to

base voltage. The negative sign in the exponent represents this reciprocal. The substitution

continues with Eq. 1.30-1.32.

T - (1.30)

(1.31)
T 1 If
T2 T 2 T

TC, =I-TI, (1.32)

The form of Eq. 1.32 shows that this structure has less flexibility than the techniques presented

earlier. It is easier to see this limitation if a filter is built using this building block. The simplest

filter uses just one of these building blocks. Even with this constraint, multiple filters may be

built two are presented in Fig. 1.15. Circuit A is from [23] and Circuit B is from [24].

Dut
out

Figure 1.15: Bernoulli Cell Filters

Iow, as a function of I,, is derived in Eq. 33-44. The translinear principle, called the static

translinear principle by the DTL practitioners, is used to generate Eq. 1.33.

I l i IIj - in
out

(1.33)



The transistor relation is then used to generate

Iq=Ie, e (1.34)
And the capacitor relation is used.

CV = Iq - If (1.35)

I
S- = Vb - V ((1.36)

" = i V (1.37)
q, in

Ot -Lq = Ot 'in - .  (1.38)

q in

C q I= I -I (1.39)

Then Eq. 1.33 is substitute into Eq. 1.39.

1,,I, i,,Io
Iq= inf In f ou(1.40)

out out

Cot =Co Lin +/I - --- (1.41)
I, 'out

( lin in out

____I I., II

In in out

Cot iout Iou, If - Iin If (1.43)

out I (1.44)
I,, If + sC t

With a complete circuit as in Fig. 1.15, it is possible to use the DTL principle for analysis. The

network that linearizes the Bernoulli Cell may also be viewed as creating a DTL circuit. The



base of the output transistor is driven by a level shifted version of the capacitor current. From

Eq. 1.18 in the DTL section,

ut= -cap (1.45)
ou cot

Substituting in for Icap yields

j I -Ifout- q (1.46)
IoU,  cq,

Equation 1.33 can be used to remove Iq from the equation.

ut_ Iinf if (1.47)
Iou coIoU, co,

'oucot = ,,,I - Iu out  (1.48)

out f (1.49)
I,, I, +sCo

Log Domain Filter Comparison

From Eq. 1.49 the loss of generality in the Bernoulli Cell method as compared to ESS and DTL

is clear. This building block is simply a first order low pass filter. These blocks can be

combined to make general purpose filters, but the added overhead can be significant. Figures

1.10 and 1.13 show that the ESS and DTL methods create similar circuits. Since the Bernoulli

cell is a subset of DTL, it is simply an option when the circuit being built fits the requisite form.

Class-AB Operation of Log Domain Filters

In the log domain circuits presented so far, the signal can not exceed the bias current, but log

domain circuits can be operated in a class-AB mode to increase the maximum signal [25]. This

maximum amplitude is similar to the transconductance requirement that transconductors be

biased with a current equal to their maximum current. But, the limitations for the linear range

are very different between Gm-C and log domain circuits. For Gm-C filters, as the signal

grows it begins to clip on both the top and the bottom as shown in part (c) of Fig. 1.16, but

with log domain circuits the signals only clip on the bottom as in part (b). Signals can be

processed without clipping even if they are much larger than the bias current, as long as they

never become negative.



a) VV

b)

Figure 1.16: Clipping

This property of log-domain filters allows the creation of a special type of differential filters. As

with other differential systems, the composite variable is the difference of the signals in two

paths. But, rather than keeping the sum of the two constant, a rule is created such that both

currents are always positive. A common rule is that the product of the two variables is

constant. Figure 1.17 demonstrates the difference. Part (a) shows the differential signals in a

constant common mode differential scheme. Part (b) shows the differential signals used in a

class-AB scheme.

A A A /

a)
IVVV

b)

Figure 1.17: Differential Signals: a) Constant Common Mode. b) Class AB

This technique works for the same reason as other differential techniques. Any common mode

effects are canceled out when passed through identical linear systems. So, a particularly useful

common mode is chosen for this application. Whereas a constant common mode approach

doubles the linear range, since the maximum swing of two channels are now added to each

other, the class-AB approach can increase the linear range by much larger amounts.

Ultimately it is limited by the assumptions of identical linear systems and the ability of the input

circuit to create the signals. This distortion is well modeled by the distortion in a simple current

v v v

~nn/



mirror. As the current increases, some of the current is used to charge up the gate capacitance.

As the current decreases, this capacitance is discharged through the transconductance of the

input device. If this current mirror is driven by a square wave, the output will not follow the

falling edge. The distortion introduced by this pole is shown in Fig. 1.18 which limits the

modulation index to approximately a factor of 5.

10 20 30 40 50
Modulation Index

Figure 1.18: The signal distortion introduced by the input circuit increases with modulation index, the
ratio of the signal maximum to the geometric mean of the channels.

Section 3. Standard Dynamic Range Measurement Techniques

The high end of dynamic range of filters is defined differently for different applications. For

generic filter design, total harmonic distortion (THD) is the most often used measure [26-28].

But, the THD level that defines the top of the dynamic range also differs with little explanation

as to the chosen percentage. In communications systems, other standards are often used [29-



31]. Intermodulation distortion (IMD) is designed as a test of how the system performs with

real world signals. More abstract measures include compression and intercept points.

A: Total Harmonic Distortion

Harmonic distortion is the generation of signals at harmonics of the input. Non-linear

functions generate these harmonics as shown in Eq. 45- 48. Given the input signal

x(t) = A cos wt (1.50)
and a system described by the function

y(t) = ax (t) + ax2 (t) + a3 (t) (1.51)

the output is

y(t) = a A cos cot + a 2A2 cos2 ct + 3A3 cos3 cot (1.52)

This can be simplified to

yt a2 A 2  
3 a3

2 +4 (1.53)

+ cos 2ct + cos 3cot
2 4

Total Harmonic Distortion (THD) is just the ratio of the power in all of the harmonics versus

the fundamental [31]. There are two problems with this approach. The first is that the

harmonics are filtered in later stages. So the system may display other non-linear qualities, such

as gain compression discussed below, while not having significant harmonics. The other

problem is that harmonic distortion becomes imprecise for systems that are moderately non-

linear. A square wave has only 11% third harmonic distortion as measured in power.

B: Compression Point

An alternative to harmonics is to look at the gain of the system. Most systems begin to saturate

as they become non-linear as shown in Fig. 1.16. In differential designs that rely upon common

mode features canceling out, such as the class-AB topology, compression can introduce

differential artifacts.



Section 4. The Auditory System

In building audio processing systems, it is natural to look at how the human auditory system

functions as a reference design. The design is not being copied as a whole, so key features may

be lost. For instance, non-linearity in the auditory system may be acceptable because of the

massive parallel nature of the auditory nerve. But, it also may be a result of the redundancy in

speech signals. Because of this, the non-linearity of the auditory system is considered.

A brief overview of the auditory system is useful for understanding the data. The outer ear

consists of the pinna and the ear canal; together they gather sound and provide directionality

cues. The middle ear serves as an impedance transformer to couple sounds from the air to the

liquid in the inner ear. The inner ear, or cochlea, amplifies the sounds and divides it up in to

different frequency bands. Different frequencies then stimulate different nerve fibers which

head to the brain. Additional processing takes places in the brain at the auditory cortex and in

the cochlear nucleus.

To quantify some of these effects, two important types of data are examined here. In the

cochlea, the basilar membrane moves up and down with the sound wave. The movements of

this membrane make up one large set of the data. The other set of data is taken from the

auditory nerve. The nerves that carry signals from the cochlea to the brain can be recorded.

Data from the two sources is now believed to show agreement [32].

A: Total Harmonic Distortion

Prof. Dallos measured the harmonics in the auditory nerve fibers. The frequency of excitation

was swept to find the peak response or "best frequency." Then the output of the hair cells was

measured. Because the signal on the nerve fiber is made up of spikes, a large number of

samples are taken and averaged together to form a composite signal. Then the Fourier analysis

of the composite signal is taken to measure the harmonic content. At 30dB SPL, a sound level

corresponding to a whisper, the harmonics are all between -40dB and -50dB with respect to the

fundamental. This roughly 1% distortion level corresponds to the values used to define the

maximum linear range in many analog filters. But, for sound levels corresponding to normal



speech, 50dB to 70dB, the third harmonic peak is near -20dB. Ten percent distortion is far

from linear. [33].
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FIGURE 3.4. Basilar membrane velocity scaled by input sound pressure for a
number of sound levels. Vertical overlap of the curves indicates linearity of the
response. At lower frequencies. the curves align within approximately a factor of
2. and are characterized as being essentially linear. By contrast, in the region of
the characteristic frequency (CF), the response is remarkably nonlinear. (Data
from Ruggero. Rich. and Recio 1992.)

Figure 1.19: Basilar Membrane Non-Linearity, used with permission of Ruggero.

B: Other Nonlinear Effects

In addition to harmonic distortion, the auditory system demonstrates other behaviors that are

non-linear. Figure 1.19 demonstrates the changing frequency response with amplitude. It

shows the movement of the basilar membrane at one location as frequency and amplitude are

varied. The Q decreases significantly and the center frequency decreases as the amplitude

increases. Masking is the broad term for behavior in the auditory system where the presence of

one sound prevents the listener from hearing another sound. This includes the non-linear

effect called suppression. These effects are similar to desensitivity and blocking in RF systems,

but occur at amplitudes where the system normally operates.

Section 5. Companding Speech Processor

Some of these nonlinear effects can be implemented in analog filters. Turicchia has proposed a

filter system that captures two-tone suppression behavior [34]. Cochlear models have been

built in the past [19], but because of the complex interactions in these systems, they can be
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difficult to customize to applications such as speech processor front ends or cochlear implants.

This simpler system shows promise for these applications.

Filter Filter

Figure 1.20: Companding Speech Processor

Turicchia's system is depicted in Fig. 1.20. A broad filter defines the frequencies that will

influence the suppression. Then, non-linear compression is performed. A second filter selects

the frequencies of interest. Then these frequencies are expanded.

This system can be well understood by examining a series of simple examples. For each of

these examples, the system is set up to compress with the fifth root, n, = 0.2, and then expand

to the fifth power, n2 = 1. Initially, it is assumed that the frequencies being observed pass

through both filters with no gain or attenuation. First, an input composed of a single sine wave

of amplitude 1 is considered.

x0 = 1 sin (wt)
The output of the compressor is the same as the input.

x2 =x 0 = lsin(wt)
And the output of the expander is the same as the input as well.

x4 = x = lsin (wt)
A second possible input is a sine wave with an amplitude of 0.01.

x0 = 0.01sin(ot)
The compressor compresses the range of amplitudes by increasing this amplitude.
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x 2 k 0.4 sin (0t) (1.58)
Then the expander expands the range of amplitudes to recreate the original signal.

x 4 = x0 = 0.01sin(0t) (1.59)

Both of these signals pass through the system with no amplitude change. The nonlinearities

cancel for signals that are passed through both filters. Suppression occurs in more complicated

signals where part of the signal is present in the compression stage, but removed before the

expansion stage. A signal composed of the sum of the two earlier signals may be considered.

x0 = Isin (ct) + 0.01sin (wo2t) (1.60)
The envelope of this signal is approximately 1, so the compression gain is one. And similar to

Eq. 1.55,

x2 = x0 = Isin(aot)+ 0.01sin (at )  (1.61)

If the second filter, G, removes the component at w, then

x3 = 0.01sin (0 2t) (1.62)

The expansion step further decreases this amplitude.

x4 = 10-'0 sin(a 2 t) (1.63)

As in the biological cochlea, the gain control mechanism responds to large frequency

components at nearby frequencies. When these are later filtered out, the small signal is smaller

than it would have been had it been processed in the absence of the large signal.

This companding system is currently being tested by Turicchia in conjunction with

collaborators for use as a preprocessor for cochlear implants and as a front end for a speech

recognition system. To test the system for cochlear implant patients, he is working with Dr.

Oxenham of the Auditory Perception and Cognition group at MIT's Research Laboratory of

Electronics. Their experiment consists of sample sounds files that were recorded in a quiet

environment. Noise is added to these samples. Then the companding processor is used to

construct stimulation waveforms for each of the cochlear implant channels. In order to test the

system with normal hearing subjects, a cochlear implant simulator is used to reconstruct audio

samples. Subjects are presented the samples and given a forced choice.



Two sets of samples were used in the preliminary study: synthetic vowels and natural

consonants in separate trials. In both cases, statistically significant improvements were

demonstrated for low signal to noise levels as shown in Fig. 1.21. Future experiments in the

study will examine performance on full sentence recognition with a variety of noise sources.

To explore applications for computer speech recognition,Turicchia is working with researchers

at the MitsubishiElectronic ResearchLaboratory.
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Figure 1.21: Companding Study Preliminary Results

Section 6. New Work

This thesis presents a series of work on analyzingand building nonlinear micropower filters.

First, a capacitive-attenuation scheme is presented for increasing the linear range of filters.

Then the nonlinear behavior of jump resonance is analyzed. Finally,a companding system is

demonstrated that uses these filters.

A: Capacitive-Attenuation Fi/ter

The initial gm-C design is part of a larger design for a cochlear implant speech processor. This

system provides real world constraints on the filter's specifications: The layout must be

compact. to fit in the system chip; mismatch between the sixteen filters on each chip and
45



between chips is a concern; and, the programming mechanism will be tested. The capacitive-

attenuation technique is used to match the linear range of the surrounding circuitry.

B: Jump Resonance andAutomaticQ

The linear filters work well at low Q, but it becomes difficult to maintain linear range at high Q.

This limitation is clearest in the case of lowpass or highpass filters. For these filters, the peak

gain approaches Q for high Q filters. This gain means that smaller input signals are amplified

to the point of distortion at the output. Bandpass filters generally exhibit a similar input linear

range limiting effect since they typically encompass a highpass or lowpass filter in the feedback

loop.

When the peak signals are high, the systems demonstrate distortion and a behavior referred to

as jump resonance. This is a hysteresis in the frequency response near the peak. I present an

analysis of this behavior and an automatic Q control circuit for avoiding jump resonance.

Automatic Gain Controls (AGCs) are a common solution to limited dynamic range. A variable

gain amplifier is programmed based on the signal amplitude. AGCs form a special type of non-

linearity. Because the gain is constant for a given signal amplitude, subject to the limitations of

the amplitude detector, the system can be treated as a linear block for that amplitude.

Automatic Q Controls (AQCs) work the same way. Given a small input signal, the system acts

like a linear filter with a high Q. As the input amplitude increases, the Q decreases. This

ensures that harmonics are limited in the circuit.

C: Companding Speech Processor

I finally present a companding speech processor based on the algorithms being test by

Turicchia. It uses the same block description presented in Fig. 1.20. It has sixteen channels,

each with two filters, compression, and expansion blocks.
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Chapter 2 : Capacitive Attenuation Filter*

Bionic ears (BEs) or Cochlear Implants have been implanted in more than 20,000 people [1].

They mimic the function of the ear in stimulating neurons in the cochlea in response to sound.

Figure 2.1 shows an overview of a common signal-processing chain: sound is first sensed by a

microphone. Pre-emphasis and gain control are then performed on the input. Bandpass filters

(BPFs) then divide the sound into different frequency bands. The envelope of each channel is

detected. The dynamic range of each channel is then compressed to fit into the patient's

dynamic range. The signals from each channel are then modulated and sent to the electrodes to

stimulate the remaining neurons in the patient [2].

Bionic Ear Overview
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Figure 2.1: Bionic Ear Overview

Current systems use a DSP-based processor that may be worn as a pack on the belt or as a

Behind-The-Ear unit. The challenge is to now move to designs that can be fully implanted.

Reducing the power of the BE is one of the keys to moving to a fully implanted system, and

provides an important motivation for this work.

* This chapter is based on work I have previously published. © 2003 IEEE. Reprinted, with permission, from the IEEE,

Journal of Solid State Circuits, "A Practical Micropower Programmable Bandpass Filter for Use in Bionic Ears" vol. 38, Iss. 1,
Jan 2003. pp.6 3 -70.



We would like to implement bandpass filters with microwatt and submicrowatt power

consumption rather than the hundreds of microwatts that are typical of current DSP

implementations.

Bionic Ear Filter Requirements

While the signal processing in current BEs is performed in DSPs, analog computation has been

proposed as a mechanism for decreasing the power used in these steps [3],[4],[5]. The BE

application offers a number of constraints on the design of bandpass filters. It is battery

powered and required to run off a low voltage this design is optimized for 2.8 Volts. The filter

must be tunable over most of the audio range, from 100Hz to 10kHz. It should have a

dynamic range of at least 60dB. And it must minimize power while achieving these

specifications.

Subthreshold Gm-C filters were proposed for this application in [3],[4] because of the wide

tuning range and low power. The drawback of this choice is the small linear range of the

transconductors, approximately 75mV for a simple OTA. This forces the surrounding circuitry

to interface to the filters with small signals that are prone to noise and other effects. A

combination of degeneration, attenuation, and non-linear term cancellation were proposed to

increase the linear range in some of our prior work [6]. All of these techniques are aimed at

decreasing the 3"' harmonic that forms due to the saturation of the input differential pair and

which limits the linear range of a simple transconductor. The combined techniques meet the

linear range requirements listed above, but have limitations. The linear range cannot be easily

increased above the achieved value because the techniques do not scale. Because much of the

increase in linear region comes from using the well as an input, the linear range is a function of

the subthreshold body-effect parameter, K, which is poorly regulated between processes and

even between runs. As shown in Fig. 2.2, the 2
"nd harmonic becomes significant at amplitudes

well below where the 3 d harmonic limits performance.
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Figure 2.2: Harmonics from Bandpass Filter built using Wide Linear Range Transconductors (3]

This paper demonstrates bandpass filters that extend the linear range of trans conductors using

passive attenuators built with capacitors as proposed in [6]. This is similar to the technique of

passive attenuation using resistors that is found in some discrete transconductors [7]. The

passive attenuator ensures that the attenuator does not introduce harmonic distortion and

allows for simple scaling of the attenuation ratio to adjust the linear range. However, care must

be taken to set the D.C. values of floating nodes, as we will discuss below.

Basic Capacitive-Attenuation Filter Topology

The basic bandpass topology examined here is a cascade of first-order highpass and first-order

lowpass filters based on RC primitives (Fig. 2.3). The low pole is proportional to the bias

current of Gt, while the high pole is proportional to the bias current of G2• The major

limitation of this design is its small linear range. Signal amplitude is limited to the linear range

of the transconductors.
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Figure 2.3: Basic Bandpass Topology

The linear range can be improved by attenuating the input and attenuating the output in

feedback as shown in Fig. 2.4 because the linear range of the transconductors is limited by their

input swing, rather than their output swing. In the highpass stage, the signal is attenuated by a

factor of A+1, where A is the ratio of the attenuator capacitances. The full capacitance of

(A + 1) C, is then used for filtering with G1. In the lowpass stage, a gain of A+1 is applied to

signals in the passband. A capacitance C3 is added in parallel with the attenuating capacitances

to increase the filtering capacitance and lower the reverse transmission from the inverting node

of G2 to Vou. The transfer function of the circuit in Fig. 2.4 is

(2.1)sC,(A +1)G 2

[sC, (1+A)+ G][G, + s(C(A+1)+AC 2 )]

Vin

Figure 2.4: Capacitive Attenuation Bandpass Filter
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While this design has the proper transfer function, it will not function well in practice because

the inverting input to G2 does not have a well-defined DC value. The transconductor has a gate

of a MOSFET at its input and the other two components attached to the node are capacitors;

similarly, the output of G2 is poorly constrained. Adding a transconductor, G3, that constructs

a weak low-frequency path between the two nodes constrains both DC values, as shown in Fig.

2.5. The transconductor G3 operates on full-scale signals unlike G, and G2 that operate on

attenuated signals. Hence, for large signals, G3 will saturate and introduce distortion. The low

bias current of G3 makes that distortion negligibly small.

Vin

Figure 2.5: Capacitive-Attenuation Filter With Offset Adaptation

Figure 2.6: Block Diagram Of Capacitive Attenuation Filter With Offset Adaptation

The block diagram in Fig. 2.6 for the circuit filter in Fig. 2.5 shows another area for concern

with this design: A capacitive path from the output of G3 to its non-inverting input provides

positive feedback. If G3 were configured as a resistor this path would be guaranteed to have a
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gain of less than one, ensuring stability. With the current topology, the possibility for instability

does exist, but it is avoided because of the low bias current for G3. This possibility of instability

is also seen in the transfer function. The Routh criterion states that all coefficients in a second-

order polynomial must have the same sign to ensure all the poles are in the left half plane [7].

The s term of the second portion of the transfer function becomes negative if G3>G 2.

H sC, sG2C2 (A + 1)
( G, +sC1 (A+1) )G 2G3 +sC2 (G2 -G G)+s2 ((A + )C2C3 + AC2) (2.2)

Theoretical Noise Analysis of Basic Bandpass Topology

In order to size the devices, an attenuation ratio is first chosen based on the desired linear range

of the system. Capacitor values are then selected to set the thermal kT/C noise at the required

level for the desired dynamic range. The required current levels for the desired pole locations

dictate the transistor sizing necessary to maintain fully subthreshold operation and a dominance

of thermal over 1/f noise [6]. A signal swing of nearly ±lV can be achieved with an attenuation

ratio of 12; given a transconductance amplifier linear range of 75mV; then, A= 1l.

Noise analysis begins with a calculation of the input-referred noise from each transconductor.

Simple transconductors have four transistors that contribute noise to the output. In

equilibrium each transistor carries half of the bias current, yielding an output current noise of

oise,out = 2q = (2.3)

This current noise can be referred to the input as voltage noise by dividing by the

transconductance squared.

2 4ql b  4qV2 (2-4)Vnoise,in = = - (2.4)

where VL = 75mV is the linear range of the transconductor.



The total noise at the output is found by applying the input-referred noise sources from each of the

transconductors to the circuit and summing the effect of each noise source on the output. This can be

visualized in the block diagram in Fig. 2.7 or using the following equations.

Vnoise,l (S)

Vinin

Vnoise,2 (s)

Figure 2.7: Block Diagram of Single Capacitive-Attenuation Filter With Noise Sources

vnoiseto (s) = Vnoise,I () + Vnoise,2 ()+ Vnoise,3 (s)

vnoise2l s) = 4qVL G+ )LVnoise" (s) •Ib,l )G, +s(A+1)CI )

vnoise, (s)= Lowpass2 (s)· nos,2 (s) b,lI

where,

sG 2 2 (A + 1)Lowpass (s) = GG +s(G + 1)
G3+sC (G'-G)+s 2 ((A +1)C2  c +AC:)

24q G, (sC, -G, )
Vi (S) Ib,3  G2G, +sC 2 (G 2 -G,)+s (A + I)C2C 3 + AC:)
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For hand calculations of the noise, we will neglect the effect of G3. The noise from G, is the

same as the noise from a lowpass filter with capacitance equal to (A + 1)C,. Since G, is setting

the lower pole of the transfer function, its noise falls in the passband of the filter. The noise at

the output from G, is then calculated by techniques similar to those described in [6]

2 2kT(A +1)2  2kT(A + 1)Vnoisel K(A +1)C1  ( KC(

Similarly, if G3 is assumed to be small the noise from G2 takes the form

2 G4qV2 G2 (A +I)noise,2 (s)  Ib,2 ) G2 +s((A+1)C + AC2) (2.11)

This corresponds to a total integrated noise at the output from G2 of

Vs2  2kT(A +1) 2  2kT(A +1I)
v2oise, 't (2.12)K[ise (A + 1)C3 +AC 2 ] K(C3 +C2)

These hand calculations suggest that C, and C2+C3 should be around 6pF for a noise floor of

200uVrms at the output, which is necessary for a dynamic range of 70dB with a maximum

signal of 2Vpp. More detailed computations in Matlab suggest that C,=C2=5pF and C3=3pF

are sufficient.

Transistor Siqng

This filter was designed around subthreshold transconductors because they offer a low

saturation voltage, wide tuning range, and are typically thermal noise dominated [6]. To ensure

that the transconductor is subthreshold, the devices must be scaled to accommodate relatively

large subthreshold currents.

The pole locations are approximately

PI = Gb,l (2.13)
(A+1)C, (A+1)CIV1 '



2 G2 b,2 (2.14)(A+1)C 3 +AC2  V[(A+1)C +AC2]

The maximum bias currents that will be required are at the high end of the audio frequency

range where the poles are set at 5kHz and 10kHz. Those currents are computed to be 125nA

and 430nA for G, and G2. Those currents are large for subthreshold design. Accordingly, the

first chip was built with 150um/3um transistors in the G, and G2 transconductors. The

transistors in G, did not need to be large since they carried a small bias current.

Experimental Results

A chip with this capacitive attenuation filter was fabricated on AMI's 1.5um process through

MOSIS. Figure 2.8 shows that the filter can realize the ideal transfer function. The added pole

and zero associated with G3 are not visible. If the current in G3 is turned up and the filter is set

to lower frequencies by turning down the bias currents for G, and G2, the influence of G3 can

be observed as in Fig. 2.9. We obtain a dynamic range of 68dB with 2uW power consumption

for a 5kHz-lOkHz filter. Table 1 reveals further details. The experimental dynamic range was

approximately 2dB less than that predicted by theory.



Parameter Value

Power (100Hz to 42nW
200Hz)

Power (5kHz to 2.OUW
10kHz)

Noise 323uVrms

Amplitude at 5% 813mVrms
distortion

Dynamic Range 68.0dB

Table 1: Experimental Results For A Single Capacitive Attenuation Filter
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Figure 2.8: Experimental Transfer Function of Single Capacitive-Attenuator Filter
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Figure 2.9: Experimental Demonstration of Offset Adaptation Effect on Transfer Function

The noise spectrum of the output node is plotted on top of simulation results from SPICE in

Fig. 2.10. The figure demonstrates that the measured noise was accounted for by a fit to

Equations (5) through (9). The initial low-frequency portion of the spectrum is due to

Equation (9), while the later high frequency portion is due to Equations (6) through (8).

Gratifyingly, the total integrated output noise was found to be 200uVrms which is in good

agreementwith our approximateprior hand calculations.
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Figure 2.10: Measured and Simulated Noise for Single Capacitive Attenuation Filter

The linear range of the filter is defined to be the amplitude of the input signal at which the root-

mean-square amplitude of the harmonics is 5% of the amplitude of the output fundamental

signal. Figure 2.11 shows the percentage growth of second and third harmonics with input

signal amplitude in rms. This figure demonstrates an improvement in the levels of second

harmonic compared to the wide linear range transconductor data shown in Fig. 2.2. The second

harmonic still dominates the third harmonic over the operating region, which suggests that a

differential topology may be helpful. We now describe experimental results from a differential

topology.
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Figure 2.11: 2nd and 3rd Harmonics for Single Capacitive Attenuation Filter

Differential Topology

By processing a signal and its inverse through identical channels, differential topologies double

the linear range of the composite signal and help cancel out common effects such as power

supply noise and even harmonics. The primary motivation with our differential filter is to

attenuate the second harmonics. Often when single-ended designs are converted to differential

topologies, the two channels are combined into a common differential path using differential

components and an additional common-mode path is created with lower performance

requirements.

That approach was considered here, but a topology with two fully independent channels was

pursued: The power in our channels is mostly being used to set the operating bandwidth and

noise levels. The potential savings in overhead of a combined differential approach are

minimal. Thus, our approach of two independent channels allows operation of half of the
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system as a single-ended design if one of the channels fails. In an implanted system, such

flexibility may be useful.

The drawback of the two-channel approach is that care must be taken to ensure that the two

channels will match. In designs that use differential trans conductors this only requires

matching of pairs of transistors. With two independent channels, each component must be

matched to its twin in the other channel. Figure 2.12 shows the layout of such a stage with one

of the channels shaded. The capacitors are interspersed and the transconductors are

intertwined at the transistor level. Figure 2.13 shows two such intertwined trans conductors

Figure 2.12: Two Interleaved Capacitive Attenuator Filters (One channel is shaded)
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Figure 2.13: Two Intertwined Transconductors

In addition to the layout concerns, device sizing must be adjusted for the differential design. As

noted earlier, the linear range of the system doubles with two channels even if there are no

improvements from canceling the second harmonic. lbis improvement is simply because the

composite signal is now the value of the noninverted channel minus the value of the inverted

channel. When the noninverted channel is at its maximum, the inverted channel is at its

minimum and the difference is twice the maximum of either channel. The noise from the two

channels adds, but, because the noise is independent it adds as a sum of squares. Thus, the

linear range doubles while the total noise only increases by a factor of ..fi. Since our single-

channel system already demonstrated the required dynamic range, the capacitance of each

channel may be decreased by a factor of two to lower the dynamic range of the differential

scheme back to the single-channel value. Thus the total capacitance and total power of the

differential system is the same as that for a single-ended system, but the linear range is greater

because of the effect of second-harmonic attenuation. Indeed, out experiments reveal that the
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differential filter has a dynamic range greater than 70dB at 3.36uW for a 5kHz-lOkHz filter as

shown in Table 2.

Table 2 : Experimental Results Of A Differential Capacitive Attenuation Filter

Each of the two differential channels performs similarly to the single channel presented in

section III. The increase in linear range is a result of second harmonic attenuation. Figure 2.14

shows the expanded linear range and the fact that the second harmonic is quite low through

most of the operating amplitudes. The second harmonic is below the third harmonic over a

good range of amplitudes in contrast with the single ended results of Fig. 2.11.

Parameter Value (filter set 5kHz
to 10kHz)

Power 3.36uW

Noise 535uVrms

Amplitude at 5% 1.SVrms
distortion

Dynamic Range 70.7dB
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Figure 2.14: 2nd and 3rd Harmonics As A Function of Fundamental Amplitude For a First-Order
Differential Capacitive-Attenuation Filter

Cascading Filters

Having demonstrated that a filter with first-order rolloff above and below the pass band can be

built, the next step is to demonstrate that such filters may be cascaded to achieve higher-order

rolloffs. The lowpass section does not load the highpass section in a single stage because the

transconductor in the lowpass section also acts as a buffer. But, to prevent the highpass section

of a subsequent stage from loading the lowpass section of a previous stage, an explicit buffer is

necessary.
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Figure 2.15: Two Capacitive-Attenuation Filters With An Intermediate Source Follower Buffer

This buffer is implemented with a simple source follower as depicted in Fig. 2.15. To ensure

that the output of the buffer can be treated as a low impedance in our circuit, the buffer must

have a much higher transconductance than the transconductors used in the filter stages. It is

tempting to try and use a lower bias and simply include the buffer's output impedance in the

filter design. The buffer is, however, operating on full size signals, and such an approach can

significantly increase distortion. If, instead, the buffer is biased at the same current as G2, the

performance of the filter is not affected much because it is significantly higher bandwidth

(greater by A+1 with respect to the preceding filter) allows the full-scale signal (greater by A+1

with respect to the preceding filter's input signal) to be passed through with little distortion.

While cascading two filters improves the roll off, it diminishes the dynamic range of the system

by both increasing the noise and by diminishing the maximum undistorted signal at the input.

The noise power could possibly increase by up to a factor of 2 because the number of devices

contributing noise has doubled. However, some of the noise from the first stage is filtered by

the second stage reducing the amount of the noise increase at the output. Detailed calculations



suggest that such filtering removes roughly half the noise power of the first filter for a one-

octave filter.

The maximum undistorted signal at the output decreases because of the addition of harmonic

content from the two stages and due to passband attenuation. The linear range decline due to

harmonic addition in this design is minor because of the shape of the harmonics shown in Fig.

2.14: If the second stage does no harmonic filtering, harmonic addition in the two stages could

possibly constrain the maximum signal to a point where the harmonics of a single stage are half

the acceptable level. However, the harmonic content rises rapidly at the end of the linear range

and this steep slope causes only a small loss in operating range when referred to the input. The

passband attenuation inherent in our passive topologies poses a larger effect on octave filters,

by lowering the passband signal by 3.5dB or equivalently by increasing the input referred noise

by the same factor.

These effects combine to diminish the dynamic range of our second-order filter to slightly more

than 60dB from the first-order result of slightly more than 70dB. The detailed results are

shown in Table 3. Most BEs have a front-end gain control system that maps the 80dB dynamic

range in the input to a dynamic range of 40dB to 60dB at the input of the BPFs. Thus, our

second order filter's dynamic range is still within the specifications needed in BEs.

Experimental Results

Figure 2.16 shows experimental measurements of the second-order filter after its first stage and

after its second stage. Theoretical fits to first and second-order filter transfer functions are also

shown. The matching of the two stages appears to be excellent.



-160
Id HI ui

Frequency (Hz)
ui

Figure 2.16: Fit Of First And Second Stage Outputs To Ideal Filter Transfer Functions

The noise increase with the addition of a second stage is shown in Fig. 2.17. The integrated

output noise after the first stage and the buffer is 325uVnns, slightly more than was measured

with a single stage alone. The integrated noise after the second stage is 422uVrms, just short of

J2 times as much. The ability of the second stage to filter the noise from the first stage was

less than predicted. It can be seen at high frequencies, however, that the two curves grow

closer together, as the high frequency noise from the first stage is removed via filtering at the

second stage.
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Figure 2.17: Noise In A Cascaded Differential Capacitive Attenuation Filter, After the First Stage And
At The Output

Figure 2.18 shows the harmonic distortion plot for the second-order filter. The distortion does

not reach five percent even for large signal amplitudes because the harmonics from the first

stage are being filtered by the second stage to below 5% even when the first stage is being

driven into saturation. This effect is more clearly shown by the decrease in gain with increasing

input signal amplitude plotted in Fig. 2.19. Given these facts, the distortion point is a poor

measure of the linearity of this filter. Instead, we choose the point where the gain begins to fall

rapidly as the maximum undistorted input signal for the filter.
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Figure 2.18: Harmonic Distortion Measurements for The Cascaded Differential Capacitive-
Attenuation Filter
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Figure 2.19: Gain vs. Input Amplitude for the Cascaded Differential Capacitive-Attenuation Filter
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The ability to program the pole locations of the filter over a wide range was an important

reason for picking the subthreshold Gm-C filter topologies. That programmability was tested

using an on-chip 5-bit DAC to supply the bias currents for each pole. Figure 2.20 shows the

frequency response of the second-order filter for each of the 32 values with the poles placed an

octave apart.
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Figure 2.20: Demonstration Of Programmability Of The Cascaded Differential Capacitive-
Attenuation Filter

Parameter Value (filter set Value (filter set 5kHz
100Hz to 200Hz) to 10kHz)

Power 230nW 6.36uW

Noise 1292uVrms 1318uVrms

Amplitude at 5% 1414mVrms 1414mVrms
distortion

Dynamic Range 60.8dB 60.6dB

Table 3: Experimental Results Of A Cascaded Differential Capacitive Attenuation Filter
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System Integration

These filters were integrated into a micropower analog bionic ear[9].
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Figure 2.21: Bionic Ear Topology

Conclusions

Moving bionic ears from systems that are partially worn outside the body to true implants that

are fully embedded inside the body requires overcoming a number of technical obstacles. One

important obstacle involves ways to substantially lower the power of the signal processing. A

first step in that direction is exploring and customizing filter technologies for these unique

requirements. These filters must operate on low voltage rails, with large dynamic range, be

tunable over six octaves of frequency, and use minimal power. This work has demonstrated

that subthreshold Gm-C filters with explicit capacitive attenuation can meet those specifications

while keeping harmonic distortion at low levels over the entire operating regime.

Output
bits
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•Chapter 3 :Jump Resonance

Jump resonance is the phenomenon in nonlinear filters where the amplitude of a sinusoidal

output changes discontinuously near the peak of its frequency response for a smooth change in

the input amplitude or frequency. It happens in high-Q filters when the signal amplitude is

large. An example of this phenomenon is shown in Fig. 3.1 where the output amplitude of a

filter is plotted as the input frequency is swept up and then down. As the frequency is swept

upward, the amplitude slowly increases and then jumps. When the frequency is swept back

downward, the amplitude continues to vary smoothly past the frequency where the amplitude

jumped up and jumps down at a lower frequency. These jumps and the hysteresis between

them are the phenomenon referred to as jump resonance.

In the past fifty years, jump resonance has been studied in a variety of systems [1]. Control

systems develop jump resonance when the actuator limits [2, 3]. Filters develop jump

resonance when the signal passes beyond the linear range of the filter [4-6]. The theory of

much of this work was captured by Fukuma and Matsubara when they developed a criterion

based on describing-function analysis for predicting the onset of jump resonance [7]. The

standard technique has been to design a static system that only demonstrates jump resonance

for signal levels beyond its operating range.

l.~

I.~

l.~
10'" "

u
IOU to'" 10"'-

Figure 3.1: Experimental Example of Jump Resonance.

• lbis chapter is based on work I have previously published. «.:> 2006 IEEE. Reprinted, with permission, from the IEEE
Transactions on Circuits and Systems - I, "Jump Resonance: A Feedback Viewpoint and Adaptive Circuit Solution for Low-
Power Active Analog Filters" vol. 53, Iss. 8, Aug 2006.
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This chapter explores other methods for dealing with jump resonance. My application of

interest is in developing micropower active analog filters for audio applications, particularly

bionic ears (cochlear implants) where low-power operation and mimicking biological signal

processing is important [8-11]. Low-Q active analog filters work well and rarely exhibit jump

resonance. At high Q's such filters exhibit increased harmonic distortion, compression, a

reduced instantaneous dynamic range, and a qualitatively new behavior, jump resonance, which

is not a graceful degradation, but, a discontinuous one. Discontinuous behavior is not

acceptable for several applications where active analog filters are used such as in a speech

spectrum analyzer [12], a capacitive flow sensor [13], a lightning sensor [14], in very low

frequency resonant sensor systems [15], and in bionic ear processors [9-11].
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Figure 3.2: Basilar Membrane Measurements. Figure used with permission from Ruggero et. al. [171,
copyright 2000, The National Academy of Sciences of the United States of America.

The biological cochlea is built with active analog filters with outer hair cells serving to perform

amplification. It exhibits distortion and compression but jump resonance does not appear to

have been reported in the cochlea [16]. Figure 3.2 shows that the motion of the basilar

membrane within the cochlea encodes sound information and demonstrates an amplitude-

dependent frequency response [17]; the data were taken in a rodent, the chinchilla. Figure 3.2B

clearly demonstrates that both the gain and Q reduce in the cochlea as the signal amplitude
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increases. I will show that, if the Q of the filter is appropriately lowered with amplitude, jump

resonance can be avoided.

Other silicon systems have adapted their Q with signal amplitude: Some of these include circuit

models of the cochlea, built from a cascade of filters. In these systems, the Q of each stage is

adjusted to control the gain of the system and to recreate biological data [18, 19, 20]. A second

set of systems uses bandpass filters to process audio, but adjust their Q to capture biological

behavior [21-221. These reports do not discuss the phenomenon of jump resonance because

they did not try and operate at as high a Q as possible or were digital implementations.

It is worth noting that any active analog filter will benefit from adaptation in its Q with signal

amplitude if it is to operate over a wide input dynamic range irrespective of whether its Q is

increased to a high enough value to trigger jump resonance: At high Q, the minimum

detectable signal of the filter is low but distortion occurs at relatively low input amplitudes while

at low Q the minimum detectable signal is high but distortion occurs at relatively high input

amplitudes. Thus, to operate over a wide input dynamic range, the Q must be high at small-

signal levels and lowered at large-signal levels; otherwise, enormously more power is needed to

operate the high-Q filter with a wide dynamic range. Hence, both in biology and in electronics,

where power-efficient operation is important, active analog filters adapt their Q [20]. Like in an

AGC [10, 11], the overall dynamic range of an adaptive-Q system is then wider than its

instantaneous dynamic range. I add to the existent knowledge of adaptive-Q systems by

showing how the adaptation in Q with signal amplitude can be architected to avoid jump

resonance.

This chapter starts by presenting a simple Gm-C filter building block in Section II. In Section

III, the Fukuma-Matsubara method is used on this filter to demonstrate the conditions for

jump resonance. I develop intuition by considering different bias conditions with the method.

In Section IV, I present my graphical method. This method accurately predicts not only the

presence of jump resonance, but the actual value of the output amplitude for each input

condition. I relate my method to feedback-system intuition on jump resonance. Then I show

how the effects of changes in the design of the linear and nonlinear portions may be examined

since they are represented in standard forms. In Section V, I demonstrate experimental



agreement of results from our chip with our graphical method and feedback intuition. I present

a circuit for Automatic Q Control (AQC) in Section VI. It extends the range of jump free

operation by creating a system that degrades in a manner analogous to the biological cochlea. I

demonstrate my theory on an integrated-circuit realization of a reconfigurable filter system that

was tested in open-loop configuration to verify our graphical method and in AQC mode to

demonstrate the engineering solution. In Section VII, I conclude by using a state-space

approach to analyzing the filter. This approach leads to useful connections to the Duffing

equation and predicts both jump resonance and other nonlinear behavior not modeled by the

describing function based methods discussed above.

Section 1. Filter Topology

Analog filters have been built in integrated circuits using a variety of technologies including:

Active-RC, MOSFET-C, Gm-C, Log Domain, and Switched-Capacitor. Of these, Gm-C

designs are among the most power efficient because they directly use the buffering and

transconductance of the transistors. The Active-RC, MOSFET-C, and Switched-Capacitor

designs all require an amplifier with significantly more bandwidth than the filter itself and high

gain to ensure linear operation leading to relatively less power-efficient solutions. The trade-off

of using the transconductance directly is that nonlinear operation becomes more significant.

This combination of power efficiency and nonlinearity makes the filter in Fig. 3.3, the two-

integrator biquad [23], a good example for our analysis.
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Figure 3.3: Two-Integrator Biquad.
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Figure 3.4: Transconductor Implementation.

Our GM-C filter is built from two basic building blocks. The capacitors integrate the current

applied to them to create a voltage. Poly-silicon or metal-insulator-metal capacitors in

integrated circuits can be very linear across the voltage range of the process and are assumed

linear throughout this paper. The current that they integrate comes from differential



transconductors which can be nonlinear. For linear analysis, the output current is defined as

the difference between the input voltages scaled by a transconductance factor. The nonlinear

analysis requires a large signal model of the transconductor. There are many ways to build these

transconductors with different topologies offering different large-signal behavior, but a

common basic design is the one shown in Fig. 3.4. When it is biased for subthreshold

operation, its large signal behavior is given by [24]:

Io = I ., tanh (K( - (3.1)out bia t 2

where K is the process dependent subthreshold exponential constant and 0 is the thermal

voltage.

The analysis of the filter of Fig. 3.3 begins with finding its linear transfer function using linear

transconductor models. For small signals with a saturating nonlinearity, like the tanh above, the

filter behaves linearly with a transfer function given by

H (s) Vout sgm2C
Vi g.mlgm2 + Sgm2C + s2 '

(3.2)

where g,, is the transconductance of G, and gm2 is the transconductance ofG2 . It is a

bandpass filter with programmable center frequency and quality factor. Since the nonlinear

behavior is due to the transconductors, the signal amplitude at their differential inputs is

important. The relative amplitude of these transconductor inputs when the system first

becomes nonlinear can also be found by linear analysis. The transfer function to the differential

input of the first transconductor has the same magnitude as the transfer function to the output.

The maximum magnitude of this transfer function is 1, when the two real components in the

denominator of Eq. 3.2 cancel each other out (at s = j gmlg 2 /C .) The transfer function to

the differential input of the second transconductor, Vdif , is a resonant highpass transfer

function referred to as Hdif (s) in this paper. By writing the equation in terms of c and Q



below, it is clear that the maximum magnitude of this node is very near Q and the radial

frequency at the maximum, wmx , is very near 1/ .

Vdff s
2

C
2  

S
2

r
2

d -2- = H df (S) (3.3)
Vn gm1gm2 + sg92C + 2C 2  S2 2 -+ S +1

Q

v =C/ggml2 (3.4)

Q= g,,,/ g,,,2  (3.5)

For high-Q systems, where jump resonance is important, the second transconductor has a

much larger differential input signal than the first transconductor and only its nonlinearity needs

to be analyzed. In this paper, we assume that only the second transconductor, G2 of Fig. 3.3, is

nonlinear. The experimental agreement shown later demonstrates that this assumption holds

even for very large signal swings.

Nonlinear behavior is added to the model by using describing functions, a method proposed by

Goldfarb in the 1940's [25]. The essence of this analysis is that many nonlinear systems can be

analyzed by only considering signals at the frequency of the input. The nonlinearity changes the

amplitude at this frequency and creates additional frequency components. If the linear portion

filters out these other frequencies, the nonlinear portion can be modeled as a linear system that

changes its parameters with input amplitude. More recently, more general methods have been

proposed that model the limited ability of the linear blocks to filter out higher harmonics [26].

Inclusion of those techniques was not found to be necessary for this work but would definitely

be of interest for more accurate extensions of it.



Figure 3.5: Describing Function Block Diagram.
To fit the formalism that Goldfarb used when he proposed the method, the system is rewritten

in the form of the block diagram of Fig. 3.5 [25]. This requires reorganizing the block diagram

representing the circuit. A traditional block diagram is built to show the signal input, V,,, and

the signal output of the filter, but for nonlinear analysis those signals are secondary to the

division of the system into linear and nonlinear blocks. The inputs and outputs of the filter, as

it will be used in a bigger system, can be calculated within the linear block. So the system is

represented by just two blocks: one linear and one nonlinear. Since the second transconductor

is the only assumed nonlinearity, we combine the linear elements of the loop around the

nonlinearity to form the loop transmission G starting at Vd•:

G = m2 (gmJ + sC) (3.6)s2 c2  (3.6)

The non-linear block, N, is the tanh from Eq. 3.1.

Describing function analysis only considers the fundamental frequency, so it is important that

the higher harmonics that are introduced by the nonlinearity are filtered by the linear portion.

In our case, the lowpass frequency response of G ensures this behavior.

Section 2. Fukuma-Matsubara

Fukuma and Matsubara developed a criterion for jump resonance by performing algebraic

manipulations on an equation for the derivative of the amplitude response [7]. The steps of

their derivation are included as Appendix A of this paper for completeness. For comparison to

our method, we point out a few key features of their technique. In order to separate the linear

and nonlinear terms of the system, they define a new function H derived from the loop

transmission G in Eq. 3.6. It is then decomposed into real and imaginary parts.
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(3.7)

They demonstrate that a necessary and sufficient condition for jump resonance is the presence

of this function H in a region of the complex plane defined by the nonlinearity and the signal

amplitude. For a piecewise linear, saturating nonlinearity, the forbidden region is defined by a

series of circles, a selection of which are shown in Fig. 3.6. Each circle represents the forbidden

region for a different signal amplitude.
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Figure 3.6: Fukuma-Matsubara Circles.

85



10':

.....~..
a.
e

<C:

Frequency
1010

0.4 0.4 0.4

(a) (b) (c)

Figure 3.7: Fukuma-Matsubara Plots with Different Values ofQ.

The analysis in Section II showed that as Q increases, the system becomes nonlinear for smaller

input amplitudes and therefore is more likely to exhibit jwnp resonance. This intuition can be

verified by plotting the frequency response of H for three different values of Q in the Fukuma-

Matsubara plots of Fig. 3.7. The low Q system of Fig. 3.7(a) only passes through a circle

corresponding to very large amplitudes, while the high Q system of Fig. 3.7(c) passes through

all of the circles indicating jwnp resonance for all of the plotted amplitudes. Figure 3.7(b)

shows a case where jwnp resonance is indicated for large amplitudes where H passes through

the corresponding circles, but not for smaller amplitudes where it does not.

Section 3. Graphical Method

The Fukuma-Matsubara method predicts if jwnp resonance occurs, but it leaves many other

questions unanswered. How does the peak frequency change? How big is the jwnp? And

what is the shape of the new frequency response? Equally important, because it defines

behavior in the inverse complex plane, it is difficult to develop intuition. Solving for the

describing function solution addresses these issues [4].
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There are two ways to find the describing function solution. Hiser used an iterative algorithm

to solve for the operating point at each frequency [4]. His method starts with a low frequency

input where the system has the same input-output relationship as the linear system. The linear

model is used to calculate the signal amplitude at all the nodes of the filter. These signal

amplitudes are then used to calculate a Distorted Transfer Function (DTF) using the

nonlinearity. The DTF is used to calculate the amplitude at the next frequency and the steps

are repeated.

We use a graphical approach that analyzes each frequency point independendy. The system is

divided into a parameterized linear system, Hdiff (S,gm2)' and a nonlinear system,gm2 (Vd!ff).
The parameterized linear system generates all of the same node amplitudes as the physical

system for a given input condition. It is a parameterized linear system because a parameter

corresponding to transconductance &nz varies with the amplitude of the signal at the differential

input, Vdiff, of the nonlinear transconductor G2• The nonlinear system sets a &nz based on its

input amplitude, V cliff, and the linear system sets a Vcliff based on this &nz. If the V cliff versus &nz

curves for the linear and nonlinear systems are plotted, the possible operating points for the

physical system are points where the two curves intersect and yield a consistent solution.
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Figure 3.8 shows an example of one of these plots. The dashed curve is defined by the linear

portion. It is given by:

Vdf =l* H.H (s)I = V V

*ff- . gg,g. + sgC + s2C 2 2 g

(2C2 )2 (3.8)

(wC2- .1 .) +(oiCg. )2

This has a similar form to the magnitude response of the system and some of the intuition from

that domain can transfer, but g, is the varying quantity and CO is fixed. The numerator can be

thought of as a constant in " g. space" because the w2C 2 real term becomes a constant at a set

frequency. The denominator cannot be placed in an equivalent pole format because the real

component has a linear dependence on g,.

The solid curve is a plot of the describing function of the nonlinearity, the tanh from Eq. 3.1.

2;r

Ssin0 tanh(Vd, sin 0)dO

gm2 0V (3.9)

It is obtained by taking the ratio of the amplitude of the fundamental output component to the

amplitude of the sinusoidal input. In the plot of Fig. 3.8, we plot g 2 (Vdi) rather

than gm~ (V)# as in a standard describing function plot, so that the axes of the linear and
nonlinear plots are consistent to enable the determination of their intersection. The values of a

parameter a are included in the legend for discussion later in this section.



An example with an input that creates multiple stable operating points for the system is shown

in Fig. 3.8. The intersection point on the right represents a high transconductance with small

amplitude. The point on the left represents a low transconductance with large amplitude.

There is also an intersection point with intermediate amplitude. In this example, the

intermediate operating point is unstable and the other two operating points are stable.
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Figure 3.9: Jump Resonance in the Graphical Method.

TIlls paper started with a demonstration of the frequency sweep behavior of this system with

jump resonance. To see that behavior with the graphical method, multiple graphs are created,

one at each frequency point. Although this seems tedious, intuitively one may just imagine the

motion of the graphs to predict the system's behavior. Three of these graphs are shown in Fig.

3.9. The system starts at a low frequency for Fig. 3.9(a) with the same conditions as in Fig. 3.8.

If the system is swept from lower frequencies, it will be at the high transconductance operating

point because that is the point continuous with the linear operation at lower frequencies. The

frequency is raised for Fig. 3.9(b). The nonlinear curve is in the same place as before, but the

linear curve has changed. To a first approximation the linear curve simply shifts to the right.

The high transconductance operating point has moved to slightly larger signal amplitude.

Figure 3.9(c) shows what happens as the frequency increases further. The high

transconductance point vanishes completely and the system jumps to the low transconductance

point. This jump is the cause of the amplitude jump that is observed in jump resonance.
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The behavior can be equivalendy visualized as Hiser proposed by plotting the frequency sweep

of the parameterized linear system for different values of transconductance [4]. Two extreme

examples of the frequency responses are shown in Fig. 10. Starting with a low frequency signal,

the two curves are on top of each other. As the frequency increases, the signal amplitude at the

input of the nonlinearity increases. This increase in amplitude decreases the transconductance,

which lowers the center frequency of the filter, increasing the amplitude further. This positive-

feedback loop is the step shown in the graphical method when the right stable operating point

and the intermediate unstable operating point get doser to each other as the frequency is

changed and eventually annihilate each other. After the center of this lower peak is passed, a

negative-feedback loop is created: As the amplitude decreases, the center frequency moves

back up, increases the amplitude of the signal, and opposes its original decrease.
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Figure 3.11: Loop gain Block Diagram.

These two methods can be united and quantified by calculating the loop gain of the loop

created between the parameterized linear system and the nonlinear system represented by block

diagram in Fig. 3.11. The small signal gains of the two labeled blocks are the slopes of the

gm2 (Vdiff ) curve and the slope of the Hd (g,,m2) curve in Fig. 3.8. The loop transmission is

then given by oc in

, ag l2 (Vdif) aHdf (g, 2 ).10
)a =(3.10)

a Vdf f gm2

That is to say, the slope of the linear curve is multiplied by the reciprocal of the slope of the

nonlinear curve. At a point where the two curves are tangent, the slopes are equal and the

positive-feedback loop gain is 1, causing the jump. This agrees with the intuition of the two

curves moving away from each other destroying the stable operating point. The values of aC

are plotted in Fig. 3.12 for the two stable operating points as we sweep the frequency.

Operating points, such as the middle operating point in Fig. 3.9(a) are unstable because they

have a positive loop gain greater than 1 and are not plotted in Fig. 3.12.
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Figure 3.12: Loop Gain Plot

In Fig. 3.12, the x's represent the operating point with a smaller signal amplitude and the o's

represent the operating point with larger amplitude. Both sweeps in the rising and falling

direction have a loop gain of 1 at the jump. But, as Hiser suggested the sweep upward is

characterized by positive feedback. The distinction between positive and negative feedback can

be visualized by considering the slopes of the two lines at the points of intersection. When

both curves have the same sign for the slope, as in the right most intersection point of Fig.

3.9(a), that is positive feedback. The downward sweep is largely negative feedback since the

single stable operating point is defined by the intersection of curves with opposite slopes. As

we lower the frequency again, we quickly sweep the operating point past the peak of the

Hdiff (g m2 ) curve and transition from negative to positive feedback, and the curves intersect at a

new operating point higher up the Hdiff (gm2) curve where a is again 1 at jump resonance, and

less than 1 at the new family of operating points beyond the new jump resonance. Hysteresis is

created because the two jump resonance points where a=l are not the same in the upward and

downward direction.
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Figure 3.13: Jump Resonance from Different Transconductors.

The intuition from these two views of the system, the frequency point and swept frequency

view, creates an opportunity to explore ways to change the jump resonance behavior of the

system. The effect of the nonlinearity is now direcdy related to the describing function. In this

example, the behavior is set primarily by the 1IV cliff behavior of the saturating nonlinearity for

large signals. Figure 3.13 shows the effect of three different transconductors, with the linear

range of the above-threshold transconductor adjusted to have a similar scale. The solid line is

the simple OTA that is used in this design. If source degeneration is used, the nonlinearity

becomes the dotted line. This doubles the amplitude at which jump resonance occurs, but does

not change the behavior qualitatively. The dot-dash lines show the effect of an above-threshold

transconductor, with a scaled linear range. It is more linear overall, but once it becomes

nonlinear it has a similar shape to the curve already studied.

Collectively, our analysis shows that feedback interaction between filter parameter changes due

to nonlinearities and the signal amplitude changes which cause them create jump resonance.

Jump resonance occurs when this positive feedback loop gain is one. Expanding the maximum

signal swing of the trans conductor improves the amplitude at which jump resonance occurs,

but after those limits are reached, the jump resonance phenomenon is similarly manifested.
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Section 4. Experimental Agreement

Qualitative agreement between the graphical method and the experimental data has been

demonstrated, but our technique is not merely qualitative. It also gives quantitatively correct

measurements. The two-integrator filter was fabricated on AMI's l.5~m process through

MOSIS. We used Matlab to calculate the stable points by creating the linear and nonlinear

curves of Fig. 3.8 for each sinusoidal input signal. The simulations were all done with reference

to Vdiff but this is not a physical node in the circuit. So, linear transformations were used to

convert this voltage to the output voltage: That is,

(3.11)

First, sweeps were taken with a lock-in amplifier. The transconductors were kept at constant

bias currents while sine waves were applied to V;n' Three different amplitudes were used with a

hundred frequency points for each amplitude. Because each frequency point was taken as an

independent measurement, only the operating point with lower amplitude was measured at each

frequency. Figure 3.14 shows simulations from the graphical method as thin lines with points

for the measured values for the frequency sweep. The values of the capacitance, C, and the

describing function of the nonlinearity were taken as the designed values, while the

trans conductances were varied to fit the smallest amplitude curve. The fits for the higher

curves did not require any additional free parameters.

'a'

I

'0:0' ._-~'-'-'-'-'~o'~~'_L ~.~._.-. ,0'
F_

Figure 3.14: Experimentally Measured Frequency Sweeps and Simulation Results.
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Figure 3.15: Experimentally Measured Amplitude Sweeps with Simulation.

Both stable operating points may be viewed by performing a continuous sweep. In Fig. 3.15,

the frequency is kept constant and the input amplitude is varied. Again the fit is plotted as a

line with the measurements as points. This measurement was taken as a true sweep, with a

function generator continuously varying the amplitude of the sine wave and a spectrum analyzer

measuring the signal amplitude such that the high and low stable points are measured in the

hysteresis region. This plot is easier to calculate with the graphical method because the linear

curve is simply scaled with the input amplitude to determine the intersection points with the

nonlinear describing function curve. Again, good agreement is seen between the measurement

and simulation.

Section 5. Automatic Q Control

One way to avoid jump resonance is to lower the Q of the filter for inputs with large amplitude

such that the differential input, Vdiff, to the transconductor, G2 , always stays in its linear regime.

This can be done with the system shown in Fig. 3.16. The filter is the same as has been

discussed so far. The envelope detector is a rectifier followed by a peak detector that was

developed for low power wide-dynamic-range energy detectors and is described in [27]. The
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output of the envelope detector is placed through a Q-control circuit which implements the

relation:

Q,, __ + Qmin
E2

+B
A

(3.12)

where A and B are constants. This control equation was chosen as the simplest relationship

that can define a general Q compression. These four values allow the specification of minimum

and maximum values of Q associated with arbitrary values of the envelope. The squared

relation is chosen to vary the Q quickly enough to avoid jump-resonance. The Q control signal

is then used to bias the filter. Figure 3.17 is a photograph of a chip die where the filter and

other building blocks from Fig. 3.16 were fabricated.

Filter

_Q.+Q

--+B
A

Q Control

w/V

E
-4-

Envelope
Detector

Figure 3.16: Feedback AQC System Block Diagram.
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Figure 3.17: Die Photograph of AQC Feedforward and Feedback System.

Frequency sweeps on V;n at different amplitudes for the open-loop system are shown in Fig.

3.18. The system is linear for small amplitudes, but for larger amplitudes the center frequency

shifts, the shape of the curve changes, and a jump is evident. The same sweeps for the

feedback system in Fig. 3.19 show that the center frequency is held constant while the Q is

lowered. This system has extended the range, but Fig. 3.20 demonstrates a problem that

happens at larger amplitudes. The system is well behaved near the peak, but further away it

shows steps. As the filter moves away from its peak, the envelope detector measures smaller

amplitude and returns the Q to a high value, lowering the signal. Hence, the Q-adaptation

creates the same sort of positive feedback that created the original jump resonance. In the

example above, a single filter which is turned down to a very low Q, the discontinuities are

evident; but, in a more complicated system they may not be because the effect is now away

from the peak.
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Figure 3.18: Measured Open Loop Frequency Sweeps.
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Figure 3.19: Measured Feedback AQC Frequency Sweeps.
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Figure 3.20: Measured Feedback AQC Frequency Sweeps with Extended Range.

These steps at non-resonant frequencies can be avoided entirely by going to the feed-forward

system in Fig. 3.21. This system uses the same components as the feedback system and was

tested as an alternative configuration of the chip shown in Fig. 3.17. With this configuration, the

response of the system broadens smoothly as shown in Fig. 3.22. 1bis Q-control strategy does

not have any frequency selectivity, so it will lower the Q in response to any large input, even

frequency components outside the frequency of interest. Frequency selectivity for the Q-

control can be re-introduced by a low-Q pre-filter that has a wider dynamic range as a result of

its lower Q. An example of such a system is discussed in [28].
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Figure 3.22: Measured Feedforward AQC Frequency Sweeps with Extended Range.

In looking at these logarithmic plots it can be difficult to judge the significance of this jump-free

dynamic range extension. Comparing the power costs of alternative strategies provides a

concrete measure. The dynamic range can be increased by either increasing the linear range or

by decreasing the noise. It may be shown that, in thermal-noise limited designs, power and
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dynamic range scale linearly whether transconductors with wide linear range are used or larger

capacitors are used to lower the noise [20, 29, 30]. The dynamic range is defined as

V2

DR = (3.13)
2V 2n

Comparing Figs. 3.18 and 3.20 we see that the maximum signal the system can handle is

increased by a factor of 5 since the noise is relatively independent of Q [20]. From Eq. 3.13,

then, our dynamic range extension is equivalent to reducing the power consumption by a factor

of 25.

Section 6. State Space Analysis

The describing function methods presented in sections 2 through 5 accurately predicts the

behavior of the system for many sinusoidal inputs. So, these methods are suitable for exploring

jump resonance and the adaptive Q method of combating it. But, can jump resonance be

avoided instead by pulling charge from one or more capacitors to force the system into a lower

amplitude regime? To answer this question, an alternative method must be used. The filter can

be modeled using differential equations for the capacitor voltages.

V= 1 2 + ±V,(t) (3.14)

J2 (3.15)

2 G 2 (VI - (3.16),0v) - V2< V2 max (V V2) Vin (316
(VI - V2 )

The state of the system is defined by V1, V2, and t. These equations were simulated in Matlab

for a variety of initial conditions using parameters that lead to jump resonance. The trajectories

led to the two attractors shown in Fig. 3.23 corresponding to the two stable amplitudes shown
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earlier. The smaller amplitude trajectory has a high quality factor, Q, as demonstrated by its

narrow shape. The larger amplitude trajectory has a lower Q.

0.04

003

0.02

0.01

o

-0.01

-0.02

-0.03

-O~.5 1.5

Figure 3.23: Jump Resonance Trajectories

10'
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Figure 3.24: Jump Resonance Frequency Sweep with State Space Method.
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This method was verified against the describing function method by plotting both the attractor

amplitudes and the describing function behavior for a variety of frequencies in Fig. 3.24.

The possibility of eliminating jump resonance by changing the capacitor charge during

operation, an instantaneous jump-resonance avoidance scheme, can be explored by determining

the effect of initial conditions on final amplitude. In these simulations the system is driven with

a smewave

Vin(t) = A sin (2;rjt) (3.17)

The system was given initial conditions for V1 and V2 when t=O corresponding to a point on

the V/V2 plane. For each point, Eqs. 3.14 and 3.15 were simulated until a steady state solution

was reached. The points were then color coded with the amplitude of the steady state solution.

To increase computation speed, simulations were stopped for points that left the initial

simulation region and those points were colored red. Figure 3.25 shows six of these domains of

attraction plots for different frequencies. Figure 3.26 shows that the domains of attraction

rotate around the DC value with phase of the driving sinusoid. In both figures, circles have

been drawn at the point associated with the small amplitude trajectory and stars have been

drawn at the point associated with the large amplitude trajectory.

(A) 5Hz (1:1) 10Hz ((115Hz

(0) 20Hz IE)25Hz

Figure 3.25: Domains of Attraction for Jump Resonance.
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Figure 3.26: Domains of Attraction at 30Hz for Different Phase.

The plots of the domains of attraction complement the existing description of jump resonance.

At small amplitudes, only the small amplitude attractor is visible. As the frequency increases,

the large amplitude attractor appears. As the frequency increases further, the amplitude of the

large amplitude attractor decreases and its range of attraction increases. The tails which circle

the interior region may be of interest in the case of transients, but they are not reachable by

steady state sinusoidal inputs.

Figure 3.26 can be used to analyze the instantaneous jump-resonance avoidance scheme. More

than half of the charge stored on the second capacitor would have to be removed to force the

system to move to the small amplitude trajectory. This would likely make the method of jump

resonance avoidance impractical.
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Figure: 3.27 Domains of Attraction at 50Hz.

The investigation of state-space methods can be continued, however. As the frequency is

increased, another class of behavior emerges. Figure 3.27 demonstrates the domain of

attraction plot at 50Hz. The three regions that surround the center of the plot are a

subharmonic resonance. The output of the filter is periodic with a period thee times the input

period. The same behavior is demonstrated in experimental measurements from a chip in Fig.

3.28.

The natural, or undriven, response of the system is a low frequency oscillation which slowly

decays. This signal dominates in the bottom trace, V2• In the middle trace, Vh the low

frequency tone is added to the higher frequency input signal. Because the transconductor

connected to VI saturates for large signals, the system is only sensitive to the input during

transitions of the low frequency response. The input provides the extra energy to sustain the

low frequency oscillation for odd subhannonics.
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Figure 3.28: Experimental Measurement of Subharmonic Oscillations. The blue trace is the input
signal. The yellow trace is VI showing first and third subharmonic content. The magenta trace,V2, is
predominately third subharmonic.
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Figure 3.29 Domains of Attraction at 75Hz.
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These subharmonics grow to include higher order modes at higher frequencies. At 75 Hz) both

the 3rd order subharmonic and the 5th order subharmonic modes are present as shown in Fig.

3.29. These subharmonic trajectories are shown in Fig. 3.30.

0.08

-0.08
-2 -1.5 -1 -0.5 o 0.5 1.5 2

Figure 3.30 Trajectories of Subharmonic Modes.

Both this subharmonic behavior and jump resonance have been previously reported in a class

of systems defined by the Duffing Equation [31]. Instead of approximating the nonlinearity

directly as a simple function) this simplification approximates the effect of the nonlinearity as a

simple function.

a2v av
-2 +k-+ f(v) = Bcosvrar ar (3.18)

Equations 3.14 through 3.16 can be approximated by Eq. 3.18 by first writing Eq. 3.14 and 3.15

as a single equation in terms of V in and Vt.
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V2  ) (3.19)

Gl

- ' = 2 (V,- ) (3.20)

G2  GG 2  (3.2G

+ 2 •Vc V , = +- 2n (3.22)
C C2  C

Equation 3.22 is a linear Duffing Equation for a constant value of G2. The nonlinearity was

introduced into the filter studied here by Eq. 3.16 which lowers the value of G 2 for large signals.

This shows up in three terms in Eq. 3.22. The nonlinear behavior is primarily a concern in

hiqh-Q systems, when the damping term is small, so the nonlinearity can be approximated as

G2,0 V + GvG2,0 V GG GG GGc GV G 2° V 3= , + -' (3.23)
C C2  C2  C

Section 7. Conclusion

As input signals to a filter increase in amplitude, many nonlinear effects begin to occur:

Harmonics are created, the fundamental amplitude fails to grow linearly with the input, and

jump resonance develops. Jump resonance is of particular interest because it is a binary event

that does not exist at small signals, but appears at larger amplitudes. This paper has presented a

new graphical method for understanding and simulating this behavior that complements the

standard Fukuma-Matsubara method. I have also shown that feedback interactions between

filter parameter changes due to nonlinearities and the signal amplitude changes which cause

them create jump resonance, i.e., jump resonance occurs when the positive feedback loop gain

of this interaction is 1. The understanding developed from our analysis was used to develop a

system that adapts its Q to avoid jump resonance. This system is not the solution for every

filtering application, but when avoiding jump resonance is the limiting factor for input dynamic

108



range, our system can operate on 25 times less power than a traditional open-loop filter design.

Finally, I have demonstrated an alternative analysis method based on state-space methods that

can be used to evaluate non-sinusoidal signals and shown that the large body of work on the

Duffing Equation is applicable to this problem.

Appendix A: Fukuma-Matsubara Method Derivation

The signals in Fig. 4 are defined:

r = R sin cot (A.1)

(A.2)

(A.3)

(A.4)

x = X sin (ct +¢ )

The Nonlinear function is defined as:

N(X)= n, (X)+ jn, (X)

Black's Formula gives:

1
XejO = Rej"

I + N (X)G(jo)

Solving for the magnitudes:

XI1 +N(X)G(jow)l = R

Substituting in for N:

X 1+(n,r (X)+ jn, (X))G(jct)l = R

A new function H is defined:

H = (G (jo))' = h, (jo,) + jh, (jo,)

(A.5)

(A.6)

(A.7)
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Multiplying both sides of (A.6) by H and squaring:

S((h, (jl)+ nr (X)) h, (I)+n,(X))2)

= (hr 2 (jm) + h,2 (jo)) R 2

Jump resonance will

change in the input.

dR
first happen at a = O, a point where

ax

So we differentiate with respect to X:

the output can change without a

(hj (jm)+h7 (jj))R = Xax

anf (X)(hr (jo))+ nr (X)) (X )
dX

+(h (jo)+n, (X))x ax
+(h (jo,)+ n, (X)) 2

+(h, (jm)+ n, (X))2

n(j (X)]'(]jO)+n (X)+ ax X

an(x)= 2(h (jo)+n (X))X ax
8X

+(h, (jw)+n, (X))2

(h2( (j) + h,2 ( aj))R = X.
a))

vr (X)= n, (X)

,(jo)+ n,

h, ( j) + n,

x anr (x)
2 aX

(x) + Xanr_(x) 2
2 aX )

X n, (X)

2  X an, (X) 2
2 aX)

anr (x)
ax
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(A.8)

(A.9)

an,(X)ax
(A.10)

(A.11)

(A.12)
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x n)+ ,(x)
ax

aR
(h• (Jw)+±h 2 (jc))R ax

(i) n, (X) + v, (x)
2)

=X + h, ()+ n, (X)+ v, (x)j

(n -Vr)2 +(ni V,) 2

4

h(I n,W(X)+v,(x) ,j2  ( i (X)+v,(x) 2
2 2

( n,-v) 2 (n, V,)2

4

aR
When < 0, jump resonance will

aR
Q, or o at which = 0. Thus,

criterion for jump resonance.

Sh

still be possible and merely occur at a smaller value of V,,,

we replace the equality sign in A.15 with <: to get the

, (X)+v, (x) ( n (X)+v (x) 2  )(j,)-+ + h, (j )+
2 2 (A.16)

(n, -v, )2 ( i )2

4
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Chapter 4 : Companding Speech Processor

As we speak, we change the shape of our vocal tract and the method of excitation to create the

sounds of speech. For vowels and voiced consonants, the vocal tract is excited at one end by

the periodic movements of the vocal folds. From the vocal folds to the lips, the vocal tract may

be modeled as a tube that is closed at one end and open at the other. It generates expected

resonances with characteristic wavelengths near twice the tract length, three halves the length,

five halves the length, et cetera. We change the shape of this tube by moving our soft pallet,

tongue, lips, and jaw in order to move the resonant peaks. As we listen, we identify the sounds

of speech by detecting the frequency peaks [1].

Hearing loss makes this process more difficult in a few ways. First, the frequency resolution is

decreased even within the remaining hearing range by the loss of hair cells. Then, the problem

is made worse by the dynamic range compression used by hearing aids and cochlear implants.

Hearing loss raises the threshold below which the patient cannot hear, but the maximum

loudness level above which sounds are uncomfortable does not increase. In order for patients

to hear a normal range of sound intensities, the hearing device must amplify quiet signals more

than large signals [2]. This decreases the intensity differences between the peaks and valleys in

the frequency content of speech, referred to as spectral contrast [3].

Speech intelligibility always decreases with noise, but for hearing aid and cochlear implant users

the decrease occurs at lower noise levels. Turicchia and Sarpeshkar have proposed a

companding algorithm that improves performance in this moderate-noise regime [2]. The

companding algorithm is a highly tunable system that exhibits two-tone suppression, a behavior

found in healthy ears where the amplitude of smaller tones is decreased in the presence of larger

tones. It is one of the techniques used by healthy ears to improve spectral contrast.

The companding algorithm is performing very well in preliminary tests. So far it has been

tested by researchers at the Massachusetts Institute of Technology, the University of California

at San Diego, and the University of Texas at Dallas. Each group has shown statistically

significant improvements in speech recognition scores in the moderate noise regime [4].
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In order for the companding algorithm to help hearing aid and cochlear implant users, it must

be implemented in a technology compatible with those applications. It must be small and low

power while preserving as much of the flexibility and performance of the computer based

implementations. This paper presents the micropower implementation of the companding

algorithm in analog CMOS that can run for 4 months on a standard hearing aid battery. I first

present the companding algorithm, section 1. Then I present the analog building blocks used in

this implementation, section 2. In section 3, I present the system design. I report the

experimental results for the single channel in section 4 and the system performance in section 5.

Section 1. Companding Algorithm

Turicchia and Sarpeshkar proposed a companding algorithm for performing compression and

spectral contrast enhancement for cochlear implants, hearing aids, and speech recognition

systems [2]. The algorithm processes sound in parallel channels as shown in Fig. 4.1. It

performs two-tone suppression in a two step procedure. The input signal, Xo, is connected to

the input of all of the compression channels. Then a broad filter selects a broad range of

frequencies, X1, which are compressed by amplifying small signals and attenuating large signals,

X2. Then the expansion half channel selects a narrower band of frequencies, X3, and expands

the dynamic range by attenuating small signals and amplifying large signals, X4.

x0W x rX, .. a. Ix2 x x.
Tompression Cxpansion

f Compression H H Expansion

Compression HA Expansion

_ rA
}

1J %J( I 1.JLI1 JIV33I3J I %±U I LAUI 3VJU I I

Figure 4.1: Block diagram demonstrating the parallel channels. Sound enters at Vi, and is first
filtered by broad input filters. The filtered signals are then compressed. A narrow bandpass filter
selects a subset of these compressed frequencies. The narrowband signal is then expanded.
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The mechanism of two-tone suppression is revealed by considering a few cases. The signals at

each of the nodes labeled in Fig. 4.1 are shown in the frequency domain in Fig. 4.2. For each of

these cases, the system is biased such that any single tone has the same amplitude at the output

as at the input. The tone passes through multiple compression channels because of the broad

input filters, but the narrow-band expansion filter limits the majority of the signal energy to only

one or two channels. The signals in Fig. 4.2 are for the channel where both filters are centered

at the tone frequency, as shown by the grey filter curves in each block. In case A, a small tone

is placed at the input of the system. This tone passes through the broadband filter to Xl' Then

the tone is amplified by the compressor to form~. The narrowband filter creates X3 with the

same amplitude as Xz. Finally, the expander attenuates the signal to create X4 with the same

amplitude as Xo. In case B, a large signal is attenuated in the compression stage and amplified

back to its original amplitude in the expansion stage.

Xo X, X2 X3 X4

[@] [@]
~

[i] fT'0
U.LL_

iJ ~ ~ ~ ~

~
[[] [@] [@] IrlrLlI

~ ~
[i] [@] [@]

[@J [@] [@J [@] [@]
Figure 4.2: Companding Test Cases

Three different cases can be formed by summing two sinusoids, which I will refer to as the

large tone and the small tone, to form the input signal. In case C, both tones fall within the

same narrow band filter. In this case, the large tone leads to attenuation in the compressor and

amplification in the expander so the system has a unity gain. In case D, the tones do not fall

119



within the same broad filters. In this case, the tones are processed independently with different

channels. Companding is demonstrated in case E, when the tones fall within the same

broadband filter, but different narrowband filters. As in all of the cases, the signal is

compressed by multiple channels because of the broad compression filter. The large tone

causes all of these channels to attenuate the signal. In this case, the expansion filter in one of

these channels selects the large tone; I will call this the large channel. The expansion filter in

the small channel, shown in Fig. 4.2, selects the small tone. In the large channel, the signal is

again amplified, creating unity gain. In the small channel, only the small tone is present so it is

attenuated. In this channel, the signal has been attenuated twice leading to a decrease in the

amplitude of small signals in the proximity of large signals, i.e. two-tone suppression.

Xo

Figure 4.3: Companding channel block diagram. The signal enters at X0. The signal is filtered by the
broadband filter to create X1. The envelope detector creates the envelope signal, Xte. The power law
circuit then applies a linear amplification in the log domain to create X1p. The output of the power
law circuit, X1p, is multiplied by the filtered signal, X1, to form a compressed signal, X2. The
expansion half channel performs simarily.

The companding channels are implemented using filters, envelope detectors, power law circuits,

and multipliers as shown in Fig. 4.3. The input, X0, is first filtered to form X1. The transfer

function of this filter is

2

(4.1)

The filter is defined by a time constant, r, and bandwidth factor, qf, as proposed in the

companding definition [2]. It is important to note that this qf is not the same as the quality

factor defined as the center frequency divided by the 3dB bandwidth.
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The compression is performed by the envelope detector, power law block, and multiplier.

The envelope detector creates an envelop signal, X,,, by measuring the amplitude of X,. This

envelope signal is then raised to a power in the power law block.

Xlp = (Xle)nM-I  (4.2)

The companding index, n1, sets the amount of two-tone suppression. The filtered input, X1, is

then multiplied by this power law signal, X,, to form the compressed signal, X2. Its amplitude

is

[X2 = IX , IX1p = IX X I*IX '-' = :X1 "' (4.3)

The expansion half channel performs the same functions except that the power law circuit

produces an output

n2 -n 1

X30 =(X3e n, (4.4)

Where n2 is the compression index, the parameter which sets the net compression for the

channel. When the compression index is equal to 1, there is no net compression or expansion

I-p h1 1 n,

IX4 = IX3 1Xp =IX3 • = IX 2 nI = IX1 n, =X (4.5)

The analog implementation of this system must allow all of these parameters to be adjusted, but

it is helpful to start with the values used in the original paper. In each channel, the filters had

the same center frequency varied from 250Hz to 4kHz. The broad filters have a q of 2.8. The

narrow filter poles have a q of 4.5. The companding index was 0.25 and the compression index

was 1.

For micropower design, it is also necessary to specify the dynamic range of the system. In

filters in particular it has been shown that power scales with dynamic range [4-5]. A healthy

human can hear sounds over a range of greater than 100dB [7]. But, the variation within a

speech utterance is only about 30dB [1]. An automatic gain control, such as the one presented

121



in [8], may be used to compress real world speech into the 40dB used in a micropower

companding system.

Section 2. Analog Building Blocks

I have implemented this system in analog CMOS for micropower operation. Both filters are

realized as Gm-C filters as described in subsection A. Subsection B details the combination of

a rectifier and a peak detector that performs the envelope detection. Subsection C presents the

power law circuit that calculates the require gain for compression and expansion. Finally,

subsection D presents the variable gain amplifier that performs the multiplication.

A: Filters

The filters were implemented using differential transconductors and capacitors. The basic

topology of the transconductors is shown in Fig. 4.4. The bias current is divided between the

two current arms by M, and M2. The current mirror subtracts the negative current leg from the

positive leg to create lout. The transconductance is

IK
Gm - bias (4.6)

where K is the subthreshold exponential constant for the PMOS transistors, typically around

0.7, and 0, is the thermal voltage, approximately 25mV. And circuit is approximately linear for

V,+ I_<; V= (4.7)
K

Approximately 75mV [9]
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M

Vo-c

Figure 4.4: Basic transconductor topology. The output current is proportional to the differential
input voltage.

I
V+0-

out

Figure 4.5: Degenerated transconductor topology. This transconductor is shown to lead to more
power efficient filters.

Source degeneration, as shown in Fig. 4.5, doubles the linear range for the transconductors. It

also halves the transonductance. For this application, the additional linear range is a minor

improvement, but the power requirements for a given dynamic range are important. The
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power requirements for the degenerated transconductor can be compared to the simple

transconductor by calculating the input referred noise for each of the two structures.

In subthreshold operation, the noise in these transistors is well modeled as shot noise sources in

parallel with each transistor with amplitudes given by

(4.8)I1oie = 2ql4

where q is the charge of an electron and ID is the drain current of the transistor. The noise

sources are shown for the degenerated transconductors in Fig. 4.6 [10].

lout

Figure 4.6: Degenerated transconductor with noise sources. The noise introduced by each transistor
can be modeled as a noise current source in parallel with the transistor. The total output current
noise can be calculated by adding the power contributions from each noise source.

Because each noise source is independent, the total noise at the output is calculated by

summing the squared contributions of each noise source. In this circuit, the degeneration

causes the transfer function from each of the input and degeneration transistors to be 1/ leading

to the equation for the output noise
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I2oise = 4 2q 2j + 2 2q = 3qlbi• (4.9)

This noise can be referred to the input by dividing by the transconductance squared

V2ise = 3qbi _ 48q2 (4.10)
Y Ibias) IbiasK

The dynamic range of a filter is defined as the difference between the largest signal the system

can filter and the smallest signal that can be detected at the output. The largest signal is

proportional to the linear range, V1. The smallest signal can be defined by the total noise at the

output. With any transconductors topology, the noise can be reduced by using a larger

capacitor which averages over more charge particles. The larger capacitor increases the required

power consumption by requiring a larger transconductance. Thus, the figure of merit must also

include a term for the transconductance. The figure of merit for transconductors is given by

3

GV KI - 2

FOM = 1 _ bias _ bias (4.11)
F4, [ 3q 4,,

bias

For the simple transconductors of Fig. 4.4, the output noise is

I
2oe = 2q b'- 4 = 4qlbas (4.12)

The input referred noise is

V,s = 4 qb,,as ( 2, 1 26q2  (4.13)
Sfbias K i

The figure of merit for the simple transconductors is
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3

GV I ;cI2
FOM = - bias Kbias

V~,-o /16qq 2  4 ,

bias 
2

(4.14)

This figure of merit demonstrates that the degenerated transconductor can be used to build a

filter with the same dynamic range as the simple transconductor, but lower power consumption.

VIn

)ut

Figure 4.7: Basic filter topology. Two transconductors are combined with two capacitors to form this
bandpass filter.

The topology for such a bandpass filter is shown in Fig. 4.7. The input is capacitively coupled

to V1. This signal is then lowpass filtered by G2 acting as an RC filter. A low frequency path

through G, removes low frequency components from V1,, completing the bandpass. The loop

can be analyzed in more detail by creating a block diagram for the circuit as in Fig. 4.8.
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out

Vdc
Figure 4.8: Basic filter block diagram. The feedback found in the filter in Fig. 6 can be seen clearly in
this block diagram.

The transfer function from the input to the output of the filter is

G2sC
(s) = + sCG + s2C2G2G, + sCG2 +5

(4.15)

This can be compared to the first half of the desired transfer function

I 2 s/
F(s)2 = 1 (4.

2 S2 +2 if s+1

The values of the center frequency and q can be calculated as a function of the bias currents.

G, = -- (44 0,

16)

17)
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G2 = -- (4.18)
40t

1 G 1(4.19)
2f" - C2 2r 40,C 2

q= 2  -=2 -1  (4.20)
;2 b2

I I

Figure 4.9: Cascaded filters. Two filters are cascaded to create second-order roll-off. A buffer is
inserted between the filters to prevent loading.

Two filters can be cascaded as shown in Fig. 4.9 to form the filter specified in the companding

algorithm with second order roll-off and greater out-of-band suppression. A buffer is used to

couple the filters without loading. Because the center frequency is determined by the geometric

mean of the two currents, the buffer can be guaranteed to have a greater bandwidth than the

filter if it is biased with the sum of the currents with an appropriate scale factor. The frequency

of this parasitic buffer pole is then given by

Gfot (I, +I2)
fparasilic = 2G - 2•fC , ) (4.21)

This pole frequency can be compared to the center frequency of the filter by writing the

currents in terms of filter parameters.

I, = fIt q (4.22)
I¢
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12 fi 1 l61IC (4.23)q, K

Then the parasitic pole location can be written in terms of filter parameters to demonstrate that

the parasitic pole is at least a factor of 8 higher than the center of the filter if the buffer is biased

with unity scale factor.

4--q C + fflu l61rOC'I

f sc C 4 ,ffli + 2 (4.24)1KC (40 ( 2 qf

fparasitic 8ff, (4.25)

The maximum signal for which the filter is linear is set by the smallest signal that creates an

input to a transconductors that is larger than the transconductor's linear range. This can be

found by calculating the transfer function from the differential input of each transconductor to

the output of the filter. The transfer function from G, to the output is

out (S) = 1 (4.26)

V(;, 1 +s2 +s 2 2

qj

The maximum value of this transfer function is approximately equal to qf/2. The transfer

function from G2 to the output is

2s
Vou, (s) q (4.27)
VG2 l+2s +s2•

qf

The maximum value of this transfer function is 1, the same as the bandpass filter. So, the

maximum signal at the output of the filter is approximately the linear range of the

transconductors, 100mVrms, divided by half the qf of the filter.
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The noise of filter can be calculated based on the noise from each transconductors. First, the

noise of the basic filter block shown in Fig. 4.7 is calculated

v2 48q_ GIG2 +48q_ 2 sCG 2
noise,filtout = 2 GG2 + sCG 2 + s2C 2  I2 2 GG2 + sCG2 + S2C

2

48qO2 I1 (IsCG21)2 + 12 (GG 2)2  (4.28)

II2K 2 (GIG 2 + sCG2 + S2C2 )2

Then the noise of the buffer is calculated first as an output current noise

2oise = 2(2q (I, + 12 )) (4.29)

Then the output current noise is referred to the input of the buffer

2 4q (I, + 2) 4q(I +1 2) A 2  4q (3
Vnoise,buf G 2 K 2 (1 +12)2 K2 11 + 2) (4.30)

The noise at the output of two filters and two buffers is:r 48qq2 II (lsCG2)2 + 2 (G G)2 +2  4q~ 2 )

Vnoise,total I i2K 
2 (GG 2 + sCG2 +s2C2) 2  K2 (I, +12) (4.31)

I -s CG2 2

(GIG 2 + sCG + 2 2  2 2

Integrating this noise over the frequencies of interest gives a total noise for the filter. With 2pF

of capacitance, this filter has 189tVrms of noise for qr-2 . The dynamic range of the filter is

nearly 54dB for qf =2 going down to 51dB at the desired qf =2.8 because of decreases in the

linear range of the filter.

The bias currents can be calculated for the filters at 1kHz using Eq. 4.17 and Eq. 4.18. First,

the broad filter with a Q of 2.8 has bias currents of
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4xr#4C 4xr(0.025)2*10 - 2

I = ffq= 103 (2.8) 0.025)= 2.5nA (4.32)
K 0.7

12 f= i = 1.2nA (4.33)

The current consumption is

Irotal = 2(I I, +(I + 12))= 4(1, +I2) = 4(3.7nA) = 14.8nA (4.34)

In addition the translinear circuit that creates these currents from tau and Q currents consumes

six times the tau current, where tau is the geometric mean of Il and 12. 1.7nA in this case

leading to 10.2 nA in tau and Q plus six times the Q current (6*1.4nA)=8.4nA so the total

current is 33.4nA.

The total power consumed from a 2.8V supply for the broad filter at 1kHz is

P = IV = 33.4nA (2.8V) = 94nW (4.35)

The same analysis for the narrow filter with a qf of 4.5 gives a power consumption of 125nW.

The total power consumed in filters for a sixteen channel system with filters spaced between

250Hz and 4kHz is

Power = 1•(94 +125)nW freq) 4.9uW (4.36)
1000

B: Envelope Detectors

In order to perform compression and expansion, the gain of each stage must be varied with the

signal amplitude. This is done by first measuring the signal amplitude with an envelope

detector (ED). The detectors used here are based on those developed by Zhak et. al. for use in

cochlear implants[11-12]. The circuit topology shown in Fig. 4.10 differs from that presented

earlier only in the use of the full wave output.
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V.

Figure 4.10: Envelope detector topology. This topology was developed by Zhak in 1101.

In the operating frequencies, the input transconductor, G,, produces a current proportional to

the input voltage. This current is either sourced through M, or sunk through M2 depending on

the sign. The current mirrors then create a rectified output current at Iout. The remaining

components improve the performance. The capacitor is used as part of a lowpass filter from

Vi to the non-inverting input of G,. This allows the system to reject DC offsets. Despite the

use of the non-inverting input to the transconductor, this loop is stable negative feedback

because of the sign flip introduced by the current mirrors. The drive transconductor decreases

the minimum signal and increases the maximum frequency by actively driving the capacitance

required to switch M1 and M2. As in the original ED design, the current mirrors M3/M 4 and

Ms/M, are 4 to 1 to reduce the capacitor size for a given cut-off frequency.

Changes were made in implementing the circuit building blocks of Fig. 4.10 to minimize power

consumption and area for the 40dB dynamic range goal. First, Gt was implemented with the

same type of source degenerated transconductors as was used in the filters, Fig. 4.5, but with

the addition of output current mirrors for wide output swing. Because the linear range is

limited to the linear range of this transconductors by the filter, the extra linear range of a Wide-

Linear-Range transconductors would have been wasted [5]. The output current mirrors were
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set to a gain of 1, as opposed to N=5 in [11], in order to minimize the capacitor size and power

consumption. The combination of unity current mirrors and smaller bias currents for a smaller

dynamic range allowed the capacitance to be reduced from 180pF to 10pF. Finally, the drive

transconductor, Gdnve, was redesigned from the 1.5 rtm design in [11] to provide the appropriate

level shifting for the 0.5 ýt process. The new topology is presented in Fig. 4.11.

lutabot

Figure 4.11: Drive transconductor topology. M9 provides shifted outputs.

The power consumption of the ED is going to be limited by the currents required to overcome

parasitic capacitance. Decreasing the current through the input transconductor will lower all of

the currents in the system, increasing the input referred dead zone. Conversely, increasing the

current will increase the highpass cut-off of the circuit. This sets a maximum current for the

input transconductor such that all frequencies of interest are above the cutoff.

G,,,n < 2r250
4C

Grn ,,, (2rl0OOO)(10-" F)= 62.8nS

Ibias • (6.28-10-8)(150m V) e lOnA

(4.37)

(4.38)

(4.39)
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The total power consumption also includes a factor of two from the output legs of the

transconductors. Then, assuming that the drive transconductor operates at similar current

levels, the power consumption of the envelope detectors on the chip will be the

PowerD = 2.8V(16channels) (2halfs) (2(10nA) + 2(10nA)) = 3.6lpW (4.40)

After rectification, the peak detector measures the amplitude using a current mode filter with

asymmetric attack and release as shown in Fig. 4.12[11]. When I, is increasing, the behavior of

the circuit is governed by dynamic translinear circuit formed by M6, M,, Mg, M,, and C1. The

frequency response in this regime can be calculated starting with the translinear equation

I6 8 = 719 (4.41)

Substituting in values from this circuit

in tIk = 7IIou,  
(4.42)

dV
17 = Iatk + Ca (4.43)

at

IouI = I.e (4.44)

IOU' = v (4.45)

S= atk out at(4.46)
17 = Ialk + N

K at.47)
tc 8t
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I I 1iut (s) = +ak -

in at +S + S
/ IkaK

(4.48)

When Im is decreasing, the translinear loop is no longer active. Instead, the output current

decreases as I,el increases the gate voltage on M9. Because the gate voltage increases linearly, the

output current decreases exponentially with a time constant of

(4.49)C20
1,K

rel

M

lx

Figure 4.12: Peak detector circuit. This circuit was developed by Zhak et. al [10]. Currents are
filtered with an attack time constant set by Iatk and a release time constant set by IreI.

As with the rectifier, capacitances in this circuit were reduced from those reported earlier. C,

was reduced from 30pF to 5pF. C2 was reduced from 10pF to 5pF. The attack and release

currents are

(4.50)ik C, A 5.10 - 12 (0.025) 200pA
AK'ak 0.7(0.001)
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_ C,2 5*10-12 (0.025)Iret - C 5 (0.025) 5pA (4.51)
Kreit  0.7(0.040)

The peak detectors are predicted to consume

Power,, = 16channels (2halves) (4200pA + 5pA) = 26nW (4.52)

C: Power Law Circuits

The power law circuits, presented in [8] and shown in Fig. 4.13, raise the envelope current to a

current selectable power. The circuits operate by first taking the natural logarithm of the

current using M,. The resulting voltage is then compared to M2 to generate a current with Gm*

This current is converted back to a voltage by Got, applying a voltage gain of GoUt/Gm. This

voltage is exponentiated in M4 to create the output current. This operation can be written

mathematically as

G I= ,-InIfe ,n)(4.53)
'ou = re foute Gi. (4.53)

'refin

Figure 4.13: Power law circuit. This circuit was developed by Baker et. al. in [8]. The logarithm of
the input current is taken by M1. A current is generated by Gi. comparing log(I1.) to log(Iref,jn). This
current is converted to a voltage by Gout. The output current is then related to the input current by a
power law.
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The input transconductor, G,, must be linear for input currents variations from 1 to 100 for the

40dB required operation. The total range can be calculated using the subthreshold MOSFET

equation

KVg

I,, = Ie 0' (4.54)

KVg [KVg n 00 nl00
100/I, = 100I,e =Iei= Ie , -- (4.55)

The total swing in input voltage is

¢, In100 Snl 165mV (4.56)
K

By placing Iref,, in the middle of this range the linear range requirement can be brought down to

83mV, slightly larger than the simple transconductor. So a source degenerated transconductor

is used here as well.

The power requirements for the power law circuit are set by the currents required to drive the

variable gain amplifier. The other currents may be small, since the envelope signal has a limited

bandwidth.

D: Variable Gain Amplifier

The current derived from the signal envelope and raised to a programmable power is used to

control a variable gain amplifier (VGA) [8]. As in the power law cell, the input transconductor

creates a current which is converted back to a voltage by the output transconductor as shown in

Fig. 4.14.

137



)ut

VGAout

Figure 4.14: Variable gain amplifier circuit. This is a subset of Fig. 12. Here two transconductors are
used to provide a continuously variable gain.

The connections to the VGA distinguish between the compression and expansion half

channels. To perform compression the system is connected as shown in Fig. 4.15 with the

output of the envelope detector controlling Gou so that large signals receive less gain.

BandDass Vi .

Filter VGA,
VGAP- -">

G.,+ +

VGA.OU

Envelope Power Law
Detector Cell

Figure 4.15: Compression half channel block diagram. To perform compression, the output of the
power law cell is connected to the output transconductor of the variable gain amplifier. In this
configuration a small signal creates a small output transconductance and high gain.

The bandwidth of the VGA is determined by Go, and the load capacitance. The load

capacitance is the combination of the input capacitance for Go,,, and the input capacitance of a
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source follower that buffers the output. This total capacitance is approximately 200fF. To

ensure that bandwidth exceeds 4kHz

G"' 21r4000 
(4.57)

C

Go,, 2 12000(200fF) = 2.4nS (4.58)

Go,, = (4.59)

2.4nS(0.1)1IU, 2 = 0.35nA (4.60)
0.7

The output current is at its minimum when the gain is at its maximum. This occurs for the

smallest signal. To obtain a compression index of 0.25, the input dynamic range of 40dB must

be compressed to 10dB. A signal 20dB below the midline input, must be amplified 15dB, a

factor of 5.6, to 5dB below the midline output. So,

I,, = 0.35nA (5.6) = 2nA (4.61)

The power estimate for this stage is

PowerVGA~,omp = 2.8(16channels)(2+0.35) = 106nW (4.62)

The primary current of the power law circuit for the compression half channel can now be

calculated as well.

Powerpowerlaw,comp = 2.8(16channels)0.35 = 16nW (4.63)

These power consumption equations are for the case when the signal is small. As the input

signal grows, the gain in the VGA decreases to -15dB. This gain requires
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Iout = I, (5.6)= 11.2nA (4.64)

Here the power consumption is

PowerGA,comp = 2.8(16channels)(2 + 11.2) = 590nW (4.65)

and

Ppowerlaw,comp = 2.8(16channels)(11.2nA) = 502nW (4.66)

The noise from the VGA can be calculated using the same method that was used for the filters.

The output current noise for the transconductors is 4qlbias, so the noise current at the output

node for a minimum signal is

2oise = 4q(I,0 + Iout) = 4q (2.35nA) = q (9.410- 9 )  (4.67)

The output transconductor converts this to a voltage of:

I2  9.4q(150mV)2  71 0 V2  
1 7 pVrms

Vn -oise - = 2.710-' m = 17 (4.68)ois ,, (0.35nA)2  Hz - z

Integrated over the channel bandwidth leads to a total noise of 251 tVrms. Integrating over the

system bandwidth, the noise is 1.lmVrms before it is filtered by the narrow band filter. These

are both more noise than calculated for the bandpass filter, but this is the noise present in the

compressed signal. It is more useful to consider the noise in the uncompressed signal by using

input referred noise.

2 Ise 9.4q(150m V) 2  1012 V2 p uVrms
Vnoise = =8.4*10--=3 (4.69)Gonose (2nA) 2  

Hz Hz

That is 43ýtVrms in the channel and 183[LVrms over the entire bandwidth of the system.
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VGA.,

Figure 4.16: Expansion half channel block diagram. The expansion half channel differs from the
compression half channel only in the connection of the output of the power law cell to the variable
gain amplifier. In the expansion half channel, a small signal creates a small input transconductance in
the variable gain amplifier leading to a small gain.

In the expansion half of each channel, the gain is controlled by adjusting the current to the

input transconductor. With this topology, the gain increases as the signal increases. The

bandwidth is constant because the output transconductance is constant. The output current

could be set at 0.35nA as shown above to preserve the bandwidth, but in this design the output

current was set to the same 2nA that was used to bias Gi in the compression half channel to

lower the noise and maintain symmetry between the two halves of the channel. As in the

compression half, the smallest signal generates the smallest current and the power

consumptions are the same for this half of the channel.

The output current noise is also the same as for the compression channel, but Gi, and G.ut have

been switched so the noise for the expansion half channel block is

I2e 9.410-9q(150mV)2  V2 _ _Vr__sV2  se 9410( = 8.410 - 12 Vrms = 3 (4.70)
no G2ut (2nAzA)2 ~-ZH

That is 44jtVrms in the channel and a total of 184tVrms over the system bandwidth.

Section 3. System Design

Each of the sixteen channels has sixteen adjustable parameters for a total of 256 parameters for

the chip. This presents two system level problems. First, the values must be adjustable.
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Second, the effects of each parameter must be independently measurable so variations inherent

in analog design may be compensated for.

This chip uses two methods for adjusting programming. Inside the channels, the conservative

method of resistive biasing shown in Fig. 4.17 is used. Current sources in each channel are

biased by voltages which are divided using a resistive ladder. The exponential relationship

between voltage and current creates the desired log spacing of bias currents.

Figure 4.17: Resistive divider biasing. This conservative technique uses voltages to bias transistors
used as current sources at each channel. Resistors placed along the line create a voltage divider. The
constant voltage division between the channels leads to an exponential division of currents.

At the output of the system, a more advanced programmable DAC system is used to program a

weighted sum circuit shown in Fig. 4.18. The transconductor at the output of each channel creates a

current proportional to the difference between that channel and the system output. The DAC bits are

programmed through a three wire interface that is designed to support DACs for all of the parameters

on the chip. Two of the wires are used to shift bits into the global programming shift register shown in

Fig. 18. When the register is full of valid data, the third wire is raised high. This enables the channel
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level logic. Each channel compares the channel address in the global programming shift register with

its internally stored channel address. The data fields are then latched in to the DAC with the

corresponding DAC address.

Vout

Figure 4.18: Programmable channel summer. The transconductor at the output of each channel
creates a current proportional to the difference between the channel output and Vout. This creates an
average of the channel outputs weighted by the DAC values.

DAC Address Data Channel Address

Figure 4.19: Programming shift register. The programmable shift register reduces the number of
wires required to program the chip. Data is shifted into the register from a data pin using a clock pin
for timing. A third pin causes the chip to store the data in the latch associated with the correct DAC
and channel.

This system solves the visibility problem by placing each stage in a constant gain mode. This

technique can be demonstrated for the case of measuring the frequency response of the input

filter. The variable gain amplifier becomes a constant gain amplifier if it is driven with a

constant input current. This can be guaranteed by setting Gm of the power law circuit to zero.

Then the output filter can be made flat for frequencies of interest by setting its Q to an

arbitrarily low value. Then the output of the channel provides an accurate measure of
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amplitude changes in the first filter. By biasing the system one block at a time, each block can

be characterized.

Section 4. Single Channel Experimental Results

Ibe sixteen channel system depicted in Fig. 4.20 was fabricated through MOSIS on the AMI

O.5~m process. The sixteen channels are stacked from top to bottom. The signal enters all of

the channels on the left. On the right, both expansion half channel envelope currents and

signal voltages are brought out from each channel. Biasing voltages are provided at the top and

bottom.

Figure 4.20: Companding system chip die photograph. This chip was built on AMI's 0.5um process
through MOSIS.

The channel was tested by first testing the filter block (subsection A). Then the envelope

detector was tested (subsection B). Next the compression half channel was tested (subsection

C). Finally, a single channel was tested \vith compression and expansion (subsection D).
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A: Filters

The filters were first tested for functionality. Tbe frequency sweep shown in Fig. 4.21 was

measured at the output of the input filter using a Stanford Research SR720 lockin amplifier.

The sweep demonstrates second degree roll-off on both the high and low side. The filter is well

behaved for values of qf up to 8, but at higher qf the problem demonstrated in the frequency

response in Fig. 4.22 develops. As shown in Fig. 4.9, the filter is formed as the cascade of two

first order seconds. The two sections are biased with mirrored currents, creating the possibility

for mismatch from both the current mirror mismatch and mismatch in the kappa of the two

transconductors. Approximating this mismatch as ten percent, the maximum qf of the filter for

which the center frequencies will fall within the 3dB bandwidth is approximately

(4.71)

(4.72)

(4.73)

First Filter SWftp

10'
Frequency (Hz)

Figure 4.21: Filter frequency response. The bandpass filter is well behaved with second-order roll-off
on both sides.
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Figure 4.22: Filter frequency response at high values of qf. Mismatch between the two stages of
filtering degrades filter performance when q,:>IO.

Noise was measured immediately after the filter using a Stanford Research SR785 spectrum

analyzer. Figure 4.23 demonstrates that the noise fit is good in the passband, but the

experimental setup has excess noise at higher frequencies. Integrating the excess noise in this

plot shows that it nearly doubles the noise in the channel from 20011Vrms to 35011Vrms.

Referring back to Eq. 4.31, only the final buffer contributes noise at these frequencies. But to

fit the noise data, the noise from the buffer must be five times as large as calculated. This

additional factor is caused by noise in the bias current for the buffer. Unlike differential

transconductors, where bias current noise is removed by common mode rejection, the buffer

transmits the noise present in its bias current. Removing the factor of five by adding filtering

capacitors to the bias current circuitry would reduce this buffer noise from 15011Vrms to

30IlVrms.
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Figure 4.23: Filter noise. The experimental measurement agrees well with the calculated prediction in
the passband, but the output buffer introduces excess noise at high frequencies.

At the other end of the amplitude spectrum, distortion was measured using the lockin amplifier

to measure the first three harmonics. Figure 4.24 shows that for a qf of 2, the distortion grows

rapidly at SOmVnns.

Distortion q ,=2

10

8

4

2

---e- 2nd Harmonic
~ 3rd Harmonic
-'-THD

10.3 10.2

Fundamental AmplitudelmVrms)

Figure 4.24: Distortion measurement. The linear range is limited by both second and third harmonics
when the fundamental amplitude is approximately 50mVrms.
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The maximum signal defined by 5% total harmonic distortion decreases with qf as predicted

and as shown in Fig. 4.25. It also shows that noise is relatively invariant with qf' so the dynamic

range falls from 46dB at a qf of 2 to 17dB at a qf of 18.

Dynamic Range versus q,

~ linear Range
~Noise

4 6 8 10q, 12 14 16 18

Figure 4.25: Dynamic range versus qf' The dynamic range is the difference between the noise and the
linear range. This plot shows that the noise changes very little with qr while the linear range dec,:eases
significantly.

The power of the filter was measured by measuring the increase in system power when all

sixteen filters were biased at the voltages that create 1kHz at qr=2.8 in the observed channel.

The measured power was 175nW compared to the designed value of 95nW.

B: Envelope Detector

The output envelope detector was used for characterization because its current was accessible.

The current was measured using a Keithly Instruments 6420 Electrometer. Greater than 40dB

of linearity is shown in Fig. 4.26.
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Envelope Detector Unearity

10° 10I 102

Output Voltage (Vrms)

Figure 4.26: Envelope detector linearity. The output current of the envelope detector is linear with
the input voltage amplitude over greater than 40dB variation.

As predicted by the analysis, the linearity is a function of bias current and frequency. Figure

4.27 shows the envelope detector output current as a function of input amplitude and bias

voltage at 250Hz. The system begins to lose dynamic range between the middle and lower

curve, between lnA and 30OpA. At higher frequencies, the deadzone is more significant since

the current has less time to charge the parasitic capacitance. Figure 4.28 shows that at 5kHz the

deadzone effect is evident even with 3nA of bias current, but that it continues to demonstrate

40dB of range at the 3nA bias. The envelope detector achieved best performance while

running at 133nW compared to the designed value of 112nW.
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Figure 4.27: Dynamic range at 250Hz. The input-output characteristics of the envelope detector are
plotted for three different values of the input transconductance. The effect of the deadzone at small
amplitudes can be seen only in the lowest bias condition when EDtran=2.0V and the transconductor is
biased at approximately 300pA.

Dynamic Range versus Bias Current SkHz

100 101 10'
Input voltage{Vrms)

Figure 4.28: Dynamic range at 5kHz. The same experiment as Fig. 26 was performed here with the
channel frequency at 5kHz. The higher frequencies makes the deadzone a bigger problem.

The basic functionality of the peak detector is required for all of the envelope detector

measurements, but the dynamics of the peak detector can be further measured by using the
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entire compression half channel. The system is driven with a sine wave modulated by a square

wave as shown in Fig. 4.29.

Figure 4.29: Square wave modulated sine wave. This signal is used to test the dynamic response of the
peak detector.

The response time of the system, shown in Figs. 4.30, is dominated by the attack and release

time constants. The oscilloscope cursors are measuring the fifty percent rise time. This is

related to the time constant by

_'so
0.5 = e r

Iso = -, In 0.5 ~ 0.69,

So the time constants shown in the figures are 5, 10, and 20ms.
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(A) (8) (C)
Figure 4.30: Peak detector release times. This figure shows the output of the compression half
channel. The system is compressing the input to a constant amplitude. In response to a step down in
amplitude, the system increases the gain as the peak detector output decays. This provides a
measurement of the peak detector release time constants. The time constants in this figure are: Sms
(A), tOms (B), and 20ms (C).

The power consumed in the peak detector is 3.3nW, but there is significant excess power

associated with creating the reference voltage used in this topology. Vref in Fig. 4.12 must be a

low impedance voltage. This was created using the same buffer biased at 1DOnA as was used in

the bionic ear design [8]. This power should be reduced in future designs.

C: Compression Ha!f Channel

On the ftrst channel, the output of the compression half channel can be measured direcrly.

Figure 30 demonstrates the adjustment of the companding index, n1, from 1 to 0.5. The curves

cross at the point where Ircf,in is the input amplitude and Ircf,ouI'
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Figure 4.31: Adjustable compression curves. The output amplitude was measured using a lockin
amplifier while the input amplitude was swept. The four curves were taken with different values of
the companding index, n., from I to 0.5.

The system was design for this pivot point to be placed at the middle of the dynamic range. If

the pivot is placed too low, the power law circuit can move outside of its linear range as analyzed in

section and the variable gain amplifier can be biased in a poor bandwidth condition as analyzed in

section. The combined effect is demonstrated in Fig. 4.31.
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Compression Curves (low lrefln)

Figure 4.32: Compression curves measured with a low pivot point. Compression curves were
measured as in Fig. 30, but with Irer•in set to a low value. This biasing lowers the pivot point of the
compression curves and limits the linear range of excursions on the high side. This nonlinearity shows
up in the curvature of the curves even at low amplitude.

D:Single Channel

The complete single channel performance was demonstrated by recreating the two-tone

suppression figures from the original companding paper[2]. In each of these figures, the system

was driven with the sum of two sinusoids

Vin (I) = al sin (m,/) + a2 sin (mi +,po) (4.76)

The power in the output of the channel was measured using the Stanford Research SR785

spectrum analyzer.

For the first experiment, Fig. 4.33, both tones were placed at frequencies within the broad filter

while only the first tone was in the passband of the narrow filter. For three different values of

suppressed tone amplitude, ai' the suppressor tone amplitude, ~ was swept. The dynamic

range of the experimental system does not allow the 200dB output range shown in the

simulation, but the experiment recreates two important properties of the simulation. First, the

suppression level grows linearly in dB with the suppressor tone level. Second, the three curves
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are linear translations of each other, i.e. the break point amplitudes and suppression slopes are

equal.

o

-20

-60
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Figure 4.33: Two-Tone Suppression as a Function of Suppressor Amplitude. (A) is a plot from
simulation taken from (2]. (B) is experimental data from this chip. The amplitude of al was kept
constant for each curve while the amplitude of a suppressor tone, a2,was swept. As the suppressor
tone increase in amplitude, it suppressed the test tone.

The simulation and experiment tn Fig. 4.34 were performed with tones at the same two

frequencies as in Fig. 4.33. Here the companding ratio, nb is set to three different values. The

slopes of the compression curves measured at the middle of the channel vary with the

companding ratio.
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Figure 4.34: Two-Tone Suppression Versus Suppressor Amplitude. (A) is a plot from simulation
taken from (2). (B) is experimental data from this chip. The degree of suppression was determined by
the companding index. n•.

The system can also be characterized by sweeping the suppressor tone frequency rather than

the suppressor tone amplitude. Plots such as those in Fig. 4.35 demonstrate the effects of both

the broad and narrow filter. In these plots, the amplitude of the suppressor tone is ten times

the amplitude of the suppressed tone. At both very low and very high frequencies, the

suppressor tone has no effect and the suppressed tone determines the output power. At

intermediate frequencies, the suppressor tone passes through the broad filter, but not the

narrow filter. At these frequencies, the power at the output is reduced. At the center

frequency, the larger suppressor tone is passed through both filters and the output power

reaches a maximum. Figure 4.35 demonstrates that the bandwidths stay the same, but the level

of suppression at each frequency varies with the compression index.
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Figure 4.35: Two-tone suppression versus frequency. (A) is a simulation from (2]. (B) is experimental
data from this Chip. The power at the output of the channel was measured while the frequency of the
suppressor tone was swept. When the suppressor tone was far from the center frequency the
suppressed tone set the amplitude. As the suppressor approached the suppressed tone, suppression
reduced the power at the output. Then when the suppressor tone was within the narrow filter
bandwidth the powerful suppressor tone was transmitted to the output causing the peak.

In both simulation and experiment in Fig. 4.36, expanding the bandwidth of the broad filter

increases the range of frequencies which lead to suppression. The center response is constant

while the suppression curves differentiate at different levels.
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Figure 4.36: Two-tone suppression versus qt. (A) is a simulation from (2]. (B) is experimental data
from this chip.
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The center response was adjusted for the simulation and experiment shown in Fig. 4.37. Here

the surround curves are constant while the center curves vary in bandwidth. In the experiment,

the peaks are attenuated at higher qr values .
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Figure 4.37: Two-tone suppression versus Q2' (A) is a simulation from (2]. (8) is data from this chip.

The half channel has a low power consumption of less than 2flW as shown in Table 1. The

total power for the chip is approximately 60flW. Each of the currents was biased slightly higher

than the designed value. In future designs, the power should be cut in half by minimizing the

power consumed in buffers. Each half channel has two buffers, the peak detector reference

buffer and the signal output buffer, which were conservatively biased.

Com onent Des. ed Power
Filter 1kHz, 147nW
Filter 1kHz, 210nW
Peak Detector O.8nW
Envelo e Detector 112n W
VGA 6.6nW
Buffers 1120n W
Half Channel Total 1.6 W
Table 1: Power Consumption

Measured Power
175nW
218nW
3.3nW
133nW
31nW
1320nW
1.9 W

Low power consumption is key to making companding applicable to hearing instruments. A

standard hearing aid type 312 battery provides 175mWh of power in a form factor used in both

in the ear and in the canal hearing aids [2]. If this battery was used to power a companding
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speech processor, it would last 6 months with 16 hours of use per day. In practice, hearing aid

batteries are replaced once a week. In that time, the companding speech processor uses 3.8%

of the battery's capacity.

Section 5. System Performance

The system chip is composed of sixteen identical channels corresponding to the sixteen

channels in a typical cochlear implant. Combining multiple channels allows the system to create

a companded spectrum. Noise suppression is shown in this companded spectrum in Fig. 4.38.

The system was first driven with white noise to generate the reference waveform. Then it was

driven by a single tone at 1kHz added to the white noise. The tone suppresses the noise at

adjacent frequencies.

Compoeslon 1kHz

10"

10"
10' 10'

Figure 4.38: Noise Suppression From IkHz Tone.

The performance of this system is limited by two primary constraints not found in the channel.

Section I discusses the problems caused by adding up the noise from multiple channels.

Section II discusses the problems with biasing caused by mismatch between the channels.
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A: Noise

The signal at the output of each channel is confined to a narrow frequency band by the narrow

band filter in the expansion half channel. This filter also limits the noise of the earlier stages of

processing, but the noise from two broadband stages are not included in this filtering. The first

stage is the buffer placed at the output of the bandpass filter. This is the buffer responsible for

the excess high frequency noise in Fig. 21 and accounts for up to 150Vrms of out of band

noise with current biasing or 30pVrms predicted from filtered biasing. The second broadband

noise source is the VGA. Because of the low currents at which the VGA is run, it contributes

more noise. As shown in section 2.D., the VGA has 184[IVrms of out-of-band noise. This

out-of-band noise adds between the channels, scaling by /channels, to 736[tVrms for 16

channels.

The solution to this out of bound noise is to ensure that all of the noise is filtered. This can be

accomplished in two ways. A new filter may be added following the buffer and VGA or the

buffer and VGA may be included in the existing narrow band filter.

The simplest solution is to add an additional stage of filtering following the VGA. In addition

to the added area and power requirements of adding an additional filter, this filter will be

difficult to implement because it must operate on the full dynamic range of the signal following

the expander while filtering with a small bandwidth.

VOUT

I
Figure 4.39: Revised Expansion Topology
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The second solution simplifies the filtering operation and nunumzes components, but is

complicated by the required temporal response. The revised expansion is shown in Fig. 4.39.

The variable gain amplifier is place in the feedback path of the filter. In this configuration, the

VGA attenuates the signal to create a net amplification by the block. This system works for

slow frequency changes in the envelope, but to completely recreate the modulation step

responses shown in Figs. 4.30 would require an envelope detector capable of instantaneous

envelope detection and a slow adaptation. So, further simulations with this topology are

required to determine its suitability for this application.

B: Mismatch

The resistive divider system described in Section 3 allows the biasing of the chip to desired

values, but it cannot correct for mismatch between the channels. The extent of the mismatch

problem is shown in Fig. 4.40. The center frequency and Q are plotted for each channel for

five different chips.
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Figure 4.40: Filter Mismatch
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For both center frequency and Q the standard deviation is approximately 30% of the mean.

The mismatch is even larger for the companding index where it reached 38% of the mean. The

mismatch is large in both cases because of the multiple current mirrors involved. For the filter

parameters the control currents are first mirrored across the chip by the biasing circuit. Then,

the currents are mirrored for use in the translinear biasing. The translinear loops introduce

error for internal mismatch as well as mismatch in the q scaling current. Then the output of the

translinear circuit is mirrored to the filters. Finally, the conversion from currents to

transconductances can be mismatched. There are a total of six contributions to mismatch.

Expanding the DAC based programming system presented in section 3 can compensate for this

mismatch. The key remaining parameter is the number of bits to use in the DACs. Data must

be taken to measure the required matching for different parameters in the system.

Section 6. Conclusion

The companding algorithm has the potential to improve hearing in noise for hearing aid and

cochlear implant users. Turicchia and others have implemented the algorithm in Matlab and

begun to explore its performance, but to integrate it into hearing aids and cochlear implants it

must be implement in a micropower technology. I have built a custom analog integrated circuit

that performs the companding operation in less than 60[iW. At that power level, the

companding speech processor could run for 6 months from a standard hearing aid battery.

I have shown that my micropower analog companding processor exhibits two-tone suppression

and performs companding. I have also found some of the areas in which the analog

implementation differs from the computer implementation and quantified these effects. Now,

algorithm can be refined to include the effects of noise and mismatch.
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Chapter 5 : Conclusion

I have developed a set of techniques for designing micropower analog filters with both high

and low values of Q. First, I demonstrated the capacitive attenuation technique for shifting the

dynamic range of gm-C filters to higher linear ranges. Then I demonstrated that for high-Q

filters, the dynamic range becomes limited and jump resonance develops. I explored the

phenomenon of jump resonance and developed the AQC circuit solution to avoid it. Finally, I

implemented the companding algorithm, an architecture that avoids jump resonance while

using intentional nonlinearity to process audio signals.

Power efficient filters have been built by other researchers using gm-c topologies. Groenewold

then developed a formula for the dynamic range of gm-c filters as a function of filter

parameters which can also be used to calculate the power consumption for a given frequency

and dynamic range. My work on the capacitive-attenuation filter expanded on this work by

demonstrating that attenuators can be used to increase the linear range, while also increasing the

noise to keep a constant dynamic range, with minimal increase in power consumption. The

technique was demonstrated on a simple second-order filter. This work could be expanded by

including alternative filter topologies such as ladder topologies which have demonstrated better

device matching insensitivity or by improving the very low frequency behavior of the dc-path

transconductor. Currently, the transconductor must be biased at a sufficiently high level to

minimize rectification at the common source node.

I worked as part of a larger team to build a micro-power analog speech processor for cochlear

implants. I used my capacitive-attenuation filters to separate the input audio signal into sixteen

different frequency bands. Our analog speech processor operates on less than 5% of the power

of traditional designs.

In order to increase the number of channels in the speech processor, I decreased the bandwidth

of each filter, increasing the Q. This decreased the linear range of the filters. In these filters, I

observed a number of nonlinear behaviors such as gain compression and harmonic distortion.

I also saw jump resonance, a behavior I was not familiar with.
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I studied jump resonance using two sets of theoretical methods. First, I used describing

function methods to model the non-linearity as an amplitude dependent gain for sinusoidal

inputs. With this model, I used the traditional Fukuma-Matsubara method to predict the

conditions when can cause jump resonance in my system and my own graphical method to

predict the resulting waveforms. I have also developed an intuitive model for the shape of the

transfer function based upon positive and negative feedback.

Then, I used a state-space model to explore the behavior of non-sinusoidal waveforms. This

analysis demonstrates how the state of the system in the hysteresis region is stored in the

voltages on the capacitors. The analysis also predicted a subharmonic mode which I verified in

both a circuit simulation and in my experimental setup. This work could be expanded to

consider the effect of Q on the regions of attraction, the step response of the system, and the

effect of time varying nonlinearities.

Finally, I used my filters in an architecture that avoids jump resonance by using a series of two

filters and two discrete nonlinearities with the need for an automatic Q control. These filters

and nonlinearities are combined to implement the companding speech processing algorithm as

proposed by Turicchia and Sarpeshkar. Preliminary results suggest that the algorithm can

improve speech recognition performance for cochlear implant patients in moderate noise

environments.

I have demonstrated the key companding speech processing behaviors in my analog processor.

A large amplitude tone can cause suppression of an adjacent quiet tone. The level of this

suppression and the frequency dependence are fully adjustable.

Future work on the analog companding speech processor should focus on noise and mismatch,

two difficulties which are unique to the analog implementation. The noise in the channel can

be further reduced by adding filtering to the current bias within the channel. A bigger factor in

the noise is caused by out of band noise. When the sixteen channels are added together, the

out of band noise is multiplied by 4. An additional filter following the expansion stage would

improve this performance. Mismatch can be compensated for by the inclusion of independent

digital programming of each of the channel parameters.
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